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Abstract

In this thesis, we consider a risk model which incorporates multiple threshold levels

characterizing an insurer’s minimal capital requirement, dividend paying situations, and

external financial activities. Our model is based on discrete monetary and time units,

and the main quantities of interest are the finite-time ruin probabilities and the expected

total discounted dividends paid prior to ruin. We mainly focus on the development of

computational methods to attain these quantities of interest. One of the popular methods

in the current literature used for studying such problems involves a recursive approach

which incorporates appropriate conditioning arguments on the claim times and sizes, and

we implement this procedure as well. Furthermore, ruin can occur due to both a claim as

well as interest expense accumulation as our model allows the insurer to borrow money

from an external fund. In this thesis, we consider only non-stochastic interest rates for

both lending and borrowing activities. After constructing appropriate recursive formulae

for the finite-time ruin probabilities and the expected total discounted dividends paid prior

to ruin, we investigate various numerical examples and make some observations concerning

the impact our threshold levels have on finite-time ruin probabilities and expected total

discounted dividends paid prior to ruin.
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1 Introduction and Notation

The classical Cramer-Lundberg model is a foundational mathematical representation of an

insurer’s surplus process in risk theory. However, despite the tractability and simplicity of

the model, it has limitations in terms of applications. Certainly, more complex models are

desirable in modern industrial settings.

Bruno de Finetti (1957) first introduced the notion of a dividend strategy and the idea

of finding an optimal dividend paying strategy for the insurance risk model. This was

followed by other researchers including Karl Borch and Hans Gerber who further explored

the problem (see e.g. Borch, 1974 and Gerber, 1979). Recently, Drekic and Mera (2011)

published a paper on the ruin analysis of a particular threshold-based dividend payment

strategy in a discrete-time Sparre Andersen model (in a discrete-time Sparre Andersen

model, claims arrive more generally according to a renewal process instead of a binomial

process). Their analysis was an extension of Alfa and Drekic (2007), in which the two

researchers considered a delayed Sparre Andersen insurance risk model in discrete time,

and analyzed it as a doubly-infinite Markov chain to establish a computational procedure

for calculating the joint distribution of the time of ruin, the surplus immediately prior to

ruin, and the deficit at ruin.

In this thesis, we generalize the insurance risk model introduced in Drekic and Mera

(2011). In actual fact, three additional threshold levels are introduced to depict a minimum

surplus level control strategy and external financial activities related to both investment

and loan undertakings. Readers are referred to, for example, Li (2009) and Cai and Dickson

(2004) for other general investment strategies found in insurance risk models, where the

former studied an insurance risk model with risky investments under the assumption that

the risky assets follow a Wiener process, and the latter considered a Markov chain based
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interest rate model. Korn and Wiese (2008) studied optimal investment strategies in an

insurance risk model where they also assumed that the risky assets follow a Wiener process.

The ultimate objective behind our model is to optimally control the threshold levels so as

to minimize the finite-time ruin probability and maximize the expected total discounted

dividends paid prior to ruin.

We assume that the number of claims process is a modified discrete-time renewal process

with independent, positive, integer-valued interclaim times {W1,W2, . . .}, where W1 is

the duration from time 0 until the first claim occurs and Wi, i = 2, 3, . . . , is the time

between the (i − 1)-th and i-th claims. Furthermore, we assume {W2,W3, . . .} forms

an independent and identically distributed (iid) sequence of positive random variables

with common probability mass function (pmf) aj = Pr{Wi = j}, j = 1, 2, . . . , na, and

corresponding survival function Aj = Pr{Wi > j} = 1−
∑j

k=1 ak.

In the ordinary Sparre Andersen risk model, a claim is assumed to have occurred

at time 0−, implying that W1 has the same distribution as the ordinary interclaim times

{W2,W3, . . .}. On the other hand, if W1 is not a “full” interclaim time, then asymptotically

in time the limiting distribution of the forward recurrence time is defined via the pmf

ãj = Aj−1/
∑na

k=1Ak−1, j = 1, 2, . . . , na (see e.g. Karlin and Taylor, 1975, pp. 192-193).

This yields another important risk model, namely the stationary Sparre Andersen risk

model in which W1 has pmf ãj rather than aj. As a means of accommodating other possible

specifications, we assume that W1 has a more general pmf denoted by rj = Pr{W1 = j},

j = 1, 2, . . . , nr. Let Rj = Pr{W1 > j} = 1 −
∑j

k=1 rk denote its associated survival

function. Through appropriate choice of rj, it is clear that both the ordinary and stationary

Sparre Andersen variants are simply special cases of this more general model, referred to

as the delayed Sparre Andersen risk model. In this thesis, we focus only on the ordinary

Sparre Andersen risk model as generalization to the delayed Sparre Andersen risk model
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can be carried out without much additional effort.

In what follows, let Z denote the set of all integers, Z− the set of negative integers,

Z+ the set of positive integers, and N = {0} ∪ Z+. For t ∈ N, we define Ut as the

insurer’s amount of surplus at time t. With the exception of time 0, Ut represents the

amount of surplus at the end of time interval (t − 1, t], t ∈ Z+, at which point any

premiums, deposits, claims, or withdrawals corresponding to this time interval have been

received/paid out. Specifically, with respect to the time interval (t − 1, t], we adopt the

convention that premiums are received at (t− 1)+ and any claims and/or withdrawals are

applied at t−. However, unlike premiums, claims, and withdrawals, deposits can be made

at both (t−1)+ and t−. Herein, deposit refers to any cash outflow from the surplus process

to the external financial system process (henceforth to be referred to as the external fund),

whereas withdrawal refers to any cash inflow from the external fund to the surplus process.

