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Abstract

In this thesis, we consider approaches to enumeration problems in the parameterized
complexity setting. We obtain competitive parameterized algorithms to enumerate all,
as well as several of, the solutions for two related problems Neighbour String and
Kemeny Rank Aggregation. In both problems, the goal is to find a solution that is
as close as possible to a set of inputs (strings and total orders, respectively) according to
some distance measure.

We also introduce a notion of enumerative kernels for which there is a bijection between
solutions to the original instance and solutions to the kernel, and provide such a kernel for
Kemeny Rank Aggregation, improving a previous kernel for the problem.

We demonstrate how several of the algorithms and notions discussed in this thesis are
extensible to a group of parameterized problems, improving published results for some
other problems.
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Chapter 1

Introduction

In many problems, enumeration of multiple, or all, the solutions is preferred to computing a
single solution. This is particularly useful in situations where the problem defined is a sim-
plification of what is required, and finding multiple solutions increases the chance of finding
an ideal solution. Enumeration algorithms for a problem can also be useful for computing
a single solution to other problems. Examples include algorithms for Edge Dominat-
ing Set [67, 132, 72, 23, 131], Minimum-Weight Maximal Matching [72, 131], and
Connected Vertex Cover [83, 69, 23], all of which use an enumeration of all minimal
vertex covers, and construct their solutions based on one of the minimal vertex covers.
Another example is Marx’s algorithm [108] for certain constraint satisfaction problems,
which exploits an enumeration of all “connected” satisfying assignments of weight at most
k, and constructs a solution by combining several of the assignments enumerated.

In this thesis, we investigate the enumeration aspects of two parameterized problems,
both considered to be facility location problems: given a set of object and a distance
function, we want to find an object that is as close as possible to the input set. In the
first problem, Neighbour String, we have a bottleneck objective function: being close
to a set of objects means being close to the farthest one. Problems with these types of
objective functions are sometimes called centre problems. The objects in Neighbour
String are strings. We formally define Neighbour String in Section 2.2.1. Aside from
the application in coding theory [73, 78], to remove errors from sequences originating from a
single sequence, this problem has several applications in computational biology, including
drug target design [100], designing genetic probes to diagnose bacterial infections [100],
finding regions of a DNA strand that are potential binding sites to a single transcription
factor [126], designing universal PCR primers in order to amplify several regions of DNA
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simultaneously [100], and detecting an unbiased consensus sequence to represent a group
of closely related sequences [15].

In the second problem, Kemeny Rank Aggregation, we have a cost function: being
close to a set of objects means being close to the objects on average. Problems with this
type of objective functions are sometimes called median problems. The objects in this
problem are permutations (rankings of candidates). We formally define Kemeny Rank
Aggregation in Section 2.3.1. The problem dates back to the 18th century [24, 42],
when it was raised in the context of fair voting protocols, in France. For more context on
applications in social choice, the reader is referred to the work of Kemeny and Snell[93],
Bartholdi et al. [13, 14], and Bartholdi and Orlin [12]. The problem has also applications in
planning problems in artificial intelligence [58, 59], bioinformatics [87], graph drawing [22],
and in the general case of combining various preference lists each based on a certain crite-
rion. Examples include ranking players based on their rankings in different eras, ranking
films based on viewer rankings and critics’ rankings, or designing a meta search engine
based on the rankings provided by several search engines.

Both these problems are simplifications of the complicated applications from which
they originate. Therefore, an enumeration of solutions will be useful to find a solution that
really fits the application. Efficient enumeration of solutions is also helpful in deriving new
properties and algorithms for these two problems.

We present the first parameterized enumeration algorithm for Neighbour String,
the problem of determining a neighbour string, where a neighbour string of n input strings,
each of length `, and n input distance allotments (non-negative integers) is a string that
differs from input si in no more than di positions, where di is the distance allotment
corresponding to si. The problem is NP-complete even when the di’s are equal, which
is know as Closest String. Informally, it means that Closest String is unlikely
to be solvable in polynomial time. The formal definition of the NP-complete class of
problems is out of the scope of this thesis and the reader is referred to the excellent book
of Papadimitriou [118] for a fairly complete treatment of the subject.

Our new approach gives us the ability to tune the running time to optimize the al-
gorithm for varying relative values of n and d = maxi di. For strings over an alpha-
bet Σ, we can choose a tuning constant λ to obtain an algorithm that runs in time
O(n` + (nd)f(λ)(|Σ| − 1)d5d(1+λ)de), where f is a function that decreases with increasing
λ.

Our enumeration algorithm compares well to parameterized algorithms for finding a
single solution for Closest String. When Σ = {0, 1}, the dependency on d in our
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O∗(5d(1+λ)de) time bound is an asymptotic improvement over the previous best parameter-
ized time bound of O∗(6.7308d) to find a single solution.

We also present the first parameterized enumeration algorithm for Kemeny Rank
Aggregation, the problem of determining an optimal aggregation, a total order that
is at minimum total τ -distance from the input multi-set of m total orders (votes) over a
set of n alternatives (candidates); the τ -distance between two total orders, denoted by kt,
is the number of pairs of candidates ordered differently in the two orders. We give an

O(nm+4
kt
m ·n2)-time enumeration algorithm and obtain a 4

kt
m upper bound on the number

of optimal aggregations. We demonstrate that this bound is tight, by giving a family of

instances with 4
kt
m optimal aggregations.

Our algorithm relies on the notion of locally optimal aggregations [57], total orders
whose total τ -distance from the votes do not decrease by any single swap of two candidates
adjacent in the ordering. In fact, our algorithm enumerates all locally optimal aggregations,
extending an algorithm by Dwork et al. [57] which finds a single locally optimal aggregation.
As a consequence of our approach, we provide not only an upper bound on the number of

optimal aggregations, but also the first parameterized bound, 4
kt
m , on the number of locally

optimal aggregations, which is a superset.

We complement our results by showing that any algorithm of running time O(f(d)nc)
that computes a single solution for Neighbour String can be used to produce K solu-
tions in time O(K` · |Σ| · f(d)nc), and any algorithm of running time O(f(kt

m
)nc) that com-

putes a single solution for Kemeny Rank Aggregation can be used to produce K solu-

tions in time O(K · f(kt
m

)nc+2). In particular, based on an O∗(2O(
√
kt
m

))-time algorithm [91]
to find a solution for Kemeny Rank Aggregation [91], this gives a subexponential-time
algorithm to enumerate a subexponential number of solutions. This “partial enumeration”
technique can be combined with a general branching algorithm by Lawler [101], developed
in 1972, for computing the first K best solutions of a optimization problem, giving algo-
rithms of running times O(K logK · f(k)nO(1)) that compute K best solutions for many
optimization problems. Although the approach is not new, it has gone unnoticed in the
parameterized community. In fact, this improves two published results.

As a side note, the “partial enumeration” technique used to produce K solutions for
Neighbour String and Kemeny Rank Aggregation works for certain k-subset prob-
lems, where every solution is a subset of size at most k of a domain set. We observe that
the size of our enumeration search tree can get large only if the solutions, corresponding to
the nodes of the search tree, include large ∆-systems, where a ∆-system in the terminology
of Erdös and Rado [61] is a family of ∆ sets all intersecting in a common subset and no
other element is in more than one set. From this perspective, the Erdös-Rado Theorem
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characterizes k-subset problems that have f(k) solutions, for some function f .

We also demonstrate partial kernels (polynomial-time reductions to instances with m
votes but small numbers of candidates) for Kemeny Rank Aggregation. The first of
these partial kernels, which reduces the number of candidates to 4kt

m
, is enumerative, that

is, there is a bijection between solutions to the original instance and solutions to the kernel.
We show how to reduce the number of candidates to (2 + ε)kt

m
at the expense of losing the

bijection, an improvement over the 16
3

(kt
m

)-candidate partial kernel of Betzler et al. [18].

Our kernelizations use limited information from Kemeny Rank Aggregation in-
stances. Consequently, the kernelization works for Weighted Directed Feedback Arc Set
(the problem of finding a minimum-weight subset of arcs, in a weighted directed graph,
whose removal makes the graph acyclic) on complete digraphs whose arc-weights satisfy
the triangle inequality and the probability constraint (i.e. the weights of the arcs (a, b) and
(b, a) add up to one for every pair of vertices a, b). As a result, we obtain a 4k vertex kernel,
also enumerative, for Weighted Directed Feedback Arc Set (WDFAS) restricted
to these digraphs. We also prove that WDFAS admits a not necessarily enumerative
(2 + ε)k vertex kernel, for any constant ε > 0, for these digraphs; again, a kernel is a
smaller instance of the same problem which has the same answer as the original instance.
This result can be seen as an extension of a (2 + ε)k vertex kernel for Unweighted Di-
rected Feedback Arc Set due to Bessy et al. [16] to a special real-weighted variant
for which no kernel was previously known.

We think that our proposed enumeration algorithms as well as our algorithms to enu-
merate K solutions, which use arbitrary algorithms to find a single solution, have appli-
cations in finding ideal solutions in practical applications. In the case of Kemeny Rank
Aggregation, our enumerative kernel can always be used as the first step, to reduce the
size of the problem and make the search even more efficient.
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Chapter 2

Preliminaries

In the first part of this chapter, we briefly review several types of computational problems
and complexity classes. Since computational complexity is not the main focus of this thesis,
we sketch only the definitions that are used throughout the thesis. For a detailed study of
the topic, the reader is referred to the classical books of Papadimitriou [118] and Downey
and Fellows [54].

The definitions in the first part will form the basis for the parameterized enumeration
algorithms for the Neighbour String and Kemeny Rank Aggregation problems in
chapters 4, 5, and 6.

The rest of this chapter contains the definitions of Neighbour String and Kemeny
Rank Aggregation, as well as observations that will be used in subsequent chapters.

2.1 Computational Complexity

The computational complexity framework has been developed to study the amount of
resources, usually time and space, required to solve various types of computational prob-
lems. Various complexity classes corresponding to each type of problem are intended to
characterize various levels of resource requirements.

In each of the following sections, we mention a problem type and a few complexity
classes corresponding to that type of problem.
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2.1.1 Decision Problems

We represent decision problems as languages over a finite alphabet Σ. We define Σ∗ as the
class of strings over Σ. Unless mentioned otherwise, we assume Σ = {0, 1}. The decision
problem represented by a language asks for a Yes/No output depending on whether the
input string is in the language or not. An algorithm (equivalently, a Turing machine) is
said to decide a decision problem if it computes the corresponding Yes/No output for every
input string.

It is generally assumed that a decision problem is efficiently solvable if it can be decided
by a polynomial-time deterministic Turing machine.

Definition 2.1. The class P is the class of all decision problems that are decidable by a
polynomial-time deterministic Turing machine.

The big open question of computational complexity is whether the class P is equal to
the class NP :

Definition 2.2. The class NP is the class of all decision problems that are decidable by a
polynomial-time non-deterministic Turing machine.

Both classes P and NP are closed under Karp reductions:

Definition 2.3. A Karp reduction of a decision problem L1 to a decision problem L2 is a
polynomial-time computable function f such that x ∈ L1 if and only if f(x) ∈ L2.

A problem Q is NP -hard if every problem in NP has a Karp reduction to Q. An
NP -hard problem is NP -complete if it is in NP .

2.1.2 Search Problems

A decision problem often corresponds to deciding whether the input instance has a certain
structure. In this thesis, we are interested in actually finding one, or even several of,
such structures. The generalized problem that specifies the desirable structures in its
definition and asks for such a structure, instead of the Yes/No output, is known as a search
problem [77]:

Definition 2.4. The search problem represented as a binary relation R is the problem that
given an input x asks for a string y such that (x, y) ∈ R, if there exists one, and for ⊥
otherwise.
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We use R(x) to denote {y : (x, y) ∈ R}.
The decision problem associated with a search problem R is L(R) = {x : R(x) 6= ∅}.

Example 2.1. Consider the binary relation R = {(x,w) : |w| >
0 and www is a substring of x}. The search problem represented by R receives a
string x as input and outputs a substring w of x if x has www as a substring, and ⊥ if x
does not have a www substring for any string w. The decision problem associated with
this search problem receives an input string x and outputs Yes/No depending on whether
the input string has a substring of the form www. The language representing this decision
problem is L(R) = {x : ∃w s.t. |w| > 0 and www is a substring of x}.

Similar to decision problems, being polynomial-time solvable is a common assumption
for efficiently-solvable search problems. In addition, a search problem is not considered
efficiently-solvable if the lengths of strings in R(x) are not polynomially bounded:

Definition 2.5. A function f : Σ∗ 7→ N is polynomially bounded if there exists a polyno-
mial function p such that for any input x, f(x) ≤ p(|x|).

Definition 2.6. A search problem R is polynomially bounded if f(x) = max{|y| : y ∈
R(x)} is polynomially bounded.

Definition 2.7. The class PF (Polynomial-time Find [79]) is the class of all search prob-
lems R that are polynomially bounded and are solvable by a polynomial-time deterministic
Turing machine with an additional output tape.

Definition 2.8. The class PC (Polynomial-time Check [79]) is the class of all search
problems R such that they are polynomially bounded and there exists a polynomial-time
computable function that decides whether (x, y) ∈ R for every x and y.

The prefix of a search problem R links R ∈ PC and R ∈ PF:

Definition 2.9. The prefix of a search problem R is the search problem Prefix(R) =
{(x, y′) : (x, y) ∈ R and y′ is a prefix of y}.

Observation 2.1. [79] If Prefix(R) ∈ PC for a search problem R ∈ PC, then R ∈ PF.

Proof. Algorithm 1 solves R using arbitrary algorithms to check Prefix(R) and R. Check-
ing Prefix(R) helps the algorithm to avoid spending time on branches that do not lead
to a solution.
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Algorithm 1: Find

Require: Two strings x and p; /* initially called with p = λ (the empty

string) */

if (x, p) ∈ R then return p;1

if (x, p) /∈ Prefix(R) then return ⊥;2

y ← Find(x, p0); /* Σ is assumed to be {0, 1} */3

if y 6= ⊥ then return y;4

else return Find(x, p1);5

2.1.3 Optimization Problems

Optimization problems characterize a class of problems in which the desirable structures
are partly specified by a measure function:

An optimization problem Q is represented as a three-tuple (I, S,m), where I is the set
of instances of Q, S(x) is the set of feasible solutions for x ∈ I, and m(x, y) is the value
of the feasible solution y ∈ S(x). We use min(x) to denote min{m(x, y) : y ∈ S(x)}. A
feasible solution y for an instance x ∈ I is an optimum solution if m(x, y) = min(x). We
use Opt(x) to denote the set of optimum solutions for x.

Definition 2.10. The search problem associated with an optimization problem Q =
(I, S,m) is Search(Q) = {(x, y) : x ∈ I, y ∈ Opt(x)}.
Definition 2.11. The prefix of an optimization problem Q = (I, S,m) is the optimization
problem Prefix(Q) = (I ′, S ′,m′), where I ′ = {(x, p) : x ∈ I}, S ′((x, p)) = {y : y ∈
S(x) and p is a prefix of y}, m′((x, p), y) = m(x, y).

2.1.4 Enumeration Problems

Enumeration problems formulate the problem of finding all desirable structures in a
search problem.

Definition 2.12. The enumeration problem associated with a search problem R is the new
search problem Enum(R) = {(x,R(x))}.

We refer to an algorithm for Enum(R) as an enumeration algorithm for R. Notice that
Enum(R) is a function. We have defined an enumeration problem as a search problem
though, in order to keep uniformity.
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Here, being polynomially bounded means to have polynomially many solutions in R
(and R being polynomially bounded). Enumeration problems in PF are associated with
search problems in PF whose sets of all solutions are polynomial-time computable. For
enumeration problems that are not efficiently solvable (are not in PF) because of the large
number of solutions, Valiant [130] suggested the use of the following class, which does
not restrict the number of solutions yet limits the amount of time each solution takes on
average to be produced.

Definition 2.13. The class P-enumerable is the class of all enumeration problems Q that
can be solved in |Y | · |x|O(1) time for an input x such that (x, Y ) ∈ Q.

Examples of P-enumerable problems are enumeration of all perfect matchings in bipar-
tite graphs [76] and enumeration of all vertices and faces of a convex polyhedron [75].

Observation 2.2. [130] If Prefix(R) ∈ PC for a search problem R ∈ PC, then
Enum(R) ∈ P-enumerable.

Proof. Algorithm 2 solves R using arbitrary algorithms to check Prefix(R) and R. Check-
ing Prefix(R) helps the algorithm to avoid spending time on branches that do not lead
to a solution. On the other hand, since the prefixes produced are all distinct, the solutions
produced at different branches will be distinct; therefore, new solutions are always found
after polynomial number of steps.

Algorithm 2: Enumerate

Require: Two strings x and p ; /* initially called with p = λ (the empty

string) */

if (x, p) /∈ Prefix(R) then return ∅;1

O ← Enumerate(x, p0) ∪ Enumerate(x, p1); /* Σ is assumed to be {0, 1} */2

if (x, p) ∈ R then return O ∪ {p}; else return O;3

Standard reductions for search problems focus on preserving one solution in the re-
duced instance. In the case of enumeration problems, the goal is to produce all solutions.
Therefore, it is very common that a reduction from a search problem R1 to another search
problem R2 is not a reduction from Enum(R1) to Enum(R2).

Computing the cardinality of R(x) is a relaxation of enumeration problems. The clean
definition of counting problems, compared to enumeration problems, has made them the
subject of complexity study, starting from Valiant’s formalization of complexity classes for
counting problems [129].
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Definition 2.14. The counting problem associated with a search problem R is the new
search problem #R = {(x, |R(x)|)}.

There are problems in PF whose counting problems are hard to solve. An example of
such problems, given by Valiant [129], is finding a false assignment for Boolean conjunctive
normal form formulae, where an assignment making the input formula false can be found
trivially, but counting the number of false assignments is at least as hard as recognizing if
the formula is satisfiable, which is NP-hard.

Definition 2.15. The class #P is the set of all counting problems associated with search
problems in PC.

The class #P is closed under parsimonious reductions, defined below:

Definition 2.16. A parsimonious reduction of a counting problem R1 to a counting prob-
lem R2 is a polynomial-time computable function g such that (x, y) ∈ R1 if and only if
(g(x), y) ∈ R2.

A counting problem Q is #P -hard if every counting problem in #P has a parsimonious
reduction to Q. A #P -hard problem is #P -complete if it is in #P .

For some NP-complete problems, the same reductions proving their NP-hardness prove
that their corresponding counting problems are #P -hard.

Searching for K solutions instead of all the solutions is another relaxation of enumera-
tion problems:

Definition 2.17. The partial enumeration problem associated with a search prob-
lem R is the search problem Partial(R) = {((x, 1K), y1, y2, . . . , yK) : ∀i (x, yi) ∈
R and the yi’s are distinct}.

We assumed that K is given in unary since otherwise Partial(R) cannot be polyno-
mially bounded unless R(x) always has polynomial cardinality.

We refer to an algorithm for Partial(R) as a partial enumeration algorithm for R.

In case of an optimization problem Q, Partial(Search(Q)) asks for a “partial enu-
meration” of optimal solutions. A broader definition which exploits the measure function
also makes sense here:
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Definition 2.18. The partial enumeration problem associated with an optimization prob-
lem Q = (I, S,m) is the search problem Partial(Q) = {((x, 1K), y1, y2 . . . , yK) : ∀i yi ∈
S(x), yi’s are distinct, m(x, y1) ≤ m(x, y2) ≤ . . . ≤ m(x, yK), and m(x, yK) ≤ m(x, yK+1)
for every yK+1 ∈ S(x)− {y1, . . . , yK}}.

This definition is inspired by polynomial-time algorithms of Eppstein [60] and Che-
gireddy and Hamacheran [31] for finding K shortest paths and K best perfect matchings,
respectively.

2.1.5 Parameterized Problems

In response to the inherent complexity of NP-hard problems, people have looked at ap-
proximate solutions of these problems or exact solutions for special input instances. The
parameterized framework, introduced by Downey and Fellows [54], provides a tool for a
systematic study of classes of inputs and the complexity of finding exact solutions for them.
In this framework, the complexity of a problem is analyzed with respect to the lengths of
input instances and a second “parameter” derived from the input.

Let us define a parameterized problem first.

Definition 2.19. A parameterized problem is a decision problem L ⊆ Σ∗×N, for a finite
alphabet Σ.

In an input instance (x, k) to a parameterized problem, k is called the parameter. The
parameters are typically assumed to be natural numbers.

We are interested in parameterized problems defined for hard-to-solve decision prob-
lems.

Definition 2.20. A decision problem L parameterized by a function κ : Σ∗ 7→ N is the
parameterized problem {(x, κ(x)) : x ∈ L}.

One can see κ as a partitioning of Σ∗ into Ik = {x ∈ Σ∗ : κ(x) = k} and L into
Lk = L∩Ik, referred as slices of input and L, respectively. For instance, in a graph problem
parameterized by the maximum degree of vertices, input is partitioned into disjoint classes
of graphs such that the kth class consists of graphs of maximum degree k. Intuitively, the
goal behind such a partitioning of input instances is to study how much the parameter,
the maximum degree in our example, captures the complexity of the problem.
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Definition 2.21. A parameterized search problem is the search problem R ⊆ (Σ∗×N)×Σ∗,
for a finite alphabet Σ.

Definition 2.22. A search problem R parameterized by a function κ : Σ∗ 7→ N is the
parameterized search problem {((x, κ(x)), y) : (x, y) ∈ R}.

So far, we have described the role of the parameter in partitioning the input and L.
The art of the parameterized framework is to provide an efficiency measure that measures
how well an algorithm decides each slice of L. The provided measure is tighter for slices
that correspond to smaller values of the parameter.

Definition 2.23. A function r(x, k) is fixed-parameter tractable if r(x, k) ≤ f(k) · |x|O(1)

for some function f . Note that f , here, may depend only on k and not on |x|.

The class FPT, defined below, includes the parameterized problems assumed to be
efficient in the parameterized framework. The choice of the parameter is an important
factor. Indeed, parameterized study of a hard problem is not useful unless small values of
the parameter cover many practical cases.

Definition 2.24. The class FPT is the class of all parameterized problems that can be
decided in fixed-parameter tractable time.

We call an algorithm fixed-parameter tractable (FPT) if its running time for any input
instance (x, k) is bounded by r(x, k), for some fixed-parameter tractable function r. The O∗

notion is sometimes used to eliminate polynomial factors of |x| in fixed-parameter tractable
functions.

Definition 2.25. A function r(x, k) is in O∗(f(k)) if r(x, k) ∈ O(f(k) · |x|O(1)).

We must be careful with reductions of parameterized problems. The class FPT is not
closed under a reduction that reduces the parameter to a new parameter that depends on
the input length.

Definition 2.26. A parameterized reduction of a parameterized problem L1 to a parame-
terized problem L2 is a pair of a polynomial-time function g and a fixed-parameter tractable
function h such that (x, k) ∈ L1 if and only if (h(x, k), g(k)) ∈ L2.

The main hierarchy of parameterized complexity classes is FPT ⊆ W [1] ⊆ W [2] ⊆
. . .XP, where W -hardness, shown using FPT reductions, is the analogue of NP-hardness
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in classical complexity. The complexity classes W [1] and W [2] are defined based on satis-
fiability problems for formulas in Conjunctive Normal Form; a formula is in Conjunctive
Normal Form (CNF), also called a CNF formula, if it is a conjunction of clauses, each of
which is a disjunction of literals.

Weighted CNF-Sat

Input: a CNF formula F and an integer k
Output: a satisfying assignment for F , which sets exactly k variables to true

A CNF formula is called a c-CNF formula, if each of its clauses consists of at most c
literals. When the input formulas are restricted to 2-CNF formulas, Weighted CNF-Sat
is called Weighted 2-CNF-Sat.

Definition 2.27. The class W[1] is the class of all parameterized problems that can be
reduced to L(Weighted 2-CNF-Sat) by a parameterized reduction.

Definition 2.28. The class W[2] is the class of all parameterized problems that can be
reduced to L(Weighted CNF-Sat) by a parameterized reduction.

Notice that Prefix(R), Enum(R), and #R are all parameterized search problems when
R is a parameterized search problem. In order to have a parameterized search problem as
Partial(R), we slightly misuse the notation:

Definition 2.29. The partial enumeration problem associated with a parame-
terized search problem R is the parameterized search problem Partial(R) =
{(((x, 1K), k), y1, y2 . . . , yK) : ∀i ((x, k), yi) ∈ R and the yi’s are distinct}.

We also need a new parsimonious reduction for parameterized counting problems:

Definition 2.30. A parameterized parsimonious reduction of a parameterized counting
problem R1 to a parameterized counting problem R2 is a pair of a polynomial-time func-
tion g and a fixed-parameter tractable function h such that ((x, k), y) ∈ R1 if and only if
((h(x, k), g(k)), y) ∈ R2.

Definition 2.31. The class #W[1] is the class of all parameterized counting problems that
can be reduced to #Weighted 2-CNF-Sat by a parameterized parsimonious reduction.

Definition 2.32. The class #W[2] is the class of all parameterized counting problems that
can be reduced to #Weighted CNF-Sat by a parameterized parsimonious reduction.
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A problemQ is #W [t]-hard if for every problem P in #W [t] there exists a parameterized
parsimonious reduction of P to Q. A #W [t]-hard problem is #W [t]-complete if it is in
#W [t].

Parameterized Intractability

The assumptions made for parameterized intractability are weaker than P6=NP. Still, there
is enough evidence, from the classical complexity, to believe them to be true. Below, we
list the assumptions typically made; for more details, and for terminology, the reader is
referred to the book by Niedermeier [113]:

FPT 6= M[1]. The complexity class M[1] is the class of all parameterized problems
that are parameterized-reducible to Mini-3-CNF-Sat, which is a modification of
3-CNF-Sat that receives two integers k and n in unary in addition to its 3-CNF
formula F , and the number of variables in F is at most k log n. Based on a result by
Cai and Juedes [28], FPT=M[1] if and only if there exists an O(2o(n) · |F |O(1))-time
algorithm to evaluate the satisfiability of any n-variable 3-CNF formula F . It is
believed to be very unlikely that such an algorithm exists [85]; this is known as the
Exponential-Time Hypothesis. In the same paper, Cai and Juedes also show that,
assuming FPT 6=M[1], there is no O(2o(k)nO(1))-time algorithm for Vertex Cover

and no O(2o(
√
k)nO(1))-time algorithm for Planar Vertex Cover [28].

FPT 6= W[1]. The complexity class W [1] is the first class in the Weft hierarchy, believed
to specify computationally-different classes of parameterized problems. Equivalence
of FPT and W[1] would result in FPT=M[1] (since FPT ⊆ M[1] ⊆W[1]), and thus is
very unlikely. The reverse is still not known to be true and so, currently, FPT 6=M[1] is
considered a stronger assumption than FPT 6=W[1]. As an example result, Partial
Vertex Cover (a generalization of Vertex Cover which asks whether there
exists a subset of k vertices that covers at least t edges for any given integers k and
t) is unlikely to have an FPT algorithm with respect to the parameter k [113].

Various Parameterizations

The following categories are commonly used in the literature for parameterizations of
Search(Q) for an optimization problem Q.
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Standard parameterization. The parameter function min(x) is a standard choice of
the parameter, perhaps because min(x) reflects the complexity of solving the problem
for an instance x in many cases.

Structural parameterization. Other choices for the parameter are structural measures
of the input instance, as opposed to the standard parameter which is considered
more of an output-driven parameter. Of course, even the output totally depends
on the input, and an input-driven/output-driven parameter refers to a parameter
immediately seen in the input/output.

Above-guarantee parameterization. Mahajan et al. [106, 107] suggested modifying a
parameterization if all non-trivial instances correspond to large values of the param-
eter. They argued that the parameter will not catch the complexity of the problem
without this change. In the extreme case that Lk is trivially decidable for all k’s
smaller than g(|x|) for a function g, k will depend on |x| for all non-trivial instances,
thus a fixed-parameter algorithm can spend an arbitrary amount of time to solve
non-trivial instances. A more meaningful parameterization will be parameterizing
the problem with the new parameter k − g(|x|).

Example 2.2. Consider the optimization problem Q = Minimum Vertex Cover. The
standard parameter for Search(Q) is the size of the minimum vertex cover in graph
instances. In this example, the tree-width of the input graph is a structural parameter.
On the other hand, consider a fake assumption that any vertex cover is guaranteed to
include at least half the graph vertices. Then, the size of the minimum vertex cover minus
half the number of vertices would be an above-guarantee parameter.

Parameterized Techniques

Over the years, a tool box for development of FPT algorithms has been created. Among the
various techniques in the tool box, we will only use bounded search trees and kernelizations
in this thesis. Nevertheless, we give an overview of the techniques that will be mentioned in
the previous work, in order for the reader to compare our algorithms with other paradigms
used in the literature. Detailed descriptions of the techniques along with examples can
be found in the book by Niedermeier [113] and in the more recent surveys of Sloper and
Telle [124] and Downey and Thilikos [55].

Bounded search tree. A branching algorithm that is recursive and the height of its
execution tree is a function of k. Typically, this algorithm spends polynomial time in
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each node of its execution tree. Not every number of branches in the nodes makes the
algorithm fixed-parameter tractable, but an upper bound of O(log(n)g(k) ·h(k)) on the
number of branches, for arbitrary functions g and h, suffices to ensure fixed-parameter
tractability [124].

Integer linear programming. Any integer program of length n having p variables can
be solved in O(p9p/2n) arithmetic operations over integers of O(p2pn) bits. [102, 89,
99]. As a consequence, a parameterized problem is in FPT if it can be formulated
by an integer program whose number of variables depends solely on the parameter.

Color-coding. This technique was originally developed to check whether an input graph
has a path or cycle of length k [8]. Nevertheless, it applies to many search problems
that look for small structures in the input graph [8]. The idea is to use a family of
f(k) coloring functions (families of perfect hash functions) that covers all k-subsets of
an n element ground set, meaning that the members of any k-subset of the ground set
are coloured distinctly by at least one of the functions. Therefore, an algorithm can
go through all the coloring functions and solve a “colored” version of the problem,
for each coloring, where the solution is assumed to be distinctly colored. Usually,
the “colored” version is solved using dynamic programming (or divide and conquer,
at a slightly worst running time and a polynomial space complexity instead of the
exponential space complexity in the dynamic programming approach).

Kernelization. Kernelization is the method of reducing input instances to kernels,
instances of size depending only on a (small) parameter k; in this respect it is the
preprocessing phase performed in algorithms used in practice, and is hence a topic
of wide interest.

Reduction to a kernel is often an iterative process based on the exhaustive applica-
tion of a set of reduction rules. Combined with such a polynomial-time reduction,
any algorithm that solves the problem for kernels, even through brute-force, gives a
fixed-parameter algorithm for the original problem. As a matter of fact, a problem
reduces to a kernel if and only if it has a fixed-parameter algorithm [54].

There has been interest in reducing, in polynomial time, a “dimension” of input
instances to a function of the parameter. In a matrix problem, this could be reducing
the number of rows to f(k). Due to the similarities to kernels, the reduced instances
are called partial kernels [18] in this case.

Tree-width. Many graph problems are in FPT when parameterized by the tree-width of
input instances. There is a trend, initiated by Courcelle’s Theorem [45], of charac-
terizing such graph problems. For instance, it is been shown that any graph problem
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that can be stated in monadic second order logic is FPT with respect to the tree-width
parameter. This technique becomes more interesting when a graph problem is pa-
rameterized by another parameter that turns out to be a function of tree-width. For
example, any planar graph that has a k-dominating set has treewidth O(

√
k) [6]. In

consequence, Planar k-Dominating Set is proved to be in FPT.

