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Abstract

The aim of this thesis is to develop algorithmic methods for computing particular perfor-

mance measures of interest for a general class of discrete-based insurance risk models. We

build upon and generalize the insurance risk models considered by Drekic and Mera (2011)

and Alfa and Drekic (2007), by incorporating a threshold-based dividend system in which

dividends only get paid provided some period of good financial health is sustained above

a pre-specified threshold level. We employ two fundamental methods for calculating the

performance measures under the more general framework.

The first method adopts the matrix-analytic approach originally used by Alfa and Dre-

kic (2007) to calculate various ruin-related probabilities of interest such as the trivariate

distribution of the time of ruin, the surplus prior to ruin, and the deficit at ruin. Specifi-

cally, we begin by introducing a particular trivariate Markov process and then expressing

its transition probability matrix in a block-matrix form. From this characterization, we

next identify an initial probability vector for the process, from which certain important

conditional probability vectors are defined. For these vectors to be computed efficiently,

we derive recursive expressions for each of them. Subsequently, using these probability

vectors, we derive expressions which enable the calculation of conditional ruin probabili-

ties and, from which, their unconditional counterparts naturally follow.

The second method used involves the first claim conditioning approach (i.e., condition

on knowing the time the first claim occurs and its size) employed in many ruin theoretic

articles including Drekic and Mera (2011). We derive expressions for the finite-ruin time

based Gerber-Shiu function as well as the moments of the total dividends paid by a finite
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time horizon or before ruin occurs, whichever happens first. It turns out that both func-

tions can be expressed in elegant, albeit long, recursive formulas.

With the algorithmic derivations obtained from the two fundamental methods, we next

focus on computational aspects of the model class by comparing six different types of

models belonging to this class and providing numerical calculations for several paramet-

ric examples, highlighting the robustness and versatility of our model class. Finally, we

identify several potential areas for future research and possible ways to optimize numerical

calculations.
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Nomenclature

Abbreviations:

DISAM: Delayed independent Sparre Andersen model.

iid: Independent and identically distributed.

MAMs: Matrix-analytic methods.

OISAM: Ordinary independent Sparre Andersen model.

pmf: Probability mass function.

Conventions:

If a and b are integers with a > b, then a, a+1, . . . , b is considered to be an empty sequence

of points.

If a and b are integers with a > b, then

b∑
`=a

f` = 0 for any arbitrary function f`.

00 = 1.

0×∞ =∞× 0 = 0.

Basic Notation:

Z−: The set of negative integers (i.e., {-1,-2,-3,. . . }).

N: The set of natural numbers (i.e., {0,1,2,. . . }).

Z+: The set of positive integers (i.e., {1,2,3,. . . }).
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∅: The empty set.

bxc: The floor function of x, yielding the largest integer that is less than or equal

to x.

dxe: The ceiling function of x, yielding the smallest integer that is greater than or

equal to x.

(x− y)+: The maximum of x− y and 0.

mod(a, b): a modulo b for a ∈ N and b ∈ Z+. Note that mod(0, b) = 0.

1A: The indicator function of an event A, equal to 1 if A is true and 0 if A is

false.

A: The complement of an event A.

|A|: The cardinality of (i.e., number of elements in) a set A.

A′: The transpose of a vector/matrix A.

[A]m,n: The (m,n)th block-matrix of A.

Constants:

u: The initial surplus value.

d: The initial value of the dividend counter.

c: The premium amount per time unit.

b: The dividend threshold level.

nr: The maximum time span until the first claim occurs.

na: The maximum interclaim time (i.e., the maximum time span between two consecu-

tive claims).

y0: The minimum claim size.

yα: The maximum claim size.
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c1: The minimum unrestricted dividend amount.

c2: The maximum unrestricted dividend amount.

h: The maximum dividend counter value, conveying when a potential dividend can be

issued.

0: A 1× na vector of zeros.

0: An na × na matrix of zeros.

e1: A 1× na vector with 1 in the first element and zeros elsewhere.

Variables:

t: A general time unit value.

y: A general (i.e., realized) claim size value.

k: The realized time unit value at which the first claim occurs.

τ : A general (i.e., realized) time of ruin value.

i: A general (i.e., realized) surplus value.

j: A general (i.e., realized) deficit at ruin value.

s: A total dividend amount value before the current time period.

s∗: A dividend amount value at the current time period. If the current time period is a

non-dividend paying time period, then s∗ = 0.

T : The time of ruin random variable.

U(t): The value of the surplus process at time t under a continuous-time insurance risk

model.

U(T−): The surplus prior to ruin under a continuous-time insurance risk model.

|U(T )|: The deficit at ruin under a continuous-time insurance risk model.
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Ut: The value of the surplus process at time t under a discrete-time insurance risk

model.

UT− : The surplus prior to ruin under a discrete-time insurance risk model.

|UT |: The deficit at time at ruin under a discrete-time insurance risk model.

Ωk: The sample space of possible non-ruin values that the surplus process can take at

time k.

N(t): The number of claims by time t under a continuous-time insurance risk model,

with N(0) set equal to 0.

Nt: The number of claims by time t under a discrete-time insurance risk model, with

N0 set equal to 0.

W1: The time until the first claim occurs, where W1 ∈ {1, 2, . . . , nr}.

W`: The time between the (` − 1)th and `th claims (a.k.a. `th interclaim time) for

` ∈ {2, 3, 4, . . .}, where W` ∈ {1, 2, . . . , na}.

X`: The size of the `th claim for ` ∈ Z+, under a continuous-time insurance risk

model, where X` > 0.

Y`: The size of the `th claim for ` ∈ Z+, under a discrete-time insurance risk model,

where Y` ∈ {y0, y0 + 1, . . . , yα}.

Et: The value of the elapsed time counter, at time t, since the occurrence of the last

claim, starting from 1 at time 0, and resetting to 1 at every claim occurring time

unit.

Dt: The value of the dividend counter at time t. A dividend is potentially issued at

time t+ 1 only when Dt is equal to h.

St: The total dividend amounts issued by time t ∈ N, with S0 = 0. Its range of values

depends on knowing Ut−1, Dt−1, and possibly the value of a claim at time t.

Order: The event variable specifying the order of claim and dividend implementation

should they both need to be processed at the same time unit. If the claim is

processed before the dividend, then Order is set equal to ClmFrst; otherwise, it

is set equal to ClmFrst.
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Probabilities:

rω: Equal to Pr{W1 = ω}.

Rω: Equal to Pr{W1 > ω}.

aω: Equal to Pr{W` = ω} for ` ∈ {2, 3, 4, . . .}.

Aω: Equal to Pr{W` > ω} for ` ∈ {2, 3, 4, . . .}.

αy: Equal to Pr{Y` = y} for ` ∈ Z+.

Λy: Equal to Pr{Y` > y} for ` ∈ Z+.

p: Equal to Pr{ClmFrst}.

d`: Equal to the probability that an unrestricted dividend is equal to `.

d∗`{i}: Equal to the probability that a restricted dividend is equal to `, given that the

surplus process is at level i immediately before the dividend is issued.

f
(n)
u,d (s): The convolution probability mass function of the first n dividends, starting

from an initial surplus of u and an initial dividend counter of d. By convention,

f
(0)
u,d(s) = 1[s=0].

General Functions:

zu: The earliest time the surplus process reaches or crosses the threshold level b

from an initial surplus of u.

z∗u,d: The earliest time a dividend can be issued, starting from an initial surplus of

u and an initial dividend counter of d.

Tu,d(t): The collection of dividend paying time points up to and including time t,

starting from an initial surplus of u and an initial dividend counter of d.

Pz∗u,d(n): The number of periods after z∗u,d required for n dividends to be issued.

Divi(x): The restricted value of an unrestricted dividend of size x, given that the surplus

process is at level i immediately before the dividend is issued.
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TotDivn(x): The total amount of the first n dividends, each comprised by

way of a constant unrestricted dividend of size x.

Ru,d(t): The collection of all possible total dividend amounts accumu-

lated by time t, starting from an initial surplus of u and an

initial dividend counter of d.

imin: The smallest possible surplus prior to ruin value.

ṽu(t): An upper bound on the level the surplus process can achieve

at time t, starting from an initial surplus of u.

Vu1,d1
(t1, t2, y, s, s

∗, Order): The value of the dividend counter at time t2, starting at time

t1 (< t2) from a surplus of u1 and a dividend counter of d1,

given that the only claim occurs at time t2 with a size equal

to y, the total amount of dividends over the time period {t1 +

1, t1 +2, . . . , t2−1} is equal to s, the dividend amount at time

t2 is equal to s∗, and the value of the event variable at time

t2 is equal to Order. At times when any of these parameters

do not play a role in determining the value of the dividend

counter, we replace them with the notation “.”.

Functions Assuming No Claims before Time k:

vu,d(k): The maximum level the surplus process can achieve at time k from an initial

surplus of u and an initial dividend counter of d, immediately before the first

claim and possible dividend are implemented at time k.

ṽu,d(k, n): An upper bound on the level the surplus process can achieve at time k + n

from an initial surplus of u and an initial dividend counter of d, given that the

first claim occurred at time k.

Performance Measures:

ψ
(k)
n,i,j(u, d): Equal to Pr{T = k + n, UT− = i, |UT | = j |Uk ∈ Ωk, U0 = u,D0 = d}.

ω
(k)
n,i (u, d): Equal to Pr{T = k + n, UT− = i |Uk ∈ Ωk, U0 = u,D0 = d}.

φ
(k)
n,j(u, d): Equal to Pr{T = k + n, |UT | = j |Uk ∈ Ωk, U0 = u,D0 = d}.
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ψτ,i,j(u, d): Equal to Pr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d}.

ωτ,i(u, d): Equal to Pr{T = τ, UT− = i |U0 = u,D0 = d}.

φτ,j(u, d): Equal to Pr{T = τ, |UT | = j |U0 = u,D0 = d}.

Ψτ,i,j(u, d): Equal to Pr{T ≤ τ, UT− ≤ i, |UT | ≤ j |U0 = u,D0 = d}.

Γτ (u, d): Equal to Pr{T ≤ τ |U0 = u,D0 = d}.

G̃v,m(u, d): Equal to E[vTw(UT− , |UT |)1[T≤m]|U0 = u,D0 = d] under a DISAM, where

v ∈ (0, 1] is a discount rate and w(UT− , |UT |) is a specified penalty function.

Gv,m(u, d): Equal to E[vTw(UT− , |UT |)1[T≤m]|U0 = u,D0 = d] under an OISAM, where

v ∈ (0, 1] is a discount rate and w(UT− , |UT |) is a specified penalty function.

D̃rm(u, d): Equal to E[Srmin{T,m}|U0 = u,D0 = d] under a DISAM.

Drm(u, d): Equal to E[Srmin{T,m}|U0 = u,D0 = d] under an OISAM.
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Chapter 1

Literature Review

1.1 Introduction

1.1.1 A Brief History of Ruin Theory

The concept of insurance and pooling risk is quite an old one since the early formation

of human civilizations. Ever since money came into existence, societies have found it ex-

tremely beneficial to develop safety mechanisms in the form of financial compensations

for their citizens, in the face of possible personal misfortunes (e.g., floods, sickness, death

of a family member). Consequently, the role of insurance became more pronounced. As

a result, both private and public institutions were established to protect members and

organizations against particular potential losses through financial compensation and/or

services.

Nowadays, insurance has become a part of everyday life for both members and institu-

tions, at least in developed societies. In the foreword of his 1984 book The Historian and

Business of Insurance, Oliver Westall states—in the context of the British economy—that

“the involvement of insurance in so many aspects of the economy has meant that its his-

tory has reflected the evolution of business and social life in a most intimate and revealing
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way.” Extending this quote, we may even be so bold to say that maintaining the well-being

of these risk-protection agencies is crucial for the well-being of human society. Thus, it

is essential to keep insurance companies financially healthy and productive, and minimize

the risk of ruin (i.e., bankruptcy).

The research conducted in this thesis lies under the umbrella of ruin theory (a.k.a. col-

lective risk theory), which mathematically studies the insurance company’s vulnerability

to being ruined (i.e., bankrupt) at some point in the future. This is done by mathemat-

ically formulating an insurance risk model which involves setting up at least one surplus

process. A surplus process (a.k.a. risk reserve) is typically classified as the net financial

amount of an insurance company after taking away operational expenses. Once the pro-

cess/processes has/have been set up, the goal is then to calculate or derive expressions for

particular ruin-related quantities known as performance measures or risk measures, such

as the probability of ultimate ruin (i.e., the probability that an insurance company will

eventually go bankrupt).

The first known publication of an insurance risk model was a compound Poisson risk

model published in 1903 by Filip Lundberg (e.g., see Cramér (1969)), who can be consid-

ered as the father of ruin theory. The assumptions of his model were quite simple and the

main objective was to derive the probability that an insurance company’s surplus will be-

come negative (i.e., get ruined) at some date in the future. Other risk measures examined

by Lundberg and others in the early twentieth century involved upper and lower bounds

on probabilities of ruin, which were particularly useful when calculating the probability of

ruin was done manually.
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In fact, it was not until the 1980’s that the focus of the ruin theory literature became

oriented towards computationally intensive and practical models. By looking at recent

publications (i.e., 1990’s to late 2000’s) in top actuarial and statistical journals, we find

that there has been an increasing number of articles which focus on practical issues such

as those shown in the following list:

(1) Analysis of surplus models under a very general set of assumptions:

(a) Multivariate models, of which an overview is given in Anastasiadis and Chuvoka

(2012).

(b) A model incorporating a constant interest rate, with claim instants that are

governed by a Markovian arrival process, and claim sizes that are matrix expo-

nentially distributed as in Mitric et al. (2012).

(c) Dependent interclaim time and claim size models as in Willmot and Woo (2012)

and Mihálykó and Mihálykó (2011).

(d) A Lévy insurance risk model as in Bo et al. (2012) (note: there were errors

in the original manuscript, which were corrected in the two-page follow-up Bo

et al. (2013)).

(e) A discrete renewal risk model as in Cossette et al. (2006).

(2) Use of statistical techniques in estimating parameters and calculating performance

measures:

(a) Using a hybrid of crude Monte Carlo and asymptotic estimation to estimate the

finite-time probability of ruin in an AR(1) model as in Tang and Yuan (2012).

(b) Using the Log phase-type class to fit heavy-tailed data as in Ahn et al. (2012).
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(c) Calculating the probability of ultimate ruin via a bootstrap approach as in

Baumgartner and Gatto (2010).

(d) Calculating the adjustment coefficient in an ARMA(p, q) risk model as in Christ

and Steinebach (1995).

(3) Development of recursive techniques for computing different types of ruin probabili-

ties efficiently for particular insurance risk models:

(a) A discrete-based insurance risk model with random dividends as in Drekic and

Mera (2011).

(b) An Erlangian approximation to insurance risk models with phase-type interclaim

times and claim sizes as in Stanford et al. (2011).

(c) An insurance risk model with phase-type distributed claim sizes as in Drekic

et al. (2004).

Hence, as the literature becomes abundant with both realistic and mathematically tractable

models, insurance companies will have a greater variety of quantitative tools and methods

at their disposal.

1.1.2 Insurance Risk Models as Proxies for Company Solvency

Notwithstanding this, we note that insurance risk models can only play a minor role in

analyzing an insurance company’s financial well-being. This is because the assumptions

made about the nature of the surplus process throughout time are overly simplistic. Cer-

tain extrinsic factors may set a completely different fate for the company’s surplus should
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they occur (source: Willmot (2011)). For instance, a company may face a sudden increase

in competition (e.g., new players issuing insurance products with competitive prices) or a

sudden loss of reputation (e.g., being subjected to multiple bad faith lawsuits). Either case

will heavily require adaptive strategic planning that will render an insurance risk model

obsolete since new forces (i.e., sources of expenses) will not be captured by the stochastic

model. Hence, insurance risk models cannot be over-relied upon due to the dynamic nature

of the real world.

Nonetheless, stochastic models can be useful in scenario testing and even in making

short-term predictions (sources: Landriault (2011); Willmot (2011)). Thus, it would be

useful for practitioners to include some of the insurance risk models available in the liter-

ature in analyzing the solvency of their businesses.

1.2 Insurance Risk Models in the Literature

1.2.1 Works under the Continuous Framework

The main focus in the literature has been on the formulation/analysis of insurance risk

models under a continuous-time framework. The most typical model is a surplus process,

starting with an initial capital, receiving a constant premium throughout time, and pro-

cessing a random number of claims, each of which is of a random size. Mathematically,

using notation commonly used in the literature, this process can be written as follows:

U(t) = u+ ct−
N(t)∑
`=1

X` for t ≥ 0 and with U(0) = u and N(0) = 0.

In the above equation, U(t) represents the company’s surplus at time t, u is the initial

wealth of the insurance company, c is the constant premium rate per time unit, N(t) is the

5



number of claims that have occurred by time t, and X` is the size of the `th claim. Note that

this model has two sources of randomness: N(t) and the X`’s. The main objective of using

this model (and more general ones of a similar nature) is to calculate the probability that

the surplus of an insurance company would be 0 or less at some specified (or unspecified)

future date, given an initial capital of u. Figure 1.1 below gives an example of this typical

kind of surplus process:

t

U(t)

1 2 3 4 5 6 7 8 9 10
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0
1
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4
5
6
7
8
9

10
X1 = 6.3 X2 = 6.6 X3 = 8.9

Figure 1.1: A sample path of a continuous-time surplus process with u = 2 and c = 2.

This simple model was first introduced by Lundberg in 1903: the claim number pro-

cess, {N(t), t ≥ 0}, was assumed to be a Poisson process with parameter λ, and the X`’s

were positively distributed and iid (i.e., independent and identically distributed) and in-

dependent of the number of claims N(t) (e.g., see Seal (1969), pp. 12–14). Lundberg’s

framework was the starting point for deriving explicit expressions for risk measures such

as the probability of ultimate ruin and the moments of the time of ruin.
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We, of course, acknowledge the simplicity of the model above: there are many aspects

we should take into account when developing models of practical value. Still, that was the

starting point. Eventually, generalizations of the above-mentioned model became abundant

in the literature. Along with the generalized models listed in Section 1.1.1, here are a few

more examples:

(1) Copula models such as in Czado et al. (2012).

(2) Semi-Markov processes such as in Albrecher and Boxma (2005) where the indepen-

dence assumption between N(t) and the Xi’s is dropped.

(3) {N(t), t ≥ 0} being a mixed Poisson process, with interclaim times being generally

distributed (as opposed to the classical exponential distribution which is a result of

Lundberg’s original model) as in Grandell (1997).

(4) {N(t), t ≥ 0} being a delayed (or modified) renewal process, with claim sizes being

generally distributed as in Willmot (2004).

Next to distributional generalizations, there are structural generalizations, which include

incorporating other factors into the model. One such generalization, which we examine

in this thesis, involves incorporating a threshold-based dividend system (a.k.a. dividend

strategy), which will be covered in the next sub-section.

1.2.2 Surplus Processes with Dividend Systems

In practice, insurance companies issue payments to their shareholder members, as most of

them are private enterprises. The amount and duration of these payments are determined

by many factors such as the shareholder’s position and the financial health of the insurance

company. Since a shareholder’s primary interest in the business is to make a high amount
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Figure 1.2: A sample path of a continuous-time surplus process under a threshold-based

dividend system with u = 2 and c = 2.

of profit, a successful insurance company would therefore be one that has highly generous

dividend systems for its owners. Thus, it would be of significant practical interest to in-

corporate dividends in insurance risk models.

Insurance risk models incorporating dividend systems were originally proposed by de

Finetti (1957). In most insurance risk models including this feature, the common norm

of issuing dividends is that they are applied only during periods of time when the surplus

process is considered as financially healthy (see Avanzi and Wong (2012) for an example

of an insurance risk model that does not follow this norm). Financial health is usually

classified by comparing the value of the surplus process to a pre-specified threshold level

such as the one depicted in Figure 1.2 (some models, although less common in the litera-

ture, incorporate multiple threshold levels such as in Lin and Sendova (2008)). Once the

surplus process reaches or crosses this threshold level, it is classified as financially healthy

and a dividend system is set in motion. In addition, dividends should never jeopardize
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the financial health of an insurance company; that is, the dividend amounts issued should

never be allowed to be sufficient enough to bring the surplus process below the threshold

level.

One major advantage, both practically and mathematically, of incorporating threshold

levels in insurance risk models is that they can keep risk reserves (i.e., surpluses) realistically

bounded. Seal states on page 122 of his 1969 book that the “concept of an indefinite future

for a risk business [such as an insurance company] coupled with the resulting infinite

risk reserve [...] was, however, criticized as unrealistic.” For a comprehensive overview of

insurance risk models incorporating dividend systems, see Avanzi (2009).

1.2.3 Improvements in Performance Measures

Next to developing more flexible insurance risk models, a lot of research has been dedicated

to calculating and deriving algebraic expressions for complex, albeit useful, performance

measures such as expected discounted total dividends prior to ruin and the Gerber-Shiu

function (proposed and formalized by Gerber and Shiu (1998)). The latter function has

especially become popularly studied in the literature within the last decade because of its

generality (i.e., we can extract several different performance measures under special cases).

Specifically, the Gerber-Shiu function involves a general function, known as the penalty

function, depending on particular ruin-related quantities associated with the surplus pro-

cess, such as the surplus prior to ruin (i.e., the value of the surplus process immediately

before the ruin-causing claim) and the deficit at ruin (i.e., how far the surplus process is

below 0 at the time of ruin). Hence, by deriving general performance measure functions,

surplus processes can be analyzed under different aspects.
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Also, next to the development of more complex performance measures (thanks to the

advancements in computational speed), several works in simulation and efficient algorithms

have recently been developed in the literature for calculating ruin probabilities and other

risk measures (for early works, see, for instance, Dufresne and Gerber (1989) and Dickson

(1995)). The focus of this thesis lies in this area of the literature, specifically on deriving

efficient algorithms for computing ruin-related quantities associated with a particular class

of insurance risk models under a completely discrete framework (i.e., all elements deter-

mining the behaviour of surplus process, such as time and claim size, are discrete-valued).

