
Bit Serial Systolic Architectures for

Multiplicative Inversion and Division

over GF (2m)

by

Amir K. Daneshbeh

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2005

c©Amir K. Daneshbeh, 2005

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by examiners.

I understand that my thesis may be made electronically available to the public.

Amir K. Daneshbeh

ii

Abstract

Systolic architectures are capable of achieving high throughput by maximizing pipelining

and by eliminating global data interconnects. Recursive algorithms with regular data flows

are suitable for systolization. The computation of multiplicative inversion using algorithms

based on EEA (Extended Euclidean Algorithm) are particularly suitable for systolization.

Implementations based on EEA present a high degree of parallelism and pipelinability

at bit level which can be easily optimized to achieve local data flow and to eliminate

the global interconnects which represent most important bottleneck in todays sub-micron

design process. The net result is to have high clock rate and performance based on efficient

systolic architectures.

This thesis examines high performance but also scalable implementations of multiplica-

tive inversion or field division over Galois fields GF (2m) in the specific case of cryptographic

applications where field dimension m may be very large (greater than 400) and either m

or defining irreducible polynomial may vary. For this purpose, many inversion schemes

with different basis representation are studied and most importantly variants of EEA and

binary (Stein’s) GCD computation implementations are reviewed. A set of common as

well as contrasting characteristics of these variants are discussed. As a result a generalized

and optimized variant of EEA is proposed which can compute division, and multiplicative

inversion as its subset, with divisor in either polynomial or triangular basis representation.

Further results regarding Hankel matrix formation for double-basis inversion is provided.

The validity of using the same architecture to compute field division with polynomial or

triangular basis representation is proved.

Next, a scalable unidirectional bit serial systolic array implementation of this proposed

variant of EEA is implemented. Its complexity measures are defined and these are com-

pared against the best known architectures. It is shown that assuming the requirements

specified above, this proposed architecture may achieve a higher clock rate performance

w.r.t. other designs while being more flexible, reliable and with minimum number of inter-

cell interconnects.

The main contribution at system level architecture is the substitution of all counter or

adder/subtractor elements with a simpler distributed and free of carry propagation delay

structures. Further a novel restoring mechanism for result sequences of EEA is proposed

iii

using a double delay element implementation.

Finally, using this systolic architecture a CMD (Combined Multiplier Divider) datapath

is designed which is used as the core of a novel systolic elliptic curve processor. This EC

processor uses affine coordinates to compute scalar point multiplication which results in

having a very small control unit and negligible with respect to the datapath for all practical

values of m. The throughput of this EC based on this bit serial systolic architecture is

comparable with designs many times larger than itself reported previously.

iv

Acknowledgments

Thanks to Professor Hasan for his guidance, support, patience and constant presence. I

specially thank him for keeping me on track to complete this work.

v

List of Important Acronyms

CMD Combined Multiplier Divider PE

DPA Differential Power Analysis

DH Diffie-Hellman

DL Discrete Logarithm

DSA Digital Signature Algorithm

EC Elliptic Curve

ECC Elliptic Curve Cryptography

EEA Extended Euclidean Algorithm

GF Galois Field

GCD Greatest Common Divisor

LFSR Linear Feedback Shift Register

PBIA Polynomial Basis Inversion Algorithm

PE Processing Element

RSA Rivest Shamir Adleman Public Key Cryptosystem

STBIA Shifted Triangular Basis Inversion Algorithm

TBIA Triangular Basis Inversion Algorithm

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Previous Work . 3

1.3 Objectives . 5

1.4 Thesis Outline . 6

2 Mathematical Background 8

2.1 Basis representation . 8

2.1.1 Polynomial or Canonical Basis . 8

2.1.2 Dual Basis . 9

2.1.3 Normal and Optimal Normal Bases 10

2.1.4 Triangular Basis . 11

2.2 Multiplicative Inversion . 13

2.2.1 Non-Algorithmic Look-Up Table Inversion 14

2.2.2 Fermat’s Little Theorem Based Inversion 14

2.2.3 Extended Euclidean Algorithm Based Inversion 17

2.3 Summary . 19

3 (Extended) Euclidean and Binary GCD Algorithm 20

3.1 Greatest Common Divisor Computation 20

3.1.1 Basic GCD and EEA . 20

3.2 Right-Shift GCD Algorithm, Right-Shift EEA 22

3.2.1 Binary GCD Algorithm and its Plus-Minus Variant 23

vii

3.2.2 Binary GCD Division Algorithm . 26

3.2.3 Almost Inverse Algorithm . 28

3.3 Left-Shift GCD Algorithm, Left-Shift EEA 30

3.3.1 Berlekamp’s Inversion Algorithm with No Modulo Reduction 33

3.3.2 Shifted Result Problem . 36

3.3.3 Inversion Algorithm without Conditional Branching. 36

3.3.4 Inversion Algorithm with Right-Left-Shift of Result Sequence 37

3.3.5 Division Algorithm with a Two-step Shifted Result Solution 39

3.3.6 Division Algorithm with Auxiliary Polynomial for Partial Remainder 40

3.4 Summary . 42

4 Inversion using Double-Basis representation 43

4.1 Single-Basis Inversion . 43

4.2 Double-Basis Inversion . 45

4.3 Inversion by applying EEA to a Hankel Matrix 48

4.4 Generalized Polynomial Inversion and Division 50

4.4.1 Polynomial Basis Inversion using EEA 50

4.4.2 Triangular Basis Inversion Using EEA 51

4.5 Key Results on Inversion and Division using Triangular Basis 51

4.5.1 Inversion Algorithm Revisited . 52

4.5.2 Comments . 55

4.5.3 Algorithms for Division . 55

4.6 Summary . 57

5 Systolic Architectures 58

5.1 Complexity measures in VLSI Design . 58

5.2 Systolization of Polynomial Updating Step 59

5.2.1 Task 1 and Shifted Remainder . 60

5.2.2 Task 2 and Swapped Shifted Long Division Algorithm 62

5.2.3 Tasks 3, 4 and Putting All Together 63

5.2.4 An Example of Stepwise Restoring Action of Algorithm 21 67

5.3 Bit Serial Unidirectional Systolic Architectures 69

viii

5.3.1 Bit Serial Unidirectional Systolic Structure 69

5.3.2 Processing Element for Inversion 70

5.3.3 Processing Element for Division . 72

5.3.4 Bit Serial Inverter-Divider in Triangular Basis 73

5.4 Generalization and Optimization . 75

5.4.1 Universal Bit Serial Systolic Inverter-Divider 75

5.4.2 Trading off Throughput for Storage Area 76

5.4.3 Area and Latency Optimization without Throughput Loss 76

5.4.4 Implementation Results . 77

5.5 Comparison . 78

5.6 Summary . 80

6 Systolic Elliptic Curve Processor 81

6.1 Background . 81

6.2 Related Work . 83

6.3 Elliptic Curve Cryptography and EC Arithmetic 85

6.3.1 EC Point Add and Point Double over GF(2m) 85

6.3.2 System Level Block Diagram of an EC Cryptoprocessor 88

6.4 EC Bit-Serial Systolic Accelerator over GF(2m) 89

6.4.1 Bit Serial Systolic Architecture for Field Multiplication 90

6.4.2 Bit Serial Systolic Architecture for Field Division 92

6.4.3 Processing Element of a Combined Multiplier Divider 93

6.5 Implementation Issues . 94

6.5.1 EC Full Point Add using the CMD Datapath 95

6.5.2 An FSM-type Control Unit . 97

6.5.3 Scalability and Dealing with Varying Dimension 97

6.5.4 Implementation Results . 98

6.5.5 Comparison . 100

6.6 Summary . 101

7 Conclusion and Future Work 102

7.1 Summary and Conclusions . 102

ix

7.2 Future Work . 104

x

List of Tables

1.1 The security margin of cryptosystems as a function of their keying material 3

5.1 Example of inversion over GF(23). 68

5.2 Comparison of bit serial systolic dividers and inverter. 79

6.1 Comparison of Stepwise Computation Step of Algorithm 22. 87

xi

List of Figures

4.1 Two step block diagram of Algorithm TBIA. 55

5.1 Bit serial unidirectional systolic architecture for Inversion/Division. 70

5.2 Processing element for the inverter where D is a delay element. 71

5.3 Processing element for the divider. 73

5.4 Bit serial systolic architecture for Inversion/Division in Double-basis. . . . 74

5.5 Variable dimension divider using selectors over common tristate output. . . 75

6.1 System level integration. 88

6.2 Bit serial systolic architecture for a CMD. 91

6.3 Processing element for the multiplier. 93

6.4 Processing element of a CMD. 94

6.5 Bit serial functional sequence of an EC full point add computation. 95

6.6 Inputs selection of a CMD for four operational cases. 96

6.7 Variable dimension architecture using selectors over common tristate output. 98

xii

Chapter 1

Introduction

Continuous innovation in diverse domains from data processing to coding theory has cre-

ated an exponential growth in new applications based on means of communication. Around

the world, everything and everyone can be seen connected in real time. A well-known exam-

ple of these applications is secure and fraud free e-commerce over the Internet [22]. As our

dependence on these new applications grows, the challenge to achieve higher performance

and always available “open” systems must meet the demand for security, privacy and in-

tegrity of information. Further, in an “open” environment where new players may enter

at any time, the source of information requires authenticity and non-repudiation. Math-

ematical algorithms to perform finite field operations are a main tool to provide privacy,

integrity, authenticity and non-repudiation of data communication.

In this work, hardware implementations of a specific class of operations, the multiplica-

tive inversion and field division over Galois fields GF (2m), required in many fundamental

protocols of data communication systems, e.g., public-key cryptography, is examined and

some novel structures are proposed. In particular, the utilization and trade-offs of systolic

implementations of inversion and division over Galois fields are investigated.

1.1 Motivation

Any challenge in the design of new communication and data processing devices aims at a

higher performance as well as feasibility, reliability and scalability. A practical utilization

1

2 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

of the Internet and data networking relies on privacy and authenticity of information.

This is achievable with the implementation of cryptographic functions. The challenge

to undertake is to design an efficient hardware implementation of these functions which

achieves high performance but also is reliable and scalable. Basic security functions include

secret-key, public-key cryptosystems and digital signature functions. These functions can

efficiently be implemented in software or hardware. A software implementation which

provides flexibility can never be as fast as a special purpose hardware accelerator. Specific

algorithms are optimized in order to enhance target processors [1, 6, 44, 113]. However,

to reach a higher throughput, the above functions are implemented directly in hardware.

In this case, basic arithmetic operations required for these functions should be optimized

under the constraint of area, time and energy [75,91,118].

Arithmetic operations in Galois field GF (2m) where m represents the dimension of

field have applications in coding theory [11, 81], computer algebra, digital signal process-

ing [77,94] and cryptography [74,82]. However, field dimension requirements are drastically

different among these applications. The specific case of cryptography incurs a continuous

demand for larger field dimensions as faster data processing devices (computers) crunch

higher MIPS (millions of instructions per second). In particular, in public key crypto-

graphic applications, the field dimension may exceed 4000 for discrete logarithm cryp-

tosystems or 500 for elliptic curve cryptosystems [82]. Such trend reflected in using larger

length of keying material is shown in Table 1.1 [112].

In this work, hardware implementations of inversion and division over Galois fields are

investigated and novel architectures and some practical applications of these are proposed.

Not only a higher performance in terms of throughput and clock rate, but also the feasibility

and scalability of such implementations are examined.

In the next few chapters inversion and division algorithms over Galois fields will be

described. The feasibility, constraints, and requirements of systolic implementations of

these algorithms will be discussed. In this context, the following facts will be highlighted:

• Multiplicative inversion operation over Galois fields which is used in certain standard
protocols of public-key cryptography requires to be optimized for large dimension

fields.

• Most efficient algorithms to compute inversion are recursive algorithms based on vari-

CHAPTER 1. INTRODUCTION 3

Asymmetric Crypt. Discrete Logarithm Elliptic Curve DL Security Margin

key size (in bits) key size (in bits) key size (in bits) (in MIPS years)

RSA, DH DSA ECC

622 112 117 3.51× 107
777 118 124 5.00× 108
952 125 132 7.13× 109
1068 129 136 3.51× 1010
1191 133 141 1.73× 1011
1369 138 146 1.45× 1012

Table 1.1: The security margin of cryptosystems as a function of their keying material

ants of EEA (Extended Euclidean Algorithm) and binary (Stein’s) GCD (Greatest

Common Divisor) Algorithm.

• As the field dimension increases, a centralized, either register based or parallel, im-
plementation of EEA type algorithms are not efficient, scalable or even feasible under

given time-area constraints.

• Systolic architectures are more suitable for recursive algorithms [70] such as variants
of EEA.

• Systolic architectures achieve the highest throughput by maximizing the parallelism
inherent in algorithms with use of fine-grain (bit or digit level) pipelining, and they

eliminate the interconnect bottlenecks of sub-micron designs.

1.2 Previous Work

The main advantages of VLSI technology, i.e., large amount of logic available at a very

low cost, reduced physical size and power consumption, and increased reliability, allow the

implementation of computationally intensive and recursive algorithms as part of a SoC

(System on a Chip). However, as the integration density increases, the interconnection

4 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

and wiring (the routing congestion issue in sub-micron designs) dominate the design com-

plexity. Special architectures which can increase the logic utilization without an increase in

interconnection are desirable. Luckily, such architectures, the array processors in general

or systolic structures in particular, exist.

Systolic architectures are specifically proposed to achieve high throughput and clock

rates by maximizing the pipelining and by eliminating the global data interconnects [69,

70, 93]. Recursive algorithms such as extended Euclidean algorithm with regular data

flows are particularly suitable for systolization. These present a high degree of parallelism

at a bit level which can easily be optimized with few local data flow and interconnect

architectures. There are many systolic architectures proposed to compute multiplication

[31, 38, 67, 80, 114, 117, 120], division [48, 68] and inversion [32, 40, 108, 110, 115] over Galois

fields.

Among the arithmetic operations over Galois fields the multiplicative inversion and

division are the most costly ones. This complexity is even more pronounced for larger

field dimensions. In general, three major schemes to compute multiplicative inverses exist:

Fermat’s little theorem, variants of extended Euclidean algorithm (EEA) or a solution of

a set of linear equations. First scheme is efficient if either a fast squaring or multiplication

method is available [57]. The extended Euclidean algorithm (EEA) based schemes to

compute inversion and division are the most efficient in time and area. The third method

is generally inefficient for large values of field dimension. However, it is shown that a set

of linear equations formed upon triangular basis representation can be solved by schemes

similar to EEA [46].

However, a limitation of a direct repetitive application of the extended Euclidean al-

gorithm to compute multiplicative inverses is a conditionally swap operation which cannot

easily be serialized. This may require variable size counter-like structures with carry prop-

agation chains to keep track of the difference of the degree of polynomials, e.g., [40,96,115],

in which case they are not suitable for high-performance and scalable VLSI implementa-

tions (including systolic architectures). Many systolic array proposals for multiplicative

inversion or division over GF(2m) based on EEA or its dual (extended Stein’s algorithm),

i.e., [37,56,116,119], all require counter-like structures with carry propagation delays. Since

the carry propagation chain depends on the field dimension m, in general, it dominates

CHAPTER 1. INTRODUCTION 5

the critical delay path. Only counter or comparator architectures with no carry propaga-

tion chain can be considered dimension independent. Moreover, a counter with no carry

propagation chain can be easily transformed into a distributed structure.

The above discussion is valid for inversion algorithms in alternative Galois field basis

representations, such as a novel multiplicative inversion algorithm, by solving a set of linear

equations using double-basis representation over GF (2m), [46]. In that paper, a centralized

control architecture to implement this algorithm is proposed. However, again, as the field

dimension increases, a VLSI implementation of such centralized control design with long

global control signals becomes inefficient or even impractical for certain clock rate and

throughput requirements. In this case, the possibility to incorporate a pipelined change

of basis structure and a systolic inverter/divider with a distributed ring counter structure

may result in an optimal solution.

1.3 Objectives

This work aims to investigate and propose a class of optimized (free of carry propagation)

systolic architectures for inversion and division over Galois fields. The driving force is to

improve the throughput and clock rate as a measure of performance without increasing

the circuit (area) and design complexity while providing the best solution for scalability

(unidirectional single cell type structure) and reliability (ease of fault-tolerant circuit in-

sertion). Particular attention is given to minimize the interconnect at the expense of extra

logic. Specifically, the proposed systolic structure will be optimized as follows:

• maximizing the regularity of the array processor,

• minimizing number of cell types,

• reducing out of order signals by elimination of data dependencies with the goal to
eliminate the retiming latches between cells.

As a consequence, a feasible architecture with an extremely regular structure is sought.

This architecture should be easily scalable, should deliver very high throughput, ideally

with a transparent in-line computation over incoming bit streams.

6 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Moreover, from the cryptographic and field application point of view, the design aims

to process a field of any dimension, and to be independent of the choice of the field defining

irreducible polynomial.

Finally, a practical deployment of such systolic structure (with a unified multiplier

divider cell) as the core of an elliptic curve crypto processor will be proposed. The relative

cost of the data path versus a complete state machine based control unit for EC scalar

point multiplication is investigated and other performance measures are discussed.

1.4 Thesis Outline

The organization of this thesis is as follows:

In Chapter 2, three basis representations of field elements are defined and their relative

importance for the implementation of particular operations over Galois fields are compared.

Specifically, triangular basis is introduced which will be used for the inversion computation

over double-basis. Next, a variety of inversion algorithms each best suitable in a different

bases and using different number theory techniques are explained.

In Chapter 3, a detailed survey of many EEA type, binary (Stein’s) GCD Algorithm

and the best known application of these to perform inversion/division over Galois fields are

reviewed. Common and contrasting characteristics of these are classified. Optimization

techniques proposed in certain implementations and some important conclusions used in

this thesis are highlighted.

In Chapter 4, inversion and division using double-basis representation by applying EEA

to a Hankel matrix is reviewed. Some results regarding Hankel matrix entry formation are

described. Further, a common set of algorithms to compute inversion and division based

on EEA with both polynomial and triangular basis is discussed.

In Chapter 5, systolic architectures as a solution to overcome the ever increasing com-

plexity of computational intensive algorithms are introduced. Next, an optimized (free of

carry propagation) systolic array structure for EEA computation is examined which is used

as a building block for Galois field inverter-divider. A unidirectional bit serial systolic ar-

chitecture of inversion and division in both polynomial and triangular basis is introduced.

A single type Processing Element (PE) of such architecture and its complexity measures

CHAPTER 1. INTRODUCTION 7

are investigated and evaluated against similar architectures.

In Chapter 6, a practical application of such an architecture is presented. First, optimiz-

ing Elliptic Curve Cryptographic operations in the presence of fast dividers (comparable

to multipliers) is discussed. Next, a combined multiplier-divider cell structure is proposed

and a unidirectional bit serial systolic architecture as the main data path unit is designed.

By incorporating a state machine control unit and shift register files, an extremely high

clock rate systolic processor is devised and its performance is evaluated against best known

designs in the literature.

In Chapter 7, after summarizing what is accomplished, some remarks regarding future

work conclude the thesis.

Chapter 2

Mathematical Background

Optimized algorithms to compute multiplicative inversion, as well as other operations over

Galois fields, depend upon the choice of field element representation. In this chapter,

some common basis representation of Galois field elements which are of practical use,

namely polynomial, dual, normal and triangular basis will be reviewed. Next, different

algorithms for inversion or division with some implementation examples suitable in each

basis representation will be compared. Refer to [78] for a general background on finite

prime fields, extension fields and the theory of polynomials over finite fields.

2.1 Basis representation

In the following main classes of basis representation and some variants of each are reviewed.

Their relevance while optimizing certain field operations and some basis conversion tech-

niques are discussed.

2.1.1 Polynomial or Canonical Basis

Given an irreducible polynomial F (x) of degree m over the finite field GF(2), considering

one of the roots of F (x) such as ω, i.e., F (ω) = 0, it is well known that the set of elements

{1, ω, ω2, · · · , ωm−1},

8

CHAPTER 2. MATHEMATICAL BACKGROUND 9

is linearly independent and forms a basis referred to as polynomial or canonical basis.

Then, any element A ∈ GF (2m) can be represented as

A =
m−1∑

i=0

aΩiω
i,

where aΩi ∈ {0, 1} is the i-th coordinate of A with respect to the polynomial basis Ω, or
in a column vector form aΩ = [aΩ0, aΩ1, · · · , aΩm−1]

T over GF(2).

In this representation, the addition of two elements is simply a pairwise bit addition.

This can be easily implemented using XOR gates and hence it has a linear complexity. On

the other hand, the implementation of multiplication, if not optimized, can be very costly.

That is because a modulo reduction step must follow or be incorporated into polynomial

multiplication operation. There are more efficient proposals which have low complexity

in this basis, [24, 51, 58, 66, 75, 99, 101, 117, 118, 120, 121]. In this basis, many proposals to

compute multiplicative inversion and division exist as well which will be reviewed in detail

later.

2.1.2 Dual Basis

In order to have an efficient implementation of field multiplication, in some situations a

specific basis, namely, dual basis relative to a primal basis can be used. In [10], Berlekamp

proposed the use of combined polynomial and its dual basis for efficient implementation of

multiplication.

Let us consider the polynomial basis {1, ω, ω2, · · · , ωm−1} of GF (2m) where ω is a root
of the irreducible polynomial F (x) of degree m. Now, let

{γ0, γ1, · · · , γm−1},

be the dual basis so that

Tr(ωiγj) = λij, i, j = 0, 1, 2, · · · ,m− 1,

where Tr(·) is the trace function from GF (2m) to GF (2) and λij is the Kronecker delta

function, equal to 1 if i = j and zero otherwise.

10 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

The two representations of any element, e.g., x, of the field are related as follows,

x =
m−1∑

0

xiω
i =

m−1∑

0

x′
iγi,

where the coordinate x′
i of x with respect to the dual basis is given by x

′
i = Tr(ωix).

There are well-known methods to find the dual basis of a polynomial basis, e.g., in [74].

Let us consider the polynomial basis {1, ω, ω2, · · · , ωm−1}, where the minimal polynomial
of ω ∈ GF (2m) over GF (2) is F (x), (the minimal polynomial is the monic irreducible

polynomial over GF (2) of least degree having ω as a root). Then, the dual basis can be

computed by
{ g0
F ′(ω)

,
g1

F ′(ω)
, · · · , gm−1

F ′(ω)

}

(2.1)

where

F (x) = (x+ ω)
(m−1∑

i=0

gix
i
)

, gi ∈ GF (2m), gm−1 = 1,

and F ′(x) is the derivative of F (x) over GF (2) or alternatively F ′(ω) =
∏m−1

j=1 (ω + ω2
j
)

[109].

Among the pair of dual bases, there are those which are the dual of their own. Such

basis is called a self-dual basis [84, 109]. It has the advantage that there is no need for a

conversion from and to their respective duals. However, such self-duality does not exist for

all bases.

2.1.3 Normal and Optimal Normal Bases

Considering the Galois field GF (2m) as an m-dimensional vector space over GF (2), a basis

for GF (2m) of the form

{β, β2, β4, · · · , β2m−1}

is called a normal basis. The element β ∈ GF (2m) is the generator of the normal basis.

It is well-known, [74], that GF (2m) has a normal basis for every m ≥ 1. Even though
normal basis can be defined for a suitable element of the field, there are no straightforward

methods to identify such an element.

CHAPTER 2. MATHEMATICAL BACKGROUND 11

Using normal basis, the operation of squaring a field element is extremely simple. Con-

sidering the normal basis {β, β2, β4, · · · , β2m−1}, any field element a can be represented
as

a =
m−1∑

i=0

aiβi where ai ∈ {0, 1} and βi = β2
i

for 0 ≤ i ≤ m− 1.

Then

a2 =
m−1∑

i=0

ai−1βi where subscripts are reduced modulo m (2.2a)

=
m−1∑

i=1

ai−1βi + am−1β0 (2.2b)

That is, the coordinate vector for a2 is computed by a cyclic shift of the coordinate vector

for a.

In general, multiplication in normal basis is costly. However, Massy and Omura have

devised an efficient algorithm [89] for multiplication using normal basis. Further, by ap-

plying this algorithm to a specific class of normal basis, i.e., optimal normal basis, a very

efficient hardware implementation for field multiplication is obtained [85]. As in the case

of self-dual basis, the optimal normal basis does not exist for all values of m.

2.1.4 Triangular Basis

The number of distinct bases of an extension field over its ground field is rather large.

In practice all the bases can be transformed to each other by matrix multiplication as

explained next. However, in general, such an operation has very costly implementation.

Among different bases the triangular basis of a polynomial has the main advantage that

the change of coordinates between the two bases can be easily and efficiently implemented

by shift register techniques.

Let F (x) =
∑m

i=0 fix
i be the field defining irreducible polynomial of degree m of

GF (2m). Then, GF (2m) can be viewed as a vector space of dimension m over GF (2)

and any ordered basis

Θ = (Θ0,Θ1, · · · ,Θm−1)

12 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

can be viewed as an m ×m matrix over GF (2). Note that Θ’s can be viewed as column

vectors over GF (2). Similarly, a new basis Λ = (Λ0,Λ1, · · · ,Λm−1) can be considered as

another m ×m matrix which can be computed by post-multiplying the matrix Θ with a

transformation matrix, e.g., M . That is

Λ = ΘM

Such a transformation can be done if and only if the basis transformation matrix M is an

m×m non singular matrix over GF (2) [50].

