
Achieving Scalable, Exhaustive Network
Data Processing by Exploiting Parallelism

by

Afzal Mawji

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

c© Afzal Mawji 2004

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by my

examiners.

I understand that my thesis may be made electronically available to the

public.

ii

Abstract

Telecommunications companies (telcos) and Internet Service Providers

(ISPs) monitor the traffic passing through their networks for the purposes

of network evaluation and planning for future growth. Most monitoring

techniques currently use a form of packet sampling. However, exhaustive

monitoring is a preferable solution because it ensures accurate traffic char-

acterization and also allows encoding operations, such as compression and

encryption, to be performed.

To overcome the very high computational cost of exhaustive monitoring

and encoding of data, this thesis suggests exploiting parallelism. By utilizing

a parallel cluster in conjunction with load balancing techniques, a simulation

is created to distribute the load across the parallel processors. It is shown

that a very scalable system, capable of supporting a fairly high data rate can

potentially be designed and implemented.

A complete system is then implemented in the form of a transparent Eth-

ernet bridge, ensuring that the system can be deployed into a network with-

out any change to the network. The system focuses its encoding efforts on ob-

taining the maximum compression rate and, to that end, utilizes the concept

of streams, which attempts to separate data packets into individual flows

that are correlated and whose redundancy can be removed through compres-

sion. Experiments show that compression rates are favourable and confirms

good throughput rates and high scalability.

iii

Acknowledgments

This research has been supported by a grant from Bell Canada.

I want to thank my advisor, Dr. Ajit Singh, for granting me the time and

space necessary to carry out this research. He was patient when things were

moving slowly, and excited when they were going well. He provided the idea

for this research, the large computing resources required for it, and guided

me through its completion.

I would also like to thank my readers, Professor Sagar Naik and Professor

Sherman Shen.

I am indebted to Bernard Wong and David Sze. Bernard and I worked on

the system implementation, and his ideas for the multiprocess version were

extremely helpful. David provided invaluable technical support, particularly

with his thorough knowledge of the FreeBSD operating system.

Tan Wang and Ngai-Pan Chow supported me when my work was not pro-

ceeding smoothly, and I hope that I was also able to help them with their

work.

Finally, I want to thank Manisha Topiwala and my family. Their love,

patience, and encouragement helped me through the tough times.

iv

Contents

1 Introduction 1

1.1 Exhaustive Monitoring . 2

1.2 Load Balancing . 3

1.3 Contribution . 4

1.4 Outline of the Thesis . 7

2 Background 9

2.1 Network Monitoring . 9

2.1.1 Active and Passive Monitoring 10

2.1.2 Packet Sampling . 12

2.1.3 Traffic Flows . 16

2.2 Exhaustive Monitoring . 19

v

2.3 Using Specialized Hardware . 22

2.4 Parallel Processing . 23

2.4.1 Task Mapping . 24

2.4.2 Exploiting Parallelism for Exhaustive Monitoring 28

2.5 Summary . 29

3 Simulation with a Parallel Cluster 30

3.1 System Architecture . 30

3.2 Implementation . 32

3.3 Performance . 34

3.3.1 Effects of CPU Activity . 35

3.3.2 Effects of I/O Activity . 40

3.3.3 Effects of Combined CPU and I/O Activity 44

3.4 Summary . 47

4 Acquiring and Encoding Packets 49

4.1 Packet Capture and Release . 49

4.2 Packet Encoding . 52

vi

4.3 Maintaining State with Streams 54

4.3.1 Stream Separation Factors 56

4.3.2 Mapping Web Traffic into Streams 59

4.4 Summary . 60

5 System Model and Architecture 62

5.1 System Architecture . 63

5.2 Load Balancing . 65

5.3 Implementation . 66

5.3.1 Combining Packets into Packages 67

5.3.2 Resynchronization . 70

5.4 Performance . 72

5.4.1 Compression Rates . 73

5.4.2 Effects of CPU Activity . 74

5.4.3 Effects of I/O Activity . 78

5.4.4 Effects of Combined CPU and I/O Activity 81

5.5 Summary . 84

vii

6 Future Work and Conclusions 85

6.1 Critical Assessment . 85

6.1.1 Exhaustive Monitoring and Encoding 86

6.1.2 Transparency . 87

6.1.3 Scalability . 87

6.2 Future Work . 88

6.2.1 I/O Performance . 88

6.2.2 Load Balancing . 89

6.2.3 Other Areas . 91

6.3 Conclusions . 91

Glossary 93

viii

List of Figures

2.1 Basic sampling algorithms (from [13]) 13

2.2 Layout of SMP and parallel cluster 25

3.1 Simulation system architecture 31

3.2 Throughput for CPU work . 36

3.3 Throughput increase factor for CPU work 37

3.4 Throughput for I/O work . 41

3.5 Throughput increase factor for I/O work 42

3.6 Throughput for combined CPU and I/O work 45

3.7 Throughput increase factor for combined CPU and I/O work . . 46

4.1 The tap virtual device . 51

4.2 Stream separation scheme . 58

ix

5.1 Transparent bridge architecture 64

5.2 Throughput for CPU work . 75

5.3 Throughput increase factor for CPU work 76

5.4 Throughput for I/O work . 79

5.5 Throughput increase factor for I/O work 80

5.6 Throughput for combined CPU and I/O work 82

5.7 Throughput increase factor for combined CPU and I/O work . . 83

x

List of Tables

3.1 Throughput rates in Mbps for CPU work 36

3.2 CPU work throughput increase factor over two processors . . . 37

3.3 Throughput rates in Kbps for I/O work 41

3.4 I/O work throughput increase factor over two processors 42

3.5 Throughput rates in Kbps for combined CPU and I/O work . . . 45

3.6 Combined CPU and I/O work throughput increase factor over

two processors . 46

5.1 Achievable compression rates . 73

5.2 Throughput rates in Mbps for CPU work 75

5.3 CPU work throughput increase factor over one processor 76

5.4 Throughput rates in Kbps for I/O work 79

xi

5.5 I/O work throughput increase factor over one processor 80

5.6 Throughput rates in Kbps for combined CPU and I/O work . . . 82

5.7 Combined CPU and I/O work throughput increase factor over

one processor . 83

xii

Chapter 1

Introduction

Telecommunications companies (telcos) and Internet Service Providers (ISPs)

monitor traffic passing through their networks for the purposes of evaluat-

ing its performance and planning for future growth. These network oper-

ators would like to exhaustively monitor all packets to determine precisely

how their networks are being used, but this is believed to be too difficult to

achieve in real–time.

Considering the challenges involved in exhaustive, real–time processing

of network data, most approaches in the past have resorted to data sampling

techniques. While packet sampling may be satisfactory for certain monitor-

ing purposes, it cannot be used for data encoding operations, such as com-

1

CHAPTER 1. INTRODUCTION 2

pression, encryption, content analysis for determining network usage, and

packet filtering. In addition to requiring exhaustive monitoring, these op-

erations tend to be computationally intensive and have proven difficult to

achieve on current systems.

1.1 Exhaustive Monitoring

Unlike the sampling methods currently in use, exhaustive network monitor-

ing allows data traffic to be characterized with 100% accuracy and makes it

much easier to collect usage statistics at all network levels, from the data

link layer right up to and including the application layer. As an added ben-

efit, exhaustive monitoring would permit the possibility of encoding of the

packets.

Packet encoding allows numerous operations to be performed on the data

packets. For example, lossless compression may be used to increase the effec-

tive bandwidth of a link. Encryption would enhance the security of packets

passing through untrusted networks. Packet filtering could be performed

with many more degrees of freedom than the access control lists firewalls

and routers currently permit. Packets could be filtered based on the contents

of the packet, rather than just header information and both the header and

CHAPTER 1. INTRODUCTION 3

the actual content of the packets may be changed. Additionally, these packet

operations may be combined, so that a packet can be both compressed and

encrypted.

Exhaustive monitoring is highly desirable, but is generally not used be-

cause it is considered to be too computationally intensive to be practical.

Packet filtering and encoding only add to the computational burden. Further-

more, these activities must be performed in real–time and must not reduce

the network latency or throughput beyond a reasonable limit.

1.2 Load Balancing

It is vital that the monitoring and encoding operations be performed without

adding significant delay to the network, but such a large amount of per–

packet work would undoubtedly reduce the network throughput. To over-

come this problem it is suggested that the monitoring and encoding be per-

formed on a parallel processor since parallel processing is a cost–effective

method for the fast solution of computationally large and data-intensive prob-

lems [27]. This would allow the monitoring system to scale easily to support

higher throughput rates by simply providing additional processing capacity

for its use.

CHAPTER 1. INTRODUCTION 4

Load balancing software would distribute the monitoring and encoding

burden among the processors with each processor responsible for encoding

one packet at a time. With a sufficiently large grain size for each CPU, it is

expected that this would result in a speed–up as more processors are brought

online. If the encoding process requires disk I/O then speed–up could be

accomplished through parallel I/O, either in the form of multiple hard disks,

or via RAID support.

1.3 Contribution

There are numerous challenges to overcome when building an exhaustive

monitoring and encoding system. The system must be designed so that it

does not disrupt the network when it is deployed, and ideally, the network

should not need any reconfiguration whatsoever. The system must be rela-

tively inexpensive and all components should be easily available. The system

must perform online, real–time encoding, and make an attempt to maximize

the utility of the encoding function. For example, in the case of data com-

pression, the system should attempt to maximize the achievable compres-

sion ratio. In the event of packet loss or error, the system must be able to

recover and resume operation. Finally, the system must scale well in order

CHAPTER 1. INTRODUCTION 5

to increase the achievable throughput.

This research investigates the feasibility of employing a parallel cluster

along with load balancing techniques to develop an exhaustive data monitor-

ing and packet encoding system. The data processing is performed in real-

time by distributing the workload across the processors. In a typical setup,

data arriving at the router would be passed on to the parallel machine for

encoding before being sent off towards the destination. Ideally the network

should experience no noticeable slowdown due to the encoding.

In this work, the actual data filtering operations performed on the data

packets are abstracted as a certain amount of CPU and disk I/O operations.

The objective is to determine the threshold at which encoding operations will

reduce the throughput beyond reasonable limits. It is important to keep in

mind that the goal of the system is to achieve the maximum possible through-

put, not necessarily the most evenly distributed load.

A complete exhaustive monitoring system, performing encoding opera-

tions in real–time is implemented. The system supports any number of pro-

cessors or hard disks and uses only off–the–shelf hardware and an open–

source operating system. It captures packets from the network in a com-

pletely transparent fashion so that no network reconfiguration is necessary.

CHAPTER 1. INTRODUCTION 6

The system is scalable, meaning that it can handle increasing data traffic

loads simply by adding more processors to the parallel machine, with no

change to the software.

The data packets are divided into streams in an attempt to increase cor-

relation between packets within the stream. The stream to which a packet

should belong is determined from several factors, including the source and

destination IP addresses, the URL of World Wide Web requests, the MIME

or file type, and other intelligent heuristics. Separating the packets into

streams increases the utility of many encoding functions, including data com-

pression and encryption.

Upon completion of the encoding process, the packet is re–inserted into

the network. In the case of error or packet loss on the link, a custom resyn-

chronization protocol will automatically recover from such situations.

This thesis demonstrates that online, real–time, exhaustive monitoring

and packet encoding is possible with off-the-shelf hardware and software.

It is shown that increasing the number of processors and hard disks in the

parallel machine allows CPU and I/O work to be completed in less time, thus

permitting a higher throughput rate. Furthermore, for CPU–centric tasks,

as the grain size is increased by increasing the amount of work performed

CHAPTER 1. INTRODUCTION 7

on each packet, adding more processors to the parallel machine improves the

throughput increase factor.

1.4 Outline of the Thesis

Chapter 2 discusses network monitoring, covering the popular techniques

of traffic sampling and flow monitoring. It then details the benefits of ex-

haustive monitoring and parallel processing, and explains why exhaustive

monitoring is both a desirable and an achievable goal. The remaining chap-

ters of this thesis describe the hardware and software architecture of the

system in detail. Chapter 3 presents a simulation of the desired system to

determine its feasibility. Using a parallel cluster, CPU and disk I/O opera-

tions are performed on the packets to help determine how well the system

might scale. Chapter 4 describes how packets are transparently acquired

from the network by the system, prepared for encoding or decoding, then en-

coded or decoded, and finally released back in to the network. Also covered

is a crucial step in maximizing the utility of many encoding operations, the

concept of data streams. Chapter 5 covers the complete implementation of

the system, examining how well the throughput increases as the number of

processors and hard disks increases, for both CPU and I/O work. Chapter 6

CHAPTER 1. INTRODUCTION 8

provides ideas for future research directions before drawing conclusions from

this research.