2.2 Neighbour String

In the well-studied Closest String problem [73, 126, 15, 103, 78, 82, 38], and its gen-
eralization Neighbour String [105], the goal is to determine a string that is not too
different from any of the n length-` input strings. In the former case, the solution cannot
differ from any string si in more than d positions; in the latter case, for each si a bound
di is specified as part of the input, and the solution cannot differ from si in more than di
positions.

2.2.1 Definitions

Throughout this thesis, we use Σ` to denote the set of all strings of length ` over the
alphabet Σ. For any s ∈ Σ`, the character in position p in s, 1 ≤ p ≤ `, is denoted by
s[p]. For a set of positions or region R ⊆ {1, 2, . . . , `}, we use R to denote {1, 2, . . . , `}−R,
the positions not in the region R. We define s|R as the string formed by removing the
characters in positions in R, and making the remaining characters consecutive. For the
example s = 01101 and R = {1, 3, 4}, s|R is the string 010. By extension, for a set of
strings S ⊆ Σ`, S|R is defined as {s|R : s ∈ S}. For convenience, we call s|R (respectively,
S|R) the restriction of s (respectively, S) to R. For strings s1 and s2 of lengths |R| and
`− |R|, we define s1⊕R s2 as the string s of length ` such that s|R = s1 and s|R = s2, and
s1 ⊕R S as the set of strings {s1 ⊕R s2 : s2 ∈ S}.

We use a distance measure to describe the degree to which strings differ from each
other. For two strings s1, s2 ∈ Σ`, P (s1, s2) is defined as the set {p : s1[p] 6= s2[p]} of
positions on which the strings differ. The Hamming distance between s1 and s2, denoted
by H(s1, s2), is the number of positions in P (s1, s2); more informally, we say that s1 is
at distance H(s1, s2) from s2. For any d ≥ H(s1, s2), we say that s1 (respectively, s2) is
within distance d of s2 (respectively, s1).

We are now ready to define the problem of Neighbour String, in which each solu-
tion must be close to all given input strings, associated with a non-negative integer (the
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threshold distances supplied). Neighbour String is the search problem defined as the
set of the following (input, output) pairs:

Neighbour String

Input: a multiset I = {(s1, d1), (s2, d2), . . . , (sn, dn)}, where si ∈ Σ` and di is a
non-negative integer (the distance allotment) for 1 ≤ i ≤ n

Output: a string σ ∈ Σ` such that for all i, H(σ, si) ≤ di

We call σ a neighbour string of I. We use Is to denote the set of strings in instance I,
that is, Is = {s1, . . . , sn}, and NS(I) to denote the set of all neighbour strings for I.

Example 2.3. Consider the instance I = {(00000, 3), (11110, 3), (00111, 2)} of Neigh-
bour String. The set of strings in this instance, i.e. {00000, 11110, 00111}, is denoted
by Is. The string 00111 is a neighbour strings for I, and therefore 00111 ∈ NS(I).

Neighbour String was originally defined as a generalization of Closest
String [105], another search problem defined as the set of the following (input, output)
pairs:

Closest String

Input: a multiset I = {(s1, d), (s2, d), . . . , (sn, d)}, where si ∈ Σ` and d is a
non-negative integer (the distance allotment)

Output: a string σ ∈ Σ` such that for all i, H(σ, si) ≤ d

We call σ a closest string of I. We use Is to denote the set of strings {s1, . . . , sn}.

In this thesis, we study the search problem associated with an optimization version of
Neighbour String, defined as the set of the following (input, output) pairs:

Optimization Neighbour String

Input: a multiset I = {(s1, d1), (s2, d2), . . . , (sn, dn)}, where si ∈ Σ` and di is a
non-negative integer for 1 ≤ i ≤ n

Output: a string σ ∈ Σ` that minimizes d such that H(σ, si) ≤ di − (maxi di − d),
for all i
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Example 2.4. Consider the previous instance I = {(00000, 3), (11110, 3), (00111, 2)} of
Neighbour String, which is also an instance of Optimization Neighbour String.
The minimum d in this example is 2, meaning that the maximum di can be reduced
to 2 and all other di’s can be decreased by the same amount, yet the resulting in-
stance has a neighbour string. That is, the instance {(00000, 2), (11110, 2), (00111, 1)}
has a neighbour string 00110, and this is the largest distance decrease we can have:
the instance {(00000, 1), (11110, 1), (00111, 0)} has no neighbour string. The solu-
tions to Optimization Neighbour String are the set of neighbour strings of
{(00000, 2), (11110, 2), (00111, 1)}. Therefore, 00111 is not considered a solution, though
satisfying the original distance allocations, but 00110 is.

Optimization Neighbour String is a generalization of Optimization Closest
String, defined as the set of the following (input, output) pairs:

Optimization Closest String

Input: a multiset I = {(s1, 0), (s2, 0), . . . , (sn, 0)}, where si ∈ Σ`

Output: a string σ ∈ Σ` that minimizes d such that for all i, H(σ, si) ≤ d

We consider the standard parameterization for both Optimization Neighbour
String and Optimization Closest String problems; that is, d will be the parameter.
We use P-Neighbour String and P-Closest String to refer to these two problems,
respectively.

We assume that we know d. Otherwise, we can always start solving the problem with
d = 0. If no solution is found, we resolve the problem with d = 1, and so on. By the time
d is set to its correct value (the minimal d for which a solution exists), a solution will be
found. The whole process takes at most d times (or log d times, if binary search is used)
the running time required to solve the problem with the extra assumption that d is given
as part of the input.

In the case of the Optimization Neighbour String problem, we also assume that
d = maxi di. Otherwise, we can always adjust the di values to di − (maxi di − d).

Having both these assumptions, P-Neighbour String (P-Closest String, re-
spectively) can be viewed as the restriction of Neighbour String (Closest String,
respectively), when parameterized by maxi di (d, respectively), to minimal instances:

Definition 2.33. An instance I = {(s1, d1), (s2, d2), . . . , (sn, dn)} is minimal if for no
string s, H(s, si) ≤ di − 1 for all i.
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P-Neighbour String

Input: a minimal instance I = {(s1, d1), (s2, d2), . . . , (sn, dn)}, where si ∈ Σ` and di
is a non-negative integer (the distance allotment) for 1 ≤ i ≤ n

Output: a string σ ∈ Σ` such that for all i, H(σ, si) ≤ di

P-Closest String

Input: a minimal instance I = {(s1, d), (s2, d), . . . , (sn, d)}, where si ∈ Σ` and d is a
non-negative integer (the distance allotment)

Output: a string σ ∈ Σ` such that for all i, H(σ, si) ≤ d

2.2.2 Key Properties

When there are two input strings s1 and s2, Neighbour String has a solution if and
only if |P (s1, s2)| ≤ d1 + d2 (i.e. the number of positions in which s1 and s2 differ is at
most d1 + d2), a result of the following general observation:

Observation 2.3. Suppose that sx and sy are arbitrary strings and R ⊆ P (sx, sy) for a
region R. Then, for any string π, H(π|R, sx|R) +H(π|R, sy|R) ≥ |R|.

Proof. Since R is a region in which sx and sy disagree, π and sy disagree in at least those
positions in R in which π and sx agree. Therefore, H(π|R, sy|R) ≥ |R| −H(π|R, sx|R), as
required.

More can be said for R = P (sx, sy): since H(π|R, sx|R) equals H(π|R, sy|R), Observa-
tion 2.3 results in the following observation:

Observation 2.4. Suppose that H(π, sx) ≤ dx and H(π, sy) ≤ dy for arbitrary strings sx,

sy, and π. Then, assuming that R = P (sx, sy), H(π|R, sx|R) = H(π|R, sy|R) ≤ dx+dy−|R|
2

.

Proof. Considering distances in R and R, we have

(H(π|R, sx|R) +H(π|R, sx|R)) + (H(π|R, sy|R) +H(π|R, sy|R)) ≤ dx + dy

Consequently, H(π|R, sx|R)+H(π|R, sy|R) is less than or equal to (dx+dy−H(π|R, sx|R)−
H(π|R, sy|R), which is at most dx + dy − |R| by Observation 2.3.
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Figure 2.1: Example strings and distances restricted to a region R = P (sx, sy)

Since R is the region in which sx and sy disagree, H(π|R, sx|R) = H(π|R, sy|R), and

therefore, they both are at most dx+dy−|R|
2

, as required.

Example 2.5. Consider the instance I = {(s1, d1), (s2, d2), (s3, d3), (s4, d4)} demonstrated
in Fig. 2.1, and a string π with π|R = 00000111. In each of the positions in R = P (s1, s2), π
is either different from s1 or s2. In fact, H(π|R, s1|R) +H(π|R, s2|R) = |R|. If H(π, s1) ≤
d1 = 3 and H(π, s2) ≤ d2 = 6, then H(π|R, sx|R) = H(π|R, sy|R) ≤ dx+dy−|R|

2
= 9−8

2
.

Consequently, π|R has to be 00.

When |R| ≥ dy, Observation 2.4 simplifies to H(π|R, sx|R) ≤ dx
2

. As a consequence,
most of the positions that differ between a neighbour string σ ∈ NS(I) and an input string
sx ∈ Is are located in R = P (sx, sy) for a “far” input string sy ∈ Is. Indeed, if an algorithm
somehow determines the restriction of σ to R, all it needs is to find the at most dx

2
positions

that differ between π|R and sx|R.

Such a “far” input string sy ∈ Is (of distance at least dy from sx) always exists if
sx /∈ NS(I):

Observation 2.5. If sx /∈ NS(I), then there exists sy ∈ I such that |P (sx, sy)| > dy.

These observations were originally used by Ma and Sun [105] giving the first algorithms
for Closest String and Neighbour String whose time bounds had exponential de-
pendence on d. We have changed the statements of the observations to fit our discussions
in Chapter 4.

We observe that the condition sx /∈ NS(I) is not needed for a “far” input string sy to
exist when I is a minimal instance. A “far” sy ∈ Is always exists in a minimal instance
since otherwise sx is a string at distance smaller than di from si, for all si’s, which is not
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possible for such an instance. We will use this property to continue the search for neighbour
strings even if one of the input strings is a neighbour string already. As a consequence, we
will be able to enumerate all neighbour strings of minimal instances.

2.3 Kemeny Rank Aggregation

Preference lists are typical elements of elections, psychology questionnaires, and every-day
surveys. Social choice theory studies the problem of combining the gathered individual
preference lists into a consensus preference list that reflects the expressed preferences as
closely as possible. The problem of finding a single preference list that on average is as
close as possible to the given preference lists, according to a chosen distance measure, is
called Rank Aggregation. In this thesis, we study Kemeny Rank Aggregation,
introduced by Kemeny in 1959 [92], a famous version of Rank Aggregation, where the
distance between two preference lists is the number of pairs of candidates that are preferred
differently in the two lists.

2.3.1 Definitions

Complete or partial preference lists over a set of candidates U can be represented as
binary relations, namely sets of ordered pairs in U × U , where each ordered pair (x, y)
in the relation represents the preference of a candidate x to a candidate y. As a benefit,
set operations can be used to manipulate preference lists. For instance, the number of
common preferences in two preference lists π1 and π2 can be represented as π1 ∩ π2. For
consistency, we also treat graph arcs as ordered pairs and sets of arcs as binary relations
that consist of the corresponding ordered pairs. At times we restrict a binary relation R
to a set of unordered pairs P , where R|P = {(x, y) ∈ R : {x, y} ∈ P}; similarly, for E a
set of ordered pairs (i.e. a binary relation), R|E = {(x, y) ∈ R : (x, y) ∈ E or (y, x) ∈ E}.

We use x <R y to denote (x, y) ∈ R, for a binary relation R ⊆ U × U , to show the
preference of x to y. The endpoints of an ordered pair (x, y) are x and y, where x is the head
and y is the tail; we use endpoints(R) for a binary relation to denote

⋃
e∈R endpoints(e).

The reverse of an ordered pair (x, y), denoted by rev(R), is the ordered pair of reversed
head and tail (i.e., (y, x)). The reverse of a binary relation, representing the preferences
opposite to those in R, denoted by rev(R), is defined as {(y, x) : (x, y) ∈ R}.

In many cases, preference lists are acyclic:
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Definition 2.34. A binary relation R is transitive if z <R x and x <R y imply z <R y.

We use R+ for a binary relation R to denote the binary relation of minimum cardinality
that is a superset of R and is transitive, often called the transitive closure of R.

Definition 2.35. A binary relation R is acyclic if R ∩ rev(R+) = ∅.

We assume further that preference lists are total orders, and the consensus preference
list is also a total order; other variants of the problem are briefly mentioned in Chapter 3.

Definition 2.36. A binary relation R is a total order over a set U if it is transitive, for
any x <R y, x is not equal to y and y 6<R x, and for any x, y ∈ U , x 6= y, either x <R y
or y <R x.

We use Total(U) to denote the set of total orders over U .

We use a distance measure to describe the degree to which total orders differ from each
other.

Definition 2.37. The τ -distance between π1 ∈ Total(U) and π2 ∈ Total(U), denoted by
τ(π1, π2), is the number of pairs in π1 \ π2, and by extension, the τ -distance between π1

and a multi-set I over Total(U), denoted by τ(π1, I), is
∑

π2∈I τ(π1, π2).

Since the numbers of pairs in any π1 ∈ Total(U) and π2 ∈ Total(U) are the same,
τ(π1, π2) = τ(π2, π1).

We are now ready to define the problem of Kemeny Rank Aggregation, in which
the input is a multi-set of total orders and each solution must be close to the input multi-set.
Kemeny Rank Aggregation is the search problem defined as the set of the following
(input, output) pairs:

Kemeny Rank Aggregation

Input: a multi-set I of m total orders in Total(U) where U is a set of n elements
Output: a total order σ ∈ Total(U) that minimizes kt = τ(σ, I)

The measure kt is the total τ -distance between σ and the total orders in I, versus ka
or km used to denote average and maximum τ -distances [123].

We refer to the elements in U as candidates and to the total orders in I as votes. We
also call any total order that minimizes kt = τ(σ, I) an optimal aggregation of I, and use
KRA(I) to denote the set of all optimal aggregations of I.

23



In this thesis, we study the parameterization of Kemeny Rank Aggregation by
the parameter kt

m
, which is a normalization of the standard parameter kt. The rea-

son we are not using kt itself is that its value is generally large for instances with
large m, and thus small values of kt do not cover many practical instances. We use
P-Kemeny Rank Aggregation to refer to this parameterized search problem.

2.3.2 Preferences that are Agreed on

None of the optimal aggregations can disagree with an all-agreed-on preference, since a
disagreement with any such preference can only increase the τ -distance from I. We let
unanimity(I) denote the binary relation

⋂
π∈I π. Preferences in unanimity(I) are prefer-

ences that are common in all total orders in I.

Observation 2.6. [110] For any σ ∈ KRA(I), unanimity(I) ⊆ σ.

Therefore, P-Kemeny Rank Aggregation reduces to determining the order of dirty
pairs, defined below:

Definition 2.38. The set of dirty pairs of I, denoted by dirty(I), is {{a, b} : (a, b) ∈⋃
π∈I(π \ unanimity(I))}.

2.3.3 Connection to Feedback Arc Set

We use a well-known reduction to Weighted Directed Feedback Arc Set
(WDFAS) on complete digraphs [94], where a feedback arc set F for a graph G is a subset of
the graph arcs whose removal makes the graph acyclic, with weight wF =

∑
(a,b)∈F w(a, b).

WDFAS

Input: an arc-weighted directed graph G
Output: a feedback arc set F for G of minimum weight

We use MF(V,w) to denote the set of all minimum feedback arc sets in a complete
digraph G on the vertex set V and with the arc-weight function w. Feedback arc sets in
a complete digraph must have many arcs; each must include a total order: removing the
arcs of a feedback arc set F must render the remaining graph acyclic, and thus consistent
with at least one total order H (a topological order of the remaining graph), proving that
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the total order rev(H) was included in the removed arcs, i.e., rev(H) ⊆ F . Therefore,
since each total order in Total(V ) is a feedback arc set for G, the total orders in Total(V )
are exactly the minimal feedback arc sets (sets for which the removal of any arc will result
in a cycle in the remaining graph); thus since every minimum weight feedback arc set is
minimal, MF(V,w) ⊆ Total(V ).

An instance I of P-Kemeny Rank Aggregation is reduced to a complete digraph
with arc-weights between zero and one:

Observation 2.7. A total order σ ∈ Total(U) is an optimal aggregation of I if and only
if rev(σ) ∈ MF(U,w), where I(a,b) is {π ∈ I : a <π b} and w is the weight function

w(a, b) =
|I(a,b)|
m

. Also,
∑

(a,b)∈rev(σ) w(a, b) = kt
m

, where kt = τ(σ, I).

Proof. The τ -distance between any total order π ∈ Total(U) and I is precisely m times
the weight of rev(π) in the complete digraph with vertex set U and the arc-weight function

w(a, b) =
|I(a,b)|
m

.

Since every optimal aggregation of I and every feedback arc set in MF(V,w) is in
Total(U), any σ ∈ Total(U) is an optimal aggregation of I if and only if rev(σ) ∈ MF(U,w).

The weight function in the reduced instance satisfies two useful properties, which we
will exploit in the analysis of our algorithm, presented in Chapter 5. A weight function
w : U × U 7→ R satisfies the probability constraint if w(a, b) + w(b, a) = 1 for all pairs
a, b ∈ U .

Observation 2.8. [133] The weight function w(a, b) =
|I(a,b)|
m

satisfies the probability con-
straint and the triangle inequality.

2.3.4 The Impact of Large Weights

Relative weights of arcs influence the set of arcs included in optimal aggregations. In this
section, we mention one example of the impact of heavily-weighted arcs. We will see more
such examples in Section 3.4.3.

Let us first define classes of arcs based on the weights of the arcs. For a weight function
w : V × V 7→ R, we define the binary relations w<c, w=c, and w6=c as {(a, b) : w(a, b) < c},
{(a, b) : w(a, b) = c}, and {(a, b) : w(a, b) 6= c}, respectively; w≤c, w>c and w≥c are defined
analogously.
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We are looking for properties of vertices that may be adjacent in minimum feedback
arc sets:

Definition 2.39. An ordered pair (x, y) is π-adjacent for a total order π ∈ Total(V ) if
x <π y and there is no z ∈ V such that x <π z <π y. We use adj(π) to denote the binary
relation consisting of all π-adjacent ordered pairs.

Two total orders that have the same set of adjacent ordered pairs are equal.

Example. Let V = {1, 2, 3, 4} and σ ∈ Total(V ) satisfy 1 <σ 2 <σ 3 <σ 4. Then, the
set of σ-adjacent ordered pairs is adj(σ) = {(1, 2), (2, 3), (3, 4)}.

For any σ ∈ MF(V,w), all σ-adjacent arcs are in w≤ 1
2
, since otherwise replacing a

violating arc with its reverse decreases the weight of σ, a contradiction:

Observation 2.9. Suppose that σ ∈ MF(V,w). Then, adj(σ) ⊆ w≤ 1
2
.

As a consequence, if for some V ′ ⊆ V every arc in w< 1
2

between the vertices in V ′ and

V \V ′ is directed from V ′ to V \V ′, then none of the arcs in adj(σ), for any σ ∈ MF(V,w),
can be directed from V \ V ′ to V ′:

Observation 2.10. Every F ∈ MF(V,w) includes (V ′ × (V \ V ′)) for every subset V ′ of
vertices V such that (V ′ × (V \ V ′)) ⊆ w< 1

2
.

In the aggregation setting (consider the reverse of each arc), this is in fact in agreement
with the Extended Condorcet Criterion [128].

Definition 2.40. [128] A total order σ satisfies the Extended Condorcet Criterion if for
every subset U ′ of candidates U such that (U ′ × (U \ U ′)) ⊆ w>m

2
, where w(a, b) = |I(a,b)|,

(U ′ × (U \ U ′)) ⊆ σ.

This criterion states that if a group of candidates (here, U ′) is pairwise preferred to the
candidates not in the group (i.e. U \ U ′) by majority of voters, a fair final result does not
rank any of the candidates in the former group lower than any of the candidates in the
latter group.

Observation 2.11. [128] Every optimal aggregation satisfies the Extended Condorcet Cri-
terion.
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2.3.5 Locally Optimal Solutions

In the Kemeny Rank Aggregation setting, Dwork et al. [57] defined local optimality
for a total order as having the minimum cost among the total orders at τ -distance 1 from it.
The incentive was to relax the conditions for an optimal aggregation to make it efficiently
computable. We repeat the definition here since our fixed-parameter algorithm in Chapter 5
does not merely solve Enum(P-Kemeny Rank Aggregation); it enumerates all locally
optimal total orders.

A closer look at total orders at τ -distance 1 from a total order gives rise to the following
equivalent definition [57].

Definition 2.41. A total order σ ∈ Total(U) is a locally optimal aggregation for an
instance I of m total orders of Kemeny Rank Aggregation if adj(σ) ⊆ n≥m

2
for the

weight function n(a, b) = |I(a,b)|.

Naturally, every optimal aggregation is a locally optimal aggregation. In fact, the
set of locally optimal aggregations is expected to be much larger than the set of optimal
aggregations. Notice that the definition does not depend on the value of kt. As a result, sets
of locally optimal aggregations for P-Kemeny Rank Aggregation instances are equal to
sets of locally optimal aggregations for the corresponding Kemeny Rank Aggregation
instances.

We define locally minimum feedback arc sets in digraphs in analogy with locally optimal
aggregations.

Definition 2.42. A feedback arc set F is locally minimum if it is minimal and adj(F ) ⊆
w≤ 1

2
.

A minimal feedback arc set is a locally minimum feedback arc set if reversing a single
arc does not produce a feedback arc set of smaller weight. We use LF(V,w) to denote the
set of all locally minimum feedback arc sets in the complete digraph on the vertex set V
and the arc-weight function w.

By the minimality condition, locally minimum feedback arc sets are forced to be total
orders, making them comparable to locally optimal aggregations.

Observation 2.12. A total order σ ∈ Total(U) is a locally optimal aggregation for an
instance (I, k) of P-Kemeny Rank Aggregation, where I is a multi-set of m total

orders, if and only if rev(σ) ∈ LF(U,w), for the weight function w(a, b) =
|I(a,b)|
m

.
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Chapter 3

Previous Work

Enumeration algorithms have been around for a long time. Classical results as early as
1965 [111, 88] show that a graph on n vertices contains at most 3

n
3 = O(1.4423n) maximal

independent sets, all of which can be enumerated with polynomial delay. The area is still
active. For instance, in 2007, all maximal c-isolated cliques of an m-edge graph were proved
to be enumerable in O(2.89c · c2 ·m) time [95].

In this thesis, we are concerned with parameterized enumeration, and in particular the
enumeration aspects of two parameterized problems.

3.1 Parameterized Counting

Perhaps due to the complexity of enumerating all solutions, the research has been mostly fo-
cused on counting the number of solutions. Among the first results is Arvind and Raman’s
proof for hardness of counting k-Cliques [11]. Later, Flum and Grohe proposed a hierar-
chy of parameterized counting problems [71]. They proved sample intractability results
for counting k-paths and k-cycles in general directed/undirected graphs and for counting
k-cliques in general graphs (all proved to be #W [1]-hard), and for counting k-dominating
sets (proved to be #W [2]-complete), essentially showing that it is very unlikely that any of
these parameterized problems has an FPT algorithm. Indeed, if all the counting problems
in #W [1] are solvable in FPT time (i.e. are in #FPT ), then there exists an O(2o(n))-time
algorithm to evaluate the satisfiability of any n-variable 3-CNF formula, which is believed
to be highly unlikely [71]. Independently, a similar framework and intractability results
were also derived by McCartin [109].
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Aside from the hardness results, many counting problems have been shown to be
tractable through development of FPT algorithms that count the number of solutions.
Such algorithms are often adaptations of the fixed-parameter tractable algorithms devel-
oped for decision versions of the problems. As a general rule, FPT algorithms based
on dynamic programming are generalizable to FPT counting algorithms. In addition, a
large portion of logic-based parameterized tractability results transfer to counting prob-
lems. Counting versions of graph problems definable in monadic second-order logic are
fixed-parameter tractable, when parameterized by tree-width [10]. For example, this im-
plies the fixed-parameter tractability of counting Hamiltonian cycles of a graph. With some
restrictions, the tractability result extends to parameterizations using the clique-width of
the input graph [46]. For the smaller class of graph problems definable in first-order logic,
counting problems are fixed-parameter tractable even with respect to the local tree-width
of the input graph [74]. Examples of graphs of bounded local tree-width are planar graphs
and graphs of bounded valence. This result proves that, for example, counting the dom-
inating sets of a planar graph is fixed-parameter tractable with respect to the size of the
dominating sets. Furthermore, graph problems that are Fagin-definable by a first-order
formula such that the relation variable occurs outside the scope of negations and exis-
tential quantifiers have fixed-parameter tractable counting versions [71]. An example of
such a problem is the minimum vertex cover problem parameterized by the size of the
minimum vertex cover in the input graph [71]. In addition, the counting version of the
parameterized homomorphism problem is fixed-parameter tractable when parameterized
by the tree-width of the input relational structures [71, 47].

Some other algorithms use the existing kernels for the decision problems; for instance,
Arvind and Raman [11] demonstrated how to count the number of k-vertex covers in time
O(2k

2+kk+2kn). Not every kernel can be used to count. Diaz et al. [52] introduced certain
f(k)-sized structures, called compactors, which allowed for an FPT counting algorithm.
The concept was demonstrated on List h-Coloring [52]. Nishimura et al. [115] showed
how to obtain compactors for matching and packing problems, achieving FPT counting
algorithms for these problems. The definition was later generalized by Thurley [127].
The new definition, called counting kernels, was described on k-Vertex Cover and
k-Hitting Set examples [127].

3.2 Parameterized Enumeration

We are not aware of enumeration techniques specifically developed for parameterized prob-
lems. Nevertheless, problem-specific approaches have led to FPT enumeration algorithms
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for a list of problems. However, since it is usually the case that the number of solutions (or
feasible solutions in case of the optimization problems) exceeds f(k)nO(1) for any function
f , the following relaxations of the enumeration problem are considered:

Enumeration of succinct solutions. It might be the case that a restricted set of
solutions can be enumerated in FPT time. In particular, it is very common to
investigate enumerations of minimal/maximal solutions for subset problems, in which
the (feasible) solutions are subsets of size at most k of some domain set of size n [65].
For example, while the number of k-vertex covers can be as large as

(
n
k

)
in an n-vertex

graph, it has been shown that all minimal k-vertex covers can be computed in time
O(m + k22k) [66]. Furthermore, FPT algorithms have been obtained to enumerate
all maximal c-isolated cliques (parameterized by c) [86, 95], minimal solutions to the
Minimum Quartet Inconsistency problem [80], minimal k-triangulations of a
graph [90], and minimal special k-separators, called important separators, in both
directed [40] and undirected [35] graphs.

In some cases, all minimal solutions are located in an f(k)-size subset of the domain.
This immediately yields an FPT algorithm that enumerates all minimal solutions.
The existence of such a subset, called a full kernel by Damaschke [48], has been
proved for k-Vertex Cover and k-Bounded Hitting Set [48, 49].

Enumeration of solution representatives. Sometimes, a large number of solutions
can be specified by a single representative. This is very helpful when the number of
solutions cannot be bounded by f(k)nO(1) for any function f , but only FPT compact
representations exist.

For example, Damaschke [48] obtained an O∗(1.74k) time algorithm to enumerate spe-
cial descriptions for all k-vertex covers. The bound was later improved to O∗(1.6182k)
by Fernau [66].

Output-sensitive enumerations. Even when the number of solutions exceeds any
fixed-parameter tractable function, there can be instances with small numbers of so-
lutions. Therefore, it is reasonable to look for enumeration algorithms whose running
times depend on the number of solutions produced.

As an example of this approach, we refer to Flum and Grohe’s generalization of
Courcelle’s theorem [70], and to its parameterization by local tree-width [74]. In both
cases, the provided enumeration algorithms were proved to execute in O(f(k)(n +
z)) time, where z denotes the size of the output; consequently, they achieve FPT
enumeration algorithms when the number of solutions is bounded by f(k)nO(1), for
some function f .
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Partial enumeration of solutions. In many applications, it is not essential to enu-
merate all solutions; rather, finding a certain number of solutions is sufficient. In the
classical setting, people have looked at O(K · nO(1))-time algorithms to produce K
solutions, or to produce all the solutions with polynomial delay, thus allowing the
enumeration to be stopped after a certain number of solutions is generated. With the
same goal, Chen et al. [33] defined fixed-parameter partial enumerable problems as
the set of optimization problems that have an O(KO(1) ·f(k)nO(1))-time algorithm to
produce K “best” solutions. Our definition of partial enumeration problems, in the
preliminaries chapter, is inspired by both these partial enumerations: if Partial(R)
is in PF for a search problem R, then there exists an O(KO(1)nO(1))-time algorithm
that enumerates K solutions in R(x) for any input x. When the running time is
linear in terms of K, the algorithm is a polynomial-delay enumeration algorithm;
note that since we have not assumed a bound on K, a running time superlinear in K
does not ensure a polynomial delay between producing the (K − 1)st and the Kth
solutions. If Partial(R) is in FPT for a parameterized search problem R, then there
exists an O(f(k) ·KO(1)nO(1))-time algorithm that enumerates K solutions. Also, if
Partial(Q) is in FPT, when parameterized by κ, for an optimization problem Q,
then there exists an O(f(k) · KO(1)nO(1))-time algorithm that enumerates K best
solutions for any input instance x of Q.

Chen et al. [37] raised the question of how the two classes of FPT problems
and optimization problems that are fixed-parameter partial enumerable are re-
lated. In this direction, they showed how to extend two example FPT algorithms
(both using dynamic programming, one based on color-coding and one based on a
tree-decomposition technique) to partial enumerations. There are few FPT algo-
rithms developed for partial versions of optimization problems. To give more insight
into Chen et al.’s question, we categorize the few existing algorithms with respect to
the techniques used to obtain them:

Tree decomposition. The tree decomposition technique is generally an appli-
cation of dynamic programming on tree decompositions of bounded tree-width
graphs [122]. As a general rule, algorithms based on dynamic programming are
generalizable to partial enumerations.

Chen et al. [33] showed that the tree-decomposition technique of Alber et
al. [6] to produce a k-dominating set in a planar graph can be adapted to
produce K smallest k-dominating sets in an n-vertex planar graph in time
O(2O(

√
k)nK logK).

Color-coding. The color-coding technique is another technique often com-
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bined with dynamic programming. Chen et al. [33] showed how to adapt
the color-coding technique of Alon et al., which produces a k-path in a
weighted graph, to compute K largest k-paths in a weighted graph in time
O(12.8k+6.4kk2n3K). Unlike tree-decomposition algorithms, color-coding algo-
rithms are not adaptable to FPT counting algorithms. In this specific example,
counting the number of k-paths in a graph is proved to be #W[1]-complete [71],

Bounded search-trees. Chen et al. [33] developed a search-tree algorithm to
enumerate K best solutions for Weighted Vertex Cover, whose goal is to
find a vertex cover in an input weighted graph. Their algorithm runs in time
O(1.47kn+ 1.22kKn).