Let c be an element of the filed GF (2m), then c can be written in basis Θ as c = cΘΘ
T ,

with cΘ ∈ GF (2m) being the vector of coordinates of c with respect to Θ, and similarly,

c = cΛΛ
T .

It is easy to show that cΘ = cΛM
T and vice versa, cΛ = cΘ(M

T)−1. A suitable choice

of M can facilitate the transformation of coordinates from one basis system to the other.

Let M = [Mij] with

Mi,j =







fi+j+1 0 ≤ i+ j ≤ m− 1,
0 m ≤ i+ j ≤ 2m− 2,

(2.3)

which is a Hankel matrix with constants on its back-diagonals. ThenM−1 is a matrix with

entries

(M−1)i,j =







0 0 ≤ i+ j ≤ m− 2,
hi+j+1−m m− 1 ≤ i+ j ≤ 2m− 2,

(2.4)

with h0 = 1 and

hk =
k−1∑

i=0

fm−k+ihi.

Given this particular choice of M , Λ is referred to as the triangular basis with respect to

Θ. With this particular choice of M , the change of coordinates of any element c between

Θ and Λ can be easily implemented by shift register techniques using:

(cΘ)j =

m−j−1
∑

i=0

fi+j+1(cΛ)i 0 ≤ j ≤ m− 1 (2.5)

CHAPTER 2. MATHEMATICAL BACKGROUND 13

and

(cΛ)k =







(cΘ)m−1−k k = 0,

(cΘ)m−1−k +
∑k−1

i=0 fm−k+i(cΛ)i 1 ≤ k ≤ m− 1.
(2.6)

The implementation of Equation (2.5) is possible with an (m−1) stage linear feed-forward
shift register while that of Equation (2.6) requires an (m − 1) stage linear feed-back shift
register.

Considering the specific case of Θ = Ω, as a polynomial basis, i.e.,

Θ = {1, ω, ω2, · · · , ωm−1},

where ω satisfies an irreducible polynomial F (ω) = 0, then, field element representation

with respect to the corresponding triangular basis has the feature:

ωjΛ = (tj+1, tj+2, · · · , tj+m)

with t0 = 1, t1 = t2 = · · · = tm−1 = 0, and

tk =
m−1∑

i=0

fitk−m−i for k ≥ m,

which can be implemented using a conventional m stage linear feedback shift register

(LFSR) with F (x) as its feedback function [50].

2.2 Multiplicative Inversion

Multiplicative inverse of element A, denoted by A−1, is defined as A · A−1 = 1. When

polynomial basis is used, we have

A(x) · A−1(x) ≡ 1 mod F (x),

where F (x) is its defining irreducible polynomial. It is known that all nonzero elements of

the field have distinct inverses. Commonly, multiplicative inversion is computed using one

of the following techniques:

• Fermat’s little theorem scheme [28,30,57,106],

14 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

• extended Euclidean algorithm (EEA) [5,15,40,41], or extended binary (Stein’s) GCD
computation [54,103,110,116]

• the solution of a set of linear equations [21,46,108].

Before describing algorithmic techniques a possible non algorithmic method to compute

inverses and its main drawback is mentioned.

2.2.1 Non-Algorithmic Look-Up Table Inversion

The easiest and the fastest method to find the inverse of a field element would be a

look-up table technique. Since the inverses of field elements are unique, a look-up table

can be precomputed. In [68, 105], some variants of this method have been proposed and

implemented. For example in [105], Vries et al. proposed a ROM look-up table scheme for

a field dimension of (m = 8) which had better performance in terms of area and time when

compared to algorithmic schemes of the same dimension. However, such a non-algorithmic

scheme is only suitable for “small” size fields, where “small” is understood by the amount

of available memory. In addition, there are proposals in which in order to compute the

inverses of specific large field elements, i.e., Optimal Extended Fields, first the element is

reduced to a subfield element where the inverses can be easily computed by other means

such as binary extended Euclidean algorithm [6], direct parallel inversion [91] or a look-up

table method.

2.2.2 Fermat’s Little Theorem Based Inversion

The easiest but not necessarily the most efficient method to compute the multiplicative

inversion is using Fermat’s little theorem which reduces inversion computation to a series

of multiplication (and/or squaring). Fermat’s little theorem [36] asserts,

Theorem 2.1 If β is an element of GF (2m), then

β2
m−1 = 1. (2.7)

Then, the inverse of β is given by

β−1 = β2
m−2.

CHAPTER 2. MATHEMATICAL BACKGROUND 15

Thus the following efficient method to compute the inverse element β−1 using Fermat’s

theorem can be devised. It is known that

2m − 2 =
m−1∑

i=1

2i,

the element β2
m−2 may be written as

β−1 = β2
m−2 = β2

1 × β2
2 × · · · × β2

m−1

. (2.8)

If there is a basis where either squaring or multiplication is “cheap” and/or fast, the above

scheme will be useful. In normal basis representation, it is said that the squaring can

be computed by simple shift operation. Hence, efficient algorithms can be devised. For

example Wang et al., in [106], proposed a simple but costly implementation of Equation

(2.8). In such a scheme the number of iterations are equal to the dimension of the field

minus one. That is a total of (m− 1) squaring and (m− 2) multiplications are needed.
In [111], Wei uses the following recursive expression

2m − 2 = 2(1 + 2 + (1 + 2(1 + · · ·))),

where number of iterations is (m − 1), to devise a polynomial basis inversion algorithm
based on Fermat’s theorem such that

β−1 = (β · · · β(β(β(β2)2)2)2. (2.9)

Also in this technique, a total of (m− 1) squaring and (m− 2) multiplications are needed.
In order to speed up the algorithm different alternatives are possible. In [28], Feng and

in [57], Itoh and Tsujii have proposed variants of Fermat’s theorem scheme where the num-

ber of multiplications can be reduced. In general, for a normal basis where the squaring is

almost free, the multiplication operation is a costly one and all the optimization of the de-

sign must be concentrated on it. Optimal normal basis provides an alternative solution for

multiplication optimization. Reducing the number of multiplications by choosing certain

basis to have a low Hamming weight binary representation is an approach. For example,

Feng uses the binary expression of m− 1

m− 1 = mq2
q +mq−12

q−1 + · · ·+m1q
1 +m02

0, mi ∈ {0, 1}, 0 ≤ i ≤ q (2.10)

16 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

to devise an efficient inversion algorithm [28]. Hence, in order to compute β−1, (q + p)

multiplications and (m− 1) squarings are required, where p is the number of one′s in the

binary expression of m− 2. On average, the computational complexity can be reduced to
O(m× logm). According to algorithm in [28], both simple squaring and square-rooting are
required which can efficiently be implemented by right and left shift operations respectively.

In [57], Itoh and Tsujii have proposed an alternative approach to reduce the number

of multiplication using normal basis which requires only forward squaring and its imple-

mentation is easier. The Itoh and Tsujii’s scheme uses the fact that since the inverse of an

element β in a field according to Fermat’s little theorem is:

β−1 = β2
m−2 =

(

β2
m−1−1

)2

,

then, if m is odd, i.e., (m− 1) is even, knowing

2m−1 − 1 =
(

2(m−1)/2 − 1
)(

2(m−1)/2 + 1
)

,

then

β2
m−1−1 =

(

β2
(m−1)/2−1

)2(m−1)/2+1

,

and this operation requires only one multiplication to compute β2
m−1−1 knowing β2

(m−1)/2−1;

recall that squaring is free and it is not counted. Also, if m is even, then

β2
m−1−1 = β2(2

(m−1)/2−1)(2(m−1)/2+1)+1,

and it requires two multiplications to evaluate β2
m−1−1, once β2

(m−1)/2−1 has been computed.

Thus a recursive algorithm with minimum number of multiplications can be devised.

In general, when m is the field dimension, exactly blog (m− 1)c + ω(m − 1) − 1 field
multiplications are required, where ω(m− 1) denotes the Hamming weight, the number of
1’s in the binary representation of (m − 1). To summarize, in general, efficient inversion
algorithms in normal basis require:

• Number of Multiplications = blog (m− 1)c+ ω(m− 1) ≤ 2blog (m− 1)c

• Number of Shifts = m− 1

CHAPTER 2. MATHEMATICAL BACKGROUND 17

Both algorithms in [28] and [57] have similar computational complexities. Itoh’s algorithm

in [57], although simpler to implement, requires a stack structure to hold the intermediate

temporary results. That is the algorithm is not completely serializable with use of a single

temporary variable. In [3], Agnew et al. have discussed the hardware implementation

of this scheme and its space requirements. They showed how to modify the scheme in

order to trade-off an increase in number of multiplications for the space requirements. The

following scheme is proposed. Suppose that m− 1 = gh. Then

2m−1 − 1 = 2gh − 1 = (2g − 1)
(h−1∑

i=0

2gi
)

. (2.11)

Now,

β−1 = β2
m−1−2 = β2(2

m−1−1) = γ(2
g−1)(

∑h−1
i=0 2

gi), (2.12)

where γ = β2. Then λ = γ(2
g−1) can be calculated in g − 1 multiplications and λ

∑h−1
i=0 2

gi

can be computed in h − 1 multiplications. Hence, β−1 can be computed in (g + h −
2) multiplications. It is said that the number of multiplications using this approach is

minimized when g and h are about
√
m− 1. In the case that such suitable values are not

available, alternative factorizations methods can be used [3].

2.2.3 Extended Euclidean Algorithm Based Inversion

If a fast multiplier (squarer) does not exist, then the most efficient way to compute inverses

is using schemes based on Extended Euclidean Algorithm (EEA) or binary (Stein’s) GCD

computation. The EEA is based on the classical Euclidean algorithm which computes

the greatest common divisor of two integers greater than unity. The Euclidean algorithm

in its polynomial form may be generalized to computes the greatest common divisor of

two polynomials greater than zero polynomial. In this section a first description of EEA

is provided. But in the next chapter, a detail comparison of implementations based on

variants of EEA and binary GCD computation will be reviewed.

In an extended Euclidean algorithm (EEA) not only the GCD of two polynomials a

and b but also two auxiliary polynomials a′ and b′ are computed such that

aa′ + bb′ = GCD(a, b).

18 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

The advantage is that the computation of three unknowns: GCD(a, b), a′, b′, can be

done simultaneously by keeping track of only two vectors of three elements each. In the

following, the application of EEA over polynomial to compute the inverse of an element is

presented.

Let A(x) be a polynomial corresponding to element A ∈ GF (2m), where GF (2m)

is defined by the irreducible polynomial F (x). Since F (x) is an irreducible polynomial,

GCD(F (x), A(x)) = 1. In order to compute the inverse of A(x), i.e., A′(x), the following

relationship can be used

A(x)A′(x) + F (x)U(x) = 1. (2.13)

Constructing two initial equations

A(x)A′(−1)(x) + F (x)U (−1)(x) = R(−1)(x), (2.14)

A(x)A′(0)(x) + F (x)U 0)(x) = R(0)(x), (2.15)

where A′(−1)(x) = 0, A′(0)(x) = 1, U (−1)(x) = 1, U (0)(x) = 0, and R(−1)(x) = F (x),

R(0)(x) = A(x). Now, applying a GCD computation sequence to pair [R(−1)(x), R(0)(x)] ,

at each iteration, a triple of auxiliary polynomials can be computed as

A′(i)(x) = A′(i−2)(x) +Q(i)(x)A′(i−1),

U (i)(x) = U (i−2)(x) +Q(i)(x)U (i−1),

R(i)(x) = R(i−2)(x) +R(i)(x)U (i−1),

where Q(i)(x) = bR(i−2)(x)/R(i−1)(x)c. Note that addition and subtraction over GF (2) are
the same. With these transformations at the ith step when Q(i)(x) = GCD(A(x), F (x)) =

1 is reached, then Equation (2.13) can be conceived as

A(x) · A′(i)(x) + F (x) · U (i)(x) ≡ 1 (mod F (x)).

F (x) is an irreducible polynomial, F (x) · U (i)(x) ≡ 0 (mod F (x)) always, and A′(i)(x) is

the inverse of element A(x).

As far as numbers of iterations, in [87], two theorems by Norton show that for uniformly

distributed normalized polynomials of degree m and n over GF (2), the average number of

iterations of a binary left- or right-shift GCD algorithm is

1

2
m+

1

3
n+O(1) if m ≥ n ≥ 0,

CHAPTER 2. MATHEMATICAL BACKGROUND 19

and the maximum number of iterations, the worst case, is

m+
⌊n

2

⌋

+ 1.

These results improve similar estimations by Knuth [63]. The average number of EEA

iterations is less than Fermat’s little theorem and also the operations needed in each iter-

ation can be efficiently implemented, as it will be shown.

2.3 Summary

In this chapter, a brief review of basis representation of elements in extension fields has

been presented. It has been mentioned that the choice of an efficient technique for inversion

and other operations are intimately tied to the choice of basis representation of the field.

Next, some methods for computing inverses, most importantly those based on Fermat’s

little theorem have been reviewed.

In the next chapter, methods to compute inverses based on variants of extended Eu-

clidean algorithm or binary (Stein’s) GCD algorithm will be compared and classified. Fur-

ther, it will be shown that a method based on solving a set of linear equations using

double-basis (polynomial and triangular) representation can make use of EEA type algo-

rithms for efficient inversion and division computation.

Chapter 3

(Extended) Euclidean and Binary

GCD Algorithm

3.1 Greatest Common Divisor Computation

The Greatest Common Divisor (GCD) computation is fundamental to algebraic and sym-

bolic operations. Algorithms and implementations applied to integers can be easily modi-

fied for polynomials hence applied to Galois fields. In particular, the extended variants of

the GCD computation has many applications in coding theory and cryptography. Because

of inherent parallelism and iterative nature of many algorithms based on GCD, especially

those applied to Galois fields, an iterative hardware mapping of these is common.

The greatest common divisor (GCD) can be defined as follows. If r and s are integers

(or polynomials), not both zero, their greatest common divisor, gcd(r, s), is the larger

integer (or polynomial) that evenly divides both r, s [64].

3.1.1 Basic GCD and EEA

In [64], Knuth provides the classic GCD and EEA algorithms for integers, which can readily

be extended for polynomials.

It can be noted that primarily the GCD computation is a repeated remainder calcula-

tion. However, the repetition itself makes a GCD computation more complex than its basic

20

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 21

Algorithm 1 Classic GCD computation Algorithm.
input: r and s integers or polynomials.

output: gcd(r, s).

while (s 6= 0) do

[r, s]← [s, r (mod s)];
return r

remainder calculation. Algorithm 1 shows the classic GCD computation where the value

of s decreases monotonically in all steps, and s ≤ r always, except in the first iteration

if s > r at input. This condition s ≤ r ensures the termination of the algorithm. Let

us assume that s ≤ r at input, then the worst case number of iterations occurs when the

integer inputs are consecutive Fibonacci numbers. In this case the binary representation

of an integer s decreases at most one bit at each iteration. For an n > 0, and r = Fn+2,

s = Fn+1, Algorithm 1 requires exactly n division steps [64]. For polynomials of degree n,

m, the worst case number of iterations is (n +m + 1). The validity of algorithm follows

from:

gcd(r, s) = gcd(s, r − qs), (3.1)

gcd(r, 0) = |r|. (3.2)

Equation (3.1) represents a GCD-preserving transformation, also described by Brent et

al. in [14]. Formally, in a GCD-preserving transformation, a pair of polynomials [r, s] are

transformed into [r, s] such that gcd(r, s) = gcd(r, s). Other such transformations will be

mentioned in all GCD and EEA variants. The extended Euclidean Algorithm (EEA) based

on Algorithm 1 is shown in Algorithm 2.

In Algorithm 2, the implementation of [w3, u3, t3] are not required if [w1, u1, t1] and

[w2, u2, t2] can be updated simultaneously, as is the case in hardware implementations.

More importantly, if w3, u3, and t3 can be updated simultaneously, i.e., w3 and u3 can be

transformed according to the t3 transformation, then these remainders can be computed

with no need to compute q explicitly.

In EEA, the sequence of t’s represents the gcd transformation sequence, and the se-

quence of u’s, the result transformation sequence (for inversion and division). At each

22 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Algorithm 2 Extended Euclidean Algorithm (EEA).
input: r and s integers or polynomials.

output: w, u, t such that w r + u s = t = gcd(r, s)

[w1, u1, t1]← [1, 0, r]; [w2, u2, t2]← [0, 1, s];
while (t2 6= 0) do

q ← bt1/t2c such that t1 − qt2 = t3;

[w3, u3, t3]← [w1, u1, t1]− [w2, u2, t2]q;
[w1, u1, t1]← [w2, u2, t2]; [w2, u2, t2]← [w3, u3, t3];

return w1, u1, t1

iteration i, the invariant of Algorithm 2 is

wi r + ui s = ti. (3.3)

The division step of Algorithm 2 required to compute a remainder, explicitly shown as

modulo reduction in Algorithm 1, is computationally expensive and alternatives to it must

be found. All efficient implementations, in particular for large size of operands in hardware

designs, implement this remainder calculation in a stepwise fashion, e.g., digit or bit serial.

In general, this is achieved by a single step shift per iteration up to an alignment condition.

This operation represents the first common task of all algorithms which will be reviewed

in this thesis. We will refer to this as Task 1. There are two classes of architecture to

perform such a stepwise shift and alignment operation. These are referred to as left-shift

and right-shift algorithms. Let us start with right-shift class of algorithms.

3.2 Right-Shift GCD Algorithm, Right-Shift EEA

An alternative to the classic GCD computation without a division step is the binary GCD

(or Stein’s) algorithm, also called right-shift or low-order first, which uses only additions,

shifts and comparisons. These are so called since they perform GCD-preserving trans-

formations based on checking the value of the lowest order coefficients of polynomials or

least significant bit (lsb) of integers. Polynomials (or integers) shrink from their higher

order degrees (or most significant bits) but not necessarily monotonically, up to reaching

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 23

a zero remainder as expected by the classic GCD algorithm. In the following six variants

of binary GCD algorithm or their extended versions are discussed.

3.2.1 Binary GCD Algorithm and its Plus-Minus Variant

The basic variant of binary GCD (Stein’s) algorithm is shown in Algorithm 3.

Algorithm 3 Stein’s Binary GCD Algorithm.
input: r and s non-negative integers or polynomials, where s0 = 1, and s0 represents the lsb of

binary representation of integer s, or the coefficient of degree zero of polynomial s.

output: gcd(r, s).

while (r 6= 0) do

while (r0 = 0) do

r ← r/2;

if (r < s) then

[r, s]← [s, r]; // swap //

r ← r − s;

return s

In Algorithm 3, no division step is required and this implies that a newly computed

r may be less or greater than s, in contrast with Algorithm 1 where it is ensured that

s ≤ r always. Hence, the division step is eliminated at the expense of a comparison and a

probable swap step. In Algorithm 3, the comparison step and a possible swap is required

to ensure s ≤ r, but the implementation complexity of such a task plus a stepwise shift

and alignment operation to implement Task 1 is by far less than a division step. On the

other hand, on average the number of iterations of Algorithm 3 are much greater than

Algorithm 1 using a division step applied on the same set of input values, however in a

hardware implementation, each iteration (cycle) time of Algorithm 3 is much shorter than

Algorithm 1. In practice, all GCD and extended GCD computation algorithms, except

one [56], which implement a variant of Task 1, have a swap condition checking mechanism

as well. We will refer to this as Task 2.

A major difficulty in implementing Algorithm 3 is that the comparison (r < s) requires a

knowledge of all digits of r and s which is not possible in certain (bit serial) implementations

24 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

and in any case it has O(log r) computational complexity (Brent [14]). In [14], an efficient

hardware alternative named plus-minus (PM) is proposed as shown in Algorithm 4.

Algorithm 4 Plus-Minus Variant of Binary GCD Algorithm for integers.
input: r, s, non-negative integers, where r is odd and s < r.

output: gcd(r, s).

d← 0; // This counter estimates the difference between dlog |r|e and dlog |s|e //
while (s 6= 0) do

while (s0 = 0) do

s← s/2; d← d+ 1;

if (d ≥ 0) then

[r, s]← [s, r] d← −d; // swap //

if ((r + s) mod 4 = 0) then

s← (r + s)/2;

else

s← (r − s)/2;

return |r|

Algorithm 4 neither has a division step nor a comparison between two integers. A

hardware implementation of Algorithm 4 may run faster than Algorithm 1 even though

the s← (r+s)/2 operation may not allow an optimal decrease of integers at each iteration

(as occurs in the classic GCD). Also, the hardware implementation of Algorithm 4 is more

efficient than Algorithms 3. This is mainly due to possibility of using a counter to keep

track of the number of shifts of integers. The counter value represents an estimate (an

upper-bound) on the difference of the size of integers (or degree of polynomials). The com-

putational complexity of the incrementer-decrementer of this counter is only O(log log r)

as compared to O(log r) required for the comparison step of Algorithm 3.

Algorithm 4 can be modified to compute polynomial GCD as well. In the specific case

of binary polynomials, in fact, it can be simplified with no need to distinguish between

plus or minus operation. Hence, a simplified variant as in Algorithm 5 may be considered.

In [87], Norton proves that in the worst case, the number of iterations of polynomial

right-shift GCD algorithm over extended binary fields with polynomials of degree m ≥ n ≥

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 25

Algorithm 5 Plus-Minus Variant of Binary GCD Algorithm for binary polynomials.
input: r, s, binary polynomials, where r0 = 1 and s < r.

output: gcd(r, s).

d← 0; // This counter estimates the difference between deg(r) and deg(s) //

while (s 6= 0) do

while (s0 = 0) do

s← s/x; d← d+ 1;

if (d ≥ 0) then

swap (r, s); d← −d;
s← (r − s)/x;

return r

0 is m + bn/2c + 1. It can be noted that this is less than what was said in Section 3.1.1.
Achieving such a lower bound depends on the implementation feasibility and in the case of

prime fields or polynomials over non-binary fields the previously stated lower bound, i.e.,

m+ n+ 1, prevails.

The implementation of Algorithms 4 and 5 can be further optimized in hardware de-

signs, specifically advantageous in bit serial architectures, where d can be represented by a

“sign and magnitude unary” scheme. In this scheme the sign of d and the absolute value

|d| are kept separate and a new variable δ = 2|d| represents the magnitude [17, 116]. Not

only this scheme is suitable for bit-level pipelining but even in a centralized control scheme

it eliminates the delay of incrementer-decrementer of a counter by using right or left shift

operation. The representation of δ requires a maximum of m+ 1 storage spaces, i.e., reg-

isters, which is available and convenient to have in a bit serial implementation. In other

cases, this may not be a desirable feature. This representation of d which may represent

the difference of degree of polynomials as well, can be used not only in the right-shift but

also in the left-shift GCD algorithms as it will be discussed later.

Based on Algorithm 4, different schemes to compute multiplicative inverses are pro-

posed. In [103], Takagi proposed a direct extension of Algorithm 4, similar to the EEA,

to compute multiplicative inverses over integer prime fields. Next, Takagi et al. in [110],

and Wu et al. in [115,116] proposed specific extended binary GCD algorithms to compute

multiplicative inversion and division over binary finite fields GF(2m).

26 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

3.2.2 Binary GCD Division Algorithm

An implementation of division over finite fields, using a direct application of Stein’s algo-

rithm is presented in [115] which is shown in Algorithm 6.

Algorithm 6Modular Division over Prime Fields using Extended Binary GCD Algorithm.
input: p prime field modulus, b integer dividend, a > 0 integer divisor.

output: b/a mod p.

[r, s]← [p, a] [u, v]← [0, b]
while (s > 0) do

if (s0 = 1) then

if (s < r) then

[r, s]← [s, r − s]

[u, v]← [v, (u− v) mod p]

else

[r, s]← [r, s− r]

[u, v]← [u, (v − u) mod p]

[r, s]← [r, s/2]
[u, v]← [u, (v/2) mod p]

return v

In Algorithm 6 the pair [r, s] represents the gcd sequence and the [u, v] represents the

result sequence. The gcd sequence follows the GCD-preserving transformation of Stein’s

algorithm, e.g., [r, s]← [r, s/2]. In Algorithm 6, also the result sequence follows the same

GCD-preserving transformation, and a division b/a mod p can be computed since each

(u − v) or (v/2) operation is followed by a modulo reduction if necessary. Note that the

modulo reduction step of this algorithm is required either a division or solely inversion is

performed.

An important distinction between the modulo reduction required in the result trans-

formation sequence and the one mentioned in the gcd transformation sequence is in order.

The modulo reduction mentioned in the gcd transformation sequence represents an integer

(or a polynomial) division to compute a remainder, corresponding to a shrinking divisor

at each iteration. Hence, efficient solutions to implement it with right-shift or left-shift

variants are proposed. However, a probable modulo reduction in the result transformation

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 27

sequence is an effective modulo reduction by an irreducible polynomial (or a modulus) of

the underlying field. This modulo reduction, when required, cannot be transformed similar

to the gcd transformation sequence case; even though, a stepwise implementation of the

gcd transformation sequence may facilitate the implementation of this modulo reduction.

Another variant of Algorithm 6 proposed by Takagi et al. in [110], which will not

be repeated, follows the Brent’s idea and compares the degree of polynomials instead

of polynomial themselves. Always in [110], a divider implementation is proposed which

requires two counters, first to keep track of the exit condition of thewhile loop of Algorithm

6, and second to hold the difference of the degree of polynomials.