Chapter 2

Background

This chapter presents two techniques that are used in network monitoring:

packet sampling and traffic flow monitoring. It discusses the advantages of

performing exhaustive monitoring, particularly using off–the–shelf compo-

nents, and explains why exploiting parallel computing will allow the achiev-

able throughput of an exhaustive monitoring system to increase with the use

of more processors.

2.1 Network Monitoring

Monitoring network traffic serves several purposes. First, it allows the net-

work operators to determine how the existing bandwidth is being used and

9

CHAPTER 2. BACKGROUND 10

to evaluate whether or not the network is serving its current needs. Second,

it allows them to allocate their resources more effectively. If a certain seg-

ment of the network is always heavily loaded while another consistently uses

less than its capacity, the operator may decide to move resources to the heav-

ily loaded network segment instead of purchasing new equipment. Finally,

based on how the network is currently being used as well as on trends in

usage, operators can plan for the future growth of the network, acquiring as

much new capacity as is needed, and placing it only in the segments where

it is required.

2.1.1 Active and Passive Monitoring

There are two broad categories of traffic measurement: active and passive

monitoring. Active monitoring systems insert traffic, such as probe packets,

into the network specifically to take a measurement [40]. Active monitoring

more easily allows for measuring certain things such as network delay, path,

and the loss rate. They typically use protocols such as the Internet Control

Message Protocol (ICMP) and UDP or TCP packets. Luckie et al. propose

a new protocol, the IP Measurement Protocol (IPMP), which is designed to

overcome the drawbacks of the above–mentioned protocols because it was

CHAPTER 2. BACKGROUND 11

created specifically with measurement in mind [34].

IPMP is based on an echo request and reply packet exchange scheme, sim-

ilar to the ping application. However, it combines both the delay and path

measurement mechanisms into a single packet exchange between the mea-

surement host and the echo host, and is therefore provides more accuracy

than separate measurements of these two metrics. An IPMP packet provides

space for routers to insert path and time records, with the time record follow-

ing the convention of the Network Time Protocol (NTP). In this manner, the

complete path and delay times for each hop in the path can be determined at

the measurement host.

Passive monitoring systems use only the traffic already existing on the

network to take measurements. That is, they do not insert additional traffic

into the network, but take all measurements from pre–existing traffic. Both

active and passive measurement techniques require careful procedures, but

other than how the packets are generated, are not really very different from

one another according to Cleary et al. [14] and Deng [16]. The architecture

presented in this thesis and those discussed in the remainder of this chapter,

are passive monitoring systems.

CHAPTER 2. BACKGROUND 12

2.1.2 Packet Sampling

A common practice in passive network monitoring systems is to sample the

packets, because it is believed that monitoring each packet is not only com-

putationally overwhelming, it is also impractical. Sampling involves making

a trade–off between the benefit and the overhead of the measurements. The

more frequently samples are taken, the more accurate the results will be.

However, taking too many samples may overload the network monitoring

system, and defeats the entire purpose of sampling.

The major difficulty with packet sampling lies in determining how many

packets need to be sampled in order to ensure that the measurements are

within a specific error tolerance. As the sampling granularity increases, the

accuracy of the results decreases [15], indicating that a very high frequency

of samples must be taken for high levels of accuracy.

Claffy et al. [13] present the three basic sampling algorithms: systematic,

stratified random, and simple random. The systematic sampling technique

involves dividing all packets into a series of n intervals, and deterministi-

cally sampling the kth packet from each of these n intervals. For example, if

the network traffic is divided into n buckets, the 3rd packet from each bucket

is selected. The stratified random algorithm also divides all packets into n

CHAPTER 2. BACKGROUND 13

systematic sampling

simple random sampling

stratified random sampling

Figure 2.1: Basic sampling algorithms (from [13])

intervals, but instead selects a random packet from each of the n intervals.

Finally, the simple random algorithm selects n random packets from the en-

tire set. Figure 2.1 illustrates these three algorithms.

The sampling intervals used in these algorithms may be either time–

triggered or packet–triggered. Time–triggered intervals are separated by

a specific amount of time, whereas packet–triggered intervals are separated

by a specific number of packets. For example, time–triggered intervals may

be created every 5 seconds, while packet–triggered intervals may be created

every 100 packets. Claffy et al. show that the time–triggered techniques per-

form more poorly than the packet–triggered ones, but that the performance

differences are small. Furthermore, the performance differences in each of

the three sampling algorithms, whether time– or packet–triggered, are also

small.

There are many other sampling techniques that have been demonstrated

CHAPTER 2. BACKGROUND 14

to be fairly effective, though they are usually extensions or variations on the

three algorithms already mentioned. Three especially interesting proposals

are: Cheng and Guang [7] suggest using Poisson sampling, particularly to

determine the mean packet length; Guang et al. [29] propose a sampling

method based on using the identification field of the IP header; and Erramilli

and Wang [21] propose using fractal statistics to help describe traffic. There

is also an IETF packet sampling working group named psamp whose charter

is to define standards for packet sampling [1].

Static sampling methods, such as those described above, tend to produce

inaccurate traffic measurements because they take all samples at the same

rate, regardless of current traffic levels. During periods of low traffic, the

network measurement processor has idle capacity but is still employing the

same sampling granularity, and during periods of high traffic, the processor

may be overloaded but attempts to continue sampling at a rate that it cannot

keep up with.

Adaptive sampling adjusts the sampling granularity based on the CPU

utilization, so that as the traffic and CPU usage increase, the sampling inter-

val increases accordingly. Drobisz and Christensen [17] show that the adap-

tive sampling method produces more accurate traffic measurement than a

CHAPTER 2. BACKGROUND 15

static sampling method. Choi et al. [9, 11] propose an adaptive random sam-

pling technique that attempts to determine the optimum sampling interval

according to traffic dynamics while bounding the sampling error within a

pre–specified tolerance level.

The Simple Network Management Protocol (SNMP)[6] is a very popular

passive monitoring system that collects measurements over intervals usually

set to five minutes. Erramilli and Wang [21] suggest that due to the bursty

nature of packet traffic, large time scales on the order of several minutes are

too coarse to accurately indicate resource usage. These time scales have been

carried over from circuit switched networks, even though packet switched

traffic behaviour is fundamentally different.

Such large intervals serve as poor triggers for congestion controls, and

may even conceal short–lived events of interest, such as performance degra-

dation due to micro–congestion events. Papagiannaki et al. [39] state that

these events may only last for times on the order of milliseconds, but they

may still be of interest to some network operators.

CHAPTER 2. BACKGROUND 16

2.1.3 Traffic Flows

Traffic flows are sets of packets that share some commonality, and based

on certain common features, they are categorized into specific traffic types

from which usage information is determined. Traffic flows are composed of

sampled packets and therefore must also estimate the statistical properties

of the original packet stream [19]. The IETF maintained a Real–time Flow

Measurement (RTFM) working group, no longer active, whose charter was,

in part, to produce an improved traffic flow model [2].

Many routers provide support for flows by keeping a table in memory with

packet and byte counters as well as the times of the first and most recent

packet arrivals for each flow. The flows are usually distinguished by source

and destination IP address, and TCP or UDP port numbers [20]. Sommer and

Feldmann [43] determine that NetFlow, Cisco’s flow monitoring solution, can

provide useful information, but that it requires great care and tends not to

be as accurate as SNMP.

Claffy et al. [12] suggest using a richer set of parameters to character-

ize packets based on various locality conditions, both temporal and spatial,

and assigning packets with matching parameters to the same flow. The first

parameter proposed is based on flow timeout. All traffic passing between a

CHAPTER 2. BACKGROUND 17

single source and destination pair, regardless of application type, is counted

as a single flow as long as a given timeout interval is not exceeded between

packets. The second parameter is based on traffic aggregation. It places all

traffic based on certain information, such as destination network, destination

host, source host, network pair, or host pair, into a single flow. For example,

all traffic destined for a given network would be placed into the same flow,

regardless of when the packets arrive or their type. The third parameter is

based on transport and application layer information, such as the transport

protocol or the application type. All packets with matching protocol or type

information are placed into the same flow, regardless of the arrival time or

source or destination addresses. The best solution would probably allow for

a combination of these parameters.

Estan and Varghese [23] believe that keeping track of all flows is too ex-

pensive, and instead prefer to focus on a small number of flows that tend to

account for a very large percentage of the traffic, dubbed elephants, stating

that this is sufficient for many purposes. The main problem is how to identify

the elephants, because tracking the volume of every flow defeats the entire

purpose. Estan and Varghese focus on memory utilization and present two

algorithms that identify the elephant flows, one providing implementation

simplicity and the other providing greater accuracy. Both algorithms use a

CHAPTER 2. BACKGROUND 18

small amount of memory, make a constant number of memory references per

packet, and provide greater accuracy for the same amount of memory than

most other sampling methods.

There are numerous other flow–based sampling algorithms, such as the

one by Choi et al. [10], who propose an adaptive, stratified random packet

sampling technique for flow–level traffic measurement. They demonstrate

that the proposed sampling technique provides unbiased estimation of flow

size with a controllable error bound, in terms of both packet and byte counts

for the elephant flows, while avoiding excessive oversampling.

Cho et al. [8] believe that a major weakness of flows is that predefined fil-

ter rules are required to identify traffic types. The filter rules classify packets

by examining fields in the packet header and thus require a priori knowledge

of traffic types. Therefore, the rules cannot be used with applications that

make use of dynamic ports and also provide limited usefulness in identifying

new protocols and applications. Furthermore, there are far too many com-

binations of flow categories, and so in measuring only elephant flows, minor

traffic types, which may grow with time, are ignored.

Estan et al. [22] state that flows provide insufficient dimensionality, tend-

ing to only support a few categories, like source address, destination address,

CHAPTER 2. BACKGROUND 19

protocol, source port, and destination port. Furthermore, the predefined fil-

ter rules are fixed and do not support dynamic combinations of these cate-

gories. They present a method to automatically classify traffic into appropri-

ate multi–dimensional clusters, with the clusters themselves defined auto-

matically when they provide a meaningful aggregate of flows. Their approach

still uses the same few categories, but combines and varies them dynami-

cally. This allows new traffic patterns such as network worms to be classified

automatically.

The concept of categorizing traffic into flows is a very useful one, and by

combining it with exhaustive monitoring, very detailed network information

can be determined. As explained in Chapter 4, these categories can also be

used to aid in encoding data.

2.2 Exhaustive Monitoring

Packet sampling is useful in many applications, but it cannot provide perfect

accuracy. The best it can do is provide a statistical error bound, which may

not be sufficient in many circumstances. Inaccurate sampling can lead to

incorrect decisions by network operators, which could be disastrous. Exhaus-

tive monitoring provides perfectly accurate measurement and furthermore,

CHAPTER 2. BACKGROUND 20

makes it possible to perform operations, such as compression or encryption,

on the data packets.

Most monitoring systems only measure data at the data–link, network,

and transport layers, ignoring the application layer completely. Feng et al. [24]

state that additional insight can be obtained by monitoring and measuring

traffic at the application level, something that is very difficult with packet

sampling. Some applications use a specific port, and sampling can be used to

monitor these types of applications, but other applications use dynamic ports

and present application information only at the beginning of the connection.

If these packets are not sampled, the information is lost to sampling systems.

Feng et al. present a system that monitors network traffic at the appli-

cation level, but their solution requires a custom–modified Linux kernel and

must be run on the computer that generated the traffic in the first place so

that the packets are measured before going out onto the network, meaning

that their solution is not practical in most cases. The same level of insight,

however, can be obtained with exhaustive monitoring.

Higher level monitoring allows the network operators to determine how

the network is being used by applications such as the World Wide Web, email,

file transfers, and numerous other network applications. With an accurate

CHAPTER 2. BACKGROUND 21

picture of the traffic, operators can identify evolving trends, such as the re-

cent rise of peer to peer applications, and streaming music and video.

