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Abstract

The k-core of a graph is its maximal subgraph with minimum degree at least k. The study of
k-cores in random graphs was initiated by Bollobás in 1984 in connection to k-connected subgraphs
of random graphs. Subsequently, k-cores and their properties have been extensively investigated
in random graphs and hypergraphs, with the determination of the threshold for the emergence of
a giant k-core, due to Pittel, Spencer and Wormald, as one of the most prominent results.

In this thesis, we obtain an asymptotic formula for the number of 2-connected graphs, as
well as 2-edge-connected graphs, with given number of vertices and edges in the sparse range
by exploiting properties of random 2-cores. Our results essentially cover the whole range for
which asymptotic formulae were not described before. This is joint work with G. Kemkes and
N. Wormald. By defining and analysing a core-type structure for uniform hypergraphs, we obtain
an asymptotic formula for the number of connected 3-uniform hypergraphs with given number of
vertices and edges in a sparse range. This is joint work with N. Wormald.

We also examine robustness aspects of k-cores of random graphs. More specifically, we
investigate the effect that the deletion of a random edge has in the k-core as follows: we delete a
random edge from the k-core, obtain the k-core of the resulting graph, and compare its order with
the original k-core. For this investigation we obtain results for the giant k-core for Erdős–Rényi
random graphs as well as for random graphs with minimum degree at least k and given number of
vertices and edges.
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Chapter 1

Introduction

Random graphs were first used by Erdős [22] in 1947 to obtain bounds for Ramsey numbers. Erdős
and Rényi then published a series of seminal papers on random graphs [23, 24, 25]. Subsequently,
random graphs have been widely applied in Combinatorics, Computer Science and other areas,
constituting a rich research area of their own. Most of the results for random graphs are asymptotic
in nature. That is, the results are actually for sequences of random graphs and we are interested in
the asymptotic behaviour of random variables. One of the reasons for seeking asymptotic results
is that often the graphs arise from a context where they are naturally large, for example, the
World Wide Web, Statistical Mechanics, Bioinformatics, etc. Another reason is that, by focusing
on the asymptotic behaviour, one can often perceive a big and elegant picture that would be lost
if trying to account for every single graph.

A sequence of events (En)n∈N defined in a sequence of probability spaces (Pn)n∈N is said to
happen asymptotically almost surely (a.a.s.) if the probability of En in Pn goes to 1 as n goes
to infinity. For more information on random graphs, we recommend the books by Bollobás [11],
by Janson,  Luczak and Ruciński [37] and by Alon and Spencer [2]. We say that a graph is an
(n,m)-graph if it has vertex set [n] = {1, . . . , n} and m edges. The two models of random graphs
that have been studied the most so far are: the binomial random graph G(n, p), which is the
random graph with vertex set [n] in which each possible edge is included independently with
probability p; and the Erdős-Rényi random graph G(n,m), which has uniform distribution on all
(n,m)-graphs. Asymptotic results from one model can be often translated to the other.

A very classical result in random graphs concerns the emergence of large components. The
random graph G(n,m) may be seen as a structure evolving with time. Starting from the graph
with vertex set [n] and no edges, add edges one by one until the graph is complete, according to the
following rule: at any time, the edge added should be chosen uniformly at random from the edges
not yet present. In this random process, G(n,m) corresponds to the graph at the time when m
edges have been added. Erdős and Rényi [24] showed that a remarkable phenomenon concerning
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the components of the graph happens in this process. When m = m(n) < cn/2, where c is a
constant smaller than 1, a.a.s., every component has O(log n) vertices. Roughly speaking, every
component is small. Then, a qualitative change happens. When m > cn/2, where c is a constant
greater than 1, the largest component is giant a.a.s., while the second-largest component still has
O(log n) vertices a.a.s. (Here we apply the term ‘giant’ to a subgraph of a graph with vertex set
[n] if it has at least εn vertices, for some positive constant ε.) This means that in a relatively
short period of time a significant reshaping has occurred in the random graph: before, the graph
was a collection of small components, and, after, a great number of these small components joined
forming a single giant component. This is one of the first statements of a threshold-type result in
random graphs and the pursuit for thresholds has been proved very attractive ever since. One
result by Friedgut [29] states that this threshold phenomenon happens for every monotone property
of graphs (see the paper by by Bollobás and Thomason [16] for an earlier result). We remark that
Erdős and Rényi’s result was later sharpened and many properties of the giant component have
been discovered (see [9, 44, 53, 56, 15, 21]).

Afterwards, Bollobás [10] started the investigation of the size of the largest k-connected
subgraph in G(n,m). Clearly, any giant k-connected subgraph has to be a subgraph of the giant
component and so the question is whether there is a large k-connected subgraph in the giant.
Bollobás [10] proved that this is indeed true for m > Cn for a large enough constant C (with no
attempt to optimise C made at that time). At this point, he initiated the study of k-cores in
random graphs. The k-core of a graph is its maximal subgraph with minimum degree at least k.
Bollobás’s proof consists of basically two steps: showing that the giant component contains a giant
k-core a.a.s. and then showing that such a k-core is k-connected a.a.s. This naturally raises the
following question: when does a giant k-core appear and is it k-connected? More specifically, it is
of importance whether it appears around the same time when the giant component is born or later.
The case of 2-connected graphs was settled before long. Pittel [52] proved that, for m > cn/2
where c is a constant greater than 1, the giant component contains a giant 2-connected subgraph.

In the ensuing years, results estimating the moment when the k-core is born were proved for
k ≥ 3 (see [19, 50]). A surprising result by  Luczak [46, 45] states the following: in the random
process for G(n,m), a.a.s., the first nonempty k-core that appears is k-connected and has at least
0.0002n vertices. In other words, the first nonempty k-core is born giant and k-connected a.a.s.
Consequently, by finding a threshold for the appearance of a nonempty k-core, one immediately
obtains a threshold for the appearance of a giant k-connected subgraph. We remark that the first
nonempty 2-core is quite small: the first nonempty 2-core is simply the first cycle and Janson [34]
showed that its length is bounded in probability. Pittel, Spencer and Wormald [54] proved a result
estimating the time of emergence of the k-core quite precisely. Roughly speaking, they defined a
constant ck and show that, if the average degree c = 2m/n is below ck, then the k-core of G(n,m)
is empty a.a.s., and if c is above ck, then the k-core is giant. Even more than that, they estimate
quite precisely the number of vertices in the k-core at the moment it emerges. The strategy used
by Pittel, Spencer and Wormald was to analyse the behaviour of a deletion procedure applied
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to G(n,m). This deletion procedure receives a graph and finds its k-core by iteratively deleting
vertices of degree less than k until the graph remaining has minimum degree at least k. After the
result in [54], the emergence of k-cores has been studied in a number of scenarios and proofs using
a variety of techniques were discovered (see [20, 28, 51, 17, 40, 35, 36, 59]).

Properties of k-cores of random graphs have been extensively studied. In some cases, the focus
is on the k-core close to the time of its emergence and, in others, the focus is on later stages.
Pittel, Spencer and Wormald [54] proved much more than a threshold for the emergence of the
k-core and its number of vertices when it emerges: from their results, a concentration result for
the number of vertices (and edges) in the k-core during the whole graph process is immediate.
From now on, we will also use the expression ‘k-cores’ to denote graphs with minimum degree
at least k, since such graphs are their own k-cores. We say that a graph that is an (n,m)-graph
and has minimum degree at least k is an (n,m, k)-core. From  Luczak’s result that we mentioned
before [46, 44], it can easily be deduced that a k-core sampled uniformly from all (n,m, k)-cores
is k-connected a.a.s. More recently, Achlioptas and Molloy [1] showed that, for m ∼ Cn/2 where
C 6= ck is a constant, the k-core of G(n,m) is found in O(log n) rounds a.a.s. by a deletion
procedure for finding the k-core of a graph. This deletion procedure is similar to the one used
by Pittel, Spencer and Wormald in [54] that we mentioned before. In this case, in each round,
the deletion procedure removes all vertices with current degree less than k from the graph. If,
after a round, the graph remaining is a k-core, the deletion procedure ends. (We remark that
their result is actually for hypergraphs.) Sometimes the k-core is studied in connection with some
other property of interest. For example, as we mentioned before, when k-cores were first studied
by Bollobás, he was interested in k-connected subgraphs in random graphs. Recently, Chan and
Molloy [18] proved that, for large k and c ∈ (ck+1, ck+1 + 2

√
k log k), a.a.s., the (k + 1)-core of

G(n, p) with p = c/n either contains a k-factor (that is, a spanning k-regular subgraph) or it is
k-factor-critical (that is, the subgraph obtained by removing any vertex from the k-core contains
a k-factor) depending on the parity of k times the number of vertices in the k-core. This provides
an upper bound for the time of the appearance of a k-regular subgraph, which is a topic that has
been receiving attention recently (see [13, 57, 30]).

In Chapter 5, we examine further questions concerning the giant k-core of G(n,m). More
precisely, we study robustness aspects of the k-core of G(n,m) for k ≥ 3 and 2m > ckn+ ω(n3/4).
We investigate the effect that the deletion of a random edge in the k-core of G(n,m) has on the
k-core as such. Consider the following process: after the deletion of a random edge in the k-core
of G(n,m), we obtain the k-core of the resulting graph and compare its number of vertices with
the original k-core. If the new k-core is much smaller than the original one, it could be said that
the original one was not robust as a k-core. We prove that the k-core of G(n,m) is quite robust
for 2m > ckn+ ω(n3/4). In fact, our results are applicable in a more general setting. We study
this process when the k-core is sampled uniformly at random from all (n,m, k)-cores. We define a
constant c′k and analyse the behaviour of the process for c = 2m/n above and below c′k. We show
that, for c < c′k − ε and any h(n)→∞, the new k-core is either empty or has at least n− h(n)
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vertices a.a.s. Moreover, if c→ k, we show that the new k-core is empty a.a.s. For c > c′k + ψ(n)
with ψ(n) = ω(n−1/4) and any h(n) = ω(ψ(n)−1), we prove that the new k-core has at least
n− h(n) vertices a.a.s.

As we will see in the next paragraphs, k-cores are also related to enumeration problems.
Enumerating graphs with some property of interest is a fundamental problem in graph theory.
There are many variants that can be considered. Both labelled and unlabelled graphs have been
studied, with more results being obtained for the labelled case. One can consider graphs with
given number of vertices, with given number of vertices and edges, with a given degree sequence,
etc. The results we mention here all concern the labelled case.

The enumeration of (n,m)-graphs with no isolated vertices, that is, 1-cores, was addressed by
Korshunov [42] and Bender, Canfield and McKay [6]. Wright [67, 68, 69, 70] published a series of
papers dating from 1977 to 1983 concerning the enumeration of connected (n,m)-graphs (and other
graph enumeration problems). He obtained an asymptotic formula for the number of connected
(n,m)-graphs when m− n = o(n1/3). Bender, Canfield and McKay [7] obtained an asymptotic
formula for the number of connected (n,m)-graphs when m− n→∞. Later, the formula in [7]
was rederived with some improvements in the error bounds by Pittel and Wormald [56]. Pittel
and Wormald followed a strategy that made use of random 2-cores. Any connected graph can be
decomposed into two parts: its 2-core and a rooted forest with the vertices of the 2-core as its
roots. A rooted forest with roots r1, . . . , rt, which are vertices in the forest, is a forest such that
each component contains exactly one root ri. Pittel and Wormald [56] obtained an asymptotic
formula for connected (n,m, 2)-cores and combined it with a formula for the number of rooted
forests, obtaining an asymptotic formula for the number of connected (n,m)-graphs. In order to
obtain a formula for the number of connected (n,m, 2)-cores in the sparse range m− n = o(n),
Pittel and Wormald [56] described a model of 2-cores with given degree sequence, called the kernel
configuration model. Given a degree sequence d such that each coordinate has value at least 2,
let d′ be the restriction of d to the coordinates of value at least 3. In the kernel configuration
model, the first step is to generate a random multigraph, which is called a kernel, with degree
sequence d′. Then a random 2-core (possibly with loops and multiple edges) without isolated
cycles is generated by replacing some edges by paths (that is, by ‘inserting’ vertices of degree 2
in the edges). Roughly speaking, they reduce the problem of enumerating connected 2-cores to
computing the probability that this random 2-core is connected and simple, and they prove that
this probability is asymptotic to 1. We remark that the 2-core is connected if and only if its kernel
is connected. The strategy in [56] uses the fact that m − n → ∞: if m − n was bounded, the
number of vertices in the kernel would also be bounded and, if following the strategy in [56], one
would have to determine the exact number of connected kernels with a fixed number of vertices
and edges.

The asymptotic enumeration of connected hypergraphs with given number of vertices and edges
is still an open problem for some ranges. We say that a hypergraph is an (n,m, k)-hypergraph if it
is a k-uniform hypergraph with vertex set [n] and m edges. Let the excess of the hypergraph be
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m− n/(k − 1). We use the expression ‘excess’ because any connected (n,m, k)-hypergraph must
have at least (n− 1)/(k − 1) edges. Karonski and  Luczak [38] obtained an asymptotic formula
for the number of connected (n,m, k)-hypergraphs for m = n/(k − 1) + o(lnn/ ln lnn), which is a
range with very small excess. Later Andriamampianina and Ravelomanana [3] extended this result
to m = n/(k− 1) + o(n1/3), which still has very small excess. Behrisch, Coja-Oghlan and Kang [4]
provided an asymptotic formula for the case with linear excess m = n/(k− 1) + Θ(n). This means
that there is a gap in the ranges for which asymptotic formulae were found: between the case
where the excess is o(n1/3) and the case with linear excess Θ(n). The range with superlinear excess
ω(n) is also unsolved. In this thesis, we study 3-uniform hypergraphs: we obtain an asymptotic
formula for the number of connected (n,m, 3)-hypergraphs for m = n/2 +R as long as R satisfies
R = o(n) and R = ω(n1/3 ln2 n), which almost fills the gap between the range with very small
excess o(n1/3) and the range with linear excess. Our technique is based on the approach that
Pittel and Wormald [56] used to the enumerate connected sparse 2-cores as we described above.
We define the core of a hypergraph as its maximal subhypergraph such that each hyperedge has at
least 2 vertices of degree 2 and we show that any connected hypergraph can be decomposed into
two parts: a connected core and a rooted forest. We then define a model that generates random
2-cores similarly to the kernel configuration model and analyse the probability that such a 2-core
is connected and simple. We expect to extend our results so that we can completely close the gap
between the case with very small excess and the linear case for 3-uniform hypergraphs.

The problem of enumerating 2-connected (n,m)-graphs was studied by a number of authors.
Efficient methods to compute the exact number of 2-connected (n,m)-graphs were obtained (see
Harary and Palmer [32], Temperley [61], and Wormald and Wright [63]), but these methods do not
provide a closed formula. In 1978, Wright [68] described an exact formula in the case m = n+ k
for fixed k. Later Wright [70, 62] found an asymptotic formula for the sparse range m−n = o(

√
n)

with m− n→∞. An asymptotic formula for the dense case can be easily derived from classical
results in random graphs. For m ≥ (1/2 + ε)n log n where ε is a positive constant and any fixed k,
the random graph G(n,m) is k-connected a.a.s. (see Erdős and Rényi [25]). Hence, the number
of 2-connected (n,m)-graphs is asymptotic to the number of (n,m)-graphs. In Chapter 3, we
obtain an asymptotic formula for the number of 2-connected (n,m)-graphs for m− n→∞ and
m = O(n log n). Thus, we completely close the gap between m− n = o(

√
n) and m = Ω(n log n)

for which no asymptotic formula was previously known. Our strategy has random 2-cores at
centre stage. As we mentioned before, for m− n = o(n), Pittel and Wormald [56] reduced the
problem of enumerating connected 2-cores to computing the probability that a random 2-core is
connected and simple. Our strategy for the case m = O(n) is similar but we have to compute the
probability that such a random 2-core is 2-connected and simple. When m = Ω(n), we show that
the number of 2-connected (n,m)-graphs is asymptotic to the number of (n,m)-graphs that are
2-cores, for which an asymptotic formula is already known [55]. The reason for the condition that
m− n→∞ is the same as the reason for the condition that m− n→∞ in the approach in [56]
for connected (n,m, 2)-cores with m−n = o(n): if the m−n was bounded, the number of vertices
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in the kernel would be bounded. We use the same techniques to obtain an asymptotic formula for
the number of 2-edge-connected (n,m)-graphs in the range m− n→∞ and m = O(n log n). We
are not aware of any previous results on the asymptotic enumeration of 2-edge-connected graphs
with given number of vertices and edges.

This thesis is organized as follows. Chapter 2 contains some basic definitions and known results
in probability and random graphs that will be used throughout the thesis. In Chapter 3, we prove
an asymptotic formula for the number of 2-connected (and 2-edge-connected) (n,m)-graphs. In
Chapter 4, we present an asymptotic formula for the number of connected (n,m, 3)-hypergraphs
in a sparse range. In Chapter 5, we study the topic of robustness of k-cores after the deletion of a
random edge. In Chapter 6, we discuss some future research directions. Appendix A contains
some Maple spreadsheets. The results in Chapter 3 are joint work with Graeme Kemkes and
Nicholas Wormald and the results in Chapter 4 are joint work with Nicholas Wormald. We remark
that, at the end of Chapters 3 to 5, we include a glossary of symbols frequently used in each
chapter.

We remark the results in Chapter 3 have already been published in the following journal
article:

Kemkes, Graeme and Sato, Cristiane M. and Wormald, Nicholas,
Asymptotic enumeration of sparse 2-connected graphs,
Random Structures & Algorithms, Volume 43 (3), pp. 354–376, 2013
Wiley Subscription Services, Inc., A Wiley Company
ISSN 1098-2418, DOI 10.1002/rsa.20415

Chapter 3 is an extended version of this article, including more proofs and details.
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Chapter 2

Preliminaries

In this chapter, we describe some known results and methods that will be applied throughout the
thesis. We also define asymptotic notations and describe some of the models of random graphs
that we will use.

2.1 Asymptotic notation

Let (an)n∈N, (bn)n∈N be sequences of reals such that bn ≥ 0 for all n. We use the following notation:

• an = O(bn), if there exist a positive constant C ∈ R and N ∈ N such that |an| ≤ Cbn for all
n ≥ N ;

• an = o(bn), if for every ε > 0 there exists Nε ∈ N such that |an| ≤ εbn for all n ≥ Nε.

• an = Ω(bn), if there exist a positive constant C ∈ R and N ∈ N such that an ≥ Cbn for all
n ≥ N ;

• an = ω(bn), if for every ε > 0 there exists Nε ∈ N such that an ≥ (1/ε)bn for all n ≥ Nε;

• an = Θ(bn), if there exist positive constants C1, C2 ∈ R and N ∈ N such that C1bn ≤ an ≤
C2bn for all n ≥ N ;

• an ∼ bn, if an − bn = o(bn).

We also use O(bn) to denote a function an without specifying it, and we use the same for
o(·),Ω(·),Θ(·). For example, if we say that an +O(bn) = c+ o(dn), this means that there exists a
function fn = O(bn) and a function gn = o(dn) such that an + fn = cn + gn.

Given a sequence of probability spaces (Pn)n∈N we say that an event En holds asymptotically
almost surely (a.a.s.) if the probability of En in Pn goes to 1 as n→∞.
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2.2 Models of random graphs

The two most classical models for random graphs are: the binomial random graph G(n, p) and the
Erdős-Rényi random graph G(n,m). For any finite set S, let KS denote the complete graph with
vertex set S. We say that a graph is a (n,m)-graph if it has vertex set [n] and m edges. G(n, p) is
the random graph with vertex set [n] such that each edge uv ∈ K[n] is included independently
with probability p. G(n,m) is the random graph with uniform distribution over all (n,m)-graphs.

The allocation model is a model of random multigraphs with vertex set [n] and m edges:
let a : [2m] → [n] be a function/allocation chosen uniformly at random among all functions
mapping [2m] to [n]; build a multigraph with vertex set [n] by adding an edge joining a(i) and
a(m + i) for every i ∈ [m]. It is easy to check that every simple (n,m)-graph is generated by
m!2m allocations. This implies that this random multigraph conditioned upon simple graphs has
the same distribution as G(n,m). The allocation model was used by Bollobás and Frieze [12], and
Chvatál [19].

The k-core of a graph is its maximal subgraph that has minimum degree at least k. The k-core
of a graph is unique, since the union of two subgraphs with minimum degree at least k also is a
subgraph with minimum degree at least k. Graphs with minimum degree at least k are also called
k-cores, since they are their own k-cores. A graph is a (n,m, k)-core if it is a k-core with vertex
set [n] and m edges. We work with random k-cores: let Gk(n,m) be the random k-core with
uniform distribution on all (n,m, k)-cores. We will use the allocation model restricted to k-cores:
let a : [2m]→ [n] be a function/allocation chosen uniformly at random among the functions such
that |a−1(v)| ≥ k for any v ∈ [n]; let Gmulti = Gmulti

k (n,m) be the multigraph on [n] obtained by
adding an edge joining a(i) and a(m+ i) for every i ∈ [m]. Exactly as in the unrestricted model,
every (n,m, k)-core is generated by m!2m allocations. This implies that Gmulti

k (n,m) conditioned
upon simple graphs has the same distribution as Gk(n,m).

For any graph H, let d(H) ∈ NV (H) denote the degree sequence of H, that is, d(H)v is the
degree of v in H. Given any d ∈ Nn such that

∑n
i=1 di = 2m and di ≥ k for every i, there are

(2m)!∏n
i=1 di!

allocations a : [2m]→ [n] such that |a−1(i)| = dv for every i ∈ [n]. Thus, d(Gmulti
k (n,m))

has multinomial distribution conditioned upon each coordinate being at least k and

P
(
d(Gmulti

k (n,m)) = d
)

=
(2m)!∏n
i=1 di!

(
1

n

)2m 1

A
,

where A is the ratio between the number of functions a : [2m]→ [n] such that |a−1(v)| ≥ k for
every v ∈ [n] and the number of functions from [2m]→ [n] without restrictions. We denote the
multinomial distribution with n coordinates summing to 2m conditioned upon each coordinate
being at least k by Multi≥k(n, 2m).

Next we present some models of random graphs with given degree sequence. The pairing
model or configuration model is a standard model of random (multi)graphs with given degree
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sequence that was first introduced by Bollobás [8]. For d ∈ Nn with
∑n

i=1 di = 2m, create n
sets/bins with d1, . . . , dn points inside them; choose a perfect matching on these points uniformly
at random among all perfect matchings. This corresponds to a multigraph (possibly containing
loops or parallel edges) with degree sequence d by contracting each bin into a single vertex. We
denote the random graph obtained by Gmulti(d). We remark that the random graph Gmulti

k (n,m)
conditioned upon having degree sequence d has the same distribution as Gmulti(d). Given any
pairing corresponding to a simple graph, any permutation of the points inside the bins gives
another pairing corresponding to the same graph. The following lemma is then straightforward.

Lemma 2.2.1. Let d ∈ Nn be such that
∑n

i=1 di = 2m. Every (n,m)-graph with degree sequence
d is generated by exactly

∏n
j=1 dj ! pairings.

This lemma implies that Gmulti(d) conditioned upon simple graphs has uniform distribution on
the set of all (n,m)-graphs with degree sequence d. Computing the probability that Gmulti(d) is
simple has been addressed by a number of authors (see [48, 49]). In this thesis, McKay’s result [48]
will be strong enough for our purposes. Let η(d) =

∑n
i=1 di(di − 1)/

∑n
i=1 di.

Theorem 2.2.2 ([48, Theorem 4.6]). Let d ∈ Nn be such that
∑n

i=1 di = 2m. The probability
that Gmulti(d) is simple is

exp

(
−η(d)/2− η(d)2/4 +O

(
maxi d

4
i

m

))
. (2.1)

We remark that [48, Theorem 4.6] is more general than the version stated above as it allows to
forbid a set of edges of appearing.

The model we describe next was introduced by Pittel and Wormald [56]. A pre-kernel is
a graph with minimum degree at least 2 with no components that are cycles. The kernel of
a pre-kernel is obtained by iteratively deleting a vertex of degree 2 and joining its neighbours
by an edge until there are no vertices of degree 2. Note that the kernel can have loops and
multiple edges even when the pre-kernel is simple. The kernel configuration model is a model of
random (multi)graphs with given degree sequence with minimum degree at least 2. This model
was introduced by Pittel and Wormald [56] and it has this name because the kernel is generated
with the pairing model and then the vertices of degree 2 are added by splitting edges. For each i
with di ≥ 3 create a set/bin with di points. Choose, uniformly at random, a perfect matching on
the union of these sets of points. Assign the remaining numbers {i : di = 2} to the edges of the
perfect matching and, for each edge, choose a linear order for these numbers. The assignment and
the linear ordering are chosen uniformly at random. The pairing and assignment (with the linear
orderings) are called the configuration. A multigraph is then constructed by contracting each bin
into a vertex, which produces the kernel, and then placing the vertices of degree 2 on the edges of
the kernel according to the assignment and linear orderings (which produces the pre-kernel).
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Given a configuration corresponding to a simple graph, by permuting the points in the bins
of the kernel, we obtain another configuration corresponding to the same graph. From this, the
following lemma is straightforward.

Lemma 2.2.3 ([56, Corollary 2]). Let d ∈ Nn be such that
∑n

i=1 di = 2m and di ≥ 2 for all i.
Each simple pre-kernel with vertex set [n] and degree sequence d is produced by

∏
i∈R(d) di!

configurations, where R = R(d) := {i ∈ [n] : di ≥ 3}.

2.3 Hoeffding’s inequality

In this section we state Hoeffding’s inequality, which is a classical concentration result for a
random variable that is the sum of independent random variables.

Theorem 2.3.1 ([33]). Let X1, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi
for 1 ≤ i ≤ n and let X =

∑n
i=1Xi. Then, for t > 0,

P
(
|X − E (X)| ≥ tn

)
≤ 2 exp

(
− 2t2n2∑n

i=1 |bi − ai|

)
.

2.4 Taylor’s approximation

Taylor’s approximation is a well-known result that is used to approximate the value of a function
in a neighbourhood of a point x by using its power series expansion at x.

For every n, k ∈ N, let A(n, k) := {(a1, . . . , an) ∈ Nn :
∑n

i=1 ai = k, ai ≥ 0}, that is, A(n, k)
is the set of vectors with n coordinates where each coordinate is a nonnegative integer and the
sum of the coordinates is k. For a function f : Rn → R and a ∈ Ak, let

Daf(x) =
∂kf

∂a1x1 . . . ∂anxn
.

Theorem 2.4.1 ([31, Theorem 1.23]). Let U ⊆ Rn be an open set and let f : U → R be a
function with continuous k-th partial derivatives on U . Let x, y ∈ U be distinct points such that
the line segment joining x and y is contained in U . Then there exists a point z in the open line
segment joining x and y such that

f(y) =

k∑
k′=0

∑
a∈A(n,k′)

Daf(x)∏n
i=1 ai!

n∏
i=1

(yi − xi)ai +
∑

a∈A(n,k)

Daf(z)∏n
i=1 ai!

n∏
i=1

(yi − xi)ai .
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2.5 Stirling’s approximation

Stirling’s approximation is a classical result concerning the asymptotic behaviour of the factorial
function (for more information, see [26, Section 2.9]):

Lemma 2.5.1. We have that

n! =
√

2πn
(n
e

)n(
1 +O

( 1

n

))
.

2.6 The subsubsequence principle

The subsubsequence principle is a well known and elementary result about sequence convergence.
For more information, see the book [37].

Theorem 2.6.1 (Subsubsequence principle). Let (xn)n∈N be a sequence of real numbers and let
x ∈ R be a fixed point. If, for every subsequence of (xn)n∈N, there exists a subsubsequence that
converges to x, then the sequence (xn)n∈N converges to x.

Proof. Let a = lim supxi. Then there exists a subsequence (yi)i∈N of (xi)i∈N such that limi→∞ yi =
a. By hypothesis, there exists a subsequence (zi)i∈N of (yi)i∈N such that limi→∞ zi = x. Since
limi→∞ yi = a, this implies that x = a. The same argument for lim inf xi, shows that lim inf xi =
x = lim supxi and so limi→∞ xi = x.

We will use this principle a number of times in this thesis. Here is an example of how
it can be applied. Suppose we are working with the random graph G(n,m) where m is a
function of n, and we prove that some property A = An holds a.a.s. for m = O(n log n) and
a.a.s. for m = ω(n log n). Then, is it true that the property holds a.a.s. without restrictions
on m? The answer is yes and we explain how to use the subsubsequence principle to deduce
it. Consider the sequence (xn)n∈N such that xn = P(An) and let (xnk)nk∈N be a subsequence of
(xn)n∈N. Then either lim supk→∞m(nk)/(nk log nk) = ∞ or lim supk→∞m(nk)/(nk log nk) = α,
where α is some constant. In the first case, there exists a subsequence of (xnk)nk∈N such that
m(nk)/(nk log nk)→∞ as k →∞ and P(A)→ 1 in this subsequence since m(nk) = ω(nk log nk).
In the second case, for n large enough m(nk)/(nk log nk) ≤ α and P(A) → 1 as k → ∞ since
m(nk) = O(nk log nk). Thus, by the subsubsequence principle, (xn)n∈N also converges to 1, that
is, An holds a.a.s.
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2.7 Uniformity

In this section, we present two simple but very useful lemmas. They are used to deduce uniform
error bounds. Many times during this thesis, we follow an approach similar to the one in Pittel
and Wormald [56] for sparse graphs: they proved results for random graphs with given degree
sequence and then combined these results into a result for a random graph with given number of
edges. In order to do that, it was necessary to obtain uniform error bounds in the estimates of
the probabilities of certain events for the random graphs with given degree sequence.

Lemma 2.7.1. For every n ∈ N, let Dn be a finite set and let wn be a function mapping Dn
to R. Suppose that there is a function fn : Dn → R for each n ∈ N such that, for every (dn)n∈N
with dn ∈ Dn for all n ∈ N, we have that |wn(dn)/fn(dn)− 1| → 0. Then there exists a function
φ(n) = o(1) such that |wn(dn)/fn(dn)− 1| ≤ φ(n) for every (dn)n∈N with dn ∈ Dn for all n ∈ N.

Proof. For each n ∈ N, since the set Dn is finite, there is d∗n such that |w(d∗n)/fn(dn) − 1| =
max{|w(dn)/fn(dn)− 1| : dn ∈ Dn}. We may let φ(n) = |w(d∗n)/fn(d∗n) − 1|. Then φ(n) = o(1)
because d∗n ∈ Dn for every n ∈ N. So, for every (dn)n∈N such that dn ∈ Dn for all n ∈ N, we have
that |w(dn)/fn(dn)− 1| ≤ φ(n) = o(1).

Here is an example of how this lemma will be applied. Suppose that we define a set Dn ⊆ Nn
for each n and that we prove that, for any function d(n) such that d(n) ∈ Dn for each n, the
random graph G(d(n)) (that has uniform distribution on all graphs with vertex set [n] and degree
sequence d(n)) has a property A = An a.a.s. Is it true that, upon conditioning the degree sequence
of G(n,m) to be in Dn, we have that G(n,m) has property A a.a.s.? The answer is yes and
we explain why. For each n the set Dn is finite and so by Lemma 2.7.1 there exists a function
φ(n) = o(1) such that the probability that An holds is at least 1 − φ(n) for all d(n) such that
d(n) ∈ Dn for each n. Let d(G(n,m)) denote the degree sequence of G(n,m). Then, we can
conclude that

P
(
An

∣∣∣d(G(n,m)) ∈ Dn
)

=
∑
d∈Dn

P
(
An

∣∣∣d(G(n,m)) = d
)
P
(
d(G(n,m)) = d

∣∣∣d(G(n,m)) ∈ Dn
)

≥
∑
d∈Dn

(1− φ(n))P
(
d(G(n,m)) = d

∣∣∣d(G(n,m)) ∈ Dn
)

= 1− φ(n).

In summary, Lemma 2.7.1 allows us to deduce results for G(n,m) (and other random graphs)
from results about the random graph with given degree sequence.

In the next lemma, we show how to handle the case where we obtain only bounds for a function
rather than its asymptotic value.
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Lemma 2.7.2. For every n ∈ N, let Dn be a finite set and let wn be a function from Dn to R.
Suppose that there is function f : N→ R such that, for every (dn)n∈N with dn ∈ Dn for all n ∈ N,
we have wn(dn) ≥ c(dn)f(n), where c(dn) = Ω(1). Then there exists a function φ(n) = Ω(f(n))
such that wn(dn) ≥ φ(n) for every (dn)n∈N with dn ∈ Dn for all n ∈ N.

Proof. For each n ∈ N, since the set Dn is finite, there is d∗n that minimises c(dn). We may let
φ(n) = c(d∗n)f(n) = Ω(f(n)) since c(d∗n) = Ω(1).

Here is an example of how this lemma will be applied. Suppose that we define a set Mn

integers in [
(
n
2

)
] for each n. Suppose that we prove that the random graph G(n,m) has a property

A = An with probability Ω(1), where m is a function of n such that m(n) ∈ Mn for all n. Is
is true that

∑
m∈Mn

P(G(n,m) has A) = Ω(|Mn|)? The answer is yes and we explain why. For
each n the set Mn is finite and so by Lemma 2.7.2 there exists a function φ(n) = Ω(1) such
that A holds with probability at least φ(n) for all m such that m(n) ∈ Mn for all n. Thus,∑

m∈Mn
P(G(m,n) has A) ≥ φ(n)|Mn| = Ω(|Mn|).

2.8 Method of moments

The method of moments is a classical method for proving asymptotic convergence of distributions.
Basically, it states that if the moments of a variable Xn converge to the moments of a random
variable Z, then Xn converges in distribution to Z as long as Z is determined by its moments (not
all random variables are determined by their moments). For more information, we recommend
the book by Janson,  Luczak and Ruciński [37, Chapter 6]. Here we will only state a special case
for Poisson random variables. It is actually a method of factorial moments.

Theorem 2.8.1 ([11, Theorem 1.22]). Let (λn)n∈N be a bounded sequence of nonnegative reals.
Let (Xn)n∈N be nonnegative integer-valued random variables. Suppose that, for any fixed integer
k ≥ 1,

E ([Xn]k) = λkn + o(1),

where [Xn]k := (Xn)(Xn − 1) . . . (Xn − k + 1). Then, for all fixed integers j ≥ 0,

P(Xn = j) = e−λn
λjn
j!

+ o(1).

One example of how this method can be used is to show that the distribution of the number
of cycles of length k (for fixed k ≥ 3) for random d-regular graphs is asymptotically Poisson with
mean (d− 1)k/(2k) (see [8, 64]).

As one would expect, the hard part of applying Theorem 2.8.1 is estimating the factorial
moments. For the summation of indicator random variables the factorial moment can be written
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in a more friendly way. For X = Xn =
∑t

i=1Xn(i), where each Xn(i) is an indicator random
variable, one can write the factorial moment E ([X]k) as follows:

E ([X]k) =
∑

(i1,...,ik)∈Ik

E
( k∏
j=1

X(ij)

)
, (2.2)

where Ik = {(i1, . . . , ik) ∈ [r]k : ij 6= ij′ for all j 6= j′}. The proof is a very simple induction on k.

2.9 Differential equation method for random graph processes

The basic idea behind differential equation methods is quite intuitive. Suppose we want to analyse
the behaviour of some random variables in a random discrete process. One obtains a system of
differential equations by writing the expected change in the random variables per unit of time and
setting the derivatives to be as suggested by the expected change. The aim is to show that the
solution to the system closely approximates the random variables a.a.s. This general approach
has been applied in a number of results (see [65]), one of the most successful being the emergence
of a giant k-core (see [54, 17]). Wormald [65] described a general-purpose theorem that we will
use in this thesis. In preparation for the statement of this result we need a few definitions.

We say that a function f : Rj → R satisfies a Lipschitz condition on a set D ⊆ Rj if there
exists a constant L such that

|f(u1, . . . , uj)− f(v1, . . . , vj)| ≤ L max
1≤i≤j

|ui − vi|,

for every (u1, . . . , uj), (v1, . . . , vj) ∈ D. Such constant L is called a Lipschitz constant for f in D.

For any set D ⊆ Rj+1 and random variables Y1(t), . . . , Yj(t), we define the stopping time
TD = TD(Y1(t), . . . , Yj(t)) as the minimum t such that (t/n, Y1(t)/n, . . . , Yj(t)/n) 6∈ D.

For each n ∈ N, let S(n) be a set. We denote the history (q0, ..., qt) ∈ (S(n))t+1 to time t by ht.
Let S(n)+ denote the set of all histories ht for every t ∈ N. We are now ready to state Wormald’s
general-purpose result. In the next statement, upper case letters Y and H are used for the random
variables corresponding to the deterministic parameters denoted by their lower case counterparts.

Theorem 2.9.1 ([65, Theorem 5.1]). Let a be a positive integer. For 1 ≤ ` ≤ a, let y` : S(n)+ → R
and f` : Ra+1 → R, such that for some constant C0 and all `, |y`(ht)| ≤ C0n for all ht ∈ S(n)+

for all n. Assume the following three conditions hold, where in (i) and (iii) D is some bounded
connected open set containing the closure of{

(0, z1, . . . , za) : P(Y`(0) = z`n, 1 ≤ ` ≤ a) 6= 0 for some n
}
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(i) (Boundedness hypothesis) For some functions β = β(n) ≤ 1 and γ = γ(n), the probability
that

max
1≤`≤a

|Y`(t+ 1)− Y`(t)| ≤ β,

conditional upon Ht, is at least 1− γ for t ≤ TD.

(ii) (Trend hypothesis) For some function λ1 = λ1(n) = o(1), for all ` ≤ a∣∣∣E (Y`(t+ 1)− Y`(t)
∣∣Ht

)
− f`

(
t/n, Y1(t)/n, . . . , Ya(t)/n

)∣∣∣ ≤ λ1

for t < TD.

(iii) (Lipschitz hypothesis) Each function f` is continuous, and satisfies a Lipschitz condition on

D ∩
{

(t, z1, . . . , za) : t ≥ 0
}
,

with the same Lipschitz constant for each `.

Then the following are true.

(a) For (0, ẑ1, . . . , ẑa) ∈ D the system of differential equations

dz`
dx

= f`(x, z1, . . . , za), ` = 1, . . . , a

has a unique solution in D for z` : R→ R passing through

z`(0) = ẑ`,

1 ≤ ` ≤ a, and which extends to points arbitrarily close to the boundary of D;

(b) Let λ > λ1 + C0nγ with λ = o(1). For sufficiently large constant C, with probability

1−O(nγ + β
λ exp(−nλ3

β3 )),

Y`(t) = nz`(t/n) +O(λn)

uniformly for 0 ≤ t ≤ γn and for each `, where z`(x) is the solution in (a) with ẑ` = 1
nY`(0),

and σ = σ(n) is the supremum of those x to which the solution can be extended before
reaching with `∞-distance Cλ of the boundary of D.

Wormald also describes a result that allows the use of additional stopping times:

Theorem 2.9.2 ([65, Theorem 6.1]). For any set D̂ = D̂(n) ⊆ Ra+1, define the stopping time
TD̂ = TD̂(n)(Y1, . . . , Ya) to be the minimum t such that (t/n, Y1(t)/n, ..., Ya(t)/n) 6∈ D̂. Assume
that the first two hypotheses of Theorem 2.9.1 apply only with the restricted range t < TD̂
of t. Then the conclusions of the theorem hold as before, except with 0 ≤ t ≤ σn replaced by
0 ≤ t ≤ min{σn, TD̂}.
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2.10 Properties of truncated Poisson random variables

Given a nonnegative real number λ and a nonnegative integer k, we say that a random variable Y
is a truncated Poisson with parameters (k, λ) if, for every j ∈ N,

P(Y = j) =


λj

j!fk(λ)
, if j ≥ k;

0, otherwise.

(2.3)

where

fk(λ) := eλ −
k−1∑
i=0

λi

i!
. (2.4)

Note that the function fk plays a normalising role in the probability. We use Po(k, λ) to denote
the distribution of a truncated Poisson random variable with parameters (k, λ). A truncated
Poisson random variable with parameters (0, λ) simply is a Poisson random variable with mean λ.

Truncated Poisson random variables have been used to generate degree sequences for random
graphs with minimum degree constraints. Recall that Gmulti

k (n,m) is a (n,m, k)-core generated by
the allocation model restricted to k-cores as described in Section 2.2. As we discussed in Section 2.2,
d(Gmulti

k (n,m)) has distribution Multi≥k(n, 2m) (multinomial distribution conditioned upon each
coordinate being at least k). The following is a well-known relation between Multi≥k(n, 2m) and
Po(k, λ) (see, for example, [17]):

Lemma 2.10.1. Let k be a nonnegative integer and let λ be a nonnegative real number. The
distribution Multi≥k(n, 2m) is the same as the distribution of a random vector Y = (Y1, . . . , Yn)
where the Yi’s are independent random variables with distribution Po(k, λ) conditioned upon the
event Σ that

∑n
i=1 Yi = 2m.

Proof. For any d ∈ Nn with
∑n

i=1 di = 2m,

P
(
Y = d

∣∣Σ) =
1

P(Σ)

n∏
i=1

λdi

di!fk(λ)
=

1

P(Σ)

1∏n
i=1 di!

λ2m

fk(λ)n
,

that is, P(Y = d |Σ) = α ·1/
∏n
i=1 di! where α is the same for all d. The probability that a random

vector Z with distribution Multi≥k(n, 2m) is d, as already discussed in Section 2.2, is

(2m)!∏n
i=1 di!

(
1

n

)2m

,

which is β · 1/
∏n
i=1 di! where β is the same for all d. Since∑

d∈Nn∑n
i=1 di=2m

P
(
Y = d

∣∣Σ) =
∑
d∈Nn∑n
i=1 di=2m

P
(
Z = d

)
= 1,

we must have α = β. 16



We will use the following corollary of Lemma 2.10.1 a number of times in this thesis.

Corollary 2.10.2. Let m = m(n) ≥ kn be an integer. The distribution of d(Gmulti
k (n,m)) is the

same as the distribution of a random vector Y = (Y1, . . . , Yn) where the Yi’s are independent
truncated Poisson random variables with parameters (k, λ) conditioned upon the event Σ that∑n

i=1 Yi = 2m.

Pittel and Wormald [55] proved many properties about truncated Poisson random variables.
In this section, we include for the reader’s convenience several of their results that we use quite
extensively in this thesis.

Lemma 2.10.3 ([55, Lemma 1]). For any integer k and c = c(n) > k, there exists a unique
positive root λ(k, c) of

λfk−1(λ)

fk(λ)
= c. (2.5)

Moreover, λ(k, c) satisfies the following:

(a) If c→ k, then λ(k, c) = (k + 1)(c− k) +O((c− k)2);

(b) λ(k, c) ≤ c always;

(c) if c→∞, then λ(k, c) ∼ c.

Note that the first part of Lemma 2.10.3 is equivalent to saying that, for any c > k, there
exists λ > 0 such that the expectation of a random variable with distribution Po(k, λ) is c.

By continuity, we define λ(k, k) = 0. For any positive integer k and c > k, let

ηc =
λ(k, c)fk−2(λ(k, c))

fk−1(λ(k, c))
. (2.6)

A trivial relation between ηc and c is:
ηc ≤ c. (2.7)

Lemma 2.10.3 is proved by computing Var(Y ), where Y is a truncated Poisson random variable
with parameters (k, λ(k, c)) and relating it to the derivative of g(λ) := λfk−1(λ)/fk(λ). Pittel and
Wormald show that

E (Y (Y − 1)) = cηc and Var(Y ) = c(1 + ηc − c). (2.8)

Then, they relate the derivative of g(λ) and Var(Y ):

d g(λ)

dλ
=

1

λ
Var(Y ) > 0,
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for λ > 0. This shows that g(λ) is an increasing function. Moreover, as λ goes to 0,

λfk−1(λ)

fk(λ)
= k +

λ

k + 1
+O(λ2)→ k. (2.9)

and, as λ→∞, we have that g(λ)→∞. This shows that λ(k, c) is an increasing function of c
and it is defined for all c > k. Thus, Pittel and Wormald [55] proved the following.

Lemma 2.10.4. λ(k, c) is a strictly increasing function of c. Moreover, λ(k, c)→ 0 if c→ k, and
λ(k, c)→∞ if c→∞.

The first derivative of g(λ) is obviously a continuous function. From this, one obtains the
following lemma:

Lemma 2.10.5. Let γ and k be positive integer constants with γ > k. Let α(n), β(n) be
function such that k < α(n) < β(n) < γ and |α(n) − β(n)| = o(φ) where φ = o(1). Then
|λ(k, α)− λ(k, β)| = o(φ).

By Lemma 2.10.3(a) and (2.9), the following approximations for λ(k, c) and ηc are immediate,
by using the definition of ηc and computing its series with λ(k, c) around 0.

Lemma 2.10.6. For c→ k,

λ(k, c) = (k + 1)(c− k) +O((c− k)2). (2.10)

and
ηc = 1 + λ(k, c)/2 +O(λ(k, c)2). (2.11)

Pittel and Wormald use (2.8) to bound the value of the variance of truncated Poisson random
variables:

Lemma 2.10.7 ([55, Lemma 2]). Uniformly for all c ∈ (k,∞), if Y is a truncated Poisson random
variable with parameters (k, λ(k, c)),

Var(Y ) = c(1 + η̄c − c) = Θ(λ(k, c)) = Θ(c− k). (2.12)

Moreover, if c→ k, then
c(1 + η̄c − c) ∼ c− k. (2.13)

We remark that (2.13) is not stated in [55, Lemma 2], but is part of its proof in [55, Equa-
tion (20)].

Usually, when generating degree sequences for random graphs with truncated Poisson random
variables with parameters (k, λ(k, c)), we want the sum of the degrees to be cn (the average degree
times n). Pittel and Wormald estimated the probability of this event.
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Theorem 2.10.8 ([55, Theorem 4]). Let k be a positive integer and let c = c(n) ≥ k. Let Σ denote
the event that

∑n
i=1 Yi = cn where Y = (Y1, . . . , Yn) is a vector of independent truncated Poisson

random variables with parameters (k, λ(k, c)). Let r = cn − kn. If r → ∞ and r = O(n log n),
then

P(Σ) =
1 +O(r−1)√

2πnc(1 + ηc − c)
. (2.14)

If r = O(n5/2), then

P(Σ) =
(

1 +O(r5/2n−1)
)
e−r

rr

r!
. (2.15)

For ε > 0,

E
(

exp(−η(Y)/2− η(Y)2/4)|Σ
)

= (1 +O(n1/2−ε)) exp(−ηc/2− η2
c/4), (2.16)

where η(Y) =
∑

i Yi(Yi − 1)/(cn).

Let k ≥ 2, let Dk(n,m) denote the set of d = (d1, . . . , dn) ∈ Nn such that di ≥ k for all i ∈ [n]
and

∑
i di = 2m. Let

Qk(n,m) =
∑

d∈Dk(n,m)

n∏
j=1

1

dj !
.

Pittel and Wormald [55, Equation (10)] proved a nice relation between Qk(n,m) and the event Σ
that

∑n
i=1 Yi = cn where Y = (Y1, . . . , Yn), is a vector of independent truncated Poisson random

variables with parameters (k, λ) with λ > 0:

Lemma 2.10.9. Let k be a positive integer and let c = c(n) ≥ k. Let Σ be the event that∑n
i=1 Yi = cn where Y = (Y1, . . . , Yn), is a vector of independent truncated Poisson random

variables with parameters (k, λ) with λ > 0. Then

Qk(n,m) =
fk(λ)n

λcn
P(Σ). (2.17)

To deal with the function η(Y) it is useful to know the expectation and the variance of
Y (Y − 1), where Y is a truncated Poisson random variable with parameters (k, λ). Pittel and
Wormald [55] provided estimates for E (Y (Y − 1)) and Var(Y (Y − 1)). The proof is not so easily
extracted from their paper and, for this reason, we will reproduce it here. We also add a bound
on Var(Y (Y − 1)) for λ = O(1).

Lemma 2.10.10. Let Y be a random variable Po(k, λ), where k ∈ N and λ = λn is a positive real.
For λn = o(1), we have that E (Y (Y − 1)) = k(k− 1) + 2λk/(k+ 1) +O(λ2) and Var(Y (Y − 1)) =
Θ(λn). Moreover, Var(Y (Y − 1)) = O(1) for bounded λ.
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Proof of Lemma 2.10.10. By (2.8) and by computing the series of fk−2(λ) and fk(λ) for λ→ 0,

E (Y (Y − 1)) =
λfk−1(λ)

fk(λ)
· λfk−2(λ)

fk−1(λ)
=
λ2fk−2(λ)

fk(λ)
=
λ2
(
λk−2

(k−2)! + λk−1

(k−1)! +O(λk)
)

λk

k! + λk+1

(k+1)! +O(λk+2)

= k(k − 1) +
2kλ

k + 1
+O(λ2)

and so

Var(Y (Y − 1)) =
∑
j≥k

(j(j − 1)− E (Y (Y − 1)))2 λj

j!fk(λ)

= (2k +O(λ))2 λk+1

(k + 1)!fk(λ)
+
∑
j≥k+2

(j(j − 1)− k(k − 1) +O(λ))2 λj

j!fk(λ)

= (2k +O(λ))2 λk+1

(k + 1)!
(
λk

k! +O(λk+1)
) +O

 ∑
j≥k+2

(j(j − 1))2 λj

j!λk+1


= Θ(λ).

The bound Var(Y (Y − 1)) = O(1) follows from the fact that E (Y `) = O(1) for any fixed ` when
λ = O(1), which can be obtained by trivial computations.

Since we use truncated Poisson random variables to generate degree sequences, it will be useful
to know how large the maximum degree is likely to be. For any j0 such that j0 > 2eλc,

P(Yi ≥ j0) =
∑
j≥j0

λjc
j!(eλc − 1− λc)

= O(exp(−j0/2)). (2.18)

This holds because j0 > 2eλc ensures that the ratio between consecutive terms λjc/(j!(eλc−1−λc))
and λj+1

c /((j + 1)!(eλc − 1− λc)) is less than 1/e for j > j0/2 and each term is at most 1. (This
is the same bound as in [55, (27)].)

20



Chapter 3

Asymptotic enumeration of sparse
2-connected graphs

In this chapter, we are interested in the enumeration of 2-connected graphs with given number of
vertices and edges. As we mentioned in the introduction, efficient methods to compute the exact
number of 2-connected graphs with given number of vertices, and given numbers of vertices and
edges were described long ago (see Harary and Palmer [32], Temperley [61], and Wormald and
Wright [63]). But no closed formula has ever been found. This is one of the reasons why it is
worthwhile to seek asymptotic formulae. Another reason is that an asymptotic formula might be
much simpler than a closed formula (which may not even exist). The asymptotics in the following
are for n→∞, where n will denote the number of vertices in the graphs in question.

It would be natural to first try to find an asymptotic formula for the number of 2-connected
graphs with given number of vertices (instead of given number of vertices and of edges). It turns
out this is an easy problem even for k-connected graphs, for any fixed k ≥ 1. It follows from
the well-known fact that almost all graphs with vertex set [n] are k-connected [25]. That is, a
graph chosen uniformly at random over all possible graphs with vertex set [n] is k-connected with
probability going to 1. An intuitive reason for why this holds is that this random graph is actually
G(n, p) with p = 1/2, which is a very dense graph. The number of k-connected graphs with vertex

set [n] is then asymptotic to the number of simple graphs with vertex set [n], which is simply 2(n2).

Recall that an (n,m)-graph is any graph with vertex set [n] and m edges. The enumeration of
connected (n,m)-graphs has received a lot of attention, with formulae being derived for many
ranges of m. One of the best known was proved by Bender, Canfield and McKay [7] whose
asymptotic formula works for all m− n→∞. Their basic approach was to analyse a differential
equation arising from a recurrence formula for the number of connected graphs. Afterwards, Pittel
and Wormald [56] derived a formula with improved error bounds for some ranges of m. Their
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proof is somewhat simpler and our approach shares basic features with parts of it, which we will
discuss later.

Asymptotic formulae for the number of 2-connected (n,m)-graphs were also found for the
ranges m = n + o(

√
n) and m > (1/2 + ε)n log n, where ε is a positive constant. Wright [70]

found an asymptotic formula for the number of 2-connected (n,m)-graphs for the sparse range
m− n = o(

√
n) with m− n→∞. We remark that in Wright’s formula there was a constant that

Wright did not compute exactly, although he could approximate it very precisely. This constant
was later determined by Vobly̆ı [62]. Wright [68] also described an exact formula for the number
of 2-connected (n, n + k)-graphs with fixed k. There is no reason to consider the case m < n,
since no 2-connected (n,m)-graph exists in this case. For the range m ≥ (1/2 + ε)n log n, where ε
is a positive constant, an asymptotic formula for the number of 2-connected (n,m)-graphs can be
deduced from known results. For m ≥ (1/2 + ε)n log n, where ε is a positive constant and any
fixed k, the random graph G(n,m) is k-connected a.a.s.(see Erdős and Rényi [25]). Hence, the
number of 2-connected (n,m)-graphs is asymptotic to the number of simple (n,m)-graphs.

In this chapter, we provide an asymptotic formula for the number of 2-connected (n,m)-graphs
with m − n → ∞ and m = O(n log n). This way, we obtain an asymptotic formula that holds
in the entire range for which no asymptotic formula was previously known. We also obtain an
asymptotic formula for the number of 2-edge-connected (n,m)-graphs in the same range. The
results in this chapter are joint work with G. Kemkes and N. Wormald [39].

Our strategy has random 2-cores at centre stage. Recall that a graph is a (n,m, k)-core if
it is an (n,m)-graph that is also a k-core. Every 2-connected graph (with at least 3 vertices) is
always a 2-core. In [56], Pittel and Wormald found an asymptotic formula for the number of
connected (n,m, 2)-cores in the sparse range, as an intermediate step to obtain an asymptotic
formula for the number of connected (n,m)-graphs. Roughly speaking, Pittel and Wormald [56]
reduced the problem of enumerating connected (n,m, 2)-cores to computing the probability that
a random (n,m, 2)-core with given degree sequence is connected and simple. Our strategy for the
case m = O(n) is similar, but we have to compute the probability that such a random 2-core is
2-connected and simple. When m = Ω(n), we show that the number of 2-connected (n,m)-graphs
is asymptotic to the number of (n,m, 2)-cores, for which an asymptotic formula was provided by
Pittel and Wormald [55]. We remark that the number of 2-cores has been studied prior to that by
Wright [68] and others (see e.g. Ravelomanana and Thimonier [58]), but without the generality of
the result by Pittel and Wormald [55].

Next we briefly discuss the enumeration of k-connected (n,m)-graphs, with fixed k ≥ 3. The
enumeration of (n,m, k)-cores is related to the enumeration of k-connected (n,m)-graphs since
k-connected graphs are always k-cores. An asymptotic formula for the number of k-connected
(n,m)-graphs can be easily deduced from the formula for (n,m, k)-cores and some other known
results.  Luczak [46] showed that given a degree sequence with minimum degree at least k, under
some additional hypotheses on the degree sequence, a graph chosen uniformly at random among all
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graphs with degree sequence d is k-connected a.a.s. By showing that these additional hypotheses
are innocuous, that is, that the degree sequence of a random (n,m, k)-core satisfies them a.a.s., one
can conclude that the random (n,m, k)-core is k-connected a.a.s. Thus, the number of k-connected
(n,m)-graphs is asymptotic to the number of (n,m, k)-cores. Interestingly, this strategy fails for
2-connected graphs because it is not true that random 2-cores are 2-connected a.a.s. We also note
that one gets an asymptotic formula for the number of k-edge-connected (n,m)-graphs since a
k-connected graph is always k-edge-connected and a k-edge-connected graph is always a k-core.
That is, the number of k-edge-connected (n,m)-graphs is sandwiched between the number of
(n,m, k)-cores and k-connected (n,m)-graphs.

3.1 Main results

Let T (n,m) denote the number of 2-connected (n,m)-graphs (simple graphs with vertex set [n]
and m edges). For any positive k ∈ N, let fk(λ) = eλ −

∑k−1
i=0 λ

i/i! and recall that the function
λ(2, c) is defined in (2.5) as the unique positive root of λf1(λ)/f2(λ). For any c > 2, let

λc = λ(2, c), ηc =
λce

λc

f1(λc)
and pc =

λ2
c

2f2(λc)
.

The parameter pc is the probability that a truncated Poisson random variable with parameters
(2, λc) has value 2. Truncated Poisson random variables simply are Poisson random variables
conditioned upon having at least some value (in this case, the value is 2). For the definition of
truncated Poisson random variables and some of their properties, see (2.3) and Section 2.10.

Define the odd falling factorial (2k − 1)!! as (2k − 1)(2k − 3) · · · 1, for any integer k ≥ 1.
Throughout this chapter, let c = 2m/n denote the average degree and let r = 2m− 2n, which can
be seen as an excess function.

Our main result is the following asymptotic formula for T (n,m).

Theorem 3.1.1. Suppose m = O(n log n) and r := 2m− 2n→∞. Then

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + ηc − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
,

where c := 2m/n.

First we obtain formulae for T (n,m) for three ranges of the average degree: c→ 2, bounded
c > 2, and c → ∞. For each case, we will show that the formulae obtained are asymptotically
equivalent to the formula in Theorem 3.1.1. Theorem 3.1.1 is then easily proved using the
subsubsequence principle (for more on the subsubsequence principle, see Section 2.6).
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Theorem 3.1.2. Suppose m = O(n log n) and r := 2m− 2n→∞. Then, for c := 2m/n,

(a) if c→ 2,

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πn(c− 2)

·
√

3r

e
√

2m
;

(b) if c = O(1) and c > C0 for some constant C0 > 2,

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + ηc − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
;

(c) if c→∞,

T (n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc

exp

(
−ηc

2
− η2

c

4

)
.

The proofs for each range in Theorem 3.1.2 follow the same strategy. Computing the value
of T (n,m) is the same as computing

∑
d T (d), where T (d) is the number of 2-connected (n,m)-

graphs with degree sequence d and the sum is over all possible degree sequences with
∑

i di = 2m.
We show that computing T (d) can be reduced to computing the probability A(d) that a certain
random multigraph with degree sequence d is 2-connected and simple. Using this we show that
approximating

∑
d T (d) can be done by estimating the value of the expectation of a random

variable B(d), that is closely related to A(d), when the degree sequence d is random with a
certain distribution.

In order to approximate the expectation, we define a set of ‘typical’ degree sequences, that is
a set containing the random degree sequence a.a.s., and show that for such degree sequences the
value of B(d) can be determined a.a.s. with uniform error bounds and that the degrees outside
this set have no significant contribution for the expectation. This way, we obtain an asymptotic
formula for T (d) for ‘typical’ degree sequences and an asymptotic formula for T (n,m).

We use D(n,m) to represent the set of degree sequences d := (d1, . . . , dn) such that
∑n

i=1 di =
2m and di ≥ 2 for all i ∈ [n]. For d ∈ D(n,m), define

η(d) =
1

2m

∑
dj(dj − 1)

and, for every integer j, let Dj = Dj(d) denote |{i : di = j}|, that is Dj(d) is the number of
vertices of degree j.

The next result states the asymptotic formula for ‘typical’ degree sequences in each range.

Theorem 3.1.3. Suppose m = O(n log n) and r := 2m − 2n → ∞. Let Y = (Y1, . . . , Yn) be a
vector of independent truncated Poisson random variables with parameters (2, λc).
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(a) Suppose further that c = c(n) := 2m/n → 2. Let ψ(n) = r1−ε for some ε ∈ (0, 1/4). If
d = d(n) ∈ D(n,m) satisfies

(i) |D2 − E (D2(Y))| ≤ ψ(n),

(ii) |D3 − E (D3(Y))| ≤ ψ(n),

(iii) |
∑

i

(
di
2

)
− E (

∑
i

(
Yi
2

)
)| ≤ ψ(n), and

(iv) di ≤ 8 log(n−D2(d)) for every i,

then

T (d) ∼
√

3r

e
√

2m
· (2m− 1)!!∏n

j=1 dj !
.

(b) Suppose further that c = O(1) and c > C0 for some constant C0 > 2. Let ψ(n) = 1/nε for
some ε ∈ (0, 1/4). If d = d(n) ∈ D(n,m) satisfies

(i) di ≤ 6 log n for every i,

(ii) |η(d)− ηc| ≤ ψ(n) and

(iii) |D2(d)/n− pc| ≤ ψ(n),

then

T (d) ∼ (2m− 1)!!∏n
j=1 dj !

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
.

(c) If c→∞ and d = d(n) ∈ D(n,m) satisfies max di ≤ nε for some ε ∈ (0, 0.01) then

T (d) ∼ (2m− 1)!!∏n
j=1 dj !

exp

(
−η(d)

2
− η(d)2

4

)
.

We remark that the case r = o(
√
n) with r → ∞ has been solved by Wright [70] (see also

Vobly̆ı [62]):

T (n,m) =

√
3

e
√

2π
nn+3r/2−1/2er−n(9r2/2)−r/2(1 +O(r−1) +O(r2/n)).

To compare Wright’s formula to our own, we compute λc = 3r/n− (3/2)(r/n)2 + (6/5)(r/n)3 +
O((r/n)4) for r = o(n2/3), and then from Theorem 3.1.2(c) the following is immediate, confirming
Wright’s formula for the the case r = o(n1/2).

Corollary 3.1.4. Suppose that r := 2m− 2n = o(n2/3) and r →∞. Then

T (n,m) ∼
√

3

e
√

2π
nn+3r/2−1/2er−n+3r2/(8n)(9r2/2)−r/2.
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Let T ′(n,m) denote the number of 2-edge-connected (n,m)-graphs. Our methods for the
enumeration of 2-connected graphs can be easily adapted to obtain an asymptotic formula for
T ′(n,m).

Theorem 3.1.5. Suppose m = O(n log n) and r := 2m− 2n→∞. Then

T ′(n,m) ∼ (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + ηc − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4
+

λ3
c

2(eλc − 1)2

)
.

This chapter is organized as follows. In Section 3.2, we reduce the problem of finding the
number of 2-connected (n,m)-graphs to computing the expectation of a random variable in a
probability space of random degree sequences. This random variable is related to the probability
that a random multigraph generated with given degree sequence is 2-connected and simple. The
models of random multigraphs that we will deal with are the kernel configuration model and
the pairing model, which are defined in Section 2.2. In Section 3.3, we prove that, a.a.s., the
random multigraph with minimum degree at least 3 generated by the pairing model is 2-connected
if and only if it 2-edge-connected. We prove Theorem 3.1.2 in Sections 3.4, 3.5 and 3.6. More
specifically, we prove Theorems 3.1.2(a) and 3.1.3(a) in Section 3.4, Theorems 3.1.2(b) and 3.1.3(b)
in Section 3.5, and Theorems 3.1.2(c) and 3.1.3(c) in Section 3.6. In Section 3.7, we combine the
formulae obtained in Theorem 3.1.2 to obtain Theorem 3.1.1. In Section 3.8, we explain how to
obtain the formula for 2-edge-connected (n,m)-graphs for m− n→∞ and m = O(n log n).

3.2 Enumeration and random graphs

In this section we show how to reduce the enumeration problem, which is a deterministic problem,
to the computation of the expected value of a random variable in a probability space of random
degree sequences. The approach we use is the same as in [55].

Let

Q(n,m) =
∑

d∈D(n,m)

n∏
j=1

1

dj !
.

Let Y = (Y1, . . . , Yn) be a vector of independent truncated Poisson random variables with
parameters (2, λc) and let Σ denote the event that

∑
i Yi = 2m. The function Q(n,m) and P(Σ)

are related: by Lemma 2.10.9 and Theorem 2.10.8(a),

Q(n,m) =
f2(λ)n

λcn
P(Σ) =

1 +O(r−1)√
2πc(1 + ηc − c)

. (3.1)

We will use Y to generate degree sequences. Many times in the following sections we will work
with ‘typical’ degree sequences. We say that a subset of D̃ ⊆ D(n,m) is a set of typical degree
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sequences when the probability that the vector Y = (Y1, . . . , Yn) conditioned upon Σ is in D̃ goes
to 1. The two propositions we will present now show how to estimate T (n,m) by computing the
expectation of a random variable in the probability space of Y conditioned upon Σ. In both
cases, this random variable is closely related to the probability that a random graph with degree
sequence Y (conditioned upon Σ) is 2-connected and simple.

The first proposition concerns graphs generated with the pairing model (see Section 2.2 for the
description of the pairing model). In the first proposition, the random variable is the probability
that the random graph generated with the pairing model with given degree sequence is 2-connected
and simple.

The second proposition concerns graphs generated with the kernel configuration model (see
Section 2.2 for the description of this model). Recall that D2(d) is the number of occurrences
of 2’s in d. For d ∈ D(n,m), let m′ = m′(d) := m−D2(d), that is, m′ is the number of edges
in the kernel, and let R = R(d) :=

∑
i:di≥3 di. In the second result, the random variable will be√

m′(d)P(2cs(d)), where 2cs(d) is the event that a random graph generated with the kernel
configuration model and degree sequence d is 2-connected and simple.

In summary, we basically reduced the enumeration problem to the computation of the prob-
ability that random graphs (generated by the pairing model or the kernel configuration model)
are 2-connected and simple and the degree sequence is generated by truncated Poisson random
variables conditioned upon the degrees having the correct summation. The proofs for both results
follow the same argument as the proof in [55, Equation (13)] which states for 2-cores that

C(n,m) ∼ (2m− 1)!!Q(n,m)E
(
U(Y)|Σ

)
, (3.2)

where C(n,m) denotes the number of (simple) 2-cores on [n] with m edges and U(Y) is the
probability that the random graph generated with the pairing model and degree sequence Y is
simple.

Proposition 3.2.1. Let U ′(d) be the probability that a random pairing with degree sequence d
is 2-connected and simple. We have that

T (d) =
(2m− 1)!!∏n

j=1 dj !
U ′(d), for d ∈ D(n,m) (3.3)

and

T (n,m) = (2m− 1)!!Q(n,m)E
(
U ′(Y)|Σ

)
. (3.4)

Proof. For d ∈ D(n,m), the number of pairings corresponding to a given simple graph is
∏n
j=1 dj !

by Lemma 2.2.1. Since, in the pairing model each matching is chosen with uniform probability
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and (2m− 1)!! is the number of perfect matchings on 2m, this implies (3.3). We now prove (3.4).
The argument is basically the same as in [55, Equation (13)]. We have that

T (n,m) =
∑

d∈D(n,m)

T (d) = (2m− 1)!!
∑

d∈D(n,m)

U ′(d)∏n
j=1 dj !

by (3.3)

=
(2m− 1)!!f2(λc)

n

λ2m
c

∑
d∈D(n,m)

U ′(d)
n∏
j=1

λ
dj
c

dj !f2(λc)
since

n∑
j=1

dj = 2m

=
(2m− 1)!!Q(n,m)

P(Σ)

∑
d∈D(n,m)

U ′(d)P(Y = d) by (3.1)

= (2m− 1)!!Q(n,m)E
(
U ′(Y)|Σ

)
.

Proposition 3.2.2. We have that

T (d) =
(2m− 1)!!

√
m′(d)/mP(2cs(d))∏n
i=1 di!

(
1−O

(
1

m′(d)

))
, uniformly for d ∈ D(n,m) (3.5)

and

T (n,m) = (2m− 1)!!Q(n,m)
√
m−1E (w(Y)|Σ), (3.6)

where
w(d) = P(2cs(d))

√
m′(d) (3.7)

and 2cs(d) is the event that the pre-kernel generated by the kernel configuration model is
2-connected and simple.

Proof. By Lemma 2.2.3, each simple pre-kernel is produced by
∏
i∈R(d) di! configurations, where

R = R(d) := {i ∈ [n] : di ≥ 3}. There are (2m′ − 1)!! ways of generating the kernel and (m −
1)!/(m′ − 1)! ways of adding the degree-2 vertices. Thus,

T (d) =
(2m′ − 1)!!(m− 1)!

(m′ − 1)!
∏
i∈R(d) di!

P(2cs(d)) =
(2m′ − 1)!!(m− 1)!2D2

(m′ − 1)!
∏n
i=1 di!

P(2cs(d)).

Using the fact that (2k − 1)!! = (2k)!/(2kk!) for any integer k ≥ 1,

(2m′ − 1)!!(m− 1)!2D2

(m′ − 1)!
=

(2m− 1)!!m′

m
· m!2m

(2m)!
· (2m′)!

m′!2m′
· m!2D2

m′!

=
(2m− 1)!!m′

m
· (2m′)!m!22m+D2

(2m)!m′!22m′
.
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By Stirling’s approximation, we have that

(2m′)!m!22m+D2

(2m)!m′!22m′
=

√
m

m′
(2m′)2m′m2m2m+D2

(2m)2m(m′)2m′2m′

(
1 +O

(
1

m′

))
=

√
m

m′
22m′+m+D2

22m+m′

(
1 +O

(
1

m′

))
=

√
m

m′

(
1 +O

(
1

m′

))
,

since m′ = m+D2. Thus,

T (d) =
(2m′ − 1)!!(m− 1)!2D2

(m′ − 1)!
∏n
i=1 di!

P(2cs(d))

=
(2m− 1)!!m′ P(2cs(d))∏n

i=1 di!m
·
√
m

m′

(
1 +O

(
1

m′

))
=

(2m− 1)!!∏n
i=1 di!

√
m′

m
P(2cs(d))

(
1 +O

(
1

m′

))
,

and the constants in the error term are independent of d. Thus, we proved (3.5). Since
m′(d) = m−D2(d) ≥ m− n = r/2, the error term O(1/m′) above can be replaced by O(1/r),
uniformly for d. We now prove (3.6). The proof is very similar to the proof of (3.4):

T (n,m) =
∑

d∈D(n,m)

T (d)

=
∑

d∈D(n,m)

(2m− 1)!!∏n
i=1 di!

√
m′(d)

m
P(2cs(d))

(
1 +O

(
1

r

))
by (3.5)

=
(2m− 1)!!f2(λc)

n

λ2m
c

√
m

∑
d∈D(n,m)

√
m′(d)P(2cs(d))

n∏
j=1

λ
dj
c

dj !f2(λc)

(
1 +O

(
1

r

))

=
(2m− 1)!!Q(n,m)

P(Σ)
√
m

∑
d∈D(n,m)

P(2cs(d))
√
m′(d)P(Y = d)

(
1 +O

(
1

r

))
by (3.1)

= (2m− 1)!!Q(n,m)E
(
w(Y)|Σ

)(
1 +O

(
1

r

))
.
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3.3 Relation of vertex-connectivity and edge-connectivity

In this section, we show that a.a.s. the kernel generated with pairing model is 2-connected if and
only if it is 2-edge-connected (with constraints in the maximum degree). For arbitrary graphs
with at least 3 vertices, 2-connectivity implies 2-edge-connectivity and so one direction is trivial.
For the other direction, we will show that every cut-vertex has to be in a bridge a.a.s.

Proposition 3.3.1. Let d ∈ D(n,m) satisfying n ≥ 3 and 3 ≤ δ = d1 ≤ · · · ≤ dn = ∆ ≤ n0.04.
Let K be the kernel of the random multigraph produced by the pairing model using degree
sequence d. A.a.s., K is 2-connected if and only if it is 2-edge-connected.

This proposition is an easy consequence of the following lemmas:

Lemma 3.3.2. A.a.s., no subgraph of K with s vertices, 2 ≤ s ≤ n0.4, has more than 1.2s edges.

Lemma 3.3.3. A.a.s., each subset of K with s vertices, n0.3 ≤ s ≤ n/2 has more than δ
neighbours.

Proof of Proposition 3.3.1. Suppose that v is a cut-vertex in K not in a bridge. Then v decomposes
K into components W1 and W2 with |W1| ≤ |W2|. Note that v sends at least 2 edges to W1 and
at least 2 edges to W2. (Otherwise v would be in a bridge).

Suppose that |W1| = 1. Then the number of edges induced by W1 ∪ {v} is at least 3 (since
δ ≥ 3) which is 3

2 |W1 ∪ {v}|. On the other hand, if |W1| ≥ 2, the number of edges induced by
W1 ∪ {v} is at least (3|W1|+ 2)/2 ≥ 1.25|W1 ∪ {v}|. Thus, for |W1 ∪ {v}| ≤ n0.4, we conclude that
such v a.a.s. does not exist, by Lemma 3.3.2. Otherwise, |W1| ≥ n0.3 and such v a.a.s. does not
exist by Lemma 3.3.3.