Wang and Jiang [135] developed a search tree algorithm to find K best
k-weighted feedback vertex sets. The algorithm transforms the Feedback
Vertex Set problem to the Feedback Edge Set problem with specific con-
ditions. Then it enumerates K minimum-weight feedback edge sets of size k by
enumerating K maximum-weight forests, in a total running time of O(5kkn2 +
(5k+3kK)n2 log n). The best parameterized algorithm for k-Weighted Feed-
back Vertex Set, whose goal is to find a minimum-weight feedback vertex
set of at most k vertices, runs in time O(5kkn2) [32].

Enumeration-based algorithms. Based on an FPT enumeration of minimal
vertex covers, Wang et al. [134] developed a partial enumeration algorithm that
finds K best k-edge dominating sets in a weighted graph in time O(5.62kk4K2 +
42knk3K).

The classical techniques for partial enumerations in discrete optimization problems
have gone mostly unnoticed in the parameterized setting. We will describe in Chap-
ter 6 how the classical backtracking or the classical partitioning techniques introduced
by Murty and Lawler [112, 101] can be used for parameterized problems, improving
the best time bounds for two of the above-mentioned problems.

3.3 Neighbour String

As Closest String is NP-complete even for binary strings [73], much of the work has
focused on finding approximate solutions or on parameterized analysis of Closest String
and Neighbour String.
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3.3.1 Approximation Algorithms

After a line of research on approximation algorithms [15, 78, 100], Li et al. [103], Andoni
et al. [9], and Ma and Sun [105] have each demonstrated a polynomial-time approximation
scheme (PTAS) for Closest String, the most recent with running time O(`(n`)O(ε−2)).

3.3.2 Parameterized Algorithms

Parameterized complexity of Closest String has been considered with respect to the
lengths of input strings, i.e. `, the number of input strings, i.e. n, and the distance allocation
provided, i.e. d. In most of the investigations, |Σ| is assumed to be a constant.

There are at most |Σ|` strings of length `. Therefore, when |Σ| is a constant, Closest
String is trivially in FPT with respect to `. Regardless of Σ, the definition of d ensures
that the input strings match in all positions except for at most nd positions [81], yielding
a simple reduction rule making ` ≤ nd.

Gramm et al. [82] gave an integer programming formulation of the Closest String
problem in (n − 1)B(n) variables, where the Bell number B(n) is at most n!. Integer
programs can be solved in time polynomial in the size of the problem and number of
variables [102]. As a consequence, Closest String is fixed-parameter tractable (in FPT)
when parameterized by n, albeit with a huge function on n. Further developments have
included solutions for the special cases of n = 3 [81] and, for binary strings, n = 4 [25].

Solutions to Neighbour String have been built on a search tree algorithm of Gramm
et al. [81] for Closest String (which was used to prove the fixed-parameter tractability
with parameter d), and share the key ideas of careful selection of two strings sx and sy
and branching on all acceptable substrings in the region R of positions on which sx and sy
differ. The StringSearch algorithm of Ma and Sun [105], a modification of the algorithm
of Gramm et al. [81], computes a neighbour string in time O(n`+ nd

(
d+b
b

)
(|Σ| − 1)b4b) for

instances having mini di ≤ b and maxi di ≤ d. This algorithm generalized that of Gramm
et al. [81] by considering all substrings of R in a single round rather than position by
position. A series of further papers culminated in a running time of O(n` + nd(

√
2|Σ| +

4
√

8(
√

2 + 1)(1 +
√
|Σ| − 1)− 2

√
2)d) [136, 141, 39]; these papers made refinements in the

choice of the strings sx and sy to aid in the analysis. Lokshtanov et al. [104] showed that
there does not exist any O(2o(d log |Σ|) ·(n`)O(1)) time algorithm, unless the Exponential Time
Hypothesis (ETH) fails.

Recently, Chen et al. [38] added a third input string to the computations, and obtained
an O(n` + nd36.7308d)-time algorithm for binary strings and an O(n` + nd1.612d(|Σ| +
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β2 + β − 2)d)-time algorithm for arbitrary alphabet Σ, where β = α2 + 1 − 2α−1 + α−2

with α = 3

√√
|Σ| − 1 + 1. For small |Σ|’s, this time bound is an improvement over the

previous best running time, due to Chen and Wang [39]. The algorithm and analysis are
both considerably more complicated than those for the approaches using two strings; as
the number of strings increases, so does the number of different kinds of difference regions.

3.3.3 Counting and Enumeration

The reduction used to prove the NP-hardness of Closest String can also be used to
prove that the corresponding counting problem is #P-hard [26]. The integer programming
formulation of Gramm et al. can also be used to enumerate all the solutions [26], thus
proving the fixed-parameter tractability of the enumeration problem with parameter n.

Obtaining a parameterized enumeration algorithm with parameter d is not possible
for general input instances. Instances that are non-minimal (defined in Section 2.2.1), for
which there exist neighbour strings with all the distances strictly less than the di’s, might
have as many as

(
`

maxi di

)
neighbour strings. The simplest example is an instance consisting

of a single string s1 of length ` and an arbitrary number as d1. Given this constraint, we will
consider an algorithm to be an enumeration algorithm if it solves Enum(P-Neighbour
String) (i.e. produces all neighbour strings when the input instance is minimal).

We observe that in its original form, the O(n`+nd(d+ 1)d)-time search tree algorithm
of Gramm et al. [81, 82] is not an enumeration algorithm. Starting with an input string sx,
the algorithm tries to find an input string sy such that H(sx, sy) > d. If there is no such
string, then sx is produced as the sole solution. When the set of solutions is a superset of
the input strings, even if the algorithm were modified to take the union of solutions found
from starting at each of the input strings, the algorithm would fail to produce any solution
that is not an input. In the example of the strings {0010, 0100, 1001, 1111} and the value
d = 3, there are eight solutions outside the set of inputs, such as 0001 and 0011, which are
not found by this algorithm.

3.4 Kemeny Rank Aggregation

The initial research on Kemeny Rank Aggregation was mostly focused on the proper-
ties of optimal aggregations and how much these properties match the expected properties
in a fair voting. The ultimate goal in this research was a comparison of various versions of
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Rank Aggregation. In the following, we briefly mention the justifications provided by
Kemeny [92], Diaconis [51], and Young and Levenglick [140] for choosing Kemeny Rank
Aggregation as the preferred Rank Aggregation problem.

Kemeny Rank Aggregation is neutral [51] (in the sense that its distance measure
does not depend on the labels of candidates [140]), has a natural interpretation [51], and
the distance between two preference lists can be efficiently computed according to its
distance measure [51]. Furthermore, Kemeny Rank Aggregation is consistent [140],
where a Rank Aggregation problem is consistent if for any partitioning of the input
votes I into two multi-sets I1, I2 for which KRA(I1)∩KRA(I2) 6= ∅, KRA(I) is precisely
KRA(I1)∩KRA(I2). In addition, all optimal aggregations satisfy the Condorcet Criterion,
where a total order satisfies the Condorcet Criterion if it prefers a candidate to every other
candidates when the candidate is preferred by the majority to all other candidates. In fact,
as mentioned in Chapter 2, optimal aggregations satisfy the Extended Condorcet Criterion,
an extension of the Condorcet Criterion due to Truchon [128] as well [57].

According to Young and Levenglick, Kemeny Rank Aggregation is essentially the
only consistent and neutral Rank Aggregation problem whose optimal aggregations
satisfy the Condorcet Criterion [140]. Also, assuming that the votes are “noisy” versions
of a single total order, where each pair of candidates had been swapped with probability
p < 0.5, an optimal aggregation would be a most probable total order that might have
produced the input votes [139].

On the negative side, Kemeny Rank Aggregation is computationally harder to
solve compared to most of its counter-parts. In fact, based on a reduction from k-FAS [125],
Bartholdi et al. [13] showed that Kemeny Rank Aggregation is NP-hard. Later, Dwork
et al. [56, 57] proved that the problem remains NP-hard for any constant even number of
votes as small as four, and for unbounded odd m’s. Biedl et al. [22] discovered and fixed an
error in the proof. Dwork et al. [92] used Kemeny Rank Aggregation in their search
for an effective spam filtering method that combined the results of multiple search engines.
Due to the computational intractability, they proposed to compute relaxed optimal aggre-
gations, called locally optimal aggregations, each only constrained to have the minimum
cost among the total orders at τ -distance 1 from it. Their proposed sorting-like algorithm
to compute a locally optimal aggregation could start with an arbitrary total order, thus
making it combinable with other spam filtering methods. Dwork et al.’s paper [56] initiated
a series of algorithmic results for Kemeny Rank Aggregation.
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3.4.1 Approximation Algorithms

The problem was shown to have an O(n2.5 + mn2)-time 2-approximation algorithm [56].
Coppersmith et al. [44] showed that the linear-time greedy algorithm of ranking the can-
didates by increasing Borda count is a 5-approximation algorithm, where the Borda count
for a candidates c is the sum of the number of candidates ranked higher than c over
all votes. The search for approximate solutions continued with Ailon et al.’s random-
ized approximation algorithms of ratios 11

7
and 4

3
[5] based on the linear programming

formulation of the problem. Later, Biedl et al. [22] showed that choosing the best vote
gives a (2 − 2

m
)-approximation ratio. Finally, Kenyon-Mathieu and Schudy developed an

O(nO( 1
ε4

))-time approximation scheme for the feedback arc set problem for special weighted
tournaments, which solved Kemeny Rank Aggregation as a special case [94]. Despite
being a theoretical breakthrough, the resulting algorithms could not be used in practice
due to large coefficients in their running times. In an attempt to develop practical approx-
imation algorithms, Williamson and van Zuylen derived a deterministic 8

5
-approximation

algorithm [133]. The reader is referred to a survey by Charon and Hudry [30] for a detailed
list of results.

3.4.2 Parameterized Algorithms

Since approximate solutions to Kemeny Rank Aggregation can violate important
properties [43], algorithms to find exact solutions have garnered significant interest. Com-
putational experiments of Davenport and Kalagnanam [50] suggest that exact solutions
can be efficiently found when input votes have specific structures. Consequently, a series
of algorithms to find exact solutions, each running fast on a group of input instances, have
been developed. Betzler et al. proposed the first set of these algorithms, of fixed-parameter
running times of O(2n ·n2m) [20], O(1.53kt+m2n) [20] and O((3km+1)! km log km ·mn) [19],
where n is the number of candidates, m is the number of votes, kt is the τ -distance of an op-
timal aggregation from the votes, and km is the maximum pairwise τ -distance of the votes.
The last-mentioned running time in this set was obtained by bounding the sets of candi-
dates that can assume each position in an optimal aggregation. Betzler et al. [20] extended
this idea to the average pairwise τ -distance of votes, denoted by ka, and the maximum
difference between the positions of a particular candidate in any of the votes, denoted by
rm, yielding bounds of O(16ka ·(k2

a ·m+ka ·m2 logm ·n)) and O(32rm ·(r2
m ·m+rm ·m2)) [20].

We considered kt
m

as an average parameter tighter than ka, and obtained an

O∗(5.823
kt
m )-time algorithm [123], based on an algorithm for WDFAS in tournaments [120].
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We also obtained algorithms of running times O∗(1.403kt) and O∗(4.829km) [123]. De-
tails will be included in Chapter 5. Later, a subexponential-time algorithm developed by
Alon et al. [7] for WDFAS for tournaments improved the running times with respect to

kt
m

, ka, and km, to O(2O(
√
kt
m

log
kt
m

) + nO(1)) [68]. At about the same time, Karpinski and
Schudy [91] reduced P-Kemeny Rank Aggregation to WDFAS for complete digraphs
with arc-weights satisfying the probability constraint (also mentioned in Chapter 2), where
the weights of the arcs (a, b) and (b, a) add up to one for every pair a, b of vertices. Karpin-
ski and Schudy [91] solved this restricted version by pushing further the idea of bounding
sets of candidates (here, vertices), that can assume each position. Through an elegant

analysis, they obtained an improved running time of O(2O(
√
kt
m

) + nO(1)). Independently, a
similar time bound was obtained by Feige [64] for unweighted graphs. Though most of the
algorithms for parameterizations of Kemeny Rank Aggregation have benefited from
its connection to WDFAS [123, 68, 91], details of the reductions differ.

Not much improvement (with respect to kt
m

) is expected, since an O(2o(
√
kt
m

)+nO(1))-time
algorithm for P-Kemeny Rank Aggregation would cause the failure of the Exponen-
tial Time Hypothesis [7]. On the other hand, since kt has the guaranteed lower bound
of ` =

∑
a,b∈U min{|I(a,b)|, |I(b,a)|}, Fernau et al. [68] studied an above-guarantee parame-

terization of Kemeny Rank Aggregation. The reduction to WDFAS results [36] in
an O(2O(kg log kg) + nO(1))-time algorithm for the above-guarantee parameter kg = kt − `.
For an odd number of votes, the algorithm of Karpinski and Schudy [91] runs in time

O(2O(
√
kg) + nO(1)). Again, an O(2o(

√
kg) + nO(1))-time algorithm for Kemeny Rank Ag-

gregation results in the failure of the Exponential Time Hypothesis [68], thus is very
unlikely to exist.

3.4.3 Kernelization

The first kernelization result for P-Kemeny Rank Aggregation is due to Betzler et
al. [20]. They used two reduction rules: one fixed the orderings of candidates on which
all the votes agree, and the other fixed any ordering appearing in more than kt votes.
This led to a kernel of 2kt votes over at most 2kt candidates [20]. Later results [21,
18] made use of the parameter ka, which is much smaller than kt (approximately kt

m
),

obtaining partial kernels [18] (a reduction in the number of candidates but not the number
of votes). The first partial kernel [21] gave a reduction to at most 9ka + 162k2

a candidates.
The number of candidates was also analyzed with respect to the number nd of pairs of
candidates that are not ordered in the same way by two-thirds or more of the votes, giving
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a second upper bound 2nd + 8n2
d on the number of candidates. The bound in terms of

ka was later decreased to (16
3

)ka [18, 17], using a reduction rule based on the preferences
of a three-fourths majority [18]: remove any candidate whose relative order with respect
to every other candidate is the same in at least three-fourth of the votes. The proof
immediately gives a (16

3
)kt
m

-candidate partial kernel. The reduction rule used was shown to
be a special version of Condorcet-Set Rule [18], a formalization of the well-known Extended
Condorcet Criterion [128].

We are not aware of any kernels for general WDFAS. There is a k(k+ 2) vertex kernel
for the weighted feedback arc set problem on tournaments [53, 7]. Also, there is a (2 + ε)k
vertex kernel for the unweighted feedback arc set problem on tournaments [16], and a
(12k2 − 2) vertex kernel for the feedback arc set problem on bipartite tournaments [138],
both based on detecting “transitive modules” and partitioning the input digraph based
on these modules. The (2 + ε)k vertex kernelization [16] uses a polynomial-time approx-
imation scheme to detect modules. A simpler algorithm by Paul et al. [119] finds mod-
ules without the help of a polynomial-time approximation scheme, but gives a weaker 4k
bound on the number of vertices. The (2 + ε)k vertex kernel extends to constant integer
weights [16]. Constant-integer weights cannot model P-Kemeny Rank Aggregation
instances with parameter kt

m
: the weights are not constant, and even if the algorithm worked

for non-constant integer weights, the parameter would become kt instead of kt
m

.

3.4.4 Counting and Enumeration

To the best of our knowledge, there are only few results on counting optimal aggregations,
including those obtainable by adjusting the O∗(2n)-time dynamic programming of Betzler

et al. [20] or the O∗(2O(
√
kt
m

)) subexponential-time algorithm of Karpinski and Schudy [91]
to count the number of optimal aggregations. We are the first to obtain a parameterized

bound (an upper bound of 4
kt
m ) on the number of optimal aggregations, thus giving the

first parameterized algorithm for Enum(P-Kemeny Rank Aggregation).

3.4.5 Variants of the Problem

Variants of the problem where the votes or optimal aggregations are not necessarily total
orders have also been studied [20, 4, 27]. Defining the distance measure becomes a chal-
lenge when the preference lists are only partially specified, mainly because an incomplete
preference list can be interpreted in various ways. For example, consider a TA assign-
ment system where students should specify their preferences over eight types of TA duties:
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marking, face-to-face consulting with students, consulting through electronic communica-
tion, conducting tutorials, coordinating other TAs, creating assignment solutions, creating
marking schemes, and creating scripts. Two students choosing (marking, creating scripts,
coordinating other TAs) and (marking, creating scripts, coordinating other TAs, conduct-
ing tutorials, face-to-face consulting) might have the same or different opinions. So, the
distance between these two partially-specified preference lists depends on how we interpret
them.

Furthermore, for some applications, there is a concern of defining a proper distance
measure, where the distance between two preference lists is not zero unless the two lists
are the same, or a metric distance measure. In our TA assignment example, if we decide
to consider two preference lists that show no conflict, as for the (marking, creating scripts,
coordinating other TAs) and (marking, creating scripts, coordinating other TAs, conduct-
ing tutorials, face-to-face consulting) preference lists, to have distance zero, our distance
function will not be proper. Even if we consider such preference lists as at ε distance to
make the function proper, we will still have a non-metric measure, since preference lists at
ε distance of another preference list might be very far from each other, in particular since
we have assumed that a preference list on a small subset of candidates is close to a broad
range of other preference lists.

In order to define meaningful distance measures, people have looked at several cate-
gories of partially specified preference lists, each having a special-purpose interpretation.
Examples include total orders of subsets of candidates [57, 56], orderings of candidates
with possible ties [62, 4], and total orders of the most preferred k candidates [63, 4]. We
do not consider these variants in this thesis.
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Chapter 4

Neighbour String

In this chapter, we consider enumeration of solutions for Neighbour String, the problem
of finding a string σ that is within given distances from n given strings. Throughout the
chapter, we assume that I = {(s1, d1), (s2, d2), . . . , (sn, dn)} is the input instance, σ and
si’s are in Σ`, and di’s are non-negative integers.

In the following sections, we describe our algorithm, CrossoverSearch, for Neighbour
String. We also provide a modification of StringSearch [105], EnumStringSearch, to de-
scribe part of our new analysis technique1. Both CrossoverSearch and EnumStringSearch
solve Enum(P-Neighbour String) and Enum(P-Closest String). Consequently, as
mentioned in Section 2.2.1, they both enumerate all neighbour strings in the case of min-
imal input distances. Since the two algorithms solve Neighbour String and Closest
String in general (they produce at least a single solution for non-minimal input instances),
they are comparable to the existing algorithms in the literature. We are the first to present
FPT algorithms for Enum(P-Neighbour String) and Enum(P-Closest String).

Our algorithm, CrossoverSearch, makes use of new ideas in both the algorithm and its
analysis. As in previous (non-enumerating) algorithms, we construct a region R on which
two strings differ. In order to take advantage of all n of the input strings instead of just
two or three, we take different approaches to solutions that are “close” to R and “far”
from R. For the strings that are “close”, we form n + 1 representative strings such that
each “close” solution is very close to one of the representatives, allowing us to handle all
such solutions in n + 1 recursive calls. The removal of the “close” strings allows us to
exploit the additional structure that results on the remaining “far” strings, allowing us
to improve bounds on the reduced instance. The differences between the two algorithms

1A short version of this chapter was published in the proceedings of IPEC 2012 [116].
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will be made more clear after we describe the slightly modified version (Algorithm 3) of
StringSearch [105] in Section 4.1. Further details on the ideas in CrossoverSearch along
with an example are given in Section 4.2.

Our analysis can be viewed as extending the idea of considering a third string in a
previous algorithm 3-String by Chen et al. [38], to the consideration of all input strings. In
doing so, we avoid the detailed case analysis that was required to handle all the different
subregions formed in 3-String.

Another contribution of our work is to introduce tuning constants ε and δ that allow
us to optimize the running time of our algorithm for values of n and d that are related
in different ways. This results in an overall running time of O(n` + ndNδ(d, b, εd, n)) for
CrossoverSearch, when called for input instances having n strings of maxi di ≤ d and
mini di ≤ b, δ, and t0 = εd, where Nδ(d, b, t0, n) is the maximum number of leaves in the
produced search trees (and hence the number of solutions). Furthermore, we prove that

Nδ(d, d, εd, n) ≤ ((n+ 1)(d+ 1))
dlog

(1− δ2 )
εe

(|Σ| − 1)d5dd(1+ε+δ)e.

The measure kmin, used in defining “close” and “far”, can also be used to advantage in
the analysis of EnumStringSearch. We prove a bound on the maximum number of leaves
in the search tree of EnumStringSearch for input instances having n strings of maxi di ≤ d
and d1 ≤ b, denoted by M(d, b, n). In particular, we prove that

M(d, d, n) ≤ 2(n(d+ 1))dlg
1
ε
e(|Σ| − 1)d6dd(1+ε)e,

for any 0 < ε ≤ 1, and that the running time is in O(n`+ ndM(d, d, n)).

Before discussing the main algorithm, CrossoverSearch, in Section 4.2, we intro-
duce some of our analysis in a simpler example, namely our minor modification Enum-
StringSearch of the StringSearch algorithm of Ma and Sun [105], in Section 4.1. We will
have a closer look at the running times of CrossoverSearch and EnumStringSearch com-
pared to the previous algorithms in Section 4.3.

4.1 A New Measure for the Analysis

The algorithm EnumStringSearch showcases a simplified form of our new measure in the
analysis; the algorithm itself is a minor modification of Ma and Sun’s StringSearch that
makes it enumerative. The algorithm proceeds by setting the “origin” string sx to s1. The
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Algorithm 3: EnumStringSearch

Require: An instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉
Assume: ∀s ∃1 ≤ i ≤ n such that H(s, si) ≥ di
NS← ∅;1

x← 1; /* initializing (sx, dx) to (s1, d1) */2

if dx < 0 then return NS;3

if H(sx, si) ≤ di for all 1 ≤ i ≤ n then4

NS← {sx}; /* sx is a neighbour string */5

end6

if dx = 0 then return NS; /* no more bit changes are allowed */7

Choose sy ∈ Is such that H(sx, sy) ≥ dy; /* choose a far string sy */8

R← P (sx, sy); /* the set of positions in which sx and sy differ */9

foreach |R| − dy ≤ k ≤ dx do10

foreach w ∈ Σ|R| with H(w, sx|R) = k do11

foreach 1 ≤ i ≤ n do d′i ← di −H(w, si|R);12

d′x ← min{d′x, d′y}; /* sx and sy are the same in the region R */13

NS← NS ∪ (w ⊕R EnumStringSearch(〈(s1|R, d′1), (s2|R, d′2), . . . , (sn|R, d′n)〉));14

end15

end16

return NS;17

search for neighbour strings “originates” from sx in the sense that the algorithm searchs for
bits that must be changed in sx in order to reach a neighbour string. The algorithm thus
first decides if no change is necessary, and sx is already a solution (line 5). A region R is
defined as the set of positions in which sx differs from a second string, sy. In Example 4.1
below, s2 is chosen as the “far” string sy, as it satisfies the condition (line 8) that sx
and sy differ in at least d2 = 4 positions. The algorithm tries each possible assignment
of characters to the positions in R, and for each such assignment w, forms solutions by
recursively solving the problem on a reduced instance consisting of the substrings formed
by removing all positions in R. In lines 10 and 11, values of w are grouped by k, where
k = H(w, sx|R), the distance between w and the restriction of sx to R. The distance
allotment d′i for the reduced instance is determined by subtracting from di the number of
positions that differ between si|R and w (line 12). We observe that since sx|R = sy|R, we
can set d′x to the minimum of d′x and d′y (line 13).

Example 4.1. Suppose that I = 〈(000000000, 4), (111110000, 4), (100111101, 4), (011110010, 4)〉
and sx = s1. Also, suppose that s2 is chosen as the “far” string sy at line 8. Then, R
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will be the set {1, 2, 3, 4, 5} of positions in which s1 and s2 differ. Consider the iteration
of the loop in which w is set to 00011 (line 11). In this iteration, the d′i’s are determined
as d′2 = 4 − 3 = 1, d′3 = 4 − 1 = 3, d′4 = 4 − 2 = 2, and d′x = d′1 = min{4 − 2, d′2} = 1,
meaning that if the neighbour string we are looking for equals w = 00011 when restricted
to the region R, then its restriction to R has to be within distances d′1 = 1, d′2 = 1, d′3 = 3,
and d′4 = 2 to s1|R, s2|R, s3|R, and s4|R, respectively.

The algorithm shown in Algorithm 3 differs from StringSearch only in lines 8 (where
the original > is replaced by ≥) and 14. The importance of the change to line 8 is that
the search will continue even when a neighbour string is found. If the di’s are not minimal,
the algorithm will find at least one solution (if any exist), but is not guaranteed to find all
solutions. To be precise, the algorithm will terminate early at line 8 if sx is a neighbour
string that is closer than di for each si.

Lemma 4.1 below shows that, despite the change to line 8, the bounds obtained [105]
for StringSearch still hold. Item 3 demonstrates an upper bound on the maximum number
of leaves in the search tree of EnumStringSearch for input instances having n strings of
maxi di ≤ d and d1 ≤ b, denoted by M(d, b, n). Items 1 and 2 are intermediate lemmas
and are included for future reference in our new analysis.

The proof follows from the analogue in the analysis of StringSearch by Ma and Sun [105]
and the fact that H(sx, sy) can equal dy has no impact on those proofs. We include the
proofs for completeness. A more high-level description can be found in Section 2.2.2. The
first item generalizes the fact that if |R| > dx + dy, no neighbour string exists for I; the
closer |R| is to dx+dy, the smaller the value of d′x, and thus the easier the reduced instance.
The second item shows that at each recursive call, the size of dx is at most half that at
the previous level; we will see how to generalize this result in CrossoverSearch. The bound
given by the third item will prove useful in improving the results of each algorithm, as
in Theorem 4.1, where this result is used as a way to take an early exit from a recursive
analysis.

Lemma 4.1. 1. d′x ≤
dx+dy−|R|

2
(or, equivalently, |R| ≤ dx + dy − 2d′x)

2. d′x ≤ dx
2

3. For all 0 ≤ b ≤ d, M(d, b, n) ≤
(
d+b
b

)
(|Σ| − 1)b4b.

Proof. The d′x and d′y computed at line 12 are equal to dx−H(w, sx|R) and dy−H(w, sy|R),
respectively. Since d′x is updated to min{d′x, d′y}, d′x ≤ min{dx − H(w, sx|R), dy −
H(w, sy|R)} ≤ dx+dy−(H(w,sx|R)+H(w,sy |R))

2
.
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Since R is the region in which sx and sy disagree, H(w, sx|R) +H(w, sy|R) ≥ |R|, and

therefore, d′x ≤
dx+dy−|R|

2
.

Since sy is chosen such that H(sx, sy) ≥ dy, |R| ≥ dy. Therefore, the upper bound
dx+dy−|R|

2
on d′x is less than or equal to dx

2
.

Ma and Sun [105] proved an upper bound(
d+ b

b

)
(|Σ| − 1)b4b

on the maximum number of leaves in the search tree of StringSearch for input instances
having n strings of maxi di ≤ d and d1 ≤ b, based on a recursive bound. As a result, in
order to prove 3, it suffices to show that for all 0 ≤ b ≤ d,

M(d, b, n) ≤


1 b = 0∑
0≤k≤b

(
d+ k

k

)
(|Σ| − 1)kM

(
d,min

{
b− k, b

2

}
, n

)
b > 0 .

We consider an input I = 〈(s1, d1), . . . , (sn, dn)〉, with maxi di ≤ d and d1 ≤ b, that
maximizes the number of leaves in the search tree. To make the names consistent with
those in CrossoverSearch, dx = d1 (line 2), and thus, dx ≤ b. The lemma holds for b ≤ 0,
as the algorithm stops at line 3 or 7 producing only one node in the search tree.

For b > 0, the algorithm will branch on every w with |R| − dy ≤ H(w, sx|R) ≤ dx
produced at line 11. For a specific k, the number of w’s with H(w, sx|R) = k is at most(|R|
k

)
(|Σ| − 1)k ≤

(
dy+k
k

)
(|Σ| − 1)k ≤

(
d+k
k

)
(|Σ| − 1)k.

We claim that the number of search tree leaves in the branch for any such w is at most
M(d,min{b − k, b

2
}, n). An upper bound on the total number of leaves in the search tree

is then found by summing over all values of k the product of M(d,min{b − k, b
2
}, n) and

the number of w’s with H(w, sx|R) = k, or∑
0≤k≤b

(
d+ k

k

)
(|Σ| − 1)kM

(
d,min

{
b− k, b

2

}
, n
)

as needed to complete the proof.

All that remains is to prove the claim. For any w with H(w, sx|R) = k, d′x ≤ dx − k.
Moreover, due to Lemma 4.1, d′x ≤ dx

2
. Consequently, d′x ≤ min{dx−k, dx2 } ≤ min{b−k, b

2
}.

By the definition of M , the maximum number of leaves produced by the recursive call at
line 14 is M(maxi d

′
i, d
′
x, n) which is less than or equal to M(d,min{b − k, b

2
}, n) because

M is non-decreasing.
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Using a new analysis, we derive a new recursive bound for M(d, b, n) in Lemma 4.2.
Critical to our analysis is the value kmin = miniH(w, si|R) (it does not appear explicitly
in the algorithm), defined for a particular value of w. Unlike in the original analysis of
StringSearch, where a bound was based on k = H(w, sx|R), we instead categorize different
branches depending on kmin. Consider Example 4.1 to get a sense of the difference between
the two analyses. In particular, consider the branch in which 00011 is assigned to w, which
leads to kmin = H(w, s3|R) = 1 and k = H(w, sx|R) = 2. In the original analysis, based on
k, the number of nodes in the search tree of the recursive call, at line 14, is estimated as
M(d, d′x, n) = M(4, 1, 4), considering d′x ≤ dx− k in the analysis. In our analysis, based on
kmin, the number of nodes in the tree is estimated as M(d−kmin, d′x, n) = M(3, 1, 4), using
the additional fact that maxi d

′
i ≤ d − kmin. The new analysis provides a tighter bound

for the number of nodes for each assignment to w. Nevertheless, it requires an estimation
of the number of w’s at a certain minimum distance from si’s, the true number of which
depends on the actual strings.

We will use a combination of the recursive bounds of Lemmas 4.2 and 4.1, item 3, to
prove the complexity of EnumStringSearch in Theorem 4.1 and Corollary 4.1. We will
defer the proof of Theorem 4.1 to the end of this section, after a high-level idea of the
proof is provided. Notice that the upper bound holds for every 0 < ε ≤ 1:

Theorem 4.1. Given an instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉 of Neighbour
String for which there does not exist s with H(s, si) < di for all 1 ≤ i ≤ n,
EnumStringSearch(I) returns NS(I) in O(n`+ nmaxi di ·M(maxi di, d1, n)) time, where

M(d, b, n) ≤ (n(b+ 1))dlg
b
εd
e(|Σ| − 1)b2bg

(
dd(1 + ε)e,min

{⌈2d(1 + ε)

3

⌉
, b
})
,

for all 0 ≤ b ≤ d, 0 < ε ≤ 1, and for g(x, y) =
(
x
y

)
2y. Furthermore, |NS(I)| ≤

M(maxi di, d1, n).

Stirling’s inequality will simplify the bound for Closest String, where all di’s are
equal to d, and thus b = d.