On those network links that charge clients based on usage, it is extremely

important to obtain an accurate usage amount. Duffield et al. [18] provide

a technique that samples mainly from the tail end of the distribution be-

cause they say that IP flows tend to have heavily tailed packet and byte size

distributions. However accurate their technique may be though, it can only

provide statistical error bounds, not the perfect accuracy given by exhaustive

monitoring.

A tremendous benefit of exhaustive monitoring is that it allows the en-

coding of data. During peak hours additional bandwidth can be created by

encoding packets with lossless compression algorithms. Sensitive data that

must travel over unknown networks before reaching its destination can be

encrypted automatically by the network. Data packets can be filtered based

on the packet contents, instead of only header information. Though exhaus-

tive monitoring provides numerous benefits, it is not considered practical

because of the high computational cost. This thesis presents a system, de-

scribed in detail in Chapters 4 and 5, for exhaustive monitoring and encoding

that makes use of parallel processing.

CHAPTER 2. BACKGROUND 22

2.3 Using Specialized Hardware

Exhaustive monitoring requires high levels of accuracy and reliability, and

one way to ensure this is to use custom hardware designed specifically for

network monitoring [14, 31]. These FPGA and ASIC solutions are very ex-

pensive however, and it is preferable to use off–the–shelf hardware and soft-

ware in order to reduce the cost and complexity of the system. Fraleigh et

al. [25] show that such a system, if carefully constructed, is reliable enough to

perform exhaustive monitoring. They use a PC running Linux with a large

disk array and a SONET network interface to exhaustively capture packet

traces at rates as high as OC–48 (2.5 Gbps).

The infrastructure presented in this thesis makes use of only off–the–

shelf hardware and an open–source operating system, thus keeping the costs

to a minimum. These components, in conjunction with the software pre-

sented in this thesis, allow the system to be deployed with no reconfiguration

of the network.

CHAPTER 2. BACKGROUND 23

2.4 Parallel Processing

Parallel processing is a cost–effective method for quickly solving computa-

tionally large and data–intensive problems [27]. Parallel computers are now

available as inexpensive commodity multiprocessors and clusters, and mod-

ern operating systems provide the ability to take advantage of concurrency.

When each processing element (PE) in a parallel computer is able to exe-

cute a different program independently of the other PEs, it is referred to as

a multiple instruction, multiple data (MIMD) computer. A variant of this is

the single program, multiple data (SPMD) model, in which each PE runs a

separate instance of the same program and operates on different data. By

contrast, in a single instruction, multiple data (SIMD) computer, each PE

runs exactly the same instruction at the same time as all of the other PEs,

but on a different piece of data.

A symmetric multiprocessor (SMP) system has tightly coupled processors

in which the memory is physically shared among all processors so that each

PE has equal access to any memory segment. Therefore, the time taken by

any PE to access any memory in the system is identical. The memory address

space may be exclusive to a processor (local) or common to all PEs (global).

To communicate, PEs usually alter the data in the common memory address

CHAPTER 2. BACKGROUND 24

space. The processors and resources are all controlled by a single operating

system.

A parallel cluster is a group of two or more computers, each running their

own operating system, that are networked together so that they appear to

applications as a single logical system. Each PE has only local memory and so

PEs must communicate via message passing. Messages are used to transfer

data, work results, and also to synchronize actions. Figure 2.2 illustrates the

relationship between PEs and memory for both SMPs and clusters.

This thesis uses a parallel cluster for both simulation and implementation

purposes. In both cases, each processor runs the same program, but not in

lockstep, meaning that in each case, the design and implementation follow

the SPMD model.

2.4.1 Task Mapping

In order to take advantage of concurrency, a problem must be divided into

smaller tasks, which are then mapped onto processes, each of which is as-

signed to a CPU and executed in parallel. Introducing parallelism also brings

about several sources of overhead. One type of overhead occurs immediately

when the problem is divided into tasks because there must be some coordina-

CHAPTER 2. BACKGROUND 25

PE 1 PE nPE 2

Memory nMemory 2Memory 1

. . . .

. . . .

Interconnection Network

Symmetric multiprocessor

Memory 1

Interconnection Network

. . . .

Parallel cluster

Memory nPE nPE 1

Figure 2.2: Layout of SMP and parallel cluster

CHAPTER 2. BACKGROUND 26

tion among the processes when partitioning the data between them. During

computation it is often necessary for processes to synchronize and possibly

exchange data between processes in order to continue processing, a further

source of overhead. Once the computation is complete, the data must be

merged, resulting in another form of overhead. These types of communica-

tion between processes are referred to as interprocess communication (IPC).

Another source of overhead is the time spent with processes idling, waiting

for more data to process. Since the goal of concurrency is to minimize execu-

tion time, these overheads must be minimized.

A poor task mapping will result in an uneven load distribution, with some

processes completing their tasks earlier than others. IPC and idling are both

functions of the mapping and therefore determining a good mapping requires

that the time spent doing both of these things be reduced. Unfortunately, try-

ing to reduce one source of overhead tends to increase the other. For example,

in order to reduce IPC, all tasks that need to communicate may be mapped

onto a specific process, thus requiring virtually no IPC. This mapping will

result in an unbalanced workload because all other processes will have little

work to do, which increases the idling overhead. Taken to the extreme, it

results in all tasks being mapped onto a single process, with the remaining

processors being completely idle. To balance the load more evenly, it is usu-

CHAPTER 2. BACKGROUND 27

ally necessary to assign tasks that require a high level of IPC onto different

processes, resulting in an increase in IPC overhead.

Mapping techniques fall into two main categories: static and dynamic

mapping. With static mapping, tasks are assigned to processes prior to ex-

ecution. Choosing a good mapping depends on many things, such as the

task sizes, the size of the data for each task, and the communication require-

ments Even with known task sizes, determining an optimal mapping is an

NP–complete problem for non–uniform tasks [27].

In dynamic mapping, tasks are assigned to processes during execution.

This is necessary when the tasks are generated dynamically, and is usually

done if task sizes are unknown a priori because in such a case, a static map-

ping may produce a very unbalanced load distribution. It is usually more

difficult to perform dynamic mapping than it is to perform static mapping.

When exploiting parallel computing, it must be kept in mind that there is

a point where the overhead resulting from using many processes outweighs

the speedup. The complexity of the synchronization among processes, or the

amount of communication among processors may require so much overhead

that the performance of the tasks themselves can be negatively impacted

[30].

CHAPTER 2. BACKGROUND 28

2.4.2 Exploiting Parallelism for Exhaustive Monitoring

This thesis suggests the use of parallelism to perform exhaustive monitoring.

The main objection to exhaustive monitoring has been that it is too costly in

terms of computation, but if the processing capacity of the monitoring system

can by increased by employing a parallel processor, than it may be possible

to exhaustively monitor packets in real–time.

Milward et al. [37] present a scalable, parallel multicompressor FPGA

design that is capable of supporting rates of 100 Mbps using 10 compressors.

However, as mentioned in Section 2.3, custom hardware solutions tend to be

expensive and a solution using off–the–shelf hardware is preferable.

Mao et al. [35] use a parallel cluster to monitor and log HTTP traffic over a

link. The cluster was able to handle up to 2000 concurrent HTTP connections

with a bandwidth of nearly 50 Mbps without losing any packets, using 100

Mbps network connections between the machines in the cluster.

This thesis presents a novel approach to exhaustive data monitoring as

well as online data encoding. It presents and develops a reliable, scalable,

and efficient infrastructure to perform real–time encoding of data packets

online, while maintaining high bandwidth rates. A parallel cluster is used

to spread the computational load over several processors, allowing the moni-

CHAPTER 2. BACKGROUND 29

toring system to scale upwards to support higher bandwidth rates by simply

adding more processors to the system.

2.5 Summary

This chapter provided an overview of current network monitoring techniques,

particularly packet sampling and traffic flows, and showed why exhaustive

monitoring is a desirable alternative. To achieve the goal of exhaustive mon-

itoring, it suggests the idea of using parallel computation to support high

throughput rates that can easily scale upwards. The next chapter presents

a simulation of an exhaustive monitoring system with a parallel cluster to

determine how well the system might scale.

Chapter 3

Simulation with a Parallel Cluster

This chapter presents a simulation of an exhaustive monitoring and encod-

ing system, and examines how well such a system might scale via parallel

processing. The simulation is a system in which data traffic is encoded by a

parallel cluster before being passed to the next hop. The performance of CPU

and disk I/O operations with an increasing number of CPUs and hard disks

is determined.

3.1 System Architecture

The simulation system is based on a load balancing master–slave architec-

ture. This is necessary because only one machine is physically connected to

30

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 31

Router

Master

Slave nSlave 1

Internet Internet

Router

Master

Slave 1 Slave n

Figure 3.1: Simulation system architecture

the router. The router passes all incoming packets from the network to the

master in the parallel cluster, and all packets received back from the master

are forwarded as usual. This way, the router does not need to perform any

computational work or load balancing itself. Figure 3.1 illustrates the system

architecture.

The master is the machine within the parallel cluster that is linked to

the router. It maintains a list of all slave processors and their current loads,

and when it receives an incoming packet from the router, the master assigns

it to the most lightly loaded slave. If the master has idle CPU capacity it

will also perform operations on the packets instead of sending the work to

a slave. Once the encoding is completed by a slave, it is sent back to the

master, which then returns back to the router for forwarding. If there is

an error when sending a packet to the slave, it is assumed to have become

disconnected, is removed from the slave list, and the next best slave is chosen.

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 32

In this manner, slaves can disconnect at any time.

The master does not keep copies of the packets sent to the slaves, as this

would put memory requirements beyond a practical level. Therefore, if a

slave disconnects, all outstanding work it has been assigned is lost. In that

case it is expected that higher layers of the network will take care of retrans-

mission to ensure reliability.

Slaves simply wait for work from the master, perform the required com-

putation, and then, if necessary, send the results back to the master. They

can connect to or disconnect from the master at any time.

3.2 Implementation

Simple router, master, and slave programs were written as application–level

software. As a result, this simulation does not deal with actual packets, but

with buffers that are streamed via TCP. This means that the buffered data do

not reflect actual packets and that there are no headers to aid in the process-

ing. Any packets received by the router from the outside network are sent to

the master for processing. Packets received back from the master are sent to

the corresponding router, which then passes it on to its own parallel cluster

before sending it to the outside network. The slave programs running on all

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 33

slave machines are identical.

In this simulation, we are not concerned with the specific encoding oper-

ations that are performed by the parallel cluster and so they are abstracted

into units of CPU and disk I/O work. One unit of CPU work is defined as the

CPU time required for compressing an incoming packet using LZO compres-

sion [38] on a slave processor. LZO is an open source compression algorithm

based on the Lempel–Ziv scheme and provides very fast compression with

fair compression rates. One unit of I/O work is defined as opening a new

file handle, writing the uncompressed packet to the local disk, closing the file

handle, re–opening it, and then reading back the file back. All disk writes are

followed by a call to the fsync library function, which forces data to be written

to the disk and not stored in cache memory for later reading or writing.

The system was implemented on a parallel cluster consisting of eight

dual–processor Pentium III 500 MHz machines with 512 MB RAM running

FreeBSD. All nodes in the network and within the cluster are connected via

a 1 Gbps Ethernet switch. The code was written in C++ and is approximately

3200 lines.

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 34

3.3 Performance

Several experiments were run to determine the performance of the system

and determine how well it scales as more processors and hard disks are

added. In all of the experiments conducted, random data was sent to the

sending–side router, which then passed the packets on to the sending–side

parallel cluster. Depending on the particular goal of the experiment, cer-

tain amounts of CPU and disk I/O work were performed on the packets,

which were then sent back to the router for forwarding. Once the packets

were received at the receiving–side router, it too passed the packets to the

receiving–side parallel cluster for processing before being sent on to the fi-

nal destination. In this manner, packets were simultaneously sent in both

directions across the network.

Each router has one master and up to three slave nodes in its parallel

cluster. Since each machine is a dual processor, this means that between two

and eight CPUs may be used for processing at either end. Each node of the

cluster contains a single 10K RPM SCSI hard disk for I/O work.