In [115], a hardware optimization of Algorithm 6 to implement a systolic divider over

GF(2m) with fixed number of iterations is proposed which is shown in Algorithm 7. Clearly,

this implementation does not require the first counter described in [110]. In a systolic

architecture the cost of a stepwise modulo reduction is contained. In Algorithm 7, the

swap condition based on the degree tracking by a counter as described by Brent et al. and

Takagi et al. is used as well.

Algorithm 7 Polynomial Division over Binary Fields by Extended Binary GCD Algo-

rithm.
input: f(x) irreducible polynomial of a field of dimension m, dividend b(x) and divisor a(x).

output: b(x)/a(x) mod f(x).

d← −1; [r, s]← [f(x), a(x)]; [u, v]← [0, b(x)];
for (k = 1 to 2m− 1) do

if (s0 = 1) then

if (d < 0) then

[r, s]← [s, r + s];

[u, v]← [v, u+ v]; d← −d
else

[r, s]← [r, r + s];

[u, v]← [u, u+ v];

[r, s]← [r, s/x];
[u, v]← [u, (v/x) mod f(x)]; d← d− 1;

return v

28 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

In Algorithm 7, the overwriting of r and u occurs only when d < 0, which means the

number of shifts of s is greater than r. In other words, it corresponds to the case s < r

of Algorithm 6. Also, in a binary field case, all subtractions are substituted with XOR

operations, hence no ordering of polynomials where d < 0 or otherwise is shown.

Algorithm 7 is the first algorithm in which a new formulation of the exit condition is

provided. We will refer to this exit condition checking as Task 3. All algorithms presented

here have a variant of this. In Algorithm 7 , the while loop with exit condition checking

s > 0 is changed into a for loop of 2m−1 since the maximum number of iterations require
for polynomial s to reach zero is 2m. This is a typical case for hardware implementations

where irregular behavior and hence condition checking such as variable number of iterations

are not desirable. For example, systolic architectures where an exact number of iterations

can be mapped into an exact number of processing elements.

3.2.3 Almost Inverse Algorithm

In [96], another variant of the extended Binary GCD algorithm for computing multiplicative

inverses over finite fields named Almost Inverse Algorithm is proposed which is shown as

Algorithm 8.

Algorithm 8 combines ideas from Stein’s binary GCD algorithm for the gcd sequence

transformation and Berlekamp’s result sequence transformation [12] described later. Also

in this algorithm, the pair [r, s] represents the gcd transformation sequence and the [u, v]

represents the result transformation sequence. The gcd transformation sequence follows

the GCD-preserving transformation of Stein’s algorithm. This algorithm avoids a possible

costly modulo reduction of the result sequence. However, it cannot compute division since

no modulo reduction is used. When Algorithm 8 ends, It returns an output uxk such

that u ≡ a−1(x) mod f(x), where f(x) can be either the binary representation of prime

field modulus or the irreducible polynomial or a binary field, and x is the indeterminant

of polynomial representation of field elements. When it terminates the inputs and the

outputs are related by

wxkf(x) + uxka(x) = xk.

Hence, in order to get the correct result, it is necessary to divide uxk by xk, or multiply

by x−k.

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 29

Algorithm 8 Almost Inverse Algorithm.
input: f(x) prime field modulus or irreducible polynomial, a(x) a field element.

output: uxk, k where u ≡ a−1(x) mod f(x).

k ← 0; [r, s]← [f(x), a(x)]; [u, v]← [1, 0];
while (deg(s) > 0) do

if (s0 6= 0) then

if (deg(s) < deg(r)) then

[r, s]← [s, (r − s)]; // swap //

[u, v]← [(u− v), u];

else

[r, s]← [r, (s− r)];

[u, v]← [(v − u), v];

while (s0 = 0) do

[r, s]← [r, (s/x)];
[u, v]← [u, (vx)]; k ← k + 1;

return uxk, k

Algorithm 8 as shown requires three counters (more efficient hardware implementations

are possible). First, two independent counters are needed to keep track of deg(s) and

deg(r). Note that these counters are not simple incrementer-decrementers since at each

swap a new value of s with a possible new degree value is computed. The difference

of these two counters is used for the swap condition checking. Next, a third counter is

required to keep track of total number of shifts of s. This third counter is represented by

k in Algorithm 8. A relationship between k and the degree of r and s at each iteration can

be found but its implementation may not be more efficient hence it is not explicitly shown

or used here.

In Algorithm 8 the result sequence follows a transformation due to Berlekamp [12] which

is identified by an reverse shifting of result sequence with respect to the gcd sequence. This

is particularly useful since no modulo reductions applied to partial results are required.

Only a final modulo reduction after multiplication by x−k is needed. Hence, this algorithm

may have efficient implementation where intermediate modulo reductions are expensive,

e.g., software implementations, and on the other hand, for certain classes of irreducible

30 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

polynomials the final multiplication by x−k and modulo reduction can be implemented

efficiently [96]. However, in [113], it is shown that Algorithm 8 is not suitable for other

software implementations.

In [33], a comparison between Algorithm 8 and 7 in computing both inversion and

division has shown that only under certain choices of suitable irreducible polynomials,

Almost inverse algorithm has a better performance as reported in other papers. Let F (x) =
∑m

i=0 fi be irreducible polynomial and l = min{i ≥ 1 | fi = 1}. Now, “the irreducible
polynomial is said to be suitable if l is above some threshold which may depend on the

implementation, e.g., l ≥ 32 ... since, then, less effort is required in the reduction step.” [33].

3.3 Left-Shift GCD Algorithm, Left-Shift EEA

In the previous six algorithms, the right-shift (or low-end or binary or Stein’s) GCD Al-

gorithm and its extended alternatives have been reviewed. A set of algorithms, dual to

above, based on a direct modification of Euclidean GCD computation exists which is called

left-shift or high-end GCD class of algorithms. These algorithms perform GCD-preserving

transformations based on checking the value of the higher order coefficients of polynomials

or most significant bit (msb) of integers. This class of algorithms is advantageous where

polynomial or integers must be processed from the highest degree (or msb) first. Moreover,

this class of algorithms can keep track of the exact difference of degree of polynomials (or

size of integers), and where a least or optimal number of iterations per GCD computation

may be achieved. Also, a specific variant of EEA of this class can compute multiplicative

inverses with no modular reduction step at all.

All three tasks mentioned in the right-shift class are required in left-shift algorithms as

well. The main difference regards the implementation of Task 1, which is discussed next.

In left-shift class of algorithms, in order to compute the quotient q or mainly the

remainder of a division step of Algorithm 2, a series of stepwise transformations is used

which mimics a “long division”. The “long division” algorithm described by many authors

[15, 17, 40, 119] is shown in Algorithm 9. (The application of Algorithm 9 to implement a

systolic structure for inversion and division over extension binary fields is described in [17].

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 31

Algorithm 9 Polynomial Long Division Algorithm.
input: r and s polynomials.

output: r (mod s).

δ ← deg(r)− deg(s)
while (δ ≥ 0) do

[r, s]← [(r − xδs), s];

δ ← deg(r)− deg(s);
return r

In Algorithm 9 consecutive values of δ, if exist, represent the coefficients of quotient

polynomial q of Algorithm 2, and the corresponding partial remainders of these “long

division” steps are computed using simple subtractions accordingly. Algorithm 9 ensures

to end with (deg(r) < deg(s)). In fact, at input no pre-condition on the degrees of r

and s is imposed. It can be noted that Algorithm 9 is a GCD-preserving transformation.

Algorithm 9 can be used for integers without any modification as well.

Next, a single division step of a GCD computation or EEA, as in Algorithms 1 and

2 can be substituted by a “long division”, and a complete GCD computation or EEA

can be implemented by as a series of “long-division” algorithm, plus a polynomial (or

integer) swap mechanism between each two consecutive “long divisions”. Hence, only

simple operations: shift, subtraction and a mechanism to keep track of difference of the

degree of polynomials are sufficient to complete GCD computation or EEA which are

exactly the same operations seen in right-shift binary GCD schemes.

Left-shift class of GCD computation algorithms must ensure that the exit condition

of Algorithm 1 seen in Section 3.1.1 holds at all iterations. This is said to be (s ≤ r).

At each iteration of Algorithm 9, if an implementation ensures that the left-shifted value

xδs is computed on-the-fly or it is not written over s, the exit condition holds. In other

implementations where the shifted value of s are saved, either an auxiliary polynomial

(storage) must be used or, more interestingly, a mechanism to keep track of the number of

shifts of s must be in place. The former may be called a restoring and the latter a non-

restoring gcd transformation sequence. While the former can be used for both polynomial

or integer GCD computation, the latter is applicable only to polynomial GCD computation.

In a non-restoring case, a refinement of Algorithm 9 into an exact single step shifting

32 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

with re-ordered outputs can be devised as shown in Algorithm 10.

Algorithm 10 Swapped Shifted Polynomial Long Division Algorithm.
input: r and s polynomials with deg(r) > deg(s).

output: xδ(r (mod s)), xδs.

δ ← 0
while (deg(r) > deg(s)) do

δ ← δ + 1

s← xs;

[r, s]← [s, (r − s)]; // first alignment, and overwriting of r //

while (δ > 0) do

s← xs;

if (deg(r) = deg(s)) then

s← (r − s);

return r, s

Algorithm 10 is a modified version of Algorithm 9 where each polynomial is shifted one

step at a time and the degree of shifted polynomials are not restored afterward. Here, a

pre-condition is defined as the degree of its dividend to be greater than the degree of its

divisor. And as a post-condition, it ensures that the degree of its shifted remainder is less

than the degree of its shifted divisor at its termination.

In Algorithm 10, a δ times shifted version of final remainder and the divisor are returned.

Initially, the degree of dividend is greater than the degree of divisor by δ units. For δ

iterations a divisor polynomial is left shifted. At a first alignment iteration where the degree

of shifted divisor is reached the degree of dividend, a remainder polynomial is computed

which may have a degree greater, equal or less than the pre-shifted divisor, but always its

degree is less than the degree of the shifted divisor. Next, a “virtual” restoring of divisor

starts. That is the degree of the shifted divisor is not decreased, but rather in the next

δ iterations, the remainder or partial remainders are left shifted where none, one or more

other alignments may occur and new partial remainders may be computed. After exactly

δ iterations, the pre-shifted divisor is “virtually” restored, and in all these δ iterations the

remainder polynomial is continuously updated to a degree less than the shifted divisor.

Thus, at the termination of each “long division” operation, its post-condition is ensured.

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 33

The first advantage of a stepwise “virtually” restoring implementation and a direct

consequence is the possibility to compute as exact upper bound of the number of iterations

of Algorithm 1, and to implement Task 3 very efficiently. Again thewhile loop of Algorithm

1 can be re-defined as a for loop of 2m− 1 iterations as also seen in Algorithm 7.
The main advantage of Algorithm 10 is that Task 2 can be implemented efficiently with

no swap of polynomials, but rather a selective overwriting of one of them. This also means

that the same polynomial is always shifted. Algorithm 10 indicates that the same shifting

polynomial s which represents the remainder of one “long division” operation will be the

divisor of the next operation. As a consequence, no swap of polynomials at the end of a

“long division” is needed. Thus, the end of a “long division” uniquely corresponds to a

reset of δ, and δ is needed only to distinguish between an overwriting condition (or a first

alignment case as indicated in Algorithm 10) and other alignment cases.

It can be seen that left-shift polynomial GCD algorithms, which process the polynomials

from the higher order coefficients, may cause polynomials to shrink (or zeroed) from either

higher order degrees in the restoring case, or lower order degrees in the non-restoring

one. In the non-restoring case, the keeping track of the number of shifts of s, which is

the same as Task 2 defined before, can be implemented using a simple counter or using

alternative methods such as a shifting indicator (as a ring counter) pointing to the lowest

order coefficient of s.

In the following extended Euclidean algorithms based on left-shift GCD computation

and their implementation issues with regard to multiplicative inversion and division over

Galois fields are discussed.

3.3.1 Berlekamp’s Inversion Algorithm with No Modulo Reduc-

tion

In order to compute only multiplicative inverses over finite fields using EEA, an area

efficient hardware implementation is proposed by Berlekamp in [12]. It requires a minimum

number of registers, i.e., no auxiliary registers, and most importantly it uses the least

number of logic computations since its result transformation sequence requires no modulo

reduction. This is achieved by processing (shifting) a pair of interchanged polynomials

34 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

of the result transformation sequence in the reverse order of the polynomials of the gcd

transformation sequence. First, this ensures that each two corresponding polynomials of

gcd and result sequence may fit in an m + 2 storage space, where m is the degree of the

larger polynomial, i.e., irreducible polynomial. Next, more importantly, it ensures that

the degree of the result sequence polynomials never reaches m. In [12], an implementation

based on this idea which requires a maximum of 2m+1 iterations to complete is proposed.

This compact implementation also provides a third advantage which will be described

as shifted result problem in detail later. Specifically, in the case of Berlekamp’s variant,

at the exit condition which is recognized by the number of shifts of either polynomials

of the gcd sequence reaching m, the correct result without any further manipulation is

available but in the reverse order. In the centralized control implementation proposed

in [12], a combined counter-like structure for the exit condition and also to keep track of

the difference of the degree of polynomials is proposed which may not be suitable for large

values of m. A systolic proposal based on this algorithm is presented in [9] with application

in Reed-Solomon decoders.

In the following we review a systolic variant of Berlekamp’s proposal. An algorithm

based on Berlekamp’s description but optimized for systolization by using a fixed number

of iteration is proposed by Yan and Sarwate in [119] which is shown as Algorithm 11.

In Algorithm 11, the major innovation of Berlekamp can be seen. At initialization,

the pair [u, v] are initialized by [xm, 0] instead of [0, 1] as it is commonly used in EEA,

i.e., Algorithm 2. Next, at each iteration while s is left-shifted, its counterpart v is right-

shifted. In practice, as all lower order coefficients of s are moving toward m to be XORed

with rm = 1, the polynomial v starting from xm generates all coefficients of degree 0

to m − 1. Also, the sum of these two degrees is always m. Note that this is not by

itself a characteristic of Berlekamp variant of inversion algorithm but proposed in other

architectures,e.g., [47], as well. In a centralized control design this is advantageous since

both polynomials can fit in an m + 2 bit register. This may not be trivially implemented

in a distributed control, i.e., systolic, implementation. But in any case, since the result

sequence polynomials require no modulo reduction, the Berlekamp-type designs result in

the least critical delay path circuits when distributed control (no counters) are used. On

the other hand, Algorithm 11 provides two systolic optimizations w.r.t. Berlekamp’s idea.

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 35

Algorithm 11 Variant of Berlekamp’s EEA For Inversion.
input: f(x) irreducible binary polynomial of degree m, a(x) a polynomial of degree < m.

output: a(x)−1 mod f(x).

d← 0; [r, s]← [f(x), a(x)] [u, v]← [xm, 0]
for ((2m) times) do

if ((sm = 1) & (d < 0)) then

d← −d; // swap //

[r, s]← [s, r];
[u, v]← [v, v];

if (sm = 1) then

[r, s]← [r, s+ r];

[u, v]← [u+ v, v];

d← d− 1;
[r, s]← [r, xs];
[u, v]← [u, v/x];

return v

First, it uses a fixed number of iterations for the exit condition. This ensures that the

correct result is returned in the same polynomial v always.

A comparison with the almost inverse algorithm as described in Algorithm 8 is in-

structive. Also, in Algorithm 8, the result sequence polynomials [u, v] are initialized with

[xm, 0]. Hence, no intermediate modulo reduction applied to the result sequence polyno-

mials is required. But, in Algorithm 8, the gcd sequence follows a binary GCD algorithm

type transformation. And at the exit condition which is recognized by s reaching zero, a

variable number of shifts applied to v has to be known, hence k counter is needed.

We conclude that a generalization of extended Euclidean algorithm and extended bi-

nary GCD is possible. Two pairs [r, s] and [u, v] must follow the similar GCD-preserving

transformations, but the pair [r, s] may follow either right or left-shift GCD computa-

tion, while the pair [u, v] may follow any of the four shifted result solutions which will be

described next.

36 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

3.3.2 Shifted Result Problem

It has been said that there are two alternatives to implement the left-shift polynomial ex-

tended Euclidean algorithm called as restoring and non-restoring variants. In non-restoring

implementations of EEA, the shifted result problem may be stated as “while it is advanta-

geous to use the shifted (non-restored) polynomials [r, s] to keep deg(r) = m always, the

same is not true for polynomials [u, v] and they must be restored.” In fact, we know that

for any multiplicative inversion algorithm based on Euclidean GCD, at a certain iteration,

i.e., i = j, the invariant of Equation (3.3) becomes:

wj r + uj s = 1. (3.4)

where uj is the inverse of s mod r. In a non-restoring implementation, at exit condition

defined as r = s = xm, the invariant of Equation (3.4) becomes

wjx
m r + ujx

m s = xm. (3.5)

Hence, in these implementations, instead of uj, a polynomial ujx
m may be returned.

Different strategies to tackle this problem of restoring ujx
m are proposed: The first

solution applied to binary finite fields is already discussed which is the Berlekamp’s variant

above. In this case, initializing [u, v] = [xm, 0], next, at each iteration while the gcd

sequence is updated as r ← r + xds, the result sequence is updated as u← u+ v/xd.

The second solution is to initialize [u, v] = [0, x−m] [56] and it is discussed next. The

third and fourth solutions are multiplying or dividing U (i−1)(x) alternatively [15] or using

an auxiliary polynomial [37].

3.3.3 Inversion Algorithm without Conditional Branching.

The second solution to the shifted result problem is proposed by Huang and Wu in [56],

shown in Algorithm 12.

The pair [u, v] is initialized with [0, x−m]. Note that x−m mod f(x) is a polynomial

with degree < m. Clearly, the final result after 2m iterations will be corrected, since

according to Equation (3.5), x−mujx
m = uj. But in this case at each iteration the updated

polynomial v may require a modulo reduction since its degree may reach m or more. It

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 37

Algorithm 12 Inversion Algorithm with no Conditional Branching (no swap).

input: f(x) irreducible binary polynomial of degree m, a(x) a polynomial of degree < m.

output: a(x)−1 mod f(x).

[r, s]← [f(x), a(x)] [u, v]← [0, x−m]

for ((2m) times) do

if (sm = 1) then

[r, s]← [s, x(s+ r)];

[u, v]← [v, x(u+ v) mod f(x)];

else

[r, s]← [s, xs];
[u, v]← [v, xv mod f(x)];

return u

may be noted this is not a very efficient method not only for successive modulo reductions

which could be avoided for only inversion algorithms, but mainly for the need for a pre-

computation of the x−m if a fixed irreducible polynomial is not used.

However, the major innovation of Algorithm 12 is not the solution to the shifted result

problem, but rather in its GCD computation without any conditional branching (no swap).

This results in extremely reduced logic, no counters, no swapping mechanism and a very

reduced gate delay implementation. But all this is achieved at the expense of increasing the

worst case number of iterations from 2m tom2. Not only this increases the time complexity

to O(m2), but also, in systolic architectures where each iteration is mapped into a different

processing element, it may require an O(m2) area complexity. In general, such complexity

figures may off balance the reduced delay path and less logic due to counter free structure

completely.

3.3.4 Inversion Algorithm with Right-Left-Shift of Result Se-

quence

In [15], Brunner et al. proposed a multiplicative inversion algorithm over Galois fields

GF(2m) shown in Algorithm 13. GCD-preserving transformations.

The modified EEA in Algorithm 13, follows a direct use of “long-division” algorithm

38 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Algorithm 13 Inversion Algorithm with Right-Left-Shift of Result Sequence.
input: f(x), a(x).

output: a−1(x) mod f(x).

d← 0; [r, s]← [f(x), a(x)]; [u, v]← [0, 1];
for (2m times) do

if (sm = 0) then

s← xs; v ← xv mod f ; d← d+ 1;

else

if (rm = 1) then

r ← r + s; u← u+ v;

r ← xr;

if (d = 0) then

swap(r, s); swap(u, v);

v ← xv mod f(x); d← d+ 1;

else

v ← v/x mod f(x); d← d− 1;
return v

where a stepwise GCD-preserving transformation of pair [r, s] is shown. The implicit exit

condition is mapped into a for loop of 2m iterations. The important aspect of Algorithm

13 is the asymmetric right and left-shift of v required to solve the shifted result problem.

While the counter d is zero or increasing, v ← vu mod f(x), else while it is decreasing,

then v ← v/x mod f(x).

Brunner et al. proposed a centralized control implementation with the up/down counter

d which keeps track of degree of polynomials. This centralized control design has 3 global

control signals, one carry for modulo reduction, and bidirectional data lines between ad-

jacent registers. It is said that the cycle time is independent of field-size since no global

data propagation occurs. That’s the delay of variable size counter structure and long in-

terconnect of global control signals are ignored. This assumption for a centralized control

implementation is valid only when the worst case delay path of control unit is less than

clock period requirement. It is also said that one inversion per 2m cycles is possible consid-

ering a parallel load of all operands and parallel read of the result. Both above assumptions

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 39

hold for small values of m with respect to the clock period.

In Algorithm 13, and its implementation, two constraints are imposed. First, the

explicit swap condition occurs only at d = 0 where a “long-division” is complete and

the other will start next. Next, the pair [u, v] are implemented as m-bit registers which

must not overflow. Under these constraints, even an inversion only algorithm will require

a modulo reduction. Further, this inversion only algorithm cannot be extended to perform

division easily. The problem is that the required modulo reduction applied to the result

sequence requires two different modulo reduction at both ends of u, when its degree either

overflows m − 1 or when it underflows 0. In this case, the asymmetric shifting of [u, v] is
cumbersome.

On the other hand, in other cases, such as bit serial systolic architectures, this asym-

metric shifting may be handled more efficiently.

A more elaborate systolic variant of right-left-shift scheme over GF(pm) is proposed

by Fitzpatrick et al. in [32] to implement a Reed-Solomon encoder where coefficients of

subfield elements are processed in each systolic cell and moreover the input polynomials

may have powers of p as factors.

3.3.5 Division Algorithm with a Two-step Shifted Result Solu-

tion

A variant of Algorithm 13 is proposed by Guo and Wang in [40] which avoids such an

asymmetric shifting and is able to compute division. This division variant is shown in

Algorithm 14.

Algorithm 14 inherits the constraints described for Algorithm 13. But its advantage

w.r.t. Algorithm 13 is the uniform left-shift operation of u← xu mod f at all cases with

(rm = 1). This simplifies the implementation of Part a of algorithm since no selective

modulo reduction is used. Further, a uniform modulo reduction allows the inversion algo-

rithm can be extended to perform the division at no extra cost (or modification). However,

as it said before, this uniform shifting results in the shifted result problem. As a matter

of fact, this algorithm is the best descriptive example of this problem. Hence, Part b is

required explicitly to fix this problem.

40 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Algorithm 14 Left-Shift Scheme Division with Successive Correction Step.
input: f(x), a(x), b(x).

output: b(x)/a(x) mod f(x).

d← 0; [r, s]← [f(x), a(x)]; [u, v]← [0, b(x)];
Part a

for (2m times) do

if (sm = 0) then

s← xs; v ← xv mod f ; d← d+ 1;

else

if (rm = 1) then

r ← r + s; u← u+ v;

r ← xr; u← xu mod f ;

if (d = 0) then

swap(r, s); swap(u, v); d← d+ 1;

else

d← d− 1;
Part b

for (m times) do

v ← v/x mod f(x)

return v

However, a combined implementation of Part a plus Part b may be very inefficient.

Specially, in an implementation where a last in first out (LIFO) stack structure between

these two parts is proposed to reverse the order of polynomial v. Such implementation

requires twice the number of iterations of a typical inversion/division algorithm which

results in a double latency and area complexity for a systolic architecture.

3.3.6 Division Algorithm with Auxiliary Polynomial for Partial

Remainder

The fourth solution to the shifted result problem is to transform the non-restoring model

into a restoring one. In fact, an auxiliary polynomial t can be used to hold the partial

remainders. At the start of each “long-division”, it initializes t ← u. During each “long-

CHAPTER 3. EXTENDED EUCLIDEAN AND BINARY GCD ALGORITHM 41

Algorithm 15 Division Algorithm with Auxiliary Polynomial for Partial Remainder.
input: f(x), b(x).

output: a(x)/b(x) mod f(x).

d← 0; signd ← 0; [r, s]← [f(x), b(x)]; [v, u]← [0, a(x)]; t = 0;

for (2m times) do

s← xs t← xt mod f(x)

if (signd = 0) then

d← d+ 1;

if (sm = 1) then

[s, r]← [r + s, s]; t← u; signd ← 1
else

d← d− 1;
if (sm = 1) then

s← r + s; t← t+ u;

if (d = 0) then

[u, v]← [t+ v, u]; signd ← 0
return v

division” while (t ≤ v), it performs [t, v] ← [t + xdv, v] and finally at the end of each

“long-division”, it updates the pair [u, v] ← [u + xdv, u]. In practice, with this restoring

method, the shifts required for the computation of partial remainders which correspond

to the terms of each q in Algorithm 2 are not reflected in the dividend of the next “long-

division” cycle. A variant of this solution due to Guo and Wang [37, 39, 41] optimized for

systolization is shown in Algorithm 15.

In Algorithm 15, polynomial t represents the partial remainders computed during each

cycle, u represents the dividend and v the divisor of each “long-division” cycle. Note that t

is shifted in all 2m iterations, however, its content is overwritten by u at the first alignment

of r with s equivalent to the start of a new “long-division”.