Corollary 4.1. Given an instance I = 〈(s1, d), (s2, d), . . . , (sn, d)〉 for which there does
not exist s with H(s, si) < d for all 1 ≤ i ≤ n, EnumStringSearch(I) returns NS(I) in
O(n`+ nd ·M(d, d, n)) time, where

M(d, d, n) ≤ 2(n(d+ 1))dlg
1
ε
e(|Σ| − 1)d6dd(1+ε)e,

for all 0 < ε ≤ 1. Furthermore, |NS(I)| ≤M(d, d, n).
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Proof. By Theorem 4.1, M(d, d, n) ≤ (n(d + 1))dlg
1
ε
e(|Σ| − 1)d2d

( dd(1+ε)e
d 2d(1+ε)3 e

)
2d

2d(1+ε)
3 e. Stir-

ling’s inequality2 for
( dd(1+ε)e
d 2d(1+ε)3 e

)
=
( dd(1+ε)e
b d(1+ε)3 c

)
proves the corollary:

M(d, d, n) ≤ (n(d+ 1))dlg
1
ε
e(|Σ| − 1)d2d

 1(
1
3

)( 1
3) (2

3

)( 2
3)

dd(1+ε)e

2d
2d(1+ε)

3 e

≤ (n(d+ 1))dlg
1
ε
e(|Σ| − 1)d2d+1

 2( 2
3)(

1
3

)( 1
3) (2

3

)( 2
3)

dd(1+ε)e

= (n(d+ 1))dlg
1
ε
e(|Σ| − 1)d2d+13dd(1+ε)e ≤ 2(n(d+ 1))dlg

1
ε
e(|Σ| − 1)d6dd(1+ε)e.

Notice that the O∗(6d(1+ε)) time bound already improves (asymptotically) the depen-
dence on d in the previous best time bound of O∗(6.73d) [38].

At the heart of the proof of Theorem 4.1 is the recursive bound for M(d, b, n) given
in Lemma 4.2. The formula is generated by summing the number of search tree leaves in
the branch for w, over every string w produced at line 11. For any w, we will use v(w)
to denote the value of variable v in the body of the loop processing that w. In particular,
kmin(w) = miniH(w, si|R).

The n factor, not present in previous bounds [81, 105], results from the fact that
although the number of w’s at distance c from sx is

(|R|
c

)
(|Σ| − 1)c, there can be as many

as n
(|R|
c

)
(|Σ| − 1)c w’s at minimum distance c from the si’s.

Lemma 4.2. For all 0 ≤ b ≤ d,

M(d, b, n) ≤ n(b+ 1) · max
0≤i≤ b

2
,0≤j≤b−i

(
d+ b− 2i

j

)
(|Σ| − 1)jM(d− j, i, n).

Proof. We consider an input I = 〈(s1, d1), . . . , (sn, dn)〉, with maxi di ≤ d and d1 ≤ b,
maximizing the number of leaves in the search tree. The lemma holds for b ≤ 0, as the
algorithm stops at line 3 or 7 producing only one node in the search tree.

2For any 0 < α < 1
2 ,
(

x
bαxc

)
≤
(

1
αα(1−α)(1−α)

)
: Stirling’s upper bound for x! and lower bounds for bαxc

and d(1− α)xe proves the inequality.
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For b > 0, the algorithm will branch on every w produced at line 11. For a specific
j, we consider all w’s such that kmin(w) = j. We can view each such w as being formed
by choosing an input string si, choosing j positions in R, and choosing symbols for those
positions that differ from the corresponding symbols in si; in total the number of such w’s
is thus at most n

(|R|
j

)
(|Σ| − 1)j. We claim that the number of search tree leaves in the

branch for any such w is at most

A(j) = max
0≤i≤min{b−j, dy+b−|R|

2
}
M(d− j, i, n). (4.1)

An upper bound on the total number of nodes in the search tree is then found by summing
over all values of j the product of A(j) and the number of w’s with kmin(w) = j, or∑

0≤j≤b

n

(
|R|
j

)
(|Σ| − 1)jA(j),

which can be shown by straightforward mathematical manipulations to be at most

n(b+ 1) · max
0≤i≤ b

2
,0≤j≤b−i

(
d+ b− 2i

j

)
(|Σ| − 1)jM(d− j, i, n), (4.2)

as needed to complete the proof. We also used the fact that the range of i in (4.2) is a

superset of its range in (4.1) as dy+b−|R|
2

≤ b
2
.

All that remains is to prove the claim. We consider an arbitrary w produced at line 11.
Assuming that j = kmin(w), we show that the number of leaves produced in the loop is no
more than A(j).

In the case in which d′x(w) is non-negative, the number of leaves produced at the
function call at line 14 is at most M(maxi d

′
i(w), d′x(w), n). Since maxi d

′
i(w) ≤ maxi{di −

H(w, si|R)} ≤ maxi di −miniH(w, si|R), we have maxi d
′
i(w) ≤ d − j. There are thus at

most M(d − j, d′x(w), n) leaves produced in the loop. We now wish to show that M(d −
j, d′x(w), n) is bounded above by A(j). We complete the proof by showing that d′x(w) is in

the range [0,min{b− j, dy+b−|R|
2
}]. By definition, d′x(w) ≤ dx−H(w, sx|R) ≤ b−kmin(w) =

b− j, covering the first case in the minimum. By Lemma 4.1, item 1, d′x(w) ≤ dy+dx−|R|
2

≤
d+b−|R|

2
.

For a negative d′x(w), the recursive call terminates at the second line, yielding a single
node. Here we show that the number of leaves produced in the loop, i.e. 1, is bounded
above by A(j) by demonstrating that 1 ≤M(d− j, i, n) for some i in the range [0,min{b−
j, d+b−|R|

2
}]. In fact, M(d− j, i, n) = 1 for i = 0, as needed to complete the proof.
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The challenge in proving Theorem 4.1 by induction stems from the fact that the relative
values of i and d2(d−j)(1+ε)

3
e are not known for the i and j maximizing the Lemma 4.2

recursive bound. Setting u to 2 in Lemma 4.3 below allows us to correlate the relative
values of b and d2d(1+ε)

3
e with the relative values of i and d2(d−j)(1+ε)

3
e.

Lemma 4.3. For any integer u and for all i ∈ [0, b
2
] and j ∈ [0, b − i], and d ≥ b, if

i ≥ du(d−j)
u+1
e, then b ≥ 2ud

2u+1
and b ≥ d ud

u+1
e.

Proof. Since i ≥ du(d−j)
u+1
e, the relaxed inequality i ≥ u(d−j)

u+1
is also true, proving that

u(i+ j) + i ≥ ud. Applying the conditions i ≤ b
2

and j ≤ b− i to this inequality results in
ub+ b

2
≥ ud. Therefore,

b ≥ 2ud
2u+1

> 2ud
2u+2

.

The integrality of b ensures that b ≥ d ud
u+1
e, completing the proof.

Another challenge is that every time the recursive bound of Lemma 4.2 is applied, an
n(b+ 1) factor is generated. However, log b applications of the bound are needed before a
constant b is reached. Further refinement is possible; the recursive bound of Lemma 4.1,
item 3, can be combined with the recursive bound of Lemma 4.2 to reduce the exponent
of n(b+ 1) to a constant.

We first prove a preliminary version of Theorem 4.1 that is based merely on the recursive
bound of Lemma 4.2:

Theorem 4.2. For all 0 ≤ b ≤ d,

M(d, b, n) ≤ (n(b+ 1))lg(b)(|Σ| − 1)b2bg(d,min{d2d
3
e, b}),

where g(x, y) =
(
x
y

)
2y.

Proof. We first show that EnumStringSearch returns NS(I), i.e. NS = NS(I). To make
the names consistent with those in CrossoverSearch, dx = d1 (line 2). The proof is by
strong induction on dx, with the base case dx ≤ 0. The statement holds for dx < 0,
since no string can have a negative distance from another string, and NS(I) must be ∅, as
returned at line 3. The statement is also true for dx = 0, since NS(I) = {sx} if sx is a
neighbour string, and NS(I) = ∅ otherwise, as returned at line 7.

Assuming the theorem holds for values of dx smaller than `, ` > 0, it is easy to show
that NS ⊆ NS(I) for dx = `. Any string σ ∈ NS is inserted in NS at line 14, and thus
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is made up of two parts w and σ′ such that σ = w ⊕R σ′. Due to Lemma 4.1, item 2,
the d′x computed at line 13 is at most dx

2
< `. Therefore, by the induction hypothesis,

σ′ ∈ NS(〈(s1|R, d′1), . . . , (sn|R, d′n)〉) and thus σ ∈ NS(I), as for all i H(σ′, si|R) ≤ d′i =
di −H(w, si|R) implies that H(w ⊕R σ′, si) ≤ di.

To prove that NS(I) ⊆ NS for dx = `, we show that every string σ ∈ NS(I) will be
added to NS at the concatenation operation at line 14 during the round w is set to σ|R at
line 11. First, we note that each w = σ|R is generated at line 11, since H(σ|R, sx|R) ≤ dx
and the definition of R guarantees |R| ≤ H(σ|R, sx|R)+H(σ|R, sy|R) ≤ H(σ|R, sx|R)+dy.

Second, σ|R is in NS(〈(s1|R, d′1), . . . , (sn|R, d′n)〉), since otherwise, there exists si ∈ Is
that makesH(σ|R, si|R) greater than d′i = di−H(σ|R, si|R), and the resultingH(σ, si) > di
contradicts σ ∈ NS(I). Again, since d′x computed at line 13 is at most dx

2
< `, the induction

hypothesis can be used, and thus, σ|R will be among the strings returned at the recursive
call.

To see that the running time bound is met, we associate each node in the search tree
with the cost of steps 10-14 performed (if any) just before the node was created plus
the cost of steps 1-9 performed at the time the node is being executed. Assuming that
H(si, sx) and P (si, sx) are known, the cost of a node will be in O(n). The distances would
normally take O(n`) time to compute, but the algorithm can reduce the time required to
O(nmaxi di) time if it initially computes and stores the distances of every input string si
from sx, and updates the distances, and sets of positions in P (si, sx), in each round based
merely on the positions decided in the round, i.e. the positions in R. Consequently, each
node will add O(nmaxi di) time to the running time, and the algorithm will consume an
overall O(n`+ nmaxi di ·N) time, where N is the number of nodes in the tree. The proof
is completed by the observation that all internal nodes of height two or more have at least
two children, generated for k = dx; therefore, N is at most four times the number of leaves,
or N ≤ 4M(maxi di, d1, n).

It remains to prove the upper bound for M(d, b, n) by strong induction on b, with the
base case b = 0. Starting with the recursive formula of Lemma 4.2, we need to show that

n(b+ 1)

(
d+ b− 2i

j

)
(|Σ| − 1)j(n(i+ 1))lg i(|Σ| − 1)i2ig

(
d− j,min

{⌈2(d− j)
3

⌉
, i
})

is at most (n(b+ 1))lg b(|Σ| − 1)b2bg
(
d,min

{⌈
2d
3

⌉
, b
})

for every i ∈ [0, b
2
] and j ∈ [0, b− i].

The n(b+ 1)(n(i+ 1))lg i and (n(b+ 1))lg b factors and the (|Σ|− 1)j(|Σ|− 1)i and (|Σ|− 1)b

are easily cancelled out, since i ≤ b
2

and j ≤ b − i. It remains to show the following
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inequality for the i’s and j’s in the ranges:(
d+ b− 2i

j

)
2ig(d− j,min{d2(d− j)

3
e, i}) ≤ 2bg(d,min{d2d

3
e, b}). (4.3)

Case 1: i ≤ d2(d−j)
3
e

A =

(
d+ b− 2i

j

)
2ig(d− j,min{d2(d− j)

3
e, i}) =

(
d+ b− 2i

j

)(
d− j
i

)
4i.

The selection of j positions from d + b − 2i positions can be seen as a selection of
j1 ≤ j positions from d positions and a selection of j − j1 positions from b − 2i
positions:

A =
∑

0≤j1≤j

(
d

j − j1

)(
b− 2i

j1

)(
d− j
i

)
4i ≤ max

0≤j1≤j
2b−2i

(
d

j − j1

)(
d− j
i

)
4i

= max
0≤j1≤j

2b
(

d

j − j1

)(
d− j
i

)
.

If
(
d−j
i

)
is increased to

(
d−(j−j1)

i

)
, the two combinations can be viewed as choosing

j−j1 from d positions, and then choosing i positions from the remainder of positions:

2b
(

d

j − j1

)(
d− (j − j1)

i

)
= 2b

(
d

j − j1 + i

)(
j − j1 + i

i

)
≤ 2bg(d, j − j1 + i)

We notice that g(x, y) increases with the increase of y until y = d2x
3
e and decreases

afterwards. Considering that j − j1 + i ≤ j + i ≤ b, A is proved to be less than or
equal to 2bg(d,min{d2d

3
e, b}), completing the proof for the first case.

Case 2: i > d2(d−j)
3
e

In the proofs of Case 2A and 2B below, we will use the fact that b ≥ d2d
3
e (Lemma 4.3).

B =

(
d+ b− 2i

j

)
2ig(d−j,min{d2(d− j)

3
e, i}) = 2i

(
d+ b− 2i

j

)(
d− j
d2(d−j)

3
e

)
2d

2(d−j)
3
e.

By Stirling’s inequality,

B ≤ 2i
(
d+ b− 2i

j

) 1(
1
3

) 1
3
(

2
3

) 2
3

(d−j)

2d
2(d−j)

3
e ≤ 2i+1

(
d+ b− 2i

j

)
3(d−j).
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The function t(j) =
(
d+b−2i

j

)
3−j is non-decreasing for j ≤ d+b−2i+1

4
, and decreasing

afterwards, since t(j)
t(j−1)

= d+b−2i−j+1
3j

≥ 1 if and only if j ≤ d+b−2i+1
4

.

On the other hand, the condition on i’s, and the integrality of j, forces j to be at
least dd− 3

2
(i− 1)e, since i > d2(d−j)

3
e if and only if j ≥ 2d−3i+3

2
.

This lower bound for j is always greater than d+b−2i+1
4

, since d− 3
2
(i− 1) > d+b−2i+1

4

for i ≤ b
2
. Therefore, the maximum of B occurs at j = x(i) = dd− 3

2
(i− 1)e:

B ≤
(
d+ b− 2i

x(i)

)
2i+13d−x(i) = B(i).

We show that B(i) is maximized at the maximum i, i.e., i = b
2
. To do this, we

examine the ratio B(i+1)
B(i)

and prove it to be greater than one. We will encounter

functions of the form a−αi
b−βi , in the proofs, which are decreasing, non-changing, or

increasing for i depending on whether aβ < bα, aβ = bα, or aβ > bα.

Since x(i+ 1) = dd− 3
2
(i− 1)− 3

2
e and x(i) = dd− 3

2
(i− 1)e, the following two cases

are exhaustive:

Case 2A: x(i+ 1) = x(i)− 1

B(i+ 1)

B(i)
= 6 ·

(
d+b−2i−2
x(i)−1

)(
d+b−2i
x(i)

) >
6x(i)

d+ b− 2i
· d+ b− 2i− x(i)

d+ b− 2i
≥

6x( b
2
)

d
·
d− x( b

2
)

d

The last inequality comes from the fact that both 6x(i)
d+b−2i

and d+b−2i−x(i)
d+b−2i

are

functions of the form a−αi
b−βi .

Since x( b
2
) and d − x( b

2
) add up to d, the minimum of their product occurs at

one of the boundaries of x( b
2
). As x( b

2
) is linear in b, the boundaries of x( b

2
)

occur at the boundaries of b, i.e. at b = d2d
3
e or at b = d. Both produce values

greater than 1, by which B(i+1)
B(i)

is proved to be greater than one.

Case 2B: x(i+ 1) = x(i)− 2

B(i+ 1)

B(i)
= 18 ·

(
d+b−2i−2
x(i)−2

)(
d+b−2i
x(i)

) ≥ 18 ·

(
x( b

2
)

d

)2

> 1.
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Therefore, i = b
2

maximizes B(i).

B ≤ B

(
b

2

)
=
g(d, d− x( b

2
))

2d−x( b
2

)
· 2

b
2

+1 · 3d−x( b
2

)

≤
g(d, d2

3
de)

2d−x( b
2

)
· 2

b
2

+1 · 3d−x( b
2

)

≤ 2bg(d,
⌈2

3
d
⌉
)2bg

(
d,
⌈2

3
d
⌉)

To reduce the exponent of n(b+ 1) to a constant, we stop using the recursive function
of Lemma 4.2 after b becomes smaller than εd, for a tuning constant ε, and then use the
bound M(d, b, n) ≤

(
d+b
b

)
(|Σ| − 1)b4b of Ma and Sun (Lemma 4.1, item 3). As ε increases,

the recursive depth (and hence the exponent on n(d+1)) decreases, as the ending condition
is met sooner. Since the optimal choice will depend on the relative values of n and b, the
ε in Theorem 4.1 can be set as best for each circumstance.

Proof of Theorem 4.1.

For b’s smaller than εd, the result follows from Lemma 4.1, item 3:

M(d, b, n) ≤
(
d(1 + ε)

b

)
(|Σ| − 1)b4b = (|Σ| − 1)b2bg(d(1 + ε), b)

≤ (|Σ| − 1)b2bg(d(1 + ε),min{d2d(1 + ε)

3
e, b})

For larger b’s, the proof is similar to the proof of Theorem 4.2, except that the induc-
tion hypothesis gives the slightly worse bound of 2ig((d − j)(1 + ε),min{d2(d−j)(1+ε)

3
e, i})

for M(d − j, i, n). Nevertheless, once d + (d − j)ε is substituted for the d parameter in
Inequality (4.3), we will have(
d+ b− 2i

j

)
2ig((d−j)(1+ε),min{d2(d− j)(1 + ε)

3
e, i}) ≤ 2bg(d+(d−j)ε,min{d2(d+ (d− j)ε)

3
e, b}).

It is easy to verify that

2bg(d+ (d− j)ε,min{d2(d+ (d− j)ε)
3

e, b}) ≤ 2bg(d(1 + ε),min{d2d(1 + ε)

3
e, b}),

as needed to complete the proof.
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4.2 Using Combinations of Input Strings

Algorithm 4: CrossoverSearch

Require : An instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉, a real number δ, an integer t0,
and (sx, dx)

Assume : ∀s ∃1 ≤ i ≤ n such that H(s, si) ≥ di
if dx ≤ t0 then /* no change of algorithm for small dx’s */1

return EnumStringSearch(〈(sx, dx), (s1, d1), (s2, d2), . . . , (sn, dn)〉);2

end3

Choose sy ∈ Is such that H(sx, sy) ≥ dy;4

R← P (sx, sy);5

t← b(1− δ
2)dxc+ 1;6

NS← CrossoverSearch(I, δ, t0, (sx, t− 1)); /* find R-close solutions */7

foreach 1 ≤ i ≤ n do8

ŝ = si|R⊕R sx|R;9

NS← NS ∪ CrossoverSearch(I, δ, t0, (ŝ, t− 1)); /* find R-close solutions */10

end11

foreach max{|R| − dy, t− dx+dy−|R|
2 } ≤ k ≤ dx do12

foreach w ∈ Σ|R| with H(w, sx|R) = k do13

foreach 1 ≤ i ≤ n do d′i ← di −H(w, si|R);14

d′x ← min{d′x, d′y};15

if miniH(w, si|R) + d′x < t then /* no R-far solutions in this branch */16

return CrossoverSearch(〈(s1,−1), . . . , (sn,−1)〉, δ, t0, (sx,−1)); /* produce a17

fake leaf, for the sake of analysis */

end18

else /* find R-far solutions */19

NS← NS∪ (w⊕R CrossoverSearch(〈(s1|R, d′1), . . . , (sn|R, d′n)〉, δ, t0, (sx|R, d′x)));20

end21

end22

return NS;23

In this section, we highlight the ideas in CrossoverSearch, shown in Algorithm 4. The
“origin” string sx is passed as a separate parameter here, since sx is not always one of the
input strings; rather, at times, the algorithm constructs sx as a combination of two input
strings (lines 9 and 10).

Following previous algorithms, we begin by finding a difference region R (lines 4–5).
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The new approach introduced in this algorithm is the classification of all solutions into
two types: an R-close solution is “close” to the restriction of some input string to R, and
an R-close solution is “close” to restrictions of all input strings to R. For the appropriate
definition of “close”, each solution must be of one of these types, since if a solution is
not R-close, then H(σ|R, si|R) is large, and hence H(σ|R, si|R) cannot be very big, since
H(σ|R, si|R) +H(σ|R, si|R) must be at most di.

Each R-close solution will be close to at least one of the n + 1 strings si|R ⊕R sx|R,
si ∈ Is ∪ {sx}. The algorithm will find all such neighbour strings through the n + 1
recursive calls at lines 7 and 10, each of which uses one of the n + 1 combinations of
input strings as sx along with a small distance allotment t − 1. It is the threshold t,
then, that defines “close” to distinguish R-close and R-close solutions. The smaller this
threshold is, the more distances are considered “far”, and hence the more solutions are
R-close. In Example 4.1, if t = 3, the solution σ = 000110000 is considered R-close since
H(s3|R, σ|R) = 1 ≤ t − 1. Consequently, σ will be found efficiently through the function
call at line 10 for ŝ = s3|R ⊕R sx|R. Indeed, this single recursive call replaces the search
for all the neighbour strings in {σ : H(s3|R, σ|R) + H(sx|R, σ|R) ≤ t − 1}. After line 11,
the search is confined to solutions whose restrictions to R are at distance at least 3 from
all the si’s.

The analysis of R-close solutions uses the measure kmin in a manner analogous to the
analysis of EnumStringSearch in Section 4.1. The fake leaves produced at line 17 are for
technical reasons only; they make the running time of the algorithm a nice function of the
number of leaves, as otherwise, some of the time-consuming branches do not produce many
leaves.

The roles of lines 2 and 6 are related to the use of tuning constants for the analysis.
In EnumStringSearch a single tuning constant ε was confined to the analysis, used to
determine when to stop the recursive calls; here we add a second tuning constant δ and,
unlike in EnumStringSearch, introduce both constants into the algorithm itself. Here, t0
plays the same role as ε. The additional constant δ plays a role in choosing the threshold
t.

We can think of the analysis as occurring in two stages. In the first stage, we re-
cursively reduce our bound on dx (line 6); this is similar to the reduction by halving in
EnumStringSearch (Lemma 4.1, item 2). Here instead of using 1

2
, we use 1− δ

2
; the bigger

the value of δ, the smaller the value of t, which plays a role in defining the new dx. The first
stage ends when dx ≤ t0 (line 2). In the second stage, i.e. within the instance of Enum-
StringSearch called at line 2, the bound is halved at each recursive call, and Lemma 4.1,
item 3 is invoked to complete the analysis.
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The inputs include not only the n strings and distance allotments and the tuning
constants δ and t0, but also a specified string and distance allotment pair (sx, dx), where sx
(as formed in line 9) is not required to be one of the input strings. To avoid an increase in
the number of strings in each invocation of the algorithm, sx is not merged into I at line 10;
also, whenever a constructed string ŝ is expected to be closer than sx to the solutions, ŝ
will replace the current value of sx (line 10).

4.2.1 Analysis of CrossoverSearch

We prove the complexity of CrossoverSearch in Theorem 4.3. The ideas in the proof of
Theorem 4.1, such as the use of kmin and the use of the recursive bound of Ma and Sun
(Lemma 4.1, item 3) for small values of b are also used in the proof of Theorem 4.3.
In comparison, the parameter kmin appears in the algorithm (according to lines 14-17, a
neighbour string σ will be produced in branches of line 20 only if miniH(σ|R, si|R)+d′x ≥ t
for d′x = min{dx − H(σ|R, sx|R), dy − H(σ|R, sy|R}; the value miniH(w|R, si|R) will be
kmin if w is the required σ|R), and a more complicated condition is needed at line 12.
Determining a condition that satisfies both the correctness and the required complexity is
a challenge.

The ratio of t0 to d has the same role as the tuning constant ε in EnumStringSearch.
The proof is optimized for values of δ smaller than 0.75, since these are the only values of
interest. Larger values of δ will produce 5dd(1+ε+0.75)e factors in the bound, already worse
than the 16d previous bound [105], also mentioned in Lemma 4.1, item 3.

Theorem 4.3. Given an instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉, for which there
does not exist s with H(s, si) < di for all 1 ≤ i ≤ n, and for any 0 < δ ≤ 0.75 and
0 < ε ≤ 1, CrossoverSearch(I, δ, εd, (s1, d1)) returns NS(I) in time O(n` + nmaxi di ·
Nδ(maxi di, d1, εd, n)), where

Nδ(d, b, εd, n) ≤ ((n+ 1)(b+ 1))
dlog

(1− δ2 )
εd
b
e
(|Σ| − 1)bf(d′,min{d4d

′

5
e, b}),

for any 0 ≤ b ≤ d, and for f(x, y) =
(
x
y

)
4y and d′ = dd + εd + δbe. Furthermore,

|NS(I)| ≤ Nδ(maxi di, d1, εd, n).

Proof. We need to show that CrossoverSearch returns O = NS(I ∪〈(sx, dx)〉), i.e. NS = O.
The proof is by strong induction on dx, with the base case dx ≤ t0. The algorithm will
proceed as EnumStringSearch, thus returning O, when dx ≤ t0.
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Assuming the theorem holds for values of dx smaller than `, t0 < `, it is easy to show
NS ⊆ O for dx = `. If σ is inserted in NS at line 7 or 10, since CrossoverSearch is called
with t− 1 ≤ dx − 1 < ` (line 6), σ has to be in O by the induction hypothesis. Otherwise,
σ is inserted in NS at line 20, and therefore, is made up of w and σ′ such that σ = w⊕R σ′.
Due to Lemma 4.1, item 2, the d′x computed at line 15 is at most dx

2
< `. Therefore, from

the induction hypothesis, σ′ ∈ NS(〈(s1|R, d′1), . . . , (sn|R, d′n), (sx|R, d′x)〉), and therefore, σ
satisfies the required distance restrictions H(w ⊕R σ′, si) ≤ di for all i’s:

H(σ′, si|R) ≤ d′i ≤ di −H(w, si|R)

To prove the other direction, i.e. O ⊆ NS, for dx = `, we consider σ’s in O based on their
values of α(σ) = mins∈Is∪{sx}H(σ|R, s|R) +H(σ|R, sx|R). If α(σ) < t, σ will be returned
by one of the function calls at line 7 or 10. Otherwise, if α(σ) ≥ t, we show that σ will be
added to NS at the concatenation operation at line 20 during the round w is set to σ|R at
line 13. We note that each w = σ|R is generated at line 13, since H(σ|R, sx|R) ≤ dx and the
definition of R guarantees |R| ≤ H(σ|R, sx|R) +H(σ|R, sy|R) ≤ H(σ|R, sx|R) + dy. Also,
α(σ) ≥ t implies that t − H(σ|R, sx|R) ≤ H(σ|R, sx|R). As σ ∈ O, H(σ|R, sx|R) ≤ d′x,

which is bounded above by dy+dx−|R|
2

(Lemma 4.1, item 1). Consequently, t− dx+dy−|R|
2

≤
t−H(σ|R, sx|R) ≤ H(σ|R, sx|R).

Moreover, σ|R is in NS(〈(s1|R, d′1), . . . , (sn|R, d′n), (sx|R, dx)〉), since otherwise, either
H(σ|R, sx|R) > d′x or there exists si ∈ Is that makes H(σ|R, si|R) greater than d′i =
di−H(σ|R, si|R). The resulting H(σ, sx) > dx, H(σ, sy) > dy, or H(σ, si) > di, contradicts
σ ∈ O. Again, since d′x computed at line 13 is at most dx

2
< `, the induction hypothesis

can be used, and thus, σ|R will be among the strings returned at the recursive call.

The running time bound is proved by strong induction on b. The b ≤ t0 case is easily
verifiable, using Observation 4.1 and Lemma 4.1, item 3.

For the case t0 < b, due to Lemma 4.4, it suffices to prove that

(n+ 1)

(
Nδ(d, t− 1, t0, n) + b · max

0≤i≤ b
2
,t−i≤j≤b−i

(
d+ b− 2i

j

)
(|Σ| − 1)jNδ(d− j, i, t0, n)

)

is bounded by the target formula. Note that the target formula is non-decreasing in
d and b, and therefore, the induction hypothesis’s bound for maxd̂≤d,b̂≤bNδ(d̂, b̂, t0, n) is
automatically less than or equal to the target formula for Nδ(d, b, t0, n).

The (n+1)(b+1) and (|Σ|−1) factors are easily cancelled out, and we are left with the
following inequality to prove for all i ∈ [0, b

2
] and j ∈ [t− i, b− i], with d′ = dd + t0 + δbe
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and d′′ = dd+ t0 + δie:(
d+ b− 2i

j

)
f(d′′ − j,min{d4(d′′ − j)

5
e, i}) ≤ f(d′,min{d4d

′

5
e, b}). (4.4)

Case 1: b < d2d′

3
e

In this case, all the produced i’s and j’s satisfy i < d2(d′−j)
3
e (contraposi-

tive of Lemma 4.3 for u = 2). By definition, f(x, y) = 2yg(x, y), and thus
f(x,min{d4x

5
e, y}) = 2yg(x,min{d2x

3
e, y}) when y is no more than two thirds of x.

As a result, Inequality (4.3) in Theorem 4.1 can be used to prove the theorem. We
should note that the induction hypothesis here gives the slightly worse bound

f(d′′ − j,min{d4(d′′ − j)
5

e, i}) ≤ f(d′ − j,min{d4(d′ − j)
5

e, i}) = f(d′ − j, i)

= 2ig(d′ − j, i) = g(d′ − j,min{d2(d′ − j)
3

e, i})

for Nδ(d − j, i, t0, n), and we need to substitute d′ for the d parameter in Inequal-
ity (4.3) to get the desired result.

Case 2: b ≥ d2d′

3
e

Case 2A: i ≤ d4(d′′−j)
5
e

In this case, we need to show that f(d′,min{d4d′

5
e, b}) is an upper bound for

C =

(
d+ b− 2i

j

)
f(d′′ − j,min{d4(d′′ − j)

5
e, i}) =

(
d+ b− 2i

j

)(
d′′ − j
i

)
4i.

The parameter j is in the range (1− δ
2
)b− i < j ≤ b− i. We can replace j and

−j with their upper bounds b− i and i− (1− δ
2
)b, respectively:

C ≤
(
d+ b− 2i

b− i

)(
d′′ − b+ i+ δb

2

i

)
4i ≤

(
d+ b− 2i

b− i

)(
d′ − b+ i

i

)
4i

To make C comparable to f(d′,min{d4d′

5
e, b}), we increase

(
d+b−2i
b−i

)
to
(
d′+b−2i
b−i

)
.

In addition, we would like to set i to b
2
. Fortunately, since b ≥ d2d′

3
e, the function(

d′+b−2i
b−i

)(
d′−b+i

i

)
4i is non-decreasing for i in the whole interval 0 ≤ i ≤ b

2
. Thus,

C ≤
(

d′

b− b
2

)(
d′ − b+ b

2
b
2

)
2b =

(
d′

b

)(
b
b
2

)
2b ≤ f(d′, b).
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The equality is true since both
(
d′

b− b
2

)(d′−b+ b
2

b
2

)
and

(
d′

b

)(
b
b
2

)
are the number of all

possible selections of b positions from d′ positions.

The proof is complete, since f(x, y) increases with the increase of y to the point
y = d4x

5
e and decreases afterwards.

C ≤ f(d′, b) ≤ f(d′,min{b, d4d
′

5
e}).

Case 2B: i > d4(d′′−j)
5
e

In this case, b ≥ 8d′

9
(Lemma 4.3), and we need to show that

D =

(
d+ b− 2i

j

)
f(d′′−j,min{d4(d′′ − j)

5
e, i}) =

(
d+ b− 2i

j

)(
d′′ − j
d4(d′′−j)

5
e

)
4d

4(d′′−j)
5
e

is less than or equal to f(d′,min{d4d′

5
e, b}), which by Lemma 4.3 is equal to(

d′

d 4d′
5
e

)
4d

4d′
5
e in this case.