The goal of the experiments is to maximize the throughput of the system

under the encoding operations specified and is determined by examining how

fast data that is inserted into one end of the system comes out of the other

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 35

end, that is, after it has passed through the entire system. These experi-

ments are not attempting to determine the increase in achievable bandwidth

through compression, so even though the data may be compressed by the par-

allel cluster, it is the uncompressed data that is forwarded to the next hop.

Each experiment is run until the throughput value becomes stable.

3.3.1 Effects of CPU Activity

Table 3.1 and Figure 3.2 illustrate how the throughput (in Mbps) changes

with the number of processors for the given CPU work units. In these ex-

periments there is no I/O work being done, although the overhead for the

associated function calls are still included. Table 3.2 and Figure 3.3 show

how much increase in throughput is achieved by utilizing more processors in

the cluster. The throughput increase factor is calculated as the throughput

achieved with n processors divided by the throughput achieved with a single

processor. It indicates how many times faster the throughput has become

with multiple processors. Each column in Table 3.2 gives the increase factor

over one processor, so for example, the first row indicates that adding addi-

tional processors actually reduces the throughput by about half as compared

to using only a single processor from the cluster.

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 36

CPU Work Number of Processors
Iterations 1 2 3 4 5 6 7 8

0 170.02 66.29 92.52 83.46 86.94 85.40 83.57 82.81
1 94.02 81.05 84.28 80.67 82.61 81.91 80.56 80.59
2 66.26 66.05 78.22 78.07 79.23 78.88 78.42 77.62
4 42.60 57.83 68.08 70.37 72.30 72.80 73.21 73.62
8 24.48 34.99 51.80 56.45 61.00 62.49 65.09 66.20

16 13.15 20.14 34.64 38.53 43.88 45.81 50.45 53.16
32 6.84 10.56 19.64 22.90 25.92 27.51 30.23 34.52
64 3.48 5.29 10.16 12.50 14.19 15.39 16.76 19.33

Table 3.1: Throughput rates in Mbps for CPU work

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7 8

Number of Processors

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

1

2

4

8

16

32

64

Figure 3.2: Throughput for CPU work

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 37

CPU Work Throughput Increase Factor
Iterations 2 3 4 5 6 7 8

0 0.39 0.54 0.49 0.51 0.50 0.49 0.49
1 0.86 0.90 0.86 0.88 0.87 0.86 0.86
2 1.00 1.18 1.18 1.12 1.19 1.18 1.17
4 1.36 1.60 1.65 1.70 1.71 1.72 1.73
8 1.43 2.12 2.31 2.49 2.55 2.66 2.70

16 1.53 2.63 2.93 3.34 3.48 3.84 4.04
32 1.54 2.87 3.35 3.79 4.02 4.42 5.05
64 1.52 2.92 3.60 4.08 4.43 4.82 5.56

Table 3.2: CPU work throughput increase factor over two processors

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16 32 64

Number of CPU Iterations

In
cr

ea
se

 F
ac

to
r

2

3

4

5

6

7

8

Figure 3.3: Throughput increase factor for CPU work

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 38

Tables 3.1 and 3.2 include data for zero CPU work units. This means

that data passes through the entire system but absolutely no CPU or I/O

work is done though all function call overheads are included. This number

serves as an upper bound for the maximum throughput the simulation sys-

tem can support. In this case, when the number of slave processors available

to the master for load balancing increases, the maximum throughput actu-

ally decreases because we are introducing communication overhead but are

not taking advantage of the extra processors by performing any encoding op-

erations.

With one unit of CPU work a single processor can handle a throughput of

approximately 94 Mbps. Adding more processors to the system decreases the

throughput to slightly over 80 Mbps because the extra processes introduce

overhead and the computational requirements demanded of the processes

does not produce enough speedup to counteract the overhead.

As more slaves are utilized the master must pass more data back and

forth between them, and in the meantime, the slaves are more likely to be

idling instead of performing useful computations. These overheads will, in

certain cases, overcome the extra processing capacity brought online and

thus result in a lower throughput. As the number of units of CPU work

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 39

increases, however, the computational load required of the additional proces-

sors is high enough to overcome the overhead introduced, resulting in higher

throughput rates.

Additionally, with one unit of CPU work, there is a very slight rise and

fall as more processors are added because in a given node, even though there

may be two CPUs in use, there is only a single network interface. For exam-

ple, when moving from three to four processors, the throughput falls because

both processors are contending for access to the single network interface.

Since there is only one unit of CPU work being done, this contention causes a

relatively large amount of overhead and the throughput falls slightly. When

more units of CPU work are performed, this effect is drowned out by the

additional computational work.

As the amount of CPU work performed increases, a corresponding rise in

the factor of increase of throughput is seen because the extra processors are

being utilized more effectively. This can be seen most effectively in Figure

3.3. As more work is performed and more processors are brought online, the

idling overhead is reduced and the communication overhead is low enough

that we see a significant increase in throughput. A theoretical factor of in-

crease of two is expected when using two processors instead of one, but this is

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 40

unachievable in practice due to overhead. From Table 3.2, we see that while

there is initially a decrease in throughput, as more work is performed, the

factor rises toward to its theoretical limit. Similar results may be seen in the

remainder of the table, though the maximum increase factor achieved tends

to move further and further away from its theoretical limit.

3.3.2 Effects of I/O Activity

A similar set of experiments determining how throughput scales with vary-

ing I/O work was also performed, with the results given in Table 3.3 and

Figure 3.4. Since we are only interested in I/O performance, there is no

CPU work being done, although the associated function call overheads are

still included. Table 3.4 and Figure 3.5 show the throughput increase in a

more convenient fashion, so we can easily see the throughput improvement

as more processors and disks are added. As in Section 3.3.1, each column of

the table gives the increase factor over a single processor. It is important to

note that each node in the cluster contains only a single hard disk, and so

each pair of processors must share one hard disk.

An obvious observation for this case is that the throughput rates are sub-

stantially lower than in Section 3.3.1. Disk I/O operations introduce a larger

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 41

I/O
Work Number of Processors

Iter. 1 2 3 4 5 6 7 8
1 2302.55 3084.43 4448.87 4675.77 8880.55 10632.24 12142.04 13121.60

2 1182.75 1566.49 2237.84 2748.58 3712.68 4375.16 5243.14 5546.79

4 698.25 794.51 1195.92 1403.65 1756.81 2097.34 2488.17 2599.78

8 376.75 401.36 623.34 698.88 893.90 1039.10 1219.22 1266.94

16 193.31 179.25 315.94 329.36 427.41 518.16 617.95 620.91

32 98.94 90.02 166.52 168.19 218.94 263.98 301.79 323.62

64 51.91 47.83 86.12 84.17 108.82 129.91 151.18 155.26

Table 3.3: Throughput rates in Kbps for I/O work

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

1 2 3 4 5 6 7 8

Number of Processors

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

1

2

4

8

16

32

64

Figure 3.4: Throughput for I/O work

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 42

I/O Work Throughput Increase Factor
Iterations 2 3 4 5 6 7 8

1 1.34 1.93 2.03 3.86 4.62 5.27 5.70
2 1.32 1.89 2.32 3.14 3.70 4.43 4.69
4 1.14 1.71 2.01 2.52 3.00 3.56 3.72
8 1.07 1.65 1.86 2.37 2.76 3.24 3.36

16 0.93 1.63 1.70 2.21 2.68 3.20 3.21
32 0.91 1.68 1.70 2.21 2.67 3.05 3.27
64 0.92 1.66 1.62 2.10 2.50 2.91 2.99

Table 3.4: I/O work throughput increase factor over two processors

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16 32 64

Number of I/O Iterations

In
cr

ea
se

 F
ac

to
r

2

3

4

5

6

7

8

Figure 3.5: Throughput increase factor for I/O work

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 43

delay than CPU operations because they are on the order of milliseconds,

whereas CPU operations are on the order of nanoseconds. Therefore, to ob-

tain the best results in disk I/O, RAID is recommended for each node in the

cluster to reduce the delay by automatically parallelizing disk operations.

Even though each pair of processors shares a single hard disk, using both

processors of each node shows a clear improvement in throughput over using

only a single processor. This improvement occurs because the disk is being

utilized more fully due to the additional demands of the second processor. If

a second disk were available in each node of the cluster, the throughput rates

would no doubt be even higher.

With I/O performance, adding more processors and disks increases the

throughput but the increase factor diminishes with more work as can be seen

by the decline in the slope of Figure 3.5. That is, adding more processors and

disks actually decreases the factor of increase of throughput as more I/O work

is performed. From Table 3.4, we can see that in each column, as we increase

the load to perform more iterations of I/O work, the throughput factor of

increase over a single processor and disk is diminishing.

This performance decrease occurs due to an increase in idling overhead.

When a slave is performing 64 iterations of I/O work, it takes a very large

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 44

amount of time, and in the meantime, the router continues to receive pack-

ets and attempts to pass them on to the master, while the master itself has a

queue of outstanding packets that need to be sent to slaves for encoding. As

a result, the router and master begin dropping packets because their buffers

are overflowing. The master may also begin performing encoding operations

itself if all slaves are occupied and it has some idle capacity. Further idleness

overhead occurs when a slave finishes its I/O work and instead of immedi-

ately being sent more work by the master, must wait because the master is

itself engaged in encoding. Periodically the master pauses the encoding step

and sends more data to the slave. The time the slave spends idling is wasted.

3.3.3 Effects of Combined CPU and I/O Activity

Table 3.5 and Figure 3.6 show how the throughput (in Kbps) changes with the

number of processors for combined CPU and I/O work units. This means that

the stated number of iterations are performed for both CPU and I/O work.

Table 3.6 and Figure 3.7 demonstrate the increase factor as the number of

processors in use are scaled up. As in Sections 3.3.1 and 3.3.2, each column

of the table gives the increase factor over a single processor.

When combining CPU and I/O work, we expect the I/O performance num-

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 45

Combined

CPU & I/O Number of Processors
Work Iter. 1 2 3 4 5 6 7 8

1 2224.74 2920.43 4453.58 4706.93 7549.62 7025.05 8638.40 8529.30

2 1164.42 1515.37 2518.72 2802.96 3364.09 3646.64 4947.87 4680.94

4 686.76 735.37 1181.77 1357.73 1728.09 2091.76 2417.86 2424.72

8 376.01 384.41 622.29 681.40 886.73 1048.56 1200.13 1233.12

16 191.09 189.47 327.68 333.00 442.00 516.73 605.64 620.73

32 93.77 99.77 168.78 176.23 222.52 261.86 298.39 309.83

64 49.87 47.28 84.27 90.22 102.62 119.84 152.17 153.58

Table 3.5: Throughput rates in Kbps for combined CPU and I/O work

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

1 2 3 4 5 6 7 8

Number of Processors

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

1

2

4

8

16

32

64

Figure 3.6: Throughput for combined CPU and I/O work

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 46

Combined CPU & Throughput Increase Factor
I/O Work Iterations 2 3 4 5 6 7 8

1 1.31 2.00 2.12 3.39 3.16 3.88 3.83
2 1.30 2.16 2.41 2.89 3.13 4.25 4.02
4 1.07 1.72 1.98 2.52 3.05 3.52 3.53
8 1.02 1.65 1.81 2.36 2.79 3.19 3.28

16 0.99 1.71 1.74 2.31 2.70 3.17 3.25
32 1.06 1.80 1.88 2.37 2.79 3.18 3.30
64 0.95 1.69 1.81 2.06 2.40 3.05 3.08

Table 3.6: Combined CPU and I/O work throughput increase factor over two
processors

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 2 4 8 16 32 64

Number of CPU and I/O Iterations

In
cr

ea
se

 F
ac

to
r

2

3

4

5

6

7

8

Figure 3.7: Throughput increase factor for combined CPU and I/O work

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 47

bers to dominate because they are significantly lower than the CPU perfor-

mance numbers. A comparison of Tables 3.3 and 3.5 confirms this expecta-

tion. Because CPU work is also being performed, the numbers in this set

of experiments tend to be slightly lower than the corresponding numbers in

Section 3.3.2.

Since the I/O numbers dominate, we expect that adding more processors

and disks will again reduce the throughput increase factor as more combined

work is performed. Figure 3.7 confirms this but also shows that the decrease

is shallower. While the I/O iteration increase is working to reduce the in-

crease factor, the CPU iteration increase is trying to increase the same fac-

tor. As a result, the decrease is lessened. The analyses given in Sections 3.3.1

and 3.3.2 hold here as well.