In this thesis, the amount of funds present at time t in the external fund of the insurer is

denoted by Ft, t ∈ N, and it is a stochastic process that is fully dependent on the surplus

process {Ut : t ∈ N}.

Before proceeding further with the notation and mathematical details, it is essential to

clarify what we mean by investment and loan activities through the introduction of four

threshold levels, namely `1, `2, `3, and β. If the insurer’s surplus level is below `1, the firm

is in need of immediate injection of funds, and these funds come from the external fund

process {Ft : t ∈ N}. To differentiate between investment activities and loan activities,

we will split the support set of {Ft : t ∈ N} into two disjoint sets, namely ∆1
f = N and

∆2
f = Z−.

When Ft ∈ ∆1
f , Ft represents the insurer’s investment activities measured in discrete

monetary units and the insurer earns interest at a constant rate of κ per period. When

Ft ∈ ∆2
f , Ft represents the insurer’s loan activities and interest expense accumulates at
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a constant rate of κ′ per period. We assume that both κ and κ′ are strictly positive.

Moreover, we assume that it is the insurer’s policy to pay out all the outstanding debt

before resuming investment activities, and that the insurer first utilizes its investment

assets to make any adjustments to its surplus level before engaging in loan activities.

We assume that β ∈ ∆2
f ∪ {0}, and this represents the lower support value of {Ft : t ∈

N}. With the introduction of β, we redefine ∆2
f to be ∅ when β = 0 and {−1,−2, . . . , β}

when β ∈ Z−. To aid in the understanding of how these processes operate in discrete time,

we introduce Ut− and Ft− to represent the surplus and external fund levels immediately

after the claim instance but before the withdrawal instance. The threshold `1 represents

the insurer’s minimum acceptable surplus level, and if Ut− (corresponding to the time

interval (t− 1, t]) is below `1 due to a claim, we withdraw or borrow from Ft− to bring Ut−

up to level `1. However, if Ft− = β, then we can neither withdraw nor borrow more from

Ft− even if Ut− is below `1. Also, if Ft− corresponding to the time interval (t− 1, t] drifts

below β due to interest expense accumulation, we use Ut− to pay back the difference at t−

as a form of deposit so that Ft is at least kept at its minimum support value of β.

On the other hand, `2 is a trigger point for investment activities. If Ut ≥ `2, a constant

deposit of size d is paid to the external fund at t+. Thus, the deposit and withdrawal

amounts are also stochastic in the sense that they are dependent on the surplus process.

Note that a deposit can be made at both the left and right limits of a time interval. We

denote the left limit deposit amount corresponding to the time interval (t, t + 1] to be dt,

the right limit deposit amount corresponding to the time interval (t − 1, t] to be dct , and

the withdrawal amount corresponding to the time interval (t− 1, t] to be wt. Finally, as in

Drekic and Mera (2011), if Ut ≥ `3, a random dividend is paid out to shareholders at t+.

We assume that `1 ≤ `2 ≤ `3.

To sum up, premiums and left limit deposits corresponding to the time interval (t, t+1],
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t ∈ N, are collected and paid out at t+ according to the following respective (random) rates:

pt =

c if Ut < `3,

Xt if Ut ≥ `3,

and

dt =

0 if Ut < `2,

d if Ut ≥ `2,

where xi = Pr{Xt = i}, i = c1, c1 + 1, . . . , c2, denotes the pmf of Xt. In other words, we

assume that the dividend rate at time t is not only determined by the surplus level, but

also by an additional element of randomness via the distribution of Xt. We refer to c ∈ Z+

as the pure (constant) premium and assume that c1, c2 ∈ {d, d + 1, ..., c} where d ≤ c,

c1 ≤ c2, and
∑c2

i=c1
xi = 1. Clearly, c1 and c2 are the respective lower and upper support

values of the distribution of the random premium amount at time t, Xt. Correspondingly,

we interpret c− pt as the amount of (randomized) dividends paid to shareholders at time

t+. Note that, by assumption, the probability distribution of Xt is identical for all values

of t ∈ N. Let µ = E{X0} denote the common mean.

Withdrawals and right limit deposits corresponding to the time interval (t−1, t], t ∈ Z+,

are made at t− according to the following respective (random) rates:

wt =

0 if Ut− ≥ `1,

min{`1 − Ut− ,max{0, Ft− − β}} if Ut− < `1,

and

dct = max{0, β − Ft−}.

Figures (1) and (2) depict an example of the simultaneous evolution of both the surplus

process and that of the external fund.
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t0 1 2 3 4 5

Ut

0+ 1+ 2+ 3− 3+ 4− 4+ 5−

`1

v

`2

`3

Premium

Premium - Left deposit

Claim
Claim

Withdrawal

Withdrawal

Claim + Right deposit, causing Ruin

Premium

Initial surplus

Figure 1: Sample evolution of the surplus process {Ut : t ∈ N}

t0 1 2 3 4 51+ 2− 2+ 3− 4− 5−

Ft

β

g
Initial fund amount

Left deposit

Interest income

Interest income

Withdrawal

Withdrawal
Interest expense

Right deposit

Figure 2: Sample evolution of the external fund process {Ft : t ∈ N}
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Beginning at time 0 with an initial surplus level of v ∈ {`1, `1 + 1, . . .} and an initial

external fund amount of g ∈ N, the insurer’s amount of surplus at time t is expressible as

Ut = v +
t−1∑
i=0

pi −
t−1∑
i=0

di +
t∑
i=1

wi −
t∑
i=1

dci −
Nt∑
i=1

Yi, t ∈ N, (1.1)

where Nt is the number of claims occurring by time t and individual claim amounts

{Y1, Y2, . . .} are assumed to form an iid sequence of positive, integer-valued random vari-

ables with common pmf αj, j = 1, 2, . . . ,mα, and corresponding survival function Λj =

1−
∑j

k=1 αk. We remark that both the interclaim time distribution and the claim amount

distribution can be either of finite or infinite support (i.e. na ≤ ∞ and mα ≤ ∞).