So a.a.s., K has a bridge if it has a cut-vertex. The converse is deterministically true for
multigraphs with at least three vertices, and the proposition follows.

We remark that the proof of Proposition 3.3.1 can be easily adapted to show that, a.a.s., for
any bridge, at least one of its endpoints is incident with no non-loop edges, apart from the bridge
itself.

We now prove Lemmas 3.3.2 and 3.3.3. We observe that these lemmas can be proved by
closely following  Luczak’s proofs of properties of (simple) graphs with given degree sequence
in [46, Section 12.3]). For the proofs of these lemmas, let the kernel K be generated by choosing a
perfect matching M uniformly at random on the points of sets/bins S1, . . . , Sn with d1, . . . , dn
points in them, and then contracting each bin Si into a single vertex i. Let P denote the set of
the 2m points inside the bins. Let Φ(k) denote the number of perfect matchings on [2k] for any
nonnegative integer k. It is straightforward that Φ(k) = (2k − 1)!! = (2k)!/(2kk!).
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Proof of Lemma 3.3.2. Let S = {S ⊆ [n] : 2 ≤ |S| ≤ n0.4}. For each S ∈ S, let XS denote the
indicator variable that S induces more than 1.2|S| edges and let X =

∑
S∈S XS . We will show

that E (X) = o(1). Assuming this, by Markov inequality,

P(X ≥ 1) ≤ E (X) = o(1),

which proves the lemma.

For S ∈ S, let ES = {xy : x ∈ Si, y ∈ Sj , i, j ∈ S, x 6= y}. For S ∈ S with s = |S|,

E (XS) ≤
∑
`≥1.2s

∑
E⊆ES
|E|=`

P(E ⊆M) =
∑
`≥1.2s

∑
E⊆ES
|E|=`

Φ(m− `)
Φ(m)

. (3.8)

The number of sets E ⊆ ES of size ` is bounded by
((s∆)2

`

)
because there are at most s∆ points

in S. Thus, combining this with (3.8) yields

E (XS) ≤
∑
`≥1.2s

(
(s∆)2

`

)
Φ(m− `)

Φ(m)
=
∑
`≥1.2s

(
(s∆)2

`

)
[m]`2

`

[2m]2`
≤
∑
`≥1.2s

(
(s∆)2

`

)(
1

2m− 2`

)`

≤
∑
`≥1.2s

(
es2∆2

`(2m− 2`)

)`
, since

(
s2∆2

`

)
≤
(
es2∆2

`

)`

≤
∑
`≥1.2s

(
es∆2

1.2n

)`
, since 1.2s ≤ ` ≤ s2 ≤ n0.8

≤ 2

(
s∆2

αn

)1.2s

,

where the last inequality follows from the formula for the sum of the terms of a geometric
progression with ratio s∆2/(αn) ≤ (αn.52)−1 → 0, where α = 1.2/e. We also use the fact that
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(1− s∆2(αn))−1 ≤ αn/(αn− n0.48) ≤ 2 for sufficiently large n. Thus,

E (X) =
∑
S∈S

E (XS) =

n0.4∑
s=2

∑
S∈S
|S|=s

E (XS) ≤
n0.4∑
s=2

∑
S∈S
|S|=s

2

(
s∆2

αn

)1.2s

= 2

n0.4∑
s=2

(
n

s

)(
s∆2

αn

)1.2s

≤ 2

n0.4∑
s=2

(
es0.2∆2.4

α1.2n0.2

)s
, since

(
n

s

)
≤
(en
s

)s
≤ 2

n0.4∑
s=2

( e

α1.2n0.024

)s
, since s ≤ n0.4 and ∆ ≤ n0.04

≤ 2
1

1− e

α1.2n0.024

( e

α1.2n0.024

)2
, by sum of g.p.

= O
(
1/n0.048

)
,

and we are done.

Proof of Lemma 3.3.3. Let S denote the subsets of [n] with size at most δ. For each S ∈ S, let
WS denote the set of subsets W ⊆ [n] \ S of size at least n0.3 and at most (n− |S|)/2. For any
S ∈ S and W ∈ WS , let XS,W denote the indicator variable for the event that all edges with
exactly one end in W have the other end in S. That is, XS,W indicates the event that S separates
W from the rest of the graph. Let X =

∑
S∈S

∑
W∈WS

XS,W .

We will show that it suffices to prove that E (X) = o(1). By Markov’s inequality this would
imply P(X ≥ 1) ≤ E (X) = o(1). So we need to show that the event that there is a set W ′ of size
in [n0.3, n/2] with at most δ neighbours (outside W ′) is contained in the event that there exist
S ∈ S and W ∈ WS such that XS,W = 1. So suppose there is such a set W ′ and let S′ denote its
set of neighbours. If |W ′| ≤ (n−|S′|)/2, then W ′ ∈ WS′ and so XS′,W ′ = 1. If |W ′| ≥ (n−|S′|)/2,
then, for W := [n] \ (S′ ∪W ′), we have that W also has all its neighbours in S′. Moreover,
|W ′| ≤ n − |S′| − (n − |S′|)/2 = (n − |S′|)/2 and W ′ ≥ n − |S′| − n/2 ≥ n/2 − ∆ ≥ n0.3 for
sufficiently large n since δ ≤ ∆ ≤ n0.04. This implies W ∈ WS′ and so XS′,W = 1.

For (S,W ) ∈ S × WS , let E(S,W ) be the set of all E ⊆ {xy ∈ (Si, Sj) : i ∈W, j ∈W ∪ S}
such that each point in a bin corresponding to a vertex in W has degree 1 in E and each point in
a bin corresponding to a vertex in S has degree 0 or 1 in E. In other words, E(S,W ) is the set
of all possible edges (as pairs of points) with at least one end in W covering all points in W so
that S separates W from the rest of the graph. The size of any set E ∈ E is at least 3|W |/2 since
δ ≥ 3 and, on the other hand,

|E| ≤ m− 3

2

(
n− |S| − |W |

)
≥ m− 3

2
|W |,
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since |W | ≤ (n− |S|)/2. Moreover,

3

2
|W | ≤ 3n

4
≤ m

2
. (3.9)

For ` ∈ [d3|W |/2e,m−d3|W |/2e], the number of sets E ∈ E(S,W ) of size ` is bounded by 2δ∆Φ(`).
This is because we have to choose 2` points in the bins of W and S and a perfect matching on these
points. All the points in bins in W have to be selected for E ∈ E(S,W ). A rough upper bound for
the number of ways of selecting 2`−

∑
i∈W di points in bins in S is 2

∑
i∈S di ≤ 2|S|∆ ≤ 2δ∆ (this is

a very rough upper bound). Moreover, there are Φ(`) ways of matching the selected points.

E (XS,W ) =

m−d3|W |/2e∑
`=d3|W |/2e

∑
E∈E(S,W )
|E|=`

P(E ⊆M) ≤ 2δ∆
m−d3|W |/2e∑
`=d3|W |/2e

Φ(`)Φ(m− `)
Φ(m)

= 2δ∆
m−d3|W |/2e∑
`=d3|W |/2e

(2`)!(2m− 2`)!m!

`!(m− `)!(2m)!
= 2δ∆

m−d3|W |/2e∑
`=d3|W |/2e

(
m

`

)(
2m

2`

)−1

.

Thus,

E (XS,W ) ≤ 2δ∆
m−d3|W |/2e∑
`=d3|W |/2e

(
m

`

)−1

, since

(
2m

2`

)
≥
(
m

`

)2

≤ 2δ∆m

(
m⌈

3|W |/2
⌉)−1

, by (3.9)

≤ 2δ∆m

(
d3n/2e⌈
3|W |/2

⌉)−1

, since m ≥ 3n

2
.

For any S ∈ S, we have that there are at most
(
n
w

)
sets of size w in WS . Thus, together with the
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above, we get

E (X) ≤
∑
S∈S

b(n−|S|)/2c∑
w=dn0.3e

(
n

w

)
2δ∆m

(
d3n/2e
d3w/2e

)−1

≤ 2δ∆m
∑
S∈S

b(n−|S|)/2c∑
w=dn0.3e

(
dn/2e
dw/2e

)−1

, since

(
d3n/2e
d3w/2e

)
≥
(
dn/2e
dw/2e

)(
n

w

)
,

≤ 2δ∆m
∑
S∈S

b(n−|S|)/2c∑
w=dn0.3e

(
dn/2e⌈
dn0.3e/2

⌉)−1

,

≤ 2δ∆m2nn

(
dn/2e⌈
dn0.3e/2

⌉)−1

, since the number of choices for S is at most 2n;

≤ 2δ∆m2nn

(
1

n0.6

)n0.3/2

, since

(
a

b

)
≥
(a
b

)a
for any nonnegative integers a, b;

≤ 2n
1.08

n2.04

(
1

n

)0.3n0.3

since ∆ ≤ n0.04

= O

((
1

n

)0.2n0.3
)

= o(1),

and we are done.
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3.4 The case c→ 2.

In this section, we obtain an asymptotic formula for the number T (n,m) of 2-connected (n,m)-
graphs for the range c = 2m/n → 2 from above, proving Theorem 3.1.2(a). We also obtain a
formula for the number T (d) of 2-connected graphs with degree sequence d with d ∈ D(n,m)
satisfying some constraints, proving Theorem 3.1.3(a). In Proposition 3.2.2, we have already
shown how to obtain T (d) by computing P(2cs(d)), the probability that the graph generated with
kernel configuration model is 2-connected and simple, and how to obtain T (n,m) by computing
E
(√

m′(Y)P(2cs(Y))
∣∣Σ), where Y = (Y1, . . . , Yn) is a vector of independent truncated Poisson

random variables with parameters (2, λc) and Σ is the event that
∑

i Yi = 2m.

We will define a set of typical degree sequences D̃ so that, for d ∈ D̃, we have P(2cs(d)) ∼ 1/e
and so we obtain T (d) for typical degree sequences. We then proceed to show that the degree
sequences outside D̃ have no significant contribution to E

(√
m′(Y)P(2cs(Y))

∣∣Σ) and so we can
obtain an asymptotic formula for T (n,m).

As expected, the definition of D̃ requires some functions of the degree sequence to be concen-
trated around their expected value. So first we will analyse the expected value of some of these
functions. Let

µ2 = E (D2(Y)), µ3 = E (D3(Y)), µ = E
( n∑
i=1

(
Yi
2

))
.

Lemma 3.4.1. We have µ2 = n− r + o(r), µ3 = r + o(r) and µ = n+ 2r + o(r).

Proof. Let r(Y) =
∑n

i=1 Yi − 2n and n′(Y) = n−D2(Y). Note that r(Y) may not coincide with
r = 2m− 2n because we are not conditioning on Σ, which is the event that

∑
i Yi = 2m. But

E (r(Y)) = E
( n∑
i=1

Yi

)
− 2n =

n∑
i=1

c− 2n = 2m− 2n = r. (3.10)

Note that

n∑
i=1

Yi =
∑

i∈R(Y)

Yi + 2D2(Y) ≥
∑

i∈R(Y)

3 + 2n− 2n′(Y) = 3n′(Y) + 2n− 2n′(Y) = n′(Y) + 2n.

Hence, n′(Y) ≤ r(Y).

Thus,
D2(Y) = n− n′(Y) ≥ n− r(Y). (3.11)

and so, by (3.10),
E (D2(Y)) ≥ n− r. (3.12)

35



Moreover, D2(Y) ≤ n−D3(Y), which implies that

E (D2(Y)) ≤ n− E (D3(Y)). (3.13)

Since n−r = n+o(n) and n−D3(Y) ≤ n, we conclude that E (D2(Y)) = n+o(n). Using (2.10),

µ3 = E (D3(Y)) =
λ3
c

3!(eλc − 1− λc)
n =

λc
3
E (D2(Y)) =

(
r

n
+O

(
r2

n2

))
(n+ o(n))

= r + o(r) +O(r2/n) = r + o(r).

By (3.13), E (D2(Y)) ≤ n − E (D3(Y)) = n − r + o(r). So by (3.12), we conclude that
µ2 = E (D2(Y)) = n− r + o(r).

By (2.8), we have that E (Y1(Y1 − 1)) = cηc. By (2.10) and (2.11), this implies that

µ = E
( n∑
i=1

(
Yi
2

))
=
n

2
E (Y1(Y1 − 1)) =

ncηc
2

=
2n+ r

2

(
3r

2n
+ 1 +O

( r2

n2

))
= n+ 2r +O(r2/n) = n+ 2r + o(r).

We now define a set of ‘typical’ degree sequences. For any function ψ(n) : N→ R+ such that
ψ(n) = o(r), let

D̃n(ψ) = D̃(ψ) :=

{
d ∈ D(n,m) :|D2(d)− µ2| ≤ ψ(n); |D3(d)− µ3| ≤ ψ(n);∣∣∣ n∑

i=1

(
di
2

)
− µ

∣∣∣ ≤ ψ(n); max
i
di ≤ 8 log n′(d)

}
.

and define D̃c(ψ) = D(n,m) \ D̃(ψ).

We will determine P(2cs(d)) asymptotically for ‘typical’ degree sequences:

Proposition 3.4.2. Let ψ = o(r) and let d ∈ D̃(ψ). Then

P(2cs(d)) =
1

e
+ o(1).

The proof of Theorem 3.1.3(a) is now straightforward. By Proposition 3.2.2 (Equation (3.5))
and Proposition 3.4.2,

T (d) ∼
(2m− 1)!!

√
m′(d)/mP(2cs(d))∏n
i=1 di!

∼ 1

e

√
m′(d)

m

(2m− 1)!!∏n
i=1 di!
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and so to prove Theorem 3.1.3(a) it suffices to show that m′(d) ∼ 3r
2 . Indeed, using Lemma 3.4.1

for µ2 and the fact that d ∈ D̃(ψ), we have that

m′(d) = m−D2(d) = m− µ2 +O(ψ) = m− µ2 + o(r) =
3r + o(r)

2
. (3.14)

This finishes the proof of Theorem 3.1.3(a).

We now prove Theorem 3.1.2(a). Note that, for any arbitrary sequence (dn)n∈N with dn ∈
D̃n(ψ) for every n ∈ N, we have that w(dn) ∼ e−1

√
3r/2 =: t(n) by Proposition 3.4.2 and (3.14).

Since D̃n(ψ) is a finite for every n, Lemma 2.7.1 implies that there exists a function h(n) = o(1)
such that, for every (dn)n∈N such that dn ∈ D̃n(ψ) for every n ∈ N, we have that |w(dn)/t(n)−1| ≤
h(n) = o(1). This implies that∣∣∣∣∣E (w(Y)|D̃(ψ))− 1

e

√
3r

2

∣∣∣∣∣ =

∣∣∣∣∣ ∑
d∈D̃(ψ)

w(d)P(Y = d | D̃(ψ))− 1

e

√
3r

2

∣∣∣∣∣
≤

∑
d∈D̃(ψ)

∣∣∣∣(w(d)− 1

e

√
3r

2

)∣∣∣∣P(Y = d | D̃(ψ))

≤
∑

d∈D̃(ψ)

h(n)P(Y = d | D̃(ψ)) = h(n) = o(1).

(3.15)

For any d ∈ D(n,m),

r = 2m− 2n = 2(m′(d) +D2(d))− 2(n′(d) +D2(d))

= 2m′(d)− 2n′(d) ≥ 2m′(d)− 2

3
m′(d) =

m′(d)

3
,

because 2m′(d) ≥ 3n′(d). Thus, for any d ∈ D(n,m),

w(d) = P(2cs(d))
√
m′(d) ≤

√
3r. (3.16)

Let ψ(n) = r1−ε for some ε ∈ (0, 1/4). We will show that the set D̃(ψ) is indeed a set of
typical degree sequences. More precisely, we will show

P(D̃(ψ)|Σ) = 1 +O(
√
r/n) +O(r2ε−1/2). (3.17)

Together with (3.15) and (3.16), this implies that

E (w(Y)|Σ) = E (w(Y)|D̃(ψ))P(D̃(ψ)|Σ) + E (w(Y)|D̃c(ψ))P(D̃c(ψ)|Σ)

= E (w(Y)|D̃(ψ))(1−O(
√
r/n)−O(r2ε−1/2)) + o(

√
r)

∼ 1

e

√
3r

2
.

(3.18)
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In Lemma 2.10.7, Equation (2.13) tells us that c(1 + ηc − c) ∼ c− 2. Together with (3.6) in
Proposition 3.2.2, (3.1) and (3.18),

T (n,m) = (2m− 1)!!Q(n,m)
√
m−1E (w(Y)|Σ)

∼ (2m− 1)!!
f2(λc)

n

λ2m
c

√
2πnc(1 + ηc − c)

√
m−1E (w(Y)|Σ)

∼ (2m− 1)!!
f2(λc)

n

λ2m
c

√
2πn(c− 2)

1

e

√
3r

2
,

proving Theorem 3.1.2(a).

So it suffices to prove (3.17). Let p(i) denote the probability that a variable with distribution
Po(2, λc) has value i. Recall that η(d) = (

∑n
i=1 di(di− 1))/(

∑n
i=1 di). First we will study the first

three conditions in the definition of D̃(ψ). Let F be the event that Y fails to satisfy any of the
three conditions.

Using Chebyshev’s inequality, we have that

P(|D2(Y)− µ2| ≥ ψ(n)) ≤ p(2)(1− p(2))n

ψ(n)2
and P(|D3(Y)− µ3| ≥ ψ(n)) ≤ p(3)(1− p(3))n

ψ(n)2
.

(3.19)
By Lemma 2.10.3(a), we have that λc ∼ 3(c− 2) = 3r/n = o(1) and so

p(2)(1− p(2)) ≤ 1− p(2) = 1− λ2
c

2f2(λc)
=
eλc − 1− λc − λ2

c/2

eλc − 1− λc
=
λ3
c/6

λ2
c/2

(1 +O(λc)) ∼
r

n

and

p(3)(1− p(3)) ≤ p(3) =
λ3
c

6f2(λc)
=

λ3
c

6(eλc − 1− λc)
≤ λ3

c

6λ
2
c

2

=
λc
3
∼ r

n
.

Together with (3.19), this implies

P
(
|D2(Y)− µ2| ≥ ψ(n)

)
= O

(
r

ψ(n)2

)
and P

(
|D3(Y)− µ3| ≥ ψ(n)

)
= O

(
r

ψ(n)2

)
. (3.20)

By Lemma 2.10.10 and Lemma 2.10.3(a),

Var(Yi(Yi − 1)) = Θ(λc) = Θ(r/n).

So using the fact that the Yi’s are independent and Chebyshev’s inequality,

P
(∣∣∣ n∑

i=1

(
Yi
2

)
− µ

∣∣∣ ≥ ψ(n)

)
= O

(
r

ψ(n)2

)
.
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Together with (3.20) this implies that P(F ) = O(r/ψ(n)2).

By Theorem 2.10.8 and Lemma 2.10.7,

P(Σ) ∼ 1√
2πnc(1 + ηc − c)

∼ 1√
2πr

= Ω

(
1√
r

)
.

Thus,

P(F |Σ) ≤ P(F )

P(Σ)
= O(

√
r)O

(
r

ψ(n)2

)
= O

(
r3/2

ψ(n)2

)
.

Now consider the last condition in the definition of D̃(ψ): maxi di ≤ 8 log n′(d). If the first
condition in the definition of D̃(ψ) holds, then, using Lemma 3.4.1, we have D2(d) = n− r+ φ(n)
for some function φ(n) = o(r) and so n′(d) = r − φ(n). Let F ′ denote the event that the first
condition holds but the last condition fails. Thus, P(F ′) ≤ P

(
maxi Yi ≥ 8 log(r − φ(n))

)
. For

r ≤
√
n, by Lemma 2.10.3(a),

E (Dj(Y)) =
λ2
c

j!f2(λc)
λj−2
c = O

(
rj−2

nj−2

)
,

for every j ≥ 3. Thus, using Markov’s inequality and the union bound,

P
(
Dj(Y) ≥ 1 for some j ≥ 4

)
≤ n ·O(1/n2) = O(1/n).

For r >
√
n, it is easy to bound the tail probability of Yi. By (2.18),

P
(
Yi ≥ 8 log(r − φ(n))

)
= O

(
exp

(
− 4 log

(
r − φ(n)

)))
= O

(
exp(−4 log r)

)
= O

(
1

n2

)
.

Thus, P(maxi Yi > 8 log(r − φ(n))) = O(1/n). Since P(Σ) = Ω(1/
√
r), we conclude that

P(F ′|Σ) ≤ O(
√
r)O(1/n) = O(

√
r/n).

Hence

P(D̃(ψ)|Σ) ≥ 1− P(F |Σ)− P(F ′|Σ) = 1 +O

(
r
√
r

ψ(n)2

)
+O

(√
r

n

)
= 1 +O

(
r2ε−1/2

)
+O

(√
r

n

)
,

and we proved (3.17). This finishes the proof of Theorem 3.1.3(a).
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3.4.1 2-connected simple pre-kernels

In this section, we estimate the probability that the graph generated with kernel configuration
model with degree sequence d is 2-connected and simple, thus proving Proposition 3.4.2. Let
d ∈ D̃(ψ). Let G be the pre-kernel obtained by the kernel configuration model with degree
sequence d and let K denote the kernel. Since the pre-kernel G is obtained from K by subdividing
edges, any loop in K either remains a loop in G or it receives at least one vertex and then the
vertex incident to the loop in K becomes a cut-vertex in G. Hence, G is 2-connected and simple
if and only G is simple and K is 2-connected and loopless (but K is permitted to have multiple
edges). Let B denote the event that G is simple and K is 2-edge-connected and has no loops. The
maximum degree in K is at most 8 log(n′) < (n′)0.04 and so by Proposition 3.3.1

P(B) = P(2cs(d)) + o(1),

and thus it suffices to show that P(B) ∼ 1/e.

First we compute the probability that G is simple. We use a result in [56]:

Lemma 3.4.3 ([56, Lemma 5]). Let D̂(n,m) be the subset of D(n,m) such that d ∈ D̂(n,m) if
maxi di ≤ 6 log n and

∑
i∈R(d)

(
di
2

)
< 4r. The graph G generated with kernel configuration model

and degree sequence d is connected and simple with probability 1 +O(r−1 + rn−1) uniformly for
d ∈ D̂(n,m) with r →∞ and r = o(n).

We remark that we only use the fact that the probability that G is simple is 1 + o(1) and so
Lemma 3.4.3 states more than we actually need. By looking at its proof in [56], one can easily see
that the probability that G is simple is 1 +O(r/n).

We have that 8 log n′(d) ≤ 5(log n) for n sufficiently large, depending only on ψ. This is
because n′(d) = r + o(r) = o(n) for d ∈ D̃(ψ). So we have that max di ≤ 6 log n and, by
Lemma 3.4.1 and the definition of D̃(ψ),

∑
i∈R(d)

(
di
2

)
=

n∑
i=1

(
di
2

)
−D2(d) = n+ 2r + o(r)− (n− r + o(r)) = 3r + o(r) < 4r,

for large n (the required size of n depending only on m and ψ). Thus, the probability of G being
simple is 1 + o(1) by Lemma 3.4.3 and so it suffices to show that the probability that the kernel is
2-edge-connected and loopless is asymptotic to 1/e.

For a random pairing with a given degree sequence such that each entry has value at least 3,
the probability of being 2-edge-connected was investigated by  Luczak in [46].

Theorem 3.4.4 ([46, Theorem 12.1]). Let H be a graph obtained with pairing model with degree
degree sequence d ∈ D(n,m) such that each entry has value at least 3. Then
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(i) With probability going 1 as m goes to infinity, all 2-edge connected maximal subgraphs
in H, except at most one, are loops in vertices of degree 3.

(ii) If D3/m→ α as m→∞, where D3 is the number of vertices of degree 3, then the probability
that H is 2-edge-connected goes to exp(−1.5α) as M →∞.

We remark that [46, Theorem 12.1] is stronger and has more statements than Theorem 3.4.4,
but we only included the statements we will use. Recall that m′(d) = m−D2(d) is the number
of edges in the kernel. Using Lemma 3.4.1 for µ2 and the fact that d ∈ D̃(ψ),

m′(d) = m−D2(d) = m− µ2 +O(ψ) = m− µ2 + o(r) =
3r + o(r)

2
.

Applying this to K, we have
D3(d)

m′
=

r + o(r)

(3/2)r + o(r)
∼ 2

3

so the probability that K is 2-edge-connected goes to 1/e by Theorem 3.4.4(ii). Note that K
being 2-edge-connected implies that there are no loops on vertices of degree 3 in K. The expected
number of loops in K on vertices of degree at least 4 is∑

i:di≥4

(
di
2

)
(2m′ − 3)!!

(2m′ − 1)!!
=
∑
i:di≥4

(
di
2

)
1

2m′ − 1

=

(
n∑
i=1

(
di
2

)
−D2 − 3D3

)
1

2m− 2D2 − 1

=
n+ 2r − (n− r)− 3r + o(r)

2m− 2(n− r) + o(r)
by Lemma 3.4.1

=
o(r)

3r + o(r)
= o(1)

and so a.a.s. no such loops exist. We conclude that P(B) ∼ 1/e and so P(2cs(d)) ∼ 1
e .

Observation 1. An alternative to compute the probability that the graph generated by the
pairing model with a degree sequence with minimum entry at least 3 is bridgeless and loopless
is to directly modify  Luczak’s proof: when computing the expected number of bridges (Y in his
notation), one could leave out the bridges whose deletion would create a component with a single
vertex and a single edge. By doing so, it is easy to see that the expected value of Y would be o(1).
It follows directly from this that the only bridges are a.a.s. adjacent to vertices of degree 3 with a
loop. Then, one would only need to compute the probability of having no loops.
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3.5 The case c bounded away from 2, and bounded

In this section, we obtain an asymptotic formula for the number T (n,m) of 2-connected (n,m)-
graphs for the range c = 2m/n = O(1) bounded away from 2 from above, proving Theorem 3.1.2(b).
We also obtain a formula for the number T (d) of 2-connected graphs with degree sequence d
with d ∈ D(n,m) satisfying some constraints, proving Theorem 3.1.3(b). In Proposition 3.2.2,
we have already shown how to obtain T (d) by computing P(2cs(d)), the probability that a
graph generated with the kernel configuration model is 2-connected and simple, and how to
obtain T (n,m) by computing E

(√
m′(Y)P(2cs(Y))

∣∣Σ), where Y = (Y1, . . . , Yn) is a vector of
independent truncated Poisson random variables with parameter (2, λc) and Σ is the event that∑

i Yi = 2m.

We will define a set of typical degree sequences D̃ so that, for d ∈ D̃, we have P(2cs(d)) ∼
exp(−c/2 − λ2

c/4) and so we obtain T (d) for typical degree sequences. We use the following
strategy to compute P(2cs(d)). Proposition 3.3.1 tells us that the kernel is 2-connected if and
only if it is 2-edge-connected. We then use a result by  Luczak [46] that says that every bridge is
adjacent to a vertex of degree 3 with a loop. This means that a.a.s. the pre-kernel is 2-connected
and simple if and only if the kernel is loopless and for every pair of parallel edges in the kernel at
least one of them is subdivided. We use Theorem 2.8.1 (Method of factorial moments for Poisson
random variables) to show that the number of loops in the kernel and the number of pairs of
parallel edges in the pre-kernel have distribution asymptotic to a Poisson random variable with
parameter c/2 + λ2

c/4.

Similarly to the case c → 2, in order to compute T (n,m), we only need to show that the
degree sequences outside D̃ have no significant contribution to E

(√
m′(Y)P(2cs(Y))

∣∣Σ).
We start by defining a set of typical degree sequences. Let ψ : N→ R be a function such that

ψ(n) = o(1). Recall that pc is the probability that a random variable with distribution Po(2, λc)
has value 2. Let

D̃n(ψ) = D̃(ψ) :=
{

d ∈ D(n,m) : di ≤ 6 log n ∀i; |η(d)− ηc| ≤ ψ(n); |D2(d)− pcn| ≤ nψ(n)
}
.

Later we will choose ψ and show that D̃(ψ) is indeed a set of typical degree sequences, that is, we
will show that Y conditioned upon Σ is in D̃(ψ) a.a.s. Let D̃c(ψ) = {d ∈ Nn : di ≥ 2 ∀i; d 6∈ D̃(ψ)}.
(Note that if d ∈ D̃(ψ) then

∑
di = 2m but we do not have this constraint for D̃c(ψ).)

Let d ∈ D̃(ψ) and let d′ be the restriction of d to the coordinates with value at least 3. Let
G be obtained using the kernel configuration model with degree sequence d. Let n′ = n′(d) :=
|{i : di ≥ 3}| denote the number of vertices of degree at least 3. Let M be the random perfect

matching placed on the set of
∑n′

i=1 d
′
i points grouped in bins of size d′1, d

′
2, . . . , d

′
n′ to obtain the

kernel. Let K be the kernel obtained by contracting these bins.
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We want to compute the probability that G is 2-connected and simple. Let B be the event that
G is simple and that K is 2-edge-connected and has no loops. Since n′ = (1− pc)n+ o(n) = Θ(n),
we have maxi di ≤ 6 log n ≤ (n′)0.04, and so Proposition 3.3.1 says that, a.a.s., the event B
implies the event that K is 2-connected. If K is 2-connected and loopless, it is obvious that G
is also 2-connected. In other words, P(B \ 2cs(d)) = o(1) and, since 2cs(d) ⊆ B, we deduce
P(2cs(d)) = P(B) + o(1).

Let A denote the event that G has no multiple edges and K has no loops. Theorem 3.4.4(iii)
due to  Luczak states that a.a.s. all 2-edge-connected maximal subgraphs in K, except at most one,
have a single edge. That is, a.a.s. each 2-edge-connected maximal subgraph, except at most one,
consists of a single vertex with a loop and the vertex has degree 3 in K. Hence, P(A \B) = o(1).
Since B ⊆ A, we deduce P(A) = P(B) + o(1). We estimate the probability of A as follows:

Lemma 3.5.1. We have that
P(A) ∼ exp(−c/2− λ2

c/4). (3.21)

We present the proof for this lemma in Section 3.5.1. Thus, we have

P(2cs) = P(A) + o(1) ∼ exp(−c/2− λ2
c/4). (3.22)

The proof of Theorem 3.1.3(b) is now straightforward. For d ∈ D̃(ψ), we have that |D2(d)−
pcn| ≤ nψ(n). Thus,√

m′(d)

m
=

√
m−D2(d)

m
=

√
(c/2)n− pcn+ o(n)

(c/2)n
∼
√
c− 2pc

c

since c > 2 and pc ≤ 1. Using this fact together with (3.22),

P(2cs(d))
√
m′ ∼

√
m

√
c− 2pc

c
exp(−c/2− λ2

c/4), (3.23)

which together with Proposition 3.2.2 (Equation (3.5)) shows that

T (d) ∼
(2m− 1)!!

√
m′(d)/mP(2cs(d))∏n
i=1 di!

∼ (2m− 1)!!∏n
i=1 di!

√
c− 2pc

c
exp(−c/2− λ2

c/4),

proving Theorem 3.1.3(b).

We now prove Theorem 3.1.2(b). First we show that

P
(
Y ∈ D̃c(ψ)

)
= O

(
1

nψ(n)2

)
and P

(
Y ∈ D̃c(ψ)|Σ

)
= O

(
1

n1/2ψ(n)2

)
. (3.24)
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Since c = O(1) we can use (2.18) with j0 = 6 log n, apply the union bound, and conclude

P(max
i
Yi > 6 log n) = O

(
1

n2

)
.

Note that D2(Y) has binomial distribution with probability pc. Using Chebyshev’s inequality,

P(|D2(Y)− pcn| ≥ nψ(n)) ≤ pc(1− pc)n
n2ψ(n)2

= O

(
1

nψ(n)2

)
since 0 ≤ pc ≤ 1

We have that λc = O(1), since c = O(1) and by Lemma 2.10.3. Using Chebyshev’s inequality,
together with Lemma 2.10.10 and the facts that the variables Yi’s are independent and λc = O(1),
we get

P(|η(Y)− ηc| ≥ ψ(n)) = O

(
1

nψ(n)2

)
.

Hence,

P(Y ∈ D̃c) = O

(
1

nψ(n)2

)
.

By Theorem 2.10.8, we have that

P(Σ) ∼ 1√
2πnc(1 + ηc − c)

.

Using Lemma 2.10.7, we have that c(1 + ηc − c) = O(c− 2) = O(1). This implies that P(Σ) =
Ω(1/

√
n). Conditioning on Σ, we have

P(Y ∈ D̃c|Σ) ≤ P(Y ∈ D̃c)
P(Σ)

= O

(
n1/2

nψ(n)2

)
= O

(
1

n1/2ψ(n)2

)
.

This proves (3.24).

Let ε be a constant in (0, 1/4) and let ψ(n) = n−ε. We have that

E (w(Y)|Σ) = E (w(Y)|D̃(ψ))P(D̃(ψ)|Σ) + E (w(Y)|Σ ∩ D̃c(ψ))P(D̃c(ψ)|Σ).

Note that w(Y) ≤
√
m since P(2cs) ≤ 1. By (3.24), we have that P(D̃c(ψ)|Σ) = O(1/n1/2−2ε).

So E (w(Y)|Σ ∩ D̃c)P(D̃c|Σ) = O(
√
m/n1/2−2ε).

For any d ∈ D̃(ψ), we have that w(d) ∼
√
m(c− 2pc)/c exp(−c/2− λ2

c/4) =: t(n) by (3.23)
and, since D̃n(ψ) is a finite set for each n, we have that there exists a function h(n) = o(1) such
that |w(d)/t(n)− 1| ≤ h(n) for any d ∈ D̃n(ψ) by Lemma 2.7.1 and so∣∣∣E (w(Y)|Σ ∩ D̃(ψ))− t(n)

∣∣∣ ≤ ∑
d∈D̃(ψ)

|w(d)− t(n)|P(Y = d |Σ ∩ D̃(ψ)) ≤ h(n)t(n) = o(t(n)).
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Hence,

E
(
w(Y)|Σ

)
= E

(
w(Y)|Σ ∩ D̃(ψ)

)(
1−O

(
1

n1/2−2ε

))
+O

( √
m

n1/2−2ε

)
=
√
m

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)(
1 + o(1)

)(
1−O

(
1

n1/2−2ε

))
+O

( √
m

n1/2−2ε

)
=
√
m

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)(
1 + o(1)

)
,

which together with Proposition 3.2.2 (Equation (3.6)) and (3.1) implies

T (n,m) = (2m− 1)!!Q(n,m)
√
m−1E (w(Y)|Σ)

∼ (2m− 1)!!
f2(λc)

n

λ2m
c

√
2πnc(1 + ηc − c)

√
m−1E (w(Y)|Σ)

∼ (2m− 1)!!
f2(λc)

n

λ2m
c

√
2πnc(1 + ηc − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
,

proving Theorem 3.1.2(b).

3.5.1 Probability of no loops in the kernel and no multiple edges in the pre-
kernel.

In this section, we estimate the probability that the kernel has no loops and the pre-kernel has no
multiple edges, proving Lemma 3.5.1. Recall that d ∈ D̃(ψ). Let e1, . . . , e` denote the pairs of
points that would induce loops in K. For every 1 ≤ i ≤ `, let Xi be the indicator variable for
ei ∈ E(K). Let X =

∑`
i=1Xi, that is X counts the loops in the kernel. Let f1, . . . , ft denote

the pairs of points that would induce double edges in K (here we do not include double loops).
For every 1 ≤ j ≤ t, let Yj be the indicator variable for fj ⊆ E(G). Let Y =

∑t
j=1 Yj , that is Y

counts the pairs of parallel edges in the pre-kernel.

Using Theorem 2.8.1, we will show that X + Y converges in distribution to a Poisson random
variable with mean c/2 + λ2

c/4. This implies that

P
(
A
)

= P
(
X + Y = 0

)
= P

(
Po(c/2 + λ2

c/4) = 0
)

+ o(1) ∼ exp

(
− c

2
− λ2

c

4

)
,

which proves Lemma 3.5.1. We need to show, for every positive integer k, that

E
(
[X + Y ]k

)
=

(
c

2
+
λ2
c

4

)k
+ o(1),
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where [x]i is defined as x(x− 1) · · · (x− i+ 1). Let Φ(x) = (2x− 1)!! = (2x)!/(2xx!) for x ∈ N.

Let M denote the number of edges in K. Considering the first moment, note that for every
1 ≤ i ≤ `, we have that

P(Xi = 1) =
Φ(m′ − 1)

Φ(m′)
=

1

2m′ − 1
∼ 1

2m′
.

For the parallel edges, we need to know the probability that a given set of edges of the kernel is
not assigned any vertices of degree 2 in the kernel configuration model. Let

δ =

(
c− 2pc

c

)2

=

(
λc
c

)2

. (3.25)

For any fixed q and any set of pair of points {h1, . . . , hq} in K, the probability that none of these
kernel edges is assigned a vertex of degree 2 (and hence become edges of G) can be estimated as
follows:

P
(
{h1, . . . , hq} ⊆ E(G)

∣∣∣ {h1, . . . , hq} ⊆ E(K)
)

=

D2−1∏
i=0

(
1− q

m′ + i

)

= exp

(
D2−1∑
i=0

log

(
1− q

m′ + i

))
= exp

(
−q

D2−1∑
i=0

1

m′ + i
+O

(
D2

m2

))
,

since log(1 + x) = 1 + x+O(x2) for x→ 0. Thus, using that
∑j

i=1 = log j + γ +O(1/j) where γ
is the Euler-Mascheroni constant we have

P
(
{h1, . . . , hq} ⊆ E(G)

∣∣∣ {h1, . . . , hq} ⊆ E(K)
)
∼ exp

(
− q

m′+D2−1∑
i=1

1

i
+ q

m′−1∑
i=1

1

i

)

∼ exp
(
− q log(m′ +D2 − 1) + q log(m′ − 1)

)
=

(
m′ − 1

m′ +D2 − 1

)q
∼
(
cn/2− pcn

cn/2

)q
= δq/2,

(3.26)

since d ∈ D̃(ψ). Thus, for every 1 ≤ j ≤ t, we have that

P
(
Yj = 1

)
= P

(
fj ⊆ E(K)

)
· P
(
fj ⊆ E(G)

∣∣ fj ⊆ E(K)
)
∼ Φ(m′ − 2)

Φ(m′)
δ ∼ δ

(2m′)2
.

Recall d′ is the degree sequence of K. Hence,

E (X + Y ) = E (X) + E (Y ) ∼ ` · 1

2M
+ t · δ

(2M)2

=

∑n′

i=1

(d′i
2

)
2M

+
δ

(2M)2

∑
(i,j)
i 6=j

(
d′i
2

)(
d′j
2

)
,
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since the number of possible of loops is ` =
∑n′

i=1

(d′i
2

)
and the number of possible pairs of parallel

edges is t =
∑

i 6=j
(d′i

2

)(d′j
2

)
. We will use the following lemma, which is proved in the end of the

section.

Lemma 3.5.2. Let q be a fixed positive integer. For d ∈ D̃(ψ),

∑
(i1,...,iq)

q∏
j=1

(
d′ij
2

)
· 1

(2M)q
∼
( c

2

)q
,

where the sum is over all (i1, . . . , iq) ∈ [n′]q where ij 6= ij′ for all j 6= j′.

Thus, using the definition of δ,

E (X + Y ) ∼ c

2
+ δ

( c
2

)2
=
c

2
+

(
λc
c

)2 c2

4
=
c

2
+
λ2
c

4
.

It only remains to examine the higher factorial moments. We have that

E
(
[X + Y ]k

)
=

∑
k1+k2=k

(
k

k1

) ∑
y∈I(k1,k2)

P(W (y) = 1)

for y ∈ I(k1, k2), where I(k1, k2) is the set of tuples y ∈ ({e1, . . . , e`})k1×({f1, . . . , ft})k2 such that
yi 6= yj for i 6= j and

⋃k
i=1{yi} induces a matching on the set of points of the kernel configuration

model, and W (y) is the indicator variable for the event that Xi = 1 for every ei ∈ {y1, . . . , yk}
and Yj = 1 for every fj ∈ {y1, . . . , yk}. (For more details, see the observations in Section 2.8)

Let I ′(k1, k2) be the set of tuples y ∈ I(k1, k2) such that, in the graph induced by
⋃k
i=1{yi}

in K, the degree of every vertex is either 0 or 2. (This is the nonoverlapping case.) Let
I ′′(k1, k2) = I(k1, k2) \ I ′(k1, k2).

For y ∈ I ′′(k1, k2), it is easy to see that the graph induced by
⋃k
i=1{yi} in K has more edges

than vertices. For any fixed multigraph H with more edges than vertices, the expected number of
copies of H in K can be bounded as follows. There are at most (n′)|V (H)| ways of assigning the
vertices of H to vertices of K. If we assign a vertex with degree d in H to a vertex v in K, then there
are at most ∆d ways of choosing the points inside v to be the points of the vertex in H, where ∆
is the maximum degree in K. So there are at most (n′)|V (H)|∆2|E(H)| = O((n′)|V (H)|(log n)2|E(H)|)
possible copies of H in K, because d ∈ D̃(ψ). The probability that a set of |E(H)| edges in K is
O((m′)−|E(H)|). Thus, the expected number of copies of H in K is at most

O

(
(n′)|V (H)|(log n)2|E(H)|

(m′)|E(H)|

)
= O

(
(n′)|V (H)|(log n)2|E(H)|

(n′)|V (H)|+1

)
= o(1).
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From this and the fact that there are O(1) non-isomorphic possible graphs induced by
⋃k
i=1{yi}

in K (since k is fixed), we deduce that∑
k1+k2=k

(
k

k1

) ∑
y∈I′′(k1,k2)

P(W (y) = 1) = o(1).

For I ′(k1, k2), using (3.26) and Lemma 3.5.2,∑
y∈I′(k1,k2)

P(W (y) = 1) ∼
∑

y∈I′(k1,k2)

δk2

(2m′)k1+2k2
= |I ′(k1, k2)| 1

(2m′)k1+2k2
δk2

=
∑

(i1,...,ik1+2k2
)

k1+2k2∏
j=1

(
d′ij
2

)
1

(2m′)k1+2k2
· δk2

∼
( c

2

)k1+2k2
δk2 ,

where the second summation is over the tuples (i1, . . . , ik1+2k2) ∈ [n′]k1+2k2 such that ij 6= ij′

whenever j 6= j′. Thus,

E ([X + Y ]k) = o(1) +
∑

k1+k2=k

(
k

k1

) ∑
y∈I′(k1,k2)

P(W (y) = 1)

=
∑

k1+k2=k

(
k

k1

)( c
2

)k1+2k2
δk2 + o(1)

=

(
c

2
+
λ2
c

4

)k
+ o(1),

as required to prove Lemma 3.5.1.

Proof of Lemma 3.5.2. For every q ≥ 1, let

L6=q = {(i1, . . . , iq) ∈ [n′]q : ij 6= ij′ ∀j 6= j′},
L=
q = {(i1, . . . , iq) ∈ [n′]q : ij = ij′ for some j 6= j′}.

Since d ∈ D̃(ψ), by the definition of ηc and pc,∑n′

i=1 d
′
i(d
′
i − 1)∑n′

i=1 d
′
i

=

∑n
i=1 di(di − 1)− 2D2∑n

i=1 di − 2D2
∼ ηccn− 2pcn

cn− 2pcn
=
ηcc− 2pc
c− 2pc

=

ηc −
λ2
c

cf2(λc)

1− λ2
c

cf2(λc)

=

λce
λc

f1(λc)
− λc
f1(λc)

1− λc
f1(λc)

= λc

(
eλc − 1

f1(λc)− λc

)
= c.
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So, for every q ≥ 1,

∑
(i1,...,iq)∈[n′]q

q∏
j=1

(
d′ij
2

)
· 1

(2m′)q
=

(∑
i

(d′i
2

)
2m′

)q
∼
( c

2

)q
= Θ(1). (3.27)

For q ≥ 2, for ∆ = maxi d
′
i

∑
(i1,...,iq)∈L=

q

q∏
j=1

(
d′ij
2

)
· 1

(2m′)q
≤ q! ·

∑
(i1,...,iq−1)∈[n′]q−1

(
d′i1
2

) q−1∏
j=1

(
d′ij
2

)
· 1

(2m′)q

≤ q! ∆2

4m′

∑
(i1,...,iq−1)∈[n′]q−1

q−1∏
j=1

(
d′ij
2

)
· 1

(2m′)q−1

∼ q! ∆2

4m′

( c
2

)q−1
= o(1),

(3.28)

since ∆ ≤ 6 log n and m′ = m−D2 ∼ cn− pcn = Ω(n) as d ∈ D̃(ψ).

Note that for q = 1, we have [n′]q = L6=q and we are done by (3.27). So suppose q ≥ 2. Then

[n′]q is the disjoint union of L 6=q and L=
q . Thus, using (3.27) and (3.28),

∑
(i1,...,iq)∈L6=q

q∏
j=1

(
d′ij
2

)
· 1

(2m′)q
=

=
∑

(i1,...,iq)∈[n′]q

q∏
j=1

(
d′ij
2

)
· 1

(2m′)q
−

∑
(i1,...,iq)∈L=

q

q∏
j=1

(
d′ij
2

)
· 1

(2m′)q

=
∑

(i1,...,iq)∈[n′]q

q∏
j=1

(
d′ij
2

)
· 1

(2m′)q
+ o(1) ∼

( c
2

)q
.

3.6 The case c→∞

In this section, we obtain an asymptotic formula for the number T (n,m) of 2-connected (n,m)-
graphs for the range c = 2m/n→∞ and c = O(log n), proving Theorem 3.1.2(c). We also obtain
a formula for the number T (d) of 2-connected graphs with degree sequence d with d ∈ D(n,m)
satisfying some constraints, proving Theorem 3.1.3(c).

Recall set D(n,m) contains all degree sequences d such that
∑n

i=1 di = 2m and di ≥ 2 for
all i ∈ [n]. Recall that U(d) is the probability of obtaining a simple graph using the pairing
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model with degree sequence d, and U ′(d) is defined similarly, for the event that it is additionally
2-connected.

In view of Proposition 3.2.1, it suffices to estimate U ′(d) to approximate T (d) and to estimate
E (U ′(Y|Σ)) to estimate T (n,m), where Y = (Y1, . . . , Yn) is a vector of independent truncated
Poisson random variables with parameter (2, λc) and Σ is the event that

∑
i Yi = 2m.

We will define a set of typical degree sequences such that U(d) ∼ U ′(d). The probability U(d)
has been already intensively studied (see [5, 48]). This allows us to easily derive an asymptotic
formula for T (d). We then show that E (U ′(d)|Σ) ∼ E (U(d)|Σ), which has also been already
determined (see [55]) and so we get an asymptotic formula for T (n,m).

Let 0 < ε < 0.01 be a constant, and let

D̃n = D̃ := {d ∈ D(n,m) : max di ≤ nε} and D̃c := D(n,m) \ D̃.

By [46, Theorem 12.2(iii)],
U(d) ∼ U ′(d), (3.29)

when d is in D(n,m) and satisfies D2(d)/m → 0 and maxi di ≤ n0.01. The condition on D2 is
satisfied by all d of concern when n is large since D2(d) ≤ n and c→∞. Thus (3.29) holds for
any sequence d(n) with d ∈ D̃ and m/n→∞ where m = 1

2

∑n
i=1 di.

By Theorem 2.2.2 due to McKay,

U(d) = exp

(
−η(d)/2− η(d)2/4 +O

(
maxi d

4
i

m

))
. (3.30)

This result, together with Proposition 3.2.1 (Equation (3.3)) shows that

T (d) =
(2m− 1)!!∏n

j=1 dj !
U ′(d) ∼ (2m− 1)!!∏n

j=1 dj !
exp

(
−η(d)/2− η(d)2/4

)
,

proving Theorem 3.1.3(c).

In order to use Proposition 3.2.1 we need to compute E (U ′(Y)|Σ). For any d ∈ D̃, we have
that U(d) ∼ U ′(d) by (3.29) and, since D̃n is a finite set for each n, we have that there exists a
function h(n) = o(1) such that |U(d)/U ′(d)− 1| ≤ h(n) for any d ∈ D̃n by Lemma 2.7.1 and so∣∣∣E(U ′(Y)|D̃

)
− E

(
U(Y)|D̃

)∣∣∣ ≤∑
d∈D̃

∣∣U ′(d)− U(d)
∣∣P(Y = d | D̃) ≤ h(n) = o(1).

Thus,

E
(
U ′(Y)|Σ

)
= E

(
U ′(Y)|D̃

)
P(D̃|Σ) + E

(
U ′(Y)|D̃c

)
P(D̃c|Σ)

= E
(
U(Y)|D̃

)
(1 + o(1))P(D̃|Σ) +O(P(D̃c|Σ)) (3.31)
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Equation (2.18) implies for any β > 0

P
(

max
j
Yj ≥ mβ

)
≤ exp(−nα)

for some fixed α(β). This shows that P(D̃c|Σ) = O(exp(−nα)) for some fixed positive α. Also, by
Theorem 2.10.8 (Equation (2.16)) give us

E
(

exp(−η(Y)/2− η(Y)2/4)|Σ
)
∼ exp(−ηc/2− η2

c/4) = exp(−O(log2 n)),

since ηc ≤ c by (2.7) and c = 2m/n = O(log n).

Using (3.30) and the bound on P(D̃c|Σ), we may now deduce that the first term in (3.31)
dominates the second, and thus

E
(
U ′(Y)|Σ

)
∼ E

(
U(Y)|D̃

)
.

Similarly,

E
(
U(Y)|Σ

)
= E

(
U(Y)|D̃

)
P(D̃|Σ) +O(P(D̃c|Σ)) ∼ E

(
U(Y)|D̃

)
and so

E
(
U ′(Y)|Σ

)
∼ E

(
U(Y)|Σ

)
. (3.32)

By [55, Theorem 3],

C(n,m) ∼ (2m− 1)!!Q(n,m) exp
(
−ηc/2− η2

c/4
)
.

Thus, by (3.2),

E
(
U(Y)|Σ

)
∼ exp

(
−ηc/2− η2

c/4
)
,

and using Proposition 3.2.1 (Equation (3.4)) and (3.1), we get

T (n,m) ∼ (2m− 1)!!
(eλc − 1− λc)n

λ2m
c

√
2πnc(1 + ηc − c)

exp
(
−ηc/2− η2

c/4
)
. (3.33)

Since c→∞, we have that λc ∼ c by Lemma 2.10.3. This implies that ηc = λce
λc/(eλc − 1) ∼ c.

This fact together with (3.33) implies Theorem 3.1.2(c).
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3.7 Proof of Theorem 3.1.1

We have already derived formulae for T (n,m) according to the range of m. The ranges we
considered were: c→ 2, bounded c > 2 (bounded away from 2), and c→∞, and the formulae are
described in Theorem 3.1.2. Now we will show how to combine the formulae in these cases into
a single formula. More precisely, we will show that the formula obtained in Theorem 3.1.2 for
each of the cases is asymptotic to the formula in Theorem 3.1.1 and then Theorem 3.1.1 follows
from a straightforward application of the subsubsequence principle (for more on this principle, see
Section 2.6). Let

t(n,m) = (2m− 1)!!
(exp(λc)− 1− λc)n

λ2m
c

√
2πnc(1 + ηc − c)

√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
.

The asymptotic formula for bounded c > 2 in Theorem 3.1.2 matches t(n,m). Thus, it suffices
to check the cases c→ 2 and c→∞

For c→ 2, by comparing the formula in Theorem 3.1.2 and t(n,m), it suffices to show√
3r

2m

1

e
∼
√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
, (3.34)

and, for c→∞, it suffices to show

exp

(
−ηc

2
− η2

c

4

)
∼
√
c− 2pc

c
exp

(
− c

2
− λ2

c

4

)
. (3.35)

So suppose c→ 2. By (2.10), λc = 3(c− 2) +O((c− 2)2) = o(1). Thus,

exp

(
− c

2
− λ2

c

4

)
∼ exp

(
− c

2

)
∼ 1

e
.

By series expansion,

pc = 1− λc
3

+O(λ2
c) = 1− 1

3
· (3(c− 2)) +O((c− 2)2) = 3− c+O

(
r2

n2

)
.

Using c = 2m/n = 2 + r/n,√
c− 2pc

c
=

√
c− 6 + 2c+O(r2/n2)

c
=

√
3(2 + r/n)− 6 +O(r2/n2)

2m/n
∼
√

3r

2m
,
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and so (3.34) holds. Now suppose c→∞. Then λc ∼ c by Lemma 2.10.3(c). From the definition
of λc we have c = λc +O(λ2

ce
−λc). Also,

ηc = λc ·
eλc

eλc − 1
= λc +O(λce

−λc) and pc =
λ2
c

2(eλc − 1− λc)
→ 0.

This implies √
c− 2pc

c
∼ 1 and exp

(
−ηc

2
− η2

c

4

)
∼ exp

(
− c

2
− λ2

c

4

)
,

and so (3.35) holds.

The subsubsequence principle states that if, for every subsequence of (T (n,m)/t(n,m))n∈N,
there exists a subsequence of it such that∣∣∣T (n,m)

t(n,m)
− 1
∣∣∣ = o(1), (3.36)

then, considering the whole sequence,∣∣∣T (n,m)

t(n,m)
− 1
∣∣∣ = o(1).

For any subsequence of (T (n,m)/t(n,m))n∈N, there exists a subsequence of it such that c =
2m/n → ∞ or c → 2 or c is bounded and bounded away from 2 from above. In all cases, we
checked that (3.36) holds and so we proved Theorem 3.1.1.

3.8 Enumeration of k-edge-connected graphs

Recall that T ′(n,m) denotes the number of 2-edge-connected (n,m)-graphs. In this section, we
obtain an asymptotic formula for T ′(n,m) for the range m− n→∞ with m = O(n log n), thus
proving Theorem 3.1.5.

The proof is very similar to the proof for 2-connected graphs and so we will only give an
overview of the proof, highlighting the differences. For c → ∞, we have already proved that
an asymptotic formula for 2-cores with vertex set [n] and m edges is also valid for 2-connected
(n,m)-graphs. Since the number of 2-edge-connected (n,m)-graphs is between the number of
2-cores with vertex set [n] and m edges and the number of 2-connected (n,m)-graphs, we have
that the formula in Theorem 3.1.2(c) is an asymptotic formula for T ′(n,m). For c→ 2, our proof
actually shows that the probability that the random graph G generated with kernel configuration
model is 2-edge-connected is asymptotic to the probability that the graph is 2-connected. This is
because, a.a.s., G is 2-connected if and only of its kernel is 2-edge-connected and loopless, and the
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probability of multiple edges or loops goes to zero. Hence, the formula in Theorem 3.1.2(a) is also
an asymptotic formula for T ′(n,m) in this range.

We now discuss the case c bounded away from 2 from above and bounded. Recall that, for the
2-connected case, we have that, a.a.s., the random graph G generated with kernel configuration
model was 2-connected and simple if and only if G was simple and the kernel K was 2-edge-
connected and loopless. We then used a result by  Luczak that show that a.a.s. every bridge in the
kernel is an edge incident to a vertex of degree 3 with a loop. We estimated P(X + Y ) = 0 by
using the method of factorial moments for Poisson random variables (Theorem 2.8.1), where X is
the number of loops in K and Y is the number of double edges in G. For the 2-edge-connected
case, G is simple and 2-edge-connected if and only if G is simple, the kernel K is 2-edge-connected
such that every loop in K on vertices of degree at least 4 receives at least 2 vertices of degree 2.
Note that loops are not allowed in the kernel of 2-connected graphs because they either remain as
a loop in G and so G is not simple, or they receive vertices making the vertex of the kernel where
the loop was a cut vertex. For 2-edge-connected graphs, loops in vertices of degree at least 4 are
allowed in the kernel as long as they are subdvided at least twice when obtaining G. Loops in
vertices of degree 3 are not allowed since the edge adjacent to vertex that is not the loop is then
a bridge. Again,  Luczak’s result shows that a.a.s. every bridge in the kernel is an edge incident
to a vertex of degree 3 with a loop. Thus we need to estimate P(X + Y + Z) = 0, where X is
the number of loops in the kernel on vertices of degree 3, Y is the number of double edges in
pre-kernel G and Z is the number of loops on vertices of degree at least 4 receiving less than 2
vertices in G. This can be accomplished using Theorem 2.8.1 by estimating the factorial moments.
We will only show the first moment here.

Similarly to Section 3.5.1, we only need to estimate the probability for a set of ‘typical’ degree
sequences. In this case we use D̃(ψ) with ψ = o(1) as define in Section 3.5.1 with the additional
constraint that |D3(d) − p(3)n| ≤ ψ(n), where p(3) is the probability that a truncated Poisson
random variable with parameters (2, λc) is 3. We work with d ∈ D̃(ψ). So redefine D̃(ψ) as

D̃n(ψ) = D̃(ψ) :=
{

d ∈ D(n,m) :di ≤ 6 log n ∀i; |η(d)− ηc| ≤ ψ(n);

|D2(d)− pcn| ≤ nψ(n), |D3(d)− p(3)n| ≤ nψ(n)
}
.

First we estimate E (X). For each vertex of degree 3, there are 3 choices for points in the loop.
Each loop occurs with probability 2M . Thus, E (X) = D3/(2M) ∼ p(3)n/(2M) ∼ c/2 − λc/2.
The expected value of Y has been already estimated in Section 3.5.1: we have that E (Y ) ∼ λ2

c/4.
We now compute E (Z). Using d ∈ D̃, the probability that an edge in the kernel receives no vertex
in the pre-kernel is

[m′ − 1]D2

[m′]D2
=
m′ − 1

m− 1
∼
√
δ,
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where [x]k := x(x+ 1) . . . (x+ k − 1) and δ is defined in (3.25) as ((c− 2pc)/c)
2 = (λc/c)

2. Using
d ∈ D̃, the probability that an edge in the kernel receives exactly one vertex in the pre-kernel is

D2[m′ − 1]D2−1

[m′]D2
=

D2(m′ − 1)

(m− 2)(m− 1)
∼ (1−

√
δ)
√
δ.

This is because the probability that any specific vertex from the ones inserted in the edges of the
kernel when obtaining the pre-kernel is the only one inserted in the edge is [m′ − 1]D2−1/[m′]D2

The number of possible loops in vertices of degree at least 4 is
∑

i

(d′i
2

)
− 3D3, where d′ is the

degree sequence of the kernel. The probability that each of these loops is present is 1/(2m′). Thus,
using d ∈ D̃ and Lemma 3.5.2,

E (Z) =

∑
i

(d′i
2

)
− 3D3

2m′
(2
√
δ − δ) ∼

(
c

2
− 3D3

2m′

)
(2
√
δ − δ) ∼ λc

2
− λ3

c

2(eλc − 1)2
.

The probability that G is 2-edge-connected and simple is then asymptotic to

exp

(
− c

2
− λ2

c

4
+

λ3
c

2(eλc − 1)2

)
,

and the formula for T ′(n,m) can be deduced in the same way as the number of 2-connected graph
in Section 3.5.

Similarly to the proof in Section 3.7, the asymptotic formulae obtained for the different ranges
of c are easily combined using the subsubsequence principle, finishing the proof of Theorem 3.1.5.
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Glossary for Chapter 3

2cs(d) event that a random graph generated with kernel configuration model with degree
sequence d is 2-connected and simple, p. 27

(2k + 1)!! (2k − 1)(2k − 3) · · · 1, the odd falling factorial

c 2m/n, the average degree

Dj(d) |{i : di = j}|, the number of vertices of degree j

D(n,m) set of degree sequences d = (d1, . . . , dn) such that
∑n

i=1 di = 2m and minni=1 di ≥ 2

D̃ used to define sets of ‘typical’ degree sequences, pp. 36, 42, 50

η(d)
∑

i di(di − 1)/(2m)

ηc λce
λc/(eλc − 1)

fk(λ) eλ −
∑k−1

i=0 λ
i/i!

Φ(k) (2k − 1)!! = (2k)!/(2kk!), the number of perfect matchings on 2k points

λc the unique positive solution to λ(eλ − 1)/(eλ − 1− λ) = c

m′(d) m−D2(d), the number of edges in the kernel

(n,m)-graph any graph on [n] with m edges

pc λ2
c/(2(eλc−1−λc)), the probability that a truncated Poisson random variable Po(2, λc)

has value 2

Q(n,m)
∑

d∈D(n,m)

∏n
j=1 1/dj ! = f2(λc)

n/λ2m
c · P(Σ)

r 2m− 2n, an excess function

R(d)
∑

i:di≥3 di

Σ used to denote the event that
∑n

i=1 Yi = 2m for independent truncated Poisson
random variables with parameters (2, λc)

T (d) number of 2-connected graphs with degree sequence d

T (n,m) number of 2-connected graphs on [n] vertices and m edges

U(d) probability that the random graph generated with pairing model with degree sequence
d is simple, p. 49

U ′(d) probability that the random graph generated with pairing model with degree sequence
d is 2-connected and simple, p. 49

Y used to denote a vector (Y1, . . . , Yn) of independent truncated Poisson random variables
with parameters (2, λc)
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Chapter 4

Asymptotic enumeration of sparse
connected 3-uniform hypergraphs

The problem of counting connected graphs with given number of vertices and edges has been
intensively studied throughout the years. As, we already mentioned in previous chapters, one
of the best results is an asymptotic formula by Bender, Canfield and McKay [7] that works
when m − n → ∞ as n → ∞, where m = m(n) is the number of edges and n is the number of
vertices. Pittel and Wormald [56] rederived this formula with improved error bounds for some
ranges. Far less is known about connected hypergraphs. Karoński and  Luczak [38] derived an
asymptotic formula for the number of connected k-uniform graphs on [N ] with M hyperedges for
the case M = N/(k − 1) + o(lnN/ ln lnN), which is a range with small excess. This was later
extended by Andriamampianina and Ravelomanana [3] for M = N/(k − 1) + o(N1/3), which still
has very small excess. On the other direction, Behrisch, Coja-Oghlan and Kang [4] provided an
asymptotic formula for the case M = N/(k − 1) + Θ(N). Thus, there is a gap between the case
M −N/(k − 1) = o(N1/3) and the linear case M −N/(k − 1) = Ω(N) in which no asymptotic
formulae were found. The case M −N/(k − 1) = ω(N) is also open.

Behrisch, Coja-Oghlan and Kang [4] obtained their enumeration result by precisely estimating
the joint distribution of the number of vertices and the number of edges in the giant component
of the random hypergraph. We remark that the distribution of the number of vertices and edges
has already been described by Bollobás and Riordan [14], but their result does not provide point
probabilities, which would allow the enumeration result to be deduced.

In this chapter, we obtain results for 3-uniform hypergraphs. We obtain an asymptotic
formula for the number of connected 3-uniform graphs with vertex set [N ] and M edges for
M = N/2 + R as long as R satisfies R = o(N) and R = ω(N1/3 ln2N). This leaves a gap from
M −N/2 = o(N1/3) and M −N/2 = ω(N1/3 ln2N). Our technique is based in the approach that
Pittel and Wormald [56] used to the enumerate connected graphs. The results in this chapter are
joint work with N. Wormald.
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4.1 Main result

A hypergraph is a pair (V, E), where V is a finite set and E is a subset of nonempty sets in 2V ,
which is the set of all subsets of V . The elements in V are called vertices and the elements in E
are called hyperedges. For any integer k ≥ 2, a k-uniform hypergraph is a hypergraph where each
hyperedge has size k. For any hypergraph G, a path is a (finite) sequence v1E1v2E2 . . . vk, where
v1, . . . , vk are distinct vertices and E1, . . . , Ek−1 are distinct hyperedges such that vi, vi+1 ∈ Ei
for all i ∈ [k − 1]. We say that a hypergraph is connected if, for any vertices u and v, there exists
a path from u to v.

An (N,M, k)-hypergraph is a k-uniform hypergraph with V = [N ] and M edges. Let C(N,M)
denote the number of connected (N,M, 3)-hypergraphs. Our main result is an asymptotic formula
for C(N,M) for a sparse range of M . For k ≥ 0, define gk(λ) = exp(λ) + k and recall that
fk(λ) = exp(λ)−

∑k−1
i=0 λ

i/i!.

Theorem 4.1.1. Let M = M(N) = N/2 + R be such that R = o(N) and R = ω(N1/3 ln2N).
Then

C(N,M) ∼
√

3

πN
exp

(
Nφ(ň∗) +N lnN −N

)
,

where

φ(x) =− (1− x)

2
ln(1− x) +

1− x
2

+
2R

N
ln(N)−

(
ln(2) + 2

)R
N
− 1

2
ln(2)x

+
R

N
ln

(
g1(λ∗∗)

λ∗∗f1(λ∗∗)

)
+

1

2
x ln

(
f1(λ∗∗)g1(λ∗∗)

λ∗∗

)
,

ň∗ =
f2(2λ∗∗)

f1(λ∗∗)g1(λ∗∗)
,

and λ∗∗ is the unique positive solution of

λ
e2λ + eλ + 1

f1(λ)g1(λ)
=

3M

N
. (4.1)

Our proof basically follows the same approach that Pittel and Wormald [56] use to the
enumerate connected graphs in the sparser range. Pittel and Wormald [56] decompose a connected
graph into two parts: a cyclic structure and an acyclic structure. The cyclic structure is a
pre-kernel, which is a 2-core without isolated cycles. The acyclic structure is a rooted forest where
the roots are the vertices of the pre-kernel. A rooted forest with roots r1, . . . , rt (that are vertices
in the forest) simply is a forest such that each component contains exactly one of the roots. The
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graph can then be obtained by ‘gluing’ these two structures together. Pittel and Wormald obtain
an asymptotic formula for the number of the cyclic structures and combine it with a known
formula for the acyclic parts to obtain an asymptotic formula for the number of connected graphs
with given number of vertices and edges.

We will also decompose a connected 3-uniform hypergraph into two parts: a cyclic structure
(which we will also call pre-kernel) and an acyclic structure (a forest rooted on the vertices of the
pre-kernel). We will also obtain asymptotic formulae for these structures and then combine them
to obtain an asymptotic formula for the number of connected (N,M, 3)-hypergraphs.

From now on, we will deal with 3-uniform hypergraphs most of the time. In this chapter, for
convenience, we will use the word ‘graph’ to denote 3-uniform hypergraphs. When we want to
refer to graphs in the usual sense, we will call them ‘2-uniform hypergraphs’. We will also use the
word ‘edge’ instead of ‘hyperedge’.

4.2 Relation to a known formula

As we mentioned before, Behrisch, Coja-Oghlan and Kang [4] provided an asymptotic formula for
the number of connected (N,M, k)-hypergraphs for the range M = N/(k − 1) + Ω(N). In this
section, we show that, for k = 3, their formula is asymptotic to ours when R = M −N = o(N).
Behrisch, Coja-Oghlan and Kang obtained their result by computing the probability that the
random hypergraph Hk(N,M) with uniform distribution on all (N,M, k)-hypergraphs is connected.

Theorem 4.2.1 ([4, Theorem 5]). Let k ≥ 2 be a fixed integer. For any compact set J ⊂
(k(k − 1)−1,∞), and for any δ > 0 there exists N0 > 0 such that the following holds. Let
M = M(N) be a sequence of integers such that ζ = ζ(N) = kM/N ∈ J for all N . Then there
exists a unique number 0 < r = r(N) < 1 such that

r = exp

(
−ζ (1− r)(1− rk−1)

1− rk

)
. (4.2)

Let Φ(ζ) = rr/(1−r)(1− r)1−ζ(1− rk)ζ/k. Furthermore, let

R2(N,M) =
1 + r − ζr√

(1− r)2 − 2ζr
exp

(
2ζr + ζ2r

2(1 + r)

)
Φ(ζ)N , and set

Rk(N,M) =
1− rk − (1− r)ζ(k − 1)rk−1√

(1− rk + ζ(k − 1)(r − rk−1))(1− rk)− ζkr(1− rk−1)2

× exp

(
ζ(k − 1)(r − 2rk + rk−1)

2(1− rk)

)
Φ(ζ)N , if k > 2.

For N > N0, the probability that Hk(N,M) is connected is in ((1−δ)Rk(N,M), (1+δ)Rk(N,M)).
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From this theorem, it is immediate that the number of connected (N,M, k)-graphs is asymptotic
to ((N

k

)
M

)
Rk(N,M) =: D(N,M, k)

when R = M − N/2 = Ω(N). Next we assume R/N = o(1) and do some simplifications in
D(N,M, 3). So suppose R = M −N/2 = o(N). First we compare r in (4.2) with λ∗∗ in (4.1):

r = exp

(
−3M

N

(1− r)(1− r2)

1− r3

)
and λ∗∗

e2λ∗∗ + eλ
∗∗

+ 1

e2λ∗∗ − 1
=

3M

N
.

By taking the logs in both sides of the definition of r, it is obvious that r = exp(−λ∗∗). As we
will see later, λ∗∗ → 0 and so r → 1. We have that

lim
r→1

1− r3 − 2(1− r)ζr2√
(1− r3 + 2ζ(r − r2))(1− r3)− 3ζr(1− r2)2

=
√

3

and

lim
r→1

ζ(r − 2r3 + r2)

1− r3
= 3/2.

(See Section A.1 for a Maple spreadsheet.) Thus,

D(N,M, k) ∼
((N

3

)
M

)√
3 exp(3/2)Φ(3M/N)N

∼

√
2π

(
N

3

)((N
3

)
e

)(N3 )

√
2πM

(
M

e

)M√
2π

((
N

3

)
−M

)((N
3

)
−M
e

)(N3 )−M

√
3 exp(3/2)Φ(3M/N)N ,

by Stirling’s approximation. Thus, using M = N/2 +R and R = o(N),

D(N,M, k)

∼
√

3

πN
exp

(
3/2 +

(
N

3

)
ln

(
N

3

)
−M lnM −

((
N

3

)
−M

)
ln

((
N

3

)
−M

)
+NΦ(3M/N)

)
=

√
3

πN
exp

(
3/2−

((
N

3

)
−M

)
ln

(
1− M(

N
3

))−M lnM +M ln

(
N

3

)
+NΦ(3M/N)

)

=

√
3

πN
exp

(
3/2−

((
N

3

)
−M

)(
− M(

N
3

) +O

(
M2(
N
3

)2
))
−M lnM +M ln

(
N

3

)
+NΦ(3M/N)

)
.
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Figure 4.1: A rooted forest. The roots are the vertices represented by squares.

Thus,

D(N,M, k) =

√
3

πN
exp

(
3/2 +M −M lnM +M ln

(
N

3

)
+NΦ(3M/N) + o(1)

)
=

√
3

πN
exp

(
3/2 +M −M lnM +M ln

N3

6
+M ln

N(N − 1)(N − 2)

N3
+NΦ(3M/N) + o(1)

)
=

√
3

πN
exp

(
3/2 +M −M lnM + 3M lnN −M ln 6 +M ln

(
1− 3N − 2

N2

)
+NΦ(3M/N) + o(1)

)
=

√
3

πN
exp

(
3/2 +M −M lnM + 3M lnN −M ln 6−M 3N

N2
+NΦ(3M/N) + o(1)

)
∼
√

3

πN
exp (M −M lnM + 3M lnN −M ln 6 +NΦ(3M/N)) ,

which is exactly the same as our formula in Theorem 4.1.1 after a series of simplifications. See
Section A.1 for a Maple spreadsheet with these computations.

4.3 Basic definitions and results for hypergraphs

In this section, we present some basic definitions for hypergraphs and show how to decompose a
hypergraph into a cyclic structure and an acyclic structure.

A cycle in a hypergraph G = (V, E) is a (finite) sequence (v0, E0, . . . , vk, Ek) such that
v1, . . . , vk ∈ V are distinct vertices, E1, . . . , Ek ∈ E are distinct edges with vi ∈ Ei and vi+1 ∈ Ei
for every 0 ≤ i ≤ k (operations in the indices are in Zk+1). A tree is an acyclic connected
hypergraph and a forest is an acyclic hypergraph. A rooted forest G = (V, E) with set of roots
S ⊆ V is a forest such that each component of the forest has exactly one vertex in S. See Figure 4.1
for a rooted forest.

The degree of a vertex v in a hypergraph G is the number of edges in G containing v. Recall
that we use the word ‘graph’ to denote 3-uniform hypergraphs. The core of a graph is its maximal
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Figure 4.2: A core with two isolated cycles. The leftmost component is a pre-kernel.