Since our model is based on this framework, and on particular computational techniques

for calculating specific performance measures of interest, we dedicate the following two

sections in this literature review to elaborate on the research conducted in both areas.

1.2.4 Works under the Discrete Framework

“Unlike continuous-time risk models, discrete-time risk models have not attracted much

attention and the literature counts fewer contributions. Yet discrete-time risk models also

have their special features and are closer to reality” (source: Li et al. (2009)).

Mathematically, using notation commonly used in the literature, a discrete-based pro-

cess can be written as follows:

Ut = u+ ct−
Nt∑
`=1

Y` for t ∈ N and with U0 = u and N0 = 0.

Analogous to the continuous-time risk models, Ut represents the company’s surplus at time

t, u is the initial wealth of the insurance company, c is the constant premium rate per time

unit, Nt is the number of claims that have occurred by time t, and Y` is the size of the

`th claim. All these variables are discrete. Note again that this model has two sources of
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Figure 1.3: A sample path of a discrete-time surplus process with u = 2 and c = 2.

randomness: Nt and the Y`’s. Figure 1.3 above provides a simple transition scheme of this

discrete-based process.

It may come as a surprise that the discrete framework has received very little attention

before the 1990’s (this also includes discrete-time surplus processes with continuous claim

amounts, which is much scarcer in the literature); rather, the focus has always seemed to

have been on continuous-time insurance risk models. In fact, the first paper that, so to

speak, popularized the discrete framework was Gerber’s 1988 article under the amusing

title Mathematical Fun with the Compound Binomial Process . The model Gerber used is a

discrete analogue of the classical compound Poisson model: the compound binomial pro-

cess. Specifically, the model assumes that at every discrete time point, a maximum of one

claim can occur with a known (constant) probability value. The claim sizes are assumed

to be iid discrete random variables, and the claim occurrence (or non-occurrence) at each

time point is independent of subsequent occurrences (or non-occurrences) at other time
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points. Regarding interclaim times, instead of having them exponentially distributed as in

the continuous case, these claim times are geometrically distributed—since, in some sense,

the geometric distribution is considered to be the discrete counterpart of the exponen-

tial distribution because of the memoryless property it satisfies. By employing conditional

probabilistic arguments and martingale theory, in addition to some algebra, Gerber derives

the probability of ultimate ruin, as well as probabilities involving the surplus prior to ruin

and the deficit at ruin.

Several papers have been written since Gerber’s 1988 article deriving other risk mea-

sures for more general discrete-based risk models (see Li et al. (2009) for a comprehensive

overview of discrete-time models studied). Here are some notable generalization examples

of interest:

(1) Distribution and performance measure generalizations:

(a) In Cossette et al. (2010) and Cossette et al. (2004), dependency structures are

assumed.

(b) In Pavlova and Willmot (2004), the number of claims are assumed to follow a

discrete-time renewal process and individual claim amounts are assumed to be

discrete, iid and independent of the number of claims.

(c) In Cheng et al. (2000), Lundberg’s fundamental equation is introduced for Ger-

ber’s compound binomial surplus model, and explicit formulas for particular

probabilities of ruin are derived.

(2) Structural generalizations:

(a) In Drekic and Mera (2011), Kim et al. (2008), Landriault (2008), Bao (2007),
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and Tan and Yang (2006), a threshold-based dividend system is incorporated.

(b) In Xie and Zou (2010), interest rates, next to a threshold-based dividend system,

are incorporated.

(c) In Yuen and Guo (2001), multiple claim types are incorporated.

(d) In dos Reis (2000), recovery times (where a recovery time is an uninterrupted

length of time during which a surplus process is negatively valued) are allowed.

As can be seen, there has been a growing number of recent papers on discrete-based

insurance risk models, most of which are extensions of the compound binomial framework

and focusing on deriving marginal distributional results for certain risk measures, such as

the time of ruin, the surplus prior to ruin, and the deficit at ruin. However, as mentioned

by Alfa and Drekic (2007), “there appear to be few results in the literature for computing

the joint probability distribution of these fundamental ruin-related quantities of interest

in the delayed Sparre Andersen model.” We address the works in this area of study next.

1.2.5 Properties of Discrete-based Delayed Sparre Andersen Mod-

els

These models (a.k.a. discrete-based renewal risk models) assume that the time until the

first claim occurs follows an arbitrary discrete distribution, and is independent of the sub-

sequent interclaim times. The main reason behind this assumption lies in the view that

the first claim time is not a valid interclaim time. Rather, since the process is forcibly

started from time 0, and proceeding on the premise that a claim has occurred at time 0

would simply be an artificial, convenient assumption, the time until the first claim should

be considered as an incomplete interclaim time period, and, hence, its probability distri-

bution need not necessarily be the same as its subsequent counterparts. This is a more
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general class of models than the one studied by Pavlova and Willmot (2004), where the

first interclaim time is assumed to follow the stationary or equilibrium distribution (e.g.,

see Karlin and Taylor (1975), pp. 192–193) of the iid subsequent interclaim times, and is

independent of them.

Keeping in mind that, taxonomically, Sparre Andersen models only assume indepen-

dence between interclaim times (including the time until the first claim), a commonly used

type of Sparre Andersen model is one that further assumes that these interclaim times are

independent of claim size. Thus, for specificity on the model class we use in this thesis, we

denote this special class of models as discrete-based delayed independent Sparre Andersen

models which will be abbreviated from this point forward to DISAMs (or DISAM for a

singular model). A special case of DISAMs is when the time for the first claim to occur

follows the same distribution as subsequent interclaim times. We denote models following

this special case as discrete-based ordinary independent Sparre Andersen models, which

will be abbreviated from this point forward to OISAMs (or OISAM for a singular model).

This thesis generalizes the DISAM originally presented in Alfa and Drekic (2007),

creating a new class, so to speak, of insurance risk models. The aim then is to derive

computational algorithms for calculating the following performance measures (more details

will be given in the next chapter):

(1) The trivariate ruin probability: the joint probability of the time of ruin, the surplus

prior to ruin, and the deficit at ruin.

(2) Two bivariate ruin probabilities:

(a) The joint probability of the time of ruin and the surplus prior to ruin.
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(b) The joint probabilities of the time of ruin and the deficit at ruin.

(3) The finite-ruin time based Gerber-Shiu function.

(4) The moments of the total dividends paid by a finite time horizon or before ruin

occurs, whichever happens first.

For the last two performance measures, the first claim conditioning method is used (i.e.,

condition on knowing the time the first claim occurs and its size, and exploit the renewal

property of the model), which is standard practice in the field of ruin theory. As for the

trivariate and bivariate ruin probabilities, as employed by Alfa and Drekic (2007), we use

a combination of matrix-analytic methods (MAMs for short) and conditional probabilistic

arguments to derive expressions and computational procedures to calculate these quanti-

ties.

To complete the literature review on the methods used in developing the DISAM class

in this thesis, the final section provides a recapitulation of the field to which MAMs pertain.

1.3 Along Came MAMs

“It is unworthy of excellent men to lose hours like slaves in the labor of calculation which

could safely be relegated to anyone else if machines were used” (Gottfried Leibniz, source:

Edwards (1979)).

1.3.1 Motivation

With the advancements of computational power within the second half of the previous

century, the field of computational probability has become rich and multidisciplinary (e.g.,
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telecommunications, queueing theory, inventory theory, computer engineering, ruin the-

ory). The main objective of computational probability is to develop statistical models that

are both general and tractable.

In his 1981 book, Marcel Neuts introduced a new genre, under a queueing context,

in computational probability: MAMs. MAMs are techniques used to analyze stochastic

models with matrix components under a Markovian framework. Note that these stochastic

models need not be multivariate in order to include matrix components; rather, transi-

tion probability matrices and initial probability vectors are used to analyze the behaviour

of stochastic processes. Examples include the analysis of discrete and continuous phase-

type distributions—which are generalizations of geometric and exponential distributions,

respectively—and Markovian arrival processes—which are generalizations of the Poisson

process.

The main advantage of working under a Markovian setup is that we do not need to

keep track of the entire history of the underlying stochastic process. Rather, in order to

predict the value of a Markovian-based process at some specific future date, we only need

to know its present value; past knowledge is deemed irrelevant. Notwithstanding the fact

that these models are less general than those that keep track of past values as well as the

present one, they are nonetheless more general than models whose processes do not depend

on any path information (i.e., neither the present value nor past ones) for prediction. They

also have the advantage of being mathematically tractable with many quantities explicitly

expressed in terms of elegant matrix and vector components.

However, the main drawback of using MAMs is that calculating matrices can be compu-
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tationally costly. Specifically, computational complexity (i.e., the time it takes to perform

a desired task using a computer program) can be a constraining factor in making calcula-

tions when dealing with matrices of high dimension. Albeit that computational speed is

increasing, and hence making high-dimensional matrix manipulation more convenient, it

is essential to continually develop computational complexity reduction techniques in order

to optimize the use of these models. This is expressed in the preface of Neuts’s 1981 book,

where he identifies computational probability, which incorporates MAMs, as “the study

of stochastic models with a genuine added concern for algorithmic feasibility over a wide,

realistic range of parameter values.”

1.3.2 MAMs in Ruin Theory

In recent times, within the field of ruin theory, MAMs have been used to calculate perfor-

mance measures of insurance risk models strongly generalized from basic ones. Examples

under the continuous framework include the following models:

(1) In Mitric et al. (2012) (previously mentioned in Section 1.1.1), claim instants are

assumed to be governed by a Markovian arrival process, and claim sizes are matrix

exponentially distributed.

(2) In Badescu and Landriault (2009), a general non-renewal insurance risk model is

presented, using continuous phase-type distributions, Markovian arrival processes,

and results from fluid queues.

(3) In Li (2008), a continuous-time Sparre Andersen model is presented, assuming that

interclaim times are continuous phase-type distributed. Different probabilities of ruin

are calculated and a matrix expression for the expected discounted dividends prior

to ruin in the presence of a constant dividend barrier is derived.
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(4) In Stanford et al. (2000), both the interclaim times and the claim sizes are assumed to

be continuous phase-type distributed and a numerical approach is used to calculate

and plot probabilities of ruin with respect to changes made to particular parameters

in the model (e.g., initial reserve ratio and relative security loading).

1.3.3 MAMs in Discrete-based Insurance Risk Models

To the best of our knowledge, the only publications in the literature of which we are aware

that use MAMs in discrete-based insurance risk models are Drekic and Mera (2011), Wu

and Li (2010), Wu and Li (2008), and Alfa and Drekic (2007). In Wu and Li (2008), inter-

claim times are assumed to be iid discrete positive random variables and individual claim

amounts are assumed be discrete phase-type distributed. Using MAMs, the probability of

ultimate ruin and a certain bivariate ruin probability are derived.

The same authors in their more recent paper (i.e., Wu and Li (2010)) introduce a model

where the number of claims follows a generalized (a, b, 0) class of distributions, and risk

models with both discrete and continuous claim amounts are formulated and examined.

These authors also present recursive formulas for these two types of models including the

special case when the number of claims follows a particular class of discrete phase-type

distributions (which belong to the their defined (a, b, 0) class). The DISAM class used in

this thesis follows along the lines of Drekic and Mera (2011) and Alfa and Drekic (2007),

whose assumptions and notation are very similar to what will be presented in the subse-

quent chapters.

This concludes the literature review of this thesis. In the next chapter, we define

our model class and its underlying assumptions. The following two chapters show the

18



methodologies used for deriving and calculating the performance measures of interest and

their algebraic results. The subsequent chapter considers specific sub-classes of the general

one, with several numerical examples provided. Finally, we conclude this thesis with a

discussion of potential areas for future research.
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Chapter 2

The Model Class

2.1 The Surplus Process
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Figure 2.1: A sample path of a surplus process belonging to the model class with u = 2

and c = 2.

Members of our model class (e.g., see Figure 2.1 above) share the following surplus process

equation:

Ut = u+ ct−
Nt∑
`=1

Y` − St for t ∈ N,

where Ut is the value of the surplus process (a.k.a. surplus value) at time unit t, u is a

constant value indicating the initial value of the surplus process at time 0, c is a constant
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value representing the premium amount collected per time unit, Nt is a random variable

indicating the number of claims by time t, Y` is a random variable, indicating the size of

the `th claim, and St is a random variable indicating the total dividend amount by time

t. In addition, regarding the variable St, S0 = 0 and the range of values this variable can

take at any time t is dictated by knowing the value of the surplus amount at time t−1, the

value of a so-called dividend counter (to be explained shortly) at time t− 1, and, possibly,

the value of the claim size (should a claim have occurred) at time t.

Thus, there are three sources of randomness affecting the behaviour of the surplus

process. We now turn to the main properties of the model class.

2.2 Model Class Characteristics

The following is the list of assumptions of our insurance risk model class:

(1) We are working under a discrete framework.

(2) At every time period, a premium of constant size c ∈ N is collected. Premiums

are collected before any potential claims and dividends. We remark that while a

premium value of zero is not truly realistic under an insurance risk model context,

we incorporate the possibility that c = 0 since our derivations still hold without any

loss of generality. Furthermore, as the model class we are developing can be viewed

simply as a stochastic process, there may be some practical uses in other areas of

study where one is working with a process that is doomed to decay (e.g., depreciation

value analysis, wear-and-tear scenarios of a particular biological process).

(3) All claim sizes, Y1, Y2, Y3, . . ., are iid and positively valued, with probability mass
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function (pmf) denoted by αy = Pr{Y` = y} for ` ∈ Z+, tail probability function

denoted by Λy = Pr{Y` > y} for ` ∈ Z+, a minimum support value of y0, and a

maximum support value denoted by yα, which is not necessarily finite.

(4) The time until the first claim, W1, is positively valued with pmf denoted by rω =

Pr{W1 = ω}, tail probability function denoted by Rω = Pr{W1 > ω}, and a

maximum support value denoted by nr, which is finite. We remark that the finite

support assumption can be dropped when using the first claim conditioning approach

in Chapter 4.

(5) Subsequent interclaim times, W2,W3,W4, . . ., are iid and positively valued, with pmf

denoted by aω = Pr{W` = ω} for ` ∈ {2, 3, 4, . . .}, tail probability function denoted

by Aω = Pr{W` > ω} for ` ∈ {2, 3, 4, . . .}, and a maximum support value denoted

by na, which is finite. We remark that the finite support assumption can be dropped

when using the first claim conditioning approach in Chapter 4. We also refer to

W2,W3,W4, . . . as ordinary interclaim times.

(6) Claim sizes, the time until the first claim, and all subsequent interclaim times are

independent of one another.

(7) Individual dividends are non-negatively distributed and the value of a dividend de-

pends on the surplus level, i, immediately before it is to be issued, with pmf denoted

by d∗`{i}. Such dividends are referred to as restricted in the sense that each of their

amounts are never allowed to be large enough to bring the surplus process below

a threshold level b ∈ N. The unrestricted counterparts of these dividends, on the

other hand, are the original amounts that would have been issued had it not been
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for the threshold level constraint. Thus, an unrestricted dividend whose amount is

large enough to bring the surplus process below the threshold level b, will have its

restricted version just equal to the amount that will bring the surplus process down

to (or at) level b. For instance, if a dividend is to be issued and the surplus process

is at level b, then the restricted version will be equal to 0 so that the surplus process

remains at level b.

The pmf of a restricted dividend satisfies the following equation:

d∗`{i} =



d` if ` = min{(i− b)+, c1},min{(i− b)+, c1}+ 1,

. . . ,min{(i− b)+, c2} − 1;

c2∑
ω=min{(i−b)+,c2}

dω if ` = min{(i− b)+, c2};

0 otherwise,

where d` denotes the pmf of an unrestricted dividend which we assume lies between

c1 and c2 such that c1 and c2 are non-negative integers, c1 ≤ c2, and

c2∑
`=c1

d` = 1.

For convenience, we define d` = 0 for all ` /∈ {c1, c1 + 1, . . . , c2}. Note that the

above definition of d∗`{i} even allows for i to be less than b, which in this case yields

d∗`{i} = 1[`=0].

In the special case where we allow c1 = c2 = ∞, we set, by convention, d∗`{i} =

1[`=(i−b)+].
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(8) Dividend payment periods are determined by a dividend counter, which we denote

by Dt for t ∈ N, with D0 = d, where d is a pre-assigned initial setting amount.

The behaviour of this counter at time t ∈ Z+ is influenced by both its value and

the surplus value at the previous time unit (i.e., Dt−1 and Ut−1, respectively). In

particular, the quantity h ∈ Z+ represents the maximum value the dividend counter

can take, indicating that a dividend is scheduled to be issued at the next time unit

(i.e., for a dividend to be issued at time t+ 1, we require Dt = h and Ut ≥ b to hold

true). Whether or not a dividend is actually issued at the next time unit depends on

additional factors, which are discussed in the next two assumptions. We emphasize

that the behaviour of Dt depends on the level of the surplus process with respect

to the threshold value (i.e., below, or at or above level b), and is assumed to be

user-defined. Particular choices of how Dt behaves will be specified in later chapters.

(9) Should a claim occur during a dividend payment period, the priority of which to

implement first is determined by a Bernoulli random variable, with p serving as the

probability of processing a claim before a dividend, and 1−p serving as the probability

of processing a claim after a dividend. We assume that there is a zero probability of

having both items processed at exactly the same time.

Next, we present the performance measures of interest, whose algorithmic expressions

we aim to derive under our model class.

2.3 Performance Measures

Before presenting the performance measures, we begin by defining the following random

variables:
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(1) T is the time of ruin (i.e., the first time the surplus process becomes negative).

(2) UT− is the surplus prior to ruin (i.e., the value of the surplus process immediately

before it becomes negative).

(3) |UT | is the deficit at ruin (i.e., how far the surplus process is below 0 at the time of

ruin).

Figure 2.2 gives an idea on where these random variables lie on a sample path:
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U
T− = 6

|UT | = 1

Figure 2.2: Values of T , UT− , and |UT | for a sample path of a discrete-time surplus process

with u = 2, c = 2, and b = 5.

In this thesis, we focus on deriving algorithmic expressions for the following performance

measures pertaining to the above random variables:

(1) ψτ,i,j(u, d) = Pr{T = τ, UT− = i, |UT | = j|U0 = u,D0 = d}. We refer to this risk

measure as the trivariate ruin probability since it represents the joint pmf of the time

of ruin, the surplus prior to ruin, and the deficit at ruin.

(2) ωτ,i(u, d) = Pr{T = τ, UT− = i|U0 = u,D0 = d}. We refer to this risk measure as

a bivariate ruin probability since it represents the joint pmf of the time of ruin and

the surplus prior to ruin.
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(3) φτ,j(u, d) = Pr{T = τ, |UT | = j|U0 = u,D0 = d}. We refer to this risk measure as

a bivariate ruin probability since it represents the joint pmf of the time of ruin and

the deficit at ruin.

(4) G̃v,m(u, d) = E[vTw(UT− , |UT |)1[T≤m]|U0 = u,D0 = d], where v ∈ (0, 1] (known

as the discount factor), w(., .) is an arbitrary non-negative function of the surplus

prior to ruin and the deficit at ruin (known as the penalty function), and m ∈ Z+

is a fixed value (known as the finite time horizon). We refer to this function as the

finite-ruin time based Gerber-Shiu function. We note that if w(UT− , |UT |) is bounded

for all values of T , then by letting m tend to infinity, we can apply the dominated

convergence theorem (e.g., see Resnick (1999), Theorem 5.3.3) to obtain

lim
m→∞

E[vTw(UT− , |UT |)1[T≤m]|U0 = u,D0 = d]

= lim
m→∞

E[vTw(UT− , |UT |)1[T<m+1]|U0 = u,D0 = d]

= E[vTw(UT− , |UT |)1[T<∞]|U0 = u,D0 = d].

The final expression above is simply referred to as the Gerber-Shiu function. We also

note that our definition of G̃v,m(u, d) follows along the lines of other finite-ruin time

based Gerber-Shiu functions, such as those recently studied by Garrido and Zhou

(2010) and Kuznetsov and Morales (in press) under a continuous-time setting.

(5) D̃rm(u, d) = E[Srmin{T,m}|U0 = u,D0 = d]. We refer to this function as the rth

moment of the total dividends issued by a finite time horizon of m ∈ Z+ or before

ruin occurs, whichever happens first. Since we assume that dividends can never bring
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the surplus process below level b, then St < ∞ holds true for all values of t. Note

also that St is a non-negative, non-decreasing function of t, since it is defined as the

total dividends by time t. Thus, if T < ∞ holds true almost surely (e.g., if Ut is

bounded by an upper ceiling value), then we can apply the monotone convergence

theorem (e.g., see Resnick (1999), Theorem 5.3.1) to obtain

lim
m→∞

E[Srmin{T,m}|U0 = u,D0 = d] = E[SrT |U0 = u,D0 = d].

The right-hand side expression is simply referred to as the rth moment of the total

dividends prior to ruin.

We use MAMs to derive algorithmic expressions for the above trivariate and bivariate

ruin probabilities. We show the details in Chapter 3. As for the finite-ruin time based

Gerber-Shiu function and the moments of the total dividends issued before a finite time

horizon or before ruin occurs, whichever happens first, we apply the first claim conditioning

approach. This is covered in Chapter 4.

We dedicate the remainder of this chapter to defining fundamental notation and func-

tions, including some useful derivations associated with them, that will be employed under

the matrix-analytic and first claim conditioning methods. Other notation not mentioned

here is local to the method used, and hence, will be introduced in its corresponding chapter.

2.4 Essential Notation, Functions and Derivations

2.4.1 Basic Model Notation

The following notation will always be used under its respective context in this thesis:
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• y: A general (i.e., realized) claim size. If we are assessing the surplus process at a

non-claim paying time period, then y is set equal to 0.

