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Abstract

With increasing complexity of microwave integrated circuits and tendency to-
wards building integrated modules, real estate in printed circuit boards becomes
more at premium. On the other hand, building MIC’s on a single semiconductor
substrate such as GaAs has other drawbacks as substrate requirements for different
components are sometimes contradictory. This has motivated researchers to con-
sider multi-layer and stacked designs. Multi-layer planar circuits offer advantages
that cannot be equalled by traditional single layer designs. In this respect, a new
class of planar structures, based upon a multi-layered stack of dual-mode stripline
or microstrip patches is becoming increasingly popular. In the new stacked de-
sign, coupling between planar circuits separated by a ground plane is accomplished
through coupling apertures in the common ground plane.

This thesis is about developing an new approximate multiport network model
for fast analysis of multi-layered planar structures with ground plane slots. To
extend applicability of multiport network model (MNM) to the class of planar
structures containing ground plane slots, a generalized network formulation for
aperture problems is combined with traditional MNM to account for the presence of
the slot. To this end, the slot is replaced by an unknown equivalent surface magnetic
current. Slot ports are defined in terms of electric and magnetic fields over the slot in
accordance with the generalized network formulation for aperture problems. While
traditional MNM for planar circuits is based on generalized impedance matrices,
we adopt a hybrid matrix approach for multi-layer structures. The hybrid matrix
consists of four sub-matrices that relate terminal voltages and currents of edge and
slot ports. The same generalized impedance matrix in the absence of the slot can
be used to relate terminal voltages and currents of edge ports when the slot ports
are short-circuited. Open circuit voltage at edge ports due to terminal voltages
at slot ports and terminal currents at slot ports due to input currents at edge
ports are represented by two transfer matrices. Both these transfer matrices can
be calculated from 2D analysis which only considers T'M* modes.

Interaction among slot ports, represented by a generalized admittance matrix,
however, requires considering both T'M* and T'E* modes. This generalized admit-
tance matrix is obtained from tangential component of the magnetic field over the
slot due to the equivalent surface magnetic current and relates terminal voltages
and currents of slot ports. Full modal expansion consisting of both T'M* and T E*?
modes is used to compute the generalized admittance matrix of a slot in a regularly
shaped planar cavity. For irregularly shaped patches, modal expansion is not avail-
able. Instead, a new contour integral equation for magnetic field, derived for the
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first time in this thesis, is combined with complex images method for calculation
of generalized admittance matrix of a slot radiating in a planar cavity of arbitrary
shape.

Once the hybrid matrix representation of a planar circuit on a ground plane
containing a slot is derived, it can be connected to the hybrid matrix of any other
planar circuit on the other side of the ground plane. This can be done by enforcing
network equivalent of continuity of tangential fields across the slot. This leads
to a generalized impedance matrix for the multi-layer structure relating terminal
voltages and currents of edge ports of both planar circuits.

To show the accuracy of the proposed method of analysis, several proof-of-
concept structures have been analyzed by both this method and ANSOFT HFSS
full-wave simulator as a reference. In most cases excellent agreement is achieved
in predicting the return loss and radiation patterns of these multi-layer structures
which proves the validity of the proposed approach for fast analysis and design of
multi-layer planar structures.

v



Acknowledgments

On academic level, I would like to thank my supervisor, professor Safieddin
Safavi-Naeini for providing me with the opportunity to study at the University of
Waterloo.

I would also like to extended my gratitude toward my defense committee mem-
bers, professor Ke Wu, professor Sujeet Chaudhuri, professor Raafat Mansour, and
professor James Martin for both accepting to be on the committee and reading
my dissertation and also providing me with invaluable suggestions and comments
for the future work. In particular, I am grateful to professor Ke Wu for traveling
from Montreal to Waterloo to attend my defense and to professor James Martin
for accepting to be on the committee on an extremely short notice.

I entered the EM world through a mistake, i.e. by entering the code for
RF /Microwave discipline instead of Communication Systems, in which I was orig-
inally interested, in the nation-wide entrance examination for graduate studies in
Iran. I had no intention of staying in this field if it was not for my M.Sc. supervisor,
professor Rouzbeh Moini. I would like to thank him for being such a great mentor.

I am also deeply grateful to Wendy Boles and her staff in graduate studies office
of Electrical and Computer Engineering department. Their patience, helpfulness
and sympathy toward our problems is one of a kind.

This research was supported by grants from several companies and government
agencies, which in alphabetical order are: CITO, DragonWave Inc., Metawave Com-
munications Corporation, NSERC, and Research in Motion (RIM). I would like to
thank each and every person involved in this process, in particular Mr. Donn
Harvey and Mr. Shing Lee, my supervisors during my internships with Metawave
Communications and DragonWave, respectively.



To MY PARENTS
FOR THEIR UNWAVERING LOVE
AND SUPPORT



Contents

1 Introduction
1.1 Aperture-Coupled Microstrip Antennas . . . . . . . ... ... ...
1.2 Multi-Layered Planar Structures . . . . . . . . ... ... ... ...
1.3 Motivation for This Research . . . . . .. .. ... ... ... ...
1.4 Organization of the Thesis . . . . . . .. .. ... ... ... ...,

2 Multiport Network Model
2.1 Introduction . . . . . . . ... Lo
2.2 Basic Formulation of MNM . . . . . ... ...
2.3 Derivation of Green’s Function in terms of Eigenfunctions. . . . . .
2.4 Contour-Integral Equation . . . . ... ... ... ... ... ...
2.4.1 Derivation of a Novel Contour-Integral Equation . . . . . . .

2.4.2 Discretization of Contour-Integral Equations . . . . . . . ..

3 Extension of 2D Multiport Network Model to ...

3.1 Generalized Network Formulation for
Aperture Problems . . . . .. ... ...

3.1.1 Transmitted Power Considerations . . . ... ... .. ...
3.2 Hybrid Matrix Formulation . . . .. ... ... ... ... .....
3.3 Calculation of Impedance Matrix in terms of Hybrid Sub-Matrices .

3.4 Computation of Hybrid Sub-Matrices for
Regular Shapes . . . . . . . . . ...

vii

10
12

14
14
14
20
23
30
32

36

36
40
41
45



CONTENTS

3.5

4.1
4.2

4.3

5.1

3.4.1 Z%: Edge Impedance Matrix . . . . . ... ... ... ....
3.4.2 HPS: Slot-To-Edge Transfer Matrix . . . . . .. .. ... ..
3.4.3 Y?: Slot Admittance Matrix . . . . . . . ... ... .....

Computation of Hybrid Sub-Matrices for
Irregular Shapes . . . . . . . . . ..

3.5.1 Z%: Edge Impedance Matrix . . . . . .. ... ........
3.5.2 HYF. Edge-To-Slot Transfer Matrix . . . . . ... ... ...
3.5.3 HPFS: Slot-to-Edge Transfer Matrix . . . . ... ... ... .
3.5.4 Y®: Slot Admittance Matrix . . . . . ... ... ... ....

Complex Images Method

Introduction . . . . . . . . .

Spectral Green’s Functions for a Horizontal Electric and Magnetic
Dipoles. . . . . . . . .

4.2.1 Reflection and Transmission of Plane-Waves in
Planarly Layered Media . . . . . .. ... ... ... ....

4.2.2  Spatial Vector and Scalar Potentials for Multi-layered Media
Complex Images Method . . . . . . ... ... ... ... ......

4.3.1 Complex Images for an HMD in a Parallel-Plate
Waveguide . . . . . . ...

4.3.2 Numerical Results for Fields and Potentials of an HMD in a
Parallel-Plate Waveguide Using Complex Images . . . . . . .

Numerical Results and Discussion

5.0.3 Single-pole two-layer filter . . . . . . ... ... ... ..
5.0.4 Dual-Band Filter . . . . . ... .. ... ... L.
5.0.5 Multi-Mode Filter . . . . . . .. .. ... ...
5.0.6 Circular Patches . . . ... ... ... ... ... . ...,
5.0.7  Corner-Cut Patches Coupled by an Inclined Slot . . . . . . .
Radiation Pattern . . . . . . .. .. .. ... oL

Viil

55
95

o7

58
60
65

68

72

78
78
81
83
85
87
91



CONTENTS

5.1.1 Reciprocity Approach to Pattern Computation of

Microstrip Antennas . . . . . . ... ... ... 91
5.1.2 Radiation Pattern of an Integrated Antenna-Filter Device . 92

5.1.3 Radiation Pattern of Two Corner-Cut Patches
Coupled by an Inclined Slot . . . . . .. .. ... ...... 94
6 Conclusion and Future Work 96
6.1 Conclusion . . . . . . . . .. 96
6.2 Future Work . . . . . . . . . 98
A Proof of 3.115 100
B Derivation of 2.56 101
C Analytical Evaluation of... 103

X



List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

4.6

Aperture-coupled microstrip antenna, . . . . . . ... .. ... ...
Stacked planar filters constructed from dual mode resonators . . . .
Multi-layered planar structure with microstrip resonators . . . . . .

Examples of dual-mode planar filters . . . . . ... ... ... ...

Generic planar circuit structure . . . . . ... ... L.
Equivalence between co-planar feedline and vertical probe currents .
Concept of segmentation . . . . . . .. ... ... ... ... ...
Concept of desegmentation . . . . . . . .. ... ... ... ... ..
Region to which Green’s theorem is applied. . . . . . ... ... ..

Symbols used in contour-integral equation and numerical analysis

General problem of aperture coupling . . . . . . .. ... ... ...
Generalized network interpretation of 3.90 . . . . . . . .. ... ..

An irregularly shaped patch on a ground plane with a slot . . . . .

Reflection and transmission in a multilayered media . . . . . . . . .
Three-layer structure backed by a ground plane . . . ... ... ..
The integration paths of inverse Hankel transform . . . . . . .. ..
HMD in a homogeneous parallel-plate waveguide . . . . . . . . . ..

Amplitude of 47uG, from image expansion for d = 0.2)¢ and z =

10

15
18
22
22
25
30



LIST OF FIGURES

4.7

4.8

4.9

4.10

4.11

5.1
0.2
5.3
0.4
9.5
5.6
2.7
5.8
5.9
5.10
5.11
0.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

Amplitude of 47uG, from image and modal expansions as well as
complex images for d =02 gand z=2"=0. ... ... ... ... 74

Amplitude of 4muG, from complex images method for d = 0.2\, and
z =2z = 0: with (—) and without (——) fundamental mode extracted. 76

Amplitude of 4muG, from image (—)and modal (——) expansions as
well as complex images both with (A) and without (Xx) extracting

propagating modes for d =02 \gand z=2"=0.. . . . .. .. ... 76
Amplitude of H, from image (—)and modal (——) expansions as well

as complex images (A) ford =02  and z=2"=0. ... ... .. 7
Amplitude of H, from image (—)and modal (——) expansions as well

as complex images (A) ford =02  and z=2'=0. ... ... .. 7
Two-layer single pole filter . . . . . . . .. .. ... ... ... ... 79
Return-loss of a single-pole two-layer filter . . . . . . . .. .. ... 80
The amplitude of Sy for the single-pole two-layer filter . . . . . . . 80
Two-layer dual-band filter . . . . . ... ... ... ... ...... 81
Return-loss of two-layer dual-band filter . . . . . . .. .. ... .. 82
|So1| for two-layer dual-band filter . . . . . . . ... ... ... ... 82
Multi-mode filter . . . . . . ... 83
Return-loss for multi-mode filter . . . . . . . .. ... ... ... .. 84
|So1] for multi-mode filter . . . . ... ..o oL 84
Two circular patches coupled through a slot in ground plane . . . . 85
|S11] for Two circular patches coupled through a slot in ground plane 86
|S91] for Two circular patches coupled through a slot in ground plane 86
Corner-cut patches coupled through an inclined slot . . . . . . . .. 88
|S11] for corner-cut patches coupled through an inclined slot . . . . 88
|Sg1] for corner-cut patches coupled through an inclined slot . . . . 89
Normalized radiated power from structure shown in Fig. 5.13. . .. 89
|S11] for the shielded structure in Fig.. 5.13. . . . . .. . ... ... 90
Dipole in the far-field of a microstrip antenna . . . . . . . . . . .. 91
|Ey| for the structure in Fig. 5.1 at o =45° . . ... ... ... .. 93

x1



LIST OF FIGURES

5.20 |E,| for the structure in Fig. 5.1 at ¢ =45° . . . . ... ... ... 93
5.21 |Ep| for the structure in Fig. 5.13 at ¢ =45° . . . . . ... ... .. 95
5.22 |E,| for the structure in Fig. 5.13 at ¢ =45° . . . . . . .. ... .. 95
B.1 Symbols used in the derivation of the contour-integral equation. . . 102

xii



List of Tables

4.1 Potential functions for different kinds of sources

xlil



Chapter 1

Introduction

Multi-layer circuit technology offers many advantages, including reliability, possi-
bility of mass production, and reduction in size and cost. This technology has even
extended to higher frequencies, well into the microwave range, replacing rigid and
bulky waveguides at low power levels by low-profile planar structures and culmi-
nating with the advent of Microwave Integrated Circuits (MIC’s) and Monolithic
MIC’s (MMIC’s). Commonly used planar structures in microwave frequencies in-
cludes microstrip lines, tri-plate striplines, coplanar lines, and slot lines. Among all
planar structures, however, microstrip line is the most popular and the most widely
used structure and has received considerable attention in many respects.

Due to the inhomogeneous nature of the dielectric in microstrip lines, an ac-
curate analysis of these structures is much more complicated than the analysis
of traditionally used transmission lines and waveguides. Numerous authors and
researchers have addressed analysis and design issues of planar structures in the
past three decades and thanks to their efforts, today a rather extensive arsenal of
analysis and simulation tools exists for microstrip lines and structures.

The complexity of existing numerical methods, such as Method of Moments
(MoM), Finite-Elements Method (FEM), and Finite-Difference Time-Domain Method
(FDTD), etc., makes them unsuitable for design optimization of planar circuits and
necessitates use of fast methods specifically developed for planar structure, where
reasonable approximations are made to simplify the problem without compromising
the accuracy of solutions.

It is clear that microstrip lines (and most other planar structures except for the
tri-plate striplines) cannot support pure transverse electromagnetic (TEM) modes.
This is because of the fact that the electromagnetic fields within the structures
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are not bound to the dielectric substrate and they extend across the interface into
the surrounding medium, a fact that has led to the development of low-profile
microstrip antennas. Since TEM waves propagate with intrinsic phase velocity of
the dielectric medium and because of the fact that the phase velocities are different
in the two media, it is almost evident that these structures are not capable of
supporting pure TEM modes. In other words, in addition to transverse electric and
magnetic fields, longitudinal components must also exist (hybrid modes). However,
at low frequencies these longitudinal components are negligible compared to the
transverse components and a quasi-TEM analysis is possible.

As the frequency increases, fields become more confined within the dielectric
substrate. Since phase matching requires the electromagnetic waves to propagate
with the same velocity within the dielectric and surrounding medium, they can no
longer propagate at the intrinsic phase velocity of either media, hence producing
dispersion. Therefore, at higher frequencies quasi-TEM approximation becomes
inadequate.

At frequencies where the quasi-TEM approximation is not valid anymore, full-
wave analysis methods, such as MoM, FEM, and FDTD can be used to accurately
predict the behavior of planar structures. In most cases, however, we are not
interested in a full-wave analysis of the planar structure, which can be quite time-
consuming. This is specially true in integrated microstrip circuits consisting of
several patches coupled or connected (directly or indirectly) with each other and
probably with active components to perform a specific task. For example, several
dual-mode patches can be gap-coupled to build a Chebyshev or elliptical filter. In
these cases, we are only interested in terminal properties of microstrip structures as
if they are lumped circuit elements. Multi-port Network Model for planar circuits
is one of the methods that addresses this issue. Multi-port Network Modeling
(MNM), which has been developed based on low-frequency circuit theory, builds an
analogy between the planar structure and a low-frequency lumped-element network.
Each planar structure is characterized by a generalized impedance matrix, which
can be connected to the impedance matrices of other components (distributed or
lumped, passive or active) to characterize the whole circuit by its low-frequency
terminal variables. But MNM has its own limitations, due to the fact that it has
been specifically developed for thin planar structures.

As the complexity of microstrip circuits increases, real estate becomes more at
premium. The straightforward approach of building an MIC on a single semicon-
ductor substrate such as GaAs has several drawbacks. There is generally not enough
space on a single layer to hold all components. For example, consider an integrated
millimeter wave array or sub-array. In a single layer design, the semiconductor
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substrate must hold antenna elements, active phase-shifter, amplifier circuitry, bias
lines, and RF feed lines. More importantly, the high permittivity of a semiconduc-
tor substrate such as GaAs has a destructive effect on bandwidth performance of
the antenna element, which is best for low dielectric constant substrates. To some
degree, this can be compensated for by increasing the thickness of the substrate,
which in turn increases spurious feed radiation and power launched into surface
waves and eventually leads to scan blindness [1]. In recent years, these problems
have motivated some researchers to consider multi-layer and stacked designs. Multi-
layer planar circuits offer advantages that cannot be matched by traditional single
layer designs. As the popularity of multi-layer and stacked designs increases, the
necessity of fast analysis and design methods becomes more evident. MNM which
has been successfully employed in single-layer designs is useless for multi-layer struc-
tures. It is this lack of fast analysis methods that has motivated us to extend the
applicability of MNM into multi-layer planar structures.

In order to better introduce the class of multi-layer structures that we will be
dealing with and also portray a better picture of their advantages, we start with
aperture-coupled microstrip antenna [2], which has been successfully used in many
applications.

1.1 Aperture-Coupled Microstrip Antennas

Microstrip antenna technology came into the spotlight in the late 1970s. The devel-
opment of this new technology was so rapid that by the early 1980s there already
was fairly well established methods for analysis, design and modeling of basic mi-
crostrip antenna elements and arrays. At the same time, it was becoming obvious
that the performance of basic microstrip antenna elements fed by coaxial cables or
coplanar feeds could not be improved beyond a certain limit. The designers simply
did not have many parameters to play with in order to improve the performance.
By researchers turning their attention to improving antenna performance features
such as bandwidth, new feeding structures that would provide more degrees of free-
dom seemed unavoidable. In addition, advances in PCB technology and looming
importance of integrated circuit applications such as integrated phased array sys-
tems using microstrip antennas, that would perfectly suit low-cost and high-density
integration with active MIC or MMIC phase-shifters and RF circuitry, were among
other driving forces behind this effort. One of the most intriguing and most suc-
cessful feed systems, is aperture-coupled microstrip antenna (Fig. 1.1) developed
by Pozar [2], [3].
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Metallic Patch

Ground Plane

Dielectric
Substrates

Metallic
Feedline

Figure 1.1: Aperture-coupled microstrip antenna

The idea is to use two different substrates on two sides of a common ground
plane. One substrate holds the feed circuitry and the other supports a resonant
microstrip patch. The feed circuitry and the microstrip element are coupled through
a slot or an aperture in the ground plane. The first prototype element was built
using a circular hole and was analyzed by small hole coupling theory ([2]). Even
though small hole coupling theory was only suitable for small apertures, the analysis
results for the prototype element suggested that dominant coupling mechanism was
magnetic and would be maximized for narrow rectangular slots centered underneath
the slot. These were later confirmed by more accurate numerical modeling [4], [5].
With two-layer design, the engineers are at liberty to chose among almost a dozen
material and dimensional parameters, such as:

1. Antenna substrate dielectric constant to adjust the bandwidth and radiation
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efficiency of the antenna. Lower dielectric constant materials yield wider
impedance bandwidth and reduced surface wave excitation.