Figure 4.3: Obtaining the core.

induced subgraph such that every edge contains at least two distinct vertices of degree at least 2.
To see that the core of a hypergraph is unique, it suffices to notice that the union of two cores
would also be a core. We remark that the k-core of a graph is usually defined as the maximal
subgraph such that every vertex has degree at least k. The core we defined contains the 2-core
of the hypergraph and it allows some vertices of degree 1. We chose this definition of core since
otherwise the structure we would have to combine with the 2-core would not necessarily be acyclic.
We also say that a graph is a core, when its core is the graph itself. For an example of an core see
Figure 4.2.

Every edge in a core has either one vertex of degree 1, or none. We say that an edge is a
2-edge if it has a vertex of degree 1 and that it is a 3-edge if it has no vertex of degree 1. It is easy
to see that the core of graph can be obtained by iteratively removing edges that are not 2-edges
nor 3-edges until all edges are 2-edges or 3-edges, and then deleting all vertices of degree 0. See
Figure 4.3 for an example of this procedure.

We also define cycles as graphs. We say that a graph G = (V, E) is a cycle if there is an ordering
(v0, . . . , vk) of a subset of V and an ordering (E0, . . . , Ek) of E such that (v0, E0, . . . , vk, Ek) is a
cycle in G and every v ∈ V is in some E ∈ E . Note that, if a graph is a cycle, then all edges are
actually 2-edges. An isolated cycle in a graph is a component that is a cycle. A pre-kernel is a
core without isolated cycles (see Figure 4.2). So, every connected core that is not just a cycle is
also a pre-kernel.

The following proposition explains how to decompose a graph into its core and a rooted forest.
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Proposition 4.3.1. Let G be a connected graph with a nonempty core. The graph obtained
from G by deleting the edges of the core of G and by setting all vertices in the core as roots is a
rooted forest with (N − n)/2 edges, where N is the number of vertices in G and n is the number
of vertices in the core. Moreover, the core of G is connected.

Proof. As we already mentioned, the core of G can be obtained by iteratively deleting edges that
contain at most one vertex of degree at least 2. More precisely, start with G′ = G and while there
is an edge in G′ containing less than 2 vertices of degree at least 2 in G′, redefine G′ by deleting
one such edge. When this procedure stops, G′ is the core of G. Let F be the graph with vertex
set [N ] with the deleted edges as its set of edges. Suppose for a contradiction that F has a cycle.
Such a cycle is a cycle in G too. Let E be the first edge of the cycle that was deleted by the
procedure described above. All other edges in the cycle were still present in the graph G′ when E
was deleted. Thus, since E was in the cycle, it had a least 2 vertices of degree at least 2. Hence,
E could not have been deleted at this point, which shows that F has no cycles.

Suppose for a contradiction that the core of G is not connected. Then it has at least 2
components that are joined by a path in G with all edges in F since G is connected. The union of
these 2-components and the path is a 2-core, which is a contradiction. Thus, the core is connected.
This argument also shows that that each component of F has at most one vertex in the core.
Every component of F must have one vertex in the core, otherwise it is disconnected from the
core and so G would not be connected.

Now we determine the number of edges in F . As we discussed above, each component of
F has exactly one vertex in the core. In the deletion procedure, for the initial G′ (that is, G),
every edge has at least one vertex of degree at least 2 since otherwise G would not be connected.
We claim that the deletion procedure will only delete edges that contain exactly one vertex of
degree 2 in the current G′. If not, let E be an edge that contained no vertex of degree at least 2
in G′ in the moment it was deleted. Let v0 be the vertex of the core in the same component of E
in F . Then there is a path (v0, E0, . . . , Ek−1vk) in F , where Ek−1 = E. The edge E0 cannot be
E since the vertex v0 must have degree at least 2 the moment E0 is deleted. A trivial induction
proof then shows that the deletion procedure cannot delete any of the edges E0, . . . , Ek−2 before
deleting Ek−1, which shows that the moment E was deleted the vertex vk−1 still was in 2 edges:
E and Ek−2. This is a contradiction. Thus, the moment any edge is deleted is has exactly one
vertex of degree at least 2. This means that, for every deleted edge, we also delete exactly 2
vertices that are not in the core. Since there N − n vertices to be deleted, the number of edges in
F is (N − n)/2.

For any graph G with N vertices and M edges such that its core has n vertices and m edges,
we have that

m− n/2 = M − (N − n)/2− n/2 = M −N/2 (4.3)
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since m = M − (N − n)/2 by Proposition 4.3.1. Intuitively speaking, this says that the ‘excess’ of
edges (M −N/2) in the graph is transfered to its core.

Let gforest(N,n) denote the number of forests with vertex set [N ] and [n] as its set of roots.
Let gpre(n,m) denote the number of connected pre-kernels with vertex set [n] and m edges. Next,
we show how to write C(N,M) using gforest and gpre.

Proposition 4.3.2. For M = M(N) such that R := M −N/2→∞, we have that

C(N,M) =
∑

1≤n≤N
(N−n)∈2Z

gforest(N,n)gpre(n,M − (N − n)/2), (4.4)

for N sufficiently large.

Proof. In view of Proposition 4.3.1, it suffices to show that, for any connected graph G with N
vertices and M edges, the core of G is a pre-kernel. If it is not, either the core is empty or it is a
cycle. If the core is empty, then the graph G is a forest and so M < N/2, which is impossible
since M = N/2 +R with R→∞. If the core is a cycle, then 3m = 2(n−m) +m since each edge
in the core has two vertices of degree 2 and one of degree 1. Thus, in this case, we have that
m = n/2, which is impossible since m− n/2 = M −N/2 = R→∞ by (4.3).

Basically, our approach to compute an asymptotic formula for C(N,M) will be to analyse the
summation in (4.4).

We will work with random graphs. More precisely, we will work with random multihypergraphs
and then deduce results for simple graphs. A k-uniform multihypergraph is a triple G = (V, E ,Φ),
where V and E are finite sets and Φ : E × [k] → V . We say that V is the vertex set of G and
E is the edge set of G. From now on, we will use the word ‘multigraph’ to denote 3-uniform
multihypergraphs.

Given a multigraph G = (V, E ,Φ), a loop is an edge E ∈ E such that there exist distinct
j, j′ ∈ {1, 2, 3} such that Φ(E, j) = Φ(E, j′), a pair of double edges is a pair (E,E′) of dis-
tinct edges in E such that the collection {Φ(E, 1),Φ(E, 2),Φ(E, 3)} is the same as the collection
{Φ(E′, 1),Φ(E′, 2),Φ(E′, 3)}. A multigraph G with no loops nor double edges corresponds natu-
rally to a graph because each edge corresponds to a unique subset of V of size 3. In this case we
say that the multigraph is simple. Let S(n,m) denote the set of simple multigraphs with vertex
set [n] and edge set [m]. We have the following relation between simple multigraphs and graphs:

Lemma 4.3.3. For any G = ([n], [m],Φ) ∈ S(n,m), let s(G) be the graph with vertex set [n]
obtained by including one edge for each i ∈ [m] incident to the vertices Φ(i, 1), Φ(i, 2) and Φ(i, 3).
Let G′ be a graph with vertex set [n] with m edges. Then |s−1(G′)| = m!6m, that is, each graph
corresponds to m!6m simple multigraphs.
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Proof. Let G = ([n], [m],Φ) ∈ S(n,m) be such that s(G) = G′. For any permutation g of [m], the
multigraph Gg := ([n], [m],Φ′) satisfies s(Gg) = G′, where Φ′(i, j) = Φ(g(i), j) for each i ∈ [m]
and j ∈ {1, 2, 3}. (That is, any permutation of the label of the edges generates the same graph.)
Moreover, for each i ∈ [m] and permutation gi of [3], the function Φ′′(i, j) = Φ′′(i, g(j)) satisfies
s([n], [m],Φ′′) = G′. Since there are m! permutations on [m] and 3! permutations of [3], the
number of graphs G ∈ S(n,m) with s(G) = G′ is m!3!m.

We extend the definitions of path and connectedness for multihypergraphs. For any mul-
tihypergraph G = (V, E ,Φ), a path is a (finite) sequence v1E1v2E2 . . . vk, where v1, . . . , vk are
distinct vertices and E1, . . . , Ek−1 are distinct hyperedges such that vi, vi+1 ∈ Im(Φ(Ei, ·)) for all
i ∈ [k − 1]. We say that a multihypergraph is connected if, for any vertices u and v, there exists a
path from u to v.

4.4 Overview of proof

In this section, we give an overview of our proof of the asymptotic formula for C(N,M) in
Theorem 4.1.1. Recall that R = M − N/2 = o(N) and R = ω(N1/3 log2N). Our approach is
to analyse C(N,M) by using (4.4), which shows how to obtain C(N,M) from formulae for the
number of rooted forests gforest and the number of pre-kernels gpre. The proof consists of the
following steps.

1. We obtain an exact formula gforest(N,n) for the number of of rooted forests with set of roots
[n] and vertex set [N ]. We show that, for even N − n,

gforest(N,n) =
n

N
· (N − n)!N (N−n)/2

((N − n)/2)!2(N−n)/2
,

and, for odd N − n, gforest(N,n) = 0. The proof is in Section 4.5 and is a simple proof by
induction.

2. Let gcore(n,m) denote the number of (simple) cores on [n] with m edges. We analyse gcore

by writing it as follows:

gcore(n,m) =
∑
n1,d

gcore(n,m, n1,d),

where gcore(n,m, n1,d) is the number of (simple) cores with n vertices, m = n/2 +R edges,
n1 vertices of degree 1, and degree sequence d for the vertices of degree at least 2. We use r
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to denote R/n. We show that there is a constant α such that

gcore(n,m) ≤ αn
√
m · n! exp(nfcore(n̂

∗
1)), for R→∞, and (4.5)

gcore(n,m) ∼ 1

2πn
√
r
· n! exp(nfcore(n̂

∗
1)), for R→∞ and R = o(n), (4.6)

where the function fcore is defined in Section 4.7 and λ∗ is the unique positive solution for
λf1(λ)g2(λ)/f2(2λ) = 3m/n and n̂∗1 = 3m/(ng2(λ∗)). The proof is in Section 4.7.

3. We obtain an asymptotic formula for the number gpre(n,m) of simple connected pre-kernels

with n→∞ vertices and m = n/2 + rn edges when R = o(n) and R = ω(n1/2 log3/2 n). We
show that

gpre(n,m) ∼
√

3

πn
n! exp(nfpre(x̂

∗)),

where fpre is defined in Section 4.8 and x̂∗ ∈ R4 will be determined using λ∗ as defined in
the previous step.

4. We will at first work with cores since the function obtained for them is simpler than the
formula for pre-kernels. We will find relations between the two formulae that justify why it
is relevant to analyse the function for cores. We find a set I for n in which n = Θ(

√
RN)

such that∑
n∈I

(
N

n

)
gforest(N,n)gcore(n,m) ∼

√
3√

πλ∗∗N
exp

(
Nt(ň∗) +N lnN −N

)
, (4.7)

where t is defined in Section 4.9, λ∗∗ is the unique positive solution of the equation λ(e2λ +
eλ + 1)/(f1(λ)g1(λ)) = 3M/N and ň∗ = f2(2λ∗∗)(f1(λ∗∗)g1(λ∗∗)). We then show that the
contribution to the summation for n outside I is insignificant by using (4.5):∑

n∈[N ]\I

(
N

n

)
gforest(N,n)gcore(n,m) = o

(
1√
πN

exp
(
Nt(ň∗) +N lnN −N

))
. (4.8)

5. We use Step 2, Step 3 and (4.7) to show that∑
n∈I

(
N

n

)
gforest(N,n)gpre(n,m) ∼ 2

√
3r
∑
n∈I

(
N

n

)
gforest(N,n)gcore(n,m)

∼
√

3

πN
exp

(
Nt(ň∗) +N lnN −N

)
and using the relation gpre(n,m) ≤ gcore(n,m) (since every pre-kernel is a core) and (4.8),∑

n∈[N ]\I

(
N

n

)
gforest(N,n)gpre(n,m) = o

(∑
n∈I

(
N

n

)
gforest(N,n)gpre(n,m)

)
.
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6. The conclusion is then easily obtained by simplifying t(ň∗).

4.5 Counting forests

In this section we prove an exact formula for rooted forests. In this section we consider k-uniform
hypergraphs, for any k ≥ 2. We remark that this formula has also been proved in a note by
Lavault [43] around the same time we obtained it. Lavault shows a one-to-one correspondence
between rooted forests and a set of tuples whose size can be easily computed.

Recall that gforest(N,n) is the number of rooted forests on [N ] with set of roots [n]. (See
Figure 4.1 for a rooted forest.)

Theorem 4.5.1. For integers N ≥ n ≥ 0 and any integer k ≥ 2,

gforest(N,n) =


n(N − n)!Nm′−1

m′!(k − 1)!m′
, if m′ =

N − n
k − 1

is a nonnegative integer;

0, otherwise.

Proof. A connected k-uniform hypergraph is a tree if and only if, by iteratively deleting edges
that have at least k − 1 vertices of degree 1, we delete all edges. It then is obvious that m′ is the
number of edges in the forest. We remark that the a tree can be seen as a 2-uniform hypergraph
where each block is a clique on [n− 1] vertices (which is known as a clique tree).

The proof is by induction on N . We have that gforest(1, 1) = 1 = 1(1−1)!10−1/(0!(k−1)!0) = 1
and the formula also works for gforest(N, 0) = 0. So assume that N > 1 and n ≥ 1. We will show
how to obtain a recurrence relation for gforest(N,n). Suppose that the vertex 1 is in j edges, where
0 ≤ j ≤ m′. We choose (k − 1)j other vertices to be in these j edges. There are

(
N−n

(k−1)j

)
ways to

choose these vertices. The number of ways we can split the vertices into the edges is(
(k − 1)j

k − 1

)(
(k − 1)j − (k − 1)

k − 1

)
· · ·
(
k − 1

k − 1

)
1

j!
=

(
(k − 1)j

)
!

(k − 1)!jj!
.

We can build the rooted forest by first choosing the edges containing 1 and then deleting 1 and
considering the other (k − 1)j vertices in these edges as new roots. This gives us the following
recurrence:

gforest(N,n) =

m′∑
j=0

(
N − n

(k − 1)j

)(
(k − 1)j

)
!

(k − 1)!jj!
gforest

(
N − 1, n− 1 + (k − 1)j

)
.
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Note that 0 ≤ n − 1 + (k − 1)j ≤ N − 1 since j ∈ [0,m′]. The new number of edges is
m′′ = 1

k−1((N − 1)− (n− 1 + (k − 1)j)) = m′ − j. So, by induction hypothesis,

gforest(N,n) =

m′∑
j=0

(
N − n

(k − 1)j

)(
(k − 1)j

)
!

(k − 1)!jj!
· (n− 1 + (k − 1)j)(N − n− (k − 1)j)!(N − 1)m

′−j−1

(m′ − j)!(k − 1)!m′−j

=
(N − n)!

(N − 1)(k − 1)!m′

m′∑
j=0

(n− 1 + (k − 1)j)(N − 1)m
′−j

j!(m′ − j)!

=
(N − n)!

m′!(N − 1)(k − 1)!m′

m′∑
j=0

(
m′

j

)
(n− 1 + (k − 1)j)(N − 1)m

′−j

=
(N − n)!

m′!(N − 1)(k − 1)!m′

(n− 1)
m′∑
j=0

(
m′

j

)
(N − 1)m

′−j + (k − 1)
m′∑
j=0

(
m′

j

)
j(N − 1)m

′−j

 .

Using the Binomial Theorem,

m′∑
j=0

(
m′

j

)
(N − 1)m

′−j = Nm′

and by differentiating both sides with respect to N ,

m′∑
j=0

(
m′

j

)
(m′ − j)(N − 1)m

′−j−1 = m′Nm′−1,

and so

m′∑
j=0

(
m′

j

)
j(N − 1)m

′−j = m′
m′∑
j=0

(
m′

j

)
(N − 1)m

′−j −m′Nm′−1(N − 1)

= m′Nm′ −m′Nm′−1(N − 1) = m′Nm′−1.

Hence,

gforest(N,n) =
(N − n)!

m′!(N − 1)(k − 1)!m′

(
(n− 1)Nm′ + (k − 1)m′Nm′−1

)
=

(N − n)!Nm′−1

m′!(N − 1)(k − 1)!m′
(N(n− 1) +N − n)

=
n(N − n)!Nm′−1

m′!(k − 1)!m′
,

and we are done.
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4.6 Tools

In this section, we will include some computations that will be used a number of times throughout
the proofs.

Let k be a positive integer. Let c : R→ R so that c(y) > k for all y ∈ R. Let λ(y) be defined
by

λ(y)fk−1(λ(y))

fk(λ(y))
= c(y).

The existence and uniqueness of λ(y) follow from Lemma 2.10.3 due to Pittel and Wormald. We
compute the derivative λ′ of λ(y) by implicit differentiation. Assuming that c is differentiable
with derivative c′:

λ′
fk−1(λ(y))

fk(λ(y)))

(
1 +

λ(y)fk−2(λ(y))

fk−1(λ(y))
− λ(y)fk−1(λ(y))

fk(λ(y))

)
= c′. (4.9)

Let T, t : R → R be differentiable functions be such that T (y)/t(y) > k for all y ∈ R.
Let t′ and T ′ denote the derivatives of t and T , resp. We will compute the derivative of
t(y) log fk(λ(y)) − T (y) log(λ(y)). For c(y) = T (y)/t(y) = λ(y)fk−1(λ(y))/fk(λ(y)) and η(y) =
λ(y)fk−2(λ(y))/fk−1(λ(y)), and using (4.9),

d
(
t(y) log fk(λ(y))− T (y) log(λ(y))

)
d y

=

= t′ log fk(λ(y)) + λ′
t(y)fk−1(λ(y))

fk(λ(y))
− T ′ log λ(y)− λ′T (y)

λ(y)

= t′ log fk(λ(y)) + t(λ)
fk−1(λ(y))

fk(λ(y))

λ(y)c′

c(y)(1 + η(y)− c(y))

− T ′ log λ(y)− T (y)

λ(y)

λ(y)c′

c(y)(1 + η(y)− c(y))

= t′ log fk(λ(y)) +
t(y)c′

1 + η(y)− c(y)
− T ′ log λ(y)− t(y)c′

1 + η(y)− c(y)

= t′ log fk(λ(y))− T ′ log λ(y).

(4.10)

The following lemma is an application of standard results concerning Gaussian functions and
the definition of Riemann integral.

Lemma 4.6.1. Let φ(n) → 0, ψ(n) → 0, Tn → ∞ and sn → ∞. Let fn = exp(−αx2 + βx +
φx2 + ψx) with constants α > 0 and β. Let Pn = z + Z, where z ∈ R. Then

1

sn

∑
x∈Pn/sn
|x|≤Tn

fn(x) ∼ exp
(β2

4α

)√π

α
.
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Proof. Let ε ∈ (0,min(α, β)) and let f+(x) = exp(−αx2 +βx+εx2 +εx) and f−(x) = exp(−αx2 +
βx− εx2 − εx). Since φ = o(1) and ψ = o(1), we may assume f−(x) ≤ fn(x) ≤ f+(x). We will
show that

1

sn

∑
x∈Pn/sn
|x|≤Tn

f+(x) ∼ exp
( (β + ε)2

4(α+ ε)

)√ π

α+ ε
(4.11)

and
1

sn

∑
x∈Pn/sn
|x|≤Tn

f−(x) ∼ exp
( (β − ε)2

4(α− ε)

)√ π

α− ε
. (4.12)

Since we can choose ε arbitrarily close to zero, this proves the lemma. We will only show the
proof for (4.11) since the proof for (4.12) is very similar. We have that∫ ∞

−∞
f+(x)dx = lim

C→∞

∫ C

−C
f+(x)dx

and
∞

lim
−∞

f+(x)dx = e
(β+ε)2

4(α+ε)

√
π

α+ ε
.

So it suffices to show that,∣∣∣∣∣ lim
n→∞

1

sn

∑
x∈Pn/sn
|x|≤Tn

f+(x)− lim
C→∞

∫ C

−C
f+(x)dx

∣∣∣∣∣ = 0.

We have that ∣∣∣∣∣ lim
n→∞

1

sn

∑
x∈Pn/sn
|x|≤Tn

f+(x)− lim
C→∞

∫ C

−C
f+(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣ lim
n→∞

1

sn

∑
x∈Pn/sn
|x|≤Tn

f+(x)− lim
C→∞

lim
n→∞

1

sn

∑
x∈Pn/sn
|x|≤C

f+(x)

∣∣∣∣∣
+

∣∣∣∣∣ lim
C→∞

lim
n→∞

1

sn

∑
x∈Pn/sn
|x|≤C

f+(x)− lim
C→∞

∫ C

−C
f+(x)dx

∣∣∣∣∣
the last term goes to is zero by the definition of Riemann integral. It is known that the tail for
Gaussian functions is very small. More precisely, for each ε′ > 0 there exists n0 such that, for
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each n ≥ n0, ∣∣∣∣∣ 1

sn

∑
x∈Pn/sn
|x|≤Tn

f+(x)− lim
n→∞

1

sn

∑
x∈Pn/sn
|x|≤Tn0

f+(x)

∣∣∣∣∣ ≤ ε′.
Since C → ∞, C is eventually bigger than Tn0 . And we are done since we can choose ε′ > 0
arbitrarily small.

4.7 Counting cores

In this section we obtain an asymptotic formula for the number of cores (not necessarily connected)
with vertex set [n] and m = n/2 +R edges, when R = ω(log n) and R = o(n). We also obtain an
upper bound for the number of such cores when R→∞. We remark that the asymptotics in this
section are for n→∞. We will always use r to denote R/n.

For n1 ∈ R, define

n2(n1) = n− n1,

m3(n1) = m− n1,

Q2(n1) = 3m− n1,

c2(n1) = Q2(n1)/n2(n1) = (3m− n1)/(n− n1).

For any symbol y in this section, we use ŷ to denote y/n.

We will use n1 as the number of vertices of degree 1 in the core. Then n2(n1) is the number
of vertices of degree at least 2, m3(n1) is the number of 3-edges, Q2(n1) is the sum of degrees of
vertices of degree at least 2, and c2(n1) is the average degree of the vertices of degree at least 2.
We omit the argument n1 when it is obvious from the context.

Let Jm denote the set of reals n1 such that max{0, 2n− 3m} ≤ n1 ≤ min{n,m}. The lower
bound 2n− 3m is used to ensure that c2(n1) ≥ 2 for n1 ∈ Jm. Let Ĵm = {x/n : x ∈ Jm}, that is,
Ĵm is a scaled version of Jm. For n1 ∈ Jm \ {2n− 3m}, let λn1 be the unique positive solution of

λf1(λ)

f2(λ)
= c2(n1). (4.13)

Such a solution exists and is unique since c2(n1) = (3m− n1)/(n− n1) and n1 > 2n− 3m ensures
that 3m− n1 > 2(n− n1) (see Lemma 2.10.3). By continuity reasons, we define λ2n−3m = 0.

Let

η2(n1) =
λn1 exp(λn1)

f1(λn1).
(4.14)
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Let hn(x) = x ln(xn)− x and define, for n̂1 in the interior of Ĵm,

fcore(n̂1) =hn(Q̂2(n1))− hn(n̂2(n1))− hn(n̂1)− hn(m̂3(n1))

− n̂1 ln(2)− m̂3(n1) ln(6)

+ n̂2(n1) ln(f2(λn1))− Q̂2(n1) ln(λn1),

(4.15)

We extend the definition fcore to Ĵm by setting the fcore(n̂1) to be the limit of fcore(x) as x→ n̂1,
for the points n̂1 ∈ Ĵm ∩ {0, 1, m̂, 2− 3m̂}. For all points in Ĵm ∩ {0, 1, m̂, 2− 3m̂} except 2− 3m̂,
this only means that 0 log 0 should be interpreted as 1. For n̂1 = 2− 3m̂, as we already mentioned,
λ2n−3m = 0 by continuity reasons. But then n̂2(n1) ln(f2(λn1))−Q̂2(n1) ln(λn1) is not defined (and
note that n̂2(n1) ln(f2(λn1)) and Q̂2(n1) ln(λn1) appear in the definition of fcore). For n̂1 = 2−3m̂,

lim
λ→0

(
n̂2(n1) ln(f2(λ))− Q̂2(n1) ln(λ)

)
= n̂2(n1) lim

λ→0
(ln(f2(λ))− 2 ln(λ))

= n̂2(n1) lim
λ→0

(
ln

(
exp(λ)− 1− λ

λ2

))
= n̂2(n1) ln

(
1

2

)
.

Thus,

fcore(2− 3m̂) = hn(Q̂2)− hn(n̂2)− hn(n̂1)− hn(m̂3)− n̂1 ln(2)− m̂3 ln(6)− n̂2 ln 2. (4.16)

We will show that the n! exp(nfcore(n̂1)) approximates the exponential part of the number of
cores with n1 vertices of degree 1. Recall that gcore(n,m) is the number of cores with vertex set
[n] and m edges. We obtain the following result for gcore:

Theorem 4.7.1. Let m(n) = n/2 + R with R → ∞. There exists a constant α such that, for
n ≥ 1,

gcore(n,m) ≤ αn
√
m · n! exp

(
nfcore(n̂

∗
1)
)
. (4.17)

If R = o(n) and R = ω(log n), we have that

gcore(n,m) ∼ 1

2πn
√
r
· n! exp

(
nfcore(n̂

∗
1)
)
, (4.18)

where n̂∗1 = 3m/(ng2(λ∗)) and λ∗ is the unique positive solution of

λf1(λ)g2(λ)

f2(2λ)
=

3m

n
. (4.19)

We will show that the point n̂∗1 maximizes fcore in Ĵm. The result in (4.18) will then obtained
by expanding the summation around n̂∗1.

For all subsections of this section, let Σn1 denote the event that a random vector Y =
(Y1, . . . , Yn−n1) satisfies

∑
i Yi = 3m− n1, where the Yi’s are independent random variables with

truncated Poisson distribution Po(2, λn1). Also, whenever symbols y and ŷ appear in the same
computation, ŷ denotes y/n.
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4.7.1 Random cores

Recall that our aim in Section 4.7 is to find an asymptotic formula for gcore(n,m). Note that up
to this point there is no random graph involved in the problem. However, similarly to Chapter 3
(Section 3.2), we show how to reduce the asymptotic enumeration problem to approximating the
expectation, in a probability space of random sequences Y, of the probability that a certain type
of random multigraph with given degree sequence Y is simple.

For integer n1 ∈ Jm, let Dn1 be the set of all d ∈ (N \ {0, 1})n−n1 with
∑n−n1

i=1 di = 3m− n1.
For n1 ∈ Jm ∩ Z and d ∈ Dn1 , let G(n1,d) = Gn,m(n1,d) be the multigraph obtained by the
following procedure. We will start by creating for each edge one bin/set with 3 points inside
it. These bins are called edge-bins. We also create one bin for each vertex with the number of
points inside it equal to the degree of the vertex. These bins are called vertex-bins. Each point in
a vertex-bin will be matched to a point in an edge-bin with some constraints. The multigraph
can then be obtained by creating one edge for each edge-bin i such that the vertices incident to
the edge are the vertices with points matched to the edge-bin of i. We describe the procedure in
detail now. In the following, in each step, every choice is made u.a.r. among all possible choices
satisfying the stated constraints:

1. (Edge-bins) For each i ∈ [m], create an edge-bin i with 3 points labelled 1, 2 and 3.

2. (Vertex-bins) Choose a set V1 of n1 vertices in [n] to be the vertices of degree 1. For each
v ∈ V1, create one vertex-bin v with one point inside each. Let v1 < · · · < vn−n1 be an
enumeration of the vertices in [n] \ V1. For each i ∈ [n− n1] create a vertex-bin vi with di
points.

3. (Matching) Match the points from the vertex-bins to the points in edge-bins so that each
edge-bin has at most one point being matched to a point in a vertex-bin of size 1. This
matching is called a configuration.

4. (Multigraph) G(n1,d) = ([n], [m],Φ), where Φ(i, j) = v, where v is the vertex-bin containing
the point matched to j.

See Figure 4.4, for an example for the procedure described above.

Let gcore(n,m, n1) denote the number of cores with vertex-set [n] with m edges and n1

vertices of degree 1, and let gcore(n,m, n1,d) denote the number of such cores with the additional
constraint that d ∈ Nn−n1 is such that, given the set V1 of vertices of degree 1 and an enumeration
v1 < . . . < vn−n1 of the vertices in [n] \ V1, the degree of vi is di. We say that d is the degree
sequence for the vertices of degree at least 2, although d is not indexed by the set of vertices
of degree at least 2. The following proposition relates gcore(n,m, n1) and gcore(n,m, n1,d) to
Gn,m(n1,d) and Y. Recall that S(n,m) is defined in Section 4.3 as the set of multigraphs with
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Figure 4.4: A core generated with vertex-bins and edge-bins

vertex set [n] and m edges corresponding to simple graphs. Let U(n1,d) denote the probability
that Gn,m(n1,d) ∈ S(n,m).

Proposition 4.7.2. We have that, for any integer n1 ∈ Jm

gcore(n,m, n1,d) = n!
Q2(n1)!

n2(n1)!n1!m3(n1)!2n16m3(n1)

1∏
i di!

P
(
U(n1,d)

)
, (4.20)

and, for any integer n1 ∈ Jm \ {2n− 3m},

gcore(n,m, n1) = n!
Q2(n1)!f2(λn1)n2(n1)

n2(n1)!n1!m3(n1)!2n16m3(n1)λ
Q2(n1)
n1

E
(
U(n1,Y)

∣∣∣Σn1

)
P
(

Σn1

)
, (4.21)

where Σn1 is the event that a random vector Y = (Y1, . . . , Yn−n1) satisfies
∑

i Yi = 3m− n1 and
the Yi’s are independent random variables with truncated Poisson distribution Po(2, λn1).

Proof. First we compute the total number of configurations that can be generated. There are
(
n
n1

)
ways of choosing the vertices of degree 1 in Step 2. We can split Step 3 by first choosing the n1

edge-bins and one point in each of these edge-bins to be matched to the points inside vertex-bins
of size 1. There are

(
m
n1

)
3n1 possible choices for these edge-bins and the points inside them. There

are n1! ways of matching these points to the points in vertex-bins of size 1 and there are Q2(n1)!
ways of matching the remaining points in the edge-bins to the vertex-bins of size at least 2. Thus,
the total number of configurations is(

n

n1

)(
m

n1

)
3n1n1!Q2(n1)! =: β. (4.22)
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It is straightforward to see that every multigraph with degree sequence d for the vertices of degree
at least 2 is generated by

∏n−n1
i=1 di! configurations. Together with Lemma 4.3.3, this implies that

every graph with degree sequence d for the vertices of degree at least 2 is generated by

α = m!6m
n−n1∏
i=1

di! (4.23)

configurations. Thus, since each configuration is generated with the same probability,

gcore(n,m, n1,d) =
β

α
U(n1,d). (4.24)

Together with (4.22) and (4.23), and trivial simplifications, this implies (4.20).

We now prove (4.21). The proof is very similar to the proofs of Propositions 3.2.1 and 3.2.2 in
Chapter 3 (which in turn are very similar to the proof of [55, Equation (13)]). Recall that Dn1 be
the set of all d ∈ (N \ {0, 1})n3(n1) with

∑
i di = Q2(n1). We have that

gcore(n,m, n1) :=
∑

d∈Dn1

gcore(n,m, n1,d)

= n!
∑

d∈Dn1

Q2(n1)!

n2(n1)!n1!m3(n1)!2n16m3(n1)

1∏n3(n1)
i=1 di!

U(n1,d)

= n!
Q2(n1)!

n2(n1)!n1!m3(n1)!2n16m3(n1)

f2(λn1)n2(n1)

λ
Q2(n1)
n1

∑
d∈Dn1

U(n1,d)

n3(n1)∏
i=1

λdin1

di!f2(λn1)

= n!
Q2(n1)!

n2(n1)!n1!m3(n1)!2n16m3(n1)

f2(λn1)n2(n1)

λ
Q2(n1)
n1

∑
d∈Dn1

U(n1,d)P(Y = d)

= n!
Q2(n1)!

n2(n1)!n1!m3(n1)!2n16m3(n1)

f2(λn1)n2(n1)

λ
Q2(n1)
n1

E (U(n1,Y)|Σn1)P(Σn1),

which proves (4.21). We remark that the only reason why the above proof does not work for
n1 = 2n − 3m (and so for the whole Jm ∩ Z) is that λ2n−3m = 0 (by continuity), which would
cause a division by zero in (4.21).

The next lemma gives conditions which are sufficient for the expectation in (4.24) to be
asymptotic to 1.

Lemma 4.7.3. Let m(n) = n/2 + R with R → ∞ and R = o(n). Uniformly for n1 = n1(n) ∈
Jm ∩ Z, we have that

E
(
U(n1,Y)

∣∣∣Σn1

)
∼ 1.
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Proof. Recall that Dn1 is the set of all d ∈ (N \ {0, 1})n3(n1) with
∑

i di = Q2(n1). For a constant
ε ∈ (0, 1/6), let D′n1

be the subset of Dn1 such that d ∈ D′n1
if di ≤ nε for every i. We will show

that P(Y ∈ D′n1
|Σn1) = 1 + o(1), that is, D′n1

contains all ‘typical’ degree sequences. We then
show that the degree sequences not in D′n1

have no significant contribution to the expectation.

First we consider the case n1 = 2n− 3m = n/2− 3R. In this case the only degree sequence in
Dn1 is the sequence of all 2’s, which is in D′n1

. So suppose n1 > 2n − 3m. Since R = o(n) and
n1 ≤ m = n/2 +R, we have that 3m− n1 ∼ 2(n− n1) and so λn1 → 0, Thus, for any j →∞, by
computing the series of f2(λn1) with λn1 → 0,

P(Yi ≥ j) =
λjn1

j!f2(λ)
(1 +O(λn1)) =

2λj−2
n1

j!
(1 +O(λn1)) = o

(
exp

(
− αj log j

))
,

for a positive constant α. Thus, by the union bound

P(max
i
Yi ≥ nε) ≤ n2 · o

(
exp

(
− αεnε log n

))
= o
(

exp
(
− α′nε log n

))
,

for a positive constant α′.

We estimate the probability of Σn1 . Let R2 = (3m − n1) − 2(n − n1) = n1 − (2n − 3m). If
R2 = o(n2

1/3), then, by Theorem 2.10.8,

P(Σn1) ∼ e−R2RR2
2

R2!
= Ω

(
1√
R2

)
by Stirling’s approximation (Lemma 2.5.1). If R2 →∞, by Theorem 2.10.8,

P(Σn1) ∼ 1√
2πn2c2(1 + η2 − c2)

= Ω

(
1
√
n2

)
where η2 = λn1 exp(λn1)/f1(λn1) and since c2(1 + η2 − c2) ∼ c2 − 2 by Lemma 2.10.7. Thus, for
D′′n1

:= Dn1 \ D′n1
.

P(Y ∈ D′′n1
|Σn1) ≤

P(Y ∈ D′′n1
)

P(Σn1)
= O

(√
n exp

(
− α′nε log n

))
= o(1). (4.25)

Now we show that
P(G(n1,d) simple) = 1 + o(1), (4.26)

for d ∈ Dn1 . We have to compute the probability that there are no loops and no double edges in
G(n1,d).

A loop arises from the edge-bins that have at least two points matched to points in the same
vertex-bin. The expected number of loops is∑

i

(
di
2

)
(Q2 − 2)!

Q2!
= O

(
mnε

n2

)
= o(1)
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since Q2 = 3m − n1 ≥ n/2 + 3R = Ω(n) and d ∈ D′n1
(and ε < 1/6). Double edges arise from

pairs edge-bins that the points in each of them are mapped to the same vertex-bins with the same
multiplicities. Using that maxi di ≤ nε for d ∈ D′n1

, we have that the expected number of double
edges (not involving loops) is at most(

m3

2

)
n3

2(nε)66!
(Q2 − 6)!

Q2!
= O

(
n5+6ε

n6

)
= o(1),

since ε < 1/6. (Note that 2-edges cannot be double edges because of the vertices of degree 1.)
Thus, Markov’s inequality implies (4.26).

Since D′n1
is a finite set for each n and (4.26), by Lemma 2.7.1, we have that there exists

f(n) = 1− o(1) such that P(G(n1,d) simple) ≥ f for all d ∈ D′n1
. Thus,

E (U(Y)|Σn1) ≤
∑

d∈D′n1

P(G(n1,d) simple )P(Y = d) + P(Y ∈ D′′n1
|Σn1)

≥ P(Y ∈ D′n1
|Σn1)f(n)P(Y ∈ D′′n1

|Σn1) = 1− o(1),

by (4.25).

4.7.2 Proof of Theorem 4.7.1

In this section we present the proof of the asymptotic formula in Theorem 4.7.1 for the number
gcore(n,m) of cores (not necessarily connected) with vertex set [n] with m = n/2 +R edges, when
R = ω(log n) and R = o(n):

gcore(n,m) ∼ 1

2πn
√
r
· n! exp

(
nfcore(n̂

∗
1)
)
, (4.27)

where n̂∗1 = 3m̂/g2(λ∗) and λ∗ is the unique positive solution for

λf1(λ)g2(λ)

f2(2λ)
=

3m

n
. (4.28)

We also show the upper bound in Theorem 4.7.1 for gcore(n,m) that holds as long as R → ∞.
First we show that λ∗ is well-defined.

Lemma 4.7.4. The equation λf1(λ)g2(λ)/f2(2λ) = α has a unique positive solution λ∗α for any
α > 3/2. Moreover, for any positive constant ε, there exists a positive constant ε′, such that, if
α, β ∈ (0, ε), then |λ∗α − λ∗β| ≤ ε′|α− β|.
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Proof. It suffices to show that f(λ) := λf1(λ)g2(λ)/f2(2λ) is a strictly increasing function of λ
with λ > 0 and limλ→0+ f(λ) = 3/2. See Section A.2 for a Maple spreadsheet. By computing the
series of f(λ) with λ→ 0, we obtain

f(λ) =
3

2
+
λ

4
+O(λ2).

The derivative of f is

d f(λ)

dλ
=

2 + 2e2λλ− eλλ− 4e2λλ2 − e3λλ− 2eλλ2 + e4λ + e3λ − 3e2λ − eλ

f2(2λ)2
,

which we want to show that is positive for any λ > 0. Let F (λ) denote the numerator in the
above. It suffices to show that F (λ) is positive for λ > 0. Let F (0) = F . We will use the following
strategy: starting with i = 1, we check that F (i−1)(0) ≥ 0 and compute the derivative F (i) of
F (i−1). If for some i we can show that F (i)(λ) > 0 for any λ > 0, then we obtain F (λ) > 0 for
λ > 0. Otherwise, we try to simplify the derivative. If exp(λ) appears in every term of F (i), we
redefine F (i) by dividing it by exp(λ). Eventually, we obtain

216e2λ − 24λeλ − 44eλ − 16λ− 52,

which is trivially positive since exp(2x) ≥ exp(x) ≥ 1 + x for x ≥ 0 and the sum of the coefficients
of the negative terms is less than 216.

The proof of the second statement in the lemma follows trivially from the fact that the first
derivative is always positive and, with λ→ 0,

d f(λ)

dλ
=

λ4 +O(λ5)

4λ4 +O(λ5)
→ 1

4
> 0.

Since 3m̂ = 3/2 + 3r, for r = o(1) we have that λ∗ is well-defined and λ∗ → 0, by Lemma 4.7.4.

Let

wcore(n1) =


n!

Q2(n1)!f2(λn1)n2(n1)

n2(n1)!n1!m3(n1)!2n16m3(n1)λ
Q2(n1)
n1

, if n1 ∈ Jm \ {2n− 3m};

n!
Q2(n1)!

n2(n1)!n1!m3(n1)!2n6m3(n1)
, if n1 = 2n− 3m ∈ Jm.

(4.29)

Then, Proposition 4.7.2 implies that

gcore(n,m) =
∑

n1∈Jm\{2n−3m}

wcore(n1)E (G(n,m, n1,Y) simple|Σn1)P(Σn1)

+ 12n−3m∈Jmwcore(2n− 3m)P(G(n,m, n1,2) simple),
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where the last term comes from n1 = 2n− 3m and D2n−3m = {2}.
Recall that hn(x) = x ln(xn)− x and

fcore(n̂1) =hn(Q̂2)− hn(n̂2)− hn(n̂1)− hn(m̂3)

− n̂1 ln(2)− m̂3 ln(6)

+ n̂2 ln(f2(λn1))− Q̂2 ln(λn1).

The function n! exp(nfcore(n̂1)) is an approximation for the exponential part of wcore(n1). We will
analyse fcore and use it to draw conclusions about wcore. It will be useful to know the asymptotic
values of n̂∗1 and some functions of it. In Equation (4.28), the RHS is 3m/n = 3/2 + 3r and so we
can write r in terms of λ∗. Since n̂∗1 is defined as 3m̂/g2(λ∗), we can also write it in terms of λ∗

and so we can write Q2(n∗1), n2(n∗1) and m3(n∗1) in terms of λ∗ (and n). As we have mentioned
before, by Lemma 4.7.4, we have that λ∗ → 0. By computing the series with λ∗ → 0, we have that

λ∗ = 12r +O(r2);

n̂∗1 = 1/2− r +O(r2);

Q2(n∗1) = 3m− n∗1 = n+ 4R+ o(R);

n2(n∗1) = n− n∗1 = n/2 +R+ o(R);

m3(n∗1) = m− n∗1 = 2R+ o(R).

(4.30)

Next, we state the main lemmas for the proof of Theorem 4.7.1. We defer their proofs to
Section 4.7.3. First we show that n̂∗1 achieves the maximum value for fcore in Ĵm.

Lemma 4.7.5. The point n̂∗1 is the unique maximum of the function fcore(n̂1) for n̂1 ∈ Ĵm.
Moreover, we have that f ′core(n̂

∗
1) = 0, and f ′core(n̂1) > 0 for n̂1 < n̂∗1 and f ′core(n̂1) < 0 for n̂1 > n̂∗1.

Then we expand the summation around the maximum and approximate it by an integral,
which we compute, obtaining the following:

Lemma 4.7.6. Suppose that δ = o(r) and δ2 = ω(r/n), with r = o(1). We have that∑
x∈[−δn,δn]
n∗1+x∈Z

exp(nfcore(n̂
∗
1 + x̂) ∼

√
2πrn exp(nfcore(n̂

∗
1)).

Finally, we show that points far from the maximum do not contribute significantly to the
summation:

Lemma 4.7.7. Suppose that δ = o(r) and δ2 = ω(r log n/n) with r = o(1). Then∑
n1∈Jm

|n1−n∗1|>δn

wcore(n1) = o

(
n!

n
√
r

exp(nfcore(n̂
∗
1))

)
.
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We are now ready to prove Theorem 4.7.1. First we prove (4.17). We discuss the relation
of wcore and fcore more precisely here. The function n! exp(nfcore(n̂1)) can be obtained from the
definition of wcore(n1) in (4.29) as follows: replace Q2(n1)! by exp(hn(Q̂2)), and do the same for
n1!, n2(n1)!, and m3(n1)!. That is, n! exp(nfcore(n̂1)) can be obtained from wcore(n1) be replacing
each factorial involving n1 by its Stirling approximation (but ignoring the polynomials terms).
By Stirling’s approximation (Lemma 2.5.1), there exists constants α1 and α2 such that, for every
x ∈ N,

α1

√
x

(
x

e

)x
≤ x! ≤ α2

√
x

(
x

e

)x
, (4.31)

and so, there exists a constant α such that

wcore(n1) ≤ α
√
m exp(nfcore(n̂1)).

Together with Lemma 4.7.5, this immediately implies (4.17).

Now we will prove (4.18). So assume that R = o(n). In order to use Lemma 4.7.6 and
Lemma 4.7.7, we need to choose δ = δ(n) that satisfies δ = o(r) and δ2 = ω(r log n/n). This is
possible if and only if r2 = ω(r log n/n). That is, if and only if R = ω(log n), which is one of the
hypotheses of the theorem. Thus, let δ be such that δ = o(r) and δ2 = ω(r log n/n).

Let J(δ) = [n∗1 − δn, n∗1 + δn] ∩ Z. We have that 2n− 3m = n/2− 3R is not in J(δ) because
n∗1 = n/2 − R + o(R) by (4.30) and δn = o(R). By Proposition 4.7.2 and Lemma 4.7.3, for
n1(n) ∈ J(δ),

gcore(n,m, n1) ∼ wcore(n1)P(Σn1). (4.32)

For any n1(n) ∈ J(δ), we have that Q2(n1), m3(n1), n2(n1) are all Ω(R) by (4.30) and δn = o(R).
Thus, by (4.32), Stirling’s approximation and the definition of fcore, for n1(n) ∈ J(δ),

gcore(n,m, n1) =
1

2π

√
Q2(n1)

n2(n1)n1m3(n1)
· P(Σn1) · n! exp

(
nfcore(n̂1)

)
;

Using (4.30) and δn = o(R), we obtain

1

2π

√
Q2(n1)

n2(n1)n1m3(n1)
=

1

2π

√
n+ 4R+ o(R)

(n/2 +R+ o(R))(n/2−R+ o(R))(2R+ o(R))
∼ 1

πn
√

2r
(4.33)

and
Q2(n1)

n2(n1)
=
Q2(n∗1)

n2(n∗1)
(1 + o(r)),
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for n1(n) ∈ J(δ). By Lemma 2.10.5, this implies that λn1 ∼ λn∗1 for n1 ∈ J(δ). Moreover, we have
that Q2(n1)− 2n2(n1) = 2R+ o(R)→∞ by (4.30) and so, by Theorem 2.10.8,

P(Σn1) ∼ (2πQ2(n1)(1 + η2(n1)− c2(n1)))−1/2

=

(
2π(n+ 4R+ o(R))

(
1 + λn1

exp(λn1)

f1(λn1)
− λn1

f1(λn1)

f2(λn1)

))−1/2

=

(
2π(n+ 4R+ o(R))

(
1 +

1 + λn1 +O(λ2
n1

)

1 + λn1/2 +O(λ2
n1

)
−

1 + λn1/2 +O(λ2
n1

)

1/2 + λn1/6 +O(λ2
n1

)

))−1/2

=

(
2π(n+ 4R+ o(R))

(
λn1

6
+O(λ2

n1
)

))−1/2

=
(
2π(n+ 4R+ o(R))

(
2r +O(r2)

))−1/2 ∼ 1√
4πnr

,

(4.34)

for n1(n) ∈ J(δ). Thus,

gcore(n,m, n1) = (1 + o(1))
1

πn
√

2r
· 1√

4πnr
· n! exp

(
nfcore(n̂1)

)
, (4.35)

for n1(n) ∈ J(δ). Since J(δ) is a finite set for each n, by Lemma 2.7.1 there exists a function
q(n) = o(1) such that the o(1) in (4.35) is bounded in absolute value by q(n). Thus, by Lemma 4.7.6,

gcore(n,m) =
∑

n1∈J(δ)

gcore(n,m, n1) ∼ 1

πn
√

2r
· 1√

4πnr

∑
n1∈J(δ)

n! exp
(
nfcore(n̂1)

)
∼ 1

πn
√

2r
· 1√

4πnr
·
√

2πrn exp(nfcore(n̂
∗
1))

∼ 1

2πn
√
r

exp(nfcore(n̂
∗
1)),

which together with Lemma 4.7.7 finishes the proof of Theorem 4.7.1.

4.7.3 Proof of lemmas in Section 4.7.2

In this section, we prove Lemmas 4.7.5, 4.7.6, and 4.7.7. See Section A.3 for a Maple spreadsheet
with some computations in this section.

Using (4.10) with T = Q̂2 and t = n̂2, the derivative of fcore(n̂1) is

− ln(Q̂2) + ln(n̂2)− ln(n̂1) + ln(m̂3) + ln(3)− ln f2(λ) + lnλ. (4.36)
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The second derivative is

1

Q̂2

− 1

n̂2
− 1

n̂1
− 1

m̂3
− (1− c2)2

Q̂2(1 + η2 − c2)
< 0, (4.37)

because 1/Q̂2 < 1/m̂3. The third derivative is

1

Q̂2
2

− 1

n̂2
2

+
1

n̂2
1

− 1

m̂2
3

−
d (1−c2)2

Q̂2

d n̂1

1

(1 + η2 − c2)
+

(1− c2)2

Q̂2(1 + η2 − c2)2

d(1 + η2 − c2)

d n̂1
.

(4.38)

In order to approximate the value of fcore around the maximum by using Taylor’s approximation,
we will bound the third derivative.

Lemma 4.7.8. Let δ = o(r) and n̂1 ∈ [n̂∗1 − δ, n̂∗1 + δ]. Then the third derivative of fcore at n̂1 is
O(1/r2).

Proof. We will bound each term in (4.38). By (4.30),

1

Q̂2
2

=
1

(1 + 4r + o(r))2
∼ 1

1

n̂2
2

=
1

(1/2 +O(r))2
∼ 4

1

n̂2
1

=
1

(1/2 +O(r))2
∼ 4

1

m̂2
3

=
1

(2r + o(r))2
∼ 1

4r2
.

We have that λ := λn1 = λ∗ + o(r) = o(1) by Lemma 2.10.5, and so 1 + η2 − c2 = λ/6 +O(λ2) ∼
λ∗/6 ∼ 2r. Thus, by (4.30),

d (1−c2)2

c2

d n̂1

1

(1 + η2 − c2)
=

(3m̂− 1)2(6m̂− 3n̂1 + 1)

n̂3
2Q̂

2
2

1

(1 + η2 − c2)
= Θ

(
1

r

)
.

We now bound the last term in the third derivative. The previous computations imply

(1− c2)2

Q̂2(1 + η2 − c2)2
∼ 1

4r2
,
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since 1− c2 = Q̂2/n̂2 ∼ 2 by (4.30). So we need to bound

d(1 + η2 − c2)

d n̂1
.

We have that
d c2

d n̂1
=

3m̂− 1

(1− n̂1)2
= Θ(1)

and, by using (4.9),

d η2

d n̂1
= λ

d c2

d n̂1

1

c2(1 + η2 − c2)

(
exp(λ)

f1(λ)
+
λ exp(λ)

f1(λ)
− λ exp(λ)2

f1(λ)2

)
= Θ(1),

because

λ

(
exp(λ)

f1(λ)
+
λ exp(λ)

f1(λ)
− λ exp(λ)2

f1(λ)2

)
=
λ

2
+O(λ2).

Thus the last term has contribution O(1/r2) to the third derivative.

We now present the proofs for Lemmas 4.7.5, 4.7.6, and 4.7.7.

Proof of Lemma 4.7.5. By setting the derivative of fcore in (4.36) to 0 and using the definition
of λn1 in (4.13), we obtain the Equation (4.19), which has a unique positive solution λ∗ by
Lemma 4.7.4 The second derivative computation in (4.37) implies that fcore is strictly concave
and so λ∗ is the unique maximum.

Proof of Lemma 4.7.6. Using Taylor’s approximation and Lemma 4.7.8, for any n̂1 ∈ [n̂∗1−δ, n̂∗1+δ],

exp (nfcore(n̂1)) = exp

(
nfcore(n̂

∗
1) +

nf ′′core(n̂
∗
1)|n̂∗1 − n̂1|2

2
+O(δ3/r2)

)
. (4.39)

Since δ3/r2 = o(r3/r2) = o(1), this implies that∑
x∈[−δn,δn]
n̂∗1+x∈Z

exp
(
nfcore(n̂

∗
1 + x̂)

)
∼

∑
x∈[−δn,δn]
n̂∗1+x∈Z

exp

(
nfcore(n̂

∗
1) +

f ′′core(n̂
∗
1)x2

2n

)
.

By changing the variable in summation below to y =

√
|f ′′core(n̂∗1)|

n x,

∑
x∈[−δn,δn]
n̂∗1+x∈Z

exp

(
f ′′core(n̂

∗
1)x2

2n

)
=

∑
y∈[−Tn,Tn]
y∈Pn/sn

exp

(
−y

2

2

)
,
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where Tn := δ
√
n|f ′′core(n̂

∗
1)|, Pn := −n∗1 +Z, and sn :=

√
n/|fcore(n̂∗1)|. By using (4.37) and (4.30),

we approximated f ′′core(n̂
∗
1):

f ′′core(n̂
∗
1) ∼ −1

r
, (4.40)

and, since δ2 = ω(r/n) and rn = R → ∞, we have that Tn → ∞ and sn → ∞. Thus, by
Lemma 4.6.1, ∑

y∈[−Tn,Tn]
y∈Pn/sn

exp

(
−y

2

2

)
∼
√

2πsn ∼
√

2π
√
rn,

which finished the proof of Lemma 4.7.6.

Proof of Lemma 4.7.7. Instead of working directly with wcore, we will prove an upper bound for
wcore using fcore and then bound the summation using this upper bound.

By Stirling’s approximation (Lemma 2.5.1) and the definitions of wcore and fcore, for n1 ∈ Jm,

wcore(n1) ≤ nβn! exp
(
nfcore(n̂1)

)
, (4.41)

for some constant β. First we bound the summation for the tail n1 ≤ n∗1−δn. By Lemma 4.7.5, (4.39)
and (4.40) ∑

n1≤n∗1−δn
n1∈Z

wcore(n1) ≤ nβ+1n! exp
(
nfcore(n̂

∗
1 − δ)

)

≤ n! exp
(
nfcore(n̂

∗
1)
)

exp
(
nf ′′core(n̂

∗
1)δ2/2 + (β + 1) lnn+ o(1)

)
= O

(
n! exp(nfcore(n̂

∗
1))

exp(nδ2/(2r)− (β + 1) lnn+ o(1))

)
and we are done since nδ2/r = ω(lnn). The proof for n̂1 ≥ n̂∗1 + δ is similar.

4.8 Counting pre-kernels

In this section we obtain an asymptotic formula for the number of pre-kernels with vertex set [n]
with m = n/2+R edges, when R = ω(n1/2 log3/2 n) and R = o(n). We remark that the asymptotics
in this section are for n→∞. We will always use r to denote R/n.
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For x = (n1, k0, k1, k2) ∈ R4, let

n2(x) = k0 + k1 + k2,

n3(x) = n− n1 − n2(x) = n− n1 − k0 − k1 − k2,

m2(x) = n1,

m−2 (x) = n1 − k0,

P2(x) = 2m−2 (x) = 2n1 − 2k0,

m3(x) = m− n1,

P3(x) = 3m3(x) = 3m− 3n1,

Q3(x) = 3m− n1 − 2n2(x) = 3m− n1 − 2k0 − 2k1 − 2k2,

T3(x) = P3(x)− k1 − 2k2 = 3m− 3n1 − k1 − 2k2,

T2(x) = P2(x)− k1 = 2n1 − 2k0 − k1,

(4.42)

For any symbol y in this section (and following subsections), we use ŷ to denote y/n.

We will have n1 as the number of vertices of degree 1, k0 as the number of vertices of degree 2
such that the two edges incident to it are 2-edges, k2 as the number of vertices of degree 2 such
that the two edges incident to it are 3-edges and k1 as the remaining vertices of degree 2. Then it
is clear that n2 is the number of vertices of degree 2, n3 is the number of vertices of degree at
least 3, Q3 is the sum of degrees of vertices of degree at least 3, m3 is the number of 3-edges,
m2 is the number of 2-edges, and m−2 is the number of 2-edges that contain exactly two vertices
of degree 2. We omit the argument x when it is obvious from the context.

For x ∈ R4, let

c3(x) =
Q3(x)

n3(x)
=

3m− n1 − 2n2(x)

n− n1 − n2(x)
,

that is, c3 is the average degree of the vertices of degree at least 3. Note that c3(x) = Q̂3(x)/n̂3(x) =
ĉ3(x). For x ∈ R4 such that Q̂3(x) > 3n̂3(x) > 0, let λ = λ(x) be the unique positive solution of

λf2(λ)

f3(λ)
= c3(x). (4.43)

Such λ(x) always exists and is unique by Lemma 2.10.3. By continuity reasons, we define λ(x) = 0
when c3(x) = 3.

Let Sm be the region of R4 such that x = (n1, k0, k1, k2) ∈ Sm if all of the following conditions
hold:

• n1, k0, k1, k2 ∈ [0, n];

• Q3(x) ≥ 3n3(x) ≥ 0, and Q3(x) = 0 whenever n3(x) = 0;
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• m3(x),m2(x),m−2 (x), T3(x), T2(x) ≥ 0.

We will work with pre-kernels with n1 vertices of degree 1 and ki vertices of degree 2 incident
to exactly i 3-edges, for i = 0, 1, 2. We say that such pre-kernels have parameters (n1, k0, k1, k2).
The region Sm is defined so that all tuples (n1, k0, k1, k2) for which it there exists a pre-kernel
with such parameters are included. Let Ŝm = {x/n : x ∈ Sm} denote the scaled version of Sm.
The set Sm is not closed because Q3(x) = 0 whenever n3(x) = 0. This constraint is added because
Q3(x) should be the sum of the degrees of vertices of degree at least 3 and n3(x) should be the
number of vertices of degree at least 3.

For x̂ = (n̂1, k̂0, k̂1, k̂2) in the interior of Ŝm, define

fpre(n̂1, k̂0, k̂1, k̂2) = hn(P̂3) + hn(P̂2) + hn(Q̂3) + hn(m2)

− hn(k̂0)− hn(k̂1)− hn(k̂2)− hn(n̂3)− hn(m̂3)

− hn(P̂3 − k̂1 − 2k̂2)− hn(P̂2 − k̂1)− 2hn(m̂−2 )

− k̂2 ln 2− m̂−2 ln 2− m̂3 ln 6

+ n̂3 ln f3(λ)− Q̂3 lnλ,

(4.44)

where λ = λ(x). As we will see later, for x = (n1, k0, k1, k2) ∈ Sm∩Z4, we have that n! exp(nfpre(x̂))
approximates the exponential part of the number of pre-kernels with parameters (n1, k0, k1, k2).

We extend the definition of fpre for points x̂ ∈ Ŝm that are in the boundary of Ŝm as the limit of
fpre(x

(i)) on any sequence of points (x(i))i∈N in the interior of Ŝm with x(i) → x̂. One of the reasons
the points x with Q3(x) > c3(x) = 0 are not allowed is that fpre(xi) does not necessarily converge on
a sequence of points (x(i))i∈N converging to x. For the points in the boundary where Q3(x) > c3(x),
this only means that 0 log 0 should be interpreted as 1. For x̂ ∈ Ŝm such that Q̂3(x̂) = 3n̂3(x̂),
we have that λ(x) = 0. This means that n̂3(x) ln f3(λ(x)) − Q̂3(x) lnλ(x) is not defined (and
note that n̂3(x) ln f3(λ(x)) and −Q̂3(x) lnλ(x) are the last two terms in the definition of fpre(x̂)).
We compute limλ→0(n̂3(x) ln f3(λ)− Q̂3(x) lnλ). We have that limλ→0 (ln f3(λ)− 3 lnλ) = − ln 6.
Thus, limλ→0(n̂3(x) ln f3(λ)− Q̂3(x) lnλ) = −n̂3(x) ln 6 and

fpre(x̂) =hn(P̂3) + hn(P̂2) + hn(Q̂3) + hn(m2)

− hn(k̂0)− hn(k̂1)− hn(k̂2)− hn(n̂3)− hn(m̂3)

− hn(P̂3 − k̂1 − 2k̂2)− hn(P̂2 − k̂1)− 2hn(m̂−2 )

− k̂2 ln 2− m̂−2 ln 2− m̂3 ln 6

− n̂3 ln 6.

(4.45)

We obtain the following asymptotic formula for the number of pre-kernels with n vertices and
m = m(n) edges.
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Theorem 4.8.1. Let m = m(n) = n/2 +R such that R = o(n) and R = ω(n1/2 log3/2 n). Then

gpre(n,m) ∼
√

3

πn
n! exp(nfpre(x̂

∗)),

where x̂∗ is defined as (n̂∗1, k̂
∗
0, k̂
∗
1, k̂
∗
2) with

n̂∗1 =
3m̂

g2(λ∗)
,

k̂∗0 =
3m̂

g2(λ∗)

2λ∗

f1(λ∗)g1(λ∗)
,

k̂∗1 =
3m̂

g2(λ∗)

2λ∗

g1(λ∗)
,

k̂∗2 =
3m̂

g2(λ∗)

λ∗f1(λ∗)

2g1(λ∗)
,

(4.46)

and λ∗ = λ∗(n) is the unique nonnegative solution for the equation

λf1(λ)g2(λ)

f2(2λ)
= 3m̂. (4.47)

We discussed the existence and uniqueness of λ∗ in Section 4.7. Also, note that (4.47), implies

r =
1

3

λ∗f1(λ∗)g2(λ∗)

f2(2λ∗)
− 1

2
. (4.48)

We will show that the point x̂∗ maximizes fpre in a region that contains all points (n̂1, k̂0, k̂1, k̂2)
for which there exists a pre-kernel with parameters (n1, k0, k1, k2). The result is then obtained
basically by expanding the summation around x̂∗ in a region such that each term in (4.42) are
nonnegative and c3 ≥ 3. This approach is similar to the one in Section 4.7 in which we analyse
cores, but it will require much more work since we are now dealing with a 4-dimensional space.
We remark that λ∗ = λ(x∗), that is, λ∗f2(λ∗)/f3(λ∗) = c3(x∗).

Similarly to Section 4.7 that deals with cores, it will be useful to know approximations for
some parameters at the point x̂∗ = (n̂∗1, k̂

∗
0, k̂
∗
1, k̂
∗
2) that achieves the maximum. For r = o(1), we

proved in Lemma 4.7.5 that λ∗ = o(1). From (4.47), we can write r in terms of λ∗ and so we
can write n̂∗1, k̂∗0, k̂∗1 and k̂∗2 in terms of λ∗. Thus, using (4.46), and computing the series of each
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function in (4.42) as λ∗ → 0, we have

r = 1
12λ
∗ + 1

36(λ∗)2 +O((λ∗)3) Q̂∗3 = 1
2λ
∗ + 1

12(λ∗)2 +O((λ∗)3)

n̂∗1 = 1
2 −

1
12λ
∗ − 1

36(λ∗)2 +O((λ∗)3) m̂∗3 = 1
6λ
∗ + 1

18(λ∗)2 +O((λ∗)3)

k̂∗0 = 1
2 −

7
12λ
∗ + 2

9(λ∗)2 +O((λ∗)3) m̂−∗2 = 1
2λ
∗ − 1

4(λ∗)2 +O((λ∗)3)

k̂∗1 = 1
2λ
∗ − 1

3(λ∗)2 +O((λ∗)3) T̂ ∗2 = 1
2λ
∗ − 1

6(λ∗)2 +O((λ∗)3)

k̂∗2 = 1
8(λ∗)2 +O((λ∗)3) T̂ ∗3 = 1

4(λ∗)2 +O((λ∗)3)

n̂∗3 = 1
6λ
∗ + 1

72(λ∗)2 +O((λ∗)3).

(4.49)

In the following subsections, we will use Y = (Y1, . . . , Yn3) to denote a vector of independent
random variables Y1, . . . , Yn3 such that each Yi has truncated Poisson distribution with parameters
(3, λ(x)) and Σ(x) to denote the event

∑
i Yi = Q3.

4.8.1 Kernels

In this section, we define the notion of kernels of pre-kernels, which will be useful to study
properties of pre-kernels and to generate random pre-kernels.

Recall that the pre-kernel is a core with no isolated cycles. Let the kernel of a pre-kernel G be
the multihypergraph obtained as follows. Start by obtaining G′ from G by deleting all vertices of
degree 1 and replacing each edge containing a vertex of degree 1 by a new edge of size 2 incident
to the other two vertices (and note that the multihypergraph is not necessarily uniform anymore).
While there is a vertex v of degree 2 in G′ such that the two edges incident to v have size 2, update
G′ by deleting both edges, and adding a new edge of size 2 containing the vertices other than v
that were in the deleted edges. When this procedure is finished, delete all vertices of degree less
than 2. The final multihypergraph is the kernel of G. This procedure obviously produces a unique
multihypergraph (disregarding edge labels). See Figure 4.5 for an example of the procedure above.

This procedure is similar to the one for obtaining kernels of 2-uniform hypergraphs described
by Pittel and Wormald [56]: the kernel of a pre-kernel is obtained by repeatedly replacing edges uv
and vw, where v is a vertex of degree 2, by a new edge uw until no vertex of degree 2 remains, and
then deleting all isolated vertices. Note that in our procedure there may be vertices of degree 2 in
the kernel while there is no vertex of degree 2 in the kernel of a 2-uniform hypergraph.

In the kernel all edges have size 2 or 3. We call these edges 2-edges and 3-edges in the kernel,
resp. It is trivial from the description above that in the kernel every degree 2 vertex is contained
in at least one 3-edge. We say that any multihypergraph in which all edges have size 2 or 3, there
are no vertices of degree 1, and every vertex of degree 2 is in at least one edge of size 3, is a kernel.
The reason for this is that given such a multihypergraph, one can create a pre-kernel following the
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pre-kernel

Removing vertices of degree 1

Adding vertices of degree 1

Figure 4.5: Obtaining a kernel from a pre-kernel, and vice-versa.

procedure we discuss next. Consider the following operation: we split one 2-edge with vertices u
and v by deleting the edge and adding a new vertex w and two new 2-edges, one containing u
and w and the other containing v and w. Given the kernel of a pre-kernel, one can split edges
from the kernel in a way that it reverses the steps of the procedure for finding the kernel. After
including the vertices of degree 1 in the 2-edges, the resulting graph is the pre-kernel. Note that,
by replacing 2-edges in the kernel by splitting 2-edges and adding new vertices (of degree 1) to all
2-edges, the resulting multigraph does not have any isolated cycle. Thus, whenever the resulting
multigraph is simple, it is a pre-kernel.

4.8.2 Random kernels and pre-kernels

Recall that our aim in Section 4.8 is to find an asymptotic formula for gpre(n,m), the number of
connected pre-kernels with vertex set [n] and m edges. Similarly to Section 4.7.1 about random
cores, we show how to reduce the enumeration problem for pre-kernels to approximating the
expectation, in a probability space of random degree sequences, of the probability that a random
graph with given degree sequence is connected and simple.

We will describe a procedure to generate pre-kernels. For x = (n1, k0, k1, k2) ∈ Sm ∩ Z4, let

D(x) ⊆ Nn3(x) be such that d ∈ D(x) if di ≥ 3 for all i and
∑n3(x)

i=1 di = Q3(x). Our strategy to
generate a random pre-kernel is the following. We start by choosing the vertices and 3-edges that
will be in the kernel. We then generate a random kernel with degree sequence d for the vertices
of degree at least 3, k1+k2 vertices of degree 2, m−2 2-edges and m3 3-edges so that ki vertices
of degree 2 are contained in exactly i 3-edges for i = 1, 2. The pre-kernel is then obtained by
splitting 2-edges k0 times and assigning the vertices of degree 1.
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The kernel is generated in a way similar to the random cores in Section 4.7 but with different
restrictions. For each vertex, we create a bin/set with the number of points inside it equal to
the degree of the vertex. These bins are called vertex-bins. For each edge, we create one bin/set
with 2 or 3 points inside it, depending on whether it is a 2-edge or a 3-edge. These bins are
called edge-bins. Each point in a vertex-bin will be matched to a point in an edge-bin with some
constraints. The kernel can then be obtained by creating one edge for each edge-bin i such that the
vertices incident to it are the vertices with points matched to point in the edge-bin i. We describe
how to generate a random kernel K(V,M3, k1, k2,d) where V ⊆ [n] is a set of size k1 + k2 + n3

and M3 ⊆ [m] is a set of size m3. In each step, every choice is made u.a.r. among all possible
choices satisfying the stated conditions:

1. (Vertex-bins) Choose a set V3 of n3 vertices in V to be the vertices of degree at least 3. Let
v1 < · · · < vn3 be an enumeration of V3. For each i ∈ [n3], create a vertex-bin vi with points
labelled 1, . . . , di inside it. For each v ∈ V \ V3, create a vertex-bin v with points labelled 1
and 2 inside it.

2. (Edge-bins) For each i ∈M3, create one edge-bin with points labelled 1, 2, and 3 inside it.
Let M2 = {(i, 0) : i ∈ [m−2 ]}. For each i ∈ M2, create one edge-bin with points labelled 1
and 2 inside it.

3. (Matching) Match the points from the vertex-bins to the points in edge-bins so that, for
i = 1, 2, ki vertex-bins with two points have exactly i points being matched to an edge-bin
of size 3. This matching is called a kernel-configuration with parameters (V,M3, k1, k2,d).

4. (Kernel) The kernel K(V,M2, k1, k2) = (V,M2 ∪M3,Φ) is the multihypergraph such that
for each E ∈ M2 ∪M3, we have that Φ(E, i) = v, where v is the vertex corresponding to
the vertex-bin containing j and j is the point matched to point i in the edge-bin E in the
previous step.

See Figure 4.6 for an example of this procedure. The constraints in Step 3 ensures that each vertex
of degree 2 is contained by at least one 3-edge and so the procedure above always generates a
kernel. It is also trivial that all kernels (with edges M3 ∪M2) can be generated by this procedure.

We now describe the pre-kernel model precisely. For x = (n1, k0, k1, k2) ∈ Sm ∩ Z4 and
d ∈ D(x), let P(x,d) = Pn,m(x,d) be the random graph generated as follows. In each step, every
choice is made u.a.r. among all possible choices satisfying the stated conditions:

1. (Kernel) Let V be a subset of [n] of size n−n1− k0 and M3 be a subset of [m] of size m3(x).
Let K = (V,MK,ΦK) be the random kernel K(V,M3, k1, k2,d).

2. (Splitting edges)Let Vk0 be a subset of [n]\ of size k0. This set will be the set of vertices
of degree at 2 contained by two 2-edges. Let v1, . . . , vk0 be an enumeration of the vertices
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Figure 4.6: A kernel generated with vertex and edge-bins

in Vk0 . Let P = K. For i = 1 to k0, do the following operation: split a 2-edge of P with new
vertex vi and update P .

3. (Assigning 2-edges and vertices of degree 1) Let V1 be a subset of size n1 in [n] \ V . These
will be the vertices of degree 1 in the multigraph. Assign for each 2-edge E of P a (unique)
edge E′ from [m] \M3 and a (unique) vertex u in V1. Place a perfect matching ME′ between
the collection {ΦK(E, 1),ΦK(E, 2), u} and {1, 2, 3}. We call this matching together with the
sequence of splittings in the previous step a splitting-configuration.

4. (Pre-kernel) Let P(n1, k0, k1, k2,d) = ([n], [m],Φ), where Φ(E, ·) = ΦK(E, ·) if E ∈M3 and,
otherwise, Φ(E, i) = v, where v is the vertex matched to i in ME .

When the procedure above results in a (simple) graph, it is a pre-kernel since it is obtained by
splitting the 2-edges of a kernel and assigning vertices of degree 1 to the 2-edges. It is trivial all
pre-kernels are generated since all kernels and the ways of splitting the edges are considered.

For (n1, k0, k1, k2) ∈ Sm, let gpre(n,m, n1, k0, k1, k2) denote the number of connected (simple)
pre-kernels with vertex set [n] and m edges such that n1 vertices have degree 1, and k0 + k1 + k2

vertices have degree 2 so that ki of the degree 2 vertices are incident to exactly i 3-edges for
i = 0, 1, 2. For d ∈ D(n1, k0, k1, k2), let gpre(n,m, n1, k0, k1, k2,d) denote the number of such
pre-kernels with the additional constraint that d is the degree sequence of the vertices of degree
at least 3.

In order to analyse gpre(n,m, n1, k0, k1, k2,d) it will be useful to know the number of kernel-
configurations.

Lemma 4.8.2. Let x = (n1, k0, k1, k2) ∈ Sm ∩ Z4 and d ∈ D(x). The number of kernel-
configurations with parameters (V,M3, k1, k2,d), where V is a set of size k1 + k2 + n3 and M3 is
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a set of size m3, is(
k1 + k2 + n3

n3

)(
k1 + k2

k1

)
2k1
(

P3

k1 + 2k2

)
(k1 + 2k2)!

(
P2

k1

)
k1!Q3! =

(k1 + k2 + n3)!P3!P2!Q3!2k1

n3!k1!k2!T3!T2!
.