To make D comparable to
(

d′

d 4d′
5
e

)
4d

4d′
5
e, we would like to set i to b

2
. However,

the expression in its current form is not maximized at i = b
2
, and we need to

find an upper bound with this property.

By Stirling’s inequality,

D ≤
(
d+ b− 2i

j

)(
1

(4
5
)
4
5 (1

5
)
1
5

)d′′−j

· 4
4
5

(
4

4
5

)d′′−j
= 4

4
5

(
d+ b− 2i

j

)
5d
′′−j

≤ 4
4
5

(
d′′ + b− 2i

j

)
5d
′′−j.

The function is increasing to the point j = b (d′′+b−2i+1)
6

c and decreasing after-
wards. On the other hand, j has to be greater than (1− δ

2
)b− i, and the values

of the function we are interested in are in the decreasing section, if δ < 3
4
. Thus,

D ≤ 4
4
5

(
d′′ + b− 2i

b(1− δ
2
)b− ic+ 1

)
5d
′′−(b(1− δ

2
)b−ic+1) <

(
d′′ + b− 2i

b− i

)
5d
′′−b(1− δ

2
)b−ic

≤
(
d′′ + b− 2i

b− i

)
5d
′−b+i.
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Therefore, it suffices to show that(
d′ + b− 2i

b− i

)
5d
′−b+i ≤

(
d′

d4d′

5
e

)
4d

4d′
5
e. (4.5)

The function h(i) =
(
d′+b−2i
b−i

)
5d
′−b+i is increasing for 0 ≤ i ≤ b

2
, since b ≥ d2d′

3
e.

Therefore, h(i) reaches its maximum value at i = b
2
. Thus,

D ≤
(
d′

b
2

)
5d
′− b

2 =

(
d′

d′ − b
2

)
5d
′− b

2 .

The function r(i) =
(
d′

i

)
5i is non-decreasing as long as i ≤ (5d′+1)

6
, and

non-increasing for larger i’s. Not every value for d′− b
2

will be produced, however.

We know that b ≥ 8d′

9
in this case, and hence, d′ − b

2
≤ 5d′

9
and

D ≤
(

d′

b5d′

9
c

)
5b

5d′
9
c.

It remains to show that
(

d′

b 5d′
9
c

)
5b

5d′
9
c ≤

(
d′

d 4d′
5
e

)
4d

4d′
5
e, which is true based on

Stirling’s inequalities.

Again, Stirling’s inequality simplifies the bound for the special case of Closest
String, where b = d.

Corollary 4.2. Given an instance I = 〈(s1, d), (s2, d), . . . , (sn, d)〉, for which there does
not exist s with H(s, si) < d for all 1 ≤ i ≤ n, and for any 0 < δ ≤ 0.75 and 0 < ε ≤ 1,
CrossoverSearch(I, δ, εd, (s1, d)) returns NS(I) in time O(n`+ nd ·Nδ(d, d, εd, n)), where

Nδ(d, d, εd, n) ≤ ((n+ 1)(d+ 1))
dlog

(1− δ2 )
εe

(|Σ| − 1)d5dd(1+ε+δ)e.

Furthermore, |NS(I)| ≤ Nδ(d, d, εd, n).

The bound is mainly derived from the recursive functions in Observation 4.1 and
Lemma 4.4. If b ≤ t0, the function call at line 2 makes the algorithm run EnumStringSearch
with the additional string sx, thus producing no more than M(d, t0, n+ 1) leaves.
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Observation 4.1. For all 0 ≤ t0 ≤ d, 0 ≤ b ≤ t0, Nδ(d, b, t0, n) ≤M(d, b, n+ 1).

The proof for larger values of b will use much of the analysis appearing in the proof of
Lemma 4.2.

Lemma 4.4. For every 0 ≤ t0 ≤ d, t = b(1− δ
2
)bc, and all t0 < b ≤ d, Nδ(d, b, t0, n) is less

than or equal to

max


(n+ 1)

(
Nδ(d, t− 1, t0, n) + b · max

0≤i≤ b
2
,t−i≤j≤b−i

(
d+ b− 2i

j

)
(|Σ| − 1)jNδ(d− j, i, t0, n)

)
max

d̂≤d,b̂≤b
Nδ(d̂, b̂, t0, n)

.

Proof. We use strong induction on b, considering the instance I and values (sx, dx) that
maximize the number of leaves in the search tree. When dx < b, the number of leaves is
bounded by Nδ(maxi di, dx, t0, n), covered by the second line in the recursive formula.

From now on, we can assume that dx = b, and set d′ = maxi di. We let sy be the
string chosen at line 4; R will be P (sx, sy). The algorithm will make n + 1 function calls
at lines 7 and 10, each producing at most Nδ(d

′, t− 1, t0, n) nodes. It will then branch on
every w produced at line 13. We claim that for any produced w there exist 0 ≤ j ≤ b and
s ∈ Is ∪{sx} such that H(w, s|R) = j and the number of leaves reached from w is at most

A(j) = max
max{t−j,0}≤i≤min{b−j, dy+b−|R|

2
}
Nδ(d

′ − j, i, t0, n).

In total, the number of w’s mapped to a certain j and s is at most
(|R|
j

)
(|Σ| − 1)j.

An upper bound on the total number of leaves in the search tree is then found by the
counts for lines 7, 10, and 20, for a total of

(n+ 1) ·Nδ(d′, t− 1, t0, n) +
∑

0≤j≤b

(n+ 1)

(
|R|
j

)
(|Σ| − 1)jA(j),

which by straightforward mathematical manipulations is at most

(n+ 1)

(
Nδ(d

′, t− 1, t0, n) + b · max
0≤i≤ b

2
,t−i≤j≤b−i

(
dy + b− 2i

j

)
(|Σ| − 1)jNδ(d

′ − j, i, t0, n)

)

≤ (n+ 1)

(
Nδ(d, t− 1, t0, n) + b · max

0≤i≤ b
2
,t−i≤j≤b−i

(
d+ b− 2i

j

)
(|Σ| − 1)jNδ(d− j, i, t0, n)

)
.
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All that remains is to prove the claim. We consider an arbitrary w produced at line 13.

In the case in which d′x(w) is non-negative and miniH(w, si|R) + d′x(w) ≥ t, we
demonstrate that the number of leaves produced in the loop, which is no more than
Nδ(maxi d

′
i(w), d′x(w), t0, n) in this case, is at most A(j) for j = kmin(w). Since

maxi d
′
i(w) ≤ maxi{di − H(w, si|R)}, we have maxi d

′
i(w) ≤ d′ − j. There are thus at

most Nδ(d
′ − j, d′x(w), t0, n) leaves produced at the function call at line 20. We complete

the proof by showing that d′x(w) is in the range [max{t− j, 0},min{b− j, dy+b−|R|
2
}]. The

assumptions for this case imply the lower bound max{t − j, 0} ≤ d′x(w). In addition, by
definition, d′x(w) ≤ dx − H(w, sx|R) ≤ b − j, covering the first case in the upper bound.

By Lemma 4.1, item 1, d′x(w) ≤ dy+dx−|R|
2

≤ dy+b−|R|
2

.

For a negative d′x or for miniH(w, si|R)+d′x smaller than t, the algorithm will produce a
single node. Here we show that the number of leaves produced in the loop, i.e. 1, is bounded
above by A(j) for j = k, i.e. H(w, sx|R). We demonstrate that 1 ≤ Nδ(d

′ − k, i, t0, n) for

some i in the range [max{t − k, 0},min{b − k, dy+b−|R|
2
}]. In fact, we prove that i =

max{t − k, 0} will make Nδ(d
′ − k, i, t0, n) ≥ 1 by showing that there exists an instance

I = 〈(s1, d1), . . . , (sn, dn)〉 and (sx, dx) of maxi di ≤ d′ − k and dx ≤ i ≤ d′ − k for which
the distances d1, . . . , dn are minimal. Consider the instance sx = s1 = s2 = . . . sn−1 = 02i,
sn = 12i, and d1 = . . . = dn = dx = i, for i = max{t − k, 0}. Since i is non-negative
and is less than or equal to d′ − k, as t ≤ dx ≤ d′ follows from the definition of t (line 6),
the distance requirements are met for any string with i zeros and i ones. Furthermore, no
string can have a distance smaller than i from both s1 and sn, and thus the instance is
minimal. The proof is not yet complete, since i ∈ [max{t−k, 0},min{b−k, dy+b−|R|

2
}] only

if max{t− k, 0} ≤ min{b− k, dy+b−|R|
2
}, which is true because of the fact that t ≤ dx = b,

by the definition of t (line 6), and the conditions on k (line 12).

4.3 Concluding Remarks

We presented an O∗(5(1+λ)d · (|Σ| − 1)d)-time algorithm, for any λ > 0, called Crosso-
verSearch, to solve Enum(P-Neighbour String). For binary strings, the time
bound achieved is an asymptotic improvement over the previous best running time of
O∗(6.73d) [38] for finding a single solution for Closest String instances (where all dis-
tance allocations are equal to d).

We also gave a new analysis for the StringSearch algorithm of Ma and Sun [105], and
showed how it could solve Enum(P-Neighbour String) after a slight modification. Our
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analysis showed a time bound of O∗(6d(1+ε) · (|Σ| − 1)d), for arbitrary ε > 0. The previous
time bound of O∗(16d · (|Σ| − 1)d) Ma and Sun [105] also holds for the modified algorithm.

The new time bounds show how much the base of the exponential part can be pushed,
both in the enumerative version of StringSearch [105] and in our new algorithm. The
polynomial factors in O∗(5(1+λ)d · (|Σ| − 1)d) and O∗(6d(1+ε) · (|Σ| − 1)d) depend on λ and
ε, and become large when the bases get closed to 5 or 6, respectively.

Aside from theoretical improvements, the new time bound of O∗(5(1+λ)d) (for binary
strings) is an indication of the effectiveness of our approach. In particular, according to
our intermediate bounds in terms of d and mini di, the time bound for CrossoverSearch
reaches its maximum for mini di

d
= 2

3
; in comparison, the intermediate time bound for

EnumStringSearch reaches its maximum at mini di
d

= 4
5
. As a consequence, we expect the

ideas in CrossoverSearch to be particularly useful for instances with 2
3
< mini di

d
< 4

5
.
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Chapter 5

Kemeny Rank Aggregation

In this chapter, we consider Kemeny Rank Aggregation, the problem of finding
an optimal aggregation σ that minimizes the τ -distance from a given multiset I of m total
orders, denoted by kt. To be more precise, we study the parameterization of Kemeny
Rank Aggregation by kt

m
, called P-Kemeny Rank Aggregation, and the enumer-

ation problem associated with it.

Throughout the chapter, we use I to denote a multi-set of m total orders in Total(U)
for an n-element domain set U , use σ to denote an optimal aggregation of I, and use kt
to denote τ(σ, I).

In the following sections, we describe our O∗(1.403kt)-time algorithm1 for P-Kemeny

Rank Aggregation, our O∗(4
kt
m )-time algorithm2 for Enum(P-Kemeny Rank Ag-

gregation), and partial kernelizations3 for P-Kemeny Rank Aggregation and
Enum(P-Kemeny Rank Aggregation). Our first algorithm, improving the previ-
ous best running time of O∗(1.53kt) by Betzler et al. [20], was later outperformed by

O∗(2O(
√
kt
m

log
kt
m

))-time [7, 68] and O∗(2O(
√
kt
m

))-time [91] algorithms for P-Kemeny Rank
Aggregation. We include the result for completeness. We do not include our algorithms

of running times O∗(4.829km) and O∗(5.823
kt
m ) [123] in this thesis, since their running times

are already improved by our O∗(4
kt
m )-time enumeration algorithm in this chapter.

1A preliminary version of this algorithm was published in the proceedings of IWPEC 2009 [123].
2A short version of this algorithm and its analysis will appear in the proceedings of WADS 2013 [117].
3These partial kernelizations are submitted to MFCS 2013.
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Existing algorithms for parameterizations of Kemeny Rank Aggregation mostly
use a well-known reduction (mentioned in Section 2.3.1) to Weighted Feedback Arc Set
on complete digraphs. The most recent parameterized algorithm due to Karpinski and
Schudy [91] uses the property that the arc weights in the reduced graphs satisfy the proba-
bility constraint (i.e. the weights of the arcs (a, b) and (b, a) add up to one for every pair of
vertices a, b). In the analysis of our enumeration algorithm, we make use of the additional
property that the arc weights satisfy the triangle inequality [133].

Our enumeration algorithm is based on properties of pairs of vertices that can be ad-
jacent in minimum feedback arc sets. It neglects other properties of minimum feedback
arc sets to the point that it actually enumerates locally minimum feedback arc sets (corre-
sponding to locally optimal aggregations), the weight (resp., the τ -distance) of which does
not decrease by changing the order of two adjacent vertices (resp., candidates). Therefore,
the resulting parameterized upper bound on the number of locally minimum feedback arc
sets, though restricted to special graph classes, is quite unexpected.

We prove that there are no more than 4
kt
m locally optimal aggregations, all of which

can be found in O(nm + 4
kt
m · nµ) time. We are the first to provide parameterized upper

bounds on the number of optimal aggregations. We are not aware of any upper bound on
the number of locally optimal aggregations prior to this bound. Our upper bounds for the
number of (locally) optimal aggregations is tight, since there are instances with exactly the
same number of (locally) optimal aggregations. For example, the instance consisting of m

2

copies of the total order over {u1, u2} that orders u1 before u2, and m
2

copies of the total
order over {u1, u2} that orders u2 before u1 has 2 (locally) optimal aggregations, which

equals 4
kt
m = 4

(
(m2 )

m

)
in this example.

Furthermore, based on the Extended Condorcet Criterion, we reduce P-Kemeny Rank
Aggregation instances to independent P-Kemeny Rank Aggregation subinstances
on at most 4kt

m
candidates. The reduction is a partial kernelization for P-Kemeny Rank

Aggregation. Our analysis relies on the structure of a minimum feedback arc set in
an associated complete digraph. There is no problem caused by our not having access to
an actual minimum feedback arc set, as we are not incorporating the structure into our
reduction rules. We next add a new reduction rule to handle subinstances of size at most
2
ε
, for arbitrary ε > 0, achieving an (2 + ε)kt

m
candidate partial kernel, improving Betzler

et al.’s partial kernel over at most 16
3

(kt
m

) candidates [18]. These reduction rules also give
(2 + ε)k-vertex kernels for WDFAS instances whose arc-weights satisfy the triangle and
probability constraints, where k is the weight of a minimum-weight feedback arc set in the
input graph. Unlike the (2 + ε)k vertex kernel of Bessy et al. [16] (for constant integer
arc-weights), our reduction does not rely on the complex polynomial-time approximation
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scheme of Kenyon-Mathieu and Schudy [94]. We use simple reduction rules. Note that
Bessy et al.’s kernelization works for constant-integer weighted tournaments, and our ker-
nelization works for special weighted complete digraphs (equivalent to special weighted
tournaments); the graph instances for the two algorithms are completely disjoint.

We describe the O∗(1.403kt)-time algorithm for P-Kemeny Rank Aggregation in
Section 5.1. Before presenting the algorithm for Enum(P-Kemeny Rank Aggrega-
tion), we highlight new ideas, including the introduction of a concise representation of
feedback arc sets based on their adjacent pairs, in Sections 5.2.1 to 5.2.4. In Sections 5.2.5
and 5.2.6, we present the algorithm and proofs of its correctness and analysis. A match-
ing lower bound is presented in Section 5.2.7. The kernelization results are presented in
Sections 5.3.1 to 5.3.2.

5.1 The O∗(1.403kt)-time Algorithm

5.1.1 The Tournament Majority Graph

In this section, we introduce a notion of tournament majority graphs, based on which
we give a reduction from P-Kemeny Rank Aggregation to WDFAS for tourna-
ments. Prior to this, P-Kemeny Rank Aggregation was known to reduce to WD-
FAS, but the zero-weight arcs in the reduced instances (corresponding to pairs of candi-
dates equally-preferred in both directions) had left the impression that the more efficient
algorithms solving WDFAS in tournaments could not be used for P-Kemeny Rank
Aggregation.

Definition 5.1. A tournament majority graph of a multiset I of total orders in Total(U)
is a weighted tournament graph whose set of vertices is U , whose set of arcs is a superset
of w> 1

2
and a subset of w≥ 1

2
, and the weight of an arc (a, b) is w(a, b) − w(b, a), where w

is the weight function w(a, b) = |I(a,b)|
m

.

The following observation gives a reduction of P-Kemeny Rank Aggregation to
WDFAS restricted to tournament graphs; the idea is similar to the previous reduction to
WDFAS instances mentioned in Section 2.3.3 and also to a previous reduction by Dwork
et al. [56]; the main difference is that here the reduced instances are tournament graphs.

Observation 5.1. A total order σ is in KRA(I) if and only if E(TM) \ σ is a
minimum-weight feedback arc set for an arbitrary tournament majority graph TM of I.
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Proof. Suppose that I is a multiset of m total orders in Total(U). Let w : U × U 7→ R be

the function w(a, b) = |I(a,b)|
m

. We know that a total order σ ∈ Total(U) is in KRA(I) if
and only if rev(σ) is a minimum-weight feedback arc set in the complete digraph G with
the vertex set U and the arc weight function w (Observation 2.7 in Section 2.3.3).

We establish a connection between feedback arc sets in TM and in G. Let ` denote∑
a,b∈U,a 6=b min{ |I(a,b)|

m
, |I(b,a)|

m
}. We show for an arbitrary total order σ ∈ Total(U) that

E(TM) \ σ is a feedback arc set of weight w1 in TM if and only if rev(σ) is a feedback arc
set of weight w2 = w1 + ` in G. Consequently, rev(σ) is a minimum-weight feedback arc
set in G if and only if E(TM)\σ is a minimum-weight feedback arc set in TM, as required.

Since σ is a total order, E(TM) \ σ is always a feedback arc set for TM: removing the
arcs in E(TM) \ σ leaves a subset of arcs in TM that follow the orderings in σ. For the
same reason, rev(σ) is always a feedback arc set for G. Therefore, we only need to worry
about the weights.

Every arc in FTM = E(TM) \ σ is in FG = rev(σ), but some of the arcs in FG might
not be in FTM. To compare total weights of FTM and FG in TM and G, respectively, we
check the weight of each (a, b) ∈ FG in both TM and G and check whether (a, b) ∈ FTM.

The weight of (a, b) is always |I(a,b)|
m

in G. When |I(a, b)| ≥ |I(b, a)|, (a, b) is also in

FTM, and thus it is contributing a weight of w(a, b)−w(b, a) = |I(a,b)|
m
− |I(b,a)|

m
to the weight

of FTM. Otherwise, it is contributing a weight of zero to the weight of FTM. Therefore,
the weight added for such an arc (a, b) to FTM is always min{ |I(a,b)|

m
, |I(b,a)|

m
} less than the

weight added to FG.

Overall, the total weight of the arcs in FG will be ` plus the total weight of the arcs in
FTM, as required to complete the proof.

We show how to adapt a search tree algorithm due to Raman and Saurabh [120] to find
a minimum-weight feedback arc set for a tournament majority graph. The algorithm was
originally designed for tournaments with arc weights greater than or equal to one; however,
we demonstrate that the algorithm can be used for general weights if the search is confined
to feedback arc sets that have no more than e arcs. This variant is especially useful for
finding a minimum-weight feedback arc set in tournament majority graphs, since although
these graphs can have zero-weight arcs, we will show that they have a minimum-weight
feedback arc set with a small number of arcs.

In fact, the only thing we change in the algorithm of Raman and Saurabh [120] is the
termination condition. The original algorithm terminated once the set of fixed arcs formed
a feedback arc set of weight at most k, the weight of fixed arcs exceeded k, or the set of
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fixed arcs was not acyclic thus already ensured not to be a minimal feedback arc set; in
the new variant, the algorithm terminates once the fixed arcs form a feedback arc set of
cardinality at most e, the number of fixed arcs exceeds e, or the set of fixed arcs is not
acyclic. The analysis of the algorithm remains the same, except that the parameter is
changed to the number of arcs rather than the weight of a minimum-weight feedback arc
set. We do not repeat the proof here, but include the algorithm (Algorithm 5) since we
will use a modification of it to obtain our algorithm.

Algorithm 5: MinFas

Require: G, e
O ← BoundedSearchTree1(G, ∅, e);1

return F ∈ {E(G) \ σ : σ ∈ O} that has the minimum weight(F );2

Algorithm 6: BoundedSearchTree1

Require: G,L, e
if G does not have a C3 then /* no cycles remain */1

return {E(G)};2

else if |L| > e then /* cannot afford more arcs */3

return ∅;4

else if G has a C3 cycle C, with E(C) ∩ L 6= ∅ then5

if E(C) ⊆ L then return ∅; /* L has a cycle */6

else7

L ← {L ∪ S : S ⊆ E(C), S is a minimal FAS for C, and S ∪ L has no cycle};
else if G has a C4 cycle C, then8

L ← {L ∪ S : S ⊆ E(C), S is a minimal FAS for C, and S ∪ L has no cycle};9

else /* C3’s in G do not have common arcs */10

let C be a C3 in G;11

let e be a minimum-weight arc in E(C);12

L ← {L ∪ {e}};13

return
⋃
L′∈L BoundedSearchTree1((V (G), (E(G)− L′) ∪ rev(L′)), L′, e);14

Lemma 5.1. Suppose that G is a weighted tournament graph and e is a positive integer.
Then, MinFAS(G, e) returns a minimum-weight feedback arc set of G with at most e arcs,
if one exists, in time O∗((1 +

√
2)e) ≈ O∗(2.415e).

MinFAS(G, e) essentially enumerates all minimal feedback arc sets of cardinality at most
e and returns one that is of minimum weight. To do so, it uses the recursive algorithm
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BoundedSearchTree1 which gradually decides on the arcs in the feedback arc set and uses
a set L to keep track of the arcs put in the feedback arc set so far.

The algorithm uses the following property for its termination condition: a tournament
graph is acyclic when it does not have a C3; as a result, a set of arcs L is a minimal feedback
arc set for a tournament graph G = (V (G), E(G)) if G′ = (V (G), (E(G)\L)∪rev(L)) does
not have a C3 [120]. Each branch is therefore stopped when either no C3 remains after
reversing the arcs in L (line 1), and thus L is a minimal feedback arc set [120], or either the
number of arcs in L is already larger than e (line 3) or some of the arcs in L form a cycle
(line 6), and thus L cannot be completed to a minimal feedback arc set of cardinality at
most e. In each node of the search tree, the algorithm branches on all minimal sets of arcs
whose removal remove a C4 (line 8). If no C4 exists (line 10), the C3’s in the tournament
graph are all disjoint [120], making it easier to branch on all minimal sets of arcs whose
removal removes all C3’s (lines 11-13).

5.1.2 The Algorithm

In this section, we show how to improve the previous best running time of O∗(1.53kt) due
to Betzler et al. [20] to O∗(1.403kt).

We base our analysis on the cardinality of dirty(I), the set of pairs that are not ordered
the same in the total orders in I. We use this number to bound the number of arcs in
minimum-weight feedback arc sets of TM.

Lemma 5.2. Suppose that I is a multiset of m ≥ 3 total orders and TM is a tournament
majority graph of I. Also, suppose that e is the number of arcs in a minimum-weight
feedback arc set in TM. Then |dirty(I)|+ e ≤ kt.

Proof. Due to Observation 5.1, a minimum-weight feedback arc set in TM is always equal
to E(TM) \ σ for some σ ∈ KRA(I).

By the definition of TM, E(TM) ⊂ w≥ 1
2
. Therefore, each of the pairs (a, b) ∈ E(TM)\

σ indicates that σ opposes the ordering of {a, b} suggested by the majority. Also, by
the definition of dirty pairs, for each of the dirty pairs, including the dirty pairs not in
E(TM)\σ, there exists a total order in I that disagrees with the pair’s ordering in σ. The
number of such pairs is at least |dirty(I)|− |E(TM)\σ|. Therefore, kt = τ(σ, I) is at least
dm

2
e · |E(TM) \ σ|+ (|dirty(I)| − |E(TM) \ σ|) ≥ |E(TM) \ σ|+ |dirty(I)|.

The idea is to use MinFas(TM, kt−|dirty(I)|) for large values of |dirty(I)|, and develop
a search tree algorithm, shown in Algorithm 7, that finds an optimal aggregation in time
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Algorithm 7: OptAggregation2

Require: I
TM← a tournament majority graph of I;1

O ← BoundedSearchTree2(TM, unanimity(I)});2

return σ ∈ O that minimizes τ(σ, I);3

O∗((
√

3)|dirty(I)|), thus running quickly for small values of |dirty(I)|. The two algorithms
will then complement each other and result in an improved time bound for all values of
|dirty(I)|.

Algorithm 7 uses ideas from both MinFas and Betzler et al.’s algorithm [20]. As in
Betzler et al.’s algorithm [20], it first fixes all the pair orderings in unanimity(I) (line 2).
However, instead of branching on all possible orderings of triples of dirty pairs, it incorpo-
rates a tournament majority graph TM into the search (lines 1-2), and branches on ways
of breaking C3’s and C4’s in TM in BoundedSearchTree2, shown in Algorithm 8. The
branching on small cycles in BoundedSearchTree2 is essentially what was done in Bound-
edSearchTree1, except that in places that BoundedSearchTree1 was branching on minimal
feedback arc sets of a cycle, BoundedSearchTree2 branches on all feedback arc sets (in
fact reverses of them, for technical reasons) of the cycle (lines 5 and 7). This change will
decrease the running time for small values of d, for which we will be using Algorithm 7.

Algorithm 8: BoundedSearchTree2

Require: G,L
if G does not have a C3 then /* no cycles remain */1

return {E(G)};2

else if G has a C3 cycle C with E(C) ∩ L 6= ∅ then3

if E(C) ⊆ L then return ∅; /* L has a cycle */4

else P ← {π ∈ Total(V (C)) : π is consistent with L};5

else if G has a C4 cycle C then6

P ← {π ∈ Total(V (C)) : π is consistent with L};7

else /* C3’s in G do not have common arcs */8

let C be a C3 in G;9

let e be a minimum-weight arc in E(C);10

P ← {(E(C) \ {e}) ∪ rev(e)};11

return
⋃
π∈P BoundedSearchTree2((G− rev(π)) + π, L ∪ π);12
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Theorem 5.1. OptAggregation2(I) returns an optimal aggregation of I in time O∗((
√

3)d),
where d = |dirty(I)|.

Proof. Every relation returned by BoundedSearchTree2 is a total order (lines 1, 2). If every
optimal aggregation is returned by BoundedSearchTree2, OptAggregation2 is guaranteed
to return an optimal aggregation at line 3. This is true since none of the total orders are
eliminated in the branchings of BoundedSearchTree2.

Therefore, it suffices to prove that OptAggregation2(I) runs in O∗((
√

3)d) time. We
use u(L) to denote the number of undecided pairs, i.e. |{{a, b} : a, b ∈ U, (a, b) /∈ L}|.
Initially u(L) is d. When u(L) becomes zero, the algorithm returns: either G does not
have a cycle at that point, causing a return in line 2, or has some C3’s, in which case all
the arcs in the C3’s are in L, causing a return in line 4. For non-zero u(L)’s, the algorithm
returns in one step if G does not have a C3 (line 2). If G has a C3 cycle C with two arcs
in E(C) ∩ L, the algorithm branches on the ordering of at most one arc (lines 5 and 12).
The value of L will be updated at line 12, causing u(L) to decrease by the number of arcs
decided. Similarly, if G has a C3 cycle C with one arc in E(C)∩L, the algorithm branches
on the ordering of two arcs and inserts two arcs in L, reducing u(L) by two in all cases.
If G has a C4 cycle C, then E(C) has either zero or one arc in L. Therefore, either the
algorithm branches on 24 cases, reducing u(L) by six in all cases, or branches on 12 cases,
reducing u(L) by five in all cases, in line 7. Otherwise, G has to have disjoint C3’s [120]
none of which has an arc in L. In this case, the algorithm branches on one case (line 11),
reducing u(L) by three.

Consequently, the size of the search tree is bounded by αu(L) for any α that satisfies
the following inequalities:

α0 ≥ 1
αu(L) ≥ 1× αu(L)−1

αu(L) ≥ 3× αu(L)−2

αu(L) ≥ 12× αu(L)−5

αu(L) ≥ 24× αu(L)−6

αu(L) ≥ 1× αu(L)−3

Therefore, the running time of the algorithm is in O∗((
√

3)u(L)). Since the initial value
of u(L) is d, this time bound is bounded by O∗((

√
3)d), as required.

Theorem 5.2. For any instance (I, kt
m

) of P-Kemeny Rank Aggregation, an optimal
aggregation of I can be found in O∗(1.403kt) time.
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Proof. Let d denote |dirty(I)|. If d ≥ 2 log2(1+
√

2)kt
log2(3)+2 log2(1+

√
2)

, then by Lemma 5.1 we can run

MinFAS(TM, kt − d) to obtain an optimal aggregation in time

O∗((1 +
√

2)kt−d) ≤ O∗((1 +
√

2)
(1− 2 log2(1+

√
2)

log2(3)+2 log2(1+
√
2)

)kt
) < O∗(1.403kt).

Otherwise, if d < 2 log2(1+
√

2)kt
log2(3)+2 log2(1+

√
2)

, then by Theorem 5.1 we can run OptAggrega-

tion2(I) to find an optimal aggregation in time

O∗((
√

3)d) ≤ O∗((
√

3)
2 log2(1+

√
2)kt

log2(3)+2 log2(1+
√
2) ) < O∗(1.403kt).

5.2 The O∗(4
kt
m )-time Enumeration Algorithm

We develop a search tree algorithm, AggregationSearch, that consumes a complete digraph
whose arc-weights satisfy the probability and triangle inequality constraints and finds all
minimum feedback arc sets of weight at most k of the input graph. Each feedback arc set
returned by AggregationSearch is produced in a leaf of its execution tree. We prove an
upper bound of 4k on the number of leaves in the execution tree, yielding an overall running
time of O(4k · nµ), where n is the number of vertices in the input graph and µ denotes
the exponent of matrix multiplication. The value of k in instances reduced (according to
Observation 2.7 in Section 2.3.3) from P-Kemeny Rank Aggregation is kt

m
, where kt is

the τ -distance of optimal aggregations from the input votes, and m is the number of input

votes. Analogously, there are no more than 4
kt
m optimal aggregations, all of which can be

found in O(nm+ 4
kt
m · nµ) time.

We will see in Section 5.2.7 that there are instances with 4k minimum feedback arc
sets. Furthermore, all these instances correspond to P-Kemeny Rank Aggregation
instances. Consequently, the upper bounds for the numbers of (locally) minimum feedback
arc sets and (locally) optimal aggregations are tight.

5.2.1 A Toy Example

The algorithm AggregationSearch takes the new approach of finding adjacent pairs of
locally minimum feedback arc sets. Observation 2.9, which states that all adjacent pairs
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v1 v2

v3v4

(v4, v1) ∈ adj(H)?

. . . (v3, v1) ∈ adj(H)?

v3 <H v1 <H v2 <H v4 v1 <H v2 <H v3 <H v4

Yes No

Yes No

Figure 5.1: The first toy example

of a minimum feedback arc set have weight less than or equal to 1
2
, is crucial for the

guesses. Indeed, AggregationSearch does not use other properties of minimum feedback
arc sets to the point that it actually enumerates all locally minimum feedback arc sets.
Locally minimum feedback arc sets are total orders that are only constrained to have their
adjacency arcs have weights less than or equal to 1

2
.

