
Nonlinear Periodic Adaptive Control

for Linear Time-Varying Plants

by

Volodymyr Rudko

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

c© Volodymyr Rudko 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In adaptive control the goal is to deal with systems that have unknown and/or time-
varying parameters. Adaptive control techniques have been developed since 1950’s and
most results were proven in the cases when the time-variations were non-existent or slow.
However the results pertaining to systems with fast time-variations are still limited, in
particular, when it comes to plants with unstable zero dynamics.

In this work we adopt the controller design technique from the area of gain scheduling,
where the time-varying parameter is assumed to be measurable. We propose the design
of a nonlinear periodic controller, where in each period the state and parameter values
are estimated and an appropriate stabilizing control signal is applied. It is shown that
the closed loop system is stable under fast parameter variations with persistent jumps:
the trajectory of the closed loop state in response to the initial condition is bounded by a
decaying exponential plus a gain times the size of the noise. Our approach imposes several
constraints on the plant; however, we show that there exists at least one interesting class
of systems, which includes plants with unstable zero dynamics, that can be stabilized by
our controller.
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Chapter 1

Introduction

1.1 Background

In adaptive control the goal is to deal with systems that have unknown and/or time-
varying parameters. A classical example of an adaptive controller is a linear time-invariant
(LTI) compensator with adjustable parameters. A tuning mechanism is used to adjust the
compensator’s parameters to appropriately match the plant. The latter often causes the
controller to become nonlinear.

Starting in the 1950’s, adaptive control methods have been adopted in an attempt to
control systems in which the parameters are uncertain and time-varying. However the
solution to such problems could not be found and the focus shifted to a simplified scenario
in which the system parameters are fixed, but unknown. Even the simplified problem
turned out to be a challenge and a generalized solution could not be found until the early
1980s: [10], [25], [29]. The developed approaches often yielded poor transient responses
and loss of stability in the face of unmodeled dynamic and bounded disturbances [30]. A
number of methods have been developed to resolve these issues, which include the Certainty
Equivalence approach (e.g. see [11], [16] and the contained references), the prerouted logic
based switching approach (e.g. see [7] and [22]) as well as more sophisticated approaches
such as supervisory and multi-model switching control (e.g. see [26], [27], [28], [14], and
[13]).

The study of the adaptive control of time-varying systems has not been as successful.
Of course, the underlying motivation for adaptive control is to handle possibly rapidly
varying parameters. The early adaptive control solutions were unable to handle fast time-
variations. Much effort was devoted to resolving this problem; however, the results were
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mixed. With some modifications, many of the classical adaptive controllers have been
proven to tolerate slow (or infrequent) time variations in the plant parameters (e.g. see
[17], [19], [36], [39], [8], and [9]). The results for the systems with rapid time-variations
were limited: either the form of the time-variations (or at least of the fast terms) were
assumed to be known (e.g. see [37] and [35]) or only the plants with stable zero dynamics
(the time-varying counterpart of minimum phase) were considered (e.g. see [1], [20], [15],
[12], [18], and [23]). There are no results which deal with rapidly time-varying parameters
in systems with unstable zero dynamics, and only a few which tolerate moderate parameter
variations (e.g. see [40], [38], [24]).

Gain scheduling is an area that developed in parallel to adaptive control. The core
idea in gain scheduling is to utilise linear controller design techniques to address nonlinear
problems. The topic has started re-gaining interest in the 1990’s (e.g. see [31] and [34]) after
a few decades of relative silence. Many different design notions exist for gain scheduling
such as pre-compensating a nonlinear gain with an inverse gain function or switching
gain values according to operating conditions or even at pre-set times. The most common
interpretation is that of continuously varying the controller coefficients based on the current
value of a scheduling variable, which may be either an exogenous or endogenous signal
with respect to the plant. The key aspect is that the scheduling variable is measurable and
is available to the controller for feedback. The typical approach is to convert a nonlinear
plant into a linear parameter varying (LPV) system by either Jacobian linearization about a
family of equilibrium points or by absorbing a nonlinearity into the time-varying parameter.
This design process usually results in a family of LTI controllers. Traditionally the design
is such that the desired performance is achieved for each fixed value of the parameter and
typically the stability is preserved only locally and in slow-variation setting. The control
of LPV systems has attracted much interest and several approaches have been developed
recently. Of special significance is the invariant set approach presented in [2], [3], [4], [6],
[5], where it is shown that polyhedral Lyapunov functions and associated geometrically
intuitive methods can be used for controller synthesis.

In [5] it is shown that if certain conditions are satisfied, then an observer based controller
can be constructed such that the closed loop system is stable under arbitrarily fast time-
variations in the parameter. This is true under a number of assumptions including the
following: (i) the set of possible parameter values is compact and (ii) the parameters are
measurable. While the presented results are very powerful, the major shortcoming of this
work is that the conditions under which a controller can be constructed are very hard to
check in general and are ”subject to complexity concerns” as pointed out in [33]. As a
result, it is practically impossible to identify a class of systems for which this method could
apply and for which a simpler solution does not already exist. Assumption (ii) is also an
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issue when considered from the point of view of adaptive control.

1.2 Purpose

The goal of this thesis is to come up with the adaptive controller design that could stabilize
a plant with possibly unstable zero dynamics under fast time-variations. This will be
achieved primarily through extending the work on gain scheduling in [5]. We will only
consider a scalar parameter uncertainty, but assumption (ii) will be relaxed. Recall that in
the Certainty Equivalence approach, the key idea is to periodically estimate the parameters
and update the control signal under the assumption that these estimates are exact. Here
we adopt this approach and design a periodic controller. Each period is divided into the
estimation and control phases. Once the necessary state and parameter estimates are
calculated in the estimation phase, an appropriately scaled control signal is applied in the
second phase. The estimation procedure similar to the one suggested in [21] will be used and
the obtained estimates will be plugged into the perfect information control law from [5]. We
will require an upper bound on the magnitude of the derivative of the parameter to make
the estimation possible. This bound can be quite large and, therefore, such assumption
is not very restrictive. Furthermore, since we are considering a one dimensional case, the
set of possible parameter values is the union of a finite number of disjoint closed intervals.
Hence, in order for the parameter to move from one interval to another, we will need
to allow for occasional jumps in the parameter values, which will slightly complicate the
proofs.

1.3 Organization

The mathematical preliminaries are presented in the next chapter. In Chapter 3 we define
the problem and state the necessary assumptions. The noise free case is presented in Chap-
ter 4 to gain intuition into the problem. We consider the system in the presence of noise in
Chapter 5, where many results are adopted from the earlier chapter. Chapter 6 presents
an example and a simulation. Finally, Chapter 7 concludes the thesis by summarizing the
main achievements and outlining future work.
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Chapter 2

Mathematical Preliminaries

Let Z denote the set of integers, Z+ represent the set of non-negative integers, N denote
the set of natural numbers, R denote the set of real numbers, and R

+ represent the set of
non-negative real numbers.

We will use the 1-norm to measure the size of a vector. For a given x ∈ R
n,

‖x‖ :=
n∑

i=1

|xi|.

The corresponding induced norm of a matrix A ∈ R
m×n is defined in a usual manner:

‖A‖ = sup
‖x‖6=0

‖Ax‖

‖x‖
.

The 1-norm of a matrix also has a special significance - it represents the maximum column
sum of the elements of the matrix:

‖A‖ = max
j

m∑

i=1

|ai,j|.

For a given set S ⊆ R
m×n, we let PC(S) denote the set of all piecewise continuous

functions f : R+ → S. To measure the size of such functions, we define

‖f‖∞ := sup
t∈R+

‖f(t)‖.
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We let AC(S) denote the set of all absolutely continuous functions of the form f : R+ → S.
We say f ∈ PC(S) is piecewise smooth on [a, b] ⊂ R

+ if there exists a finite set of points
{xi}

a = x1 < x2 < · · · < xk = b

such that, on each interval (xi, xi+1), i = 1, 2, ..., k−1, we have that f and ḟ are continuous
and bounded, and they both have finite limits as x → xi and x → xi+1. We say that
f ∈ PC(S) is piecewise smooth (and we write f ∈ PS(S)) if it is piecewise smooth
on every finite interval [a, b] ⊂ R

+. With T0 > 0, we let PS(S, T0) denote the set of

f ∈ PS(S) for which every discontinuity of

[
f

ḟ

]

are at least T0 time units apart.

For a given set S ⊆ R of the form S := [s1, s1] ∪ [s2, s2] ∪ · · · ∪ [sq, sq], we define a
projection function ΠS : R → S as follows: for a ∈ R we have

ΠS(a) :=







a if a ∈ S;
s1 if a < s1;

sj if a ∈ (sj,
1
2
(sj + sj+1)] for j = 1, 2, ..., q − 1;

sj+1 if a ∈ (1
2
(sj + sj+1), sj+1) for j = 1, 2, ..., q − 1;

sq if a > sq.

In several places throughout the thesis we use the Taylor series for the exponential: for
T > 0 and a > 0,

e−aT = 1− aT +
a2T 2

2!
−

a3T 3

3!
+ . . . ,

the obvious consequence of which is that 1− aT < e−aT .
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Chapter 3

Problem Formulation

3.1 Adaptive Control of Time-Varying Systems

In adaptive control of time-varying systems, a typical single-input single-output (SISO)
plant can be described by the following state-space equations:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0 (3.1)

y(t) = C(t)x(t), (3.2)

where x(t) ∈ R
n is the plant state, u(t) ∈ R is the input to the plant and y(t) ∈ R is the

plant output. If the form of the time-variation is unknown, as is in our case, it is often
necessary to include a bound on the rate of the variations, i.e. ‖Ȧ(t)‖, ‖Ḃ(t)‖, ‖Ċ(t)‖ are
uniformly bounded. The set of admissible triples (A(t), B(t), C(t)) is labeled P .

We will consider standard output-feedback controllers of the form

u = Ky. (3.3)

In a realistic scenario there is noise injected into the system from the outside environment
when the controller is connected to the plant, modeled by introducing the noise signals at
the input and output interfaces. If we define d and w to be the noise signals, the input into
the plant becomes ud = u+d. Accordingly, the measured output available to the controller
is yw = y + w. Refer to Figure 3.1 for the block diagram of the closed loop system.

When the plant’s initial condition is zero, i.e. x0 = 0, for every P ∈ P we let Ψ(P ) to

be the closed loop map from

[
d
w

]

to

[
y
u

]

.
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Σ P ∈ P Σ

K

d wy

yw

ud

u

Figure 3.1: Closed loop system considered in this thesis.

Definition 1 (Stability). We say that K stabilizes P if Ψ(P ) is uniformly bounded, i.e.

sup
P∈P

‖Ψ(P )‖ < ∞.

The goal of this thesis is to design K that stabilizes P . We will be considering fast
time-variations of the plant and in our approach we will adopt a result from the area of
gain-scheduling, which is presented in the next section.

3.2 The Gain Scheduling Result

Consider a liner parameter varying (LPV) system of the form

ẋ(t) = A(α(t))x(t) +B(α(t))u(t) (3.4)

y(t) = C(α(t))x(t) (3.5)

where x(t) ∈ R
n is the plant state and u(t) and y(t) are scalar input and output signals

respectively. The parameter α(t) is a time-varying uncertain index parameter that takes
values in a compact set A ⊂ R

p; its values are measurable and available to the controller
for feedback. The set of all admissible functions for α(t) is PC(A). A(α), B(α) and C(α)
are assumed to be continuous functions of α.

We will require a few definitions to formalize the analysis that will follow.

Definition 2 (LPV Exponential Stability). Given A, the system

ẋ(t) = A(α(t))x(t), x(t0) = x0 (3.6)

is said to be LPV exponentially stable if there exists a γ ≥ 1 and λ > 0 such that for every
t0 ∈ R, x0 ∈ R

n, and α ∈ PC(A), the solution of (3.6) satisfies

‖x(t)‖ ≤ γe−λ(t−t0)‖x(t0)‖, for t ≥ t0. (3.7)
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Definition 3 (Class H1). We define the square matrix H(α), a continuous function of α,
to be of class H1 if there exists a τ̄ > 0 such that ‖I + τH(α)‖ < 1 for all τ ∈ (0, τ̄) and
α ∈ A.

Proposition 1. Consider a matrix H(α) ∈ H1. There exist λ̄ > 0 and T > 0 such that
for all λ ∈ (0, λ̄) and T ∈ (0, T ) the following holds:

‖I + TH(α)‖ < 1− λT for all α ∈ A. (3.8)

Proof. Refer to Appendix A.

Definition 4 (Class H∞). We define the square matrix H(α), a continuous function of
α, to be of class H∞ if there exists a τ̄ > 0 such that ‖I + τH(α)‖∞ < 11 for all τ ∈ (0, τ̄)
and α ∈ A.

Proposition 2. Consider a matrix H(α) ∈ H∞. There exist λ̄ > 0 and T > 0 such that
for all λ ∈ (0, λ̄) and T ∈ (0, T ) the following holds:

‖I + TH(α)‖∞ < 1− λT for all α ∈ A. (3.9)

Proof. Refer to Appendix A.

Proposition 3. Given A, if H(α) ∈ H1 or H(α) ∈ H∞, then the system

ẋ(t) = H(α(t))x(t), x(t0) = x0 (3.10)

is LPV exponentially stable.

Proof. Refer to Appendix A.

Definition 5 (Output Feedback Controller). Given A and continuous functions F (·),
G(·), H(·), and K(·), the LPV controller

ż(t) = F (α(t))z(t) +G(α(t))y(t) (3.11)

u(t) = H(α(t))z(t) +K(α(t))y(t) (3.12)

LPV exponentially stabilizes (3.4) and (3.5) if the closed loop system
[
ẋ(t)
ż(t)

]

=

[
A(α(t)) + B(α(t))K(α(t))C(α(t)) B(α(t))H(α(t))

G(α(t))C(α(t)) F (α(t))

] [
x(t)
z(t)

]

(3.13)

is LPV exponentially stable.

1Here ‖ · ‖∞ has a meaning of an infinity norm on Rm×n defined in the usual way.
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We are now ready to present a slightly modified2 version of Theorem 3.1 from [5], which
will be used to construct our adaptive controller.

Theorem 1. The LPV system (3.4)–(3.5) is LPV exponentially stabilizable via an output
feedback controller of the form (3.11)–(3.12) if there exists a matrix P (α) ∈ H1, a full
row-rank n×m matrix X, a 1×m matrix U(α) as well as Q(α) ∈ H∞, a full column-rank
l × n matrix R and a l × 1 matrix L(α) such that equations

A(α)X + B(α)U(α) = XP (α) (3.14)

RA(α) + L(α)C(α) = Q(α)R (3.15)

are satisfied for all α ∈ A.

Proof. Assume that there exist matrices X, R, P (α), Q(α), U(α) and L(α) in the appro-
priate sets for which conditions (3.14) and (3.15) are satisfied. Since R has full column
rank, we let matrix M be any left inverse of R, i.e. MR := I. We first introduce the

matrix Z to be any matrix satisfying the property that

[
X
Z

]

is invertible. Now we can

define matrix V (α) as follows:
V (α) := ZP (α). (3.16)

Consider a state estimator of the form

ṙ(t) = Q(α(t))r(t)− L(α(t))y(t) +RB(α(t))u(t) (3.17)

x̂(t) = Mr(t) (3.18)

and a state-feedback controller:

ż(t) = F (α(t))z(t) +G(α(t))x̂(t) (3.19)

u(t) = H(α(t))z(t) +K(α(t))x̂(t). (3.20)

The controller gains F (α), G(α), H(α), and K(α) are calculated as follows:

[
K(α) H(α)
G(α) F (α)

]

=

[
U(α)
V (α)

] [
X
Z

]−1

(3.21)

or [
K(α) H(α)
G(α) F (α)

] [
X
Z

]

=

[
U(α)
V (α)

]

. (3.22)

2Here we consider the sufficient conditions for stabilizability whereas the original theorem claims the
same conditions are also necessary.
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If we analyse the differential equation corresponding to





x(t)
z(t)
r(t)



, it will be hard to gain

insight. Hence, we will introduce a new variable s(t):

s(t) := Rx(t)− r(t). (3.23)

Note that

Ms(t) = MRx(t)−Mr(t)

= x(t)− x̂(t).

Therefore, as s(t) approaches zero, the state estimation error becomes smaller as well:

s(t) → 0 =⇒ x̂(t) → x(t).

On that basis, we will analyse the differential equation corresponding to





x(t)
z(t)
s(t)



. Now we

derive the dynamics of each state variable in the closed loop; to reduce notational clutter,
we drop the dependence of α on t:

ẋ(t) = A(α)x(t) + B(α)u(t)

= A(α)x(t) + B(α)
[

H(α)z(t) +K(α)x̂(t)
]

= A(α)x(t) + B(α)H(α)z(t) + B(α)K(α)
[

x(t)−Ms(t)
]

=
[

A(α) + B(α)K(α)
]

x(t) + B(α)H(α)z(t)− B(α)K(α)Ms(t);

ż(t) = F (α)z(t) +G(α)x̂(t)

= F (α)z(t) +G(α)
[

x(t)−Ms(t)
]

= G(α)x(t) + F (α)z(t)−G(α)Ms(t);

ṡ(t) = Rẋ(t)− ṙ(t)

= R
[

A(α)x(t) + B(α)u(t)
]

−
[

Q(α)r(t)− L(α)y(t) +RB(α)u(t)
]

= RA(α)x(t) +RB(α)u(t)−Q(α)
[

Rx(t)− s(t)
]

+ L(α)C(α)x(t)−RB(α)u(t)

=
[

RA(α) + L(α)C(α)−Q(α)R
]

︸ ︷︷ ︸

= 0 from (3.15)

x(t) +Q(α)s(t)

= Q(α)s(t).
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Combining the above equations, the state space representation of the closed loop system
will take the following form:





ẋ(t)
ż(t)
ṡ(t)



 =





A(α) + B(α)K(α) B(α)H(α) −B(α)K(α)M
G(α) F (α) −GM

0 0 Q(α)









x(t)
z(t)
s(t)



 . (3.24)

For LPV exponential stability we require that the blocks on the main diagonal correspond
to LPV exponentially stable systems. Since Q(α) lies in H∞, by Proposition 3 we know
that the corresponding system is LPV exponentially stable. We need to show that the
system corresponding to the upper left block is also LPV exponentially stable.

By combining (3.22) with (3.14) we obtain

A(α)X + B(α) [K(α)X +H(α)Z] = XP (α)

G(α)X + F (α)Z = V (α).

Also, from (3.16) we know that V (α) = ZP (α), so the above two equations transform into

[
A(α) + B(α)K(α) B(α)H(α)

G(α) F (α)

] [
X
Z

]

=

[
X
Z

]

P (α)

The matrix

[
X
Z

]

is invertible by construction, which means that the upper left block in

(3.24) is equal to a similarity transformation of P (α):

[
A(α) + B(α)K(α) B(α)H(α)

G(α) F (α)

]

=

[
X
Z

]

P (α)

[
X
Z

]−1

(3.25)

Since the system corresponding to P (α) is LPV exponentially stable by Proposition 3 and
stability is preserved under a similarity transformation, the closed loop system in (3.24) is
LPV exponentially stable. �

A few important observations should be made about equations (3.14) and (3.15). Given
A(α), B(α), and C(α), it is very difficult to find matrices X, U(α), P (α), R, L(α), and
Q(α) that satisfy (3.14)–(3.15); in fact, there is no known way of knowing if there exists
a solution without actually finding one. The fact that the dimensions of X and R are
not fixed - m and l can be any numbers larger than or equal to n, makes the problem
that much more difficult. This results in computational complexity concerns mentioned
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in [33]. Further research is required to formally characterize the difficulty of solving these
equations. Note however, that the two equations are subject to the separation principle. It
is clear from equations (3.17)–(3.20) that (3.14) is a condition for stabilizability, whereas
(3.15) is a detectability condition. This means that we can construct our own state and
parameter estimators and once we solve (3.14), a stabilizing controller can be constructed
by suitably modifying equations (3.19) and (3.20).

Remark 1. Since matrices A(α), B(α), C(α), P (α), and Q(α) are assumed to be continu-
ous, if B(α) has full column rank, then the matrix U(α) of Theorem 1 must be continuous.
Similarly, if C(α) has full row rank, then the matrix L(α) of Theorem 1 must be continuous.

Remark 2. If we can find a solution to equation (3.14) where X is square, it must be that
Z is a null matrix. This immediately leads to a much simplified control law:

u(t) = U(α(t))X−1x̂(t)

Notice, that the knowledge of P (α) is no longer required. This greatly reduces the com-
putational complexity of finding and implementing a controller.