Moreover, each kernel with parameters (V,M3, k1, k2,d) is generated by exactly 2k1+k2
∏n3
i=1 di!

kernel-configurations.

Proof. There are
(
k1+k2+n3

n3

)
ways of choosing the vertices of degree at least 3 in the first step.

The step where the kernel-configuration is created can be described in the following more detailed
way:

1. Choose k1 vertex-bins of size 2. Let U be a set containing exactly one point of each of these
vertex-bins and let D be the set consisting of all points in vertex-bins of size 2 that are not
in U .

2. Choose k1 + 2k2 points inside edges-bins of size 3 and match them to points in D.

3. Choose k1 points inside edges-bins of size 2 and match them to points in U .

4. Match the remaining unmatched Q3 points from the vertex-bins to the unmatched points in
the edge-bins.

In Step 1, there are
(
k1+k2
k1

)
choices for the vertex-bins of size 2 and 2k1 choices for U . There are(

P3

k1+2k2

)
(k1 + 2k2)! choices for Step 2,

(
P2

k1

)
k1! for Step 3 and Q3! choices for Step 4. The first part

of the lemma then follows trivially.

Each kernel with parameters (V,M3, k1, k2,d) is generated by 2k1+k2
∏n3
i=1 di! distinct kernel-

configurations, because any permutation of the points inside vertex-bins can be done without
changing the resulting kernel.

The following proposition relates gpre(n,m, n1, k0, k1, k2,d) and gpre(n,m, n1, k0, k1, k2) to the
random pre-kernels P(x,d) and random degree sequences. The proof is similar to the proof of
Proposition 4.7.2. We include it here for completeness.

Proposition 4.8.3. For x = (n1, k0, k1, k2) ∈ Sm ∩ Z4 and d ∈ D(x),

gpre(n,m, n1, k0, k1, k2,d)

= n!
P3!P2!Q3!(m2 − 1)!P(P(n1, k0, k1, k2,d) simple and connected)

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

∏
i di!
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and, if Q3(x) > n3(x), then

gpre(n,m, n1, k0, k1, k2)

= n!
P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!(P3 − k1 − 2k2)!(P2 − k1)!(m−2 − 1)!m−2 !2k22m
−
2 6m3

· f3(λ)n3

λQ3
E
(
P
(
P(n1, k0, k1, k2,Y) simple and connected

)∣∣∣Σ(x)
)
P
(
Σ(x)

)
,

(4.50)

where Y = (Y1, . . . , Yn3) is a vector of independent random variables Y1, . . . , Yn3 such that each
Yi has truncated Poisson distribution with parameters (3, λ(x)) and Σ(x) denotes the event∑

i Yi = Q3.

Proof. Any multigraph obtained by the process for P(x,d) is generated by 2k1+k2(
∏n3
i=1 di!)m

−
2 !2m

−
2

combinations of kernel-configurations and splitting-configuration. This is because each kernel is
generated by 2k1+k2

∏n3
i=1 di! kernel-configurations by Lemma 4.8.2 and permuting the labels and

points inside each of the 2-edges in the kernel do not change the resulting multigraph. Thus, by
Lemma 4.3.3, each pre-kernel with parameters (x,d) is generated by

α := 2k1+k2
( n3∏
i=1

di!
)
m−2 !2m

−
2 m!6m (4.51)

combinations of kernel-configurations and splitting-configurations. Next we compute the total
number of such combinations. In Step 1 in which we generate the kernel, there are

(
n

k1+k2+n3

)
ways of choosing V and

(
m
m3

)
ways of choosing M3. The number of ways of generating the kernel is

(k1 + k2 + n3)!P3!P2!Q3!2k1

n3!k1!k2!T3!T2!

by Lemma 4.8.2. In Step 2, there are
(
n1+k0
k0

)
ways of choosing Vk0 and m−2 (m−2 + 1) · · · (m−2 +

k0 − 1) = (m2 − 1)!/(m−2 − 1)! ways of splitting the edges. In Step 3, that are (m2!)2 ways of
assigning the 2-edges and vertices of degree 1 and 6m2 ways of placing the matchings. Thus, the
total number of combinations of kernel-configurations and splitting-configurations is(

n

k1 + k2 + n3

)(
m

m3

)
(k1 + k2 + n3)!P3!P2!Q3!2k1

n3!k1!k2!T3!T2!

(
n1 + k0

k0

)
(m2 − 1)!

(m−2 − 1)!
(m2!)26m2 =: β.

Hence, since each combination is generated with the same probability, we have that

gpre(n1, k0, k1, k2,d) =
β

α
P(P(n1, k0, k1, k2,d) simple and connected), (4.52)
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where β is the total number of configurations. which together with (4.52) and trivial simplifications
implies (4.8.3).

We now prove (4.50). Again, the proof is very similar to the proofs of Proposition 3.2.1 and
Proposition 3.2.2 in Chapter 3. For x = (n1, k0, k1, k2), let U(x,d) denote the probability that
Pn,m(n1, k0, k1, k2,d) is simple and connected. For x = (n1, k0, k1, k2),

gpre(n,m, n1, k0, k1, k2) :=
∑

d∈D(x)

gpre(n,m, n1, k0, k1, k2,d)

= n!
∑

d∈D(x)

P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

∏
i di!

U(n1, k0, k1, k2,d)

= n!
P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

f3(λ(x))n3

λ(x)Q3

∑
d∈D(x)

∏
i

λ(x)di

di!f3(λ(x))
U(x,d)

= n!
P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

f3(λ(x))n3

λ(x)Q3

∑
d∈D(x)

U(x,d)P(Y = d)

= n!
P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

f3(λ(x))n3

λ(x)Q3
E (U(x,Y)|Σ(x))P(Σ(x))

which proves (4.50).

The goal of the next lemmas is to show that the expectation in (4.50) goes to 1 for points x
close to x∗. For x ∈ Sm ∩ Z4 and φ = φ(n) > 0, let

D̃φ(x) =
{
d ∈ D(x) : |η(d)− E (η(Y))| ≤ Rφ

}
where η(d) :=

∑n3
i=1 di(di − 1)/(2m), and recall that R = m− n/2. We will show that, for some

function φ = o(1), conditioned upon Σ(x), the probability that Y is in D̃φ(x) goes to 1. Intuitively,
this means that the set D̃φ(x) contains all ‘typical’ degree sequences for points x ∈ S that are
close to x∗. For ψ = ψ(n) = o(1), let

S∗ψ =

{
x = (n1, k0, k1, k2) ∈ S :

∣∣∣n̂1 −
1

2

∣∣∣ ≤ ψr;∣∣∣k̂0 −
1

2

∣∣∣ ≤ ψr; ∣∣∣k̂1 − 6r
∣∣∣ ≤ ψr;∣∣∣k̂2 − 18r2

∣∣∣ ≤ ψr2;
∣∣∣n̂3 − 2r

∣∣∣ ≤ ψr;∣∣∣Q̂3 − 6r
∣∣∣ ≤ ψr; ∣∣∣m̂3 − 2r

∣∣∣ ≤ ψr;∣∣∣m̂−2 − 6r
∣∣∣ ≤ ψr; ∣∣∣T̂2 − 6r

∣∣∣ ≤ ψr;∣∣∣T̂3 − 36r2
∣∣∣ ≤ ψr2

}
.

(4.53)
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We define S∗ψ this way so that all points in it are close to x∗, where we are using (4.49) to find
around which values each of the functions in the definition of S∗ψ should be concentrated. The idea
is to define ψ later in a way that it is small enough so that we can approximate the summation of
n! exp(nfpre(x̂)) in the integer points x in S∗ψ, but large enough so that what is not included do
not significant effect in the summation

∑
x∈Sm∩Z4 n! exp(nfpre(x̂)).

Next we show that for points in x ∈ S∗ψ with ψ = o(1) the set D̃φ(x) (for some φ = o(1)) is a
set of ‘typical’ degree sequences.

Lemma 4.8.4. Let ψ = o(1). There exists φ = o(1) such that, for every integer point x ∈ S∗ψ, we

have that P(Y ∈ D̃φ(x) |Σ(x)) = 1− o(1).

We then show that for x = x(n) ∈ S∗ψ ∩ Z4 and d ∈ D̃φ(x), the random pre-kernel P(x,d) is
connected and simple a.a.s.

Lemma 4.8.5. Assume R = o(n). Let ψ, φ = o(1). Let x = x(n) ∈ S∗ψ be an integer point and

d = d(n) ∈ D̃φ(x). Then P(x,d) is simple a.a.s.

Lemma 4.8.6. Assume R = o(n). Let ψ, φ = o(1). Let x ∈ S∗ψ be an integer point and

d = d(n) ∈ D̃φ(x). Then P(x,d) is connected a.a.s.

The proofs for Lemmas 4.8.4, 4.8.5, and 4.8.6 are presented in Sections 4.8.3, 4.8.4, and 4.8.5,
respectively. We now show how to prove that the expectation in (4.50) goes to 1 assuming
Lemmas 4.8.4, 4.8.5, and 4.8.6.

Corollary 4.8.7. Let ψ = o(1) and let x = (n1, k0, k1, k2) ∈ S∗ψ ∩ Z4. Then

E
(
P
(
P(n1, k0, k1, k2,Y) simple and connected

)∣∣∣Σ(x)
)
∼ 1.

Proof. Let U(Y) denote the probability that P(x,Y) is connected and simple. Let φ = o(1) be
given by Lemma 4.8.4. We have that

E
(
U(Y)

∣∣∣Σ(x)
)
≥

∑
d∈D̃φ(x)

P(U(d))P(Y = d |Σ(x)).

By Lemmas 4.8.5 and 4.8.6, we have that P(U(d)) = 1− o(1) for every d = d(n) ∈ D̃φ(x). Since
D̃φ(x) is a finite set for each n, this implies that there exists a function q(n) = o(1) such that
P(U(d)) ≥ 1− q(n) for every d ∈ D̃φ(x) by Lemma 2.7.1. Thus,

E
(
u(Y)

∣∣∣Σ(x)
)
≥ (1− q(n))P(Y ∈ D̃φ(x)) = 1− o(1).

by Lemma 4.8.4.
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4.8.3 Typical degree sequences

In this section, given an integer point x ∈ Sm ‘close’ to the point x∗ (more precisely x ∈ S∗ψ
and ψ = o(1)), we show that, for a random vector of Y = (Y1, . . . , Yn3(x)) of independent
truncated Poisson random variables with parameters (3, λ(x)) conditioned upon the event Σ(x)

that
∑n3(x)

i=1 Yi = Q3(x), the value of
∑n3(x)

i=1

(
Yi
2

)
is concentrated around its expected value. More

specifically, we present the proof for Lemma 4.8.4. Recall that

D̃φ(x) =
{
d ∈ D(x) : |η(d)− E (η(Y))| ≤ Rφ

}
where η(d) =

∑n3
i=1 di(di − 1)/(2m). We want to show that, given x ∈ S∗ψ ∩ Z4 with ψ = o(1),

there exists φ = o(1) such that P(Y ∈ D̃φ(x) |Σ(x)) > 1− φ, where Y = (Y1, . . . , Yn3) is a vector
of independent random variables with distribution Po(3, λ(x)).

Recall that n3 ∼ 2rn = 2R → ∞, and Q3/n3 ∼ 6r/(2r) = 3 for x ∈ S∗ψ. Thus, by the
definition of λ(x) (in (4.43)) and Lemma 2.10.3, we must have λ(x) = o(1). Then by Lemma 2.10.7,
Var(Yi(Yi − 1)) = Θ(λ). Thus, by Chebyshev’s inequality,

P
(
|η(Y)− E (η(Y))| ≥ Rφ

)
≤ Var(η(Y))

R2φ2
=
n3Θ(λ)

R2φ2
= o

(
n3

R2φ2

)
.

If R3 := Q3 − 3n3 ≤ log n3, by Theorem 2.10.8 and Stirling’s approximation (Lemma 2.5.1)

P(Σ(x)) = (1 + o(1))e−R3
RR3

3

R3!
= Ω

(
1√
R3

)
= Ω

(
1√

log n3

)
.

If Q3 − 3n3 ≥ log n3, by Theorem 2.10.8,

P(Σ(x)) ∼ 1√
2πn3c3(1 + η3 − c3)

= Ω

(
1
√
n3

)
,

where c3 = Q3/n3 and η3 = λ(x)f1(λ(x))/f2(λ(x)), and we used Lemma 2.10.7. Thus,

P
(
|η(Y)− E (η(Y))| ≥ Rφ|Σ

)
= O

(
n3

R2φ2

√
n3

)
= O

(
1

R1/2φ2

)
since n3 ∼ 2R and so it is suffices to choose φ2 = ω(

√
1/R). This finishes the proof of Lemma 4.8.4.

4.8.4 Simple pre-kernels

In this section, given an integer point x ∈ Sm ‘close’ to the point x∗ and d ∈ Nn3 with some
constraints (more precisely x ∈ S∗ψ and d ∈ D̃φ(x) with ψ, φ = o(1)), we show that the random
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multigraph P(x,d) defined in Section 4.8.2 is simple a.a.s., thus proving Lemma 4.8.5. Recall
that a multigraph is simple if it has no loops and no double edges (as defined in Section 4.3).
Any loop (or double edge) involving only 3-edges in the kernel remains a loop (or double edge) in
the pre-kernel. Any double edge involving 2-edges in the kernel will not be a double edge in the
pre-kernel, because each 2-edge will be assigned a unique vertex of degree 1 in the procedure that
creates the pre-kernel from the kernel. A loop in the kernel that is an 2-edge will cease to be a
loop in the pre-kernel if it is split at least once. Note that, if a 2-edge that is a loop in the kernel
is split exactly once, the two 2-edges created will not form a double edge in the final multigraph
since the assignment of vertices of degree 1 to the 2-edges eliminates all double edges involving
2-edges. It is clear that no other loops or double edges can be created. We rewrite these conditions
for the kernel-configuration: the pre-kernel P = P(x,d) is simple if and only if

(A) (No loops in 3-edges) No edge-bin of size 3 has at least 2 points matched to points from the
same vertex-bin.

(B) (No double 3-edges) Assuming no loops in 3-edges, no pair of edges-bins of size 3 has their
points matched to points in the same 3 vertices.

(C) (No loops in 2-edges) For every edge-bin of size 2, its points are matched to points from
distinct vertex-bins or the 2-edge corresponding to this edge-bin is split at least once in the
process that obtains the pre-kernel from the kernel.

We will show that, for x ∈ S∗ψ and d ∈ D̃φ(x) with ψ, φ = o(1), the random multigraph P(x,d)
is simple a.a.s., which proves Lemma 4.8.5. We need to show that each of the conditions (A),
(B) and (C) holds a.a.s. We will use the detailed procedure for obtaining kernel-configurations
described in the proof of Lemma 4.8.2. We work in the probability space conditioned upon the
vertices of degree 3 and the points in U being already chosen, since the particular choices of these
vertices and points do not affect the probability of loops or double edges in the kernel.

First we prove (A) holds a.a.s. Consider the case that the loop is on a vertex of degree 2.
There are k2 possible choices for the vertex-bin. There are m3 choices for the edge-bin of size 3
and 3 · 2 choices for the points inside of the edge-bin to be matched to the points in the vertex-bin
of size 2. Thus, we have 6k2m3 choices. Following the proof of Lemma 4.8.2, after the vertices of
degree 3 and U are chosen, there are(

P3

k1 + 2k2

)
(k1 + 2k2)!

(
P2

k1

)
k1!Q3! (4.54)

ways of completing the kernel-configuration. The number of completions of kernel-configurations
containing a given matching that matches 2 points in a vertex-bin of size 2 to 2 points in an
edge-bin of size 3 is then (

P3 − 2

k1 + 2k2 − 2

)
(k1 + 2k2 − 2)!

(
P2

k1

)
k1!Q3!
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Thus, using the definition of S∗φ, the probability that there is a loop on a vertex of degree 2 in a
3-edge is at most

6k2m3
1

P3(P3 − 1)
= O

(
k2m3

P 2
3

)
= O

(
(r2n)(rn)

(rn)2

)
= O(r) = o(1).

Now consider the case that the loop is on a vertex of degree at least 3. There are
∑n3

i=1

(
di
2

)
= η(d)

possible choices for the vertex-bin and 2 points inside it. Since d ∈ D(x) and E (η(Y)) =
n3E (Y1(Y1 − 1)) ∼ 6n3 = Θ(R),

η(d) = Θ(n3).

There are m3 choices for the edge-bin of size 3 and 3 ·2 choices for the points inside of the edge-bin
to be matched to the chosen points in the vertex-bin. Thus, we have O(n3m3) choices. The
number of completions of kernel-configurations containing one given matching that matches 2
points in a vertex-bin of size at least 3 and 2 points in a edge-bin of size 3 is(

P3 − 2

k1 + 2k2

)
(k1 + 2k2)!

(
P2

k1

)
k1!(Q3 − 2)!

Thus, using (4.54), the probability that there is a loop on a vertex-bin of size at least 3 in edge-bin
of size 3 is

O

(
n3m3 ·

(P3 − 2)!

P3!

(Q3 − 2)!

Q3!

(T3)!

(T3 − 2)!

)
= O

(
n3m3T

2
3

P 2
3Q

2
3

)
= O

(
(rn)(rn)(r2n)2

(rn)2(rn)2

)
= O(r2) = o(1).

This finishes the proof that Condition (A) holds a.a.s. Now we prove that Condition (B) holds
a.a.s. We consider 4 cases:

(B1) The edge-bins corresponding to the double edge have their points matched to points in 3
vertex-bins all of size 2.

(B2) The edge-bins corresponding to the double edge have their points matched to points in 2
vertex-bins of size 2 and 1 vertex-bin of size at least 3.

(B3) The edge-bins corresponding to the double edge have their points matched to points in 1
vertex-bin of size 2 and 2 vertex-bins of size at least 3.

(B4) The edge-bins corresponding to the double edge have none of their points matched to points
in vertex-bins of size 2.

Let us start with (B1). We have O(k3
2m

2
3) choices for the 3 vertex-bins and 2 edge-bins involved.

There are O(1) matchings between the points 6 in these vertex-bins and the 6 points in these
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edge-bins that creates a double edge. The number of completions for the kernel-configurations
containing a giving matching creating such a double edge is(

P3 − 6

k1 + 2k2 − 6

)
(k1 + 2k2 − 6)!

(
P2

k1

)
k1!Q3!,

where we are following the proof of Lemma 4.8.2, after the vertices of degree 3 and U are chosen.
Thus, using (4.54), the expected number of double edges as in (B1) is at most

O
(
k3

2m
2
3

) (P3 − 6)!

P3!
= O

(
k3

2m
2
3

P 6
3

)
= O

(
(r2n)3(rn)2

(rn)6

)
= O

(
r2

n

)
.

Now let us consider (B2). We have O(k2
2η(d)m2

3) choices for the 2 vertex-bins of size 2 and
the points inside them, the vertex-bin of size at least 3 and the points inside them, and the 2
edge-bins of size 3 involved in the double edge. We match 4 points from the 2 vertex-bins of size
2 to the 4 points in the edge-bins of size 3 and 2 points from the vertex-bin of size at least 3
to 2 points in the edges-bins of size 3. The number of completions for the kernel-configurations
containing a giving matching creating such a double edge is(

P3 − 6

k1 + 2k2 − 4

)
(k1 + 2k2 − 4)!

(
P2

k1

)
k1!(Q3 − 2)!

Thus, using (4.54) and the definition of S∗ψ, the expected number of double edges as in (B2) is at
most

O
(
k2

2n3m
2
3

) (P3 − 6)!

P3!

(Q3 − 2)!

Q3!

T3!

(T3 − 2)!
= O

(
k2

2n3m
2
3T

2
3

P 6
3Q

2
3

)
= O

(
(r2n)2(rn)(rn)2(r2n)2

(rn)6(rn)2

)
= O

(
r3

n

)
.

We analyse (B3) now. There are 2 vertex-bins of size at least 3 involved. We have O(k2η(d)2m2
3)

choices for the vertex-bin of size 2, the 2 vertex-bins of size at least 3 and the points inside them,
and the 2 edge-bins involved. There are O(1) matchings between the 6 points in the vertex-bins
(2 in the vertex-bin of size 2 and 4 in the other vertex-bins) and the 6 points in the edge-bins
creating a double edge. The number of completions for the kernel-configurations containing a
giving matching creating such a double edge is(

P3 − 6

k1 + 2k2 − 2

)
(k1 + 2k2 − 2)!

(
P2

k1

)
k1!(Q3 − 4)!

Thus, using (4.54) and the definition of S∗ψ, the expected number of double edges as in (B3) is at
most

O
(
k2n

2
3m

2
3

) (P3 − 6)!

P3!

(Q3 − 4)!

Q3!

T3!

(T3 − 4)!
= O

(
k2n

2
3m

2
3T

4
3

P 6
3Q

4
3

)
= O

(
(r2n)(rn)2(rn)2(r2n)4

(rn)6(rn)4

)
= O

(
r4

n

)
.
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We analyse (B4) now. We have O(η(d)3m2
3) choices for the 3 vertex-bins of size at least 3 and

the points inside them and the 2 edge-bins involved. There are O(1) matchings between the 6
points in the vertex-bins and the 6 points in the edge-bins creating a double edge. The number
of completions for the kernel-configurations containing a giving matching creating such a double
edge is (

P3 − 6

k1 + 2k2

)
(k1 + 2k2)!

(
P2

k1

)
k1!(Q3 − 6)!

Thus, using (4.54) and the definition of S∗ψ, the expected number of double edges as in (B4) is at
most

O
(
n3

3m
2
3

) (P3 − 6)!

P3!

(Q3 − 6)!

Q3!

T3!

(T3 − 6)!
= O

(
n3

3m
2
3T

6
3

P 6
3Q

6
3

)
= O

(
(rn)3(rn)2(r2n)6

(rn)6(rn)6

)
= O

(
r5

n

)
.

This finishes the proof of that Condition (B) holds a.a.s.

Now consider the event in case (C). First we will bound the expected number of edge-bins of
size 2 with points matched to points from the same vertex-bin (and so corresponding to loops in
the kernel). Since every vertex-bin of size 2 has at least one point being matched to a point in
an edge-bin of size 3, if an edge-bin of size 2 has points matched to the same vertex-bin, such
vertex-bin must have size at least 3. Thus, we have η(d) = Θ(n3) choices for such vertex-bin and
the two points inside it that will be matched to the points in the 2-edge, and m−2 choices for the
edge-bin of size 2 (and 2 choices for the matching of these points). The number of completions for
the kernel-configurations containing a giving matching creating such a loop is(

P3

k1 + 2k2

)
(k1 + 2k2)!

(
P2 − 2

k1

)
k1!(Q3 − 2)!

Thus, using (4.54) and the definition of S∗ψ, the expected number of loops as in (C) is at most

(P2 − 2)!

P2!

(Q3 − 2)!

Q3!

T2!

(T2 − 2)!
O
(
n3m

−
2

)
= O

(
n3m

−
2 T

2
2

P 2
2Q

2
3

)
= O

(
(rn)(rn)(rn)2

(rn)2(rn)2

)
= O(1).(C)

So let α(n)→∞ such that αr → 0. Then the number of edge-bins corresponding to 2-edges that
are loops in the kernel is less than α a.a.s. For any 2-edge in the kernel, let Ai be the event that it
is not split by the i-th splitting operation performed when creating the pre-kernel from the kernel.
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Then

P
( k0⋂
i=1

Ai

)
=

k0∏
i=1

P
(
Ai

∣∣∣∣ j−1⋂
j=1

Aj

)
=
m−2 − 1

m−2

m−2
m−2 + 1

· · · · · m
−
2 + k0 − 2

m−2 + k0 − 1

=
n1 − k0 − 1

n1 − 1
∼ 6rn

(1/2)n
∼ 12r.

This together with the fact the expected number of 2-edges that are loops in the kernel is less
than α a.a.s. implies that the probability there is a 2-edge that is a loop in the pre-kernel is
O(αr) + o(1) = o(1). This finishes the proof of Lemma 4.8.5.

4.8.5 Connected pre-kernels

In this section, we analyse the probability that the random multigraph P(x,d) is connected for
x ‘close’ to x∗ and d ∈ Nn3 with some constraints (more precisely x ∈ S∗ψ and d ∈ D̃φ(x) with
ψ, φ = o(1)). We will show that P(x,d) is connected a.a.s., proving Lemma 4.8.6. Our strategy
has some similarities with the proof by  Luczak[46] for connected random 2-uniform hypergraphs
with given degree sequence and minimum degree at least 3. The main difference is that, in our
case, we have some vertices of degree 2 and the matching on the set of points in the bins has some
constraints because of these vertices. This makes it more difficult to compute the probability of
connectedness.

A pre-kernel is connected if and only of its kernel is connected, since the pre-kernel is obtained
by splitting 2-edges of the kernel and assigning vertices of degree 1. Thus, we only need to analyse
the connectivity of the kernel. Let d denote the degree sequence of the vertices of degree at least 3,
ki the number of vertices of degree 2 that are in exactly i 3-edges (for i = 1, 2), m−2 the number of
2-edges and m3 the number of 3-edges.

We say that a kernel-configuration is connected if the 2-uniform multigraph described as
follows is connected: contract each vertex-bin and each edge-bin into a single vertex and add
one edge uv for each edge ij of the matching in the kernel-configuration such that i is in the bin
corresponding to u and j is in the bin corresponding to v. Given a kernel-configuration with
matching M , perform the following operations:

1. For each vertex-bin v with more than 6 points, partition the points of v into new vertex-bins
so that each of the new vertex-bins has 3, 4 or 5 points. Delete v and keep M unchanged.
See Figure 4.7.

2. For each edge-bin e of size 2 such that exactly one of its points, say pe, is matched to a
point, say pv, in a vertex-bin v of size 2, do the following. Let p′e be the point in e other
than pe and let p′v be the point in v other than pv. Let i be the point matched to p′e in M
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vertex-bin edge-bins

Figure 4.7: Breaking a vertex-bin into smaller pieces.

vertex-bins edge-bins

Figure 4.8: Transforming an edge-bin of size 2 matched to a vertex-bin of size 2 into an edge of
the matching

and let j be the point matched to p′v in M . Delete v and e from the kernel-configuration.
Add a new edge to M connecting i and j. See Figure 4.8.

3. For each edge-bin e of size 2 such that both of its points pe and p′e are matched to points pv
and pw in vertex-bins v and w of size 2, do the following. Let p′v be the point in v other
than pv and let p′w be the point in w other than pw. Let i be the point matched to p′v in M
and let j be the point matched to p′w in M . Delete v, w and e from the kernel-configuration.
Create a new vertex-bin of size 2 with points p′v and p′w and add the edges p′vi and p′wj
to M . See Figure 4.9.

See Figure 4.10 for an example of the procedure. If the kernel-configuration created in Step 1 is
connected, the original kernel-configuration was also connected, since splitting vertex-bins cannot
turn a disconnected kernel-configuration into a connected one. We say that the structures in
Step 2 and Step 3 are connected if the 2-uniform hypergraph obtained by contracting each bin
into a single vertex is connected. It is trivial that, if the structure obtained is connected, then the
original kernel-configuration was connected.

Recall that M is chosen u.a.r. from all possible matchings when generating a random kernel as
described in Section 4.8.2. This implies that, in the structure obtained after Step 3, the resulting
matching has uniform distribution among the perfect matchings on the set of points in the bins
such that each point in an edge-bin of size 2 is matched to a point in a vertex-bin of size at least 3,
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vertex-bins edge-bins

Figure 4.9: Transforming an edge-bin of size 2 matched to two vertex-bins of size 2 into a vertex-bin
of size 2

each point in a vertex-bin of size 2 is matched to a point in an edge-bin of size 3, each point in a
vertex-bin of size at least 3 is matched to a point in an edge-bin, and each point in an edge-bin of
size 3 is matched to a point in a vertex-bin.

Here we describe a new model to generate structures as the one obtained by the process above.
Let and t ∈ {3, 4, 5}N and let t′ ∈ {3, 4, 5}N ′ . Let L ≤

∑
i ti/2 and L′ ≤

∑
i t
′
i/2 be such that∑

i ti − 2L =
∑

i t
′
i − 2L′ =: K. Let B(t, t′, L, L′) be generated as follows. In each step, every

choice is made u.a.r.:

1. (Left-bins) For each i ∈ [N ], create one bin/set with ti points in it. We call these bins
left-bins.

2. (Right-bins) For each i ∈ [N ′], create one bin/set with t′i points in it. We call these bins
right-bins.

3. (Left-connectors) Create L bins with 2 points inside each. We call these bins left-connectors.

4. (Right-connectors) Create L′ bins with 2 points inside each. We call these bins right-
connectors.

5. (Matching) Choose a perfect matching such that each point in a left-connector is matched to
a point in a left-bin, each point in a right-connector is matched to a point in a right-bin, each
point in a left-bin is either matched to a point in a left-connector or in a right-bin, and each
point in a right-bin is either matched to a point in a right-connector or in a left-bin. The
edges in the matching from points in right-bins to points in left-bins are called across-edges.

In the structure we obtained from the kernel-configuration, vertex-bins of size at least 3 have the
same role as the left-bins, edge-bins of size 3 have the same role as the right-bins, vertex-bins of
size 2 have the same role as the right-connectors, and edge-bins of size 2 have the same role as the
left-connectors. See Figure 4.10.

We will prove that B(t, t′, L, L′) with K →∞ is connected a.a.s.
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vertex-bins edge-bins

left-connectors right-connectors

left-bins right-bins

Figure 4.10: Modifying a kernel-configuration
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Lemma 4.8.8. Let and t ∈ {3, 4, 5}N and let t′ ∈ {3, 4, 5}N ′ . Let L ≤
∑

i ti/2 and L′ ≤
∑

i t
′
i/2

be such that
∑

i ti − 2L =
∑

i ti − 2L′ =: K. If K →∞, then B(t, t′, L, L′) is connected a.a.s.

Before presenting the proof for this lemma, we explain how to prove Lemma 4.8.6 assuming
Lemma 4.8.8 holds. In the structure obtained from the kernel-configuration, the number of points
from vertex-bins of size at least 3 (which corresponds to left-bins) that are matched to points in
edge-bins of size 3 (which corresponds to right-bins) is T3 +m−2 (1), where m−2 (1) is the number of
edge-bins as described in Step 2 of the procedure. In order to use Lemma 4.8.8 to conclude that
the kernel-configuration is connected a.a.s. (and thus proving Lemma 4.8.6), it suffices to show
that m−2 (1)→∞ a.a.s. (which ensures that the condition K →∞ is satisfied).

Let U be the set of points in vertex-bins of size 2 that will be matched to points in edge-bins
of size 2. (See Step 3 in the proof of Lemma 4.8.2.) There are(

2m−2
k1

)
k1!

ways of matching the points in U to points in edge-bins of size 2. For every edge-bin i of size 2,
let Xi be the indicator random for the event that i has both of its points matched to points in U .
For x ∈ S∗ψ, we have that m−2 ∼ k1 and so

P(Xi = 1) =

(
k1

2

)
2!

(
2m−2 − 2

k1 − 2

)
(k1 − 2)!(

2m−2
k1

)
k1!

∼ 1

4
,

P(Xi = 1, Xj = 1) =

(
k1

4

)
4!

(
2m−2 − 4

k1 − 4

)
(k1 − 4)!(

2m−2
k1

)
k1!

∼ 1

16
, for i 6= j,

and so E (
∑

iXi) ∼ m−2 /4 and Var(
∑

iXi) = o(E (
∑

iXi)
2). Thus, by Chebyshev’s inequality,

P
(∣∣∣∑iXi − E

(∑
iXi

)∣∣∣ ≥ tE (∑iXi

))
=
o(1)

t2

and so we can choose t going to 0 sufficiently slowly so that m−2 (2) =
∑

iXi ∼ m−2 /4 a.a.s.
Similarly, m−2 (0) =

∑
iXi ∼ m−2 /4 a.a.s. Thus,

m−2 (1) ≥ (1 + o(1))
m−2
2
→∞

since x ∈ S∗ψ.

We finish this section by presenting the proof for Lemma 4.8.8.
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Proof of Lemma 4.8.8. Let Q =
∑

i ti and let Q′ =
∑

i t
′
i. The number of choices for the matching

in Step 5 is (
Q

2L

)
(2L)!

(
Q′

2L′

)
(2L′)!K! =

Q!Q′!

K!
.

Let A be a set of left-bins with P points of which S points are matched to a set of left-connectors
(covering all points in these left-connectors). Similarly, let A′ be a set of right-bins with P ′ points
of which S′ points are matched to a set of right-connectors. Note that S and S′ must be even
numbers. We compute the number of configurations such that A,A′ form a connected component
with r := P − S = P ′ − S′ across-edges:((

L

S/2

)(
P

S

)
S!

(
Q− P
2L− S

)
(2L− S)!

)
× r!(K − r)!

×
((

L′

S′/2

)(
P ′

S′

)
S′!

(
Q′ − P ′

2L′ − S′

)
(2L′ − S′)!

)
Thus, the probability that A,A′ form a connected component (with parameters S, S′) is exactly(

L

S/2

)(
L′

S′/2

)(
K

r

)
(
Q

P

)(
Q′

P ′

) .

So we want to bound the summation:

∑
(P,S,n)

(P ′,S′,n′)

∑
(A,A′)

(
L

S/2

)(
L′

S′/2

)(
K

r

)
(
Q

P

)(
Q′

P ′

) (4.55)

where the second summation is over the pairs (A,A′) where A is a set of n left-bins with P points
and S points matched to left-connectors and A′ is a set of n′ right-bins with P ′ points and S′

points matched to right-connectors; and r = P − S = P ′ − S′. Let C be an integer constant to be
determined later.

First consider the case where

P ≤ C and P ′ ≤ C,
or

Q− P ≤ C and Q′ − P ′ ≤ C.
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We only need to check one of the options above because if A ∪A′ is disconnected from the rest of
the graph the same is true for the A ∪A′ where A is the complement of A in the set of left-bins
and A′ is the complement of A′ in the set of right-bins. So let us assume P ≤ C and P ′ ≤ C.
Then the number of choices for (P, S, n) and (P ′, S′, n′) is O(1). Moreover, there are at most

(
N
n

)
choices for A and

(
N ′

n′

)
choices for A′, where N is the number of left-bins and N ′ is the number of

right-bins. Then the summation in (4.55) for this case is at most(
L

S/2

)(
L′

S′/2

)(
K

r

)(
N

n

)(
N ′

n′

)
(
Q

P

)(
Q′

P ′

) = O

(
LS/2(L′)S

′/2KrNn(N ′)n
′

QP (Q′)P ′

)

= O

(
1

QP−S/2−r/2−n(Q′)P ′−S′/2−r/2−n′

)
= O

(
1

QP/6(Q′)P ′/6

)
= o(1),

since P −S/2−r/2−n ≥ P −S/2− (P −S)/2−P/3 = P/6 (and similarly for P ′−S′/2−r/2−n′)
and P or P ′ is at least 1.

Now consider the case where

P ≤ C and Q′ − P ′ ≤ C,
or

Q− P ≤ C and P ′ ≤ C.

If P ≤ C and Q′−P ′ ≤ C. Then r = P−S ≤ C and r = P ′−S′ ≥ P ′−2L′ ≥ Q−C−2L′ = K−C,
which is impossible since K →∞ and C = O(1).

Finally consider the case

P ≥ C and P ′ ≥ C,
or

Q− P ≥ C and Q′ − P ′ ≥ C.

Using Stirling’s approximation (Lemma 2.5.1), there is a positive constant α such that(
K

r

)
(
dK/2e
dr/2e

)(
bK/2c
br/2c

) ≤ α√K.
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Thus, for P and P ′ in this range,

∑
(P,S,n)

(P ′,S′,n′)

∑
(A,A′)

(
L

S/2

)(
L′

S′/2

)(
K

r

)
(
Q

P

)(
Q′

P ′

) ≤ α
∑

(P,S,n)
(P ′,S′,n′)

∑
(A,A′)

(
L

S/2

)(
L′

S′/2

)√
K

(
dK/2e
dr/2e

)(
bK/2c
br/2c

)
(
Q

P

)(
Q′

P ′

)

≤ α
∑

(P,S,n)
(P ′,S′,n′)

(
N

n

)(
N ′

n′

)(
L

S/2

)(
L′

S′/2

)√
K

(
dK/2e
dr/2e

)(
bK/2c
br/2c

)
(
Q

P

)(
Q′

P ′

)

≤ α
∑

(P,S,n)
(P ′,S′,n′)

(
N

n

)(
N ′

n′

)√
K(

Q− L− dK/2e
P − S/2− dr/2e

)(
Q′ − L′ − bK/2c
P ′ − S′/2− br/2c

)

= α
∑

(P,S,n)
(P ′,S′,n′)

(
N

n

)(
N ′

n′

)√
K(

Q/2− u(K)

P/2− u(r)

)(
Q′/2− d(K)

P ′/2− d(r)

) ,
where u(x) := dx/2e − x/2 and d(x) := x/2− bx/2c. Note that, for P ′ ≤ Q′/2,(

N ′

n′

)
(
Q′/2− d(K)

P ′/2− d(r)

) ≤
(
Q′/3

P ′/3

)
(
Q′/2− d(K)

P ′/2− d(r)

) ≤ 1(
Q′/6− d(K)

P ′/6− d(r)

) ≤ 1,

and for P ′ ≥ Q′/2(
N ′

n′

)
(
Q′/2− d(K)

P ′/2− d(r)

) =

(
N ′

N ′ − n′

)
(

Q′/2− d(K)

Q′/2− P ′/2− d(K) + d(r)

) ≤
(

Q′/3

Q′/3− P ′/3

)
(

Q′/2− d(K)

Q′/2− P ′/2− d(K) + d(r)

)
≤ 1(

Q′/6− d(K)

Q′/6− P ′/6− d(K) + d(r)

) ≤ 1,
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Thus, for P ′ ≤ Q′, (
N ′

n′

)
(
Q′/2− d(K)

P ′/2− d(r)

) ≤ 1. (4.56)

For C ≤ P ≤ β logQ,(
N

n

)
(
Q/2− u(K)

P/2− d(r)

) ≤
(
Q/3

P/3

)
(
Q/2− u(K)

P/2− u(r)

) ≤ (Q/6− u(K)

P/6− u(r)

)−1

= O

(
Q

β logQ

)−P/6+u(r)

and so by choosing C big enough and using (4.56)

∑
(P,S,n)

(P ′,S′,n′)
C≤P≤β logQ

(
N

n

)(
N ′

n′

)√
K(

Q/2− u(K)

P/2− u(r)

)(
Q′/2− d(K)

P ′/2− d(r)

) ≤ Q11/2 logQ ·O
(
β logQ

Q

)6

= o(1).

The range Q− β logQ ≤ P ≤ Q− C can be treated similarly.

There exists a constant γ > 0 such that, for β logQ ≤ P ≤ Q/2,(
N

n

)
(
Q/2− u(K)

P/2− u(r)

) ≤
(
Q/3

P/3

)
(
Q/2− u(K)

P/2− u(r)

) ≤ (Q/6− u(K)

P/6− u(r)

)−1

= O(γP/6−u(r)),

and so, by (4.56),

∑
(P,S,n)

(P ′,S′,n′)
β logQ≤P≤Q/2

(
N

n

)(
N ′

n′

)√
K(

Q/2− u(K)

P/2− u(r)

)(
Q′/2− d(K)

P ′/2− d(r)

) ≤ Q13/2 ·O
(
γβ logN

)
= o(1),

for sufficiently large constant β. The range Q/2 ≤ P ≤ Q− β logQ can be treated similarly. The
same argument works for (P ′, S′, n′) and Q′. We are done because P ≤ Q− C or P ′ ≤ Q′ − C
(otherwise, it falls in a case that has already been treated).
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4.8.6 Proof of Theorem 4.8.1

In this section we obtain an asymptotic formula for the number of connected pre-kernels with
vertex set [n] and m = n/2 +R edges, when R = ω(n1/2 log3/2 n) and R = o(n). The complete
proof is contained in this section together with Sections 4.8.7, 4.8.8 and 4.8.9, in which we prove
some lemmas we state in this section. This proves Theorem 4.8.1.

We rewrite the conditions defining Sm ⊆ R4. We have that (n1, k0, k1, k2) ∈ Sm if all of the
following conditions are satisfied:

(C1) n1, k0, k1, k2 ≥ 0;

(C2) T2 ≥ 0 (equivalently, 2n1 − 2k0 − k1 ≥ 0);

(C3) T3 ≥ 0; (equivalently, 3n1 + k1 + 2k2 ≤ 3m);

(C4) Q3 ≥ 3n3 ≥ 0 (equivalently, k0 − k1 − k2 ≤ 3m− n and n1 − k0 − k1 − k2 ≤ n);

(C5) Q3 = 0 whenever n3 = 0.

For x = (n1, k0, k1, k2) ∈ Sm, let

wpre(x) =


P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

f3(λ)n3

λQ3
, if Q3 > 3n3;

P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

1

6n3
, otherwise.

(4.57)

Recall that x̂∗ = (n̂∗1, k̂
∗
0, k̂
∗
1, k̂
∗
2) is defined as

n̂∗1 =
3m̂

g2(λ∗)
, k̂∗0 =

3m̂

g2(λ∗)

2λ∗

f1(λ∗)g1(λ∗)
,

k̂∗1 =
3m̂

g2(λ∗)

2λ∗

g1(λ∗)
, k̂∗2 =

3m̂

g2(λ∗)

λ∗f1(λ∗)

2g1(λ∗)
,

where λ∗ = λ∗(n) is the unique nonnegative solution of the equation

λf1(λ)g2(λ)

f2(2λ)
= 3m̂.

The existence and uniqueness of λ∗ was discussed in Lemma 4.7.4.
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We will show that x̂∗ is the unique point achieving the maximum for fpre in the set Ŝm and
then we will expand the summation around x̂∗. To determine the region where the summation
will be expanded we will analyse the Hessian of fpre. Let

H0 =
1

36


33 12 15 18
12 6 6 6
15 6 7 8
18 6 8 12

 and T =
1

30


−47 −16 −11 −6
−16 22 12 2
−11 12 31/3 −4/3
−6 2 −4/3 −4/3

 (4.58)

Later we will see that the Hessian of fpre at x̂∗ is (−1/r2)H0 − (1/r)T +O(J), where J denotes
the 4 × 4 matrix of all 1’s. For two matrices A,B of same dimensions, we say that a matrix
A = O(B) if Aij = O(Bij) for all i, j.

Let z1 = (1, 1,−3, 0). Then z1 is an eigenvector of H0 with eigenvalue 0. Let ei ∈ R4 be the
vector such that the i-th coordinate is 1 and all the others are 0. Let

B :=
{
x ∈ R4 : x = γ1z1 + γ2e2 + γ3e3 + γ4e4, |γ1| ≤ δ1n and |γi| ≤ δn for i = 2, 3, 4

}
,

and let B̂ = {(n1/n, k0/n, k1/n, k2/n) : (n1, k0, k1, k2) ∈ B}, that is, B̂ is a scaled version of B.
We will choose δ1 and δ later. The set x∗ +B (this is the Minkowski sum of {x∗} and B) is the
region where we will approximate

∑
x n! exp(nfpre(x̂)) by using Taylor’s approximation. For this,

we show that, for an appropriate choice for δ1 and δ, the set x∗ +B is contained in Sm.

Lemma 4.8.9. Suppose that δ1 = o(r) and that δ = o(r2). Let x ∈ B. For any function F
among n1(x+ x∗), ki(x

∗ + x) for i = 0, 1, 2, Q3(x∗ + x)− 3n3(x∗ + x), and the linear functions
defined in (4.42), we have that F (x∗ + x) ∼ F (x∗). Moreover, λ(x) ∼ λ(x∗).

Proof. Write x as x = γ1z1 + γ2e2 + γ3e3 + γ4e4 with |γ1| ≤ δ1 and |γi| ≤ δ for i = 2, 3, 4. We will
show that F (γ1z1) = o(F (x∗)) and F (γei) = o(F (x∗)) for i = 2, 3, 4. Since F is a linear function,
this implies that F (x∗ + x) = F (x∗) + F (x) = F (x∗) + o(F (x∗)), proving the first statement in
the lemma.

Using (4.49), we have that F (x∗) = Ω(r2n) for all the functions F under consideration and so,
for i = 2, 3, 4, we have that F (γiei) = o(r2n) = o(F (x∗)) since |γi| ≤ δn = o(r2n).

Using (4.49), we have that F (x∗) = Ω(rn) for all F under consideration except k2, T3 and
Q3 − 3n3. Since |γ1| ≤ δ1n = o(rn), we have that F (γ1z1) = o(rn) = o(F (x∗)) for all F under
consideration, except k2, T3 and Q3 − 3n3. So let F be one of the functions k2, T3 or Q3 − 3n3.
Then, using z1 = (1, 1,−3, 0), we have that F (z1) = 0 and so F (x∗ + x) = F (x∗), finishing the
proof of the first statement in the lemma.

Since Q3(x∗ + x) ∼ Q3(x∗) and n3(x∗ + x) ∼ n3(x∗), we have that c3(x + x∗) = Q3(x∗ +
x)/n3(x∗+x) ∼ c3(x∗). Thus, since λ(y) is defined as the unique solution of λf2(λ)/f3(λ) = c3(y),
we have that λ(x) ∼ λ(x∗) by Lemma 2.10.5.
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Corollary 4.8.10. Suppose that δ1 = o(r) and that δ = o(r2). Let x ∈ B. Then there exists
ψ = o(1) such that x∗ + x ∈ S∗ψ and x∗ + x is in the interior of Sm.

Proof. Recall that S∗ψ is defined in (4.53). Lemma 4.8.9 and the definition of S∗ψ immediately
imply the first part of the conclusion.

We check whether x∗ + x satisfies the conditions (C1)–(C5) strictly. We have that x∗ satisfies
the constraints (C1)–(C4) with slack Ω(r2n) by (4.49) and recall that r2n→∞. By Lemma 4.8.9,
we have that x∗ + x also satisfies all the constraints (C1)–(C4) with slack Ω(r2n).

It remains to check (C5). We have that n3(x∗ + x) ∼ n3(x∗) = Ω(rn) = ω(1) and so (C5) is
satisfied strictly. We conclude that x∗ + x is in the interior of Sm.

The following lemmas are the main steps in the proof of Theorem 4.8.1. We show that x̂∗ is
the unique maximum for fpre in Ŝ and compute a bound for any other local maximum.

Lemma 4.8.11. The point x̂∗ = (n̂∗1, k̂
∗
0, k̂
∗
1, k̂
∗
2) is the unique maximum for fpre in Ŝm and

fpre(x̂
∗) = 2r lnn− 4r ln r +

(
−2

3
ln(2)− 1

3
ln(3) +

1

3

)
λ∗

+

(
−2

9
ln(2)− 1

9
ln(3) +

7

36

)
(λ∗)2 +O((λ∗)3).

Moreover, there exists a constant β < −(2/9) ln(2)− (1/9) ln(3) + (7/36) such that any other local
maximum in Ŝm has value at most

2r lnn− 4r ln r +

(
−2

3
ln(2)− 1

3
ln(3) +

1

3

)
λ∗ + β(λ∗)2.

We then estimate the summation of exp(nfpre(x̂+ x̂∗)) over points x ∈ B such that x+ x∗ is
integer.

Lemma 4.8.12. Suppose that δ3
1 = o(r/n) and δ2

1 = ω(r/n), and δ3 = o(r4/n) and δ2 = ω(r2/n).
Then ∑

x∈B
x+x∗∈Z4

exp
(
nfpre(x̂+ x̂∗)

)
∼ 144

√
3π2n2r7/2 exp(nfpre(x̂

∗)).

Finally, we bound the contribution from points far from the maximum.

Lemma 4.8.13. Suppose that δ3
1 = o(r/n) and δ2

1 = ω(r lnn/n), and δ3 = o(r4/n) and δ2 =
ω(r2 lnn/n). We have that ∑

x∈S\(x∗+B)
x∈Z4

wpre(x) = o (n! exp(nfpre(x̂
∗))) .
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The proof of Lemma 4.8.11 is deferred to Section 4.8.8. The proofs of Lemmas 4.8.12 and 4.8.13
are presented in Section 4.8.9. We are now ready to prove Theorem 4.8.1.

In order to use Lemmas 4.8.12 and 4.8.13, we need to check if there exists δ1 such that
δ3

1 = o(r/n) and δ2
1 = ω(r lnn/n), and δ such that δ3 = o(r4/n) and δ2 = ω(r2 lnn/n). There

exists such δ1 if and only if (r/n)2 = ω((r lnn/n)3), which is true if and only if n/r = ω(ln3 n),
which is true since r = o(1). There exists such δ if and only if (r4/n)2 = ω((r2 lnn/n)3), which is
true if and only if r2 = ω(ln3 n/n), which is one of the hypotheses of the theorem.

By Proposition 4.8.3 and Lemma 4.8.9, we have that, for x ∈ (x∗ +B),

gpre(x) = wpre(x)E
(
P
(
P(x,Y) simple and connected

)∣∣∣Σ(x)
)
P
(
Σ(x)

)
,

where Σ(x) is the event that a random vector Y = (Y1, . . . , Yn3(x)) of independent truncated

Poisson random variables with parameters (3, λ(x)) satisfy
∑n3(x)

i=1 = Q3(x). By Corollary 4.8.7
and Lemma 4.8.9,

E
(
P
(
P(x,Y) simple and connected

)∣∣∣Σ(x)
)
∼ 1. (4.59)

By Stirling’s approximation, the definition of fpre (in (4.44) and (4.45)), and definition of wpre

(in 4.57) , we have that

wpre(x) ∼ n!
1

(2πn)5/2

(
P̂3P̂2Q̂3

k̂0k̂1k̂2n̂3m̂3T̂3T̂2m̂2

)1/2

exp(nfpre(x̂)).

Since x ∈ (x∗ +B), by Lemma 4.8.9, we have that

P̂3P̂2Q̂3

k̂0k̂1k̂2n̂3m̂3T̂3T̂2m̂2

∼ P̂ ∗3 P̂
∗
2 Q̂
∗
3

k̂∗0k̂
∗
1k̂
∗
2n̂
∗
3m̂
∗
3T̂
∗
3 T̂
∗
2 m̂
∗
2

∼ 1

r5/24
√

6
.

Next we estimate P(Σ(x)). We will use Theorem 2.10.8, applied with n3 as the parameter n in
Theorem 2.10.8 and c3 = Q3/n3 as c in Theorem 2.10.8. By Lemma 4.8.9 and (4.49), we have
that Q3(x)− 3n3(x) ∼ (Q3(x∗)− n3(x∗)) ∼ 12R2/n = ω ln(n). Thus, by Theorem 2.10.8,

P(Σ(x)) ∼ 1√
2πQ3(x)(1 + η3(x)− c3(x))

,

where η3(x) = λ(x)f1(λ(x))/f2(λ(x)) and c3(x) = Q3(x)/n3(x) = λ(x)f2(λ(x))/f3(λ(x)). Since
Q3(x)/n3(x) ∼ Q̂3(x̂∗)/n̂3(x̂∗), Lemma 2.10.5 implies that λ(x) ∼ λ∗ → 0 and so (omitting the
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(x) in the following)

1 + η3 − c3 =
f2(λ)f3(λ) + λf1(λ)f3(λ)− λf2(λ)2

f2(λ)f3(λ)

=

(λ2

2
+
λ3

6

)(λ3

6
+
λ4

24

)
+ λ

(
λ+

λ2

2

)(λ3

6
+
λ4

24

)
+ λ

(λ2

2
+
λ3

6

)2
+O(λ7)(λ2

2
+
λ3

6

)(λ3

6
+
λ4

24

)
+O(λ7)

=
λ6/144

λ5/12

(
1 +O(λ)

)
∼ λ

12
∼ λ∗

12
∼ r,

by Lemma 4.8.9 and (4.49). Moreover, Q3 ∼ 6R by (4.49). Hence,

P(Σ) ∼ 1√
2π(6R)(1 + η3 − c3)

∼ 1

r
√

12πn
.

Thus,

gpre(x) = n!
1

144(πn)3r7/2

∑
x∈B

exp(nfpre(x))(1 + o(1)), (4.60)

for all x ∈ (x∗ + B). Since (x∗ + B) ∩ Z4 is a finite set for each n, Lemma 2.7.1 implies that
there is a function q(n) = o(1) such that the error in (4.60) is bounded by q(n) uniformly for all
x ∈ (x∗ +B) ∩ Z4. Thus,∑

x∈(x∗+B)∩Z4

gpre(x) ∼ n!
1

144(πn)3r7/2

∑
x∈(x∗+B)

exp(nfpre(x))

∼ n!
1

144(πn)3r7/2
· 144

√
3π2n2r7/2 exp(nfpre(x̂

∗)),

by Lemma 4.8.12. Thus, ∑
x∈(x∗+B)∩Z4

gpre(x) ∼ n!

√
3

πn
exp(nfpre(x̂

∗)).

Together with Lemma 4.8.13, this finishes the proof of Theorem 4.8.1.

4.8.7 Partial derivatives

In this section, we will analyse the first, second, and third partial derivatives of fpre. This will be
used in the proof that x̂∗ achieves the maximum for fpre (Lemma 4.8.11) and also to approximate
the summation around x̂∗ (Lemma 4.8.12). See Section A.4 for a Maple spreadsheet.
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Recall that hn(y) = y ln(yn)− y and, for x̂ = (n̂1, k̂0, k̂1, k̂2),

fpre(x̂) = hn(P̂3) + hn(P̂2) + hn(Q̂3) + hn(m2)

− hn(k̂0)− hn(k̂1)− hn(k̂2)− hn(n̂3)− hn(m̂3)

− hn(T̂3)− hn(T̂2)− 2hn(m̂−2 )

− k̂2 ln 2− m̂−2 ln 2− m̂3 ln 6

+ n̂3 ln f3(λ(x))− Q̂3 lnλ(x),

where λ(x) is the unique positive solution to λf2(λ)/f3(λ) = c3, where c3 = Q̂3/n̂3.

Using (4.10) to compute the partial derivatives of n̂3 ln f3(λ(x))− Q̂3 lnλ(x) (w.r.t. n̂1, k̂0, k̂1

and k̂2), we obtain

exp

(
d fpre(x)

d n̂1

)
=

4T̂ 3
3 n̂3n̂1λ

9m̂2
3Q̂3T̂ 2

2 f3λ
; (4.61)

exp

(
d fpre(x)

d k̂0

)
=

n̂3T̂
2
2 λ

2

2Q̂2
3k̂0f3(λ)

; (4.62)

exp

(
d fpre(x)

d k̂1

)
=

T̂3n̂3T̂2λ
2

k̂1Q̂2
3f3(λ)

; (4.63)

exp

(
d fpre(x)

d k̂2

)
=

T̂ 2
3 n̂3λ

2

2k̂2Q̂2
3f3(λ)

; (4.64)

For the second partial derivatives, we need to compute

∂2(n̂3 ln f3(λ(x))− Q̂3 lnλ(x))

∂a∂b
,

for any a, b ∈ {n̂1, k̂0, k̂1, k̂2}. Using (4.10), this is

∂

∂a

(
∂n̂3

∂b
ln f3(λ)− ∂Q̂3

∂b
lnλ

)
=

∂

∂a

(
− ln f3(λ)− ∂Q̂3

∂b
lnλ

)
=
∂λ

∂a

(
−f2(λ)

f3(λ)
− ∂Q̂3

∂b

1

λ

)

=
∂c3
∂a

λ

c3(1 + η3 − c3)

(
−f2(λ)

f3(λ)
− ∂Q̂3

∂b

1

λ

)
,

=

(
∂Q̂3

∂a

1

n̂3
− ∂n̂3

∂a

Q̂3

n̂2
3

)
1

c3(1 + η3 − c3)

(
−c3 −

∂Q̂3

∂b

)

= −

(
c3 +

∂Q̂3

∂a

)(
c3 +

∂Q̂3

∂b

)
1

Q̂3(1 + η3 − c3)
.

(4.65)
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The second partial derivatives now are

∂2fpre(x̂)

∂n̂1∂n̂1
=

9

P3
+

4

P2
− 9

T3
+

1

Q3
− 1

n3
− 1

m3
− 4

T2
− 2

m−2
+

1

n1
+D1

∂2fpre(x̂)

∂n̂1∂k̂0

= − 4

P2
+

2

Q3
− 1

n3
+

4

T2
+

2

m−2
+Dk

∂2fpre(x̂)

∂n̂1∂k̂1

= − 3

T3
+

2

Q3
− 1

n3
+

2

T2
+Dk

∂2fpre(x̂)

∂n̂1∂k̂2

= − 6

T3
+

2

Q3
− 1

n3
+Dk

∂2fpre(x̂)

∂k̂0∂k̂0

=
4

P2
+

4

Q3
− 1

n3
− 4

T2
− 2

m−2
− 1

k0
+Dkk

∂2fpre(x̂)

∂k̂0∂k̂1

=
4

Q3
− 1

n3
− 2

T2
+Dkk

∂2fpre(x̂)

∂k̂0∂k̂2

=
4

Q3
− 1

n3
+Dkk

∂2fpre(x̂)

∂k̂1∂k̂1

= − 1

k1
− 1

T3
+

4

Q3
− 1

n3
− 1

T2
+Dkk

∂2fpre(x̂)

∂k̂1∂k̂2

= − 2

T3
+

4

Q3
− 1

n3
+Dkk

∂2fpre(x̂)

∂k̂2∂k̂2

= − 1

k2
− 4

T3
+

4

Q3
− 1

n3
+Dkk,

(4.66)

where

D1 = − (c3 − 1)2

(1 + η3 − c3)Q̂3

;

Dk = −(c3 − 1)(c3 − 2)

(1 + η3 − c3)Q̂3

;

Dkk = − (c3 − 2)2

(1 + η3 − c3)Q̂3

.

In the next lemma, we find an approximation for the Hessian fpre at x̂∗. It follows immediately
by computing the series of each partial second derivative with λ→ 0. See Section A.4 for a Maple
spreadsheet.

Lemma 4.8.14. The Hessian of fpre at x̂∗ is (−1/r2)H0 − (1/r)T +O(J), where H0 and T are
defined in (4.58) and J is a 4× 4 matrix with all entries equal to 1.
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We will bound the third partial derivatives for points close to x∗.

Lemma 4.8.15. Suppose that δ3
1 = o(r/n) and δ3 = o(r4/n). Then for any x ∈ B we have that

n
∂fpre(x̂

∗ + x̂)

∂t1∂t2∂t3
t1(x̂)t2(x̂)t3(x̂) = o(1),

for any t1, t2, t3 ∈ {n̂1, k̂0, k̂1, k̂2}.

Proof. Let x ∈ B. Then x = αz1 + b, where |α| ≤ δ1 and b = (0, b2, b3, b4) and |bi| ≤ δ and
bT z1 = 0. Recall that z1 = (1, 1,−3, 0) and so x = (α, α+ b2,−3α+ b3, b4). Then, by using (4.66),

we may compute each partial derivative
∂fpre

∂t1∂t2∂t3
t1(x̂)t2(x̂)(t3(x̂)) exactly. We omit the lengthy

computations here. (See Section A.4 for a Maple spreadsheet.) The third derivative is the sum
of the part involving λ and the part that does not involve λ. The part not involving λ can be
written as ∑

a=(a1,a2,a3,a4)∈N4,
a1+a2+a3+a4=3

T (a)αa1(α+ b2)a2(−3α+ b3)a3ba44 ,

where each T (a) is a sum of terms in the format 1/z2, where

z ∈ {n̂1, k̂0, k̂1, k̂2, n̂3, P̂2, P̂3, Q̂3, T̂2, T̂3}.

This can be expanded so that it is ∑
f=(f1,f2,f3,f4)∈{0,1,2,3}×{0,1}3,

f1+f2+f3+f4=3

T2(f)αf1bf22 b
f3
3 b

f4
4 ,

where each T2(f) is also a sum of terms in the format 1/z2, where

z ∈ {n̂1, k̂0, k̂1, k̂2, n̂3, P̂2, P̂3, Q̂3, T̂2, T̂3}.

Since δ3
1 = o(r/n) and δ3 = o(r4/n) and R3 = ω(N), we have that δ1 = o(r) and δ = o(r2).

Thus, by Lemma 4.8.9, we have that z ∼ z(x∗). Using this fact and computing the series of each
term with r → 0, we obtain T2(f) = O(1/r4−f1), and so δ = o(r4/n) and δ1 = o(1/

√
n) ensure

|αf1bf22 b
f3
3 b

f4
4 T2(f)| ≤ δf11 δ

f2+f3+f4 |T2(f)| = o(1).

Similarly the part involving λ can be written as∑
f=(f1,f2,f3,f4)∈{0,1,2,3}×{0,1}3,

f1+f2+f3+f4=3

U(f)αf1bf22 b
f3
3 b

f4
4
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where each U(f) is a sum of terms in the following format

1

Q̂3(1 + η − c3)

(
− (c3− e1)(2c3 − e2 − e3)

n̂3

+ (c3 − e2)(c3 − e3)

(
e1

Q̂3

+
(c3 − e1)

(1 + η − c3)2

(
η(1 + λeλ/f1(λ)− η)

Q̂3(1 + η − c3)
− 1

n̂3

)))

where e1, e2, e3 ∈ {1, 2}. Since δ1 = o(r) and δ = o(r2), by Lemma 4.8.9, we have that λ(x∗+x) ∼
λ(x∗). Using this fact and computing the series of U(f) with r → 0, we have that U(f) =

O(1/r4−f1), and so δ = o(r4/n) and δ3
1 = o(r/n) ensure |αf1bf22 b

f3
3 b

f4
4 U(f)| ≤ δf11 δ

f2+f3+f4 |U(f)| =
o(1).

4.8.8 Establishing the maximum

In this section, we prove Lemma 4.8.11 which establishes the maximum of fpre in Ŝ. Recall that
the region Ŝ where we want to optimise fpre(x̂) over is defined by conditions (C1)–(C4). We
rewrite these conditions as follows:

(D1) Q̂3 ≥ 3n̂3 ≥ 0 and, if n̂3 = 0, then Q̂3 = 0.

(D2) P̂2 ≥ 0;

(D3) P̂3 ≥ 0;

(D4) k̂0, k̂1, k̂2 ≥ 0 and T̂2 ≥ 0 and T̂3 ≥ 0;

These conditions are obviously a subset of the conditions (C1)–(C5), with the n̂1 ≥ 0 being the
only constraint missing, which is implied by T̂2 ≥ 0. First we will show that x̂∗ is the only local
maximum in the interior of Ŝ:

Lemma 4.8.16. The point x̂∗ = (n̂∗1, k̂
∗
0, k̂
∗
1, k̂
∗
2) is the unique local maximum for fpre in the

interior of Ŝ and its value is

2r lnn− 4r ln r +

(
−2

3
ln(2)− 1

3
ln(3) +

1

3

)
λ∗ +

(
−2

9
ln(2)− 1

9
ln(3) +

7

36

)
(λ∗)2 +O((λ∗)3).

We will then analyse local maximums when some condition in (D1)–(D4) is tight. The following
lemma will be useful to reduce the number of cases to be analysed by giving sufficient conditions
for a point not being a local maximum.
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Lemma 4.8.17. Let k be a fixed positive integer and S ⊆ R be a bounded set. Let f : S → R be
a continuous function such that f(x) = −

∑q
i=1 `i(x) ln `i(x)+g(x), where `i(x) =

∑k
j=1 αi,jxj ≥ 0

for all x ∈ S. Suppose x(0) ∈ S is such that `i(x
(0)) = 0 for some i. Suppose there is v ∈ Rk such

that x(0) + tv is in the interior of S for small enough t and

d g(x(0) + tv)

d t
|t=0 > C,

for some (possibly negative) constant C. Then x(0) is not a local maximum for f in S.

The following lemma gives a bound for the value of fpre(x̂) for any local maximum other
than x̂∗:

Lemma 4.8.18. Let Ŝ1 be the points in Ŝm such that any of the constraints in (D1)–(D4) is tight.
There exists a constant β < −(2/9) ln(2)− (1/9) ln(3) + (7/36) such that any local maximum of
Ŝm in Ŝ1 for fpre has value at most

2r lnn− 4r ln r +

(
−2

3
ln(2)− 1

3
ln(3) +

1

3

)
λ∗ + β(λ∗)2.

Note that the constraint Q̂3 = 0 whenever n̂3 = 0 makes Ŝm not closed. We analyse the value
of any sequence of points converging to a point with Q̂3 > 0 and n3 = 0:

Lemma 4.8.19. Let (x̂(i))i∈N be a sequence of points in Ŝm converging to a point z with
Q̂3(z) > 0 and n̂3(z) = 0. Then limi→∞ fpre(xi) = −∞.

Lemma 4.8.11 is trivially implied by Lemmas 4.8.16, 4.8.18, and 4.8.19. In the rest of this
section, we prove these lemmas.

Proof of Lemma 4.8.16. The computations in this proof are elementary (such as computing
resultants) but very lengthy. See Section A.5 for a Maple spreadsheet.

Since any local maximum must have value exp(
d fpre

d t ) = 1 for any t ∈ {n̂1, k̂0, k̂1, k̂2}, by (4.61)

4T̂ 3
3 n̂3n̂1λ− 9m̂2

3Q̂3T̂
2
2 f3(λ) = 0 (4.67)

n̂3T̂
2
2 λ

2 − 2Q̂2
3k̂0f3(λ) = 0 (4.68)

T̂3n̂3T̂2λ
2 − k̂1Q̂

2
3f3(λ) = 0 (4.69)

T̂ 2
3 n̂3λ

2 − 2k̂2Q̂
2
3f3(λ) = 0. (4.70)

Next we proceed to take resultants between the LHS of these equations to show that there is only
one solution in the interior of Ŝm satisfying all of them. In these computations, we consider f3(λ)
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and λ as independent variables. The resultant of the RHS of (4.68) and (4.69) by eliminating
f3(λ) is

λ2T̂2n̂3Q̂
2
3(6n̂1k̂0 + 4k̂2k̂0 + 2n̂1k̂1 − k̂2

1 − 6m̂k̂0) = 0

and, since only the last term may possibly be zero in the interior of Ŝm, this implies that any
local maximum in the interior of Ŝm must satisfy

6n̂1k̂0 + 4k̂2k̂0 + 2n̂1k̂1 − k̂2
1 − 6m̂k̂0 = 0, (4.71)

and note that this determines k̂2 in terms of n̂1, k̂1 and k̂0 for any local maximum in the interior
of Ŝm. Similarly, the resultant of the RHS of (4.69) and (4.70) by eliminating λ is

f3(λ)2T̂ 2
3 n̂

2
3Q̂

4
3(4k̂2k̂0 + 3m̂k̂1 − 3n̂1k̂1 − k̂2

1 − 4n̂1k̂2)2 = 0

and it implies that any local maximum in the interior of Ŝm must satisfy

4k̂2k̂0 + 3m̂k̂1 − 3n̂1k̂1 − k̂2
1 − 4n̂1k̂2 = 0. (4.72)

The resultant of the RHS of (4.71) and (4.72) by eliminating k̂2 is

4T̂2(3m̂k̂0 − 3n̂1k̂0 − n̂1k̂1) = 0,

and it implies that any local maximum in the interior of Ŝm must satisfy

3m̂k̂0 − 3n̂1k̂0 − n̂1k̂1 = 0, (4.73)

which gives determines k̂1 in terms of k̂0 and n̂1.

Taking the resultant of the RHS of (4.67) and (4.71) by eliminating k̂2 and ignoring the factors
that cannot be zero in Ŝm gives us

− 4λk̂3
1n̂1k̂0 − 2λk̂4

1n̂
2
1 + λk̂5

1n̂1 − 2λk̂3
1n̂

2
1k̂0 + 6λk̂3

1m̂n̂1k̂0 + 4λk̂4
1n̂1k̂0 + 4λk̂3

1n̂1k̂
2
0 + 36k̂3

0f3(λ)k̂1n̂
2
1

− 72k̂3
0f3(λ)k̂1m̂n̂1 + 36k̂3

0f3(λ)k̂1m̂
2 + 72f3(λ)k̂4

0n̂
2
1 − 144f3(λ)n̂1k̂

4
0m̂+ 72f3(λ)m̂2k̂4

0 = 0

(4.74)

and then we take the resultant of the RHS of (4.73) and (4.74) by eliminating k̂1 and ignoring
the factors that cannot be zero in Ŝm gives us

27k̂0λm̂
3 − 45k̂0λm̂

2n̂1 + 21k̂0λm̂n̂
2
1 − 3λn̂3

1k̂0 + 12m̂n̂3
1f3(λ) + 12n̂3

1λm̂

− 12λm̂n̂2
1 − 12n̂4

1λ− 4f3(λ)n̂4
1 + 12λn̂3

1 = 0.
(4.75)

Taking the resultant of the RHS of (4.68) and (4.71) by eliminating k̂2 and ignoring the factors
that cannot be zero in Ŝm gives us

8k̂2
0f3(λ)+4λ2k̂2

0+6λ2m̂k̂0+4λ2k̂1k̂0−4k̂0λ
2−2λ2n̂1k̂0+8k̂1f3(λ)k̂0+λ2k̂2

1+2f3(λ)k̂2
1−2λ2n̂1k̂1 = 0

(4.76)
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and then we take the resultant of the RHS of (4.73) and (4.76) by eliminating k̂1 and ignoring
the factors that cannot be zero in Ŝm gives us

2k̂0f3(λ)n̂2
1 +λ2n̂2

1k̂0−6λ2m̂n̂1k̂0−12k̂0f3(λ)m̂n̂1 +9λ2m̂2k̂0 +18k̂0f3(λ)m̂2−4λ2n̂2
1 +4λ2n̂3

1 = 0,
(4.77)

and note that this determines k̂0 in terms of n̂1 and λ.

Finally we take the resultant of the RHS of (4.75) and (4.77) by eliminating k̂0 and ignoring
the factors that cannot be zero in Ŝm, we get

6λm̂n̂1 + 6f3(λ)m̂n̂1 + 3λ2m̂n̂1 − 6m̂λ− 6λn̂2
1 − 2f3(λ)n̂2

1 − λ2n̂2
1 + 6n̂1λ = 0. (4.78)

We can then use the equation determining λ (that is, λf2(λ)/f3(λ) = Q̂3/n̂3) by replacing k̂0, k̂1

and k̂2 by the values determined by n̂1, λ and m and taking the resultant with (4.78) by eliminating
k̂0 and ignoring the factors that cannot be zero in Ŝm:

3m̂e2λ − 9m̂2e2λ + 3m̂e2λλ− λe2λ + 3m̂eλλ− eλλ+ 2λ− 12m̂λ+ 9m̂2 − 3m̂+ 18λm̂2 = 0

which has two solutions for m̂: m̂ = 1/3 (which is false) or

m̂ =
1

3

λf1(λ)g2(λ)

f2(2λ)
,

which has a unique positive solution λ∗ by Lemma 4.7.4, which defines x̂∗. Thus, x̂∗ is the only
point in the interior of Ŝm such that all partial derivatives at it are zero. We now show that x̂∗ is
a local maximum. Using the second partial derivatives computed in (4.66) and the series of the
determinants of each leading principal submatrix with λ→ 0, we have that the Hessian at x̂∗ is
negative definite, which implies that x̂∗ is a local maximum.

By writing fpre(x
∗) in terms of λ∗ and computing its series with λ→ 0, we obtain

2r lnn− 4r ln r +

(
−2

3
ln(2)− 1

3
ln(3) +

1

3

)
λ∗ +

(
−2

9
ln(2)− 1

9
ln(3) +

7

36

)
(λ∗)2 +O((λ∗)3).
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Proof of Lemma 4.8.17. Let I ∈ [q] be the set of indices such that `i(x
(0)) = 0. We compute the

derivative of f(x(0) + tv) at t = 0, using the fact that `i is a linear function,

d f(x(0) + tv)

d t

∣∣∣
t=0
≥ C +

q∑
i=1

lim
t→0+

(
−`i(x(0) + tv) ln `i(x

(0) + tv) + `i(x
(0)) ln `i(x

(0))
)

t

= C +

q∑
i=1

lim
t→0+

(
−`i(tv) ln `i(x

(0) + tv) + `i(x
(0))(ln `i(x

(0))− ln(`i(x
(0) + tv)

)
t

= C +

q∑
i=1

lim
t→0+

(
−`i(v) ln `i(x

(0) + tv)
)
−
∑
i∈[q]\I

lim
t→0+

`i(x
(0))

t
ln

(
1 + t

`i(v)

`i(x(0))

)

= C +

q∑
i=1

lim
t→0+

(
−`i(v) ln `i(x

(0) + tv)
)
−
∑
i∈[q]\I

`i(v).