3.4 Summary

This chapter presented a simulation environment that allowed us to verify

the hypothesis that parallelizing the exhaustive monitoring system would al-

low us to scale to higher throughput rates. The simulation architecture and

implementation were discussed and the results of several experiments were

provided. The experiments confirmed that throughput scales well with an

CHAPTER 3. SIMULATION WITH A PARALLEL CLUSTER 48

increasing number of processors and disks for various combinations of CPU

and disk I/O work. As we require more work to be performed per–packet,

the factor of increase of throughput increases for CPU intensive tasks, but

decreases for disk I/O–centric tasks. The next chapter discusses how packets

are acquired from and then released back into the network, and also de-

scribes the concept of data streams.

Chapter 4

Acquiring and Encoding Packets

This chapter discusses the techniques used to transparently acquire packets

from the network so that they may then be processed further. After being

captured, the packets are separated into streams based on various factors.

This separation benefits many encoding schemes and also aids with other

types of categorization used in monitoring. If required, the packets are then

encoded or decoded, and then released back into the network.

4.1 Packet Capture and Release

The most popular method of acquiring packets from the network is to use

a C–language library called libpcap and to place the network interface into

49

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 50

promiscuous mode. The libpcap library is a framework for user–level packet

capture [44] and it acquires packets at the data link layer using the under-

lying operating system’s packet capturing facilities. It is mainly used for

security monitoring and network debugging, which do not require packets to

be returned back to the network, and as a result, it does not provide a means

to do this.

Transparency is one of the requirements of the system and it was decided

that this could be best accomplished by casting it in the form of a transparent

Ethernet bridge using FreeBSD as the operating system. In addition to a

bridge feature, FreeBSD provides a facility for applications to read and write

Ethernet frames through a system device known as tap. The tap device is

essentially a virtual Ethernet interface, and can be accessed by reading from

and writing to the /dev/tap0 device.

This in itself is not particularly useful because the virtual interface is not

connected to any networks and thus does not receive any network traffic.

However, there is means of connecting a real Ethernet interface to the vir-

tual one, and thus it is possible to read and write raw Ethernet frames on the

network. Figure 4.1 illustrates how the tap virtual device works. Since this

facility is provided directly by the operating system and supports both read-

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 51

User

Application

/dev/tap0

Ethernet

interface

FreeBSD system

Figure 4.1: The tap virtual device

ing and writing, it was felt that this was a better choice for the system than

libpcap. The tap kernel module can be loaded into the operating system from

the command line, or compiled directly into the kernel. The latter option was

chosen.

Using the tap device requires the system to manage Ethernet headers and

trailers. Once a packet is obtained, the header and trailer must be saved be-

fore being stripped from the packet, since they are not needed during the en-

coding phase. Upon completion of encoding, it is necessary to add the header

and trailer back. To save memory, the system stores only the MAC address

and recreates the header and trailer when necessary. In order to match the

MAC address with the correct packet, a record of the corresponding IP ad-

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 52

dress is stored and used to look up the MAC address.

4.2 Packet Encoding

With exhaustive network monitoring, all packets can be stored to disk for

later analysis and/or classified in real–time. But performing exhaustive net-

work monitoring also allows us to undertake packet transformation opera-

tions, something that is impossible with packet sampling. Transformations

may include lossless or lossy compression to effectively create bandwidth, en-

cryption to ensure security, and packet filtering to deny specific applications

network access.

Many encoding schemes work as symmetrically paired operations, such as

compression–decompression and encryption–decryption. This means a cor-

responding decoding operation is required before the packet is passed on to

neighbouring networks or to the client and also that errors introduced during

packet processing will render the data irretrievable on the other side.

It is not necessary that all packets be encoded. Each packet may be exam-

ined, and based on certain criteria, may be encoded or passed on unaltered.

This examination of packets also permits a much more comprehensive means

of filtering packets. Typical firewalls will allow or disallow packets based on

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 53

the values of certain fields within the IP, TCP, and/or UDP header. An ex-

haustive monitoring system we can do much more.

The payload of packets may be examined and filtered on the basis of the

contents found and instead of merely granting or denying packets access,

their contents can be modified before sending them off to their destinations.

This modification may include encoding the data, adding information, remov-

ing sensitive information, or it exchanging payload data with other data.

There are many reasons why a network operator may wish to encode the

data as it passes through their network. Lossless compression provides ad-

ditional bandwidth, thus staving off the installation of expensive new infras-

tructure equipment. Compression also allows the network to handle high

loads during peak times and creates bandwidth on rural or remote routes,

making them more cost–effective. If sensitive data will be passing through

an untrusted network, the packets may be encrypted in order to reduce the

possibility of it being intercepted. It is also possible to employ a combination

of packet transformations.

In the past, packet compression has not been used much due to the low

compression rates achieved and the high overhead involved. The low com-

pression ratios are mainly due to the fact that compression is performed

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 54

on a per–packet basis instead of taking advantage of correlated information

across packets, as mentioned in Section 4.3, by combining related packets

into streams, which significantly increases the achievable compression rate.

A stringent requirement of the system is that all encoding take place in

real–time. The throughput of the network must not fall below the acceptable

levels, and therefore the encoding schemes employed must be relatively fast

and able to operate efficiently in streamed mode or on small blocks of packets

that arrive together.

4.3 Maintaining State with Streams

As explained in Section 4.2, data compression is an effective method for

increasing the throughput of a given network link because it reduces the

amount of data that is sent. Most network data compression schemes use

what is known as stateless compression, where each data packet is com-

pressed independently. This precludes taking advantage of the correlation

of the data over a series of packets and thereby prevents the system from

achieving a satisfactory compression rate. Communication–specific compres-

sion algorithms, such as v.42 bis and v.44, compress each frame indepen-

dently, which limits the redundancy that can be removed through compres-

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 55

sion, but are popular solutions due to their low complexity [45, 46].

Other data compression schemes, referred to here as single stream com-

pression, do attempt to take advantage of the correlation of data across pack-

ets, however they consider all packets as belonging to a single stream. These

schemes fail to recognize that the data being transmitted is a mixture from

many different connections and there is little correlation between the connec-

tions. Each connection is sending and receiving packets that are related to

one another within the connection, but packets between connections are not

related. As a result, such schemes also fall short of the maximum potential

compression ratio.

A superior scheme would attempt to separate those streams that are in-

dependent and at the same time try to maintain correlation across the pack-

ets. This scheme, while being far more complex than the above–mentioned

schemes, produces the best compression rates. The saved state allows com-

pression dictionaries to determine redundancies over all data in a connec-

tion, rather than just those existing within a single packet. Stateful com-

pression introduces several difficulties, however. It requires that all packets

be decoded in the correct sequence. Any dropped packets must be re–sent

and the decompressor must wait for late packets to arrive before continuing.

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 56

The alternative is to resynchronize both sides by flushing their dictionaries,

and though simpler, this technique would reduce the compression rate. In

this thesis, it is assumed that a relatively error–free link is used, and that

dropped or out–of–order packets are a rarity.

Streams are also useful when encrypting data. Each stream can be en-

coded with a different key, thus reducing the relationship between the pack-

ets and making it more difficult to break the encryption. According to Shan-

non [42] the more data an attacker receives that is encoded with the same

key, the easier it is to break the code.

Stream ciphers and feedback–based block ciphers require the previous

bits of ciphertext in order to produce the next bits of ciphertext. There-

fore, maintaining state information is mandatory when using these encoding

schemes.

4.3.1 Stream Separation Factors

Once we have determined that separating packets into streams will prove

beneficial, the question of how to separate them arises. Finding the best so-

lution to this problem is difficult, but worthwhile. A simple solution would

be to create a stream for each unique set of network host and port pairs,

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 57

guaranteeing that different connections will be separated. This type of cat-

egorization is similar to that used in traffic flow monitoring. However, this

scheme has several drawbacks. Firstly, even within a single connection there

may be multiple data types being transferred. For example, in a single HTTP

session there will likely be a mix of text and graphical data and combining

them in a single stream will result in poor compression rates. Secondly, it

would be beneficial to combine the same data types from all connections into

a single stream in order to take advantage of the dictionary that has already

been built from previous connection. For example, HTML data from all con-

nections may be run through a single stream to maximize the compression

rate. Most HTTP sessions are short–lived and could benefit greatly from this

idea. Thirdly, if each possible combination of source and destination IP ad-

dresses and source and destination ports were placed in a separate stream,

the memory requirements would be prohibitive if a large number of simulta-

neous connections were active in the network.

The monitoring system presented in this thesis provides a three–tiered

solution, illustrated in Figure 4.2, to the problem of determining how to sepa-

rate packets into streams so that those packets which have a high probability

of correlation between them are passed through the same stream. At the first

level, the source IP address is hashed into a bounded number of “major chan-

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 58

Source IP #1

Source IP #2

Source IP #n

Connection #1

Connection #2

Connection #m

Data type #1

Data type #2

Data type #k

. . .

. . .

. . .

All connections for
source IP #2

All data types for source

IP #2, connection #2
All source IPs

Major channel Intermediate channel Minor channel

Figure 4.2: Stream separation scheme

nels”. This separates connections that originate from different IP addresses

because such data typically has the least amount of correlation. At the sec-

ond level, the connections from a particular source IP address are separated

into a fixed number of “intermediate channels,” based on a hash of the source

IP, source port number, destination IP, and destination port number. This

separation reduces the intermixing of data between the many connections of

a single host. Finally, the third level separates the data within a connection

into a certain number of “minor channels” based on the type of the data in

the connection. For example, HTML text might be one type, while images

might be another. The number of major, intermediate, and minor channels is

fixed so that the maximum memory requirements are known a priori.

To determine which data types should make up the minor channels, sev-

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 59

eral heuristics are used. For HTTP connections, the HTTP header is ex-

amined to determine the Multimedia Internet Mail Extensions (MIME) type

information. This information indicates what data is being transferred in

the connection. In other cases, the packet payload is examined in an attempt

to determine what data is being carried by matching key strings for popular

data types. If none of the key strings match, a final heuristic makes a best–

guess effort at determining whether the data is ASCII text or not. Once a

data type is determined for a connection, it is stored in a table and remains

for the lifetime of the connection. This is necessary because it is usually only

possible to determine the type of the data at the beginning of the data trans-

fer. Only at that time is the MIME type or file header information provided

and if it is not discovered then, it usually cannot be determined later.

4.3.2 Mapping Web Traffic into Streams

Web traffic typically transfers the same data from the web server to an end

host and it would be beneficial to place this data into the same stream be-

cause the dictionary built up for a specific site may be reused by all hosts.

This has the potential to allow for a much greater compression for short–

lived connections which transmit only a small amount of data.

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 60

The exhaustive monitoring system presented here monitors HTTP re-

quests and acquires the URLs contained therein. If a connection is being

made to a web server, the steps discussed in Section 4.3.1 are bypassed

and instead the URL is parsed, hashed, and mapped to a specific stream.

The URL parser removes any query string information and distinguishes be-

tween absolute and relative URLs. In this fashion, all requests for a specific

URL will be mapped to the same stream, while other traffic will continue to

be mapped in the manner described in Section 4.3.1.

4.4 Summary

This chapter discussed techniques used to quietly capture raw Ethernet frames,

allowing the system to appear transparent to the network. The scheme cho-

sen was the tap interface provided by the FreeBSD operating system. Next,

the uses and benefits of packet transformation operations, such as compres-

sion, encryption, and flexible filtering, were discussed. Finally, the concept of

streams was presented. Streams provide many benefits and may be required

for some encoding operations. Their employment also results in superior

compression rates. An overview of how packets are separated into streams

was given. The next chapter presents a complete implementation of the sys-

CHAPTER 4. ACQUIRING AND ENCODING PACKETS 61

tem and determines how well throughput scales with an increasing number

of processors and hard disks.

Chapter 5

System Model and Architecture

In Chapter 3, via simulator–based experiments we verified that throughput

could be increased by employing additional processors and hard disks, but

those experiments were run with a comparatively simple system on a par-

allel cluster. In this chapter, a complete exhaustive monitoring system is

implemented on the same parallel cluster.