Once again, a counter d is used for keeping track of the degree of polynomials [r, s].

For efficient systolization with no carry propagation structure, the sign and magnitude of

d are separately implemented where it assumes the sign of d = 0 be 1, as if negative. This

algorithm can be rewritten in a more compact form if we let d ← d + 1; and to check for

42 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

(d > 0) instead of sign of d equals to 0 at each alignment where r is overwritten. However,

in a systolic structure the same circuitry will be implemented. It can be seen that the

polynomial t acts as the partial remainders while (d < 0), that is while the same divisor is

used to compute the successive terms of the same q. At each (d = 0) while (signd = 1) a

new dividend is generated.

In practice, this algorithm is a restoring alternative and we know that in such a case

no modulo reduction is required to compute multiplicative inverses. On the other hand, in

Algorithm 15, the modulo reduction is used to compute divisions.

A similar restoring solution was initially proposed by Horng and Wei in [55]. Their

semi-systolic proposal is a direct map of Algorithm 2 into two semi-systolic architectures,

one to compute each term of q and to pass it to semi-systolic multiplier for the consec-

utive updating of pair u’s and v’s using the intermediate polynomials t’s as necessary,

hence a restoring alternative. In this semi-systolic design there are 8 global control signals

corresponding to 2 up-down counters, 2 loads and one add signal.

3.4 Summary

In this chapter, a comparative review of EEA and binary (Stein’s) GCD computation and

in particular those implementations relevant to the inversion and division over Galois fields

has been presented. Some basis steps in common among these have been discussed and

their differences are highlighted.

In the next chapter, a different view of computing multiplicative inversion and division

using EEA will be explored. The specific case of an inversion algorithm using triangular

basis will be described. Further, a common set of algorithms to compute inversion and

division based on EEA with both polynomial and triangular basis will be presented.

Chapter 4

Inversion using Double-Basis

representation

In this chapter, computing multiplicative inverses by solving a set of linear equations will be

reviewed. The specific case of the inversion using double-basis representation, and its low

complexity, area efficient implementation based on EEA will be discussed. The description

follows that was introduced in [46,49]. Part of the work in this chapter has been presented

in [16,18,19].

4.1 Single-Basis Inversion

Let GF (2m) be an extension field of GF (2) defined by the irreducible polynomial F (x) =
∑m

i=0 fix
i, fi ∈ {0, 1}, and ω be a root of F (x) such that F (ω) = 0. Then Ω =

{1, ω, · · · , ωm−1} is a polynomial basis. Let us consider two elements A,A−1 ∈ GF (2m)

43

44 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

and rewrite the equation A−1 · A ≡ 1 mod F (x) as

1 =

(m−1∑

j=0

bΩjω
j

)(m−1∑

i=0

aΩiω
i

)

(mod F (ω))

=
m−1∑

j=0

bΩj

m−1∑

i=0

aΩiω
i+j (mod F (ω))

=
m−1∑

j=0

bΩj

m−1∑

i=0

aΩi

m−1∑

l=0

p
[i+j]
Ωl ωl

(4.1)

where p
[i]
Ωl is the lth coordinate of ω

i.

Introducing the matrix A(AΩ) with elements Ai,j =
∑m−1

l=0 aΩlp
[l+j]
Ωi , Equation (4.1) can

be written as

1Ω = A(AΩ) A−1
Ω. (4.2)

The matrix A(AΩ) is uniquely defined by the coefficients of defining irreducible polynomial
F (x) and the coordinates of element A. More precisely, it is an m×m matrix over GF (2):

A(AΩ) = [AΩ, AωΩ, · · · , Aωm−1
Ω]. (4.3)

It can be shown that, withm bits memory, the formation of the matrix in Equation (4.3)

requires O(m2) arithmetic operations over GF (2). Then, the inverse A−1 is obtained by

solving the system of linear equations (4.3), which requires O(m3) arithmetic operations

over GF (2). However, a direct application of Equation (4.3) is computationally more

complex than all methods seen so far.

As an alternative implementation which does not require the matrix formation by

computation but simple wiring, the following proposal can be mentioned. In [21], Davida

has proposed a method to compute the multiplicative inverse of an element in extended

field GF (2m) by solving an augmented set of linear equations as follows. Let consider

F (x) · U(x) + A(x) · A′(x) = 1, where U(x) =
∑m−2

i=0 uix
i, and

deg(A(x)), deg(A′(x)) ≤ m− 1 and deg(U(x)) ≤ m− 2.

CHAPTER 4. INVERSION USING DOUBLE-BASIS REPRESENTATION 45

In matrix form, it can be written as






















f0 0 . . . 0 a0 . . . 0 0

f1 f0 . . . 0 a1 a0 . . . 0

f2 f1 f0 . . . a2 a1 a0 . . .
...

...
...

. f1 f0 am−1 . . . a1 a0

fm fm−1 . . . f1 0 am−1 . . . a1

0 fm . . . f2 0
...

...
...

...

0 0 . . . fm 0 0 0 am−1






















×





















u0

u1

u2
...

um−2

a′
0

a′
1
...

a′
m−1





















=





















1

0

0
...

0

0

0
...

0





















. (4.4)

Matrix Equation (4.4) can be transformed into (2m−1) equations in (2m−1) unknowns.
Since every nonzero element has an inverse, a solution for (2m − 1) unknowns always
exists. Coefficients fi’s and ai’s are known, therefore a direct solution for m coefficients

ai’s can simultaneously be computed. Davida suggested a parallel implementation for

computing ai’s using AND-XOR nets. This proposal would only be feasible for fields of

small dimension.

Another way to obtain a low complexity and area efficient implementation is to use a

double-basis inversion technique, polynomial and triangular bases at the same time.

4.2 Double-Basis Inversion

Recall the irreducible polynomial F (x), the polynomial basis Ω and the triangular basis Λ

as defined in Section 2.1.4. Further let us recall the linear transformation matrix (M−1) as

in Equation (2.4). Then, conversion of a given element A(x) from polynomial to triangular

46 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

basis can be written in matrix form AΛ = (M
−1)AΩ where M

−1 is

M−1 =














0 0 0 . . . 0 0 1

0 0 0 . . . 0 1 h1

0 0 0 . . . 1 h1 h2
...
...

...
. . .

...
...

...

0 1 h1 . . . hm−4 hm−3 hm−2

1 h1 h2 . . . hm−3 hm−2 hm−1














, (4.5)

and hi =
∑i−1

j=0 fm−i+jhj, for 1 ≤ i ≤ m− 1, and h0 = 1.
For an inversion operation, the above transformation is not necessary directly, and

this transformation can be combined into Equation (4.2) by pre-multiplying both sides of

Equation (4.2) by the matrix in (4.5), which results in

1Λ = H(AΛ)A
−1
Ω (4.6)

where 1Λ is the triangular basis representation of the multiplicative identity element of

GF (2m) and

H(AΛ) = [AΛ, AωΛ, · · · , Aωm−1
Λ]

is a Hankel matrix built upon AΛ. Given the element A(x) in polynomial basis, the

coefficients of inverse element A−1(x) in polynomial basis can be computed by solving

Equation (4.6).

In general, the formation of coefficients of the Hankel matrix requires recursive formulae

such as

hi =







aΛi 0 ≤ i ≤ m− 1,
∑m−1

j=0 hi−m+jfj m ≤ i ≤ 2m− 2,
(4.7)

which can be implemented by using linear feedback shift registers (LFSR) with F (x) as

the feedback polynomial and S(x) as the seed polynomial defined by

S(x) =
m−1∑

j=0

aΛjx
j =

m−1∑

j=0

hjx
j (4.8)

= H(x) (mod (xm)). (4.9)

CHAPTER 4. INVERSION USING DOUBLE-BASIS REPRESENTATION 47

In [46], it is shown that the computational complexity for the formation of the Hankel

matrix is equal to that of A(AΩ) in Equation (4.2), i.e., O(m
2), and it is proposed that

by a suitable choice of field defining irreducible polynomial, such as low Hamming weight

trinomials of type xm+x+1, the formation of the coefficients of the Hankel matrix requires

no recursion and it can be generated using single XOR gate paths. That is, since fj = 0

for 2 ≤ j ≤ m− 1, and only f0 = f1 = 1, then

hi = hi−m+1 + hi−m = aΛi−m+1 + aΛi−m m ≤ i ≤ 2m− 2.

For all practical purposes, there exists an irreducible trinomial or pentanomial [98],

hence a suitable choice of them will be useful. For general trinomials, xm + xk + 1, with

k ≤ bm/2c, each coefficient can be generated by 2 XOR gates at maximum (worst case
delay path). With a similar reasoning as above, only f0 = fk = 1 and all other fi = 0,

then let ∆ = m − k, for m ≤ i ≤ m + k − 1, hi = hi−m+k + hi−m, with both right hand

terms directly available from the coordinates of A. For m+ k ≤ i ≤ 2m− 2,

hi = hi−m+k + hi−m = (hi−∆) + hi−∆−k with i−∆ > m,

hi = (hi−2∆ + hi−2∆−k) + hi−∆−k,

with all three right hand terms directly available from A. These complexity figures and ones

that follow can be computed in the same manner as those of entries for the multiplication

matrix in Mastrovito multipliers [43].

For pentanomials, xm + xk + xj + xi + 1, where m > k > j > i > 0, it can be shown

that the critical path is dependent on ∆ = m − k. More precisely, the number of XOR

gates required to generate each entry are always less than or equal to C = m−2
∆
+ 3, with

a worst case delay path dlog2Ce. Specifically, the worst case corresponds to pentanomials
of type xm + xm−1 + xj + x + 1. However, in [98], it is shown that for pentanomials up

to degree 10000, for the degrees where no trinomial exists, the value of k can be quite low

which will result in very low values of the critical path.

In [34], Furness et al. have shown that for trinomials, the triangular basis is a simple

permutation of the polynomial basis, and for pentanomials this conversion requires a min-

imal hardware and a reordering of the coordinates of the element. For general irreducible

48 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

polynomials, the conversion between a polynomial basis representation and its correspond-

ing triangular basis representation can be systolized with techniques similar to the one used

in bit serial dual basis systolic multipliers [29]; One may conclude that the Hankel matrix

formation has a lower computational complexity compared to solving Equation (4.6), and

either computing or pre-computing coefficients of the Hankel matrix, Equation (4.6) can

be solved for a′
Ωi’s with O(m

2) GF (2) arithmetic operations [100], as opposed to O(m3)

required by Equation (4.2).

4.3 Inversion by applying EEA to a Hankel Matrix

In [100], Sugiyama has proposed some generalized algorithms to solve Discrete-TimeWiener-

Hopf (DTWH) equations based upon Euclidean algorithm. The DTWH equations are

represented by a set of t linear inhomogeneous equations with t unknowns λk (k =

0, 1, · · · , t− 1), (2t− 1) constant coefficients sk (k = 0, 1, · · · , 2t− 2), not all zeros, and t
constants bk (k = 0, 1, · · · , t− 1) such that











st−1 st−2 · · · s1 s0

st st−1 · · · s2 s1
...

...
. . .

...
...

s2t−3 s2t−4 · · · st−1 st−2

s2t−2 s2t−3 · · · st st−1











×











λ0

λ1
...

λt−2

λt−1











=











a′
0

a′
1
...

a′
t−2

a′
t−1











. (4.10)

Equation (4.10) can be viewed in a polynomial form as

S(x)Λ(x) = A−1(x), (4.11)

where polynomials S(x) and A−1(x) are defined such as

0 ≤degS(x) ≤ 2t− 2, (4.12)

degA−1(x) ≤ t− 1, (4.13)

for any fixed t. Then, Equation (4.11) can be solved to obtain a trio of polynomials

{Γ(x),Λ(x),Ψ(x)} which satisfies the following conditions:

CHAPTER 4. INVERSION USING DOUBLE-BASIS REPRESENTATION 49

1. S(x)Λ(x) = Ψ(x)x2t−1 + A−1(x)xt−1 + Γ(x),

2. degΓ < t− 1,

3. degΛ < t.

Applying EEA type sequence, this trio of polynomials can be computed, [100], such that

it requires O(t2) arithmetic operations for a polynomial of degree (2t − 1). Let us recall
the Hankel matrix built upon AΛ and rewrite Equation (4.6) in matrix form











h0 h1 · · · hm−2 hm−1

h1 h2 · · · hm−1 hm
...

...
. . .

...
...

hm−2 hm−1 · · · h2m−4 h2m−3

hm−1 hm · · · h2m−3 h2m−2











×











a′
Ω0

a′
Ω1
...

a′
Ω(m−2)

a′
Ω(m−1)











=











0

0
...

0

1











, (4.14)

then, a Hankel matrix with entries hi,j = hi+j is recognized. Let us consider two polyno-

mials

H(x) = h2m−2x
2m−2 + h2m−3x

2m−3 + · · ·+ h1x+ h0,

and

A−1
Ω(x) = a′

Ω(m−1)x
m−1 + a′

Ω(m−2)x
m−2 + · · ·+ a′

Ω1x+ a′
Ω0,

where hi, 0 ≤ i ≤ 2m − 2, and a′
j, 0 ≤ j ≤ m − 1, are elements of the Hankel matrix

and column vector of the left hand side of Equation (4.14), respectively. Noting that

0 ≤ degH(x) ≤ 2m − 2, and 0 ≤ degA−1
Ω (x) ≤ m − 1, the procedure to solve general

DWTH equations using EEA can be applied to solve Equation (4.14).

In [46], a more efficient algorithm which improves upon those in [100] for the special

case of computing inverses is proposed.

However, this improved algorithm will be presented in the following in the context of a

common set of algorithms based on EEA for computing inversion and division with both

polynomial and triangular basis as follows. This common set of EEA algorithms is the one

that will be systolized in the next chapter.

50 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

4.4 Generalized Polynomial Inversion and Division

In this section two generalized polynomial basis inversion and divsion algorithms using

EEA will be discussed. Next, these will be transformed into a novel division algorithm

optimized for systolization.

4.4.1 Polynomial Basis Inversion using EEA

Algorithm 16 Polynomial Basis Inversion Algorithm (PBIA) using EEA.

input: F (x), A(x).

output: The inverse of A(x).

Initialization:

U(x)← 0; V (x)← 1;
R(x)← F (x); S(x)← A(x);

Polynomial Updating:

while (degR(x) > 0) do

Q(x)←
⌊
R(x)
S(x)

⌋

;

R(x)← R(x)−Q(x)S(x);

U(x)← U(x)−Q(x)V (x);

swap (R(x), S(x)); swap (U(x), V (x));

return U(x)

The Extended Euclidean Algorithm (EEA) as in Algorithm 16 can be used to compute

the inverse of an element. Inputs to Algorithm 16 are F (x), defining irreducible polynomial,

and A(x), the polynomial basis representation of element A. At each iteration, Algorithm

16 performs a polynomial division of R(x) by S(x) where the quotient and the remainder

are Q(x) and (the new) R(x), respectively. The swap instructions of Algorithm 16 make

sure that at the end of each iteration degR(x) > degS(x).

In a hardware efficient design of Algorithm 16, the computation of Q(x) and the fol-

lowing operations inside the while can be implemented bitwise. In such implementation,

it will be discussed that remainders R(x), U(x) can be computed directly bitwise without

a need to compute Q(x) explicitly.

CHAPTER 4. INVERSION USING DOUBLE-BASIS REPRESENTATION 51

4.4.2 Triangular Basis Inversion Using EEA

In [46], an inversion algorithm is proposed which uses a triangular basis representation for

input A and returns its inverse in the polynomial basis according to Equation (4.6). This

equation can be solved using different methods for solving general Discrete-Time Wiener-

Hopf equations as in [100]. A simplified version of algorithm given in [46] is repeated here

as Algorithm 17.

Algorithm 17 Triangular Basis Inversion Algorithm (TBIA) using EEA.

input: H(x) =
∑2m−2

i=0 hix
i

output: The inverse element.

Initialization:

U(x)← 0; V (x)← 1; R(x)← x2m−1; S(x)← x2m−2H(x−1);

Polynomial Updating:

while (degR(x) > m− 1) do

Q(x)←
⌊
R(x)
S(x)

⌋

;

R(x)← R(x)−Q(x)S(x); U(x)← U(x)−Q(x)V (x);

swap (R(x), S(x)); swap (U(x), V (x));

return U(x)

4.5 Key Results on Inversion and Division using Tri-

angular Basis

In this section, some key results are presented that enable us to develop efficient hardware

for finite field inversion and division.

52 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

4.5.1 Inversion Algorithm Revisited

The following discussions are mainly centered around Algorithm 17. However, they can be

equally applied to Algorithm 16 and EEA in general.

The total number of iterations in Algorithm 17 depends on the initializations of R(x)

and S(x). Let us denote these initial polynomials as R(0)(x) and S(0)(x), respectively, In

the exit condition of the while loop, if the value, which deg R(x) is compared with, is

changed then the total number of iterations is also affected. Let us denote this comparison

value as µ. Thus the triplet T =
〈
R(0)(x), S(0)(x), µ

〉
completely determines the total

number of iterations and, hereafter, the latter is denoted as I (T). In Algorithm 17,

this triplet is 〈x2m−1, x2m−2H(x−1), m− 1〉. For any integer k, define another triplet
T̃ =

〈
xkR(0)(x), xkS(0)(x), µ+ k

〉
. Note that when k is negative, deg xkR(0)(x) and/or

deg xkS(0)(x) can be negative. The degree of the zero polynomial is assumed to be ∞.
Now, we state the following lemma.

Lemma 1 Using the notations given above, we have

I (T) = I
(

T̃
)

. (4.15)

Before giving a proof of the above lemma, we consider another aspect of Algorithm 17. It is

clear that this algorithm generates a sequence of quotient polynomials, one quotient in each

iteration. These quotients are determined by the initial polynomials: R(0)(x) and S(0)(x).

The length of the sequence depends on and is equal to the total number of iterations.

This, in turn, implies that the sequence is determined by T . Let us denote the sequence
as Q (T).

Lemma 2 With the notations given above, the following holds.

Q (T) = Q
(

T̃
)

. (4.16)

It is worth pointing out a direct implication of Lemmas 1 and 2. For any integer k, either

positive or negative, if we multiply the initialization polynomials R(0)(x) and S(0)(x) by xk

CHAPTER 4. INVERSION USING DOUBLE-BASIS REPRESENTATION 53

and add k to the comparison value of the exit condition, then the resultant total number

of iterations and the sequence of quotient polynomials are same as those without the above

mentioned changes.

Proof of Lemmas 1 and 2: Let e = I (T) and ẽ = I
(

T̃
)

. For 1 ≤ i ≤ min {e, ẽ}, let
Q(i)(x) and Q̃(i)(x) denote the quotients after i iterations resulting from the use of T and
T̃ , respectively. Similarly, denote R(i)(x), S(i)(x), R̃(i)(x), S̃(i)(x), etc. Clearly,

Q̃(1)(x) =

⌊

R̃(0)(x)

S̃(0)(x)

⌋

=

⌊
xkR(0)(x)

xkS(0)(x)

⌋

= Q(1)(x),

R̃(1)(x) = S̃(0)(x) = xkS(0)(x) = xkR(1)(x),

S̃(1)(x) = R̃(0)(x)− Q̃(1)(x)S̃(0)(x)

= xkR(0)(x)−Q(1)(x)xkS(0)(x)

= xkS(1)(x).

Using the above three relationships, it is then easy to show that the following holds

after the 2nd iteration.

Q̃(2)(x) = Q(2)(x); R̃(2)(x) = xkR(2)(x); S̃(2)(x) = xkS(2)(x).

If similar relationships hold after i − 1 iterations, by induction then they also do after i
iterations, i.e.,

Q̃(i)(x) = Q(i)(x); R̃(i)(x) = xkR(i)(x); S̃(i)(x) = xkS(i)(x). (4.17)

Thus, the two sequences Q(T) and Q(T̃) are equal up to a length of min{e, ẽ}. To
show that these sequences have the same length, we need to show that e = ẽ, i.e. Lemma

1.

Note that e is the smallest integer such that deg R(e)(x) ≤ m − 1. Similarly, ẽ is the
smallest integer such that deg R̃(ẽ)(x) ≤ m−1+k. Without loss of generality assume that
e ≤ ẽ. From (4.17), it follows that deg R̃(e)(x) = k + degR(e)(x) ≤ m− 1 + k. Thus e = ẽ

and the proof is complete.

54 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Now we consider the effect of replacing T by T̃ on U(x). The latter is the polynomial
through which the required result is returned at the termination of Algorithm 17. Let

U(x) and V (x) are initialized with U (0)(x) and V (0)(x). Then, after i iterations, 1 ≤ i ≤ e,

polynomial U(x) can be written as

U (i)(x) = Gi
(
U (0)(x), V (0)(x), T

)

for some function Gi which depends on U (0)(x), V (0)(x), and the first i quotients of the

sequence Q (T). If the triplet is changed to T̃ , it follows from Lemmas 1 and 2 that

neither the total number of iterations nor the resulting quotient sequence changes. Hence,

for 1 ≤ i ≤ e, we have

Gi
(
U (0)(x), V (0)(x), T

)
= Gi

(

U (0)(x), V (0)(x), T̃
)

.

In other words, for given U (0)(x) and V (0)(x), the results returned by Algorithm 17 using

T and T̃ are the same. Then, using k = −(m − 1) in T̃ we can restate Algorithm 17 as
follows. This particular choice of k makes the comparison value of the exit condition equal

to that of Algorithm 16. This feature allows us to map this new algorithm on a structure

that is designed for Algorithm 16 by simply changing the initializations of R(x) and S(x).

Algorithm 18 Shifted Triangular Basis Inversion Algorithm (STBIA).

input: H(x) =
∑2m−2

i=0 hix
i

output: The inverse element.

Initialization:

U(x)← 0; V (x)← 1; R(x)← xm; S(x)← xm−1H(x−1);

Polynomial Updating:

while (degR(x) > 0) do

Q(x)←
⌊
R(x)
S(x)

⌋

;

R(x)← R(x)−Q(x)S(x); U(x)← U(x)−Q(x)V (x);

swap (R(x), S(x)); swap (U(x), V (x));

return U(x)

CHAPTER 4. INVERSION USING DOUBLE-BASIS REPRESENTATION 55

-

-

--

-

Matrix

Hankel

Formation

F (x)

∗ Hankel vector of length (2m − 1)

Polynomial

Updating step

x2m−2H(x−1)∗

A(x)

B(x) = A−1(x)

x2m−1

Figure 4.1: Two step block diagram of Algorithm TBIA.

4.5.2 Comments

• In any practical implementation of Algorithms 16 and 18 the computation of Q(x)
is done by a bitwise polynomial long-division of R(x) by S(x) where nonzero terms

of the quotient are implicitly calculated bitwise.

• Algorithms 16 and 18 are quite similar. Despite the differences of the input polyno-
mials in the initialization step, the polynomial updating step of both algorithms are

the same.

• Algorithm 18 can be considered as a two-step process represented in block diagram
in Figure 4.1. The Hankel matrix entry formation for the initialization step must

precede, pipelined or otherwise, the polynomial updating step. It is shown that the

computational complexity of the first step is much less than the second in all specific

(practical) cases.

4.5.3 Algorithms for Division

It is mainly the finite field inversion that we have discussed so far. Here we will consider its

generalized operation, i.e., finite field division B = C/A, where A,B,C ∈ GF(2m), A 6= 0.
First we briefly present the following well known method for division using polynomial

basis. This will eventually help us with division using triangular basis.

56 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Polynomial basis division: Given polynomial basis representations of A and C, it is

well known that Algorithm 16 can be modified to obtain the required B in the polynomial

basis [11]. To this end, all that need to be changed in Algorithm 16 are to replace ”V (x)←
1” by ”V (x) ← C(x)” and ”U(x) ← U(x) − Q(x)V (x)” by ”U(x) ← U(x) − Q(x)V (x)

mod F (x)”. The new initialization of V (x) may cause the degree of U(x) to exceed m− 1
and hence the modular operation is needed.

Triangular basis division: When A are C are both represented w.r.t. the triangular

basis, Equation (4.6) can be extended to

cΛ = H(aΛ)bΩ. (4.18)

Like Equation (4.6) the above equation can be solved by the scheme proposed in [100]

which has a computational complexity twice more than that of Algorithm 18. The scheme

of [100] also requires twice as many polynomials as in Algorithm 18. We present a much

more efficient solution that uses two separate bases– triangular basis for A and polynomial

basis for C.

Let H ′(x) = xm−1H(x−1). Noting that R(0) = xm, one can see that the following

relationship holds at each iteration of Algorithm 18.

H ′(x)U(x) ≡ R(x) mod xm.

Let us denote A′ as the inverse of A, i.e., A′(x)A(x) ≡ 1 mod F (x). Assume that Algorithm
17 takes e iterations to return A′(x). Then

H ′(x)A′(x) ≡ R(e)(x) mod xm. (4.19)

Now, we proceed to modify Algorithm 18 as we have done with Algorithm 16, i.e., ”V (x)←
1” is replaced by ”V (x)← C(x)”, and U(x)← Q(x)V (x)” by ”U(x)← U(x)−Q(x)V (x)

mod F (x)”. Then it is not difficult to see that the following is preserved at each iteration

of this modified algorithm.

H ′(x)U(x) ≡ R(x)C(x) mod xm.