Since x0 + tv is in the interior of S for small enough but positive t, we have that `i(v) > 0 for all
i ∈ I. For i ∈ [q] \ I, we have that `i(v) ln `i(x

(0) + tv) + `i(v) is bounded. For i ∈ I, using the
fact that `i(v) > 0, we have that `i(v) limt→0+ ln `i(x

(0) + tv) = −∞. Thus, we conclude that

d f(x(0) + tv)

d t

∣∣∣
t=0

> 0,

which shows that x(0) is not a local maximum.

Proof of Lemma 4.8.18. We want to find the local maximums in Ŝ1, which is the set of points
in Ŝm such that any of the constraints in (D1)–(D4) is tight. Recall that the constraints (D1)–(D4)
are the following:

(D1) Q̂3 ≥ 3n̂3 ≥ 0 and, if n̂3 = 0, then Q̂3 = 0.

(D2) P̂2 ≥ 0;

(D3) P̂3 ≥ 0;

(D4) k̂0, k̂1, k̂2 ≥ 0 and T̂2 ≥ 0 and T̂3 ≥ 0;

We split the analysis in the following cases:

Case 1: Q̂3 = n̂3 = 0;

Case 2: Q̂3 = 3n̂3 > 0 and P̂3 = 0;

Case 3: Q̂3 = 3n̂3 > 0 and P̂2 = 0;
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Case 4: Q̂3 = 3n̂3 > 0 and P̂3 6= 0 and P̂2 6= 0;

Case 5: Q̂3 > 3n̂3 > 0 and P̂3 = 0;

Case 6: Q̂3 > 3n̂3 > 0 and P̂2 = 0.

We will use the definitions in (4.42) many times in the analysis. For Maple spreadsheets with the
computations below see Section A.6 for Case 1, Section A.7 for Case 2, Section A.8 for Case 3,
Section A.9 for Case 4, Section A.10 for Case 5, and Section A.11 for Case 6.

Case 1: Assume that Q̂3 = n̂3 = 0. Recall that, by definition, we have that Q̂3 = 3m̂ − n̂1 −
2k̂0 − 2k̂1 − 2k̂2, T̂2 = 2n̂1 − 2k̂0 − k̂1, and T̂3 = 3m̂− 3n̂1 − k̂1 − 2k̂2. Thus,

Q̂3 = T̂2 + T̂3. (4.79)

Moreover, T̂2 ≥ 0 and T̂3 ≥ 0 are constraints in the definition of Ŝm. Thus, since Q̂3 = 0, we
have that T̂2 = T̂3 = 0. Recall that n̂3 = 1− n̂1 − k̂0 − k̂1 − k̂2. Hence, we obtain the following
equations:

1− n̂1 − k̂0 − k̂1 − k̂2 = 0,

2n̂1 − 2k̂0 − k̂1 = 0,

3m̂− 3n̂1 − k̂1 − 2k̂2.

By solving this system of equation, we obtain the following values for n̂1, k̂1, and k̂2 in terms of
k̂0 and m̂:

n̂1 = 2− 3m̂;

k̂1 = 4− 6m̂− 2k̂0;

k̂2 = −5 + 9m̂+ k̂0.

Moreover, P̂3 = 3(m− n̂1) = −6 + 12m̂, P̂2 = 2(n̂1 − k̂0) = 4− 6m̂− 2k̂0 Thus, fpre(x) depends

only on k̂0 and we get

fpre(x) = f(k̂0) := hn(P̂3) + hn(P̂2) + hn(m̂2)− hn(k̂0)− hn(k̂1)− hn(k̂2)

− hn(m̂3)− 2hn(m̂−2 )− k̂2 ln 2− m̂−2 ln 2− m̂3 ln 6,

where k̂0 ∈ [5− 9m̂, 2− 3m̂]. We have that

exp

(
d f

d k̂0

)
=

(3m̂− 2 + k̂0)2

(−5 + 9m̂+ k̂0)k̂0

and
d2 f

d2 k̂0

=
3m̂k̂0 − k̂0 + 33m̂− 10− 27m̂2

k̂0(−5 + 9m̂+ k̂0)(3m̂− 2 + k̂0)
.

123



For k̂0 ∈ [5− 9m̂, 2− 3m̂], the denominator of the second derivative is always nonnegative and
its numerator is always negative for sufficiently small r (that is, sufficiently large n). Hence, f is
strictly concave. Thus, there is a unique maximum and it satisfies:

(3m̂− 2 + k̂0)2

(−5 + 9m̂+ k̂0)k̂0

= 1,

that is,

k̂0 =
(3m̂− 2)2

3m̂− 1
.

We then compute the series for f(k̂0) at this point with λ∗ going to zero (by using (4.48)):

f(k̂0) = 2r lnn− 4r ln r +

(
− ln(2)− 1

3
ln(3) +

1

3

)
λ∗ + (λ∗)2 ln(λ∗) +O((λ∗)2).

Case 2: Assume that Q̂3 = 3n̂3 > 0 and P̂3 = 0. Since P̂3 = 0 and P̂3 = 3(m̂− n̂1) by definition
(see (4.42)), we have that n̂1 = m̂. Moreover, since T̂3 = P̂3 − k̂1 − 2k̂2 and T̂3, k̂1, k̂1 ≥ 0 are
constraints in the definition of Ŝ1, we have that k̂1 = 0 and k̂2 = 0. Using Q̂3 = 3n̂3 and
their definitions in (4.42), we have that 3m̂ − n̂1 − 2k̂0 − 2k̂1 − 2k̂2 = 3(1 − n̂1 − k̂0 − k̂1 − k̂2)
and so k̂0 = 3 − 3m̂ − 2n̂1 = 3 − 5m̂. Thus, we only have to compute the value of fpre in the
point (m̂, 3− 5m̂, 0, 0). By computing the series of fpre in this point with λ∗ going to zero (by
using (4.48)), we get

2r ln(n)− 4r ln r +

(
1

3
− ln(2)− 1

3
ln(3)

)
λ∗ +O((λ∗)2).

Case 3: Assume that Q̂3 = 3n̂3 > 0 and P̂2 = 0. Since P̂2 = 0 and P̂2 = 2(n̂1 − k̂0) by definition
(see (4.42)), we have that k̂0 = n̂1. Moreover, since T̂2 = P̂2 − k̂1 and T̂2, k̂1 ≥ 0 are constraints
in the definition of Ŝm, we have that k̂1 = 0. Using Q̂3 = 3n̂3 and their definition in (4.42), we
have that 3m̂− n̂1 − 2k̂0 − 2k̂1 − 2k̂2 = 3(1− n̂1 − k̂0 − k̂1 − k̂2) and so k̂2 = 3− 3m̂− 3n̂1. So let
f(n̂1) := fpre(n̂1, n̂1, 0, 3− 3m̂− 3n̂1) and n̂1 ∈ [2− 3m̂, 1− m̂]. We have that

exp

(
d f

d n̂1

)
=

8(1− n̂1 − m̂)3

(m̂− n̂1)2(−2n̂1 + 3m̂)
and

d2 f

d2 n̂1

=
(2m̂− 1)(4− 7m̂− n̂1)

(−2 + n̂1 + 3m̂)(1− n̂1 −m)(m̂− n̂1)

For n̂1 ∈ [2− 3m̂, 1− m̂], the denominator of the second derivative is always nonnegative and its
numerator is always negative for sufficiently small r. Hence, f is strictly concave. Thus, there is
unique maximum satisfying

8(1− n̂1 − m̂)3 − (m̂− n̂1)2(−2n̂1 + 3m̂)) = 0,
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which has a unique real solution at 1/2 + αr, where α ≈ −2.03566, which is the real solution for

9α3 + 25α2 + 19α+ 11 = 0.

We then compute the value of the function f at 1/2 + αr:

2r ln(n) + 2r ln r + β,

with β ≈ 1.9389.

Case 4: Now suppose that Q̂3 = 3n̂3 > 0 and P̂3 > 0 and P̂2 > 0. By Lemma 4.8.17, we do not
need to consider the cases k̂0 = 0, k̂1 = 0, k̂2 = 0, T̂3 = 0, T̂2 = 0 and m̂3 = 0.

Since Q̂3 = 3n̂3, we have that k̂0 = 3− 3m̂− 2n̂1 − k̂1 − k̂2. Thus we analyse the function

f(n̂1, k̂1, k̂2) := fpre(n̂1, 3− 3m̂− 2n̂1 − k̂1 − k̂2, k̂1, k̂2).

We have that, for any local maximum in this case,

exp

(
d f

d n̂1

)
=

8P̂ 3
3 k̂

2
0n̂

2
3n̂1

m̂2
3T̂

6
2

= 1;

exp

(
d f

d k̂1

)
=

2P̂3k̂0

T̂2k̂1

= 1;

exp

(
d f

d k̂2

)
=
P̂ 2

3 k̂0

T̂ 2
2 k̂2

= 1;

and so

8P̂ 3
3 k̂

2
0n̂

2
3n̂1 − m̂2

3T̂
6
2 = 0; (4.80)

2P̂3k̂0 − T̂2k̂1 = 0; (4.81)

P̂ 2
3 k̂0 − T̂ 2

2 k̂2 = 0. (4.82)

By taking the resultant of the RHS of (4.81) and (4.82), by eliminating k̂1, we get

9n̂2
3(k̂2 − 3 + 3m̂+ 4n̂1)

(9m̂2k̂2 − 6m̂n̂1k̂2 + n12k̂2 + 27m̂3 − 27m̂2 − 36m̂2n̂1 − 9m̂n̂2
1 + 54m̂n̂1 − 27n̂2

1 + 18n̂3
1) = 0.

Using Q̂3 = 3n̂3 and their definition in (4.42), we have that 3m̂− n̂1−2k̂0−2k̂1−2k̂2 = 3(1− n̂1−
k̂0− k̂1− k̂2) and so 3m̂−3 = k̂0 + k̂1 + k̂2−2n̂1. Thus, k̂2−3+3m̂+4n̂1 = k̂0 + k̂1 +2k̂2 +2n̂1 > 0
since we already excluded the case k̂0 = 0. Recall that in this case we have n̂3 > 0. Thus, for any
local maximum in this case,

9m̂2k̂2 − 6m̂n̂1k̂2 + n12k̂2 + 27m̂3 − 27m̂2 − 36m̂2n̂1 − 9m̂n̂2
1 + 54m̂n̂1 − 27n̂2

1 + 18n̂3
1 = 0. (4.83)
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This implies that k̂2 can be determined in terms of n̂1:

k̂2 =
9(−3m̂+ 3− 2n̂1)(m̂− n̂1)2

(3m̂− n̂1)2
.

By taking the resultant of the RHS of (4.81) and (4.82), by eliminating k̂2, we get

44n̂2
3(k̂1 − 2n̂1)(9m̂2k̂1 − 6m̂n̂1k̂1 + n12k̂1 + 36m̂2n̂1 − 36m̂n̂1 + 36n̂2

1 − 24n̂3
1 − 12m̂n̂2

1) = 0.

In this case n̂3 > 0. Moreover, 2n̂1 − k̂1 = 0 implies, by the definitions in (4.42), that T̂2 =
P̂2 − k̂1 = 2n̂1 − 2k̂0 − k̂1 ≤ 0 since k̂0 ≥ 0 in Ŝm. But we have already excluded the case T̂2 = 0.
Thus,

9m̂2k̂1 − 6m̂n̂1k̂1 + n12k̂1 + 36m̂2n̂1 − 36m̂n̂1 + 36n̂2
1 − 24n̂3

1 − 12m̂n̂2
1 = 0. (4.84)

This implies that k̂1 can be determined in terms of n̂1:

k̂1 =
12n̂1(−3m̂+ 3− 2n̂1)(m̂− n̂1)

(3m̂− n̂1)2
.

We take the resultant of the RHS of (4.80) and (4.84) by eliminating k̂1 and then the resultant of
the polynomial obtained with the RHS of (4.83) by eliminating k̂2 and ignoring the factors that
cannot be zero in Ŝm and we obtain:

18m̂− 36m̂2 + 18m̂3 − 18n̂1 + 18m̂n̂1 − 3m̂2n̂1 + 22n̂2
1 − 16m̂n̂2

1 − 7n̂3
1 = 0.

This cubic equation has one real solution for n̂1 and two complex solutions because the discriminant
∆ of the polynomial above is −63/4 +O(r), which is negative for sufficiently large n. For we have
that the real solution is 1/2− r − 6r2 −O(r3) and so the value of the function fpre at this point
is, by using (4.48),

2r lnn− 4r ln r +

(
1

3
− 1

3
ln(3)− 2

3
ln(2)

)
λ∗ +

(
11

72
− 2

9
ln(2)− 1

9
ln(3)

)
(λ∗)2 +O((λ∗)3).

Case 5: Now suppose that P̂3 = 0 and Q̂3 > n̂3 > 0. Since P̂3 = 0 and P̂3 = 3(m̂ − n̂1)
by definition (see (4.42)), we have that n̂1 = m̂. Moreover, since T̂3, k̂1, k̂2 ≥ 0 in Ŝm and
T̂3 = P̂3 − k̂1 − 2k̂2 by definition, we have that k̂1 = 0 and k̂2 = 0. Thus, for any local maximum
with P̂3 = 0, it suffices to analyse

f(n̂3) := fpre(m̂, 1− m̂− n̂3, 0, 0),

where n̂3 ∈ (0, 1 − m̂), since by definition k̂0 = 1 − n̂1 − k̂1 − k̂2 − n̂3 = 1 − m̂ − n̂3 ≥ 0 and
Q̂3 = 3m̂ − n̂1 − 2k̂0 − 2k̂1 − 2k̂2 = 4m̂ − 2 + 2n̂3 ≥ 0. We do not have to analyse the value at
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the endpoints of the interval for n̂3 as they were already considered in cases before. Also, in this
case Q̂3 = P̂2, thus we do not have to check the case P̂2 = 0. Thus, it suffices to consider points
satisfying

exp

(
d f

d n̂3

)
=

2(1− m̂− n̂3)f3(λ)

n̂3λ2
= 1,

where λf2(λ)/f3(λ) = Q̂3/n̂3. The equation below is equivalent to

n̂3 =
(1−m)f3(λ)

f2(λ)
.

Combining this with the equation defining λ implies:

r =
1

2

−2eλ + 2 + λ+ λeλ

2eλ − 2− 3λ+ λeλ
,

and since r goes to zero so does λ. We have that

r =
1

24
λ+O(λ2),

which implies
λ = 2λ∗ +O(λ∗)2.

We then compute the series of f(n̂3) with λ going to zero:

2r lnn− 4r ln r +

(
−1

2
ln(2)− 1

6
ln(3) +

1

6

)
λ+O(λ2)

=2r lnn− 4r ln r +

(
− ln(2)− 1

3
ln(3) +

1

3

)
λ∗ +O((λ∗)2).

Case 6: Now suppose that P̂2 = 0 and Q̂3 > n̂3 > 0. We have that P̂2 = 2(n̂1 − k̂0). Thus, we
have n̂1 = k̂0 since P̂2 = 0. Moreover, since T̂2, k̂1 ≥ 0 in Ŝm and T̂2 = P̂2 − k̂1 by definition, we
have that k̂1 = 0. Thus, we only need to analyse

f(n̂1, k̂2) := fpre(n̂1, n̂1, 0, k̂2),

where Q̂3 > 3n̂3 > 0 and P̂3 > 0. Thus, it suffices to consider points satisfying

exp

(
d f

d n̂1

)
=

2

9

n̂2
3λ

3

m̂2
3f3(λ)2

= 1 and exp

(
d f

d k̂2

)
=

1

2

n̂3λ
2

k̂2f3(λ)
= 1,

where λf2(λ)/f3(λ) = Q̂3/n̂3. The second equation implies that for any local maximum

k̂2 =
1

2

(1− 2n̂1)λ2

f2(λ)
.
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By using this with the derivative w.r.t. n̂1, we get

n̂1 =
λ3/2
√

2− 3f2(λ)m̂

2λ3/2
√

2− 3f2(λ)
.

By putting this together with the equation defining λ, we have that

(−eλ + 1 +
√

2λ)λ

f3(λ)
= 0,

which has a unique solution `∗ ≈ 0.8267. For λ = `∗, we have n̂1 = 1
2 + αr, with α ≈ 1.4887 and

k̂2 = β(1/2− n̂1) with β ≈ 0.1173. By using this values of n̂1 and k̂2, we evaluate the function
f(n̂1, k̂2) as

2r lnn− 4r ln r + 6 ln r +O(r),

since α < 0, 0 < β < 2 and λ > 0.

Proof of Lemma 4.8.19. Let x̂(i) = (n̂1(i), k̂0(i), k̂1(i), k̂2(i)) and similarly for Q̂3(i), n̂3(i), etc.
Let λ(i) be such that λ(i)f2(λ(i))/f1(λ(i)) = Q̂3(i)/n̂3(i). Recall that

fpre(n̂1, k̂0, k̂1, k̂2) =hn(P̂3) + hn(P̂2) + hn(Q̂3) + hn(m̂2)

− hn(k̂0)− hn(k̂1)− hn(k̂2)− hn(n̂3)− hn(m̂3)

− hn(T̂3)− hn(T̂2)− 2hn(m̂−2 )

− k̂2 ln 2− m̂−2 ln 2− m̂3 ln 6

+ n̂3 ln f3(λ)− Q̂3 lnλ.

Since S ⊆ [0, 1]4 and the fact that |y ln y| ≤ 1/e for y ∈ [0, 1], we have that fpre(x) ≤ C +
n̂3 ln f3(λ) − Q̂3 lnλ for some constant C. Thus, it suffices to show that n̂3(i) ln f3(λ(i)) −
Q̂3(i) lnλ(i)→ −∞ as i→∞.

Since Q̂3(i) converges to a positive number and n̂3(i) converges to 0, we have that Q̂3(i)/n̂3(i)→
∞. This implies that λ(i)→∞. Thus,

n̂3(i) ln f3(λ(i))− Q̂3(i) lnλ(i)

≤ n̂3(i)λ(i)− Q̂3(i) lnλ(i), since f3(λ) ≤ exp(λ)

≤ n̂3(i)
Q̂3(i)

n̂3(i)
− Q̂3(i) lnλ(i), since λ(i) ≤ Q̂3(i)/n̂3(i)

= Q̂3(i)(1− ln(λ(i)))→ −∞, since λ(i)→∞ and lim inf
i→∞

Q̂3(i) > 0.
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4.8.9 Approximation around the maximum and bounding the tail

In this section, we approximate the sum of exp(nfpre(x)) over a set of points ‘close’ to x∗ and
bound the sum for the points ‘far’ from x∗. More specifically, we prove Lemmas 4.8.12 and 4.8.13.

Proof of Lemma 4.8.12. We use Lemma 4.8.15 and Lemma 4.8.16, which were proved in Sec-
tion 4.8.7 and Section 4.8.8, resp. Let x ∈ B. By Lemma 4.8.15, since δ3

1 = o(r/n) and
δ3 = o(r4/n), we have that

n
∂fpre(x̂

∗ + x̂)

∂t1∂t2∂t3
t1(x̂)t2(x̂)t3(x̂) = o(1),

for any t1, t2, t3 ∈ {n̂1, k̂0, k̂1, k̂2}. By Lemma 4.8.11, we have that

∂fpre(x̂
∗)

∂t
= 0,

for any t ∈ {n̂1, k̂0, k̂1, k̂2}. Thus, by Taylor’s approximation (Theorem 2.4.1),

exp (nfpre(x̂
∗ + x̂)) = exp

(
nfpre(x̂

∗) +
nx̂THx̂

2
+ o(1)

)
, (4.85)

where H is the Hessian of fpre at x∗. Using the fact that B̂ ∩ ((Z4 − x∗)/n) is a finite set for
each n and Lemma 2.7.1, this implies that

∑
x̂∈B̂

x̂∈(Z4−x∗)/n

exp (nfpre(x̂
∗ + x̂)) ∼

∑
x̂∈B̂

x̂∈(Z4−x∗)/n

exp

(
nfpre(x̂

∗) +
nx̂THx̂

2

)
. (4.86)

So we need to show that ∑
x̂∈B̂

x̂∈(Z4−x∗)/n

exp

(
nx̂THx̂

2

)
∼ 144

√
3π2r7/2n2. (4.87)

Let

A =


1 0 0 0
1 1 0 0
−3 0 1 0
0 0 0 1

 .
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We rewrite the summation in the LHS of (4.87) over Ĉ := {y : Ay ∈ B̂} as

∑
y∈Ĉ

y∈(Z4−A−1x∗)/n

exp

(
nyT (ATHA)y

2

)

=
∑
y∈Ĉ

y∈(Z4−A−1x∗)/n

exp

(
−nyT (ATH0A)y

2r2
− nyT (ATTA)y

2r
+
O(nyTJy)

2

)
, (4.88)

by Lemma 4.8.14 (for the definitions of H0 and T , see (4.58)). Note that the condition
“x̂ ∈ (Z4 − x∗)/n” became “y ∈ (Z4 −A−1x∗)/n” because A is an integer invertible matrix and

A−1 =


1 0 0 0
−1 1 0 0
3 0 1 0
0 0 0 1


is also an integer matrix. Using the definition of H0 and T in (4.58), we have that

∑
y∈Ĉ

y∈(Z4−A−1x∗)/n

exp

(
−ny(ATH0A)y

2r2
− ny(ATTA)y

2r
+
nO(yTJy)

2

)
=

=
∑
y∈Ĉ

y∈(Z4−A−1x∗)/n

exp

(
− n

12r2
y2

2 −
n

6r2
y2y3 −

n

6r2
y2y4 −

7n

72r2
y2

3 −
4n

9r2
y3y4 −

n

6r2
y2

4

− n

2r
y2

1 +
n

r
y1y2 +

n

r
y1y3

− 11n

30r
y2

2 −
2n

5r
y2y3 −

n

15r
y2y4 −

31n

180r
y2

3 +
2n

45r
y3y4 +

n

45r
y2

4 +
nO(yTJy)

2

)
,

(4.89)

The set Ĉ = {y : Ay ∈ B̂} can be described as

Ĉ =
{
y ∈ R4 : |y1| ≤ δ1, |yi| ≤ δ for i = 2, 3, 4

}
,

since B̂ was defined as

B̂ =
{
x̂ ∈ R4 : x̂ = γ1z1 + γ2e2 + γ3e3 + γ4e4, |γ1| ≤ δ1 and |γi| ≤ δ for i = 2, 3, 4

}
.
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Thus, the ranges of the summation for different variables yi’s are independent. We have that∑
|y1|≤δ1

y1∈(Z−(A−1x∗)1)/n

exp

(
− n

2r
y2

1 +
n

r
y1y2 +

n

r
y1y3 +

4∑
j=1

O(ny1yj)

)

=
∑

|ỹ1|≤δ1
√
n/r

ỹ1∈(Z−(A−1x∗)1)/
√
rn

exp

(
− y2

1/2 + ỹ1ỹ2 + ỹ1ỹ3 +
4∑
j=1

O(rỹ1ỹj)

)
,

where ỹi =
√
nyi/
√
r for i = 2, 3. We apply Lemma 4.6.1 with α = 1/2, β = ỹ2 + ỹ3, φ = O(r) =

o(1), ψ = O(rỹ2 + rỹ3 + rỹ4) = O(r) = o(1), sn =
√
rn→∞ and Tn = δ1

√
n/r →∞:

∑
|ỹ1|≤δ1

√
n/r

y1∈(Z−(A−1x∗)1)/(r
√
n)

exp

(
− y2

1/2 + ỹ1ỹ2 + ỹ1ỹ3 +
4∑
j=1

O(rỹ1ỹj)

)
∼
√

2rnπ exp((ỹ2 + ỹ3)2/2).

We then proceed similarly for y2, y3 and y4. Fix y3 and y4. Set y̌i =
√
nyi/r for i = 3, 4. We

apply Lemma 4.6.1 with α = 1/12, β = −(1/6)y̌3 − (1/6)y̌4, φ = −(2r/15) + O(r2) = o(1),
ψ = (3r/5)y̌3 − r/15 +

∑4
j=3O(r2y̌j) = o(1), sn = r

√
n→∞ and Tn = δ

√
n/r →∞:

∑
|y2|≤δ

y2∈(Z−(A−1x∗)2)/n

exp

(
− n

12r2
y2

2 −
n

6r2
y2y3 −

n

6r2
y2y4 −

2n

15r
y2

2 +
3n

5r
y2y3 −

n

15r
y2y4 +

4∑
j=2

O(ny2yj)

)

=
∑

|y̌2|≤δ
√
n/r

y̌2∈(Z−(A−1x∗)2)/(r
√
n)

exp

(
− 1

12
y̌2

2 −
1

6
y̌2y̌3 −

1

6
y̌2y̌4 −

2r

15
y̌2

2 +
3r

5
y̌2y̌3 −

r

15
y̌2 +

4∑
j=2

O(r2y̌2y̌j)

)

∼ 2
√

3πr
√
n exp((y̌3 + y̌4)2/12).

Fix y4 and set y̌4 =
√
ny4/r. We apply Lemma 4.6.1 with α = 1/72, β = −(1/8)ỹ4, φ = O(r) =

o(1), ψ = O(rỹ4) = O(r) = o(1), sn = r
√
n→∞ and Tn = δ

√
n/r →∞:

∑
|y3|≤δ

y3∈(Z−(A−1x∗)3)/n

exp

(
− n

72r2
y2

3 −
n

18r2
y3y4 +

4∑
j=3

O(ny3yj/r)

)

=
∑

|y̌3|≤δ
√
n/r

y̌3∈(Z−(A−1x∗)3)/(r
√
n)

exp

(
− 1

72
y̌2

3 −
1

18
y̌3y̌4 +

4∑
j=3

O(ry̌3y̌j)

)

∼ 6
√

2πr
√
n exp(y̌2

4/18)).
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Finally, for y4, we apply Lemma 4.6.1 with α = 1/36, β = 0, φ = O(r) = o(1), ψ = 0,
sn = r

√
n→∞ and Tn = δ

√
n/r →∞:

∑
|y4|≤δ

y4∈(Z−(A−1x∗)4)/n

exp

(
− n

36r2
y2

4 +O(ny4y4/r)

)
=

∑
|y̌4|≤δ

√
n/r

y̌4∈(Z−(A−1x∗)4)/(r
√
n)

exp

(
− 1

36
y̌2

4 +O(ry̌4y̌4)

)

∼ 6r
√
πn.

Hence,

∑
x̂∈B̂

x̂∈(Z4−x∗)/n

exp

(
nx̂THx̂

2

)
∼
√

2rnπ · 2
√

3πr
√
n · 6
√

2πr
√
n · 6r

√
πn = 144

√
3π2n2r7/2,

completing the proof.

Proof of Lemma 4.8.13. Recall that hn(y) = y ln(yn)− y,

wpre(x) =


P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

f3(λ)n3

λQ3
, if Q3 > 3n3;

P3!P2!Q3!(m2 − 1)!

k0!k1!k2!n3!m3!T3!T2!(m−2 − 1)!m−2 !2k22m
−
2 6m3

1

6n3
, otherwise.

and, for x ∈ S such that Q3 > 3n3

fpre(x̂) =hn(P̂3) + hn(P̂2) + hn(Q̂3) + hn(m2)

− hn(k̂0)− hn(k̂1)− hn(k̂2)− hn(n̂3)− hn(m̂3)

− hn(P̂3 − k̂1 − 2k̂2)− hn(P̂2 − k̂1)− 2hn(m̂−2 )

− k̂2 ln 2− m̂−2 ln 2− m̂3 ln 6

+ n̂3 ln f3(λ)− Q̂3 lnλ,

and, if Q3 = 3n3,

fpre(x̂) =hn(P̂3) + hn(P̂2) + hn(Q̂3) + hn(m2)

− hn(k̂0)− hn(k̂1)− hn(k̂2)− hn(n̂3)− hn(m̂3)

− hn(P̂3 − k̂1 − 2k̂2)− hn(P̂2 − k̂1)− 2hn(m̂−2 )

− k̂2 ln 2− m̂−2 ln 2− m̂3 ln 6

− n̂3 ln 6.
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Thus, by Lemma 2.5.1 (which states that Stirling’s approximation is correct up to a constant
factor), there is a polynomial Q(n) such that for x̂ ∈ Ŝm

wpre(x) ≤ Q(n)n! exp(nfpre(x̂)).

Hence, if we obtain an upper bound for the tail
∑

x∈(S\(x∗+B))∩Z4 n! exp(nfpre(x̂)), we also get an
upper bound for the tail

∑
x∈(S\(x∗+B))∩Z4 wpre(x) although it is a weaker bound because of the

polynomial factor Q(n).

Let x ∈ (S \ (x∗ +B)) ∩ Z4. Let γ1, γ2, γ3, γ4 be such that x = x∗ + γ1z1 + γ2e2 + γ3e3 + γ4e4.
Let δ′1 = ω(δ1) be such that δ′1/δ1 goes to infinity arbitrarily slowly and let δ′ be such that δ′/δ
goes to infinity arbitrarily slowly. If δ1 ≤ |γ1| ≤ δ′1 and δ ≤ |γi| ≤ δ′ for i = 2, 3, 4, by (4.85),

exp (nfpre(x̂))

exp (nfpre(x̂∗))
∼ exp

(
n(x̂− x̂∗)TH(x̂− x̂∗)

2

)
,

where H is the Hessian of fpre at x∗. Recall that, by Lemma 4.8.14, H = (−1/r2)H0− (1/r)T +J ,
where H0 and T are defined in (4.58) and J = J(n) is a matrix with bounded entries. Thus, there
exists a positive constant α such that

exp

(
n(x̂− x̂∗)TH(x̂− x̂∗)

2

)
= exp

(
n(x̂− x̂∗)T

(
(−1/r2)H0 − (1/r)T + J

)
(x̂− x̂∗)

2

)

≤ exp

(
−αγ

2
1n

r
−

4∑
i=2

αγ2
i n

r2

)

≤ max

(
exp

(
−αδ

2
1n

r

)
, exp

(
−αδ

2n

r2

))
=

1

nω(1)
,

where the last relation follows from δ2
1n/r = ω(lnn) and δ2n/r2 = ω(lnn).

By Lemma 4.8.11, for any local maximum x in S other than x∗,

exp(nfpre(x))

exp(nfpre(x∗))
=

1

exp(Ω(r2n))
=

1

exp(Ω(R2/n))
=

1

exp(Ω(ln3/2 n))
,

since R = ω(n1/2 ln3/2(n)). Hence, for any x ∈ S \ (x∗ +B),

exp(nfpre(x))

exp(nfpre(x∗))
=

1

exp(Ω(ln3/2 n))
.
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Thus, ∑
x∈(S\(x∗+B))∩Z4

wpre(x) ≤ Q(n)n!
∑

x∈(S\(x∗+B))∩Z4

exp(nfpre(x̂)) ≤ Q(n)n!n4 exp(nfpre(x̂
∗))

exp(Ω(ln3/2 n))

= o (n!exp(nfpre(x̂
∗))) .

4.9 Combining pre-kernels and forests

In this section, we will obtain a formula for the number of connected graphs with vertex set
[n] and m edges, proving Theorem 4.1.1. We defer the proof of some lemmas to Section 4.9.1.
We will perform Step 4 as described in the overview of the proof in Section 4.4: we will analyse
the summation

∑
n gforest(N,n)gcore(n,M − (N − n)/2) by combining the formula obtained for

forests (Section 4.5) and for cores (Section 4.7). We relate the formulae for cores and pre-kernels
(Section 4.8) so that we can deduce the asymptotic value of

∑
n gforest(N,n)gpre(n,M− (N−n)/2),

which is the number of connected graphs.

For ň ∈ [0, 1], let

t(ň) = −(1− ň)

2
ln(1− ň) +

1− ň
2

+ ňfcore(n̂
∗
1), (4.90)

where n̂∗1 = n̂∗1(n) = 3m̂/g2(λ∗) and λ∗ = λ∗(n) is the unique positive solution of the equation
λf1(λ)g2(λ)/f2(2λ) = 3m/n. We have already discussed the existence and uniqueness of λ∗ in
Section 4.7.

Elementary but lengthy computations show that

t(ň) =− (1− ň)

2
ln(1− ň) +

1− ň
2

2Ř ln(N) + (2 ln(3)− ln(2)− 2)Ř+ 2Ř ln(ň) +

(
ln 3− 1

2
ln(2)

)
ň

+ ln

(
f2(2λ∗)

g1(λ∗)

)
ň+

(
1

2
ň+ Ř

)
ln

(
m̂2g1(λ∗)3

g2
2(λ∗)f1(λ∗)(λ∗)3

)
,

(4.91)

where Ř = R/N . See Section A.13 for a Maple spreadsheet. In this section, we use y̌ to denote
y/N . We obtain the following asymptotic formulae.

Theorem 4.9.1. We have that∑
n∈[N ]

N−n even

(
N

n

)
gforest(N,n)gcore(n,m) ∼

√
3√

πλ∗∗N
exp(Nt(ň∗) +N lnN −N) (4.92)
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and ∑
n∈[N ]

N−n even

(
N

n

)
gforest(N,n)gpre(n,m) ∼

√
3√
πN

exp(Nt(ň∗) +N lnN −N) (4.93)

where λ∗∗ is the unique positive solution to

2λf1(λ)g2(λ)− 3f2(2λ)

f1(λ)g1(λ)
=

6R

N
(4.94)

and

ň∗ =
f2(2λ∗∗)

f1(λ∗∗)g1(λ∗∗)
. (4.95)

Theorem 4.1.1 follows immediately from Theorem 4.9.1 by simplifying t(ň∗) by using (4.91)
with (4.95) and (4.19). The rest of this section is dedicated to prove Theorem 4.9.1.

The following lemma shows that λ∗∗ is well-defined.

Lemma 4.9.2. The equation

2λf1(λ)g2(λ)− 3f2(2λ)

f1(λ)g1(λ)
= αn

has a unique solution for αn > 0 and it goes to 0 if αn → 0.

Proof. For the first part, it suffices to show that the function

f(λ) =
2λf1(λ)g2(λ)− 3f2(2λ)

f1(λ)g1(λ)

is strictly increasing and it goes to zero as λ→ 0. By computing the series of f(λ) with λ→ 0,
we obtain f(λ) = λ2/2 +O(λ3)→ 0 as λ→ 0. To show f(λ) is strictly increasing, we compute its
derivative:

d f(λ)

dλ
=

2(e4λ + e3λ − eλ − 1− λe3λ − 4λe2λ − λeλ)

f1(λ)2g1(λ)2

while it is obvious that the denominator is positive for λ > 0, it is not immediate that so is the
numerator.

Let g(λ) = e4λ + e3λ− eλ− 1−λe3λ− 4λe2λ−λeλ. We will use the following strategy: starting

with i = 1, we check that di−1 g(λ)

di−1 λ
|λ=0 = 0 and compute di g(λ)

di λ
. If for some i we can show that

di g(λ)

di λ
> 0 for any λ, then we obtain g(λ) > 0 for λ > 0. We omit the computations here. See

Section A.14 in the Appendix for a maple spreadsheet. We have that

d5 g(x)

d5 x
= 2048e4λ − 12eλ − 324e3λ − 486λe3λ − 640e2λ − 256λe2λ − 2λex,
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which is trivially positive since exp(x) > 1 + x for all x ∈ R and the sum of the coefficients of the
negative terms is less than 2048.

It will be useful to know how λ∗∗ compares to R and ň∗. By Lemma 4.9.2, λ∗∗ = o(1) since
R = o(N). We can write Ř and ň∗ in terms of λ∗∗ by using (4.94) and (4.95). By expanding the
LHS of (4.94) and the RHS (4.95) as functions of λ∗∗ about 0, we have that

Ř =
(λ∗∗)2

12
+O((λ∗∗)4),

ň∗ = λ∗∗ − (λ∗∗)2

3
+O((λ∗∗)4).

(4.96)

Next, we state the main lemmas for the proof of Theorem 4.9.1. We defer their proofs to
Section 4.9.1. First we show the relation between gpre(n,m) and gcore(n,m) for a certain range
of n. The next lemma follows from Theorem 4.7.1 and Theorem 4.8.1 and a series of simplifications
that show that fcoren

∗
1 = fpre(x

∗). For the simplifications see Section A.12.

Lemma 4.9.3. Let α1 < α2 be positive constants. If α1

√
RN ≤ n ≤ α2

√
RN , then

gpre(n,m)

gcore(n,m)
∼ 2
√

3r. (4.97)

Moreover, for all n ≥ 0,
gpre(n,m) ≤ gcore(n,m) (4.98)

This will allow us to obtain the formula for connected hypergraphs from the formula for simple
hypergraphs. We compute the point of maximum for t(ň):

Lemma 4.9.4. The point ň∗ is the unique maximum of the function t(ň) in the interval [0, 1].
Moreover, ň∗ is the unique point such that the derivative of t(ň) is 0 in (0, 1), and t′(ň) > 0 for
ň < ň∗ and t′(ň) < 0 for ň < ň∗.

We then expand the summation around this maximum and approximate it by an integral that
can be easily computed.

Lemma 4.9.5. Suppose δ3 = o(λ∗∗/N) and δ = ω(1/N1/2). Then

∑
n∈[n∗−δN,n∗+δN ]

N−n even

exp(Nt(ň)) ∼
√
πN

2
exp(Nt(ň∗)).

Finally, we show that the terms far from the maximum do not contribute significantly to the
summation:
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Lemma 4.9.6. Suppose that δ3 = o(λ∗∗/N) and δ2 = ω((lnN)/N). Then∑
n∈[0,N ]\[n∗−δN,n∗+δN ]

(
N

n

)
gforest(N,n)gcore(n,m) =

N ! exp(Nt(ň∗))

Nω(1)
.

We are now ready to prove Theorem 4.9.1.

Proof of Theorem 4.9.1. In order to use Lemma 4.9.5 and Lemma 4.9.6, we need to check if there
exists δ such that δ3 = o(λ∗∗/N) and δ2 = ω(lnN/N). This is true if and only if

(λ∗∗)2 = ω

(
log3N

N

)
,

which, by (4.96), is true if and only if

R = ω(log3N),

which is true by assumption. Thus, assume that δ satisfies δ3 = o(λ∗∗/N) and δ2 = ω(lnN/N).

Let J(δ) = [n∗ − δN, n∗ + δN ] ∩ (2Z−N). By (4.96), we have that

n∗ = Θ(λ∗∗N) = Θ(
√
RN).

Moreover, since δ3 = o(λ∗∗/N) and R→∞,

δN = o(
6
√
RN3) = o

(√
RN

R1/3

)
= o(n∗).

Thus, there are constants α1 > 0 and α2 > 0 such that any n ∈ J(δ) satisfies α1

√
RN < n <

α2

√
RN . By Lemma 4.9.3

gpre(n,m)

gcore(n,m)
∼ 2
√

3r,

for any n ∈ J(δ) and m = n/2 +R. Since R = o(n) and R = ω(log n), by Theorem 4.7.1 and by
Theorem 4.5.1, for n ∈ J(δ),

gcore(n,m) ∼ 1

2πn
√
r
· n! exp

(
nfcore(n̂

∗
1)
)

and gforest(n,N) =
n

N
· (N − n)!N (N−n)/2(

N−n
2

)
!2(N−n)/2

.
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Thus, for n ∈ J(δ), with m = n/2 + R, by Stirling’s approximation and using the fact that
n = o(N) by (4.96),(

N

n

)
gforest(N,n)gcore(n,m) ∼

(
N

n

)
· n
N
· (N − n)!N (N−n)/2(

N−n
2

)
!2(N−n)/2

· 1

2πn
√
r
· n! exp

(
nfcore(n̂

∗
1)
)

=

√
n

2πN
√
R
· N !N (N−n)/2(

N−n
2

)
!2(N−n)/2

exp
(
nfcore(n̂

∗
1)
)

∼
√

2nN

2πN
√
R(N − n)

· exp

(
Nt(ň) +N lnN −N

)
, by (4.90)

∼
√
n

πN
√

2R
· exp

(
Nt(ň) +N lnN −N

)
.

By (4.96), √
n

πN
√

2R
∼

√
6

πN
√
λ∗∗

and so (
N

n

)
gforest(N,n)gcore(n,m) ∼

√
6

πN
√
λ∗∗

(4.99)

for n ∈ J(δ). Since J(δ) is a finite set for each n, by Lemma 2.7.1, we have that there exists a
function q(n) = o(1) such that the o(1) in (4.99) is bounded by q(n) for any n ∈ J(δ). Thus,∑

n∈J(δ)

(
N

n

)
gforest(N,n)gcore(n,m) ∼

∑
n∈J(δ)

√
6

πN
√
λ∗∗
· exp

(
Nt(ň) +N lnN −N

)

∼
√

6

πN
√
λ∗∗

√
πN

2
exp(Nt(ň∗) +N lnN −N)

(4.100)

by Lemma 4.9.5. Together with Lemma 4.9.6, this proves Equation (4.92) of Theorem 4.9.1.

Equations (4.100) and (4.97) implies that∑
n∈J(δ)

(
N

n

)
gforest(N,n)gpre(n,m) ∼ 2

√
3R

n
·
√

6

πN
√
λ∗∗

√
πN

2
exp(Nt(ň∗) +N lnN −N)

∼ 2

√
3

12
·
√

3√
πN

exp(Nt(ň∗) +N lnN −N)

∼
√

3√
πN

exp(Nt(ň∗) +N lnN −N),

(4.101)

which, together with Lemma 4.9.6 and the fact that gpre(n,m) ≤ gcore(n,m), proves Equation (4.93)
of Theorem 4.9.1.
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4.9.1 Proof of the lemmas in Section 4.9

In this section, we prove Lemmas 4.9.4, 4.9.5 and 4.9.6. See Section A.15 for a Maple spreadsheet.
We start by computing the derivatives of t. For that, we need to compute dλ∗(ň)

d ň . This can be
done by implicit differentiation using Equation (4.19) that defines λ∗ and recalling m = n/2 +R.
We obtain

dλ∗

d ň
= − Ř

ň2m̂a(λ∗)
, (4.102)

where

a(λ) =
1

λ
+

exp(λ)

f1(λ)
+

exp(λ)

g2(λ)
− 2 exp(2λ)

f2(2λ)
+

2

f2(2λ)
. (4.103)

Thus, the first derivative of t(ň), which is defined in (4.91), is

ln(1− ň)

2
+ ln(3)− ln 2

2
+ ln

(
f2(2λ∗)

g1(λ∗)

)
+

1

2
ln

(
m̂2g1(λ∗)3

g2
2(λ∗)f1(λ∗)(λ∗)3

)
. (4.104)

The second derivative is

− 1

2(1− ň)
− 2Ř

(ň+ 2Ř)ň
− 4Ř2

ň(ň+ 2Ř)2

b(λ∗)

a(λ∗)f2(2λ∗)
(4.105)

where

b(λ) = 2F1(λ)− f2(2λ) exp(λ)

g1(λ)
.

The third derivative is

− 1

2(1− ň)2
+

4Ř(ň+ Ř)

ň2(ň+ 2Ř)2

+
d

d ň

(
− 4Ř2

ň(ň+ 2Ř)2

)
b(λ∗)

a(λ∗)f2(2λ∗)
− 4Ř2

ň(ň+ 2Ř)2

d

dλ∗

(
b(λ∗)

a(λ∗)f2(2λ∗)

)
dλ∗

d ň
.

(4.106)

Lemma 4.9.7. For δ = o(ň∗) and n ∈ [n∗ − δN, n∗ + δN ], we have that |λ∗(n)− λ∗∗| = o(ň∗).

Proof. Given a connected (N,M)-graph such that its core has n vertices and m edges, we have
that m = M − (N − n)/2. Recall that ň∗ = f2(2λ∗∗)/f1(λ∗∗)g1(λ∗∗) by (4.95) and

6R

N
=

2λ∗∗f1(λ∗∗)g2(λ∗∗)− 3f2(2λ∗∗)

f1(λ∗∗)g1(λ∗∗)
,

by (4.94). Thus,

3M =
λ∗∗(1 + exp(2λ∗∗) + exp(λ∗∗))

exp(2λ∗∗)− 1
.
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Hence,

λ∗(n∗)f1(λ∗(n∗))g2(λ∗(n∗))

f2(2λ∗(n∗))
=

3m

n∗
=

3M

N

1

ň∗
− 3

2ň∗
+

3

2
=
λ∗∗)f1(λ∗∗)g2(λ∗∗)

f2(2λ∗∗)

and so λ∗ = λ∗(n∗). The lemma then follows directly from the fact that λ∗∗ = λ∗(ň∗) and
Lemma 4.7.4.

Now we bound the third derivative for points close to ň∗:

Lemma 4.9.8. The third derivative of t(ň) is O(1/λ∗∗) for |ň− ň∗| = o(ň∗).

Proof. We analyse the terms in (4.106). By Lemma 4.7.4, since n = ň(1 + o(1)),

d

d ň

(
− 1

2(1− ň)2
+

4Ř(ň+ Ř)

ň2(ň+ 2Ř)2

)
= − 1

2(1− ň)2
+

4Ř(ň+ Ř))

ň2(ň+ 2Ř)2

=

(
− 1

2(1− ň∗)2
+

4Ř(ň∗ + Ř)

(ň∗)2(ň∗ + 2Ř)2

)
(1 + o(ň∗))

=
1

3λ∗∗
+O(1),

where the last equality is obtained by computing the series of the expression in the previous
equation using (4.96). For λ→ 0,

a(λ) =
1

6
+

λ

12
+O(λ2) (4.107)

b(λ) = 4λ+O(λ2); (4.108)

Thus, by Lemma 4.7.4 and (4.96),

d

d ň

(
− 4Ř2

ň(ň+ 2Ř)2

)
b(λ∗)

a(λ∗)f2(2λ∗)
=

4Ř2(3ň− 2Ř)

ň2(ň+ 2Ř)3

b(λ∗)

a(λ∗)f2(2λ∗)

∼ 4Ř2(3ň∗ − 2Ř)

(ň∗)2(ň∗ + 2Ř)3

b(λ∗∗)

a(λ∗∗)f2(2λ∗∗)
=

1

λ∗∗
+O(1).

We have that

d b(λ)

dλ
= 4 exp(2λ)− exp(λ)(3 exp(2λ)− 3− 2λ)

g1(λ)
+
f2(2λ) exp(2λ)

g1(λ)2

and

d a(λ)

dλ
= − 1

λ2
+

exp(λ)

f1(λ)
− exp(2λ)

f1(λ)2
+

exp(λ)

g2(λ)
− exp(2λ)

g2(λ)2
− 4 exp(2λ)

f2(2λ)
− 4F1(λ)2

f2(2λ)2
.
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Thus, by (4.102)

− 4Ř2

ň(ň+ 2Ř)2

d

dλ∗

(
b(λ∗)

a(λ∗)f2(2λ∗)

)
dλ∗

d ň

= − 4Ř2

ň(ň+ 2Ř)2

(
d b(λ)

dλ

∣∣∣
λ=λ∗

1

a(λ∗)f2(2λ∗)

− b(λ∗)

a(λ∗)2f2(2λ∗)2

(
d a(λ)

dλ

∣∣∣
λ=λ∗

f2(2λ∗) + 2F1(λ∗)a(λ∗)

))(
− Ř

ň2m̂a(λ∗)

)
.

By Lemma 4.7.4, the above is the value applied at λ∗∗ with an error of o(λ∗∗) and the series for it
with λ∗∗ → 0 is

2

3λ∗∗
+O(1).

We now present the proofs of Lemmas 4.9.4, 4.9.5 and 4.9.6.

Proof of Lemma 4.9.4. By setting (4.104) to zero and using m̂ = λ∗f1(λ∗)g2(λ∗)/f2(2λ∗), we get
following value for ň

ň∗ =
f2(2λ∗)

f1(λ∗)g1(λ∗)
. (4.109)

We also know that, by (4.19),

λ∗f1(λ∗)g2(λ∗)

f2(2λ∗)
= 3m̂ =

3

2
+

3Ř

ň
. (4.110)

Thus, by combining (4.109) and (4.110), we get the following equation:

Ř =
1

6

−3f2(2λ∗) + 2λ∗f1(λ∗)g2(λ∗)

f1(λ∗)g1(λ∗)
, (4.111)

which has a unique solution λ∗∗ for Ř > 0 by Lemma 4.9.2. By computing the series of the second
derivative as λ∗ → 0, we get that the second derivative at ň∗ is

−1 +O(λ∗),

which is negative for big enough n and so ň∗ is a local maximum.
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Proof of Lemma 4.9.5. Let J(δ) = [n∗ − δN, n∗ + δN ] ∩ (2Z−N). Using Taylor’s approximation,
Lemma 4.9.4 and Lemma 4.9.8, for n ∈ J(δ),

exp(Nt(ň)) = exp

(
Nt(ň∗) +

Nt′′(ň∗)|ň− ň∗|2

2
+O

(
δ3N

λ∗∗

))
∼ exp

(
Nt(ň∗) +

Nt′′(ň∗)|ň− ň∗|2

2

)
since δ3 = o(λ∗/N), and so

∑
ň∈J(δ)

exp(Nt(ň)) ∼
∑
ň∈J(δ)

exp

(
Nt(ň∗) +

Nt′′(ň∗)|ň− ň∗|2

2

)

= exp (Nt(ň∗))
∑

x∈[−δN,δN ]
(n∗+x)∈(−N+2Z)

exp

(
t′′(ň∗)x̂

2N

)
.

(4.112)

We change variables from x to y = `x/2 with ` =
√
|t′′(ň∗)|/2 ∼ 1

2 . Using δ = ω(1/
√
N) and

Lemma 4.6.1,

∑
x∈[−δN,δN ]

N−(ň∗N+x)∈2Z

exp

(
t′′(ň∗)x2

2N

)
=

∑
y∈[−δ`

√
N/2,δ`

√
N/2]

y∈Z·(`/
√
N)

exp
(
−4y2

)
∼
√
πN

2
.

Proof of Lemma 4.9.6. From Theorems 4.7.1 and 4.5.1, and the definition of t, we have that there
is a polynomial Q(N) such that∑

n 6∈[(ň∗−δ)N,(ň∗+δ)N ]

(
N

n

)
gforest(N,n)gcore(n,m) ≤ Q(N)N !

∑
n∈[0,N ]

n 6∈[n∗−δN,n∗+δN ]

exp(Nt(ň))

Using Lemma 4.9.4 and (4.112), we have that∑
n∈[0,N ]

n 6∈[n∗−δN,n∗+δN ]

exp(Nt(ň)) ≤ N exp(Nt(ň∗)− Ω(Nδ2)),

and Nδ2 = ω(lnN) for δ2 = ω(lnN)/N).
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Glossary for Chapter 4

C(N,M) number of connected 3-uniform hypergraphs on [N ] with M edges

N used for the number of vertices in the graph

M used for the number of edges in the graph

R M −N/2 used as an excess function in the graph

n used for the number of edges in the core

r R/n, scaled R

fk(λ) eλ −
∑k−1

i=0 λ
i/i!

gk(λ) eλ + k

λ(k, c) the unique positive solution to λfk−1(λ)/fk(λ) = c

gcore(n,m) number of (simple) cores with vertex set [n] and m edges

gforest(N,n) number of forest with vertex set [N ] and [n] as its roots

gpre(n,m) number of (simple) pre-kernels with vertex set [n] and m edges that are connected

λ∗∗ unique positive solution to λe2λ + eλ + 1/(f1(λ)g1(λ)) = 3M/N . This is used to
define a point achieving the maximum when combining cores and pre-kernels, p. 58.

ň∗ f2(2λ∗∗)/(f1(λ∗∗)g1(λ∗∗)). This is the point achieving the maximum when combining
cores and pre-kernels, p. 58.

2-edge an edge that contains exactly one vertex of degree 1

3-edge an edge that contains no vertices of degree 1

For the core:

For any symbol y, ŷ = y/n denotes the scaled version of y

hn(y) y ln(yn)− y.

fcore a function used to approximate the exponential part of wcore, p. 72

wcore a function used to count cores, p. 78

n1 used as the number of vertices of degree 1

Dn1 set of all d ∈ (N \ {0, 1})n−n1 with
∑

i di = 3m− n1

λn1 unique positive solution to λf1(λ)/f2(λ) = c2(n1)

n2(n1) n− n1, the number of vertices of degree at least 2.

m3(n1) m− n1, the number of 3-edges
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Q2(n1) 3m− n1, the sum of degrees of vertices of degree at least 2

c2(n1) Q2(n1)/n2(n1), the average degree of the vertices of degree at least 2.

η2(n1) λn1 exp(λn1/f1(λn1)

G(n1,d) random core with n1 vertices of degree 1 and degree sequence d for the vertices of
degree at least 2, p. 73

λ∗ unique positive solution to λf1(λ)g2(λ)/f2(2λ) = 3m/n. This is used to define a point
achieving the maximum for fcore, p. 77

n∗1 3m/ng2(λ∗). This the point achieving the maximum for fcore, p. 72

Y (Y1, . . . , Yn2 , where the Yi’s are independent random variables with truncated Poisson
distribution Po(2, λn̂1)

Σn1 event that a random variable Y satisfies
∑

i Yi = 3m− n1

For the pre-kernel:

For any symbol y, ŷ = y/n denotes the scaled version of y

hn(y) y ln(yn)− y.

fpre a function used to approximate the exponential part of wpre, p. 86

wpre a function used to count pre-kernels, p. 110

n1 used as the number of vertices of degree 1

k0 used as the number of vertices of degree 2 that are in two 2-edges

k1 used as the number of vertices of degree 2 that are in one 2-edge and in one 3-edge

k2 used as the number of vertices of degree 2 that are in two 3-edges

x used as (n1, k0, k1, k2)

D(x) subset of Nn3(x) such that d ∈ D(x) if di ≥ 3 for all i and
∑n3(x)

i=1 di = Q3(x), p. 89

n2(x) k0 + k1 + k2, the number of vertices of degree 2

n3(x) n− n1 − n2(x), the number of vertices of degree at least 3

m2(x) n1, the number of 2-edges in the pre-kernel

m−2 (x) n1 − k0 , the number of 2-edges in the kernel

P2(x) 2m−2 (x), the number of points in 2-edges in the kernel

m3(x) m− n1, the number of 3-edges in the pre-kernel

P3(x) 3m3(x), the number of points in 3-edges in the pre-kernel

Q3(x) 3m− n1 − 2n2(x), the sum of the degrees of the vertices of degree at least 3
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c3(x) Q3(x)/n3(x), the average degree of the vertices of degree at least 3

T3(x) P3(x)−k1(x)− 2k2(x), the number of points in 3-edges that will be matched to points
in vertices of degree at least 3

T2(x) P2(x) − k1(x), the number of points in 2-edges that will be matched to points in
vertices of degree at least 3

λ(x) unique positive solution to λf2(λ)/f3(λ) = c3(x)

η3(x) Q3(x)/n3(x)

λ∗ unique positive solution to λf1(λ)g2(λ)/f2(2λ) = 3m/n. This is used to define a point
achieving the maximum for fpre, p. 77

x∗ This the point achieving the maximum for fpre, p. 87

K random kernel (it receives parameters (V,M3, k1, k2,d)), p. 90

P(x,d) random pre-kernel with parameters x = (n1, k0, k1, k2) and degree sequence d for the
vertices of degree at least 3, p. 90

Y (Y1, . . . , Yn3), where the Yi’s are independent random variables with truncated Poisson
distribution Po(3, λ(x)).

Σ(x) event that a random variable Y satisfies
∑

i Yi = 3m− n1 − 2n2

S∗ψ a set of points ‘close’ to x∗, p. 94

145



Chapter 5

Robustness of random k-cores

We consider the following procedure: for a fixed integer k ≥ 3, given a k-core G with n vertices,
delete an edge e chosen uniformly at random from the edges of G and obtain the k-core of the
new graph G− e. Recall that the k-core of a graph can be obtained by a deletion procedure that
iteratively deletes vertices of degree less than k and stops when the remaining graph has minimum
degree at least k. Note that even a vertex with very high degree can be eventually deleted since a
cascading sequence of deletions may occur. From now on, assume we are obtaining the k-core by
applying this deletion procedure (sometimes we will use variants of this procedure but they are all
essentially the same). The deletion of a single edge can have a catastrophic effect on the k-core.
For example, by deleting any edge of a connected k-regular graph, the resulting graph has an
empty k-core. In fact, for any graph G such that there is Hamilton path P where each vertex but
the first is adjacent to at most k − 1 vertices that appear after it in P and the degree of the first
vertex is k, the deletion of any edge incident with the first vertex in P triggers a cascading effect
that causes the whole k-core to collapse when applying the deletion procedure. If the deletion of a
single random edge has a nonnegligible probability of making the k-core empty or at least much
smaller than the original k-core, then one could say that the graph was weak as a k-core. If, on
the other hand, the number of vertices of the new k-core is close to the original one with high
probability, then one could say that the graph was a robust k-core. So the number of vertices
that are excluded from the original k-core can be seen as a measure of robustness of the graph
as a k-core. In this chapter, we will show how this procedure behaves for random k-cores. In
particular, we are interested in the robustness of the k-core of G(n,m).

It is then relevant to know an estimate for the number of vertices in the k-core of G(n,m).
Let us recapitulate some results that were already mentioned in the Introduction.  Luczak[46, 45]
has proved that the appearance of a nonempty k-core is a remarkable phenomenon: in the
random graph process for G(n,m), the first nonempty k-core is of order at least 0.0002n vertices.
Informally, this means that the k-core is born ‘giant’. Pittel, Spencer and Wormald [54] proved a
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very precise result that determines the threshold ck for the emergence of a giant k-core in G(n,m):
when the average degree 2m/n is below ck − n−1/2−ε for some positive ε < 1/2, the k-core of
G(n,m) is empty a.a.s. and when the average degree is above ck + n−1/2−ε it has order Θ(n)
a.a.s. Not only that, they also give quite precise estimates in the number of vertices in the
k-core throughout the whole graph process. After this threshold result, many proofs were given
for the emergence of a giant k-core in graphs and hypergraphs, using a variety of techniques;
see [20, 28, 51, 17, 40, 35, 36, 59]. We show that, if the average degree is above ck +ε for a positive
constant ε, the k-core is quite robust: the number of vertex deletions triggered by the deletion
of a single random edge is bounded in probability (that is, for any h(n) → ∞, however slowly,
the probability that more than h(n) vertices are deleted goes to zero). We actually obtain more
general results, which we describe next.

We consider k-cores chosen uniformly at random from the k-cores with vertex set [n] and m
edges. As we have already mentioned, we use a deletion procedure to find the k-core of a graph.
We analyse the number the vertices deleted when this procedure is applied to G− e, where G is a
random k-core with given number of vertices and edges and e is an edge chosen u.a.r. in E(G).
We show that, if the average degree c = 2m/n of G tends to k, the k-core of G− e is empty a.a.s.
An intuitive reason for why this happens is the following. As mentioned before, for any k-regular
connected graph the graph obtained by deleting any single edge has an empty k-core. Thus, if c is
exactly k, that is G is k-regular, the deletion of any edge makes the deletion procedure delete
the whole connected component that contained that edge. Moreover, the k-core G is k-connected
a.a.s., and so G− e has an empty k-core a.a.s. It is then reasonable to expect that, when c is very
close to k, the k-core of G− e is very small or even empty. We can conclude that the k-core of
G− e is empty for c→ k, because we can show that a.a.s. it should have less than γn vertices for
a constant γ (which we can choose to be as small as we want) and one can deduce from a result
by Janson and Luczak [36] that, there exists a constant γ0 > 0 such that, a.a.s., either the k-core
of G− e has at least γ0n vertices or it is empty. This is similar to the aforementioned result by
 Luczak that says that, a.a.s., either the k-core of G(n,m) has at least 0.0002n vertices or it is
empty.

Next we consider the case when the average degree c of G is greater than k + ε. We define a
constant c′k > k and analyse the behaviour of the deletion procedure when the average degree
c is below and when it is above c′k. For bounded c > c′k + ψ(n) with ψ = ω(n−1/4), we have
that, for any h(n) = ω(ψ(n)−1), the probability that more than h(n) vertices are deleted goes
to zero. Roughly speaking, this means that G is quite robust as a k-core. In the intermediate
case k + ε < c < c′k − ε, all vertices are deleted with probability bounded away from zero. Since
c > k + ε, the deletion procedure has a nonneglible probability of stopping without deleting any
vertices at all and so it is not possible to determine the outcome of the deletion procedure a.a.s.
Nonetheless, we also prove that, for any h(n)→∞, a.a.s. either less than h(n) vertices are deleted
or the whole k-core collapses.

For the k-core of G(n,m), the relation between the threshold ck for the appearance of the
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k-core and the constant c′k we defined plays an important role. For any constant ε > 0, if
c > ck + n−1/2+ε, the average degree of the k-core of G is asymptotic to a certain increasing
function of c with probability tending to 1. The constant c′k is actually defined as the value of
this function at the threshold ck. This implies that, if the average degree of G(n,m) is above
ck + ω(n−1/4), the average degree of its k-core is above c′k a.a.s. Therefore, using our result for
random k-cores with average degree c′k + ω(n−1/4), we can deduce that, if the average degree of
G(n,m) is ck + φ(n) with φ(n) = ω(n−1/4), then, for any function h(n) = ω(φ(n)−1), less than
h(n) vertices are deleted a.a.s.

5.1 Main results

Let Gk = Gk(n,m) be a graph sampled uniformly at random from the (simple) k-cores with vertex
set [n] and m = m(n) edges. For any graph H, let K(H) denote the k-core of H and let W (H)
be the random variable |V (H)| − |V (K(H − e))|, where e is an edge chosen uniformly at random
from the edges of H. Note that |V (H)| − |V (K(H − e))| is the number of vertices we delete from
H − e to obtain its k-core.

Recall that, for every integer k ≥ 0, fk(λ) := eλ −
∑k−1

i=0 λ
i/i!. For every integer k ≥ 1, let

hk(µ) =
eµµ

fk−1(µ)
.

For every integer k ≥ 3, let
ck = inf{hk(µ) : µ > 0} (5.1)

and let
µk,ck be the unique positive solution of ck = hk(µ). (5.2)

We discuss the existence of µk,ck later. Let

c′k =
µk,ckfk−1(µk,ck)

fk(µk,ck)
. (5.3)

Our main result describes the behaviour of W (Gk(n,m)) according to the range of m. We
remark that W (Gk(n,m)) is a random variable in the uniform probability space with ground
set {(G, e) : G ∈ G, e ∈ E(G)}, where G is the set of all k-cores with vertex set [n] and m edges.
One consequence of working with this probability space is that proving that an event holds with
probability bounded away from zero in it still leaves the possibility that, in a non-negligible
proportion of graphs in G, the event does not hold.

Theorem 5.1.1. Let k ≥ 3 be a fixed integer. Let m = m(n) and c = 2m/n. Then the following
hold.
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(i) If c ≥ k and c→ k, then W (Gk(n,m)) = n a.a.s.

(ii) Let ε > 0 be a fixed real. Suppose that k + ε ≤ c ≤ c′k − ε. For any function h(n) → ∞,
we have that a.a.s. W (Gk(n,m)) ≤ h(n) or W (Gk(n,m)) = n. Moreover, W (Gk(n,m)) = n
with probability bounded away from zero.

(iii) Let ψ(n) = ω(n−1/4) be a positive function and let C0 be a constant. Suppose that
c′k+ψ(n) ≤ c ≤ C0. For every h(n) = ω(ψ(n)−1), we have that P(W (Gk(n,m)) ≥ h(n))→ 0.

We remark that there are some known results about the k-core of random graphs with given
degree sequence under some constraints on the degree sequences (see [35, 20, 28]). Since the degree
sequence of a graph G and the degree sequence of G− e for any edge e ∈ E(G) are very similar, it
is intuitive that one can draw some conclusions about W (Gk(n,m)) by using these results. Indeed,
in the case c > ck + ε is bounded, one can use [35] to conclude that W (Gk(n,m)) = o(n) a.a.s.
We were not able to derive results for the cases (i) and (ii) directly from known results about the
k-core of random graphs with given degree sequence. These results classify the degree sequences
and provide results according to such classification. The k-core of Gk(n,m) is the whole graph
while, according to our results, the k-core of Gk(n,m)− e can be empty in cases (i) and (ii) with
non-negligible probability. Since the deletion of a single edge has very little effect in the degree
sequence of the graph, the existing results we mentioned cannot apply to these cases since they
do not draw different conclusions for two almost identical degree sequences.

We apply Theorem 5.1.1 to study the robustness of the k-core of G(n,m), the random graph
with uniform distribution on all graphs with vertex set [n] and m edges.

Corollary 5.1.2. Let k ≥ 3 be a fixed integer. Let m = m(n) and suppose that c = 2m/n =
ck + ψ(n) ≥ ck + n−δ and c ≤ C0, where δ is a constant in (0, 1/4) and C0 is a constant. Then,
for every h(n) = ω(ψ(n)−1), we have that P(W

(
K
(
G(n,m)

))
≥ h(n))→ 0.

The proof of Theorem 5.1.1(iii) has a simple strategy. We define a deletion procedure to obtain
the k-core of a random multigraph with minimum degree at least k after deleting one random
edge. We then define a branching process and couple it with the deletion procedure in a way
that the number of particles alive in the branching process is an upper bound for the number
of edges marked to be deleted in the deletion procedure. We show that the branching process
faces extinction in at most h(n) steps a.a.s., which implies that the deletion procedure stops in at
most h(n) steps a.a.s. This implies that the number of deleted vertices is at most h(n) a.a.s. We
then use the well-known fact (Theorem 2.2.2) that the probability that the random multigraph
is simple is Ω(1) and so the number of vertices that have to be deleted from the random simple
k-core is also at most h(n) a.a.s.

We now describe the strategy for the proofs of Theorems 5.1.1(i) and (ii). First we define a
random walk and couple it with the deletion procedure for a random multigraph in a way that the
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position of the walk is always bounded from above by the number of endpoints of edges marked to
be deleted. The coupling holds for at least Θ(n) steps. We then show that a.a.s. the random walk
either reaches zero in at most h(n) steps or it remains in the positive axis for at least Θ(n) steps.
The latter holds with probability bounded away from 0 for c ∈ (k, c′k) bounded away from the ends
of this interval, and with probability going to 1 for c→ k when h(n) goes to infinity sufficiently
slowly. We can then conclude that a.a.s. the deletion procedure for the random multigraph either
deletes at most h(n) vertices or it deletes at least Θ(n) vertices, with the latter holding with
probability bounded away from 0 for k ≤ c ≤ c′k − ε (and with probability going to one in the
case c→ k). Since the probability that the random multigraph is simple is Ω(1), the same result
can be deduced for the random simple k-core except for the part that states that the number of
vertices deleted is Θ(n) with probability bounded away from zero. To deal with this, we show
how to couple the deletion process of the random multigraph and the random simple k-core for
h(n) steps, where h(n) goes to infinity sufficiently slowly.

We then use the differential equation method as described in Section 2.9 to show that,
conditioning upon deleting at least Θ(n) vertices, the deletion procedure continues until we have
only γn vertices a.a.s., where we can choose the constant γ > 0 to be arbitrarily small. We finish
the proof by applying a result by Janson and Luczak [35] from which we can deduce that for a
small enough γ > 0 the k-core should either be empty or have more than γn vertices a.a.s.

The differential equations related to deletion procedures for finding the k-cores of hypergraphs
are strongly related to those for graphs (see, e.g. [17]). For this reason, we expect that the
techniques we used can be extended to analyse robustness aspects of k-cores in hypergraphs.

This chapter is organized as follows. In Section 5.2, we define a deletion procedure for finding
the k-core of a random multigraph G − e and random walks that approximate the behaviour
of the deletion procedure. In Section 5.3, we prove Theorem 5.1.1(iii) and Corollary 5.1.2. In
Section 5.4, we prove an intermediate result for the cases in (i) and (ii) in Theorem 5.1.1: we
show that, for c ≤ c′k − ε and any h(n)→∞, the k-core of a random multigraph G− e either has
n−Ω(n) vertices or it has at least n− h(n) vertices a.a.s., and, for c→ k, it has n−Ω(n) vertices
a.a.s. In Section 5.5, we prove Theorem 5.1.1(i) and (ii), except for the claim in part (ii) that says
that W (Gk(n,m)) = n with probability bounded away from zero, which is handled in Section 5.6.

5.2 Random walks and a deletion procedure

In this section, we will describe a deletion procedure for finding the k-core of a random multigraph
after the deletion of a random edge and we will define random walks that will help us to analyse
this procedure.

We will use the allocation model Gmulti
k (n,m) restricted to k-cores as described in Section 2.2.

As we mentioned before in Section 2.2, by conditioning Gmulti
k (n,m) to be simple, we obtain a
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uniform probability space on k-cores with vertex set [n] and m edges. That is, Gk(n,m) has the
same distribution as Gmulti

k (n,m) conditioned upon simple graphs.

Let Dk(n,m) be the set of d ∈ Nn with
∑n

i=1 di = 2m and di ≥ k for all i ∈ [n]. Recall that
Gmulti(d) denotes the graph generated using the pairing model and degree sequence d, which we
have introduced in Section 2.2. We recall a few properties of Gmulti(d) that we have mentioned in
Section 2.2. The random graph Gmulti

k (n,m) conditioned upon having degree sequence d has the
same distribution as Gmulti(d). By Lemma 2.10.2, we have that the degree sequence of Gmulti

k (n,m)
has the same distribution as Y = (Y1, . . . , Yn) where the Yi’s are independent truncated Poisson
random variables with parameters (k, λ) conditioned upon the event Σ that

∑n
i=1 Yi = 2m. For

more information on truncated Poisson random variables, see Section 2.10.

For every multigraph H, let d(H) denote the degree sequence of H. For any d = (d1, . . . , dn) ∈
Nn, let Dj(d) be the number of occurrences of j in d and let η(d) =

∑n
i=1 di(di − 1)/(2m).

5.2.1 A deletion procedure

In this section, we describe a deletion procedure for finding the k-core of the random multigraph
Gmulti
k (d) − e, where e is an edge chosen u.a.r. from the edges of Gmulti

k (d). We will sample
Gmulti
k (d) using the pairing model by discovering one edge at a time. We start by choosing e by

picking two points uniformly at random from the set of all points.

Deletion procedure (d)

• Partition [2m] into n bins S1, . . . , Sn such that |Si| = di for every 1 ≤ i ≤ n.

• Iteration 0: choose e by picking distinct points u and v uniformly at random from [2m].
Delete u and v and mark all points in bins of size less than k.

• Loop: while there is a marked undeleted point, choose one such point u u.a.r. and find the
other end v of the edge incident to u. Delete u and v. If v was in a bin of size exactly k
(now of size k − 1 because we deleted v), mark all the other points in the bin.

After the deletion procedure is over, the k-core can be obtained by adding a random matching
uniformly at random on the undeleted points. Let Z0(d) denote the number of marked points
after the deletion of the edge e chosen in Iteration 0. Note that Z0(d) ∈ {0, k − 2, k − 1, 2(k − 1)}.
The case Z0(d) = k − 2 is very uncommon since it means the edge e has both ends in the same
bin and such bin has size k.

Let Yj(d) be the number of undeleted marked points after the j-th iteration of the loop (and
Y0(d) = Z0(d)). The procedure stops when Yj(d) = 0. Let Zj(d) be the number of points that
are marked in the j-th iteration of the loop.
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We mark new points in an iteration of the loop if v was in a bin of size k. The probability
that this happens (denoted by pj(d)) is the ratio of the number of unmarked points in bins of
(current) size k and the number of undeleted points other than u. If v is also a marked point,
then no new points will be marked and v is deleted. In this case, Zj(d) = −1 and the probability
that this happens (denoted by p′j(d)) is the ratio of the marked undeleted points other than u
and the number of undeleted points other than u. Thus, in the j-th iteration of the loop,

Zj(d) =


k − 1, with probability pj(d);

−1, with probability p′j(d);

0, otherwise.

The probabilities of pj(d) and p′j(d) are analysed later. We have that

W (Gmulti
k (d)) ≥

∑
j≥0

Zj(d)

k − 1

and the number of edges deleted is the number of steps performed by the deletion procedure.