3.3 The Proposed Approach

In this thesis we will consider systems of the form

ẋ(t) = A(α(t))x(t) + B(α(t))u(t), x(0) = x0 (3.26)

y(t) = Cx(t), (3.27)

where x(t) ∈ R
n is the plant state, u(t) ∈ R is the input to the plant, and y(t) ∈ R is

the plant output. The parameter α(t) takes values in a compact set A ⊂ R, which is
assumed to be composed of q ∈ N disjoint closed intervals. Since A is compact, there exist
α = minA and α = maxA. Since the case of n = 1 corresponds to a minimum phase
plant which is well understood (see [1], [20], [15], [12], [18], and [23]), here we will assume
that n ≥ 2.

In our analysis we consider a situation where the values of the state and the time-varying
parameter are not available to the controller for feedback. Hence, we will use a nonlinear
sampled-data periodic controller that will estimate the state and the parameter in each
period and use these estimates to generate a stabilizing control signal. The main idea
for the estimation procedure is to estimate the system’s Markov parameters in a manner
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similar to that described in [21]. We will rely on the following set of assumptions to allow
the state and parameter estimation and to ascertain that the system is stabilizable. The
first two are very natural:

• Assumption 1: (A,B)(α) is controllable for all α ∈ A.

• Assumption 2: A(α) and B(α) are absolutely continuous functions of α and there
exist δA and δB so that

δA := ess sup
α∈A

∥
∥
∥
∥

dA(α)

dα

∥
∥
∥
∥
< ∞ and δB := ess sup

α∈A

∥
∥
∥
∥

dB(α)

dα

∥
∥
∥
∥
< ∞.

Since A is compact and A(α) and B(α) are absolutely continuous, there exist positive
constants

ca := sup
α∈A

‖A(α)‖ < ∞ and cb := sup
α∈A

‖B(α)‖ < ∞. (3.28)

The next assumption allows us to estimate the plant state even when the parameter
α(t) is time-varying:

• Assumption 3: The observability matrix O(C,A(α)) :=








C
CA(α)

...
CAn−1(α)







is indepen-

dent of the parameter α and invertible.

We will use ideas from [21] to estimate plant Markov parameters using a probing signal.
To this end, we impose:
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• Assumption 4: There exists an integer n̄ ≤ n− 2 such that








CB(α)
CA(α)B(α)

...
CAn̄−1(α)B(α)







is

independent of α and so that f(α) := CAn̄(α)B(α) satisfies:

i) f(α) : A 7→ f(A) is one-to-one;

ii) f(α) is absolutely continuous on A and there exist positive constants δi and
δf such that

ess inf
α∈A

∣
∣
∣
∣

df(α)

dα

∣
∣
∣
∣
≥ δi and ess sup

α∈A

∣
∣
∣
∣

df(α)

dα

∣
∣
∣
∣
≤ δf .

Assumption 4 i) implies, in particular, that f(A) has q disjoint intervals, which we label

f(A) = [f
1
, f 1] ∪ [f

2
, f 2] ∪ · · · ∪ [f

q
, f q] =: F .

We plan to use a sampled-data controller, so we cannot allow α(t) to move arbitrarily
fast, though we allow it to have an occasional jump:

• Assumption 5:

i) There exists a T0 > 0 so that α ∈ PS(A, T0);

ii) There exists a δα so that

ess sup
α∈A

|α̇(t)| ≤ δα.

Given that our techniques will be based on an adaptive version of gain scheduling, we
impose

14



• Assumption 6: There exists an absolutely continuous matrix P (α) ∈ H1, a full
row-rank n×m matrix X, and a 1×m matrix U(α) such that equation (3.14) is
satisfied and so that

ess sup
α∈A

∥
∥
∥
∥

dP (α)

dα

∥
∥
∥
∥
< ∞.

The ramification of Assumptions 1, 2 and 6 is that by Remark 1, U(α) is also absolutely
continuous with

ess sup
α∈A

∥
∥
∥
∥

dU(α)

dα

∥
∥
∥
∥
< ∞.

This means that matrices F (α), G(α), H(α), and K(α) are absolutely continuous by
construction - see equations (3.16) and (3.21) and also have bounded derivatives. Hence,
we can introduce constants

δF := ess sup
α∈A

∥
∥
∥
∥

dF (α)

dα

∥
∥
∥
∥
< ∞, δG := ess sup

α∈A

∥
∥
∥
∥

dG(α)

dα

∥
∥
∥
∥
< ∞,

δH := ess sup
α∈A

∥
∥
∥
∥

dH(α)

dα

∥
∥
∥
∥
< ∞, δK := ess sup

α∈A

∥
∥
∥
∥

dK(α)

dα

∥
∥
∥
∥
< ∞.

Since A is compact and F (α), G(α), H(α), and K(α) are absolutely continuous, there
exist positive constants

cf := sup
α∈A

‖F (α)‖ < ∞, cg := sup
α∈A

‖G(α)‖ < ∞,

ch := sup
α∈A

‖H(α)‖ < ∞, ck := sup
α∈A

‖K(α)‖ < ∞.

As we mentioned in the previous section, obtaining examples which satisfy Assumption 6
is difficult. Fortunately, good examples do exist and are discussed in Chapter 6.
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Chapter 4

Noise Free Case

In this chapter we will consider system (3.26)–(3.27) without the noise inputs, i.e. we set
d(t) = 0 and w(t) = 0 in Figure 3.1. This is done in order to gain intuition into the
analysis of the system before delving into the more complex noisy case. We will propose
the techniques to estimate the state and the parameter in every period. Upper bounds on
the estimation errors will be derived and used to show that the closed loop system depicted
in Figure 4.1 is stable. Note that the sampler (S) and a zero-order hold (H) blocks operate
with a period of h seconds. Hence, we define the sampled output as

y[i] := y(ih), i ∈ Z
+. (4.1)

We will use a sampled-data periodic controller with a period T := Nh to stabilize
the plant. A distinction should be made between the base sampling period (h) and the
period of the controller (T ), which represents the time between the successive control law
updates. We will associate the index i ∈ Z

+ with the sampling period and the index
k ∈ Z

+ – with the controller period. Each period T is divided into three phases with
durations T1, T2, and T3 respectively, such that T = T1 + T2 + T3. During the first phase
the plant state is estimated by allowing the system to run in open loop, i.e. u(t) = 0 for
t ∈ [kT, kT + T1), which yields x̂[k]. We will calculate the parameter estimate, α̂[k], in
the second phase by exciting the system with a probing control input, i.e. u(t) = up[k]
when t ∈ [kT + T1, kT + T1 + T2). The durations of the two phases are T1 := nh and
T2 := (n̄ + 2)h. The reasoning behind these choices will become clear in the next two
sections. Finally, a stabilizing control signal is applied in the third phase: u(t) = us[k]
for t ∈ [kT + T1 + T2, kT + T ). To calculate us[k] we will use suitably scaled discretized
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H
Plant

(A(α), B(α), C)

S

State
Estimator

Parameter
Estimator

Evaluate
F (α̂), G(α̂),
H(α̂), K(α̂)

Calculate
z[k + 1]

Calculate
u[i]

Controller

y(t)

y[i]

x̂[k]α̂[k][F (α̂), G(α̂)]

[H(α̂),K(α̂)]

z[k]

u[i]

up[k]

u(t)

Figure 4.1: System setup when noise is not present.

versions of (3.19)–(3.20):

z[k + 1] =
[

I + TF (α̂[k])
]

z[k] + TG(α̂[k])x̂[k], (4.2)

us[k] =
T

T3

[

H(α̂[k])z[k] +K(α̂[k])x̂[k]
]

−
T2

T3

up[k]. (4.3)

Defining the discrete time control signal as

u[i] =







0 i ∈ [kN, kN + n− 1]
up[k] i ∈ [kN + n, kN + n+ n̄+ 1]
us[k] i ∈ [kN + n+ n̄+ 2, kN +N − 1],

(4.4)

the controller output u(t) is obtained by putting u[i] through the zero-order hold as shown
in Figure 4.1. The control signal during a typical period is depicted in Figure 4.2.

4.1 State Estimation

In order to obtain an estimate of the state in each period, x̂[k], we will allow the system
to run in open loop for T1 = nh seconds, i.e. we will set u(t) = 0 for t ∈ [kT, kT + nh).
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kT (k + 1)T

u(t)

t

up[k]

us[k]

T1 T2 T3

Figure 4.2: Control signal for t ∈ [kT, (k + 1)T ).

This reduces system (3.26)-(3.27) to the following:

ẋ(t) = A(α(t))x(t),

y(t) = Cx(t).

Differentiating y(t) for t ∈ (kT, kT + nh) yields:

ẏ(t) = Cẋ(t) = CA(α(t))x(t).

Similarly,

ÿ(t) =
d

dt

[

CA(α(t))
]

x(t) + CA(α(t))ẋ(t) = CA2(α(t))x(t),

where we used Assumption 3 to observe that
d

dt

[

CA(α(t))
]

= 0. Using the same logic, we

can derive the expression for the n’th derivative of the output:

y(n)(t) = CAn(α(t))x(t), t ∈ (kT, kT + nh). (4.5)

The derivatives of the output are useful in estimating the state since







y(t)
ẏ(t)
...

y(n−1)(t)







=








C
CA(α(t))

...
CAn−1(α(t))







x(t) = O(C,A(α))x(t), t ∈ (kT, kT + nh). (4.6)

Now we would like to express the first n − 1 derivatives of y(t) in terms of the output
samples. To this end, we will integrate equation (4.5) to obtain the following:

y(n−1)(t) = y(n−1)(kT+) +

∫ t

kT

y(n)(τ)dτ

︸ ︷︷ ︸

=: ν1(t)

. (4.7)
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We are interested in putting an upper bound on |ν1(t)|:

|ν1(t)| ≤

∫ t

kT

‖y(n)(τ)‖dτ

≤

∫ t

kT

‖C‖‖An(α(τ))‖‖x(τ)‖dτ

≤ ‖C‖

∫ t

kT

‖A(α(τ))‖n‖x(τ)‖dτ

≤ ‖C‖cna

∫ t

kT

‖x(τ)‖dτ. (4.8)

The following lemma will be used to estimate an upper bound on ‖x(τ)‖.

Lemma 1. Given equation (3.26) and the accompanying assumptions and with t0 ≥ 0, if
we define

ū := sup
t0≤τ≤t

|u(τ)|, (4.9)

there exists an upper bound on the size of the state:

‖x(t)‖ ≤
[
‖x(t0)‖+ (t− t0)cbū

]
eca(t−t0), t ≥ t0. (4.10)

Proof. Refer to Appendix A.

We will proceed with deriving a bound on |ν1(t)| by using Lemma 1 with t0 = kT and
ū = 0 in (4.8):

‖ν1(t)‖ ≤ ‖C‖cna

∫ t

kT

‖x(kT )‖eca(τ−kT )dτ. (4.11)

Hence,

|ν1(t)| ≤ ‖C‖cna

∫ t

kT

‖x(kT )‖ecanhdτ

= ‖C‖cnae
canh‖x(kT )‖(t− kT ), t ∈ (kT, kT + nh).

We can write an expression for y(n−2)(t) by utilizing (4.7):

y(n−2)(t) = y(n−2)(kT+) +

∫ t

kT

y(n−1)(τ)dτ

= y(n−2)(kT+) +

∫ t

kT

[
y(n−1)(kT+) + ν1(τ)

]
dτ

= y(n−2)(kT+) + (t− kT )y(n−1)(kT+) +

∫ t

kT

ν1(τ)dτ

︸ ︷︷ ︸

=: ν2(t)

, t ∈ (kT, kT + nh),
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where the bound on ν2(t) is easily derived:

|ν2(t)| ≤

∫ t

kT

|ν1(τ)|dτ

≤

∫ t

kT

‖C‖cnae
canh‖x(kT )‖(τ − kT )dτ

≤ ‖C‖cnae
canh‖x(kT )‖

(t− kT )2

2
, t ∈ (kT, kT + nh).

We can continue in a similar fashion until we arrive at the expression for the output signal
consisting of its derivatives:

y(t) = y(kT ) + (t− kT )ẏ(kT+) +
(t− kT )2

2!
ÿ(kT+) + · · ·+

(t− kT )n−1

(n− 1)!
y(n−1)(kT+)

+ νn(t), t ∈ (kT, kT + nh), (4.12)

in which

|νn(t)| ≤ ‖C‖cnae
canh‖x(kT )‖

(t− kT )n

n!
, t ∈ (kT, kT + nh). (4.13)

We can use (4.12) to generate expressions for each of the n samples of the output: y(kT ), y(kT+
h), . . . , y(kT + (n− 1)h). Let us define the following vectors of samples:

Yk :=








y(kT )
y(kT + h)

...
y(kT + (n− 1)h)








and Vk :=








0
νn(kT + h)

...
νn(kT + (n− 1)h)







. (4.14)

Then we can write

Yk =












y(kT )

y(kT ) + hẏ(kT+) + h2

2!
ÿ(kT+) + . . .+ hn−1

(n−1)!
y(n−1)(kT+)

y(kT ) + 2hẏ(kT+) + 4h2

2!
ÿ(kT+) + . . .+ 2n−1hn−1

(n−1)!
y(n−1)(kT+)

...

y(kT ) + (n− 1)hẏ(kT+) + (n−1)2h2

2!
ÿ(kT+) + . . .+ (n−1)n−1hn−1

n−1!
y(n−1)(kT+)












+ Vk

=












1 0 0 . . . 0

1 h h2

2!
. . . hn−1

(n−1)!

1 2h 4h2

2!
. . . 2n−1hn−1

(n−1)!
...

...
...

. . .
...

1 (n− 1)h (n−1)2h2

2!
. . . (n−1)n−1hn−1

(n−1)!





















y(kT )
ẏ(kT+)

ÿ(kT+)
...

y(n−1)(kT+)










+ Vk.
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Let us define two new matrices:

Sn :=










1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2n−1

...
...

...
. . .

...
1 n− 1 (n− 1)2 . . . (n− 1)n−1










(4.15)

and

Qn(h) :=










1
h

h2

2!
. . .

hn−1

(n−1)!










. (4.16)

It is now easy to see that











1 0 0 . . . 0

1 h h2

2!
. . . hn−1

(n−1)!

1 2h 4h2

2!
. . . 2n−1hn−1

(n−1)!
...

...
...

. . .
...

1 (n− 1)h (n−1)2h2

2!
. . . (n−1)n−1hn−1

(n−1)!












= SnQn(h).

Consequently,

Yk = SnQn(h)








y(kT )
ẏ(kT+)

...
y(n−1)(kT+)







+ Vk

= SnQn(h)O(C,A(α))x(kT ) + Vk. (4.17)

Note that Sn is an n-square Vandermonde matrix with distinct parameters, and therefore
is invertible (see Theorem 4.9 in [41]). We can determine the inverse of Qn(h) explicitly:

Q−1
n (h) =










1
1
h

2!
h2

. . .
(n−1)!
hn−1










. (4.18)
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It is easy to see that Q−1
n (h) is defined for all h > 0. Finally, O(C,A(α)) is independent of

α(t) and invertible by Assumption 3. On that basis, we will estimate the plant state as

x̂[k] := O−1(C,A(α))Q−1
n (h)S−1

n Yk. (4.19)

Defining the discretized state as x[k] := x(kT ), we can combine equations (4.17) and (4.19)
to obtain a bound on the state estimation error:

‖x̂[k]− x[k]‖ = ‖O−1(C,A(α))Q−1
n (h)S−1

n Vk‖

≤ ‖O−1(C,A(α))‖‖Q−1
n (h)‖‖S−1

n ‖‖Vk‖. (4.20)

Clearly, ‖O−1(C,A(α))‖ and ‖S−1
n ‖ are finite, but we will need to derive bounds for

‖Q−1
n (h)‖ and ‖Vk‖. From (4.18) it is clear that for h ∈ (0, 1), (n−1)!

hn−1 is the largest el-
ement of Q−1

n (h). Therefore, with our definition of the induced matrix norm, it is easy to
see that

‖Q−1
n (h)‖ =

(n− 1)!

hn−1
. (4.21)

We will use (4.13) to bound individual elements of Vk:

|νn(kT + h)| ≤
hn

n!
‖C‖cnae

canh‖x[k]‖,

|νn(kT + 2h)| ≤
2nhn

n!
‖C‖cnae

canh‖x[k]‖,

...

|νn(kT + (n− 1)h)| ≤
(n− 1)nhn

n!
‖C‖cnae

canh‖x[k]‖. (4.22)

If we let

γν :=
n−1∑

i=1

in,

then we can easily determine the upper bound on the norm of Vk:

‖Vk‖ ≤ γν
hn

n!
‖C‖cnae

canh‖x[k]‖. (4.23)

We can utilize (4.21) and (4.23) in (4.20) to obtain a bound on state estimation error:

‖x̂[k]− x[k]‖ ≤ ‖O−1(C,A(α))‖‖S−1
n ‖

(n− 1)!

hn−1
γν

hn

n!
‖C‖cnae

canh‖x[k]‖

= ‖O−1(C,A(α))‖‖S−1
n ‖‖C‖cnae

canhγν
1

n
‖x[k]‖h.
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It is easy to see that there exists a constant γx such that for small h we have

‖x̂[k]− x[k]‖ ≤ γx‖x[k]‖h. (4.24)

Hence, as long as the size of plant’s state remains bounded, the state estimation error is
also bounded and becomes smaller as the sampling period approaches zero.

4.2 Parameter Estimation

Our controller design requires the parameter estimate to evaluate the gain matrices F (α̂[k]),
G(α̂[k]), H(α̂[k]), and K(α̂[k]). However, since the values of α are not generally measur-
able, we are required to estimate the value of the parameter in every period. If α(t) has
a jump on [kT, (k + 1)T ), we would expect that it would be difficult, if not impossible,
to estimate α(kT ). So from this point on, we assume that α ∈ AC(A). We will
pick some ρ > 0 and apply a probing signal up[k] = ρ(‖x̂[k]‖ + ‖z[k]‖) for T2 = (n̄ + 2)h
seconds. If we let t̄1 := kT + nh, then we can write

up[k] = ρ(‖x̂[k]‖+ ‖z[k]‖) for t ∈ [t̄1, t̄1 + (n̄+ 2)h). (4.25)

We will employ a similar estimation procedure as in the previous section. To begin, consider
the first n̄+ 1 derivatives of y(t) for t ∈ (t̄1, t̄1 + (n̄+ 2)h):

ẏ(t) = CA(α(t))x(t) + CB(α(t))up[k],

ÿ(t) = CA2(α(t))x(t) + CAB(α(t))up[k],
...

y(n̄+1)(t) = CAn̄+1(α(t))x(t) + CAn̄B(α(t))
︸ ︷︷ ︸

f(α(t))

up[k]. (4.26)

Since CAn̄+1(α(t)) is constant by Assumption 3, we will denote it simply as CAn̄+1. By
integrating y(n̄+1)(t) we obtain:

y(n̄)(t) = y(n̄)(t̄+1 ) +

∫ t

t̄1

y(n̄+1)(τ)dτ

= y(n̄)(t̄+1 ) +

∫ t

t̄1

CAn̄+1x(τ)dτ +

∫ t

t̄1

f(α(τ))up[k]dτ

= y(n̄)(t̄+1 ) + CAn̄+1

∫ t

t̄1

x(τ)dτ + up[k]

∫ t

t̄1

f(α(τ))dτ. (4.27)
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We can get an expression for x(τ) by integrating equation (3.26):

x(τ) = x(t̄1) +

∫ τ

t̄1

A(α(θ))x(θ)dθ +

∫ τ

t̄1

B(α(θ))up[k]dθ.

Also, the expression for f(α(τ)) is obtained in a similar fashion:

f(α(τ)) = f(α(t̄1)) +

∫ τ

t̄1

df(α(θ))

dθ
dθ.

Using the expressions for x(τ) and f(α(τ)) in (4.27) results in

y(n̄)(t) = y(n̄)(t̄+1 ) + CAn̄+1

(∫ t

t̄1

x(t̄1)dτ +

∫ t

t̄1

∫ τ

t̄1

A(α(θ))x(θ)dθdτ

+ up[k]

∫ t

t̄1

∫ τ

t̄1

B(α(θ))dθdτ

)

+ up[k]

(∫ t

t̄1

f(α(t̄1))dτ +

∫ t

t̄1

∫ τ

t̄1

df(α(θ))

dθ
dθdτ

)

.

We will define µ1(t) as

µ1(t) := CAn̄+1

(∫ t

t̄1

∫ τ

t̄1

A(α(θ))x(θ)dθdτ + up[k]

∫ t

t̄1

∫ τ

t̄1

B(α(θ))dθdτ

)

+ up[k]

∫ t

t̄1

∫ τ

t̄1

df(α(θ))

dθ
dθdτ,

yielding the following

y(n̄)(t) = y(n̄)(t̄+1 ) + CAn̄+1x(t̄1)(t− t̄1) + up[k]f(α(t̄1))(t− t̄1) + µ1(t)

= y(n̄)(t̄+1 ) + (t− t̄1)y
(n̄+1)(t̄+1 ) + µ1(t).