• k: The realized time unit value at which the first claim occurs.

• Order: The event variable specifying the order of claim and dividend implementation

should they both need to be processed at the same time unit. If the claim is processed

before the dividend, then Order is set equal to ClmFrst; otherwise, it is set equal

to ClmFrst (i.e., if the claim is processed after the dividend).

• s: A total dividend amount value before the current time period.

• s∗: A dividend amount value at the current time period. If the current time period is a

non-dividend paying time period, then s∗ = 0. Of course, the value of s∗ is influenced

by the values of Ut−1, Order, and y. For instance, assuming that t is a dividend

paying time period, if Ut−1 + c > b, but Ut−1 + c − y < b and Order = ClmFrst,

then s∗ = 0. If, however, Order = ClmFrst and all other values remain unchanged,

then s∗ > 0.

2.4.2 General Functions

Define the following functions:

• zu: The earliest time the surplus process reaches or crosses the threshold level b from

an initial surplus of u. Mathematically, we have the following expression:
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zu =



∞ if c = 0 and u < b;

0 if c = 0 and u ≥ b;

⌈
(b− u)+

c

⌉
if c ∈ Z+.

• z∗u,d: The earliest time a dividend can be issued, starting from an initial surplus of u

and an initial dividend counter of d. Note that it is infinite if zu is infinite.

• Tu,d(t): The collection of dividend paying time points up to and including time t,

starting from an initial surplus of u and an initial dividend counter of d. Note that

Tu,d(t) = ∅ if t < z∗u,d, since no dividend can be paid before time z∗u,d.

• Pz∗u,d(n): The number of time units after z∗u,d required for n dividends to be issued.

• f (n)
u,d (s): The convolution pmf of the first n dividends, starting from an initial surplus

of u and an initial dividend counter of d. By convention, f
(0)
u,d(s) = 1[s=0].

Of particular importance is the case where no claims are assumed to have occurred

during the time period over which the first n dividends are issued. If this assumption

holds, then a recursive expression for f
(n)
u,d (s) can be derived as follows:

Letting Z` represent the amount of the `th restricted dividend, and using the function

Pz∗u,d(n) defined above, we first note that

f
(n)
u,d (s) = Pr

{
n∑
`=1

Z` = s

∣∣∣∣∣U0 = u,D0 = d

}
.
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Using the law of total probability (e.g., see Baclawski (2008), Chapter 6), we can

write the following recursive expression:

f
(n)
u,d (s) =

s∑
ω=0

Pr

{
n∑
`=1

Z` = s

∣∣∣∣∣
n−1∑
`=1

Z` = ω, U0 = u,D0 = d

}
f
(n−1)
u,d (ω)

=
s∑

ω=0

Pr

{
Zn = s− ω

∣∣∣∣∣
n−1∑
`=1

Z` = ω, U0 = u,D0 = d

}
f
(n−1)
u,d (w).

Assuming no claims have occurred, the value of the surplus process at the time of

the nth dividend, but immediately before its implementation, is given by u+ c[z∗u,d+

Pz∗u,d(n− 1)]− ω. Thus, it follows that

Pr

{
Zn = s− ω

∣∣∣∣∣
n−1∑
`=1

Z` = ω, U0 = u,D0 = d

}
= d∗s−ω{u+ c[z∗u,d +Pz∗u,d(n− 1)]−ω}.

As a result, we obtain the following overall formula:

f
(n)
u,d (s) =



1[s=0] if n = 0;

d∗s{u+ cz∗u,d} if n = 1;

s∑
ω=0

d∗s−ω{u+ c[z∗u,d + Pz∗u,d(n− 1)]− ω}f (n−1)
u,d (ω) if n > 1.

• TotDivn(x): The total amount of the first n dividends, each comprised by way of a

constant unrestricted dividend of size x.
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Once again, we wish to focus on the situation where no claims are assumed to have

occurred during the time period over which the first n dividends are issued. If this

assumption holds, then a recursive expression for TotDivn(x) can be derived with

the aid of the functions Tu,d(t) and Pz∗u,d(n) defined above, which we describe below:

First of all, TotDiv0(x) = 0 since the amount is clearly 0 when no dividends are

paid. Secondly, it is clear that

TotDiv1(x) = min{x, u+ cz∗u,d − b}.

Next, in order to find TotDiv2(x), we start by noting that at time z∗u,d, the surplus

process is at u+ cz∗u,d − TotDiv1(x). One dividend payment period later, Pz∗u,d(1) in

this case, the process is at level u + c[z∗u,d + Pz∗u,d(1)]− TotDiv1(x) just prior to the

dividend being paid. Hence,

TotDiv2(x) = TotDiv1(x) + min{x, u+ c[z∗u,d + Pz∗u,d(1)]− TotDiv1(x)− b}.

Similarly, to calculate TotDiv3(x), we start by noting that at time z∗u,d+Pz∗u,d(1), the

surplus process is at level u+ c[z∗u,d +Pz∗u,d(1)]−TotDiv2(x). One dividend payment

period later, Pz∗u,d(2)−Pz∗u,d(1) in this case, the process is at level u+c[z∗u,d+Pz∗u,d(2)]−

TotDiv2(x) just prior to the dividend being paid. Hence,

TotDiv3(x) = TotDiv2(x) + min{x, u+ c[z∗u,d + Pz∗u,d(2)]− TotDiv2(x)− b}.

Therefore, to calculate TotDivn(x), we apply the same inductive procedure as above

to obtain the following expression:
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TotDivn(x) =



0 if n = 0;

min{x, u+ cz∗u,d − b} if n = 1;

TotDivn−1(x) + min{x, u+ c[z∗u,d + Pz∗u,d(n− 1)] if n > 1.

− TotDivn−1(x)− b}

• Ru,d(t): The collection of all possible total dividend amounts accumulated by time

t, starting from an initial surplus of u and an initial dividend counter of d. Using

the functions TotDivn(x) and Tu,d(t) defined above, an expression for Ru,d(t) can be

written as follows:

Ru,d(t) = {TotDiv|Tu,d(t)|(c1), T otDiv|Tu,d(t)|(c1) + 1, . . . , T otDiv|Tu,d(t)|(c2)}.

Note that for t < z∗u,d, Ru,d(t) = {0} since Tu,d(t) = ∅.

• Vu1,d1
(t1, t2, y, s, s

∗, Order): The value of the dividend counter at time t2, starting

at time t1 (< t2) from a surplus of u1 and a dividend counter of d1, given that the

only claim occurs at time t2 with a size equal to y, the total amount of dividends

over the time period {t1 + 1, t1 + 2, . . . , t2− 1} is equal to s, the dividend amount at

time t2 is equal to s∗, and the value of the event variable at time t2 is equal to Order.

We remark that this function can capture the case when no claim occurs at time t2,

simply by setting y = 0. Furthermore, at times when any of these arguments do not

play a role in determining the value of the dividend counter, we replace them with

the notation “.”. For example, if t2 is a non-dividend paying time period, then the
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last two arguments play no role in determining the value of the dividend counter, and

thus, for simplicity, we write the function as Vu1,d1
(t1, t2, y, s, ., .). However, we note

that this function does not exist for certain combinations of s and s∗. For instance,

if Order = ClmFrst and y is large enough to bring the surplus process below level

b, then s∗ must be equal to 0. Otherwise, Vu1,d1
(t1, t2, y, s, s

∗, Order) is undefined.

In addition, due to the assumption that only one claim takes place (at time t2) over

the time period {t1 + 1, t2 + 2, . . . , t2}, the function Vu1,d1
(t1, t2, y, s, s

∗, Order) is

stationary in the sense that

Vu1,d1
(t1, t2, y, s, s

∗, Order) = Vu1,d1
(0, t2 − t1, y, s, s∗, Order) for t1 < t2.

With these essential definitions in hand, we turn to the algorithmic section of the thesis.

We begin with MAMs which will be used for deriving computational formulas of the desired

trivariate and bivariate ruin probabilities.
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Chapter 3

Algorithmic Expressions for Ruin

Probabilities Using MAMs

3.1 Additional Notation

The following basic notation will be used throughout this chapter:

• 0: A 1× na vector of zeros.

• 0: An na × na matrix of zeros.

• e1: A 1× na vector with 1 in the first element, zeros elsewhere.

Further notation will be provided in later sections since specific terminologies will be in-

troduced from particular concepts to be covered. We now proceed to constructing the

fundamental Markov process in order to apply MAMs.

3.2 Constructing the Markov Process

In addition to assuming that U0 = u and D0 = d, by conditioning on the occurrence of

the first claim to have taken place at time k ∈ Z+, we can formulate a Markov process for
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the time points t ∈ {k, k + 1, k + 2, . . .}. Exploiting the renewal property of the surplus

process, we can subsequently consider time k as our “new” time 0. Hence, for t ≥ k, in

order to determine values of the Markov process at time t+ 1, all we need to know is par-

ticular information about the surplus process at time t. Specifically, we need to know the

values of the variables y, s∗, and Order at time t in order to analyze the process at time t+1.

We define Et to be the value of an elapsed claim time counter, at time t, since the

occurrence of the last claim. The use of this counter under a DISAM context was initially

introduced by Alfa and Drekic (2007), which was based on an earlier result derived by Alfa

and Neuts (1995). The counter Et behaves as follows: it starts at 1 at time 0, increments

by 1 so long as a claim does not occur, and then resets to 1 at claim-occurring time instants.

Thus, following the occurrence of the first claim, the range of values for Et is {1, 2, . . . , na}

as na is the largest possible ordinary interclaim time.

Therefore, we construct the trivariate stochastic process {(Ut, Dt, Et), t = k, k + 1, k +

2, . . .}, which happens to exhibit a Markovian nature. For instance, if, at time t, we know

that the surplus process is below level b and no claim has occurred at time t+ 1, then

(Ut+1, Dt+1, Et+1) = (Ut + c, VUt,Dt(t, t+ 1, 0, 0, ., .), Et + 1)

= (Ut + c, VUt,Dt(0, 1, 0, 0, ., .), Et + 1),

where the last equality follows as a result of the earlier stationarity property. Considering

all such cases, we obtain the following Markovian relationships for all t = k, k+1, k+2, . . .:
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(Ut+1, Dt+1, Et+1) =



(Ut + c, VUt,Dt(0, 1, 0, 0, ., .), Et + 1) if Ut < b and y = 0;

(Ut + c− y, VUt,Dt(0, 1, y, 0, ., .), 1) if Ut < b and y > 0;

(Ut + c, VUt,Dt(0, 1, 0, 0, ., .), Et + 1) if Ut ≥ b, Dt < h and y = 0;

(Ut + c− y, VUt,Dt(0, 1, y, 0, ., .), 1) if Ut ≥ b, Dt < h and y > 0;

(Ut + c− s∗, VUt,Dt(0, 1, 0, 0, s
∗, .), Et + 1) if Ut ≥ b, Dt = h and y = 0;

(Ut + c− y − s∗, VUt,Dt(0, 1, y, 0, s
∗, Order), 1) if Ut ≥ b, Dt = h and y > 0.

Figure 3.1 below shows how this trivariate stochastic process may evolve over time. In

this figure, for demonstration purposes, we assume that the dividend counter is set/reset

to 1 any time the process is below level b, and increments by 1 after crossing b; once it

reaches h, it remains at this value until a claim size is sufficiently large enough to bring

the process below level b.

t

Ut

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9

10
11
12

b

(1, 1, 1)

(3, 1, 2)

(5, 2, 3)

(7, 3, 4)

(8, 3, 5)

(3, 3, 1)

(4, 3, 2)

(5, 3, 3)

(1, 1, 1)

(3, 1, 2)

(5, 2, 3)

Dividends issued Dividend issued

Dividends issued

Y1 = 9 Y2 = 6 Y3 = 6

Figure 3.1: A sample evolution of the trivariate stochastic process with u = 2, d = 1,

c1 = c2 = 1, c = 2, b = 3, h = 3, k = 5, D5 = 1, and 0 < p < 1.
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In the special case where h = 1, we remark that we can use the bivariate process {(Ut, Et), t =

k, k+ 1, k+ 2, . . .} instead, simplifying the above results considerably. Therefore, with the

above Markovian setup, we can proceed to employing MAMs.

3.3 The Transition Probability Matrix

From Alfa and Drekic (2007), the interclaim time pmf, ak, can be expressed in the following

discrete phase-type form:

ak = e1S
k−1s′ for k ∈ N.

Recalling that Ak = Pr{Wi > k} for i ∈ {2, 3, 4, . . .}, the na×na matrix S and the 1×na

vector s can be written as follows:

S =



1 2 3 · · · na − 1 na

1 0 A1/A0 0 · · · 0 0

2 0 0 A2/A1 · · · 0 0

...
...

...
...

. . .
...

...

na − 1 0 0 0 · · · 0 Ana−1/Ana−2

na 0 0 0 · · · 0 0


and

s =

( 1 2 · · · na − 1 na

1− A1/A0 1− A2/A1 · · · 1− Ana−1/Ana−2 1

)
.

We remark that because S and s will be included in the algorithmic derivations used for

calculating the desired ruin probabilities, their dimensions need to both be finite (i.e.,
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na < ∞). Nevertheless, for interclaim distributions with infinite support, there are two

considerations that can be used to circumvent the infinite dimensionality problem. The

first consideration, which was used by Alfa and Drekic (2007), is truncation. That is,

choose a cutoff point beyond which the tail probability is acceptably small. In mathemati-

cal terms, we choose a small enough ε such that the new na satisfies the following equation:

na = inf{n : An < ε}. After choosing this na, we redefine ana to be equal to Ana−1 and an

to be equal to 0 for all n > na.

Another consideration that can be used alongside the first is to note that for calculating

ψτ,i,j(u, d), ωτ,i, and φτ,j , the interclaim values in excess of τ cannot cause ruin by time τ .

Thus, for a given τ , we can set na to be equal to τ + 1 and redefine aτ+1 to be equal to Aτ

and an to be equal to 0 for all n > τ . Note that this consideration is also applicable for

interclaim times with finite support but have na > τ . Therefore, considering all cases, and

denoting the original interclaim time support value by n∗a, na can be chosen as follows:

na = min{n∗a, τ, inf{n : An < ε}}.

With that in mind, we next turn to constructing the transition probability matrix of

the previously defined trivariate process. From the earlier Markovian relationships, we can

write the transition probability matrix in the following manner:

39



P =



· · · −1 0 1 · · · b− 1 b b+ 1 · · ·
...

. . .
...

...
... · · ·

...
...

... · · ·

−1 · · · Ã−1,−1 Ã−1,0 Ã−1,1 · · · Ã−1,b−1 Ã−1,b Ã−1,b+1 · · ·

0 · · · Ã0,−1 Ã0,0 Ã0,1 · · · Ã0,b−1 Ã0,b Ã0,b+1 · · ·

1 · · · Ã1,−1 Ã1,0 Ã1,1 · · · Ã1,b−1 Ã1,b Ã1,b+1 · · ·
...

...
...

...
...

. . .
...

...
... · · ·

b− 1 · · · Ãb−1,−1 Ãb−1,0 Ãb−1,1 · · · Ãb−1,b−1 Ãb−1,b Ãb−1,b+1 · · ·

b · · · B̃b,−1 B̃b,0 B̃b,1 · · · B̃b,b−1 C̃b,b C̃b,b+1 · · ·

b+ 1 · · · B̃b+1,−1 B̃b+1,0 B̃b+1,1 · · · B̃b+1,b−1 C̃b+1,b C̃b+1,b+1 · · ·
... · · ·

...
...

... · · ·
...

...
...

. . .



.

Elaborating on the above notation used, the values found on the borders of the matrix

represent one-step transitions of the surplus process, while the elements inside P are block-

matrices containing all possible transitions of both the dividend and elapsed claim time

counter values (in one time unit). For instance, the block matrix Ã0,1 contains all the

dividend and elapsed claim time counter transition values (in one time unit) when the

surplus process transitions from level 0 to 1 (in one time unit). We then further break

down the above block-matrices of P (each of which are of dimension hna × hna) into

smaller block-matrices of dimension h× h. In what follows, let the (m,n)th block-matrix

of an arbitrary matrix A be denoted by [A]m,n. In addition, let

B` =


0 if ` ∈ Z−;

S if ` = 0;

s′e1α` if ` ∈ Z+,

x and y be the respective surplus level values at times t and t + 1, and m and n be the

respective dividend counter values at times t and t+ 1. Invoking the stationarity property

that our Markovian process {(Ut, Dt, Et), t = k, k + 1, k + 2, . . .} exhibits, we obtain the

following explicit formulas for the decompositions of the above block-matrices of P :
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We now use the above block-matrices to derive matrix-analytic expressions to calculate

the desired trivariate and bivariate probabilities of ruin. To begin, we extract the useful

sections of the matrix P .

3.4 Splitting the States and Defining Probability Vec-

tors

As done in Alfa and Drekic (2007) and in Drekic and Mera (2011), we partition the trivari-

ate state space of {(Ut, Dt, Et), t = k, k+1, k+2, . . .} into two mutually exclusive sub-state

spaces: one containing all ruin states and the other containing all non-ruin states. The

purpose for defining these two sub-state spaces is to analyze the surplus process up to the

time of ruin in terms of two distinct time periods—the time period ranging from time 0

to time T − 1 (i.e., all non-ruin state transitions), and the one time unit period from time

T − 1 to time T (i.e., all state transitions from non-ruin to ruin)—which will allow us to

formulate expressions used for calculating the desired probabilities of ruin.

Letting Q represent the transition probability matrix governing all non-ruin to non-ruin

state transitions, and R represent the transition probability matrix governing all non-ruin

to ruin state transitions, we have
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Q =



0 1 · · · b− 1 b b+ 1 · · ·

0 Ã0,0 Ã0,1 · · · Ã0,b−1 Ã0,b Ã0,b+1 · · ·

1 Ã1,0 Ã1,1 · · · Ã1,b−1 Ã1,b Ã1,b+1 · · ·

2 Ã2,0 Ã2,1 · · · Ã2,b−1 Ã2,b Ã2,b+1 · · ·
...

...
...

. . .
...

...
...

. . .

b− 1 Ãb−1,0 Ãb−1,1 · · · Ãb−1,b−1 Ãb−1,b Ãb−1,b+1 · · ·

b B̃b,0 B̃b,1 · · · B̃b,b−1 C̃b,b C̃b,b+1 · · ·

b+ 1 B̃b+1,0 B̃b+1,1 · · · B̃b+1,b−1 C̃b+1,b C̃b+1,b+1 · · ·
...

...
...

. . .
...

...
...

. . .


and

R =



−1 −2 −3 · · ·

0 Ã0,−1 Ã0,−2 Ã0,−3 · · ·

1 Ã1,−1 Ã1,−1 Ã1,−3 · · ·

2 Ã2,−1 Ã2,−2 Ã2,−3 · · ·
...

...
...

...
. . .

b− 1 Ãb−1,−1 Ãb−1,−2 Ãb−1,−3 · · ·

b B̃b,−1 B̃b,−2 B̃b,−3 · · ·

b+ 1 B̃b+1,−1 B̃b+1,−2 B̃b+1,−3 · · ·
...

...
...

...
. . .



.

Now, by conditioning on the first claim occurring at time k, and exploiting the homogeneity

of the transition probabilities beyond the first claim (since the interclaim times are iid after

the first claim), we define the following three vectors associated with our Markov process,

which will be used in calculating the desired ruin probabilities.

43



First of all, let b̃
(k)

be the initial probability vector containing the probabilities of all

the non-ruin states the Markov process {(Ut, Dt, Et), t = k, k+ 1, k+ 2, . . .} can assume at

time k. Specifically, we have

b̃
(k)

=

( 0 1 2 · · ·

b̃
(k)
0 b̃

(k)
1 b̃

(k)
2 · · ·

)
,

where

b̃
(k)
i =

( 1 2 · · · h

b
(k)
i,1 b

(k)
i,2 · · · b

(k)
i,h

)
for i ∈ N,

with each b
(k)
i,` having a dimension of 1× na.

Next, let g̃(k)
n

be the non-ruin probability vector at time k+n containing the probabilities

of all the non-ruin states the Markov process {(Ut, Dt, Et), t = k, k+1, k+2, . . .} can assume

at time k+n without ruin having occurred by time k+n. Thus, using the above notation,

we have

g̃(k)
n

=

( 0 1 2 · · ·

g̃(k)
n,0

g̃(k)
n,1

g̃(k)
n,2

· · ·
)

= b̃
(k)
Qn for n ∈ N,

where

g̃(k)
n,i

=

( 1 2 · · · h

g(k)
n,i,1

g(k)
n,i,2

. . . g
(k)
n,i,h

)
for i ∈ N,

with each g
(k)
n,i,` having a dimension of 1× na. Note that g

(k)
n,i,` = 0 for i > u+ c(k + n), as

u+ c(k + n) represents the value of the surplus process at time k + n in the event that no

claims or dividends ever take place. In Section 3.5.1, we will derive formulas that produce
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lower cutoff points for i than u+ c(k+n), which will be useful in efficiently computing the

relevant elements of this vector.

Lastly, let h̃
(k)
n be the ruin probability vector at time k+n, containing the probabilities

of all the ruin states the Markov process {(Ut, Dt, Et), t = k, k + 1, k + 2, . . .} can assume

at time k + n if ruin occurs at precisely time k + n. It follows that

h̃
(k)
n =

( −1 −2 −3 · · ·

h̃
(k)
n,−1 h̃

(k)
n,−2 h̃

(k)
n,−3 · · ·

)
= b̃

(k)
Qn−1R = g̃(k)

n−1
R for n ∈ Z+,

where

h̃
(k)
n,−j =

( 1 2 · · · h

h
(k)
n,−j,1 h

(k)
n,−j,2 . . . h

(k)
n,−j,h

)
for j ∈ Z+,

with each h
(k)
n,−j,` having a dimension of 1 × na. We remark that h

(k)
n,−j,` = 0 for j >

yα −min{c, b+ (c− c2)+}, with the right-hand side of this inequality being infinite when

yα =∞. The quantity min{c, b+ (c− c2)+} actually represents the smallest possible sur-

plus prior to ruin value that can be achieved over all time. The first term of this quantity

is based on the fact that premiums are earned before any potential claims and dividends.

