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Abstract

Quantum computers offer the possibility of solving some problems more efficiently than

their classical counterparts. The current forerunner in the experimental demonstration of

quantum algorithms is Nuclear Magnetic Resonance (NMR). Known for its implementa-

tions at liquid state, NMR quantum computing consists of computing on nuclear spins.

In the liquid crystal state, dipolar couplings are available, offering an increased clock

frequency and a faster recycling of algorithms. Here investigated is the cost at which this

comes, namely, a more complicated internal Hamiltonian, making the system harder to

characterize and harder to control. In this thesis I present new methods for characterizing

the Hamiltonian of dipolar coupled spin systems, and I report experimental results of

characterizing an oriented 6-spin system. I then present methods and results concerning

the quantum optimal control of this same spin system. Finally, I present experiments and

simulations regarding the certification of computational quantum gates implemented in

that same dipolar coupled spin system.
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Chapter 1

Introduction and Motivation

Astonishing theoretical successes like prime factorization [1] and unsorted database

search [2] are powerful motivations to pursue the implementation of Quantum Informa-

tion Processing (QIP). Although their theoretical power is widely recognized, quantum

algorithms can be quite tedious to implement in practice, and the quantum information

processing potential of many different physical systems has thus been studied in recent

years [3]. The current forerunner in the experimental demonstration of quantum algo-

rithms is Nuclear Magnetic Resonance (NMR). In NMR, a sample of identical molecules

is dissolved in a solvent and subject to a strong static magnetic field along the z-axis.

The molecules are the framework of coupled spins which form the qubits. Currently,

NMR quantum computing is mainly known for its implementations at liquid state, i.e.

with isotropic solvents. For isotropic solvents, mutual couplings among the spins are

provided by the scalar couplings. On the other hand, for liquid crystal solvents, the

intramolecular dipolar couplings, which have larger magnitudes and longer ranges, survive

due to molecular alignment, and lead to a finite number of sharp well resolved spectral

lines, making it possible to use such systems for NMR-QIP. More importantly, the liquid

crystal state offers an increased clock frequency, and shorter spin-lattice relaxation times

which allow for faster recycling of algorithms [5]. At which cost do these advantages come?

In simple terms, the advantages offered by dipolar couplings come to the cost of a more

complicated internal Hamiltonian, making the system harder to characterize and harder

to control in practice.

Why do dipolar couplings make the internal Hamiltonian so more difficult to handle in

practice? For strongly coupled spins, the Zeeman and the coupling parts of the Hamiltonian

do not commute, and the eigenstates are therefore obtained as linear combinations of

product states. In this case, individual spins cannot be treated as qubits, but the

2N eigenstates of a strongly coupled N -spin system can still be considered as an N

qubit system by using transition selective pulses to construct unitary transformations [6].
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Usage of strongly coupled systems for quantum information processing thus requires the

consistent labelling of energy levels, which can be achieved by a traditional Z-COSY

experiment [4]. Using this approach, the implementation of logic gates, preparation of

pseudo-pure states, creation of entanglement, and entanglement transfer have already

been experimentally demonstrated in these systems [4, 6]. However, the study of how

effectively the evolution under the internal Hamiltonian can be manipulated to implement

quantum algorithms is strongly lacking. This research is currently facing serious problems

such as the extreme difficulty of measuring the natural Hamiltonian in the first place,

and the issue of global coherent control in strongly coupled systems, for which single spin

addressability is usually lost. Measuring the Hamiltonian of spin systems dissolved in

liquid crystals is currently a hard problem mainly due to the spectral complexity, which

exponentially increases with the number of spins. In addition, theoretical calculations and

first-order spectral analysis for estimating the dipolar couplings are usually not possible.

Traditional spectroscopic methods could be used to obtain the Hamiltonian by spectral

fitting. In practice, the fit has to be aided by estimating the solute degree of orientational

order, based on phenomenological size and shape models. However, for molecules that

are suitable for NMR-QIP, a priori knowledge is rarely available, and their structures

need to be asymmetric. The problem is thus exacerbated and new methods are required.