We would also like to derive a bound on |µ1(t)|:

|µ1(t)| ≤ ‖CAn̄+1‖

(∫ t

t̄1

∫ τ

t̄1

‖A(α(θ))‖‖x(θ)‖dθdτ + |up[k]|

∫ t

t̄1

∫ τ

t̄1

‖B(α(θ))‖dθdτ

)

+ |up[k]|

∫ t

t̄1

∫ τ

t̄1

∣
∣
∣
∣

df(α(θ))

dθ

∣
∣
∣
∣
dθdτ

≤ ‖CAn̄+1‖

(

ca

∫ t

t̄1

∫ τ

t̄1

‖x(θ)‖dθdτ + |up[k]|cb
(t− t̄1)

2

2

)

+ |up[k]|δfδα
(t− t̄1)

2

2
.

We will apply Lemma 1 twice to get a bound on ‖x(θ)‖:

‖x(θ)‖ ≤
[
‖x(t̄1)‖+ (θ − t̄1)|up[k]|cb

]
eca(θ−t̄1)

≤
[
‖x(t̄1)‖+ (n̄+ 2)h|up[k]|cb

]
eca(n̄+2)h

≤
[
‖x(kT )‖ecanh + (n̄+ 2)h|up[k]|cb

]
eca(n̄+2)h

= eca(n+n̄+2)h‖x[k]‖+ (n̄+ 2)hcbe
ca(n̄+2)h|up[k]|, t ∈ (t̄1, t̄1 + (n̄+ 2)h). (4.28)
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Finally,

|µ1(t)| ≤ ‖CAn̄+1‖cae
ca(n+n̄+2)h (t− t̄1)

2

2
‖x[k]‖+

[

‖CAn̄+1‖ca(n̄+ 2)hcbe
ca(n̄+2)h

+ ‖CAn̄+1‖cb + δfδα

](t− t̄1)
2

2
|up[k]|, t ∈ (t̄1, t̄1 + (n̄+ 2)h).

Hence, there exist constants γ1 and γ2 such that for small h

|µ1(t)| ≤ (γ1‖x[k]‖+ γ2|up[k]|)
(t− t̄1)

2

2
, t ∈ (t̄1, t̄1 + (n̄+ 2)h).

Integrating y(n̄)(t) we obtain

y(n̄−1)(t) = y(n̄−1)(t̄+1 ) +

∫ t

t̄1

y(n̄)(τ)dτ

= y(n̄−1)(t̄+1 ) + (t− t̄1)y
(n̄)(t̄+1 ) +

(t− t̄1)
2

2
y(n̄+1)(t̄+1 ) +

∫ t

t̄1

µ1(τ)dτ

︸ ︷︷ ︸

=: µ2(t)

,

where

|µ2(t)| ≤

∫ t

t̄1

|µ1(τ)|dτ

≤ (γ1‖x[k]‖+ γ2|up[k]|)
(t− t̄1)

3

3!
, t ∈ (t̄1, t̄1 + (n̄+ 2)h).

It is now easy to recognize the pattern for the expansion of y(t): it is of the form

y(t) = y(t̄1) + (t− t̄1)ẏ(t̄
+
1 ) +

(t− t̄1)
2

2!
ÿ(t̄+1 ) + · · ·+

(t− t̄1)
n̄+1

(n̄+ 1)!
y(n̄+1)(t̄+1 )

+ µn̄+1(t), t ∈ (t̄1, t̄1 + (n̄+ 2)h), (4.29)

with

|µn̄+1(t)| ≤ (γ1‖x[k]‖+ γ2|up[k]|)
(t− t̄1)

(n̄+2)

(n̄+ 2)!
, t ∈ (t̄1, t̄1 + (n̄+ 2)h). (4.30)

We will define two vectors of sampled values:

Ȳk :=








y(t̄1)
y(t̄1 + h)

...
y(t̄1 + (n̄+ 1)h)








and Mk :=








0
µn̄+1(t̄1 + h)

...
µn̄+1(t̄1 + (n̄+ 1)h)







. (4.31)
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Using these vectors we can write

Ȳk =












y(t̄1)

y(t̄1) + hẏ(t̄+1 ) +
h2

2!
ÿ(t̄+1 ) + . . .+ hn̄+1

(n̄+1)!
y(n̄+1)(t̄+1 )

y(t̄1) + 2hẏ(t̄+1 ) +
4h2

2!
ÿ(t̄+1 ) + . . .+ 2n̄+1hn̄+1

(n̄+1)!
y(n̄+1)(t̄+1 )

...

y(t̄1) + (n̄+ 1)hẏ(t̄+1 ) +
(n̄+1)2h2

2!
ÿ(t̄+1 ) + . . .+ (n̄+1)n̄+1hn̄+1

n̄+1!
y(n̄+1)(t̄+1 )












+Mk

=












1 0 0 . . . 0

1 h h2

2!
. . . hn̄+1

(n̄+1)!

1 2h 4h2

2!
. . . 2n̄+1hn̄+1

(n̄+1)!
...

...
...

. . .
...

1 (n̄+ 1)h (n̄+1)2h2

2!
. . . (n̄+1)n̄+1hn̄+1

(n̄+1)!





















y(t̄1)
ẏ(t̄+1 )

ÿ(t̄+1 )
...

y(n̄+1)(t̄+1 )










+Mk

= Sn̄+2Qn̄+2(h)








y(t̄1)
ẏ(t̄+1 )
...

y(n̄+1)(t̄+1 )







+Mk,

where Sn̄+2 and Qn̄+2(h) are as defined in (4.15) and (4.16). Recalling the observations from
Section 4.1 concerning the existence of S−1

n̄+2 and Q−1
n̄+2(h), the above equation transforms

into 






y(t̄1)
ẏ(t̄+1 )
...

y(n̄+1)(t̄+1 )







= Q−1

n̄+2(h)S
−1
n̄+2(Ȳk −Mk). (4.32)

If we define a 1 × (n̄ + 2) matrix E :=
[
0 . . . 0 1

]
, we can explicitly determine

y(n̄+1)(t̄1) by multiplying both sides of equation (4.32) by E on the left:

y(n̄+1)(t̄+1 ) = EQ−1
n̄+2(h)S

−1
n̄+2(Ȳk −Mk).

Using equation (4.26) we can calculate

f(α(t̄1)) =
1

up[k]

[

EQ−1
n̄+2(h)S

−1
n̄+2(Ȳk −Mk)− CAn̄+1x(t̄1)

]

. (4.33)
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We will introduce an auxiliary variable f̌ [k] representing a crude estimate of f(α(t̄1)):

f̌ [k] :=







1

up[k]

[

EQ−1
n̄+2(h)S

−1
n̄+2Ȳk − CAn̄+1x̂[k]

]

. if up[k] 6= 0;

f(α) if up[k] = 0.
(4.34)

We would like to obtain an estimate of f(α(t̄1)) that will always take values in F . This
can be achieved by projecting f̌ [k] onto F . Hence, we define another estimate variable,
f̂ [k]:

f̂ [k] := ΠF(f̌ [k]). (4.35)

Note that with this definition of f̂ [k], we have that f−1(f̂ [k]) ∈ A. On that basis, we can
calculate the estimate of α(t̄1) that will always belong to A:

α̂[k] := f−1(f̂ [k]). (4.36)

It must be noted when up[k] = 0, we have α̂[k] = α, which is not an accurate estimate of
α(t̄1) in most cases. However, this case is trivial since it can only happen when x̂[k] = 0
and z[k] = 0. Consider the size of x[k] in this case: for small h,

‖x[k]‖ ≤ ‖x[k]− x̂[k]‖+ ‖x̂[k]‖

≤ γxh‖x[k]‖+ ‖x̂[k]‖,

so for h <
1

γx
, we have

‖x[k]‖ ≤
1

1− γxh
‖x̂[k]‖. (4.37)

Hence, for small h, if x̂[k] = 0, then x[k] = 0. On the other hand, from (4.24) we see that

for small h, if x[k] = 0, then x̂[k] = 0. We conclude that for small h,

[
x̂[k]
z[k]

]

= 0 if and

only if

[
x[k]
z[k]

]

= 0. Hence, for small h, when up[k] = 0, the plant and controller states are

already at the origin, so a potentially inaccurate estimate of the parameter value is not

crucial. Hence, for the rest of the section we will assume that

[
x[k]
z[k]

]

6= 0.

Our goal is to derive an upper bound on |f̂ [k]− f(α(t̄1))|. We will begin by defining

f̃ [k] := f̌ [k]− f(α(t̄1)). (4.38)
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Let us consider |f̃ [k]|: using (4.33) and (4.34) yields

|f̃ [k]| ≤
1

|up[k]|

[

‖CAn̄+1‖‖x̂[k]− x(t̄1)‖+ ‖E‖‖Q−1
n̄+2(h)‖‖S

−1
n̄+2‖‖Mk‖

]

. (4.39)

We will first examine ‖x̂[k]− x(t̄1)‖ for small h:

‖x̂[k]− x(t̄1)‖ = ‖x̂[k]− [x(kT ) +

∫ kT+nh

kT

ẋ(τ)dτ)]‖

≤ ‖x̂[k]− x[k]‖+

∫ kT+nh

kT

‖A(α(τ)‖‖x(τ)‖dτ

≤ γx‖x[k]‖h+ ca

∫ kT+nh

kT

‖x(kT )‖eca(τ−kT )dτ

≤ γx‖x[k]‖h+ ca‖x[k]‖e
canhnh

= (γx + ncae
canh)‖x[k]‖h.

To derive an upper bound on ‖Mk‖, we will first examine the bounds on the individual
elements using (4.30):

|µn̄+1(t̄1 + h)| ≤ (γ1‖x[k]‖+ γ2|up[k]|)
hn̄+2

(n̄+ 2)!
,

|µn̄+1(t̄1 + 2h)| ≤ (γ1‖x[k]‖+ γ2|up[k]|)
2(n̄+2)hn̄+2

(n̄+ 2)!
,

...

|µn̄+1(t̄1 + (n̄+ 1)h)| ≤ (γ1‖x[k]‖+ γ2|up[k]|)
(n̄+ 1)(n̄+2)hn̄+2

(n̄+ 2)!
. (4.40)

By letting

γµ :=
n̄+1∑

i=1

in̄+2,

we can write

‖Mk‖ ≤ γµ

[

γ1‖x[k]‖+ γ2|up[k]|
] hn̄+2

(n̄+ 2)!
(4.41)

Lastly, it is easy to see that

‖E‖ = 1 and ‖Q−1
n̄+2(h)‖ =

(n̄+ 1)!

hn̄+1
. (4.42)
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Now we can use these intermediate results in (4.39):

|f̃ [k]| ≤
1

|up[k]|

[

‖CAn̄+1‖(γx + ncae
canh)‖x[k]‖h

+ ‖S−1
n̄+2‖

(n̄+ 1)!

hn̄+1
γµ

[

γ1‖x[k]‖+ γ2|up[k]|
] hn̄+2

(n̄+ 2)!

]

. (4.43)

We will use (4.37) to bound ‖x[k]‖, so it follows that there exists a constant γf such that
for small h:

|f̃ [k]| ≤ γf
ρ

1 + ρ

‖x̂[k]‖+ |up[k]|

|up[k]|
h

= γf
ρ

1 + ρ

‖x̂[k]‖+ ρ(x̂[k] + ‖z[k]‖)

ρ(‖x̂[k]‖+ ‖z[k]‖)
h

≤ γfh. (4.44)

In order to obtain an accurate estimate of the parameter, we need to ensure that f̌ [k]
is always projected onto the correct interval, i.e. f̂ [k] and f(t̄1) belong to the same interval
in F . This is achieved if h is chosen small enough such that |f̃ [k]| is less than half the
smallest distance between adjacent intervals in F . Let us define d∗ as

d∗ := min
j

(f
j+1

− f j) for j = 1, 2, ..., q − 1, (4.45)

so if we choose h <
d∗

2γf
, then by construction, f̂ [k] always belongs to the same interval in

F as f(α(t̄1)). We conclude that for small h, we have

|f̂ [k]− f(α(t̄1))| ≤ |f̃ [k]|

≤ γfh. (4.46)

Defining α[k] := α(kT ), we can use (4.46) to derive an upper bound on the parameter

estimation error when

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
> 0 – for small h:

α̂[k] = f−1(f̂ [k])

= α(t̄1) +

∫ f̂ [k]

f(α(t̄1))

df−1(φ)

dφ
dφ

= α(kT ) +

∫ t̄1

kT

α̇(τ)dτ +

∫ f̂ [k]

f(α(t̄1))

df−1(φ)

dφ
dφ.
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By Assumption 4 ii) we obtain a bound on

∣
∣
∣
∣

df−1(φ)

dφ

∣
∣
∣
∣
:

ess inf
α∈A

∣
∣
∣
∣

df(α)

dα

∣
∣
∣
∣
> δi ⇐⇒ ess sup

φ∈F

∣
∣
∣
∣

df−1(φ)

dφ

∣
∣
∣
∣
<

1

δi
. (4.47)

In addition, we will use Assumption 5 to bound |α̇(τ)|. From here we get the desired result
– for small h:

|α̂[k]− α[k]| ≤

∫ t̄1

kT

|α̇(τ)|dτ +

∫ f̂ [k]

f(α(t̄1))

∣
∣
∣
∣

df−1(φ)

dφ

∣
∣
∣
∣
dφ

≤ δα(t̄1 − kT ) +
1

δi
|f̂ [k]− f(α(t̄1))| (4.48)

≤ δαT1 +
γf
δi
h

=
(

nδα +
γf
δi

)

h. (4.49)

4.3 Discrete-Time Stability Analysis

In previous sections we established that we can obtain a simple bound on the error between
the estimate of the state and the actual value. The state estimate becomes better as
the sampling period become smaller. For much of this section, we will assume that the
parameter estimation error in the period [kT, (k + 1)T ) is small, i.e. it is bounded by

(4.49), which is the case if h is small and

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
> 0. Hence, from now on and

unless otherwise stated, we will assume that k ∈ Z
+ satisfies

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
> 0. With

these results we can now move on to analyze the stability of the closed loop system. The
stabilizing control signal us[k] will be applied for the last T3 seconds in every period. We
will use equations (4.2) and (4.3) to calculate us[k].

Our goal is to discretize the closed loop system with a sampling period T . We will
start by modifying equations (4.2) and (4.3) to use x[k] and α[k] in place of the estimate
variables. To this end, from (4.24) it is easy to see that for small h the following is true:

x̂[k] = x[k] + ǫx[k], where ‖ǫx[k]‖ ≤ γx‖x[k]‖h.
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Firstly, consider equation (4.2) - for small h we have

z[k + 1] =
[

I + TF (α̂[k])
]

z[k] + TG(α̂[k])x̂[k]

=

[

I + T

(

F (α[k]) +

∫ α̂[k]

α[k]

dF (a)

da
da

)]

z[k]

+ T

(

G(α[k]) +

∫ α̂[k]

α[k]

dG(a)

da
da

)

x[k] + TG(α̂[k])ǫx[k]

= z[k] + TG(α[k])x[k] + TF (α[k])z[k]

+ T

[
∫ α̂[k]

α[k]

dF (a)

da
da z[k] +

∫ α̂[k]

α[k]

dG(a)

da
da x[k] +G(α̂[k])ǫx[k]

]

.

If we define

e1[k] := T

[
∫ α̂[k]

α[k]

dF (a)

da
da z[k] +

∫ α̂[k]

α[k]

dG(a)

da
da x[k] +G(α̂[k])ǫx[k]

]

,

then we can write

z[k + 1] = z[k] + TG(α[k])x[k] + TF (α[k])z[k] + e1[k]. (4.50)

We are interested in deriving an upper bound on ‖e1[k]‖:

‖e1[k]‖ ≤ T

[
∫ α̂[k]

α[k]

∥
∥
∥
∥

dF (a)

da

∥
∥
∥
∥
da ‖z[k]‖+

∫ α̂[k]

α[k]

∥
∥
∥
∥

dG(a)

da

∥
∥
∥
∥
da ‖x[k]‖+ ‖G(α̂[k])‖‖ǫx[k]‖

]

≤ T
[

(δF‖z[k]‖+ δG‖x[k]‖) |α̂[k]− α[k]|+ cg‖ǫx[k]‖
]

≤ T
[

(δF‖z[k]‖+ δG‖x[k]‖)(nδα +
γf
δi
)h+ cgγx‖x[k]‖h

]

.

Recalling that h = T/N , for small h we obtain

‖e1[k]‖ ≤
[δG
N

(nδα +
γf
δi
) +

cgγx
N

]

T 2‖x[k]‖+
δF
N

(nδα +
γf
δi
)T 2‖z[k]‖.

It is easy to see that there exist constants γ3 and γ4 such that for small h

‖e1[k]‖ ≤ (γ3‖x[k]‖+ γ4‖z[k]‖)T
2. (4.51)
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Now let us consider equation (4.3) - for small h:

us[k] =
T

T3

[

H(α̂[k])z[k] +K(α̂[k])x̂[k]
]

−
T2

T3

up[k]

=
T

T3

[(

H(α[k]) +

∫ α̂[k]

α[k]

dH(a)

da
da

)

z[k]

+

(

K(α[k]) +

∫ α̂[k]

α[k]

dK(a)

da
da

)

x[k] +K(α̂[k])ǫx[k]

]

−
T2

T3

up[k]

=
T

T3

[

H(α[k])z[k] +K(α[k])x[k]
]

−
T2

T3

up[k]

+
T

T3

[
∫ α̂[k]

α[k]

dH(a)

da
da z[k] +

∫ α̂[k]

α[k]

dK(a)

da
da x[k] +K(α̂[k])ǫx[k]

]

.

Letting

e2[k] := T

[
∫ α̂[k]

α[k]

dH(a)

da
da z[k] +

∫ α̂[k]

α[k]

dK(a)

da
da x[k] +K(α̂[k])ǫx[k]

]

,

we obtain

us[k] =
T

T3

[

H(α[k])z[k] +K(α[k])x[k]
]

−
T2

T3

up[k] +
1

T3

e2[k], (4.52)

where for small h

‖e2[k]‖ ≤ T

[
∫ α̂[k]

α[k]

∥
∥
∥
∥

dH(a)

da

∥
∥
∥
∥
da ‖z[k]‖+

∫ α̂[k]

α[k]

∥
∥
∥
∥

dK(a)

da

∥
∥
∥
∥
da ‖x[k]‖+ ‖K(α̂[k])‖‖ǫx[k]‖

]

≤ T
[

(δH‖z[k]‖+ δK‖x[k]‖) |α̂[k]− α[k]|+ ck‖ǫx[k]‖
]

≤ T
[

(δH‖z[k]‖+ δK‖x[k]‖)(nδα +
γf
δi
)h+ ckγx‖x[k]‖h

]

≤
[δK
N

(nδα +
γf
δi
) +

ckγx
N

]

T 2‖x[k]‖+
δH
N

(nδα +
γf
δi
)T 2‖z[k]‖.

Hence, there exist constants γ5 and γ6 such that for small h we have

‖e2[k]‖ ≤ (γ5‖x[k]‖+ γ6‖z[k]‖)T
2. (4.53)

Now we would like to discretize equation (3.26). To this end, we note that

x(t) = x(kT ) +

∫ t

kT

A(α(τ))x(τ)dτ +

∫ t

kT

B(α(τ))u(τ)dτ

︸ ︷︷ ︸

e3(t)

, t ∈ [kT, (k + 1)T ). (4.54)
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We would like to derive a bound on ‖e3(t)‖. Hence, we introduce um[k] to represent the
maximum magnitude of the control signal in the period [kT, (k + 1)T ):

um[k] := max{|up[k]|, |us[k]|}. (4.55)

Both up[k] and us[k] are bounded by construction: for small h we have

|up[k]| = ρ(‖x̂[k]‖+ ‖z[k]‖)

≤ ρ(1 + γxh)‖x[k]‖+ ρ‖z[k]‖

and

|us[k]| ≤
T

T3

[

‖H(α̂[k])‖‖z[k]‖+ ‖K(α̂[k])‖‖x̂[k]‖
]

+
T2

T3

|up[k]|

≤
T

T3

[

ch‖z[k]‖+ ck(1 + γxh)‖x[k]‖
]

+
T2

T3

ρ
[

(1 + γxh)‖x[k]‖+ ‖z[k]‖
]

≤
[ T

T3

ck +
T2

T3

ρ
]

(1 + γxh)‖x[k]‖+
[ T

T3

ch +
T2

T3

ρ
]

‖z[k]‖.