To give a sense of how branching on adjacent pairs of a locally minimum feedback arc
set H ∈ LF(V,w) prunes the search space, we consider the graph shown in Figure 5.1. For
clarity, we have omitted arc weights and have drawn only the arcs in w< 1

2
, which must

include adj(H) (i.e., the set of all H-adjacent pairs) for any H ∈ LF(V,w).

If (v4, v1) /∈ adj(H), v4 must be ordered last in H, since no other arc of the form (v4, ∗)
will be left to be in adj(H). Then, either (v3, v1) ∈ adj(H), or v1 must be ordered first
in H, since no arc of the form (∗, v1) will remain. In either case, other arcs in adj(H)
are going to be fixed using the same arguments. Different cases and the resulting H’s are
illustrated in Figure 5.1.

5.2.2 Branching Based on a Feedback Arc Set

A brute-force search for adjacent pairs of an H ∈ LF(V,w) can be very inefficient. We will
use a minimal feedback arc set F (equivalently, an F ∈ Total(V )) to ease the search.

The search for the set of arcs adj(H) \ F , which we call α, is easy if F has a small
weight: the search for α can always be restricted to the set of arcs in w≤ 1

2
\ F , which is
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a super-set of α; a small total weight for F indicates a small number of arcs in w≤ 1
2
\ F ,

since the reverse arcs of w≤ 1
2
\ F , each of which has a weight of at least 1

2
, are all in F .

Still, there are possibly many pairs in w≤ 1
2
∩F from which to choose the remaining arcs,

i.e. adj(H) ∩ F . We will show, in Section 5.2.4, that all the arcs in H will be fixed once
we figure out those located in a certain region (the region depends on α). The triangle
inequalities of the arc weights help, showing that the size of this region is linear in terms of
the weight of F , thus a brute-force search in this region is not very costly. The combination
of α and the set of arcs of H in the region can be viewed as a concise representation of H
in terms of F . We will explain this representation, called the F -representation of H, in
the next two sections.

We will show in Theorem 5.3 that regardless of the choice of F , AggregationSearch
produces all locally minimum feedback arc sets in the leaves of its search tree. The weight
wF of F affects the running time. We prove that the search tree has at most 4wF leaves and
is computed in time O(4wF · nµ), where µ denotes the exponent of matrix multiplication.
As a result, there are at most 4k locally minimum feedback arc sets in G, where k is the
weight of a minimum feedback arc set in G.

5.2.3 A Second Toy Example

We describe the basic idea of our suggested representation for an H ∈ LF(V,w) on a small
example. The representation is based on an F ∈ Total(V ). Suppose that the vertices are
drawn from left to right in the order of F in Figure 5.2.

In the extreme case that α = adj(H) \ F is ∅ (i.e., adj(H) ⊆ F ), H = F : with no
rev(F ) arcs in H, H has to order the vertices exactly as F .

Consider a second example where α = {(v5, v2)}. Then, we can be sure that v1 is
ordered first and v6 is ordered last in H. What we are not sure about is whether either of
the vertices v3 and v4 is ordered before v2 and v5. In fact, everything else will be fixed once
we know whether v3 <H v2 or v2 <H v3, and whether v4 <H v2 or v2 <H v4. For example,
if we figure out that both v3 <H v2 and v4 <H v2, we must have v3 <H v4 since otherwise
(v4, v3) had to be in α = adj(H) \ F as well. Figure 5.2 shows the decision tree and the
resulting H’s in each case.

Fortunately, there could not be many vertices in the same situation as v3 and v4.
By the triangle inequality, the weight of (v2, v3) plus the weight of (v3, v5), and in general
w(v2, x)+w(x, v5) for any vertex x satisfying v2 <F x <F v5, is at least the weight of (v2, v5).
On the other hand, (v2, v5) ∈ F and w(v2, v5) ≥ 1

2
since (v5, v2) was initially assumed to be
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v1 v2 v3 v4 v5 v6

v3 <H v2?

v4 <H v2?

v4 <H v2?

v1 <H v3 <H v4 <H v5 <H v2 <H v6

v1 <H v3 <H v5 <H v2 <H v4 <H v6

v1 <H v4 <H v5 <H v2 <H v3 <H v6

v1 <H v5 <H v2 <H v3 <H v4 <H v6

Yes

No

Yes

No

Yes

No

Figure 5.2: The second toy example.

in α ⊆ w≤ 1
2
\F . Consequently, the weight of F is at least

∑
v2<F x<F v5

(w(v2, x)+w(x, v5)) ≥∑
v2<F x<F v5

w(v2, v5) ≥ |{v2 <F x <F v5}| · 1
2
. Therefore, the number of vertices whose

relative orders (in H) with respect to v2 must be determined, as for v3 and v4, is at most
twice the weight of F .

In the following section, we will see how the bounded number of decisions is generalized
to arbitrary α’s.

5.2.4 F -Representations

In this section, we define the F -representation of locally minimum feedback arc sets for
an arbitrary F ∈ Total(V ).

The F -representation of H ∈ LF(V,w) consists of two parts. The first part, α, is the
set adj(H) \ F . For a precise definition of the second part, we need to define one term:

Definition 5.2. An unordered pair {x, y} is an F -internal pair of (a, b) ∈ rev(F ) if x = a
or x = b, and b <F y <F a.
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We use IPF (e) to denote the set of F -internal pairs of e ∈ rev(F ), and by extension,
we use IPF (R) for a binary relation R ⊆ rev(F ) to denote

⋃
e∈R IPF (e).

Example. Assuming that v1 <F v2 <F v3 <F v4 <F v5 for F ∈
Total({v1, . . . , v5}), IPF ((v5, v3)) is {{v3, v4}, {v4, v5}} and IPF ({(v5, v3), (v4, v1)}) is
{{v3, v4}, {v4, v5}, {v1, v2}, {v2, v4}, {v1, v3}, {v3, v4}}.

The second part of the F -representation of H ∈ LF(V,w) is the restriction of H to
IPF (α).

Example. Considering the previous example, the restriction of H with v1 <H v2 <H

v4 <H v5 <H v3 to IPF ((v5, v3)) is H|IPF ((v5, v3)) = {(v4, v3), (v4, v5)}.

Definition 5.3. The F -representation of H ∈ LF(V,w), for some F ∈ Total(V ), is (α, δ)
where α = adj(H) \ F and δ = H|IPF (α).

A locally minimum feedback arc set can be efficiently reconstructed from its
F -representation for an arbitrary F ∈ Total(V ):

Lemma 5.3. If (α, δ) is the F -representation of H ∈ LF(V,w), then H = (α ∪ δ)+ ∪ F \
rev((α ∪ δ)+).

Proof. Since (α∪ δ)+ ∪F \ rev((α∪ δ)+) is a complete relation, it suffices to show that its
two subsets (α∪δ)+ and F \ rev((α∪δ)+) are in H. The former is true since, by definition,
α and δ, and hence (α ∪ δ)+ (because H is transitive), are subsets of H. We prove the
latter by showing that H \F is a subset of (α∪δ)+. Since H and F are complete relations,
F \H will then be a subset of rev((α ∪ δ)+), and thus, F \ rev((α ∪ δ)+) will be a subset
of H.

We need to show that every (x, y) ∈ H \ F is in (α ∪ δ)+. The proof is by strong
induction: assuming that the claim is true for every (x′, y′) ∈ H \F with y <F y

′, we prove
the claim for (x, y).

Consider drawing the vertices in V in a horizontal line and ordered in the order of F
from left to right. Suppose that z1 <H z2 <H . . . <H z`, with z1 = x, z` = y, ` ≥ 2,
and zi <adj(H) zi+1 for all 1 ≤ i < `. Figure 5.3 demonstrates an example drawing where
z7 <F z8 <F y <F z5 <F z6 <F x <F z3 <F z4 <F z2.

Now imagine that we are traversing the vertices starting from z1, going through the arcs
in adj(H), and finally arriving at z`. We pass through arcs in α = adj(H) \ F whenever
we go from right to left. Note that z` must be to the left of z1 in this drawing, since
y <F x. Therefore, in order to reach y = z` from x = z1, we need to go through at least
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one right-to-left edge that ends up at y or some vertex to the left of y (the edge (z6, z7) in
Fig. 5.3). To be precise, since (x, y) ∈ H \ F there must exist some 1 ≤ t < ` such that
(zt, zt+1) ∈ α with zt+1 ≤F y <F zt. Observe that when zt+1 6= y, {y, zt+1} ∈ IPF (α).

We now prove the induction step. Since zt+1 <F zt, every (x, zt) ∈ H \F is in (α∪ δ)+

due to the induction hypothesis.

If (zt, zt+1) = (x, y), then (x, y) ∈ α, and (x, y) ∈ (α ∪ δ)+ is trivially true. Otherwise,
we demonstrate that (zt+1, y) ∈ (α ∪ δ)+ if zt+1 6= y and (x, zt) ∈ (α ∪ δ)+ if x 6= zt.
Together with (zt, zt+1) ∈ α, these result in (x, y) ∈ (α ∪ δ)+, as needed to complete the
proof.

We first prove that (zt+1, y) ∈ (α∪δ)+ if zt+1 6= y. As mentioned above, when zt+1 6= y,
{y, zt+1} is in IPF (α). Since H orders zt+1 before y, (zt+1, y) ∈ H|IPF (α) = δ ⊆ (α ∪ δ)+.

Second, considering the relative orders of zt and x, we prove that (x, zt) ∈ (α ∪ δ)+ if
x 6= zt.

Case 1: zt <F x

Since H orders x before zt, (x, zt) ∈ H \ F in this case. Therefore, (x, zt) ∈ (α ∪ δ)+

by the induction hypothesis.

Case 2: x <F zt

In this case, zt+1 < x < zt. Therefore, {x, zt} ∈ IPF (α). Since H orders x before zt,
(x, zt) ∈ H|IPF (α) = δ ⊆ (α ∪ δ)+.

5.2.5 The Algorithm

In this section, we describe our search tree algorithm AggregationSearch, shown in Algo-
rithm 9. The algorithm receives a total order F . It then computes every H ∈ LF(V,w)
through recursive construction of its F -representation (α, δ) in AggregationSearchRec (Al-
gorithm 10).

The F -length of an arc (a, b) ∈ rev(F ), used in AggregationSearchRec, is the number
of vertices in {y : b <F y <F a}. We define one more term before describing Aggregation-
SearchRec.

Definition 5.4. A binary relation R is an ordering of a set of unordered pairs P if both
R = R|P and |R| = |P |.
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z7 z8 y z5 z6 x z3 z4 z2

Figure 5.3: An example of the case x <H y and y <F x, where the vertices are shown in
the order of F from left to right and the ordered pairs in adj(H) are presented as arcs.

By this definition, the second part of an F -representation, i.e. δ, is an ordering of
IPF (α).

Algorithm 9: AggregationSearch

Require: vertex set V , arc weight function w : V × V 7→ R, and F ∈ Total(V )
Assume: w satisfies the triangle inequality and the probability constraint
return AggregationSearchRec(V,w, F, rev(F ), ∅, ∅);1

In addition to the input digraph, F , and the partially constructed α and δ, Algorithm
AggregationSearchRec (Algorithm 10) uses an auxiliary parameter B. This parameter
contains the subset of rev(F ) for which the decision of being in α or not has not yet been
made. Initially, B is set to rev(F ). For α to be part of the F -representation of some
H ∈ LF(V,w), the arcs in α must be contained in w≤ 1

2
, since α = adj(H) \F is a subset of

adj(H) and adj(H) must be contained in w≤ 1
2
. Therefore, when B ∩ w≤ 1

2
becomes empty

(lines 1-6), the algorithm stops adding arcs to α. By that time, δ is exactly an ordering
of IPF (α), since for each arc e inserted in α, the algorithm adds all possible orderings of
IPF (e) to δ. Hence, the algorithm stops adding arcs to δ as well. Due to Lemma 5.3, if
the constructed α and δ form an F -representation for an H ∈ LF(V,w), H must be equal
to (α ∪ δ)+ ∪ F \ rev((α ∪ δ)+). Therefore, the algorithm checks if this formula produces
a locally minimum feedback arc set (line 4). If not, (α, δ) is neither an F -representation
for any locally minimum feedback arc set, nor can it be made an F -representation through
adding arcs to α and δ.

For each arc (u, v) in B ∩ w≤ 1
2
, the algorithm branches on whether or not (u, v) ∈ α.

This arc is removed from B once the decision is made. In the branch in which (u, v) ∈ α
(lines 11-19), (u, v) is in adj(H) and hence even more arcs can be removed from B. Since
there is only one vertex that is ordered immediately after u in H (i.e. v) and only one
vertex that is ordered immediately before v in H (i.e. u), none of the arcs of the same
head or tail with (u, v) can be in adj(H) in this branch. In particular, none of the arcs
in
⋃
x∈P{(u, x), (x, v)} can be in adj(H) ⊇ α, thus all these arcs are removed from B.
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Algorithm 10: AggregationSearchRec

Require: vertex set V , weight function w, F ∈ Total(V ), binary relations
B,α, δ ⊆ V × V

if B ∩ w≤ 1
2

= ∅ then1

H ← (α ∪ δ)+; /* computing the transitive closure of α ∪ δ */2

H ← H ∪ (F \ rev(H));3

if H ∈ LF(V,w) then return {H};4

else return ∅;5

end6

else7

Select (u, v) ∈ B ∩ w≤ 1
2

of maximum F -length;8

B ← B \ {(u, v)};9

LF← AggregationSearchRec(V,w, F,B, α, δ);10

α← α ∪ {(u, v)};11

P ← {x : u <F x <F v};12

B ← B \
⋃
x∈P{(u, x), (x, v)};13

L← {x ∈ P : x <δ u or x <δ v};14

R← {x ∈ P : u <δ x or v <δ x};15

foreach L ⊆ A ⊆ P \R do16

δ′ ← δ ∪
⋃
x∈A{(x, u), (x, v)} ∪

⋃
x∈P\A{(u, x), (v, x)};17

LF← LF ∪ AggregationSearchRec(V,w, F,B, α, δ′);18

end19

return LF;20

end21

Further branching occurs on the subset A = {x ∈ P : (x, u) ∈ H} of vertices in P = {x :
u <F x <F v} (lines 16-19). The orderings of the vertices in P with respect to u and v,
determined by A, are essential in determining δ = H|IPF (α) in the F -representation of H.

We do not want to branch over a pair more than once; one strategy is to consider
arcs in order of F -length. Without this selection criterion, if in Figure 5.4 (with B ∩ w< 1

2

including (u1, v1) and (u2, v1) such that v1 <F u1 <F u2) at line 8 the algorithm selected
(u1, v1) ∈ B∩w< 1

2
to be excluded from α, then further down the search tree, the algorithm

could select (u2, v1) ∈ α ∩ w< 1
2

to be included in α. This would result in branching twice

on (u1, v1), once for membership in α and once, at line 16, to decide whether u1 <δ v1 or
v1 <δ u1.
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v1 u1 u2

Figure 5.4: Duplicate decisions could be made over the pair {u1, v1} if the arcs in B ∩w≤ 1
2

were not selected according to their F -lengths.

v1 v2 u1 u2

Figure 5.5: Duplicate decisions could be made over the pair {u1, v2} if A was not con-
strained to include L and exclude R.

Constraining A to include L and exclude R at line 16 avoids another duplicate branch-
ing. Otherwise, the algorithm could decide on relative orderings of vertices in L and R
with respect to u and v after the orderings were already fixed in δ. An example situa-
tion is illustrated in Figure 5.5 (with B ∩ w≤ 1

2
including (u1, v1) and (u2, v2) such that

v1 <F v2 <F u1 <F u2). Assuming that the algorithm inserts (u1, v1) ∈ B in α at line 11,
it needs to decide whether or not to include v2 in A (a decision on the ordering of {u1, v2})
at line 16. If A was not constrained to include L and exclude R, the algorithm had to
decide whether or not to include u1 in A (a second decision on the ordering of {u1, v2})
if (u2, v2) ∈ B is inserted in α later in the search. The constraint prohibits the algorithm
from the second decision.

Removal of the same-head and same-tail arcs from B (line 13), ordering the arcs in B
in their F -lengths (line 8), and constraining A to include L and exclude R (line 16) all
result in less branching.

5.2.6 Proofs

We are now ready to prove the main theorem. In the proof, we use LF(F,B,α,δ) to denote
{H ∈ LF(V,w) : α ⊆ adj(H) \ F ⊆ α ∪ B, and δ ⊆ H}. Notice that LF(V,w) =
LF(F,rev(F ),∅,∅) for any F ∈ Total(V ).

Theorem 5.3. Given a complete digraph on a vertex set V and arc weight function w : V ×
V 7→ R and F ∈ Total(V ), AggregationSearch(V,w, F ) returns LF(V,w) in time O(|V |µ ·
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4wF ), where µ < 2.3727 [137] denotes the exponent of matrix multiplication. Furthermore,
|LF(V,w)| ≤ 4wF .

Proof. Every returned binary relation H has satisfied the condition H ∈ LF(V,w) at line 4
of AggregationSearchRec. Therefore, the returned binary relations are all in LF(V,w).

We need to prove that every H ∈ LF(V,w) is returned by AggregationSearch(V,w, F ).
We show that AggregationSearchRec(V,w, F,B, α, δ) returns every H ∈ LF(F,B,α,δ) if δ is
an ordering of IPF (α). Since LF(V,w) = LF(F,rev(F ),∅,∅) and ∅ is an ordering of IPF (∅), this
is all we need to prove.

We use strong induction on the cardinality of B ∩ w≤ 1
2
, considering only instances in

which δ is an ordering of IPF (α). When |B ∩ w≤ 1
2
| = 0, the algorithm returns {H ∈

LF(V,w) : H = (F − rev((α ∪ δ)+)) ∪ (α ∪ δ)+} at line 4. By the definition of LF(V,w),
adj(H) is completely disjoint from B in this case for any H ∈ LF(F,B,α,δ); therefore, adj(H)\
F = α for any H ∈ LF(F,B,α,δ). Also, since δ is assumed to be an ordering of IPF (α),
δ = H|IPF (α) for any H ∈ LF(V,w) that includes δ. Therefore, LF(F,B,α,δ) = {H ∈
LF(V,w) : adj(H) \ F = α, and δ = H|IPF (α)}, which is equal to the set that is returned
(Lemma 5.3), as required.

For non-empty B ∩ w≤ 1
2
’s, we would like to apply the induction hypothesis to the

recursive calls at lines 10 and 18. That is, we need to make sure that δ is an ordering of
IPF (α) for all the values of α and δ passed to the recursive calls. The condition holds for
the recursive call at line 10, since α and δ are not changed, and the assumption holds for
the current α and δ. For recursive calls at line 18, δ′ is a union of δ and an ordering of
the pairs in IPF ((u, v)). Therefore, assuming that δ is an ordering of IPF (α), δ′ will be an
ordering of IPF (α ∪ {u, v}).

Consequently, the algorithm returns LF(F,B\{(u,v)},α,δ)∪
⋃
L⊆A⊆P\R LF(F,B\({(u,v)}∪B′),α∪{(u,v)},δ′)

for B′ =
⋃
x∈P{(u, x), (x, v)}, P = {x : u <F x <F v}, and δ′ = δ ∪

⋃
x∈A{(x, u), (x, v)} ∪⋃

x∈P\A{(u, x), (v, x)}. The proof of correctness is completed if every H ∈ LF(V,w) is in
this set.

Case 1: (u, v) /∈ adj(H). In this case, adj(H) \ F is in α ∪ (B \ {(u, v)}). Therefore,
H ∈ LF(F,B\{(u,v)},α,δ).

Case 2: (u, v) ∈ adj(H). In this case, α∪{(u, v)} is a subset of adj(H). Also, none of the
pairs in adj(H)\{(u, v)} have common heads or tails with (u, v), thus adj(H)\{(u, v)}
has no intersection with B′. Therefore, adj(H)\F is in α∪{(u, v)}∪ (B \ ({(u, v)}∪
B′)). Furthermore, δ′ ⊆ H when A is set to {z ∈ P : (z, u) ∈ H}. Note that this is
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an acceptable value for A, i.e. L ⊆ A ⊆ P \R (line 16), since otherwise δ 6⊆ H, which
contradicts the definition of H. Consequently, H ∈ LF(F,B\({(u,v)}∪B′),α∪{(u,v)},δ′).

To see that the running time bound is met, we associate each node in the search tree
with the cost of steps 8-10 or steps 11-18 performed just before the node was created (if any)
plus the cost of steps 1-6 performed at the time the node is being executed. The dominant
part is the computation of the transitive closure (α ∪ δ)+ using matrix multiplication at
line 2. The time for a node is thus in O(|V |µ), yielding O(|V |µ · 4wF ) time overall.

In each internal node of the search tree, line 18 is executed at least once (when A is
set to L). Consequently, each internal node has at least two children, and therefore, the
number of nodes in the tree is at most twice the number of leaves.

We claim that AggregationSearchRec(V,w, F,B, α, δ) produces a search tree with no
more than 4wrev(B) leaves, if B ∪ δ includes an ordering of IPF (B ∩w≤ 1

2
). Since B = rev(F )

in the call to AggregationSearchRec(V,w, F, rev(F ), ∅, ∅), it is a total order, thus includes
orderings of arbitrary sets of pairs, including IPF (B ∩w≤ 1

2
). Therefore, the claim gives an

upper bound of 4wrev(B) = 4wF on the number of leaves, as required.

We use strong induction on the cardinality of B ∩ w≤ 1
2
, considering only instances in

which B∪δ is an ordering of IPF (B∩w≤ 1
2
). When |B∩w≤ 1

2
| = 0, the algorithm terminates

at line 4 or 5 with no recursive calls made. Therefore, only 1 leaf is produced, which does
not exceed 4wrev(B) , as required.

For non-empty B ∩ w< 1
2
’s, we would like to apply the induction hypothesis to the

recursive calls at lines 10 and 18. That is, we need to make sure that B ∪ δ is an ordering
of IPF (B ∩ w< 1

2
) for all the values of B and δ used in the recursive calls. This is true for

the call at line 10: the F -length of the arc (u, v) is at least as large as the F -lengths of the
arcs in (B \{(u, v)})∩w< 1

2
. By the definition of IP, the F -length of any arc ordering a pair

in IPF ((B \ {(u, v)})∩w< 1
2
) is smaller than the F -length of an arc in (B \ {(u, v)})∩w< 1

2
.

Therefore, (u, v) is not an ordering of any of the pairs in IPF ((B \ {(u, v)}) ∩ w< 1
2
), and

hence, (B \ {(u, v)}) ∪ δ still includes an ordering of IPF ((B \ {(u, v)}) ∩ w< 1
2
). For the

recursive calls at line 18, the removal of
⋃
x∈P{(u, x), (x, v)} from B does not cause a

problem, since for any arc e removed at line 13, either e or rev(e) is added to δ at line 17,
thus the new B ∪ δ includes an ordering of any set of pairs for which (B \ {(u, v)}) ∪ δ of
line 10 included an ordering.

Consequently, by the induction hypothesis, the algorithm produces at most
4wrev(B\{(u,v)}) = 4wrev(B)−w(v,u) leaves at line 10 and 4wrev(B\({(u,v)}∪B′)) leaves in each of the
recursive calls at line 18 (for B′ =

⋃
x∈P{(u, x), (x, v)} and P = {x : u <F x <F v}), for a

total of at most 2|P\(L∪R)| · 4wrev(B\({(u,v)}∪B′)) leaves produced at line 18.
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By the probability constraint, w(v, u) = 1 − w(u, v). Therefore, (u, v) ∈ w< 1
2

leads

to w(v, u) ≥ 1
2
, proving the upper bound of 4wrev(B)− 1

2 on 4wrev(B)−w(v,u). On the other
hand, since B ∪ δ includes an ordering of IPF (B ∩ w< 1

2
), B ∪ δ includes an ordering of

IPF ({(u, v}). By definitions of L and R at lines 14 and 15,
⋃
x∈L∪R{{u, x}, {x, v}} are the

only pairs for which δ can possibly be an ordering. Hence, B includes an ordering of P ′ =⋃
x∈P\(L∪R){{u, x}, {x, v}}. By the definition of P and the fact that B ⊆ rev(F ), B|P ′ =⋃
x∈P\(L∪R){(u, x), (x, v)}. Therefore, wrev(B\({(u,v)}∪B′)) ≤ wrev(B\{(u,v)}) − wrev(B|P ′) =

wrev(B)−w(v, u)−
∑

x∈P\(L∪R) w(x, u)+w(v, x). The triangle inequality helps here, proving

that
∑

x∈P\(L∪R) w(x, u) + w(v, x) ≥
∑

x∈P\(L∪R) w(v, u) = |P \ (L ∪ R)| · w(v, u). Since

w(v, u) ≥ 1
2
, 2|P\(L∪R)| · 4wrev(B\{(u,v)}−B′) is at most 2|P\(L∪R)| · 4wrev(B)−

|P\(L∪R)|+1
2 .

Overall, there will be at most

4wrev(B)− 1
2 + 2|P\(L∪R)| · 4wrev(B)−

|P\(L∪R)|+1
2 = 4wrev(B)

leaves produced, as needed to prove the claim.

As a consequence of Observation 2.12, P-Kemeny Rank Aggregation instances

have at most 4
kt
m locally optimal aggregations.

Corollary 5.1. Given a multi-set I of m total orders in Total(U) and a total order σ at
τ -distance kσ of I, the set of all locally optimal aggregations for I can be found in time
O(nm + 4

kσ
m · nµ), where µ denotes the exponent of matrix multiplication. Furthermore,

I has at most 4
kt
m locally optimal aggregations, where kt denotes the minimum τ -distance

from I.

5.2.7 The Running Time is Tight

Theorem 5.3’s upper bound on |LF(V,w)| is tight for some instances. Although MF(V,w)
is generally a (small) subset of LF(V,w), the two sets are equal in the instances constructed
for Theorem 5.4:

Theorem 5.4. For any set V = {v1, v2, . . . , vn} of even cardinality, there exists a weight
function w over V × V that satisfies the triangle inequality and the probability constraints
such that |MF(V,w)| = 4k, where k denotes the weight of a minimum feedback arc set in
MF(V,w).
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Proof. We assign the weight w(vi, vj) to each arc (vi, vj) in the loopless complete digraph
G over the vertex set V :

w(vi, vj) =


0 i+ 1 < j or (i+ 1 = j and i is even)
1
2

i+ 1 = j and i is odd
1− w(vj, vi) otherwise

It is easy to see that all weight-0 arcs must be included in any minimum feedback arc set
for G. It remains to determine the ordering of the pairs {v1, v2}, {v3, v4}, and so on. The
weights of all the options are equal. Therefore, any total order that includes all weight-0
arcs and an ordering of {{v1, v2}, {v3, v4}, . . . {vn−1, vn}} is a minimum feedback arc set for
G. There are 2

n
2 such total orders, each of weight k = n

4
. Therefore, the cardinality of

MF(V,w) is 22k = 4k for this instance.

There are P-Kemeny Rank Aggregation instances that reduce to the instances in
the proof of Theorem 5.4. Thus, the lower bound can be carried over to the number of
optimal aggregations:

Theorem 5.5. For any even number m, there exists a multi-set I of m total orders that

has 4
kt
m optimal aggregations, where kt denotes the τ -distance of an optimal aggregation

from I.

Proof. For any set U = {u1, . . . , un} of even cardinality, the I instance which includes m
2

copies of the total order {π ∈ Total(U) : u1 <π u2 <π u3 <π u4 . . . <π un−1 <π un} and m
2

copies of the total order {π ∈ Total(U) : u2 <π u1 <π u4 <π u3 . . . un <π un−1} reduces to

Theorem 5.4’s instance constructed for V = U . Therefore, I has 4
kt
m optimal aggregations,

as required.

5.3 Kernels

In this section, we describe our kernels for WDFAS instances that satisfy triangle inequal-
ity and probability constraint, which correspond to partial kernels for P-Kemeny Rank
Aggregation instances. Both kernels that we provide are based on the WDFAS variant
of the Extended Condorcet Criterion (Observation 2.10 in Section 2.3.4), saying that when
there exists a subset V ′ ⊆ V satisfying (V ′ × (V \ V ′)) ⊆ w< 1

2
, then the set of arcs in

(V ′ × (V \ V ′)) is included in every minimum feedback arc set.
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5.3.1 The Enumerative Kernel

We start with a 4k-vertex enumerative kernel. We do not need the full power of Observa-
tion 2.10 for this kernel. Rule 1 formalizes a special case of Observation 2.10 in which V ′

is the set of w< 1
2
-in-neighbours of a vertex or V \ V ′ is the set of w< 1

2
-out-neighbours of a

vertex; note that such a vertex cannot be in a 3-cycle in w≤ 1
2
.

Rule 1: If a vertex v does not belong to a 3-cycle in w≤ 1
2
, remove its w 6= 1

2
-arcs and the

arcs between its w≤ 1
2
-in-neighbours and its w≤ 1

2
-out-neighbours.

Lemma 5.4. Rule 1 is sound.

Proof. It suffices to show that the relative orderings of v and its w 6= 1
2
-neighbours, as well

as relative orderings of v’s w≤ 1
2
-in-neighbours with respect to v’s w≤ 1

2
-out-neighbours, are

the same in all F ∈ MF(V,w).

Consider a vertex v that does not belong to a 3-cycle in w≤ 1
2
. Let L denote the set of

w< 1
2
-in-neighbours of v and R denote the set of w< 1

2
-out-neighbours of v. The definition

of v ensures that there is no arc in w≤ 1
2

from R to L, thus all the arcs from L to R (the

reverse of the arcs from R to L) are in w< 1
2

by the probability constraint.

Consider the set of vertices outside of L ∪ R ∪ {v}. By definitions of L and R,
(v, x), (x, v) ∈ w≤ 1

2
for every vertex x in this set. If there are two (or more) vertices x

and y outside of L ∪R ∪ {v}, then v and x and y will form a 3-cycle in w≤ 1
2

(Fig. 5.6).

If all the vertices are in L∪R∪{v}, we can apply Observation 2.10 twice to show that
(L× ({v} ∪R)) ⊆ F and ((L∪ {v})×R) ⊆ F for all F ∈ MF(V,w), completing the proof
for this case.

If instead there is a vertex x /∈ L∪R∪{v}, the absence of a 3-cycle containing v implies
that L × {x} ⊆ w< 1

2
and {x} × R ⊆ w< 1

2
. Consequently, in this case Observation 2.10

can be applied to show that (L × ({v, x} ∪ R)) ∈ F and ((L ∪ {v, x}) × R) ∈ F for all
F ∈ MF(V,w).

The proof of Lemma 5.4 specifies the restrictions of (all) minimum feedback arc sets to
the set of removed arcs:

Lemma 5.5. For every F ∈ MF(V,w) and for α the set of arcs removed from an instance
after multiple applications of Rule 1, F |α ⊆ w< 1

2
.

Rule 2: Remove an isolated vertex.
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v y

x

v y

x

Figure 5.6: 3-cycles produced if a vertex has two neighbours in w= 1
2

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 5.7: Strongly connected components formed after exhaustive application of Rule 1

Example 5.1. In the complete digraph depicted in Figure 5.7, assume that the arcs
drawn are the subset of arcs in w≥ 1

2
that are ordered from right to left. The vertex v2

does not belong to any 3-cycles in w≤ 1
2
, since the reverse arcs of such a 3-cycle (all in

w≥ 1
2
) must include an arc going from right to left, i.e. one of the arcs drawn in the figure.