This system implements all of the features discussed in Chapter 4 and

several more, introduced in this chapter. As such, it captures Ethernet frames

at the data–link layer, uses heuristics to separate the packets into streams in

order to increase the encoding function utility, encodes the packets, and then

releases the frames back into the network. By functioning at the data–link

62

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 63

layer the system is transparent to the network, meaning that no network

reconfiguration is required when the system is deployed. In addition, the

system provides a resynchronization protocol, described later in this chap-

ter, that provides recovery in the event of packet error or loss. The system

presented in this chapter is quite large and far more complicated than the

simulation and it is necessary to repeat the experiments run in Chapter 3 in

order to determine if the throughput will scale in a similar manner.

5.1 System Architecture

The main goal of the system is to take advantage of packet encoding schemes

while allowing for high throughput and maintaining transparency. To that

end, the system has been designed as a transparent Ethernet bridge, mean-

ing that the existing network is not aware that the system is there and does

not need to be reconfigured in any way. Figure 5.1 shows how the transparent

bridges fit into the network. The default deployment is a dual bridge system

between the routers of a leased line or some other dedicated connection. This

connection is assumed to be relatively error free, as described in Section 4.3,

though a resynchronization protocol is used in the rare event of packet loss

or corruption (see Section 5.3.2).

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 64

Router Master

Slave nSlave 1 ...

Transparent Bridge

RouterMaster

Slave nSlave 1 ...

Transparent Bridge

Internet Internet

Figure 5.1: Transparent bridge architecture

Packets travelling through the link from one router to the next are passed

through the bridge immediately after the router. Depending on the desired

encoding, the packet may be transformed, and then decoded at the other end

of the link. If so, the second bridge will take care of this operation before

sending packets to the next hop router. The bridge operates at the data–

link layer, but the packets may be filtered and transformed based on packet

information at levels up to and including the application layer.

The bridges do not know which interface will receive packets from the

router and which will receive encoded packets from the corresponding bridge.

All received IP packets that bear a specific protocol number (e.g., in our case,

63) will be decoded, and all packets with other protocol numbers will be en-

coded and the protocol number will be changed to 63. The Internet Assigned

Numbers Authority (IANA) [3] has assigned protocol number 63 for any lo-

cal network, ensuring that it should not otherwise be seen on the link. This

change in protocol numbers will only take place if the packet is transformed

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 65

and needs to be decoded at the other end of the link.

The entire system is built using standard off–the–shelf components and

FreeBSD’s bridge and tap services. The bridge machines are capable of par-

allel processing via a parallel cluster and if necessary, contain several hard

disks.

5.2 Load Balancing

A slave process is created and assigned to each CPU available. This process

encodes or decodes the data and also maintains state for the data streams

it has been assigned. The master process receives all incoming packets from

the tap interface, determines which operation to perform, and then sends the

packet to the appropriate slave processor. When the data is returned, the

master process sends the packet out of the second tap interface, completing

the bridge function. All interprocess communication takes place via sockets.

The algorithm used to map packets to a process is very simple. The source

and destination IP address of the packet are hashed and taken modulo n,

where n is the number of processors. This ensures that all packets in a

connection are assigned to the same stream on the same processor so that

the system takes advantage of inter–packet correlation. Assuming a well

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 66

designed hash function, this scheme should distribute the packets roughly

evenly between all processors. The hash function used is an exclusive–OR

operation of the two addresses.

Using the TCP or UDP port numbers in the hash would be beneficial but

this information is not always available because it may be the case that the

encoding operation does not leave a TCP or UDP header within the IP packet.

For example, in the implemented system the encoding operation is compres-

sion and several small packets are compressed into a larger “package” and

placed inside an IP packet (see Section 5.3.1 for further details). The package

does not contain a TCP header and therefore does not have a port number.

5.3 Implementation

The exhaustive monitoring system has been implemented with the example

encoding function being data compression and with the goal of maximizing

the compression ratio. The zlib library was chosen for compression because

it offers good compression rates and compresses streamed data effectively.

zlib is a free, general–purpose lossless data–compression library that pro-

vides in–memory compression and decompression functions [26]. Switching

to other encoding methods would not be difficult.

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 67

As with the simulation, the computations are abstracted into units of CPU

and disk I/O work. One unit of CPU work is defined as the time required

for compressing an incoming packet using zlib and also performing header

compression (see Section 5.3.1). One unit of I/O work is defined as opening

a new file handle, writing the uncompressed packet to the local disk, closing

the file handle, re–opening it, and then reading back the file back. All disk

writes are followed by a call to the fsync library function, which forces data

to be written to the disk instead of stored in cache memory for later writing.

The complete system was implemented on the same computers as used in

the simulation, dual–processor Pentium III 500 MHz machines with 512 MB

RAM running FreeBSD. All components were connected via 100 Mbps Fast

Ethernet. The code was written in C++ and is approximately 8900 lines.

5.3.1 Combining Packets into Packages

Many applications, such as telnet sessions or short database transactions,

send large numbers of small packets. These packets often contain only a few

bytes of data, whereas the header information is often in excess of 40 bytes

(20 bytes for the IP header and at least 20 bytes for the TCP header). Com-

pressing such a small packet would not produce much benefit, particularly

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 68

when coupled with the fixed 6–byte overhead introduced by zlib.

To overcome this problem, multiple packets within a connection are pack-

aged together into a single, larger packet, or “package”, allowing compres-

sion to occur over a larger amount of data. This permits the compressor to

find more redundancy across packets and the 6–byte zlib overhead is only

paid once per package. The downside is that the header information must be

stored within the package payload because there are multiple packet headers

contained within the same package.

Since there is usually no correlation between the packet header and pay-

load, compressing them together would not produce the best results. A better

solution would be to separate the header from the payload and use a sepa-

rate compressor for each part. We continue to use zlib for the payload, but

the header is compressed with a system similar to that presented by Jacob-

sen [32].

Our system implements a modified and simplified Jacobsen header com-

pression scheme that results in a slightly worse compression due to the sim-

plifications introduced. Like Jacobsen’s, our scheme is specific to TCP/IP

datagrams but instead of producing an average compressed header size of 3

bytes, our scheme averages 4 bytes but is much simpler to implement. The

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 69

compressed headers within a package are then further compressed with zlib.

When the transparent bridge receives a frame from the tap interface, it

removes the Ethernet header and trailer in order to process the IP packet.

These must be restored when the packet is returned to the network, so the

MAC address and corresponding IP address are saved and the Ethernet

header and trailer are re–created when the packet exits the bridge. Because

the package must be wrapped in an Ethernet frame, only those packets that

have the same source and destination IP address as well as being compressed

in the same stream may be packaged together. This limitation on which pack-

ets may be packaged together causes the average package size to be smaller,

reducing the potential efficiency gains.

Even though it is ensured that packages are no larger than the maximum

IP packet size, the compression transformation may create packages that

are larger than the Maximum Transmission Unit (MTU) size, a data–link

layer restriction. To avoid this, it may be necessary to perform packet frag-

mentation and reassembly. This task that has been implemented in and is

performed by the monitoring system software because this capability is not

provided by FreeBSD’s bridge feature.

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 70

5.3.2 Resynchronization

If packet loss occurs between the bridges it is imperative that the system

somehow detect it and take steps to correct it because otherwise the encoding

stream state would not match between bridges and decoding would not be

possible. To serve this purpose, a simple, low overhead resynchronization

protocol has been developed.

The identification field of the IP header is used as a sequence number for

packages in order to recognize when packets have been lost. The original

IP headers have been compressed and bundled into a package, so no infor-

mation is lost. The sequence number runs between the values 1 and 4095,

incrementing by one for each package. The value 0 is reserved for initial

startup and resynchronization.

When an unexpected sequence number is received, a resynchronization

action is undertaken. The system maintains a small out–of–order queue

which buffers packets that have arrived before they were expected (i.e. the

sequence number of the received packet is higher than the next expected

sequence number). If the sequence number of the received packet is larger

than the expected sequence number by an amount no greater than the out–

of–order queue size, it is stored in the queue, unless the queue is full. For

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 71

example, suppose the out–of–order queue can store only one packet, and the

next expected sequence number is 1000. If the packet that arrives next has a

sequence number of 1001, the packet will be stored in the queue. If, however,

the packet has a sequence number greater than 1001, it will be discarded

because the queue space is not large enough to store more than one packet

ahead. Received packets with a smaller than expected sequence number are

also dropped because they are assumed to be duplicates. Once the queue is

full, resynchronization must commence and all packets in the out–of–order

queue are dropped. They are no longer needed because the system will re–

send all packets beginning with the next expected packet.

The queue size is currently set at a value of four packets to ensure that

dropped packets are quickly recognized and resynchronization is not exces-

sively delayed. The network link is assumed to be virtually error–free and so

this protocol should be executed only rarely.

When an expected packet is received and the queue is not empty, the

packet is first processed, the next expected sequence number is incremented,

and the out–of–order queue is scanned to determine whether any of its pack-

ets follow the current one. If so, that packet is then processed and the queue

is again examined for further packets in the sequence.

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 72

When resynchronization is determined to be necessary, the bridge receiv-

ing the data sends a resynchronization request back to the sending bridge.

After the request is made, the receiver awaits confirmation. Upon receiv-

ing a resynchronize request or request confirmation, all state information is

cleared, and the sequence number is reset to 0. When this happens to the sys-

tem implemented here, the compression rate drops because all compression–

related state information must be completely rebuilt. This should be a rare

event though, because of the mostly error–free link. If any package is re-

ceived while waiting for a confirmation, the packet is dropped and another

reset request sent. It is left to higher layers such as TCP to perform recovery

of all dropped packets.

5.4 Performance

Experiments were run to determine how well the system encodes data, and

also to determine how well it scales with additional processors. Several gi-

gabytes of popular websites such as yahoo.com, cnn.com, and microsoft.com

were saved to a local web server in order to reduce the length and variability

of network latency. Local hosts retrieved the web pages using multiple web

crawlers over a link containing the compressing Ethernet bridges. To take

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 73

Compression Scheme Rate
Per–Packet 1.70
Single Stream 2.19
Monitoring and encoding system 2.79

Table 5.1: Achievable compression rates

advantage of the URL mapping discussed in Section 4.3.2, the UNIX hosts

file used for hostname to IP address resolution was modified so that the ex-

ternal domain names pointed to the local server. As a result, the bridge sees

the correct URL request. Depending on the particular goal of the experiment,

certain amounts of CPU and disk I/O work were performed on the packets.

5.4.1 Compression Rates

The host ran eight web crawlers with each experimental run requesting

URLs from the web server in the same random order. That is, the order of

the requests was generated randomly, but the same order was used in each

experiment to prevent a change in the compression rate due to the request

order. Table 5.1 summarizes the results of the experiments.

From the table, we can see that compressing each IP packet individually

and then discarding the compression dictionary afterward results in the com-

pressed data being 1.70 times smaller, the poorest showing. Maintaining a

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 74

single stream of state across packets gives a better compression rate, but

neither method is nearly as good as the complete system described in this

chapter.

5.4.2 Effects of CPU Activity

These experiments determine the maximum throughput of the system with

varying amounts of CPU work. Table 5.2 and Figure 5.2 illustrate how the

throughput (in Mbps) changes with the number of processors. There is no

I/O work being done in these experiments. Table 5.3 and Figure 5.3 show

the factor of increase in throughput from using additional processors. The

Ethernet bridge requires the use of two machines in the cluster, so there

remain only six to use for experiments.

Tables 5.2 and 5.3 include data for zero CPU work units in order to obtain

an upper bound on the system throughput. In this situation, adding extra

processors leads to small gains because we are introducing communication

overhead but are not taking advantage of the extra processors by perform-

ing any useful operation. Unlike the simulation however, a throughput in-

crease is seen in this case because this system performs more work on each

packet, such as stream separation heuristics, even when the packet is not

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 75

CPU Work Number of Processors
Iterations 1 2 3 4 5 6

0 56.80 53.92 57.68 60.96 62.64 64.32
1 18.96 18.72 23.52 28.40 31.60 36.88
2 16.72 16.96 21.84 26.32 30.08 33.36
4 13.44 16.56 19.04 23.04 26.16 30.72
8 9.52 14.64 15.44 17.92 21.36 25.68

16 4.03 8.32 10.48 13.12 15.44 18.16
32 3.69 5.23 6.13 8.16 10.64 11.84
64 1.94 2.92 3.16 4.06 5.46 5.82

Table 5.2: Throughput rates in Mbps for CPU work

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4 5 6

Number of Processors

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

1

2

4

8

16

32

64

Figure 5.2: Throughput for CPU work

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 76

CPU Throughput
Work Increase

Iterations Factor
2 3 4 5 6

0 0.95 1.02 1.07 1.10 1.13
1 0.99 1.24 1.50 1.67 1.95
2 1.01 1.31 1.57 1.80 2.00
4 1.23 1.42 1.71 1.95 2.29
8 1.54 1.62 1.88 2.24 2.70

16 2.06 2.60 3.25 3.83 4.51
32 1.42 1.66 2.21 2.88 3.21
64 1.51 1.63 2.09 2.81 3.00

Table 5.3: CPU work throughput increase factor over one processor

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1 2 4 8 16 32 64

Number of CPU Iterations

In
cr

ea
se

 F
ac

to
r

2

3

4

5

6

Figure 5.3: Throughput increase factor for CPU work

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 77

compressed.