It is now easy to see that for small h there exist constants γ7 and γ8 such that

um[k] ≤ γ7‖x[k]‖+ γ8‖z[k]‖. (4.56)

We will also require a bound on ‖x(t)‖ - by applying Lemma 1 for t ∈ [kT, (k + 1)T ) we
obtain

‖x(t)‖ ≤
[

‖x(kT )‖+ (t− kT )um[k]cb

]

eca(t−kT )

≤
[

‖x[k]‖+ T (γ7‖x[k]‖+ γ8‖z[k]‖)cb

]

ecaT .

Hence, there exist constants γ9 and γ10 such that for small h

‖x(t)‖ ≤ γ9‖x[k]‖+ Tγ10‖z[k]‖, t ∈ [kT, (k + 1)T ). (4.57)

Now we can derive a bound on ‖e3(t)‖ - for small h:

‖e3(t)‖ ≤

∫ t

kT

‖A(α(τ))‖‖x(τ)‖dτ +

∫ t

kT

‖B(α(τ))‖|u(τ)|dτ

≤ ca(γ9‖x[k]‖+ Tγ10‖z[k]‖)(t− kT ) + cbum(t− kT )

≤
[

(caγ9 + cbγ7)‖x[k]‖+ (Tcaγ10 + cbγ8)‖z[k]‖
]

(t− kT ).

33



Hence, there exist constants γ11 and γ12 such that for small h

‖e3(t)‖ ≤ (γ11‖x[k]‖+ γ12‖z[k]‖)(t− kT ), t ∈ [kT, (k + 1)T ). (4.58)

We are now set to discretize the plant state equation with the control signal applied:

x[k + 1] = x[k] +

∫ (k+1)T

kT

A(α(τ))x(τ)dτ +

∫ (k+1)T

kT

B(α(τ))u(τ)dτ

= x[k] +

∫ (k+1)T

kT

(

A(α(kT )) +

∫ τ

kT

Ȧ(α(θ))dθ)

)

x[k]dτ +

∫ (k+1)T

kT

A(α(τ))e3(τ)dτ

+

∫ kT+T1+T2

kT+T1

(

B(α(kT )) +

∫ τ

kT

Ḃ(α(θ))dθ)

)

up[k]dτ

+

∫ kT+T1+T2+T3

kT+T1+T2

(

B(α(kT )) +

∫ τ

kT

Ḃ(α(θ))dθ)

)

us[k]dτ

= x[k] + TA(α[k])x[k] + T2B(α[k])up[k] + T3B(α[k])us[k]

+

∫ (k+1)T

kT

∫ τ

kT

Ȧ(α(θ))dθ x[k]dτ +

∫ (k+1)T

kT

A(α(τ))e3(τ)dτ

+

∫ kT+T1+T2

kT+T1

∫ τ

kT

Ḃ(α(θ))dθ up[k]dτ +

∫ kT+T1+T2+T3

kT+T1+T2

∫ τ

kT

Ḃ(α(θ))dθ us[k]dτ.

Let us define

e4[k] :=

∫ (k+1)T

kT

∫ τ

kT

Ȧ(α(θ))dθ x[k]dτ +

∫ (k+1)T

kT

A(α(τ))e3(τ)dτ

+

∫ kT+T1+T2

kT+T1

∫ τ

kT

Ḃ(α(θ))dθ up[k]dτ +

∫ kT+T1+T2+T3

kT+T1+T2

∫ τ

kT

Ḃ(α(θ))dθ us[k]dτ ;

then using (4.52) we can write

x[k + 1] =
[

I + TA(α[k])
]

x[k] + T2B(α[k])up[k]

+ T3B(α[k])
( T

T3

[

H(α[k])z[k] +K(α[k])x[k]
]

−
T2

T3

up[k] +
1

T3

e2[k]
)

+ e4[k]

= x[k] + T
[

A(α[k]) + B(α[k])K(α[k])
]

x[k] + TB(α[k])H(α[k])z[k]

+ B(α[k])e2[k] + e4[k]
︸ ︷︷ ︸

=: e5[k]

. (4.59)
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We will now derive a bound for ‖e4[k]‖ when h is small:

‖e4[k]‖ ≤

∫ (k+1)T

kT

∫ τ

kT

‖Ȧ(α(θ))‖dθ ‖x[k]‖dτ +

∫ (k+1)T

kT

‖A(α(τ))‖‖e3(τ)‖dτ

+

∫ kT+T1+T2

kT+T1

∫ τ

kT

‖Ḃ(α(θ))‖dθ |up[k]|dτ +

∫ kT+T1+T2+T3

kT+T1+T2

∫ τ

kT

‖Ḃ(α(θ))‖dθ |us[k]|dτ

Using (4.58) to bound ‖e3(τ)‖ and (4.56) to bound |up[k]| and |us[k]| we have

‖e4[k]‖ ≤

∫ (k+1)T

kT

δAδα‖x[k]‖(τ − kT )dτ + ca

∫ (k+1)T

kT

[

γ11‖x[k]‖+ γ12‖z[k]‖
]

(τ − kT )dτ

+

∫ kT+T1+T2+T3

kT+T1

δBδα

[

γ7‖x[k]‖+ γ8‖z[k]‖
]

(τ − kT )dτ

≤ δAδα‖x[k]‖
T 2

2
+ ca

[

γ11‖x[k]‖+ γ12‖z[k]‖
]T 2

2

+ δBδα

[

γ7‖x[k]‖+ γ8‖z[k]‖
]T 2

2

(

1−
T 2
1

T 2

)

.

It is easy to see that there exist constants γ13 and γ14 such that for small h, and therefore
small T , we have

‖e4[k]‖ ≤ (γ13‖x[k]‖+ γ14‖z[k]‖)T
2. (4.60)

Consequently, using (4.53) and (4.60) we can derive an upper bound on e5[k]:

‖e5[k]‖ ≤ ‖B(α[k])‖‖e2[k]‖+ ‖e4[k]‖

≤ cb(γ5‖x[k]‖+ γ6‖z[k]‖)T
2 + (γ13‖x[k]‖+ γ14‖z[k]‖)T

2

=
[

(cbγ5 + γ13)‖x[k]‖+ (cbγ6 + γ14)‖z[k]‖
]

T 2. (4.61)

By combining (4.50) and (4.59) we obtain the equation for the discretized closed loop
system:

[
x[k + 1]
z[k + 1]

]

=

[
x[k]
z[k]

]

+ T

[
A(α[k]) +B(α[k])K(α[k]) B(α[k])H(α[k])

G(α[k]) F (α[k])

] [
x[k]
z[k]

]

+

[
e5[k]
e1[k]

]

.

Let us introduce new variables for the closed-loop state and the discretization error respec-
tively:

ξ[k] :=

[
x[k]
z[k]

]

and e6[k] :=

[
e5[k]
e1[k]

]

. (4.62)
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The closed loop system now takes the following form:

ξ[k + 1] =

(

I + T

[
A(α[k]) + B(α[k])K(α[k]) B(α[k])H(α[k])

G(α[k]) F (α[k])

])

ξ[k] + e6[k]. (4.63)

We will begin by deriving an upper bound on ‖e6[k]‖. With results from (4.51) and (4.61),
we can write

‖e6[k]‖ = ‖e1[k]‖+ ‖e5[k]‖

≤
[

γ3‖x[k]‖+ γ4‖z[k]‖+ (cbγ5 + γ13)‖x[k]‖+ (cbγ6 + γ14)‖z[k]‖
]

T 2.

Noting that ‖ξ[k]‖ = ‖x[k]‖ + ‖z[k]‖, it follows that there exists a constant γ15 such that
for small T

‖e6[k]‖ ≤ γ15T
2‖ξ[k]‖. (4.64)

At this point we are ready to prove the stability of the closed loop system. An important
result is induced from equation (3.25):

[
A(α[k]) + B(α[k])K(α[k]) B(α[k])H(α[k])

G(α[k]) F (α[k])

]

=

[
X
Z

]

P (α[k])

[
X
Z

]−1

. (4.65)

Substituting the above into (4.63) yields

ξ[k + 1] =

(

I + T

[
X
Z

]

P (α[k])

[
X
Z

]−1
)

ξ[k] + e6[k]. (4.66)

Defining the following transformations:

ξ̄[k] :=

[
X
Z

]−1

ξ[k] and ē6[k] :=

[
X
Z

]−1

e6[k], (4.67)

(4.66) accordingly becomes

ξ̄[k + 1] =
[

I + TP (α[k])
]

ξ̄[k] + ē6[k], (4.68)

and

‖ē6[k]‖ ≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
‖e6[k]‖

≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
γ15T

2‖ξ[k]‖

≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥

︸ ︷︷ ︸

=: γ16

γ15T
2‖ξ̄[k]‖.
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By Proposition 1 there exist T > 0 and λ̄ > 0 so that for all T ∈ (0, T ) and λ ∈ (0, λ̄) we
have

‖I + TP (α[k])‖ ≤ 1− λT for all α[k] ∈ A.

Hence fix λ ∈ (0, λ̄) and let T ∈ (0, T ) be arbitrary; taking the norm of the both sides of
(4.68) we have

‖ξ̄[k + 1]‖ ≤ ‖I + TP (α[k])‖‖ξ̄[k]‖+ ‖ē6[k]‖

≤ (1− λT )‖ξ̄[k]‖+ γ15γ16T
2‖ξ̄[k]‖. (4.69)

We would like to show that ‖ē6[k]‖ is small enough to not affect the closed loop stability
for a sufficiently small T . We would like to find a T ∗ ∈ (0, T ) such that for all T ∈ (0, T ∗)
we have

γ15γ16T
2 ≤

λ

2
T. (4.70)

Obviously, we can choose

T ∗ = min

{
λ

2γ15γ16
,
T

2

}

.

Hence, for small T , if we use (4.70) in (4.69) we derive the following bound on ‖ξ̄[k + 1]‖:

‖ξ̄[k + 1]‖ ≤ (1− λT )‖ξ̄[k]‖+
λ

2
T ξ̄[k]‖

≤ (1−
λ

2
T )‖ξ̄[k]‖

≤ e−
λ

2
T‖ξ̄[k]‖. (4.71)

Recall that at the beginning of the section we made the assumption that we are considering

only those k for which

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
> 0. If

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
= 0, then x̂[k] = 0, so up[k] = us[k] = 0,

so

∥
∥
∥
∥

[
x[k + 1]
z[k + 1]

]∥
∥
∥
∥
= 0, i.e. ‖ξ̄[k + 1]‖ = 0. Therefore, it is true that

‖ξ̄[k + 1]‖ ≤ e−
λ

2
T‖ξ̄[k]‖, k ∈ Z

+.

Consequently,

‖ξ̄[k]‖ ≤ e−
λ

2
kT‖ξ̄[0]‖, k ∈ Z

+. (4.72)
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We would like to return to the original domain and derive a similar bound on ‖ξ[k]‖:

‖ξ[k]‖ =

∥
∥
∥
∥

[
X
Z

]

ξ̄[k]

∥
∥
∥
∥

≤

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥
‖ξ̄[k]‖

≤

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥
e−

λ

2
kT‖ξ̄[0]‖

≤ γ16e
−λ

2
kT‖ξ[0]‖, k ∈ Z

+. (4.73)

This means that the state of the closed loop system is bounded by a decaying exponential
at the sample points. The only thing left to show is that the state remains bounded in
between the samples.

4.4 Intersample Behaviour

Now we will investigate the behaviour of the closed loop state in between the sample points.
We will define the following continuous time signals:

z(t) := z[k] for t ∈ [kT, (k + 1)T ),

ξ(t) :=

[
x(t)
z(t)

]

.

Our goal is to derive an upper bound on ‖ξ(t)‖ when t ∈ [kT, (k+1)T ). An upper bound
for ‖x(t)‖ when t ∈ [kT, (k+1)T ) was derived in (4.57). Noting that z(t) remains constant
for the duration of the period, we have the following result:

∥
∥
∥
∥

[
x(t)
z(t)

]∥
∥
∥
∥
= ‖x(t)‖+ ‖z(t)‖

≤ γ9‖x[k]‖+ γ10T‖z[k]‖+ ‖z[k]‖

≤ (γ9 + γ10T
∗ + 1)

︸ ︷︷ ︸

=: γ17

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
, t ∈ [kT, (k + 1)T ).

Combining the above with (4.73) yields the bound on ‖ξ(t)‖ when t ∈ [kT, (k + 1)T ) and
when T is small:

‖ξ(t)‖ ≤ γ17‖ξ[k]‖

≤ γ16γ17e
−λ

2
kT‖ξ[0]‖

= γ16γ17e
−λ

2
kT‖ξ(0)‖. (4.74)
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This result can be easily extended to show that ‖ξ(t)‖ is bounded for all t ∈ R
+. First,

note that when t ∈ [kT, (k + 1)T ], we have e−
λ

2
(t−T ) ∈ [e−

λ

2
kT , e−

λ

2
(k−1)T ]. Using this

observation in (4.74), we obtain the desired result:

‖ξ(t)‖ ≤ γ16γ17e
−λ

2
(t−T )‖ξ(0)‖

≤ γ16γ17e
λ

2
T e−

λ

2
t‖ξ(0)‖

≤ γ16γ17e
λ̄

2
T ∗

︸ ︷︷ ︸

=: γ18

e−
λ

2
t‖ξ(0)‖, t ∈ R

+.

4.5 Summary

In this chapter we considered the performance of the closed loop system in the absence of
noise. We began by examining the bound on the state estimation error, which turned out
to be

‖x̂[k]− x[k]‖ ≤ γx‖x[k]‖h.

This means that the difference between the plant’s state and its estimate can be made small

by means of the fast sampling rate. Using this result, we showed that if

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
> 0 and

assuming no jumps in the parameter, the bound on the parameter estimation error is

|α̂[k]− α[k]| ≤
(

nδα +
γf
δi

)

h.

The above bounds are fairly conservative; however, we were able to show that when these
estimated quantities are used to calculate the control signal, the resulting closed loop
system is exponentially stable, i.e.

‖ξ(t)‖ ≤ γ18e
−λ

2
t‖ξ(0)‖, t ∈ R

+.

In the derivation of the above bound we assumed that there were no discontinuities in α(t).
Having ascertained that the behaviour of the closed loop system is nice in the absence of
noise and parameter jumps, we will move on to analysing the effects of these disturbances
in the next chapter.
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Chapter 5

System in Presence of Noise

We are now ready to consider the situation where noise is injected into the system at the
input and output interfaces as shown in Figure 5.1. The goal of the current chapter is to
show that the estimation techniques proposed in the previous chapter remain valid and
that the closed loop system is stable according to our definition. Many of the results from
the noise free case will be very useful in the present setup due to the linear nature of the
controlled system.

Incorporating the input and output noise signals into the plant model yields

ẋ(t) = A(α(t))x(t) + B(α(t))
[
u(t) + d(t)

]

︸ ︷︷ ︸

ud(t)

, x(0) = x0 (5.1)

yw(t) = Cx(t) + w(t). (5.2)

We will first consider the homogeneous version of our system:

ẋ(t) = A(α(t))x(t), x(t0) = x0. (5.3)

By uniqueness and existence of the solution, for t0 > 0 there exists a state transition
matrix, ΦA(t, t0), such that, for a given initial condition x(t0), the solution to (5.3) is

x(t) = ΦA(t, t0)x(t0), t ≥ t0. (5.4)

We will derive a useful intermediate result by applying Lemma 1 to the above equation:

‖ΦA(t, t0)x(t0)‖ ≤ ‖x(t0)‖e
ca(t−t0)

=⇒
‖ΦA(t, t0)x(t0)‖

‖x(t0)‖
≤ eca(t−t0), t ≥ t0. (5.5)
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Figure 5.1: System setup with noise injected at the input and output interfaces.

Since (5.5) holds true for all x(t0) 6= 0, we say

sup
x(t0) 6=0

‖ΦA(t, t0)x(t0)‖

‖x(t0)‖
≤ eca(t−t0), t ≥ t0

or
‖ΦA(t, t0)‖ ≤ eca(t−t0), t ≥ t0. (5.6)

In the nonhomogeneous case, the expressions for the state and output are, respectively,

x(t) = ΦA(t, t0)x(t0) +

∫ t

t0

ΦA(t, τ)B(τ)
[
u(τ) + d(τ)

]
dτ, (5.7)

yw(t) = CΦA(t, t0)x(t0) + C

∫ t

t0

ΦA(t, τ)B(τ)
[
u(τ) + d(τ)

]
dτ + w(t). (5.8)

Before proceeding, we need to make an additional assumption about the noise signals.

Since our goal is to prove that the map from

[
d
w

]

to

[
y
u

]

(with zero initial conditions) is

bounded, in this chapter we assume that the noise signals, d(t) and w(t), are bounded:

‖d‖∞ < ∞ and ‖w‖∞ < ∞.

We will define a new noise vector:

w̄(t) =

[
d(t)
w(t)

]

,
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so it follows immediately that

‖d‖∞ ≤ ‖w̄‖∞ and ‖w‖∞ ≤ ‖w̄‖∞.

5.1 State Estimation

We will estimate the state by setting u(t) = 0 for t ∈ [kT, kT+nh), the same as in the noise
free scenario. Notice that the noise enters linearly into the system and so it is possible to
consider its effect separately. On that basis, we will define yic(t) to be the response of the
system to the initial condition (i.e. setting d(t) = 0 and w(t) = 0):

yic(t) := CΦA(t, kT )x(kT ). (5.9)

Similarly, the response due to the noise when x(kT ) = 0 is

yN(t) := C

∫ t

kT

ΦA(t, τ)B(τ)d(τ)dτ + w(t). (5.10)

Due to linearity of equations (5.7)–(5.8), we can write the total response as the addition
of yic(t) and yN(t):

yw(t) = yic(t) + yN(t). (5.11)

Let us define

Yw
k :=








yw(kT )
yw(kT + h)

...
yw(kT + (n− 1)h)








(5.12)

and

Y ic
k :=








yic(kT )
yic(kT + h)

...
yic(kT + (n− 1)h)







, YN

k :=








yN(kT )
yN(kT + h)

...
yN(kT + (n− 1)h)







. (5.13)

Note that the response to the initial condition is identical to the output with u(t) = 0 in
the noise free case (Section 4.1). Therefore, using equation (4.17) (and the definition of Vk

given in (4.14)) we can write

Y ic
k = SnQn(h)O(C,A(α))x[k] + Vk. (5.14)
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The input to the sampler in Figure 5.1 is yw(t) and so we can write the estimation law in
a slightly different way than in (4.19):

x̂[k] = O−1(C,A(α))Q−1
n (h)S−1

n Yw
k

= O−1(C,A(α))Q−1
n S−1

n (Y ic
k + YN

k ). (5.15)

Hence, using (5.14) the state estimation error is

‖x̂[k]− x[k]‖ =
∥
∥
∥O−1(C,A(α))Q−1

n S−1
n

[

YN
k + Vk

]∥
∥
∥

≤ ‖O−1(C,A(α))‖‖Q−1
n ‖‖S−1

n ‖
[

‖YN
k ‖+ ‖Vk‖

]

. (5.16)

Now we would like to derive an upper bound on ‖YN
k ‖. We will first consider |yN(t)| when

t ∈ [kT, kT + nh):

|yN(t)| = |C

∫ t

kT

ΦA(t, τ)B(τ)d(τ)dτ + w(t)|

≤ ‖C‖

∫ t

kT

‖ΦA(t, τ)‖‖B(τ)‖|d(τ)|dτ + |w(t)|

≤ ‖C‖cb‖d‖∞

∫ t

kT

eca(t−τ)dτ + ‖w‖∞

≤ ‖C‖cbe
canh‖d‖∞(t− kT ) + ‖w‖∞

≤
[

‖C‖cbe
canh(t− kT ) + 1

]

‖w̄‖∞, t ∈ [kT, kT + nh).

Now we can bound individual elements of YN
k :

|yN(kT )| = 0

|yN(kT + h)| ≤
[

‖C‖cbe
canhh+ 1

]

‖w̄‖∞,

|yN(kT + 2h)| ≤
[

‖C‖cbe
canh2h+ 1

]

‖w̄‖∞,

...

|yN(kT + (n− 1)h)| ≤
[

‖C‖cbe
canh(n− 1)h+ 1

]

‖w̄‖∞.

From here it is easy to derive the upper bound on ‖YN
k ‖:

‖YN
k ‖ ≤

[

‖C‖cbe
canh

n

2
h+ 1

]

(n− 1)‖w̄‖∞.
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Clearly, there exists a constant γ19 such that for small h

‖YN
k ‖ ≤ γ19‖w̄‖∞. (5.17)

Recall that from the noise free case (equations (4.20)–(4.24)) we have

‖O−1(C,A(α))‖‖Q−1
n (h)‖‖S−1

n ‖‖Vk‖ ≤ γx‖x[k]‖h.

Hence, substituting (5.17) and (4.21) into (5.16), we obtain for small h

‖x̂[k]− x[k]‖ ≤ γx‖x[k]‖h+ ‖O−1(C,A(α))‖‖S−1
n ‖

(n− 1)!

hn−1
γ19‖w̄‖∞.