Following this introduction, Section 2 details the derivation of a recursive formula for

the finite-time ruin probability associated with our proposed risk model and demonstrates

the simplification of the result to that of Drekic and Mera (2011). Section 3 describes

the derivation of a similar recursive formula to compute the expected total discounted

dividends paid prior to ruin and likewise demonstrates the simplification of the result to

that of Drekic and Mera (2011). Finally, Section 4 discusses some numerical examples and

related findings.
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2 Finite-Time Ruin Probability

Now that we have introduced the fundamental notation and outlined the definitions for all

four thresholds, we begin by examining the finite-time ruin probabilities associated with

our risk model. First of all, ruin occurs if and only if Ut < 0 for some t ∈ Z+ and we

denote T to be the time of ruin. In other words, T = min{t ∈ Z+|Ut < 0} with T =∞ if

Ut ≥ 0 ∀ t ∈ Z+.

In what follows, we are interested in computing the quantity

Pr{T ≤ n|U0 = v, F0 = g} = 1− Pr{T > n|U0 = v, F0 = g}, n ∈ N, (2.1)

which we refer to as the finite-time ruin probability. To aid in the computation of this

quantity, we introduce the following related function:

σ(u, f, n,m) = Pr{T > n|U0 = u, F0 = f,M0 = m}, n ∈ N, u ∈ Z, f ∈ {β, β + 1, . . . },

where Mt, referred to as the elapsed waiting time counter, denotes the elapsed time at time

t since the most recent claim occurrence and its values lie in the set {1, 2, . . . , na}. With

the introduction of this function, we remark that (2.1) is calculated via 1− σ(v, g, n, 0).

First of all, assuming the occurrence of no claims and no right limit deposits, we need

to identify when Ut ≥ `2 and Ut ≥ `3 for the first time. We introduce two functions to

denote these time points, namely:

zt,u =

0 if u ≥ `2,

min{b `2−u−1
c
c+ 1, t} if u < `2,

and

z′t,u =

0 if u ≥ `3,

min{b `3−u−czt,u−1
c−d c+ zt,u + 1, t} if u < `3,
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where bxc, referred to as the floor function of x, yields the largest integer less than or equal

to x.

To aid us in obtaining a mathematical expression for σ(u, f, n,m), we have to examine

how the process {Ft : t ∈ N} evolves over time. Let us first assume that there are no

claims or withdrawals to consider. Clearly, Ft is a non-decreasing function of t if f ∈ N.

On the other hand, if f /∈ N, Ft could either be a strictly decreasing function of t or

perhaps a convex function depending on the values of f , κ′ and d. Consequently, if Ft

drifts below β, a deposit is forced to be made and this may cause ruin. Interestingly, in

this model, ruin can occur due to either a claim or a deposit. This certainly adds more

complexity in deriving a formula for σ(u, f, n,m), and as a result, we have to introduce

a few more functions. One such function is denoted by ot,u,f , representing the time point

s ∈ {1, 2, ..., t} at which Fs is set to become greater than or equal to 0 for the first time.

Obtaining this value is not difficult since, assuming the occurrence of no claims and that

Fs ≥ β ∀ s ≤ ot,u,f , Fs becomes non-stochastic, the form of which we denote by:

F̃s,u,f =

f(1 + κ′)s + dκ
′
zs,u,s if f < 0,

f(1 + κ)s + dκzs,u,s if f ≥ 0,

where dxk,l, k, l ∈ N, represents the future value of deposits made at times k+, (k +

1)+, . . . , (l − 1)+ with respect to the interest rate x > 0 per period. Clearly, we have

dxk,l = 0 for l ≤ k and

dxk,l = d(1 + x)l−k + d(1 + x)l−k−1 + ...+ d(1 + x)

=
d(1 + x)[(1 + x)l−k − 1]

x
, l > k.
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It subsequently follows that

ot,u,f =

t if F̃i+1,u,f < 0 ∀ i ∈ {0, 1, ..., t},

min{i ∈ {0, 1, ..., t}|F̃i+1,u,f ≥ 0} otherwise.

Thus, with the introduction of ot,u,f , we can express the non-stochastic form of Ft as

F̂t,u,f = b(f(1 + κ′)ot,u,f + dκ
′

zot,u,f ,u,ot,u,f
)(1 + κ)t−ot,u,f + dκmax{zt,u,ot,u,f},tc, t ∈ N. (2.2)

Note that in defining ot,u,f , we consider the value of F̃i+1,u,f instead of F̃i,u,f . This is

because for f < 0, the function F̃t,u,f , t ∈ N, up-crosses level 0 only if a positive amount

of deposit is made to the external fund. We stated earlier that left deposits are made at

the left limit point of a discrete-time interval. Thus, F̃i+1,u,f ≥ 0 for the first time implies

that at time i+, there was a left deposit made to the external fund. In addition, note that

(2.2) involves the use of the floor function to calculate the (non-stochastic) value of the

external fund at time t. Such an assumption can be viewed as conservative in nature, since

any non-integer value of the external fund (which can arise due to interest accumulation)

is essentially rounded down.