Thus, before the ruining claim, the surplus process could climb to level c from the smallest

non-ruin surplus value, which is obviously level 0. On the other hand, if c is sufficiently

larger than b, c2 itself is sufficiently large, and ruin occurs at a dividend paying time unit

such that the ruining claim is implemented after the dividend, then the smallest possible

surplus prior to ruin value can actually be smaller than c. For example, if b = 1, c = 3,

c2 = 4, UT−1 = 3, and T is a dividend paying time unit, it is possible for UT− to be

equal to 2 by gaining the premium c and issuing a dividend of size c2 before the ruining

claim. Thus, in this case, it is possible to achieve a surplus prior to ruin value which is
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less than the premium amount c, and this is captured by the second term of the quantity

min{c, b+ (c− c2)+}.

In the above analysis, we have implicitly assumed that it is possible for dividends to

be processed before claims (i.e., p < 1). If p = 1, however, then the smallest possible

surplus prior to ruin value is simply equal to c. Therefore, incorporating the value of p,

the quantity min{c, b+ (c− c2)+} can be more accurately expressed as

imin = c1[p=1] + min{c, b+ (c− c2)+}1[p<1],

so that h
(k)
n,−j = 0 for j > yα − imin.

Although we have identified the required elements needed to calculate our desired ruin

probabilities, we face the computational problem of infinite dimensionality. That is, in

order to compute the desired ruin probabilities, we need to conduct numerical operations

on b̃
(k)
i , g̃(k)

n
, h̃

(k)
n , Q, and R, which is computationally infeasible since the number of

elements involved is infinitely many. Hence, the objective becomes to find ways in retaining

a finite number of elements from these block-vectors and block-matrices that can be used to

compute, exactly or approximately, the desired ruin probabilities. Fortunately, it turns out

that we can compute these probabilities exactly using MAMs on the above block-vectors

and block-matrices. The next section shows how this is done.
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3.5 Efficient Methods for Computing Probability Vec-

tors

3.5.1 Ceiling Values

The first step in tackling the infinite dimensionality of the above vectors is to determine

which elements we need to retain and which ones we can afford to discard. As our probabil-

ity block-vectors are indexed first and foremost with respect to the surplus level i (where

each level i itself has h vectors), we realize that beyond a particular surplus level, at a

given point in time, the probability values will be 0. For example, as mentioned in the

previous section, if we are assessing the surplus process at time k + n, then we know that

the block-vectors whose ith subscript is greater than u+c(k+n) will be zero vectors, since

the surplus process can never exceed level u+ c(k + n) at time k + n. Hence, all we need

to do is to locate the index values in those block-vectors after which the probability values

will always be 0. We refer to such index values as ceiling values.

Because our surplus processes involve dividend systems operating under a fairly general

framework, determining the “optimal” or “best” ceiling value may not always be feasible

without making certain assumptions and knowing specific parameter values. This is illus-

trated in the following three ceiling values we use for assessing our probability vectors.

The first ceiling value we introduce, which we denote by vu,d(k), has the objective of

outputting the maximum level the surplus process can achieve at time k starting from an

initial surplus of u and an initial dividend counter of d, immediately before the first claim

and a possible dividend are implemented. A formula for this ceiling value would involve

finding the level the surplus process takes on at time k before assessing any dividends (i.e.,
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u + ck), and then subtracting from this value all minimum dividend amounts issued up

until time k − 1 (i.e., TotDiv|Tu,d(k−1)|(c1)). Hence, vu,d(k) can simply be expressed as

follows:

vu,d(k) = u+ ck − TotDiv|Tu,d(k−1)|(c1).

Note that this formula yields an optimal ceiling value for the initial probability vector

b
(k)
i,` , in the sense that b

(k)
i,` = 0 for all i > vu,d(k) while it is possible that b

(k)
i,` 6= 0 for any

i ≤ vu,d(k). Furthermore, we remark that vu,d(k) = u+ck if k ≤ z∗u,d, since |Tu,d(k−1)| = 0

in this case.

The second ceiling value we use, which we denote by ṽu,d(t), is a more general version

than the previous one, whose objective is to output the maximum level the surplus process

can achieve at a general time unit t, starting from an initial surplus of u and an initial

dividend counter of d. Therefore, unlike the previous ceiling value above, there is no

restriction here on the number of claims that have occurred by time t. This can result in

a situation where particular claim sizes occurring at certain time points before time t can

lead to a higher surplus value at time t than a situation where claim size and frequency

are both kept to a minimum until time t. For instance, suppose that u = 1, d = 1, c = 5,

c1 = c2 = 3, b = 5, h = 2, y0 = 1, and the dividend counter Dt, while at or above level

b, increments by 1 until reaching h, and then resets to 1. Hence, zu = 1, and z∗u,d = 3.

Now, suppose we wish to calculate ṽu,d(3). Using the formula above and implementing the

dividend at time 3 will yield a value of 1 + 5 × 3 − 3 = 13. However, if a claim of size

2 occurred at time 1, we could obtain a surplus value of 14, assuming no claims occur at

times 2 and 3 (e.g., see Figure 3.2 for a visual illustration of this). Thus, a suitable formula

for this ceiling value will be required to account for such scenarios.
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Figure 3.2: Analysis of ṽu,d(3) for a surplus process with u = 1, d = 1, c = 5, c1 = c2 = 3,

b = 5, h = 2, and y0 = 1.

One obvious non-optimal formula we can use for this ceiling value is to simply set

ṽu,d(t) equal to u+ ct. In that case, claims and dividends are unaccounted for, and hence

it can be considered as a rather inefficient ceiling value since there is unnecessary extra

computational time used in retaining zero-valued vector elements.

Nonetheless, it turns out that if we make three minor simplifications, we can derive a

formula which calculates a more efficient ceiling value. We notify readers that while the

derivations outlined here and the final expressions given at the end of this section are quite

extensive, they are very useful for computational implementation. Bearing that in mind,

we state the simplifications underlying our derivations. First of all, we assume that the

dividend counter, Dt, is both one-unit incremental and cyclic above the threshold level
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(i.e., once above level b, Dt increments one unit at a time until reaching h; one time unit

after reaching h, it resets to 1 and begins incrementing by 1 again). Secondly, we assign

the value of Dzu to be equal to 1, thereby implying that z∗u,d = zu + h. As we will be

comparing various sample paths with each other, this simplification enables us to avoid

problems arising from asynchronous dividend paying time periods. Moreover, z∗u,d does

not actually depend on d now, and hence, neither will ṽu,d(t). Thirdly, we exclude the

consideration of claims for t ≥ z∗u,d. This simplification is essentially due to the fact that

for certain models in our class, claims can disrupt dividend paying time periods.

Before proceeding further, we note that based on the second simplification stated above,

we can suppress the argument d and replace ṽu,d(t) with ṽu(t) and use zu + h instead of

z∗u,d. Finally, we would like to emphasize that although our results shown on page 60 are

based on the above simplifications, they are generally applicable to all the models in our

class. Of course, further simplifications can be made and greater ceiling value efficiency

can be attained in accordance to the specifications of the model/models under study.

To derive the formula for ṽu(t), we begin by considering values of t satisfying t < zu+h.

In this case, the obvious choice for ṽu(t) is simply

u+ ct− 1[t≥nr]y0 −
⌊

(t− nr)+

na

⌋
y0,

since there are no dividends to be implemented. However, for values of t ≥ zu + h, it will

become necessary to incorporate other sample paths alongside the “mainstream” one (i.e.,

the path that starts at level u at time 0, with dividend frequency and amount kept to a

minimum upon achieving level b). These other paths we will consider all share a common

feature: the surplus process was brought down to level b − 1 at some time point in the
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past, with the dividend counter set equal to 1 at that time point, and dividend frequency

and amount are kept to a minimum beyond that time point. We denote a sample path of

this kind as a “b − 1/t0” path, where t0 denotes the time at which the sample path was

brought down to level b− 1 (with corresponding dividend counter set equal to 1). In what

follows, we compare the surplus level of each sample path for t ≥ zu + h.

At time t = zu + h, we need to compare the “mainstream” path with the “b − 1/zu”

path (in fact, it was this path that was shown to yield the greater surplus value in the

earlier numerical example). Still, we must be cautious in general about when to consider

alternate paths as possible routes for the process to take. For instance, the “b − 1/zu”

path is not relevant if u ≥ b (since, in this case, we know that zu = 0 and we are certain

that U0 = u 6= b − 1), and hence, should not be considered as a possible alternate path

with which we compare the “mainstream” one. We incorporate this aspect into our final

formulas on page 60.

Returning to our analysis at time t = zu + h, we see that the reason the “mainstream”

and “b − 1/zu” paths are the only two ones eligible to yield a maximum surplus value

at time zu + h lies in the observation that the only instant the “mainstream” path can

be overtaken is at time zu + h when the dividend is implemented. In other words, by

delaying the dividend counter by 1 time unit—through having the surplus process reside

at level b − 1 at time zu and setting the dividend counter to 1—and hence, not issuing

a dividend at time zu + h, may produce a higher surplus value at time zu + h than the

“mainstream” path. Thus, this other sample path results in the earning of h premiums.

Therefore, if we define Divi(x) to be the restricted value of an unrestricted dividend of

size x, given that the surplus process is at level i immediately before the dividend is issued

(i.e., Divi(x) = min{(i− b)+, x}), we have
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ṽu(zu + h) = max
{
u+ c(zu + h)−Divu+c(zu+h)(c1), b− 1 + ch

}
.

At time t = zu + h + 1, and assuming for the moment that h > 1 (i.e., before the

next dividend payment period in the “mainstream” path), we need to compare the surplus

values at time t emerging from three particular sample paths: “mainstream”, “b− 1/zu”,

and “b − 1/zu + 1”. Note that, when evaluating the third sample path, no dividend is

issued from time zu + 2 to time zu + h+ 1 since (zu + h+ 1)− (zu + 2) + 1 = h and h+ 1

periods are required for a dividend to be issued if starting from level b− 1 at time zu + 1

with a dividend counter value of 1. Thus,

ṽu(zu + h+ 1) = max
{
u+ c(zu + h+ 1)−Divu+c(zu+h)(c1), b− 1 + c(h+ 1)−Divb−1+c(h+1)(c1), b− 1 + ch

}
.

In order to proceed further, we must examine ṽu(t) for t > zu+h under two separate cases.

The final results of both cases are shown on page 60.

The first case examines the situation when c1 ≤ c. In this case, the above function for

ṽu(zu+h+1) simplifies to comparing only between the first and second sample paths (e.g.,

see Figure 3.3 for an illustration), namely

ṽu(zu + h+ 1) = max {u+ c(zu + h+ 1)− c1, b− 1 + c(h+ 1)− c1}.
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Figure 3.3: Analysis of ṽu(zu+h+1) for a surplus process with u = 1, d = 1, c1 = 2 ≤ c = 2,

b = 5, and h = 2.

For t = zu +h+ 2, and assuming for the moment that h > 2 (i.e., before the next dividend

paying time period in the “mainstream” path), the two sample paths chosen above both

receive a premium of c. Since c1 ≤ c, the “b− 1/zu” path is guaranteed to yield a surplus

value at least as high as the surplus level at time zu+h+2 resulting from the “b−1/zu+2”

path. Thus,

ṽu(zu + h+ 2) = max {u+ c(zu + h+ 2)− c1, b− 1 + c(h+ 2)− c1}.

In general, for t = zu + h+ n where 1 ≤ n < h, it follows from the same line of logic that

ṽu(zu + h+ n) = max {u+ c(zu + h+ n)− c1, b− 1 + c(h+ n)− c1}.

If we now consider the situation at t = zu + 2h (i.e., a dividend will be issued in the

“mainstream” path, but no dividend will be issued in the “b− 1/zu” path), it is clear that
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ṽu(zu + 2h) = max {u+ c(zu + 2h)− 2c1, b− 1 + 2ch− c1}.

For t = zu + 2h + 1, both sample paths will receive a premium of c and (assuming again

that h > 1) a dividend will only be issued in the “b− 1/zu” path. Thus,

ṽu(zu + 2h+ 1) = max {u+ c(zu + 2h+ 1)− 2c1, b− 1 + c(2h+ 1)− 2c1}.

Adopting the same essential approach in general, we therefore have, for the case of t ≥

zu + h, the following expression:

ṽu(t) = max

{
u+ ct−

⌈
t− zu − h+ 1

h

⌉
c1, b− 1 + c(t− zu)−

⌈
t− zu − h

h

⌉
c1

}
.

Turning our attention to the second case in which c1 > c, we begin with t = zu +h+ 1,

again assuming for the moment that h > 1 (i.e., before the next dividend paying time

period in the “mainstream” path). Since c1 > c, among the “b− 1/t0” sample paths, the

one yielding the highest surplus value at time zu + h + 1 is the one that incorporates the

most frequent premium payments and no dividends. Since Dzu is assumed to be equal to

1, the “b − 1/zu + 1” path is the one we seek (e.g., see Figure 3.4 for an illustration), so

that we obtain

ṽu(zu + h+ 1) = max
{
u+ c(zu + h+ 1)−Divu+c(zu+h)(c1), b− 1 + ch

}
.
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Figure 3.4: Analysis of ṽu(zu + h+ 1) for a surplus process with u = 1, d = 1, c1 > c = 2,

b = 5, and h = 2.

For t = zu +h+ 2, and assuming for the moment that h > 2 (i.e., before the next dividend

paying time period in the “mainstream” path), we compare the “mainstream” path with

the “b − 1/zu”, “b − 1/zu + 1”, and “b − 1/zu + 2” paths. Among the three “b − 1/t0”

paths, since c1 > c, the one that yields the greatest premiums without invoking a dividend

payment is the “b−1/zu+ 2” path. Mathematically, the number of premiums earned from

this path is clearly h, so that we have

ṽu(zu + h+ 2) = max
{
u+ c(zu + h+ 2)−Divu+c(zu+h)(c1), b− 1 + ch

}
.

In general, for t = zu + h+ n where 1 ≤ n < h, it follows from the same line of logic that

ṽu(zu + h+ n) = max
{
u+ c(zu + h+ n)−Divu+c(zu+h)(c1), b− 1 + ch

}
.

Let us now consider the surplus process at t = zu + 2h: for the “mainstream” path,

the surplus process reaches level u + c(zu + h) − Divu+c(zu+h)(c1) + ch immediately be-

55



fore incorporating a restricted dividend of unrestricted size c1. If we attempt to place the

above-written surplus level as a subscript of the Divi(.) function, we will face an issue of

lengthy formula writing. This issue will persist for higher values of t, and so, we introduce

a recursive function in order to tackle this issue. Specifically, we define

au(`) =


u+ c(zu + h) if ` = 0;

au(`− 1)−Divau(`−1)(c1) + ch if ` > 0.

Therefore, for t = zu + 2h, we have

ṽu(zu + 2h) = max
{
au(1)−Divau(1)(c1), b− 1 + ch

}
.

Keep in mind that the above formula includes two dividend amounts in the “mainstream”

path: one at time zu + h (incorporated in the term au(1)) and the other at time zu + 2h.

For t = zu + h + n where h ≤ n < 2h, all we need to do for the “mainstream” path

is to incorporate the collection of n − h additional premiums, resulting in the following

expression:

ṽu(zu + h+ n) = max
{
au,d(1)−Divau(1)(c1) + c (n− h) , b− 1 + ch

}
.

Applying the same reasoning for 2h ≤ n < 3h, we get the following expression:

ṽu(zu + h+ n) = max
{
au(2)−Divau(2)(c1) + c (n− 2h) , b− 1 + ch

}
.
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Combining the above cases (i.e., for models with c1 ≤ c and models with c1 > c, and all

values of t) with the given assumptions, we summarize the results for ṽu(t) on page 60.

The third and final ceiling value we use, which we denote by ṽu,d(k, n) for n ∈ N,

assumes that the first claim occurred at time k, starting from an initial surplus of u and

an initial dividend counter of d, and has the objective of outputting an upper bound on

the surplus process at time k + n. Hence, we can interpret this ceiling value as a condi-

tional version of ṽu(k + n), in the sense that a claim is known to have occurred at time

k. Specifically, we assess the surplus process at time k (to be viewed as our new starting

point) and adjust the initial surplus level and dividend counter accordingly. As a result,

we can make use of the previous ceiling value formula.

However, we remark that the general ceiling value, ṽu(t), we wish to employ here should

pertain to that of an OISAM (since the first claim has been assumed to occur). Thus, to

make the distinction, we replace ṽu(t) with ṽordu (t). The only changes to be made involve

replacing nr with na in the formula of ṽu(t) found on page 60. We now proceed to the

analysis of ṽu,d(k, n), under the following six non-overlapping, exhaustive cases:

(1) k /∈ Tu,d(k) and vu,d(k) − y0 < b: In this case, the “mainstream” path yields the

“optimal” level at time k + n, namely:

ṽu,d(k, n) = ṽordvu,d(k)−y0
(n).

(2) k /∈ Tu,d(k) and vu,d(k) − y0 ≥ b: In this case, since the “mainstream” path is

above level b at time k, it is susceptible to more dividends being paid out than a

path starting below level b at time k, which can potentially result in having a lower
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surplus value at time k + n than that alternate path. Thus, we need to compare the

surplus level at time k+n from the “mainstream” path with that from the “b−1/k”

path. Thus,

ṽu,d(k, n) = max
{
ṽordvu,d(k)−y0

(n), ṽordb−1(n)
}

.

(3) k ∈ Tu,d(k), p = 0, and vu,d(k) − Divvu,d(k)(c1) − y0 < b: In this case, since p = 0,

the first claim is implemented after the dividend. Since the resulting surplus level is

below the threshold, the “mainstream” path yields the “optimal” level at time k+n,

namely:

ṽu,d(k, n) = ṽordvu,d(k)−Divvu,d(k)(c1)−y0
(n).

(4) k ∈ Tu,d(k), p = 0, and vu,d(k)−Divvu,d(k)(c1)− y0 ≥ b: In this case, since p = 0, the

first claim is implemented after the dividend. Since the “mainstream” path is above

level b at time k, it is again susceptible to more dividends being paid out than a path

starting below level b at time k, which can potentially result in having a lower surplus

value at time k + n than that alternate path. Therefore, we need to compare the

surplus level at time k+n from the “mainstream” path with that from the “b−1/k”

path. Thus,

ṽu,d(k, n) = max{ṽordvu,d(k)−Divvu,d(k)(c1)−y0
(n), ṽordb−1(n)}.

(5) k ∈ Tu,d(k), p > 0, and vu,d(k)− y0 −Divvu,d(k)−y0
(c1) < b: In this case, since p > 0,

the first claim can either be implemented before or after the dividend. However, since

dividends are restricted, it is clear that the first claim being implemented before

the dividend is guaranteed to always yield a surplus value at least as high as the

situation when the first claim is implemented after the dividend. Hence, we assign
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the “mainstream” path to be the one where the first claim occurs before the dividend,

and thus,

ṽu,d(k, n) = ṽordvu,d(k)−y0−Divvu,d(k)−y0(c1)(n).

(6) k ∈ Tu,d(k), p > 0, and vu,d(k) − y0 −Divvu,d(k)−y0
(c1) ≥ b: As stated in the above

case, since p > 0 and dividends are restricted, the first claim being implemented

before the dividend will always yield a surplus value at least as high as the situation

when the first claim is implemented following the dividend. Hence, we assign the

“mainstream” path to be the one where the first claim occurs before the dividend.

Since this “mainstream” path is above level b at time k, it is susceptible to more

dividends being paid out than a path starting below level b at time k, which can

potentially result in having a lower surplus value at time k + n than that alternate

path. Therefore, we need to compare the surplus level at time k + n from the

“mainstream” path with that from the “b− 1/k” path. Thus,

ṽu,d(k, n) = max{ṽordvu,d(k)−y0−Divvu,d(k)−y0(c1)(n), ṽordb−1(n)}.

The final expression combining the above six cases is shown on the next page.
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o
r
d

v
u
,d

(k
)−
y
0
−
D
iv
v
u
,d

(
k
)
−
y
0

(c
1
)
(n

),
ṽ
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We now apply those ceiling values in selecting the relevant elements from the probability

vectors b
(k)
i , g(k)

n,i
, and h

(k)
n,−j for computation.

3.5.2 Determining the Values of the Sub-vectors of b
(k)
i

Let Ωk represent the sample space of all possible non-ruin values that the surplus process

can take at time k. By construction, Ωk = {0, 1, . . . , vu,d(k) − y0}. Therefore, note that

b
(k)
i,` = 0 for i /∈ Ωk. For i ∈ Ωk, the values of b

(k)
i,` can be broken up into two separate cases,

which we detail below:

The first case is if k /∈ Tu,d(k) (i.e., k is not a dividend paying time unit), so that

there are
∣∣Tu,d(k − 1)

∣∣ total dividends. Furthermore, if we assume that the sum of these

(restricted) dividends is equal to a value s, then the surplus process will be at level u+ck−s

immediately before the claim is implemented. In addition, the claim size will have to be

equal to u+ ck−s− i in order for the surplus process to be at level i. Finally, the dividend

counter will be equal to Vu,d(0, k, u+ ck− s− i, s, ., .). Combining these elements together,

we obtain

∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)αu+ck−s−i1[`=Vu,d(0,k,u+ck−s−i,s,.,.)] · e1.