Letting
γ20 := ‖O−1(C,A(α))‖‖S−1

n ‖(n− 1)! γ19,

we arrive at the upper bound on the state estimation error:

‖x̂[k]− x[k]‖ ≤ γx‖x[k]‖h+
γ20
hn−1

‖w̄‖∞. (5.18)

5.2 Parameter Estimation

The parameter estimation procedure will not change from the noise free case; once again

we proceed on the assumption that α ∈ AC(A). A probing control signal up[k] =
ρ(‖x̂[k]‖ + ‖z[k]‖) will be applied for t ∈ [t̄1, t̄1 + (n̄ + 2)h). As it was pointed out in the
previous section, taking advantage of the linearity of the plant simplifies the analysis. Here
we will isolate the effect of noise in the similar manner. Let yip(t) be the response when
d(t) = 0 and w(t) = 0 (i.e. it is a response to the initial condition and probing input):

yip(t) = CΦA(t, t̄1)x(t̄1) + C

∫ t

t̄1

ΦA(t, τ)B(τ)up[k]dτ. (5.19)

Similarly, the response due to noise inputs is

ȳN(t) = C

∫ t

t̄1

ΦA(t, τ)B(τ)d(τ)dτ + w(t). (5.20)

Once again, it is easy to see that for t ∈ [t̄1, t̄1 + (n̄+ 2)h),

yw(t) = yip(t) + ȳN(t). (5.21)

44



We will introduce the following vectors of samples:

Ȳw
k :=








yw(t̄1)
yw(t̄1 + h)

...
yw(t̄1 + (n̄+ 1)h)







, (5.22)

and

Y ip
k :=








yip(t̄1)
yip(t̄1 + h)

...
yip(t̄1 + (n̄+ 1)h)







, ȲN

k :=








ȳN(t̄1)
ȳN(t̄1 + h)

...
ȳN(t̄1 + (n̄+ 1)h)







. (5.23)

Observing that yip(t) is equal to the output in the noise free case when u(t) = up[k]
(Section 4.2) and using (4.33) (with Mk defined in (4.31)), we can write

f(α(t̄1)) =
1

up[k]

[

EQ−1
n̄+2(h)S

−1
n̄+2(Y

ip
k −Mk)− CAn̄+1x(t̄1)

]

. (5.24)

We will define f̌ [k] similarly to equation (4.34), with a slight modification due to noise:

f̌ [k] :=







1

up[k]

[

EQ−1
n̄+2(h)S

−1
n̄+2Ȳ

w
k − CAn̄+1x̂[k]

]

if up[k] 6= 0;

f(α) if up[k] = 0.
(5.25)

The definitions of f̂ [k] and α̂(t̄1) will remain the same as in (4.35) and (4.36) respectively:

f̂ [k] := ΠF(f̌ [k]).

and
α̂[k] := f−1(f̂ [k]).

We now proceed to derive a bound on the estimation error. To this end, we will first
consider the situation when up[k] = 0, i.e. x̂[k] = 0 and z[k] = 0. This means that
α̂[k] = α, which, in general, is not an accurate estimate of α(t̄1). Let us examine ‖x[k]‖ in
such case:

‖x[k]‖ ≤ ‖x[k]− x̂[k]‖+ ‖x̂[k]‖

≤ γx‖x[k]‖h+
γ20
hn−1

‖w̄‖∞ + ‖x̂[k]‖.
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If we choose h <
1

γx
, we have

‖x[k]‖ ≤
1

1− γxh

[ γ20
hn−1

‖w̄‖∞ + ‖x̂[k]‖
]

, (5.26)

so
‖x[k]‖ ≤

γ20
(1− γxh)hn−1

‖w̄‖∞. (5.27)

Therefore, we see that if up[k] = 0, then for small h we have
∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
≤

γ20
(1− γxh)hn−1

‖w̄‖∞. (5.28)

This suggests that, in particular, if h < 1 is small enough, then
∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
>

γ20
(1− γxh)hn

‖w̄‖∞ (5.29)

implies that up[k] 6= 0, in which case

f̌ [k] =
1

up[k]

[

EQ−1
n̄+2(h)S

−1
n̄+2Ȳ

w
k − CAn̄+1x̂[k]

]

=
1

up[k]

[

EQ−1
n̄+2(h)S

−1
n̄+2(Y

ip
k + ȲN

k )− CAn̄+1x̂[k]
]

(5.30)

Therefore, for the remainder of the section we will assume that (5.29) is true.

Letting f̃ [k] = f̌ [k]−f(α(t̄1)), using (5.24) and (5.30) we can obtain a bound on |f̃ [k]|:

|f̃ [k]| ≤
1

|up[k]|

[

‖CAn̄+1‖‖x̂[k]−x(t̄1)‖+‖E‖‖Q−1
n̄+2(h)‖‖S

−1
n̄+2‖

(
‖ȲN

k ‖+ ‖Mk‖
) ]

. (5.31)

Firstly, let us derive a bound on ‖x̂[k]− x(t̄1)‖:

‖x̂[k]− x(t̄1)‖ = ‖x̂[k]− (x(kT ) +

∫ kT+nh

kT

A(α(τ)x(τ)dτ)‖

≤ ‖x̂[k]− x[k]‖+

∫ kT+nh

kT

‖A(α(τ)‖‖x(τ)‖dτ.

We will use Lemma 1 to obtain a bound on ‖x(τ)‖ when τ ∈ [kT, kT + nh):

‖x(τ)‖ ≤ (‖x(kT )‖+ (τ − kT )cb‖d‖∞)eca(τ−kT )

≤ (‖x[k]‖+ nhcb‖w̄‖∞)ecanh. (5.32)
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Using (5.18), this yields

‖x̂[k]− x(t̄1)‖ ≤ γx‖x[k]‖h+
γ20
hn−1

‖w̄‖∞ + ca

∫ kT+nh

kT

(‖x[k]‖+ nhcb‖w̄‖∞)ecanhdτ

≤
(
γx + ncae

canh
)
‖x[k]‖h+

[ γ20
hn−1

+ cae
canhn2h2cb

]

‖w̄‖∞.

It is easy to see that there exist constants γ21 and γ22 such that for small h we have

‖x̂[k]− x(t̄1)‖ ≤ γ21‖x[k]‖h+
γ22
hn−1

‖w̄‖∞. (5.33)

We also require an upper bound on ‖ȲN
k ‖. To this end, consider |ȳN(t)| when t ∈ [t̄1, t̄1 +

(n̄+ 2)h):

|ȳN(t)| ≤ ‖C‖

∫ t

t̄1

‖ΦA(t, τ)‖‖B(τ)‖‖d(τ)‖dτ + ‖w(t)‖

≤ ‖C‖cb‖d‖∞

∫ t

t̄1

eca(t−τ)dτ + ‖w‖∞

≤ ‖C‖cbe
ca(n̄+2)h(t− t̄1)‖d‖∞ + ‖w‖∞

≤
[

‖C‖cbe
ca(n̄+2)h(t− t̄1) + 1

]

‖w̄‖∞.

This result can be used to bound the individual elements of ȲN
k :

|ȳN(t̄1)| = 0,

|ȳN(t̄1 + h)| ≤
[

‖C‖cbe
ca(n̄+2)hh+ 1

]

‖w̄‖∞,

|ȳN(t̄1 + 2h)| ≤
[

‖C‖cbe
ca(n̄+2)h2h+ 1

]

‖w̄‖∞,

...

|ȳN(t̄1 + (n̄+ 1)h)| ≤
[

‖C‖cbe
ca(n̄+2)h(n̄+ 1)h+ 1

]

‖w̄‖∞.

The bound on ‖ȲN
k ‖ is now easily obtained:

‖ȲN
k ‖ ≤

[

‖C‖cbe
ca(n̄+2)h n̄+ 2

2
h+ 1

]

(n̄+ 1)‖w̄‖∞.

Obviously, there exists a constant γ23 such that for small h

‖ȲN
k ‖ ≤ γ23‖w̄‖∞. (5.34)
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Using (4.41) to produce a bound on ‖Mk‖, (4.42) to produce bounds on ‖E‖ and ‖Q−1
n̄+2(h)‖,

(5.33) and (5.34) in (5.31) yields the following for small h:

|f̃ [k]| ≤
1

|up[k]|

{

‖CAn̄+1‖
(

γ21‖x[k]‖h+
γ22
hn−1

‖w̄‖∞

)

+ ‖S−1
n̄+2‖

(n̄+ 1)!

hn̄+1

[

γµ

(

γ1‖x[k]‖+ γ2|up[k]|
) hn̄+2

(n̄+ 2)!
+ γ23‖w̄‖∞

]}

;

using the fact that n − n̄ − 2 ≥ 0 (see Assumption 4), there exists a constant γ24 so that
for small h:

|f̃ [k]| ≤
γ24
up[k]

[

‖x[k]‖h+ |up[k]|h+
1

hn−1
‖w̄‖∞

]

.

Using (5.26) this becomes, for small h

|f̃ [k]| ≤
γ24

|up[k]|

[ h

1− γxh

[ γ20
hn−1

‖w̄‖∞ + ‖x̂[k]‖
]

+ |up[k]|h+
1

hn−1
‖w̄‖∞

]

.

Hence, there exists a constant γ25 such that for small h:

|f̃ [k]| ≤
γ25

|up[k]|

[ ρ

1 + ρ

(

‖x̂[k]‖+ |up[k]|
)

h+ ρ(1− h)
1

hn−1
‖w̄‖∞

]

. (5.35)

We would like to relate the size of up[k] to ‖w̄‖∞. To this end, from (5.26) we obtain for
small h

‖x̂[k]‖ ≥ (1− γxh)‖x[k]‖ −
γ20
hn−1

‖w̄‖∞.

Also, from (5.29) we have that

‖x[k]‖+ ‖z[k]‖ >
γ20

(1− γxh)hn
‖w̄‖∞

=⇒ ‖x[k]‖ >
γ20

(1− γxh)hn
‖w̄‖∞ − ‖z[k]‖,

which yields

‖x̂[k]‖ >
γ20
hn

‖w̄‖∞ − (1− γxh)‖z[k]‖ −
γ20
hn−1

‖w̄‖∞

=⇒ ‖x̂[k]‖+ (1− γxh)‖z[k]‖ > (1− h)
γ20
hn

‖w̄‖∞.

Observing that (1− γxh) < 1 for small h, it is true that

|up[k]| = ρ(‖x̂[k]‖+ ‖z[k]‖)

> ρ(1− h)
γ20
hn

‖w̄‖∞.

48



Hence, for small h we can write

‖w̄‖∞
|up[k]|

<
1

ρ(1− h)

hn

γ20
.

Returning to (5.35), for small h we have

|f̃ [k]| ≤ γ25

[ ρ

1 + ρ

‖x̂[k]‖+ |up[k]|

|up[k]|
h+ ρ(1− h)

1

hn−1

‖w̄‖∞
|up[k]|

]

≤ γ25

[ ρ

1 + ρ

‖x̂[k]‖+ ρ(‖x̂[k]‖+ ‖z[k]‖)

ρ(‖x̂[k]‖+ ‖z[k]‖)
h+

h

γ20

]

≤ γ25

(

1 +
1

γ20

)

h. (5.36)

Our goal is to ensure that f̌ [k] is always projected into the interval in F where f(α(t̄1))
actually lies. We achieve this when h is chosen small enough such that |f̃ [k]| is less than
half the smallest distance between adjacent intervals in F . With d∗ defined as in (4.45),

if we choose h <
d∗

γ25(1 + 1/γ20)
, then by construction, f̂ [k] always belongs to the same

interval in F as f(α(t̄1)). Hence, it is guaranteed to be least as close to f(α(t̄1)) as f̌ [k].
Therefore, it is true that for small h:

|f̂ [k]− f(α(t̄1))| ≤ γ25

(

1 +
1

γ20

)

h. (5.37)

We obtain an upper bound on the parameter estimation error by substituting (5.37) into
(4.48):

|α̂[k]− α[k]| ≤
[

nδα +
γ25
δi

(

1 +
1

γ20

)]

︸ ︷︷ ︸

=: γ26

h; (5.38)

recall that this holds if (5.29) holds.

5.3 Discrete-Time Stability Analysis

Our goal in this section is to show that the closed loop system is stable at the sample points
by using the bounds on the state and parameter estimation errors that were derived in the
previous sections. The procedure will generally follow the same steps as in Section 4.3.
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In particular, the control law remains the same as in (4.2)–(4.3) and us[k] is applied for
t ∈ [kT +T1+T2, kT +T1+T2+T3) = [kT +T1+T2, (k+1)T ). For most of this section we
will assume that the bound in (5.38) holds, which is true when (5.29) is satisfied. Hence,

from now on and unless otherwise mentioned, we will assume that k ∈ Z
+

satisfies (5.29). Also, for the purpose of this section, we assume that there are no jumps
in the parameter. The case when the parameter exhibits persistent jumps is considered in
Section 5.4.

We begin by converting equations (4.2)–(4.3) to use the actual quantities instead of the
estimates. Using (5.18), it is easy to see that for small h we have

x̂[k] = x[k] + ǫx[k], where ‖ǫx[k]‖ ≤ γx‖x[k]‖h+
γ20
hn−1

‖w̄‖∞. (5.39)

Let us examine the equation for z[k + 1]:

z[k + 1] =
[

I + TF (α̂[k])
]

z[k] + TG(α̂[k])x̂[k]

=

[

I + T

(

F (α[k]) +

∫ α̂[k]

α[k]

dF (a)

da
da

)]

z[k]

+ T

(

G(α[k]) +

∫ α̂[k]

α[k]

dG(a)

da
da

)

x[k] + TG(α̂[k])ǫx[k]

= z[k] + TG(α[k])x[k] + TF (α[k])z[k]

+ T

[
∫ α̂[k]

α[k]

dF (a)

da
da z[k] +

∫ α̂[k]

α[k]

dG(a)

da
da x[k] +G(α̂[k])ǫx[k]

]

. (5.40)

Letting

e7[k] := T

[
∫ α̂[k]

α[k]

dF (a)

da
da z[k] +

∫ α̂[k]

α[k]

dG(a)

da
da x[k] +G(α̂[k])ǫx[k]

]

,

we can write (5.40) compactly as

z[k + 1] = z[k] + TG(α[k])x[k] + TF (α[k])z[k] + e7[k]. (5.41)

We wish to derive an upper bound on ‖e7[k]‖: for small h we have

‖e7[k]‖ ≤ T

[
∫ α̂[k]

α[k]

∥
∥
∥
∥

dF (a)

da

∥
∥
∥
∥
da ‖z[k]‖+

∫ α̂[k]

α[k]

∥
∥
∥
∥

dG(a)

da

∥
∥
∥
∥
da ‖x[k]‖+ ‖G(α̂[k])‖‖ǫx[k]‖

]

≤ T
[

(δF‖z[k]‖+ δG‖x[k]‖) |α̂[k]− α[k]|+ cg‖ǫx[k]‖
]

≤ T
[(

δF‖z[k]‖+ δG‖x[k]‖
)

γ26h+ cg

(

γx‖x[k]‖h+
γ20
hn−1

‖w̄‖∞

)]

.
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Substituting h = T/N into the above inequality yields

‖e7[k]‖ ≤
[δG
N

γ26 +
cgγx
N

]

T 2‖x[k]‖+
δF
N

γ26T
2‖z[k]‖+

cgγ20N
n−1

T n−2
‖w̄‖∞.

Hence, there exist constants γ27, γ28 and γ29 such that for small T

‖e7[k]‖ ≤ γ27T
2‖x[k]‖+ γ28T

2‖z[k]‖+
γ29
T n−2

‖w̄‖∞. (5.42)

The same procedure can be carried out with the equation (4.3):

us[k] =
T

T3

[

H(α̂[k])z[k] +K(α̂[k])x̂[k]
]

−
T2

T3

up[k]

=
T

T3

[(

H(α[k]) +

∫ α̂[k]

α[k]

dH(a)

da
da

)

z[k]

+

(

K(α[k]) +

∫ α̂[k]

α[k]

dK(a)

da
da

)

x[k] +K(α̂[k])ǫx[k]

]

−
T2

T3

up[k]

=
T

T3

[

H(α[k])z[k] +K(α[k])x[k]
]

−
T2

T3

up[k]

+
T

T3

[
∫ α̂[k]

α[k]

dH(a)

da
da z[k] +

∫ α̂[k]

α[k]

dK(a)

da
da x[k] +K(α̂[k])ǫx[k]

]

.

If we define

e8[k] := T

[
∫ α̂[k]

α[k]

dH(a)

da
da z[k] +

∫ α̂[k]

α[k]

dK(a)

da
da x[k] +K(α̂[k])ǫx[k]

]

,

then we can write

us[k] =
T

T3

[

H(α[k])z[k] +K(α[k])x[k]
]

−
T2

T3

up[k] +
1

T3

e8[k]. (5.43)

The upper bound on ‖e8[k]‖ is derived as follows:

‖e8[k]‖ ≤ T

[
∫ α̂[k]

α[k]

∥
∥
∥
∥

dH(a)

da

∥
∥
∥
∥
da ‖z[k]‖+

∫ α̂[k]

α[k]

∥
∥
∥
∥

dK(a)

da

∥
∥
∥
∥
da ‖x[k]‖+ ‖K(α̂[k])‖‖ǫx[k]‖

]

≤ T
[

(δH‖z[k]‖+ δK‖x[k]‖)|α̂[k]− α[k]|+ ck‖ǫx[k]‖
]

≤ T
[(

δH‖z[k]‖+ δK‖x[k]‖
)

γ26h+ ck

(

γx‖x[k]‖h+
γ20
hn−1

‖w̄‖∞

)]

=
[δK
N

γ26 +
ckγx
N

]

T 2‖x[k]‖+
δH
N

γ26T
2‖z[k]‖+

ckγ20N
n−1

T n−2
‖w̄‖∞.
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It is easy to see that there exist constants γ30, γ31 and γ32 such that for small T we have

‖e8[k]‖ ≤ γ30T
2‖x[k]‖+ γ31T

2‖z[k]‖+
γ32
T n−2

‖w̄‖∞. (5.44)

We will derive an expression for x(t) when t ∈ [kT, (k + 1)T ) by integrating equation
(5.1):

x(t) = x(kT ) +

∫ t

kT

A(α(τ))x(τ)dτ +

∫ t

kT

B(α(τ))ud(τ)dτ

︸ ︷︷ ︸

=: e9(t)

. (5.45)

In order to derive an upper bound on ‖e9(t)‖, we first consider the maximum size of the
control signal in the period [kT, (k + 1)T ). With um[k] defined identically to (4.55):

um[k] := max{|up[k]|, |us[k]|},

we would like to examine its upper bound. Let us first consider |up[k]|:

|up[k]| = ρ(‖x̂[k]‖+ ‖z[k]‖)

≤ ρ
[

(1 + γxh)‖x[k]‖+ ‖z[k]‖+
γ20
hn−1

‖w̄‖∞

]

. (5.46)

The bound on |us[k]| is derived in a similar way:

|us[k]| ≤
T

T3

[

‖H(α̂[k])‖‖z[k]‖+ ‖K(α̂[k])‖‖x̂[k]‖
]

+
T2

T3

|up[k]|

≤
T

T3

{

ch‖z[k]‖+ ck

[

(1 + γxh)‖x[k]‖+
γ20
hn−1

‖w̄‖∞

]}

+ ρ
T2

T3

[

(1 + γxh)‖x[k]‖+ ‖z[k]‖+
γ20
hn−1

‖w̄‖∞

]

≤
[

ck
T

T3

+ ρ
T2

T3

]

(1 + γx
T

N
)‖x[k]‖+

[

ch
T

T3

+ ρ
T2

T3

]

‖z[k]‖

+
[

ck
T

T3

+ ρ
T2

T3

]γ20N
n−1

T n−1
‖w̄‖∞. (5.47)

It is clear from (5.46) and (5.47) that there exist constants γ33, γ34 and γ35 such that for
small T the following holds:

um[k] ≤ γ33‖x[k]‖+ γ34‖z[k]‖+
γ35
T n−1

‖w̄‖∞. (5.48)
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We will obtain a bound on ‖x(t)‖ by applying Lemma 1 for t ∈ [kT, (k + 1)T ):

‖x(t)‖ ≤
[

‖x(kT )‖+ (t− kT )(um[k] + ‖d‖∞)cb

]

eca(t−kT )

≤
[

‖x[k]‖+ T
(

γ33‖x[k]‖+ γ34‖z[k]‖+
γ35
T n−1

‖w̄‖∞ + ‖d‖∞

)

cb

]

ecaT

≤
[

(1 + cbγ33T )‖x[k]‖+ cbγ34T‖z[k]‖+ (γ35 + T n−1)
cb

T n−2
‖w̄‖∞

]

ecaT .