When performing only one unit of CPU work, the throughput rates in-

crease slowly, until using six processors yields slightly less than double the

throughput of a single processor. Increasing the iterations of CPU work con-

tinues to realize gains, though they are small at first. As more work is per-

formed per CPU, the overhead becomes smaller in comparison to the com-

putational gains, and so the throughput increases very nicely as 64 units of

work are performed. Figure 5.3 shows that the system reaches a maximum

throughput increase factor at 16 iterations of CPU work, but this does not

mean that the throughput decreases after this point, as Table 5.2 and Figure

5.2 clearly show. It means that performing 16 units of CPU work provides

the highest growth rate in throughput as more processors are added.

The absolute throughput rate in the system is lower than that of the sim-

ulation because there is much more overhead for each packet. In the sim-

ulation, the master simply passed all packets to the slaves and did not per-

form any other tasks that would be necessary in a complete system. In the

complete system the Ethernet header must be removed and the re–created

later, the packet must be split up into streams, the headers are compressed

twice using different compression methods, and the resynchronization proto-

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 78

col may need to execute.

5.4.3 Effects of I/O Activity

This set of experiments determines how well I/O work scales. The results

are given in Table 5.4 and Figure 5.4. There is no CPU work being done,

although the overhead for associated function calls is still included. Table

5.5 and Figure 5.5 show the throughput increase factor in a more convenient

manner. Each column of the table gives the increase factor over one process.

As noted before, each node in the cluster contains only a single disk, meaning

that each pair of processors share one hard disk.

Once again, the throughput rates are substantially lower than those of

Section 5.4.2, for the same reasons as with the simulation. We again see

that though each pair of processors shares a single hard disk, using both

processors of each node shows an improvement in throughput over using only

a single processor in the node. This improvement is seen because the disk

is being more fully used due to the additional disk requests of the second

processor.

Adding more processes and disks increases the throughput as expected,

but when we reach 64 iterations of I/O work, using only one or two proces-

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 79

I/O Work Number of Processors
Iterations 1 2 3 4 5 6

1 571.92 794.97 1109.52 1178.16 2104.67 2579.36
2 273.44 366.41 497.66 609.77 883.21 1008.99
4 137.12 160.43 242.70 281.10 351.03 462.09
8 64.40 66.33 103.68 119.14 145.54 180.32

16 38.16 37.02 62.58 66.02 80.52 93.87
32 20.08 19.68 32.73 34.14 45.98 56.63
64 — — 18.81 18.39 23.77 25.74

Table 5.4: Throughput rates in Kbps for I/O work

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2 3 4 5 6

Number of Processors

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

1

2

4

8

16

32

64

Figure 5.4: Throughput for I/O work

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 80

Throughput
I/O Increase

Work Factor
Iterations 2 3 4 5 6

1 1.39 1.94 2.06 3.68 4.51
2 1.34 1.82 2.23 3.23 3.69
4 1.17 1.77 2.05 2.56 3.37
8 1.03 1.61 1.85 2.26 2.80

16 0.97 1.64 1.73 2.11 2.46
32 0.98 1.63 1.70 2.29 2.82

Table 5.5: I/O work throughput increase factor over one processor

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1 2 4 8 16 32

Number of I/O Iterations

In
cr

ea
se

 F
ac

to
r

2

3

4

5

6

Figure 5.5: Throughput increase factor for I/O work

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 81

sors, the experiment does not complete because the timeouts grow too large

for TCP to work reliably. However, with three processors, the test with 64

iterations is able to complete. As with the simulation, there is a decrease in

the throughput increase factor as more I/O work is performed.

5.4.4 Effects of Combined CPU and I/O Activity

Table 5.6 and Figure 5.6 give the results for experiments performed to deter-

mine how the throughput (in Kbps) changes with the number of processors

for combined CPU and I/O work units. The same number of iterations for

both CPU and I/O work are performed. Table 5.7 and Figure 5.7 demonstrate

the increase factor as additional processors are used.

As with the simulation, the I/O performance numbers dominate because

they are significantly lower than the CPU numbers, as can be seen by com-

paring Tables 5.2 and 5.4. Overall, the throughput in these experiments is

comparable with those of Section 5.4.3 despite the additional CPU work be-

ing performed. Once again, experiments with 64 iterations using one and

two processors would not complete due to TCP timeouts, but adding addi-

tional processors increased the throughput to the point that the test could

complete.

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 82

Combined CPU Number of Processors
& I/O Work

Iterations 1 2 3 4 5 6
1 603.36 826.60 1315.32 1357.56 2015.22 2033.32
2 330.48 442.84 717.14 816.29 958.39 1060.84
4 164.56 184.31 281.40 327.47 421.27 495.33
8 69.04 71.11 117.37 122.89 178.12 187.79

16 35.92 35.56 63.94 62.50 83.69 96.98
32 19.96 20.56 36.53 36.53 47.70 56.49
32 — — 18.81 19.34 23.45 28.57

Table 5.6: Throughput rates in Kbps for combined CPU and I/O work

0.00

500.00

1000.00

1500.00

2000.00

2500.00

1 2 3 4 5 6

Number of Processors

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

1

2

4

8

16

32

64

Figure 5.6: Throughput for combined CPU and I/O work

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 83

Combined CPU Throughput
& I/O Increase
Work Factor

Iterations 2 3 4 5 6
1 1.37 2.18 2.25 3.34 3.37
2 1.34 2.17 2.47 2.90 3.21
4 1.12 1.71 1.99 2.56 3.01
8 1.03 1.70 1.78 2.58 2.72

16 0.99 1.78 1.74 2.33 2.70
32 1.03 1.83 1.83 2.39 2.83

Table 5.7: Combined CPU and I/O work throughput increase factor over one
processor

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 4 8 16 32

Number of CPU and I/O Iterations

In
cr

ea
se

 F
ac

to
r

2

3

4

5

6

Figure 5.7: Throughput increase factor for combined CPU and I/O work

CHAPTER 5. SYSTEM MODEL AND ARCHITECTURE 84

As with the simulation, adding more processors and disks results in an

decrease in the throughput increase factor as more combined work is per-

formed. The rising CPU work increase factor is not enough to overcome the

falling I/O work increase factor, resulting in the overall decrease seen in Fig-

ure 5.7.

5.5 Summary

This chapter presented a complete system for exhaustive monitoring and en-

coding on a parallel cluster. The system contained several optimizations de-

signed to improve compression rates, such as header compression and com-

bining several small packets into a larger package. It also provided a resyn-

chronization protocol in the event of packet loss. Experiments were run to

determine how well the system scaled when more processors were added.

As expected, based on the simulation results, very good improvements were

achieved in terms of scaling, particularly as the amount of work performed

per–packet increased, though unlike the simulation, the system experienced

a peak throughput increase factor at 16 iterations of CPU work. The next

chapter provides ideas for future research directions and draws conclusions

from this research.

Chapter 6

Future Work and Conclusions

The thesis investigated the feasibility of exhaustive network monitoring and

encoding of data packets in real–time with the aid of a parallel processor and

load balancing software. This chapter provides a critical evaluation of the

system, discusses some avenues of investigation to further improve on the

achieved system performance, and then draws conclusions from the research.

6.1 Critical Assessment

This section evaluates the system presented in the thesis in the following

areas: exhaustive monitoring and encoding, transparency, and scalability.

85

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 86

6.1.1 Exhaustive Monitoring and Encoding

Most network monitoring systems in use today rely on some form of packet

sampling because exhaustive monitoring is considered too difficult to achieve.

As discussed in Chapter 2, packet sampling has several problems, the main

one being that it produces less than completely accurate results. This thesis

proposed the use of parallelism to capture every packet, so that the monitor-

ing system would be perfectly accurate.

In addition to providing complete monitoring, an exhaustive system would

be able to perform encoding operations on the data packets. For example,

through data compression, the network could create bandwidth during peak

loads and through encryption, the network could provide additional security.

Using only off–the–shelf hardware and an open–source operating system,

a system capable of capturing every packet and encoding it online, in real–

time was successfully created. The system also features a resynchronization

protocol to recover from packet loss or error.

An example encoding function of data compression was used to verify the

encoding capabilities of the system. By maintaining state in the form of data

streams and through the use of intelligent heuristics, the system was able to

achieve a compression rate of 2.8, versus only 1.7 with no state information

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 87

saved, an improvement of 65%.

6.1.2 Transparency

Telcos and ISPs must keep their networks running at all times, and taking a

section of it offline to install the monitoring system is undesirable. Further-

more, if the monitoring system requires changes to the network configura-

tion, either in hardware or in software, the network downtime is increased.

The exhaustive monitoring system presented in this thesis can be inserted

into the existing network without any configuration because it has been mod-

eled as a transparent Ethernet bridge. The only modification to the network

that needs to be made by the network operators when it is deployed is the

physical wiring that connects the system to the network. The bridge has no

IP address of its own and is invisible to the network.

6.1.3 Scalability

A key objective of the monitoring system is scalability. It is expected that

greater amounts of work can be performed per–packet, and higher through-

put rates can be achieved by adding a larger number of processors to the

system. No software changes should be necessary.

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 88

The monitoring system uses a single master process to send encoding

work to slaves for completion. There is no limit to the number of slaves

that can be active. From Chapter 5, when performing 16 units of CPU work,

adding five more processors increased the throughput by 4.5 times over that

of a single processor. Based on the simulation results of Chapter 3, there

is good reason to believe that the trend of increased throughput with more

processors and hard disks would continue.

6.2 Future Work

While fully functional, the system presented in the thesis is still a prototype.

There are several research directions that can be investigated with the aim

of increasing the maximum achievable system throughput, and this section

will outline some of them.

6.2.1 I/O Performance

RAID would likely speed up I/O considerably and is recommended for sys-

tems that require high I/O performance. Fraleigh et al. [25] used a 5–drive

RAID to dump packet traces and were able to keep up with OC–48 (2.5 Gbps).

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 89

Some encoding schemes require disk I/O and further examination of parallel

I/O is desirable.

6.2.2 Load Balancing

The load balancing software assigns an incoming packet to a processor based

on the source and destination IP addresses. Assuming an even distribution

of addresses this means that the processors are approximately evenly loaded,

but this is not always a valid assumption. There are a handful of web sites

on the Internet that dominate all web traffic and a small percentage of users

that tend to use a disproportionate amount of bandwidth. This might result

in poor load balancing, diminishing the benefits of parallelization. It would,

therefore, be useful to keep track of the load assigned to each processor, as is

done with the simulation software. When a processor’s load exceeds a given

threshold, some of its work can be assigned to other processors instead.

This task is far more complicated in the exhaustive monitoring system

because of the use of data streams. When work originally destined for a

specific slave is instead sent to another slave, that new slave will have no

state information corresponding to the pre–existing connection and as a re-

sult must recreate the state. All state information that was gained by the

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 90

original slave is lost. In addition, the sending side must somehow indicate

to the receiving side that the stream information has been reset, so that the

receiving side slave will also reset its information, and the states on the two

sides will match.

It is possible to migrate the stream from the original slave to the new

slave’s memory space, and when the load on the original slave is lessened,

to re–migrate the data back, but this is very complicated, and the migration

process will increase the load on the already constrained memory bandwidth.