The second case is if k ∈ Tu,d(k) (i.e., k is a dividend paying time unit). Note that

before time k, we have
∣∣Tu,d(k − 1)

∣∣ previous dividends. Furthermore, if we assume that

the sum of these (restricted) dividends is equal to a value s, then the surplus process would

be at level u+ck−s immediately before the claim or dividend is first implemented. Since k

is a dividend paying time unit, we need to consider two cases: the claim being implemented

before the dividend and vice-versa.
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If the claim is processed before the dividend, then the range of values of the claim size

depends on the value of i. Specifically, if i < b, no dividend ends up being issued; in other

words, a dividend amount of 0 is issued with probability 1. Hence, the claim size range

simply consists of the singleton value u + ck − s− i. As in the first case, the value of the

dividend counter, `, is set equal to Vu,d(0, k, u+ ck − s− i, s, ., .).

However, if i ≥ b, a potential non-zero dividend will be issued after the claim. Thus,

the claim size will range from y0 to u+ ck−s− i. If we assume that this claim size is equal

to y, then the dividend counter will be equal to Vu,d(0, k, y, s, u+ ck− s− y− i, ClmFrst).

Note that the special case i = b and u + ck − s = b has a zero probability of occurring

because this will imply that a claim of size 0 will be administered, which is impossible since

claim sizes are at least equal to y0, which is positively valued.

If the dividend is processed before the claim, then the range of the restricted dividend

amount will depend on both i and the value of the surplus process at time k given by

u + ck − s. Specifically, if i < b, then the restricted dividend amount will range from

min{c1, u + ck − s − b} to min{c2, u + ck − s − b}. However, if i ≥ b, then the restricted

dividend amount will range from min{c1, u+ck−s−b} to min{c2, u+ck−s−(i+y0)}. Note

that if c1 > u+ck−s−(i+y0), then min{c1, u+ck−s−b} > min{c2, u+ck−s−(i+y0)},

implying that there will not be any restricted dividend amount small enough to bring the

surplus process down to level i+ y0.

We can combine the above two situations since the value of i can be used to compare

the relative values of u+ ck − s− b and u+ ck − s− (i+ y0) in the limits of the dividend

amount. As a result, the restricted dividend amount will range from min{c1, u+ck−s−b}
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to min{c2, u+ ck− s−max{b, i+ y0}}. Finally, by assuming a restricted dividend amount

equal to s∗ at time k, the value of the dividend counter, `, will be equal to Vu,d(0, k, u +

ck − s− s∗ − i, s, s∗, ClmFrst). Combining these elements together, we obtain

∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

{
p
u+ck−s−i∑
y=y0

αyd
∗
u+ck−s−y−i{u+ ck − s− y}1[`=Vu,d(0,k,y,s,u+ck−s−y−i,ClmFrst)]

+ (1− p)
min{c2,u+ck−s−max{b,i+y0}}∑

s∗=min{c1,u+ck−s−b}

d∗s∗{u+ ck − s} αu+ck−s−s∗−i1[`=Vu,d(0,k,u+ck−s−s∗−i,s,s∗,ClmFrst)]

 · e1.

Finally, the result of combining the above two cases together is shown on page 67.

3.5.3 Determining the Values of the Sub-vectors of g
(k)
n,i

Note that since g̃(k)
n

=
(
g̃(k)
n,0
, g̃(k)
n,1
, g̃(k)
n,2
, . . .
)

= b̃
(k)
Qn for n ∈ N, we have g̃(k)

0
= b̃

(k)
and

g̃(k)
n

= g̃(k)
n−1

Q for n ∈ Z+. In particular, this recursive relation can be expressed more

explicitly as follows:

(
g̃
(k)

n,0
, g̃

(k)

n,1
, g̃

(k)

n,2
, . . .

)
=
(
g̃
(k)

n−1,0
, g̃

(k)

n−1,1
, g̃

(k)

n−1,2
, . . .

)
×



0 1 · · · b− 1 b b + 1 · · ·

0 Ã0,0 Ã0,1 · · · Ã0,b−1 Ã0,b Ã0,b+1 · · ·

1 Ã1,0 Ã1,1 · · · Ã1,b−1 Ã1,b Ã1,b+1 · · ·

2 Ã2,0 Ã2,1 · · · Ã2,b−1 Ã2,b Ã2,b+1 · · ·
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

b− 1 Ãb−1,0 Ãb−1,1 · · · Ãb−1,b−1 Ãb−1,b Ãb−1,b+1 · · ·

b B̃b,0 B̃b,1 · · · B̃b,b−1 C̃b,b C̃b,b+1 · · ·

b + 1 B̃b+1,0 B̃b+1,1 · · · B̃b+1,b−1 C̃b+1,b C̃b+1,b+1 · · ·
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.



.

Noting that g̃(k)
n−1,i

has zero-valued elements for i > ṽu,d(k, n − 1), the above equation

simplifies to give the following result:

g̃(k)
n,i

=



b̃
(k)
i if n = 0;

b−1∑
r=0

g̃(k)
n−1,rÃr,i +

ṽu,d(k,n−1)∑
r=b

g̃(k)
n−1,r

(
B̃r,i1[i<b] + C̃r,i1[i≥b]

)
if n ∈ Z+.
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The next step is to break down the above block-matrices into smaller sub-blocks. Specif-

ically, for n ∈ Z+, we have

g̃(k)
n,i

=
(
g(k)
n,i,1

, g(k)
n,i,2

, . . . , g(k)
n,i,h

)

=
b−1∑
r=0

(
g(k)
n−1,r,1, g

(k)
n−1,r,2, . . . , g

(k)
n−1,r,h

)
Ãr,i

+

ṽu,d(k,n−1)∑
r=b

(
g(k)
n−1,r,1, g

(k)
n−1,r,2, . . . , g

(k)
n−1,r,h

)(
B̃r,i1[i<b] + C̃r,i1[i≥b]

)
.

Equating components for ` ∈ {1, 2, . . . , h}, we immediately obtain

g(k)
n,i,`

=



b
(k)
i,` if n = 0;

b−1∑
r=0

h∑
m=1

g(k)
n−1,r,m[Ãr,i]m,` if n ∈ Z+.

+

ṽu,d(k,n−1)∑
r=b

h∑
m=1

g(k)
n−1,r,m

(
[B̃r,i]m,`1[i<b] + [C̃r,i]m,`1[i≥b]

)

Since [Ãr,i]m,` = 1[`=Vr,m(0,1,r+c−i,0,.,.)]Br+c−i, the first term in the second case above

vanishes for r < i − c, since Bi = 0 for i < 0. Thus, we can replace r = 0, the lower

index of the first summation (found in the first term in the second case above), with

r = max{0, i− c}. By decomposing [B̃r,i]m,` and [C̃r,i]m,` in the second term, and examin-

ing the Bi matrices within them, we find that these matrices are equal to 0 for i− c < 0.

Thus, similar to the first summation in the first term, we can replace the lower index of

the first summation in the second term with r = max{b, i− c}.
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Substituting the explicit expressions of the block-matrices given on page 41 into the

above equation for g
(k)
n,i,`, we obtain the resulting expression shown on page 67.

3.5.4 Determining the Values of the Sub-vectors of h
(k)
n,−j

Note that since h̃
(k)
n =

(
h̃

(k)
n,−1, h̃

(k)
n,−2, h̃

(k)
n,−3, . . .

)
= b̃

(k)
Qn−1R for n ∈ Z+, it clearly follows

that h̃
(k)
n = g̃(k)

n−1
R for n ∈ Z+. As done in the previous sub-section, we start by writing

out this recursive formula more explicitly as follows:

(
h̃

(k)

n,−1, h̃
(k)

n,−2, h̃
(k)

n,−3, . . .
)

=
(
g̃(k)

n−1,0
, g̃(k)

n−1,1
, g̃(k)

n−1,2
, . . .

)
×



−1 −2 −3 · · ·

0 Ã0,−1 Ã0,−2 Ã0,−3 · · ·

1 Ã1,−1 Ã1,−1 Ã1,−3 · · ·

2 Ã2,−1 Ã2,−2 Ã2,−3 · · ·
...

...
...

...
. . .

b− 1 Ãb−1,−1 Ãb−1,−2 Ãb−1,−3 · · ·

b B̃b,−1 B̃b,−2 B̃b,−3 · · ·

b+ 1 B̃b+1,−1 B̃b+1,−2 B̃b+1,−3 · · ·
...

...
...

...
. . .



.

As stated in the previous sub-section, since g̃(k)
n−1,i

has zero-valued elements for i > ṽu,d(k, n−

1), we obtain the following recursive result:

h̃
(k)
n,−j =

b−1∑
r=0

g̃(k)
n−1,rÃr,−j +

ṽu,d(k,n−1)∑
r=b

g̃(k)
n−1,rB̃r,−j for n ∈ Z+.

The next step is to break down the above block-matrices into smaller sub-blocks. Specif-

ically, for n ∈ Z+, we have
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h̃
(k)
n,−j =

(
h
(k)
n,−j,1, h

(k)
n,−j,2, . . . , h

(k)
n,−j,h

)

=
b−1∑
r=0

(
g(k)
n−1,r,1, g

(k)
n−1,r,2, . . . , g

(k)
n−1,r,h

)
Ãr,−j

+

ṽu,d(k,n−1)∑
r=b

(
g(k)
n−1,r,1, g

(k)
n−1,r,2, . . . , g

(k)
n−1,r,h

)
B̃r,−j .

Equating components for ` ∈ {1, 2, . . . , h}, we obtain

h
(k)
n,−j,` =

b−1∑
r=0

h∑
m=1

g(k)
n−1,r,m[Ãr,−j ]m,` +

ṽu,d(k,n−1)∑
r=b

h∑
m=1

g(k)
n−1,r,m[B̃r,−j ]m,` for n ∈ Z+.

Once again, substituting the explicit expressions of the block-matrices given on page 41

into the above equation for h
(k)
n,−j,`, we obtain the resulting expression shown on the next

page.
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3.6 Determining the Conditional Trivariate and Bi-

variate Ruin Probabilities

For n ∈ Z+, we define three conditional ruin probabilities of interest. First of all, let

ψ
(k)
n,i,j(u, d) be the probability of ruin occurring at time k + n, such that the surplus prior

to ruin and the deficit at ruin are equal to i and j, respectively, given that the first claim

occurred at time k. This conditional trivariate ruin probability is mathematically equal

to Pr{T = k + n, UT− = i, |UT | = j|Uk ∈ Ωk, U0 = u,D0 = d}. Let ω
(k)
n,i (u, d) be the

probability of ruin occurring at time k + n, such that the surplus prior to ruin is equal to

i, given that the first claim occurred at time k. This conditional bivariate ruin probability

is mathematically equal to Pr{T = k + n, UT− = i|Uk ∈ Ωk, U0 = u,D0 = d}. Finally, let

φ
(k)
n,j(u, d) be the probability of ruin occurring at time k + n, such that the deficit at ruin

is equal to j, given that the first claim occurred at time k. This conditional bivariate ruin

probability is mathematically equal to Pr{T = k+n, |UT | = j |Uk ∈ Ωk, U0 = u,D0 = d}.

It is worthwhile to note that ruin cannot occur if any of the following holds true:

(1) The maximum possible claim size yα does not exceed imin (i.e, the ruining claim

must exceed the smallest surplus prior to ruin value).

(2) i > ṽu,d(k, n) (i.e, the surplus prior to ruin at time k + n cannot exceed the ceiling

value).

(3) j > yα−imin (i.e., the deficit at ruin cannot exceed the difference between the largest

claim size and smallest surplus prior to ruin value).

Now, we turn our attention to deriving algorithmic expressions for each of the above

conditional ruin probabilities.
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3.6.1 Calculating ψ
(k)
n,i,j(u, d)

Keeping in mind that ruin does not occur in the first n − 1 transitions from time k, we

examine ψ
(k)
n,i,j(u, d) under the following four non-overlapping, exhaustive cases:

Case 1: c ≤ c2 and c ≤ b

In this case, min{c, b + (c − c2)+} = c. Now, we examine the conditional trivariate ruin

probability, ψ
(k)
n,i,j(u, d), under five non-overlapping, exhaustive sub-cases:

(1) i < c: This is an impossible scenario, and hence, ψ
(k)
n,i,j(u, d) = 0.

(2) c ≤ i < b:

At time k + n − 1, the process must be at level i − c, without the possibility of a

dividend being issued at time k + n. Hence, we simply have

ψ
(k)
n,i,j(u, d) =

h∑
`=1

g
(k)
n−1,i−c,`s

′αi+j .

(3) i = b:

Here, we have two possible scenarios to consider at time k + n: one where no div-

idend is issued, and one where a dividend is issued immediately before the ruining

claim. Note that the first scenario is identical to the above sub-case, and thus, we

have

h∑
`=1

g
(k)
n−1,b−c,`s

′αb+j contributing to ψ
(k)
n,b,j(u, d). As for the second scenario,

since dividend amounts are restricted, and we are examining the surplus process at

level b, it is possible that the original (unrestricted) dividend amount could have

been large enough to bring the surplus process below b. Thus, by considering

all possible values of the surplus process at time k + n − 1, we ultimately have
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(1− p)
c2∑
s=c

c2∑
s∗=max{c1,s}

ds∗ g
(k)
n−1,b+s−c,hs

′αb+j contributing to ψ
(k)
n,b,j(u, d).

Hence, combining the above two scenarios, we get

ψ
(k)
n,b,j(u, d) =

 h∑
`=1

g(k)
n−1,b−c,` + (1− p)

c2∑
s=c

c2∑
s∗=max{c1,s}

ds∗ g
(k)
n−1,b+s−c,h

 s′αb+j .

(4) b < i < b+ c:

As in the previous sub-case, we have two possible scenarios to consider at time k+n:

one where no dividend is issued, and one where a dividend is issued immediately

before the ruining claim. We remark that the first scenario is identical to the second

sub-case, and thus, we have

h∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing to ψ
(k)
n,i,j(u, d). Con-

cerning the second scenario, and unlike the second scenario in the previous sub-case,

since the surplus process is above level b, dividend amounts are not capped. Thus, by

considering all possible values of the surplus process at time k + n− 1, this scenario

yields (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d). The

reason for having max{c1, b+ c− i} as the lower index of s∗, as opposed to just c1, is

that we need to insure that the surplus process at time k+ n− 1 is at or above level

b (i.e., i+ s∗ − c ≥ b); otherwise, a dividend at time k + n would not be possible.

Hence, combining the above two scenarios, we get

ψ
(k)
n,i,j(u, d) =

 h∑
`=1

g(k)
n−1,i−c,` + (1− p)

c2∑
s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,h

 s′αi+j .
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(5) i ≥ b+ c:

Here, we actually have three possible scenarios to consider at time k + n: one where

no dividend is issued, one where a potential dividend would have been issued had it

not been for the ruining claim, and one where a dividend is issued immediately before

the ruining claim. For the first scenario, we have

h−1∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing

to ψ
(k)
n,i,j(u, d). Note that unlike in the previous sub-cases, we do not include here

the dividend counter value h in the summation since, at time k + n− 1, the surplus

process is at a level high enough for a dividend to be issued should the dividend

counter value be equal to h, which is not in the scenario we are considering here.

In the case of the second scenario, we simply have pg
(k)
n−1,i−c,hs

′αi+j contributing to

ψ
(k)
n,i,j(u, d). Finally, for the third scenario, by considering all possible values of the

surplus process at time k + n − 1, we have (1 − p)
c2∑

s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j con-

tributing to ψ
(k)
n,i,j(u, d). Note that, unlike the previous sub-case, s∗ has a minimum

value of c1 since b+ c− i is guaranteed to be non-positive for i ≥ b+ c.

Hence, combining the above three scenarios, we get

ψ
(k)
n,i,j(u, d) =

(
h−1∑
`=1

g(k)
n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,h

)
s′αi+j .

Therefore, combining all of the above sub-cases, we have the following expression:
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ψ
(k)
n,i,j(u, d) =



0 if i < c;

h∑
`=1

g(k)

n−1,i−c,`s
′αi+j if c ≤ i < b;

 h∑
`=1

g(k)

n−1,b−c,` + (1− p)
c2∑
s=c

c2∑
s∗=max{c1,s}

ds∗ g
(k)

n−1,b+s−c,h

 s′αb+j if i = b;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if b < i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if i ≥ b+ c.

Case 2: c ≤ c2 and c > b

In this case, min{c, b+(c−c2)+} = b. Similar to the approach used above, we examine the

conditional trivariate ruin probability, ψ
(k)
n,i,j(u, d), under five non-overlapping, exhaustive

sub-cases:

(1) i < b: This is an impossible scenario, and hence, ψ
(k)
n,i,j(u, d) = 0.

(2) i = b:

This sub-case is valid only if a dividend is issued immediately before the ruining claim.

Since dividend amounts are restricted, and we are examining the surplus process at

level b, it is possible that the original (unrestricted) dividend amount could have been

large enough to bring the process below b. Hence, by considering all possible values

of the surplus process at time k + n− 1, we have

ψ
(k)
n,b,j(u, d) = (1− p)

c2∑
s=c

c2∑
s∗=max{c1,s}

ds∗ g
(k)
n−1,b+s−c,hs

′αb+j .
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(3) b < i < c:

As in the previous sub-case, this sub-case is valid only if a dividend is issued immedi-

ately before the ruining claim. Unlike the above sub-case, however, since the surplus

process is above level b, dividend amounts are not capped. Hence, by considering all

possible values of the surplus process at time k + n− 1, we have

ψ
(k)
n,i,j(u, d) = (1− p)

c2∑
s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j .

(4) c ≤ i < b+ c:

Here, we have two possible scenarios to consider at time k+n: one where no dividend

is issued, and one where a dividend is issued immediately before the ruining claim.

Note that the first scenario is identical to the second sub-case in Case 1, and thus,

we have

h∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing to ψ
(k)
n,i,j(u, d). The second scenario, on the

other hand, is identical to the previous sub-case, and thus, we have

(1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d).

Hence, combining the above two scenarios, we get

ψ
(k)
n,i,j(u, d) =

 h∑
`=1

g(k)
n−1,i−c,` + (1− p)

c2∑
s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,h

 s′αi+j .

(5) i ≥ b+ c:

Here, we have three possible scenarios to consider at time k + n: one where no div-

idend is issued, one where a potential dividend would have been issued had it not

been for the ruining claim, and one where a dividend is issued immediately before

the ruining claim. For the first scenario, as explained in the fifth sub-case of Case

1, we have

h−1∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing to ψ
(k)
n,i,j(u, d). In the case of the second
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scenario, we simply have pg
(k)
n−1,i−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d). Finally, for

the third scenario, by considering all possible values of the surplus process at time

k + n − 1, we have (1 − p)

c2∑
s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d).

Note that, unlike the previous sub-case, s∗ has a minimum value of c1, since b+ c− i

is again non-positive for i ≥ b+ c.

Hence, combining the above three scenarios, we get

ψ
(k)
n,i,j(u, d) =

(
h−1∑
`=1

g(k)
n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,h

)
s′αi+j .

Therefore, combining all of the above sub-cases, we have the following expression:

ψ
(k)
n,i,j(u, d) =



0 if i < b;

(1− p)
c2∑
s=c

c2∑
s∗=max{c1,s}

ds∗ g
(k)

n−1,b+s−c,hs
′αb+j if i = b;

(1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,hs
′αi+j if b < i < c;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if c ≤ i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if i ≥ b+ c.

We remark that in the case of p = 1, the above expression for ψ
(k)
n,i,j(u, d) yields a value of

0 for all i < c, in agreement with our earlier observation that the minimum surplus prior

to ruin value is equal to c in this case.
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Case 3: c > c2 and c ≤ b+ (c− c2)+

In this case, min{c, b + (c − c2)+} = c. Next, we examine the conditional trivariate ruin

probability, ψ
(k)
n,i,j(u, d), under four non-overlapping, exhaustive sub-cases:

(1) i < c: This is an impossible scenario, and hence, ψ
(k)
n,i,j(u, d) = 0.

(2) c ≤ i < b+ c− c2:

At time k+n−1, we observe that the process was at level i−c, without the possibility

of a dividend being issued at time k+n. Furthermore, note that for this case, unlike

the previous two, the surplus process cannot be brought down to level b by a dividend

(immediately before implementing the ruining claim) since c > c2. Hence, we simply

have

ψ
(k)
n,i,j(u, d) =

h∑
`=1

g
(k)
n−1,i−c,`s

′αi+j .

(3) b+ c− c2 ≤ i < b+ c:

Here, we have two possible scenarios to consider at time k+n: one where no dividend

is issued, and one where a dividend is issued immediately before the ruining claim.

Note that the first scenario is identical to the previous sub-case, and thus, we have
h∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing to ψ
(k)
n,i,j(u, d). The second scenario, on the other

hand, is identical to the second scenario of the fourth sub-case of Case 2, and thus,

we have (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d).

Hence, combining the above two scenarios, we get

ψ
(k)
n,i,j(u, d) =

 h∑
`=1

g(k)
n−1,i−c,` + (1− p)

c2∑
s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,h

 s′αi+j .
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(4) i ≥ b+ c:

Here, we have three possible scenarios to consider at time k + n: one where no

dividend is issued, one where a potential dividend would have been issued had it not

been for the ruining claim, and one where a dividend is issued immediately before

the ruining claim. For the first scenario, as explained in the fifth sub-case of Case

1, we have

h−1∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing to ψ
(k)
n,i,j(u, d). In the case of the second

scenario, we simply have pg
(k)
n−1,i−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d). Finally, for

the third scenario, by considering all possible values of the surplus process at time

k + n − 1, we have (1 − p)

c2∑
s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d).

Note that, unlike the previous sub-case, s∗ has a minimum value of c1, since b+ c− i

is non-positive for i ≥ b+ c.

Hence, combining all of the above three scenarios, we get

ψ
(k)
n,i,j(u, d) =

(
h−1∑
`=1

g(k)
n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,h

)
s′αi+j .