2. Antenna substrate thickness which affects bandwidth and coupling level.
Wider bandwidth is achieved by employing thicker substrates. However, for
a given aperture size, the coupling is reduced as the substrate thickness in-
creases.

3. In fundamental resonance mode of operation, the length of the patch radiator
determines the resonant frequency of the antenna, while the microstrip patch
width affects the resonant resistance of the antenna, with a wider patch giving
a lower resistance.

4. Feed substrate dielectric constant can be selected independently for good
microstrip circuit qualities, typically in the range of 2 to 10

5. Feed substrate can be chosen thinner for less spurious radiation from feed
lines

6. Slot length affects the coupling level and also the back radiation level. So
does slot width, but to a lesser degree. Slots with enlarged ends, such as
dog-bone, bow-tie, or H-shaped apertures can further improve coupling.

7. Feed line position and orientation relative to the slot affects coupling level, so
does the position of the patch relative to the slot.

8. Length of the tuning stub can be used to tune the excess reactance of the
aperture coupled antenna.

The practical implications of abundance of design parameters are invaluable.
Each parameter can be used to adjust a particular performance benchmark without
substantially affecting the others. For example, dual polarization can be obtained
by using two orthogonal feeds and two orthogonal slots [6], [7], [8], [9] without being
concerned about real estate (especially in phased arrays) and spurious radiation
from feed. Circular polarization can be achieved by a single diagonal slot and a
slightly non-square patch [10] or by using a crossed slot with a single microstrip
feedline through the diagonal of the cross and a slightly non-square patch [11].

Aperture coupled microstrip antennas are very suitable for arrays using either
series [12] or corporate feed networks [13], [14], [15], especially in dual-polarized or
dual frequency arrays. The two-layer structure makes plenty of space available for
feed network, whereas the ground plane effectively shields the radiating element
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and the feed circuitry. A ground plane located some distance below the feed layer
can be used to eliminate radiation in the back direction.

In general, some of the useful features that can be achieved by aperture coupled
feed for microstrip antennas can be summarized as:

e Impedance bandwidths ranging from 10% to 15% with a single layer antenna
6], [16] (limited to only 2-5% with traditional feeds), and up to 30-50%
with stacked patch configuration [13], [17], [18], [19] mainly due to additional
degrees of freedom offered by the stub length and coupling aperture size.

e Independence in selection of antenna and feed substrate materials

e Shielding between the radiating aperture and the feed network due to two-
layer construction

e Increased substrate space for antenna elements and feed lines
e Convenient integration for active arrays
e Theoretically zero cross polarization in principle planes

e Many parameters for performance adjustment, such as patch shape, aperture
shape, feed line type, etc.

Most of these features carry over to other two-layer designs such as integrated
antenna-filter devices or multi-layer filters.

1.2 Multi-Layered Planar Structures

In many applications weight, cost, and size are amongst the determining factors
for component selection. For example, dual-mode cavity and dielectric resonator
filters have become the mainstay of satellite communications, replacing their bulky
single-mode predecessors. In addition to drastic reduction in weight, size, and cost,
dual-mode filters have also made possible realization of filtering functions such as
elliptic function filters which require cross-coupling between non-adjacent cavities
to produce alternate forward paths from input to output. In the past decade,
dual-mode cavity and dielectric resonator filters have been gradually replaced by
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even significantly less bulky, cheaper and lighter dual-mode planar filters [20] in low-
power applications. The advent of new high temperature superconductive materials
and advancements in fabrication technology has contributed to this development.

In communication systems, however, where filters and other components such as
antennas, phase-shifters, and active components are connected to perform a specific
task, it is the physical dimensions and performance of the system front-end that
matters the most. For example, when the receiving antenna is followed by a band-
pass filter, it is desirable to integrate the antenna and the bandpass filter in a single
module. However, juxtaposition of the antenna element and the bandpass filter on
the same layer is not practical. The presence of the distributed filter can adversely
affect the performance of the antenna element. This is especially true in arrays,
where the area allocated to each radiating element is barely larger than the size of
each element. Similar to the aperture-coupled microstrip antennas, multi-layered
structures can accommodate both radiating elements and filter components without
compromising their performance. In addition, integration of antenna/filter devices
can improve bandwidth performance of the antenna (It has been demonstrated that
the bandwidth performance of resonant antennas can be enhanced using impedance
matching techniques without altering its radiating characteristics [21], [22]).

The new class of planar structures, based upon a multi-layered stack of dual-
mode stripline or microstrip patches, was introduced by Curtis and Fiedziuszko [23].
In the new stacked design, coupling between the dual-mode patches separated by
a ground plane is accomplished through coupling apertures in the common ground
plane. The coupling mechanism is very much the same as in aperture-coupled
microstrip antennas. The multi-layered design has the advantage over the single-
layer design in that it offers more degrees of freedom for the designer to choose
from, such as the dielectric constants and thicknesses of each substrate, size and
shape of the coupling aperture and size and shape of each metallic patch.

It is important to note that we are only interested in multi-layered structures
where layers are separated by ground planes containing slots. There are other de-
signs which are referred to as multi-layer structures by their respective authors,
but do not fit in this category. For example, Le Nadan et al. demonstrate in-
tegration of a unipolar slotline dipole [24] and a square coplanar waveguide fed
patch antenna [25] with a bandpass filter in an integrated antenna/filter device.
In this approach, the resonant antenna is treated as a lossy resonator in the filter
network. A variation of the design in [25]|, where the bandpass filter is completely
implemented on a single layer and does not involve any via holes has been reported
in [26]. Waterhouse et al. use annular ring to suppress the T'M, surface wave
mode in a probe fed microstrip antenna with superstrate, over which the annular
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Metallic Patch Ground Plane

> Dielectric
/ e Substrate
/ b

(a) (b)

Figure 1.2: Stacked planar filters constructed from a) square b) circular dual mode
resonators [23]

ring is etched [27] and term it as a multi-layer design. In the terminology used in
this thesis, these structures do not qualify as multi-layer designs. Nonetheless, the
aforementioned designs can be combined with stripline and microstrip layers in a
stacked configuration for enhanced performance.

The stripline based structures proposed in [23] consist of rectangular or circular
dual mode stripline resonators (Fig. 1.2). In case of square resonators, the two
dual-mode patches are coupled through a cross-shaped slot in the ground plane.
For circular resonators, the coupling aperture is also circular. In both cases, each
resonant mode is directly coupled only to one mode of the other resonator, which
means that each resonator is coupled to more than one resonator, hence implemen-
tation of a 4—pole filter with transmission zeros is feasible. As a proof of concept
design, implementation of a 4—pole elliptic function filter with the structure in Fig.
1.2a is reported in [23].

Based on a similar approach, a two-layer filter consisting of microstrip resonators
(Fig. 1.3) has also been proposed [23]. Though the structure in Fig. 1.3 cannot
be extended to more than two layers solely by using microstrip patches, it can be
combined with stripline based structures for multi-layer designs. In addition, this
two-layer structure is the starting point in development of our proposed approach
which will be introduced in following chapters.

Multi-layer structures consisting of dual-mode planar resonators coupled through
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=

Figure 1.3: Multi-layered planar structure with microstrip resonators

apertures in ground plane can result in significant reduction in size and better use
of the real estate on the chip. For example consider the structure in Fig. 1.4a. In
the absence of any perturbations, each of the square resonators can support two or-
thogonal modes, which are theoretically isolated and energy from one mode cannot
be coupled to the other one. By introducing the small triangular cutout, the energy
can be coupled from one mode to the other. The amplitudes of these degenerate
modes are controlled by the size of the triangular cutout [28]. Therefore, for each
dual-mode patch, we have two coupled resonators.

To realize dual-mode planar filters of orders n > 2, dual-mode resonators are ar-
ranged in a planar manner with physically adjacent resonators capacitively coupled,
either directly or through a short piece of planar transmission line, as shown in Fig.
1.4a and Fig. 1.4b. While there is only two physical resonators, the structure shown
in Fig. 1.4a can be used to realize a 4—pole Chebyshev filter [20]. Similarly, the
structure shown in Fig. 1.4c can be used to implement an 8—pole elliptic function
filter [20]. As it was discussed before, however, spreading out distributed circuits
horizontally on a single layer has some drawbacks. An alternative approach is to
arrange dual-mode resonators both horizontally and vertically. For example the
same 8—pole elliptic function filter can be realized by aperture coupling the 4—pole
planar filter in Fig. 1.4a (or Fig. 1.4b) with a similar structure on the other side
of the ground plane.

Development of a new method of analysis for this class of multi-layered pla-
nar structures consisting of microstrip resonators is the focus of this thesis. These
structures can be used either as multi-layer filters or integrated antenna/filter de-
vices. It is important to note that the applicability of this new method of analysis
is not limited to slot-coupled dual-mode square or circular resonators. As a matter
of fact, we do not impose any restrictions on the shape of the planar circuits or the
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Figure 1.4: Examples of dual-mode planar filters: a) 4—pole Chebyshev filter [20],
b) 4—pole Chebyshev filter with alternate coupling method [29], ¢) 8—pole elliptic
function filter [20]

coupling aperture.

1.3 Motivation for This Research

The presence of two dielectric layers and the interaction between resonators through
the slot complicates the analysis of multi-layer planar structures. Commercially
available software based on full-wave analysis methods such as finite elements
method, while very rigorous, are not suitable for design and design optimization
purposes of these structures. In fact, due to the rapid changes of fields in close
vicinity of the slot, the design process can be very time-consuming. Approximate
numerical methods developed specifically for the analysis of planar structures, to

10



CHAPTER 1. INTRODUCTION

some extent, can solve these problems. In particular, Multi-port Network Modeling
of planar structures in association with segmentation and desegmentation methods
of analysis is very suitable for the analysis and design of microstrip or stripline
structures with arbitrary shapes, such as dual-mode resonators. For planar con-
figurations (single-layer structures), coupling between resonators can be taken into
account by Edge Admittance Networks [30]. In addition, coupling between res-
onators on a single-layer is a rather well understood topic and accurate models
exist which can be used in conjunction with MNM for design purposes. However,
the multi-port network modeling approach is not applicable to multi-layer struc-
tures. To the best our knowledge, there does not exist any MNM based method
for fast analysis and design optimization purposes of multi-layer planar structures,
though some authors have addressed the issue in some very special cases, mainly
very narrow or small aperture-coupling of a microstrip line to a patch antenna.

A network modeling for a microstrip line coupled to a microstrip antenna
through a small circular aperture in the ground plane was first introduced by
Gao and Chang [31]. Their approach is based on aperture coupling theory and
quasi-TEM analysis of the microstrip line by conformal mapping method. They
eventually derive a six port equivalent network of the aperture-coupled microstrip
antenna, from which scattering matrix of the structure can be derived. This method
of analysis can only be applied to rectangular patches and circular apertures, as
it has been based on transmission line analysis of the patch and small-aperture
coupling theory. It is also important to note that despite the similarity in name,
this method is substantially different from ours.

Himdi et al. offer a cavity based model for input impedance variations of an
aperture-coupled microstrip antenna [32], [33], [34], [35]. In this approach, an
equivalent magnetic current is used to replace the slot. However, in order to simplify
the analysis they assume that the magnetic current is uniformly distributed over
the slot. Then the microstrip antenna is modeled as a two-dimensional cavity
supporting only the dominant 7'My mode. To the input microstrip line, the slot
looks as a shunt susceptance, which is modeled as the admittance of two short-
circuited slotlines. The problem with this approach is that it ignores the three-
dimensional behavior of the slot inside the cavity, in other words oversimplifies the
problem. On the other hand, it is only applicable if the patch and the slot are both
rectangular.

CAD software for analysis, design, and optimization of low-frequency circuits
and networks has reached a fairly high level of refinement. With the aid of multi-
port network modeling, many of these tools can be equally well used for analysis
and design of planar structures. This has motivated us to extend applicability of

11
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multi-port network modeling to multi-layer structures. The structure which will
be the focus of this thesis is shown in Fig. 1.3, with the difference that we do
not impose any restrictions on the shape or size of the patches and the slot. We
start by traditional multi-port network modeling of planar circuits and combine
it with the generalized network formulation for aperture problems to arrive at
an equivalent network representation for a metallic patch of an arbitrary shape
etched on a grounded dielectric slab, with the ground plane containing a slot of an
arbitrary shape. Once such a network equivalence for the planar circuit on a ground-
plane containing a slot is established, the equivalent networks of planar circuits on
opposite sides of a ground plane can be connected according to conventional MNM
to derive an equivalent network for the whole structure. The following section
elaborates on the organization of this thesis.

1.4 Organization of the Thesis

In order to introduce the new method for analysis and design of multi-layered planar
circuits we follow a systematic approach for presentation. We start with an intro-
duction to the traditional multi-port network model for single-layer planar circuits.
Our presentation mainly follows that of Okoshi [36] as far as the basic formulation
of MNM is concerned. However, we follow a different path for derivation of con-
tour integral equation which is more general than Weber’s solution for cylindrical
waves. We also derive a novel contour integral equation for the magnetic field,
which, to the best our knowledge, has not been used before. We also show that the
discretized form of the new contour integral equation can be used as the inverse of
the traditional contour integral equation, obviating the need for additional matrix
inversion in cases the generalized admittance matrix of a single-layer planar circuit
is required.

Chapter 2 focuses on extension of MNM to planar circuits with ground plane
slots. First the generalized network formulation in which an aperture problem is
characterized by a generalized admittance matrix is introduced. Then we continue
by presenting hybrid matrix formulation for planar circuits containing ground plane
slots and calculation of impedance matrix in terms of hybrid sub-matrices. We
present two implementation of extended MNM for multi-layer planar circuits, one
for regular shapes and one for irregular (arbitrary) shapes. The implementation for
regular shapes is based on eigenfunction expansion of impedance Green’s function.

12
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For irregular shapes, we utilize both traditional and newly derived contour integral
equations.

In the third chapter we introduce complex images method which has been used
in calculation of tangential magnetic fields due to the equivalent surface magnetic
current. We start the chapter by deriving spectral Green’s functions for both a
horizontal electric and horizontal magnetic dipoles in a planarly layered media in
terms of Fresnel’s reflection coefficients. Spatial vector and scalar potentials for
multi-layered media and a formal presentation of the complex images methods will
follow this section. Then we apply complex images method to a horizontal magnetic
dipole in a homogenous parallel-plate waveguide. We conclude this chapter by
presenting results from complex images method for an HMD in a parallel-plate
waveguide and comparing them to the results from image and modal expansions.

Chapter 5 is dedicated to numerical results. To show accuracy of our proposed
method we have analyzed a few structures both with our method and with ANSOFT
HFSS full-wave simulator as a reference. In this chapter, we will also present
a method based on reciprocity for calculation of radiation pattern of microstrip
antennas in the far-field.

Chapter 6 gives a summary of the thesis and outlines the future work related
to this research.

13



Chapter 2

Multiport Network Model

2.1 Introduction

Originally developed for analysis and design of tri-plate stripline structures, Multi-
port Network Modeling (MNM) has evolved considerably in the course of the years
and has been successfully applied to other types of planar structures, including
antennas, arrays, filters, microwave integrated circuits, etc. MNM is based on the
assumption that thin planar circuits are essentially two-dimensional electromag-
netic environments, with field variation only in transverse direction.

2.2 Basic Formulation of MNM

An irregularly shaped metallic patch etched on a linear, homogeneous, and isotropic
dielectric slab backed by a ground plane, Fig. 2.1, constitutes a generic microstrip
structure. Depending on the dielectric constant and thickness of the dielectric slab
and the shape of the patch, the aforementioned structure can be a resonator or an
antenna.