The above mentioned two changes do not change the updating of R(x) and the new algo-

rithm still terminates after e iterations. As a result,

CHAPTER 4. INVERSION USING DOUBLE-BASIS REPRESENTATION 57

H ′(x)U (e) ≡ R(e)(x)C(x) mod xm. (4.20)

Then equations (4.19) and (4.20) yield

U (e)(x) ≡ A′(x)C(x) mod F (x)

= B(x)

4.6 Summary

In this chapter, inversion and division using double-basis representation by applying EEA

to a Hankel matrix has been reviewed. Some results regarding Hankel matrix entry for-

mation have been described. Some key results on inversion and division using triangular

basis have been presented. Further, a common set of algorithms to compute inversion and

division based on EEA with both polynomial and triangular basis has been discussed.

In the next chapter, systolization as an answer to the VLSI design complexity will be

discussed and finally a unidirectional bit serial systolic architecture for computing inversion

and division over Galois fields based on a common algorithm will be proposed.

Chapter 5

Systolic Architectures

In this chapter, after introducing some complexity measures in VLSI design, systolic ar-

chitectures as a solution to VLSI complexity issues are introduced. Next, Brent and Kung

systolic array structure for polynomial GCD computation [13] as an example is presented.

Finally, a novel unidirectional bit serial systolic architecture for computing inversion and

division over Galois fields is proposed. It will be seen that the same architecture can be

used for inversion and division in both polynomial and double-basis designs. it will be

shown that this unidirectional bit serial systolic implementation with no carry propaga-

tion structure is suitable for large values of m. Part of the work in this chapter has been

presented in [17,18,20].

5.1 Complexity measures in VLSI Design

It is customary to view the complexity of algorithms by defining a computational com-

plexity metric and it is measured in order of number of elementary arithmetical operations

necessary to complete the algorithm as a function of their binary representation in bits.

An implementation oriented measure of complexity is the AT-complexity or Area-Time

58

CHAPTER 5. SYSTOLIC ARCHITECTURES 59

product complexity. In general, area is measured as the number of elementary gates and

time as the worst case delay time to complete the algorithm. It is easy to see that there

is a trade-off between area and time complexity, hence the need for their product as a

comprehensive measure of implementation complexity.

Although AT-complexity measure is very useful to highlight implementation issues such

power and energy consumption, but it cannot cover other important complexity issues such

as design flow, IP (Intellectual Property) re-use, reliability (fault tolerance) and neither

the detailed area or timing issues derived from interconnect bottleneck of sub-micron VLSI

process. For example, on a practical chip, the datapath logic area is just a fraction of total

area dominated by power grid, memory bus, interconnect (switches) and on-chip test and

fault circuitry [70, 79, 92]. Also the time complexity cannot simply be measured by the

number of gates along the logic delay path, but it must be scaled by each gate’s fan-out

and the effective on-chip routing path between gates.

As the transistor feature of VLSI process is reduced to sub-micron, and multi-million

gates designs become feasible, the only answer to the complexity of such designs is to

have architectures with regularity, modularity, local communication, massive parallelism

and scalability. Concepts such as multi-core, throughput flow pipelining and macro-cell on

PLD (Programmable logic Design) become common place. The basic techniques to prevail

are the use of regular and repetitive architectural structures. The array processors [70] and

systolic architectures are inherently suitable for such capabilities.

5.2 Systolization of Polynomial Updating Step

For large values ofm, the complexity of a centralized implementation of the polynomial up-

dating step of Algorithm 16 is dominated by the presence of carry propagation structures

(counters or comparators) and long control interconnects. For a scalable VLSI imple-

mentation with large values of m and at reasonable clock rates a bit/digit serial systolic

architecture is more suitable. To this end, we identify the following four tasks that are

performed in each iteration of Algorithm 16.

• Task 1. Compute the remainder of R(x) divided by S(x) to update R(x).

60 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

• Task 2. Swap pair of polynomials R(x), S(x) .

• Task 3. Check for the exit condition: degR(x) > 0.

• Task 4. Update U(x), V (x) according to Tasks 1 and 2 transformation.

Note that Tasks 1, 2 and 3 are exactly the same tasks as defined in Chapter 3.

5.2.1 Task 1 and Shifted Remainder

Among tasks listed above, the most complex one is a stepwise computation of remainder

of R(x) divided by S(x). To this end, a stepwise “long division” operation is described

by many authors, e.g., [15, 119]. We will consider a variant of a “long division” operation

which returns shifted results

xd(R(x) mod S(x)) and xd(S(x)),

where d = deg(R(x)) − deg(S(x)). This variant of “long division” operation is shown as
Algorithm 19.

In Algorithm 19, initially, the degree of dividend is greater than the degree of divisor

by d units. For d iterations a divisor polynomial is left shifted, i.e., multiplied by x. At

a first alignment where the degree of shifted divisor has reached the degree of dividend,

a remainder polynomial is computed. This remainder may have a degree which is not

necessarily less than the degree of the pre-shifted divisor, but its degree will be always

less than that of the shifted divisor. Next, a “virtual” restoring of divisor starts. That is

the degree of the shifted divisor is not decreased, but rather in the next d iterations, the

remainder or partial remainders are left shifted where none, one or more other alignments

may occur and new partial remainders may be computed. After exactly d iterations,

the pre-shifted divisor is “virtually” restored, and in all these d iterations the remainder

polynomial is continuously updated to a degree less than the shifted divisor.

The following facts always hold for Algorithm 19 and they are stated without proof

since they are straightforward.

CHAPTER 5. SYSTOLIC ARCHITECTURES 61

Algorithm 19 Computing R(x) (mod S(x)) returning shifted results.

input: R(x) and S(x) polynomials with degR(x) ≥ degS(x).
output: xd(R(x) (mod S(x))), xdS(x),

where d = degR(x)− degS(x).
δ ← 0;
while (degR(x) > degS(x)) do

S(x)← xS(x);

δ ← δ + 1;

δ ← −δ; // first alignment and δ = −d //
R(x)← (R(x)− S(x));

while (δ < 0) do

R(x)← xR(x);

if (degR(x) = degS(x)) then

R(x)← (R(x)− S(x));

δ ← δ + 1;

return R(x), S(x)

//degree of returned S(x) is equal to degree of input R(x)//

Fact 1 In each iteration within the while loops of Algorithm 19 the number of shift oper-

ations (i.e., S(x) or R(x) is multiplied by x) is one.

Fact 2 Algorithm 19 requires 2d iterations to complete where d is the difference of the

degrees of dividend and divisor. Specifically, d iterations are required for its divisor to be

aligned with its dividend and d more iterations are needed to “virtually” restore the divisor.

The algorithm starts and ends with δ = 0 and the maximum (absolute) value that variable

δ can take is d.

The sign of variable δ will be used in Section 5.2.3 to propose an efficient division algorithm.

62 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Algorithm 20-a Swapped shifted long division algorithm.
input: R(x) and S(x) polynomials with degR(x) ≥ degS(x).
output: xdS(x), xd(R(x) (mod S(x))),

where d = degR(x)− degS(x).
δ ← 0;
for (d times) do

S(x)← xS(x); // (degR(x) > degS(x)) and δ ≥ 0 //
δ ← δ + 1;

δ ← −δ; // first alignment and δ = −d //
[R(x), S(x)]← [S(x), (R(x)− S(x))];

for (d times) do

S(x)← xS(x); // (degR(x) > degS(x)) and δ < 0 //

if (degR(x) = degS(x)) then

S(x)← (R(x)− S(x));

δ ← δ + 1;

return R(x), S(x)

5.2.2 Task 2 and Swapped Shifted Long Division Algorithm

Shown below is Algorithm 20-a which is a slight variation of Algorithm 19. The purpose

of Algorithm 20-a is not only to update R(x) but also to swap R(x) and S(x) as needed

in the second last statement of Algorithm 16.

From computational view point, there are a number of differences between Algorithms

19 and 20-a. In Algorithm 20-a, whenever deg(R(x)) = deg(S(x)), then S(x) ← (R(x) −
S(x)), and at the first occurrence of deg(R(x)) = deg(S(x)), R(x) is updated as R(x) ←
S(x). Based on Fact 2, the while loops of Algorithm 19, have been replaced with for loops

in Algorithm 20-a. The for loops have made the use of variable δ redundant. Nevertheless,

δ is still shown here, since it will be used later. We now define the following two terms

which will be useful for describing our hardware architectures later on.

• Alignment: Whenever degR(x) = degS(x), we call this an alignment of R(x) and
S(x).

• Swap with partial update (SPU): From an initial condition of degR(x) > degS(x), let

CHAPTER 5. SYSTOLIC ARCHITECTURES 63

S(x) be repeatedly updated as S(x)← xS(x) to reach an alignment. Then, an SPU

corresponds to the following:

[R(x), S(x)]← [S(x), x(R(x)− S(x))].

There are 2d shift operations in Algorithm 20-a. For hardware implementation of Algorithm

20-a, it is desirable to perform one shift in each clock cycle which will result in balancing

the maximum critical path of each cycle. To this end, Algorithm 20-a can be restated as

in Algorithm 20-b.

The final if statement in Algorithm 20-b ensures that the degree of returned S(x) is

less than the degree of R(x). When the returned polynomials of Algorithm 20-b are to be

used as inputs of another round of Algorithm 20-b, and this process is to be repeated, then

this if statement can be omitted from all but the final round of Algorithm 20-b. Moreover,

if the final result is only R(x) which we are interested in, then this if statement can be

removed even from the final round of Algorithm 20-b as well.

Fact 3 For Algorithm 20-b, let R(x) be a polynomial of degree m and S(x) 6= 0, then the

degree of returned R(x) is also m.

5.2.3 Tasks 3, 4 and Putting All Together

In this section all remaining tasks are discussed and a new variant of Algorithm 16 to

compute finite field division is presented.

Task 3

For Algorithm 16, assume that there are n iterations in the while loop before its exit

condition, i.e., Task 3, is met. Also, let us assume that Algorithm 20-b is used for updating

of R(x) of Algorithm 16. Thus in Algorithm 16, Algorithm 20-b runs a total of n times.

64 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Algorithm 20-b Enhanced variant of Algorithm 20-a with an SPU.
input: R(x) and S(x) polynomials with degR(x) ≥ degS(x).
output: xdS(x), xd(R(x) (mod S(x))),

where d = degR(x)− degS(x).
δ ← 0;
for (2d times) do

if (degR(x) > degS(x)) & (δ ≥ 0) then

// occurs d times //

S(x)← xS(x);

δ ← δ + 1;

else if (degR(x) = degS(x)) & (δ ≥ 0) then

// occurs only once //

δ ← −δ; // first alignment and δ = −d //
[R(x), S(x)]← [S(x), x(R(x)− S(x))]; // SPU//

δ ← δ + 1;

else if ((degR(x) > degS(x)) & (δ < 0)) then

S(x)← xS(x);

δ ← δ + 1;

else if ((degR(x) = degS(x)) & (δ < 0)) then

S(x)← x(R(x)− S(x));

δ ← δ + 1;

if (degR(x) = degS(x)) then

S(x)← (R(x)− S(x));

return R(x), S(x)

CHAPTER 5. SYSTOLIC ARCHITECTURES 65

For the ith run of Algorithm 20-b, let us denote the value of its parameter d by di. Since

inputs of Algorithm 16 have deg(F (x)) = m > deg(A(x)), we can write

n∑

i=1

di = m. (5.1)

Based on (5.1) and noting that the ith round of Algorithm 20-b has a for loop of 2di

iterations, we can effectively replace the while loop of Algorithm 16 by a for loop of 2m

iterations. This is shown in Algorithm 21. When compared with Algorithm 20-b, one can

easily see that Algorithm 21 has additional statements. These are explained later on.

Note that based on Fact 3, after the completion of the for loop of Algorithm 21, degree

of R(x) is m, i.e., m times shifted version of what we get from Algorithm 16. Let si denote

the ith coefficient of S(x). Then the condition (deg(R(x)) = deg(S(x))) corresponds to

(sm = 1). Thus all occurrences of (deg(R(x)) = deg(S(x))) and (deg(R(x)) > deg(S(x)))

have been replaced by sm = 1 and sm = 0, respectively. A design which has no carry

propagation structure in order to to update δ of Algorithm 21 will be discussed in Section

5.3.

Task 4

As seen above, when Algorithm 20-b is applied to Algorithm 16, polynomial R(x) is up-

dated without explicitly computing polynomial Q(x) =
⌊
R(x)
S(x)

⌋

. The latter appears to be

needed to update polynomial U(x). The computation of Q(x) can be however avoided if

U(x) is updated (i.e., transformed) in the same way we update R(x) using Algorithm 20-b.

This is used and shown in Algorithm 21. Like R(x), the final U(x) would be an m times

shifted version of what we get from Algorithm 16. We call this the shifted result problem.

To solve this problem the returned U(x) must be restored by dividing it by xm.

Different strategies to perform xmU(x)/xm, have been proposed: initializing U(x) =

x−m [56]; initializing U(x) = xm, V (x) = 0, but at each iteration divide V (x) instead

of multiply such that U(x) ← U(x) − V (x)/xd ([11], Section 2.3), [119]; multiplying or

dividing V (x) alternatively [15]; or using an auxiliary polynomial [37]. The first method

requires pre-computation for each different irreducible polynomial. The second and third

proposals compute only inverses. The fourth method requires an auxiliary polynomial.

66 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Algorithm 21 Division Variant of Algorithm 16 with Restoring Result Polynomial.
input: irreducible polynomial F (x), divisor A(x) and

dividend C(x) in polynomial basis.

output: B(x) = C(x)/A(x) mod F (x).

Initialization:

δ ← 0; U(x)← 0; V (x)← C(x);

R(x)← F (x) S(x)← A(x);

Polynomial Updating:

for 2m times do

if (sm = 0 & δ ≥ 0) then { // shift and delay //}
[R(x), S(x)]← [R(x), xS(x)];
[U(x), V (x)]← [U(x)/x, V (x)];

else if (sm = 1 & δ ≥ 0) then {// SPU //}
δ ← −δ;
[R(x), S(x)]← [S(x), x(R(x)− S(x))];

[U(x), V (x)]← [V (x), x(U(x)− V (x)) mod F (x)];

else if (sm = 0 & δ < 0) then {// shift and shift //}
[R(x), S(x)]← [R(x), xS(x)];
[U(x), V (x)]← [U(x), xV (x) mod F (x)];

else if (sm = 1 & δ < 0) then {// alignment (no swap) //}
[R(x), S(x)]← [R(x), x(R(x)− S(x))];

[U(x), V (x)]← [U(x), x(U(x)− V (x)) mod F (x)];

δ ← δ + 1;

return U(x)

CHAPTER 5. SYSTOLIC ARCHITECTURES 67

Here, we take a new and simple approach which appears to be a more efficient scheme

when implemented in a bit serial systolic structure. We allow U(x) to shift and expand

in both directions, i.e., left shifted (multiply by x) and right shifted (divide by x). In

Algorithm 21, in all if case statements except the first one, pair [U(x), V (x)] is updated

as pair [R(x), S(x)]. For the first if case statement which occurs exactly m times, pair

[U(x), V (x)] is updated by one less shift with respect to pair [R(x), S(x)]. That is,

instead of [U(x), xV (x)] we use [U(x)/x, V (x)]. For the first if case statement, while

S(x) is shifted and R(x) is unchanged, for their counterparts, V (x) is not shifted, and

more importantly U(x) is delayed (mathematically equivalent to divided by x, but in a bit

serial architecture it is sufficient that its progress is delayed by one cycle, hence, no modulo

reduction is needed). Thus, in all four cases, Algorithm 21 conserves the same difference

of degree relationship between two polynomials of each pair. By the time, R(x) becomes

xm (i.e., non-restored and m-fold shifted version of 1), U(x) becomes finite field division

result but in restored form.

For field division, V (x) is initialized with a polynomial which may have a maximum

degree m− 1. In this case, at any iteration when V (x) is left shifted, a modulo reduction
may be needed. On the other hand, for an inversion computation, U(x) and V (x) are

initialized with 0 and 1, respectively. We know that, in Algorithm 21, V (x) is left shifted

exactly m times. Hence, deg(V (x)) may reach m only at 2mth iteration, but this may be

ignored since at this iteration the final result, i.e., U(x), is already computed. Thus, for

an inversion only architecture, no modulo reduction is required.

An example of an inversion as a special case of division to highlight the stepwise restor-

ing action of Algorithm 21 will be shown next.

5.2.4 An Example of Stepwise Restoring Action of Algorithm 21

In Table 5.1, the inverse of element A(x) = 1 + x in GF(23) defined by F (x) = 1 + x+ x3

is x+ x2 which is returned in U(x) at i = 6 if a restoring is applied. Otherwise, its shifted

version by exactly m position is computed. In this example, the overwriting cases are

recognized at i = 2 and 5.

In the non-restoring case, [U(x), V (x)] transformations follow that of [R(x), S(x)]. In

68 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Table 5.1: Example of inversion over GF(23).

non-restoring restoring

i δ R(x) S(x) U(x) V (x) U(x) V (x)

0 0 1 + x+ x3 1 + x 0 1 0 1

1 1 1 + x+ x3 x+ x2 0 x 0 1

2 2 1 + x+ x3 x2 + x3 0 x2 0 1

3 −1 x2 + x3 x+ x2 + x3 x2 x3 1 = x0 x

4 0 x2 + x3 x2 x2 x3 + x4 x0 x+ x2

5 1 x2 + x3 x3 x2 x4 + x5 x−1 x+ x2

6 0 x3 x3 x4 + x5 x3 + x5 + x6 x+ x2 x0 + x2 + x3

the restoring one, at overwriting iteration and while δ < 0, V (x) is shifted similar to S(x).

Otherwise, U(x) is divided by x while V (x) is not shifted. Thus the relative degree of pair

[U(x), V (x)] follows that of pair [R(x), S(x)] always. As counter δ increases and decreases

exactly m times, hence, after 2m iterations, the pair [U(x), V (x)] is divided by exactly

xm.

It must be re-emphasized that in a fixed size register base design, it is necessary that

U(x)/x is modulo reduced. If not, a nonzero shifted least significant coefficient of U(x)

may be lost. Hence a restoring implementation with a fixed size register would be as

inefficient as a non-restoring. However, in a bit serial systolic architecture with a double

delay element on the path of U(x), no such modulo reduction is needed. In other words,

double delay elements provide a computationally equivalent register whose size is as large

as 2m. Hence, keeping track of U(x)/x with a negative sign and its restoring afterward,

as shown in row 5 of Table 5.1 is feasible.

The example in Table 5.1 is simple but rather a special case where the correct result

is written in U(x) exactly at i = 2m iteration, since δ = 1 at i = 5. In general this is not

the case, and the last SPU case may occur at i < 2m, with δ > 1. Afterward, the sign

of δ is negated, and till it reaches zero no further SPU occurs. Hence, Algorithm 21 does

CHAPTER 5. SYSTOLIC ARCHITECTURES 69

not modify U(x) anymore by branching to the last else if case repeatedly. This ensures

that the correct result is always returned after 2m iterations. During these last iterations

between the last SPU and until i = m, degree of V (x) may reach m. However, since V (x)

is not used any more, a modulo reduction is not needed.

5.3 Bit Serial Unidirectional Systolic Architectures

In this section, after presenting a generalized bit serial systolic structure, different PE

architectures for inversion or division are discussed.

5.3.1 Bit Serial Unidirectional Systolic Structure

In Figure 5.1, a generalized bit serial unidirectional systolic architecture for inversion

and/or division over polynomial basis is shown. It is based on Algorithm 21. In all

descriptions of this section we refer to this maximum 2m identical PE model. However,

in the next section optimizations are described which result in fewer number of PEs. In

Figure 1, no external latches are shown since all leading coefficients of sequences enter and

exit each PE in the same cycle, and no such latches are needed.

In Figure 5.1, there are two sets of inputs to each PE: the datapath inputs consisting

of r, s, u, v, f ; the control inputs consisting of dseq, dec, update and start. For division

using polynomial basis (i.e., Algorithm 16), both r and f inputs to PE0 consist of the

coefficients of F (x). For inversion only architecture the input f is not needed and the

input r is as described before. The highest order coefficients, degree m of polynomials

enter first. In a bit serial systolic structure, each PE must be initialized once per each

computation round.

All control signals, other than start, will be introduced in the following sections. The

start signal is used to set up other control signals in the initialization cycle. The start is

defined as a one followed by m zeroes. It takes 2 cycles for the start signal to pass through

each PE and after 4m cycles, the coefficient of the highest degree, i.e., m− 1, of the result
synchronized with (start = 1) exits the last PE; m− 1 more cycles and all the coefficients

70 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

uinuout

sout

rin

sin

rout

uin

rin

sin

PE0 PE1 PE2m−1

uout

rout

sout

uinuout

rout

sout sin

rin

· · ·

decin

updateinuodateout

startout startin

decoutdecin

updatein

startin

updateout

startout

decout· · · decin

updateinupdateout

startout startin

decout

· · ·vout vinvin voutvout vin

· · · vm−2 vm−1 vm

· · ·um−2 um−1 um

· · · sm−2 sm−1 sm

· · · rm−2 rm−1 rm

· · · 0 0 1

· · · 0 0 1

· · · 0 0 0

· · · 0 0 0

· · · fm−2 fm−1 fmfin fout fin fout fin fout

dseqin dseqin dseqindseqout dseqout dseqout

Figure 5.1: Bit serial unidirectional systolic architecture for Inversion/Division.

of the result are available. Thus, in an implementation with 2m PEs the latency is 5m−1,
and in an optimized implementation with 2m− 1 PE, it would be 5m− 2.
The throughput of this bit serial architecture, in either case of polynomial basis inver-

sion or division where R(x) = F (x), is one computation (inversion or division) per m + 1

cycles since the longest input sequence is f which is m+ 1 bits. Hence, in a back to back

computation the distance between two consecutive start = 1 signals must be m+ 1.

5.3.2 Processing Element for Inversion

Figure 5.2 represents the single type PE based on Algorithm 21. Two of the control signals,

update and dec are precomputed and saved for the next PE. The update is the latched value

of incoming sin = sm at (start = 1). The pre-computation of update serves to reduce the

delay of the datapath. The sign of δ as defined before must be computed separately, and

is called dec as described next.

The PE of Figure 5.2 incorporates a serial-in implementation of a ring-counter structure

with no carry propagation delay to compute the difference of degree of polynomials is

proposed. A mathematical formulation similar to [115] but simpler follows. The signed

CHAPTER 5. SYSTOLIC ARCHITECTURES 71

DD

D

DD

D

sext

ovrw

dec

D D

D

D

D

D

D

D

D

startout

sout

rout
rin

startin

u1 u2

d2d1

updatein

vin

v1

sin

r1

dseqout
dseqin

decout

updateout

start

uin

uout

decin

vout

Figure 5.2: Processing element for the inverter where D is a delay element.

integer δ may be represented by a sign bit, dec, and by a (m+ 1)-bit sequence dseq where

dseq = 2|δ| and

dec =







0 δ ≥ 0,
1 otherwise.

At initialization δ = 0, hence, dec = 0, and dseq = 00 · · · 001. At each shift of S(x)
while dec = 0, dseq is left shifted. At SPU iteration, dec is set, and dseq is right shifted.

In all consecutive iterations until dseq returns back to 1, dec remains set. It will reset at

dseq = 1. Thus, dec can be computed at start = 1 as

dec← dseqin & (decin | sin)

where the overline, & and | represent a NOT, AND and OR logic operators.
It is said that dec is needed to check for an SPU condition. An internal state signal

ovrw ← (updatein & decin) is computed accordingly.

72 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

In Figure 5.2, a single delay element, r1 causes the xS action. Double delay elements

u1, u2 synchronized with v1, while dec is set, provide the restoring action as described. The

maximum gate delay of Figure 5.2 is

tg = max(2TA2, TX2 + TM2) + TM2,

where TA2, TX2 and TM2 represent the delay of a 2-input AND gate or OR gate, a 2-input

XOR gate and a 2-input MUX respectively.

This can be further shortened at the expense of two extra latches (on the path of dec

and ovrw and the propagation of the latched ovrw signal. In this case, the critical delay

path will be as short as tg = TA2 + TM2 + TD. However, in general, such a reduction may

not be a substantial improvement which justifies the trade-off. The critical delay path of

an architecture required to compute the effective clock period must take account not only

the gate delay shown above but also the delay of the latches, interconnect and the clock

network skew as well. In a standard synchronous design, the setup time of flip-flops and the

clock skew may be much larger than single gate delay and may dominate the effective clock

period especially where such reduced logic paths exist. In the following we only consider

the gate delays which are architecture dependent and not the critical path delay.

5.3.3 Processing Element for Division

In Algorithm 21, in order to perform a division, V must be initialized with the dividend.

Next, at each iteration where a new value of V is computed, specifically at an SPU iteration

and while δ < 0, a modulo reduction of this polynomial may be needed. In Algorithm 21,

U ← U/x is used only for a pre-shifted restoring and never requires a modulo reduction.

Up to reaching an SPU condition its value is zero, and always the number of right shifts

(divide by x) of U is compensated by number of multiplication of V at SPU iteration

or while δ < 0. The reduction condition for the division algorithm is detected when the

leading coefficient of V , dec and start are all set.