There is another very important function we next introduce here. It represents the

earliest time point when Ft falls below β, again assuming the occurrence of no claims, due

to interest expense accumulation. We denote this time point by ct,m,u,f and refer to it as

a calling point. It is given by

ct,m,u,f =

min{na −m, t} if F̂i,u,f ≥ β ∀ i ∈ {1, 2, ...,min{na −m, t}},

min{i ∈ {1, 2, ...,min{na −m, t}}|F̂i,u,f < β} otherwise.

(2.3)

Note that the above function depends on both t and m. As introduced earlier in this

section, m represents the elapsed time at time 0 since the most recent claim occurrence.
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With these preliminaries in place, we adopt the principle of conditioning on the first

claim time as in Cossette et al. (2006) or Drekic and Mera (2011). Measured from time 0,

the lower limit of the time until the first claim occurs is 1, but its pmf is now conditional

on the value of m. Morever, in evaluating σ(u, f, n,m), we will condition on first claim

times ranging from 1 up to cn,m,u,f , and on the event that the waiting time until the first

claim occurs is greater than cn,m,u,f . For first claim time instances which take place at or

before the calling point, the recursive process used is very similar to that of Drekic and

Mera (2011). However, in the event that the waiting time until the first claim occurs is

greater than cn,m,u,f , the recursive process is performed differently. By doing so, we are

essentially denoting cn,m,u,f to be the “new” initial time point, updating the parameters of

the function σ, and proceeding with the recursive process. We further explain this situation

after we introduce some initial conditions for σ(u, f, n,m), namely:

σ(u, f, n,m) =

0 if u ∈ Z− or m = na,

1 if u ∈ N, n = 0, and m = 0, 1, . . . , na − 1.

By conditioning on the events outlined above, we get

σ(u, f, n,m) =

cn,m,u,f∑
k=1

ak+m
Am

Pr{T > n|U0 = u, F0 = f,M0 = m,W1(m) = k}

+
Acn,m,u,f+m

Am
Pr{T > n|U0 = u, F0 = f,M0 = m,W1(m) > cn,m,u,f},

where W1(m) is the duration from time 0 until the first claim occurs given that the elapsed

waiting time since the most recent claim is m.

At time k ∈ {1, 2, ..., cn,m,u,f}, the elapsed waiting time counter is reset to 0 for the

next recursion, n is reduced by k, and the“new” initial surplus and external fund amounts

are determined by the size of the incurred claim and the premiums received up to time k.
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In particular, we obtain

Pr{T > n|U0 = u, F0 = f,M0 = m,W1(m) = k}

=

(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u,f−β∑
j=1

αjσ(u?, f ?, n− k, 0),

where

u? = u+ cz′k,u − d(k − zk,u) + l − j

+ min{F̂k,u,f − β,max{0, j − (u+ cz′k,u − d(k − zk,u) + l − `1)}}, (2.4)

f ? = max{β,min{F̂k,u,f , F̂k,u,f − j + (u+ cz′k,u − d(k − zk,u) + l − `1)}}, (2.5)

and l denotes the value of the sum of the random premiums received up to time k, with

corresponding pmf xl,k−z′k,u representing the (k − z′k,u)-fold convolution of xl with itself.

To evaluate the pmf xa,b, b ∈ N, we define xa,0 = δa,0 (where δi,j, in general, denotes the

Kronecker delta function of κ and j),

xa,1 =

xa if a = c1, c1 + 1, . . . , c2

0 otherwise,

and for b = 2, 3, . . .,

xa,b =


∑c2

j=c1
xj,1xa−j,b−1 if a = bc1, bc1 + 1, . . . , bc2,

0 otherwise.

The reasoning behind the definitions of the above parameters is that we first consider

whether the claim size is substantial enough for the surplus process to fall below its mini-

mum support level `1. If so, j−(u+cz′k,u−d(k−zk,u)+ l−`1) would be a positive quantity.
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Then, we consider whether the external fund is able to support the surplus process. We

do this by comparing F̂k,u,f − β and j − (u+ cz′k,u− d(k− zk,u) + l− `1), and choosing the

minimum of the two so that we can assure that the external fund does not fall below the

maximum level of external funding allowed, β. If j − (u + cz′k,u − d(k − zk,u) + l − `1) is

a non-positive quantity, then the surplus process is greater than or equal to `1 after the

claim, in which case, we only need to consider whether F̂k,u,f is below β. If so, F̂k,u,f − β

is less than 0, and we would subtract |F̂k,u,f − β| from the surplus process and add it to

the external fund to bring it up to β.

In situations when W1(m) > cn,m,u,f , we will perform a recursion at cn,m,u,f to similarly

acquire

Pr{T > n|U0 = u, F0 = f,M0 = m,W1(m) > cn,m,u,f}

=

(cn,m,u,f−z′cn,m,u,f ,u,f )c2∑
l=(cn,m,u,f−z′cn,m,u,f ,u)c1

xl,cn,m,u,f−z′cn,m,u,f ,u,f
σ(u′, f ′, n− cn,m,u,f , cn,m,u,f +m), (2.6)

where

u′ = u+ cz′cn,m,u,f ,u
− d(cn,m,u,f − zcn,m,u,f ,u) + l + min{0, F̂cn,m,u,f ,u,f − β} (2.7)

and

f ′ = max{F̂cn,m,u,f ,u,f , β}. (2.8)

We remark that when W1(m) > cn,m,u,f , there is no claim size to consider at time cn,m,u,f .