It is easy to see that there exist constants γ36, γ37 and γ38 such that for small T we have

‖x(t)‖ ≤ γ36‖x[k]‖+ γ37T‖z[k]‖+
γ38
T n−2

‖w̄‖∞, t ∈ [kT, (k + 1)T ). (5.49)

With (5.48) and (5.49) we can derive a bound on ‖e9(t)‖ - for small T :

‖e9(t)‖ ≤

∫ t

kT

‖A(α(τ))‖‖x(τ)‖dτ +

∫ t

kT

‖B(α(τ))‖(|u(τ)|+ ‖d‖∞)dτ

≤ ca

[

γ36‖x[k]‖+ γ37T‖z[k]‖+
γ38
T n−2

‖w̄‖∞

]

(t− kT )

+ cb

[

γ33‖x[k]‖+ γ34‖z[k]‖+
γ35
T n−1

‖w̄‖∞ + ‖d‖∞

]

(t− kT )

≤
[

(caγ36 + cbγ33)‖x[k]‖+ (caγ37T + cbγ34)‖z[k]‖

+ (caγ38T + cbγ35 + cbT
n−1)

1

T n−1
‖w̄‖∞

]

(t− kT ).

Clearly, for small T , there exist constants γ39, γ40 and γ41 so that

‖e9(t)‖ ≤
[

γ39‖x[k]‖+ γ40‖z[k]‖+
γ41
T n−1

‖w̄‖∞

]

(t− kT ), t ∈ [kT, (k + 1)T ). (5.50)

We can now discretize the plant state equation with the control signal applied; using
(5.45) yields

x((k + 1)T ) = x(kT ) +

∫ (k+1)T

kT

A(α(τ))x(τ)dτ +

∫ (k+1)T

kT

B(α(τ))ud(τ)dτ

= x(kT ) +

∫ (k+1)T

kT

(

A(α(kT )) +

∫ τ

kT

Ȧ(α(θ))dθ

)

x(kT )dτ

+

∫ (k+1)T

kT

A(α(τ))e9(τ)dτ +

∫ (k+1)T

kT

B(α(τ))d(τ)dτ

+

∫ kT+T1+T2

kT+T1

(

B(α(kT )) +

∫ τ

kT

Ḃ(α(θ))dθ)

)

up[k]dτ

+

∫ kT+T1+T2+T3

kT+T1+T2

(

B(α(kT )) +

∫ τ

kT

Ḃ(α(θ))dθ)

)

us[k]dτ.

53



After re-arranging the terms and using our standard notation of x[k] = x(kT ) we obtain
the following:

x[k + 1] = x[k] + TA(α[k])x[k] + T2B(α[k])up[k] + T3B(α[k])us[k]

+

∫ (k+1)T

kT

∫ τ

kT

Ȧ(α(θ))dθ x[k]dτ +

∫ (k+1)T

kT

A(α(τ))e9(τ)dτ

+

∫ (k+1)T

kT

B(α(τ))d(τ)dτ +

∫ kT+T1+T2

kT+T1

∫ τ

kT

Ḃ(α(θ))dθ up[k]dτ

+

∫ kT+T1+T2+T3

kT+T1+T2

∫ τ

kT

Ḃ(α(θ))dθ us[k]dτ.

We define a new error term:

e10[k] :=

∫ (k+1)T

kT

∫ τ

kT

Ȧ(α(θ))dθ x[k]dτ +

∫ (k+1)T

kT

A(α(τ))e9(τ)dτ

+

∫ (k+1)T

kT

B(α(τ))d(τ)dτ +

∫ kT+T1+T2

kT+T1

∫ τ

kT

Ḃ(α(θ))dθ up[k]dτ

+

∫ kT+T1+T2+T3

kT+T1+T2

∫ τ

kT

Ḃ(α(θ))dθ us[k]dτ,

and substitute (5.43) in place of us[k] to obtain the following discretized system:

x[k + 1] = x[k] + TA(α[k])x[k] + T2B(α[k])up[k]

+ T3B(α[k])
( T

T3

[

H(α[k])z[k] +K(α[k])x[k]
]

−
T2

T3

up[k] +
1

T3

e8[k]
)

+ e10[k]

= x[k] + T
[

A(α[k]) + B(α[k])K(α[k])
]

x[k] + TB(α[k])H(α[k])z[k]

+ B(α[k])e8[k] + e10[k]
︸ ︷︷ ︸

=: e11[k]

. (5.51)

We will proceed to derive an upper bound on ‖e10[k]‖: for small T we have

‖e10[k]‖ ≤

∫ (k+1)T

kT

∫ τ

kT

‖Ȧ(α(θ))‖dθ ‖x[k]‖dτ +

∫ (k+1)T

kT

‖A(α(τ))‖‖e9(τ)‖dτ

+

∫ (k+1)T

kT

‖B(α(τ))‖‖d(τ)‖dτ +

∫ kT+T1+T2

kT+T1

∫ τ

kT

‖Ḃ(α(θ))‖dθ |up[k]|dτ

+

∫ kT+T1+T2+T3

kT+T1+T2

∫ τ

kT

‖Ḃ(α(θ))‖dθ |us[k]|dτ,
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Using (5.50) to bound ‖e9(τ)‖ and (5.48) to bound |up[k]| and |us[k]| yields

‖e10[k]‖ ≤

∫ (k+1)T

kT

δAδα‖x[k]‖(τ − kT )dτ + cb

∫ (k+1)T

kT

‖w̄‖∞dτ

+ ca

∫ (k+1)T

kT

[

γ39‖x[k]‖+ γ40‖z[k]‖+
γ41
T n−1

‖w̄‖∞

]

(τ − kT )dτ

+

∫ kT+T1+T2+T3

kT+T1

δBδα

[

γ33‖x[k]‖+ γ34‖z[k]‖+
γ35
T n−1

‖w̄‖∞

]

(τ − kT )dτ

≤ δAδα‖x[k]‖
T 2

2
+ cb‖w̄‖∞T + ca

[

γ39‖x[k]‖+ γ40‖z[k]‖+
γ41
T n−1

‖w̄‖∞

]T 2

2

+ δBδα

[

γ33‖x[k]‖+ γ34‖z[k]‖+
γ35
T n−1

‖w̄‖∞

]T 2

2

(

1−
T 2
1

T 2

)

.

It is easy to see that there exist constants γ42, γ43 and γ44 such that for small T we have

‖e10[k]‖ ≤ γ42T
2‖x[k]‖+ γ43T

2‖z[k]‖+
γ44
T n−3

‖w̄‖∞. (5.52)

The bound on ‖e11[k]‖ is calculated using results from (5.44) and (5.52):

‖e11[k]‖ ≤ ‖B(α[k])‖‖e8[k]‖+ ‖e10[k]‖

≤
[

cbγ30 + γ42

]

T 2‖x[k]‖+
[

cbγ31 + γ43

]

T 2‖z[k]‖+
[

γ32 + γ44T
] 1

T n−2
‖w̄‖∞.

Hence, there exist constants γ45, γ46 and γ47 such that for small T the following holds:

‖e11[k]‖ ≤ γ45T
2‖x[k]‖+ γ46T

2‖z[k]‖+
γ47
T n−2

‖w̄‖∞. (5.53)

We can now proceed with the analysis of the closed loop system equation, which is
formed by combining (5.41) and (5.51):
[
x[k + 1]
z[k + 1]

]

=

[
x[k]
z[k]

]

+ T

[
A(α[k]) + B(α[k])K(α[k]) B(α[k])H(α[k])

G(α[k]) F (α[k])

] [
x[k]
z[k]

]

+

[
e11[k]
e7[k]

]

.

The closed loop state and the discretization error are defined as follows:

ξ[k] :=

[
x[k]
z[k]

]

and e12[k] :=

[
e11[k]
e7[k]

]

,

which results in the closed loop equation of the form

ξ[k + 1] =

(

I + T

[
A(α[k]) + B(α[k])K(α[k]) B(α[k])H(α[k])

G(α[k]) F (α[k])

])

ξ[k] + e12[k]. (5.54)
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We derive an upper bound on ‖e12[k]‖ by using (5.42) and (5.53):

‖e12[k]‖ = ‖e7[k]‖+ ‖e11[k]‖

≤
[

γ27 + γ45

]

T 2‖x[k]‖+
[

γ28 + γ46

]

T 2‖z[k]‖+
[

γ29 + γ47

] 1

T n−2
‖w̄‖∞.

With ‖ξ[k]‖ = ‖x[k]‖ + ‖z[k]‖, it follows that there exist constants γ48 and γ49 such that
for small T

‖e12[k]‖ ≤ γ48T
2‖ξ[k]‖+

γ49
T n−2

‖w̄‖∞. (5.55)

An important observation is made about the closed loop system by considering (3.25):

[
A(α[k]) + B(α[k])K(α[k]) B(α[k])H(α[k])

G(α[k]) F (α[k])

]

=

[
X
Z

]

P (α[k])

[
X
Z

]−1

. (5.56)

Substituting the above into (5.54) yields

ξ[k + 1] =

(

I + T

[
X
Z

]

P (α[k])

[
X
Z

]−1
)

ξ[k] + e12[k]. (5.57)

Defining the following transformed variables:

ξ̄[k] :=

[
X
Z

]−1

ξ[k] and ē12[k] :=

[
X
Z

]−1

e12[k], (5.58)

(5.57) accordingly becomes

ξ̄[k + 1] =
[

I + TP (α[k])
]

ξ̄[k] + ē12[k], (5.59)

with

‖ē12[k]‖ ≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
‖e12[k]‖

≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥

(

γ48T
2‖ξ[k]‖+

γ49
T n−2

‖w̄‖∞

)

≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥

︸ ︷︷ ︸

γ16

γ48T
2‖ξ̄[k]‖+

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
γ49

︸ ︷︷ ︸

=: γ50

1

T n−2
‖w̄‖∞

]
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By Proposition 1 there exist T > 0 and λ̄ > 0 so that for all T ∈ (0, T ) and λ ∈ (0, λ̄) we
have

‖I + TP (α[k])‖ ≤ 1− λT for all α[k] ∈ A.

With this result we can establish a bound on ‖ξ̄[k+ 1]‖ by taking the norms of both sides
of (5.59); fix λ ∈ (0, λ̄) and let T ∈ (0, T ) be arbitrary, so that

‖ξ̄[k + 1]‖ ≤ ‖I + TP (α[k])‖‖ξ̄[k]‖+ ‖ē12[k]‖

≤ (1− λT )‖ξ̄[k]‖+ γ16γ48T
2‖ξ̄[k]‖+

γ50
T n−2

‖w̄‖∞. (5.60)

Similarly to the noise free case, we would like to find a T ∗ ∈ (0, T ) such that for all
T ∈ (0, T ∗) we have

γ16γ48T
2 ≤

λ

2
T. (5.61)

Clearly, we can choose

T ∗ = min

{
λ

2γ16γ48
,
T

2

}

. (5.62)

Therefore, using (5.61) in (5.60), we derive the following bound on ‖ξ̄[k + 1]‖ which holds
for small T :

‖ξ̄[k + 1]‖ ≤ (1− λT )‖ξ̄[k]‖+
λ

2
T‖ξ̄[k]‖+

γ50
T n−2

‖w̄‖∞

≤ (1−
λ

2
T )‖ξ̄[k]‖+

γ50
T n−2

‖w̄‖∞

≤ e−
λ

2
T‖ξ̄[k]‖+

γ50
T n−2

‖w̄‖∞. (5.63)

Up until this point we have only considered those k for which condition (5.29) was

satisfied. If it is not, i.e.

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
≤

γ20
(1− γxh)hn

‖w̄‖∞, then an appropriate upper bound

on

∥
∥
∥
∥

[
x[k + 1]
z[k + 1]

]∥
∥
∥
∥
must be derived. We will first bound ‖x[k + 1]‖ using (5.49):

‖x[k + 1‖ ≤ γ36‖x[k]‖+ γ37T‖z[k]‖+
γ38
T n−2

‖w̄‖∞. (5.64)

Now we will derive a bound on ‖z[k+1]‖ by taking the norms of both sides of (4.2): using
(5.39) yields

‖z[k + 1]‖ ≤ ‖I + TF (α̂[k])‖‖z[k]‖+ ‖TG(α̂[k])‖‖x̂[k]‖

≤
[

1 + T‖F (α̂[k])‖
]

‖z[k]‖+ T‖G(α̂[k])‖
[

(1 + γxh)‖x[k]‖+
γ20
hn−1

‖w̄‖∞

]

≤ cg(1 + γx
T

N
)T‖x[k]‖+

[

1 + cfT
]

‖z[k]‖+
cgγ20N

n−1

T n−2
‖w̄‖∞. (5.65)
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Combining (5.64) and (5.65) we obtain
∥
∥
∥
∥

[
x[k + 1]
z[k + 1]

]∥
∥
∥
∥
= ‖x[k + 1‖+ ‖z[k + 1]‖

≤
[

γ36 + cg(1 + γx
T

N
)T
]

‖x[k]‖+
[

1 + (γ37 + cf )T
]

‖z[k]‖

+
γ38 + cgγ20N

n−1

T n−2
‖w̄‖∞.

Hence, there exist constants γ51 and γ52 such that for small T we have
∥
∥
∥
∥

[
x[k + 1]
z[k + 1]

]∥
∥
∥
∥
≤ γ51

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
+

γ52
T n−2

‖w̄‖∞

≤ γ51
γ20

(1− γxh)hn
‖w̄‖∞ +

γ52
T n−2

‖w̄‖∞

≤
[ γ20γ51N

n

(1− γxT/N)
+ γ52T

2
] 1

T n
‖w̄‖∞.

It is easy to see that for small T there exists a constant γ53 such that

‖ξ[k + 1]‖ ≤
γ53
T n

‖w̄‖∞,

and so

‖ξ̄[k + 1]‖ ≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
‖ξ[k + 1]‖

≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
γ53

︸ ︷︷ ︸

=: γ54

1

T n
‖w̄‖∞.

Combining (5.63) and (5.66) we have

‖ξ̄[k + 1]‖ ≤ e−
λ

2
T‖ξ̄[k]‖+

[

γ50T
2 + γ54

] 1

T n
‖w̄‖∞, k ∈ Z

+.

Clearly, there exists a constant γ55 such that for small T the following holds:

‖ξ̄[k + 1]‖ ≤ e−
λ

2
T‖ξ̄[k]‖+

γ55
T n

‖w̄‖∞, k ∈ Z
+. (5.66)

We can use this result to derive an upper bound for ‖ξ̄[k]‖:

‖ξ̄[k]‖ ≤ e−
λ

2
kT‖ξ̄[0]‖+

(
1 + e−

λ

2
T + . . .+ e−

λ

2
(k−1)T

)γ55
T n

‖w̄‖∞, k ∈ Z
+,
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which can be simplified using the formula for the sum of the geometric progression:

‖ξ̄[k]‖ ≤ e−
λ

2
kT‖ξ̄[0]‖+

1− e−
λ

2
kT

1− e−
λ

2
T

γ55
T n

‖w̄‖∞

≤ e−
λ

2
kT‖ξ̄[0]‖+

γ55

1− e−
λ

2
T

1

T n
‖w̄‖∞, k ∈ Z

+.

It is easy to see that there exists c > 0 such that for small T we have: e−
λ

2
T ≤ 1 − cT .

Consequently,

‖ξ̄[k]‖ ≤ e−
λ

2
kT‖ξ̄[0]‖+

γ55
c

1

T n+1
‖w̄‖∞, k ∈ Z

+. (5.67)

We have, therefore, proven the following proposition:

Proposition 4. Given a system of the form (3.26)–(3.27) satisfying Assumptions 1 – 6
and a controller of the form (4.2)–(4.3) satisfying Assumption 7, there exists a constant γ56
and T

′

> 0 so that for all T ∈ (0, T
′

), x(0) ∈ R
n, z(0) ∈ R

m−n, α ∈ AC(A), w ∈ PC(R),
and d ∈ PC(R) we have

‖ξ̄[k]‖ ≤ e−
λ

2
kT‖ξ̄[0]‖+

γ56
T n+1

‖w̄‖∞, k ∈ Z
+.

5.4 Handling Parameter Jumps

In this section we will extend the result from Proposition 4 to show that the closed loop
system is stable even when there are jumps in the parameter. We begin by introducing
the following continuous time quantities:

z(t) := z[k] for t ∈ [kT, (k + 1)T ),

ξ(t) :=

[
x(t)
z(t)

]

.

Theorem 2. Given a system of the form (3.26)–(3.27) satisfying Assumptions 1 – 6 and
a controller of the form (4.2)–(4.3) satisfying Assumption 7, there exists constants γ74 and
γ75 and T

′

> 0 so that for all T ∈ (0, T
′

), x(0) ∈ R
n, z(0) ∈ R

m−n, α ∈ PS(A, T0),
w ∈ PC(R), and d ∈ PC(R) we have

‖ξ(t)‖ ≤ γ75e
−λ

4
t‖ξ(0)‖+

γ74
T n+1

‖w̄‖∞, t ∈ R
+.
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Proof. Let k, k ∈ N be such that in the interval t ∈ [kT, kT ] there are no discontinuities
in α(t). Then from Proposition 4 it follows immediately that

‖ξ̄[k]‖ ≤ e−
λ

2
(k−k)T‖ξ̄[k]‖+

γ56
T n+1

‖w̄‖∞, k ∈ {k, ..., k}. (5.68)

Since we now allow for an occasional parameter jump, we will need to introduce appropriate
notation. Recall that α ∈ PS(A, T0) implies that there is a lower bound T0 on the time
between parameter jumps. Throughout our analysis we have assumed that t0 = 0; hence,
we let {ti : i ∈ N} denote a sequence of times satisfying

• t1 ≥ 0, and t1 = 0 if α(t) is discontinuous at t = 0;

• ti+1 − ti ≥ T0, i ∈ N;

• α(t) is continuous on (ti, ti+1), i ∈ Z
+.

We let these times represent the instances where the discontinuity in α(t) occurs; notice
that the sequence is not unique in general. Now, for a given sampling period T , we would
like to identify the periods where α(t) loses continuity. To this end, we define k0(T ) := 0
and

ki(T ) :=

⌊
ti
T

⌋

, i ∈ N;

using these we have that all the discontinuities are contained in ∪∞
i=0[ki(T )T, (ki(T )+1)T ).

Consequently, α(t) is absolutely continuous on ∪∞
i=0[(ki(T )+ 1)T, ki+1(T )T ). Hence, using

(5.68), for small T we have

‖ξ̄[k]‖ ≤ e−
λ

2
(k−ki(T )−1)T‖ξ̄[ki(T ) + 1]‖+

γ56
T n+1

‖w̄‖∞,

k ∈ {ki(T ) + 1, ..., ki+1(T )}, i ∈ Z
+. (5.69)

So far we have proven nice properties for ξ̄[k] when there are no parameter jumps. We
would like to show that the size of ξ̄[k] increases by a bounded amount in the periods when
there is a jump. We begin by investigating the behaviour of x[k]: by integrating the state
equation we have

x((k + 1)T ) = x(kT ) +

∫ (k+1)T

kT

A(α(τ))x(τ)dτ +

∫ (k+1)T

kT

B(α(τ))u(τ)

=⇒ ‖x[k + 1]− x[k]‖ ≤

∫ (k+1)T

kT

‖A(α(τ))‖‖x(τ)‖dτ +

∫ (k+1)T

kT

‖B(α(τ))‖|u(τ)|dτ.
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It turns out that the bounds (5.48) and (5.49) hold even when there is a discontinuity in
α(t); plugging them into the above yields

‖x[k + 1]− x[k]‖ ≤ (caγ36 + cbγ33)T‖x[k]‖+ (caγ37 + cbγ34)T‖z[k]‖

+
caγ38T + cbγ35

T n−2
‖w̄‖∞.

Clearly there exist constants γ57, γ58 and γ59 such that for small T the following holds:

‖x[k + 1]− x[k]‖ ≤ γ57T‖x[k]‖+ γ58T‖z[k]‖+
γ59
T n−2

‖w̄‖∞. (5.70)

We derive a bound ‖z[k + 1]− z[k]‖ from equation (4.3) in a similar fashion:

‖z[k + 1]− z[k]‖ ≤ T‖F (α̂[k])‖z[k] + T‖G(α̂[k])‖‖x̂[k]‖

≤ Tcf‖z[k]‖+ Tcg

[

(1 + γx
T

N
)‖x[k]‖+

γ20N
n−1

T n−1
‖w̄‖∞

]

.