Therefore, combining all of the above sub-cases, we have the following expression:

ψ
(k)
n,i,j(u, d) =



0 if i < c;

h∑
`=1

g(k)

n−1,i−c,`s
′αi+j if c ≤ i < b+ c− c2;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if b+ c− c2 ≤ i,

and i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if i ≥ b+ c.
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Case 4: c > c2 and c > b+ (c− c2)+

In this case, min{c, b+ (c− c2)+} = b+ c− c2. Now, we examine the conditional trivariate

ruin probability, ψ
(k)
n,i,j(u, d), under four non-overlapping, exhaustive sub-cases:

(1) i < b+ c− c2: This is an impossible scenario, and hence, ψ
(k)
n,i,j(u, d) = 0. Note that

for this case, unlike the previous ones, the surplus prior to ruin is always greater than

b at time k+ n. This can be demonstrated by showing that the smallest value it can

take is greater than b: suppose that at time k + n− 1, the surplus process is at the

lowest non-ruined value possible, which is level 0. Then, in the next time period (i.e,

at time k + n), the surplus process will increase by a premium, and hence will be

at level c. Now, suppose a dividend of maximum amount c2 is issued immediately

before the ruining claim.; then, the surplus prior to ruin will be equal to b + c− c2.

Since c > c2, therefore the minimum surplus prior to ruin value is guaranteed to be

greater than b.

(2) b+ c− c2 ≤ i < c:

This sub-case is valid only if a dividend is issued immediately before the ruining claim.

Hence, by considering all possible values of the surplus process at time k+ n− 1, we

simply have

ψ
(k)
n,i,j(u, d) = (1− p)

c2∑
s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j .

The reason for having max{c1, b+ c− i} as the lower index of s∗, as opposed to just

c1, is that we need to insure that the surplus process at time k+n− 1 is at or above

level b (i.e., i+s∗− c ≥ b); otherwise, a dividend at time k+n would not be possible.
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(3) c ≤ i < b+ c:

Here, we have two possible scenarios to consider at time k + n: one where no div-

idend is issued, and one where a dividend is issued immediately before the ruining

claim. Note that the the first scenario is identical to the second sub-case in Case

3, and thus, we have

h∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing to ψ
(k)
n,i,j(u, d). The second

scenario, on the other hand, is identical to the previous sub-case, and thus, we have

(1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d).

Hence, combining the above two scenarios, we get

ψ
(k)
n,i,j(u, d) =

 h∑
`=1

g(k)
n−1,i−c,` + (1− p)

c2∑
s∗=max{c1,b+c−i}

ds∗ g
(k)
n−1,i+s∗−c,h

 s′αi+j .

(4) i ≥ b+ c:

Here, we have three possible scenarios at to consider time k + n: one where no div-

idend is issued, one where a potential dividend would have been issued had it not

been for the ruining claim, and one where a dividend is issued immediately before

the ruining claim. For the first scenario, as explained in the fifth sub-case of Case

1, we have

h−1∑
`=1

g
(k)
n−1,i−c,`s

′αi+j contributing to ψ
(k)
n,i,j(u, d). In the case of the second

scenario, we simply have pg
(k)
n−1,i−c,hs

′αi+j contributing to ψ
(k)
n,i,j(u, d). Finally, for

the third scenario, by considering all possible values of the surplus process at time

k + n− 1, in this scenario, we have (1− p)
c2∑

s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,hs

′αi+j contributing

to ψ
(k)
n,i,j(u, d). Note that, unlike the previous sub-case, s∗ has a minimum value of

c1, since b+ c− i is non-positive for i ≥ b+ c.

Hence, combining the above three scenarios, we get
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ψ
(k)
n,i,j(u, d) =

(
h−1∑
`=1

g(k)
n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)
n−1,i+s∗−c,h

)
s′αi+j .

Therefore, combining all of the above sub-cases, we have the following expression:

ψ
(k)
n,i,j(u, d) =



0 if i < b+ c− c2;

(1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,b+s∗−c,hs
′αi+j if b+ c− c2 ≤ i < c;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if c ≤ i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′αi+j if i ≥ b+ c.

Once again, we comment that in the case of p = 1, the above expression for ψ
(k)
n,i,j(u, d)

correctly yields a value of 0 for all i < c, as the minimum surplus prior to ruin value is

equal to c in this case.

3.6.2 Calculating ω
(k)
n,i (u, d)

A straightforward way to calculate this conditional bivariate ruin probability is by summing

ψ
(k)
n,i,j(u, d) over all possible values of j. Since the maximum claim size is yα and the surplus

prior to ruin is set equal to i, the maximum value that the deficit at ruin, j, can therefore

be is yα − i. Thus, we have

ω
(k)
n,i (u, d) =

yα−i∑
j=1

ψ
(k)
n,i,j(u, d).

Looking at the results in the previous sub-section, and observing that the j’s are only

found in the claim size pmf, we end up with expressions for ω
(k)
n,i (u, d) identical to those

for ψ
(k)
n,i,j(u, d), with the exception that all the αi+j ’s are now replaced with Λi’s (i.e., the

claim size tail probability function). Specifically, we get the following results:
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Case 1: c ≤ c2 and c ≤ b

ω
(k)
n,i,j(u, d) =



0 if i < c;

h∑
`=1

g(k)

n−1,i−c,`s
′Λi if c ≤ i < b;

 h∑
`=1

g(k)

n−1,b−c,` + (1− p)
c2∑
s=c

c2∑
s∗=max{c1,s}

ds∗ g
(k)

n−1,b+s−c,h

 s′Λb if i = b;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if b < i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if i ≥ b+ c.

Case 2: c ≤ c2 and c > b

ω
(k)
n,i (u, d) =



0 if i < b;

(1− p)
c2∑
s=c

c2∑
s∗=max{c1,s}

ds∗ g
(k)

n−1,b+s−c,hs
′Λb if i = b;

(1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if b < i < c;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if c ≤ i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if i ≥ b+ c.
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Case 3: c > c2 and c ≤ b+ (c− c2)+

ω
(k)
n,i (u, d) =



0 if i < c;

h∑
`=1

g(k)

n−1,i−c,`s
′Λi if c ≤ i < b+ c− c2;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if b+ c− c2 ≤ i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if i ≥ b+ c.

Case 4: c > c2 and c > b+ (c− c2)+

ω
(k)
n,i (u, d) =



0 if i < b+ c− c2;

(1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,b+s∗−c,hs
′Λi if b+ c− c2 ≤ i < c;

 h∑
`=1

g(k)

n−1,i−c,` + (1− p)
c2∑

s∗=max{c1,b+c−i}

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if c ≤ i < b+ c;

h−1∑
`=1

g(k)

n−1,i−c,` + pg(k)

n−1,i−c,h + (1− p)
c2∑

s∗=c1

ds∗ g
(k)

n−1,i+s∗−c,h

 s′Λi if i ≥ b+ c.

3.6.3 Calculating φ
(k)
n,j(u, d)

One method to calculate this conditional bivariate ruin probability is by summing ψ
(k)
n,i,j(u, d)

over all possible values of i. Since the maximum claim size is yα and the deficit at ruin

is set equal to j, the maximum value that the surplus prior to ruin, i, can therefore be is

yα − j. Thus, we have

81



φ
(k)
n,j(u, d) =

yα−j∑
i=imin

ψ
(k)
n,i,j(u, d).

An alternative method to calculate φ
(k)
n,j(u, d) is to use the ruin probability vector h̃

(k)
n,−j

directly. Knowing that the elapsed claim time counter, Et, must be equal to 1 at time

t = k + n since a claim (i.e., the ruining one) occurs, we have

φ
(k)
n,j(u, d) =

h∑
`=1

h
(k)
n,−j,`e

′
1.

The next section shows the derivations of the unconditional versions of the above proba-

bilities.

3.7 Determining the Unconditional Trivariate and Bi-

variate Ruin Probabilities

We are now in a position to obtain explicit expressions for ψτ,i,j(u, d), ωτ,i(u, d), and

φτ,j(u, d) from their conditional counterparts. The final results are shown on page 89, and

the methodology is shown in the following sub-sections.

3.7.1 Calculating ψτ,i,j(u, d)

Using the law of total probability, we have

ψτ,i,j(u, d) = Pr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d}

=
nr∑
k=1

rkPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = k}

=

min{τ,nr}∑
k=1

rkPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = k}.
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Now, if ruin occurs after nr time units (i.e., τ > nr), then, by construction

ψτ,i,j(u, d) =
nr∑
k=1

rkPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = k}

=
nr∑
k=1

rkψ
(k)
τ−k,i,j(u, d).

If, however, ruin occurs at or before time nr (i.e., τ ≤ nr), then either the first claim is

the cause of ruin, or the first claim occurs at some time k ∈ {1, 2, . . . , τ − 1} and ruin is

subsequently experienced τ − k time units later. Mathematically, this amounts to

ψτ,i,j(u, d) =
τ∑
k=1

rkPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = k}

=
τ−1∑
k=1

rkPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = k}

+ rτPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = τ}

=
τ−1∑
k=1

rkψ
(k)
τ−k,i,j(u, d) + rτPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = τ}.

As done in Alfa and Drekic (2007), we can combine these two cases together to obtain

ψτ,i,j(u, d) =

min{τ−1,nr}∑
k=1

rkψ
(k)
τ−k,i,j(u, d) + rτPr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = τ}.

The second component, Pr{T = τ, UT− = i, |UT | = j |U0 = u,D0 = d,W1 = τ}, can

be further assessed under the following two non-overlapping, exhaustive cases: the ruining

first claim occurs during a non-dividend paying time period, and the ruining first claim

occurs during a dividend paying time period. Under the first case, the above probability

expression is equal to
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∑
s∈Ru,d(τ−1)

f
(|Tu,d(τ−1)|)
u,d (s)1[i=u+cτ−s]αu+cτ−s+j .

Since the indicator function is equal to 1 only when s = u+cτ − i, the previous probability

expression simplifies to become

f
(|Tu,d(τ−1)|)
u,d (u+ cτ − i)αi+j .

Under the second case, by taking into account all possible dividends prior to and in-

cluding time τ , the same probability expression is now given by

∑
s∈Ru,d(τ−1)

f
(|Tu,d(τ−1)|)
u,d (s)

{
p1[i=u+cτ−s]αu+cτ−s+j

+(1− p)
min{c2,u+cτ−s−b}∑

s∗=min{c1,u+cτ−s−b}

1[i=u+cτ−s−s∗]d
∗
s∗{u+ cτ − s} αu+cτ−s−s∗+j

}
.

Since the indicator functions are equal to 1 only when s = u+ cτ − i for the first one and

s∗ = u+cτ−s− i for the second one, the above probability expression simplifies to become

(
pf

(|Tu,d(τ−1)|)
u,d (u+ cτ − i) + (1− p)

∑
s∈Ru,d(τ−1)

f
(|Tu,d(τ−1)|)
u,d (s)d∗u+cτ−s−i{u+ cτ − s}

)
αi+j.

However, an identity exists in that
∑

s∈Ru,d(τ−1)

f
(|Tu,d(τ−1)|)
u,d (s)d∗u+cτ−s−i{u + cτ − s} is ac-

tually equal to f
(|Tu,d(τ)|)
u,d (u + cτ − i). This is because evaluating dividend amounts that

will result in the surplus process being at level i at time τ can be calculated by either

accounting for all possible total dividend amounts up to and including time τ − 1, and

then ensuring that the dividend amount at time τ is equal to the value that will bring the

surplus process down to level i, or by simply accounting for all dividend values from time

1 to time τ that will yield a total amount such that the surplus process is brought down
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from level u + cτ to level i. Thus, the above probability expression further simplifies to

become

(
pf

(|Tu,d(τ−1)|)
u,d (u+ cτ − i) + (1− p)f (|Tu,d(τ)|)

u,d (u+ cτ − i)
)
αi+j ,

and the combination of the above two cases of ψτ,i,j(u, d) is shown on page 89.

3.7.2 Calculating ωτ,i(u, d)

Note that

ωτ,i(u, d) =

yα−i∑
j=1

ψτ,i,j(u, d)

and

ω
(k)
n,i (u, d) =

yα−i∑
j=1

ψ
(k)
n,i,j(u, d).

Using these two equations, we examine ωτ,i(u, d) under two non-overlapping, exhaustive

cases: the ruining first claim occurs during a non-dividend paying time period, and the

ruining first claim occurs during a dividend paying time period.

Under the first case, we have
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ωτ,i,j(u, d) =

yα−i∑
j=1

ψτ,i,j(u, d)

=

yα−i∑
j=1

min{τ−1,nr}∑
k=1

rkψ
(k)
τ−k,i,j(u, d) + rτf

(|Tu,d(min{τ−1,nr})|)
u,d (u+ cτ − i)αi+j



=

min{τ−1,nr}∑
k=1

rk

yα−i∑
j=1

ψ
(k)
τ−k,i,j(u, d) + rτf

(|Tu,d(min{τ−1,nr})|)
u,d (u+ cτ − i)

yα−i∑
j=1

αi+j

=

min{τ−1,nr}∑
k=1

rkω
(k)
τ−k,i(u, d) + rτf

(|Tu,d(min{τ−1,nr})|)
u,d (u+ cτ − i)Λi.

Note that since all summands are non-negative, there is no issue in switching the order of

summations, by invoking Tonelli’s theorem (e.g., see Billingsley (1995), Theorem 18.3).

Under the second case, by evaluating all possible dividends prior to and including time

τ , we have

ωτ,i,j(u, d) =

yα−i∑
j=1

ψτ,i,j(u, d)

=

yα−i∑
j=1


min{τ−1,nr}∑

k=1

rkψ
(k)
τ−k,i,j(u, d) + rτ

(
pf

(∣∣∣Tu,d(τ−1)
∣∣∣)

u,d
(u + cτ − i) + (1− p)f

(∣∣∣Tu,d(τ)∣∣∣)
u,d

(u + cτ − i)

)
αi+j



=

min{τ−1,nr}∑
k=1

rk

yα−i∑
j=1

ψ
(k)
τ−k,i,j(u, d) + rτ

(
pf

(∣∣∣Tu,d(τ−1)
∣∣∣)

u,d
(u + cτ − i) + (1− p)f

(∣∣∣Tu,d(τ)∣∣∣)
u,d

(u + cτ − i)

)
yα−i∑
j=1

αi+j

=

min{τ−1,nr}∑
k=1

rkω
(k)
τ−k,i(u, d) + rτ

(
pf

(∣∣∣Tu,d(τ−1)
∣∣∣)

u,d
(u + cτ − i) + (1− p)f

(∣∣∣Tu,d(τ)∣∣∣)
u,d

(u + cτ − i)

)
Λi.
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As in the above case, all summands are again non-negative, and so, there is no issue in

switching the order of summations, by invoking Tonelli’s theorem. The combination of the

above two cases of ωτ,i(u, d) is shown on page 89.

3.7.3 Calculating φτ,j(u, d)

Note that

φτ,i(u, d) =

min{yα−j,ṽu(τ)}∑
i=imin

ψτ,i,j(u, d)

and

φ
(k)
n,i (u, d) =

min{yα−j,ṽu(n)}∑
i=imin

ψ
(k)
n,i,j(u, d).

Using these two equations, we examine φτ,j(u, d) under two non-overlapping, exhaustive

cases: the ruining first claim occurs during a non-dividend paying time period, and the

ruining first claim occurs during a dividend paying time period.

Under the first case, we have

φτ,j(u, d) =

min{yα−j,ṽu(τ)}∑
i=imin

ψτ,i,j(u, d)

=

min{yα−j,ṽu(τ)}∑
i=imin

min{τ−1,nr}∑
k=1

rkψ
(k)
τ−k,i,j(u, d) + rτf

(|Tu,d(τ−1)|)
u,d (u+ cτ − i)αi+j



=

min{τ−1,nr}∑
k=1

rk

min{yα−j,ṽu(τ)}∑
i=imin

ψ
(k)
τ−k,i,j(u, d) + rτ

min{yα−j,ṽu(τ)}∑
i=imin

f
(|Tu,d(τ−1)|)
u,d (u+ cτ − i)αi+j

=

min{τ−1,nr}∑
k=1

rkφ
(k)
τ−k,j(u, d) + rτ

min{yα−j,ṽu(τ)}∑
i=imin

f
(|Tu,d(τ−1)|)
u,d (u+ cτ − i)αi+j .
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Note that since all summands are non-negative, there is no issue in switching the order of

summations, by again invoking Tonelli’s theorem.

Under the second case, by evaluating all possible dividends prior to and including time

τ , we have

φτ,j(u, d) =

min{yα−j,ṽu(τ)}∑
i=imin

ψτ,i,j(u, d)

=

min{yα−j,ṽu(τ)}∑
i=imin


min{τ−1,nr}∑

k=1

rkψ
(k)
τ−k,i,j(u, d) + rτ

(
pf

(|Tu,d(τ−1)|)
u,d (u+ cτ − i)

+ (1− p)f(|Tu,d(τ)|)
u,d (u+ cτ − i)

)
αi+j



=

min{τ−1,nr}∑
k=1

rk

min{yα−j,ṽu(τ)}∑
i=imin

ψ
(k)
τ−k,i,j(u, d)

+ rτ

min{yα−j,ṽu(τ)}∑
i=imin

(
pf

(|Tu,d(τ−1)|)
u,d (u+ cτ − i) + (1− p)f(|Tu,d(τ)|)

u,d (u+ cτ − i)
)
αi+j

=

min{τ−1,nr}∑
k=1

rkφ
(k)
τ−k,i,j(u, d)

+ rτ

min{yα−j,ṽu(τ)}∑
i=imin

(
pf

(|Tu,d(τ−1)|)
u,d (u+ cτ − i) + (1− p)f(|Tu,d(τ)|)

u,d (u+ cτ − i)
)
αi+j .

As in the above case, all summands are again non-negative, and so, there is no issue in

switching the order of summations, by invoking Tonelli’s theorem. The next page summa-

rizes the derivations of the unconditional trivariate and bivariate ruin probabilities.

This concludes our algorithmic derivations using MAMs. Now, we turn our attention

to deriving the finite-ruin time based Gerber-Shiu function and the moments of the total

dividends paid by a finite time horizon or before ruin occurs, whichever happens first, using

the first claim conditioning approach.
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ψ
τ
,i
,j

(u
,d

)
=

                m
in
{τ
−

1
,n
r
}

∑ k
=

1

r k
ψ

(k
)

τ
−
k
,i
,j

(u
,d

)
+
r τ
f

(|
T
u
,d

(τ
−

1
) |)

u
,d

(u
+
cτ
−
i)
α
i+
j

if
τ
/∈
T u
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(τ
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m
in
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−

1
,n
r
}

∑ k
=

1

r k
ψ

(k
)

τ
−
k
,i
,j

(u
,d

)
+
r τ

( p
f

(|
T
u
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−

1
) |)

u
,d

(u
+
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−
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(1
−
p
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(|
T
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(τ
) |)

u
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+
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∈
T u
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).

ω
τ
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)
=

                m
in
{τ
−

1
,n
r
}
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=

1

r k
ω

(k
)
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−
k
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+
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T
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−

1
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r k
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u
,d

(u
+
cτ
−
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α
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−
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,n
r
}

∑ k
=

1

r k
φ

(k
)

τ
−
k
,j

(u
,d

)
+
r τ

m
in
{y
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,ṽ
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∈
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Chapter 4

Algorithmic Expressions for

Ruin-related Quantities Using the

First Claim Conditioning Method

4.1 Introduction

One of the main advantages of assuming that interclaim times (not counting the time until

the first claim, which is potentially different from the others) are iid is that the claim

instants form a sequence of renewal points for the underlying stochastic process of interest.

That is, at a claim-occurring time unit, say time t, we can reset t to 0, and effectively

start the process anew. As a result, since interclaim times are iid beyond the first claim,

DISAMs eventually behave like OISAMs. For this reason, we consider the DISAM class and

condition on the time until the first claim occurs and obtain expressions for the following

ruin-related quantities of interest, namely:

G̃v,m(u, d) = E[vTw(UT− , |UT |)1[T≤m]|U0 = u,D0 = d]

and

D̃rm(u, d) = E[Srmin{T,m}|U0 = u,D0 = d].
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For these two quantities of interest, note that we constrain the analysis to a finite time

horizon, m ∈ Z+. That is, the surplus process is analyzed only up to time m. We, of

course, still conform to the assumption that the time of ruin, T , is a stopping time of the

process, implying that we do not examine the process beyond the time of ruin, even if ruin

occurs after time m. This will be evident in the derivation of the two ruin-related quanti-

ties of interest. As indicated in Chapter 2, we can relax the finite time horizon constraint

under certain conditions to the more general form, where the only constraint is T <∞.

In addition to conditioning on W1 = k, we also need to account for other factors that

will affect the surplus level of the process. Specifically, we will need to account for the size

of the first claim, as well as all possible (restricted) dividend sums before time k, whether or

not time k is a dividend-issuing time unit, and, if so, whether or not the claim is processed

before the dividend. This can be done systematically using the law of total probability;

and so, our recursive formulas will involve multiple summations over the possible variables

that can influence the value of the surplus process.

We remark that a very useful feature of employing the first claim conditioning approach,

unlike the situation with MAMs in the previous chapter, is that the distributions of the

time until the first claim occurs and the ordinary interclaim times need not have finite

maximum support values (i.e., nr and na can be infinite). We now proceed to applying

this method on the remaining two aforementioned performance measures of interest.
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4.2 Determining the Finite-ruin Time Based Gerber-

Shiu Function

With G̃v,m(u, d) serving as the finite-ruin time based Gerber-Shiu function for a DISAM,

we also need to introduce Gv,m(u, d) as its OISAM counterpart. By conditioning on the

time of the first claim (i.e., W1 = k), we can split G̃v,m(u, d) into five non-overlapping,

exhaustive cases, all of which will be combined together into one final expression at the

end:

(1) Ruining first claim occurs, during a non-dividend paying time period, by

time horizon m:

In this case, there is a total of |Tu,d(k)| dividends, which are issued prior to the

ruining first claim. If we assume that the sum of these (restricted) dividends is equal

to a value s, then the surplus process will be at level u+ ck − s immediately before

the ruining claim is implemented, which itself must range in value from u+ck−s+1

to yα. Thus, using the law of total probability, we readily obtain

∑
k/∈Tu,d(min{nr,m})

vk
∑

s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)


yα∑

y=u+ck−s+1

αyw(u+ ck − s, |u+ ck − s− y|)

 rk.