Thus, the only thing that we need to account for is whether F̂cn,m,u,f ,u,f falls below β. In

this case, just enough funds would be withdrawn from the surplus process and added to

the external fund to bring it up to β. However, note that F̂cn,m,u,f ,u,f may not necessarily

be below β. If F̂cn,m,u,f ,u,f ≥ β, then cn,m,u,f = min{na −m,n} which implies that either
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n−cn,m,u,f = 0 or cn,m,u,f +m = na in (2.5). This yields an interesting outcome. Given that

W1(m) ≥ cn,m,u,f and F̂cn,m,u,f ,u,f ≥ β, it must be that u′ ≥ 0 at time cn,m,u,f . However,

if cn,m,u,f + m = na, then σ(u′, f ′, n − cn,m,u,f , na) is set equal to 0. On the other hand,

if n < na − m so that cn,m,u,f = n, then σ(u′, f ′, 0, cn,m,u,f + m) is set equal to 1. This

is a desired result. Putting it altogether, we establish the following recursive formula for

σ(u, f, n,m):

σ(u, f, n,m)

=

cn,m,u,f∑
k=1

ak+m
Am

(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u,f−β∑
j=1

αjσ(u?, f ?, n− k, 0)

+
Acn,m,u,f+m

Am

(cn,m,u,f−z′cn,m,u,f ,u)c2∑
l=(cn,m,u,f−z′cn,m,u,f ,u)c1

xl,cn,m,u,f−z′cn,m,u,f ,u
σ(u′, f ′, n− cn,m,u,f , cn,m,u,f +m).

(2.9)

If we assume that f = 0, d = 0, `1 = 0, β = 0, and m = 0, then the model in considera-

tion is equivalent to the model studied by Drekic and Mera (2011). To verify this, we first

note that cn,0,u,0 = min{n, na} ∀ n ∈ Z+. If n < na, then σ(u′, f ′, 0, n) = 1 and

An
A0

Pr(T > n|U0 = u, F0 = 0,M0 = 0,W1(0) > n) = An

(n−z′n,u)c2∑
l=(n−z′n,u)c1

xl,n−z′n,u
= An.

Conversely, if n ≥ na, then σ(u′, f ′, n− na, na) = 0 and

Ana

A0

Pr(T > n|U0 = u, F0 = 0,M0 = 0,W1(0) > na) = Ana × 0 = 0.

Thus, (2.9) simplifies to become

σ(u, 0, n, 0) = An +

min{n,na}∑
k=1

ak

(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u+l∑
j=1

αjσ(u+ cz′k,u + l − j, 0, n− k, 0),
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which is consistent with the result in Drekic and Mera (2011, p. 744).
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3 Expected Total Discounted Dividend Payments

The next objective is to derive a similar recursive formula to compute the expected total

discounted dividend payments made prior to ruin. The approach we employ essentially

borrows from that of Dickson and Waters (2004, Section 5). Let E{Dv,g} denote the

expected total discounted (i.e. to time 0 according to discount factor ν ∈ (0, 1) per unit

of time) dividends paid prior to ruin, where the random variable Dv,g represents the total

discounted dividends paid before ruin starting from an initial surplus of v and an initial

level of g in the external fund. In a similar fashion, let us also define the analogous quantity

E{Dv,g,n} as the expected total discounted dividends paid before ruin occurs or strictly

before time n ∈ Z+, whichever happens first.

In order to calculate E{Dv,g}, we construct a computational procedure for calculating

E{Dv,g,n} and then use the fact that E{Dv,g,n} → E{Dv,g} as n → ∞. To aid in the

computation of E{Dv,g,n}, we introduce a function (similar in nature to σ from the previous

section) defined by

V (u, f, n,m) = E{Du,f,n|M0 = m}, n ∈ Z+, u ∈ Z, f ∈ {β, β + 1, . . .}, m ∈ {1, 2, . . . , na}.

It clearly follows that E{Dv,g,n} can be calculated via V (v, g, n, 0).

As with the finite-time ruin probability formula in the previous section, the function

V (u, f, n,m) has its own set of initial conditions, namely:

V (u, f, n,m) =


0 if u ∈ Z− or m = na,

0 if 0 ≤ u < `3 and n = 1,

c− µ if u ≥ `3 and n = 1.

We employ a similar approach as in the previous section by conditioning on values of W1(m)

ranging from 1 up to cn−1,m,u,f , and the case where W1(m) > cn−1,m,u,f . By conditioning
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on these events, we obtain

V (u, f, n,m)

=

cn−1,m,u,f∑
k=1

ak+m
Am

E{Du,f,n,m|W1(m) = k}+
Acn−1,m,u,f+m

Am
E{Du,f,n,m|W1(m) > cn−1,m,u,f}.

For k ∈ {1, 2, ..., cn−1,m,u,f}, an expected dividend payment of amount c−µ would occur

at times z′+k,u, (z
′
k,u+1)+, ..., (k−1)+, followed by possible future dividend payments (starting

from time k) once the initial claim is applied. Applying the appropriate conditioning

arguments, we obtain

E{Du,f,n,m|W1(m) = k}

=
k−1∑
i=z′k,u

νi(c− µ) + νk
(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u,f−β∑
j=1

αjV (u?, f ?, n− k, 0),

(3.1)

where u? and f ? are as defined in (2.3) and (2.4), respectively.