As can be seen from Fig. 2.1, the coordinate system is chosen in a way that
the metallic patch lies in z = d plane and the ground plane coincides with zy-
plane. Unless there is a coupling port, the periphery of the circuit is assumed to be
covered by PMC (perfect magnetic conductor) walls. This is one of the fundamental
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Figure 2.1: Generic planar circuit structure

assumptions in MNM of thin planar circuits and will be justified shortly. If the
thickness of the dielectric slab d is much smaller than the wavelength in dielectric
medium, one can assume that there is no field variation in z direction, i.e. 9/0z = 0.
Consequently, E, and E, have to be identically zero, as they vanish both on the
patch and the ground plane and do not vary in z direction. This also implies that
H, = 0. Hence, the only nonzero components are F,, H,, and H,, which are related
by Maxwell’s equations:

OH, OH,

—jwuH, = 8;;2 (2.1b)
, OF,
JwpH, = Iy (2.1c)

where w, €, and p represent the radian frequency of operation, permittivity and
permeability of the dielectric medium, respectively. Equations 2.1a to 2.1c¢ in con-
nection with the relevant boundary conditions are sufficient to characterize any
two-dimensional planar circuit. H, and H, can be eliminated from 2.1a to give the
two-dimensional Helmholtz equation for the planar structure in terms of F.:

(Vi+ k) E, =0 (2.2)

where V? and k = w,/g are the transverse Laplacian operator and wavenumber
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in the dielectric medium, respectively and we have:

0* 0P

2—_ —_—
Vt_8x2+8y2

(2.3)

Evidently, 2D planar circuits only support T'M? modes. Since there is no trans-
verse electric field components, a unique voltage can be defined between the patch
and the ground plane as V = dFE,. In addition, the surface current density on the
patch, denoted by jsur, is related to the magnetic field by:

Jouwr = 2% H = jH, — &H, (2.4)
Upon combining 2.4 with 2.1b and 2.1c, we obtain:

N + A%
Tor Y oy

=VE, = —jwujsur (2.5)

Let n denote the outward normal to the periphery of the circuit at some point. At
that point we will have:

oE, o
o, VE, = —jwu(n - Jgurs) (2.6)

On the periphery 7 - Jour 18 in fact the surface current flowing out of the circuit. If
no external port is connected to the circuit at that point and if one assumes that
no current flows between the upper and lower sides of the patch over the periphery
of the metallic patch, we will have 7 - fsw = 0. Hence:

ov _or.

on  On

This is the boundary condition that has to be satisfied on the boundary of the
planar circuit. From

0 (2.7)

- 1 OF,
s . H = ——— = 2.
§ o on 0 (2.8)

where § = f X Z is the tangent to the boundary of the planar circuit (Fig. 2.1).
Equation 2.8 proves that for thin planar structures the tangential magnetic field
vanishes on the boundary. In other words, the periphery of the circuit is covered by
PMC walls. If an external port is connected to the circuit, the boundary condition

becomes:
O_V B daEz
on  On

= jwpdJ® (2.9)
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where JF is the input current flowing into the circuit from an external port. Here-
inafter, the superscript E will be used to denote variables and quantities associated
with the edge of the metallic patch. In order to build an analogy between field and
circuit variables, the periphery of the planar circuit, the contour C' as shown in the
Fig. 2.1, is divided into sufficient number of smaller segments and each segment is
treated as a port in low- frequency circuits having a terminal voltage and current

defined as: d
VE = E/Ez(s)ds , IF = /JE(S)dS (2.10)
b

w;
where s is the distance measured along the contour C'in a counterclockwise direction
and the integration is performed over the width of pertinent port, i.e. w;. V]E and
IJE are the terminal voltage and terminal current of the j** port. If there are
NP segments along the edge of the circuit, the network equivalent of the planar
structure will consist of NZ ports. Such a network can be uniquely identified by an
NFE x N impedance matrix relating voltage of each port to its current and those
of all other ports. This impedance matrix, hereinafter, will be referred to as the
Edge Impedance Matrix and will be denoted by Z¥. In order to derive Z¥ for
a planar circuit, an impedance Green’s function is needed to relate ij’S and V]E’S.
In reality such an impedance Green’s function can be quite complicated. However,
for a z-directed electric current source J, (xg,yo), such as the axial current through
a z-directed coaxial probe, the impedance Green’s function, which relates V (z,y),

the induced voltage at (z,y), to J, (xg, yo), is rather simple. This Green’s function
denoted by G (z, y|zo, yo) can be defined as [37], [38]:

V(fﬁay) = //g (ﬂc,y|m0,y0) J. (950790) dxodyo (2-11)
D

where (z,y) and (xo,%0) are arbitrary points inside the periphery of the circuit
boundary, which is the area designated by D in Fig. 2.1. G (x, y|zo, yo) is a solution
of 2D homogeneous Helmholtz equation

(Vi + k)G (, ylzo, yo) = 0 (2.12)

subject to the open-circuit boundary condition 0G/0On = 0 along the contour C.
These Green’s functions are known for several regular shapes in the form of infinite
series, such as rectangles [36], circles [36], several types of triangular segments [39)],
and circular and annular sectors and rings [37], [40]. A rather exhaustive list of
these Green’s function is given in [40] and can be consulted for further information.
For irregular shapes and many other regular shapes, however, Green’s functions are
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Figure 2.2: Equivalence between coplanar feedline and vertical probe currents [37].

not available analytically and numerical methods such as Contour Integral Method
are used instead [36]. Since Contour Integral Method is one of the main focuses of
this thesis, it will be addressed in detail in an upcoming section.

Microstrip line feeds for planar circuits can be approximated by a z-directed
electric current sheet on the boundary of the circuit as illustrated in Fig. 2.2 [37].
The equivalency between the two can be established by noticing that:

JE—nxH, |, JE=%xH, (2.13)

where JZ and JE are defined in Fig. 2.2. From 2.13 it can be seen that |JZ| = |JZ|.
If w; is the effective width of the microstrip line feeding the j'* edge port, the input
current at that port can be defined as IP = w;JF [37], [38]. Once the equivalence
between JF and JE has been established, equation 2.11 can be adapted for the
voltage along the periphery of the circuit when the input current is injected into
the circuit via coplanar microstrip lines connected to the edge ports as follows:

VE(s) = %g (s|s0) JE (50) dsg (2.14)
c

where s and sg denote distances along the contour C' in counterclockwise direction.
JE (sg) is the input current flowing into the circuit from an external port at sg
and VF(s) is the voltage induced at the point s. If the periphery of the circuit
is divided into N¥ smaller segments, where each segment is approximated by a
straight line segment, the closed contour integral can be broken down to sum of
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NF line integrals as:
Z/g ’80 S()) dSo (215)
Jj= 1wj
Terminal voltage for the it edge port defined in 2.10, can be written as:
VE = /VE (s)ds/w; (2.16)
from which we will have:

‘ZLE = _Z//g |50 So)dSOdS

w; Wj

Z //g s|so) dsods (2.17)
<« Wiw;

w; Wj

I

where it has been assumed that J¥ (sy) does not change appreciably over the width
of the port and hence one can write:

IF = /JE (s0) dso = w; JF (2.18)

where JJ is the value of J¥ (so) at the midpoint of the j™ segment. Impedance
matrix elements ie. ZE can be readily evaluated from 2.17 as:

_ wile / / G (s]so) dsods (2.19)

IZE:Ov'L?ﬁJ W; Wj

VE
TE
Ij

ZE

In 2.19, dsy and ds correspond to integrations over the width of the 4t and "
segments, respectively. IF = 0,7 # j also indicates that except for the j* port, all
other ports are open-circuited.
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2.3 Derivation of Green’s Function in terms of
Eigenfunctions

Equations 2.2 and 2.7 fully characterize the planar structure in the absence of any
external connection. Therefore, the eigenfunctions of the planar structure are non-
trivial solutions of the following homogeneous wave equation subject to open-circuit
boundary condition:

(V24 E)V =0 (in D) (2.20a)
g—z =0 (on CO) (2.20b)

It can be shown that in order for a nonzero solution to exist, the parameter k
has to take on one of an infinite number of discrete values, known as eigenvalues.
The infinity and discreteness of this set stems from the fact that the dielectric filling
is homogeneous and the structure is spatially confined [41]. These eigenvalues cor-
respond to discrete resonance frequencies of the structure and their corresponding
field solutions are called eigenfunctions. If k,, and ¢,, denote these eigenvalues and
eigenfunctions, respectively, it can be readily shown that k,’s are the stationary
values of the following variational expression [36]:

[[1ve.as

k2 =2
//!qbnﬁds
D

where ¢,, is the solution (eigenfunction) corresponding to k,. Note that dS denotes
a surface integration and should not be confused with ds used to denote line inte-
gration. It can also be shown that these eigenfunctions form an orthogonal set [40],
meaning that:

(2.21)

/ P PpdS = Omn (2.22)
D
provided that they are normalized. 6,,, is the Kronecker’s delta function defined
as:
1 m=n
Smn = { 0 m£n (2.23)
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Any inhomogeneous solution to 2.20, including the Green’s function, can be
expanded in terms of ¢,,’s as follows [41]:

G (, y|wo, yo) = iAann (2.24)
n=1
where A,,’s are constant coefficients given as [40]:
A, = jwud% (2.25)
Hence, the Green’s function in terms of the eigenfunctions can be written as:
G (2, y|xo, o) = jwﬂdigb; (mo];go_)ng (#,9) (2.26)
n=1 n

From which the elements of edge impedance matrix can be found in terms of eigen-
values and eigenfunctions as follows [36]:

1 O (50) 6 (5
Zg = w.—wj//jwudz:%dsods (2.27)
t n=1 n

w; Wy

where dsy and ds correspond to integrations over the width of the j** and 7*
segments, respectively. The eigenfunctions can be found analytically only if the
internal angle at each vertex is a submultiple of 7 [40], such as rectangles and
some triangles. They can also be computed analytically for circular and annular
sectors and rings [40]. For some irregular shapes, segmentation and desegmentation
methods of analysis can be used to compute their impedance matrices from the
impedance matrices of regular shapes.

Segmentation was originally proposed by Okoshi [36], [42], [43] for irregularly
shaped planar circuits which could be divided into smaller segments having reg-
ular shapes. An example is shown in Fig. 2.3, where a ring-shaped geometry is
broken down into four rectangular segments. The smaller segments can be eas-
ily characterized by their impedance matrices, which in turn are connected using
network modeling techniques to give the overall impedance matrix of the compos-
ite structure. At first, segmentation method was developed using S-parameters
for characterizing individual segments [43], but later it was found that Z-matrix
formulation was more efficient [44].

Desegmentation can be roughly considered complementary to the segmentation
method. Though some planar circuits cannot be divided into smaller segments
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Figure 2.3: Concept of segmentation [37].
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Figure 2.4: Concept of desegmentation [37]

having regular shapes, they can be converted into a regular shape by adding a
smaller regularly-shaped segment. An example is the rectangular patch with a
circular hole, illustrated in Fig. 2.4 [37]. The planar circuit in Fig. 2.4a can be
obtained by desegmenting the circular patch in Fig. 2.4c from the rectangular patch
in Fig. 2.4b. It is important to notice that some structures can be analyzed by
both methods. For example, if a rectangular segment is added to the structure in
Fig. 2.3, the resulting structure is also rectangular, hence this planar circuit can
be analyzed by desegmentation as well as segmentation.

Another approach to analysis and design of irregularly shaped planar circuits
is based on numerical computation of eigenfunctions and eigenvalues, from which
the Green’s function and hence equivalent multiport network model can be ob-
tained. Numerical computation of eigenfunctions and eigenvalues involves solving
two-dimensional Helmholtz equation subject to open-circuit boundary condition or
equivalently TE-modes in a hollow metallic waveguide with the same cross sec-
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tion [36]. This can be done by variety of numerical techniques for electromagnetic
structures, among which the most popular are:

e Finite-Difference Method [45]
e Finite-Element Method [46]

e Point-Matching Method [47]

e Rayleigh-Ritz Method [48], [49]

Numerical solution of Helmholtz equation requires field solution over the entire
area of the planar circuit and hence can be quite time-consuming. An alternative
approach is to convert the wave equation into an integral equation along the circuit
periphery [36], from which equivalent circuit parameters can be derived. This
method was originally developed by Okoshi for planar circuits [36] and is called the
”"Contour-Integral Method” or ”Boundary-Integral Method”. One of the
contributions of this thesis is derivation of a novel contour-integral equation, which
along with the traditional contour-integral equation developed by Okoshi, will be
derived from vector Green’s theorem in the next section.

2.4 Contour-Integral Equation

Contour-integral equation for MNM of irregular planar circuits was originally de-
rived using Weber’s solution with cylindrical waves [36], [42]. The derivation based
on vector Green’s theorem [41], [50], is more general and will be presented here. In
addition, the new contour integral equation that will be presented in this section
cannot be derived by Weber’s solution.

Green’s theorems are symmetrical mathematical relationships between two func-
tions [41]. Reciprocity theorem is a special case where the two functions signify
fields associated with two different sources and hence have physical meanings,
whereas no physical interpretation is necessarily attached to the functions in Green’s
theorems. We start with the scalar Green’s theorem based on the following identity
for any two well-behaved scalar functions v and ¢:

V- (§Ve) = YV + Vi - Vo (2.28)
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By integrating both sides of 2.28 throughout a region and applying the divergence
theorem to the Left-Hand Side (LHS), Green’s first identity can be obtained as [41]:

ffw(%ds /// (VV¢ + Vi - Vo) dv (2.29)

where as shown in Fig. 2.5, S is a closed surface and D is the region inside S.
Interchanging ¢ and ¢ in 2.29 and subtracting the resulting equation from 2.29,
provides us with Green’s second identity or Green’s Theorem [41]:

%%(wﬁn g_:f) dS:/Z/(f/JV%—W?w) dv (2.30)

which can be interpreted as the reciprocity between the scalar fields ¥ and ¢. n and
0/0n denote the outward normal to the surface enclosing the region of the problem
S and the derivative in that direction. By definition we have d¢/dn = V¢ - n
Weber’s solution in [36] has been derived from Green’s second identity by solving
the reciprocal problem. This is the approach we will also follow here, but instead
we will use vector Green’s theorem. The vector analogue of 2.28 can be written as
[41]):

V- (AxVXxB)=VxA-VxB—-A-VxVxB (2.31)

where A and B are two well-bahaving but otherwise arbitrary vector functions. In
a like manner to the scalar case, by integrating both sides of 2.31 and applying the
divergence theorem to the LHS, we obtain vector analogue of Green’s first identity

fjf(ffxvxé).ﬁdsz///(vaT-vXé—fT-VxVxé)dv (2.32)
S D

Again, interchanging A and B and subtracting the resulting equation from 2.32,
yields vector analogue of Green’s second identity or vector Green’s theorem [41]:

%]{(EXVXE—EXVXE)-TMS:

///(E-VXVX/T—E-vaXE)dv (2.33)
D

It can be seen that with A = E@ and B = Eb, where E® and EP are the electric
fields due to two arbitrary sources a and b, equation 2.33 is in fact the statement
of reciprocity between those two sources in a homogeneous medium.
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Figure 2.5: Region to which Green’s theorem is applied: a) Three-dimensional
region [41]. b) Two dimensional region for contour-integral equations.

Suppose that we are interested in finding the electric field E at an arbitrary
point 7’ inside the region denoted by D, enclosed by the surface S and contain-
ing impressed electric and magnetic sources J and M respectively, as shown in
Fig. 2.5a. According to the Uniqueness theorem [41], the field cannot be specified
uniquely unless the boundary conditions are known. These boundary conditions
could be either 74 x E or i x H or a combination of the two on S. Instead of
solving this problem directly, the reciprocal problem, i.e. finding the field on the
boundary due to a source at 7/, will be solved. The field due to the point source
of unit strength at 7’ is called the Green’s function and will be denoted by G. As
will be seen shortly, different choices for G will result in different contour-integral
equations. él and (% will be used to denote the two choices.

First we choose Gy = ¢¢, where ¢ is an arbitrary constant unit vector and:

o~ k|77
p=- (2.34)

|7 = 7|

is the Green’s function for the vector potential of an electric dipole I¢ = 47¢ [41].
It can be easily shown that anywhere but at 7= 7":

{VXG1:V¢><C (2.35)

VXV xG =ek2p+ V(- V)
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By substituting A=E and B =G, in 2.33 and making use of 2.35, we have:

[ ] [[e0-9 9 x E-toe- B+ BV (Vo) av -
D

%%{EX(WSX@)—@QSXVXE - 7dS (2.36)
S

Both sides of 2.36 can be simplified by noticing that E satisfies Maxwell’s equation
as well as Helmholtz equation. For the Right-Hand Side (LHS) we have:

LHSof2.36:é-///(qu%—jwud)f—qbvx]\Zf)dv—é-%j[Vd)ﬁ-EdS
D S

(2.37)
where V- E = p,/e. ¢ can also be factored out of the Right-Hand Side (RHS) of
2.36 by making use of the following two identities:

[Ex(wxé)} A é.[wx(ﬁxﬁ)}
(e x V x E) -1 =¢- (juuph x H + ¢n x M)

(2.38)

From which and 2.36 we have:

RHS of2.36:é-%% [(ﬁxE) XV(b—jwuqﬁﬁxﬁ—qﬁﬁxM] s (2.39)
S

Combining 2.39 and 2.37, by noticing that ¢ is an arbitrary vector, and by using
the following identity:

/Z/V><Mqﬁdv:%S%ﬁx]\quﬁdS—l—/é/Mquﬁdv (2.40)

we will have:

%7{[(ﬁXE)XV¢+V¢ﬁ-E—jwu¢ﬁxFI} ds =

/ S/ / (w% — jousd — M x w) dv (2.41)
D

It is important to recognize that 2.41 is not valid at ¥ = 7, at which we desire E.
In order to extract this singularity, a sphere of radius ry is circumscribed about
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the point 7= 7 (sphere s in Fig. 2.5a). Equation 2.41 is valid at all pomts inside
the region enclosed between the spheres S and s, except at the sources J and M.
In the limit when ry shrinks to zero, the contribution of the sphere s to the RHS
of 2.41 can be computed analytically by substituting for ¢ and V¢ from 2.34 [50].
Consequently we will have [50]:

E() = —ﬁ%%[(ﬁxﬁ)xv¢+v¢ﬁ-ﬁ—jwu¢ﬁxﬁ] ds +
S

ﬁ / é / (V¢% — G — M x w) dv (2.42)

This is a formula for calculating E at 7 in terms of normal component of E and
tangential components of both E and H on S and _the sources inside the region D.
Since both tangential and normal components of E on S are requlred E has to be
continuous on S. Furthermore, since H is the first derivative of E E is required
to have continuous first derivatives on S as well [41]. This is a sever restriction on
the usefulness of 2.42. As it will be shown shortly, nonetheless, this equation is the
basis for the traditional contour-integral equation.

Now let
B = Gg V x G1 (2.43)

which is the magnetic field of an electric dipole ¢ = 4mé [41]. It can be easily
shown that anywhere but at ¥ = 7

V x Gy = ek2p+V (¢ Vo)
~ - 2.44
{VXVXGQZkZGQ ( )
Substituting A=FE and B =G> in 2.33 yields:
%%(ExVxég—éngxE)-ﬁdS:
///(ég'VXVXE—E‘VXVXég)dU (2.45)
D

By following a similar procedure and making use of 2.44, it can be shown that:
LHS 0f2.45:é-7{7{ [k2¢ﬁxﬁ+(VxE-ﬁ)V¢—V¢x (ﬁxVxE) s
(2.46)
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RHS of 2.45 = —¢ - /// [jw,u(fx Vo) — (Vx M)x Vo|dv  (2.47)
D

The singularity can be extracted by applying the same method. Enclosing the point
= 7" by a sphere of radius ry, and comparing 2.45, 2.46, and 2.47 in the absence
of any sources, i.e. J = M = 0, it can be seen that:

ff(ExVxég—@xvxE).ﬁdS:
6-7{7{[k2¢ﬁxﬁ+(VxE-fz)V¢—V¢><(ﬁxVxE’)]dS (2.48)

which upon extraction of the singularity becomes:

—4ré- [V/XE f%ExVng Gy x V x E) - 2dS (2.49)

Equation 2.49 can be cast into the following more insightful form by simple algebraic
manipulations:

¢-H () = f%VxGQ andS——fng (2.50)
jwu4w

which is an expression for H (7") in terms of tangential components of both E and
H. In this case F does not have to be continuous on S. Note that the RHS of 2.50
is a simple rearrangement of the LHS of 2.48.