Figure 5.3 shows as augmented version of Figure 5.2 with added circuitry to check the

reduction condition, and to perform modulo reduction accordingly. However, in order to

reduce the gate delay path of the reduction condition checking, a balanced delay path for

CHAPTER 5. SYSTOLIC ARCHITECTURES 73

D

DD

DDD

D

D

D

D

D

D

D

D
D

DD

startinovrw

D

reducelat

updatein

startin

sin

rin

vin

dseqin

decin

fin

uin

dseqout

decout

startout

fout

uout

vout

updateout

sout

rout

Figure 5.3: Processing element for the divider.

the input of three latches u1, v1, and reducelat is computed, assuming similar delays for

AND and XOR gates, as shown in Figure 5.3. Accordingly, the maximum gate delay is

max (3TA2, 2TA2 + TX2, TA2 + 2TX2) + 2TM2,

where TA2, TM2 and TX2 were defined before.

5.3.4 Bit Serial Inverter-Divider in Triangular Basis

The PE architectures in Figure 5.2 and 5.3 can be used to perform inversion and division

with a divisor in triangular basis without any modification or extra control signals. The

input polynomials R(x), S(x) should be initialized as in Algorithm 18.

Because of negative degree terms of xm−1H(x−1), this input sequence is almost twice

as long as their polynomial basis counterpart. This fact does not change the latency but

74 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

uinuout

sout

rin

sin

rout

uin

rin

sin

PE0 PE1 PE2m−1

uout

rout

sout

uinuout

rout

sout sin

rin

· · ·

decin

updateinuodateout

startout startin

decoutdecin

updatein

startin

updateout

startout

decout· · · decin

updateinupdateout

startout startin

decout

· · ·vout vinvin voutvout vin

· · · vm−2 vm−1 vm

· · ·um−2 um−1 um

· · · 0 0 1

· · · 0 0 1

· · · 0 0 0

· · · 0 0 0

· · · fm−2 fm−1 fmfin fout fin fout fin fout

· · · s2m−3 s2m−2 s2m−1

· · · r2m−3 r2m−2 r2m−1

dseqin dseqin dseqindseqout dseqoutdseqout

Figure 5.4: Bit serial systolic architecture for Inversion/Division in Double-basis.

rather the throughput of this architecture for inversion or division using triangular basis

which is almost half of polynomial basis. All other inputs to both polynomial and triangular

inverter or divider will be the same.

Let consider a bit serial systolic architecture as in Figure 5.4. In fact, this is the same

as Figure 5.1 with the exception of its datapath input set.

In Figure 5.4, the subscripts follow those of Algorithm 17 to better highlight the highest

order of coefficients needed in a triangular basis architecture versus a polynomial basis.

However, from a practical point of view and in order to use the same set of control signals as

in the case of polynomial basis architecture, then more conveniently, the datapath input set

may follow those defined in the initialization step of Algorithm 18. Specifically, r, s, u, v

can be coefficients of xm, xm−1H(x−1), 0 and 1 respectively.

One concludes that the same PE architectures in Figure 5.2 and 5.3 can be used to per-

form inversion and division with a divisor in triangular basis and this returns an inversion

or division result in polynomial basis without any modification or extra control signals.

CHAPTER 5. SYSTOLIC ARCHITECTURES 75

...

3

5 ...
PE2m−1PE0 PE1 PE2m−2PE2m−3PE2m−4PE2m−5

common tristate output

selector

data

state

start

Figure 5.5: Variable dimension divider using selectors over common tristate output.

5.4 Generalization and Optimization

The unidirectional bit serial systolic architecture described in Figure 5.1 not only is in-

dependent of the defining irreducible polynomial of the field but also it can compute the

inverses in Galois fields of any dimension. Two different aspects of this assertion are

discussed next.

5.4.1 Universal Bit Serial Systolic Inverter-Divider

We may generalize the exit condition as defined in Section 5.2, where it is mapped to an

exact number of PEs. Let N represents the number of PEs in the architecture. In a bit

serial unidirectional systolic architecture as in Figure 5.1, it is easy to see that if N ≥ 2m,
where m represents the field dimension, the coefficients of the inverse element start to

appear at the output of the 2mth PE after 4m cycles. Hence, it is possible to process any

field dimension m ≤ N/2 as far as the correct result can be captured at the right cycle.

Here two such schemes are described.

Either the output of the 2mth PE should be accessible directly, or a mechanism should

be in place to de-activate all remaining PEs from 2m+1 to N , and to capture the result at

the output of Nth PE always. The former does not require any inner PE modification and

provides the optimal latency. One such scheme using a selector circuitry over a common

tristate output line is shown in Figure 5.5.

One of the selector latches can be set such that only the specific output corresponding

76 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

to this latch is passed to the common output, and all other outputs are kept in tristate.

Figure 5.5 represents a serial-in mechanism to set the latch corresponding to the field

dimension. A parallel load is possible as well, since the serial-in selector must not be used

synchronized with start. In fact, the given latch is set only once per each change of field

dimension. Note that only the output of every other PE requires a selector latch.

5.4.2 Trading off Throughput for Storage Area

If some external buffering is used, it is easy to see that any bit serial systolic architec-

ture with N < m where N represents the number of PEs, can be used to perform inver-

sion/division over fields of variable dimensionm. In this case, at the expense of throughput,

the same PEs are initialized more than once for each inversion computation to process dif-

ferent blocks of data. A limiting case is of particular interest where no external buffering

is needed.

In Section 5.2, it is assumed that 2m PEs are required to perform the inversion but this

is a case where a minimum number of (m+ 1) cycles per inversion is a design requirement.

On the other hand, if this constraint is relaxed, and no back to back inversion is required,

it is possible to use exactly m PEs to perform an inversion without any external buffering.

This is achievable through a MUXing mechanism at the input of the first PE. At the 2mth

cycle, by the time the (start = 1) signal exits the mth PE, all input coefficients have

already entered the first PE. In the next cycle, i.e., 2m + 1, it is possible to feedback

the outputs of the mth PE synchronized with (start = 1) into the first PE which will be

re-initialized for a second time. In this case, throughput is sacrificed, and the input of a

new set of input should be delayed by 2m cycles.

5.4.3 Area and Latency Optimization without Throughput Loss

A slight optimization in area and latency of the architecture in Figure 5.1 is achievable

without degrading throughput. In Sections 5.2, 5.3.1, it is always assumed that the highest

order coefficient of polynomials to be processed are the mth for the polynomial. In fact,

CHAPTER 5. SYSTOLIC ARCHITECTURES 77

among all data inputs of Algorithm 21 only R(x) has a nonzero coefficient of this degree.

As a result the inputs to the first PE of the proposed architecture is always the same,

most importantly, sin = sm = 0, dseqin = 1, and according to Algorithm 21, the first

PE always branches to same else if (sm = 0 & d ≥ 0). Hence, it is easy to compute the
output of PE0, and initialize the algorithm with inputs of PE1 directly. Specifically, a new

architecture with only 2m − 1 PEs with the following inputs to its new first PE can be
devised: start = 1, update = 1, dec = 0, dseq = 00 · · · 010, fm, and data inputs rm, sm−1,

vm−1, um−1. Hence, r, u, f , start, and dec are not changed (u is initially always zero).

Also, sm and vm are always zero.

Thus, only two control signals dseq and update will have modified values. In this 2m−1
PE architecture, the latency is reduced to 5m−4. In the literature, most systolic proposals
for inversion/division use such a (2m − 1) PE based structure, we refer to this optimized
model for comparison purposes.

5.4.4 Implementation Results

Exhaustive test patterns for values of m up to thirteen for inputs and outputs using a C

model have been generated. Different variants of the architecture (inverter and divider, ba-

sic or optimized in only polynomial basis or double-basis) have been coded in Verilog-HDL

language which has been simulated and verified. The Verilog model has been synthesized

using Synopsys with a standard CMOS 0.18µ library for a clock period of 1.1ns for the

inverter and 1.4ns for the divider. The average setup time of the flip-flops has been 0.32ns

and the clock skew set at 10%. The area reports, including the flip-flops, are equivalent to

90 and 120 2-input NAND gates for each inverter and divider of Figure 5.2, 5.3. It should

be pointed out that non-combinational area, as defined by Synopsys, is the dominant part.

For the divider, it is more than 75%, and for the inverter more than 80%.

Further implementation results will be discussed in the next section where above com-

plexity measured in the context of a practical application of this bit serial systolic structure

as part of a complete elliptic curve processor is discussed.

78 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

5.5 Comparison

In this section, the architectures proposed in this work are evaluated against some rele-

vant polynomial basis field inversion and division systolic architectures based on extended

Euclidean and binary (Stein’s) GCD algorithm [37,40, 41, 56, 115, 119] which were already

mentioned in Chapter 3. In the following, as before, TX2, TM2, TA2 represent a 2-input

XOR, 2-input MUX and a 2-input AND/OR delay time, respectively.

In [40], Guo and Wang proposed a systolic implementation of a modified Brunner et

al. [15] inversion algorithm based on a variant of EEA. They have enhanced that algorithm

by eliminating the asymmetric looping due to alternating division or multiplication of the

algorithm to solve the shifted result problem. In [41], they proposed an improved version

of an in-place parallel-in parallel-out systolic inverter/divider. It is a row of 2 types of

cells with bidirectional signals. This proposal has a lower number of cells since no extra

steps for degree restoring are required at the expense of using an extra polynomial and

an extra control signal. The reported area complexity is said to be O(m) but in fact it

is O(m logm) due to inner cell adder/subtractor. In [37], they further improved the bit

serial implementation of the above design by introducing a single cell type unidirectional

systolic design. The shifted result problem is again addressed by using an extra polynomial

as before. In this design a distributed degree tracking control mechanism is introduced.

In [119], Yan and Sarwate proposed two parallel-in systolic inversion architectures,

centralized and distributed control, based on a modified EEA. The distributed control

architecture has a bidirectional degree tracking mechanism requiring 2 control signals and

a 2m bits register but results in only two gates on its critical path. These are inversion

only architectures.

Table 5.2 shows a comparison of the divider with PE of Figure 5.3 and the inverter

with the PE of Figure 5.2 with two representative designs reviewed above. The design

in [37] is chosen since it is a divider with best overall characteristics and also in the same

category as ours (bit serial unidirectional systolic using a variant of EEA with a counter

which has no carry propagation chain). The second design [40] is chosen to show why

single row parallel-in designs in particular when they use counter-like structures with carry

propagation chains are not suitable for large values of m.

As it can be seen in Table 5.2, our PEs for division (Figure 5.3) and inversion (Figure

CHAPTER 5. SYSTOLIC ARCHITECTURES 79

Table 5.2: Comparison of bit serial systolic dividers and inverter.

Features Guo et al. [40] a Guo et al. [37] b Figure 5.3 Figure 5.2

Time Complexity O(m) O(m) O(m) O(m)

of cycles per

inversion/division m m+ 1 m+ 1 c m+ 1

Latency 8m− 1 5m− 4 5m− 4 d 5m− 4
Max Gate Delay 2TA2 + TX3 TA2 + TX2 2TA2 + TX2 2TA2 + TM2

+2TM2 +TX3 + TM2 +TM2

Area Complexity O(m logm) O(m) O(m) O(m)

Gate Count: totale per cell per cell per cell

IO Latchf 4m - - -

inner Latchg 46m+ 22 18 15

4mdlog2m+ 1e
MUX 35m+ 2 11 10 9

XOR 11m 5 3 3

AND/OR 26m 8 7 3

others adder, zero-check - - -

Single Cell no yes yes yes

I/O pins O(m)/O(m) 10/10 9/9 8/8

Unidirectional yes yes yes yes

Basis poly. poly. poly./triang. poly./triang.

asingle row parallel-in architecture, with adder
bdistributed control
cfor polynomial basis input
dfor a 2m − 1 PEs architecture
edifferent type of cells
fIO Synchronization and Reordering
ginner and inter cell latches

80 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

5.2) have a better area as well as time complexities. In addition, it can be shown that the

same structure can be incorporated in a design to compute inversion and division with a

divisor in triangular basis.

5.6 Summary

In this chapter, the use of systolic architectures as a solution to the VLSI design complexity

has been reviewed. Next, a novel and optimized division algorithm suitable for systoliza-

tion has been proposed. A unidirectional bit serial systolic architecture for computing

polynomial basis division based on this algorithm has been described. It has been said

that the same structure can be used for double-basis inversion and division with appropri-

ate input initialization. Finally, after discussing further generalization and optimization

aspects some implementation results and comparative tables have been provided.

In the next chapter an application of this bit serial systolic structure to implement a

systolic Elliptic Curve (EC) crypto processor will be discussed.

Chapter 6

Systolic Elliptic Curve Processor

6.1 Background

Many algorithms of public-key cryptography are based on finite fields arithmetic, either

prime fields GF(p) or extension binary fields GF(2m), where m represents the dimension

of the field. For example, the Diffie-Hellman key exchange protocol [23], Digital Signa-

ture Algorithm [86] El-Gamal Cryptosystem [25] and systems which use elliptic [83] and

hyperelliptic [65] curves can be implemented using operations in extension binary fields.

In contrast to the schemes based on the discrete logarithm problem, e.g., [25] (similar to

their prime field counterparts, e.g., RSA [95]) which may require field dimensions as large

as 4000 bits to be secure, the elliptic (and hyperelliptic) curve cryptosystems provide a

higher security strength [71] having a dimension less than 256 bits. This aspect of the

latter group make them specially attractive in applications where the computation, power,

storage and communication bandwidth is a prime concern such as embedded System on

Chip architectures used in Personal Digital Assistant (PDA) or wireless devices.

On the other hand, the elliptic curve cryptosystems are more cumbersome to implement

rather than their RSA-type counterpart, particularly in hardware implementation. The

81

82 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

reason is that not only they require a complete suite of finite field arithmetic operations

(multiplication, squaring, and inversion or division) to implement point operations on the

curve, but also they have a more complex algorithm to be implemented. In a hardware

implementation this means multiple functional units and/or complex and dedicated control

units. Moreover, among the field operations, multiplicative inversion (or division) is known

to have a very poor performance and to allocate a dedicated hardware unit for it may not

be cost effective.

It is known that the effect of the poor performance of the field division can be mitigated

at the expense of many more multiplications using projective coordinates to represent the

points on the curve. Several variants of point operation using the projective coordinates

exist [7], which however require extra storage space and more complex control units than

the non-projective (affine) coordinates point representation. In fact, these schemes are

best suitable either for software implementations over general purpose processors or em-

bedded systems with core processors where complex control flow can be added and extra

storage, e.g., register and/or cache memory is available [45]. Many hardware mapping of

these variants, mostly into FPGAs (Field Programmable Gate Array) with large data and

instruction memory usage and complex control units, are implemented [8, 27, 72, 73, 90]

which achieve order of magnitude better performance than their software counterparts.

In this chapter a very small footprint (area efficient) EC hardware processor will be

proposed, whose datapath is based on a combined multiplier divider (CMD) bit serial

systolic architecture which computes both multiplication and division over GF(2m) in a

single hardware unit and may achieves high performance by running at extreme clock rates.

This combined multiplier divider is based on the architecture described in the previous

chapter, and its systolic structure allows using the EC affine coordinates which requires a

very small control unit and the least amount of storage space.

Also, this bit serial structure coupled with a shift register file, instead of single or dual

port RAM model, allows an efficient bit-level pipelining among successive field multipli-

cation and division operations, or even consecutive EC full point additions when multiple

CMD units are used. Such a memory organization can be easily expanded independent of

the datapath to provide adequate external buffering for processing field dimensions much

larger and independent of the number of PEs present in the datapath. This scalability fea-

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 83

ture comes at the expense of reducing the overall throughput. The area-time complexity

of such a structure outperforms that of all proposals known to us not at the field operation

level but most importantly at the system level when variable field dimension and a random

irreducible polynomial usage is a requirement.

On the other hand, it will be shown that for high performance, high throughput ap-

plications, multiple CMD units can be pipelined due to their unidirectional bit serial ar-

chitecture. Furthermore, this unidirectional single type PE structure makes it suitable for

fault-tolerant designs. A unified EC full point add and double operation makes it attractive

for SPA (Simple Power Analysis) resistant applications as well. The work being presented

here has appeared in [19].

6.2 Related Work

Due to the multi-layer computation structure of the ECC over GF(2m) (not considering

the prime fields), many flavors of dedicated hardware implementation have been proposed

e.g., [4, 8, 27,42,52,60,72,73,90] which are reviewed and classified next.

Most of these proposals are implemented on the FGPA either as a prototype for a final

ASIC design or as a final product to use the reconfigurability feature of the FPGA to

provide a varying field implementation (its size and its defining polynomial). Almost all

of them, except two, use the projective coordinates since they either lack an independent

division unit or the performance of their division (inversion) is order of magnitude less than

multiplication. Basically, all these proposals are based on a fast multiplier (and/or squarer)

and assume that the complexity associated with the control unit is much less, hence transfer

the burden of such complexity to a main processor (SW-HW co-design [26, 59, 88]). The

proposal in [73] discusses the relative cost of a control unit to perform EC curve operations

using projective coordinates by comparing a microcode and an FSM model of such a control

unit. It is shown that equivalent of 512 rows of 16-bit words of opcode is needed for an

EC scalar multiplication.

Many proposals are based on (optimal) normal basis representation of the underlying

filed elements e.g., [4, 27, 35, 53, 72, 102]. The (optimal) normal basis is known to have

84 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

an almost free squarer structure and it is possible to optimize its multiplier efficiently.

Hence, the above proposals propose to couple a fast squarer and multiplier structure with

either a generic or a DSP processor (using its control and general purpose registers). The

implementation in [53] goes further to propose an asynchronous wave pipelined datapath

(multiplier) coupled with synchronous control and memories.

Those based on the polynomial basis try to achieve a better performance by using

special classes of field defining polynomials [42, 90]. In [42], a recent implementation is

reported which consider an end-to-end performance analysis including the system level data

exchange in the presence of a hybrid of a fast field multiplier for special class of polynomials

plus a slow field multiplier for generic ones. This design which has an independent (slow)

division unit, none the less, uses projective coordinates over polynomial basis. It achieves

the best system level performance by optimizing the multiplier for specific irreducible

polynomials.

Non-systolic implementations using affine coordinates exists as well [52, 60]. The pro-

posal in [60] (over polynomial basis) is similar to our architecture in the sense that a

combined multiplier divider is being proposed. However, its datapath requires m bit buses

and multiple m bit parallel input units, hence its critical delay path is dimension depen-

dent as reported in [60]. Further, an area limiting factor in many of the above prototypes,

e.g., [90], is the FPGA interconnect issue.

On the other hand, many stand-alone fast binary field multipliers, including systolic

structures are proposed which do not consider the system level and control unit com-

plexities, e.g., [62, 104]. The proposal in [62] is a representative of a class of systolic

implementations of AB2 + C mod F (x) algorithm. In this case, extreme clock rates can

be achieved, however, the inversion must be performed by using time consuming Fermat’s

theorem and necessitates the use of projective coordinates and the complex control units

associated with.

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 85

6.3 Elliptic Curve Cryptography and EC Arithmetic

Elliptic curve cryptography (ECC) [83] is based on the discrete logarithm problem applied

to elliptic curves over a finite field. An elliptic curve E is defined to be the set of points

satisfying a defining equation E(x, y) = 0 with cubic degree in x where the coefficients of

the defining equation are elements of a finite field GF(q), and the points on the curve are

of the form P = (x, y), where x and y are elements of GF(q) as well.

There are several kinds of defining equations for elliptic curves, defined over prime field

or extension binary fields. Here, we are interested exclusively on hardware implementation

of elliptic curve cryptosystems based on binary fields, hence a Weierstrass defining equation

[2]

E(x, y) : y2 + xy = x3 + ax2 + b (6.1)

is used where a, b ∈ GF(2m), b 6= 0. Given Equation (6.1), the elliptic curve E consists
of the solutions P (x, y) over GF(2m) to the defining equation, along with an additional

element called the point at infinity (denoted O). The fundamental operation for ECC is
scalar multiplication, i.e., a point is added to itself k times.

Q = kP (6.2)

= P ⊕ P ⊕ · · · ⊕ P
︸ ︷︷ ︸

k times

(6.3)

Commonly, scalar multiplication is performed by successive doubling and adding the base

point P similar to the binary method of exponentiation. Here, point addition is defined

geometrically by the “chord-tangent” law of composition ⊕, i.e., P2 = P0 ⊕ P1, where all

three points will be on the curve E. Point doubling is defined by adding a point to itself,

equivalent to a tangent to the curve, i.e., P2 = 2P0 = P0 ⊕ P0.

6.3.1 EC Point Add and Point Double over GF(2m)

Algorithms to perform EC point add and double not only depend on the curve defining

equation, e.g., in the case of binary extension fields the Weierstrass Equation 6.1, but also

they differ depending on the coordinate system of point representation as well. The affine

86 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

coordinate representation provides the simplest algorithms but its implementation is effi-

cient only if a fast field division (relative to the field multiplication) is available. A unified

EC full point add algorithm [2] using affine coordinates is modified such that its imple-

mentation to have identical steps and running time for both an EC point add and point

double. This modification simplifies the control unit, reduces the storage requirements and

also results in an SPA-resistant implementation. This is shown as Algorithm 22.

Algorithm 22 EC Full Point Add for Extension Binary Fields.
input: coefficient a of the curve, points P0 = (x0, y0) and P1 = (x1, y1) .

output: Point P2 = (x2, y2) = P0 ⊕ P1

Part a: Exception Handling

if (P0 = O) then

return P1

if (P1 = O) then

return P0

if ((x0 = x1) AND [(y0 6= y1) OR (x0 = 0)]) then

return O
Part b: Main Computation

if (x0 6= x1) then

λ← y1+y0
x1+x0

+ 0; // point add

else if (x0 = x1) then

λ← y1+0
x1+0

+ x1; // point double

x2 ← λ2 + λ+ a+ x0 + x1;

y2 ← (x1 + x2)λ+ x2 + y1;

return P2 = (x2, y2)

In Algorithm 22, the “0” represents the identity element of GF(2m). Its computation

part requires one division, one multiplication and one squaring and ten field additions.

Further Algorithm 22 requires a very simple control (state machine) unit.

In Table 6.1, a stepwise implementation view of Algorithm 22 is shown to better point

out the differences in each common steps of the EC point add and double. First, Table

6.1 shows that the same sequence of operations can be used to perform a point add or

double. In other words, the three complex and multi-cycle operations divide, square and

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 87

Table 6.1: Comparison of Stepwise Computation Step of Algorithm 22.

Operation Point Add Point Double Comment

*add w0 = x0 + x1 w0 = 0 + x1

*add w1 = y0 + y1 w1 = 0 + y1

divide w1 =
w1
w0

w1 =
w1
w0

*add w1 = w1 + 0 w1 = w1 + x1 λ (saved)

square w0 = w1 × w1 w0 = w1 × w1 λ2

add w0 = w0 + w1 w0 = w0 + w1 λ2 + λ

add w0 = w0 + a w0 = w0 + a λ2 + λ+ a

*add w0 = w0 + x0 w0 = w0 + x1 λ2 + λ+ a+ x0

add w0 = w0 + x1 w0 = w0 + x1 x2 (saved)

add w2 = w0 + x1 w0 = w0 + x1 x2 + x1

multiply w2 = w2 × w1 w0 = w2 × w1 (x2 + x1)λ

add w2 = w2 + w0 w2 = w2 + w0 (x2 + x1)λ+ x2

add w2 = w2 + y1 w2 = w2 + y1 y2 (saved)

multiply are common and only the input to the intermediate add operations may vary. The

binary field addition can be simply implemented by an XOR operator, hence it is cost

free. If a selective input to an XOR for add operation at exactly four steps (highlighted

by an * in Table 6.1) are permitted, then a single bit control signal suffices to distinguish

between point add and double. The XOR operation for add is free relative to multi-cycle

multiplication or division and it can be overlapped with a pipelined multiplier and divider

functional unit in a bit serial architecture. Hence, in this setting, the selection between

the point add and double is transparent with no running time distinction.

Further, in a bit serial architecture, where all add operations between consecutive di-

vide, square and multiply operations can be performed bitwise and in parallel, then three

temporary variables w0, w1, w2, as shown in Table 6.1, are not needed. In fact, a single

shift register for λ is sufficient since this is the only computed variable needed more than

once in each full point add computation. This results in the least amount of the storage

space for an EC point add computation.

88 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Bus
Interface
Unit

Selector

Adder

Multiplier

Divider−

Systolic

Serial
Bit

CombinedShift
register
File

clock
start
m/d

shift
clock

a/d

State Machine

Data

Instruction

Figure 6.1: System level integration.

In Section 6.4, a bit serial systolic architecture for a combined multiplier and divider

(CMD) is proposed. In this proposal the same unit will perform multiplication, squaring

and division. The multiplication and squaring are exactly the same, and a division requires

a running time twice as a multiplication. What is more interesting is that two distinct

operations divide andmultiply can be pipelined during the same EC point add computation.

6.3.2 System Level Block Diagram of an EC Cryptoprocessor

Before describing a CMD datatpath design it is important that a system level and a top

view of an EC cryptoprocessor to be considered. Figure 6.1 depicts such a design consists

of four units: bus interface unit, control unit, register file and datapath.

In Figure 6.1, the datapath is shown in two blocks: adder selector and bit serial systolic

combined multiplier-divider (CMD). The register file will be a set of ten shift registers,

including all input and output registers (irreducible polynomial, curve parameters, key

register, input points and output point coordinates) accessible to the host system through

the bus interface unit. The shift registers act as input-output host accessible registers as

well as buffering registers for the CMD. Hence, the size of each shift register is the same

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 89

as the field size in a simple implementation but may be larger if external buffering to the

CMD is required.