For W1(m) > cn−1,m,u,f , we will need to reset the parameters of the function V as

we did for the treatment of the finite-time ruin probabilities and base the recursion at

cn−1,m,u,f . Also, we need to account for the expected dividend payments received at times

z′+cn−1,m,u,f ,u
, (z′cn−1,m,u,f ,u

+ 1)+, ..., (cn−1,m,u,f − 1)+. Thus, we get

E{Du,f,n,m|W1(m) > cn−1,m,u,f}

=

cn−1,m,u,f−1∑
i=z′cn−1,m,u,f

νi(c− µ) + νcn−1,m,u,f

×
(cn−1,m,u,f−z′cn−1,m,u,f ,u)c2∑
l=(cn−1,m,u,f−z′cn−1,m,u,f ,u)c1

xl,cn−1,m,u,f−z′cn−1,m,u,f ,u
V (û, f̂ , n− cn−1,m,u,f , cn−1,m,u,f +m),

(3.2)
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where

û = u+ cz′cn−1,m,u,f ,u
− d(cn−1,m,u,f − zcn−1,m,u,f ,u) + l + min{0, F̂cn−1,m,u,f ,u,f − β},

and

f̂ = max{F̂cn−1,m,u,f ,u,f , β}.

Note that û and f̂ are identical in form to (2.6) and (2.7), respectively, with n simply

replaced by n− 1. Combining equations (3.1) and (3.2), we ultimately obtain

V (u, f, n,m)

=

cn−1,m,u,f∑
k=1

ak+m
Am

[
(c− µ)

νz
′
k,u − νk

1− ν

+ νk
(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u−β∑
j=1

αjV (u?, f ?, n− k, 0)

]

+
Acn−1,m,u,f+m

Am

[
(c− µ)

ν
z′cn−1,m,u,f ,u − νcn−1,m,u,f

1− ν
+ νcn−1,m,u,f

×
(cn−1,m,u,f−z′cn−1,m,u,f ,u)c2∑
l=(cn−1,m,u,f−z′cn−1,m,u,f ,u)c1

xl,cn−1,m,u,f−z′cn−1,m,u,f ,u
V (û, f̂ , n− cn−1,m,u,f , cn−1,m,u,f +m)

]
.

(3.3)

As we did in the previous section, let us consider the case when f = 0, d = 0, `1 = 0, β =

0, and m = 0, so that the model in consideration is equivalent to the model discussed in

18



Drekic and Mera (2011). Under these parameter settings, (3.3) reduces to

V (u, 0, n, 0) =

min{n−1,na}∑
k=1

ak

[
(c− µ)

νz
′
k,u − νk

1− ν

+ νk
(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u+l∑
j=1

αjV (u+ cz′k,u + l − j, 0, n− k, 0)

]

+ Amin{n−1,na}

[
(c− µ)

νz
′
n−1,u − νn−1

1− ν

+ νn−1
(n−1−z′n−1,u)c2∑
l=(n−1−z′n−1,u)c1

xl,n−1−z′n−1,u
V (u+ cz′n−1,u + l, 0, 1, n− 1)

]
. (3.4)

We remark that since cn−1,0,u,0 = min{n− 1, na}, the square-bracketed term in (3.4) that

is pre-multiplied by Amin{n−1,na} matters only if cn−1,0,u,0 = n − 1 since Ana = 0. Thus,

for convenience, we set cn−1,0,u,0 = n − 1 inside this square-bracketed term in (3.4). In

addition, (3.4) simplifies further to become:

V (u, 0, n, 0)

=



min{n−1,na}∑
k=1

ak

[
(c− µ)ν

z′k,u−νk
1−ν

+νk
(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u+l∑
j=1

αjV (u+ cz′k,u + l − j, 0, n− k, 0)

]
if z′n−1,u < z′n,u,

min{n−1,na}∑
k=1

ak

[
(c− µ)ν

z′k,u−νk
1−ν

+νk
(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u+l∑
j=1

αjV (u+ cz′k,u + l − j, 0, n− k, 0)

]
+Amin{n−1,na}

n−1∑
i=z′n−1,u

νi(c− µ) if z′n−1,u = z′n,u.

(3.5)
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The logic behind (3.5) is as follows. If z′n−1,u < z′n,u, then z′n,u = n. This implies that there

are no dividend payments before time n, and thus, (3.2) becomes 0. On the other hand, if

z′n−1,u = z′n,u, there is a guaranteed dividend payment at time n− 1 and

(n−1−z′n−1,u)c2∑
l=(n−1−z′n−1,u)c1

xl,n−1−z′n−1,u
V (u+ cz′n−1,u + l, 0, 1, n− 1) = c− µ.

Thus, in the second equation of (3.5), the quantity

Amin{n−1,na}

n−1∑
i=z′n−1,u

νi(c− µ)

can be rewritten as

An−1

n−1∑
i=z′n,u

νi(c− µ).

Also, consider the expression

na∑
k=n

ak

n−1∑
i=z′k,u

νi(c− µ). (3.6)

If z′n,u = z′n+1,u = . . . = z′na,u, then certainly we can replace z′n+1,u, z
′
n+2,u, . . . , z

′
na,u with z′n,u

in (3.6). Otherwise, z′n,u = n, and since min{z′n,u, z′n+1,u, . . . , z
′
na,u} = z′n,u, (3.6) evaluates

to 0. In either case, (3.6) becomes

na∑
k=n

ak

n−1∑
i=z′k,u

νi(c− µ) =
na∑
k=n

ak

n−1∑
i=z′n,u

νi(c− µ) = An−1

n−1∑
i=z′n,u

νi(c− µ).