Similar steps can be followed for two-dimensional planar circuits. The only
difference is that instead of spherical wave function, cylindrical wave function must
be used. In other words one has to choose ¢ = HO(Q) (k ‘ﬁ— ﬁ'}), where HS” (+) is
the n'" order Hankel function of the second kind. In order to extract the singularity,
a circle of radius p, is circumscribed about the point g = g (Fig. 2.5b) and then
the contribution of this circle to the surface integral is calculated analytlcally by
approximating ¢ and V¢ by the small argument expressions for H (k ’*— p D
when p, tends to zero. In the absence of any sources we will have the following
contour-integral equations:

E(7) = —4%,% [(ﬁ x B) x Vo + Vir- E — jwueit x ﬁ} ds (2.51)
C
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¢ = %VXGQ ands——?{Gg (2.52)
4w,u

One of the contributions of this thesis is 2.52, which is a new form of contour-integral
equation.

To show that 2.51 is in fact the traditional contour-integral equation, without
loss of generality, we assume that the origin of the coordinates in Fig. 2.5b coincides
with the observation point, in other words g/ = 0. We notice that thin planar
structures support only T'M?* modes with E = 2E,. From 2.4 and 2.6 it can also
be seen that:

0E,
on

where n is the outward normal to the boundary, as shown in Fig. 2.1. In this case
2.51 reduces to:

VE, = —jwp(i - Joys) = jwps -7 x H (2.53)

3>

1 .,
E, (ﬁ') = —@z %[(ﬁxé)Ezngb—i—ngSﬁ-éEz—jw,ungﬁXH ds
C
L[ (oH (kp) @) (). O
= 5 (TEZ — Hy” (kp) — o ds (2.54)

where use has been made of the fact that

99

Z-(nx2)xVep=n-Vo= I

(2.55)

If one substitutes V' = dE, in 2.54, the result will be equation (A3.8) in [36].
Equation 2.54 gives potential at any point inside the contour C' in terms of the
potential and its normal derivative on the boundary. It can be shown that the
potential at any point on the boundary can also be written in terms of the potential
and its normal derivative on the boundary as follows (Appendix B):

(2)
V(s) = —%7{ (MOTR(’“”)V H (kp )2‘2) dso (2.56)

Combining 2.56 with 2.9, we will have [36]:

V(s) = 21] Jqf (k:cos@Hl (kp) V (50) + H? (k;p)j”T“JE (so)> sy (2.57)
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Figure 2.6: Symbols used in a) contour-integral equation, b) numerical analysis
[36].

where
OH? (kp) _OHG? (kp)
on P dp
and n - p = cosf. 6 is defined in Fig. 2.6a as the angle between the line joining
points M (s) and L (sg) and the normal to C at L (sq). JZ (sg) is the input current
flowing into the circuit at L (so).

=7 VH (kp) = - (2.58)

2.4.1 Derivation of a Novel Contour-Integral Equation

Equation 2.52 gives the magnetic field at any point inside the contour C' in terms
of the tangential components of electric and magnetic fields on C'. Similar to 2.51,
equation 2.52 can also be modified for the case when the observation point is on
the boundary. The procedure, however, is not as straightforward as the previous
case. As a matter of fact, the procedure outlined in Appendix B cannot be directly
applied to 2.52. We start from 2.52 by noticing that for thin planar structures
E = 2E, and H, = 0. If we define

MY = (E xn)-§ (2.59)
we will have:
~ T 1 ~ a wa 1 ~ N(a . I
¢ H(7) = m7§(v « Gy - §)M™lds — 4—],7{(02 9G-Hyds  (2.60)
C C
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Without loss of generality it will be assumed that the origin of the coordinates in
Fig. 2.5b coincides with the observation pomt in other words ' = 0. Hence by
remembering that G = V X é¢, where ¢ = H (k:p), one can write:

Gy 2=V xép-2=25-(Voxeé)=(c @)a—p (2.61)
5 . N o (. .0
VXxGy-§=VXVxcép-§=(¢ s)k2¢—|—$<c pa—qpb> (2.62)
wher z x p. Hence
~ k? 0 ¢
A 4 _ v 3 wall a2 wall
¢-H(p) = o (¢-3) oM ds+4 85( pgp)M ds +
c c
1 ¢, =
c-p)—(s5-H 2.
S5 s (2.63)

Since the integration is performed on a closed contour, the second integral in 2.63
can be written as:

8¢ . 8¢8Mwall

wall . wall

]{as( )M ds = (¢-p )apM j{(cp)ap Ep ds
C

. o aMwall
= —7{(0 )aﬁ ER ds (2.64)

Substituting 2.64 back into 2.63 yields:

. — B k2 wall 1 . 8¢ aMwall
¢ A () = i (6 §) oM™l ds — 4W7§(c ) s +
L[ 0
—— c- ds 2.65
B age-d 2.65)

Now the procedure outlined in Appendix B can be applied to 2.65. Since only the
tangential component of magnetic field on the boundary will be needed, we will
assume ¢ = §;, where §; is the tangent to the boundary at the point P’ in Fig.
B.1. By substituting ¢ = HO (kp), breaking down the contour-integral into two
parts, and replacing Hankel functions with their asymptotic expressions for small
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arguments for the region between s = —a and s = a we will have:
. k2 aMwall

s, - H, = —— a. . MwallH v (2)

5; - H; 2o (8- 8) (kp)ds —I— f P H,” (kp)ds +
c

kol oe o\ i@
+2—j (8- @) (8- HYH,” (kp) ds (2.66)

c

where H; = H (P'). By the same line of argument that was made to convert 2.63
into 2.65, 2.66 can be recast into the following more useful form:

_, k2 Lk 9
S Hi = i+ 8) M H® (kp) ds — — Mwa”—[}fﬂ‘”k ]d
i prJ (i 5) (kp) ds 2w Js (8i-p) Hy” (kp)| ds +
(&
kLo ovis. BE®
o5 P (5i- @) (8- H)H (ko) ds (2.67)
C

which is an expression for the tangential component of magnetic field on the bound-
ary in terms of tangential components of electric and magnetic fields on C. This
is the new contour integral equation that has been derived for the first time in
this thesis. While the conventional contour integral equation is helpful for ordinary
planar circuits, it is of limited use in planar circuits containing ground plane slots.
As will be seen in the next chapter, in expanding MNM to multi-layer planar struc-
tures we will need the magnetic field at arbitrary points inside the circuit periphery
in terms of the tangential components of both electric and magnetic fields on the
boundary. Obviously, the conventional form cannot be used for this purpose and
the novel contour integral equation derived here must be used instead.

2.4.2 Discretization of Contour-Integral Equations

Numerical solution of contour-integral equations in 2.57 and 2.67 requires them to
be discretized and cast into matrix form. If the periphery of the circuit is divided
into N¥ smaller segments, having widths w;, i = 1,---, N¥, and if each of the
coupling ports is assumed to occupy one of these sections we will have [36]:

ZUEVE ZHgff i=1,---,NF (2.68)
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where Ug-’s and Hf‘“jj s are elements of two N¥ x N matrices and are given as [36]:

UE = 0;; — —/cos HHl (kp)ds (2.69)
wud L fH (kp) ds i# ]
HE = (2.70)
ij .
”“d [1 ] (enkw’ - 1+7>] i =
2 s 4

0i; is Kronecker’s delta function defined in 2.23. v = 0.5772. .. is Euler’s constant.
Note that sometimes the value of Euler’s constant is given as %577 = 1.781 [41].
The terminal voltage and current for each coupling port are assumed to be constant
over the width of the port. Therefore from 2.10 we have:

E s ,.8

Vz. = dE.(z},v;) (2.71a)

IJE = ijE(xj,y;) (2.71Db)
where (z%,y$) is the coordinates of the mid-point of j* h segment (Fig. 2.6b). If VF
and I” denote column vectors consisting of VE 's and I [E°s, respectively, equation

2.68 can be solved for V¥ in terms of I” to give the 1mpedance matrix of the
multiport equivalent network as:

VE =27ZF[" (2.72)

where ZF = (UE)_1 HE. ZF is an N¥ x NF matrix and assumes that all of

the segments upon the periphery are connected to coupling ports. If a particular
element of Z¥ is needed, it can be found from [36]:

7

\%
1 Uﬁ T Hjlgj U{ENE
Zj = oE| : : (2.73)
UJ%El Hz%E i UI%ENE

where V indicates substitution into the i** column. Interestingly, the generalized
admittance matrix cannot be calculated from 2.69 and 2.70. The diagonal elements
of H” are much smaller than non-diagonal elements. This is especially true in the
close vicinity of the resonance frequencies. Consequently, in most cases, H? is
very ill-conditioned and cannot be inverted. As will be shown shortly, the new
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contour integral equation can be used whenever the generalized admittance matrix
is needed.

Equation 2.67 can also be discretized accordingly to give:

NE NE
> AL(3;-Hy) =Y (BE - CE)Mpel i=1,--- NP (2.74)
J=1 Jj=1
or in matrix representation:
AP [3;- 11| = (BF - C) pr! (2.75)

where ]\7[]77”"” and s; - ﬁj are tangential components of electric and magnetic field,
respectively, at the mid-point of the j** segment; |:§j . ﬁ]} and M™* are column

vectors consisting of 3; - H;’s and M;”“”’s, respectively. AP, B and C¥ are
NE x NF matrices and can be given as:

k

AL = by—g [ G HY (o) ds (2764)
BY — %(éi.éj) / H? (kp) ds (2.76b)

E Tia s ®) s\ @ L

oL [(51 Piger) H (pign) = (35 pyg) Hy (kpij)} L7
ij = kﬂ kws (2.76¢)

2 g® Wi _

wi 2 =

X

p and p is defined in Fig. 2.5b. We also have:

pij = \/(xj — )+ (g — )’ (2.77a)

e A £ (2.77b)
Pij Pij

It can be shown that 2.75 is in fact the inverse of 2.72. From 2.9, 2.53, and 2.71b it

can be seen that I JE = w;(8; - Hj). On the other hand, by looking at the definition

of M one can see that M» = V.F/d. Hence, by combining these with 2.72 we
will have:

Pij = X

NE

_ 1 =

Nt — EE :Ziijj(gj . Hj) (2.78)
=1
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Numerically, this has significant importance. A look at 2.69 and 2.70 reveals that
diagonal elements of UF are all unity and larger than off-diagonal elements, while
diagonal elements of H” can be negligibly small compared to other elements of
H”. The same discussion applies to A¥ and Bf — C¥. Therefore, while matrices
UF and A¥ are very well-conditioned, matrices H” and B¥ — C¥ can be quite
ill-conditioned, meaning that 2.72 (or 2.78) can only be used to express M* in

terms of [ﬁj . ﬁj} , but not vice versa. On the other hand, 2.75 can only be used to

express [éj ‘H j] in terms of M®%". In other words, with the new contour-integral
equation the inverse of Z¥ can be calculated analytically.
Equation 2.63 will also be needed to find the magnetic field at arbitrary points

inside the contour C'. The same steps are followed to discretize 2.63. For an
arbitrary ¢ we have:

A 2 X o - Neo o
el (7)) = =y (e 8) MPt [HP (kp)ds + = (3 Hﬂ/(c ¢
w,uj:l =

[
\ TWa AA 2 o 9
_4WNZM]. u |:c . pj+1H§ ) (kpj+1) — - ijl( ) (kp])]
j=1

where p and p have the same definitions as in Fig. 2.5 except for the fact that the
point (z%,y2) is replaced by the point (zg,o), the coordinates of g = 5. We also
have » = 2 x p and:

pj = \/(l’j —20)* + (45 — %) (2.80a)

R L= N
pj - 3 J 0+yy] Yo
Pj P;

(2.80D)

35

) H® (kp)ds +

(2.79)



Chapter 3

Extension of 2D Multiport
Network Model to Planar Circuits
with Ground Plane Slots

Slots in ground planes have become very common in multi-layer circuits and an-
tennas. The existing conventional 2D circuit approach proposed by Okoshi [36],
[42] and its later refinements cannot include any slots in ground plane as it violates
the fundamental assumption that only T'M* modes are excited. In this chapter,
we will combine MNM method with a generalized network formulation for aper-
ture problems to extend the applicability of network model to multi-layer planar
circuits.

3.1 Generalized Network Formulation for
Aperture Problems

Coupling through apertures has many applications in microwave engineering. Aper-
tures in conducting screens, such as waveguide-fed apertures, cavity-fed apertures,
waveguide-to-waveguide coupling, waveguide-to-cavity coupling, and cavity-to-cavity
coupling, a few to name, has been extensively addressed in the literature. The in-
terested reader can consult [41], [51], or [52] for a classic treatment of the problem
and further references. However, the formulation of aperture coupling in terms of
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Conductor Conductor

Conductor

4

Aperture /i

Z‘]I
Region a

Region a /A Region b

(@) (b) (c)

Figure 3.1: General problem of aperture coupling [53], a) original problem, b)
equivalent problem for region a, c¢) equivalent problem for region b

low-frequency network parameters by Harrington et al. [53] is best suited for our
purpose and will be introduced here.

The general problem of aperture coupling between two regions is shown in Fig.
3.1a. These two regions are designated as region a and region b, being coupled
only through the aperture and isolated otherwise. Here, it has been assumed that
each region is bounded by a perfect electric conductor. However, there is no re-
striction on the type of the boundary as far as the two regions are isolated except
for coupling through the aperture. It is also worth mentioning that both regions
can be closed or they can both open to infinity. Region a is assumed to contain
impressed sources denoted by J* and M?, while, without loss of generality, region
b is assumed to be source free. If both regions contain impressed sources, the prob-
lem can be regarded as the superposition of two separate problems with sources in
only one of the regions.

The problem can be divided into two equivalent problems, shown in Fig. 3.1b
and Fig. 3.1b, one for each region, by using the surface equivalence theorem to cover
the slot by a perfect electric conductor with equivalent surface magnetic currents
on each side [41]. Let E® represent total electric field in region a, due to both
impressed and equivalent sources. In order for E° to satisfy boundary conditions,
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we must have:
M3t = x E* over S, (3.81)

where S, denotes aperture surface. Region b does not contain any impressed
sources and fields in that region will only be produced by coupling from region a
or equivalently by an equivalent surface magnetic current over the closed aperture.
Continuity of tangential electric field over the aperture requires that the equivalent
surface magnetic current in this region be —M#let, The remaining boundary con-
dition, i.e. continuity of the tangential magnetic field over the aperture, must be
enforced explicitly. Let ﬁf denote the total tangential magnetic field due to both
impressed and equivalent sources in region a. ﬁta will be composed of two terms
as:

HY = H} + Hp (M) (3.82)

where ﬁ; and ﬁt“(M slot) are tangential components of magnetic field due to the
impressed and equivalent sources, respectively, with the aperture closed. In region
b the total tangential magnetic field is only due to —M slot with the aperture closed.
Let HP(—M#"") denote tangential magnetic field over the aperture in region b.
Continuity of tangential magnetic filed across the aperture requires that:

Hy (M) + H) (M) = —Hj (3.83)

where use has been made of the fact that because of the linearity of Maxwell’s
equations we have HP(—M#ot) = — HY(M*""). Equation 3.83 is the basic operator
equation for determining the equivalent surface magnetic current M#t, To this
end, a set of N expansion or basis functions are chosen to expand Mt ag follows
[54]:
Mt ="V M, (3.84)
¢

where V% are unknown coefficients to be determined by method of moments. By
substituting 3.84 into 3.83 and using linearity of Maxwell’s equations, we will have:

> VSH (M) + Y VSH} (M) = —Hj (3.85)
? V4

Equation 3.85 cannot be solved exactly for the unknown coefficients, as it would
require an infinite number of basis functions in most cases. Instead, it will be solved
approximately on an average sense by testing both sides with testing functions. To
accomplish this, a set of N testing functions (the same number as basis functions)
is chosen, which may or may not be equal to the basis functions. Let W,,’s, where
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n=1,---,N¥ represent these testing functions. We also define a symmetric inner
product of two vectors in the linear space spanned by M,’s as:

<A’, §>://A’-§ds (3.86)

By testing both sides of 3.85 with testing functions, we obtain a set of N linear
equations for N unknown coefficients as [53]:

SO () + O ) () o

forn =1,---, N°. This system of N° linear equations can be solved to determine
the unknown coefficients, i.e. V,°’s, and consequently the equivalent surface mag-
netic current over the aperture. Once M#%t has been determined, the fields and
field related parameters can be found. Equation 3.87 can be put into matrix form
by defining an admittance matrix for each region as:

= —<ﬁ?(Me),Wn> (3.884)
Yy = —<ﬁf(Me),Wn> (3.88h)

where Y and Y? are N° x N° admittance matrices for regions a and b, respec-
tively. The original paper by Harrington [53] places minus signs in 3.88a and 3.88b
on the basis of power considerations. This will be clarified later. A source vector
can also be defined as:

I = <Ht Wn> (3.89)
Therefore, 3.87 can be cast into the following matrix form:
[Ye+Y'|vei=T (3.90)

where V° is the vector of coefficients. Equation 3.90 can be interpreted in terms
of generalized networks as two networks with admittance matrices Y* and Y? in
parallel with the current source I (Fig. 3.2).

An important observation can be made about Y* and Y?; Y involves only
region a and Y? involves only region b. Hence the admittance matrix computed
for one region can be combined with that of any other region as far as the coupling
is through the same aperture and the same basis and testing functions are used
in both problems. For example, the same aperture admittance matrix used for
radiation into half-space would be equally useful for cavity excitation. In other
words, one can solve a few canonical problems and then use it in various other
aperture-coupling problems.
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+
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Ya ]72 ]23- Yb

Region a . Region b

Figure 3.2: Generalized network interpretation of 3.90

3.1.1 Transmitted Power Considerations

The complex power transmitted through the aperture from region a into region
b can be written as:

P, = %//(E x H™) - ndS (3.91)
Sa
where the asterisk denotes complex conjugate. By substituting from 3.81, 3.91 can
be written as:
P, = % / / Mt Ho*dS (3.92)
Sa

Since Mot only has component tangent to the aperture, the inner product in 3.92
involves only the tangential component of the magnetic field over the aperture.
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From 3.82, 3.83, and 3.84 we have:

1 — — —
Pt — 5//M8l0t-Hf*(—MSlOt)dS
Sa
1 — — — — —
= =52 D v / / M, - B (My)ds (3.93)
n /¢ S

If testing functions are chosen to be the same as basis functions (Galerkin’s method),
ie. W, = M,, and if basis functions are all real, then from 3.88b it can be seen
that:

1 (7S Y7 Sxv\ bx
P, = 5% % VeverY, (3.94a)
1_ _
- 5\/Syb*vs* (3.94Db)

which is a familiar formula from network theory as the power into the network with
admittance matrix Y?. It also justifies the minus sign in 3.88a and 3.88b. However,
to avoid confusion, we have dropped the minus signs in front of the admittance
matrices.