Therefore, Rule 1 removes w6= 1
2
-arcs incident to v2 and the arcs between the sets {v0, v1}

and {v3, v4 . . . , v9}. None of the arcs incident to v2 are in w= 1
2
. Hence, Rule 1 isolates v2,

allowing Rule 2 to remove it. The dotted lines in the figure specify the resulting strongly
connected components after an application of Rule 1. Notice that none of the arcs between
pairs of vertices in C = {v3, v4, . . . , v9} are removed by Rule 1, since each of the vertices
in C is included in a 3-cycle in w≤ 1

2
. Therefore, the complete digraph over C will be

untouched by Rules 1 and 2.

The following terms are used to specify the structure in the reduced instances. We
define the F -span of an arc (u, z) to refer to the set of vertices ordered between u and z in
a total order F :

Definition 5.5. A vertex v ∈ V is in the F -span of an arc (u, z) ∈ F for a total order
F ∈ Total(V ) if u <F v <F z.

A relaxation of the F -span concept, involving a set of arcs rather than a set of vertices,
will also be useful in our descriptions:
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Definition 5.6. An arc (x, y) is in the F -span of an arc (u, z) ∈ F for a total order
F ∈ Total(V ) if x = u and y is in the F -span of (u, z), y = z and x is in the F -span of
(u, z), or both x and y are in the F -span of (u, z).

Example 5.2. The F -span of (1, 3) for the total order F ∈ TU , U = {1, 2, 3, 4}, satisfying
1 <F 2 <F 3 <F 4 is the set of vertices and arcs {2, (1, 2), (2, 3)}.

Lemma 5.6. After exhaustive applications of Rules 1 and 2 on a complete digraph, each
of the vertices in the reduced instance is either an endpoint or in the F -span of an arc in
F ∩ w≥ 1

2
, for any total order F .

Proof. Suppose instead that the reduced instance contains a vertex v that is neither in
endpoints(F ∩ w≥ 1

2
) nor in the F -span of an arc in F ∩ w≥ 1

2
.

Since any 3-cycle must contain at least one arc in any total order, any 3-cycle in w≥ 1
2

contains an arc in F . Thus v does not belong to such a 3-cycle, as either an arc incident to
v would be in F ∩w> 1

2
, or v would be in the F -span of an arc in F ∩w> 1

2
, a contradiction.

Since Rules 1 and 2 remove arcs between but not within strongly connected components,
no reduced instance of a complete digraph will have an incomplete digraph as a strongly
connected component. Consequently, any set of vertices that forms a cycle in w≤ 1

2
will also

form a 3-cycle in w≥ 1
2
; we conclude that v does not belong to a 3-cycle in w≤ 1

2
.

In a reduced instance, applying Rule 1 does not result in the removal of any arcs, and
hence all the arcs incident to v have to be in w= 1

2
. The inapplicability of Rule 2 implies

that v has at least one neighbour. Since each strongly connected component is a complete
digraph, v has to be incident to at least two arcs, e and rev(e) (both in w= 1

2
⊆ w≥ 1

2
), one

of which must be in F ∩ w≥ 1
2
. The resulting contradiction proves the lemma.

Lemma 5.7. A reduced instance of WDFAS, formed by exhaustive application of Rules
1 and 2, has at most 4k vertices, where k is the minimum weight of a feedback arc set in
the original instance.

Proof. For F a minimum feedback arc set for the original instance, we associate with each
vertex v a set g(v) of one or two arcs in F , of total weight at least 1

2
. We obtain a lower

bound on the weight of F by correlating the sets with a partitioning of the arcs.

Let F ′ be the subset F ∩w≥ 1
2

and let V ′ be the set of vertices in the reduced instance.

We define g(v) for each v ∈ V ′ as follows; g is well-defined, since by Lemma 5.6 every
vertex in V ′ is an endpoint or in the F -span of an arc in F ′.

Case 1: If v is an endpoint of some arc e ∈ F ′, then g(v) = {e}.
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Case 2: If v is in the F -span of some (u, z) ∈ F ′, then g(v) = {(u, v), (v, z)}.

The weight of g(v) is at least 1
2

for each v: this is trivially correct for Case 1, since
e ∈ w≥ 1

2
. By the triangle inequality, w(u, v) + w(v, z) ≥ w(u, z), thus the total weight of

the arcs in g(v) in Case 2 is also at least 1
2
.

To see that each arc in Fg =
⋃
v∈V ′ g(v) is included in at most two g’s, we first observe

that each arc in F ′ is assigned to at most two vertices (its two endpoints, Case 1). Any
other arc has exactly one endpoint in endpoints(F ′); the endpoint v 6∈ F ′ is the endpoint
of exactly two arcs, both appearing in the same g set in Case 2.

Consequently,

wFg ≥
1

2
·
∑
v∈V ′

wg(v) ≥
1

2
· 1

2
· |V ′|,

and thus,
4wF ≥ |V ′|.

The function g is important only in deriving the bound; the assignments of arcs to
vertices are not actually used in the formation of the kernel.

Theorem 5.6. WDFAS restricted to complete digraphs whose arc-weights satisfy probabil-
ity and triangle inequality constraints admits a 4k vertex kernel; the kernel is enumerative
and can be computed in O(n2) time.

Proof. By Lemma 5.7, we know that there are no more than 4k vertices in the digraph G′

left after exhaustive application of Rules 1 and 2 to an input digraph G. One can make
G′ a complete digraph by adding back those arcs removed from G that were between the
vertices in G′. As Lemma 5.5 gives a bijection between minimum feedback arc sets in G
and minimum feedback arc sets in G′, G′ is an enumerative kernel.

Exhaustive application of Rules 1 and 2 has an effect similar to computing the strongly
connected components of w< 1

2
and can be done in O(n2) time.

Corollary 5.2. P-Kemeny Rank Aggregation admits an enumerative partial kernel
with at most 4kt

m
candidates.
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Proof. Since the weights of the arcs are not changed by the reductions and the reduced
instance is still a complete digraph, the reduced instance still corresponds to a P-Kemeny
Rank Aggregation instance. For every optimal aggregation σ of a P-Kemeny Rank
Aggregation instance (I, kt

m
), rev(σ) is a minimum-weight feedback arc set of weight

kt
m

in the corresponding WDFAS instance (Observation 2.7 in Section 2.3.3). Therefore,
Theorem 5.6’s bound in terms of k proves that the number of vertices (corresponding to
candidates) in the kernel is at most 4kt

m
.

5.3.2 Refining the Kernel

We slightly modify Rule 1 so that the number of vertices is now at most 2k+ p, where p is
the number of strongly connected components after exhaustive application of the modified
rule. In order to force p to be small with respect to k, we introduce an additional rule to
remove small strongly connected components.

Our first rule, also mentioned by Betzler et al. [18], is the implementation of Obser-
vation 2.10 (in Section 2.3.4), which is the WDFAS variant of the Extended Condorcet
Criterion:

Rule 1′: If there exists a subset of vertices V ′ ⊂ V such that (V ′ × (V \ V ′)) ⊆ w< 1
2
,

then remove the arcs between V ′ and V \ V ′ and reduce k by the total weight of arcs from
V \ V ′ to V ′.

The proof of Lemma 5.4 follows immediately from Observation 2.10.

Lemma 5.8. Rule 1′ is sound.

Rule 1′ slightly differs from Rule 1. It might remove some of the arcs to/from vertices
not in a 3-cycle in w≤ 1

2
. As a result, the strongly connected components left after applica-

tions of Rule 1′ are subsets of the strongly connected components left after applications of
Rule 1. The resulting strongly connected components are still guaranteed to be complete
digraphs.

Example 5.3. Consider the graph in Example 5.1. Like Rule 1, Rule 1′ isolates v2. The
difference is that Rule 1′ removes the arcs from vertices in {v0, v1 . . . , v6} to vertices in
{v7, v8, v9}. The resulting strongly connected components for both the rules are shown by
dotted lines in Figures 5.7 and 5.8.

Rule 1′ results in the following refined bound:
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 5.8: The strongly connected components formed after exhaustive application of
Rule 1′

Lemma 5.9. A reduced instance of WDFAS, formed by exhaustive application of Rules
1′ and 2, has at most 2k + p vertices, where k is the minimum weight of a feedback arc
set F in the original instance and p is the number of strongly connected components in the
reduced instance.

Proof. We set F ′ = {e ∈ F ∩ w≥ 1
2

: no arc e′ ∈ F ∩ w≥ 1
2

is in the F -span of e}. We

associate a set g(v) to each v ∈ V ′ as follows, where V ′ is the set of vertices in the reduced
instance:

Case 1: If v is the tail of some arc (u, v) ∈ F ′, then g(v) = {(u, v)}.

Case 2: If v is in the F -span of some (u, z) ∈ F ′, then g(v) = {(u, v), (v, z)}.

Case 3: If v is the head of some arc (v, u) ∈ F ′, then g(v) = ∅.

Except for one vertex in each strongly connected component (the one that is ordered
first in F ), all vertices are either the tail or in the F -span of some arc in F ′. Suppose that
a vertex v is not the tail or in the F -span of an arc in F ′. Let L be the set of vertices
ordered before v in F . Then, it is easy to see that every arc (in the original instance) from
L to the rest of the vertices, including v, is in w< 1

2
. Therefore, Rule 1′ removes all the

arcs between L and v. Consequently, v is ordered first (by F ) in its strongly connected
component in the reduced instance.

Therefore, the number of vertices assigned to Case 3 is p (one for each strongly con-
nected component). To complete the proof, it will suffice to show that all the arcs in g are
distinct, since then

wF ≥
∑
v∈V ′

wg(v) ≥
1

2
· (|V ′| − p),

thus,
2wF + p ≥ |V ′|,
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z v u v u x

Figure 5.9: Situations occurring if (u, v) were to be assigned both in Case 1 and in Case 2

z v u x

Figure 5.10: The situation occurring if (u, v) were to be assigned twice in Case 2

as required.

The tails of the arcs assigned in Case 1 are all distinct, hence the arcs themselves are
also distinct. If an arc (u, v) were to be assigned once in Case 1 and also in Case 2, then
either v would be in the F -span of an arc (u, z) ∈ F ′ or u would be in the F -span of an
arc (x, v) ∈ F ′, as depicted in Figure 5.9. However, in each case (u, v) is in the F -span of
the other arc in the figure, thus indicating that such an arc is not in F ′. Finally we show
that no arc can be associated with two different vertices in Case 2; this could only occur if
u were in the F -span of an arc (x, v) and v were in the F -span of an arc (u, z), as depicted
in (Figure 5.10). However, v is the tail of (x, v) ∈ F ′ in this situation, and falls into Case
1, which is a contradiction.

Our next rule is based on the fact that each strongly connected component can be
solved independently:

Rule 3: Solve WDFAS for a strongly connected component of at most 2
ε

vertices, remove
the component, and decrease k accordingly.

Observation 5.2. Rule 3 is sound.

Proof. Suppose that (G, k) is an instance of WDFAS and it reduces to (G′, k′) after an
application of Rule 3. To be more precise, suppose that G is a disjoint union of complete
digraphs, C is a strongly connected component in G (thus, also a complete digraph), and
FC is a minimum weight feedback arc set for C. Then, G has a feedback arc set of weight
k if and only if G′ = (V (G) − V (C), E(G) − E(C)) has a feedback arc set of weight
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k′ = k − wFC . Therefore, regardless of the bound 2
ε

on the number of vertices in C, Rule
3 is sound.

When Rules 1′ and 2 are the only rules applied, there is a bijection between minimum
feedback arc sets in the original instance and minimum feedback arc sets in the reduced
instance. The bijection can be lost after an application of Rule 3, since the possibly
multiple solutions for a strongly connected component with at most (2 + ε)k vertices will
all correspond to one solution in the reduced instance.

Lemma 5.10. For any constant ε > 0, a reduced instance of WDFAS, formed by exhaus-
tive application of Rules 1′, 2, and 3, has at most (2+ε)k vertices, where k is the minimum
weight of a feedback arc set in the original instance.

Proof. Each of the remaining strongly connected components has more than 2
ε

vertices. For

V ′ the set of vertices in the reduced instance, at most b |V
′|

2
ε
+1
c strongly connected components

will remain. By Lemma 5.9, |V ′| ≤ b2k+
(
|V ′|
2
ε
+1

)
c, resulting in |V ′| ≤ (2 + ε)k, as required.

Theorem 5.7. WDFAS restricted to complete digraphs whose arc-weights satisfy proba-
bility and triangle inequality constraints admits a (2 + ε)k vertex kernel for an arbitrarily
small ε > 0. The kernel can be computed in O(n2 + n · b2

ε
c!) time. and the way we solve

one does not affect the optimality of solutions in other components.

Proof. Since Rules 1′, 2, and 3 are sound, we can always use them for reduction. According
to Lemma 5.10, exhaustive application of Rules 1′, 2, and 3 reduces the number of vertices
to at most (2 + ε)k vertices.

Exhaustive application of Rule 1′ has the same effect as computing strongly connected
components of w< 1

2
, and thus can be implemented in O(n2) time. We can also keep track

of the number of vertices in each strongly connected component, allowing us to identify
small components within the same time bound. Application of Rule 3 for each component
with at most 2

ε
vertices can be done in O(b2

ε
c!) time if a brute-force search is used, yielding

a total running time of O(n2 + n · b2
ε
c!) in the worst case.

Corollary 5.3. P-Kemeny Rank Aggregation admits a partial kernel with at most
(2 + ε)kt

m
candidates for an arbitrarily small ε > 0.
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5.4 Concluding Remarks

In the first section, we presented an O∗(1.403kt)-time algorithm to find an optimal aggrega-
tion. Our algorithm improved the previous best running time of O∗(1.53kt) due to Betzler

et al. [20]. The running time was subsequently decreased to O∗(2O(
√
kt
m

log
kt
m

)) [7, 68] and

later to O∗(2O(
√
kt
m

)) [91].

We next developed an O∗(4
kt
m )-time algorithm to enumerate all optimal aggregations,

giving the first FPT algorithm for Enum(P-Kemeny Rank Aggregation). In addi-

tion, we proved that there cannot be more than 4
kt
m optimal aggregations for an instance

of P-Kemeny Rank Aggregation and there are instances with this many optimal ag-
gregations. We observed that our algorithm, as well as the analysis, worked for locally
optimal aggregations.

In the final section, we obtained a (2 + ε)kt
m

-candidate partial kernel for P-Kemeny
Rank Aggregation. Our kernelization is a direct implementation of the Extended
Condorcet Criterion combined with a brute-force algorithm to solve small components
(those including at most 2

ε
candidates) in the reduced instance. The brute-force algorithm

is used in Theorem 5.7 to apply Rule 3. If this algorithm is replaced with the recent
parameterized algorithm for WDFAS [91], a decreased ε (thus a decreased upper bound
for the number of candidates) can be achieved within the same time bound. It is open
whether the number of candidates can be decreased to (2 + o(1))kt

m
.
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Chapter 6

Parameterized Partial Enumerability

In this chapter, we establish the following connections between P-Neighbour String,
P-Closest String, and P-Kemeny Rank Aggregation and their associated partial
enumeration problems:

1. If an algorithm solves P-Neighbour String in time t(|I|,max di) for any instance
I = {(s1, d1), . . . , (sn, dn)}, si ∈ Σ` for all i, and for a non-decreasing function t,
then there exists an algorithm that solves Partial(P-Neighbour String) in time
O(K · |Σ| · ` · t(|I|,max di)).

2. If an algorithm solves P-Closest String in time t(|I|, d) for any instance I =
{(s1, d), . . . , (sn, d)}, si ∈ Σ` for all i, and for a non-decreasing function t, then there
exists an algorithm that solves Partial(P-Closest String) in time O(K · |Σ| · ` ·
2d · t(|I|, d)).

3. If an algorithm solves P-Kemeny Rank Aggregation in time t(|I|, kt
m

) for any
multi-set I of m total orders of τ(σ, I) = kt, then there exists an algorithm that
solves Partial(P-Kemeny Rank Aggregation) in time O(K · n2 · t(|I|, kt

m
)).

The time bounds are summarized in Table 6.1. Since P-Neighbour String is
more general than P-Closest String, the extra 2d factor in the time bound of Par-
tial(P-Closest String) might seem strange. We have not tried to make this factor
optimal. Nevertheless, the t functions in the two cases are not necessarily the same, and
we expect to have a smaller time bound to produce one solution to P-Closest String.

These results are all based on a standard backtracking algorithm [121], which uses
prefix problems to prune all branches with no solution.
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Problem Time for 1 solution Time for K solutions
P-Neighbour String t(|I|,maxi di) O(K · |Σ| · ` · t(|I|,maxi di))
P-Closest String t(|I|, d) O(K · |Σ| · ` · 2d · t(|I|, d))
P-Kemeny Rank Aggregation t(|I|, kt

m
) O(K · n2 · t(|I|, kt

m
))

Figure 6.1: Time to solve Partial problems associated with P-Neighbour String,
P-Closest String, and P-Kemeny Rank Aggregation

Inspired by this backtracking technique, we obtain a necessary and sufficient condition
for instances of k-subset problems, a very common form of search problem, to have f(k)
solutions. The condition translates to the famous Erdös–Rado Theorem. We also demon-
strate that the Erdös–Rado Conjecture (a stronger form of the Erdös–Rado Theorem)
restricts f(k) to ck for certain k-subset problems.

Next, we show how a classical algorithm due to Lawler [101] can be used for an FPT
enumeration of K best solutions for increasing k-subset problems, a common form of
optimization problem. The time complexity almost matches the time complexity of finding
a single solution for the particular increasing k-subset problem. As a result, we improve a
few partial enumeration results. The results can be seen as the first step towards answering
the question raised by Chen et al. [33], regarding the connection of FPT optimization
problems (optimization problems whose corresponding search problems are in FPT) and
optimization problems that have FPT partial enumerations.

We present the algorithm for partial enumeration in Section 6.1. The algorithm pro-
duces K solutions to a search problem R in FPT time assuming that it has access to FPT
algorithms for both R and Prefix(R). The algorithm is extended to optimization prob-
lems in Section 6.3. We present parameterized reductions from Partial(P-Neighbour
String), Partial(P-Closest String), and Partial(P-Kemeny Rank Aggrega-
tion) to P-Neighbour String, P-Closest String, and P-Kemeny Rank Aggre-
gation in Section 6.1.1, based on which the FPT algorithm of Section 6.1 works for
P-Neighbour String, P-Closest String, and P-Kemeny Rank Aggregation.
In Section 6.2, we discuss a modification of the partial enumeration algorithm, and provide
intuition concerning when the number of nodes in the corresponding execution tree, and
thus the number of solutions, is bounded by f(k), and when we expect this number to be
bounded by ck, for some constant c.
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6.1 Prefix and Partial Problems

Algorithm 11 is a standard backtracking algorithm. It essentially produces every string
p such that (x, p) ∈ Prefix(R) and puts those in R(x) in O, taking an early exit if the
number of strings in O reaches K. The prefix checking at line 3 enables the algorithm to
stop the search when there are no more strings in R(x) that have prefix p. In this sense,
the use of prefix problems is similar to their usage in showing the connection between
the PC (Polynomial-time Check) and PF (Polynomial-time Find) complexity classes in
Section 2.1.2, and the PC and P-enumerable classes in Section 2.1.4.

The returned strings are all distinct since different prefixes are passed to different
nodes: prefixes at a node’s descendants are always longer than the prefix at the node itself.
Furthermore, since the prefixes passed to a node’s children are always different, and none
is a substring of another, strings with common prefixes all appear in the same branch.
Therefore, the algorithm produces K disjoint strings in R(x).

Algorithm 11: PartialEnum

Require: A search problem R, x and p in Σ∗, and an integer K; /* initially

called with p = λ (the empty string) */

O ← ∅;1

if K ≤ 0 then return O;2

if (x, p) /∈ Prefix(R) then return O;3

if (x, p) ∈ R then insert p in O;4

foreach p′ ∈ {p · c : c ∈ Σ} do5

O ← O ∪ PartialEnum(R, x, p′, K − |O|);6

end7

return O;8

Observation 6.1. If Prefix(R) can be checked in time t(|x|+ |y|) for a search problem
R and for any input (x, y), then Partial(R) can be solved in time O(K · |Σ| ·Y ·t(|x|+Y ))
for any input (x, 1K), where Y = max{|y| : y ∈ R(x)}.

Proof. Using strong induction on the length of p, it is not hard to prove that Par-
tialEnum(R, x, p,K) returns K ′ ≤ K solutions in R(x) in time O(K · |Σ| · Y · t(|x|+ Y )),
where K ′ is the minimum of K and the number of solutions in R(x) that have prefix
p. Consequently, PartialEnum(R, x, λ,K) returns K solutions (or all solutions, if their
number is smaller than K) in R(x) within the required time.
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Consider the execution tree of PartialEnum(R, x, λ,K). The number of solutions pro-
duced is at most K. The p values at ancestors of a node are all prefixes of the p value
at the node. Therefore, every node in which a solution is found (line 4), has less than
Y = max{|y| : y ∈ R(x)} ancestors. We call any such node a solution node. On
the other hand, every internal node N is an ancestor of a solution node; otherwise,
(x, p) /∈ Prefix(R) for the p value at the node N and the algorithm returns at line 3
without producing any children. Consequently, there are at most K · Y internal nodes:
if we mark all ancestors of the at most K solution nodes, all the internal nodes will be
marked, and therefore the internal nodes are among the at most K · Y nodes that are
marked. Since each internal node has |Σ| children, there are at most K · |Σ| · Y nodes in
the execution tree. The time spent in each node is bounded by O(t(|x| + Y )), making a
total running time of O(K · |Σ| · Y · t(|x|+ Y )), as required.

To study partial enumeration of solutions for parameterized problems, we restate Ob-
servation 6.1 for 2-parameter time bounds:

Observation 6.2. Suppose that R is a search problem parameterized by a parameter func-
tion κ. If Prefix(R) can be checked in time t(|x|+ |y|, κ(x)) for any input ((x, κ(x)), y),
then Partial(R) can be solved in time O(K · |Σ| · Y · t(|x| + Y, κ(x))) for any input
((x, 1K), κ(x)), where Y = max{|y| : y ∈ R(x)}.

Corollary 6.1. If Prefix(R) is in FPT for a parameterized search problem R, then
Partial(R) is in FPT.

In many cases the prefix problems of FPT problems are also in FPT. In fact, the input
prefixes often prune the search space and make the search even more efficient.

6.1.1 Reducible Prefix Problems

For many problems, the assumption of having an efficient algorithm for prefix problems
is not stronger than assuming an efficient algorithm for original problems. For example,
finding a maximum-weight forest that includes certain edges and excludes certain edges can
still be solved by Kruskal’s algorithm (with slight modifications) [135]. Or, prefix problems
of Fagin-definable problems [71] are not harder than themselves, since any assignment of
a few variables to true or false will only simplify the formula.

Nevertheless, from the theoretical standpoint, we would like to show reductions from
the prefix of a problem to the original problem.
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Observation 6.3. Suppose that R is a parameterized search problem in FPT. If
Prefix(R) has a parameterized reduction to R, then Partial(R) is in FPT.

In the following, we provide such reductions for Prefix(P-Neighbour String), Pre-
fix(P-Closest String), and Prefix(P-Kemeny Rank Aggregation):

Lemma 6.1. Prefix(P-Neighbour String) has a parameterized reduction to
P-Neighbour String.

Proof. Let C = (({(s1, d1), . . . , (sn, dn)},maxi di), y
′) be an instance of Pre-

fix(P-Neighbour String). Let ` denote the length of the strings s1, s2, . . . sn and `′

denote the length of y′. Let R be the region {`′ + 1, `′ + 2, . . . , `}.
We can ignore the given prefix y′ as long as we update the distances accordingly: C is a

solution to Prefix(P-Neighbour String) if and only if ({(s′1, d′1), . . . , (s′n, d
′
n)},maxi d

′
i)

is a solution to Prefix(P-Neighbour String), where s′i = si|R and d′i = di−H(si|R, y′)
for every i.

Lemma 6.2. There exists a parameterized reduction from P-Neighbour String to
P-Closest String.

Proof. Let C = ({(s1, d1), . . . , (sn, dn)}, d) be an instance of P-Neighbour String, d =
maxi di. Also, let ∆di denote d− di and let ∆d denote the maximum among the ∆di’s.

In order to reduce this instance to an instance of P-Closest String, we would like
to make all the distances equal. We do so by making two copies of each string si, and
adding prefixes at the beginning of these copies which force a distance increase of d − di
for at least one of the copies: C is a solution to P-Neighbour String if and only
if ({(s′1, d), . . . , (s′n, d), (s′′1, d), . . . , (s′′n, d)}, d) is a solution to P-Closest String, where
s′i = (01)∆di(00)∆d−∆disi and s′′i = (10)∆di(00)∆d−∆disi.

We use a combination of the reductions in Lemmas 6.1 and 6.2 to construct a reduction
from Prefix(P-Closest String) to P-Closest String:

Lemma 6.3. Prefix(P-Closest String) has a parameterized reduction to P-Closest
String.

Proof. An instance ((I, d), y′) is in Prefix(P-Closest String) if and only if it is in
Prefix(P-Neighbour String). Therefore, any reduction from Prefix(P-Neighbour
String) to Closest String will also be a reduction from Prefix(P-Closest String)
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to Closest String. Lemma 6.1 gives a parameterized reduction f1 from Pre-
fix(P-Neighbour String) to P-Neighbour String. Lemma 6.2 gives a parame-
terized reduction f2 from P-Neighbour String to P-Closest String. The function
f2of1 is thus a parameterized reduction from Prefix(P-Closest String) to P-Closest
String.

In our discussion for P-Kemeny Rank Aggregation, we assume that the in-
put/output total orders (all in Total(U)) are represented by strings over the alphabet
Σ = U . For example, the total order π ∈ Total({a, b, c}) that orders a, b, and c as
b <π a <π c is represented as “bac”.

Lemma 6.4. Prefix(P-Kemeny Rank Aggregation) has a parameterized reduction
to P-Kemeny Rank Aggregation.

Proof. Let C = ((I, kt
m

), y′) be an instance of Prefix(P-Kemeny Rank Aggregation).
Let U ′ be the subset of candidates contained in the prefix y′.

Having y′ as a prefix forces all the candidates in U ′ be ordered before all other can-
didates. Therefore, we can remove the candidates in U ′ as long as we update the total
distance kt accordingly: C is a solution to Prefix(P-Kemeny Rank Aggregation) if

and only if (I ′, k
′
t

m
) is a solution to Prefix(P-Kemeny Rank Aggregation), where I ′

is constructed by removing the candidates in U ′ from I and k′t is the adjusted distance
kt −

∑
a∈U ′,b∈U\U ′ |I(b,a)|.

6.2 A Note on Parameterized Enumerability

In the PartialEnum algorithm (Algorithm 11), the branching (i.e. ways of partitioning
the space of solutions) could be changed in various ways. Similar branching techniques
have been used by Murty [112], Lawler [101], Valiant [130], Carraresi and Sodini [29], and
Hamacher [84]. In this section, we provide an alternative branching for k-subset problems, a
common form of search problem. We characterize those problems that have f(k) solutions,
for some function f , based on this alternative branching.

Definition 6.1. A k-subset problem is a search problem R such that for every input x
every y ∈ R(x) is a subset of size at most k.

We use DomainR(x) to denote
⋃
y∈R(x) y. For instance, when R is the k-subset problem

mapping every graph x to the set of its k-vertex covers, DomainR(x) is the set of vertices
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in the graph x. We represent each solution y ∈ R(x) as a string y1y2 · · · y|DomainR(x)| such
that yi = 1 if the ith element of the domain is in y and yi = 0 otherwise.

Therefore, the alphabet Σ is restricted to {0, 1} in all our discussions on k-subset
problems.

We use 1|s (respectively, 0|s) to denote the set of positions in which a string s has
value 1 (respectively, 0), and use ? to denote a character in the prefix that matches any
character. Therefore, the solution represented by a string s is in fact 1|s. We also recall
(from Chapter 2) that for a set of positions L and strings s1 and s2 of lengths |L| and
`− |L|, the notation s1 ⊕L s2 is defined as the string s of length ` such that s|L = s1 and
s|L = s2.

6.2.1 The Connection to the Erdös–Rado Theorem

In this section, we show that the number of solutions for instances of k-subset problems is
bounded by a function of k, if and only if a parameter ∆ of the input instances is bounded
by a function of k.

Algorithm AlternativeEnum, illustrated in Figure 12, is a modification of Algorithm 11
which produces all solutions (i.e. K is removed from the algorithm) and uses a special kind
of branching for k-subset problems. The Find algorithm called is Algorithm 1 in Section 1,
which returns a solution y ∈ R(x) that matches the prefix p or returns ⊥ when there
is no such solution; this algorithm uses arbitrary algorithms to check Prefix(R) and R.
Algorithm AlternativeEnum uses an extended Prefix(R) where prefixes are allowed to
contain “don’t care” ?’s. Note that we are mainly concerned with the number of solutions
here, and do not really need these prefix algorithms or the algorithm to check R.

The idea is to branch based on the positions in 1|s for a solution s. In particular, the
algorithm sets aside the positions in 1|p ∪ 0|p, which are fixed already by the prefix p, from
1|s (line 5). It then fixes the 1st, 2nd, . . . , or the last position in 1|s \ (1|p ∪ 0|p) to be 1 in
the next solutions (by making it one in the new prefix) or to force the next solutions to be
all zeros in 1|s (line 6). Since s is a solution for a k-subset problem, 1|s is ensured to have
a cardinality at most k, thus a limited number of branches.

The new branching ensures two main properties in all the nodes in the execution tree
of AlternativeEnum(x, λ), for any input x:

Lemma 6.5. There are at most k + 1 branches from each node.
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Algorithm 12: AlternativeEnum

Require: Two strings x and p in Σ∗; /* initially called with p = λ (the

empty string) */

O ← ∅;1

y ← Find(x, p);2

if y = ⊥ then return O;3

insert y in O;4

L← 1|y \ (1|p ∪ 0|p);5

foreach p′ ∈ {w ⊕L p : |w| = |L| and w ∈ (0∗1?∗) ∪ 0∗} do /* w is a string6

over the alphabet {0, 1, ?} */

O ← O ∪ AlternativeEnum(x, p′);7

end8

return O;9

Proof. The branches from a node correspond to the strings w ∈ (0∗1?∗)∪ 0∗, of length |L|,
produced at line 6. There are |L|+1 such w’s. Since y ∈ R(x) (guaranteed by the algorithm
Find), and R is a k-subset problem, |L| is always less than or equal to k. Therefore, there
are |L|+ 1 ≤ k + 1 branches from each node, as required.

As a consequence, the number of nodes in the execution tree is a function of k if and
only if the depth of the tree depends only on k.

During the course of the algorithm, whenever a recursive call is made with w = 0|L|,
we say that the algorithm is taking a rightmost branch. For other recursive calls, we say
that the algorithm is taking a non-rightmost branch.

Lemma 6.6. In all but one branch (the rightmost branch), in each node, the number of
1’s in the prefix, i.e. p, is increased by one.

Proof. By the definition of L, none of the positions in L are in 1|p. Since in every
non-rightmost branch, w has a 1, the number of 1’s in w ⊕L p is one plus the number
of 1’s in p.