It is easy to see that there exist constants γ60, γ61 and γ62 so that for small T we have

‖z[k + 1]− z[k]‖ ≤ γ60T‖x[k]‖+ γ61T‖z[k]‖+
γ62
T n−2

‖w̄‖∞. (5.71)

Therefore, by combining the two inequalities we obtain a bound on ‖ξ[k+1]− ξ[k]‖ for all
k ∈ Z

+:

‖ξ[k + 1]− ξ[k]‖ =

∥
∥
∥
∥

[
x[k + 1]− x[k]
z[k + 1]− z[k]

]∥
∥
∥
∥

= ‖x[k + 1]− x[k]‖+ ‖z[k + 1]− z[k]‖

≤ (γ57 + γ60)T‖x[k]‖+ (γ58 + γ61)T‖z[k]‖+
γ59 + γ62
T n−2

‖w̄‖∞.

Obviously, there exist constants γ63 and γ64 so that for small T

‖ξ[k + 1]− ξ[k]‖ ≤ γ63T‖ξ[k]‖+
γ64
T n−2

‖w̄‖∞, k ∈ Z
+. (5.72)

We now convert the above equation to use the transformed state variable:

‖ξ̄[k + 1]− ξ̄[k]‖ ≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
‖ξ[k + 1]− ξ[k]‖

≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥

[

γ63T‖ξ[k]‖+
γ64
T n−2

‖w̄‖∞

]

≤

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥
γ63

︸ ︷︷ ︸

=: γ65

T‖ξ̄[k]‖+

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥
γ64

︸ ︷︷ ︸

=: γ66

1

T n−2
‖w̄‖∞, k ∈ Z

+,
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which yields the following result:

‖ξ̄[k + 1]‖ ≤ (1 + γ65T )‖ξ̄[k]‖+
γ66
T n−2

‖w̄‖∞, k ∈ Z
+. (5.73)

By combining (5.69) and (5.73) we have

‖ξ̄[k]‖ ≤ e−
λ

2
(k−ki(T )−1)T

[

(1 + γ65T )‖ξ̄[ki(T )]‖+
γ66
T n−2

‖w̄‖∞

]

+
γ56
T n+1

‖w̄‖∞

≤ (1 + γ65T )e
−λ

2
(k−ki(T )−1)T‖ξ̄[ki(T )]‖+

γ66T
3 + γ56

T n+1
‖w̄‖∞,

k ∈ {ki(T ), ..., ki+1(T )}, i ∈ Z
+.

Hence, there exists a constant γ67 ≥ γ56 such that for small T we have

‖ξ̄[k]‖ ≤ (1 + γ65T )e
−λ

2
(k−ki(T )−1)T‖ξ̄[ki(T )]‖+

γ67
T n+1

‖w̄‖∞,

k ∈ {ki(T ), ..., ki+1(T )}, i ∈ Z
+. (5.74)

Now we would like to show that ‖ξ̄[k]‖ decreases at k = ki(T ) for all i ∈ Z
+. To this

end, we define

k̄i(T ) :=

⌊

ti +
T0

2

T

⌋

(5.75)

and note that

lim sup
T→0

[(k̄i(T )− ki(T ))T ] =
T0

2
, i ∈ N. (5.76)

Claim 1. There exists a T̃ ∈ (0, T
′

) such that for all T ∈ (0, T̃ )

(1 + γ65T )e
−λ

2
(k−ki(T )−1)T ≤ e−

λ

3
(k−ki(T ))T , k ∈ {k̄i(T ), ..., ki+1(T )}, i ∈ N.

Proof. After re-arranging we have

(1 + γ65T )e
λ

2
T ≤ e−

λ

3
(k−ki(T ))T e

λ

2
(k−ki(T ))T

= e
λ

6
(k−ki(T ))T .

It is easy to see that

lim sup
T→0

[(1 + γ65T )e
λ

2
T ] = 1;

also, using (5.76) we have

lim sup
T→0

[e
λ

6
(k−ki(T ))T ] ≥ e

λ

6

T0
2 , k ∈ {k̄i(T ), ..., ki+1(T )}, i ∈ N

> 1.

Hence, the claim is true. �
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Using the result from Claim 1 in (5.74) yields

‖ξ̄[k]‖ ≤ e−
λ

3
(k−ki(T ))T‖ξ̄[ki(T )]‖+

γ67
T n+1

‖w̄‖∞, k ∈ {k̄i(T ), .... ki+1(T )}, i ∈ N.

from which it immediately follows that

‖ξ̄[ki+1(T )]‖ ≤ e−
λ

3
(ki+1(T )−ki(T ))T‖ξ̄[ki(T )]‖+

γ67
T n+1

‖w̄‖∞, i ∈ N. (5.77)

We now derive the bound for ‖ξ̄[ki(T )]‖ in terms of ‖ξ̄[0]‖ and ‖w̄‖∞. Recalling that
k0(T ) = 0 by definition and γ67 ≥ γ56 by design, we have from Proposition 4 that

‖ξ̄[k1(T )]‖ ≤ e−
λ

3
k1(T )T‖ξ̄[0]‖+

γ67
T n+1

‖w̄‖∞.

Also, from (5.77):

‖ξ̄[k2(T )]‖ ≤ e−
λ

3
(k2(T )−k1(T ))T‖ξ̄[k1(T )]‖+

γ67
T n+1

‖w̄‖∞

≤ e−
λ

3
(k2(T )−k1(T ))T

[

e−
λ

3
k1(T )T‖ξ̄[0]‖+

γ67
T n+1

‖w̄‖∞

]

+
γ67
T n+1

‖w̄‖∞

= e−
λ

3
k2(T )T‖ξ̄[0]‖+

[

1 + e−
λ

3
(k2(T )−k1(T ))T

] γ67
T n+1

‖w̄‖∞.

It is easy to see that (ki+1(T )− ki(T ))T > T0 − T for all i ∈ N. Hence,

‖ξ̄[k2(T )]‖ ≤ e−
λ

3
k2(T )T‖ξ̄[0]‖+

[

1 + e−
λ

3
(T0−T )

] γ67
T n+1

‖w̄‖∞.

Proceeding in this way we arrive at the sought after expression:

‖ξ̄[ki(T )]‖ ≤ e−
λ

3
ki(T )T‖ξ̄[0]‖+

[

1 + e−
λ

3
(T0−T ) + · · ·+ e−

λ

3
(i−1)(T0−T )

] γ67
T n+1

‖w̄‖∞

≤ e−
λ

3
ki(T )T‖ξ̄[0]‖+

1− e−
λ

3
i(T0−T )

1− e−
λ

3
(T0−T )

γ67
T n+1

‖w̄‖∞

≤ e−
λ

3
ki(T )T‖ξ̄[0]‖+

1

1− e−
λ

3
(T0−T )

γ67
T n+1

‖w̄‖∞, i ∈ Z
+.

It is easy to see that there exists a constant γ68 such that for small T we have

‖ξ̄[ki(T )]‖ ≤ e−
λ

3
ki(T )T‖ξ̄[0]‖+

γ68
T n+1

‖w̄‖∞, i ∈ Z
+. (5.78)

Substituting (5.78) into (5.74) we obtain for small T :

‖ξ̄[k]‖ ≤ (1 + γ65T )e
−λ

2
(k−ki(T )−1)T

[

e−
λ

3
ki(T )T‖ξ̄[0]‖+

γ68
T n+1

‖w̄‖∞

]

+
γ67
T n+1

‖w̄‖∞

≤ (1 + γ65T )e
λ

2
T e−

λ

2
kT e

λ

6
ki(T )T‖ξ̄[0]‖+

[

(1 + γ65T )e
λ

2
Tγ68 + γ67

] 1

T n+1
‖w̄‖∞,

k ∈ {ki(T ), ..., ki+1(T )}, i ∈ Z
+.
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Claim 2. For all T ∈ (0, T̃ ) it is true that

e−
λ

2
kT e

λ

6
ki(T )T ≤ e−

λ

4
kT , k ∈ {ki(T ), ..., ki+1(T )}, i ∈ Z

+.

Proof.

e−
λ

2
kT e

λ

6
ki(T )T ≤ e−

λ

4
kT

⇐⇒ e
λ

6
ki(T )T ≤ e

λ

4
kT

⇐⇒
λ

6
ki(T )T ≤

λ

4
kT

⇐⇒ 3k − 2ki(T ) ≥ 0,

which is true for all k ∈ {ki(T ), ..., ki+1(T )}, i ∈ Z
+. �

Hence, there exist constants γ69 and γ70 such that for small T we have

‖ξ̄[k]‖ ≤ γ69e
−λ

4
kT‖ξ̄[0]‖+

γ70
T n+1

‖w̄‖∞, k ∈ Z
+. (5.79)

We now return to the original domain: the bound on ‖ξ[k]‖ is derived as follows:

‖ξ[k]‖ ≤

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥
‖ξ̄[k]‖

≤

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥

[

γ69e
−λ

4
kT‖ξ̄[0]‖+

γ70
T n+1

‖w̄‖∞

]

≤

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥

∥
∥
∥
∥
∥

[
X
Z

]−1
∥
∥
∥
∥
∥

︸ ︷︷ ︸

γ16

γ69e
−λ

4
kT‖ξ[0]‖+

∥
∥
∥
∥

[
X
Z

]∥
∥
∥
∥
γ70

︸ ︷︷ ︸

=: γ71

1

T n+1
‖w̄‖∞, k ∈ Z

+. (5.80)

Therefore, at the sample points the response of the closed loop state to the initial condition
is bounded by a decaying exponential plus a gain times the size of the noise.

We will now investigate the behaviour of the closed loop system state in between the
sample points. To this end, using the bound (5.49) which holds even if α(t) is discontinuous,
we have for t ∈ [kT, (k + 1)T ):

∥
∥
∥
∥

[
x(t)
z(t)

]∥
∥
∥
∥
= ‖x(t)‖+ ‖z(t)‖

≤ γ36‖x[k]‖+ γ37T‖z[k]‖+
γ38
T n−2

‖w̄‖∞ + ‖z[k]‖, k ∈ Z
+.
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There exists a constant γ72 so that for small T we have

‖ξ(t)‖ ≤ γ72‖ξ[k]‖+
γ38
T n−2

‖w̄‖∞, t ∈ [kT, (k + 1)T ), k ∈ Z
+. (5.81)

By combining (5.80) and (5.81), for small T we obtain the following:

‖ξ(t)‖ ≤ γ72

[

γ16γ69e
−λ

4
kT‖ξ[0]‖+

γ71
T n+1

‖w̄‖∞

]

+
γ38
T n−2

‖w̄‖∞

≤ γ16γ69γ72e
−λ

4
kT‖ξ(0)‖+

[
γ71γ72 + γ38T

3
] 1

T n+1
‖w̄‖∞,

t ∈ [kT, (k + 1)T ), k ∈ Z
+.

It is easy to see that for small T there exists constants γ73 and γ74 such that

‖ξ(t)‖ ≤ γ73e
−λ

4
kT‖ξ(0)‖+

γ74
T n+1

‖w̄‖∞, t ∈ [kT, (k + 1)T ), k ∈ Z
+. (5.82)

Noting that e−
λ

4
kT ≤ e−

λ

4
(t−T ) for t ∈ [kT, (k + 1)T ), we can extend (5.82) to show that

‖ξ(t)‖ is bounded for all t ∈ R
+:

‖ξ(t)‖ ≤ γ73e
−λ

4
(t−T )‖ξ(0)‖+

γ74
T n+1

‖w̄‖∞

≤ γ73e
λ

4
T e−

λ

4
t‖ξ(0)‖+

γ74
T n+1

‖w̄‖∞

≤ γ73e
λ

4
T̃

︸ ︷︷ ︸

=: γ75

e−
λ

4
t‖ξ(0)‖+

γ74
T n+1

‖w̄‖∞, t ∈ R
+.

�

It follows that the closed loop system is stable.

5.5 Summary

In this chapter we have built on the results derived in the noise free case. Here we considered
the effect of noise and parameter discontinuities on the estimation process and the closed
loop stability. Firstly, we derived a bound on the state estimation error:

‖x̂[k]− x[k]‖ ≤ γx‖x[k]‖h+
γ20
hn−1

‖w̄‖∞.

Here we see that both the size of the state and the size of the noise have an effect on the
accuracy of the estimate. The effects are superpositioned due to the linearity of the plant
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and the estimator. We also see a clear trade-off where the fast sampling results in the
greater effect of the noise on the accuracy of the estimate. Furthermore, in the absence of
jumps, and when the combined plant-controller state is large enough, i.e.

∥
∥
∥
∥

[
x[k]
z[k]

]∥
∥
∥
∥
>

γ20
(1− γxh)hn

‖w̄‖∞,

we showed that the parameter estimation error is bounded by

|α̂[k]− α[k]| ≤ γ26h.

Having considered the behaviour of the closed loop system in the presence of persistent
parameter jumps and the noise, we proved that the closed loop system is 5stable:

‖ξ(t)‖ ≤ γ75e
−λ

4
t‖ξ(0)‖+

γ74
T n+1

‖w̄‖∞, t ∈ R
+.

In the above expression the response to the initial condition is bounded by a decaying
exponential plus a gain times the size of the noise. The gain in front of the noise is
potentially quite large, although it is uniformly bounded.
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Chapter 6

Examples and Simulations

6.1 Controller Construction Algorithm

In Section 3.2 it was noted that the design of our proposed controller is problematic for
any general system because it is hard to satisfy Assumption 6. However, we can show that
a solution can always be found for a certain class of second order time-varying systems.

Consider a second order time-varying system that satisfies Assumptions 1 through 5 as
stated in Section 3.3 and has the form

ẋ(t) = A(α(t))x(t) + B(α(t))u(t), x(0) = x0 ∈ R
2 (6.1)

y(t) = Cx(t). (6.2)

We assume the system has the following properties:

• Property 1: The state matrix A(α(t)) =

[
a11(α(t)) a12(α(t))
a21(α(t)) a22(α(t))

]

, α ∈ A.

• Property 2: The uncertainty in B(α(t)) enters only as a gain; without loss of
generality we may assume that

B(α(t)) =

[
α(t)
0

]

= α(t)

[
1
0

]

︸︷︷︸

=: B̄

.
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• Property 3: The matrix C is constant.

Some additional constraints on the systems of this particular class are imposed by
interpreting assumptions from Section 3.3.

• The controllability matrix is of the form α

[
1 a11(α)
0 a21(α)

]

. Hence, to preserve

controllability it must be that 0 /∈ A and a21(α) 6= 0 for all α ∈ A.

• Since n = 2, we have that n̄ = 0 by Assumption 4; this means that the parameter
will have to be estimated from CB(α) = αCB̄. Therefore, we require that
CB̄ 6= 0.

• To satisfy Assumption 6, we will require that a21(α) has the same sign for all
α ∈ A. The reason for this will become clear soon.

By introducing ū(t) = α(t)u(t), the system (6.1)–(6.2) takes the form

ẋ(t) = A(α(t))x(t) + B̄ū(t), x(0) = x0 (6.3)

y(t) = Cx(t). (6.4)

Note that if we can find matrices X, P (α) and Ū(α) satisfying A(α)X+ B̄Ū(α) = XP (α),
then by setting U(α) = Ū(α)/α, we have that A(α)X + B(α)U(α) = XP (α) is also
satisfied.

Theorem 3. For any system of form (6.3)–(6.4) it is possible to find a solution to

A(α)X + B̄Ū(α) = XP (α), (6.5)

where X is a 2 × 2 full-rank matrix and P (α) ∈ H1 is absolutely continuous and has a
bounded derivative on A.

Proof. The analysis that follows might be hard to understand without providing extensive
background on invariant set theory, which is outside the scope of this work. However,
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we will provide some intuition with respect to constructing matrices X, U(α) and P (α)
and prove that they indeed satisfy equation (6.5). We will use the geometric approach as
explained in [6]. The goal is to find a convex, balanced, and absorbing set S ⊂ R

2 so that
for every x0 ∈ S, the controller maintains x(t) ∈ S and x(t) → 0 as t → ∞. If we do an
Euler approximation of (6.3), we need, for every x ∈ S and α ∈ A and for some T > 0,
that there exist a control signal ū ∈ R satisfying

x+ T
[

A(α)x+ B̄ū
]

∈ S.

Let S be the polyhedral set whose vertices are defined by the columns of [X −X]. If
we let X = [x̄1 x̄2], then Ū(α) = [ū1(α) ū2(α)] is such that the vertices of S are mapped
to its interior, i.e. for some T > 0

x̄j + T
[

A(α)x̄j + B̄ūj(α)
]

∈ int{S} for j = 1, 2 and all α ∈ A. (6.6)

Of course, only one half of the vertices must be considered due to symmetry. Without loss
of generality we will consider matrix X where

x̄1 =

[
x̄
1

]

and x̄2 =

[
−x̄
0

]

for some x̄ ∈ R.

The polygonal set formed by the columns of [X −X] when x̄ < 0 is depicted in Figure 6.1.
Condition (6.6) is satisfied when the vectors A(α)x̄1 + B̄ū1(α) and A(α)x̄2 + B̄ū2(α) point
inside the polygon for all α ∈ A. Note that vector B̄ūj(α) is always directed strictly
horizontally. With that in mind, consider vertex x̄1, which is located in the upper half of
the plane: it is imperative that A(α)x̄1 has a downward vertical component, i.e

a21(α)x̄+ a22(α) < 0 for all α ∈ A. (6.7)

Since a21(α) has the same sign for all α ∈ A, we can always choose x̄ such that

a21(α)x̄ < 0 for all α ∈ A (6.8)

Also, because the set A is compact, there exist constants

a21 = min
α∈A

a21(α), a21 = max
α∈A

a21(α), and a22 = max
α∈A

a22(α).

Suppose a21(α) is always positive; then we choose x̄ to be negative and (6.7) will be satisfied
if the following is true:

a21x̄+ a22 < 0.
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x2

x1

x̄1

x̄2

-x̄1

-x̄2

S

Figure 6.1: Polygonal set.

The above yields the constraint

x̄ < −
a22
a21

,

from which we can choose a conservative value for x̄:

x̄ = −

∣
∣
∣
∣

a22
a21

∣
∣
∣
∣
− 1. (6.9)

Having ascertained that a solution can be found, we move on to calculate an appropriate
ū1(α). Let us first examine A(α)x̄1 + B̄ū1(α):

A(α)x̄1 + B̄u1(α) =

[
a11(α)x̄+ a12(α) + u1(α)

a21(α)x̄+ a22(α)

]

.

Referring to Figure 6.1, we would like the slope of A(α)x̄1 + B̄ū1(α) to be more negative
than the slope of the line connecting x̄1 and x̄2, which is equal to 1/(2x̄). Hence, we can
conservatively choose the slope to be 1/x̄, which yields the control signal

ū1(α) = −a11(α)x̄− a12(α) + x̄
[
a21(α)x̄+ a22(α)

]
. (6.10)
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Now consider A(α)x̄2 + B̄u2(α):

A(α)x̄2 + B̄u2(α) =

[
−a11(α)x̄+ u2(α)

−a21(α)x̄

]

,

where −a21(α)x̄ is always positive. We need to choose ū2(α) such that the slope of A(α)x̄2+
B̄ū2(α) is between 0 and 1/(2x̄). We pick 1/(4x̄) as a convenient choice and obtain

ū2(α) = a11(α)x̄− 4a21(α)x̄
2. (6.11)

Following in the same steps, it is easy to check that when a21(α) < 0, we choose x̄ to be
positive, specifically

x̄ =

∣
∣
∣
∣

a22
a21

∣
∣
∣
∣
+ 1. (6.12)

The resulting polygon is basically a mirror reflection of the one shown in Figure 6.1.
Intuitively, since the signs of x̄ and a21(α) have changed, the expressions for ū1(α) and
ū2(α) remain unchanged from (6.10) and (6.11) respectively. The matrix P (α) is easily
calculated because X is square and invertible by construction:

P (α) = X−1
[
A(α)X + B̄Ū(α)

]
. (6.13)

The only thing left to show is that P (α) belongs to H1. Substituting the expressions for
A(α), X, B̄, and Ū(α) into (6.13), and noting that the inverse of X is simply

X−1 =

[
0 1

− 1
x̄

1

]

,

we have

P (α) =

[
a21(α)x̄+ a22(α) −a21(α)x̄

0 3a21(α)x̄

]

. (6.14)

Consequently,

‖I + TP (α)‖ = max
{ ∣
∣1 + T

[
a21(α)x̄+ a22(α)

]∣
∣ , |1 + 3Ta21x̄|+ T |a21x̄|

}

.

Since both a21(α)x̄ + a22(α) and a21x̄ are always negative by construction, it is clear that
for small T we have ‖I + TP (α)‖ < 1 for all α ∈ A. �

As a consequence of Theorem 3 and Remark 2, the stabilizing control signal for (6.1)–
(6.2) can be calculated as follows:

us[k] = U(α̂[k])X−1x̂[k] =
1

α̂[k]
Ū(α̂[k])X−1x̂[k]. (6.15)
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6.2 Simulations

Example 1. Consider the following system:

ẋ(t) =

[
0 1
1 1 + 4α(t)

]

x(t) + α(t)

[
1
0

]

u(t), x(0) =

[
10
5

]

y(t) =
[
1 0

]
x(t).