3.2 Hybrid Matrix Formulation

We consider the problem of a microstrip patch on a slotted ground plane, as illus-
trated in Fig. 3.3. The coordinate system is chosen in a way that the metallic patch
lies in xy-plane. The ground plane coincides with the plane z = —d parallel to the
xy-plane. As it was explained in previous chapter, in MNM for open-boundary
planar circuits, the periphery of the planar structure is divided up into sufficient
number of smaller segments and each segment is treated as a port in low-frequency
circuits having a terminal voltage and current [36]. The width of each port is taken
to be much smaller than the wavelength to make sure that the current density is
almost constant over the width of each port and consequently a port current can be
defined as the product of this current density and the width of the port. Each port
has a self-impedance and mutual-impedances with the other ports which account
for interaction between voltages and currents of corresponding ports. The whole
circuit is represented by an impedance-matrix, which relates ports voltages and
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currents. We will term these ports as edge ports and will use the superscript E to
distinguish them from slot ports, which will be defined later.

In the absence of any slots, the MNM for an open-boundary planar circuit can
be simply given by 2.72. If the planar circuit is slot-coupled to another planar
circuit on the other side of a common ground plane, there will be scattered fields
from the slot that will modify field patterns on both sides. The surface equivalence
theorem is used to replace the slot with an equivalent surface magnetic current
dented by Mslet, Consequently, there will also be voltage induced at the edge ports
due to M slot which accounts for the presence of scattered fields. Therefore, 2.72
can be modified as follows:

VE = ZPI" 4+ VE(Mt) (3.95)

where VE(Mslt) = dE,(M*°) and E.(M®°") are the induced voltage and z-

directed electric field due to M* at edge ports, respectively. In particular, for
the m'" edge port we will have:

ZZE IE £ VE(Mset) m=1,... N (3.96)

mn-n

where as before N F is the number of segments along the periphery of the circuit
and VEZ(M*"") is the induced voltage at the m' edge port due to M. Since
M#"t is unknown, a set of basis functions will be used to expand M*"! as

NS
Mt =N "VEM, (3.97)
/=1

where V;%’s and My’s are expansion coefficients and basis functions, respectively.
N¥ is the number of basis functions used to expand the equivalent magnetic current
over the slot. Due to linearity of Maxwell’s equations, we will have:

NE NS
=1

In order to derive an impedance matrix representation for the two-layer circuit,
a similar equation for the planar circuit below the ground plane is written and
linked to 3.98. This can be accomplished by enforcing electromagnetic boundary
conditions over the slot. Similar to the approach taken in [53], continuity of the
electric field is ensured if the equivalent magnetic currents on the two sides of the
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(a)
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onthe ground plane
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Figure 3.3: a) An irregularly shaped patch on a ground plane with a slot and b)
Projection of the patch on the ground plane
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slot are of the same magnitude but opposite signs. Continuity of the magnetic
field, however, must be explicitly enforced. Here we take an approach similar to
the one taken in the generalized network formulation for aperture problems [53].
Input currents at the edge ports, which can be viewed as impressed sources, and
the equivalent magnetic current over the slot both contribute to the tangential
magnetic field on the slot. This can be written as:

NS
Hit = ZHT )+ > Vi Hr(My) (3.99)
(=1

where Hy (IF) and Hr(M;) are transverse components of magnetic field due to I

and Mg over the slot, respectively. This is the basic operator equation for the un-
known equivalent magnetic current over the slot. Following the same procedure, we
test both sides of 3.99 with N*° vector testing functions according to the definition
given in 3.86 for the inner product of two vectors in the linear space spanned by
My’s. Consequently we will have:

(i ) = 32 (20000 507 (A0, =1

(3.100)
where W,,’s are testing functions. If we think of V,°’s as slot port voltages and define

slot port currents as <ﬁ2}0t, Wm>, we will have a hybrid matrix representation for
a planar circuit with a slot in ground plane as follows:

(5 Eme
where:
HES — VE(M,) (3.102a)
HSE — < +(IP), W, > /1P (3.102b)
Y,in=< (M), W, > (3.102¢)

HZS is the voltage induced at the m** edge port due to M,, and will be referred to as
”Slot to-Edge Transfer Matrix”. HSZ is the transverse component of the magnetic

field due to I” = 1 tested by W, and is called ”Slot-to-Edge Transfer Matrix”.
Y* is the ”Slot Admittance Matrix” and accounts for the interaction of slot ports
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together. Y2 is in fact the transverse component of the magnetic field due to M,

tested by W,,. This is also similar to the generalized admittance matrices defined
in 3.88b and 3.88a.

It will be shown that if testing functions are the same as basis functions, H?®
and H®F are transpose matrices. It is worth mentioning that there is no restriction
on the size or shape of the slot.

3.3 Calculation of Impedance Matrix in terms of
Hybrid Sub-Matrices

Once the hybrid sub-matrices for the planar circuits above and below the ground
plane are evaluated, the impedance matrix of the two-layer structure can be readily
obtained by simple algebra. We will use subscripts ¢ and u to distinguish the two
planar circuits. From previous section we have:

VP = 2,1, + H°V;

{ IS = HSEJE L ySy/s (3.103a)
VE = ZPIP + HESVS

§ AR (103

Continuity of the electric and magnetic fields over the slot require that IS =17 =

I%, and V5 = -V = V5. After eliminating V* and I° the impedance matrix for
the two-layer structure can be written as:
v | L ] 5204
where
Zuw, = ZF -HE(YS 1Y) 'HIF (3.105a)
Zy = HE(YS+Y))'HE (3.105b)
Z, = HPS(YS+Y))'HE (3.105c¢)
Zy = ZF¥ -HP(YS+Y))'H* (3.1054d)

Note that if HZS and HFS are transpose matrices of HSZ and H{ | respectively,
Z.y and Z,, will be transpose matrices as well.
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3.4 Computation of Hybrid Sub-Matrices for
Regular Shapes

3.4.1 Z”: Edge Impedance Matrix

The edge impedance matrix for regular shapes in terms of their eigenfunctions is
given in 2.27. From 2.27 we have:

7! = jwud o ;{2 (3.106)
n=1 "
where )
Ui = — / b, (s)ds (3.107)

3.4.2 HF’: Slot-To-Edge Transfer Matrix

It was already discussed that for thin planar circuits the fields are assumed to be
TM?# with no z variation. Let ¢,, (z,y)’s be the normalized eigenfunctions for this
regularly shaped planar circuit:

where A,,’s are expansion coeflicients.

The transverse components of the electric field are identically zero due to the fact
that there is no z variation. This can be clearly seen from the following equations:

O’E O*FE

E™M o ——2 = EIM o — 2 3.109
v 0x0z Y Yoz ( )

Apparently, these fields satisfy the boundary condition requiring that the tan-
gential electric field vanish on conducting surfaces. The existence of the equivalent
magnetic current over the slot dictates new boundary condition on the ground
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plane, though the boundary condition on the top plate remains the same. In order
to account for the presence of the equivalent magnetic current, we propose that the
following form be adopted for modal expansion in such a cavity [55], [56]:

E. - ilAmqu (2,9) cos 3, (d — 2) (3.110)

where 3,, = \/k? — k2, and k,, is the resonant wave number of the two dimensional
cavity. From 3.110 the transverse components of electric field can be given as:

>, Am m a m ) .
ETM — pys —ﬂﬂfn ¢ a(; y) sin3,,(d — z) (3.111a)
g = $% Anbn 00n @Y) 55 5 2 (3.111b)

m=1 k2 - 57271 ay

While the transverse components of electric field still vanish on the top plate at
z = d, they no longer do so on the ground plane. Therefore, the existence of the
equivalent magnetic current on the slot can be taken into account as follows:

NS
E™|  x =M= VM, (3.112)

From which the expansion coefficients can be found as:

k2 — 32
Am = B, F smﬁ dz:VZSLém (3:113)
m m= =1

where

F, = //(‘a¢m8§c’y)‘2+‘8¢m8§€’y>r> ds (3.114a)

Lom = / / MZ.<@8¢:18§”’” 3 20m 8(33 )>dS (3.114b)

slot

We have also used the fact that:

//<a¢ z,y) 0}, gx’y)+a¢maf’y>a¢za(§’y)>d5=0 (3.115)
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A proof has been given in Appendix A for 3.115. Hence the voltage induced at the
th edge port due to the equivalent magnetic current over the slot becomes:

d
S 1
VE(MT) = @//Ez(s,z)dzds
w; 0

2

DRyt
dZ:l m=1 6mFm
Finally we have:

HES = VE(M,) = dz ngm im (3.117)

3.4.3 Y?°: Slot Admittance Matrix

Y accounts for interaction among basis functions used to expand the equivalent
magnetic current over the slot. This equivalent magnetic current can excite T'E*
modes as well as T'M?* modes. For T'M? fields we start from 3.110 to calculate
the transverse components of magnetic field due to the equivalent magnetic current
over the slot.

. > d 0 ) 3
HIM (M) = ng;(:;l%n Lo (x %a(; Y) _ ;9%m 8(56 )> (3.118)

Similar to T'M?* case, the following form can be proposed for H, of T'E* modes:

H,= MZA/ ¢IF (1, y) sin B,,(d — 2) (3.119)

from which the transverse components of electric field and consequently the expan-
sion coefficients can be obtained as:

k2 _ 62 1 NS s
A= m 12
m= TP sm ﬁmd;vf Fem (3.120)
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where

P06t (a,y) [
+’ 3 ')dS (3.121a)

(5

a TEx a TEx*
Ry, — //M ( O (‘r Y Ly ¢m8y($’y)>ds (3.121b)

slot

Hence, the transverse components of magnetic field for T E* fields become:

—1 <= B,, cotﬁmd Wb (@) | 0w (@,Y)
» ]WZ o Rim ( el 5 >(3.122)

HEP (M)

And finally from 3.102a we will have:

Y;‘S;Z - <H’11:M(MZ) :07Mn>+<ﬁ%E(M4) . aMn>
— ]wgzcow dem quzﬁ cot 3, dRe”}gR”m (3.123)

3.5 Computation of Hybrid Sub-Matrices for
Irregular Shapes

In this section, sub-matrices in hybrid matrix representation will be derived for
an arbitrarily shaped planar circuit using contour-integral equations. The symbols
and notations are the same as the ones shown in Fig. 2.6 and Fig. 3.3. Briefly,
C, the contour of the circuit periphery, is divided into N¥ segments, small enough
to be approximated by a straight line. The coordinates of the dividing points are
denoted by (z,,yn)’s, n = 1,--- , NE and the line segment connecting (z,,y,) and
(Tpt1,Yns1) is referred to as the n'" segment and will be denoted by C,. These
points are numbered in counterclockwise direction, as shown in Fig. 2.6. This is
due to the fact that in deriving the contour-integral equation, distance along the
contour C' is measured in counterclockwise direction and the tangent and outward
normal to the nt* segment, denoted by 3,, and 7, respectively, are defined in a way
that (fi,, 8, 2) constitute a right-handed coordinate system. The width of the n'
segment is represented by w,. In addition, the coordinates of the mid point of the
th segment is denoted by (z2,32).
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3.5.1 Z”: Edge Impedance Matrix

The Edge Impedance Matrix denoted by Z¥ accounts for the interaction between

edge ports in absence of the slot. Hence, it is the same as the impedance matrix
defined in 2.72.

3.5.2 H°F: Edge-To-Slot Transfer Matrix

HSF accounts for the transverse magnetic field produced by edge currents on the
slot and was defined in 3.102b. In order to find transverse magnetic field produced
by edge currents, it is assumed that away from the slot, the structure is essentially
two dimensional and only supports T'M* modes. Equation 2.54 gives the electric
field at an arbitrary point (g, yo) inside a closed contour C' in terms of the electric
field and its normal derivative on the contour, which after discretization can be
written as:

E. (20, %) = ——1 ZIE / HP (kp) ds——ZVE / cos0HP (kp)ds  (3.124)

j j=1 w5
where p and cos 6 have similar definitions as in Fig. 2.6, except for the fact that
the point (x5,;) is replaced by the point (xo,y0). I is the total current flowing
inward at the j** port. By substituting 2.72 into 3.124 we will have:

E
E.(xo,1) = 7E wu /H (kp)d 5= 1 ZZ /cos&Hfg)(kp)ds

(3.125)
Since it’s been assumed that away from the slot the fields are essentially T'M?,
transverse magnetic field components and consequently H*F elements can be cal-
culated from 2.1b, 2.1c, and 3.102b.

Testing functions are chosen to be the same as the basis functions. This choice
gives not only a variational form, but also a physical meaning to matrix elements in
terms of reaction between electric and magnetic current sources. In addition, as it
will be shown in the next section, in this case HF® becomes the transpose of HF.
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3.5.3 HFS: Slot-to-Edge Transfer Matrix

It was stated that if the same set of functions is used for both expansion and testing,
HPS becomes the transpose of H®F. In this section, the proof based on Lorentz
reciprocity theorem [41] will be given.

Since it is assumed that the circuit is enclosed by PMC walls on the sides and
PEC walls from top and bottom, n X H = 0 on the sidewalls and 2 x E = 0 on
the patch and the ground plane. Therefore Lorentz reciprocity theorem takes the
following form:

///(El'ﬁ_ﬁl'Mz)d“:///(ﬁz'ﬁ—ﬁ2-i\7[1)dv (3.126)

Suppose that all edge ports are open-circuited except for the n'* port which is
excited by IF flowing into the circuit. We write the reciprocity equation for the
reaction between I and the m'* basis function, M,,. We have:

{ JU=2IFB/w, |, M'=0

- - 3.127
ﬁ:o , M2:Mm ( )

By substituting these into 3.126, we have:

—//ﬁl(ff)Mmds = (H(72), 3,
slot

L IP IR
= d / E**(M,,)~>ds = —VE(M,,)IF (3.128)

Wn,

By comparing 3.128 with 3.102a and 3.102b it can be seen that:

<ﬁT(f{§)7 Mm>

HES = VE(M,,) = — H5E (3.129)

which proves the fact that H”S is the transpose of H%,
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3.5.4 Y°: Slot Admittance Matrix

Slot admittance matrix accounts for the interaction among slot ports. In order
to calculate this matrix we need the magnetic field produced by the equivalent
magnetic sources over the slot at any point inside a planar cavity of arbitrary
shape surrounded by PMC walls. Since the modal expansion inside such a cavity
is unknown, we propose the following method.

We first calculate the fields due to Msit assuming that it is radiating in a lat-
erally infinite (unbounded) parallel-plate waveguide. These fields, hereinafter, will
be referred to as incident fields. Incident fields can be found by either modal ex-
pansion or image series. Both these methods show very poor convergence behavior
either close to or far from the source [57]. Therefore complex images method [57]
has been used to find the incident fields. This is the subject of the next chapter.
Here we assume that these fields are denoted by H?P(z,y, ). The incident fields
can be written as:

NS
H(2,y,2) = Y VS HY?(x,y, 2) (3.130)
n=1

where ﬁf” (x,y, z) represents the magnetic field radiated by Mg in an unbounded
parallel-plate waveguide. If the periphery of the circuit is covered by PMC walls,
incident fields will be reflected from the boundary. Equivalently, it can be assumed
that incident fields have induced some unknown magnetic current on the periph-
ery, M wall "which acts as a source for reflected fields in a way that the tangential
components of incident and reflected magnetic fields will cancel on the boundary,
hence satisfying open-circuit boundary condition. This will allow us to find the
induced magnetic current on the walls. The analysis can be drastically simplified
if it is assumed that away from the slot, the fields are essentially two dimensional.
Consequently, Mwall will only have a component tangent to the contour C' at any
point along the boundary and we will be able to use 2.78 to find Ml in terms of
the tangential component of magnetic field on the boundary. The sampling points
are taken to be the mid-point of each segment. From 2.78 we have:

MY = S[3,, - Hy,] (3.131)
where w
Sy = fzf,m (3.132)

is the transformation matrix. By sampling HPP at the same points along the bound-
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ary and enforcing the boundary condition on PMC walls we have:

NS
S Hpo= = Vi[5  H (5m)] (3.133)
n=1
or in matrix notation: B
(8 - Hp] = —HPPVS (3.134)

where the matrix H? is defined as H?? = §,, - HPP(s,,). By combining 3.131 and

s,mn

3.134, the induced magnetic current, i.e. M™% can be given as:

MY = —S . HPVS (3.135)

Cavity fields satisfying all boundary conditions can now be obtained by super-
position of the fields radiated by M?#"°t in an unbounded parallel-plate waveguide
and M™¥ . Using complex images method, magnetic field radiated by a horizontal
magnetic dipole (HMD) in an arbitrary direction specified by a unit vector ¢, can
be written as:

¢ - HPP (0, y0) Zc pr (w0, v0)V, (3.136)

The magnetic field due to M can be calculated from 2.79. The superscript
"bi” will be used hereinafter to denote fields by boundary integral method, which
is another name for contour integral method. This is in order to avoid confusion as
the superscript ”ci” will be used in the next chapter to denote fields from complex
images method.

NS
¢+ H"(zo,y0) = Y _V/5¢ - H}' (w0, o) (3.137)
=1
where
L k2 pi H? (kpyar) — o, HP (kpy)
Hfz(mo,yo) = mZ[S'ng]jf Pj+1411 (pjﬂli Pty (pj)—sj/HéQ)(kp ds| +
jzl wj
NE
k PP ~ 77(2)
L H, [ oH,™ (kp)ds 3.138
j=1
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and the total magnetic field will be:

—

5'ﬁt0t(330;y0) = é'ﬁpp(xoyyo)+6'Hbi($0,yo)

—

NS
n=1

As can be seen from 3.139, the total magnetic field in an irregularly shaped cavity
surrounded by PMC walls and excited by the equivalent magnetic current over the
slot can be calculated at any point inside the cavity, in particular over the slot. If
¢ is taken to be the direction vector for m** basis function, slot admittance matrix
can be calculated as follows:

YS =YP YR (3.140)
where

Yir, = (H, M) (3.141a)

Yh, = (N ) (3.141b)

Compared to other matrices, Y?? is the most computationally-intensive. How-
ever, it has the interesting property that Y?? depends only on |m — n|. Hence,
YPP can be constructed from the elements of any row or column. Remembering
that YPP is the slot admittance matrix radiating into a homogenous parallel-plate
waveguide, this is intuitively the case. Nonetheless, a proof is given in Appendix
C for a special case of a narrow slot and rooftop basis functions with uniformly
spaced centre points.
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Chapter 4

Complex Images Method

4.1 Introduction

A rigorous analysis of conducting objects embedded in a planar stratified medium
consisting of an arbitrary number of dielectric layers possibly backed by ground
planes on one or both sides can be most conveniently formulated using Mixed
Potential Integral Equation (MPIE), in which conducting objects are replaced by
equivalent charges and currents on their surfaces and fields are expressed in terms
of scalar and vector potentials [58], [59]. Analytic expressions for spectral domain
potentials can be derived in a variety of ways. Spatial expressions can be obtained
by evaluating the inverse Hankel transforms of spectral expressions [51], [60]. An
important advantage of MPIE for layered media is that the kernel of potential
functions are weakly singular compared to kernel functions associated with fields
which are obtained by differentiation of potentials [59], [60]. This advantage of
MPIE for layered media was first observed by Mosig and Gardiol [60], [61], [62], [63].
Nonetheless, computation of inverse Hankel transforms, also known as Sommerfeld-
type integrals, is a difficult and time-consuming task. This is mainly due to the
oscillatory and singular behavior of integrands [60]. These singularities consist of
isolated poles and branch cuts which occur in complex conjugate pairs in the second
and fourth quadrants of the complex k, plane for a e?** time variation [64], where k,
is the transverse propagation constant. Isolated poles correspond to surface waves
and branch cuts represent radiation. For lossless media, isolated poles appear on
the real axis [60], which necessitates indentation of the integration path into the
first and third quadrants [65], [66]. Branch cuts only occur for vertically unbounded
layers, i.e. the top or bottom layers when they are not backed by ground planes.
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Analytical evaluation of transform integrals is only possible for a very limited
group of functions encountered in wave propagation. Hence numerical integration,
which is quite computationally intensive for Sommerfeld-type integrals, is unavoid-
able. In order to avoid these time-consuming numerical integrations a method
called Complex Image Method or Discrete Complex Image Method (DCIM) was
developed for modeling of microwave integrated circuits (MIC’s) and microstrip
antennas [67], [68].