We have that, in the j-th iteration of the loop,

kDk(d)− (j + 1)(k − 1)

2m− 2j − 1
≤ pj(d) ≤ kDk(d) + jk

2m− 2j − 1
, (5.4)

which implies

pj(d) =
kDk(d)

2m− 2j − 1
+O

(
j

2m− 2j − 1

)
. (5.5)

5.2.2 Random walks

Given c and k, we will define random walks in Z that will help us to study the behaviour of the
deletion procedure as we explained in Section 5.1. Recall that λ(k, c) is the unique positive root
of λfk−1(λ)/fk(λ) = c. For more properties of λ(k, c), see Section 2.10.

Let

q(k, c) =
λ(k, c)k−1

(k − 1)!fk−1(λ(k, c))
. (5.6)

Let Z(k, c) be a random variable such that

Z(k, c) =

{
k − 1, with probability q(k, c);

0, otherwise.
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The variable Z0 is set to be equal to Z0(d). Let Y0 = Z0. For j > 0, let Yj = Yj−1 +Zj − 1 where
Zj has same distribution as Z(k, c) and the variable Zj is independent from Z0, Z1, . . . , Zj−1.
Thus, we defined a random walk such that the position in iteration j is Yj and the drift is given by
Zj − 1. Similarly, for ξ = ξ(n) ≥ 0 and ξ ≤ 1− q(k, c), define the random variable Z+(k, c, ξ) by

Z+(k, c, ξ) =

{
k − 1, with probability q(k, c) + ξ;

0, otherwise.

The variable Z+
0 is set to be equal to Z0(d). Let Y +

0 = Z+
0 . For j > 0, let Y +

j = Y +
j−1+Z+

j −1 where

Z+
j has same distribution as Z+(k, c, ξ) and the variable Z+

j is independent from Z+
0 , Z

+
1 , . . . , Z

+
j−1.

Note that (Yj)j∈N and (Y +
j )j∈N are actually branching processes.

For ξ = ξ(n) ≥ 0 and ξ ≤ q(k, c), define the random variable Z−(k, c, ξ) by

Z−(k, c, ξ) =


k − 1, with probability q(k, c)− ξ;
−1, with probability ξ;

0, otherwise.

The variable Z−0 is set to be equal to Z0(d). Let Y −0 = Z−0 . For j > 0, let Y −j = Y −j−1+Z−j −1 where

Z−j has same distribution as Z−(k, c, ξ) and the variable Z−j is independent from Z−0 , Z
−
1 , . . . , Z

−
j−1.

We say that Yj is the number of particles alive in iteration j and that Zj is the number of
particles born in iteration j (and similarly for Y +

j , Z+
j , and Y −j , Z−j ).

The random walk given by Z+(k, c, ξ) is going to be used to bound the number of marked
points in the deletion process by above, while the random walk given by Z−(k, c, ξ) will bound it
from below. Here we will prove some properties of these random walks.

Recall that hk(µ) = µeµ/fk−1(µ) and ck = inf{hk(µ) : µ > 0} = hk(µk,ck). Here we justify
why the infimum is reached by a unique µ.

Lemma 5.2.1. The infimum of {hk(µ) : µ > 0} is reached by a unique positive µ that satisfies

µk−1

(k − 2)!
= fk−1(µ). (5.7)

Moreover, hk(µ) = c has exactly two positive solutions when c > ck.

Proof. It is easy to see that hk is differentiable and its first derivative is

eµ

fk−1(µ)

(
1 + µ− µfk−2(µ)

fk−1(µ)

)
. (5.8)
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When µ→ 0 and k ≥ 3, we have that

hk(µ) =
µeµ

fk−1(µ)
=

µ

µk−1/(k − 1)!
(1 +O(µ)) =

(k − 1)!

µk−2
(1 +O(µ)),

which goes to ∞ as µ goes to 0. When µ→∞, using eµ ≥ fk−1(µ),

hk(µ) =
µeµ

fk−1(µ)
≥ µ,

which goes to ∞ as µ goes to ∞. Thus, it suffices to show that there is a unique µ such that (5.8)
is zero. Using the fact that fk−2(µ) = fk−1(µ) + µk−2/(k − 2)!, we have that

eµ

fk−1(µ)

(
1 + µ− µfk−2(µ)

fk−1(µ)

)
=

eµ

fk−1(µ)

(
1− µk−1

(k − 2)!fk−1(µ)

)
and so the first derivative is 0 if and only if

µk−1

(k − 2)!
= fk−1(µ). (5.9)

Moreover, f ′`(µ) = f`−1(µ) > 0 for µ > 0 and any integer `. Thus, the functions on both sides
of (5.9) are convex and increasing for µ > 0 and so (5.9) has a unique solution. This implies that
the equation hk(µ) = c has exactly one positive solution for c = ck and exactly two solutions when
c > ck.

In view of Lemma 5.2.1, define µk,c as the largest solution of hk(µ) = c.

Lemma 5.2.2. The following hold:

(i) E (Z(k, c)) is a strictly decreasing function of c for c > k, and E (Z(k, c′k)) = 1.

(ii) For any ε > 0 with c′k−ε > k, there exists a positive constant α such that E (Z(k, c′k − ε)) >
1 + α.

(iii) Let C0 be a nonnegative integer. There exists a positive constant β such that, for any
nonnegative function ψ(n) ≤ C0, we have that E (Z(k, c′k + ψ(n))) ≤ 1− βψ(n).

Proof. Let g(c) = E (Z(k, c)). Note that g(c) = (k − 1)q(k, c) by the definition of Z(k, c). By the
definition of c′k in (5.3), we have that λ(k, c′k) = µk,ck and so

g(c′k) = (k − 1)q(k, c′k) =
λ(k, c′k)

(k − 2)!fk−1(λ(k, c′k))
=

µk,ck
(k − 2)!fk−1(µk,ck)

= 1,
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since (5.7) holds for µ = µk,ck .

We have that λ(k, c) is a strictly increasing function of c and vice-versa by Lemma 2.10.4. If
c > k, then λ(k, c) > 0. Thus, by considering c = c(λ) = λfk−1(λ)/fk(λ) and differentiating with
respect to λ, we get

d

dλ
q(k, c) =

1

(k − 1)!

(
(k − 1)λk−2

fk−1(λ)
− λk−2fk−2(λ)

fk−1(λ)2

)
=

λk−2

(k − 1)!fk−1(λ)

(
k − 1− λfk−2(λ)

fk−1(λ)

)
< 0

since λfk−2(λ)/fk−1(λ) > k − 1 for λ > 0 (see Lemma 2.10.4). Thus, g(c) is strictly decreasing
for c > k. This finishes the proof of (i).

We now prove (ii) and (iii). By Lemma 2.10.4, for ε′ > 0 sufficiently small we have that
k < c(ε′) < k+ ε. It is easy to see that c(λ) is a continuously differentiable function on λ ∈ [ε′,∞)
with ε′ > 0. Moreover, as already mentioned, c(λ) is a strictly increasing function of λ. By
the Inverse Function Theorem, this implies that λ(k, c) is a continuously differentiable function
on c ∈ [c(ε′), C0] and so g(c) is a continuously differentiable function on c. Thus, the infimum
inf{g′(c) : c(ε′) ≤ c ≤ c′k} and the supremum sup{g′(c) : c′k ≤ c ≤ C0} are both achieved and are
both negative constants since g(c) is strictly decreasing. By the Mean Value Theorem, there are
positive constants α (depending on ε) and β (depending on C0) such that g(c) ≥ 1 + α|c− c′k| for
c(ε′) < c < c′k and g(c) ≤ 1− β|c− c′k| for c′k < c < C0.

Lemma 5.2.3. Let k, c(n), ξ(n) be such that E (Z−(k, c, ξ)) > 1 + ε, for some constant ε > 0.
Then P(Y −j > 0, ∀j ≥ 0 |Z−0 > 0) is bounded away from 0, and, for any function h(n)→∞,

P
(
Y −j > 0 ∀j ≥ h(n)

)
= 1 + o(1).

Proof. The first part follows from the fact that (Y −j )j≥0 is a random walk in R with positive
expected drift (see e.g. [27, p. 366]).

For the rest of the proof the probabilities are always conditioned upon Z−0 > 0. Note that
Z−j are independent random variables with range [−1, k − 1]. Thus, by Hoeffding’s inequality

(Theorem 2.3.1), since Y −j = Z−0 +
∑j

i=1(Z−i − 1),

P
(
Y −j < Z−0 + (ε− ε′)j

)
≤ exp

(
− ε′2j

(k + 1)2

)
, (5.10)

where ε′ ∈ (0, ε). For each i ∈ N, let Ai denote the event that Y −h+it > (ε− ε′)(h+ it) and let Ai
denote its complement. For j = h(n) and i ∈ N we have that (5.10) implies

P(Ai) ≤ exp

(
−ε
′2(h+ it)

(k + 1)2

)
. (5.11)
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Let t(n) be a function such that t(n)→∞ and t(n) < (ε− ε′)h(n)/2. Since Z−j ≥ −1, we have

that Y −j′ > 0 for all j′ ∈ [h(n) + it(n), h(n) + (i+ 1)t(n)] conditioned upon the event Ai. Thus,

P
(
Y −j > 0 ∀j ≥ h(n)

)
= 1− P

(
Y −j ≤ 0 for some j ≥ h(n)

)
≥ 1−

∑
i≥0

P
(
Y −j ≤ 0 for some j ∈ [h+ it, h+ (i+ 1)t]

∣∣∣Ai)P(Ai)−∑
i≥0

P(Ai)

= 1−
∑
i≥0

P(Ai) ≥ 1−
∑
i=0

exp

(
−ε
′2(h+ it)

(k + 1)2

)
by (5.11)

= 1− exp

(
− ε′2h

(k + 1)2

)(
1− exp

(
ε′2t

(k + 1)2

))−1

= 1 + o(1).

5.3 The case c > c′k + ω(n−1/4)

In this section, we will prove that the random k-core of Gk(n,m)−e with c = 2m/n > c′k+ω(n−1/4)
(and bounded) has size ‘close’ to n. More precisely, we prove Theorem 5.1.1(iii). We start by
proving a version of Theorem 5.1.1(iii) for random multigraphs with given degree sequence.

Theorem 5.3.1. Let ψ(n) = ω(n−1/4) be a positive function and let C0 be a constant. Suppose
that m = m(n) is such that c = 2m/n satisfies c′k + ψ(n) ≤ c ≤ C0. Let d ∈ Dk(n,m) be
such that |Dk(d) − E (Dk(Y))| ≤ nφ(n) for φ(n) = o(ψ(n)), where Y = (Y1, . . . , Yn) and the
Yi’s are independent truncated Poisson random variables with parameters (k, λ(k, c)). For every
h(n) = ω(ψ(n)−1), we have that P(W (Gmulti(d)) ≥ h(n)) = o(1).

Using Theorem 5.3.1, we can deduce a result about multigraphs with given number of vertices
and edges, which is then used to prove Theorem 5.1.1(iii).

Corollary 5.3.2. Let ψ(n) = ω(n−1/4) be a positive function and let C0 be a constant. Suppose
that c = 2m/n is such that c′k + ψ(n) ≤ c ≤ C0. For every h(n) = ω(ψ(n)−1), we have that
P(W (Gmulti

k (n,m)) ≥ h(n)) = o(1).

Proof of Theorem 5.3.1. We will choose ξ big enough so that Zj(d) is stochastically bounded from
above by Z+

j for j ≤ t(n) steps, where we choose t(n) later. That is, we will couple (Zj(d))j=0,...,t

and (Z+
j )j=0,...,t so that Zj(d) ≤ Z+

j for j ≤ t(n).

For the first step we set Z+
0 = Z0(d). To couple Zj(d) and Z+

j , we will show that one can
choose ξ > 0 so that for j ≤ t(n),

P(Z+
j = k − 1) = q(k, c) + ξ > pj(d) = P(Zj(d) = k − 1). (5.12)
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Then one way of coupling Zj(d) and Z+
j would be to use a random variable X that has uniform

distribution in [0, 1] and set

• Z+
j = Zj(d) = k − 1 if X ∈ [0, pj(d)];

• Z+
j = Zj(d) = 0 if X ∈ (pj(d), pj(d) + 1− q(k, c)− ξ];

• Z+
j = k − 1 if X ∈ (pj(d) + 1− q(k, c)− ξ, 1];

• Zj(d) = −1 if X ∈ (pj(d) + 1− q(k, c)− ξ, pj(d) + 1− q(k, c)− ξ + p′j(d)];

• Zj(d) = 0 if X ∈ (pj(d) + 1− q(k, c)− ξ + p′j(d), 1].

Recall we start the deletion process with n bins with di points inside each bin i. Let p denote
the initial ratio between the number of points in bins of size k and the total number of points.
Since |Dk(d) − E (Dk(Y))| ≤ nφ(n) for φ(n) = o(ψ(n)), we have that, for some function φ1(n)
such that φ1(n) = O(φ(n)),

p =
kDk(d)

2m
=
kE (Dk(Y))

2m
+ φ1 = k

λ(k, c)k

k!fk(λ(k, c))

n

2m
+ φ1

= k
λ(k, c)k

k!fk(λ(k, c))

fk(λ(k, c))

λ(k, c)fk−1(λ(k, c))
+ φ1 =

λ(k, c)k−1

(k − 1)!fk−1(λ(k, c))
+ φ1

= q(k, c) + φ1.

(5.13)

Choose t(n) = ψ(n)−1nα, where α is constant in (0, 1/2). By (5.5),

pj(d) ≤ kDk(d)

2m

(
1 +O

(
j

n

))
+O

(
j

2m− 2j

)
= p

(
1 +O

(
j

n

))
+O

(
j

2m− 2j

)
.

Since t(n) = ψ(n)−1nα with α ∈ (0, 1/2) and ψ(n)−1 = o(n1/4), we have that t(n) = o(n3/4).
Together with the fact that 2m ≥ kn, this implies that

pj(d) = p

(
1 +O

(
j

n

))
+O

(
j

2m− 2j

)
= p+O

(
t

n

)
. (5.14)

Moreover, since α < 1/2 and ψ(n) = ω(n−1/4),

ψ2 = ω
(
n−1/2

)
= ω

(
nα−1

)
= ω

(
tψ

n

)
and so t/n = o(ψ), which implies

pj(d) = p+ o (ψ) (5.15)
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by (5.14). Thus, by (5.13) and (5.15),

pj(d) = q(k, c) + o(ψ) +O(φ) = q(k, c) + o(ψ),

So we can choose ξ = o(ψ) satisfying (5.12). Note that we also need to choose ξ so that
1 − q(k, c) − ξ > 0. Lemma 5.2.2 implies that q(k, c) ≤ 1/(k − 1) and so any ξ < 1 − 1/(k − 1)
satisfies 1− q(k, c)− ξ > 0.

We can assume that h(n) ≤ t(n). We will show that

P
(
Y +
j = 0 for some j ≤ t(n)

)
= 1 + o(1).

That is the random walk (Y +
j )j∈N reaches 0 in at most t(n) steps a.a.s., which implies by our

coupling that so does (Yj(d))j and so W (Gmulti(d)) ≤ t(n) a.a.s., proving Theorem 5.3.1.

We have that E (Z+(k, c, ξ)) ≤ 1−βψ(n)+(k−1)ξ according to Lemma 5.2.2 for some positive
constant β. Since ξ = o(ψ), we have E (Z+(k, c, ξ)) ≤ 1− β′ψ(n) for some positive constant β′.
Thus, we have that

E (Y +
t ) ≤ 2(k − 1)(1− β′ψ(n))t(n) = 2(k − 1) exp

(
t(n) log(1− β′ψ(n))

)
≤ 2(k − 1) exp

(
−t(n)β′ψ(n)

)
= 2(k − 1) exp

(
−β′nα

)
= o(1)

because t(n) = nα/ψ(n) with α > 0. By Markov’s inequality this implies

P
(
Y +
t ≥ 1

)
≤ E

(
Y +
t

)
= o(1),

and we are done.

5.3.1 Proof of Corollary 5.3.2 and Theorem 5.1.1(iii)

In this section we use Theorem 5.3.1, which is a result for the random multigraph Gmulti(d),
to prove a result about the random multigraph Gmulti

k (n,m) which is then used to deduce a
result for the random simple graph Gk(n,m). More specifically, we prove Corollary 5.3.2 and
Theorem 5.1.1(iii).

Let h(n) = ω(ψ(n)−1). Choose φ(n) such that φ(n) = o(ψ(n)) and φ(n) = ω(n−1/4). First
we will prove Corollary 5.3.2. We will show that d(Gmulti

k (n,m)) is in the set of sequences that
satisfy the hypotheses in Theorem 5.3.1 a.a.s. Intuitively, this means that such set of sequences
contains all the ‘typical’ degree sequences for Gmulti

k (n,m). Let D̃k(n,m) be the set of degree
sequences d satisfying |Dk(d)−E (Dk(Y))| ≤ nφ(n). By Corollary 2.10.2, d(Gmulti

k (n,m)) has the
same distribution as Y = (Y1, . . . , Yn) such the Yi’s are independent truncated Poisson random
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variables with parameters (k, λ(k, c)) and conditioned upon the event Σ that
∑

i Yi = 2m. Using
Chebyshev’s inequality,

P
(∣∣Dk(Y)− E (Dk(Y))

∣∣ ≥ nφ(n)
)
≤ n

n2φ(n)2
.

By Theorem 2.10.8, we have that

P(Σ) ∼ 1√
2πnc(1 + ηc − c)

= Ω

(
1√
n

)
since c is bounded and ηc ≤ c by (2.7). Thus,

P
(
d(Gmulti

k (n,m)) 6∈ D̃k(n,m)
)
≤

P
(
Y 6∈ D̃k(n,m)

)
P(Σ)

= O

(
n
√
n

n2φ(n)2

)
= o(1) (5.16)

since φ = ω(n−1/4).

For each n, we have that D̃k(n,m) is a finite set and for every d ∈ D̃k(n,m), we have that
P(W (Gmulti

k (d)) ≥ h(n)) = o(1) by Theorem 5.3.1. Thus, by Lemma 2.7.1, there exists f(n) = o(1)
such that

P
(
W (Gmulti

k (d)) ≥ h(n)
)
≤ f(n), (5.17)

for all d ∈ D̃k(n,m). We have that

P
(
W (Gmulti

k (n,m)) ≥ h(n)
)

≤ P
(
W (Gmulti

k (n,m)) ≥ h(n)
∣∣∣d(Gmulti

k (n,m)) ∈ D̃k(n,m)
)
P
(
d(Gmulti

k (n,m)) ∈ D̃k(n,m)
)

+ P
(
d(Gmulti

k (n,m)) 6∈ D̃k(n,m)
)

= P
(
W (Gmulti

k (n,m)) ≥ h(n)
∣∣∣d(Gmulti

k (n,m)) ∈ D̃k(n,m)
)

+ o(1), by (5.16)

=
∑

d∈D̃k(n,m)

P
(
W (Gmulti

k (d)) ≥ h(n)
)
P
(
d(Gmulti

k (n,m)) = d
∣∣∣d(Gmulti

k (n,m)) ∈ D̃k(n,m)
)

≤
∑

d∈D̃k(n,m)

f(n)P
(
d(Gmulti

k (n,m)) = d
∣∣∣d(Gmulti

k (n,m)) ∈ D̃k(n,m)
)

by (5.17)

≤ f(n) = o(1),

proving Corollary 5.3.2.

We will now prove Theorem 5.1.1(iii). To deduce the result for simple graphs, we impose further
conditions on the degree sequences: let D̂k(n,m) be the set of degree sequences in D̃k(n,m) that
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satisfy the conditions that maxi di ≤ nε for some ε ∈ (0, 0.25) and that |η(d)− E (η(Y))| ≤ φ(n).
We have that, by Lemma 2.10.10, Var(Yi(Yi−1)) = O(1) since c is bounded and so by Chebyshev’s
inequality,

P
(
|η(Y)− E (η(Y))| ≥ φ(n)

)
= O

(
1

nφ(n)2

)
.

By (2.18), we have that

P
(

max
j
Yj ≥ nε

)
= O

(
n exp(−nε/2)

)
.

This implies that P(d(Gmulti
k (n,m)) ∈ D̂k(n,m)) is also 1+o(1). For d ∈ D̂k(n,m), the probability

of that Gmulti
k (d) is simple is already known: by Theorem 2.2.2,

P(Gmulti(d) simple) = exp

(
−η(d)

2
− η(d)2

4
+O

(
maxi d

4
i

n

))
∼ exp

(
−ηc

2
− η2

c

4
+O

(
maxi d

4
i

n

))
,

(5.18)

where ηc = λ(k, c)fk−2(λ(k, c))/fk−1(λ(k, c)). For each n, we have that D̂k(n,m) is a finite set
and so Lemma 2.7.1 and (5.18) imply that there exists g(n) = o(1) such that∣∣∣∣P(Gmulti(d) simple)− exp

(
−ηc

2
− η2

c

4

)∣∣∣∣ ≤ g(n), (5.19)

for all d ∈ D̂k(n,m). Hence,

P
(
Gmulti
k (n,m) is simple

)
≥

∑
d∈D̂k(n,m)

P
(
Gmulti(d) simple

)
P
(
d(Gmulti

k (n,m)) = d
)

∼ exp

(
−ηc

2
− η2

c

4

)
= Ω(1)

and so

P
(
W (Gk(n,m)) ≥ h(n)

)
= P

(
W (Gmulti

k (n,m)) ≥ h(n)
∣∣∣Gmulti

k (n,m) is simple
)

≤
P
(
W (Gmulti

k (n,m)) ≥ h(n)
)

P
(
Gmulti
k (n,m) is simple

)
= o(1).

This finishes the proof of Theorem 5.1.1(iii).
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5.3.2 The k-core of G(n,m)

In this section, we use Theorem 5.1.1(iii) to deduce that the k-core of G(n,m) is ‘robust’. More
specifically, we prove Corollary 5.1.2. We will use a result by Pittel, Spencer and Wormald [54,
Theorem 2]. Although this result does not state the number of edges in the k-core, this can be
obtained from its proof with the main steps in [54, Equations (6.18),(6.34)] and [54, Corollary
1] applied to J1. We state [54, Theorem 2] with the addition of a concentration result for the
number of edges here.

Theorem 5.3.3. Suppose c > ck + n−δ, δ ∈ (0, 1/2) being fixed. Fix σ ∈ (3/4, 1 − δ/2)
and ζ̄ = min{2σ − 3/2, 1/6}. Then with probability ≥ 1 + O(exp(−nζ)) (∀ζ < ζ̄), the ran-
dom graph G(n,m = cn/2) contains a giant k-core with e−µk,cfk(µk,c)n + O(nσ) vertices and
(1/2)µk,ce

−µk,cfk−1(µk,c)n+O(nσ) edges.

We will now prove Corollary 5.1.2.

Proof of Corollary 5.1.2. Recall that c is bounded and c ≥ ck + n−δ, where δ is a constant in
(0, 1/4). So δ = 1/4 − ε, where ε is a constant in (0, 1/4). Let ε′ < ε be a constant such that
ε′ < 1/4− δ/2. Fix σ = 3/4 + ε′. Thus, the average degree of the k-core is

µk,cfk−1(µk,c)

fk(µk,c)

(
1 +O(n−1/4+ε′)

)
.

The proof of Lemma 5.2.1 shows that h′(µk,ck) = 0 and h′(µ) > 0 for µ > µk,ck . Since c is
bounded and by the definition of µk,c, this implies that µk,c = µk,ck + Ω(c− ck). Moreover, the
function x 7→ xfk−1(x)/fk(x) is smooth. Thus, the average degree of the k-core of G(n,m) is
(c′k + Θ(c− ck))(1 +O(n−1/4+ε′)). Since c− c′k > n−δ = n−1/4+ε with ε > ε′, the average degree
of the k-core is c′k + Ω(c− ck). Since c− ck = ω(n−1/4), we can now apply Theorem 5.1.1(iii) to
obtain the desired result.

5.4 The case k ≤ c ≤ c′k − ε: deleting Θ(n) vertices

In this section, we prove that, for c ≤ c′k − ε and any h(n)→∞, the k-core of Gmulti
k (n,m)− e

either has n−Ω(n) vertices or it has at least n− h(n) vertices a.a.s., and it has n−Ω(n) vertices
a.a.s. when c→ k. This is is an intermediate step for the proof of Theorem 5.1.1(i) and (ii).

First we obtain a result for Gmulti(d):

Theorem 5.4.1. Let ε > 0 be a fixed real and let φ(n) = o(1). Suppose that k ≤ c ≤ c′k−ε. Let d
be such that Dk(d) ≥ E (Dk(Y))(1− φ(n)), where Y = (Y1, . . . , Yn) and the Yi’s are independent
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truncated Poisson random variables with parameters (k, λk,c). Then there exists a constant ε′ > 0
(depending on ε) such that, for any function h(n)→∞, we have that a.a.s. W (Gmulti(d)) ≤ h(n)
or W (Gmulti(d)) ≥ ε′n. Moreover, W (Gmulti(d)) ≥ ε′n with probability bounded away from zero.

We can use Theorem 5.4.1 to prove the same result for Gmulti
k (n,m).

Corollary 5.4.2. Let ε > 0 be a fixed real. Suppose that k ≤ c ≤ c′k − ε. Then there exists
a constant ε′ > 0 (depending on ε) such that, for any function h(n) → ∞, we have that a.a.s.
W (Gmulti

k (n,m)) ≤ h(n) or W (Gmulti
k (n,m)) ≥ ε′n. Moreover, W (Gmulti

k (n,m))) ≥ ε′n with
probability bounded away from zero.

For the case c → k, Theorem 5.4.1 implies a stronger result because there is a function
h(n)→∞ such that W (Gmulti

k (n,m)) ≥ h(n) a.a.s. From this one can deduce the following result.

Corollary 5.4.3. There exists a constant ε′ > 0 such that, if c→ k, then W (Gmulti
k (n,m))) ≥ ε′n

a.a.s.

Proof of Theorem 5.4.1. We will choose ξ so that Zj(d) is stochastically bounded from below by
Z−j , where Z−j has the same distribution as Z−(k, c, ξ), and so that E (Z−(k, c, ξ)) is bounded
away from 1 from above.

Let p = kDk(d)/2m. First we compute the probability that Z0(d) > 0. In Iteration 0, the
probability that e has its endpoint u in a of bin of size k (and so Z0(d) ≥ k − 2) is p, since p is
the ratio of points in bins of size k and the total number of points. Similarly to (5.13),

p ≥ q(k, c) +O(φ1)

for some function φ1 = O(φ). Lemma 5.2.2 implies that q(k, c) > 1/(k− 1). Thus, Z0(d) > 0 with
probability bounded away from zero.

For j ≥ 1, by (5.5) we have that

pj(d) ≥ q(k, c) +O(φ1) +O

(
t

2m− 2t

)
,

where φ1 = O(φ). Moreover, for j ≥ 1,

p′j(d) ≤ (k − 1)(j + 1)

2m− 2j − 1
= O

(
j

n

)
.

Lemma 5.2.2 implies that E (Z−(k, c, ξ)) ≥ 1 + α′ − (k − 1)ξ for some constant α′ > 0. Choose a
fixed ξ in (0, α′/(k − 1)). Thus, we have E (Z−(k, c, ξ)) ≥ 1 + α for some α > 0.
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We choose ε′′ > 0 small enough so that, by setting t(n) = ε′′n, we have pj(d) ≥ q(k, c) − ξ
and P(Zj(d) = −1) ≤ ξ for any j ≤ t(n). This is possible since

t

2m− t
=

ε′′n

2m− ε′′n
(5.20)

goes to 0 as ε′′ → 0. Thus, we can couple the processes for at least t(n) = ε′′n steps.

By Lemma 5.2.3, a.a.s. either Y −j ≤ 0 for some j ≤ h(n) or Y −j > 0 for all j. Moreover, the
latter occurs with probability bounded away from zero. Note that this means that

P
(
∃j ∈ [h(n), ε′′n] s.t. Y −j ≤ 0

)
= o(1)

and so, by the coupling,

P
(
∃j ∈ [h(n), ε′′n] s.t. Yj(d) ≤ 0

)
≤ P

(
∃j ∈ [h(n), ε′′n] s.t. Y −j ≤ 0

)
= o(1),

which implies that a.a.s. either Yj(d) = 0 for some j ≤ h(n) or Yj(d) > 0 for 1 ≤ j ≤ ε′′n.
Moreover, since

P(∃j ≤ h(n) s.t. Yj(d) = 0) ≤ P(∃j ≤ h(n) s.t. Y −j = 0)

by the coupling, we have that Yj(d) > 0 for 1 ≤ j ≤ ε′′n with probability bounded away from zero.
Thus, a.a.s. either W (Gmulti(d)) ≤ h(n) + 2 or W (Gmulti

k (n,m)) ≥ ε′′n/(k − 1), and the latter
holds with probability bounded away from zero. This completes the proof of Theorem 5.4.1.

5.4.1 Proof of Corollary 5.4.2 and Corollary 5.4.3

In this section, we use Theorem 5.4.1 to show that, for c ≤ c′k − ε and any h(n)→∞, the k-core
of Gmulti

k (n,m)− e either has n−Ω(n) vertices or it has at least n−h(n) vertices a.a.s., and it has
n−Ω(n) vertices a.a.s. when c→ k. More specifically, we prove Corollary 5.4.2 and Corollary 5.4.3.
The proof of Corollary 5.4.2 is very similar to the proof of Corollary 5.3.2; we include it here for
completeness.

First we prove Corollary 5.4.2. Let D̃k(n,m) be the set of degree sequences d satisfying
Dk(d) ≥ E (Dk(Y))(1− φ(n)), where we choose φ(n) later. Recall that d(Gmulti

k (n,m)) has the
same distribution as Y = (Y1, . . . , Yn) such the Yi’s are independent truncated Poisson random
variables with parameters (k, λ(k, c)) and conditioned upon the event Σ that

∑
i Yi = 2m. Using

Chebyshev’s inequality,

P
(∣∣Dk(Y)− E (Dk(Y))

∣∣ ≥ E (Dk(Y))φ(n)
)
≤ n

E (Dk(Y))2φ(n)2
= O

(
1

nφ(n)2

)
(5.21)

since c is bounded. If r = 2m− kn ≤ n1/4, by Theorem 2.10.8 (Equation (2.15)), we have that

P(Σ) ∼ e−r r
r

r!
= Ω

(
1√
r

)
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by Stirling’s approximation (Lemma 2.5.1). If r ≥ n1/4, Theorem 2.10.8 (Equation (2.14)) implies

P(Σ) ∼ 1√
2πnc(1 + ηc − c)

= Ω

(
1√
n

)
since c is bounded and ηc ≤ c by (2.7). Thus, P(Σ) = Ω(1/

√
n), which, together with (5.21),

implies

P
(
d(Gmulti

k (n,m)) 6∈ D̃k(n,m)(φ)
)
≤

P
(∣∣Dk(Y)− E (Dk(Y))

∣∣ ≥ E (Dk(Y))φ(n)
)

P(Σ)

= O

(
1√

nφ(n)2

) (5.22)

So we choose φ = ω(n−1/4). Let A(d) be the event that W (Gmulti(d)) ≤ h(n) or W (Gmulti(d)) ≥
ε′′n and ε′′ is given by Theorem 5.4.1. Let A(d) denote the complement of A(d). Since D̃k(n,m)
is a finite set for each n and P(A(d)) = o(1) for d ∈ D̃k(n,m), Lemma 2.7.1 implies that there
exists a function f(n) = o(1) such that

P(A(d)) ≤ f(n) (5.23)

for all d ∈ D̃k(n,m). Thus, by (5.23) and (5.21),

P
(
W (Gmulti(d)) ∈ (h(n), ε′′n)

)
≤ P

(
A(d)

∣∣∣d(Gmulti
k (n,m)) ∈ D̃k(n,m)

)
P
(
d(Gmulti

k (n,m)) ∈ D̃k(n,m)
)

+ o(1)

≤ f(n)(1 + o(1)) + o(1) = o(1),

proving Corollary 5.4.2.

Now we prove Corollary 5.4.3. Suppose c→ k. It suffices to prove that Z0(d) > 0 a.a.s. and
that pj(d) ∼ 1 for all j ≤ t(n) for some t(n) that goes to infinity. In the proof of Theorem 5.4.1
we have that

p = q(k, c) +O(φ1)

where φ1 = O(φ) and so

pj(d) = q(k, c) +O(φ1) +O

(
t

2m− t

)
by (5.5). Moreover, P(Z0(d)) > p. Thus, we only need to show that q(k, c)→ 1. Recall that

q(k, c) =
λ(k, c)k−1

(k − 1)!fk−1(λ(k, c))
.
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Since c→ 0, so does λ(k, c). Hence, by computing the series of q(k, c) with λ(k, c)→ 0,

q(k, c) =
λ(k, c)k−1

(k − 1)!
λ(k, c)k−1

(k − 1)!

(1 +O(λ(k, c))) ∼ 1.

Thus, we can choose t(n) going to infinity slowly enough (depending only on φ and c) so that
Zj(d) = k − 1 for all 1 ≤ j ≤ t(n). Corollary 5.4.3 is now straightforward since we just proved
that there exists h(n)→∞ such that W (Gmulti(d)) > h(n) a.a.s.

5.5 The case k ≤ c ≤ c′k − ε

In this section, we will prove that, for c ≤ c′k − ε and any h(n)→∞, the k-core of Gk(n,m)− e
either has at least n− h(n) vertices or it is empty a.a.s. and, for c→ k, it is empty a.a.s. More
specifically, we will prove Theorem 5.1.1(i) and Theorem 5.1.1(ii) except for the claim that
W (Gk(n,m)) = n with probability bounded away from zero, which is handled in Section 5.6. We
use the differential equation method as described in Section 2.9. We will also use some results
from [17] about the system of differential equations for the case c ≥ k + ε.

The strategy of the proof is the following. First we will show that, for a sufficiently small
constant γ > 0, a.a.s. the k-core of Gmulti

k (n,m)− e has either at least γn vertices or it is empty.
This is an application of a result by Janson and Luczak [35, Lemma 5.1] about the size of k-cores
of graphs with given degree sequence. We define a system of differential equations and use
Theorem 2.9.2 to show that the solution to this system of equations approximates the behaviour
of the deletion procedure a.a.s. We show that, if the deletion procedure does not stop in ε′n steps,
then the solution to the system of differential equations implies that it will not stop until the
number of undeleted vertices is less than γn, in which case we will show that it should be empty.

We will use the pairing-allocation model P(M,L, V, k) as described in [17]: given a set M of
points together with a perfect matching EM on M and two disjoint sets L, V let h be chosen
uniformly at random from the functions mapping M to L ∪ V such that |h−1(v)| ≥ k for all
v ∈ V and |h−1(v)| = 1 for all v ∈ L. Let GP = GP(M,L, V, k) be the multigraph obtained
by adding edges joining h(a) and h(b) for every ab ∈ EM and h(a), h(b) ∈ V . Note that
Gmulti
k (n,m) = GP([2m],∅, [n], k) with EM = {{i,m+ i} : i ∈ [m]}.

We say that the vertices in V are heavy vertices and the vertices in L are light vertices. We
will also say that point i ∈M is in v if h(i) = v.

Cain and Wormald [17] analyse a deletion procedure for obtaining the k-core. Here we will use
a similar procedure with the only modifications being in the first step. The procedure receives as
input h : [2m]→ [n] such that |h−1(v)| ≥ k for all v ∈ [n]. We remark that this deletion procedure
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is similar to the one described in Section 5.2.1, but it does not receive the degree sequence as the
input.

Deletion procedure – pairing–allocation (h):

• Let M = [2m], L = ∅ and V = [n].

• Iteration 0: Choose i ∈ [m] uniformly at random. Find v = h(i) and u = h(m+ i) (that is,
the edge to be deleted is e = uv). Delete i and m+ i from M . If u 6= v and |h−1(v)| = k,
then delete v from V , add k−1 new elements to L and redefine the action of h on h−1(v)\{i}
as a bijection to the new elements. Similarly to u, if u 6= v and |h−1(u)| = k, then delete
u from V , add k − 1 new elements to L and redefine the action of h on h−1(u) \ {m+ i}
as a bijection to the new elements. If u = v and |h−1(v)| ≤ k + 1, then delete v from V ,
add |h−1(v)| − 2 new elements to L and redefine the action of h on h−1(v) \ {i,m+ i} as a
bijection to the new elements.

• Loop: While L 6= ∅, choose j ∈ h−1(L) uniformly at random. Delete j and m + j from
M and delete h(j) from L. Find v = h(m + j). If v ∈ L, delete v from L. If v ∈ V and
|h−1(v)| = k, then delete v from V , add k − 1 new elements to L and redefine the action of
h on h−1(v) \ {i} as a bijection to the new elements.

Let h0,M0, L0, V0 be the values of h,M,L, V , resp., after Iteration 0. Let hi,Mi, Li, Vi be the
values of h,M,L, V , resp., after the i-th iteration of the loop. Then the proof of [17, Lemma 6]
gives us the same conclusion as [17, Lemma 6]:

Lemma 5.5.1. Starting with h = P([2m],∅, [n], k) and conditioning upon the values of Mi, Li
and Vi, we have that hi has same distribution as P(Mi, Vi, Li, k).

The following lemma is a simple concentration result for the vertices of degree k in the
pairing-allocation model. It is going to be useful in the analysis of the deletion procedure above.
This lemma can be deduced from [17, Lemma 1].

Lemma 5.5.2. Let M,L and V be disjoint sets with |V | → ∞. Let t := |M |−|L|−k|V |. Suppose
that t→∞ and that there is a constant ε > 0 such that |V | ≥ ε|M |. The number of vertices of
degree k in GP(M,V,L, k) is asymptotic to P(Po(k, λ) = k)|V |, where λ = λ(k, t/|V |).

Proof. Similarly to the allocation model (see Section 2.2), the degree sequence of the heavy vertices
of GP(M,L, V, k) has the distribution Multi≥k(|V |, |M |− |L|). Thus, by Lemma 2.10.1, the degree
sequence of the heavy vertices of GP(M,L, V, k) has the same distribution of Y = (Y1, . . . , Y|V |),
where the Yi’s have are independent random variables with distribution Po(k, λ), conditioned upon
the event Σ that

∑V
i=1 Yi = t. Let Dk be the number of vertices v of degree k in GP . Let Dk(Y)
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denote the number of occurrences of k in Y. Then E (Dk(Y)) = P(Po(k, λ) = k)|V | = Θ(|V |),
since |M |/|V | is bounded. By Theorem 2.3.1,

P
(
|Dk(Y)− E (Dk(Y))| ≥ φ|V |

)
≤ exp(−Ω(φ2|V |)).

By Lemma 2.10.8, P(Σ) = Ω(1/
√
|V |). Thus,

P
(
|Dk(Y)− E (Dk(Y))| ≥ φ|V |

)
≤ O(

√
|V |) exp(−Ω(φ2|V |)),

and so it suffices to choose Φ = ω(1/|V |2−α), for some α > 0.

5.5.1 No small k-cores

In this section, we show that there is a positive constant γ such that the k-core of Gmulti
k (n,m)− e

either has at least γn vertices or it is empty. This is an application of a result by Luczak and
Janson:

Theorem 5.5.3 ([35, Lemma 5.1]). If a degree sequence (dn)n∈N satisfies
∑

i e
αdi ≤ Rn for

constants α and R, then there is a constant γ such that a.a.s. no subgraph of Gmulti(d) with less
than γn vertices has average degree at least k.

Lemma 5.5.4. Let C0 be a constant. Suppose that m = m(n) satisfies kn ≤ 2m ≤ C0n. Then
there exists a constant γ such that a.a.s. the graph obtained from Gmulti

k (n,m) by deleting an
edge chosen uniformly at random either has a k-core of size at least γn or its k-core is empty.

Proof. We will use Theorem 5.5.3. We set α ∈ (0, 1/3) and we will choose R later. Let Ďk(n,m) ⊆
Dk(n,m) be the set of degree sequences d such that

∑
i e
αdi ≤ Rn. Since the degree sequence of

Gmulti
k (n,m)− e is bounded by the degree sequence of Gmulti

k (n,m), it suffices to show that the
degree sequence d = d(Gmulti

k (n,m)) is in Ďk(n,m) a.a.s.

Let Y = (Y1, . . . , Yn) be such that the Yi’s are independent random variables with distribution
Po(k, λk,c). As already mentioned before, d has the same distribution of Y conditioned upon the
event Σ that

∑
i Yi = 2m. By Theorem 2.10.8, we have that, if r = 2m− kn < log n,

P(Σ) =

(
1 +O

(
r5/2

n

))
e−rrr

r!
≥
(

1 +O

(
(log n)5/2

n

))
e−rrr√
2πr

(
r
e

)r ∼ 1√
2πr

= Ω

(
1√

log n

)
,

where we used the fact that r! ≤
√

2πr
(
r
e

)r
. For any r →∞,

P(Σ) =
1 +O(r−1)√

2πnc(1 + ηc − c)
≥ 1 +O(r−1)√

2πnC0
,
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since c ≤ C0 and ηc ≤ c by (2.7). Thus, we conclude that

P(Σ) = Ω

(
1√
n

)
. (5.24)

For J0 big enough (depending only on C0), we have that λ(k,C0)/J0 ≤ e−1, which implies
λ(k, c)/J0 ≤ e−1 since c ≤ C0 and λ(k, c) is an increasing function of c (Lemma 2.10.4). Clearly,∑

j≤J0

eαjDj(Y) ≤ eαJ0n.

Let J1 = J0 + (1 + β) log n with β ∈ (1
2 ,

1
2α − 1). Let p = λ(k, c)J0−1/((J0 − 1)!fk(λ(k, c))). Then

P
(
∃j > J1 with Dj(Y) > 0

)
≤ np

∑
i≥0

1

e(1+β) logn+i
≤ pn−β

1− e−1
= O(n−β).

Using (5.24) and the fact that and β ∈ (1/2, (2α)−1 − 1), we conclude that

P
(

max
i
di > J1

)
= P

(
∃j > J1 with Dj(Y) > 0

∣∣∣Σ) ≤ P
(
∃j > J1 with Dj(Y) > 0

)
P(Σ)

= O
(
n−β
√
n
)

= o(1).

And so ∑
j>J1

eαjDj(Y) = 0 a.a.s.

Now we consider j ∈ (J0, J1]. By Hoeffding’s inequality,

P
(
|Dj(Y)− p(j)n| ≥ a

√
n
)
≤ 2e−2a2

where p(j) = λ(k, c)j/(j!fk(λ(k, c))). Together with (5.24) this implies that

P
(
|Dj(Y)− p(j)n| ≥ a

√
n
∣∣Σ) = O(

√
n)e−a

2
.

Thus,

P
(
|Dj(Y)− p(j)n| ≥ a

√
n for some j ∈ (J0, J1]

)
= (1 + β) log n ·O(

√
n)e−a

2

= O(n−β
′
),
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for a =
√

(1 + β′) log n with β′ > 0. Thus, a.a.s.

J1∑
j=J0+1

eαjDj(Y) ≤ eαJ0
(1+β) logn∑

j=1

eαj
(
p(j)n+ a

√
n
)

≤ eαJ0
(1+β) logn∑

j=1

eαj
(
p

1

ej
n+ a

√
n

)
, by our choice of J0

≤ eαJ0
np (1+β) logn∑

j=1

e−2j/3 + eα(J1−J0)(J1 − J0)a
√
n

 since α < 1/3;

≤ eαJ0
(

p

e2/3(1− e−2/3)
+
n(1+β)α+1/2(log n)3/2

n

√
1 + β′(1 + β)

)
n.

Using 1 + β < (2α)−1 we have that n(1+β)α+1/2 ≤ nα′ for some α′ < 1 and so we can set

R = eαJ0
(

1 +
p

e2/3(1− e−2/3)
+
√

1 + β′(1 + β)

)
.

5.5.2 The case c→ k

In this section, we will prove that, for c→ k, the k-core of Gk(n,m)− e is empty a.a.s., proving
Theorem 5.1.1(i). So suppose that c = 2m/n = k + φ(n), where φ(n) = o(1) and φ(n) ≥ 0. Let
Si denote the number of points in heavy vertices just after the i-th iteration of the loop. Let S0

denote the number of points in heavy vertices after Iteration 0. We will use x as i/n and y(i/n)
to approximate Si/n.

We will use Theorem 2.9.2. Define Dγ = {(x, y) : −γ < 2x < k − γ, γ < y < k + γ}. Note
that Dγ is bounded, connected and open. We choose γ < min{γ0/3, k} so that the k-core cannot
be non-empty and smaller than γ0n a.a.s.(γ0 is given by Lemma 5.5.4). Moreover, we work with
n big enough so that φ(n) < γ. After the first step there are at most 2(k− 1) points in L0 and all
the other vertices in V0 and so S0 ≥ 2m− 2(k − 1). Then it is clear that S0/n ≤ k + φ < k + γ
and S0/n > γ.

Let TD = min{i : (i/n, Si/n) 6∈ D}. Let Wi denote the number of light vertices after iteration
i is performed. We also use the stopping time T = min{i : Wi = 0}. That is, there are no
light vertices to be deleted and the deletion process has actually ended. We need to check the
boundedness hypothesis, trend hypothesis and Lipschitz hypothesis (see Theorems 2.9.1 and 2.9.2).
The boundedness hypothesis is trivially true: |Si − Si+1| ≤ k always.
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Now we check the trend hypothesis. Let f(x, y) = −ky/(k− 2x). Let Hi denote the history of
the process at iteration i ≥ 1. We need to show that ξ1 := |E (Si+1−Si|Hi)− f(i/n, Si/n)| = o(1)
while i < T and i < TD. We have that Si+1 − Si is zero if j is matched to a light vertex, is −1 if
j is matched to a point in a heavy vertex with degree > k and is −k if j is matched to a point in
a heavy vertex with degree exactly k. The probability that j is matched to a point in a heavy
vertex is Si/(2m − 2i − 2). The probability that such a heavy vertex has degree k is at least
1−
∑
{di : di > k}/Si where d is the degree sequence of Gmulti

k (n,m) (we do not sample the degree
sequence, we just decide if the vertex had degree k or not). But, for every degree sequence d such
that

∑n
i=1 di = 2m = kn+ nΦ(n), we have that

∑
{di : di > k} ≤ nφ(n). Moreover, Si ≥ γn for

(i/n, Si/n) ∈ Dγ . Thus, 1−
∑
{di : di > k}/Si ≥ 1− φ(n)/γ = 1− o(1) and so we have that

E (Si+1 − Si|Hi) =
−k|Si|

2m− 2i− 2
(1 + o(1)) = f(i/n, Si/n) + o(1)

and so the trend hypothesis holds. Straightforward computations show that the Lipschitz
hypothesis also holds in Dγ ∩ {(x, y) : x ≥ 0}.

According to [65, Theorem 6.1], y′(x) = f(x, y) has a unique solution in Dγ , say y∗, with
y(0) = k and a unique solution in Dγ , say y∗∗, with y(0) = S0/n. Note that y∗ is a fixed
function while y∗∗ is a random variable because S0 is a random variable. The Lipschitz condition
implies that, for any x with both (z, y∗(z)) and (z, y∗∗(z)) in Dγ for all 0 ≤ z ≤ x, we have
that |y∗(x)− y∗∗(x)| ≤ x|k − S0/n|R =: ξ3, where R is some big constant and so ξ3 = o(1). Let
ξ2 = o(1) and ξ2 > ξ1 and ξ2 > ξ3. By [65, Theorem 6.1], there is a constant C and a function
ξ → 0, such that, a.a.s. at each step i < min{T, nσ} we have that

|Si − ny∗(i/n)| ≤ ξn, (5.25)

where σ denotes the supremum of x such that (z, y∗(z)) and (z, y∗∗(z)) are at `∞-distance at least
Cξ2 of the boundary of Dγ for all 0 ≤ z ≤ x.

It is straightforward to check that

y∗(x) = k

(
k − 2x

k

)k/2
.

Let ε′ be given by Corollary 5.4.3. For ε′ < x < (k − γ)/2, we have that

(k − 2x)− y∗(x) = (k − 2x)

(
1−

(
k − 2x

k

)k/2−1
)
≥ 2γε′

k
.

This implies that, if (5.25) holds at i where ε′n < i < (k−γ)n/2, then Wi = 2m−2i−2−Si = Ω(n).
Thus, if (5.25) holds for some step i ∈ (ε′n, σn] with T > i, then T > i+ 1 because there are still
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Ω(n) points to be deleted. This implies that, conditioning upon T > ε′n, we have that T > σn
a.a.s.

For any constant α ∈ (0, γ), using the fact that ξ3 = o(1), there exists x such that x ≤ σn and
the `∞-distances of (x, y∗(x)) and (x, y∗∗(x)) to the boundary of Dγ are in (Cξ2, α). For such an
x we have T > x a.a.s. because T > σn a.a.s. (conditioning upon T > ε′n). Thus, (5.25) holds
a.a.s. Since x is at `∞-distance at most α of the boundary of Dγ , either 2x ≥ k − γ − α or
y∗(x) ≤ γ + α. We excluded y∗(x) ≥ k + γ − α because y∗(0) = k and y∗ decreases as x increases.
For n sufficiently large so that |ξ(n)| < γ, the equation (5.25) with 2x ≥ k−γ−α or y∗(x) ≤ γ+α
shows that Si ≤ nγ0 a.a.s.

Since T > ε′n a.a.s. by Corollary 5.4.3, the k-core would have to be smaller than γ0n a.a.s. and
so it must be empty a.a.s. by Lemma 5.5.4. We conclude that W (Gmulti

k (n,m)) = n a.a.s. Since
the probability that Gmulti

k (n,m) is simple is Ω(1) (as in (5.18)), we have that W (Gk(n,m)) = n
a.a.s.

5.5.3 The case c ∈ [k + ε, c + k′ − ε]

In this section, we will prove that, for c ≤ c′k − ε and any h(n)→∞, the k-core of Gk(n,m)− e
either has at least n− h(n) vertices or it is empty a.a.s., proving Theorem 5.1.1(ii) except for the
claim that W (Gk(n,m)) = n with probability bounded away from zero, which is addressed in
Section 5.6. Let ε′ be given by Corollary 5.4.2. Assume that c→ C ∈ [k + ε, c+ k′ − ε], where C
is a constant. We will explain later how to drop this assumption.

We use the deletion procedure described in the beginning of the section. For each i, let Si
denote the number of points in heavy vertices right after iteration i, let Ti denote the number of
heavy vertices right after iteration i and let Wi denote the number of points in light vertices right
after iteration i. We will use the Differential Equation Method (Theorem 2.9.2) to approximate
Si and Ti. Note that Wi = 2m− 2i− 2− Si. We will use y(i/n) to approximate Si/n and z(i/n)
to approximate Ti/n.

Let γ be a positive constant with γ < min{1, C − k} to be chosen later. Define

Dγ =
{

(x, y, z) : γ < z < 1 + γ, −γ < x < C − γ, γ < y < C + γ, y > (k + γ)z
}
.

Then Dγ is bounded, connected and open. We have T0 ∈ {n, n− 1, n− 2} and S0 ∈ [2m− 2−
2(k − 1), 2m− 2]. Thus, T0/n = 1 + o(1/n) and S0/n = C + o(1). Then Dγ contains the closure
of the points (0, y, z) such that P(Si = yn and Ti = zn) 6= 0 for some n. Note that y > (k + γ)z
implies that µ := λ(k, y/z) > ε for some constant ε > 0. As we will see later, this will be very
important in the proof. Note that, for the case c→ k one cannot add the condition y > (k + γ)z
to Dγ since this would exclude the initial point from Dγ .
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We use the stopping time T = min{i : Wi = 0} again. We have to check the boundedness
hypothesis, the trend hypothesis and the Lipschitz hypothesis. The boundedness hypothesis is
again easy: |Si+1 − Si| ≤ k and |Ti+1 − Ti| ≤ 1 always.

We now check the trend hypothesis. We remark that the trend hypothesis is exactly like
in [17]. Define

fz(x) = − y

C − 2x

(
1− µz

y

)
and fy(x) = − y

C − 2x

(
k − (k − 1)

µz

y

)
,

where µ = λ(k, y/z). Let Hi denote the history of the process at iteration i ≥ 1. We will show
that |E (Si+1 − Si|Hi)− fy(i/n)| = o(1) and |E (Ti+1 − Ti|Hi)− fz(i/n)| = o(1) while i < T and
i < TD. We have that Si+1 − Si is zero if j is matched to a light vertex, is −1 if j is matched
to a point in a heavy vertex with degree > k and is −k if j is matched to a point in a heavy
vertex with degree exactly k. The probability that j is matched to a point in a heavy vertex
is Si/(2m− 2i− 2). Conditional upon this event, the probability that j is matched to a vertex
of degree k is k/Si times the number of vertices of (current) degree k. By Lemma 5.5.2, the
number of vertices of degree k at step i is asymptotic to Ti · P(Po(k, λ) = k) = Ti · λk/(k!fk(λ)),
where λ := λ(k, Si/Ti). Thus, the probability that j is matched to a point of degree k vertex,
conditioned upon the event that it is matched to a point in a heavy vertex, is asymptotic to

k

Si

Tiλ
k

k!fk(λ)
= 1 +

(k − 1)!fk(λ)Si − Tiλk

(k − 1)!fk(λ)Si

= 1 +
(k − 1)!λfk−1(λ)Ti − Tiλk

(k − 1)!fk(λ)Si
since Si/Ti =

λfk−1(λ)

fk(λ)

= 1 +
((k − 1)!λTi)

(
fk−1(λ)− λk−1/(k − 1)!

)
(k − 1)!fk(λ)Si

= 1− λTi
Si

since fk(λ) = fk−1(λ)− λk−1

(k − 1)!
.

Thus, |E (Si+1 − Si|Hi)− fy(i/n)| = ξy = o(1). Similarly of Ti, we have that |E (Ti+1 − Ti|Hi)−
fz(i/n)| = ξz = o(1). The Lipschitz hypothesis is straightforward to check.

According to [65, Theorem 6.1], the system of differential equations y′(x) = fy(x) and
z′(x) = fz(x) has unique solutions (y∗, z∗) and (y∗∗, z∗∗), with initial conditions y(0) = C and
z(0) = 1, and y(0) = S0/n and z(0) = T0, resp. Note that, as in the case c→ k, we have that (y∗, z∗)
is a pair of fixed functions while (y∗∗, z∗∗) is a random variable since the initial position is random.
The Lipschitz hypothesis implies that, there exists a constant R such that, for any x with both
(x, y∗(x), z∗(x)) and (x, y∗∗(x), z∗∗(x)) in Dγ , we have max{|y∗(x)− y∗∗(x)|, |z∗(x)− z∗∗(x)|} ≤
x|k − S0/n|R =: ξ3 with ξ3 = o(1). Let ξ2 = o(1) be such that ξ2 > max{ξz, ξy, ξ3}. Thus, by [65,
Theorem 6.1], there is a constant C0 and a function ξ = o(1), such that, a.a.s. at each step
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i < min{T, nσ} we have that

max
{∣∣Si − ny∗(i/n)

∣∣, ∣∣Ti − nz∗(i/n)
∣∣} ≤ ξn, (5.26)

where σ denotes the supremum of x such that, for all 0 ≤ x′ ≤ x, we have (x′, y∗(x′), z∗(x′)) and
(x′, y∗∗(x′), z∗∗(x′)) are at `∞-distance at least C0ξ2 of the boundary of Dγ .

In [17], properties of the differential equations system {y′(x) = fy(x), z′(x) = fz(x)} were
proved. Among them is that µ2/(C − 2x) and (zeµ)/fk(µ) are constants as long as C − 2x > 0,
y > 0 and µ > ε for constant ε > 0. The authors of [17] notified us that a small detail was omitted
in their proof: one needs µ′(0) to be not zero. The reason for that is at some point in their proof
they cancel a factor that is zero if and only if µ′(x) = 0. If µ′(0) 6= 0, then µ2/(C−2x) is a nonzero
constant until µ′(x) becomes zero. But in this case it is impossible to µ′(x) to become zero since
µ′(x) is continuous and µ2/(C − 2x) being a constant implies that µ′(x) = α/µ is bounded away
from zero, where α is a nonzero constant.

With initial conditions y(0) = C and z(0) = 1, we get µ2/(C − 2x) = λ(k,C)2/C and
zeµ/fk(µ) = eλ(k,C)/fk(λ(k,C)), which can be used to deduce that

y∗ = (C − 2x)
hk(λ(k,C))

hk(µ)
. (5.27)

For x ≥ ε′/2, since µ2/(C − 2x) = λ(k,C)2/C, we have µ(x) ≤ λk,C
√

1− ε′/C and so
hk(µ) ≥ (1 + ε′′)hk(λk,C), for some ε′′ > 0. Thus, for every x such that ε′ ≤ 2x ≤ C − γ
using (5.27),

C − 2x− y∗ = C − 2x− (C − 2x)
hk(λk,C)

hk(µ)
≥ (C − 2x)

(
1− 1

1 + ε′′

)
≥ γε′′

1 + ε′′
.

This implies that, if (5.25) holds at i with ε′n < 2i < (C−γ)n, then Wi = 2m−2i−2−Si = Ω(n).
Thus, if (5.25) holds for some step i ∈ (ε′n, σn] with T > i, then T > i+ 1 because there are still
Ω(n) points to be deleted. This implies that, conditioning upon T > ε′n, we have that T > σn
a.a.s.

For any constant α ∈ (0, γ), using the fact that ξ3 = o(1), there exists x such that x ≤ σn
and (x, y∗(x), z∗(x)) and (x, y∗∗(x), z∗∗(x)) are at `∞-distance (C0ξ2, α) of the boundary of Dγ .
For such an x we have T > x a.a.s. because T > σn a.a.s. Thus, (5.26) holds a.a.s. Since x is at
`∞-distance at most α of the boundary of Dγ , we have that at least one of the following hold:

(a) z∗(x) ≤ γ + α;

(b) 2x ≥ C − γ − α;
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(c) y∗(x) ≤ γ + α;

(d) There exists (x̂, ŷ, ẑ) such that ŷ
ẑ = k + γ and |y∗(x)− ŷ| ≤ α and |z∗(x)− ẑ| ≤ α.

We excluded y∗(x) ≥ C + γ − α and z∗(x) ≥ 1 + γ − α because y∗(0) = C and z∗(0) = 1 and fy
and fz are decreasing.

Since µ2/(C − 2x) = λ(k,C)2/C, µ decreases as x increases. Since µ(0) = 0, we have that
hk(µ) ≥ hk(λk,C) and so y∗(x) ≤ C − 2x by (5.27). Thus, for 2x ≥ C − γ − α, we have that
y ≤ γ + α, that is (c) holds.

If (a) or (c) holds, then by (5.26), then a.a.s. Si ≤ (γ + αξ)n ≤ 3γn. Now suppose that (d)
holds. Then ∣∣∣∣y∗(x)

z∗(x)
− ŷ

ẑ

∣∣∣∣ ≤ ∣∣∣∣y∗(x)− ŷ
z∗(x)

∣∣∣∣+

∣∣∣∣ ŷẑ
∣∣∣∣∣∣∣∣z∗(x)− ẑ

z∗(x)

∣∣∣∣ ≤ α(k + γ + 1)

γ
.

Thus, using α ≤ γ2, we have that y∗(x)/z∗(x) = k+O(γ) and so µ = O(γ). Using that µ2/(C−2x)
remains as a positive constant during the process, we then have C − 2x = O(γ2), we can then
conclude that the Si = O(γn) a.a.s. Thus, conditioned upon T > ε′n the k-core has at most O(γn)
vertices a.a.s. Let γ0 be the constant given by Lemma 5.5.4. By choosing γ small enough, we
can conclude that, conditioned upon T > ε′n, the k-core has less than γ0n vertices a.a.s. and
which implies, by Lemma 5.5.4, that the k-core must be empty a.a.s. By Corollary 5.4.2, we have
that W (Gmulti

k (n,m)) ≤ h(n) or W (Gmulti
k (n,m)) = n with probability 1 + o(1) conditioned upon

T > ε′n (where the convergence depends on c).

Recall that we assumed c→ C. We show how to drop this assumption here. Let (ci)i∈N such
that every ci ∈ [k+ ε, c+ k′− ε]. Let r(n) be the probability that neither W (Gmulti

k (n,m)) ≤ h(n)
nor W (Gmulti

k (n,m)) = n. Then every subsequence of (ci)i∈N has a subsequence that converges to
some constant C0 and in that subsequence r(n)→ 0. So by the subsubsequence principle r(n)→ 0.
Since the probability that Gmulti

k (n,m) is simple is Ω(1), we have that W (Gk(n,m)) ≤ h(n) or
W (Gk(n,m)) = n a.a.s.

5.6 Deletion procedure for Gk(n,m)

In this section, we show that, for k + ε ≤ c ≤ c′k − ε, there exists a function h(n)→∞ such that
the k-core of Gk(n,m) has fewer than n− h(n) vertices with probability bounded away from zero.
Since we have already proved that, for any function h(n) → ∞, either this k-core has at least
n− h(n) vertices or it is empty, this implies it is empty with probability bounded away from zero.

Lemma 5.6.1. Let ε > 0 be a fixed real. Suppose that c = 2m/n satisfies k + ε ≤ c ≤ c′k − ε.
Then there exists a function h(n)→∞ such that P(W (Gk(n,m)) ≥ h(n)) = Ω(1).
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Together with Section 5.5.3, this lemma implies that P(W (Gk(n,m)) = n) = Ω(1), which
completes the proof of Theorem 5.1.1(ii). We now prove Lemma 5.6.1. We will work with a set of
‘typical’ degree sequences. Let G(d) be chosen uniformly at random from all (simple) k-cores with
degree sequence d. We will define a deletion procedure for finding the k-core of G(d) after the
deletion of a random edge and for finding the k-core of Gmulti(d) after the deletion of a random
edge. In this deletion procedure, in each step a vertex is deleted. We show that we can couple
the deletion procedures for G(d) and Gmulti(d) for t(n) → ∞ steps in such way that the exact
same vertices are involved in each step. Since we already know that, for h(n) going to infinity
sufficiently slowly, we have P(Gmulti(d) ≥ h(n)) = Ω(1) by Theorem 5.4.1 (under some constraints
in the degree sequence), we must have P(Gmulti(d) ≥ h1(n)) = Ω(1) for h1(n) going to infinity
sufficiently slowly (depending on h(n) and t(n)). Using the fact that the set of degree sequences
analysed is a set of ‘typical’ degree sequences, we can easily carry the result over to Gk(n,m).

We start by defining a set of ‘typical’ degree sequences. Let φ(n) = o(1) with φ(n) = ω(n−1/4).
Let Y = (Y1, . . . , Yn) be such that the Yi’s are independent truncated Poisson random variables
with parameters (k, λk,c). Let D̃k(n,m) be the degree sequences d such that |Dk(d)−E (Dk(Y))| ≤
nφ(n) and maxi di ≤ nβ for some β ∈ (0, 0.25) and |η(d) − E (η(Y))| ≤ φ(n). Similarly to the
proof in Section 5.3.1, one can prove that d(Gk(n,m)) ∈ D̃k(n,m) a.a.s. We will show that there
exists h(n)→∞ such that

P
(
W (G(d)) ≥ h(n)

)
= Ω(1), (5.28)

for d ∈ D̃k(n,m). Since D̃k(n,m) is a finite set for each n, by Lemma 2.7.2, there exists a constant
α > 0 such that P

(
W (G(d)) ≥ h(n)

)
> α for sufficiently large n. Thus, together with the fact

that d(Gk(n,m)) ∈ D̃k(n,m) a.a.s., this implies that

P
(
W (Gk(n,m)) ≥ h(n)

)
≥ P(d(Gk(n,m)) ∈ D̃k(n,m))α ∼ α,

which implies Lemma 5.6.1. We will now prove (5.28).

As mentioned before, we will couple deletion algorithms for G(d) and Gmulti(d) so that they
coincide for t(n)→∞ steps, for d ∈ D̃k(n,m). We use a deletion algorithm that is essentially the
same as the one we used in the other sections. The only difference is that we explore a whole
vertex at a time (instead of an edge at a time) and mark the vertices that have to be deleted.

Deletion procedure by vertex:

• Iteration 0: Choose an edge uv uniformly at random, delete uv and mark the vertices with
degree less than k.

• Loop: While there is an undeleted marked vertex, say w, find its neighbours, delete w and
the edges incident to it, and then mark all neighbours of w that now have degree less than k.
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If we can do such a coupling for t(n)→∞ iterations of the loop, then we can choose h(n)→∞
such h(n) ≤ min{t(n), ε′n} with ε′ as in Theorem 5.4.1 so that P(W (Gmulti(d)) ≥ h(n)) =
Ω(1). This would imply that the deletion algorithm did not stop for at least h(n) steps and so
P(W (G(d)) ≥ h(n)) ≥ Ω(1).

In the rest of this section, we show that there exists t(n)→∞ such that we can couple the
deletion algorithms for G(d) and Gmulti(d) so that they coincide for t(n) iterations of the loop.
For now assume that t(n)→∞ with t(n) ≤ log n. Later we add more restrictions on the growth
of t(n). We show that the probabilities that a certain edge uv is chosen in the first step are
asymptotically equivalent for G(d) and Gmulti(d) and so the first step can be coupled. For the
other steps i ≤ t(n), we show that the probabilities that the set of neighbours of the vertex w
is some specific set are again asymptotically equivalent for G(d) and Gmulti(d) with some error
ξ(n) = o(1). So we can couple the deletion algorithms for t(n) steps, where t(n) will depend on
ξ(n). In the computations in this section, we will use Pmulti to denote the probabilities in the
deletion procedure for Gmulti(d) and we will use P to denote the probabilities in the deletion
procedure for G(d). First we analyse the procedure for multigraphs. Let uv ∈

(
V
2

)
. Then

Pmulti(uv is chosen in the first step) =
Pmulti(uv ∈ E(Gmulti(d)))

m

=
dudv
m

(2m− 2)!2mm!

(2m)!2m−1(m− 1)!

=
dudv

m(2m− 1)
=
dudv
2m2

(1 + ξ1(n)),

(5.29)

where ξ1(n) = O(1/n).

In i-th iteration of the loop, we delete a vertex w and find its set of neighbours U . Let ` ≤ k−1
be the current degree of w and let {u1, . . . , u`} be a subset of ` undeleted vertices. Let x1, . . . , x`
be an enumeration of the points inside w. Let y1, . . . , y` be the points matched to x1 . . . , x`. Let
m̌ be the number of undeleted edges at the beginning of the i-th iteration of the loop and let ď
be the degree sequence of the current graph. Using [x]j = (x)(x− 1) . . . (x− j + 1), we have

P
(
U = {u1, . . . , u`}

)
= `!P(yi ∈ ui ∀i) =

`!
∏`
i=1 ďui

2`[m̌]`
(1 + ξ2(n)), (5.30)

where ξ2(n) = o(1) because m̌ ≥ m− kt(n) ≥ m− k log n and ` ≤ k− 1. Now we have to compute
estimates for the probabilities in the deletion algorithm for simple graphs. The following lemma is
an application of [47, Theorem 10].

Lemma 5.6.2. Let d ∈ Dk(n,m) be such that maxi di ≤ n0.25. Let H be a graph on [n] with at
most kt(n) edges. Let L be a supergraph of H with at most k edges more than H such that there
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is a simple graph G with degree sequence d such that G ∩ L = H. Then

P
(
L ⊆ G(d)

∣∣∣H ⊆ G(d)
)

=

∏n
v=1[di − hi]ji

2|E(J)|[m]|E(J)|
(1 + ν(n)),

where h is the degree sequence of H, J = L−E(H), j is the degree sequence of J , and ν(n) = o(1).

Notice that to use this lemma one has to check the existence of a simple graph G with certain
properties. In our case, Erdős-Gallai Theorem will be enough to ensure such simple graph exists.

Lemma 5.6.3. Let n be sufficiently large so that n−n0.25−k log n >
√
n. Let n′ ≥ n−log n. Let g

be a sequence on [n′] such that g1 ≥ g2 ≥ · · · ≥ gn′ ,
∑

i gi is even, g1 ≤ n0.25, |{j : gj = 0}| ≤ k log n.
Then there exists a simple graph with degree sequence g.

The proofs for these lemmas are presented in Section 5.6.1. Now we can analyse the deletion
algorithm for simple graphs. Let uv ∈

(
V
2

)
. Then

P
(
uv is chosen in the first step

)
= P

(
uv ∈ E(G(d))

) 1

m
.

We need to compute P(uv ∈ E(G(d))). Note that this is the same as P(L ⊆ G(d) |H ⊆ G(d))
with L = ([n], {uv}) and H = ([n],∅). In order to use Lemma 5.6.2, we need to check if there is a
simple graph G with G ∩ L = H with degree sequence d. This is the same as saying that there
exists a simple graph G with degree sequence d such that uv 6∈ E(G). It suffices to show that, for
every set of vertices S ⊆ [n] \ {u, v} of size dv, there is a simple graph with degree sequence d′,
where d′ is obtained from d be deleting v and decreasing the degree of every vertex in S by 1
(that is, S can be the set of neighbours of v and it does not include u). Note that

∑
i d
′
i is even

because
∑

j dj is even. Moreover, n− 1 ≥ n− log n and maxi d
′
i ≤ n0.25 and d′ has no zeroes. By

Lemma 5.6.3, there is a simple graph with degree sequence d′ and so we can use Lemma 5.6.2 to
show that

P
(
uv ∈ G

)
=
dudv
2m

(1 + ξ3(n)), (5.31)

where ξ3(n) = o(1). Thus, (5.29) and (5.31) show that the first step can be coupled so that the
same edge is chosen.

Now suppose we are in the i-th iteration of the loop and deleting a vertex w. Let ň be the
number of undeleted vertices in the beginning of iteration i and let m̌ be the number of undeleted
edges at the beginning of iteration i. Let ď be the current degree sequence (that is, ďu is the
number neighbours u has among the undeleted vertices). At each iteration we delete at most k− 1
edges and only one vertex. So ň ≥ n− t(n) and m̌ ≥ m− (k−1)t(n). Let ` := ďw and {u1, . . . , u`}
be a set with ` (undeleted) vertices. Let U be the neighbours of w discovered in iteration i. We
want to compute the probability that U = {u1, . . . , u`}. In order to use Lemma 5.6.2, we have to
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check if there exists a simple graph G with degree sequence ď such that G∩L = H, where H is the
graph discovered so far (which includes the deleted vertices) and L = ([n], E(H)∪{wu1, . . . , wu`}),
which is the same as checking if it is possible to get a simple graph such that w as no neighbours
in {u1, . . . , u`}. Let U ′ be a set of ` undeleted vertices such that U ′ ∩ {u1, . . . , u`} = ∅. There
are plenty of choices for U ′ since t(n) ≤ log(n). Let d′ be the degree sequence on ň− 1 obtained
from ď by deleting w and decreasing the degree of each vertex in U ′ by 1. Then ň ≥ n− log n,
maxi d

′
i ≤ n0.25 and |{j : d′j = 0}| ≤ kt(n) ≤ k log n. Using Lemma 5.6.3, there is a simple graph

with degree sequence d′ and so, by Lemma 5.6.2,

P(U = {u1, . . . , u`}) =
`!
∏`
i=1 ďui

2`[m̌]`
(1 + ξ4(n)), (5.32)

where ξ4(n) = o(1). Thus, using (5.32) and (5.30),there exists a function ξ(n) = o(1) such that

P(U = {u1, . . . , u`}) = Pmulti(U = {u1, . . . , u`})(1 + ξ(n)).

We conclude that the deletion algorithms can be coupled for t(n) steps as long as (1+ξ)t = 1+o(1).
Thus, it suffices to choose t = o(1/ξ). This finishes the proof of Lemma 5.6.1.

5.6.1 Proofs of Lemma 5.6.2 and Lemma 5.6.3

In this section, we prove some results about the deletion procedure for simple graphs. More
specifically, we prove Lemma 5.6.2 and Lemma 5.6.3.

For any graphs H ⊆ L on [n] and d ∈ Nn such that
∑n

i=1 di is even, let N(d, L,H) denote
the number of graphs G on [n] with degree sequence d such that G ∩ L = H. First we state a
result by McKay [47, Theorem 2.10] that estimates the probability that G(d) contains a subgraph
L conditioned upon containing a subgraph H of L.