Each slave process maintains a fixed number of streams, and each connec-

tion is hashed to a particular stream, as explained in Section 4.3.1. There-

fore, when a stream is migrated from one process to another, there may be a

collision, resulting in a clash of streams. For the encoding function of com-

pression, this would reduce the achievable rate of compression since two sep-

arate connections, with possibly little or no correlation between them, would

be sharing a single stream. For the encoding function of encryption, this

clash could be disastrous because if the encryption scheme is based on a feed-

back model, such as output feedback, the previous state information will be

corrupted, and the output of the encryption function will not be correct.

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 91

6.2.3 Other Areas

The system uses sockets to communicate between processes, even those pro-

cessors that reside within the same machine. For the case of multiple pro-

cessors in the same machine, there are other interprocess communications

methods that may be worth examining, particularly shared memory, which

is generally believed to be the fastest [28]. The downside to shared memory

is that it requires additional process synchronization, which tends to make

the software very complicated and is difficult to do, so it is uncertain if the

performance would increase.

Finally, since an open–source operating system is being used, it may be

possible to optimize it specifically for the exhaustive monitoring system. This

might include increasing the size of network buffers and other tweaks to

heavily used subsystems.

6.3 Conclusions

Online and real–time exhaustive data monitoring and encoding is a challeng-

ing proposition. In the past, researchers have opted for monitoring based on

sampling. This thesis has presented an architecture and system for exhaus-

CHAPTER 6. FUTURE WORK AND CONCLUSIONS 92

tive data traffic monitoring on a parallel cluster that uses only off–the–shelf

hardware, an open–source operating system, and custom software. Moreover,

the system can be used not only for exhaustively monitoring and classifica-

tion of network traffic, but also for encoding and filtering operations such as

lossless data compression and encryption. Furthermore, the system is com-

pletely transparent to the network and requires no configuration.

With typical web traffic achieving a compression ratio of approximately

2.8, telecommunications companies and ISPs can effectively increase their

bandwidth, or perform exhaustive monitoring. Network operators can seam-

lessly ensure the security of their data if it must pass through untrusted

networks before reaching the trusted destination.

The experiments conducted show that a significant amount of online data

packet processing can be performed and that the throughput increases when

more processors are added to the task. As more CPU work is performed per–

packet, adding more processors provides an even greater increase factor in

throughput. When performing 2 units of CPU work on data, moving from

one to six processors provides a doubling of throughput, but with 16 units of

work, moving from one to six processors provides a throughput increase of

4.5 times. These results demonstrate the scalable nature of the system.

Glossary

FPGA Field–Programmable Gate Array.

IANA Internet Assigned Numbers Authority.

ICMP Internet Control Message Protocol.

IETF Internet Engineering Task Force.

IPC Interprocess Communication.

IPMP IP Measurement Protocol.

ISP Internet Service Provider.

MAC address Media Access Control address.

MIMD Multiple Instruction, Multiple Data.

93

GLOSSARY 94

MIME Multimedia Internet Mail Extension.

MTU Maximum Transmission Unit.

NTP Network Time Protocol.

PE Processing Element.

psamp IETF packet sampling working group.

RAID Redundant Array of Inexpensive Disks.

RTFM IETF Real–time Flow Measurement working group.

SIMD Single Instruction, Multiple Data.

SMP Symmetric Multiprocessor.

SNMP Simple Network Management Protocol.

SONET Synchronous Optical Network.

SPMD Single Program, Multiple Data.

Telco Telecommunications company.

Bibliography

[1] IETF packet sampling (psamp) working group.

http://psamp.ccrle.nec.de.

[2] IETF realtime traffic flow measurement (rtfm) working group.

http://www.ietf.org/html.charters/OLD/rtfm-charter.html.

[3] Internet Assigned Numbers Authority. Protocol numbers.

http://www.iana.org/assignments/protocol-numbers.

[4] Jean Bacon and Tim Harris. Operating Systems: Concurrent and Dis-

tributed Software Design. Addison Wesley, 2003.

[5] Nevil Brownlee, Cyndi Mills, and Greg Ruth. Traffic flow measurement:

Architecture. RFC 2722, October 1999.

95

BIBLIOGRAPHY 96

[6] Jeffrey D. Case, Mark Fedor, Martin Lee Schoffstall, and James R.

Davin. A Simple Network Management Protocol (SNMP). RFC 1157,

May 1990.

[7] Guang Cheng and Jian Gong. Traffic behavior analysis with Pois-

son sampling on high-speed network. In Proceedings of International

Conferences on Info–tech and Info–net 2001 (ICII’2001), pages 158–163,

2001.

[8] Kenjiro Cho, Ryo Kaizaki, and Akira Kato. An aggregation technique

for traffic monitoring. In Proceedings of the 2002 Symposium on Appli-

cations and the the Internet (SAINT’02), 2002.

[9] Baek-Young Choi, Jaesung Park, and Zhi-Li Zhang. Adaptive random

sampling for load change detection. Technical Report TR-01-041, Uni-

versity of Minnesota, 2001.

[10] Baek-Young Choi, Jaesung Park, and Zhi-Li Zhang. Adaptive packet

sampling for flow volume measurement. Technical Report TR-02-040,

University of Minnesota, 2002.

[11] Baek-Young Choi, Jaesung Park, and Zhi-Li Zhang. Adaptive random

sampling for traffic load measurement. In Proceedings of IEEE Interna-

BIBLIOGRAPHY 97

tional Conference on Communications 2003 (ICC ’03), volume 3, pages

1552–1556, May 2003.

[12] Kimberly C. Claffy, Hans-Werner Braun, and George C. Polyzos. A pa-

rameterizable methodology for internet traffic flow profiling. IEEE Jour-

nal of Selected Areas in Communications, 13(8):1481–1494, 1995.

[13] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner Braun. Ap-

plication of sampling methodologies to network traffic characterization.

Computer Communication Review, 23(4):194–203, 1993.

[14] John Cleary, Stephen Donnelly, Ian Graham, Anthony McGregor, and

Murray Pearson. Design principles for accurate passive measurement.

In Proceedings of Passive and Active Measurement Workshop, 2000.

[15] Irene Cozzani and Stefano Giordano. A passive test and measurement

system: Traffic sampling for QoS evaluation. In Proceedings of IEEE

Global Telecommunications Conference 1998 (Globecom’98), volume 2,

pages 1236–1241, 1998.

[16] Xing Deng. Short term behaviour of ping measurements. Master’s the-

sis, University of Waikato, July 1999.

BIBLIOGRAPHY 98

[17] Jack Drobisz and Kenneth J. Christensen. Adaptive sampling methods

to determine network traffic statistics including the Hurst parameter.

In Proceedings of 23rd Annual IEEE Conference on Local Computer Net-

works (LCN’98), pages 238–247, 1998.

[18] Nick Duffield, Carsten Lund, and Mikkel Thorup. Charging from sam-

pled network usage. In Proceedings of Internet Measurement Workshop

2001 (IMW’01), pages 245–256, San Francisco, November 2001.

[19] Nick Duffield, Carsten Lund, and Mikkel Thorup. Properties and pre-

diction of flow statistics from sampled packet streams. In Proceedings

of Internet Measurement Workshop 2002 (IMW’02), pages 159–171, Mar-

seille, France, November 2002.

[20] Nick Duffield, Carsten Lund, and Mikkel Thorup. Estimating flow dis-

tributions from sampled flow statistics. In Proceedings of ACM SIG-

COMM 2003, pages 325–336, Karlsruhe, Germany, August 2003.

[21] Ashok Erramilli and Jonathan L. Wang. Monitoring packet traffic lev-

els. In Proceedings of IEEE Global Telecommunications Conference 1994

(Globecom’94), pages 274–280, San Francisco, November 1994.

BIBLIOGRAPHY 99

[22] Cristian Estan, Stefan Savage, and George Varghese. Automatically

inferring patterns of resource consumption in network traffic. In Pro-

ceedings of ACM SIGCOMM 2003, pages 137–148, Karlsruhe, Germany,

August 2003.

[23] Cristian Estan and George Varghese. New directions in traffic mea-

surement and accounting: Focusing on the elephants, ignoring the mice.

ACM Transactions on Computer Systems, 21(3):270–313, August 2003.

[24] Wu-Chun Feng, Jeffrey R. Hay, and Mark K. Gardner. MAGNeT: Mon-

itor for Application-Generated Network Traffic. In Proceedings of the

10th International Conference on Computer Communications and Net-

works (IC3N01), pages 110–115, October 2001.

[25] Chuck Fraleigh, Christophe Diot, Bryan Lyles, Sue Moon, Phillipe

Owezarski, Dina Papagiannaki, and Fouad Tobagi. Design and develop-

ment of a passive monitoring infrastructure. In Proceedings of Proceed-

ings of the Thyrrhenian International Workshop on Digital Communica-

tions, pages 556–575, 2001.

[26] Jean-Loup Gailly and Mark Adler. zlib compression library.

http://www.gzip.org/zlib.

BIBLIOGRAPHY 100

[27] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. In-

troduction to Parallel Computing. Addison Wesley, second edition, 2003.

[28] John Shapley Gray. Interprocess Communications in Linux: The Nooks

and Crannies. Prentice Hall PTR, 2003.

[29] Cheng Guang, Gong Jian, and Ding Wei. A traffic sampling model for

measurement using packet identification. In Proceedings of IEEE In-

ternational Conference on Networks 2002 (ICON2002), pages 409–413,

Singapore, 2002.

[30] Cameron Hughes and Tracey Hughes. Parallel and Distributed Pro-

gramming Using C++. Addison Wesley, 2003.

[31] Gianluca Iannaccone, Christophe Diot, Ian Graham, and Nick McK-

eown. Monitoring very high speed links. In Proceedings of Internet

Measurement Workshop 2001 (IMW’01), pages 267–271, San Francisco,

November 2001.

[32] Van Jacobson. Compressing TCP/IP headers for low-speed serial links.

RFC 1144, February 1990.

[33] Michael Lucas. Absolute BSD: The Ultimate Guide to FreeBSD. No

Starch Press, 2002.

BIBLIOGRAPHY 101

[34] Matthew J. Luckie, Anthony J. McGregor, and Hans-Werner Braun. To-

wards improving packet probing techniques. In Proceedings of Internet

Measurement Workshop 2001 (IMW’01), pages 145–150, San Francisco,

November 2001.

[35] Yun Mao, Kang Chen, Dongsheng Wang, and Weimin Zheng. Cluster-

based online monitoring system of web traffic. In Proceedings of the

Third International Workshop on Web Information and Data Manage-

ment, pages 47–53, 2001.

[36] Afzal Mawji and Ajit Singh. Load balanced exhaustive network data

processing with a parallel cluster. In Proceedings of the 2004 Interna-

tional Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA’04), Las Vegas, June 2004.

[37] Mark Milward, José Luis Núnez, and David Mulvaney. Design and im-

plementation of a lossless parallel high–speed data compression system.

IEEE Transactions on Parallel and Distributed Systems, 15(6):481–490,

June 2004.

[38] Markus F.X.J. Oberhumer. LZO data compression library.

http://www.oberhumer.com/opensource/lzo, 2002.

BIBLIOGRAPHY 102

[39] Konstantina Papagiannaki, Rene Cruz, and Christophe Diot. Network

performance monitoring at small time scales. In Proceedings of Internet

Measurement Workshop 2003 (IMW’03), pages 295–300, 2003.

[40] Vern Paxson, Jamshid Mahdavi, Andrew Adams, and Matt Mathis. An

architecture for large-scale internet measurement. IEEE Communica-

tions, 36(8):48–54, August 1998.

[41] Kay A. Robbins and Steven Robbins. Unix Systems Programming: Com-

munication, Concurrency, and Threads. Prentice Hall PTR, 2003.

[42] Claude Shannon. Communication theory of secrecy systems. Bell Sys-

tem Technical Journal, 28:656–715, October 1949.

[43] Robin Sommer and Anja Feldmann. NetFlow: Information loss or win?

In Proceedings of Internet Measurement Workshop 2002 (IMW’02), pages

173–174, Marseille, France, November 2002.

[44] W. Richard Stevens. UNIX Network Programming, Networking APIs:

Sockets and XTI, volume 1. Prentice Hall PTR, second edition, 1998.

[45] International Telecommunication Union. Recommendation v.42 bis.

http://www.itu.int.

BIBLIOGRAPHY 103

[46] International Telecommunication Union. Recommendation v.44.

http://www.itu.int.