Complex images refer to finite number of images in complex locations that can
replace an infinite number of real images. In an effort to derive simple expressions
for spatial Green’s functions of microstrip structures, real image series solution
was developed in static case from a model of charge images by Silvester [69], and
was later extended to dynamic case by Chow for thin microstrip substrates [70],
[71]. However, for thick substrates and large source-to-field distances, this dynamic
model deteriorates rapidly. This can be attributed to the fact that the dynamic
model essentially neglects surface and leaky wave modes [68]. An exact image
method was later developed by Lindell and Alanen [72], [73], [74], [75], [76], which
was based on using Mittag-Leffler expansion of generalized reflection coefficients of
the layered media to analytically calculate their inverse Laplace transforms. In fact,
the exact image method avoided Sommerfeld integrals by replacing them with al-
ternate infinite integrals, which later proved to be still time-consuming [67]. Finally
Chow introduced complex images for calculating spatial Green’s functions of vector
and scalar potentials with an HED located over a thick substrate, which avoided
numerical integration of any kind [68]. Other authors later extended complex im-
ages to a more general class of microstrip geometries with both a substrate and
a superstrate [77], [78], and even for non-symmetrical components of the Green’s
function [79].

Another method closely associated with complex images is the Generalized Pen-
cil of Function (GPOF) which has been used to find closed-form Green’s functions
for a general multi-layer structure with a source of any type and in any direction
embedded in any of the layers [80], [81], [82], [83], [84], [85]. GPOF is more robust
than complex images for large number of layers and complex problems. But in the
case of this thesis, the added complexity in using GPOF instead of complex images
is not justified and hence complex images has been used throughout this thesis.

Nonetheless, complex images method has its own shortcomings as it has no
built-in convergence measures and its accuracy cannot be trusted a priori without
checking its results against those obtained from more established methods [59].
There is no reliable automated procedure for extraction of surface-wave poles. There
is also problems when the source is embedded in bounded regions, for which a
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Table 4.1: Potential functions for different kinds of sources

VED  Gi G, - =
VMD - - G Gz e
HED =Gy G, - =
HMD - - woE G

solution has been proposed [86], [87]. Others include lack of clear instructions on
the number of extracted quasi-static terms [86] and if extraction of surface-wave
poles is necessary at close distances from the source [88].

In spite of these shortcomings, complex images method remains to be a very fast
and reliable method, when its accuracy can be established. We have used complex
images for calculating transverse magnetic fields due to an HMD in a parallel plate
waveguide. We have also developed programs for both HED and HMD in a three-
layer structure shown in Fig. 4.2. These will be used in the future work that will
be discussed in the closing chapter.

In the next section, analytic expressions for vector and scalar potentials in
spectral domain will be derived. Formulation of complex images for the problem
in hand will follow in a separate section. The procedure outlined here closely
follows that of [64]. However, we have rearranged and in some cases generalized the
expressions given in [64] for a more systematic presentation that is more suitable
for this thesis.

4.2 Spectral Green’s Functions for a Horizontal
Electric and Magnetic Dipoles

Analytic expressions of Spectral Green’s functions for stratified media can be de-
rived in a variety of ways. For a general stratified media with either electric or
magnetic dipoles, there is a total of 10 distinct potential functions [89]. These are
listed in Table 4.1. V, H, E, and M signify vertical, horizontal, electric, and mag-
netic attributes, respectively. For example, HMD stands for Horizontal Magnetic
Dipole.
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Chow et al. [89] build an analogy between T'EM transmission lines and plane
wave propagation in planarly layered media and derive the spectral Green’s func-
tions by cascading these transmission lines This approach is very systematic and
can be conveniently applied to any number of layers. A similar but less systematic
approach has also been used by Michalski and Mosig [59]. Another systematic ap-
proach amenable to programming is based on enforcing the boundary conditions on
potentials in spectral domain [90]. The spectral potentials can also be obtained in
terms of Fresnel reflection coefficients from longitudinal field components (E, and
H., where z is the direction of stratification). This approach gives better physical
insight into the problem and has been utilized in this thesis. The expressions given
for vector and scalar potentials are new in presentation, though it cannot be de-
nied that they are in fact rearrangements and in some cases generalizations of the
expressions appeared in the literature.

4.2.1 Reflection and Transmission of Plane-Waves in
Planarly Layered Media

It can be shown that for an N-layer medium, such as the one shown in Fig. 4.1,
the generalized reflection coefficient at the interface between regions ¢ and 7 + 1,
denoted by Ri,i—H (R;fﬁl for TE waves and RZTZ]‘fl for T'M waves), can be given by
the following recursive relation in terms of RHLHQ [64]:

5 Riji1 + Rijriqoe Phirrsldin=d)

Qi+l = 5 ik , ,
1+ R i1 Riq1ige™hirna(diva=di)

(4.142)

where R; ;11 is the Fresnel reflection coefficient for the downgoing wave in region ¢
reflected by region ¢ + 1 and we have:

bt Pip1kiz + 1k '
7 kiz - 1kz z
RIM - Sl S (4.143b)

Eit1kiz + €ikiv1z

Note that R} [, and R}, are reflection coefficients for the transverse electric and
magnetic fields, respectively. k;, is the propagation constant in z-direction for the
it" layer. Since RM ~+1 = 0, equation 4.142 can be solved recursively in all regions.
Riyiﬂ can represent the generalized reflection coefficient for either T'E or T'M waves
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Figure 4.1: Reflection and transmission in a multilayered media

if all other reflection coefficients in the recursive relation correspond to T'E or T'M
waves, respectively. Each of transverse field components (E, and E, for TE waves,
H, and H, for TM waves) in the i" region assumes the form [64]:

B, B, H,, H, o A; [ + R@-Me*j’%zﬂj’%zdi] (4.144)

A;’s are given by the following recursive relation:
TZ,_LZ.AZ._lefjkifl,zdiﬂ
1—-R; ifléi i+16_2jkiz(di_di—1)
where T;_1; = 1 + R;_;; is the Fresnel transmission coefficient for the downgoing

wave in region ¢ — 1 to the region i. A generalized transmission coefficient can also
be defined from region m to region n as:

Aie*jkizdifl _

(4.145)

ApeInzdn—1 — 0 A o= Tkmadm (4.146)
It can be readily shown that:
n—1
Tmn — Sm’m+1 H e_jkEZ(dé—dlfl)Se’é+l n>m (4147)
l=m+1
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where
Tre41

1 — Ry Resr g o2k s (dei—de)

See+1 = (4.148)

This is for the case when the source is on top of a layered medium. If the source
is embedded in the layered medium, say in region m, then the z variation of the
solution within the same layer for a symmetric source can be written as [64]:

. , . , ~ . . ~
ejkmzz Te Jkmz(z +2dm)Rm,m+1i| [6 Jkmzz + 63kmz(z+2dm*l)Rm,m_1

F+(Za Z/) = Mm
(4.149)
for z > 2’ (the subscript + indicates that z > 2’). We also have:
My, =1 = Ry g1 Ry~ 2 kme(dm=dm—1) (4.150)

z and 2’ are field and source points, respectively. By exchanging the locations of z
and 2’, equation 4.149 can also be used for 2’ > z, i.e. F_(z,2') = F (2, z). This
is for a symmetric source. A source is symmetric if its fields are symmetric about
Z' in a homogenous medium, i.e. F(z,2') = e 7*==1*=?I in homogenous medium.
Similarly, a source is odd-symmetric if F(z, 2') = de 7*m=>=#1 /92" in homogenous
medium [64]. If the source is in region m and the field in region n, where n < m,
F.(z,7') can be shown to be given as [64]:

F+<Z,ZI) — [e*jknzz + ejknz(2+2dn71)Rn’n71i| [ejkmzz’ + e*jkmz(z/+2dm)Rm’m+1j| X
efjknzdnj:'mnejkmzdmfl
Y (4.151)

where the plus sign in subscript indicates that z > 2’ or n < m as can be seen from
Fig. 4.1. For n > m or z < 2z’ we have [64]:

;:" F (¢,2)= //;m Fi(z,72) (4.152)

By differentiating F (2, 2') and/or F_(z,2'), the solutions corresponding to odd-
symmetric sources can be obtained.

4.2.2 Spatial Vector and Scalar Potentials for Multi-layered
Media

Spatial potentials can be expressed as inverse Hankel transforms of their spectral
counterparts. It can be easily shown that plane waves reflecting from planarly
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layered media can be decomposed into T'E and T'M waves [66]. On the other hand,
by using the following identity, due to Sommerfeld, the fields due to an electric or
magnetic dipole (point source) can be expanded into plane waves:

e—jk'r‘ e—jkz\z—z’\
— = / T HP (k,p)k,dk, (4.153)

—00

where r = /(2 — 2/)? + p?, k, = \/k? — k2. Hence, the procedure for calculating

the fields due to a point source on top of or embedded in a planarly layered medium,
can be summarized as follows:

1. Characterizing T'E and T'M waves for the source in a homogenous medium
2. Expanding the fields into plane waves
3. Studying the propagation of these TE and T'M plane waves in the layered

medium

The fields due to an electric dipole in an arbitrary direction designated by the
unit vector &, i.e. J = &ll6(r), and located in a homogenous medium, can be given
as:

e—jks'r

(4.154a)

= : = VVY\ .
E(r) = —jwpy, (I+k—§>-a1€ -

efjksr

H({F) = Vxall

(4.154D)

wr

where I/ is the current moment and I is the unit dyadic. The subscript s denotes
source region.

For an HED pointing in & = 2 direction and radiating in a homogenous medium
we have:

+oo ) ,
I 0 [ fe k=== E )0 o
B = P H® (ke o)k, dle A1
ATwe, 855/ 2k, o (kop)kydk, (4.155a)
109 [ eikels—
e sz|2—Z (2)
H, = ——= [ ——Hy (kpp)k,dk 4155h
47r8y/ i2ks, ° (Kpp)kodk, (4.155b)
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As can be seen from 4.155a and 4.155b, an HED is an odd-symmetric source
for TM waves (downgoing waves have negative sign) but a symmetric source for
TE waves. When the medium is stratified in the z direction, de k==l /9
and e 7%s:1*=*'l in 4.155a and 4.155b have to be replaced by OF™ (z,2')/02' and
FTE(z,2") from the previous section, respectively. The superscripts TM and TFE
indicate that the reflection and transmission coefficients in F'(z, 2') correspond to
TM or TE waves. Therefore we will have:

+o00
i1 DOm0
B = e or H 4.1
: drwes Oz 2k, o (Kop)kodky (4.156a)
100 TFE(z ) o
e = _Ea_y/jg—kszHO (kop)kodky (4.156b)

The fields due to an HMD pointing in & = 2 direction can be obtained by using
concept of duality. A magnetic dipole is simulated by an infinitesimal electric
current loop antenna. It can be shown that by making the replacement I/ —
—jwp d Ag, where Ay is the area of the loop carrying the current I, and subsequent
application of duality [41], the fields due to an HMD can be obtained from HED
case [91]:

+0o0

IA, 0 [OFTE(z,2")/07

B = 45%/ j<2k: VO 12 k)b, (4.157a)
wi TA, 8 [ FTM (2
JWH Z %

E. = _%87;/ jTH(()2)(kpp)kpdkp (4.157b)

Vector and scalar potentials can now be obtained from F, and H,. For an HED in
x direction with unit current moment, i.e. I/ = 1, we have:

+o0
B [hg FTE<Z,Z')
4w 52k,

—0o0

Ger HP (ko p)k,dk, (4.158)

+oo
e My 0 [ 1 [epdF™(2,2)) OF™P(2,2)] 1
T dnor | 12|z - H 4.1
A 47‘(’8]}/}{3 |:€S 0z 0z j2ksz 0 (kpp>kpdk7p ( 59)
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The scalar potential is defined as [89]:
0Gg. 1 (8Gj‘” N 8Gf4m>

(4.160)

Or  ppep \ Oz 0z

From which we will have:
LTk . e
G:t — 1 z FTE AN z —FTM /
q,€ 47T8f/ {( + kg) (Z7Z> kg Es (Z,Z)

—00

o HP (k,p)k,dk,

(4.161)
where the subscript f indicates field region. Similarly, for an HMD in z direction
with —jwu,J A, =1, it can be shown that:

—+00

o L [FTM(z2)
G = / jTHé2)(kpp)kpdkp (4.162)
+o0
. 10 1 [ps OFTE(2,2")  OFT™™(z, 2 1
GF = -5 / = [_f - ) _ a,i ) o HP (kyp)k,dk, (4.163)
P sz

Except for a scaling factor, the scalar potential for an HMD is defined in the same
way as for an HED [89]:

aGCC T 2T
om _ 1 (aGF S, ) (4.164)

ox py \ Oz 0z

which yields:

+o0o
1 k3 k3
G l(l 4 =EYVFTM (5 ) — ﬁﬂFTE(z, z’)}

- H? (k. o)k dk
q,m 47T,uf kg kg 1L, 0 ( Pp) ptp

2k
(4.165)

In this thesis we are mainly interested in a structure with three dielectric layers
backed by a ground plane, as shown in Fig. 4.2. The results for such a structure
with an HED embedded in region 2 are already given in [78]. For an HMD, similar
expressions can be derived as follows:

“+00
1 ~

GF = + / G HP (k,p)kdk, (4.166a)
17

X ~;1: 2

Gom = 1= | GamHe” (kop)kodk, (4.166b)
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Figure 4.2: Three-layer structure backed by a ground plane

where
émm _ e Jk2= o R;Me—jkzz(de—Zh—z) _ R;Me—jkgz(z—i—Qh) (4 167a)
d 72k '
. B 1 e Jk2z + (R;M + R;)Q*jkzz@dz*?h*@ _ (R;M + Rq*)efjkzz(ﬂr?h)
o Ho j2k2z
(4.167b)
R 1 Ryt g |+ for TM (4.168a)
TETM = RIETM RTETN 2y ds 23 ~ for TE :

R_ _ 1+ RgSE’TMe_ﬂkQZ(dQ_z_h) T E,TM + for TM (4 168b)
TE,TM 1 — REFTM RTETM —joks.d, 21 — for TE
_ k2, _
R = R+ B | (41650
P

It seems that Rflt has a second-order singularity at k, = 0. As a matter of fact this
is not the case. It can be shown that this singularity is of removable type (the nu-
merator has a second-order zero at k, = 0). We preferred to remove this singularity
analytically. The procedure is straightforward but very tedious. However, removal
of the singularity is essential to the convergence of the complex images method.
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4.3 Complex Images Method

The basic idea of complex images is extraction of quasi-static and surface-wave
terms and approximating the remaining part with a few images with complex am-
plitudes at complex locations. All these three parts contribute to the solution,
but each dominates in a certain region. Surface-wave and quasi-static terms domi-
nate in the far-field region of dielectric interfaces and near-field region, respectively.
Complex images correspond to leaky waves and are very important in intermediate
region [68]. Here we will only give a brief introduction to complex images.

Consider the structure shown in Fig. 4.2. In implementing complex images
method, spectral Green’s functions are first broken down into three parts corre-
sponding to quasi-static terms, surface-wave poles, and the remaining part to be
approximated by the sum of a few complex exponentials. Let G and G represent
spatial and spectral Green’s functions, respectively. They are related through the
Hankel transform as follows:

+o0
1 -
G=— / GH (k,p)k,dk, (4.169)

where G can be written in terms of generalized reflection and transmission coeffi-
cients.

If the frequency is equal to zero, then k,,’s are all zero and all k,,.’s will be
equal (static case). Since k2, = k2, — k:f), if k, — o0, regardless of the frequency
of operation, all k,,.’s will be equal in the limit (quasi-static case). Let

tim G = Gy (4.170)

kp—00

Therefore extracting quasi-static part will result in faster decay of remaining part
of G for large values of k,. Gy can be expanded in exponentials of the form
e~ The=(E2420)  where 27 is the location of n'* real image and depends on dy, ds,
and h. Note that 2}’ = 0 which corresponds to the direct term (source in homoge-
nous medium). By using Sommerfeld identity in 4.153, inverse Hankel transform
of Gy, i.e. Gy, can be calculated analytically as sum of terms of the following form:

exp [~ jkor/PPF (2 2
4/ p? + (£z + 277)?

(4.171)
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This is the same as the quasi-dynamic image model intuitively developed by Chow
[71]. In most cases there is infinite number of these real images in quasi-static part
of the solution. Apparently considering too many real images in quasi-static part
of the solution contradicts the purpose of using complex images, hence the series
of real images has to be truncated. There are no specific guidelines on selection of
these real images, though it is obvious that direct term should always be included.
Therefore let G and Go denote truncated quasi-static solutions including the direct
term and a few of its images with strong contributions. The remaining part of G,
i.e. G — Gy, will now have a much faster decay for large values of k,.