The bus interface unit (BIU) is mainly and simply responsible for the address decoding

of the registers, and its handshake signal generation to the host is minimal. The registers

are parallel write and readable by the host using the bus word size which is in general much

smaller than the field size. Hence, the shift registers act as a buffer to resolve the data size

and the data rate mismatch between the host and the CMD, (note that the CMD may

run at multiple clock rate of the host). Internally, the registers are accessed exclusively bit

serially.

The EC cryptoprocessor can perform a suite of low level field operations, as well as

high level EC curve full point add, and most importantly, the EC scalar multiplication.

A specific instruction register in the control unit will be used to decode the operation to

perform. This register will be directly accessible by the host. No interaction between the

host and the EC cryptoprocessor is required except to write and read the data and the

operation name.

The peculiar and novel aspect of this EC cryptoprocessor is the simplicity and the

reduced size of its control unit which is based on a robust state machine (with all error

handling mechanism). This unit includes a very simple binary key parsing to perform

the scalar multiplication. In fact, the control unit of Figure 6.1 generates only 3 controls

signals in addition to the clock and the set of shift signals for the registers.

In the next section the major functional unit of this EC cryptoprocessor will be dis-

cussed.

6.4 EC Bit-Serial Systolic Accelerator over GF(2m)

In Chapter 5, it has been said that systolic architectures are suitable for computations

where inherent parallelism can be exploited by bit level pipelining. Computations like

exponentiation, or EC scalar multiplication with their repetitive multiplication squaring

steps are good candidates. However, the inversion or division step for EC routines may

complicate the design if a similar multiplier and divider pipelined structure does not exist.

90 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

On the other hand, the area requirement of a bit parallel systolic structure is prohibitive

specially for large size operands such as those used in cryptographic applications. In

practice, many digit serial alternatives have been proposed and deployed. In an area

constraint application such as an embedded system a bit serial systolic architecture may

be the best choice if the throughput requirements are relaxed and it can be met.

A drawback of systolic architectures in general, even in a bit serial design is the high

ratio of the latch area versus the logic area (typical values between 70% to 90% of the total

area). On the other hand, to achieve higher clock rates, it is known that the gate delay

between two consecutive latches (or active edge of the clock of flip-flops) should be shorten.

However, it is easy to compute that at a certain point (depending on the technology and

its standard library) the combined delay of latches, setup time of flops, skew of clock and

the interconnect delay, will exceed the delay of a specific number of gates. This means

that any further reduction of the number of gates between two consecutive latches, at the

expense of adding a new row of pipeline latches will become counter productive. Hence, a

flexible design which must consider the technology variations is desirable.

In the following, a combined multiplier-divider (CMD) architecture is proposed which

not only exploits the pipelining among different operations, but most importantly it reduces

the disadvantage of the latch area overhead by combining more computational logic in the

same PE and reusing the latches among multiplication and division. Figure 6.2 depicts

a bit serial unidirectional systolic architecture for such a combined multiplication-division

design. As one may notice once again Figure 6.2 has the same structure as Figure 5.1.

In Figure 6.2, three sets of inputs: datapath signals (R, S, U, V, F), state signals

(dec, dseq, update), and control signals start andm/d are distinguished. These signals will

be defined in the following two sections where systolic multiplier and divider architectures

are described individually.

6.4.1 Bit Serial Systolic Architecture for Field Multiplication

The binary finite field multiplication and division can be systolized easily due to the re-

cursive feature of their algorithms. There are two class of binary finite field multiplication

algorithms, MSB-first and LSB-first [58]. Algorithm 23 is a reformulating of the one pro-

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 91

m/d

start

update

dseq

dec

F

V

U

S

R

m/d

start

update

dseq

dec

F

V

U

S

R

m/d

start

update

dseq

dec

F

V

U

S

R

PEm−1

· · · fm−3 fm−2 fm−1

· · · vm−3 vm−2 vm−1

· · ·um−3 um−2 um−1

· · · sm−3 sm−2 sm−1

· · · rm−3 rm−2 rm−1

multiply or divide

PE0 PE1

· · · 0 0 0

· · · 0 0 1

· · · 0 0 0

· · · 0 0 1

· · ·

· · ·

· · ·

· · ·

Figure 6.2: Bit serial systolic architecture for a CMD.

posed initially by Scott et al. [97] which has been reused by many authors in digit-serial

and partitioned forms, e.g., [61], where R(x) and S(x) represent two elements of GF(2m)

of degree at most m− 1, and F (x) is the irreducible defining polynomial of degree m used
to generate the field. Let U(x) be the product of R(x)S(x) mod F (x) of degree at most

m− 1 at well.
In an MSB-first bit serial systolic multiplier with identical processing elements (PE),

the index i of Algorithm 23 will be mapped into the spatial location (the specific PE) and

the j index will be distributed over the temporal sequence of computations in each PE.

The coefficients of U(x) will be returned bitwise MSB-first. Such a systolic implementation

has been proposed by Wang and Lin [107]. Figure 6.3 depicts one PE of such a bit serial

multiplier.

In Figure 6.3, as well as in Algorithm 23, the polynomials are named such that to

be consistent with an MSB-first divider architecture presented in the next section. The

most significant bit (msb) of the U(x), i.e., um−1 exits the mth PE at 2mth cycle after

a (start = 1) enters the first PE. The control signal start consists of a one followed with

m − 1 zeroes. It is used to latch the most significant bits of accumulator u and input s.
Clearly, in this architecture the overhead of 10 latches versus only 6 logical operators per

PE can be noted. On the other hand, the critical delay path (gate delay) is as short as

92 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

Algorithm 23 MSB-first Multiplication in GF(2m)

input: R(x), S(x), F (x).

output: U(x)

u
(0)
j = 0 for 0 ≤ j ≤ m− 1

u
(i)
0 = 0 for 1 ≤ i ≤ m− 1

for (i = 0 to m− 1) do

for (j = m− 1 to 0) do

u
(i+1)
j ← u

(i)
m−1fj + sm−i+1rj + u

(i)
j−1;

return U(x) = u
(m−1)
j for 0 ≤ j ≤ m− 1

tg = T2A+T3X , where T2A is the gate delay of a 2-input AND gate and T3X that of 3-input

XOR gate.

6.4.2 Bit Serial Systolic Architecture for Field Division

For division the same PE as defined in Section 5.3.3 can be used. It is said that a bit serial

systolic field divider with 2m PE of Figure 5.3 computes a division result in 4m cycles.

However, it is also described that only m PEs are sufficient if the output of the mth PE is

fed back to the first PE at the 2mth cycle. In this proposal initially such an arrangement

of m PEs is followed. Hence, a result is computed always in 4m cycles after the same m

PEs are initialized and used twice. Such an architecture computes the result U(x) bitwise

MSB-first according to Equation 6.4.

U(x) =
V (x)

S(x)
mod F (x), (6.4)

The input V (x) represents the dividend and the input S(x) the divisor. The other input

R(x) as well as input F (x) is initialized with F (x), the irreducible polynomial. The input

U(x) is initialized with 0.

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 93

D

D

D

D

D D

DD

D D

fout

uout

sout

rout

startoutstartin

rin

sin

uin

fin

Figure 6.3: Processing element for the multiplier.

Recall that PE presented in Figure 5.3 keeps track of the degree of polynomials in a

distributed fashion with no carry propagation structures (counters). This results in a linear

time complexity of the architecture independent of the size of m. The control signals start,

dec and dseq are those described in Section 5.3.2. The critical delay path of the divider

is dominant with respect to the multiplier and the entire system level architecture as will

be discussed later. The maximum gate delay of the divider is balanced to correspond to a

maximum of the four terms: (3TA2, 2TA2+TX2, TA2+TX2+TM2, plus TM2), where TA2, TM2

and TX2 are defined as the delay of a 2-input AND gate, MUX and XOR gate respectively.

As mentioned before, the total critical delay path must include the latch delay, the clock

skew, and the interconnect delay which we may assume are common between multiplier

PE, divider PE and a bit serial XORing for field additions.

6.4.3 Processing Element of a Combined Multiplier Divider

In order to reduce the area overhead of the latches of Figures 6.3 and 5.3, a combined

architecture as shown in Figure 6.4 can be used.

The PE in Figure 6.4 has only 20 latches for the combined structures. It also includes

twelve 2-input MUX gates, three 2-input and one 3-input XOR gate, and ten 2-input

AND/OR gates. In this structure only one control signal m/d is added to select between

94 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

D

D

D

DD

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

vin

uin

updateout

vout

rout

sout

uout

dseqin

decin

fin

dseqout

decout

fout

m/din m/dout

rin

startoutstartin

updatein

sin

Figure 6.4: Processing element of a CMD.

multiplication and division. The maximum re-use of resources (latches, gates and IO pins)

are applied without affecting the maximum gate delay, hence the critical delay path, of the

PE which remains the same as the divider PE described in Section 6.4.2. In fact, extra

MUXs required for the m/d selection are not on the critical delay path of the PE.

6.5 Implementation Issues

In this section the architectural alternatives and implementation issues regarding the three

main sub-blocks of the EC cryptoprocessor are discussed.

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 95

0
e5Vd1/Sd1

RR
e1

a/d

0
x1

x1
0

F

x0

x0

e8

x1

U U

V V

U

V

U

V

a/d

λ

a

e6

M

S

R

0

λ

x2

e7 x2 + y1

e9

(x1 + x2)λ

y1

e10

x2

y2e3

e4

a/d SD2D1

SSS

R

0

e2

D

D0
y0
y1

D

Figure 6.5: Bit serial functional sequence of an EC full point add computation.

6.5.1 EC Full Point Add using the CMD Datapath

Considering the bit serial systolic architecture of Figure 6.2, which consist of single type

PEs of a CMD as shown in Figure 6.4, a bit serial computation of an EC full point add

can be viewed as the concatenation of four systolic CMDs. Such a functional arrangement

is shown in Figure 6.5.

In a bit serial architecture as in Figure 6.5, four identical CMDs can be used in a

pipelined fashioned to perform the division in two slots of 2m cycles each and also the

squaring and the multiplication in 2m cycles each. On the other hand, a single CMD can

be reused four times at a lower throughput if adequate MUXing at its inputs are provided.

In Figure 6.5, three MUXs and an AND gate with a select signal a/d are used to choose

between the EC point add and point double. It is said that this selection is external to

the CMD and applies only to the XOR gates which perform the field addition. More

importantly, all ten field additions required in an EC full add operation can be computed

on the fly between the pipelined computation of division, squaring and multiplication by

using exactly 10 XOR gates.

In an area constraint case where only a single CMD is used, the inputs to the four

functional CMDs must be MUXed. Figure 6.6 shows the selection of the four cases: division

step1, division step2, squaring and the multiplication for all inputs.

Considering the effect of 2 layers of MUXs at all inputs of the same CMD in this case,

96 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

d : d1/d2

vd1

0 V

m/d
e2

d : d1/d2

m : S/M

rd1

e3

R

m/d
gin

λ

d : d1/d2

d : d1/d2

decd1

decin
0

desqd1

desqin

dec

m/d

0 dseq

m/d

d : d1/d2

d : d1/d2

startd1

startin

updatein
updated1

0 update

startstartin

m/d

m/d

m : S/M

e3

sd1

S

m/d

e1

e7

d : d1/d2

0

m/d

d : d1/d2

0
ud1

U

Figure 6.6: Inputs selection of a CMD for four operational cases.

the insertion of three delay latches in Figure 6.5 ensures that the maximum gate delay,

hence the critical delay path, external to the CMD remains less than that of a single PE

as discussed in Section 6.4.2. The XOR and MUX gates of Figures 6.5 and 6.6 are grouped

together in the Adder-Selector unit shown in Figure 6.1 which interface both the CMD and

the shift register file. According to Figures 6.2, 6.5 and 6.6, an EC full point add operation

requires only four control signals, and three state signals for the division, in addition to the

clock and the shift signals to the corresponding shift registers. This is an indication of the

simplicity of an area efficient state machine required for this architecture.

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 97

6.5.2 An FSM-type Control Unit

It is mentioned that one of the advantageous to use Algorithm 22 to compute the EC full

point add in affine coordinates is the simplicity of the control unit. In fact, by presetting

a/d signal, the EC full point add algorithm has no conditional branching. Consequently,

all 13 steps of Table 6.1 to compute an EC full point add can be hardwired as shown in

Figure 6.5. In fact, a simple sequencer is used to generate the control signal start for time

slots of 2m cycles, and to check the exit of this signal out of the mth PE of the CMD

by comparing with an independent ring-counter of size 2m. This comparison is used to

generate the done signal of the operation to the host and also for a partial sanity check of

the correctness of CMD functionality.

The other signals generated by the sequencer are: select lines for the MUXs in the

input of the CMD (coded as a two bit value) and the selective shift signals to the specific

shift register at each step of full point add according to the Table 6.1.

As a preliminary EC scalar multiplication design, e.g., Q = kP , it is decided to use

a simple binary scheme to parse the k to set the a/d signal directly based on its bit

values. This results in the only conditional branching required in this control unit. Better

schemes to speedup the scalar multiplications exists. These will be considered in future

improvements of the design.

The area requirement of the control unit is negligible with respect to the CMD or

the shift register file. Also, its design required no pipelining (as customarily used in the

microcode or wired FSM designs of control units) to reduce its critical path. You may

noticed that a main large counter required in the sequencer was designed as a ring-counter

with no carry propagation structure in the control unit.

6.5.3 Scalability and Dealing with Varying Dimension

In general, the bit serial unidirectional architecture in Figure 6.2 may process either fields

of dimension m or any field dimension less than m as far as the correct result can be

captured at the right clock cycle. In an architecture where the same m PEs are used twice

to perform a single division, any field dimension between m/2 and m can be processed.

98 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

5

2

3

S S

{

S S

PE0 PE1

data

state

control

output selector

PEm−1PEm−2PEm−3

quotient
productoutput

common tristate

Figure 6.7: Variable dimension architecture using selectors over common tristate output.

One such area efficient scheme using a selector circuitry over a common tristate output

line similar to Figure 5.5 is shown in Figure 6.7. The main difference is a double output

bus which must distinguish between the result of division (quotient) and multiplication.

One of the selector latches can be set such that only the specific output corresponding

to this latch is passed to the common output, and all other outputs are kept in tristate.

Figure 6.7 represents a serial-in mechanism to set the latch corresponding to the field

dimension.

The given latch is set only once per each change of field dimension and before the

EC scalar multiplication starts. In a CMD structure, where the divider uses the same

functional unit twice, two such common tristate outputs are required, since the product

and the quotient must be captured at different PE output. For the division only the output

of every other PE requires a selector latch.

6.5.4 Implementation Results

A prototype architecture of a CMD for different values of m is coded in Verilog-HDL,

simulated and verified. Recall that the value of m in itself is no limitation to computation

of the critical delay path of the circuit which is independent of m. In general, for larger

values of m the area of the CMD is linearly proportional to m, while the clock rate does

not increase, the throughput is not changed, although the (initial) latency increases.

One of the main characteristics of this bit serial systolic architecture is its ease to the

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 99

scalability. The Verilog model of a complete architecture based on Figures 6.1, 6.2, 6.4,

6.5, and 6.6 has been synthesized using Synopsys with a standard CMOS 0.18µ library for

a clock period of 1.4 ns. The critical delay path of the complete architecture was in fact

internal to a PE of Figure 6.4. The area report of a single PE, including the flip-flops, are

equivalent to 145 2-input NAND gates. It should be pointed out that non-combinational

area is still the dominant part, more than 65%. The register file shown in Figure 6.1

consists of 10 shift registers of size m.

Two other configurations are modeled as well to better estimate the area-throughput-

latency trade-offs. These alternatives are modeled using a fixed m = 163. One alternative

with four copies of the CMD to increase pipelining and throughput with a simpler control

module. The area requirement for the CMD, even though it has increased linearly, becomes

much more dominate with respect to the shift register storage space. However, as expected

the throughput of this configuration reaches optimal value for such systolic architecture

while further simplifying the control unit.

Next, a model with a CMD of exactly 163 PEs, but with adequate shift registers as

buffers to process a curve with an underlying field of size 233 is modeled. In this case, not

only the throughput (as well as latency) was slower, but more importantly, it required a

more complex control unit, with a significant added complexity for its verification.

On the other hand, a complete parametrized bit serial unidirectional systolic architec-

ture with a small control and a set of shift registers for input and output operands has been

designed. For larger values of m, e.g., Elliptic Curve Cryptography (NIST recommended

trinomials and pentanomials with field dimensions 163, 233, 283, 409, 571), the area of

the control unit is a negligibly smaller constant compared to the systolic path and the

area complexity of the entire design becomes linearly dependent on m, e.g., equivalent to

120× 2m 2-input NAND gates (plus 4×m flip-flops for input and output shift registers).

As one may guess, the area is independent of the Hamming weight of the defining

irreducible polynomial used.

The time complexity of this design remains constant and is bounded to the time com-

plexity measure of a CMD as described earlier. For example, considering only module

level constraints, requirement to perform back to back divisions or in a pipelined setting

with other bit serial operations and a field size of m = 163, one operation every 0.24 µs

100 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

or equivalent to more than 4 million operations per second is feasible. As said before, if

necessary an initial latency of almost four times above value must be added. For other

field dimensions a simple extrapolation with no hidden overheads can be used.

Last, the feasibility of reusing the same m PE’s to compute the division without the

use of any external buffering has been tested. In this case, the extra complexity of the

state machine of the control unit is relatively negligible and as anticipated, the area of the

data path is reduced by half while all operations took twice to complete.

6.5.5 Comparison

Two of the implementations described in Section 6.2 provide valid metrics for our proposal.

The implementation in [42] is the best performer which computes a field multiplication us-

ing polynomials basis and the projective coordinates for a specific irreducible polynomial

over GF(2m) in only 4 cycles (at 66 MHz) which translates in almost 7000 scalar mul-

tiplication per second. However, it is reported that for defining polynomials (with the

second MSB less than m/2), the performance decreases by more than an order of magni-

tude. In [42], it is implied that the maximum usage in area of a Xilinx XCV2000E with a

dominant multiplier is done.

In the other implementation on the same FPGA proposed in [60], a combined mul-

tiplier divider design using polynomial basis and the affine coordinates is used. In this

implementation a scalar multiplication is computed in 9m2 clock cycles over any defining

polynomial of any dimension up to a maximum size, where its 256 bit datapath can run at

40 MHz and has a reported gate count of 74103 (this does not include the SRAMS module

and the control required). In contrast to these two designs, our proposal has an estimated

area of 35K gates for a CMD of 256 bits, it computes a scalar multiplication in 8m2 cycles

and most importantly it critical path is 1.4 ns which may result in a device running at over

700 MHz. Considering this clock rate and its area estimate, our design outperforms two

above implementations when a generic defining polynomial implementation is required.

CHAPTER 6. SYSTOLIC ELLIPTIC CURVE PROCESSOR 101

6.6 Summary

In this chapter an area efficient elliptic curve processor has been investigated whose datap-

ath is based on a combined multiplier divider (CMD) bit serial systolic architecture which

implements both multiplication and division over GF(2m) in a single hardware unit and

may achieve high performance by running at high clock rates. This combined multiplier

divider and its systolic structure allows using the EC affine coordinates, hence having a

very small and simple control unit and the least amount of storage space.

This structure coupled with a shift register file provides an efficient bit-level pipelining

among successive field multiplication and division operations with in-line XORing which

results in further pipelining of consecutive EC full point additions.

A trade-off between scalability and throughput has been studied: using adequate ex-

ternal buffering for processing field dimensions larger and independent of the number of

PEs present in the datapath at the expense of lower throughput. It has been shown that

for high throughput applications, multiple CMD units can easily be pipelined due to their

unidirectional bit serial architecture.

This structure outperforms other EC processors when variable field dimension and any

irreducible polynomial usage is a requirement. Furthermore, this unidirectional single type

PE structure makes it suitable for fault-tolerant designs.

Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusions

In this work efficient hardware implementation of multiplicative inversion and division

over Galois fields with polynomial or triangular basis representation of elements has been

investigated. Specifically, a detailed survey of many implementations of EEA (Extended

Euclidean Algorithm) and binary (Stein’s) GCD algorithm to compute multiplicative in-

version or field division with polynomial basis has been reviewed. A set of common tasks

among all these variants is defined and some major implementation issues have been high-

lighted. Further, a common set of algorithms has been described which could be used to

compute inversion or division when the input divisor is in either polynomial or triangular

basis. In this case, some comments regarding the formation of coefficients of the Hankel

matrix used in triangular basis inversion (or division) has been summarized, and initializa-

tion modifications have been discussed which enable us to use exactly the same architecture

in both bases. Further some key results on inversion and division using triangular basis

have been presented.

Next, systolization as a solution to the VLSI design complexity of computational inten-

102

CHAPTER 7. CONCLUSION AND FUTURE WORKS 103

sive and iterative algorithms has been reviewed. A major complexity issue, the interconnect

bottleneck in the sub-micron design of algorithms like EEA has been explained.

Then, a novel class of unidirectional bit serial systolic architecture to implement mul-

tiplicative inversion and division over Galois fields has been proposed. This architecture

uses a variant of EEA optimized for unidirectional systolization with no carry propagation

structure. The same algorithm and architecture can be used to perform inversion and

division where the input divisor is in triangular basis. Main contribution is the restoring

mechanism introduced in Algorithm 21 and its implementation using double delay ele-

ments in Figure 5.3. Also, a simpler distributed counter structure has been proposed. This

architecture is suitable for applications where the field dimension may be large or variable

(such as cryptographic applications). This architecture is well suitable for high clock rates

applications.

Finally, In Chapter 6, the design of a high performance systolic elliptic curve processor

has been investigated. It has been stated that if a field division can be performed at

the speed of a field multiplication, then the complexity of a control unit of an EC scalar

multiplication processor using affine coordinates becomes negligible with respect to its

datapath. Hence, a datapath based on a combined multiplier divider (CMD) bit serial

systolic architecture is implemented where both multiplication and division over GF(2m)

are performed in a single hardware unit in a pipelined organization. This has resulted in

a high performance by achieving high clock rates.

This unidirectional bit serial datapath structure coupled with a shift register file pro-

vides an efficient bit level pipelining among successive field multiplication and division

operations which has resulted in further pipelining of consecutive EC full point additions.

A trade-off between scalability and throughput has been studied: using adequate ex-

ternal buffering for processing field dimensions larger and independent of the number of

PEs present in the datapath at the expense of lower throughput. It has been shown that

for high throughput applications, multiple CMD units can easily be pipelined due to their

unidirectional bit serial architecture.

This structure outperforms other EC processors at a system level specially when variable

field dimension and irreducible polynomial usage is a requirement.

104 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

7.2 Future Work

In this thesis a very specific objective, to design a high performance but also scalable

architecture of multiplicative inversion and division for large and variable values of field di-

mension, m, was set. Many schemes have been investigated and a specific implementation,

a bit serial unidirectional systolic structure, has been selected mainly for its suitability to

reduce the interconnect complexity of VLSI design. However, improving some aspects of

this architecture can be further studied, and certain features of this design can be gener-

alized in other applications. A list of optimization and generalizations follows:

1. Circuit level optimization: Major issue with any systolic architecture in general and

this bit serial architecture in particular is the high ratio of latch elements (flip-

flops) versus the logic. Considering advantages of a bit level pipelining, a possible

investigation to use or design practical alternative latch models instead of standard

flip-flops is desirable. It is known that AT-complexity is highly dependent on the

delay elements used. Both delay or area optimizations of a latch design may be

explored further.

2. Architecture level generalization: A possible alternative to mitigate the high cost of

latch elements versus the logic is the case of generalizing the bit serial architecture

to an optimal digit serial design. This may not necessarily be a solution to the

above point. However, any bit serial structure can be transformed into a digit serial

one, by folding techniques, [39, 70], if a higher throughput is a requirement. A digit

serial alternative can be further studied to formulate an optimal throughput-area

relationship.

3. Algorithmic generalization: In this thesis a specific implementation of EEA, i.e., left-

shift GCD algorithms, applied to computing inversion and division over Galois fields

is studied. However, the same structure with slight modifications can be used for

right-shift GCD algorithm and thus can be extended to perform a unified dual field

(prime and binary) inversion and division as well.

4. Fault-tolerant design optimization: The unidirectionality of this architecture makes

it suitable for fault-tolerant design paradigm [76]. Further with simple extra circuitry

CHAPTER 7. CONCLUSION AND FUTURE WORKS 105

it is possible to verify the correctness of the result of this structure.

5. SPA (Simple Power Analysis): A unified EC full point add and multiply operation

makes this systolic EC crypto processor resistant to SPA attack. However, this

has not be proved. Further, studying an efficient key parsing methodology to be

resistant to both SPA and DPA (Differential Power Analysis) type attacks for this

specific architecture would be interesting.

Bibliography

[1] Tolga Acar. High-Speed Algorithms & Architectures For Number-Theoretic Cryp-

tosystems. PhD thesis, Oregon State University, Dec. 1997.

[2] IEEE 1363-2000: adopted IEEE Standard. “IEEE Standard Specifications for Public

Key Cryptography”. http://standards.ieee.org/catalog/olis/busarch.html, 2000.

[3] G.B. Agnew, T. Beth, R.C. Mullin, and S.A. Vanstone. “Arithmetic Operations in

GF(2m)”. Journal of Cryptology, 6(1):3–13, June 1993.

[4] G.B. Agnew, R.C. Mullin, and S.A. Vanstone. “An Implementation of Elliptic Curve

Cryptosystems Over F2155”. IEEE J. Selected Areas of Communications, 11(5):804–

813, June 1993.