(2) Ruining first claim occurs, during a dividend paying time period, by time

horizon m:

Before time k, |Tu,d(k − 1)| dividends in total are issued. If we assume that the sum

of these (restricted) dividends is equal to a value s, then the surplus process will be

at level u + ck − s immediately before the claim or dividend is first implemented.

There are two sub-cases to consider at this point: either the claim is implemented
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before the dividend, or vice-versa. In the first sub-case, no dividend at time k ends

up being issued. Therefore, the size of the ruining claim, y, will range in value from

u + ck − s + 1 to yα. In the second sub-case, where the dividend gets implemented

first, the restricted dividend amount will range in value from min{c1, u+ ck− s− b}

to min{c2, u+ ck − s− b}. Hence, if we assume that the restricted dividend amount

at time k is equal to a value s∗, then the size of the subsequent ruining claim, y,

must range in value from u+ ck− s− s∗+ 1 to yα. Incorporating these elements via

the law of total probability, we obtain

∑
k∈Tu,d(min{nr,m})

vk
∑

s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

p
yα∑

y=u+ck−s+1

αyw(u+ ck − s, |u+ ck − s− y|)

+(1− p)
min{c2,u+ck−s−b}∑

s∗=min{c1,u+ck−s−b}

d∗s∗{u+ ck − s}
yα∑

y=u+ck−s−s∗+1

αyw(u+ ck − s− s∗, |u+ ck − s− s∗ − y|)

 rk.

However, due to the identity on page 84, it follows that

∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

min{c2,u+ck−s−b}∑
s∗=min{c1,u+ck−s−b}

d∗s∗{u+ ck−s} =
∑

s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s),

implying that the above expression becomes

∑
k∈Tu,d(min{nr,m})

vk

p ∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

yα∑
y=u+ck−s+1

αyw(u+ ck − s, |u+ ck − s− y|)

+(1− p)
∑

s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)

yα∑
y=u+ck−s+1

αyw(u+ ck − s, |u+ ck − s− y|)

 rk.
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(3) Non-ruining first claim occurs, during a non-dividend paying time period,

by time horizon m:

In this case, there is a total of |Tu,d(k)| dividends, which are issued prior to the non-

ruining first claim. If we assume that the sum of these (restricted) dividends is equal

to a value s, then the surplus process will be at level u+ ck − s immediately before

the claim is implemented, and its size, y, will range in value from y0 to u + ck − s.

Therefore, since ruin does not occur at this claim instant, we can view the surplus

process as “renewed” at time k, with corresponding new time horizon m − k, new

initial surplus value equal to u + ck − s− y, and new initial dividend counter value

equal to Vu,d(0, k, y, s, ., .). In addition, following this first claim, the behaviour of our

DISAM now reverts to that of an OISAM. Thus, using the law of total probability,

we end up with

∑
k/∈Tu,d(min{nr,m})

vk
∑

s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)

{
u+ck−s∑
y=y0

αyGv,m−k (u+ ck − s− y, Vu,d(0, k, y, s, ., .))
}
rk.

(4) Non-ruining first claim occurs, during a dividend paying time period,

before time horizon m:

Before time k, |Tu,d(k − 1)| dividends in total are issued. If we assume that the sum

of these (restricted) dividends is equal to a value s, then the surplus process will be

at level u + ck − s immediately before the claim or dividend is first implemented.

Once again, there are two sub-cases to consider at this point: either the claim is

implemented before the dividend, or vice-versa. In the first sub-case, the non-ruining

claim size, y, will range in value from y0 to u+ ck−s, and so, the restricted dividend

amount will range in value from min{c1, (u+ ck − s− y − b)+} to min{c2, (u+ ck −

s− y − b)+}. Note that the (.)+ function is employed to account for the possibility
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that the claim size, y, is large enough to bring the surplus process below level b,

thereby resulting in a restricted dividend amount equal to 0. In the second sub-case,

the restricted dividend amount will range in value from min{c1, u + ck − s − b} to

min{c2, u + ck − s − b}. Letting s∗ denote the restricted dividend amount at time

k, the non-ruining claim size, y, must therefore range in value from y0 to u + ck −

s − s∗. In either sub-case, ruin did not occur, and similar to the previous case,

the surplus process can be viewed as “renewed” at time k, with corresponding new

time horizon m − k, new initial surplus value equal to u + ck − s − s∗ − y, and

new initial dividend counter value equal to Vu,d(0, k, y, s, s
∗, Order), where Order ∈

{ClmFrst, ClmFrst}. Moreover, following this first claim, the behaviour of our

DISAM again reverts to that of an OISAM. Thus, using the law of total probability,

we obtain

∑
k∈Tu,d(min{nr,m})

v
k

∑
s∈Ru,d(k−1)

f

(∣∣∣Tu,d(k−1)
∣∣∣)

u,d
(s)

×

p
u+ck−s∑
y=y0

αy

min{c2,(u+ck−s−y−b)+}∑
s∗=min{c1,(u+ck−s−y−b)+}

d
∗
s∗{u + ck − s− y}Gv,m−k

(
u + ck − s− s∗ − y, Vu,d(0, k, y, s, s

∗
, ClmFrst)

)

+ (1− p)
min{c2,u+ck−s−b}∑

s∗=min{c1,u+ck−s−b}

d
∗
s∗{u + ck − s}

u+ck−s−s∗∑
y=y0

αyGv,m−k
(
u + ck − s− s∗ − y, Vu,d(0, k, y, s, s

∗
, ClmFrst)

) rk.

(5) First claim occurs beyond time horizon m (i.e., k > m):

The conditional finite-ruin time based Gerber-Shiu function is clearly equal to 0 since

1[T≤m] = 0 in this case.

In cases (3) and (4), the OISAM counterpart Gv,m(u, d) appears in the derived formulas.

However, we note that we can apply the same methodology on Gv,m(u, d) except that

quantities nr and rk are replaced by na and ak, respectively. The following page combines

all the above cases together into a single formula.
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4.3 Determining the Moments of the Total Dividends

before a Finite Time Horizon

With D̃rm(u, d) serving as the rth moment of the total dividends issued by a finite time

horizon ofm ∈ Z+ or before ruin occurs, whichever happens first, for a DISAM, we similarly

need to introduce Drm(u, d) to be its OISAM counterpart. By once again conditioning on

the time of the first claim (i.e., W1 = k), we can split D̃rm(u, d) into five non-overlapping,

exhaustive cases, all of which will be combined together into one final expression at the

end:

(1) Ruining first claim occurs, during a non-dividend paying time period, by

time horizon m:

In this case, there is a total of |Tu,d(k)| dividends, which are issued prior to the

ruining first claim. If we assume that the sum of these (restricted) dividends is equal

to a value s, then the surplus process will be at level u+ ck − s immediately before

the claim is implemented, which itself must range in value from u+ ck− s+ 1 to yα.

Thus, using the law of total probability, we readily obtain

∑
k/∈Tu,d(min{nr,m})

∑
s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)srΛu+ck−s rk.

(2) Ruining first claim occurs, during a dividend paying time period, by time

horizon m:

Before time k, |Tu,d(k − 1)| dividends in total are issued. If we assume that the sum

of these (restricted) dividends is equal to a value s, then the surplus process will be

at level u + ck − s immediately before the claim or dividend is first implemented.
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There are two sub-cases to consider at this point: either the claim is implemented

before the dividend, or vice-versa. In the first sub-case, no dividend at time k ends

up being issued. Therefore, the size of the ruining claim, y, will range in value from

u + ck − s + 1 to yα. In the second sub-case, where the dividend gets implemented

first, the restricted dividend amount will range in value from min{c1, u+ ck− s− b}

to min{c2, u+ ck − s− b}. Hence, if we assume that the restricted dividend amount

at time k is equal to a value s∗, then the size of the subsequent ruining claim, y,

must range in value from u+ ck− s− s∗+ 1 to yα. Incorporating these elements via

the law of total probability, we obtain

∑
k∈Tu,d(min{nr,m})

∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

psrΛu+ck−s

+(1− p)
min{c2,u+ck−s−b}∑

s∗=min{c1,u+ck−s−b}

d∗s∗{u+ ck − s}(s+ s∗)rΛu+ck−s−s∗

 rk.

However, as stated in the previous section, we again employ the identity

∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

min{c2,u+ck−s−b}∑
s∗=min{c1,u+ck−s−b}

d∗s∗{u+ ck− s} =
∑

s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)

to the above expression and ultimately obtain

∑
k∈Tu,d(min{nr,m})

p ∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)srΛu+ck−s + (1− p)

∑
s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)srΛu+ck−s

 rk.
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(3) Non-ruining first claim occurs, during a non-dividend paying time period,

by time horizon m:

In this case, there is a total of |Tu,d(k)| dividends, which are issued prior to the non-

ruining first claim. If we assume that the sum of these (restricted) dividends is equal

to a value s, then the surplus process will be at level u+ ck − s immediately before

the claim is implemented, and its size, y, will range in value from y0 to u + ck − s.

Therefore, since ruin does not occur at this claim instant, we can view the surplus

process as “renewed” at time k, with corresponding new time horizon m − k, new

initial surplus value equal to u + ck − s− y, and new initial dividend counter value

equal to Vu,d(0, k, y, s, ., .). In addition, following this first claim, the behaviour of our

DISAM now reverts to that of an OISAM. Thus, using the law of total probability,

we end up with

∑
k/∈Tu,d(min{nr,m})

∑
s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)

{
u+ck−s∑
y=y0

αy

× E
[{
s+ Smin{T,m−k}

}r |U0 = u+ ck − s− y,D0 = Vu,d(0, k, y, s, ., .)
]}

rk.

Using the binomial theorem on the above expectation function (as well as the con-

vention that 00 = 1), we obtain

∑
k/∈Tu,d(min{nr,m})

∑
s∈Ru,d(k)

f
(|Tu,d(k)|)
u,d (s)

u+ck−s∑
y=y0

αy

r∑
ω=0

(
r

ω

)
sωDr−ωm−k(u+ ck − s− y, Vu,d(0, k, y, s, ., .))rk.

(4) Non-ruining first claim occurs, during a dividend paying time period,

before time horizon m:

Before time k, |Tu,d(k − 1)| dividends in total are issued. If we assume that the sum

of these (restricted) dividends is equal to a value s, then the surplus process will be
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at level u + ck − s immediately before the claim or dividend is first implemented.

Once again, there are two sub-cases to consider at this point: either the claim is

implemented before the dividend, or vice-versa. In the first sub-case, the non-ruining

claim size, y, will range in value from y0 to u+ ck−s, and so, the restricted dividend

amount will range in value from min{c1, (u+ ck − s− y − b)+} to min{c2, (u+ ck −

s− y − b)+}. Note that the (.)+ function is employed to account for the possibility

that the claim size, y, is large enough to bring the surplus process below level b,

thereby resulting in a restricted dividend amount equal to 0. In the second sub-case,

the restricted dividend amount will range in value from min{c1, u + ck − s − b} to

min{c2, u + ck − s − b}. Letting s∗ denote the restricted dividend amount at time

k, the non-ruining claim size, y, must therefore range in value from y0 to u + ck −

s − s∗. In either sub-case, ruin did not occur, and similar to the previous case,

the surplus process can be viewed as “renewed” at time k, with corresponding new

time horizon m − k, new initial surplus value equal to u + ck − s − s∗ − y, and

new initial dividend counter value equal to Vu,d(0, k, y, s, s
∗, Order), where Order ∈

{ClmFrst, ClmFrst}. Moreover, following this first claim, the behaviour of our

DISAM again reverts to that of an OISAM. Thus, using the law of total probability,

we obtain

∑
k∈Tu,d(min{nr,m})

∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

×

p
u+ck−s∑
y=y0

αy

min{c2,(u+ck−s−y−b)+}∑
s∗=min{c1,(u+ck−s−y−b)+}

d∗s∗{u+ ck − s− y}

× E
[{
s+ s∗ + Smin{T,m−k}

}r |U0 = u+ ck − s− s∗ − y,D0 = Vu,d(0, k, y, s, s
∗, ClmFrst)

]
+ (1− p)

min{c2,u+ck−s−b}∑
s∗=min{c1,u+ck−s−b}

d∗s∗{u+ ck − s}
u+ck−s−s∗∑

y=y0

αy

× E
[{
s+ s∗ + Smin{T,m−k}

}r |U0 = u+ ck − s− s∗ − y,D0 = Vu,d(0, k, y, s, s
∗, ClmFrst)

]}
rk.
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As done previously, applying the binomial theorem within the above expectation

functions yields

∑
k∈Tu,d(min{nr,m})

∑
s∈Ru,d(k−1)

f
(|Tu,d(k−1)|)
u,d (s)

×

p
u+ck−s∑
y=y0

αy

min{c2,(u+ck−s−y−b)+}∑
s∗=min{c1,(u+ck−s−y−b)+}

d∗s∗{u+ ck − s− y}

×
r∑

ω=0

(
r

ω

)
(s+ s∗)ωDr−ωm−k(u+ ck − s− s∗ − y, Vu,d(0, k, y, s, s∗, ClmFrst))

+(1− p)
min{c2,u+ck−s−b}∑

s∗=min{c1,u+ck−s−b}

d∗s∗{u+ ck − s}
u+ck−s−s∗∑

y=y0

αy

×
r∑

ω=0

(
r

ω

)
(s+ s∗)ωDr−ωm−k(u+ ck − s− s∗ − y, Vu,d(0, k, y, s, s∗, ClmFrst))

}
rk.

(5) First claim occurs beyond time horizon m (i.e., k > m):

In this case, there is a total of |Tu,d(m)| dividends. Thus, we immediately obtain

nr∑
k=m+1

∑
s∈Ru,d(m)

f
(|Tu,d(m)|)
u,d (s)srrk = Rm

∑
s∈Ru,d(m)

f
(|Tu,d(m)|)
u,d (s)sr.

In cases (3) and (4), the OISAM counterpart Drm(u, d) appears in the derived formu-

las. However, we note that we can apply the same methodology on Drm(u, d) except that

quantities nr, rk, and Rm are replaced by na, ak, and Am, respectively. The following two

pages combine all the above cases together into a single formula.
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Chapter 5

Analysis and Comparison of Six

DISAMs Extracted from the General

Class

5.1 Introduction

The framework used in this thesis derives its generality from that fact that certain functions

defined for characterizing particular aspects of the surplus process, Vu,d(.) being the central

one, are represented in a general way. The objective of this part of the thesis is to shed

additional light on the computational aspects of the DISAM class by comparing six different

types of models belonging to this class and providing numerical calculations for particular

examples. The difference between these six models lie in how Dt behaves after reaching

level h—which we classify as Above Modes—and how it behaves below the threshold level—

which we classify as Below Modes.

5.2 Specifying the Above and Below Modes

We introduce the following two Above Modes:
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(1) Consecutive: While at or above level b, the dividend counter increments one unit at

a time until it reaches h. Once the dividend counter is equal to h, it remains equal to

h in future time periods until a large enough claim brings the surplus process below

level b, where the corresponding Below Mode then takes effect. This type of Above

Mode was explored in Drekic and Mera (2011) for the case h = 1.

(2) Cyclic (a.k.a. Periodic): While at or above level b, the dividend counter incre-

ments one unit at a time until it reaches h. Once the dividend counter is equal to

h, it is reset to 1 in the next time period (provided that the surplus process remains

above level b at this time). In the recent literature, such types of dividend systems

have been explored in a variety of continuous-time insurance risk models (e.g., see

Albrecher et al. (2011) and Avanzi et al. (2013)).

We also introduce the following three Below Modes:

(1) Countdown: While below level b, the dividend counter decrements one unit at a

time until it reaches 1. It then remains at 1 until the surplus process reaches or

crosses level b. However, if the process reaches or crosses level b and is immediately

brought below level b by a resulting claim, the countdown process is not interrupted

(assuming the dividend counter is greater than 1). On the other hand, if the surplus

process is already above the threshold level and is brought down below level b, the

dividend counter freezes at that value and begins counting down at the next time

unit—unless, of course, the surplus process goes above level b again at the next time

unit. Figures 5.1 and 5.2 compare two sample paths of a surplus process under a

Consecutive Countdown model and under a Cyclic Countdown model, both subjected

to the same claim occurrence times and claim sizes.
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Figure 5.1: A sample path of a Consecutive Countdown surplus process with u = 2, d = 3,

c1 = 1, c2 = 2, c = 2, b = 5, h = 3, and p = 1.
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Figure 5.2: A sample path of a Cyclic Countdown surplus process with u = 2, d = 3,

c1 = 1, c2 = 2, c = 2, b = 5, h = 3, and p = 1.
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(2) Freeze: While below level b, the dividend counter does not change its value. How-

ever, it does potentially change its value one time unit after the surplus process

reaches or crosses level b. Moreover, if the surplus process is already above the

threshold level and is subsequently brought down below level b, the dividend counter

freezes at that value until it crosses level b again. Of course, for a Consecutive Freeze

model, this implies that the once the dividend counter reaches h, it will remain per-

manently equal to h, and so, thereon, a dividend will always be paid one time period

after reaching or crossing level b (provided that there is no claim significant enough

to bring the surplus process back below level b). Figures 5.3 and 5.4 compare two

sample paths of a surplus process under a Consecutive Freeze model and under a

Cyclic Freeze model, both subjected to the same claim occurrence times and claim

sizes.
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Figure 5.3: A sample path of a Consecutive Freeze surplus process with u = 4, d = 2,

c1 = 1, c2 = 2, c = 2, b = 5, h = 3, and p = 1.
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Figure 5.4: A sample path of a Cyclic Freeze surplus process with u = 2, d = 2, c1 = 1,

c2 = 2, c = 2, b = 5, h = 3, and p = 1.

(3) Reset: The simplest of the three Below Modes in that the dividend counter is always

equal to 1 whenever the surplus process resides below level b. Figures 5.5 and 5.6

compare two sample paths of a surplus process under a Consecutive Reset model and

under a Cyclic Reset model, both subjected to the same claim occurrence times and

claim sizes.
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Figure 5.5: A sample path of a Consecutive Reset surplus process with u = 2, d = 1,

c1 = 1, c2 = 2, c = 2, b = 5, h = 3, and p = 1.
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Figure 5.6: A sample path of a Cyclic Reset surplus process with u = 2, d = 1, c1 = 1,

c2 = 2, c = 2, b = 5, h = 3, and p = 1.
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Of course, for the special case h = 1, all the above models collapse to one type. We

next proceed to provide formulas for the functions given in Section 2.4.2 for each of the six

models.

5.3 Function Derivations

Categorizing models according to the two aforementioned Above Mode types (i.e., Below

Mode type is kept general here), we obtain the following expressions:

• Assuming no claims have occurred during the time period over which the first n div-

idends are issued, we have

Pz∗
u,d

(n) =


n if Consecutive;

nh if Cyclic,

T otDivn(x) =



0 if n = 0;

min
{
x, u+ cz∗u,d − b

}
if n = 1;

TotDivn−1(x) + min
{
x, u+ c

[
z∗u,d + (n− 1)

]
− TotDivn−1(x)− b

}
if n > 1

and Consecutive;

TotDivn−1(x) + min
{
x, u+ c

[
z∗u,d + (n− 1)h

]
− TotDivn−1(x)− b

}
if n > 1

and Cyclic,

and
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f
(n)
u,d (s) =



1[s=0] if n = 0;

d∗s{u+ cz∗u,d} if n = 1;

s∑
w=0

d∗s−w{u+ c[z∗u,d + (n− 1)]− w}f (n−1)
u,d (w) if n > 1 and Consecutive;

s∑
w=0

d∗s−w{u+ c[z∗u,d + (n− 1)h]− w}f (n−1)
u,d (w) if n > 1 and Cyclic.

• Assuming no claims have occurred up to time t, we have

Tu,d(t) =



{
z∗u,d + (n− 1) : n = 1, 2, . . . , t− z∗u,d + 1

}
if Consecutive;

{
z∗u,d + (n− 1)h : n = 1, 2, . . . ,

⌊
t− z∗u,d
h

⌋
+ 1

}
if Cyclic

and

Ru,d(t) =



{
TotDiv(t−z∗u,d+1)+(c1), . . . , T otDiv(t−z∗u,d+1)+(c2)

}
if Consecutive;

{
TotDiv⌊ t−z∗

u,d

h

⌋
+1

(c1), . . . , T otDiv⌊ t−z∗u,d
h

⌋
+1

(c2)

}
if Cyclic.
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• vu,d(k) =



u+ ck − TotDiv(k−z∗u,d)+
(c1) if Consecutive;

u+ ck − TotDiv(⌊ k−1−z∗
u,d

h

⌋
+1

)
+

(c1) if Cyclic.

Categorizing models according to the three aforementioned Below Mode types (i.e., Above

Mode type is kept general here), we end up with

z∗u,d =



zu + h− (d− 1− (zu − 1)+)+ if Countdown;

zu + h− (d− 1) if Freeze;

zu + h− 1[u≥b](d− 1) if Reset.

We note that if our Below Mode is Reset, d must be equal to 1 if u < b. The function

Vu,d(0, t, y, s, s
∗, Order), however, is specific for each combination of Above and Below

Mode types, which we indicate in the following pages:
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(1) The Consecutive Countdown Model:

Vu,d(0, t, y, s, s
∗, Order) =



max{d− t, 1} if t < zu,

or t = zu and y > u+ ct− b;

max{d− (zu − 1)+, 1} if t = zu and y ≤ u+ ct− b;

max{d− (zu − 1)+, 1}+ (t− zu) if zu < t < z∗u,d and y ≤ u+ ct− b;

max{d− (zu − 1)+, 1}+ (t− zu − 1) if zu < t < z∗u,d and y > u+ ct− b;

h if t ≥ z∗u,d.