It is well known that a grounded dielectric slab supports guided modes that are
loosely confined to the dielectric slab and decay away from the interface [41]. The
statement can be made about any grounded multi-layer dielectric structure. These
guided modes which are dominant in the far-field along the dielectric interfaces are
referred to as surface-wave modes. It can be shown that these surface-wave modes
correspond to the poles of G on the real axis. These real poles can adversely affect
the solution for small values of k, (far-field region along dielectric interfaces) even
if the integration path is deformed so that it is not close to these poles anymore
[78]. These poles can be found and extracted from G — Gy. Mathematically they

can be represented as:
2k,,(Residue at k)

kﬁ% - kgp

(4.172)

where k,, is the surface-wave pole. The contribution of these surface-wave poles to
the spatial Green’s function can be analytically evaluated via residue calculus as:

1 -
—(=j2m)k,pHg 2)(k5ppp) Ezm (ko = kpp)G (4.173)

47 kp—kpp

Let Gsw and G, represent the contribution of all surface-wave poles in spectral
and spatial domains, respectively. Suppose that Gei = G —Go— Gyyp. If the inverse
Hankel transform of Gy; can be calculated analytically, we will have a close-form
solution for G as the sum of three terms, i.e. G = G, + G+ G4,. To this end, G
has to be approximated by a few complex exponentials as:

Nci
= ae (4.174)
=1

Since G; is a function which decays rapidly for large values of k, and is not sin-
gular on the real axis, if the infinite integral in inverse Hankel transform is replaced
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Figure 4.3: The integration paths of inverse Hankel transform in both k, and ko,
planes for a grounded dielectric slab

by a finite integral, no significant error is expected. The infinite and truncated inte-
gration paths are shown in Fig. 4.3 for a single layer structure (grounded dielectric
slab). The straight line has a parametric equation of:

t
0

where t is the running parameter and 7j is the truncation point. 7j should be chosen

bigger than the largest |/e,. Hence there is one-to-one correspondence between the

running parameter and ks, on C7, which means that G; is a complex function of a

real variable of a finite range on C and therefore Prony’s method can be used to
find a;’s and b;’s in 4.174. [92]. The spatial G; can be obtained as [68]:

1 Nei efjks p2—b?

Gei = _Zai— (4.176)

As can be seen, a closed-form expression has been given for the spatial Green’s func-
tion consisting of three parts, i.e. quasi-static images, surface-waves, and complex
images.
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Figure 4.4: An x-directed horizontal magnetic dipole in a homogeneous parallel-
plate waveguide

We have developed computer programs for both an HED and an HMD embedded
in the structure shown in Fig. 4.2. This is part of the future work of this thesis
that will be discussed in the final chapter.

4.3.1 Complex Images for an HMD in a Parallel-Plate
Waveguide

Though the problem of finding fields due to a horizontal electric or magnetic dipole
in a parallel-plate waveguide (PPW) seems to be a trivial task, the conventional
solutions in terms of image and modal expansions are only convergent in their
respective regions. A "relay race” scheme of image and modal expansions could
have been used [57], but since our intention was to extend the applicability of the
network model to multi-layer planar circuits where each dielectric could be multi-
layered as well, a unique approach seemed to be necessary. Complex images method
has been successfully applied to the problem of an HED in both homogeneous and
layered parallel-plate waveguides [57]. With some modifications the same procedure
can be followed for an HMD in a parallel-plate waveguide [93].

Fig. 4.4 shows an z-directed Horizontal Magnetic Dipole (HMD) in a homoge-
neous PPW. Spatial expressions for the vector and scalar potential Green’s func-
tions can be obtained by the taking the inverse Hankel transforms of the spectral
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expressions [78] as:

“+oo .

i =G = [T bty (4170

—00

where Ty is the transmission coefficient from source plane to field plane and can
be derived in terms of the Fresnel reflection coefficients from 4.167a-4.168c¢ as:

(1 + efj2kzzl) (1 + efj2kz(d72)) efjkz(zfz/)

1 — e—i2k:d for z>2  (4.178)
— o—i2k-

Truy (2,2/) =

A similar expression can be obtained for z < 2’ simply by exchanging the locations
of z and z’. The solution in terms of real images can be obtained in the form of
an infinite series by either adding the contributions of the source and each of its
images or equivalently by expanding Ty, into Taylor series:

T o jkz(z—2'+2nd) jkz(z+2'+2nd) jkz(z+2'—2(n+1)d)
o (2:2) = 3 e e e T (am9)
_|_ejkz(z—z —2(n+1)d)j|

The spatial expression for the image series can be obtained by substituting 4.179
into 4.177 and using Sommerfeld identity:

L e —jkrna e Jkrn3 e Jkrna
ATGE = dmpGy = Z l - et (4.180)
where
Tl = \/p2 + (2 — ' + 2nd)® (4.181a)
Thy = \/,02 + (2 + 2/ + 2nd)” (4.181b)
rog = \/,02 F(z42-2(n+1)d)? (4.181c)
- \/,)2 (=2 —2(n+1)d)> (4.181d)

Modal expansion can also be obtained from 4.178 by rearranging Trar into the
following form:

TTM (2) 1 cot <k2d> cos (k.2") cos [k, (d — 2)] (4.182)

J2k, T2k, 72 cos? (k,d/2)
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and then using Mittag-Leffler theorem for the cotangent factor [94] to obtain:

Tra (2) 1 cos(k)cosk. (d—2)] | 2 k.o 1
J2k, 2k, cos? (k,d/2)

— _.|_ -
ked - d = k2 — (2n7/d)?
(4.183)
The spatial expression can be found by substituting 4.183 into 4.177 and using the
residue theorem to calculate the integrals [95]:

- _2mj 2nmz 2nmz 2
AnGE = dmpGy = —?HO Z ( ) cos ( y )H(() ) (kopp)

(4.184)
where k2, = k*— (2nm/ d)®. The expression 4.184 represents the modal expansion of
the potentials excited by an HMD [57]. Obviously, only the terms with k& > 2nn/d
can propagate and all other modes are below cutoff and correspond to evanescent
modes. The conspicuous difference between 4.184 and the corresponding equation
for an HED in [57] stems from the fact that the fundamental mode excited by an
HMD has a cutoff frequency of zero and hence can always propagate. As will be
seen shortly, the method proposed in [57] cannot be directly applied to the problem
at hand and needs minor adjustments.

A third approach for calculating vector and scalar potentials and hence fields
has been proposed in [57]. This approach is based on complex images method and
utilizes the merits of both image and modal expansion. We will show that modal
expansion converges very slowly when the observation point is close to the source.
On the other hand, image series converges very slowly for large distances. In the
proposed method, Ty, (z) is written as follows:

Trag = e =) 4 j2k By + (Fpar — e 9%C=) _ jok,B,.) (4.185)

where P, is part of the modal expansion that only includes propagating modes,
i.e. the fundamental mode and the modes with k > 2n7w/d. The first term in
4.185 is the direct term due to the HMD in a homogeneous medium. The first
two terms have analytical inverse Hankel transforms. A closed-form expression in
spatial domain corresponding to the third term can be found using complex images
method. Consequently, closed-form expression for the spatial vector and scalar
potentials takes the following form:

4 =4rpGy = Go + G + Gy, (4.186)
where ,
e*ﬂﬂ"o 9
Go = , To=1\/pP?P+(z—2) (4.187)
To
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NCi e—jk’r‘i

Gei=) a i =/p2 4 (=)’ (4.188)

T
i=1 v

N,
. 2 . {Npropag 2 / 2
G, = _ﬂH(g?) (kp) — 9 cos ( n;rz) cos ( n;rz) H(()2) (kopp)  (4.189)

d

n=1

where Npropeg is the number of propagating modes, excluding the fundamental
mode. N,; is chosen in the range 3 — 5 as recommended in [57].

As it will be demonstrated in the next section, we found out that subtract-
ing propagating modes from Ty, and then applying complex images method was
not always beneficial. On the contrary to the HED case, at close distances no
propagating mode should be taken into account [93].
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4.3.2 Numerical Results for Fields and Potentials of an
HMD in a Parallel-Plate Waveguide Using Complex
Images

With reference to Fig. 4.4, we consider a parallel-plate waveguide with d = 0.2\,
z =2 =0, filled with air, i.e. € =¢¢ and p = pg. Ao is the wavelength in dielectric
substrate, which is air in this case. all dimensions and distances are normalized
with respect to Ag, so frequency need not be specified. Only the fundamental mode
is supported by this structure. We consider an x—directed surface magnetic current
distribution as follows:

M= — g1

4.1
T, (4.190)

which has the form of rooftop basis functions used to expand the equivalent mag-
netic current over the slot. Rooftop basis functions are triangular in longitudinal
direction and uniform in transverse direction [96]. 2h = X\¢/50 is the support of the
basis functions in x—direction. wg = Ag/100 is the support of the distribution in
y—direction. Rooftop basis functions are commonly used in method of moments.
This choice has some practical advantages which has been discussed in detail in the
literature [97], [98], [99], [100]. A brief explanation is also provided in Appendix C.

In MPIE formulation the fields produced by this equivalent magnetic current
can be found from vector and scalar potentials. We are only interested in transverse
magnetic fields in a parallel-plate waveguide (Fig. 4.4) which can be given as:

T 10Ge, OM
H.(z,y) = —jw [sGF x M + = (9;:7 * En (4.191a)
1 0G% oM
H = — By 4.191b
where * is the convolution operator defined as:
7o M= /G?(Uc — o,y — Yo) M (2o, yo)dzodyo (4.192)

In complex images method spatial Green’s functions consist of exponential and
Hankel function terms. For polynomial expansion functions some of the convolu-
tion integrals can be evaluated analytically, whereas some can be converted to one
dimensional integrals which can be computed numerically. This has already been
done for exponential terms [101], [96]. We have implemented the same approach
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Figure 4.5: Amplitude of 47uG,, from image expansion for d = 0.2)p and z = 2’ = 0.

for Hankel function terms (Appendix C). However, it was observed that calculat-
ing contribution of exponential terms separately didn’t yield satisfactory results at
large distances. This is due to the fact that complex images have imaginary spatial
locations and produce highly oscillatory fields. Therefore, potentials were divided
into two parts. One part included all exponential terms (complex images and the
direct term) and the second part all propagating modes. The contribution of the
first part was calculated as an entire entity numerically, whereas the second part
was further broken down into modes and contribution of each mode was calculated
separately using a combination of numerical and analytical integrations.

The Green’s function calculated by image and modal expansions as well as their
comparison to the results obtained by the method proposed in [57] are shown in
Fig. 4.5, Fig. 4.6, and Fig. 4.7, respectively. As can be seen, from Fig. 4.5, for
distances up to p/Ag < 0.16, the number of real images can be as low as 12. As we
move farther away from the source, more images must be considered. But this in
turn makes the results oscillatory. For example, with 100 images, oscillations start
around p/A\g = 1.6. This will be shown to have destructive effect on the fields.

On the other hand, modal expansion converges very fast for p/A\g > 0.16, Fig.
4.6. It seems that in most cases considering only the propagating modes of modal
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Figure 4.6: Amplitude of 471G, from modal expansion for d = 0.2)\p and z = 2’ =
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Figure 4.7: Amplitude of 47muG, from image and modal expansions as well as
complex images for d = 0.2)\g and z = 2/ = 0.
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expansion is enough for large distances. However, for p/\g < 0.16, convergence was
extremely slow and was not achieved with even 10* modes.

Fig. 4.7 shows the results from all three methods. As can be seen, complex
images method diverges from image expansion for p/A\g < 0.16. This is similar to
the issue discussed in [88] and can be attributed to the presence of the fundamental
mode. This can be verified by setting P,,, = 0in 4.185, i.e. ignoring any propagating
modes and applying complex images method. The result is shown in Fig. 4.8 and
compared with the results from the original method proposed in [57]. It can be
concluded that for close distances, P,, should not be subtracted from T7,;, while
for large distances subtracting the contribution of propagating modes is necessary.
This can be seen from Fig. 4.9 which compares all four approaches. It can also
be observed that the two approaches for implementing complex images method
coincide for 0.16 < p/A¢g < 1.6. Therefore, no sharp boundary between the two
approaches exists. However, after running some examples and comparing fields as
well as the potentials, we found out that for the problem at hand p/\g = 1.6 was
a superior choice.

The transverse fields calculated from image and modal expansions and our pro-
posed approach for the same structure are shown in Fig. 4.10 and Fig. 4.11. As
can be seen, complex images method agrees quite well with image and modal ex-
pansions in their respective convergence zones. The z-directed magnetic current
density had a distribution similar to 4.190 with h = wg = A¢/100. In this case, no
propagating mode is considered for p/Ag < 1.6. It is also important to notice that
H, from image expansion becomes highly oscillatory after p/\g = 1.6.
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Figure 4.8: Amplitude of 47uG, from complex images method for d = 0.2)¢ and
z =2 = 0: with (—) and without (——) fundamental mode extracted.
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Figure 4.10: Amplitude of H, from image (—)and modal (——) expansions as well
as complex images (A) for d = 0.2)¢ and z = 2’ = 0.
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Chapter 5

Numerical Results and Discussion

In this chapter numerical results obtained from our method for some sample struc-
tures will be compared with the results from ANSOFT HFSS. In all examples, the
structure consists of two metallic patches etched on two lossless dielectric slabs of
dielectric constant €, = 9 and thickness d = 0.38 mm on two sides of a common
ground plane. The two circuits, however, are coupled through a narrow rectangular
slot of length Ly and width wy in their common ground plane. At 5GH z the slot is
A/2.5 long and A/40 wide, where A is the wavelength in dielectric substrate. In this
case the electric field within the slot will be in the transverse direction of the slot
and consequently the equivalent magnetic current in the longitudinal direction.

Let @ and v denote unit vectors in the longitudinal and transverse directions of
the slot, respectively. Since the slot is narrow, the equivalent magnetic current over
the slot is expanded in rooftop basis functions, which are triangular in longitudinal
direction and uniform in transverse direction [96]:

h — |u — uy|

M, = aM, = (5.1)

hw,

where as before 2h and w, are the supports of the basis functions in z— and y—
directions, respectively. uy is the center point of the £** basis function. These center
points are uniformly spaced along the slot.

5.0.3 Single-pole two-layer filter

First we consider two rectangular patches coupled through a narrow rectangular
slot. This structure can be considered a single pole two-layer filter. Each patch is
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Figure 5.1: Two-layer single pole filter

fed by a 502 microstrip line of width wy = 0.4 mm, as shown in Fig. 5.1. Both
patches are squares with dimensions a = b = 10 mm. No loss is considered, but in
order to account for the energy stored in fringing fields, sides are extended by [37]:

_0.412d(e, + 0.3)(a/d + 0.246)
(e, —0.258)(a/d + 0.8)

Al (5.2)

Fig. 5.2 and Fig. 5.3 show the comparison of magnitudes of S;; and S,
respectively. Also shown in these figures are the results from generalized MNM
for regular shapes. The predicted resonance frequency by generalized MNM is
4.96 GH z, which is very close to 4.95 GHz from both HFSS and modal expan-
sion. The error in resonance frequency is only 0.2%. Modal expansion predicts
the resonance frequency with almost no error, but it’s applicability is limited to
regular shapes. In addition, it was observed that when the slot was not perpen-
dicular to the input feedline, the modal expansion suffered from poor convergence.
In conventional MNM convergence can be dramatically improved by converting the
double summation to a single summation [102], but the same approach proved to
be inapplicable in this case.
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Figure 5.2: Return-loss of a single-pole two-layer filter
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Figure 5.3: The amplitude of S5 for the single-pole two-layer filter
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Figure 5.4: Two-layer dual-band filter

5.0.4 Dual-Band Filter

As a second example, we consider a two-layer dual-band filter comprising two iden-
tical corner-cut patches, as shown in Fig. 5.4. The patches are the same size as
in the single-pole filter, with a symmetric right-angled triangular section measur-
ing ¢ = a/4 on the sides cut out from one corner. As before, 5.2 has been used
to account for the presence of fringing fields. Each of the corner cut patches is a
dual-mode filter by itself, but dual-band performance can be achieved by utilizing
two resonators coupled through a slot in ground plane. A corner cut patch does
not have a canonical shape and therefore cannot be analyzed by modal expansion.
Other analysis methods such as contour integral or desegmentation can, however,
be used. Since our generalization of MNM method is based on contour integral
equation, it can be used for analysis and design of a two-layer structure consist-
ing of two corner cut patches. Comparison between the results for |Sy;| and |Sa|
from are method and the results from HFSS are shown in Fig. 5.5 and Fig. 5.6,
respectively. As can be seen, the resonance frequencies predicted by our method
are 4.92 GHz and 5.19 GH z, versus 4.93 GHz and 5.18 GH z, predicted by HFSS,
an error of almost 0.2%. The error in transmission zero is almost the same. Our
method predicts the transmission zero to be at 5.03 GHz, very close to 5.04 GHz
predicted by HF'SS.
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Figure 5.6: |Sa1| for two-layer dual-band filter
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Figure 5.7: Multi-mode filter

5.0.5 Multi-Mode Filter

As the third example, we consider a square patch coupled to a double corner-cut
patch, Fig. 5.7. The patches and the cutouts are both similar to the previous
example. Port 1 refers to the microstrip line feeding the rectangular patch. In this
case, the first resonance occurs at 4.92 GHz for our method and 4.91 GHz for
HF'SS, an error of almost 0.2%. The second resonance, however, has an error of
0.56% (5.38 GHz from our method versus 5.35 GH z from HFSS). The results are
shown in Fig. 5.8 and Fig. 5.9. The discrepancy can be attributed to several factors,
the most important being rather strong radiation at the second resonance which is
due to the upper patch. There is a strong transmission zero at 5.15 GHz (5.16 GH z
from our method, an error of less than 0.2%), which can only be justified through
cross-coupling of the modes. Hence, this structure can be considered a multi-mode
filter.
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Figure 5.10: Two circular patches coupled through a slot in ground plane

5.0.6 Circular Patches

Circular patches are also very common both as resonators and as antennas. Here we
have considered two circular patches coupled through a slot in their common ground
planes, as shown in Fig. 5.10. Both patches have a radius of R = 5.86 mm. In order
to account for the fringing fields in this case, equation 5.2 has been used to calculate
Al for a = 2R and then extend the radius of the patch by Af¢/2. The reason is
that the formula for calculating Af is only accurate when a/d > 1, otherwise
it overestimates Af. For example Al(R) = 0.16 mm, while A¢(2R) = 0.163 mm.
Extending the radius by A¢(R) means a 2.7% increase, which can shift the resonance
frequency well below the real resonance frequency due to fringing fields, whereas
extending the radius by A¢(2R)/2 will shift the resonance frequency just as much
needed to account for fringing fields.