Substituting these results into (3.5) and simplifying ultimately yields

V (u, 0, n, 0) = (c− µ)
na∑
k=1

ak
νmin{z′k,u,n} − νmin{k,n}

1− ν

+

min{n−1,na}∑
k=1

akν
k

(k−z′k,u)c2∑
l=(k−z′k,u)c1

xl,k−z′k,u

u+cz′k,u+l∑
j=1

αjV (u+ cz′k,u + l − j, 0, n− k, 0).

Again, the result coincides with that of Drekic and Mera (2011, p. 745).
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4 Numerical Examples and Related Findings

In this section, we further explore the proposed risk model through some numerical exam-

ples. Examples we consider here are based on the ordinary Sparre Andersen risk model.

First, we introduce a set of interclaim time distributions to study, namely:

(a) aj =

(2/11)(9/11)j−1 if j = 1, 2, ..., 24,

(9/11)24 if j = 25,

(4.1)

(b) aj = 1/10, j = 1, 2, ..., 10, (4.2)

(c) aj =
1

1− (39/50)25

(
25

j

)
(22/50)j(39/50)25−j, j = 1, 2, ..., 25, (4.3)

(d) aj =



(0.645)(1/2)j + (0.355)(1/12)(11/12)j−1 if j = 1, 2, ..., 14,

(0.645)(1/2)14 + (0.355)(1/12)(11/12)14 if j = 15,

(0.355)(1/12)(11/12)j−1 if j = 16, 17, ..., 49,

(0.355)(11/12)49 if j = 50.

(4.4)

We note that (a) is the pmf of a truncated geometric distribution with na = 25, (b) is the

pmf of a uniform distribution on {1, 2, . . . , 10}, (c) is the pmf of a zero-truncated binomial

distribution with na = 25, and (d) is the pmf of a mixture of two truncated geometric

distributions with na = 50. We note that the means are essentially equal to 5.5 for all four

interclaim time distributions, but their variability differs with (c) being the least variable

and (d) being the most variable.

As for the random premium distribution in effect, we consider a degenerate distribution

with all the probability mass on 2 (i.e. c1 = c2 = 2, so that x2 = 1). In terms of the claim

size distribution, we consider a discretized version of the Pareto distribution with mean 10
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given by

αj =
(

1 +
j − 1

30

)−4
−
(

1 +
j

30

)−4
, j ∈ Z+. (4.5)

The following observations are made concerning the results in Tables 1 to 6, in which

interclaim time distribution (a) was used throughout:

(1) In Tables 1 and 4, we assumed that c = 5, v = 10, g = 0, d = 1, ν = 0.75, κ = 0.01, κ′ =

0.02, `1 = 0, `2 = 20, and `3 = 50. Under these circumstances, changing the maximal

level of external funding allowed resulted in a monotone behaviour in our two performance

measures. As we increased |β|, the finite-time ruin probabilities decreased monotonically

for all n ≤ 100, whereas the expected total discounted dividends paid before ruin increased

monotonically. It seems that the benefit of having more funds available outweighs the

borrowing costs under the specific setting we considered here. We point out that in Table 4

(as well as Tables 5, 6, 8, and 10) the minimum time point n required to achieve convergence

(to six significant digits) of V (10, 0, n, 0) to E{D10,0} is italicized and appears in parentheses

next to its corresponding value.

(2) In Tables 2 and 5, we assumed that c = 5, v = 10, g = 0, d = 1, ν = 0.75, κ = 0.01, κ′ =

0.02, β = −10, `2 = 20, and `3 = 50. Changing the minimal capital requirement level `1

resulted in a negative effect on the finite-time ruin probabilities. As we increased `1, the

finite-time ruin probabilities monotonically increased for all n ≤ 100. On the other hand,

however, the expected total discounted dividends paid before ruin increased as we increased

`1. Artificially requiring the level of the surplus process to be at a certain positive level

prompts more borrowing and this generates higher interest expense. Thus, ruin is more

likely to occur. The expected total discounted dividends paid prior to ruin increased since

the surplus process is now more likely to reach the dividend payment trigger level `3, as

the surplus level is kept at a higher level more of the time.

(3) In Tables 3 and 6, we assumed that c = 5, v = 10, g = 0, d = 1, ν = 0.75, κ = 0.01, κ′ =
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0.02, `1 = 0, β = −10, and `3 = 50. Increasing the investment trigger level `2 resulted

in increasing finite-time ruin probabilities and increasing the expected total discounted

dividend payments prior to ruin. As we increase `2, we are delaying investments and this

leads to a negative effect on the finite-time ruin probabilities since the external fund earns

interest while the surplus process does not. Nevertheless, the surplus process is kept at

a higher level as we increase `2, and thus, the surplus process is more likely to reach `3,

resulting in higher expected total discounted dividend payments prior to ruin.

The following observations are made concerning the results in Tables 7 and 8, in which

interclaim time distributions (a) to (d) were each studied:

(4) We assumed that c = 5, v = 10, g = 0, d = 1, ν = 0.75, κ = 0.01, κ′ = 0.02, `1 = 0, `2 =

20, `3 = 50, and β = −10. In an effort to investigate the effects of variability in the choice

of interclaim time distribution, we observed that the finite-time ruin probabilities were

highest for interclaim time distribution (d) and lowest for interclaim time distribution (c)

for all n ≤ 100. The expected total discounted dividends paid prior to ruin ended up being

highest for (a) and lowest for (d).