Theorem 5.6.4 ([47, Theorem 2.10]). Let d ∈ Nn such that
∑n

i=1 di = 2m is even. Let H ⊆ L
be graphs on [n]. Let ∆ = maxni=1 di and let ∆L denote the maximum degree of L. Let
J = ([n], E(L) \ E(H)). Let j denote the degree sequence of J and let h denote the degree
sequence of H. Let γ := ∆(∆ + ∆L) and γ := ∆(∆ + ∆L + 2). Then the following hold:

(a) If m− E(H)− E(J) ≥ γ,

N(d, H,H)

N(d, L, L)
≤

∏n
i=1[di − hi]ji

2|E(J)|[m− |E(H)| − γ]|Ej |

(b) If m− E(H)− E(J) ≥ γ + ∆(∆L + 1),

N(d, H,H)

N(d, L, L)
≥

∏n
i=1[di − hi]ji

2|E(J)|[m− |E(H)| − 1]|Ej |

(
1− ∆(∆L+1)

2(m−|E(H)|−|E(J)|−γ)

)|E(J)|

(
1 + ∆2

2(m−|E(H)|−γ−(e−1)|E(J)|/e)

)|E(J)|
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We are now ready to prove Lemma 5.6.2.

Proof of Lemma 5.6.2. Let ∆L be the maximum degree in L and let ∆ be the maximum degree
in D. Note that ∆L ≤ |E(H)|+ k ≤ k log n+ k and ∆ ≤ n0.25. Recall that J = L \H. Then

m− |E(H)| − |E(J)| ≥ m− kt(n)− k ≥ n0.25(2n0.25)

≥ ∆(∆ + ∆L) =: γ.

So we can use part (a) of Theorem 5.6.4 to obtain that

P
(
L ⊆ G(d)

∣∣H ⊆ G(d)
)
≤

∏n
v=1[di − hi]ji

2|E(J)|[m− |E(H)| − γ]|E(J)|

=

∏n
v=1[di − hi]ji

2|E(J)|[m]|E(J)|
(1 + ν1(n))

with ν1(n) = o(1) because |E(J)| ≤ k and m− |E(H)| − γ ≥ m− k log n− 2
√
n. Now we will use

part (b) of Theorem 5.6.4. We have to check the conditions for (b):

m− |E(H)| − |E(J)| ≥ m− kt(n)− k ≥ 3
√
n

≥ ∆(∆ + ∆L + 2) + ∆(∆L + 1)

so we can apply Theorem 5.6.4(b). We have that

0 ≤ ∆(∆L + 1)

m− |E(H)| − |E(J)| −∆(∆ + ∆L + 2)

≤ n0.25(n0.25 + 1)

n− k log n− k − n0.25(2n0.25 + 2)
=: ν2(n),

with ν2(n) = O(1/
√
n), and

0 ≤ ∆2

2(|E(G)| − |E(H)| − γ − (1− 1/e)|E(J)|)

≤
√
n

2(n− k log n− n0.25(2n0.25)− (1− 1/e)k)
=: ν3(n),

with ν3(n) = O(1/
√
n). Then Theorem 5.6.4(b) implies that

P
(
L ⊆ G(d)

∣∣H ⊆ G(d)
)
≥
∏n
v=1[di − hi]ji

2|E(J)|[m]|E(J)|
(1 + ν4(n))

(
1 + ν2(n)

1 + ν3(n)

)E(J)

.

with ν4(n) = o(1). Since νi(n) = o(1) for i = 1, 2, 3, 4, we can conclude that

P
(
L ⊆ G(d)

∣∣H ⊆ G(d)
)

=

∏n
v=1[di − hi]ji

2|E(J)|[m]|E(J)|
(1 + ν(n)),

where ν = o(1).
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Proof of Lemma 5.6.3. We will use Erdős-Gallai Theorem: g is the degree sequence of a simple
graph if and only if, for every 1 ≤ ` ≤ n′,

∑̀
i=1

gi ≤ `(`− 1) +
n′∑

j=`+1

min{`, gj}.

If ` ≥ n0.25 + 1, then
∑`

i=1 gi ≤ `g1 ≤ `(`− 1). If ` ≤ n0.25,

∑̀
i=1

gi ≤ `n0.25 ≤
√
n ≤ n− n0.25 − (k + 1) log n ≤ n′ − `− |{j : gj = 0}|

=
n′∑

j=`+1

1− |{j : gj = 0}| ≤
n′∑

j=`+1

min{`, gj},

and we are done.
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Glossary for Chapter 5

c 2m/n, the average degree

ck inf{hk(µ) : µ > 0}, p. 148

c′k µk,ckfk−1(µk,ck)/fk(µk,ck), p. 148

d(H) the degree sequence of a graph H

Dj(d) |{i : di = j}|, the number of vertices of degree j

Dk(n,m) the set of d ∈ Nn with
∑n

i=1 di = 2m and mini di ≥ k
η(d)

∑
i di(di − 1)/(2m)

fk(λ) eλ −
∑k−1

i=0 λ
i/i!

Gk Gk(n,m), the graph sampled uniformly at random from the (simple) k-cores on [n]
and m

Gmulti Gmulti
k (n,m), the random multigraph generated using the allocation model restricted

to k-cores

Gmulti(d) the random multigraph generated using the pairing model and degree sequence d

G(n,m) the graph sampled uniformly at random from the (simple) graphs on [n] and m edges

hk(µ) eµµ/fk−1(µ), p. 148

K(H) the k-core of a graph H

λ(k, c) the unique positive solution to λfk−1(λ)/fk(λ) = c

µk,c be the largest positive solution to c = hk(µ) for c ≥ ck, p. 154

Multi≥k(n, 2m) multinomial distribution conditioned upon each coordinate being at least k

P (M,L, V, k) the pairing-allocation model, where V is the set of heavy vertices and L the set of
light vertices, p. 165

Σ used to denote the event that
∑n

i=1 Yi = 2m for independent truncated Poisson
random variables with parameters (k, λ(k, c))

W (H) |V (H)|− |V (K(H−e))|, where e is an edge chosen uniformly at random from of E(H)

Y used to denote a vector (Y1, . . . , Yn) of independent truncated Poisson random variables
with parameters (k, λ(k, c))

For the random walks and deletion procedure:

pj(d) probability that Zj(d) = k − 1, p. 152
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p′j(d) probability that Zj(d) = −1, p. 152

q(k, c) λ(k, c)k−1/((k − 1)!fk−1(λ(k, c))), p. 152

Yj(d) the number of undeleted marked points after the j-th iteration of the loop in the
deletion procedure, p. 151

Yj Yj−1 + Zj − 1, p. 153

Y +
j Y +

j−1 + Z+
j − 1, the position after Step j of the random walk that bounds the deletion

procedure from above, p. 153

Y −j Y −j−1 + Z−j − 1, the position after Step j of the random walk that bounds the deletion
procedure from below, p. 153

Zj random variable with same distribution as Z(k, c) giving the drift of Yj Step j, p. 153

Z+
j random variable with same distribution as Z+(k, c, ξ) giving the drift of Y +

j in Step j,
p. 153

Z−j random variable with same distribution as Z−(k, c, ξ) giving the drift of Y −j in Step j,
p. 153

Zj(d) the number of points that are marked in the j-th iteration of the loop in the deletion
procedure, p. 151

Z(k, c) a random variable used to define random walk that approximates the deletion proce-
dure, p. 152

Z+(k, c, ξ) a random variable used to define a random walk that bounds the number of marked
points in each step in the deletion procedure from above, p. 153

Z−(k, c, ξ) a random variable used to define a random walk that bounds the number of marked
points in each step in the deletion procedure from below, p. 153

For the Differential Equation Method:

Si the number of points in heavy vertices after iteration i

Ti the number of heavy vertices after iteration i

Wi the number of points in light vertices after iteration i

y y(i/n) approximates Si/n

z z(i/n) approximates Ti/n

T min{i : Wi = 0}, a stopping time indicating the deletion procedure has ended

TD min{i : (i/n, Si/n) 6∈ D}, a stopping time indicating the deletion procedure has left D
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Chapter 6

Future directions

In this chapter, we summarise the results presented in this thesis and discuss future research
directions.

In Chapter 3, we explored properties of random 2-cores to obtain an asymptotic formula for
the number of 2-connected (n,m)-graphs in the sparse range m − n → ∞ and m = O(n log n).
(Recall that a (n,m)-graph is a graph with vertex set [n] and m edges.) As we mentioned in the
Introduction, less results are known for the enumeration of unlabelled graphs with some property
of interest than for labelled graphs. In 1950 in the Gibbs Lecture at an American Mathematical
Society meeting, G. E. Uhlenbeck cited the enumeration of 2-connected unlabelled graphs as
one of the unsolved problems in statistical mechanics. The exact enumeration of 2-connected
unlabelled graphs with fixed number of vertices and edges was addressed by Robinson [60]. From
a result by Wright [66] combined with a result by Komlós and Szemerédi [41], we have that for
m > (1/2 + ε)n log n, where ε > 0 is a constant, the number of 2-connected unlabelled graphs
with n vertices and m edges is asymptotic to the number of unlabelled graphs with n vertices
and m edges. (We remark that the results in [66, 41] are about Hamilton cycles.) Our techniques
for obtaining the asymptotic formula for 2-connected (n,m)-graphs provides information on the
structure of 2-connected (n,m)-graphs. We intend to use this information and to further extend
our techniques to find an asymptotic formula for the number of 2-connected unlabelled graphs
with given number of vertices and edges in the sparse range.

In Chapter 4, we defined cores of 3-uniform hypergraphs and studied properties of random
cores. From that, we obtained an asymptotic formula for the number of connected (n,m, 3)-
hypergraphs for the range m = n/2 + R with R = o(n) and R = ω(n1/3 ln2 n). (Recall that a
(n,m, k)-hypergraph is k-uniform hypergraph with vertex set [n] and m edges.) As we mentioned
in the Introduction, Andriamampianina and Ravelomanana [3] obtained an asymptotic formula
for the number of connected (n,m, k)-hypergraphs for m = n/(k − 1) + o(n1/3), and Behrisch,
Coja-Oghlan and Kang [4] provided an asymptotic formula for the case m = n/(k − 1) + Θ(n).
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No asymptotic formula is known for the number of connected (n,m, k)-hypergraphs for k ≥ 4
in the range m − n/(k − 1) = Ω(n1/3) and m − n/(k − 1) = o(n). The superlinear range
m− n/(k − 1) = ω(n) is open for any k ≥ 3.

The reason why our method does not cover the whole range R = o(n) and R = Ω(n1/3) is
that, when computing the number of connected cores with given number of vertices and edges,
we write this number as a summation

∑
x∈S g(x), where g(x) is the number of connected cores

with some parameters x = (n1, k0, k1, k2). We write a function f(x) that approximates g(x). We
then find the point x∗ achieving the maximum for f in S. By expanding the summation

∑
x f(x)

around x∗, we can determine the value of the summation
∑

x∈S g(x) asymptotically. For doing

this, it was important that x∗ was ‘reasonably’ inside the interior of the set S. When R = O(n1/3)
the point achieving the maximum is ‘too close’ to the boundary of S. We intend to deal with this
case by fixing some functions of the parameters that cause x∗ to be ‘too close’ to the boundary
of S and estimating the summation with these functions fixed. We expect to extend our results to
obtain an asymptotic formula for the number of connected (n,m, 3)-hypergraphs for m = n/2 +R
as long as R = o(n) and R = Ω(n1/3). This way, we would completely close the gap between the
case R = o(n1/3) and the linear case R = Ω(n) in which no asymptotic formulae were found.

In [56], Pittel and Wormald obtained properties of the giant component of G(n,m) by using
the asymptotic formula they obtained for the number of connected (n,m, 2)-cores (recall that
an (n,m, k)-core is a graph with vertex set [n], m edges and minimum degree at least k). They
determined the limit joint distribution of X, Y and Z, where X is the number of vertices in the
2-core of the giant component, Y is the number of vertices in the giant component that are not in
the 2-core and Z = W −X, where W is the number of edges in the 2-core. Since the number of
vertices and of edges of the giant component can be written as linear combinations of X, Y and
Z, [56] also determines the limit joint distribution of the number of vertices and edges. Even more
than that, Pittel and Wormald determined the probability that (X,Y, Z) = (x, y, z) under some
constraints on (x, y, z) and conditioned upon a certain event Bn that imposes a lower bound in
the number of vertices of the largest component and an upper bound in the number of vertices of
the second-largest component. One of the main steps in the proof was to determine the number
of (n,m)-graphs with one component with x vertices in its 2-core, y vertices not in its 2-core and
x+ z edges. This is the same as(

n

x+ y

)(
x+ y

x

)
g(x, x+ z)f(x+ y, x)

( (
n−x−y

2

)
m− x− y − z

)
, (6.1)

where g(x, x+ z) is the number of connected (x, x+ z, 2)-cores and f(x+ y, x) is the number of
rooted forests with vertex set [x+ y] and set of roots [x]. Pittel and Wormald [56] determined
the value in (6.1) asymptotically by using their asymptotic formula for g(x, x+ z) and a known
formula for f(x+ y, x). We intend to follow a similar strategy to find the limit joint distribution
of X, Y and Z for 3-uniform hypergraphs since we have obtained an asymptotic formula for the
number of connected cores with given number of vertices and edges. We remark that Bollobás
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and Riordan [14] determined the limit joint distribution of the number of vertices and of edges in
the giant component for random k-uniform hypergraphs. As far as we know, their result does
not provide point probabilities and it does not determine the limit distribution of the number of
vertices in the core of the giant component.

In Chapter 5, we studied robustness properties of the random graph Gk(n,m), which has
uniform distribution on all (n,m, k)-cores. Our main result concerns the random graph Gk(n,m)−e
obtained by deleting an edge e chosen u.a.r. from the edges of Gk(n,m). We defined a constant
c′k and analysed the k-core of Gk(n,m) − e for c = 2m/n above or below c′k. We proved that,
for c < c′k − ε and any h(n) → ∞, the k-core of Gk(n,m) − e is either empty or has at least
n− h(n) vertices a.a.s. Moreover, if c→ k, we showed that the k-core of Gk(n,m)− e is empty
a.a.s. For c > c′k + ψ(n) with ψ(n) = ω(n−1/4) and any h(n) = ω(ψ(n−1), we proved that the
k-core of Gk(n,m)− e has at least n− h(n) vertices a.a.s. These results do not cover the range
c > c′k +O(n−1/4). It would be interesting to obtain results for c > c′k + n−ε where ε is a constant
in (0, 1/2) since Pittel, Spencer and Wormald [54] showed that, when the average degree of G(n,m)
is above ck + n−ε, the k-core of G(n,m) is nonempty. Naturally, results about the k-core when it
is closer to the time of its emergence would be very interesting. Another range not covered is
when c tends to c′k from below.

For the range k + ε < c < c′k − ε, we also proved that the k-core of Gk(n,m) − e is empty
with probability bounded away from zero. But this still leaves the possibility that there is a
nonnegligible fraction of (n,m, k)-cores such that there is no edge (or very few edges) whose
deletion would cause the whole k-core to be deleted. It would be interesting to find out if this is
indeed the case. It is also natural to consider what happens when deleting more than one edge in
the beginning. More specifically, given h(n)→∞, is it true that, if we delete h(n) edges u.a.r.,
then the k-core of the new graph is empty a.a.s.? We intend to settle this question in the near
future.
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[43] C. Lavault. Prüfer-like coding and counting forests of uniform hypertrees. In 8th International
Conference on Computer Science and Information Technologies (CSIT 2011), pages 82–85,
2011.

[44] T.  Luczak. Component behavior near the critical point of the random graph process. Random
Structures Algorithms, 1(3):287–310, 1990.

[45] T.  Luczak. Size and connectivity of the k-core of a random graph. Discrete Math., 91(1):61–68,
1991.

[46] T.  Luczak. Sparse random graphs with a given degree sequence. In Random graphs, Vol. 2
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Appendix A

Maple spreadsheets

In this appendix we include some Maple spreadsheets for computations in Chapter 4.

A.1 Spreadsheet for Section 4.2

In this section we include some computations used in Section 4.2.

> zetasol := lambda*(exp(2*lambda)+exp(lambda)+1)/(exp(2*lambda)-1);

> Phi1 := r/(1-r)*ln(r)+(1-zeta)*ln(1-r)+zeta/3*ln(1-r^3);

> Phi2:= 1/(1/r-1)*ln(r)+(1-zeta)*ln((1/r-1)*r)+zeta/3*ln((1/r^3-1)*r^3);

> is(simplify(Phi1-Phi2,symbolic),0);

zetasol :=
λ
(
e2λ + eλ + 1

)
e2λ − 1

Phi1 :=
r ln (r)

1− r
+ (1− ζ) ln (1− r) + 1/3 (ζ) ln

(
1− r3

)
Phi2 :=

ln (r)

r−1 − 1
+ (1− ζ) ln

((
r−1 − 1

)
r
)

+ 1/3 (ζ) ln
((
r−3 − 1

)
r3
)

true

> Philambda:= subs(r=1/exp(lambda),zeta=zetasol,Phi2);
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Philambda :=
ln
((

eλ
)−1
)

eλ − 1
+

(
1−

λ
(
e2λ + eλ + 1

)
e2λ − 1

)
ln

(
eλ − 1

eλ

)

+ 1/3λ
(

e2λ + eλ + 1
)

ln

((
eλ
)3 − 1

(eλ)
3

)(
e2λ − 1

)−1

> # Their formula

> DNM := M-M*ln(M)+3*M*ln(N)-M*ln(6)+N*Philambda;

DNM := M −M ln (M) + 3M ln (N)−M ln (6)

+N

(
ln
((

eλ
)−1
)

eλ − 1
+

(
1−

λ
(
e2λ + eλ + 1

)
e2λ − 1

)
ln

(
eλ − 1

eλ

)
+

1/3λ
(

e2λ + eλ + 1
)

ln

((
eλ
)3 − 1

(eλ)
3

)(
e2λ − 1

)−1
)

> phi := -(1-x)/2*ln(1-x) + (1-x)/2 + 2*(R/N)*ln(N) - (ln(2)+2)*R/N

> -1/2*ln(2)*x + R/N*ln((exp(lambda)+1)/(lambda*(exp(lambda)-1)))

> +1/2*x*ln((exp(2*lambda)-1)/lambda);

φ := −1/2 (1− x) ln (1− x) + 1/2− 1/2x+ 2
R ln (N)

N
− (ln (2) + 2)R

N

− 1/2 ln (2)x+R ln

(
eλ + 1

λ (eλ − 1)

)
N−1 + 1/2x ln

(
e2λ − 1

λ

)
> philambda := subs(x = (exp(2*lambda)-1-2*lambda)/(exp(2*lambda)-1),phi);

philambda := −1/2

(
1− e2λ − 1− 2λ

e2λ − 1

)
ln

(
1− e2λ − 1− 2λ

e2λ − 1

)
+ 1/2− 1/2

e2λ − 1− 2λ

e2λ − 1
+ 2

R ln (N)

N
− (ln (2) + 2)R

N
− 1/2

ln (2)
(
e2λ − 1− 2λ

)
e2λ − 1

+R ln

(
eλ + 1

λ (eλ − 1)

)
N−1 + 1/2

(
e2λ − 1− 2λ

)
ln

(
e2λ − 1

λ

)(
e2λ − 1

)−1

> # Our formula

> CNM := N*ln(N)-N+N*philambda;
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CNM := N ln (N)−N +N

(
− 1/2

(
1− e2λ − 1− 2λ

e2λ − 1

)
ln

(
1− e2λ − 1− 2λ

e2λ − 1

)

+ 1/2− 1/2
e2λ − 1− 2λ

e2λ − 1
+ 2

R ln (N)

N
− (ln (2) + 2)R

N
− 1/2

ln (2)
(
e2λ − 1− 2λ

)
e2λ − 1

+R ln

(
eλ + 1

λ (eλ − 1)

)
N−1 + 1/2

(
e2λ − 1− 2λ

)
ln

(
e2λ − 1

λ

)(
e2λ − 1

)−1
)

> # Their formula minus ours

> simplify(subs(R=M-N/2,M=zetasol*N/3,CNM-DNM),symbolic);

> num:= numer(%);

−1

6

N

e2λ − 1

(
3 e2λ ln

(
eλ + 1

)
− 3 e2λ ln

(
e2λ − 1

)
+ 2 e2λλ ln

(
e2λ − 1

)
− 2 e2λλ ln

(
e2λ + eλ + 1

)
− 4λ e2λ ln

(
eλ − 1

)
+ 2 e2λλ ln

(
e3λ − 1

)
− 2λ e2λ ln

(
eλ + 1

)
+ 3 e2λ ln

(
eλ − 1

)
+ 2 eλλ ln

(
e2λ − 1

)
− 2 eλλ ln

(
e2λ + eλ + 1

)
− 4λ eλ ln

(
eλ − 1

)
+ 2 eλλ ln

(
e3λ − 1

)
− 2λ eλ ln

(
eλ + 1

)
− 3 ln

(
eλ + 1

)
− 3 ln

(
eλ − 1

)
+ 3 ln

(
e2λ − 1

)
+ 2λ ln

(
e2λ − 1

)
− 2λ ln

(
e2λ + eλ + 1

)
− 4λ ln

(
eλ − 1

)
+ 2λ ln

(
e3λ − 1

)
− 2λ ln

(
eλ + 1

))
num := −N

(
3 e2λ ln

(
eλ + 1

)
− 3 e2λ ln

(
e2λ − 1

)
+ 2 e2λλ ln

(
e2λ − 1

)
− 2 e2λλ ln

(
e2λ + eλ + 1

)
− 4λ e2λ ln

(
eλ − 1

)
+ 2 e2λλ ln

(
e3λ − 1

)
− 2λ e2λ ln

(
eλ + 1

)
+ 3 e2λ ln

(
eλ − 1

)
+ 2 eλλ ln

(
e2λ − 1

)
− 2 eλλ ln

(
e2λ + eλ + 1

)
− 4λ eλ ln

(
eλ − 1

)
+ 2 eλλ ln

(
e3λ − 1

)
− 2λ eλ ln

(
eλ + 1

)
− 3 ln

(
eλ + 1

)
− 3 ln

(
eλ − 1

)
+ 3 ln

(
e2λ − 1

)
+ 2λ ln

(
e2λ − 1

)
− 2λ ln

(
e2λ + eλ + 1

)
− 4λ ln

(
eλ − 1

)
+ 2λ ln

(
e3λ − 1

)
− 2λ ln

(
eλ + 1

))
> num2:= simplify(exp(num/N),symbolic);

num2 :=
(

eλ + 1
)−3 e2λ+2 e2λλ+2 eλλ+3 (

e2λ − 1
)3 e2λ−2 e2λλ−2 eλλ−3 (

e2λ + eλ + 1
)2λ (e2λ+eλ+1)

(
eλ − 1

)4 e2λλ−3 e2λ+4 eλλ+3+2λ (
e3λ − 1

)−2λ (e2λ+eλ+1)
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> a := -2*lambda*(exp(2*lambda)+exp(lambda)+1);

> num3 := num2/(exp(3*lambda)-1)^a;

a := −2λ
(

e2λ + eλ + 1
)

num3 :=
(

eλ + 1
)−3 e2λ+2 e2λλ+2 eλλ+3 (

e2λ − 1
)3 e2λ−2 e2λλ−2 eλλ−3 (

e2λ + eλ + 1
)2λ (e2λ+eλ+1)

(
eλ − 1

)4 e2λλ−3 e2λ+4 eλλ+3+2λ

> num4:= num3*(exp(lambda)-1)^a*(exp(2*lambda)+exp(lambda)+1)^a:

> num5:= simplify(num4,symbolic);

> b := 3*exp(2*lambda)-2*lambda*exp(2*lambda)-2*lambda*exp(lambda);

> (exp(lambda)+1)^(-b)*(exp(lambda)-1)^(-b)*(exp(2*lambda)-1)^b;

> is(simplify(%/num5),1);

num5 :=
(

eλ + 1
)−3 e2λ+2 e2λλ+2 eλλ+3 (

e2λ − 1
)3 e2λ−2 e2λλ−2 eλλ−3 (

eλ − 1
)−3 e2λ+2 e2λλ+2 eλλ+3

b := 3 e2λ − 2 e2λλ− 2 eλλ(
eλ + 1

)−3 e2λ+2 e2λλ+2 eλλ (
eλ − 1

)−3 e2λ+2 e2λλ+2 eλλ (
e2λ − 1

)3 e2λ−2 e2λλ−2 eλλ

true

> # Conclusion: exp(numerator) = 1 and so numerator = 0
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A.2 Spreadsheet for Lemma 4.7.4

> x*f1*g2/F2;

> f := subs(f1=exp(x)-1,g2=exp(x)+2,F2=exp(2*x)-1-2*x,%);

xf1 g2

F2

f :=
x (ex − 1) (ex + 2)

e2x − 1− 2x
> series(f,x=0);

3/2 + 1/4x+ 1/12x2 +
11

720
x3 +O

(
x4
)

> simplify(diff(f,x));

−−2− e4x − e3x + 3 e2x + ex − 2 e2xx+ exx+ 4 e2xx2 + e3xx+ 2 exx2

(e2x − 1− 2x)2

> F := numer(%);

F := 2 + e4x + e3x − 3 e2x − ex + 2 e2xx− exx− 4 e2xx2 − e3xx− 2 exx2

> simplify(subs(x=0,F));

> F1p:= diff(F,x);

> F1p:= simplify(F1p/exp(x));

0

F1p := 4 e4x + 2 e3x − 4 e2x − 2 ex − 4 e2xx− 5 exx− 8 e2xx2 − 3 e3xx− 2 exx2

F1p := 4 e3x + 2 e2x − 4 ex − 2− 4 exx− 5x− 8 exx2 − 3 e2xx− 2x2

> simplify(subs(x=0,F1p));

> F2p:= diff(F1p,x);

0

F2p := 12 e3x + e2x − 8 ex − 20 exx− 5− 8 exx2 − 6 e2xx− 4x
> simplify(subs(x=0,F2p));

> F3p:= diff(F2p,x);

0

F3p := 36 e3x − 4 e2x − 28 ex − 36 exx− 8 exx2 − 12 e2xx− 4
> simplify(subs(x=0,F3p));

> F4p:= diff(F3p,x);

> F4p:= simplify(F4p/exp(x));

0

F4p := 108 e3x − 20 e2x − 64 ex − 52 exx− 8 exx2 − 24 e2xx
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F4p := 108 e2x − 20 ex − 64− 52x− 8x2 − 24 exx
> simplify(subs(x=0,F4p));

> F5p:= diff(F4p,x);

24

F5p := 216 e2x − 44 ex − 52− 16x− 24 exx

> 261-44-52-16-24;

125
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A.3 Spreadsheet for Setion 4.7.3

> h := x -> x*n*ln(x)+x*n*ln(n)-x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> # setting functions of lambda

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> F2def := exp(2*lambda)-1-2*lambda;

> F1def := exp(2*lambda)-1;

> eladef:= exp(lambda);

> c2lambdaval := lambda*f1/f2;

> # derivative of lambda

> dlambdaval := lambda*(-1+c2)/((3*m-n1)*(1+eta-c2));

> c2def := (3*m-n1)/(1-n1);

> etalambdaval := lambda*ela/f1;

> # More definitions

> Q2def := 3*m-n1;

> n2def := 1-n1;

> m3def := m-n1;

> subsf := x -> subs(eta=etalambdaval,c2=c2lambdaval,g1=g1def,g2=g2def,
f1=f1def,f2=f2def,F1=F1def,F2=F2def,ela=eladef,x);

> subsf2 := x -> subs(Q2=Q2def,n2=n2def,m3=m3def, x);

g1def := eλ + 1

g2def := eλ + 2

f1def := eλ − 1

f2def := eλ − 1− λ
F2def := e2λ − 1− 2λ

F1def := e2λ − 1

eladef := eλ
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c2lambdaval :=
λ f1

f2

dlambdaval :=
λ (−1 + c2 )

(3m− n1 ) (1 + η − c2 )

c2def :=
3m− n1

1− n1

etalambdaval :=
λ ela

f1

Q2def := 3m− n1

n2def := 1− n1

m3def := m− n1

subsf := x 7→ x

subsf2 := x 7→ x
> # fcore without lambda part

> f:=(n1)->expand(subsf2(h(Q2)-h(n2)-h(n1)-h(m3)-n1*n*ln(2)-m3*n*ln(6))/n):
> # First derivative

> d1:= simplify(diff(f(n1),n1),symbolic);

> d1simple := -ln(n1)+ln(m3)+ln(n2)+ln(3)-ln(Q2);

> is(simplify(subsf2(d1simple)-d1),0);

d1 := ln (3)− ln (n1 ) + ln (1− n1 )− ln (3m− n1 ) + ln (m− n1 )

d1simple := − ln (n1 ) + ln (m3 ) + ln (n2 ) + ln (3)− ln (Q2 )

true
> # exp of derivative with lambda part

> d := simplify(exp(d1)*lambda/f2);

> # simplifying

> d := simplify(d*c2def/c2lambdaval);

d := −3
(−1 + n1 ) (m− n1 )λ

n1 (3m− n1 ) f2

d := 3
m− n1

f1 n1
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> # second derivative

> # lambda part

> # dlambda is used to indicate the derivative of lambda

> # wrt n1

> diff(ln(lambda)-ln(f2def),lambda);

> dd := diff(diff(f(n1),n1),n1)+dlambda*(1/lambda)-dlambda*f1*(1/f2);

> ddsimple := 1/Q2-1/n2-1/n1-1/m3+dlambda/lambda-dlambda*f1/f2;

> is(simplify(subsf2(ddsimple)-dd),0);

λ−1 − eλ − 1

eλ − 1− λ

dd := −3
m

(3m− n1 )2 +
n1

(3m− n1 )2 + 2 (3m− n1 )−1 + (1− n1 )−2

− n1

(1− n1 )2 − 2 (1− n1 )−1 − n1−1 +
m

(m− n1 )2 −
n1

(m− n1 )2

−2 (m− n1 )−1 +
dlambda

λ
− dlambda f1

f2

ddsimple := Q2−1 − n2−1 − n1−1 −m3−1 +
dlambda

λ
− dlambda f1

f2

true
> # finding local max

> solve(numer(d)=denom(d),n1);

> n1solm := 3*m/g2;

> # checking if n1solm is correct sol

> is(simplify(subsf(n1solm-solve(numer(d)=denom(d),n1))),0);

3
m

f1 + 3

n1solm := 3
m

g2

true
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> # Equation for m

> eqmax := simplify(subs(n1=n1solm,c2def=c2lambdaval));

> # Solution for m

> msol := (1/3)*lambda*f1*g2/F2;

> # checking if msol is correct sol

> is(simplify(subsf(msol-solve(eqmax,m))),0);

eqmax := 3
m (g2 − 1)

g2 − 3m
=
λ f1

f2

msol := 1/3
λ f1 g2

F2
true

> # Solution for n1 in terms of lambda

> n1sol := subs(m=msol,n1solm);

n1sol :=
λ f1

F2
> # Series at optimal

> ssl := x -> series(subsf(x),lambda=0);

> mseries := ssl(msol);

> n1series := ssl(n1sol);

> rseries := ssl(msol-1/2);

> ddseries := ssl(subs(dlambda=dlambdaval, n1=n1sol,m=msol,dd));

> n2series := ssl(1-n1sol);

> m3series:= ssl(msol-n1sol);

> Q2series:= ssl(3*msol-n1sol);

> ssl(c2lambdaval-2);

> ssl(1+etalambdaval-c2lambdaval);

> ssl((1-c2lambdaval)^2/((3*msol-n1sol)*(1+etalambdaval-c2lambdaval)^2));

ssl := x 7→ (subsf (x))

mseries := 1/2 + 1/12λ+ 1/36λ2 +
11

2160
λ3 +O

(
λ4
)

n1series := 1/2− 1/12λ− 1/36λ2 +
1

2160
λ3 +

13

6480
λ4 +

71

272160
λ5 +O

(
λ6
)

rseries := 1/12λ+ 1/36λ2 +
11

2160
λ3 +O

(
λ4
)
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ddseries := −12λ−1 − 2− 4/5λ+O
(
λ2
)

n2series := 1/2 + 1/12λ+ 1/36λ2 − 1

2160
λ3 − 13

6480
λ4 +O

(
λ5
)

m3series := 1/6λ+ 1/18λ2 +
1

216
λ3 − 7

3240
λ4 − 11

19440
λ5 +O

(
λ6
)

Q2series := 1 + 1/3λ+ 1/9λ2 +
2

135
λ3 − 1

405
λ4 +O

(
λ5
)

1/3λ+ 1/18λ2 +
1

270
λ3 +O

(
λ4
)

1/6λ+ 1/36λ2 − 1

270
λ3 − 7

6480
λ4 +

1

13608
λ5 +O

(
λ6
)

36λ−2 + 3/5 +
4

15
λ+O

(
λ2
)

> # For the third derivative

> series(x/(exp(x)-1)*(exp(x)+x*exp(x)-x*exp(2*x)/(exp(x)-1)),x=0);

1/2x+ 1/6x2 − 1

180
x4 +O

(
x5
)
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A.4 Spreadsheet for Section 4.8.7

> h := x -> x*n*ln(x)+ x*n*ln(n)- x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> # functions of lambda

> eladef := exp(lambda);

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> f3def := exp(lambda)-1-lambda-lambda^2/2;

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> F1def := exp(2*lambda)-1;

> F2def := exp(2*lambda)-1-2*lambda;

> etadef := lambda*f1/f2;

> subdef := x -> subs(eta3=etadef,ela=eladef,f1=f1def,f2=f2def,
f3=f3def,g1=g1def,g2=g2def,F1=F1def,F2=F2def, x);

eladef := eλ

f1def := eλ − 1

f2def := eλ − 1− λ
f3def := eλ − 1− λ− 1/2λ2

g1def := eλ + 1

g2def := eλ + 2

F1def := e2λ − 1

F2def := e2λ − 1− 2λ

etadef :=
λ f1

f2

subdef := x 7→ x
> # Relations

> n3def := 1-n1-k0-k1-k2;

> Q3def := 3*m-n1-2*(k0+k1+k2);

> m2def := n1;

> m2pdef := m2def-k0;
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> m3def := m-m2def;

> P2def := 2*m2pdef;

> P3def := 3*m3def;

> T2def := P2def-k1;

> T3def := 3*m3def-k1-2*k2;

> n2def := k0+k1+k2;

> subdef2 := x -> subs(n3=n3def,Q3=Q3def,m2=m2def,m3=m3def,m2p=m2pdef,
P2=P2def,P3=P3def, T2=T2def, T3=T3def, n2 =n2def, x);

n3def := 1− n1 − k0 − k1 − k2

Q3def := 3m− n1 − 2 k0 − 2 k1 − 2 k2

m2def := n1

m2pdef := n1 − k0

m3def := m− n1

P2def := 2 n1 − 2 k0

P3def := 3m− 3 n1

T2def := 2 n1 − 2 k0 − k1

T3def := 3m− 3 n1 − k1 − 2 k2

n2def := k0 + k1 + k2

subdef2 := x 7→ x
> # fpre (without lambda part)

> f := (n1,k0,k1,k2) -> expand(subdef2( h(m2)+h(P3)+h(P2)+h(Q3)

> -h(k0)-h(k1)-h(k2)-h(n3)-h(m3)-h(T3)-h(T2)-2*h(m2p)

> -k2*n*ln(2)-m3*n*ln(6)-m2p*n*ln(2))/n):
> # fpre

> fpre := expand(f(n1,k0,k1,k2)+subdef2(n3*log(f3)- Q3*ln(lambda))):

> # Partial derivatives
> fn1 := simplify(exp(diff(f(n1,k0,k1,k2), n1))*lambda/f3);

> fk0 := simplify(exp(diff(f(n1,k0,k1,k2), k0)))*lambda^2/f3;

> fk1 := simplify(exp(diff(f(n1,k0,k1,k2), k1)))*lambda^2/f3;

> fk2 := simplify(exp(diff(f(n1,k0,k1,k2), k2)))*lambda^2/f3;

> # Simplifying

> fn1s := (4/9)*T3^3*n3*n1*lambda/(m3^2*Q3*T2^2*f3);

> is(simplify(subdef2(fn1/fn1s),symbolic),1);
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> fk0s := (1/2)*n3*T2^2*lambda^2/(Q3^2*k0*f3);

> is(simplify(subdef2(fk0/fk0s),symbolic),1);

> fk1s := T3*n3*T2*lambda^2/(k1*Q3^2*f3);

> is(simplify(subdef2(fk1/fk1s),symbolic),1);

> fk2s := (1/2)*T3^2*n3*lambda^2/(k2*Q3^2*f3);

> is(simplify(subdef2(fk2/fk2s),symbolic),1);

fn1 := −4/9
n1 (−3m+ 3 n1 + k1 + 2 k2 )3 (−1 + n1 + k0 + k1 + k2 )λ

(−3m+ n1 + 2 k0 + 2 k1 + 2 k2 ) (m− n1 )2 (−2 n1 + 2 k0 + k1 )2 f3

fk0 := −1/2
(−2 n1 + 2 k0 + k1 )2 (−1 + n1 + k0 + k1 + k2 )λ2

k0 (−3m+ n1 + 2 k0 + 2 k1 + 2 k2 )2 f3

fk1 := −(−2 n1 + 2 k0 + k1 ) (−3m+ 3 n1 + k1 + 2 k2 ) (−1 + n1 + k0 + k1 + k2 )λ2

k1 (−3m+ n1 + 2 k0 + 2 k1 + 2 k2 )2 f3

fk2 := −1/2
(−3m+ 3 n1 + k1 + 2 k2 )2 (−1 + n1 + k0 + k1 + k2 )λ2

k2 (−3m+ n1 + 2 k0 + 2 k1 + 2 k2 )2 f3

fn1s := 4/9
T3 3n3 n1 λ

m3 2Q3 T2 2f3

true

fk0s := 1/2
n3 T2 2λ2

Q3 2k0 f3

true

fk1s :=
T3 n3 T2 λ2

k1 Q3 2 f3

true

fk2s := 1/2
T3 2n3 λ2

k2 Q3 2f3

true
> # COMPUTATIONS FOR HESSIAN

> dln1n1 := (-1)*(c3-1)*(c3-1)/((1+eta3-c3)*Q3);

> dlkn1 :=(-1)*(c3-2)*(c3-1)/((1+eta3-c3)*Q3);

> dlkk := (-1)*(c3-2)*(c3-2)/((1+eta3-c3)*Q3);

> dd := (x,y) -> expand(diff(diff(f(n1,k0,k1,k2), x),y));

dln1n1 := − (c3 − 1)2

Q3 (1 + eta3 − c3 )
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dlkn1 := − (c3 − 2) (c3 − 1)

Q3 (1 + eta3 − c3 )

dlkk := − (c3 − 2)2

Q3 (1 + eta3 − c3 )

dd := (x, y) 7→ 0
> # n1

> dn1n1 := dd(n1,n1)+dln1n1:

> dn1k0 := dd(n1,k0)+dlkn1:

> dn1k1 := dd(n1,k1)+dlkn1:

> dn1k2 := dd(n1,k2)+dlkn1:

> dn1n1s := 9/P3 + 4/P2 - 9/T3 + 1/Q3 -1/n3 - 1/m3

> - 4/T2- 2/m2p +1/n1 +dln1n1;

> is(simplify(subdef2(dn1n1s-dn1n1)),0);

> dn1k0s := -4/P2 + 2/Q3 - 1/n3 + 4/T2 + 2/m2p + dlkn1;

> is(simplify(subdef2(dn1k0s-dn1k0)),0);

> dn1k1s := -3/T3 + 2/Q3 - 1/n3 + 2/T2 + dlkn1;

> is(simplify(subdef2(dn1k1s-dn1k1)),0);

> dn1k2s := - 6/T3 + 2/Q3 - 1/n3 + dlkn1;

> is(simplify(subdef2(dn1k2s-dn1k2)),0);

dn1n1s := 9 P3−1 + 4 P2−1 − 9 T3−1 + Q3−1 − n3−1 −m3−1 − 4 T2−1 − 2 m2p−1

+ n1−1 − (c3 − 1)2

Q3 (1 + eta3 − c3 )

true

dn1k0s := −4 P2−1 + 2 Q3−1 − n3−1 + 4 T2−1 + 2 m2p−1 − (c3 − 2) (c3 − 1)

Q3 (1 + eta3 − c3 )

true

dn1k1s := −3 T3−1 + 2 Q3−1 − n3−1 + 2 T2−1 − (c3 − 2) (c3 − 1)

Q3 (1 + eta3 − c3 )

true

dn1k2s := −6 T3−1 + 2 Q3−1 − n3−1 − (c3 − 2) (c3 − 1)

Q3 (1 + eta3 − c3 )

true
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> # k0

> dk0n1 := dd(k0,n1)+dlkn1:

> dk0k0 := dd(k0,k0)+dlkk:

> dk0k1 := dd(k0,k1)+dlkk:

> dk0k2 := dd(k0,k2)+dlkk:

> dk0k0s := 4/P2 + 4/Q3 - 1/n3 - 4/T2 - 2/m2p -1/k0 + dlkk;

> is(simplify(subdef2(dk0k0s-dk0k0)),0);

> dk0k1s := 4/Q3 - 1/n3 -2/T2 + dlkk;

> is(simplify(subdef2(dk0k1s-dk0k1)),0);

> dk0k2s := 4/Q3 - 1/n3 + dlkk;

> is(simplify(subdef2(dk0k2s-dk0k2)),0);

dk0k0s := 4 P2−1 + 4 Q3−1 − n3−1 − 4 T2−1 − 2 m2p−1 − k0−1 − (c3 − 2)2

Q3 (1 + eta3 − c3 )

true

dk0k1s := 4 Q3−1 − n3−1 − 2 T2−1 − (c3 − 2)2

Q3 (1 + eta3 − c3 )

true

dk0k2s := 4 Q3−1 − n3−1 − (c3 − 2)2

Q3 (1 + eta3 − c3 )

true
> # k1

> dk1n1 := dd(k1,n1)+dlkn1:

> dk1k0 := dd(k1,k0)+dlkk:

> dk1k1 := dd(k1,k1)+dlkk:

> dk1k2 := dd(k1,k2)+dlkk:

> dk1k1s := - 1/k1 - 1/T3 + 4/Q3 - 1/n3 - 1/T2 + dlkk;

> is(simplify(subdef2(dk1k1s-dk1k1)),0);

> dk1k2s := - 2/T3 + 4/Q3 - 1/n3 + dlkk;

> is(simplify(subdef2(dk1k2s-dk1k2)),0);

dk1k1s := −k1−1 − T3−1 + 4 Q3−1 − n3−1 − T2−1 − (c3 − 2)2

Q3 (1 + eta3 − c3 )

true
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dk1k2s := −2 T3−1 + 4 Q3−1 − n3−1 − (c3 − 2)2

Q3 (1 + eta3 − c3 )

true
> # k2

> dk2n1 := dd(k2,n1)+dlkn1:

> dk2k0 := dd(k2,k0)+dlkk:

> dk2k1 := dd(k2,k1)+dlkk:

> dk2k2 := dd(k2,k2)+dlkk:

> dk2k2s := -1/k2 - 4/T3 + 4/Q3 - 1/n3 + dlkk;

> is(simplify(subdef2(dk2k2s-dk2k2)),0);

dk2k2s := −k2−1 − 4 T3−1 + 4 Q3−1 − n3−1 − (c3 − 2)2

Q3 (1 + eta3 − c3 )

true
> msol := (1/3)*lambda*f1*g2/F2;

> n1sol := 3*m/g2;

> k0sol := 6*m*lambda/(g2*f1*g1);

> k1sol := 6*m*lambda/(g2*g1);

> k2sol := 3*m*lambda*f1/(2*g2*g1);

msol := 1/3
λ f1 g2

F2

n1sol := 3
m

g2

k0sol := 6
mλ

g2 f1 g1

k1sol := 6
mλ

g2 g1

k2sol := 3/2
mλ f1

g2 g1
> # For lambda at maximum

> ddl := x -> factor(subdef(subs(c3=lambda*f2/f3, k2=k2sol, k1=k1sol,
k0=k0sol, n1=n1sol, m=msol, subdef2(x)))):
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> dn1n1la := ddl(dn1n1):

> dn1k0la := ddl(dn1k0):

> dn1k1la := ddl(dn1k1):

> dn1k2la := ddl(dn1k2):

> dk0n1la := ddl(dk0n1):

> dk0k0la := ddl(dk0k0):

> dk0k1la := ddl(dk0k1):

> dk0k2la := ddl(dk0k2):

> dk1n1la := ddl(dk1n1):

> dk1k0la := ddl(dk1k0):

> dk1k1la := ddl(dk1k1):

> dk1k2la := ddl(dk1k2):

> dk2n1la := ddl(dk2n1):

> dk2k0la := ddl(dk2k0):

> dk2k1la := ddl(dk2k1):

> dk2k2la := ddl(dk2k2):
> # Computing series for entries of Hessian as lambda -> 0 (at maximum)

> ss := x -> series(x,lambda=0,18);

> ss(dn1n1la);

> ss(dn1k0la);

> ss(dn1k1la);

> ss(dn1k2la);

> ss(dk0k0la);

> ss(dk0k1la);

> ss(dk0k2la);

> ss(dk1k1la);

> ss(dk1k2la);

> ss(dk2k2la);

ss := x 7→ (x)

−132λ−2 +
94

5
λ−1 − 176

25
− 3677

5250
λ+O

(
λ2
)
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−48λ−2 +
32

5
λ−1 +

72

25
+

624

875
λ+

669

4375
λ2 +O

(
λ3
)

−60λ−2 +
22

5
λ−1 +

22

25
+

769

5250
λ− 1291

157500
λ2 +O

(
λ3
)

−72λ−2 +
12

5
λ−1 − 28

25
− 1103

2625
λ− 13333

78750
λ2 +O

(
λ3
)

−24λ−2 − 44

5
λ−1 − 134

25
− 9634

2625
λ+O

(
λ2
)

−24λ−2 − 24

5
λ−1 − 152

75
− 6152

7875
λ− 55747

236250
λ2 +O

(
λ3
)

−24λ−2 − 4/5λ−1 − 52

75
− 1777

7875
λ− 15497

236250
λ2 +

22583

7087500
λ3 +O

(
λ4
)

−28λ−2 − 62

15
λ−1 − 656

225
− 63337

47250
λ+O

(
λ2
)

−32λ−2 +
8

15
λ−1 − 256

225
− 5506

23625
λ− 21058

354375
λ2 +O

(
λ3
)

−48λ−2 +
8

15
λ−1 +O (1)

> # THIRD DERIVATIVE COMPUTATIONS

> ddd := (x,y,z) -> expand(diff(diff(diff(f(n1,k0,k1,k2), x),y),z));

> subss := (x,k) -> subdef(subs(c3=Q3/n3, Q3=Q3def, n3=n3def,n1=n1sol,
k0=k0sol, k1=k1sol,k2=k2sol,m=msol,x));

> sss := (x,k) -> series(subss(x),lambda=0,k);

ddd := (x, y, z) 7→ 0

subss := (x, k) 7→ x

> # NON LABMDA PART

> dn1n1n1 := ddd(n1,n1,n1):

> dn1n1k0 := ddd(n1,n1,k0):

> dn1n1k1 := ddd(n1,n1,k1):

> dn1n1k2 := ddd(n1,n1,k2):

> dn1k0k0 := ddd(n1,k0,k0):

> dn1k0k1 := ddd(n1,k0,k1):

> dn1k0k2 := ddd(n1,k0,k2):

> dn1k1k1 := ddd(n1,k1,k1):
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> dn1k1k2 := ddd(n1,k1,k2):

> dn1k2k2 := ddd(n1,k2,k2):

> dk0k0k0 := ddd(k0,k0,k0):

> dk0k0k1 := ddd(k0,k0,k1):

> dk0k0k2 := ddd(k0,k0,k2):

> dk0k1k1 := ddd(k0,k1,k1):

> dk0k1k2 := ddd(k0,k1,k2):

> dk0k2k2 := ddd(k0,k2,k2):

> dk1k1k1 := ddd(k1,k1,k1):

> dk1k1k2 := ddd(k1,k1,k2):

> dk1k2k2 := ddd(k1,k2,k2):

> dk2k2k2 := ddd(k2,k2,k2):
> # Putting all terms together

> tder := (n1,k0,k1,k2) ->

> dn1n1n1*n1*n1*n1+ 3*dn1n1k0*n1*n1*k0+ 3*dn1n1k1*n1*n1*k1+

> 3*dn1n1k2*n1*n1*k2+ 3*dn1k0k0*n1*k0*k0+ 6*dn1k0k1*n1*k0*k1+

> 6*dn1k0k2*n1*k0*k2+ 3*dn1k1k1*n1*k1*k1+ 6*dn1k1k2*n1*k1*k2+

> 3*dn1k2k2*n1*k2*k2+ dk0k0k0*k0*k0*k0+ 3*dk0k0k1*k0*k0*k1+

> 3*dk0k0k2*k0*k0*k2+ 3*dk0k1k1*k0*k1*k1 + 6*dk0k1k2*k0*k1*k2+

> 3*dk0k2k2*k0*k2*k2+ dk1k1k1*k1*k1*k1+ 3*dk1k1k2*k1*k1*k2+

> 3*dk1k2k2*k1*k2*k2+ dk2k2k2*k2*k2*k2:
> # at a general term

> tder(a,a+b2,-3*a+b3,b4):

> s:= expand(%):
> #terms in s without a

> noa := subs(a=0,s):
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> s1 := expand((s-noa)/a):

> # terms in s with one a

> onea:= subs(a=0,%):

> s2 := expand((s1-onea)/a):

> # terms in s with 2 a’s

> twoa := subs(a=0,%):

> s3 := expand((s2-twoa)/a):

> # terms in s with 3 a’s

> threea := subs(a=0,%):

> is(simplify(noa+a*onea+a^2*twoa+a^3*threea-s),0);

true
> # Three a’s

> sss(threea,6);

−90λ−1 +O (1)
> # Two a’s

> subs(b2=0,b3=0,twoa/b4): expand(%):

> sss(%,3);

> subs(b2=0,b4=0,twoa/b3):expand(%):

> sss(%,3);

> subs(b3=0,b4=0,twoa/b2):expand(%):

> sss(%,3);

108λ−2 − 54λ−1 − 9

20
+O (λ)

108λ−2 + 18λ−1 +O (1)

−108λ−2 − 198λ−1 − 1449

20
+O (λ)
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> # One a

> subs(b2=0,b3=0,onea/b4^2):

> b42:= expand(%):

> sss(%,5);

> subs(b2=0,b4=0,onea/b3^2):

> b32:= expand(%):

> sss(%,3);

> subs(b3=0,b4=0,onea/b2^2):

> b22:=expand(%):

> sss(%,3);

−36λ−2 + 30λ−1 − 31

20
+O (λ)

−36λ−2 + 6λ−1 +O (1)

108λ−2 + 126λ−1 +
1329

20
+O (λ)

> # One a -- continuation

> subs(b2=0,onea-b42*b4^2-b32*b3^2):

> expand(%/(b4*b3)):

> sss(%,3);

> subs(b3=0,onea-b42*b4^2-b22*b2^2):

> expand(%/(b4*b2)):

> sss(%,3);

> subs(b4=0,onea-b32*b3^2-b22*b2^2):

> expand(%/(b2*b3)):

> sss(%,3);

−72λ−2 + 60λ−1 − 31

10
+O (λ)

−72λ−2 + 60λ−1 − 31

10
+O (λ)

72λ−2 + 156λ−1 +
529

10
+O (λ)

> # THIRD DERIVATIVE LAMDA PART

> ddd1:= -((2*c3-a-b)*(dQ3+c3)/n3-dQ3*(c3-a)*(c3-b)/Q3)/(Q3*(1+eta3-c3));
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ddd1 := −
(

(2 c3 − a− b) (dQ3 + c3 )

n3
− dQ3 (c3 − a) (c3 − b)

Q3

)
Q3−1 (1 + eta3 − c3 )−1

> ddd2 := (dQ3+c3)/n3;

ddd2 :=
dQ3 + c3

n3
> dl := lambda*((c3+dQ3)/(Q3*(1+eta3-c3)));

dl :=
λ (dQ3 + c3 )

Q3 (1 + eta3 − c3 )
> deta := dl*(1/lambda)*(eta3*(1+lambda*ela/f1-eta3));

deta := (dQ3 + c3 ) eta3

(
1 +

λ ela

f1
− eta3

)
Q3−1 (1 + eta3 − c3 )−1

> dddlambda := ddd1 + (ddd2+deta)*(c3-a)*(c3-b)/(Q3*(1+eta3-c3)^2);

dddlambda := −
(

(2 c3 − a− b) (dQ3 + c3 )

n3
− dQ3 (c3 − a) (c3 − b)

Q3

)
Q3−1 (1 + eta3 − c3 )−1

+

(
dQ3 + c3

n3
+ (dQ3 + c3 ) eta3

(
1 +

λ ela

f1
− eta3

)
Q3−1 (1 + eta3 − c3 )−1

)
·

· (c3 − a) (c3 − b) Q3−1 (1 + eta3 − c3 )−2

> dln1n1n1 := subs(a=1,b=1,dQ3=-1, dddlambda):

> dln1n1k := subs(a=1,b=1,dQ3=-2, dddlambda):

> dln1kk := subs(a=1,b=2,dQ3=-2, dddlambda):

> dlkkk := subs(a=2,b=2,dQ3=-2, dddlambda):
> tderlambda := (n1,k0,k1,k2) ->

> d111*n1*n1*n1 + 3*d11k*n1*n1*k0 + 3*d11k*n1*n1*k1 + 3*d11k*n1*n1*k2+

> 3*d1kk*n1*k0*k0 + 6*d1kk*n1*k0*k1 + 6*d1kk*n1*k0*k2 + 3*d1kk*n1*k1*k1+

> 6*d1kk*n1*k1*k2 + 3*d1kk*n1*k2*k2 + dkkk*k0*k0*k0 + 3*dkkk*k0*k0*k1+

> 3*dkkk*k0*k0*k2 + 3*dkkk*k0*k1*k1 + 6*dkkk*k0*k1*k2 + 3*dkkk*k0*k2*k2 +

> dkkk*k1*k1*k1 + 3*dkkk*k1*k1*k2 + 3*dkkk*k1*k2*k2 + dkkk*k2*k2*k2;

tderlambda := (n1 , k0 , k1 , k2 ) 7→ d111 n1 3 + 3 d11k n1 2k0 + 3 d11k n1 2k1 + 3 d11k n1 2k2

+3 d1kk n1 k0 2 + 6 d1kk n1 k0 k1 + 6 d1kk n1 k0 k2 + 3 d1kk n1 k1 2

+6 d1kk n1 k1 k2 + 3 d1kk n1 k2 2 + dkkk k0 3 + 3 dkkk k0 2k1

+3 dkkk k0 2k2 + 3 dkkk k0 k1 2 + 6 dkkk k0 k1 k2 + 3 dkkk k0 k2 2

+dkkk k1 3 + 3 dkkk k1 2k2 + 3 dkkk k1 k2 2 + dkkk k2 3

> subsdddl := x->subs(d111=dln1n1n1,d11k=dln1n1k,d1kk=dln1kk,dkkk=dlkkk, x):
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> # At general terminal

> tderlambda(a,a+b2,-3*a+b3,b4):

> sl:= expand(%):
> noal := subs(a=0,sl):

> sa:= expand(sl-noal):

> oneal:= subs(a=0, expand(sa/a)):

> saa := expand(sa-a*oneal):

> twoal:= subs(a=0, expand(saa/a^2)):

> saaa := expand(saa-a^2*twoal):

> threeal:= subs(a=0, expand(saaa/a^3)):

> is(simplify(noal+oneal*a+twoal*a^2+threeal*a^3-sl),0);

true
> # two a’s

> subs(b2=0,b3=0,twoal):

> expand(%/b4):

> subsdddl(%):

> sss(%,9);

> subs(b2=0,b4=0,twoal):

> expand(%/b3):

> subsdddl(%):

> sss(%,9);

> subs(b3=0,b4=0,twoal):

> expand(%/b2):

> subsdddl(%):

> sss(%,9);

540λ−2 − 90λ−1 − 1101

100
+O (λ)

540λ−2 − 90λ−1 − 1101

100
+O (λ)

540λ−2 − 90λ−1 − 1101

100
+O (λ)

215



> # One a

> subs(b2=0,b3=0,oneal):

> b42 := expand(%/b4^2):

> subsdddl(%):

> sss(%,9);

> subs(b2=0,b4=0,oneal):

> b32 := expand(%/b3^2):

> subsdddl(%):

> sss(%,9);

> subs(b3=0,b4=0,oneal):

> b22 := expand(%/b2^2):

> subsdddl(%):

> sss(%,9);

> onea2:= expand(oneal-b22*b2^2-b32*b3^2-b42*b4^2);

> subs(b2=0,onea2):

> expand(%/(b3*b4)):

> subsdddl(%):

> sss(%,9);

> subs(b3=0,onea2):

> expand(%/(b2*b4)):

> subsdddl(%):

> sss(%,9);

> subs(b4=0,onea2):

> expand(%/(b3*b2)):

> subsdddl(%):

> sss(%,9);

−2592λ−3 +
1188

5
λ−2 +

1764

25
λ−1 − 206847

3500
+O (λ)

−2592λ−3 +
1188

5
λ−2 +

1764

25
λ−1 − 206847

3500
+O (λ)

−2592λ−3 +
1188

5
λ−2 +

1764

25
λ−1 − 206847

3500
+O (λ)
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onea2 := 6 d1kk b2 b3 + 6 d1kk b4 b2 + 6 d1kk b4 b3 − 12 dkkk b2 b3

− 12 dkkk b4 b2 − 12 dkkk b4 b3

−5184λ−3 +
2376

5
λ−2 +

3528

25
λ−1 − 206847

1750
+O (λ)

−5184λ−3 +
2376

5
λ−2 +

3528

25
λ−1 − 206847

1750
+O (λ)

−5184λ−3 +
2376

5
λ−2 +

3528

25
λ−1 − 206847

1750
+O (λ)

> # No a’s

> subs(b2=0,b3=0,noal):

> b43 := expand(%/b4^3):

> subsdddl(%):

> sss(%,9);

> subs(b2=0,b4=0,noal):

> b33:= expand(%/b3^3):

> subsdddl(%):

> sss(%,9);

> subs(b3=0,b4=0,noal):

> b23:= expand(%/b2^3):

> subsdddl(%):

> sss(%,9);

4032λ−4 − 192

5
λ−3 − 2852

25
λ−2 +

70554

875
λ−1 +

16217

500
+O (λ)

4032λ−4 − 192

5
λ−3 − 2852

25
λ−2 +

70554

875
λ−1 +

16217

500
+O (λ)

4032λ−4 − 192

5
λ−3 − 2852

25
λ−2 +

70554

875
λ−1 +

16217

500
+O (λ)
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A.5 Spreadsheet for Section 4.8.8

> h := x -> x*n*ln(x)+ x*n*ln(n)- x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> eladef := exp(lambda);

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> f3def := exp(lambda)-1-lambda-lambda^2/2;

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> F1def := exp(2*lambda)-1;

> F2def := exp(2*lambda)-1-2*lambda;

> etadef := lambda*f1/f2;

> subdef := x -> subs(eta3=etadef,ela=eladef,f1=f1def,f2=f2def,
f3=f3def,g1=g1def,g2=g2def,F1=F1def,F2=F2def, x);

eladef := eλ

f1def := eλ − 1

f2def := eλ − 1− λ
f3def := eλ − 1− λ− 1/2λ2

g1def := eλ + 1

g2def := eλ + 2

F1def := e2λ − 1

F2def := e2λ − 1− 2λ

etadef :=
f1 λ

f2

subdef := x 7→ x
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> # Relations

> n3def := 1-n1-k0-k1-k2;

> Q3def := 3*m-n1-2*(k0+k1+k2);

> m2def := n1;

> m2pdef := m2def-k0;

> m3def := m-m2def;

> P2def := 2*m2pdef;

> P3def := 3*m3def;

> T2def := P2def-k1;

> T3def := 3*m3def-k1-2*k2;

> n2def := k0+k1+k2;

> subdef2 := x -> subs(n3=n3def,Q3=Q3def,m2=m2def,m3=m3def,m2p=m2pdef,
P2=P2def,P3=P3def, T2=T2def, T3=T3def, n2 =n2def, x);

n3def := 1− n1 − k0 − k1 − k2

Q3def := 3m− n1 − 2 k0 − 2 k1 − 2 k2

m2def := n1

m2pdef := n1 − k0

m3def := m− n1

P2def := 2 n1 − 2 k0

P3def := 3m− 3 n1

T2def := 2 n1 − 2 k0 − k1

T3def := 3m− 3 n1 − k1 − 2 k2

n2def := k0 + k1 + k2

subdef2 := x 7→ x
> # fpre (without lambda part)

> f := (n1,k0,k1,k2) -> expand(subdef2(

> h(m2)+h(P3)+h(P2)+h(Q3)

> -h(k0)-h(k1)-h(k2)-h(n3)-h(m3)-h(T3)-h(T2)-2*h(m2p)

> -k2*n*ln(2)-m3*n*ln(6)-m2p*n*ln(2))/n):

> # fpre

> fpre := expand(f(n1,k0,k1,k2)+subdef2(n3*log(f3)- Q3*ln(lambda))):
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> fn1 := (4/9)*T3^3*n3*n1*lambda/(m3^2*Q3*T2^2*f3);

> fk0 := (1/2)*n3*T2^2*lambda^2/(Q3^2*k0*f3);

> fk1 := T3*n3*T2*lambda^2/(k1*Q3^2*f3);

> fk2 := (1/2)*T3^2*n3*lambda^2/(k2*Q3^2*f3);

fn1 := 4/9
T3 3n3 n1 λ

m3 2Q3 T2 2f3

fk0 := 1/2
n3 T2 2λ2

Q3 2k0 f3

fk1 :=
T3 n3 T2 λ2

k1 Q3 2 f3

fk2 := 1/2
T3 2n3 λ2

k2 Q3 2f3
> eqn1 := numer(fn1)-denom(fn1);

> eqk0 := numer(fk0)-denom(fk0);

> eqk1 := numer(fk1)-denom(fk1);

> eqk2 := numer(fk2)-denom(fk2);

> eqn1 := subdef2(eqn1):

> eqk0 := subdef2(eqk0):

> eqk1 := subdef2(eqk1):

> eqk2 := subdef2(eqk2):

eqn1 := 4 T3 3n3 n1 λ− 9 m3 2Q3 T2 2f3

eqk0 := n3 T2 2λ2 − 2 Q3 2k0 f3

eqk1 := T3 n3 T2 λ2 − k1 Q3 2f3

eqk2 := T3 2n3 λ2 − 2 k2 Q3 2f3

> # Now I will start taking resultants of the equations above
> resultant(eqk0,eqk1,f3):

> eq1 := factor(%);

eq1 := λ2 (−2 n1 + k1 + 2 k0 ) (−1 + n1 + k0 + k1 + k2 )(
6 n1 k0 + 2 n1 k1 − k1 2 − 6mk0 + 4 k0 k2

)
(n1 + 2 k0 + 2 k1 + 2 k2 − 3m)2

> # Discarding all terms except the fourth

> eq1s := op(4, eq1);

> k2sola := solve(eq1s=0,k2);
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eq1s := 6 n1 k0 + 2 n1 k1 − k1 2 − 6mk0 + 4 k0 k2

k2sola := 1/4
−6 n1 k0 − 2 n1 k1 + k1 2 + 6mk0

k0
> resultant(eqk1,eqk2, lambda):

> eq2 := factor(%);

eq2 := f3 2 (3 n1 + k1 − 3m+ 2 k2 )2

(−1 + n1 + k0 + k1 + k2 )2 (4 k0 k2 + 3mk1 − 3 n1 k1 − k1 2 − 4 n1 k2
)2

(n1 + 2 k0 + 2 k1 + 2 k2 − 3m)4

> eq2s := op(1,op(4, eq2));

eq2s := 4 k0 k2 + 3mk1 − 3 n1 k1 − k1 2 − 4 n1 k2

> eq3 := factor(resultant(eq1s,eq2s,k2));

eq3 := 4 (−2 n1 + k1 + 2 k0 ) (3mk0 − 3 n1 k0 − n1 k1 )
> eq3s := op(3,eq3);

> k1sola := solve(eq3s, k1);

eq3s := 3mk0 − 3 n1 k0 − n1 k1

k1sola := 3
(m− n1 ) k0

n1
> eq4 := factor(resultant(eqn1,eq1s,k2));

eq4 := 32 (−2 n1 + k1 + 2 k0 )3 (−4λ k1 3n1 k0 − 2λn1 2k1 4 + λn1 k1 5

−2λ k1 3n1 2k0 + 6λmn1 k1 3k0 + 4λ k1 4n1 k0 + 4λn1 k0 2k1 3 + 36 k0 3f3 k1 n1 2

− 72 k0 3f3 k1 mn1 + 36 k0 3f3 k1 m2 + 72 f3 n1 2k0 4 − 144 f3 n1 k0 4m+ 72 f3 m2k0 4)
> eq4s := op(3,eq4);

eq4s := −4λ k1 3n1 k0 − 2λn1 2k1 4 + λn1 k1 5 − 2λ k1 3n1 2k0 + 6λmn1 k1 3k0

+ 4λ k1 4n1 k0 + 4λn1 k0 2k1 3 + 36 k0 3f3 k1 n1 2 − 72 k0 3f3 k1 mn1

+36 k0 3f3 k1 m2 + 72 f3 n1 2k0 4 − 144 f3 n1 k0 4m+ 72 f3 m2k0 4

> eq5 := factor(resultant(eq4s,eq3s,k1));

eq5 := 9 n1 k0 4 (m− n1 )2 (27 k0 λm3 − 45 k0 λn1 m2 + 21 k0 λmn1 2

−3λn1 3k0 + 12mn1 3f3 + 12 n1 3λm− 12λmn1 2 − 4 f3 n1 4

− 12 n1 4λ+ 12λn1 3)
> eq5s := op(5,eq5);
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eq5s := 27 k0 λm3 − 45 k0 λn1 m2 + 21 k0 λmn1 2 − 3λn1 3k0 + 12mn1 3f3

+ 12 n1 3λm− 12λmn1 2 − 4 f3 n1 4 − 12 n1 4λ+ 12λn1 3

> eq6 := factor(resultant(eqk0,eq1s,k2));

eq6 := −4 k0 (−2 n1 + k1 + 2 k0 )2 (8 k0 2f3 + 4λ2k0 2 − 4 k0 λ2 − 2λ2n1 k0 + 6λ2mk0

+4λ2k0 k1 + 8 k1 f3 k0 + 2 f3 k1 2 − 2λ2n1 k1 + λ2k1 2)
> eq6s:=op(4,eq6);

eq6s := 8 k0 2f3 + 4λ2k0 2 − 4 k0 λ2 − 2λ2n1 k0 + 6λ2mk0

+ 4λ2k0 k1 + 8 k1 f3 k0 + 2 f3 k1 2 − 2λ2n1 k1 + λ2k1 2

> eq7 := factor(resultant(eq6s,eq3s,k1));

eq7 := k0 ( k0 f3 n1 2 + λ2n1 2k0 − 6λ2mn1 k0 − 12 k0 f3 mn1 + 18 k0 f3 m2 + 9λ2k0 m2

− 4λ2n1 2 + 4λ2n1 3)
> eq7s:=op(2,eq7);

eq7s := 2 k0 f3 n1 2 + λ2n1 2k0 − 6λ2mn1 k0 − 12 k0 f3 mn1 + 18 k0 f3 m2

+ 9λ2k0 m2 − 4λ2n1 2 + 4λ2n1 3

> k0sola := solve(eq7s=0,k0);

k0sola := −4
λ2n1 2 (−1 + n1 )

2 f3 n1 2 + λ2n1 2 − 6λ2mn1 − 12 f3 mn1 + 18m2f3 + 9λ2m2

> eq8 := factor(resultant(eq7s,eq5s,k0));

eq8 := 4 f3 n1 2 (3m− n1 )2 (6 f3 mn1 + 6λmn1 + 3λ2mn1

−6mλ− 6λn1 2 − λ2n1 2 − 2 f3 n1 2 + 6 n1 λ)
> eq8s := op(5,eq8);

eq8s := 6 f3 mn1 + 6λmn1 + 3λ2mn1 − 6mλ− 6λn1 2 − λ2n1 2 − 2 f3 n1 2 + 6 n1 λ

> n2sola := factor(subs(k2=k2sola, k1=k1sola, k0=k0sola, k0+k1+k2));

n2sola := −(−1 + n1 )λ2

2 f3 + λ2

> eq9s := lambda*f2*(1-n1-n2)-(3*m-n1-2*n2)*f3;

eq9s := λ f2 (1− n1 − n2 )− (3m− n1 − 2 n2 ) f3
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> resultant(subs(n2=n2sola,f2=f2def,f3=f3def,eq9s),subs(n2=n2sol,
f2=f2def,f3=f3def,eq8s),n1):

> simplify(%);

> # eqsol relates m and lambda

> eqsol := op(4,%);

> solve(eqsol=0,m);

> msola := factor(%[2]);

> msol := (1/3)*lambda*g2*f1/F2;

> is(simplify(subs(f1=f1def,g2=g2def,F2=F2def,msol)-msola),0);

> rsol := msol-1/2;

1

2(eλ − 1− λ)

(
2 eλ − 2− 2λ− λ2

)2
λ (3me2λλ+ 3me2λ − 9m2e2λ

−λ e2λ + 3meλλ− eλλ+ 9m2 − 3m− 12mλ+ 18λm2 + 2λ)

eqsol := 3me2λλ+ 3me2λ − 9m2e2λ

−λ e2λ + 3meλλ− eλλ+ 9m2 − 3m− 12mλ+ 18λm2 + 2λ

1/3, −1/3
λ
(
e2λ + eλ − 2

)
−e2λ + 2λ+ 1

msola := 1/3
λ
(
e2λ + eλ − 2

)
e2λ − 1− 2λ

msol := 1/3
λ g2 f1

F2
true

rsol := 1/3
λ g2 f1

F2
− 1/2

> subs(m=msol,n2=n2sola,eq9s):

> solve(%=0,n1);

> n1solb := simplify(subs(g2=g2def,f1=f1def,F2=F2def,f2=f2def,f3=f3def,%));

> n1sol := f1*lambda/F2;

> is(simplify(subs(f1=f1def,F2=F2def,n1sol)-n1solb),0);

λ
(
2 f2 F2 − 2 g2 f1 f3 − g2 f1 λ2 + 2λF2

)
F2 (2λ f2 − 2 f3 + λ2)

n1solb :=

(
eλ − 1

)
λ

e2λ − 1− 2λ
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n1sol :=
f1 λ

F2
true

> k0sol := 2*lambda^2/(g1*F2);

> is(simplify(subs(n1=n1solb,m=msola,f3=f3def,g1=g1def,F2=F2def,
k0sol-k0sola)),0);

k0sol := 2
λ2

g1 F2

true
> k1sol := 2*lambda^2*f1/(g1*F2);

> is(simplify(subs(k0=k0sola,n1=n1solb,m=msola,f1=f1def,f3=f3def,
g1=g1def,F2=F2def,k1sol-k1sola)),0);

k1sol := 2
λ2f1

g1 F2

true
> k2sol := lambda^2*f1^2/(2*g1*F2);

> is(simplify(subs(k1=k1sola,k0=k0sola,n1=n1solb,m=msola,f1=f1def,
f3=f3def,g1=g1def,F2=F2def,k2sol-k2sola)),0);

k2sol := 1/2
λ2f1 2

g1 F2

true
> n3sola := simplify(subs(n1=n1sol,k0=k0sol,k1=k1sol,k2=k2sol,n3def));

> n3sol := g1*f3/F2;

> is(simplify(subs(f3=f3def,g1=g1def,F2=F2def,f1=f1def,n3sola-n3sol)),0);

n3sola := 1/2
2 g1 F2 − 2 f1 λ g1 − 4λ2 − 4λ2f1 − λ2f1 2

g1 F2

n3sol :=
g1 f3

F2
true

> Q3sola := simplify(subs(m=msol,n1=n1sol,k0=k0sol,k1=k1sol,k2=k2sol,
f1=f1def,g1=g1def,g2=g2def,Q3def));

> Q3sol := lambda*g1*f2/F2;

> is(simplify(subs(f3=f3def,g1=g1def,F2=F2def,f2=f2def,Q3sola-Q3sol)),0);