Besides contour integral equation, circular patches can also be analyzed using
eigenfunction expansion. Return-loss and |Sg;| from generalized MNM using both
contour integral and modal expansion as well as HF'SS full-wave analysis are shown
in Fig. 5.11 and Fig. 5.12, respectively. The resonance frequency from both modal
analysis and contour integral method is 5.02 GH z and from HFSS is 5.03 GH z, an
error less than 0.2%.
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Figure 5.12: |Sg;| for Two circular patches coupled through a slot in ground plane
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5.0.7 Corner-Cut Patches Coupled by an Inclined Slot

And finally, we consider two corner-cut patches, similar to the ones considered
before, but coupled through a slot inclined at an angle of ¢ = 45° with respect to
the z—axis, as shown in Fig. 5.13. |S11] and |Sy | for this structure are compared
in Fig. 5.14 and Fig. 5.15, respectively.

The first resonance occurs at 4.93 GHz from our method versus 4.95 GHz
from HFSS, being 0.4% in error. HFSS also predicts a weak second resonance at
5.16 GHz, which is absent in our method. Besides, there is a strong transmission
zero at 5.17 GHz from our method which is almost absent in HFSS curve. The
second resonance can be attributed to radiation. This can be shown by plotting

\/ |SH|2 + |S21|2 as an indication of radiated power. Some power is also launched

into surface waves, but due to the fact that the substrates are thin, this can be
neglected. Since no loss is considered in generalized MNM, the curve corresponding
to the generalized MNM stays at 0 dB level for the whole frequency span of interest,
except for negligible errors in close vicinity of the resonance frequency (due to
numerical errors). Though this structure cannot be considered a good radiator,
it still radiates some power. This is specially noticeable at 4.96 GHz (very close
to the first resonance) and 5.17 GHz (same as the transmission zero observed in
generalized MNM). This explains the discrepancy between the two methods.

In order to further support this claim, the same structure is enclosed in a
72 mm x 72 mm x 24 mm shielding box and simulated by HFSS. The return-
loss of the shielded structure is compared with that of generalized MNM in Fig.
5.17. As can be seen, the second resonance is suppressed. There is a spurious
resonance at 4.57 GHz, which is very close to the resonance frequencies of the
metallic box (4.59 GHz for LSM3,, and 4.66 GHz for LSE3,;). These resonance
and the others in vicinity of 5.8 GHz can be suppressed by increasing the size of
the shielding box. But this does not seem to be practical as the shielding boxes are
very computationally intensive for HFSS. It can also be seen that by enclosing the
structure in a shielding box, resonance frequency from HFSS becomes the same as
the resonance frequency from our method.
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Figure 5.14: |Sy1| for corner-cut patches coupled through an inclined slot
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Figure 5.18: Dipole in the far-field of a microstrip antenna

5.1 Radiation Pattern

5.1.1 Reciprocity Approach to Pattern Computation of
Microstrip Antennas

Far-field of a microstrip antenna of an arbitrary shape can be calculated by using
reciprocity theorem [103]. The approach presented here is quite similar, except for
the fact that instead of surface electric current distribution on the microstrip patch,
we have used the reciprocity between the patch and the edge to replace the electric
current with the magnetic current on the periphery of circuit pattern [104].

We consider an electric dipole located in the far-field of the microstrip antenna
(Fig. 5.18). The magnetic field due to this electric dipole in the presence of the
dielectric slab will consist of the incident and reflected fields. Since the dipole is
in the far-field of the microstrip patch, the incident field will be a spherical plane
wave and hence plane-wave reflection coefficients, as defined in 4.142, can be used
to account for the presence of the dielectric slab as follows:

s —jkor

H — —jkold£e47rr (1+ R™)0 (5.3a)

. —jkor

H? = jholdl—— [p(1 — R™)cosf — 2(1 4+ R™")sin 6] (5.3b)
T
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where H? and H? are the fields due to the dipole oriented in 6 and @ directions,
respectively. The electric field radiated by a magnetic current distribution on the
substrate in the far-field (location of the dipole) can be obtained from reciprocity

as:

By = -1 / HY . Medoe s (5.4a)

’ Id¢ '
C

. 1 O,

- @ . edge

B, W/H Nedoe s (5.4b)

C

where Ej and Ew are the 6 and @ components of the radiated electric field and Medse
is the magnetic current distribution along the edge of the patch. C designates the
periphery of the patch.

5.1.2 Radiation Pattern of an Integrated Antenna-Filter
Device

The electric field pattern for the structure in Fig. 5.1, both from our method and
HFSS is shown in Fig. 5.19 and Fig. 5.20. The frequency is chosen to be the
resonance frequency of the structure. As can be seen, the agreement is very good
for £, all the way up to the grazing angle, but deteriorates for Ey as we get closer
to the grazing angle. This is mainly due to the nature of the method we have used
to calculate the pattern. At grazing angle, surface-waves, which have been ignored
in the approach based on reciprocity, are dominant.
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Figure 5.20: |E,| for the structure in Fig. 5.1 at ¢ = 45°
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5.1.3 Radiation Pattern of Two Corner-Cut Patches
Coupled by an Inclined Slot

And finally we present the electric field pattern for the structure in Fig. 5.13, from
both our method and HFSS. The results are shown in Fig. 5.21 and Fig. 5.22.
The frequency is chosen to be the resonance frequency of the structure. Similar to
the previous case, the agreement is very good for E, all the way up to the grazing
angle, but deteriorates for Fy as we get closer to the grazing angle. It can also be
observed that in both cases there is better agreement for F, component than for Ej.
It can be seen that, particularly in this case, Fy calculated by reciprocity method
starts differing from HFSS at angles very close to the boresight direction, though
the difference is not as pronounced as it is at grazing angle. We observed the same
problem in other examples as well. This indicates that the reciprocity approach for
pattern calculation has to be modified to account for the presence of surface waves
along the interface. In addition, in order to improve the far-field pattern from
generalized MNM, an iterative approach similar to what is used in conventional
MNM can be employed. In iterative approach, a primary edge admittance network
is used to calculate the magnetic current on the periphery, which in turn can be
used to calculate a new edge admittance matrix [37], [30]. The process continues
till it converges. Alternatively, radiation can be added to the generalized MNM by
using 2D /3D method in which a correction term is added to the impedance matrix
elements [105]. This is part of the future work for this research.
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Figure 5.21: | Ey| for the structure in Fig. 5.13 at ¢ = 45°
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Figure 5.22: |E,| for the structure in Fig. 5.13 at ¢ = 45°
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Conclusion and Future Work

6.1 Conclusion

A new method for fast analysis and design of multi-layer structures consisting of pla-
nar circuits coupled through slots in their ground planes has been developed. The
proposed method combines generalized network formulation for aperture problems
with multiport network model (MNM) for single-layer planar circuits and derives
an impedance matrix for the multi-layer structure. We start by replacing the slot
with an equivalent magnetic current. In the absence of the slot (or the equivalent
magnetic current over the slot), conventional MNM uses a generalized impedance
matrix to account for interaction between terminal voltages and currents of edge
ports defined along the periphery of circuit pattern. To include the slot in network
model, slot ports with terminal voltages and currents need to be defined. In order
to avoid imposing any restriction on the shape of the slot, however, we do not define
any physical ports over the slot. Instead, the equivalent magnetic current over the
slot is expanded in a set of basis functions and the coefficients of expansion are
treated as slot port voltages. Similar to generalized network formulation for aper-
ture problems, slot port currents are defined as transverse magnetic field over the
slot tested by the basis function corresponding to the slot port voltage. Then we
use transfer matrices to account for interaction between edge and slot port voltages
as well as interaction between edge and slot port currents. The interaction between
slot port voltages and currents is described by a generalized admittance matrix.
Therefore, from network model point of view, the structure is seen as a multiport
network consisting of edge and slot ports fully characterized by a hybrid matrix.
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The hybrid matrices of the planar circuit above and below the ground plane are
then connected by enforcing network equivalent of electromagnetic boundary condi-
tions, from which an impedance matrix can be derived that accounts for interaction
between terminal voltages and currents of both of the planar circuits on either side
of the ground plane. Though the slot has been accounted for in the formulation of
the problem, it is invisible to the network model.

The proposed approach to network characterization of a multi-layer planar cir-
cuit has been implemented by modal analysis for regular shapes and contour integral
equation for irregular shapes. To this end, a new contour integral equation has been
derived which gives transverse magnetic field inside a closed contour in terms of
tangential components of electric and magnetic field on the boundary. When the
observation point is on the boundary, we have shown that the new contour integral
equation is the inverse of the traditional contour integral equation. Hence, as a side
benefit, in conventional MNM an admittance matrix can be directly calculated for a
single-layer planar circuit, obviating the need for inverting ill-conditioned matrices.

The new method can be easily extended to more than two layers. Therefore,
similar to single-layer circuits in conventional MNM, a multi-layer structure is fully
characterized by an impedance matrix in the new method. Hence our method has all
the benefits of conventional MNM. Regarding the fact that low-frequency network
theory is a very well established discipline and extensive CAD exists for analysis
and design optimization of low-frequency circuits, planar microwave circuits can
benefit from all available tools through MNM based methods.

The proposed method is also very promising in terms of the future work and
what can be done to improve the performance and extend applicability of this
method. This will be discussed in the next section.

Limitations of the Proposed Approach

Like any other approximate numerical method, the proposed approach has its own
limitations. Some of these limitations are inherited from traditional MNM for
single-layer circuits. One of the fundamental assumptions in MNM for single-layer
circuits, which hereinafter will be refered to as traditional MNM, is that the planar
circuit is so thin that the cavity can be essentially considered to support only 2D
modes with no variation in longitudinal direction (direction perpendicular to the
ground plane). In other words, d, the thickness of the dielectric substrate must
be much smaller than the transverse dimensions of the metallic patch as well as A,
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the wavelength in the dielectric medium, i.e. d < a and d < A, where a is the
transverse dimension of the patch (side of a rectangular patche or radius of a circular
patch). As a result, the electric field has no transverse components, meaning that
a unique voltage can be defined bewteen the metallic patch and the ground plane.
In addition, the boundary of the planar circuit is assumed to be covered by PMC
walls, which means that the surface current is normal to the boundary of the patch
wherever there is a coupling port and is otherwise zero. This in turn enables us to
define input currents at coupling ports.

As d increases, the accuracy of traditional MNM deteriorates. In addition to
T M?* modes which already exist in a thin planar circuit, T E* modes will also be
excited. Consequently, the voltage between the patch and the ground plane is not
unique anymore. Furthermore, it can no longer be assumed the planar circuit is
surrounded by PMC walls, which in turn invalidates modal expansion for regular
shapes and contour integral method for irregular shapes (contour integral equation
is independant from this assumption, it is the method based on this equation that
fails).

In addition to the aforementioned limitations inherent to MNM for planar cir-
cuits, the generalized MNM is also sensitive to the closeness of the slot to the
boundary. In deriving the generalized MNM it has been assumed that away from
the slot (in particular on the boundary) the fields are essentially TM*. However,
if the slot is too close to the boundary, this assumption does not hold anymore.
Other than the fact that the slot should not be too close to the boundary, there is
no restriction on the size or shape or even location of the slot. In most practical ap-
plications, however, slots are used to couple energy between different layers without
fundamentally disturbing the basic function of the planar structures. Therefore, in
practice slots are never too close to the boundary and the generalized MNM can
be used to analyze these structures.

6.2 Future Work

As it was previously mentioned, the future work on the new method can move in
several directions:

1. The proposed approach ignores losses, including radiation losses. Radiation
losses can be taken into account either by an Edge Admittance Network
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(EAN) and consequent application of segmentation method of analysis or by
adding a correction term to the impedance matrix elements which accounts
for the radiated power (the 2D/3D method) [105]. The latter has the benefit
that it does not require matrix inversion and due to the fact that the correc-
tion term is derived from a variational expression, rather large relative errors
can be tolerated. In addition, we have already developed computer programs
for calculating the fields of an HMD and an HED in a planarly layered media
using complex images method, hence the aforementioned 2D /3D method can
be readily combined with the proposed approach.

2. Our method can be extended to more than two-layers. By taking the radiation
losses into account, this method can be used for analysis and optimized design
of multi-layer integrated antenna-filter devices. Gap coupling between the
planar circuit on the same layer has already been successfully modeled by
other authors and can be combined by our method to design highly-complex
microwave filters and circuits.

3. A reciprocity based method for analysis of printed slot and slot-coupled mi-
crostrip antennas has been described in [4]. The proposed method is capable
of extending applicability of the reciprocity-based method to cavity-backed
slots, as the slot admittance matrix of a slot radiating into a planar cavity of
arbitrary shape can be readily calculated by our method.

4. In cases where the dielectric substrate of planar circuits is planarly layered,
our method can be modified to conveniently model such structures. This
extends the applicability of our method even further. The vision for such an
extension has been one of the main reasons for using complex images method
for calculating the fields due to an HMD in a parallel-plate waveguide.
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Appendix A

Proof of 3.115

A more general and elaborate proof is given in [51]. The proof given here is very
similar, but simpler and limited in scope. We start by using the following identity:

Vo, -V, =V - (6,,V;) — ¢, V¢r (A.5)
to show that:

/ / Ve, VidS = qum%dfds— /D/ &, V3¢ dS

D C

= o Sa - [ [o.0as (a0
C

D

where use has been made of the fact that eigenfunctions satisfy homogeneous wave
equation. C'is the boundary of region D and n is the outward normal to C. Since
either ¢,, or its normal derivative vanish on the boundary, the first integral vanishes.
The second integral is also zero due to orthogonality of eigenfunctions. Therefore:

/ / Ve, - VidS =0 (A7)

D

which proves 3.115.
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Derivation of 2.56

Equation 2.54 gives the potential at any point P inside the contour C in terms of
the potential V' (s), and its normal derivative 0V/Js on the boundary, where s is
the distance measured along the contour C' in counterclockwise direction. Suppose
that the point P’ is a point on the contour C' and the point P is just inside C in a
way that 6 < o < A, as shown in Fig. B.1 [36]. The contour integral in 2.54 can
be broken down into two parts, one accounting for the contribution of the part of
C between s = —a and s = « and the other accounting for the contribution from
the rest of C' denoted by I'. Therefore one can write [36]:

, 2 1 6 /s + 620V
(2)
@ . OV OHy” (kp)
/ (HO (ko) 5 — Sy (B.1)

r

where the following small argument approximations have been used to substitute
for Héz) (kp) and (9H(()2) (kp) /On for s between —a and «:

2 kv\/s?+ 62
H (kp) ~ —?‘]ﬂnT (B.2)
oHyY (kp) 2§ 8 (B3)

on - ?52—#(52

Since av < A, it can be assumed that V' and dV/9n do not change appreciably
in the region from s = —a to s = a. In that case, the integrals for small argument
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Figure B.1: Symbols used in the derivation of the contour-integral equation [36].

approximations can be evaluated analytically as follows:

(07

o o
_[1 = /mds = 2arctan E (B4)

—

T2 8 k\/s? + 62 , 5
fnids = 2 S Eni — ]_ — 5ar081n7
J 2 2 V82 + 62 0

/ 9 2
2 Enu —1] =26 arcsinL I (B.5)
2 A /Oé2 + 62 2

If 6 starts tending towards 0, the point P will start moving towards the point P’.
In the limit I; and I, become:

. . ka
fﬁﬂ@h =7 , 56%12 =2« (5717 — 1> (B.6)

By further assuming that o« — 0, Iy vanishes, I' becomes C, and we will have
equation 2.56

102



Appendix C

Analytical Evaluation of
Convolution Integrals in MPIE

We first prove that Y? only depends on |m — n|. We have:
Yz, = (.l
, 1
= —jw(eslp + EL]) (C.1)

where

o= / / l / / G (1 — g, v — ) (uo)duodvo} M,y (u)dudo  (C.2a)
I, = / / [ o / / (1 = 1, v — vg a]\gﬁfo)duodvo} M (1) dudv

(C.2b)

and M, and M, are given by 4.190. By a change of variables as x = u — ug and
Yy = v — v, we will have:

o= / / [ / / M, u—xdudv} G2 (2, ) dady (C.3a)
I, = //{// 8u 8u >dudv} Gy, y)dzdy  (C.3b)
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which can be further processed to show that:

U, —Un+2h Wy Um —Un+2h W

Iy = / / VyGE (x, y)dydz —|— — / / x)GE(x, y)dydz
um Up—2h 0 um Up—2h—ws
(C.4a)
9 Um —Un+2hws ] Um —Un+2h ws
w = | [MenGiGadste - [ [ 16 )
3 Um—Un—2h 0 U —Unp —2h—Ws
(C.4b)

where g(z) = M, x M,, h(x) = M/ * M/ (prime indicates differentiation) and can
be easily shown to depend only on |m — n|. This proves the claim we previously
made that Y22 depends solely on |m — n|.

I and I7,, can be quite computationally-intensive if all integrals are calcu-
lated numerically. However, as it was mentioned before, for rooftop basis functions
the convolution integrals g(z) and h(z), are polynomials, for which some of the
integrals in /7" and [, can be evaluated analytically or at least be reduced to
single integrals. For exponential terms in G7* and G, this has already been done
in [96]. Here, we will present the results for Hankel function terms.

In general, in calculation of the fields or the slot admittance matrix using com-
plex images method, evaluation of integrals of the following form, which correspond
to Hankel function terms in spatial vector and scalar potentials, is required:

ho= / / (€377 + &2° + &3 + &)y HY (k,pp)dyda

B / (&2° + &2° + § + &) pHL (k,p)da
E3I1d + &I+ & 1T, + 611

= K (C.ba)
B = [ [6a* 6+ G HP (hyp)dyda
= §3Ihf + fQIhf + f1lhf + foIh,J(; (C-5b)
where £37° + £,22 + €1 + &, Tepresents either g(z) or h(x), and we have:
I{Lf; = /x"prQ)(kpp)dac (C.6a)

s = / / 2" HS (k,p)dydz (C.6b)
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I _{L J; and [ {L {) need to be evaluated analytically. For [ {L é and I {L { we have:

n = / 2 pH{ (k,p)da
= / (" = )" Hy” (kop)dp

4 1
H (kop) + k,2p3H<2><kpp> = (8+17k2)p* Hy? (k,p) (C.Ta)

p
% 3
0 = / zpH{? (k,p)dz

= / P*H{? (k,p)dp
—p*HP (k C.7b
L 20 k) ()
P

Similarly, 10’; and IO o can be neither evaluated analytlcally nor reduced to a single
integral. Despite the fact that analytical evaluation of .7073 and 10,1 is not possible
either, it is possible to reduce them into single integrals, which can in turn be
evaluated numerically.

= / / > HY (k,p)dyda
= /dy/p — y?)pHY? (k,p)dp

= o [ [k H ) — 2 H ()] dy — - / v pH (kp)diC.82)

I = / / 2HP (k,p)dydz
= / dy / pH? (kop)dp

1
=+ [ ot Gupldy (C.8b)
D
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