Since the algorithm looks for subsets of size at most k (represented by binary strings
with at most k 1’s), Lemma 6.6 ensures that the number of times the algorithm goes
through non-rightmost branches is limited to k.

On the other hand, we show that the number of consecutive rightmost branches taken
is bounded by ∆(R(x)), where a ∆-system [61] (also known as a sunflower) is a family
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of sets all of which share a subset Y and none of their pairwise intersections includes an
element outside Y , and ∆(S) for a family of sets S denotes the cardinality of a largest
∆-system that is a subset of S:

Lemma 6.7. Suppose that there are t consecutive rightmost branches taken in the execution
tree of AlternativeEnum(x, λ), for some integer t. Then, R(x) includes a ∆-system of
cardinality t+ 1.

Proof. Consider the node N0 at which these t consecutive rightmost branches begin. Let
Ni, 1 ≤ i ≤ t, be the node executed after taking the rightmost branch in Ni−1, and let yi,
0 ≤ i ≤ t, denote the y computed at line 2 in Ni. We show that S = {1|yi : 0 ≤ i ≤ t} is a
sunflower contained in R(x).

It is guaranteed by the algorithm Find that 1|y ∈ R(x) for every y computed at line 2.
Therefore, it suffices to show that S is a sunflower. Assume that pi is the value of p passed
to the node Ni. Due to the removal of 1|p and 0|p in the construction of L (line 5), the
algorithm does not change any 0’s or 1’s fixed in a prefix, thus 1|pt ⊆ 1|pt−1 ⊆ · · · ⊆ 1|p0
and 0|p0 ⊆ 0|p1 ⊆ · · · ⊆ 0|pt . On the other hand, in a rightmost branch w = 0|L|, and
therefore, no 1 is added to the current prefix, proving that 1|p0 = 1|p1 = · · · = 1|pt . We
claim that 1|yi ’s do not intersect in a position outside 1|p0 . Assume instead that 1|yj \ 1|p0
and 1|yi \ 1|p0 share a position u /∈ 1|p0 , for some 1 ≤ j < i ≤ t. By the definition, u will be
in the L constructed in Nj, since L = 1|yj \ (1|pj ∪ 0|pj) = 1|yj \ (1|p0 ∪ 0|pj). We know that

pj+1 = 0|L| ⊕L pj. Therefore, the value of pj+1 in u will be 0, and thus u ∈ 0|pj+1
⊆ 0|pi .

This is in contradiction with u ∈ 1|pi in the definition of u. The resulting contradiction
proves that S forms a sunflower.

As a consequence of Lemmas 6.6 and 6.7, the depth of the execution tree will be
bounded by (k + 1)∆(R(x)):

Theorem 6.1. Suppose that R is a k-subset problem. Then, |R(x)| ≤ f(k) for some
function f if and only if ∆(R(x)) ≤ g(k) for some function g.

Proof. If ∆(R(x)) exceeds any function of k, it means that R(x) contains a sunflower S
whose cardinality exceeds any function of k. Therefore, |R(x)| exceeds any function of k.

On the other hand, if ∆(R(x)) ≤ g(k) for some function g, consider a deepest leaf in
the execution tree of AlternativeEnum(x, λ). Suppose that the leaf is reached from the
root of the tree by taking a sequence of non-rightmost or rightmost branches represented
by d1d2 · · · da, where di ∈ {n, r}. As a corollary of Lemma 6.6, there are at most k n’s in
this sequence, since each n increases the number of 1’s in the prefix and the algorithm will
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return at line 3 whenever p contains k+ 1 1’s. In addition, by Lemma 6.7, there cannot be
∆(R(x)) consecutive r’s in this sequence. Therefore, the length of the sequence of d’s, thus
the depth of the execution tree, is at most (k + 1) ·∆(R(x)) ≤ (k + 1) · g(k). Combined
with Lemma 6.5, this proves that the number of nodes in the execution tree, i.e. |R(x)|, is
a function of k.

Theorem 6.1 is indeed a corollary of the Erdös–Rado Theorem, essentially saying that
set systems of large cardinality include large ∆-systems. Let r(S) denote the cardinality
of a largest set in a family S of sets. Then, the Erdös–Rado Theorem states that

Theorem 6.2. [61] Suppose that S is a family of sets such that r(S) ≤ k and ∆(S) ≤ t.
Then, the cardinality of S is at most k!tk(1− 1

2!t
− 2

3!t2
− · · · − k−1

k!tk−1 ).

If f(k, t) denotes the maximum cardinality of the set systems in {S : r(S) ≤ k,∆(S) ≤
t}, Theorem 6.2 can also be stated as

f(k, t) ≤ k!tk
(
1− 1

2!t
− 2

3!t2
− · · · − k − 1

k!tk−1

)
.

Notice that the proof of Theorem 6.1 is also giving an upper bound for f(k, t). Never-
theless, the bound is not as precise as the upper bound in the Erdös–Rado Theorem.

6.2.2 Examples

In the previous section, we showed how ∆(R(x)) affects the number of solutions in R(x).
In the following, we show that ∆(R(x)) is a natural parameter in k-subset problems.
In particular, we show that ∆(R(x)) is a constant when R(x) is the set of all minimal
k-vertex covers, k-feedback arc sets on tournaments, or all minimal solutions to k-Cluster
Deletion (minimal sets of edges whose removal from the input graph transforms it to a
union of cliques).

Theorem 6.3. Suppose that R(x) is the set of all minimal k-vertex covers in the undirected
graph x. Then, ∆(R(x)) ≤ 2.

Proof. Assume instead that R(x) includes a ∆-system S = {σ1, σ2, σ3} all intersecting in
a set Y . Since the three sets in S are distinct, σi \ Y 6= ∅ for some 1 ≤ i ≤ 3. Due to the
minimality of σi, Y cannot be a feasible solution. Hence, we can assume that there is an
edge e in the input graph not covered by Y . To cover e, σi \ Y must include one of its
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endpoints. Similarly, the two other vertex covers in S must also include an endpoint of e.
However, (σ1 \ Y ), (σ2 \ Y ), and (σ3 \ Y ) are disjoint, which is not possible as there are
only two endpoints of e to be assigned to three sets. The resulting contradiction proves
that ∆(R(x)) ≤ 2.

Theorem 6.4. Suppose that R(x) is the set of all minimal k-feedback arc sets in the
tournament graph x. Then, ∆(R(x)) ≤ 3.

Proof. Assume instead that R(x) includes a ∆-system S = {σ1, σ2, σ3, σ4} all intersecting
in a set Y . Again, since the four sets in S are distinct, Y cannot be a feasible solution.
Hence, we can assume that reversing the arcs in Y does not make x acyclic. Since the
resulting graph is still a tournament, it has to have a three-cycle C. To remove this cycle,
σi \ Y must include one of the arcs in C, for every 1 ≤ i ≤ 4. However, (σ1 \ Y ), (σ2 \ Y ),
(σ3 \ Y ), and (σ4 \ Y ) are disjoint, which is not possible as there are only three arcs in C.
The resulting contradiction proves that ∆(R(x)) ≤ 3.

Theorem 6.5. Suppose that R(x) is the set of all minimal solutions to an input instance
x of k-Cluster Deletion. Then, ∆(R(x)) ≤ 2.

Proof. Assume instead that R(x) includes a ∆-system S = {σ1, σ2, σ3} all intersecting in
a set Y . Since the three sets in S are distinct, Y cannot be a feasible solution. Hence, we
can assume that removing the edges in Y in the input graph x results in a graph x′ that
is not a union of a set of cliques. As a consequence, x′ has an induced path of length 2.
To convert x′ into a union of cliques, σi \ Y must include one of the edges in this path,
for every 1 ≤ i ≤ 3. However, (σ1 \ Y ), (σ2 \ Y ), and (σ3 \ Y ) are disjoint, which is not
possible as there are only two edges in the path. The resulting contradiction proves that
∆(R(x)) ≤ 2.

6.2.3 Implications of the Erdös-Rado Conjecture

Erdös and Rado conjectured that f(k, t) has an exponential bound [61], when t is a con-
stant:

Conjecture 6.1. [61] For every t ≥ 1, there exists a constant ct such that for every k ≥ 1

f(k, t) ≤ (ct · t)k.
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The conjecture has been open for the past 50 years. There has been no success in
proving the bound even for t = 2, i.e., the smallest t producing non-trivial f(k, t)’s. In
fact, despite being an old result, improvements made to the bounds for f(k, t) have only
been on the coefficient of tk for certain values of k [1, 3, 2, 97, 96, 98]

Nevertheless, if the conjecture is true, it will give upper bounds on the number of
solutions for k-subset problems of bounded largest sunflower.

Theorem 6.6. Suppose that R is a k-subset problem. Then, |R(x)| ≤ (c ·∆(R(x)))k, for
some constant c, if the Erdös–Rado Conjecture holds.

None of the examples of Section 6.2.2 showcase the effectiveness of the Erdös-Rado
conjecture in obtaining an exponential bound. In all these constant-bounded ∆(R(x))
examples, the bound for ∆(R(x)) is proved based on a constant-sized structure with which
any y ∈ R(x) has to share an element. Therefore, the structure gives an immediate
branching algorithm (with constant branching factor), and an immediate exponential upper
bound for |R(x)|, with no need to use the conjecture.

Nonetheless, we expect the conjecture to give new insight for some problems. Roughly
speaking, since the Erdös-Rado conjecture is a long-time conjecture, we expect the ck

bound be hard to derive for some families of sets of bounded largest sunflower.

6.3 Partial Problems of Optimization Problems

A classical algorithm of Lawler solves Partial problems of certain optimization prob-
lems [101]. Algorithm PartialBestEnum (Algorithm 14) is a modification of PartialEnum
(Algorithm 11 in Section 6.1) according to Lawler’s algorithm: in this algorithm, the
branching is not always made from the most recent node produced. The prefix used to
construct the branches (Algorithm 13, line 4) is chosen based on how good the best so-
lution in each branch is. Consequently, instead of a prefix check, the algorithm needs
to find a best solution that matches each prefix. The best solutions are then compared
(Algorithm 13, line 4), the best solution among them is chosen as the next best solution
(Algorithm 13, line 6), and its corresponding prefix is used for branching (Algorithm 13,
line 7).

Although Algorithm PartialBestEnum does not rely on a parameter, we state the the-
orems in the parameterized form:
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Lemma 6.8. If Search(Prefix(Q)), for an optimization problem Q, can be solved in
time t(|x| + |y|, κ(x)) for a function t and for any input (x, y) and a parameter function
κ, then Partial(Q) is solvable in time O(K logK · |Σ| · Y · t(|x|+ Y, κ(x))) for any input
(x, 1K), where Y = max{|y| : y ∈ S(x)}.

Proof. We associate a node in the execution tree of PartialBestRec with the (p, y) chosen
at line 4. A solution y associated with a node is always a best solution that matches
its associated prefix p, thus a best solution among solutions associated with potential
descendants of the node. As a result, the solutions stored in P are the best solutions that
might be found in future branchings. Therefore, the algorithm selects the best solution in
P as the next best solution (lines 4 and 6).

A solution cannot be associated with more than Y nodes, as it matches at most Y
prefixes. Therefore, a new solution will be put in O in every Y rounds, resulting in a total
of at most KY internal nodes and at most KY · |Σ| nodes in total. If the (p, y) pairs in P
are stored in a heap, line 4 is computed in O(logK) time, making an overall running time
of O(K logK · |Σ| · Y · t(|x|+ Y, κ(x))), as required.

Corollary 6.2. If Search(Prefix(Q)), for an optimization problem Q, is in FPT when
parameterized by a parameter function κ, then Partial(Q) is in FPT when parameterized
by κ′ : (x, 1K) 7→ κ(x).

Algorithm 13: PartialBestRec

Require: A string x, and a set P of string pairs, an integer K, and a measure
function m

O ← ∅;1

if K ≤ 0 then return O;2

if P = ∅ then return O;3

choose (p, y) ∈ P that minimizes m(x, y);4

remove (p, y) from P ;5

insert y into O;6

foreach p′ ∈ {p · c : c ∈ Σ} do7

find y′ such that ((x, p′), y′) ∈ Search(Prefix(Q));8

if y′ 6= y was found then insert (p′, y′) in P ;9

end10

return O ∪ PartialBestRec(x, P,K − 1,m);11
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Algorithm 14: PartialBestEnum

Require: A string x, an integer K, and a measure function m
P ← ∅;1

find y such that ((x, λ), y) ∈ Search(Prefix(Q));2

if y 6= ⊥ then insert (λ, y) in P ;3

return PartialBestRec(x, P,K,m);4

6.3.1 Increasing k-Subset Problems

The significance of Corollary 6.2 becomes clearer when we notice that Partial(Q) has the
same time complexity as Q for a large group of optimization problems:

Definition 6.2. An increasing k-subset problem is an optimization problem Q = (I, S,m)
for which there exists a domain set D and a weight function w : D 7→ R such that every
y ∈ S(x) is a subset of size at most k in D and m(x, y) = qx(

∑
e∈y w(e)) for an increasing

function qx.

We represent each solution y ∈ S(x) as a string y1y2 · · · y|D| such that yi = 1 if the ith
element of the domain is in y and yi = 0 otherwise.

The definition matches definitions of Weighted k-Vertex Cover, Weighted
k-FVS, Weighted k-Dominating Set, and k-Edge Dominating Set problems [135].
Considering a negated weight function, the definition also matches that of Weighted
k-Path, where the goal is to find a k-path of largest total arc-weights.

Lemma 6.9. If Search(Q) can be solved in time t(|x|, k) for an increasing k-subset
problem Q and for any input instance (x, k) of Q, then Search(Prefix(Q)) can be
solved in time O(t(|x|, k)) for any input instance ((x, p), k).

Proof. Consider an instance ((x, p), k) of Search(Prefix(Q)).

Suppose that w is the weight function associated with Q. The running time t(|x|, k)
is independent of weight values. Therefore, we can freely change w and expect the same
time bounds.

As a consequence, Search(Q′) can be solved in time t(|x|, k) for the new k-subset
problem Q′ = (I, S,m′) and for any instance (x, k) of Q, where m′(x, y) = qx(

∑
e∈y w

′(e))
and the adjusted weight function w′ : D 7→ R is defined as w′(e) = w(e) if e ∈ 1|p,
w′(e) = w(e) + 2ε if e ∈ 0|p, and w′(e) = w(e) + ε otherwise, for an arbitrary constant
ε > 0.
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Algorithm 15: AlternativePartialBestRec

7.1 L← 1|y \ (1|p ∪ 0|p);1

7.2 foreach p′ ∈ {w ⊕L p : |w| = |L| and w ∈ (0+1?∗) ∪ 0∗} do2

We show that the instance ((x, p), k) of Search(Prefix(Q)) has a solution y if
and only if y is a solution for (x, k) in Search(Q′), if ε is chosen small enough. Sup-
pose that ε is smaller than m((x, k), y′) − m((x, k), y) for a next best solution y′ in Q.
That is, m((x, k), y′) 6= m((x, k), y) and there is no solution y′′ ∈ S((x, k)) that satisfies
m((x, k), y) < m((x, k), y′′) < m((x, k), y′). Then, it is not hard to see that the set of
optimal solutions for (x, k) in Q′ is the subset of optimal solutions for (x, k) in Q that
begin with the prefix p. Therefore, if y is a solution for ((x, p), k) in Search(Prefix(Q)),
it will be an optimal solution for (x, k) in Q′, and thus a solution for (x, k) in Search(Q′).
Similarly, if y is a solution for (x, k) in Search(Q′), it is an optimal solution for (x, k) in
Q′, and thus a solution for ((x, p), k) in Search(Prefix(Q)).

Corollary 6.3. Suppose that Q is an increasing k-subset problem. If Search(Q) is in
FPT when parameterized by k, then Search(Partial(Q)) is in FPT with respect to k.

The running time of Lemma 6.8 can be slightly improved if the prefixes are allowed to
contain a special ? character that matches all characters:

Theorem 6.7. If Search(Prefix(Q)) can be solved in time t(|x|, k) for an increasing
k-subset problem Q and any input instance (x, k) of Q and any prefix string over {0, 1, ?},
then Partial(Q) is solvable in time O(K logK · k · t(|x|, k)) for any input (x, 1K).

Proof. It suffices to substitute line 7 in the PartialBestRec algorithm with the two lines in
Algorithm AlternativePartialBestRec (Algorithm 15).

The following partial enumeration algorithms are examples of Theorem 6.7’s new re-
sults:

Weighted k-Edge Dominating Set. A partial enumeration algorithm due to Wang
et al. [134] finds the K best k-edge dominating sets in a weighted graph in time
O(5.62kk4K2 + 42knk3K). If K is set to 1, this algorithm finds a minimum-weight
k-edge dominating set in time O(5.62kk4 +42knk3), based on which Theorem 6.7 gives
an O((5.62kk4 + 42knk3) ·K logK · k)-time partial enumeration algorithm, improving
the time bound of Wang et al. [134].
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Maximum-Weight k-Path. Using an O(4k+O(log3 k)nm)-time algorithm of Chen et
al. for finding a maximum-weight k-path [34], Theorem 6.7 computes the K heaviest
k-paths in time O(4k+O(log3 k)K logK ·knm). This is an improvement over the partial
enumeration algorithm of Chen et al. [33] that runs in time O(12.8k + 6.4kk2n3K)
(for reasonable values of K).

Theorem 6.7 does not trivially extend to parameterizations of increasing subset prob-
lems by total weights of the solutions. An example is the Real-Weighted k-Vertex
Cover [114] problem, which asks for a minimum weight vertex cover whose total weight
of vertices does not exceed k, on the condition that the weights are real numbers greater
than or equal to 1. The problematic issue is that the parameter might vary for the 1st,
2nd, and Kth solutions, thus making it hard to talk about the running time in terms of k
(i.e., the first parameter).

6.4 Concluding Remarks

In this chapter, we presented FPT algorithms for Partial(P-Neighbour String), Par-
tial(P-Closest String), and Partial(P-Kemeny Rank Aggregation), all based
on standard backtracking techniques. As a matter of fact, we provided sufficient properties
for search problems to have “efficient” partial enumeration algorithms. We then applied
Lawler’s idea [101] (mentioned in Section 6.3) to the backtracking algorithm to compute K
best solutions in any increasing k-subset problem, in about the same time as finding a single
solution for the problem. As a result, we improve the previous best time bounds to solve
Partial(Maximum-Weight k-Path) and Partial(Weighted k-Edge Dominating
Set).

We also observed that the Erdös–Rado Theorem categorizes k-subset problems: a
k-subset problem has f(k) solutions for any input x, for some function f , if and only
if ∆(R(x)) ≤ g(k) for some function g. Furthermore, a constant ∆(R(x)), for every input
x, implies a ck number of solutions for x, for some constant c, if the Erdös–Rado Conjecture
holds.
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Chapter 7

Conclusions and Future Work

In the thesis, we developed the first FPT enumeration algorithms for P-Neighbour
String and P-Kemeny Rank Aggregation in Chapters 4 and 5. Both our algo-
rithms use polynomial space. When the input strings are all binary, our algorithm for
P-Neighbour String can find a closest string in O∗(5(1+λ)d) time, for arbitrary λ > 0,
and thus improves (the asymptotic dependence on d of) the previous best time bound of
O∗(6.73d) [38] for finding a single solution for Closest String. A future direction is to
reduce the dependence on the size of the alphabet, such that the improvement extends to
arbitrary alphabets.

Furthermore, we showed in Chapter 4 how a slight modification to the StringSearch
algorithm of Ma and Sun [105] (for solving Closest String and Neighbour String)
makes it enumerative, and achieved an O∗(6d(1+ε)), for arbitrary ε > 0, time bound through
a new analysis.

The previous time bound for StringSearch [105] also carries over to the modified al-
gorithm. It is not hard to see that subsequent algorithms of Wang and Zhu [136], Zhao
and Zhang [141], Chen and Wang [39], and Chen et al. [38] can also be made enumerative,
with no change in their time bounds. As a consequence, new non-enumerating approaches
are required in order to find o∗(4d)-time algorithms for Closest String even for binary
strings, since there are instances that have as many as 4d closest strings (such as the
instance including two binary strings 02d and 12d).

We also observed in Chapter 5 that our proposed O∗(4
kt
m )-time enumeration algorithm

for P-Kemeny Rank Aggregation enumerates all locally optimal aggregations (a su-
perset of the required set of all optimal aggregations). We emphasize that an f(kt

m
)nO(1)

upper bound on the number of locally optimal aggregations is surprising. A future direction
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can be looking for a new parameter that is more tuned to the complexity of enumerating
all optimal aggregations rather than locally optimal aggregations.

The main contribution in the enumeration algorithm of Chapter 5 was the tight up-

per bound 4
kt
m on the number of locally optimal aggregations. The algorithm itself could

be replaced with a partial enumeration algorithm: there exists an O(mn log n)-time algo-
rithm [57] that computes a locally optimal aggregation, which can be adjusted to solve
the corresponding prefix problem. Taking the approach of Chapter 6 (Algorithm 11)
one can obtain an algorithm that computes K locally optimal aggregations in time
O(Kn2(mn log n)). Therefore, to enumerate all the locally optimal aggregations, it suffices

to set K to 4
kt
m , which results in a time bound of O(4

kt
mn2(mn log n)) ∈ O∗(4

kt
m ). The same

approach gives partial enumeration algorithms for P-Neighbour String, P-Closest
String, and P-Kemeny Rank Aggregation. Combined with a classical algorithm
due to Lawler [101], this also gives a partial enumeration algorithm for the family of in-
creasing k-subset problems. Although the approach is not new, we are the first to use it as
a general approach in the parameterized setting. The final theorem improves previous par-
tial enumerations for Maximum-Weight k-Path and Weighted k-Edge Dominating
Set.

We think the partial enumeration for P-Kemeny Rank Aggregation (obtained in

Chapter 6) is of independent interest. As a result, the existing O(2O(
√
kt
m

) + nO(1))-time
algorithm for P-Kemeny Rank Aggregation [91] yields a subexponential-time algo-
rithm to find a subexponential number of optimal aggregations. This is particularly useful
since there might be exponentially many optimal aggregations (shown in Chapter 5), and
thus a full enumeration is much more time-consuming.

In a slightly different direction, we obtained small partial kernels for P-Kemeny Rank
Aggregation, improving the previous best partial kernel for the problem [18]. One of the
two kernels we provide is enumerative, and thus can be combined with every enumeration
algorithm for P-Kemeny Rank Aggregation. Possible extensions include empirical
studies to compare the sizes of our partial kernels and the previous partial kernel of Betzler
et al. [18]. In fact, the new sizes are always smaller, but an empirical study will show how
much smaller they are on sample instances.

As a side note, we observed a connection between the famous theorem of Erdös and
Rado [61] and the number of solutions in k-subset problems, a very common form of search
problems including k-Vertex Cover, k-Feedback Vertex/Arc Set, and Cluster
Deletion. As a consequence, the cardinality t of the largest sunflower contained in sets
of solutions of input instances is a good indication of whether the number of solutions
is bounded by some exponential function of k, bounded by some function of k, or not
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bounded by a function of k at all. However, since the upper bounds depend only on t and
k, they are not using many properties of the problems. Examples show that Ω(tk) is the
best upper bound one can hope to get from this technique [61, 41]. Nonetheless, evaluating
t values can be a first step to estimate the number of solutions for any k-subset problem.

In summary, our investigations on (partial) enumeration algorithms and enumerative
kernels not only provided effective methods for finding multiple optimal solutions for
P-Closest String, P-Neighbour String, and P-Kemeny Rank Aggregation,
but also provided new insight into properties of optimal solutions. Our improved algo-
rithm for Closest String for binary strings and our reduced (2 + ε)kt

m
-candidate partial

kernel for P-Kemeny Rank Aggregation resulted from this new insight. It would
be interesting to have empirical studies on this partial kernelization and the enumeration
algorithms. Another natural direction to pursue is to investigate the complexity of enumer-
ating representations of optimal solutions for these two problems. Studies on enumeration
aspects of other parameterized problems are also directions for future research.
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[53] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truss. Fixed-parameter
tractability results for feedback set problems in tournaments. J. of Discrete Al-
gorithms, 8(1):76–86, 2010.

[54] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

116



[55] R. G. Downey and D. M. Thilikos. Confronting intractability via parameters. Com-
puter Science Review, 5(4):279–317, 2011.

[56] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for
the web. In WWW ’01: Proceedings of the 10th International Conference on World
Wide Web, pages 613–622, 2001.

[57] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited.
Manuscript, 2001.

[58] E. Ephrati and J. S. Rosenschein. The clarke tax as a consensus mechanism among
automated agents. In AAAI ’91: Proceedings of the 9th National Conference on
Artificial Intelligence - Volume 1, pages 173–178. AAAI Press, 1991.

[59] E. Ephrati and J. S. Rosenschein. A heuristic technique for multi-agent planning.
Annals of Mathematics and Artificial Intelligence, 20(1-4):13–67, 1997.

[60] D. Eppstein. Finding the k shortest paths. SIAM J. Comput., 28:652–673, 1999.

[61] P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal London
Math. Soc., 35:85–90, 1960.

[62] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing and
aggregating rankings with ties. In PODS ’04: Proceedings of the 23rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages
47–58, 2004.

[63] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on
Discrete Mathematics, 17(1):134–160, 2003.

[64] U. Feige. Faster FAST (feedback arc set in tournaments). CoRR, abs/0911.5094,
2009.

[65] H. Fernau. On parameterized enumeration. In Oscar Ibarra and Louxin Zhang,
editors, Computing and Combinatorics, volume 2387 of Lecture Notes in Computer
Science, pages 151–179. Springer Berlin / Heidelberg, 2002.

[66] H. Fernau. Parameterized algorithmics: A graph-theoretic approach. Germany:
Habilitationsschrift, Universität Tübingen, 2005.
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[119] C. Paul, A. Perez, and S. Thomassé. Conflict packing yields linear vertex-kernels for
k-FAST, k-dense RTI and a related problem. In MFCS ’11: Proceedings of the 36th
International Conference on Mathematical Foundations of Computer Science, pages
497–507, 2011.

[120] V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems and
their duals in tournaments. Theoretical Computer Science, 351(3):446–458, 2006.

[121] R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks, 5:237–252, 1975.

[122] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. of Comb.
Theory Ser. B, 36(1):49–64, 1984.

[123] N. Simjour. Improved parameterized algorithms for the Kemeny aggregation prob-
lem. In IWPEC ’09: Proceedings of the 4th International Workshop on Parameterized
and Exact Computation, pages 312–323, 2009.

[124] C. Sloper and J. A. Telle. An overview of techniques for designing parameterized
algorithms. The Computer Journal, 51(1), 2008.

[125] R. Stearns. The voting problem. The American Mathematical Monthly,
66(9):761–763, 1959.

[126] N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A linear-time
algorithm for the 1-mismatch problem. In F. Dehne, A. Rau-Chaplin, J. Sack, and

122



R. Tamassia, editors, WADS ’97: Proceedings of the 5th International Workshop on
Algorithms and Data Structures, volume 1272 of LNCS, pages 126–135, Heidelberg,
1997. Springer.

[127] M. Thurley. Kernelizations for parameterized counting problems. In TAMC ’07: Pro-
ceedings of the 4th International Conference on Theory and Applications of Models
of Computation, pages 705–714, Berlin, Heidelberg, 2007. Springer-Verlag.

[128] M. Truchon. An extension of the Condorcet criterion and Kemeny orders. Cahier
98–15 du Centre de Recherche en Economie et Finance Appliquees, 1998.

[129] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979.

[130] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. on
Computing, 8:410–421, 1979.

[131] J. van Rooij and H. Bodlaender. Exact algorithms for edge domination. Algorithmica,
pages 1–29, 2011.

[132] J. M. M. Van Rooij and H. L. Bodlaender. Exact algorithms for edge domination. In
IWPEC ’08: Proceedings of the 3rd International Workshop on Parameterized and
Exact Computation, pages 214–225, Berlin, Heidelberg, 2008. Springer-Verlag.

[133] A. Van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Research,
34(3):594–620, 2009.

[134] J. Wang, B. Chen, Q. Feng, and J. Chen. An efficient fixed-parameter enumeration
algorithm for weighted edge dominating set. In FAW ’09: Proceedings of the 3rd
International Workshop on Frontiers in Algorithmics, pages 237–250, 2009.

[135] J. Wang and G. Jiang. A fixed-parameter enumeration algorithm for the weighted
FVS problem. In TAMC ’09: Proceedings of the 6th Annual Conference on Theory
and Applications of Models of Computation, pages 390–399, Berlin, Heidelberg, 2009.
Springer-Verlag.

[136] L. Wang and B. Zhu. Efficient algorithms for the closest string and distinguishing
string selection problems. In X. Deng, J. Hopcroft, and J. Xue, editors, FAW ’09:
Proceedings of the 3rd International Workshop on Frontiers in Algorithmics, volume
5598 of LNCS, pages 261–270, Heidelberg, 2009. Springer.

123



[137] V. V. Williams. Multiplying matrices faster than coppersmith-winograd. In STOC
’12: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pages
887–898. ACM, 2012.

[138] M. Xiao and J. Guo. A quadratic vertex kernel for feedback arc set in bipartite
tournaments. In MFCS ’12: Proceedings of the 37th International Conference on
Mathematical Foundations of Computer Science, pages 825–835, 2012.

[139] H. P. Young. Condorcet’s theory of voting. The American Political Science Review,
82(4):1231–1244, 1988.

[140] H. P. Young and A. Levenglick. A consistent extension of condorcet’s election prin-
ciple. SIAM Journal on Applied Mathematics, 35(2):285–300, 1978.

[141] R. Zhao and N. Zhang. A more efficient closest string algorithm. In BICoB ’10: Pro-
ceedings of the 2nd International Conference on Bioinformatics and Computational
Biology, pages 210–215, 2010.

124


	List of Figures
	Introduction
	Preliminaries
	Computational Complexity
	Decision Problems
	Search Problems
	Optimization Problems
	Enumeration Problems
	Parameterized Problems
	Parameterized Intractability
	Various Parameterizations
	Parameterized Techniques


	Neighbour String
	Definitions
	Key Properties

	Kemeny Rank Aggregation
	Definitions
	Preferences that are Agreed on
	Connection to Feedback Arc Set
	The Impact of Large Weights
	Locally Optimal Solutions


	Previous Work
	Parameterized Counting
	Parameterized Enumeration
	Neighbour String
	Approximation Algorithms
	Parameterized Algorithms
	Counting and Enumeration

	Kemeny Rank Aggregation
	Approximation Algorithms
	Parameterized Algorithms
	Kernelization
	Counting and Enumeration
	Variants of the Problem


	Neighbour String
	A New Measure for the Analysis
	Using Combinations of Input Strings
	Analysis of CrossoverSearch

	Concluding Remarks

	Kemeny Rank Aggregation
	The O*(1.403kt)-time Algorithm
	The Tournament Majority Graph
	The Algorithm

	The O*(4ktm)-time Enumeration Algorithm
	A Toy Example
	Branching Based on a Feedback Arc Set
	A Second Toy Example
	F-Representations
	The Algorithm
	Proofs
	The Running Time is Tight

	Kernels
	The Enumerative Kernel
	Refining the Kernel

	Concluding Remarks

	Parameterized Partial Enumerability
	Prefix and Partial Problems
	Reducible Prefix Problems

	A Note on Parameterized Enumerability
	The Connection to the Erdös–Rado Theorem
	Examples
	Implications of the Erdös-Rado Conjecture

	Partial Problems of Optimization Problems
	Increasing k-Subset Problems

	Concluding Remarks

	Conclusions and Future Work
	References