The goal of this thesis is to present methods that address the issues of Hamiltonian

characterization and quantum control for dipolar coupled spin systems. We also present

and apply methods for certifing experimental implementations of quantum gates in these

systems. In principle, the methods presented in this work apply for dipolar coupled spin

systems in general. In this thesis we will be working with the dipolar coupled 6-spin

system of 2,3-Difluorobenzaldehyde, which consists of fours protons and two fluorines.

We start in chapter 2 by presenting the background material required to understand

liquid crystal state NMR-QIP. By the end of that chapter, the reader should be able to

understand and simulate the NMR experiments relevant to this work. We first start by

discussing spin objects, and show how they can be used for purpose of quantum information

processing. Then, we present how the quantum states of such systems are described in the

density operator formalism. The spin-1⁄2 interactions, the natural Hamiltonian and the

control Hamiltonian in liquid crystal state NMR are then presented. Next, we present the

dynamical evolution of spin systems under their natural and control Hamiltonians. Then,

we explain a few principles of NMR spectroscopy, and we show how NMR experiments

can be simulated on a classical computer. This last part is especially important since

we will mainly rely on simulations in order to characterize the natural Hamiltonian and

also to design the control Hamiltonian. Finally, we present two experimental methods to

simplify NMR spectra, and also one method for preparing a 2-qubit pseudo-pure state.

2



Chapter 3 addresses the problem of characterizing the natural Hamiltonian of dipolar

coupled spin systems. This challenging task is of crucial importance for purpose of

quantum information processing since current optimal control algorithms depend on the

full information of the Hamiltonian. In that chapter, we propose a new method that

addresses the issue of spectral analysis, and we report experimental results of extracting

the parameters of the oriented 6-spin system of 2,3-Difluorobenzaldehyde. This is done

without using a priori knowledge on the molecular geometry or order parameters. The

advantages of our method are achieved with the use of a new spectral analysis algorithm,

and by the use of simplified spectra obtained by transition selective pulses.

Then, in chapter 4 we address the problem of quantum optimal control for oriented spin

systems. Then again, this task is much more difficult than in the case of isotropic solvents.

In fact, for simple solutes dissolved in liquid state environments, control sequences to

implement specific unitaries can often be written down by hand and optimized in a heuristic

way. However, the situation is quite different when dipolar couplings are present, in which

case the spectra are highly complicated and single spin addressability is usually lost.

Sophisticated pulse sequence design algorithms have been developed in recent years for

this kind of problems. The idea is to discretize the amplitudes of the control Hamiltonian

into timesteps, and find a control sequence for a particular desired unitary using numerical

optimization algorithms. In that chapter, we present the GRAPE (GRadient Ascent Pulse

Engineering) algorithm. We also explain how to design experimentally robust pulses, and

how the numerical search can be fasten using a subsystem approach. Moreover, we discuss

the errors that occur in experimental implementations, and how pulse smoothing and

pulse fixing can help to reduce these errors. Then, we present GRAPE pulses for single

spin rotations, obtained for 2,3-Difluorobenzaldehyde. We start by considering the full

6-spin system, in which case pulse design is very challenging. Then, we present results for

the proton subsystem decoupled from the fluorines.

Having a prototype quantum computing device in hand, we must now determine how

faithful it is to an ideal quantum computer. In chapter 5, we present a well-known

protocol for certifying experimental implementations of quantum gates. Rather than fully

characterizing the experiments via quantum process tomography, we use a twirling protocol

to estimate the average fidelity between the experimental and ideal operators. We start

that chapter by introducing the notions of average fidelity and averaged quantum channel.

Then, we present a method known as twirling, and we show how it can be used to measure

the average fidelity for Clifford gates. Next, we present the usual statistical analysis to

obtain bounds for the accuracy of the results. We also present our Monte Carlo approach

in order to further investigate the accuracy of the twirling protocol. Finally, we apply the

twirling protocol for certifying quantum gates implemented with 2,3-Difluorobenzaldehyde

at liquid crystal state. We present simulated and experimental results.
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Chapter 2