The following observations are made concerning the results in Tables 9 and 10, in which

interclaim time distribution (b) was used throughout:

(5) In (1), we observed that the ability to borrow more money from the external fund had

positive effects on both the finite-time ruin probabilities and expected total discounted

dividends paid prior to ruin. This begs the question as to whether an insurer can continue

to borrow more and more money and still produce a positive impact on the business.

To investigate this matter further, we increased κ′ to 0.30 and varied β from −10 to

−30 in increments of size 10. Under this revised setting, not only has the monotone

behaviour of the finite-time ruin probabilities changed, but also the effects of increasing

|β| have changed. From Table 9, note that when n = 10, β = −10 yields the highest
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ruin probability. However, for n = 25 and onwards, β = −10 produces the lowest ruin

probabilities and β = −30 has the highest ruin probabilities. On the other hand, the

expected total discounted dividends paid before ruin were still highest for β = −30 and

lowest for β = −10, although the difference was rather minimal.
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Finite-time ruin probabilities

n=25 n=50 n=75 n=100

β = 0 0.174830 0.196614 0.204672 0.207823

β = −10 0.109811 0.128569 0.136029 0.139131

β = −20 0.072636 0.0886259 0.0954679 0.0984981

Table 1: v = 10, g = 0, c = 5, `1 = 0, `2 = 20, `3 = 50, κ = 0.01, κ′ = 0.02, d = 1,

interclaim time distribution (a)

Finite-time ruin probabilities

n=25 n=50 n=75 n=100

`1 = 0 0.109811 0.128569 0.136029 0.139131

`1 = 10 0.112201 0.132375 0.140743 0.144394

`1 = 20 0.115284 0.137842 0.147714 0.152290

Table 2: v = 10, g = 0, c = 5, `2 = 20, `3 = 50, β = −10, κ = 0.01, κ′ = 0.02, d = 1,

interclaim time distribution (a)

Finite-time ruin probabilities

n=25 n=50 n=75 n=100

`2 = 10 0.108725 0.125772 0.132366 0.135042

`2 = 20 0.109811 0.128569 0.136029 0.139131

`2 = 30 0.111336 0.132243 0.140858 0.144556

Table 3: v = 10, g = 0, c = 5, `1 = 0, `3 = 50, β = −10, κ = 0.01, κ′ = 0.02, d = 1,

interclaim time distribution (a)
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Expected total discounted dividends paid prior to ruin

β = 0 0.248444 (60 )

β = −10 0.252225 (59 )

β = −20 0.254015 (55 )

Table 4: v = 10, g = 0, c = 5, `1 = 0, `2 = 20, `3 = 50, κ = 0.01, κ′ = 0.02, d = 1,

ν = 0.75, interclaim time distribution (a)

Expected total discounted dividends paid prior to ruin

`1 = 0 0.252225 (59 )

`1 = 10 0.259287 (57 )

`1 = 20 0.294781 (56 )

Table 5: v = 10, g = 0, c = 5, `2 = 20, `3 = 50, β = −10, κ = 0.01, κ′ = 0.02, d = 1,

ν = 0.75, interclaim time distribution (a)

Expected total discounted dividends paid prior to ruin

`2 = 10 0.210858 (57 )

`2 = 20 0.252225 (59 )

`2 = 30 0.331537 (56 )

Table 6: v = 10, g = 0, c = 5, `1 = 0, `3 = 50, β = −10, κ = 0.01, κ′ = 0.02, d = 1,

ν = 0.75, interclaim time distribution (a)

26



Finite-time ruin probabilities

n=25 n=50 n=75 n=100

(a) 0.109811 0.128569 0.136029 0.139131

(b) 0.0739737 0.0893741 0.0955145 0.0980538

(c) 0.0577812 0.0719240 0.0775949 0.0799444

(d) 0.198521 0.225533 0.236586 0.241374

Table 7: v = 10, g = 0, c = 5, β = −10, `1 = 0, `2 = 20, `3 = 50, κ = 0.01, κ′ = 0.02,

d = 1

Expected total discounted dividends paid prior to ruin

(a) 0.252225 (59 )

(b) 0.249026 (69 )

(c) 0.247518 (56 )

(d) 0.227710 (58 )

Table 8: v = 10, g = 0, c = 5, β = −10, `1 = 0, `2 = 20, `3 = 50, κ = 0.01, κ′ = 0.02,

d = 1, ν = 0.75,
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Finite-time ruin probabilities

n=10 n=25 n=50 n=75 n=100

β = −10 0.0543815 0.0844038 0.107521 0.118964 0.125726

β = −20 0.0456417 0.0983912 0.131307 0.140746 0.144196

β = −30 0.0440729 0.103629 0.132196 0.140967 0.144267

Table 9: v = 10, g = 0, c = 5, `1 = 0, `2 = 20, `3 = 50, κ = 0.01, κ′ = 0.30, d = 1,

interclaim time distribution (b)

Expected total discounted dividends paid prior to ruin

β = −10 0.247093 (56 )

β = −20 0.247106 (56 )

β = −30 0.247143 (51 )

Table 10: v = 10, g = 0, c = 5, `1 = 0, `2 = 20, `3 = 50, κ = 0.01, κ′ = 0.30, d = 1,

ν = 0.75, interclaim time distribution (b)
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