(2) The Consecutive Freeze Model:

Vu,d(0, t, y, s, s
∗, Order) =



d if t ≤ zu;

d+ (t− zu) if zu < t < z∗u,d and y ≤ u+ ct− b;

d+ (t− zu − 1) if zu < t < z∗u,d and y > u+ ct− b;

h if t ≥ z∗u,d.

(3) The Consecutive Reset Model:

Vu,d(0, t, y, s, s
∗, Order) =



1 if t ≤ zu,

or zu < t < z∗u,d and y > u+ ct− b,

or t ≥ z∗u,d and y > u+ ct− s− 1[Order=ClmFirst]s
∗ − b;

d+ (t− zu) if zu < t < z∗u,d and y ≤ u+ ct− b;

h if t ≥ z∗u,d, y ≤ u+ ct− s− 1[Order=ClmFirst]s
∗ − b.
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(4) The Cyclic Countdown Model:

Vu,d(0, t, y, s, s
∗
, Order) =



max{d− t, 1} if t < zu,

or t = zu and y > u + ct− b;

max{d− (zu − 1)+, 1} if t = zu and y ≤ u + ct− b;

max{d− (zu − 1)+, 1} + (t− zu) if zu < t < z
∗
u,d and y ≤ u + ct− b;

max{d− (zu − 1)+, 1} + (t− zu − 1) if zu < t < z
∗
u,d and y > u + ct− b;

1 if t ≥ z∗u,d, y ≤ u + ct− s− 1
[Order=ClmFirst]

s
∗ − b,

and
t− z∗u,d

h
∈ N;

mod(t− z∗u,d, h) + 1 if t ≥ z∗u,d, y ≤ u + ct− s− b, and
t− z∗u,d

h
/∈ N;

h if t ≥ z∗u,d, y > u + ct− s− 1
[Order=ClmFirst]

s
∗ − b,

and
t− z∗u,d

h
∈ N;

mod(t− z∗u,d, h) if t ≥ z∗u,d, y > u + ct− s− b, and
t− z∗u,d

h
/∈ N.

(5) The Cyclic Freeze Model:

Vu,d(0, t, y, s, s
∗
, Order) =



d if t ≤ zu;

d + (t− zu) if zu < t < z
∗
u,d and y ≤ u + ct− b;

d + (t− zu − 1) if zu < t < z
∗
u,d and y > u + ct− b;

1 if t ≥ z∗u,d, y ≤ u + ct− s− 1
[Order=ClmFirst]

s
∗ − b,

and
t− z∗u,d

h
∈ N;

mod(t− z∗u,d, h) + 1 if t ≥ z∗u,d, y ≤ u + ct− s− b, and
t− z∗u,d

h
/∈ N;

h if t ≥ z∗u,d, y > u + ct− s− 1
[Order=ClmFirst]

s
∗ − b,

and
t− z∗u,d

h
∈ N;

mod(t− z∗u,d, h) if t ≥ z∗u,d, y > u + ct− s− b, and
t− z∗u,d

h
/∈ N.
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(6) The Cyclic Reset Model:

Vu,d(0, t, y, s, s
∗, Order) =



1 if t ≤ zu,

or zu < t < z∗u,d and y > u+ ct− b,

or t ≥ z∗u,d and
t− z∗u,d

h
∈ N,

or t ≥ z∗u,d, y > u+ ct− s− b, and
t− z∗u,d

h
/∈ N;

d+ (t− zu) if zu < t < z∗u,d and y ≤ u+ ct− b;

mod(t− z∗u,d, h) + 1 if t ≥ z∗u,d, y ≤ u+ ct− s− b, and
t− z∗u,d

h
/∈ N.

We remark that unlike Cases (4) and (5), the Vu,d(.) function in Case (6) does not depend

on the Order variable since it is guaranteed to be equal to 1 at a dividend paying time

unit. Furthermore, as noted in Section 2.4.2, the parameters of the Vu,d(.) function need

to be correctly specified; otherwise the function will be invalid (e.g., if s > 0 and t < z∗u,d).

Using the formulas above, we now proceed to specifying the parameters of the models

we investigate and demonstrating numerical results of particular ruin-related performance

measures of interest.

5.4 Numerical Examples

In what follows, we consider some of the same parametric models originally examined by

Drekic and Mera (2011). In particular, we assume:

• u = 10, d = 1, b = 50, and c = 5.

• na = 10 and aω = 1/10 for ω = 1, 2, . . . , 10, so that E[W2] = 5.5.

• We consider three different types of pmfs for rω:
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(1) Delayed: nr = 1, and thus, r1 = 1.

(2) Ordinary: nr = na = 10 and rω = aω = 1/10 for ω = 1, 2, . . . , 10.

(3) Stationary: rω is the stationary (or equilibrium) pmf of aω given by the formula

rω =
Aω−1

E[W2]
for ω = 1, 2, . . . , na (e.g., see Pavlova and Willmot (2004)). Hence,

using the above formula for aω, we immediately obtain rω =
11− ω

55
for ω =

1, 2, . . . , 10, so that E[W1] = 4.

• αy =
(

1 +
y − 1

30

)−4

−
(

1 +
y

30

)−4

for y ∈ Z+, so that y0 = 1, yα = ∞, and

E[Y1] ≈ 10.5111. We remark that the pmf αy is a discretized version of a Pareto

distribution.

• For Consecutive models, let c1 = 2 and c2 = 4 with d2 = 2/5, d3 = 1/5, and d4 = 2/5.

As for Cyclic models, let c1 = c2 = ∞. Models of this kind are known as Parisian

(e.g., see Dassios and Wu (2009)): a term originally coined in Chesney and Jean-

Picqué (1997), used to describe a particular kind of European barrier option where

the option becomes worthless if the underlying asset has been consistently above

(up-and-out) or below (down-and-out) a pre-specified threshold level for a certain

amount of time.

We calculate the following performance measures for each of the six model types under

different combinations of h ∈ {1, 2, 3, 4, 5} and p ∈ {0, 0.5, 1}:

• The expected surplus prior to ruin and expected deficit at ruin by a finite time horizon

of 100 units, denoted by I100 and J100, respectively. These two performance measures

are calculated using G̃v,m(10, 1) with v = 1 and m = 100, and setting the penalty

function accordingly: w(UT− , |UT |) = UT− for calculating I100 and w(UT− , |UT |) =

|UT | for calculating J100.
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• The cumulative trivariate ruin probability denoted by Ψτ,i,j(10, 1), whose value is

equal to

τ∑
t=1

min{ṽ10(t),i}∑
i0=imin

j∑
j0=1

ψt,i0,j0(10, 1). This performance measure is calculated

via the methodology in Chapter 3 as well as by using G̃1,τ (10, 1) with the penalty

function set equal to w(UT− , |UT |) = 1[UT−≤ i]1[|UT |≤ j]. We calculate this perfor-

mance measure for τ = 100, i = dI100e, and j = dJ100e.

• The cumulative univariate ruin probability denoted by Γτ (10, 1), whose value is cal-

culated using G̃1,τ (10, 1) and setting the penalty function equal to w(UT− , |UT |) = 1.

We calculate this performance measure for τ = 100.

• The expected value and standard deviation of total dividends by a finite time horizon

of 100 units or before ruin occurs, whichever happens first. These two performance

measures are calculated using D̃rm(10, 1) with m = 100 and r = 1, 2.

In the following tables, let (a1) represent a Consecutive Countdown model, (a2) repre-

sent a Consecutive Freeze model, (a3) represent a Consecutive Reset model, (b1) represent

a Cyclic Countdown model, (b2) represent a Cyclic Freeze model, and (b3) represent a

Cyclic Reset model. All results are displayed to at least 3 significant digits. Both ap-

proaches (i.e., using MAMs and the first claim conditioning method) were available to

calculate certain quantities (such as the cumulative trivariate probabilities), thereby serv-

ing as a way of verifying the numerical results obtained. We note however, for the examples

chosen here, the approach based on MAMs tended to be slower overall. All our results

were calculated via the C++ programming language, using the Boost and OpenMP li-

braries in our program. The code used for producing the results in Tables 5.1 through

5.6 is available on the CD which accompanies this thesis. This CD can be obtained upon

request from the Statistics and Actuarial Science Department of the University of Waterloo.
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Based on the numerical results in Tables 5.1 through 5.6, we give a brief summary of

our findings:

• Overall, as h and/or p increase/increases (keeping all other parameter values and

distributions fixed), the expected deficit at ruin value, the cumulative univariate

ruin probability, and the standard deviation of total dividends (before a finite time

horizon) all decrease. We note that this same trend also occurs as E[W1] increases.

• For models with either h = 1 or h = 2 and p = 0, the Below Mode type actually

ends up being irrelevant since the dividend counter is always equal to 1 below level b

(recall that we set d = 1 in all our examples). As a result, Consecutive models (i.e.,

(a1), (a2), and (a3)) as well as Cyclic models (i.e., (b1), (b2), and (b3)) are identical

in behaviour (keeping all other parameter values and distributions fixed), and hence

yield the same performance measure values in all six tables.

• In Table 5.1, we observe that for Consecutive models (i.e., (a1), (a2), and (a3)), the

expected surplus prior to ruin shows a clear decreasing trend as E[W1], h, and/or p

increase/increases. This trend is also seen in Cyclic models (i.e., (b1), (b2), and (b3))

when varying h and p. However, this is not consistently the case when comparing

across models with different distributions for W1, as demonstrated by simply com-

paring the (h = 1, p = 0) values for distribution (1), model (b1) with distribution

(2), model (b1). Nonetheless, the trend becomes more consistent as h increases.

An explanation for this trend is based on the antagonistic nature of the two random

variables within the Gerber-Shiu function, namely w(UT− , |UT |) = UT− and 1[T≤100].

For models whose surplus process yields higher surplus values, UT− is more likely

to be larger in value than what it would be in models whose surplus process yields
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lower surplus values. On the other hand, models whose surplus process yields higher

values also have lower ruin probabilities (i.e., 1[T≤100] = 0 more often). And so, the

trend we see in Table 5.1 reflects the quantity that has the greater influence. For

the examples given, we find that the quantity 1[T≤100] becomes more pronounced for

larger values of E[W1], h, and p (when comparing between models of the same Below

Mode type).

• In Table 5.2, we noted earlier that the expected deficit at ruin shows a clear decreasing

trend as E[W1], h, and/or p increase/increases. More generally, the trend reflects

the notion that as the probability of ruin decreases, the expected deficit at ruin also

decreases. A mathematical explanation for this phenomenon is based on realizing

that the two random variables within the Gerber-Shiu function, w(UT− , |UT |) = |UT |

and 1[T≤100], are complementary in the sense that models whose surplus process

yields relatively high surplus values have smaller ruin probabilities (i.e., 1[T≤100] = 0

more often), and hence, will more likely yield lower expected deficit at ruin values

when compared to those found in models yielding lower surplus values.

• In Table 5.3, we remark that the values of dI100e and dJ100e are not static and vary

depending on the specific model being considered. Furthermore, we note that the

results for Consecutive models (i.e., (a1), (a2), and (a3)) do not have any noticeable

“jumps” in terms of their values, whereas Cyclic models (i.e., (b1), (b2), and (b3))

do have noticeable jumps (particularly when h = 2 and h = 3), reflecting greater

variability in the values of dI100e and dJ100e for these models.

• As expected, there is a decreasing trend in the results of Table 5.4 as E[W1], h,

and/or p increase/increases since the surplus process is allowed to take on higher

values as these parameters are increased. We remark that Reset models (i.e., (a3)
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and (b3)) yield the lowest ruin probabilities while Freeze models (i.e., (a2) and (b2))

yield the highest (keeping all other parameter values and distributions fixed). This

makes intuitive sense since the surplus process for Reset models incorporates less

frequent dividends than the other two Below Mode counterparts, and hence their

surplus processes are less likely to become ruined.

• In Tables 5.5 and 5.6, we observe that for Consecutive models (i.e., (a1), (a2), and

(a3)), the expected values and standard deviations of total dividends (before a finite

time horizon) decrease as E[W1], h, and/or p increase/increases. This also holds true

in the case of Cyclic models (i.e., (b1), (b2), and (b3)) for the latter performance

measure. However, for the expected value of total dividends, this decreasing trend

shows up for larger values of h (i.e., h ≥ 3). For instance, when comparing Cyclic

models with p = 0.5, we find that the expected total dividends are less for models

with h = 5 than those with h = 4, which themselves are less than those with h = 3

(keeping all other parameter values and distributions fixed).

We also note here that the Reset models (i.e., (a3) and (b3)) yield the lowest expected

total dividend values while Freeze models (i.e., (a2) and (b2)) yield the highest. How-

ever, this is not generalizable beyond the parameter value and distribution choices

given here because of the antagonistic nature between dividend frequency and the

likelihood of ruin. An example disproving the generality can be constructed by con-

sidering a Cyclic model where u = 2, c = 2, b = 5, h = 4, and p = 0.5, having delayed

pmf rω as specified by (1), and with W2 and Y1 following the same distributions as

above. For m = 200, we calculated D̃1
200(2, 1) ≈ 6.297 under the Freeze Mode and

D̃1
200(2, 1) ≈ 6.306 under the Reset Mode, demonstrating that it is possible for in-

surance companies adopting Reset Mode dividend systems to yield higher expected
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total dividends than those adopting Freeze Mode ones (keeping all other parameter

values and distributions fixed).
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Chapter 6

Conclusions and Future Research

Ideas

The main goal of this thesis is to derive algorithmic formulas for computing particular

ruin-related performance measures in our generally-defined DISAM class. Although we

have also displayed the versatility of our class with specific model examples in the previous

chapter, our focus is primarily on model class set-up and algorithmic derivation. And so,

we consider the results presented here as merely an introduction to a vast landscape of

future research.

For instance, the examples given in the previous chapter could be further examined.

Optimization studies could be made, possibly resulting in establishing general criteria

regarding how the parameters in these models should be selected for achieving optimal

values of particular performance measures. Questions such as “Does increasing h con-

sistently cause Ψτ,i,j(u, d) to decrease and vice-versa?” and “Can we optimize D̃rm(u, d)

without significantly increasing the value of Ψτ,i,j(u, d)?” can be addressed.

Another area of study might involve changing the behaviour of the dividend counter
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Dt, other than those considered in the previous chapter. For instance, what would the

results look like for a model with a dividend counter, which is one-unit decreasing once it

reaches h, counting back down to 1 and then increasing again? There may also be interest

in models where Dt increments by more than one unit, or possibly even non-linearly. For

example, it may be desirable to have Dt jump by two units once Ut reaches or crosses level

b and continues to do so until it reaches h. There are a myriad of possible models that

can be explored by just altering the nature of the dividend counter Dt. Of course, the

functions for which we made specific assumptions on the behaviour of Dt (i.e., ṽu,d(t) and

ṽu,d(k, n)) would need to be examined again.

Other performance measures can also be examined. For instance, one performance

measure, which is often encountered in the literature (but excluded from our analysis), is

the calculation of the expected (i.e., r = 1) discounted total dividends prior to ruin (e.g,

see Xie and Zou (2010) for their analysis of a compound binomial DISAM under stochastic

interest rates). In our DISAM class, the main challenge in calculating this performance

measure stems from the random nature of the individual dividend amounts. This problem

becomes feasible if dividend amounts are deterministic or Parisian in structure. In these

two cases, dividend amounts can be individually discounted. Note, however, that this be-

comes more complicated for r > 1 since the summation of the individual amounts will no

longer be linear.

There may also be further generalizations and structural changes that can be made to

the model class. For example, it might be of interest to explore parameters (e.g., c, b, h,

and p) that are time dependent or governed by a Markovian structure. For instance, if

the surplus process has been above the threshold level for an extended period of time, it
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may be desirable to consistently increase the threshold level b as the insurance company

may be more confident in issuing dividends when its surplus is at higher values. This may

also be explored under the opposite situation: if the surplus process has been below level

b for a substantially extended period of time, it may be desirable to consistently decrease

the threshold level b, as shareholder satisfaction may become of significant importance

(e.g., failing to pay dividends exposes the insurance company to reputation decline, which

may lead to significant loss of business). Finding the floor value level b can take will de-

pend on how much risk of ruin an insurance company would be willing to tolerate (e.g.,

min{b ∈ N : Pr{T <∞} ≤ q} for 0 < q < 1). Alongside a varying threshold level, it may

also be of interest to explore what happens if a barrier (or cap) were placed on the surplus

process, beyond which any excess is deposited in an account gaining compound interest,

which can be used as capital injection at times of ruin, potentially rescuing the surplus

process from reaching a ruined state. This has a realistic appeal since, as mentioned in

Chapter 2, infinite reserves are generally characterized as unrealistic (e.g., see Seal (1969),

p. 122).

A generalization that can also be considered is forgoing the independence assumption

between interclaim times (including the time until the first claim) and claim sizes. The

main alterations foreseen here will mainly involve a change of notation rather than in

structure in the formulas given in this thesis. For instance, when using the law of total

probability in the first claim conditioning approach, instead of conditioning on the time

until the first claim and its size separately, they can be conditioned on jointly.

Another direction one may pursue is developing a continuous-time analogue for the

DISAM class, alongside the corresponding performance measures derived in this thesis,

and seeing, through the use of numerical examples, how well the discrete framework can
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be used to approximate its continuous counterpart. This type of investigation was ex-

plored, for instance, in the last numerical example of Alfa and Drekic (2007) under their

simple DISAM.

On the applicability side, the parameters used and distributions chosen in our examples

are constrained by both the computational power at our disposal and our software writing

ability. We produced our results using C++. Although we enhanced the speed of our

calculations through dynamic programming methods such as multi-threading and function

memoization (i.e., functions that store previous calculations), it is very likely that software

engineers can further enhance the computational speed of our algorithms. By doing so, it

would be more feasible to calculating values of performance measures that are constrained

by computational speed such as: (1) large values of τ to calculate Γτ (u, d), (2) calculating

the tail value of risk at particular percentiles (i.e., E[T |T > V aRq(T )] for some percentile

q, where V aRq(T ) = min{t ∈ Z+ : Pr{T > t} ≤ 1 − q}), and (3) working with distribu-

tional models that have unrestricted dividends covering a larger range of values (e.g., the

binomial distribution with c1 = 0 and c2 = 30).

Furthermore, another possible area of exploration is to find out if the finite-ruin time

based Gerber-Shiu function approach of Chapter 4 is consistently faster than the one based

on MAMs from Chapter 3. A situation we foresee when MAMs might significantly out-

perform the Gerber-Shiu approach is if matrix calculations were to be made under the

Compute Unified Device Architecture (a.k.a. CUDA) framework, which is exceptionally

effective in parallelizing matrix manipulation routines (e.g., see Cook (2013)).

Complementing the applicability side, it would be of immense benefit to explore the
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asymptotic nature of the formulas given in this thesis under particular cases. By finding

suitable approximations for particular extreme values, computational complexity for calcu-

lating the values (within an acceptable level of error) of particular performance measures

can be significantly reduced.

In conclusion, we find that incorporating algorithmic analyses in insurance risk models

is the natural next step in the ruin theoretic literature. As societies evolve, and as the

needs of each of them become more complex, so must the necessary mechanisms and tools

used, that keep them functioning and thriving, do the same. Although insurance risk

models only are a minor part of the picture in assessing the financial health of insurance

companies, their increasing complexities are nonetheless coming to play a more crucial

role in effectively evaluating the well-being of these necessary agents of society. Thus, it

is of the utmost interest to further generalize these models and take them to the furthest

frontier of applicability possible.
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Hélène Cossette, Étienne Marceau, and Véronique Maume-Deschamps. Discrete-time risk

models on time series for count random variables. ASTIN Bulletin, 40(1):123–150, 2010.

Harald Cramér. Historical review of Filip Lundberg ’s work on risk theory. Scandinavian

Actuarial Journal, (sup. 3):6–12, 1969.

Claudia Czado, Rainer Kastenmeier, Eike Christian, and Aleksey Min. A mixed copula

model for insurance claims and sizes. Scandinavian Actuarial Journal, (4):278–305, 2012.

Angelos Dassios and Shanle Wu. On barrier strategy dividends with Parisian implementa-

135



tion delay for classical surplus processes. Insurance: Mathematics and Economics, 45(2):

195–202, 2009.

Bruno de Finetti. Su un’ impastazione alternativa della teoria colletiva del rischio. Trans-

actions of the XVth International Congress of Actuaries, 2:433–443, 1957.

David C.M. Dickson. Some stable algorithms in ruin theory and their applications. ASTIN

Bulletin, 25(2):153–175, 1995.

Alfredo D. Ed́ıgio dos Reis. On the moments of ruin and recovery times. Insurance:

Mathematics and Economics, 27(3):331–343, 2000.

Steve Drekic and Ana Maria Mera. Ruin analysis of a threshold strategy in a discrete-

time Sparre Andersen model. Methodology and Computing in Applied Probability, 13(4):

723–747, 2011.

Steve Drekic, David C.M. Dickson, David Stanford, and Gordon E. Willmot. On the

distribution of the deficit at ruin when claims are phase-type. Scandinavian Actuarial

Journal, (2):105–120, 2004.

François Dufresne and Hans U. Gerber. Three methods to calculate the probability of ruin.

ASTIN Bulletin, 19(1):71–90, 1989.

Charles H. Edwards. The Historical Development of Calculus. Springer-Verlag Inc., New

York, 1979.
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Appendix: C++ Code

The code used for producing the results in Tables 5.1 through 5.6 is available on the CD

which accompanies this thesis. This CD can be obtained upon request from the Statistics

and Actuarial Science Department of the University of Waterloo.
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