[5] K. Araki, I. Fujita, and M. Morisue. “Fast Inverter Over Finite Field Based on

Euclid’s Algorithm”. Tran. Inst. Electronics, Information. And Comm. Engineers,

E-72:1230–1234, Nov. 1989.

[6] Daniel Bailey. Optimal Extension Fields for Fast Arithmetic in Public-Key Algo-

rithms. Worcester Polytechnic Institute, May 1998. Master’s Thesis.

[7] M. Bednara, M. Daldrup, J. Teich, J. von zur Gathen, and J. Shokrollahi. “Trade-

off analysis of FPGA based elliptic curve cryptography”. Proceedings of the IEEE

International Symposium on Circuits and Systems. ISCAS’02, 5:797–800, 2002.

106

CHAPTER 7. CONCLUSION AND FUTURE WORKS 107

[8] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and J. Teich. “Recon-

figurable Implementation of Elliptic Curve Crypto Algorithms”. 16th International

Parallel and Distributed Processing Symposium, pages 154–167, 2002.

[9] E. Berlekamp, G. Seroussi, and P. Tong. Reed-Solomon Codes and Their Applications,

Editors S.B. Wicker and V.K. Bhargava. Chapter 10. IEEE Press, Piscataway NJ,

1994. A Hypersystolic Reed-Solomon Decoder.

[10] E. R. Berlekamp. “Bit-Serial Reed-Solomon Encoders”. IEEE Transactions on In-

formation Theory, 28:869–874, Nov. 1982.

[11] E.R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Book Company, 1968.

[12] E.R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Book Company, 1968.

Section 2.3.

[13] R.P. Brent and H.T. Kung. “Systolic VLSI Arrays for Polynomial GCD Computa-

tion”. IEEE Transactions on Information Theory, c-33(8):731–736, Aug. 1984.

[14] R.P. Brent, H.T. Kung, and F.T. Luk. “Some Linear-Time Algorithms for Systolic

Arrays”. “Proceedings of International Federation of Information Processing (IFIP),

9th World Computer Congress, Paris, France”, pages 865–876, Sept. 1983.

[15] H. Brunner, A. Curiger, and M. Hofstetter. “On Computing Multiplicative Inverses

in GF(2m)”. IEEE Transactions on Computers, 42(8):1010–1015, Aug. 1993.

[16] A. Daneshbeh and M.A. Hasan. “On Double-Basis Inversion and Division over

GF(2m)”. Manuscript under preparation.

[17] A. Daneshbeh and M.A. Hasan. “A Class of Scalable Unidirectional Bit Serial Systolic

Architectures for Multiplicative Inversion and Division over GF(2m)”. http://www.

cacr.math.uwaterloo.ca, Dec 2002. Technical Report CORR 2002-35.

[18] A.K. Daneshbeh and M.A. Hasan. “A Unidirectional Bit Serial Systolic Architecture

for Double-Basis Division over GF(2m)”. Proceedings of the 16th. IEEE Symposium

on Computer Arithmetic, Arith-16, pages 174–187, June 2003. A conference article

based on [17].

108 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

[19] A.K. Daneshbeh and M.A. Hasan. “Area Efficient High Speed Elliptic Curve Systolic

Cryptoprocessor for Random Curves”. Proceedings of the International Conference

on Information Technology, Coding and Computation. ITCC’04, 2:588–592, April

2004.

[20] A.K. Daneshbeh and M.A. Hasan. “A Class of Unidirectional Bit Serial Systolic

Architectures for Multiplicative Inversion and Division over GF(2m)”. IEEE Trans-

actions on Computers, 54(3):–, March 2005. Accepted to be published. An extended

journal article based on [17].

[21] G.I. Davida. “Inverse of Elements of a Galois Field”. Electronics Letters, 8(2):22–30,

Mar. 1972.

[22] E. Delgado. e-Commerce and Trustmarks: Results from the ALPINE Work-

ing Group. URL: http://elab.vanderbilt.edu/elib/upload/196/A roadmap on Trust-

marks.pdf, December 2002. European Software Institute.

[23] W. Diffie and M. Hellman. “New Directions in Cryptography”. IEEE Transactions

on Information Theory, 22:644–654, 1976.

[24] Mohamed El-Gebaly. Finite field Multiplier Architectures for Cryptographic Appli-

cations. PhD thesis, University of Waterloo, 2000.

[25] T. ElGamal. “A Public-key Cryptosystem and a Signature Scheme based on Discrete

Logarithms”. IEEE Transactions on Information Theory, 31:469–472, 1985.

[26] M.M. Elgebaly and M.A. Hasan. “Elliptic Curve Diffie-Hellman Key Exchange

Coprocessor”. 20th Biennial Symposium on Communications, Kingston, Ontario,

Canada, pages 54–58, May 2000.

[27] M. Ernst, S. Klupsch, O. Hauck, and S.A. Huss. “Rapid prototyping for hardware

accelerated elliptic curve public-key cryptosystems”. 12th International Workshop

on Rapid System Prototyping, RSP ’01, pages 24–29, 2001.

[28] G. Feng. “A VLSI Architecture for Fast Inversion in GF(2m)”. IEEE Transactions

on Information Theory, 38(10):1383–1386, Oct. 1989.

CHAPTER 7. CONCLUSION AND FUTURE WORKS 109

[29] S.T.J. Fenn, M. Benaissa, and D. Taylor. “Bit-serial Dual Basis Systolic Multipliers

for GF(2m)”. Proceedings of the IEEE International Symposium on Circuits and

Systems. ISCAS’95, 3:2000–2003, 1995.

[30] S.T.J. Fenn, M. Benaissa, and D. Taylor. “Finite Field Inversion Over the Dual

Basis”. IEEE Transactions on VLSI Systems, 4(1):134–137, March 1996.

[31] S.T.J. Fenn, M. Benaissa, and D. Taylor. “Dual Basis Systolic Multipliers for

GF(2m)”. IEE Proceedings. Computers and Digital Techniques, 144(1):43–46, Jan.

1997.

[32] P. Fitzpatrick, J. Nelson, and G. Norton. “A Systolic Version of The Extended

Euclidean Algorithm”. Systolic Array processors, pages 477–486, 1989. Edited by J.

McCanny and J. McWhirter.

[33] K. Fong, D. Hankerson, J. Lopez, and A. Menezes. “Field Inversion and Point Halving

Revisited”. IEEE Transactions on Computers, 53(8):1047–1059, August 2004.

[34] R. Furness, M. Benaissa, and S.T.J. Fenn. “GF(2m) Multiplication over Triangular

Basis for Design of Reed-Solomon Codes”. IEE Proceedings. Computers and Digital

Techniques, 145(6):437–443, Nov. 1998.

[35] L. Gao, S. Shrivastava, H. Lee, and G.E. Sobelman. “A compact fast variable key

size elliptic curve cryptosystem coprocessor”. 7th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, FCCM ’99, pages 304–305, 1999.

[36] W.J. Gilbert and S.A. Vanstone. Classical Algebra. Waterloo Mathematics Founda-

tion, 1993.

[37] J.-H. Guo and C.-L. Wang. “Bit-serial Systolic Array Implementation of Euclid’s Al-

gorithm for Inversion and Division in GF (2m)”. Proceedings of Technical Papers,

International Symposium on VLSI Technology, Systems, and Applications, pages

113–117, June 1997.

110 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

[38] J.-H. Guo and C.-L. Wang. “Digit-serial Systolic Multiplier for Finite Fields

GF(2m)”. IEE Proceedings. Computers and Digital Techniques, 145(2):143–148, Mar.

1998.

[39] J.-H. Guo and C.-L. Wang. “Novel Digit-serial Systolic Array Implementation of

Euclid’s algorithm for Division in GF (2m)”. Proceedings of the IEEE International

Symposium on Circuits and Systems, 1998. ISCAS’98, 2:478–481, 1998.

[40] J.-H. Guo and C.-L. Wang. “Systolic Array Implementation of Euclid’s Algorithm for

Inversion and Division in GF(2m)”. IEEE Transactions on Computers, 47(10):1161–

1167, Oct. 1998.

[41] J.-H. Guo and C.-L. Wang. “Systolic Array Implementation of Euclid’s Algorithm

for Inversion and Division in GF(2m)”. IEE Proceedings Computers and Digital

Techniques, 145(4):272–278, July 1998.

[42] N. Gura, S. H. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchenstein, E. Goupy,

and D. Stebila. “An End-to-End Systems Approach to Elliptic Curve Cryptogra-

phy”. 4th International Workshop on Cryptographic Hardware and Embedded Sys-

tems, CHES 2002, LNCS 2523, Springer-Verlag, pages 351–366, 2002.

[43] A. Halbutogullari and C.K. Koc. “Mastrovito Multiplier for General Irreducible

Polynomials”. IEEE Transactions on Computers, 49(5):503–518, May 2000.

[44] Alper Halbutogullari. Fast Bit-Level, word-Level and Parallel Arithmetic in Finite

Fields for Elliptic Curve Cryptosystems. PhD thesis, Oregon State University, Nov.

1998.

[45] D. Hankerson, J.L. Hernandez, and A. Menezes. “Software Implementation of Elliptic

Curve Cryptography over Binary Fields”. 2nd International Workshop on Crypto-

graphic Hardware and Embedded Systems, CHES 2000, LNCS 1965, Springer-Verlag,

pages 1–24, August 2000.

[46] M.A. Hasan. “Double-Basis Multiplicative Inversion over GF(2m)”. IEEE Transac-

tions on Computers, 47(9):960–970, Sep. 1998.

CHAPTER 7. CONCLUSION AND FUTURE WORKS 111

[47] M.A. Hasan. “Efficient Computation of Multiplicative Inverses for Cryptographic

Applications”. Proceedings of the 15th. IEEE Symposium on Computer Arithmetic,

Arith-15, pages 66–72, June 2001.

[48] M.A. Hasan and V.K. Bhargava. “Bit-Serial Systolic Divider and Multiplier for Finite

Fields GF(2m)”. IEEE Transactions on Computers, 41(8):972–980, Aug. 1992.

[49] M.A. Hasan and V.K. Bhargava. “Division and Bit-Serial Multiplication over

GF(qm)”. IEE proceedings of Electronics, 139:230–236, May 1992.

[50] M.A. Hasan and V.K. Bhargava. “Architecture for a Low Complexity Rate-Adaptive

Reed-Solomon Encoder”. IEEE Transactions on Computers, 44(7):938–942, July

1995.

[51] M.A. Hasan, M.Z. Wang, and V.K. Bhargava. “Modular Construction of Low Com-

plexity Parallel Multipliers for a Class of Finite Fields GF(2m)”. IEEE Transactions

on Computers, 41(8):962–971, Aug. 1992.

[52] M.A. Hasan and A.G. Wassal. “VLSI Algorithms, Architectures and Implementation

of a Versatile GF(2m) Processor”. IEEE Transactions on Computers, 49(10):1064–

1073, Oct. 2000.

[53] O. Hauck, A. Katoch, and S.A. Huss. “VLSI system design using asynchronous wave

pipelines: a 0.35 µm CMOS 1.5 GHz elliptic curve public key cryptosystem chip”.

6th International Symposium on Advanced Research in Asynchronous Circuits and

Systems, ASYNC 2000, pages 188–198, 2000.

[54] C.P. Hong, C.H. Kim, S.H. Kwan, and I.G. Nam. “Efficient Bit-Serial Systolic Array

for Division Over GF(2m)”. Proceedings of the IEEE International Symposium on

Circuits and Systems. ISCAS’03, II:252–255, May 2003.

[55] Y-T. Horng and S-W. Wei. “Fast Inverters and Dividers for Finite Field GF(2m)”.

The 1994 IEEE Asia-Pacific Conference on Circuits and Systems, APCCAS ’94,

pages 206–211, 1994.

112 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

[56] C-T. Huang and C-W. Wu. “High-Speed C-Testable Systolic Array Design for Galois-

field Inversion”. Proceedings of the European Design and Test Conference, Paris:342–

346, March 1997.

[57] T. Itoh and S. Tsujii. “A Fast Algorithm for Computing Multiplicative Inverses in

GF(2m) Using Normal Basis”. Information and Computation, 78:171–177, 1988.

[58] S.K. Jain, L. Song, and K.K. Parhi. “Efficient Semi-Systolic Architectures for Finite

fields Arithmetics”. IEEE Transactions on VLSI Systems, 6(1):101–113, Mar. 1998.

[59] S. Janssens, J. Thomas, W. Borremans, P. Gijsels, I. Verbauwhede, F. Vercauteren,

B. Preneel, and J. Vandewalle. “Hardware/software co-design of an elliptic curve

public-key cryptosystem”. 2001 IEEE Workshop on Signal Processing Systems, SPS

2001, pages 209–216, 2001.

[60] T. Kerins, E. Popovici, W. Marnane, and P.Fitzpatrick. “Fully Parameterizable

Elliptic Curve Cryptography Processor over GF(2m)”. 12th International Conference

on Field-Programmable Logic and Applications. Reconfigurable Computing Is Going

Mainstream, FPL 2002, LNCS 2438, Springer-Verlag, pages 750–759, 2002.

[61] H.-S. Kim, K.-J. Lee, J. Kim, and K.-Y. Yoo. “Partitioned Systolic Multiplier for

GF(2m)”. 1999 International Workshops on Parallel Processing, ICCP ’99, pages

192–197, Sept. 1999.

[62] N.-Y. Kim, W.-H. Lee, and K.-Y. Yoo. “Efficient Power-Sum Systolic Architec-

tures for Public-Key Cryptosystems in GF(2m)”. 8th International Conference on

Computing and Combinatorics, COCOON 2002, LNCS 2387, Springer-Verlag, pages

153–161, August 2002.

[63] D.E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 1973.

sec. 3.2.

[64] D.E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 1973.

Section. 4.5.2, 4.5.3.

[65] N. Koblitz. “Hyperelliptic Cryptosystems”. Journal of Crptology, 1(3):139–150, 1989.

CHAPTER 7. CONCLUSION AND FUTURE WORKS 113

[66] C.K. Koc and B.Sunar. “Low Complexity Bit Parallel Canonical and Normal Ba-

sis Multipliers for a Class of Finite Fields”. IEEE Transactions on Computers,

47(3):353–356, March 1998.

[67] C.K. Koc and C.Y. Hung. “Bit-Level Systolic Arrays for Modular Multiplication”.

Journal of VLSI Signal Processing, 3:210–223, 1991.

[68] M. Kovac, N. Ranganathan, and M. Varanasi. “SIGMA: A VLSI Systolic Array

Implementation of a Galois Field GF(2m) Based Multiplication and Division Algo-

rithm”. IEEE Transactions on VLSI Systems, 1(1):22–30, Mar. 1993.

[69] H.T. Kung. “Why Systolic Architectures?”. Computer, 15(1):37–46, Jan. 1982.

[70] S.Y. Kung. VLSI Array Processor. Prentice Hall Information and System Sciences

Series, 1988.

[71] A.K. Lenstra and E.R. Verheul. Selecting cryptographic key sizes. Journal of Cryptol-

ogy: the journal of the International Association for Cryptologic Research, 14(4):255–

293, 2001.

[72] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong. “FPGA Implementation of a

Microcoded Elliptic Curve Cryptographic Processor”. 8th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, FCCM 2000, pages 68–76,

2000.

[73] P.H.W. Leung and I.K.H. Leong. “A Microcoded Elliptic Curve Processor using

FPGA Technology”. IEEE Transactions on VLSI Systems, 10(5):550–559, Oct 2002.

[74] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cam-

bridge University Press, 1994.

[75] E.D. Mastrovito. VLSI Architectures for computation in Galois Fields. PhD thesis,

Linkoping Univ., Linkoping Sweden, 1991.

[76] J.V. McCanny, R.A. Evans, and J.G. McWhirter. “Use of Unidirectional Data Flow

in Bit-level Systolic Array Chips”. Electronics Letters, 22:540–541, May 1986.

114 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

[77] J.H. McClellan and C.M. Rader. Number Theory in Digital Signal Processing.

Prentice-Hall, Inc., Englewood Cliffs, 1979.

[78] R.J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer Aca-

demic Publishers, 1987.

[79] C. Mead and L. Conway. Introduction to VLSI systems. Addison-Wesley Publishing

Company, 1980.

[80] M.C. Mekhallati, M.K. Ibrahim, and A.S. Ashur. “New Low Complexity Bidirec-

tional Systolic Structures for Serial Multiplication over the Finite Field GF(qm)”.

IEE Proceedings. Circuits, Devices and Systems Series, 145(1):55–60, Feb. 1998.

[81] A.J. Menezes, I.F. Blake, X.-H. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian.

Applications of Finite Fields. SECS199. Kluwer International Series in Engineering

and Computer Science. Communications and Information Theory, 1993.

[82] A.J. Menezes, P. van Ooreschot, and S. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1996.

[83] V. Miller. “Use of Elliptic Curves in Cryptography”. Advances in Cryptology,

CRYPTO ’85, LNCS 218, Springer-Verlag, pages 417–426, 1985.

[84] M. Morii, M. Kasahara, and D.L. Whiting. “Efficient Bit-Serial Multiplication and

the Discrete-Time Wiener-Hopf Equation over Finite Fields”. IEEE Transactions on

Information Theory, 35(6):1177–1183, Nov. 1989.

[85] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson. “Optimal Normal

Bases in GF(pn)”. Discrete Applied Mathematics, 22:149–161, 1988-89.

[86] NIST. FIPS 186-2, Digital Signature Standard (DSS). http://csrc.nist.gov/

publications/fips/fips186-2-change1.pdf, Feb 2000. Specification of the Digi-

tal Signature Algorithm (DSA).

[87] G.H. Norton. “Precise Analyses of The Right- and Left-Shift Greatest Common

Divisor Algorithms For GF(q)[x]”. SIAM Journal on Computing, 18(3):608–623,

June 1989.

CHAPTER 7. CONCLUSION AND FUTURE WORKS 115

[88] S. Okada, N. Torii, K. Itoh, and M. Takenada. “A high-Performance Reconfigurable

Elliptic Curve Processor for GF(2m)”. 2nd International Workshop on Cryptographic

Hardware and Embedded Systems, CHES 2000, LNCS 1965, Springer-Verlag, pages

25–40, August 2000.

[89] J. Omura and J. Massey. “Computational Method and Apparatus for Finite Field

Arithmetic”. U.S. Patent Number 4,587,627, May 1986.

[90] G. Orlando and C. Paar. “A high-Performance Reconfigurable Elliptic Curve Pro-

cessor for GF(2m)”. 2nd International Workshop on Cryptographic Hardware and

Embedded Systems, CHES 2000, LNCS 1965, Springer-Verlag, pages 41–56, August

2000.

[91] Christof Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois

Fields. PhD thesis, University of Essen, 1994.

[92] D.A. Pucknell and K. Eshraghian. Basic VLSI Design. Prentice Hall, third edition,

1994.

[93] P. Quinton and Y. Robert. Systolic Algorithms & Architectures. Prentice-Hall, Inc.,

1990.

[94] T.R.N. Rao and E. Fujiwara. Error Correcting Codes for Computer Systems.

Prentice-Hall, Inc., Englewood Cliffs, 1989.

[95] R.L. Rivest, A. Shamir, and L. Adleman. “A Method of Obtaining Digital Signature

and Public-key Cryptosystems”. Communication of the ACM, 21(2):120–126, Feb.

1978.

[96] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. “Fast Key Exchange

with Elliptic Curve Systems”. Advances in Cryptology, EUROCRYPT ’95, LNCS

921, Springer-Verlag, pages 43–56, 1995.

[97] P.A. Scott, S.E. Tavares, and L.E. Peppard. “A Fast VLSI Multiplier for GF(2m)”.

IEEE J. Selected Areas of Communications, 4(1):62–66, Jan. 1986.

116 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

[98] G. Seroussi. “Table of Low-weight Irreducible Polynomials over F2”. Hewlett-Packard

Laboratories Technical Report No. HPL-98-135, August 1998.

[99] L. Song and K.K. Parhi. “Low-Energy Digit-Serial/Parallel Finite Field Multipliers”.

Journal of VLSI Signal Processing., 19:149–166, 1998.

[100] Y. Sugiyama. “An Algorithm for Solving Discrete-Time Wiener-Hopf Equations

based on Euclid’s Algorithm”. IEEE Transactions on Information Theory, 32(5):394–

409, May 1986.

[101] B. Sunar and C.K. Koc. “Mastrovito Multiplier for All Trinomials”. IEEE Transac-

tions on Computers, 48(7):522–527, July 1999.

[102] S. Sutikno, R. Effendi, and A. Surya. “Design and implementation of arithmetic

processor F2155 for elliptic curve cryptosystems”. The 1998 IEEE Asia-Pacific Con-

ference on Circuits and Systems, APCCAS ’98, pages 647–650, 1998.

[103] N. Takagi. “A VLSI Algorithm for Modular Division Based on the Binary GCD

Algorithm”. Transactions of The Institute of Electronics, Information and Commu-

nication Engineers, 1998. IEICE’98, E81(5):724–728, 1998.

[104] W.-C. Tsai and S.-J. Wang. “A systolic architecture for elliptic curve cryptosystems”.

5th International Conference on Signal Processing, WCCC-ICSP 2000, 1:591–597,

2000.

[105] L.B. Veries, K.A. Imink, J.G. Nibor, H. Hoeve, T. Doi, K. Okada, and H. Ogawa.

“The Compact Disc Digital Audio System - Modulation and Error Correction”. Pro-

cedings Sixy-Seventh AES Convention, Oct. 1980.

[106] C. C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed.

“VLSI Architectures for Computing Multiplications and Inverses in GF(2m)”. IEEE

Transactions on Computers, 34(8):709–716, Aug. 1985.

[107] C.-L. Wang and J.L. Lin. “Systolic Array Implementation of Multipliers for Finite

Fields GF(2m)”. IEEE Transactions on Circuits and Systems, 38(7):796–800, July

1991.

CHAPTER 7. CONCLUSION AND FUTURE WORKS 117

[108] C.-L. Wang and J.L. Lin. “A Systolic Architecture for Computing Inverses and

Divisions in Finite Fields GF(2m)”. IEEE Transactions on Computers, 42(9):1141–

1146, Sept. 1993.

[109] M.Z. Wang and I.F. Blake. “Bit-Serial Multiplication in Finite Fields”. SIAM Journal

on Discrete Mathematics., 3(1):140–148, Feb. 1990.

[110] Y. Watanabe, N. Takagi, and K. Takagi. “A VLSI Algorithm for Division in GF(2m)

Based on Extended Binary GCD Algorithm”. Transactions of The Institute of Elec-

tronics, Information and Communication Engineers, 2002. IEICE’02, E85(5):994–

999, 2002.

[111] S.-W. Wei. “VLSI Architectures for Computing Exponentiations, Multiplicative In-

verses and Divisions in GF(2m)”. IEEE International Symposium Circuits and Sys-

tems, pages 4.203–4.206, 1994.

[112] Certicom ECC Whitepapers. “Remarks on the Security of the Elliptic Curve Cryp-

tosystem”. URL: www.comms.scitech.susx.ac.uk/fft/crypto/EccWhite3.pdf, Sept.

1997.

[113] E. De Win, A. Bosselaers, S. Vandenberghe, P. DeGersem, and J. Vandewalle. “A

Fast Software Implementation for Arithmetic Operations in GF(2n)”. Advances in

Cryptology, ASIACRYPT ’96, LNCS 1163, Springer-Verlag, pages 65–76, Nov. 1996.

[114] J.J. Wozniak. “Systolic Dual Basis Serial Multiplier,”. IEE Proceedings. Computers

and Digital Techniques, 145(3):237–241, May 1998.

[115] C-H. Wu, C-M. Wu, M-D. Shieh, and Y-T. Hwang. “Systolic VLSI Realization of

a Novel Iterative Division Algorithm over GF(2m): A High Speed Low-Complexity

Design”. Proceedings of the IEEE International Symposium on Circuits and Systems.

ISCAS’01, 4:33–36, 2001.

[116] C-H. Wu, C-M. Wu, M-D. Shieh, and Y-T. Hwang. “An Area-Efficient Systolic

Division Circuit over GF(2m) for Secure Communication”. Proceedings of the IEEE

International Symposium on Circuits and Systems. ISCAS’02, 5:733–736, 2002.

118 Bit Serial Sysytolic Architectures for Inversion and Division over GF(2m)

[117] C.-W.. Wu and M.-K. Chang. “Bit-Level Systolic Arrays for Finite-Field Multipli-

cations”. Journal of VLSI Signal Processing, 10(1):85–92, June 1995.

[118] Huapeng Wu. Efficient Computations in Finite Fields with Cryptographic Signifi-

cance. PhD thesis, University of Waterloo, Nov. 1998.

[119] Z. Yan and D.V. Sarwate. “Systolic Architectures for Finite Field Inversion and Di-

vision”. Proceedings of the IEEE International Symposium on Circuits and Systems.

ISCAS’02, V:789–792, June 2002.

[120] C.-S. Yeh, I.S. Reed, and T.K. Truong. “Systolic Multipliers for Finite Fields

GF(2m)”. IEEE Transactions on Computers, 33(4):357–359, April 1984.

[121] T. Zhang and K.K. Parhi. “Systematic Design of Original and Modified Mastrovito

Multipliers for General Irreducible Polynomials’. IEEE Transactions on Computers,

50(7):734–749, July 2001.