Q3sola := −
(
−e2λ + λ+ 1 + eλλ

)
λ

F2

Q3sol :=
λ g1 f2

F2
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true
> T3sola := simplify(subs(m2=m2def,m=msol,n1=n1sol,k0=k0sol,k1=k1sol,
k2=k2sol,f1=f1def,g1=g1def,g2=g2def,D33def));

> T3sol := lambda*f2*f1/F2;

> is(simplify(subs(f3=f3def,g1=g1def,F2=F2def,f1=f1def,f2=f2def,
T3sola-T3sol)),0);

T3sola := D33def

T3sol :=
λ f2 f1

F2

false
> T2sola := simplify(subs(m2=m2def,m=msol,n1=n1sol,k0=k0sol,k1=k1sol,
k2=k2sol,f1=f1def,g1=g1def,g2=g2def,D32def));

> T2sol := 2*lambda*f2/F2;

> is(simplify(subs(f3=f3def,g1=g1def,F2=F2def,f2=f2def,T2sola-T2sol)),0);

T2sola := D32def

T2sol := 2
λ f2

F2

false
> m3sola := simplify(subs(m2=m2def,m=msol,n1=n1sol,k0=k0sol,k1=k1sol,
k2=k2sol,f1=f1def,g1=g1def,g2=g2def,m3def));

> m3sol := (1/3)*lambda*f1*f1/F2;

> is(simplify(subdef(m3sola-m3sol)),0);

m3sola := 1/3
λ
(
eλ − 1

)2
F2

m3sol := 1/3
λ f1 2

F2
true

> m2psola := simplify(subs(m2=m2def,m=msol,n1=n1sol,k0=k0sol,k1=k1sol,
k2=k2sol,f1=f1def,g1=g1def,g2=g2def,m2pdef));

> m2psol := lambda/g1;

> is(simplify(subdef(m2psola-m2psol)),0);

m2psola :=
λ
(
e2λ − 1− 2λ

)
(eλ + 1) F2

m2psol :=
λ

g1

true

225



> # Series

> seriesl:= (value,k) -> series(subdef(value),lambda=0,k);

> # This relates the parameters with lambda->0

> n1series := seriesl(n1sol,3);

> mseries := seriesl(msol,4);

> k0series := seriesl(k0sol,4);

> k1series := seriesl(k1sol,4);

> k2series := seriesl(k2sol,4);

> n3series := seriesl(n3sol,4);

> Q3series := seriesl(Q3sol,4);

> T3series := seriesl(T3sol,4);

> T2series := seriesl(T2sol,4);

> m3series := seriesl(m3sol,4);

> m2pseries := seriesl(m2psol,2);

> c3series := seriesl(Q3sol/n3sol,4);

> seriesl(Q3sol*(1+etadef-Q3sol/n3sol),5);

n1series := 1/2− 1/12λ− 1/36λ2 +O
(
λ3
)

mseries := 1/2 + 1/12λ+ 1/36λ2 +
11

2160
λ3 +O

(
λ4
)

k0series := 1/2− 7

12
λ+ 2/9λ2 +

1

2160
λ3 +O

(
λ4
)

k1series := 1/2λ− 1/3λ2 +
1

72
λ3 +O

(
λ4
)

k2series := 1/8λ2 − 1/48λ3 +O
(
λ4
)

n3series := 1/6λ+O
(
λ2
)

Q3series := 1/2λ+O
(
λ2
)

T3series := O
(
λ2
)

T2series := 1/2λ+O
(
λ2
)

m3series := 1/6λ+O
(
λ2
)

m2pseries := 1/2λ+O
(
λ2
)

c3series := 3 + 1/4λ+O
(
λ2
)
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1/24λ2 +O
(
λ3
)

> fpre-(2*r*ln(n)-4*r*ln(r)):

> fl:= subs(m=msol, n1=n1sol,r=rsol,k0=k0sol,k1=k1sol,k2=k2sol,%):

> simplify(seriesl(fl,5),symbolic);

> evalf(-2/3*ln(2)-1/3*ln(3)+1/3);

> evalf(-(2/9)*ln(2)-(1/9)*ln(3)+7/36);

(−2/3 ln (2)− 1/3 ln (3) + 1/3)λ+

(
−2/9 ln (2)− 1/9 ln (3) +

7

36

)
λ2 +O

(
λ3
)

−0.4949688834

−0.0816562945
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A.6 Case 1 in the proof of Lemma 4.8.18

> restart; h := x -> x*n*ln(x)+x*n*ln(n)-x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> # lambda

> eladef := exp(lambda);

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> f3def := exp(lambda)-1-lambda-lambda^2/2;

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> F1def := exp(2*lambda)-1;

> F2def := exp(2*lambda)-1-2*lambda;

> etadef := lambda*f1/f2;

> subdef := x -> subs(eta=etadef,ela=eladef,f1=f1def,f2=f2def,f3=f3def,
g1=g1def,g2=g2def,F1=F1def,F2=F2def, x);

> msolmax := (1/3)*lambda*g2*f1/F2;

> rsolmax := msolmax-1/2;

> series(subdef(rsolmax),lambda=0);

eladef := eλ

f1def := eλ − 1

f2def := eλ − 1− λ
f3def := eλ − 1− λ− 1/2λ2

g1def := eλ + 1

g2def := eλ + 2

F1def := e2λ − 1

F2def := e2λ − 1− 2λ

etadef :=
λ f1

f2

subdef := x 7→ x

msolmax := 1/3
λ g2 f1

F2
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rsolmax := 1/3
λ g2 f1

F2
− 1/2

1/12λ+ 1/36λ2 +
11

2160
λ3 +O

(
λ4
)

> n2rel := k0+k1+k2;

> n3rel := 1-n1-n2;

> P3rel := 3*m-3*n1;

> Q3rel := 3*m-n1-2*n2;

> P2rel := 2*(n1-k0);

> m2prel := n1-k0;

> m3rel := P3rel/3;

n2rel := k0 + k1 + k2

n3rel := 1− n1 − n2

P3rel := 3m− 3 n1

Q3rel := 3m− n1 − 2 n2

P2rel := 2 n1 − 2 k0

m2prel := n1 − k0

m3rel := m− n1
> sol:= solve(subs(n2=n2rel,{n3rel=0, P2rel=k1, P3rel=k1+2*k2}),{k1,k2,n1});
> k1sol := rhs(sol[1]);

> k2sol := rhs(sol[2]);

> n1sol := rhs(sol[3]);

> subsfork0 := x -> subs(n1=n1sol,k1=k1sol,k2=k2sol,x);

> subsfork0(P3rel);

> subsfork0(P2rel);

> subsfork0(m2prel);

sol := {k1 = −6m+ 4− 2 k0 , k2 = −5 + 9m+ k0 ,n1 = −3m+ 2}
k1sol := −6m+ 4− 2 k0

k2sol := −5 + 9m+ k0

n1sol := −3m+ 2

subsfork0 := x 7→ x

12m− 6

−6m+ 4− 2 k0

−3m+ 2− k0
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> f := (k0) -> subs( m3 = m3rel, P3 = P3rel, P2 = P2rel, m2p = m2prel,
n2 = n2rel, k1=k1sol,k2 = k2sol, n1=n1sol, h(n1)+h(P3)+h(P2)-h(k0)-h(k1)
-h(k2)-h(m3)-2*h(m2p)-k2*n*ln(2)-m3*n*ln(6)-m2p*n*ln(2))/n:

> expand(f(k0));

1− k0 ln (k0 ) + 5 ln (2)− 10m ln (2) + 5 ln (−5 + 9m+ k0 )− 9 ln (−5 + 9m+ k0 )m

− ln (−5 + 9m+ k0 ) k0 − ln (n) + 2 ln (n)m+ 2 ln (−3m+ 2)− 3 ln (−3m+ 2)m

− 4 ln (6) + 8m ln (6) + 8m ln (2m− 1)− 4 ln (−3m+ 2− k0 ) + 6 ln (−3m+ 2− k0 )m

+ 2 ln (−3m+ 2− k0 ) k0 − 4 ln (2m− 1)− 2m
> # Partial derivatives

> fk0 := simplify(exp(diff(f(k0), k0)));

fk0 :=
(3m− 2 + k0 )2

k0 (−5 + 9m+ k0 )
> fk00 := simplify(diff(diff(f(k0), k0),k0));

> numfk00:= simplify(subs(m=1/2+r,numer(-fk00)));

> simplify(subs(k0=+5-9*m,m=1/2+r,numfk00));

> simplify(subs(k0=+2-3*m,m=1/2+r,numfk00));

fk00 :=
33m− 10− k0 − 27m2 + 3mk0

k0 (−5 + 9m+ k0 ) (3m− 2 + k0 )

numfk00 := 1/4− 6 r − 1/2 k0 + 27 r2 − 3 k0 r

−3 r + 54 r2

−6 r + 36 r2

> eqk0 := numer(fk0)-denom(fk0);

eqk0 := (3m− 2 + k0 )2 − k0 (−5 + 9m+ k0 )

> k0sol := solve(eqk0=0,k0); factor(%);

k0sol :=
9m2 − 12m+ 4

3m− 1

(3m− 2)2

3m− 1
> simplify(subs(k0=k0sol, f(k0sol))):

> subdef(subs(r=rsolmax, m=msolmax,w=exp(1),%-(2*r*ln(n)-4*r*ln(r)))):

> simplify(series(%,lambda=0),symbolic);

(1/3− ln (2)− 1/3 ln (3))λ+O
(
λ2
)
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A.7 Case 2 in the proof of Lemma 4.8.18

> restart; h := x -> x*n*ln(x)+x*n*ln(n)-x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> # lambda functions

> eladef := exp(lambda);

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> f3def := exp(lambda)-1-lambda-lambda^2/2;

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> F1def := exp(2*lambda)-1;

> F2def := exp(2*lambda)-1-2*lambda;

> etadef := lambda*f1/f2;

> subdef := x -> subs(eta=etadef,ela=eladef,f1=f1def,f2=f2def,f3=f3def,
g1=g1def,g2=g2def,F1=F1def,F2=F2def, x);

> msolmax := (1/3)*lambda*g2*f1/F2;

> rsolmax := msolmax-1/2;

> series(subdef(rsolmax),lambda=0);

eladef := eλ

f1def := eλ − 1

f2def := eλ − 1− λ
f3def := eλ − 1− λ− 1/2λ2

g1def := eλ + 1

g2def := eλ + 2

F1def := e2λ − 1

F2def := e2λ − 1− 2λ

etadef :=
λ f1

f2

subdef := x 7→ x

msolmax := 1/3
λ g2 f1

F2
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rsolmax := 1/3
λ g2 f1

F2
− 1/2

1/12λ+ 1/36λ2 +
11

2160
λ3 +O

(
λ4
)

> n2rel := k0+k1+k2;

> n3rel := 1-n1-n2;

> P3rel := 3*m-3*n1;

> Q3rel := 3*m-n1-2*n2;

> P2rel := 2*(n1-k0);

> m2prel := n1-k0;

> m3rel := P3rel/3;

n2rel := k0 + k1 + k2

n3rel := 1− n1 − n2

P3rel := 3m− 3 n1

Q3rel := 3m− n1 − 2 n2

P2rel := 2 n1 − 2 k0

m2prel := n1 − k0

m3rel := m− n1
> Q3sol := 3*n3;

> n1sol := solve(P3rel=0,n1);

> k0sol := solve(subs(n3=n3rel,n2=n2rel,n1=n1sol,k1=0,k2=0,Q3rel=Q3sol),k0);

Q3sol := 3 n3

n1sol := m

k0sol := 3− 5m
> f := expand(subs( Q3=Q3sol, n3=n3rel, m3=m3rel, P3=P3rel, P2=P2rel,
m2p = m2prel, n2 = n2rel, k0=k0sol, n1=n1sol, k1=0,k2=0, (h(n1)+ h(Q3)
-h(k0)-h(n3)-h(m3) -2*h(m2p) -m3*n*ln(6)-m2p*n*ln(2))/n - n3*ln(6)));

f := 1 +m ln (m) + 2m ln (n) + 8m ln (6)− 4m ln (−1 + 2m)− ln (n)− 3 ln (3− 5m)

+5 ln (3− 5m)m− 10m ln (2)− 12m ln (3) + 5 ln (2) + 6 ln (3)− 2m− 4 ln (6) + 2 ln (−1 + 2m)
> simplify(series(subs(m=msolmax,r=rsolmax,g2=g2def,f1=f1def,
F2=F2def,w=exp(1),f-(2*r*ln(n)-4*r*ln(r))),lambda=0, 4));

(− ln (2)− 1/3 ln (3) + 1/3)λ+O
(
λ2
)

A.8 Case 3 in the proof of Lemma 4.8.18

> restart; h := x -> x*n*ln(x)+x*n*ln(n)-x*n;
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h := x 7→ xn ln (x) + xn ln (n)− xn
> n2rel := k0+k1+k2;

> n3rel := 1-n1-n2;

> P3rel := 3*m-3*n1;

> Q3rel := 3*m-n1-2*n2;

> P2rel := 2*(n1-k0);

> m2rel := n1-k0;

> m3rel := P3rel/3;

n2rel := k0 + k1 + k2

n3rel := 1− n1 − n2

P3rel := 3m− 3 n1

Q3rel := 3m− n1 − 2 n2

P2rel := 2 n1 − 2 k0

m2rel := n1 − k0

m3rel := m− n1
> Q3sol := 3*n3;

> k0sol := n1;

> k1sol := 0;

> k2sol := solve(subs(n3=n3rel,n2=n2rel,k1=0,k0=k0sol,Q3rel = Q3sol),k2);

Q3sol := 3 n3

k0sol := n1

k1sol := 0

k2sol := 3− 3 n1 − 3m
> f := (n1) -> subs( Q3=Q3sol, n3=n3rel, m3=m3rel, P3=P3rel, P2=P2rel,
m2=m2rel, n2=n2rel, k0=k0sol, k1=k1sol, k2=k2sol, (h(n1)+h(P3)+h(Q3)
-h(k0)-h(k2)-h(n3)-h(m3)-h(P3-k1-2*k2) -k2*n*ln(2)-m3*n*ln(6))/n - n3*ln(6)):

> expand(f(n1));

1− 3 ln (2) + 3 ln (2) n1 + 3 ln (2)m− 4 ln (6)m+ 6m ln (3) + 2m ln (m− n1 )

−2 n1 ln (m− n1 )− ln (n) + 2 ln (n)m+ 3 n1 ln (1− n1 −m) + 3m ln (1− n1 −m)

+ 2 ln (−2 + n1 + 3m)− n1 ln (−2 + n1 + 3m)

−3m ln (−2 + n1 + 3m)− 2m− 3 ln (3)− 3 ln (1− n1 −m)

+ 2 ln (6)
> # Partial derivatives
> fn1 := simplify(exp(diff(f(n1), n1)));

> fn1n1 := simplify(diff(diff(f(n1), n1),n1));
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fn1 := −8
(−1 + n1 +m)3

(m− n1 )2 (−2 + n1 + 3m)

fn1n1 :=
4− n1 − 15m+ 2 n1 m+ 14m2

(−2 + n1 + 3m) (m− n1 ) (−1 + n1 +m)
> eqn1 := numer(fn1)-denom(fn1);

eqn1 := −8 (−1 + n1 +m)3 − (m− n1 )2 (−2 + n1 + 3m)
> sol:= solve(subs(m=1/2+r,eqn1=0),n1): n1s := sol[1]; n1s2 := sol[2]:

> n1s3 := sol[3]:

n1s :=
2

27

3

√
−1052 r3 + 108

√
93r3 +

56

27

r2

3
√
−1052 r3 + 108

√
93r3

+ 1/2− 25

27
r

> # n1s is the solution I am seeking

> series(n1s,r=0);

> cr := (-2/27)*(1052-108*sqrt(93))^(1/3)
-56/(27*(1052-108*sqrt(93))^(1/3))-25/27;

> evalf(cr);

1/2 +

(
2

27

3

√
1052− 108

√
93 3
√
−1− 56

27

(−1)2/3

3
√

1052− 108
√

93
− 25

27

)
r

cr := − 2

27

3

√
1052− 108

√
93− 56

27

1
3
√

1052− 108
√

93
− 25

27

−2.035656368

> simplify(subs(m=1/2+r, n1=1/2+b*r, f(n1)-(2*r*ln(n)+2*r*ln(r))),symbolic);

r (−2− ln (2) + 2 ln (3) + 2 ln(1− b) + 3 ln (−b− 1)− 3 ln (b+ 3) + 3 b ln (−b− 1)

− b ln (b+ 3) + 3 ln (2) b− 2 b ln (1− b))
> evalf(subs(b=cr, simplify(%/r)));

1.938961708
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A.9 Case 4 in the proof of Lemma 4.8.18

> restart; h := x -> x*n*ln(x)+x*n*ln(n)-x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> # lambda functions

> eladef := exp(lambda);

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> f3def := exp(lambda)-1-lambda-lambda^2/2;

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> F1def := exp(2*lambda)-1;

> F2def := exp(2*lambda)-1-2*lambda;

> etadef := lambda*f1/f2;

> subdef := x -> subs(eta=etadef,ela=eladef,f1=f1def,f2=f2def,f3=f3def,
g1=g1def,g2=g2def,F1=F1def,F2=F2def, x);

> msolmax := (1/3)*lambda*g2*f1/F2;

> rsolmax := msolmax-1/2;

eladef := eλ

f1def := eλ − 1

f2def := eλ − 1− λ
f3def := eλ − 1− λ− 1/2λ2

g1def := eλ + 1

g2def := eλ + 2

F1def := e2λ − 1

F2def := e2λ − 1− 2λ

etadef :=
λ f1

f2

subdef := x 7→ x

msolmax := 1/3
λ g2 f1

F2

rsolmax := 1/3
λ g2 f1

F2
− 1/2
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> n2rel := k0+k1+k2;

> n3rel := 1-n1-n2;

> P3rel := 3*m-3*n1;

> Q3rel := 3*m-n1-2*n2;

> P2rel := 2*(n1-k0);

> m2prel := n1-k0;

> m3rel := P3rel/3;

n2rel := k0 + k1 + k2

n3rel := 1− n1 − n2

P3rel := 3m− 3 n1

Q3rel := 3m− n1 − 2 n2

P2rel := 2 n1 − 2 k0

m2prel := n1 − k0

m3rel := m− n1
> Q3sol := 3*n3;

> k0sol := solve(subs(n3=n3rel,n2=n2rel,Q3rel = Q3sol),k0);

> subs(n3=n3rel,n2=n2rel,k0=k0sol,Q3rel);

> subs(n3=n3rel,n2=n2rel,k0=k0sol,P3rel-k1-2*k2);

> subs(n3=n3rel,n2=n2rel,k0=k0sol,P3rel);

> subs(n3=n3rel,n2=n2rel,k0=k0sol,P2rel-k1);

> subs(n3=n3rel,n2=n2rel,k0=k0sol,P2rel);

> subs(n3=n3rel,n2=n2rel,k0=k0sol,n3rel);

Q3sol := 3 n3

k0sol := 3− 2 n1 − k1 − k2 − 3m

9m+ 3 n1 − 6

3m− 3 n1 − k1 − 2 k2

3m− 3 n1

6 n1 − 6 + k1 + 2 k2 + 6m

6 n1 − 6 + 2 k1 + 2 k2 + 6m

−2 + n1 + 3m
> f := (n1,k1,k2) -> subs(Q3=Q3sol, n3=n3rel, m3=m3rel, P3=P3rel,
P2=P2rel, m2p=m2prel, n2=n2rel, k0=k0sol, (h(n1)+h(P3)+h(P2)+h(Q3)
-h(k0)-h(k1)-h(k2)-h(n3)-h(m3)-h(P3-k1-2*k2)-h(P2-k1)-2*h(m2p)
-k2*n*ln(2)-m3*n*ln(6)-m2p*n*ln(2))/n - n3*ln(6)):

> # Partial derivatives
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> fn1 := simplify(exp(diff(f(n1,k1,k2), n1)));

fn1 := −8
(−3m+ 3 n1 + k1 + 2 k2 )3 (−3 + 2 n1 + k1 + k2 + 3m)2 (−2 + n1 + 3m)2 n1

(m− n1 )2 (6 n1 − 6 + k1 + 2 k2 + 6m)6

> fk1 := simplify(exp(diff(f(n1,k1,k2), k1)));

fk1 := 2
(−3m+ 3 n1 + k1 + 2 k2 ) (−3 + 2 n1 + k1 + k2 + 3m)

(6 n1 − 6 + k1 + 2 k2 + 6m) k1
> fk2:= simplify(exp(diff(f(n1,k1,k2), k2)));

fk2 := −(−3m+ 3 n1 + k1 + 2 k2 )2 (−3 + 2 n1 + k1 + k2 + 3m)

(6 n1 − 6 + k1 + 2 k2 + 6m)2 k2
> eqn1 := numer(fn1)-denom(fn1);

eqn1 := −8 (−3m+ 3 n1 + k1 + 2 k2 )3 (−3 + 2 n1 + k1 + k2 + 3m)2

(−2 + n1 + 3m)2 n1 − (m− n1 )2 (6 n1 − 6 + k1 + 2 k2 + 6m)6

> eqk1 := numer(fk1)-denom(fk1);

eqk1 := 2 (−3m+ 3 n1 + k1 + 2 k2 ) (−3 + 2 n1 + k1 + k2 + 3m)

− (6 n1 − 6 + k1 + 2 k2 + 6m) k1
> eqk2 := numer(fk2)-denom(fk2);

eqk2 := − (−3m+ 3 n1 + k1 + 2 k2 )2 (−3 + 2 n1 + k1 + k2 + 3m)

− (6 n1 − 6 + k1 + 2 k2 + 6m)2 k2
> resultant(eqk1,eqk2,k1):

> eq1 := factor(%);

> k2solalt := 3-3*m-4*n1;

> subs(n3=n3rel,n2=n2rel,k0=k0sol,k2=k2solalt, P2rel);

eq1 := 9 (−2 + n1 + 3m)2 (k2 − 3 + 3m+ 4 n1 )

(9m2k2 − 6mn1 k2 + n1 2k2 + 27m3 − 27m2 − 36m2n1 − 9mn1 2 + 54mn1 − 27 n1 2 + 18 n1 3)

k2solalt := 3− 3m− 4 n1

−2 n1 + 2 k1

> eq1s := op(4, eq1); k2sol := solve(%=0,k2); factor(%);

eq1s := 9m2k2 − 6mn1 k2 + n1 2k2 + 27m3 − 27m2

−36m2n1 − 9mn1 2 + 54mn1 − 27 n1 2 + 18 n1 3

k2sol := −9
3m3 − 3m2 − 4m2n1 −mn1 2 + 6mn1 − 3 n1 2 + 2 n1 3

9m2 − 6mn1 + n1 2
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−9
(3m− 3 + 2 n1 ) (m− n1 )2

(3m− n1 )2

> resultant(eqk2,eqk1, k2):

> eq2 := factor(%);

eq2 := 144 (−2 + n1 + 3m)2 (k1 − 2 n1 )(
9m2k1 − 6mn1 k1 + n1 2k1 + 36m2n1 + 36 n1 2 − 24 n1 3 − 36mn1 − 12mn1 2

)
> eq2s := op(4,eq2); k1sol:= solve(%=0,k1);factor(%);

eq2s := 9m2k1 − 6mn1 k1 + n1 2k1 + 36m2n1 + 36 n1 2 − 24 n1 3 − 36mn1 − 12mn1 2

k1sol := −12
n1
(
3m2 − 3m−mn1 + 3 n1 − 2 n1 2

)
9m2 − 6mn1 + n1 2

−12
n1 (3m− 3 + 2 n1 ) (m− n1 )

(3m− n1 )2

> eq3 := resultant(eq2s,eqn1,k1):

> resultant(eq3,eq1s,k2):

> factor(%);

> eqm := op(3,%);

46656 n1 5
(
18m− 36m2 + 18m3 − 18 n1 + 18mn1 − 3m2n1 + 22 n1 2 − 16mn1 2 − 7 n1 3

)
(m− n1 )2 (−2 + n1 + 3m)5 (3m− n1 )17

eqm := 18m− 36m2 + 18m3 − 18 n1 + 18mn1 − 3m2n1 + 22 n1 2 − 16mn1 2 − 7 n1 3

> eq := simplify(subs(m=1/2+r,eqm));

> sol := solve(eq=0,n1):

> x1 := sol[1]:

> x2 := sol[2]:

> x3 := sol[3]:

> evalf(limit(x1,r=0));

> evalf(limit(x2,r=0));

> evalf(limit(x3,r=0));

eq := 9/4− 9/2 r − 9 r2 + 18 r3 − 39

4
n1 + 15 n1 r − 3 n1 r2 + 14 n1 2 − 16 n1 2r − 7 n1 3

0.5000000000

0.7499999995 + 0.2834733546 i

0.7499999995− 0.2834733546 i
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> n1sol := x1:
> sn1 := simplify(series(n1sol,r=0,4));

> series(subdef(rsolmax),lambda=0);

sn1 := 1/2− r − 6 r2 + 60 r3 +O
(
r4
)

1/12λ+ 1/36λ2 +
11

2160
λ3 +O

(
λ4
)

> expand(subs(k1=k1sol,k2=k2sol,m=1/2+r, f(n1,k1,k2)-(2*r*ln(n)-4*r*ln(r)))):

> simplify(%):

> simplify(series(simplify(subs(n1=sn1,%)),r=0,4),symbolic);

> series(subs(r=lambda/12+lambda^2/36,(4-8*ln(2)-4*ln(3))*r+6*r^2),lambda=0);

(4− 8 ln (2)− 4 ln (3)) r + 6 r2 +O
(
r3
)

(1/3− 2/3 ln (2)− 1/3 ln (3))λ+

(
11

72
− 2/9 ln (2)− 1/9 ln (3)

)
λ2 + 1/36λ3 +

1

216
λ4

> evalf(11/72-(2/9)*ln(2)-(1/9)*ln(3));

−0.1233229611
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A.10 Case 5 in the proof of Lemma 4.8.18

> restart; h := x -> x*n*ln(x)+ x*n*ln(n)- x*n;

> n2rel := k0+k1+k2;

> n3rel := 1-n1-n2;

> P3rel := 3*m-3*n1;

> Q3rel := 3*m-n1-2*n2;

> P2rel := 2*(n1-k0);

> m2rel := n1-k0;

> m3rel := P3rel/3;

h := x 7→ xn ln (x) + xn ln (n)− xn
n2rel := k0 + k1 + k2

n3rel := 1− n1 − n2

P3rel := 3m− 3 n1

Q3rel := 3m− n1 − 2 n2

P2rel := 2 n1 − 2 k0

m2rel := n1 − k0

m3rel := m− n1

> n1sol := m; k1sol := 0; k2sol:= 0; k0sol := 1-n1sol-n3;

n1sol := m

k1sol := 0

k2sol := 0

k0sol := 1−m− n3
> f := (n3) -> subs(Q3 = 3*m-n1-2*n2, n2=k0sol, P2=2*m2, m2=n1-k0, M2=n1,
k0=k0sol, n1=n1sol, +h(M2)+h(P2)+h(Q3)-h(k0)-h(n3)-h(P2)-m2*n*ln(2)
-2*h(m2))/n:
> g := (n3, lambda) -> f(n3)+ subs(Q3 = 3*m - n1 - 2*(k0), k0 = 1-n1-n3,n1=m,
n3*log(f3)- Q3*ln(lambda)):

> simplify(subs(n2=1-n1-n3,n1=m, Q3rel));

4m− 2 + 2 n3

> fn3 := simplify(exp(diff(f(n3), n3)))/lambda^2*f3;

fn3 := −2
(−1 +m+ n3 ) f3

n3 λ2

> eqn3 := numer(fn3)-denom(fn3);

eqn3 := −2 (−1 +m+ n3 ) f3 − n3 λ2

> n3sol := solve(eqn3=0,n3);
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n3sol := −2
(−1 +m) f3

2 f3 + λ2

> eq3 := simplify(n3*(Q3/n3) = n3sol*((2*f3+lambda^2)/f3)
*(n3*lambda/(2*Q3))*(Q3/n3));

eq3 := Q3 = − (−1 +m)λ

> lambdasol := solve(eq3,lambda);

lambdasol := − Q3

−1 +m
> n3sol2 := (simplify(solve(subs(Q3=Q3rel, n2=k0,k0=1-n1-n3,n1=m,eq3),n3)));

> simplify(subs(n3=n3sol2,m=1/2+r,rhs(eq3)/n3sol2));

> subs(f3=f2-lambda^2/2, f2=exp(lambda)-1-lambda,%= lambda*f2/f3);

> rsol := solve(%,r);

> rseries := series(rsol,lambda=0);

n3sol2 := 1/2λ− 1/2λm− 2m+ 1

2
(−1 + 2 r)λ

−λ+ 2λ r + 8 r

2
(−1 + 2 r)λ

−λ+ 2λ r + 8 r
=

λ
(
eλ − 1− λ

)
eλ − 1− λ− 1/2λ2

rsol := 1/2
−2 eλ + 2 + λ+ eλλ

2 eλ − 2− 3λ+ eλλ

rseries := 1/24λ+
1

288
λ2 − 7

17280
λ3 +O

(
λ4
)

> g2 := lambda -> expand(subs(f3=exp(lambda)-1-lambda-lambda^2/2,
n3=n3sol2,m=1/2+rsol,g(n3,lambda)-(2*r*ln(n)-4*r*ln(r)))):

> g2(lambda): subs(m=1/2+r,r=rsol,%):

> simplify(series(%,lambda=0,3),symbolic);

(1/6− 1/2 ln (2)− 1/6 ln (3))λ+

(
−1/24 ln (2)− 1

72
ln (3) +

1

72

)
λ2 +O

(
λ3
)
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A.11 Case 6 in the proof of Lemma 4.8.18

> restart; h := x -> x*n*ln(x)+x*n*ln(n)-x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> n2rel := k0+k1+k2;

> n3rel := 1-n1-n2;

> P3rel := 3*m-3*n1;

> Q3rel := 3*m-n1-2*n2;

> P2rel := 2*(n1-k0);

> m2rel := n1-k0;

> m3rel := P3rel/3;

n2rel := k0 + k1 + k2

n3rel := 1− n1 − n2

P3rel := 3m− 3 n1

Q3rel := 3m− n1 − 2 n2

P2rel := 2 n1 − 2 k0

m2rel := n1 − k0

m3rel := m− n1
> k1sol := 0;

> k0sol := solve(P2rel=0, k0);

> Q3sol := solve(subs(k1=k1sol,k0=k0sol,Q3+2*k1+2*k2=P3rel+P2rel),Q3);

> n3sol := subs(n2=n2rel,k1=k1sol,k0=k0sol,1-n1-n2);

k1sol := 0

k0sol := n1

Q3sol := 3m− 3 n1 − 2 k2

n3sol := 1− 2 n1 − k2
> f := (n1,k2) -> subs(Q3=Q3rel, n3=n3rel, m3=m3rel, P3=P3rel, P2=P2rel,
m2=m2rel, n2=n2rel, k0=k0sol, k1=k1sol, +h(n1)+h(P3)+h(Q3)-h(k0)-h(k2)
-h(n3)-h(m3)-h(P3-k1-2*k2) -k2*n*ln(2)-m3*n*ln(6))/n;
> g := (lambda) -> f(n1,k2)+ subs(Q3 = 3*m - n1 - 2*(n1+k2), n3 = 1-2*n1-k2, n3*log(f3)-
Q3*ln(lambda)):

> # Partial derivatives

> fn1 := simplify(exp(diff(f(n1,k2), n1))*lambda^3/f3^2);

fn1 := 2/9
(−1 + 2 n1 + k2 )2 λ3

(m− n1 )2 f3 2

> fk2 := simplify(exp(diff(f(n1,k2), k2)))*lambda^2/f3;
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fk2 := −1/2
(−1 + 2 n1 + k2 )λ2

k2 f3
> eqk2 := numer(fk2)-denom(fk2);solve(eqk2=0,n1);

eqk2 := − (−1 + 2 n1 + k2 )λ2 − 2 k2 f3

−1/2
−λ2 + λ2k2 + 2 k2 f3

λ2

> k2sol := solve(eqk2=0,k2); k2sol2 := k2sol*(lambda^2+2*f3)/(2*f2);

k2sol := −(−1 + 2 n1 )λ2

λ2 + 2 f3

k2sol2 := −1/2
(−1 + 2 n1 )λ2

f2
> simplify(subs(k2=k2sol2, sqrt(fn1/fk2^2)),symbolic);

> %*(1-2*n1)/(2*n1-1);

> n1sol := simplify(solve(%=1,n1));

> y := simplify(%-1/2);

1/3

√
2λ3/2 (−1 + 2 n1 )

(m− n1 ) f2

1/3

√
2λ3/2 (1− 2 n1 )

(m− n1 ) f2

n1sol :=

√
2λ3/2 − 3 f2 m

2
√

2λ3/2 − 3 f2

y := −3/2
f2 (2m− 1)

2
√

2λ3/2 − 3 f2
> lambda*f2/f3-Q3/n3;

> simplify(subs(Q3=Q3rel, n3=n3rel,n2=n2rel,k1=k1sol,k0=k0sol, k2=k2sol2,
n1=n1sol,%),symbolic);

> subs(f3=f2-lambda^2/2,f2=exp(lambda)-1-lambda,%);

> solve(%=0,lambda);

> z := %[2];

λ f2

f3
− Q3

n3

−

(
−2 f2 2 + λ2f2 + 2 f3

√
λ
√

2− 2 f3 λ
)
λ

(2 f2 − λ2) f3
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−

(
−2

(
eλ − 1− λ

)2
+ λ2

(
eλ − 1− λ

)
+ 2

(
eλ − 1− λ− 1/2λ2

)√
λ
√

2− 2
(
eλ − 1− λ− 1/2λ2

)
λ
)
λ

(2 eλ − 2− 2λ− λ2) (eλ − 1− λ− 1/2λ2)

RootOf
(

2 Z −
(
e Z
)2

+ 2 e Z − 1, 0.0
)
, RootOf

(
2 Z −

(
e Z
)2

+ 2 e Z − 1, 0.8267548776
)

z := RootOf
(

2 Z −
(
e Z
)2

+ 2 e Z − 1, 0.8267548776
)

> yy := (subs(f2=exp(lambda)-1-lambda,m=1/2+r,lambda=z,y)/r):

> bb := (subs(f2=exp(lambda)-1-lambda,m=1/2+r,lambda=z,
exp(lambda)-1-lambda-lambda^2/2)):

> simplify(subs(k2=(1-2*n1)*(b/2),m=1/2+r, n1=1/2+c*r,g(n1,k0)));

r(−2− 2 c ln (2)− 2 c ln (3)− 2 ln (−r (−1 + c)) c+ 2 ln (cr (−2 + b)) c

+ cb ln (−crb) + 3 cb ln (2) + 2 ln (2) + 2 ln (3) + 2 ln (n) + 2 ln (−r (−1 + c))− ln (cr (−2 + b)) cb

− 2 c ln (f3 ) + c ln (f3 ) b− 3 ln (1 + 2 cr) + 3 c ln (1 + 2 cr)− 2 cb ln (1 + 2 cr))
> 2+2*ln(1-c)*c+2*c*ln(2)+2*c*ln(3)-2*ln(2)-2*ln(3)-2*ln(1-c)-3*b*c*ln(2)
-2*ln(-2*c+b*c)*c+ln(-2*c+b*c)*b*c+2*c*ln(f3)-c*ln(f3)*b;

> evalf(subs(c=yy,b=bb,f3=exp(lambda)-1-lambda-lambda^2/2,lambda=z,%));

2 + 2 ln (1− c) c+ 2 c ln (2) + 2 c ln (3)− 2 ln (2)− 2 ln (3)− 2 ln (1− c)
− 3 cb ln (2)− 2 ln (−2 c+ cb) c+ ln (−2 c+ cb) bc+ 2 c ln (f3 )

− c ln (f3 ) b

−1.932194501

> -(2*ln(r)*c-2*ln(r)-2*ln(r)*c+ln(r)*b*c-c*b*ln(r)-4*ln(r));

6 ln (r)
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A.12 Spreadsheet for Section 4.9: comparing gpre and gcore

> restart; h := x -> x*n*ln(x)+ x*n*ln(n)- x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> eladef := exp(lambda);

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> f3def := exp(lambda)-1-lambda-lambda^2/2;

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> F1def := exp(2*lambda)-1;

> F2def := exp(2*lambda)-1-2*lambda;

> subdef := x -> subs(ela=eladef,f1=f1def,f2=f2def,f3=f3def,g1=g1def,
g2=g2def,F1=F1def,F2=F2def, x);

eladef := eλ

f1def := eλ − 1

f2def := eλ − 1− λ
f3def := eλ − 1− λ− 1/2λ2

g1def := eλ + 1

g2def := eλ + 2

F1def := e2λ − 1

F2def := e2λ − 1− 2λ

subdef := x 7→ x
> # Relations

> pren3def := 1-n1-k0-k1-k2;

> preQ3def := 3*m-n1-2*(k0+k1+k2);

> prem2def := n1;

> prem2pdef := prem2def-k0;

> prem3def := m-prem2def;

> preP2def := 2*prem2pdef;

> preP3def := 3*prem3def;

> preT2def := preP2def-k1;
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> preT3def := 3*prem3def-k1-2*

> pren2def := k0+k1+k2;

> subdef2pre := x -> subs(n3=pren3def,Q3=preQ3def,m2=prem2def,m3=prem3def,
m2p=prem2pdef,P2=preP2def,P3=preP3def, T2=preT2def, T3=preT3def,
n2=pren2def, x);

> coreQ2def := 3*m-n1;

> coren2def := 1-n1;

> corem3def := m-n1;

> subdef2core := x -> subs(Q2=coreQ2def,n2=coren2def,m3=corem3def, x);

pren3def := 1− n1 − k0 − k1 − k2

preQ3def := 3m− n1 − 2 k0 − 2 k1 − 2 k2

prem2def := n1

prem2pdef := n1 − k0

prem3def := m− n1

preP2def := 2 n1 − 2 k0

preP3def := 3m− 3 n1

preT2def := 2 n1 − 2 k0 − k1

preT3def := 3m− 3 n1 − k1 − 2 k2

pren2def := k0 + k1 + k2

subdef2pre := x 7→ x

coreQ2def := 3m− n1

coren2def := 1− n1

corem3def := m− n1

subdef2core := x 7→ x
> msol := (1/3)*lambda*g2*f1/F2;

> n1sol:= f1*lambda/F2;

> k0sol := 2*lambda^2/(g1*F2);

> k1sol := 2*lambda^2*f1/(g1*F2);

> k2sol := lambda^2*f1^2/(2*g1*F2);

msol := 1/3
λ g2 f1

F2

n1sol :=
f1 λ

F2
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k0sol := 2
λ2

g1 F2

k1sol := 2
λ2f1

g1 F2

k2sol := 1/2
λ2f1 2

g1 F2
> # fpre (without lambda part)

> f := (n1,k0,k1,k2) -> expand(subdef2pre(

> h(m2)+h(P3)+h(P2)+h(Q3)

> -h(k0)-h(k1)-h(k2)-h(n3)-h(m3)-h(T3)-h(T2)-2*h(m2p)

> -k2*n*ln(2)-m3*n*ln(6)-m2p*n*ln(2))/n):

> # fpre

> fpre := expand(f(n1,k0,k1,k2)+subdef2pre(n3*log(f3)- Q3*ln(lambda))):
> # fcore without lambda part

> f:= (n1) -> expand(subdef2core(h(Q2)-h(n2)-h(n1)-h(m3)
-n1*n*ln(2)-m3*n*ln(6))/n):

> fcore := expand(f(n1)+subdef2core(n2*log(f2)- Q2*ln(lambda))):
> s:= simplify(subdef(subs(m=msol,n1=n1sol,k0=k0sol,k1=k1sol,k2=k2sol,
fpre-fcore)),symbolic);

s :=
1

2(e2λ − 1− 2λ)
(2 ln

(
eλ − 1− λ

)
− 2λ ln

(
e2λ − 1

)
e2λ + 2λ ln

(
e2λ − 1− λ− λ eλ

)
e2λ

− 2λ ln
(
e2λ − 1− λ− λ eλ

)
eλ − 2λ2 ln

(
e2λ − 1− λ− λ eλ

)
eλ − 2λ ln

(
eλ − 1

)
−2 ln

(
2 eλ − 2− 2λ− λ2

)
+ λ2eλ ln

(
eλ + 1

)
+ 2 ln

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)
− 2 ln

(
e2λ − 1− λ− λ eλ

)
− 4λ ln

(
e2λ − 1− λ− λ eλ

)
+ 2λ2 ln

(
eλ − 1− λ

)
+2λ ln

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)
+ λ2 ln

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)
−2 e2λ ln

(
eλ − 1− λ

)
+ 4λ ln

(
eλ − 1− λ

)
− 2 e2λ ln

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)
+ λ2 ln

(
eλ + 1

)
+ 2 ln

(
e2λ − 1− λ− λ eλ

)
e2λ − 2λ2 ln

(
e2λ − 1− λ− λ eλ

)
+ 2λ ln

(
e2λ − 1

)
+ 2λ2eλ ln

(
eλ − 1− λ

)
+ 2λ eλ ln

(
eλ − 1− λ

)
− 2λ e2λ ln

(
eλ − 1− λ

)
+ 2λ eλ ln

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)
+ λ2eλ ln

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)
+ 2λ e2λ ln

(
eλ − 1

)
− λ2 ln

(
2 eλ − 2− 2λ− λ2

)
− 2λ ln

(
2 eλ − 2− 2λ− λ2

)
+2 e2λ ln

(
2 eλ − 2− 2λ− λ2

)
− 2λ eλ ln

(
2 eλ − 2− 2λ− λ2

)
− λ2eλ ln

(
2 eλ − 2− 2λ− λ2

)
)
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> num := numer(s):

> snum := simplify(exp(num),symbolic);

> # show this is 1

snum :=
(

eλ − 1− λ
)2 (1+λ)(−e2λ+1+λ+λ eλ) (

2 eλ − 2− 2λ− λ2
)2 e2λ−2λ eλ−λ2eλ−2−λ2

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)−2 e2λ+2λ eλ+λ2eλ+2+λ2(
e2λ − 1− λ− λ eλ

)−2 (1+λ)(−e2λ+1+λ+λ eλ) (
e2λ − 1

)−2λ (e2λ−1) (
eλ − 1

)2λ (e2λ−1)(
eλ + 1

)λ (λ eλ+λ+2)

> snum2 := a^x1 * (b*c)^x2 * (a*c)^(-x1) * b^(-x2) * (d*c)^x3
*c^(x1-x2-x3) * d^(-x3);

> simplify(snum2,symbolic);

> snum3 := a^x1 * bc^x2 * ac^(-x1) * b^(-x2) * dc^x3 * c^x4 * d^(-x3);

> simplify(subs(dc=d*c,bc=b*c,ac=a*c,x4=x1-x2-x3,snum2/snum3),symbolic);

snum2 := ax1 (bc)x2 (ac)−x1 b−x2 (dc)x3 cx1−x2−x3d−x3

1

snum3 := ax1 bcx2ac−x1 b−x2dcx3 cx4d−x3

1
> aa := 2*exp(lambda)-2-2*lambda-lambda^2;

> bb := exp(lambda)-1-lambda;

> cc := exp(lambda)+1;

> dd := exp(lambda)-1;

> xx1 := 2*exp(2*lambda)-2*lambda*exp(lambda)-lambda^2*exp(lambda)
-2-lambda^2;

> xx2 := (2*(1+lambda))*(exp(2*lambda)-1-lambda-lambda*exp(lambda));

> xx3 := -2*lambda*(exp(2*lambda)-1);

> xx4 := lambda*(lambda*exp(lambda)+lambda+2);

> simplify(xx4-(xx1-xx2-xx3));

> aacc := simplify(expand(aa*cc));

> ddcc := simplify(expand(dd*cc));

> bbcc := simplify(expand(bb*cc));

aa := 2 eλ − 2− 2λ− λ2

bb := eλ − 1− λ
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cc := eλ + 1

dd := eλ − 1

xx1 := 2 e2λ − 2λ eλ − λ2eλ − 2− λ2

xx2 := 2 (1 + λ)
(

e2λ − 1− λ− λ eλ
)

xx3 := −2λ
(

e2λ − 1
)

xx4 := λ
(
λ eλ + λ+ 2

)
0

aacc := 2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

ddcc := e2λ − 1

bbcc := e2λ − 1− λ− λ eλ

> snum4:= subs(a=aa,b=bb,c=cc,d=dd,ac=aacc, bc=bbcc,dc = ddcc,
x1=xx1,x2=xx2,x3=xx3,x4=xx4,snum3);

snum4 :=
(

2 eλ − 2− 2λ− λ2
)2 e2λ−2λ eλ−λ2eλ−2−λ2 (

e2λ − 1− λ− λ eλ
)2 (1+λ)(e2λ−1−λ−λ eλ)

(
2 e2λ − 2− 2λ eλ − 2λ− λ2eλ − λ2

)−2 e2λ+2λ eλ+λ2eλ+2+λ2 (
eλ − 1− λ

)−2 (1+λ)(e2λ−1−λ−λ eλ)(
e2λ − 1

)−2λ (e2λ−1) (
eλ + 1

)λ (λ eλ+λ+2) (
eλ − 1

)2λ (e2λ−1)

> simplify(snum4/snum,symbolic);

1
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A.13 Spreadsheet for Section 4.9: simplifying t(ň)

> h := x -> x*n*ln(x)+x*n*ln(n)-x*n;

h := x 7→ xn ln (x) + xn ln (n)− xn
> # some function of lambda

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> F2def := exp(2*lambda)-1-2*lambda;

> F1def := exp(2*lambda)-1;

> mrellambda := (1/3)*lambda*f1*g2/F2;

g1def := eλ + 1

g2def := eλ + 2

f1def := eλ − 1

f2def := eλ − 1− λ
F2def := e2λ − 1− 2λ

F1def := e2λ − 1

mrellambda := 1/3
λ f1 g2

F2
> f:=(n1)->(h(3*mn-n1)-h(1-n1)-h(n1)-h(mn-n1)-n1*n*ln(2)-(mn-n1)*n*ln(6))/n:
> n1sol := 3*mn/g2;

> # function fcore at n1sol

> fcore := expand(subs(n1=n1sol, f(n1)+(1-n1)*ln(f2)-(3*mn-n1)*ln(lambda))):

n1sol := 3
mn

g2
> # We simplify fcore*n/N

> mdefn := 1/2+R/nu;

> mdefN := nu/2+R;

> rdef := R/nu;

> ndef := nu*N;

mdefn := 1/2 +
R

ν
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mdefN := 1/2 ν +R

rdef :=
R

ν

ndef := Nν
> # First part with ln(n)

> x1 := limit(expand(fcore)/ln(n),n=infinity)*ln(n);

> s1:= expand(subs(mn=mdefn,n=ndef,%*n/N),symbolic);

> # scaled

> c1 := 2*R*ln(N);

> a := 2*R*ln(nu);

> is(simplify(c1+a-s1,symbolic),0);

x1 := (−1 + 2 mn) ln (n)

s1 := 2R ln (Nν)

c1 := 2R ln (N)

a := 2R ln (ν)

true
> fx1:= expand(fcore-x1);

> # Getting the terms without functions of lambda

> x2 := 1+2*ln(3)*mn-ln(2)*mn-2*mn;

> # scaled

> s2 := simplify(subs(mn=mdefn,n=ndef,%*n/N));

> c2 := (2*ln(3)-ln(2)-2)*R;

> b := (ln(3)-(1/2)*ln(2))*nu;

> is(simplify(s2-c2-b,symbolic),0);
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fx1 := 1− 3
mn ln (2)

g2
− 6

mn ln (3)

g2
− 3 mn ln

(
mn − mn

g2

)
g2−1 + 3 ln

(
1− 3

mn

g2

)
mng2−1 − 3 mn ln

(
mn

g2

)
g2−1 + 3 ln

(
mn − 3

mn

g2

)
mng2−1

+3
ln (6) mn

g2
+ 3 mn ln (3) + 3 mn ln

(
mn − mn

g2

)
− ln

(
1− 3

mn

g2

)
− ln

(
mn − 3

mn

g2

)
mn − ln (6) mn − 2 mn + ln (f2 )− 3

ln (f2 ) mn

g2

− 3 ln (λ) mn + 3
ln (λ) mn

g2

x2 := 1 + 2 mn ln (3)−mn ln (2)− 2 mn

s2 := ln (3) ν + 2 ln (3)R− 1/2 ln (2) ν − ln (2)R− 2R

c2 := (2 ln (3)− ln (2)− 2)R

b := (ln (3)− 1/2 ln (2)) ν

true
> fx2 := expand(fx1-x2);

> #Terms of type ln(.)

> x3a := -ln((g2-3*mn)/g2)+ln(f2);

> simplify(subs(m=mrellambda,g2=g2def,f2=f2def,f1=f1def,F2=F2def,x3a),

> symbolic);

> x3 := ln(F2/g1);

> is(simplify( subs(mn=mrellambda,g1=g1def,g2=g2def,f2=f2def,f1=f1def,

> F2=F2def,exp(x3-x3a)),symbolic),1);

> s3 := simplify(subs(m=mdef,n=ndef,x3*n/N));

> c3 := 0;

> c := s3;

> is(simplify(subs(mn=mdefn,n=ndef, c-x3*n/N)),0);
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fx2 := −3
mn ln (2)

g2
− 6

mn ln (3)

g2
− 3 mn ln

(
mn − mn

g2

)
g2−1

+3 ln

(
1− 3

mn

g2

)
mng2−1 − 3 mn ln

(
mn

g2

)
g2−1

+3 ln

(
mn − 3

mn

g2

)
mng2−1 + 3

ln (6) mn

g2
+ mn ln (3) + 3 mn ln

(
mn − mn

g2

)
− ln

(
1− 3

mn

g2

)
− ln

(
mn − 3

mn

g2

)
mn − ln (6) mn + ln (f2 )− 3

ln (f2 ) mn

g2

− 3 ln (λ) mn + 3
ln (λ) mn

g2
+ mn ln (2)

x3a := − ln

(
g2 − 3 mn

g2

)
+ ln (f2 )

− ln
(

eλ + 2− 3 mn
)

+ ln
(

eλ + 2
)

+ ln
(

eλ − 1− λ
)

x3 := ln

(
F2

g1

)
true

s3 := ln

(
F2

g1

)
ν

c3 := 0

c := ln

(
F2

g1

)
ν

true
> fx3 := fx2-x3a;

> # Terms of type mn*ln(.)

> x4a := 3*mn*ln(mn*(g2-1)/g2)-mn*ln(mn*(g2-3)/g2)-3*mn*ln(lambda);

> x4 := mn*ln((mn^2*g1^3)/(g2^2*f1*lambda^3));

> is(simplify(subs(mn=mrellambda,f1=f1def,g1=g1def,

> g2=g2def,exp(x4/mn-x4a/mn))),1);

> c4 := 0;

> d := simplify(subs(mn=mdefn,n=ndef,mn*n/N))

> *ln(mn^2*g1^3/(g2^2*f1*lambda^3));

> is(simplify(subs(mn=mdefn,n=ndef, d-x4*n/N)),0);
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fx3 := −3
ln (2) mn

g2
− 6

mn ln (3)

g2
− 3 mn ln

(
mn − mn

g2

)
g2−1

+3 ln

(
1− 3

mn

g2

)
mng2−1 − 3 mn ln

(
mn

g2

)
g2−1

+3 ln

(
mn − 3

mn

g2

)
mng2−1 + 3

ln (6) mn

g2
+ mn ln (3) + 3 mn ln

(
mn − mn

g2

)
− ln

(
1− 3

mn

g2

)
− ln

(
mn − 3

mn

g2

)
mn − ln (6) mn − 3

ln (f2 ) mn

g2

− 3 ln (λ) mn + 3
ln (λ) mn

g2
+ ln (2) mn + ln

(
g2 − 3 mn

g2

)
x4a := 3 mn ln

(
mn (g2 − 1)

g2

)
− ln

(
mn (g2 − 3)

g2

)
mn − 3 ln (λ) mn

x4 := mn ln

(
mn2g1 3

g2 2f1 λ3

)
true

c4 := 0

d := (1/2 ν +R) ln

(
mn2g1 3

g2 2f1 λ3

)
true

> # Now I will get the terms that are multiplied by m and divided by g2

> fx4 := expand(fx3-x4a);

> x5a := %:

> simplify(%/(3*mn)*g2,symbolic):

> simplify(exp(subs(mn=mrellambda,g2=g2def,f2=f2def,f1=f1def,

> F2=F2def,%)),symbolic);
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fx4 := −3
ln (2) mn

g2
− 6

mn ln (3)

g2
− 3 mn ln

(
mn − mn

g2

)
g2−1

+3 ln

(
1− 3

mn

g2

)
mng2−1 − 3 mn ln

(
mn

g2

)
g2−1

+3 ln

(
mn − 3

mn

g2

)
mng2−1 + 3

ln (6) mn

g2
+ mn ln (3) + 3 mn ln

(
mn − mn

g2

)
− ln

(
1− 3

mn

g2

)
− ln

(
mn − 3

mn

g2

)
mn − ln (6) mn − 3

ln (f2 ) mn

g2

+ 3
ln (λ) mn

g2
+ ln (2) mn + ln

(
g2 − 3 mn

g2

)
− 3 mn ln

(
mn (g2 − 1)

g2

)
+ ln

(
mn (g2 − 3)

g2

)
mn

1
> # Did we get all the terms?

> is(simplify(x1+x2+x3a+x4a+x5a-fcore,symbolic),0);

> # This is the part that does not depend on nu

> c1+c2+c3+c4;

> # This is the part that depends on nu

> a+b+c+d;

true

2R ln (N) + (2 ln (3)− ln (2)− 2)R

2R ln (ν) + (ln (3)− 1/2 ln (2)) ν + ln

(
F2

g1

)
ν + (1/2 ν +R) ln

(
mn2g1 3

g2 2f1 λ3

)
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A.14 Spreadsheet for Lemma 4.9.2

> (2*x*f1*g2-3*F2)/(f1*g1);

> f:= subs(f1=exp(x)-1,g1=exp(x)+1, g2=exp(x)+2, F2=exp(2*x)-1-2*x,%);

2xf1 g2 − 3 F2

f1 g1

f :=
2x (ex − 1) (ex + 2)− 3 e2x + 3 + 6x

(ex − 1) (ex + 1)
> series(f,x=0);

1/2x2 − 1/40x4 +O
(
x5
)

> simplify(diff(f,x));

−2
−e4x − e3x + ex + 1 + xe3x + 4xe2x + xex

(ex − 1)2 (ex + 1)2

> g := numer(%);

> simplify(subs(x=0,g));

g := 2 e4x + 2 e3x − 2 ex − 2− 2xe3x − 8xe2x − 2xex

0
> g1:= diff(g,x);

> simplify(subs(x=0,g1));

g1 := 8 e4x + 4 e3x − 4 ex − 6xe3x − 8 e2x − 16xe2x − 2xex

0
> g2:= diff(g1,x);

> simplify(subs(x=0,g2));

g2 := 32 e4x + 6 e3x − 6 ex − 18xe3x − 32 e2x − 32xe2x − 2xex

0
> g3:= diff(g2,x);

> simplify(subs(x=0,g3));

g3 := 128 e4x − 8 ex − 54xe3x − 96 e2x − 64xe2x − 2xex

24
> g4:= diff(g3,x);

> simplify(subs(x=0,g4));

g4 := 512 e4x − 10 ex − 54 e3x − 162xe3x − 256 e2x − 128xe2x − 2xex

192
> g5:= diff(g4,x);

> simplify(subs(x=0,g5));
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g5 := 2048 e4x − 12 ex − 324 e3x − 486xe3x − 640 e2x − 256xe2x − 2xex

1072
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A.15 Spreadsheet for Section 4.9.1

> restart; h := x -> x*n*ln(x)+x*n*ln(n)-x*n*ln(w);

h := x 7→ xn ln (x) + xn ln (n)− xn ln (w)
> # setting functions of lambda

> g1def := exp(lambda)+1;

> g2def := exp(lambda)+2;

> f1def := exp(lambda)-1;

> f2def := exp(lambda)-1-lambda;

> F2def := exp(2*lambda)-1-2*lambda;

> F1def := exp(2*lambda)-1;

> mrellambda := (1/3)*lambda*f1*g2/F2;

> subsf := x -> subs(ela=exp(lambda),g1=g1def,g2=g2def, f1=f1def,
f2=f2def,F1=F1def,F2=F2def,x);

g1def := eλ + 1

g2def := eλ + 2

f1def := eλ − 1

f2def := eλ − 1− λ
F2def := e2λ − 1− 2λ

F1def := e2λ − 1

mrellambda := 1/3
λ f1 g2

F2

subsf := x 7→ x
> # setting scaled functions nu = n/N

> mdefn := 1/2+R/nu;

> mdefN := nu/2+R;

> rdef := R/nu;

> ndef := nu*N;

mdefn := 1/2 +
R

ν

mdefN := 1/2 ν +R

rdef :=
R

ν
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ndef := ν N
> # fcore at maximum

> # only the part depending on nu

> a := 2*R*ln(nu);

> b := (ln(3)-(1/2)*ln(2))*nu;

> c := ln(F2/g1)*nu;

> d := ((1/2)*nu+R)*ln(mn^2*g1^3/(g2^2*f1*lambda^3));

> fcore := a+b+c+d;

a := 2R ln (ν)

b := (ln (3)− 1/2 ln (2)) ν

c := ln

(
F2

g1

)
ν

d := (1/2 ν +R) ln

(
mn2g1 3

g2 2f1 λ3

)
fcore := 2R ln (ν) + (ln (3)− 1/2 ln (2)) ν + ln

(
F2

g1

)
ν + (1/2 ν +R) ln

(
mn2g1 3

g2 2f1 λ3

)
> # cacti part

> cacti := -(1-nu)/2*ln(1-nu)+(1-nu)/2;

cacti := −1/2 (1− ν) ln (1− ν) + 1/2− 1/2 ν
> # derivative for part that does not

> # depend on lambda

> dcacti := diff(cacti,nu);

> difa := diff(a,nu);

> difb := diff(b,nu);

> difsimple := dcacti+difa+difb;

dcacti := 1/2 ln (1− ν)

difa := 2
R

ν

difb := ln (3)− 1/2 ln (2)

difsimple := 1/2 ln (1− ν) + 2
R

ν
+ ln (3)− 1/2 ln (2)

259



> # implicit diffentiation for lambda

> dlambdaval:= diff(subs(mn=mdefn,mn),nu)/diff(subs(f1=f1def,F2=F2def,
g2=g2def, mrellambda),lambda);

> # simplifying

> dlambdasimple := -(R/nu^2)/(mn*(1/lambda+ela/f1+ela/g2-2*ela^2/F2+2/F2));

> #checking if simplification is correct

> is(simplify(subs(mn=mrellambda,f1=f1def,g2=g2def,F2=F2def,ela=exp(lambda),
dlambdaval-dlambdasimple)),0);

dlambdaval := −Rν−2

(
1/3

(
eλ − 1

) (
eλ + 2

)
e2λ − 1− 2λ

+ 1/3
λ eλ

(
eλ + 2

)
e2λ − 1− 2λ

+ 1/3
λ
(
eλ − 1

)
eλ

e2λ − 1− 2λ
− 1/3

λ
(
eλ − 1

) (
eλ + 2

) (
2 e2λ − 2

)
(e2λ − 1− 2λ)

2

)−1

dlambdasimple := −Rν−2mn−1

(
λ−1 +

ela

f1
+

ela

g2
− 2

ela2

F2
+ 2 F2−1

)−1

true
> # derivative for c

> c;

> cc := simplify(exp(c/nu),symbolic);

> difc := simplify(c/nu)+nu*dlc;

> dlcval := (1/cc)*dcc*dlambda;

> dccval := simplify(diff(subs(F2=F2def,f2=f2def,g1=g1def,cc),lambda));

> dccsimple := 2*F1/g1-F2*ela/g1^2;

> is(simplify(subs(F1=F1def, F2=F2def,f1=f1def,g1=g1def,ela=exp(lambda),
dccval-dccsimple)),0);

ln

(
F2

g1

)
ν

cc :=
F2

g1

difc := ln

(
F2

g1

)
+ ν dlc

dlcval :=
g1 dcc dlambda

F2
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dccval :=
e3λ + 2 e2λ − eλ − 2 + 2 eλλ

(eλ + 1)
2

dccsimple := 2
F1

g1
− F2 ela

g1 2

true
> difcval:= subs(dlc = dlcval, dcc = dccsimple,dlambda=dlambdasimple,
ela=exp(lambda),difc);

> difcval2:= subs(dlc = dlcval, dcc = dccsimple,dlambda=dlambdasimple,
mn=mrellambda,difc);

difcval := ln

(
F2

g1

)
− g1

(
2

F1

g1
− F2 eλ

g1 2

)
Rν−1F2−1mn−1

(
λ−1 +

eλ

f1
+

eλ

g2
− 2

(
eλ
)2

F2
+ 2 F2−1

)−1

difcval2 := ln

(
F2

g1

)
− 3 g1

(
2

F1

g1
− F2 ela

g1 2

)
Rν−1λ−1f1−1g2−1

(
λ−1 +

ela

f1
+

ela

g2
− 2

ela2

F2
+ 2 F2−1

)−1

> # derivative for d

> d;

> dd := simplify(exp(d/(nu/2+R)),symbolic);

> dldval := (1/dd)*(ddd);

> #ddd = dd1val+dd2val

> ddd1val := 2*dd/mn*(diff(mdefn,nu));

> ddd2val := diff(subs(g1=g1def,g2=g2def,F2=F2def,f2=f2def,f1=f1def,dd),
lambda)*dlambda;

> ddd1simple := 2*mn*(diff(mdefn,nu))*(dd/mn^2);

> ddd2simple := -3*mn^2*(2*F1/g1-F2*ela/g1^2)*g1^4/(g2^3*f1^2*lambda^4)
*dlambda;

> is(simplify(subs(g1=g1def,g2=g2def,F2=F2def,f2=f2def,f1=f1def,
ddd1val-ddd1simple)),0);

> is(simplify(subs(m=mrellambda,g1=g1def,g2=g2def,F1=F1def,F2=F2def,
f2=f2def,f1=f1def, ela=exp(lambda),ddd2val-ddd2simple)),0);

(1/2 ν +R) ln

(
mn2g1 3

g2 2f1 λ3

)
dd :=

mn2g1 3

g2 2f1 λ3

dldval :=
g2 2f1 λ3ddd

mn2g1 3
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ddd1val := −2
mn g1 3R

g2 2f1 λ3ν2

ddd2val :=

(
3

mn2
(
eλ + 1

)2
eλ

(eλ + 2)
2

(eλ − 1)λ3
− 2

mn2
(
eλ + 1

)3
eλ

(eλ + 2)
3

(eλ − 1)λ3
−

mn2
(
eλ + 1

)3
eλ

(eλ + 2)
2

(eλ − 1)
2
λ3

− 3
mn2

(
eλ + 1

)3
(eλ + 2)

2
(eλ − 1)λ4

)
dlambda

ddd1simple := −2
mn g1 3R

g2 2f1 λ3ν2

ddd2simple := −3 mn2

(
2

F1

g1
− F2 ela

g1 2

)
g1 4dlambdag2−3f1−2λ−4

true

true
> dldval1:= subs(ddd=ddd1simple,dldval);

> dldval2:= subs(ddd=ddd2simple,dlambda=dlambdasimple,dldval);

dldval1 := −2
R

mn ν2

dldval2 := 3 g1

(
2

F1

g1
− F2 ela

g1 2

)
Rg2−1f1−1λ−1ν−2mn−1

(
λ−1 +

ela

f1
+

ela

g2
− 2

ela2

F2
+ 2 F2−1

)−1

> difdval := diff(mdefN,nu)*ln(dd)+simplify(subs(mn=mdefn,mdefN*dldval1))
+(subs(mn=mdefn,mdefN*dldval2));

difdval := 1/2 ln

(
mn2g1 3

g2 2f1 λ3

)
− 2

R

ν
+ 3 (1/2 ν +R) g1

(
2

F1

g1
− F2 ela

g1 2

)
Rg2−1f1−1

λ−1ν−2

(
1/2 +

R

ν

)−1(
λ−1 +

ela

f1
+

ela

g2
− 2

ela2

F2
+ 2 F2−1

)−1

> # first derivative

> eq1 := simplify(difsimple+difdval+difcval2);

eq1 := 1/2 ln (1− ν) + ln (3)− 1/2 ln (2) + 1/2 ln

(
mn2g1 3

g2 2f1 λ3

)
+ ln

(
F2

g1

)
> eq2 := subsf(subs(mn=mdefn,3*mn-3*mrellambda));

> nusol := solve(eq2,nu);

eq2 := 3/2 + 3
R

ν
−
λ
(
eλ − 1

) (
eλ + 2

)
e2λ − 1− 2λ
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nusol := 6
R
(
e2λ − 1− 2λ

)
3− 3 e2λ + 2λ+ 2 (eλ)

2
λ+ 2 eλλ

> solve(eq1=0,nu);

> nulambda := F2/(f1*g1);

> is(subsf(nulambda) - simplify(subsf(subs(mn=mrellambda,%))),0);

> Rlambda := solve(subs(nu=nulambda,mdefn=mrellambda),R);

> Mlambda := simplify(subsf(1/2+Rlambda));

1/9
9 mn2g1 F2 2 − 2 g2 2f1 λ3

mn2g1 F2 2

nulambda :=
F2

f1 g1

true

Rlambda := −1/6
−2λ f1 g2 + 3 F2

f1 g1

Mlambda := 1/3

(
1 + e2λ + eλ

)
λ

e2λ − 1
> # Series at lambda=0

> ss:= (x,y) -> series(subsf(subs(dlambda=dlambdasimple,mn=mrellambda,
R=Rlambda,nu=nulambda,x)),lambda=0,y);

> nuseries:= ss(nu,3);

> Rseries := ss(Rlambda,3);

> rseries := ss(Rlambda/nulambda,3);

nuseries := λ+O
(
λ2
)

Rseries := O
(
λ2
)

rseries := O (λ)
> # Second derivative computations

> # decomposing first derivative in eq1

> eq1;

> dif1 := (1/2)*ln(1-nu)+ln(3)-(1/2)*ln(2);

> dif2 := +1/2*ln((mn^2*g1^3)/(g2^2*f1*lambda^3));

> dif3 := ln((F2)/(g1));

> is(simplify(eq1-dif1-dif2-dif3),0);
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1/2 ln (1− ν) + ln (3)− 1/2 ln (2) + 1/2 ln

(
mn2g1 3

g2 2f1 λ3

)
+ ln

(
F2

g1

)
dif1 := 1/2 ln (1− ν) + ln (3)− 1/2 ln (2)

dif2 := 1/2 ln

(
mn2g1 3

g2 2f1 λ3

)
dif3 := ln

(
F2

g1

)
true

> ddif1 := diff(dif1,nu);

ddif1 := − (2− 2 ν)−1

> # For dif3, use dlc

> ddif3 := subs(dcc=dccsimple,dlcval);

ddif3 := g1

(
2

F1

g1
− F2 ela

g1 2

)
dlambdaF2−1

> # For dif2, use dld with ddd1simple and ddd2simple

> dd;

> ddif2a := subs(ddd=ddd1simple, (1/2)*dldval);

> ddif2b := subs(ddd=ddd2simple, (1/2)*dldval);

mn2g1 3

g2 2f1 λ3

ddif2a := − R

mn ν2

ddif2b := −3/2 g1

(
2

F1

g1
− F2 ela

g1 2

)
dlambdaλ−1f1−1g2−1

> Bval := 2*F1-F2*ela/g1;

> Aval := 1/lambda+ela/f1+ela/g2-2*ela^2/F2+2/F2;

> ss(subsf(Aval),3);

> ss(subsf(Bval),3);

Bval := 2 F1 − F2 ela

g1

Aval := λ−1 +
ela

f1
+

ela

g2
− 2

ela2

F2
+ 2 F2−1

O (λ)
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4λ+ 3λ2 +O
(
λ3
)

> # Second derivative

> ddif := ddif1+ddif2a+ddif2b+ddif3;

> ddifsimple := dd1+dd2+dd3;

> dd2val := (3/2)*B*R/(g2*f1*lambda*nu^2*mn*A);

> dd1val := -1/(2*(1-nu))-R/(mn*nu^2);

> dd3val := - B*R/(F2*nu^2*mn*A);

> is(simplify(subs(dlambda=dlambdasimple, ddif)-subs(dd1=dd1val,dd2=dd2val,
dd3=dd3val, B=Bval, A=Aval,ddifsimple)),0);

> # Series at lambda=0

> ss(ddif,8);

ddif := − (2− 2 ν)−1 − R

mn ν2
− 3/2 g1

(
2

F1

g1
− F2 ela

g1 2

)
dlambda

λ−1f1−1g2−1

+ g1

(
2

F1

g1
− F2 ela

g1 2

)
dlambdaF2−1

ddifsimple := dd1 + dd2 + dd3

dd2val := 3/2
BR

g2 f1 λ ν2mn A

dd1val := − (2− 2 ν)−1 − R

mn ν2

dd3val := − BR

F2 ν2mn A
true

−1− 2/3λ− 23

60
λ2 +O

(
λ3
)

> # Third derivative

> dd1val;

> subs(mn=mdefn,dd1val);

> ddd1 := diff(%,nu);

> ss(%,6);

− (2− 2 ν)−1 − R

mn ν2
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− (2− 2 ν)−1 −R
(

1/2 +
R

ν

)−1

ν−2

ddd1 := −2 (2− 2 ν)−2 −R2

(
1/2 +

R

ν

)−2

ν−4 + 2R

(
1/2 +

R

ν

)−1

ν−3

1/3λ−1 +O (1)
> dd2val;

> dd2val2 := simplify(subs(mn=mdefn,%));

> dd2a := 3*R/(nu*(nu+2*R));

> dd2b := B/(g2*f1*lambda*A);

> is(simplify(dd2val2-dd2a*dd2b),0);

> ddd2 := diff(dd2a,nu)*subsf(subs(A=Aval, B=Bval,dd2b))+
dd2a*diff(subsf(subs(A=Aval,B=Bval,dd2b)),lambda)*dlambdaval:

> ss(ddd2,9);

3/2
BR

g2 f1 λ ν2mn A

dd2val2 := 3
BR

ν g2 f1 λ (ν + 2R)A

dd2a := 3
R

ν (ν + 2R)

dd2b :=
B

g2 f1 λA

true

−2λ−2 + 1/3λ−1 +O (1)
> dd3val;

> dd3val2 := simplify(subs(mn=mdefn,%));

> dd3a := -2*R/(nu*(nu+2*R));

> dd3b := B/(F2*A);

> is(simplify(dd3val2-dd3a*dd3b),0);

> ddd3 := diff(dd3a,nu)*subsf(subs(A=Aval, B=Bval,dd3b))+
dd3a*diff(subsf(subs(A=Aval,B=Bval,dd3b)),lambda)*dlambdaval:

> ss(ddd3,9);

− BR

F2 ν2mn A
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dd3val2 := −2
BR

ν F2 (ν + 2R)A

dd3a := −2
R

ν (ν + 2R)

dd3b :=
B

F2 A
true

2λ−2 + 1/3λ−1 +O (1)
> # Series for third derivative at maximum

> ss(ddd1+ddd2+ddd3,10);

λ−1 +O (λ)
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allocation model, 8
restricted to k-cores, 8

asymptotic notation, 7
asymptotically almost surely, 7

binomial random graph, 8

configuration, 9
configuration model, 8

differential equation method, 14

Erdős-Rényi random graph, 8

Hoeffding’s inequality, 10
hypergraph, 58

connected, 58
core, 61
cycle, 61, 62

isolated, 62
degree, 61
forest, 61
hyperedges, 58
k-uniform, 58
loop, 88
path, 58
pre-kernel, 62
rooted forest, 61
3-edge, 62
tree, 61
2-edge, 62

k-core, 8
kernel, 9

kernel configuration model, 9

Lipschitz
condition, 14
constant, 14

method of moments, 13
multihypergraph

connected, 65
double edges, 64
kernel, 88
k-uniform, 64
loop, 64
path, 65
simple, 64

(n,m)-graph, 8
(n,m, k)− core, 8

pairing model, 8
pre-kernel, 9

Stirling’s approximation, 11
subsubsequence principle, 11

Taylor’s approximation, 10
truncated Poisson, 16
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