The parameter takes values in the set A = [−2, −1]∪ [1, 2] with a bound on the derivative
|α̇(t)| ≤ 10 and the minimum time between jumps T0 = 0.5 seconds.

The transfer function of the plant is

α
s− 4α− 1

s2 − (4α + 1)s− 1
,

from which it is easy to see that the plant is unstable for all α ∈ A and has a zero in the
open right half plane when α ∈ [1, 2].

The plant clearly fits the paradigm of Section 6.1, and therefore, we can construct the
controller as per the suggested algorithm. The parameter can be easily estimated from
f(α) = αCB = α. The controller matrices are

X =

[
−10 10
1 0

]

and U(α̂[k]) =
1

α̂[k]

[
−1− 10(−9 + 4α̂[k]) −400

]
,

which yield the stabilizing control signal

us[k] = U(α̂[k])X−1x̂[k].

For simulations we chose h = 0.001 seconds, T1 = 2h, T2 = 2h, T3 = 6h (yielding
T = 0.01 s) and ρ = 1. The parameter was modeled as switching between two trajectories:

α(t) = 1 + cos2(10t) and α(t) = −1− cos2(10t)

with no more than two jumps per second. We modeled noise as a 60Hz sinusoidal waveform:

d(t) = 10−3 cos(120πt),

w(t) = 10−3 cos(120πt).

The simulation results are presented in Figures 6.2 and 6.3. We can see that the output
signal is bounded in response to the initial condition and the noise. The control signal
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Figure 6.2: Example 1: output and control signals.
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Figure 6.3: Example 1: trajectories of the states and the parameter.
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reaches large values in the beginning, but becomes moderate later. However, fast actuators
will be required if the controller is to be implemented on a physical system. Also, in
Figure 6.3 we observe that although the parameter estimates become poor when the state
decreases in size, the estimate is always in the correct interval.

Example 2. Now we consider a system which has a varying matrix B:

ẋ(t) =

[
−1 1

10− 20α 1− 8(α− 0.5)2

]

x(t) +

[
1− 2α

1− 4(α− 0.5)2

]

u(t), x(0) =

[
10
5

]

y(t) =
[
1 0

]
x(t),

where α(t) takes values in A = [0, 1], with the rate of change |α̇(t)| ≤ 4, and the minimum
time between jumps T0 = 0.25 seconds.

The transfer function of the plant is

(1− 2α)s− (16α3 − 20α2 + 6α)

s2 + (8α2 − 8α + 2)s+ (8α2 + 12α− 9)
.

It is not hard to verify that the system is unstable for all α ∈ [0, 0.549] and has a zero in
the open right half plane for α ∈ (0, 0.5) ∪ (0.5, 0.75).

This example is quite interesting because in contrast to Example 1, here B(α) changes
direction depending on the value of the parameter. In fact, it goes through a full 180◦

rotation as α varies from 0 to 1. This made satisfying Assumption 6 more challenging,
especially since the algorithm developed in Section 6.1 could not be applied here. We had
to resort to ad-hoc techniques and a solution was found with

X =

[
−0.9603 0.0358
0.2790 0.3783

]

and U(α) =
[
u1(α), u2(α)

]
,

where u1(α) and u2(α) respectively were:

u1(α) =







−26α + 13 α ∈ [0, 0.25)

−20(α− 0.2) + 5 α ∈ [0.25, 0.75)

−10− 340(α− 0.75) α ∈ [0.75, 1]

u2(α) =







−0.5− 1.5α α ∈ [0, 0.25)

−10 α ∈ [0.25, 0.75)

−20(0.9− α) α ∈ [0.75, 1] .

Note however, that u1(α) and u2(α) are discontinuous at α = 0.25 and α = 0.75 as can
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Figure 6.4: Example 2: discontinuous u1 and u2.
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Figure 6.5: Example 2: Piecewise continuous u1 and u2 after interpolation.
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be seen from Figure 6.4. This violates our assumption that U(α) is continuous. Hence, it
was required to transform u1(α) and u2(α) into piecewise continuous signals, which was
achieved by interpolating around the points of discontinuity as displayed in Figure 6.5.
This yielded a piecewise continuous U(α̂[k]) and, since X is square, the stabilizing control
law was calculated simply as

us[k] = U(α̂[k])X−1x̂[k].

Note that f(α) = CB(α) = 1−2α, which allowed for straightforward parameter estimation.

For simulations we once again chose h = 0.001 seconds, T1 = 2h, T2 = 2h, T3 = 6h and
ρ = 1. The parameter trajectory was chosen to be a sawtooth signal that varied from 0
to 1 with a period of 0.25 seconds. Sinusoidal noise was added at the input and output
interfaces:

d(t) = 10−3 cos(120πt),

w(t) = 10−3 cos(120πt).

The results of the simulation are shown in Figures 6.6 and 6.7. The plant is stabilized very
quickly, although the control signal is quite large in the beginning and switches rapidly.
As expected, the parameter estimate becomes poor when the plant states are close to zero,
although this has little effect on the response.
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Figure 6.6: Example 2: output and control signals.
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Figure 6.7: Example 2: trajectories of the states and the parameter.
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Chapter 7

Conclusions

In this thesis we considered a problem of adaptively stabilizing rapidly time-varying linear
systems. While there are solutions where the plant is assumed to have stable zero dynamics,
there are no general results for rapidly time-varying systems with unstable zero dynamics.
Here we have looked at a class of such systems and constructed a nonlinear adaptive
controller that provides stability.

This work was largely motivated by a result in the area of gain scheduling [5], where
it was shown that, assuming the parameter values are measurable, a stabilizing controller
can be designed to handle fast parameter variations. We have adopted the gain scheduling
approach to calculate the stabilizing control signal; however, we made the controller adap-
tive by adding a state estimator and an estimator of the free parameter. We have assumed
that the plant is parametrized by a scalar parameter that belongs to a compact set. Since
the controller we use is sampled-data, we impose a bound on the rate of change of the pa-
rameter; however, we do allow for occasional jumps. We have proved a superposition-like
bound on the effects of initial condition and the noise on the state: the response to the
initial condition is bounded by a decaying exponential plus a gain times the size of the
noise.

As it was pointed out in the beginning of this work, there are many assumptions that
the plant must satisfy for our procedure to be applied. Despite this, we have identified one
class of interesting examples for which the compensator design is relatively straightforward.
There may exist more classes of systems where our procedure is applicable; however, due
to the complexity of conditions in [5], they are hard to pinpoint. Therefore, it would
be beneficial if in future work some effort was dedicated to researching ways of solving
the aforementioned conditions or developing simpler procedures of checking them. In
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particular, it could be possible to replace Assumption 3 with a possibly less restrictive
assumption that the system satisfies the observability condition in [5]. In such hypothetical
scenario, the analysis of the closed loop stability does not follow in a straightforward manner
from the work presented herein; hence, it is difficult to comment on the restrictiveness of
the new assumption.
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Appendix A

Proofs

Proof of Proposition 1. Consider an m×m matrix H(α), which lies in H1:

H(α) =








h11(α) h12(α) . . . h1m(α)
h21(α) h22(α) . . . h2m(α)

...
...

. . .
...

hm1(α) hm2(α) . . . hmm(α)








Recall that by definition of H1, for T ∈ (0, τ̄) we have

‖I + TH(α)‖ < 1, α ∈ A. (A.1)

For simplicity suppose that for now α ∈ A is fixed. Let us examine I + TH(α):

I + TH(α) =








1 + Th11(α) Th12(α) . . . Th1m(α)
Th21(α) 1 + Th22(α) . . . Th2m(α)

...
...

. . .
...

Thm1(α) Thm2(α) . . . 1 + Thmm(α)







.

Note that (A.1) is equivalent to

max
j

(

|1 + Thjj(α)|+ T
m∑

i=1
i 6=j

|hij(α)|
)

< 1,
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which, in turn, translates to

|1 + Thjj(α)|+ T
m∑

i=1
i 6=j

|hij(α)| < 1 for all j = 1, 2, ..., m. (A.2)

The above means that, in particular, |1 + Thjj(α)| < 1 must hold for all j = 1, 2, ..., m.
This is true for T ∈ (0, τ̄) if and only if hjj(α) < 0 for all j = 1, 2, ..., m. We would like
to choose T ∗ ∈ (0, τ̄) such that 1 + Thjj(α) > 0 for all T ∈ (0, T ∗) and j = 1, 2, ..., m. If
we define

T ∗ := min

{
1

maxj |hjj(α)|
,
τ̄

2

}

,

then for all T ∈ (0, T ∗) we have that 1+Thjj(α) is positive and equation (A.2) transforms
to

hjj(α) +
m∑

i=1
i 6=j

|hij(α)| < 0 for all j = 1, 2, ..., m. (A.3)

We will now prove a result that is stronger than (A.1), i.e. there exists λ∗ > 0 such
that for all λ ∈ (0, λ∗) and T ∈ (0, T ∗) we have

‖I + TH(α)‖ < 1− λT, (A.4)

which is equivalent to

hjj(α) +
m∑

i=1
i 6=j

|hij(α)| < −λ for all j = 1, 2, ..., m. (A.5)

Having already established that the left hand side is negative, in order for (A.5) to hold
we need

λ <
∣
∣
∣hjj(α) +

m∑

i=1
i 6=j

|hij(α)|
∣
∣
∣ for all j = 1, 2, ..., m.

Defining λ∗ as

λ∗ := min
j

∣
∣
∣hjj(α) +

m∑

i=1
i 6=j

|hij(α)|
∣
∣
∣,

which is greater than zero because of (A.3), we see that (A.4) is clearly satisfied for all
λ ∈ (0, λ∗) and T ∈ (0, T ∗).
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Of course, the parameter α is not fixed, since it is free to vary among the compact set
A, and (3.8) must be satisfied for all α ∈ A. To this end, we define

T := min

{
1

maxα maxj |hjj(α)|
,
τ̄

2

}

= min

{
1

maxj maxα |hjj(α)|
,
τ̄

2

}

and

λ̄ := min
α

min
j

∣
∣
∣hjj(α) +

m∑

i=1
i 6=j

|hij(α)|
∣
∣
∣ = min

j
min
α

∣
∣
∣hjj(α) +

m∑

i=1
i 6=j

|hij(α)|
∣
∣
∣.

It is easy to see that (3.8) is satisfied for all T ∈ (0, T ) and λ ∈ (0, λ̄). �

Proof of Proposition 2. Consider an m×m matrix H(α), which lies in H∞:

H(α) =








h11(α) h12(α) . . . h1m(α)
h21(α) h22(α) . . . h2m(α)

...
...

. . .
...

hm1(α) hm2(α) . . . hmm(α)








Remember that by definition of H∞, for T ∈ (0, τ̄) we have

‖I + TH(α)‖∞ < 1, α ∈ A. (A.6)

For simplicity suppose that for now α ∈ A is fixed. Let us examine I + TH(α):

I + TH(α) =








1 + Th11(α) Th12(α) . . . Th1m(α)
Th21(α) 1 + Th22(α) . . . Th2m(α)

...
...

. . .
...

Thm1(α) Thm2(α) . . . 1 + Thmm(α)







.

Recalling that ‖ · ‖∞ on R
m×n is defined as a maximum row sum of the elements of the

matrix, (A.6) translates to

max
i

(

|1 + Thii(α)|+ T
m∑

j=1
j 6=i

|hij(α)|
)

< 1,

which in turn means that

|1 + Thii(α)|+ T
m∑

j=1
j 6=i

|hij(α)| < 1 for all i = 1, 2, ..., m. (A.7)
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The above means that, in particular, |1 + Thii(α)| < 1 must hold for all i = 1, 2, ..., m.
This is true for T ∈ (0, τ̄) if and only if hii(α) < 0 for all i = 1, 2, ..., m. We would like to
choose T ∗ ∈ (0, τ̄) such that 1 + Thii(α) > 0 for all T ∈ (0, T ∗) and i = 1, 2, ..., m. If we
define

T ∗ := min

{
1

maxi |hii(α)|
,
τ̄

2

}

,

then for every T ∈ (0, T ∗) we have that 1+Thii(α) is positive and equation (A.7) transforms
to

hii(α) +
m∑

j=1
j 6=i

|hij(α)| < 0 for all i = 1, 2, ..., m. (A.8)

We will now prove a result that is stronger than (A.6), i.e. there exists λ∗ > 0 such
that for all λ ∈ (0, λ∗) and T ∈ (0, T ∗) we have

‖I + TH(α)‖∞ < 1− λT, (A.9)

which is equivalent to

hii(α) +
m∑

j=1
j 6=i

|hij(α)| < −λ for all i = 1, 2, ..., m. (A.10)

Having already established that the left hand side is negative, in order for (A.10) to hold
we need

λ <
∣
∣
∣hii(α) +

m∑

j=1
j 6=i

|hij(α)|
∣
∣
∣ for all i = 1, 2, ..., m.

Defining λ∗ as

λ∗ := min
i

∣
∣
∣hii(α) +

m∑

j=1
j 6=i

|hij(α)|
∣
∣
∣,

which is positive because of (A.8), we see that (A.9) is clearly satisfied for all λ ∈ (0, λ∗)
and T ∈ (0, T ∗).

Of course, the parameter α is not fixed, since it is free to vary among the compact set
A, and (3.9) must be satisfied for all α ∈ A. To this end, we define

T := min

{
1

maxα maxi |hii(α)|
,
τ̄

2

}

= min

{
1

maxi maxα |hii(α)|
,
τ̄

2

}
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and

λ̄ := min
α

min
i

∣
∣
∣hii(α) +

m∑

j=1
j 6=i

|hij(α)|
∣
∣
∣ = min

i
min
α

∣
∣
∣hii(α) +

m∑

j=1
j 6=i

|hij(α)|
∣
∣
∣.

It is easy to see that (3.9) is satisfied for all T ∈ (0, T ) and λ ∈ (0, λ̄). �

Proof of Proposition 3.

Part 1 : we will first prove that if H(α) ∈ H1, then (3.10) is LPV exponentially stable. We
define a compact set

H := {H(α) : α ∈ A}

and let h̄ := maxH∈H ‖H‖. From Proposition 1, there exist λ > 0 and T > 0 such that for
all T ∈ (0, T ) we have

‖I + TH‖ < 1− λT, for all H ∈ H;

since H is compact, there exists a λ̄ > λ so that

‖I + TH‖ ≤ 1− λ̄T, for all H ∈ H.

With Hc being the closure of convex hull of H, it is easy to see that for all T ∈ (0, T ) we
have

‖I + TH‖ ≤ 1− λ̄T, for all H ∈ Hc.

Now consider the differential equation

ẋ(t) = H(α(t))x(t), x(t0) = x0, (A.11)

the solution to which is

x(t) = x(t0) +

∫ t

t0

H(α(τ))x(τ) dτ, t ≥ t0.

Taking the norms of both sides we have

‖x(t)‖ ≤ ‖x(t0)‖+

∫ t

t0

‖H(α(τ))‖‖x(τ)‖ dτ (A.12)

Applying Bellman-Gronwall inequality to (A.12) yields

‖x(t)‖ ≤ ‖x(t0)‖e
∫
t

t0
‖H(α(τ))‖ dτ

≤ ‖x(t0)‖e
h̄(t−t0), (A.13)
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which means that

‖x(t)− x(t0)‖ ≤ ‖x(t)‖ − ‖x(t0)‖

≤ (eh̄(t−t0) − 1)‖x(t0)‖, t ≥ t0. (A.14)

Now let T ∈ (0, T ) and define

Hk :=
1

T

∫ t0+(k+1)T

t0+kT

H(α(τ)) dτ ;

using a basic property of Riemann integration it is easy to see that Hk ∈ Hc. The solution
of (A.11) satisfies

x(t0 + (k + 1)T ) = x(t0 + kT ) +

∫ t0+(k+1)T

t0+kT

H(α(τ))x(τ) dτ

= x(t0 + kT ) +

∫ t0+(k+1)T

t0+kT

H(α(τ))x(t0 + kT ) dτ

+

∫ t0+(k+1)T

t0+kT

H(α(τ))
[
x(τ)− x(t0 + kT )

]
dτ

︸ ︷︷ ︸

=: ∆k

Using (A.14) we see that

‖∆k‖ ≤ h̄

∫ t0+(k+1)T

t0+kT

(eh̄(τ−t0−kT ) − 1)‖x(t0 + kT )‖ dτ

= h̄‖x(t0 + kT )‖
[1

h̄
(eh̄T − 1)− T

]

It is easy to see that there exists T ∗ ∈ (0, T ) such that eh̄T ≤ 1+h̄T+h̄2T 2 for T ∈ (0, T ∗).
Hence, for small T we have

‖∆k‖ ≤ h̄‖x(t0 + kT )‖
[1

h̄
(h̄T + h̄2T 2)− T

]

= ‖x(t0 + kT )‖h̄2T 2.

Now we can calculate a bound on ‖x(t0 + (k + 1)T )‖ for k ∈ Z
+:

‖x(t0 + (k + 1)T )‖ ≤ ‖1 + THk‖‖x(t0 + kT )‖ dτ + ‖∆k‖

≤ (1− λ̄T + h̄2T 2)‖x(t0 + kT )‖

≤
(

1−
λ+ λ̄

2
T
)

‖x(t0 + kT )‖ if T ≤
λ̄− λ

2h̄2
.
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Therefore, letting T
′

= min

{

T ∗,
λ̄− λ

2h̄2

}

, for T ∈ (0, T
′

) we have

‖x(t0 + kT )‖ ≤
(

1−
λ+ λ̄

2
T
)k

‖x(t0)‖, k ∈ Z
+. (A.15)

Furthermore, since λ̄ > λ, we have

1−
λ+ λ̄

2
T < 1− λT

< e−λT .

Hence, (A.15) can be written as

‖x(t0 + kT )‖ ≤ e−λkT‖x(t0)‖, k ∈ Z
+. (A.16)

Now we use (A.13) to bound ‖x(t)‖ when t ∈ [t0 + kT, t0 + (k + 1)T ]. For T ∈ (0, T
′

) we
have

‖x(t)‖ ≤ eh̄T‖x(t0 + kT )‖

≤ eh̄T e−λkT‖x(t0)‖ k ∈ Z
+.

But t− t0 ∈ [kT, (k + 1)T ], which means that e−λ(t−t0−T ) ∈ [e−λkT , e−λ(k−1)T ]. Therefore,

‖x(t)‖ ≤ eh̄T e−λ(t−t0−T )‖x(t0)‖

≤ eh̄T eλT e−λ(t−t0)‖x(t0)‖, t ≥ t0.

Since the above is true for all T ∈ (0, T
′

), it means that

‖x(t)‖ ≤ e−λ(t−t0)‖x(t0)‖, t ≥ t0.

This concludes the proof of Part 1.

Part 2 : we will now prove that if H(α) ∈ H∞, then (3.10) is LPV exponentially sta-
ble. The proof is identical to Part 1 with the only exception that ‖ · ‖∞ is used in place of
‖ · ‖. Hence, we have

‖x(t)‖∞ ≤ e−λ(t−t0)‖x(t0)‖∞, t ≥ t0.

By norm equivalence on R
n, there exists γ > 0 such that

‖x(t)‖ ≤ γe−λ(t−t0)‖x(t0)‖, t ≥ t0.

�
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Proof of Lemma 1. Integrating (3.26) we obtain

x(t) = x(t0) +

∫ t

t0

A(α(τ))x(τ) dτ +

∫ t

t0

B(α(τ))u(τ) dτ

Now we take a norm of both sides and apply the triangle inequality

‖x(t)‖ ≤ ‖x(t0)‖+ ‖

∫ t

t0

A(α(τ))x(τ) dτ‖+ ‖

∫ t

t0

B(α(τ))u(τ) dτ‖

≤ ‖x(t0)‖+

∫ t

t0

‖A(α(τ))x(τ)‖ dτ +

∫ t

t0

‖B(α(τ))u(τ)‖ dτ

≤ ‖x(t0)‖+

∫ t

t0

‖A(α(τ))‖‖x(τ)‖ dτ +

∫ t

t0

‖B(α(τ))‖‖u(τ)‖ dτ

Now we can apply bounds from (3.28) and (4.9)

‖x(t)‖ ≤ ‖x(t0)‖+ (t− t0)cbū+

∫ t

t0

ca‖x(τ)‖ dτ

Since ‖x(t0)‖+ (t− t0)cbū ≥ 0 we can apply the Bellman-Gronwall inequality to obtain

‖x(t)‖ ≤
[
‖x(t0)‖+ (t− t0)cbū

]
e
∫
t

t0
ca dτ

=
[
‖x(t0)‖+ (t− t0)cbū

]
eca(t−t0)

This expression is identical to (4.10). �
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