NMR of Spins-1⁄2 in Liquid Crystals

The spin is a property of particles. Particles having net spin-1⁄2 include the proton, neutron,

electron, and quarks. As we will see, the dynamics of spin-1⁄2 objects can be described

using quantum mechanics. In this chapter, we first present the concept of spin and we

explain how atomic nuclei with non vanishing nuclear spin can be used for purpose of

quantum information processing. Then, we explain how the quantum state of spin systems

can be described via their density operator. Restraining ourselves to spin systems in

anisotropic environments, i.e. liquid crystals, we next present the spin-1⁄2 interactions and

we give the general natural Hamiltonian of such systems. In addition, we introduce the

control Hamiltonian, generated using radio-frequency fields. We then present how the

dynamical evolution of the density operator is driven by these Hamiltonians, and we also

discuss the effect of decoherence. Then, we explain a few principles of Nuclear Magnetic

Resonance (NMR) spectroscopy, and we show how NMR experiments can be simulated

on a classical computer. Finally, we present two experimental methods to simplify NMR

spectra, and also one method for preparing a 2-qubit pseudo-pure state.
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2.1 Spin

In this section, we introduce the concept of spin and show how atomic nuclei with non

vanishing nuclear spin can be used for purpose of quantum information processing. The

spin of a particle is a form of quantum angular momentum. For elementary particles, the

spin quantum number, denoted S, has a fixed value and is an intrinsic property of the

particle. For bosons we have that S is a integer, i.e. S ∈ {0, 1, 2, . . . }, and for fermions

we have that S is an half integer, i.e. S ∈ {1/2, 3/2, 5/2, . . . }. In general, particles with

spin S have (2S+ 1) sublevels that are degenerated in the absence of an externally applied

magnetic field. However, these sublevels may take different energy values if a magnetic

field is applied. In the following, we explain how spins can be combined together.

Let us consider a system that is composed of two parts, each being a source of spin

angular momentum, with quantum numbers S1 and S2. What is the spin quantum number

S3 of the combined system? According to quantum theory, the possible values for the

total spin quantum number of the combined system are [7]

S3 ∈ {|S1 − S2|, |S1 − S2|+ 1, . . . , |S1 + S2|}. (2.1)

Generally speaking, these different total spin states will have different energies, and each

of them will behave like a new object with spin quantum number S3. Two examples of

such composite systems are the neutron and the proton, which are both composed of

three spin-1⁄2 particles, named quarks, stuck together by gluons. In both cases, two of the

quarks are antiparallel, implying that the total neutron and proton spins are both 1/2. In

this work we are interested in atomic nuclei, which are composed of neutrons and protons.

An atomic nucleus is described by three numbers: the atomic number which specifies the

number of protons inside the nucleus, the mass number which specifies the total number

of protons and neutrons inside the nucleus, and the nuclear spin quantum number I which

specifies the total spin quantum number of the nucleus. Then again, the possible values

that I can take are given by applying Eq.(2.1). For instance, the 2H nucleus contains one

proton and one neutron, implying that I ∈ {0, 1}. However, these two nuclear spin states

have a large energy difference of ∼ 1011kJ mol−1 [7]. For usual NMR experiments, the

energies of excited states greatly exceed the energies available from electromagnetic fields.

In general, the excited nuclear states may therefore be ignored in practice, and the value

of I is constrained be that of the lowest energy state, i.e. the ground state.

Let’s consider a spin-1⁄2 nucleus. In the presence of a magnetic field, the two sublevels,

denoted |α〉 and |β〉, have different energies. The general state of the nucleus is of the

form α|α〉+ β|β〉, where α and β are complex numbers such that |α|2 + |β|2 = 1. In the

next section, we show how to describe the state of an ensemble of spins-1⁄2 systems.
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2.2 State representation

As explained above, spin systems require quantum mechanics to describe them. In fact,

the concept of spin can be challenging to grasp beyond understanding how to manipulate

the quantum mechanical equations. Therefore, we often rely on the abstract quantum

notion of the density operator to describe the state of such spin objects [7]. Since we are

working in the framework of NMR experiments, we will consider ensembles, which are

defined to be collections of independent and identical spins systems. Here, we first explain

how the state of non-interacting spins-1⁄2 can be described by a density matrix, and we

then extend this notion to interacting spins-1⁄2 .

Let’s consider an ensemble of many (e.g. ∼ 1022) identical and non-interacting spins-1⁄2.
Keeping track of the state of each individual spin is infeasible in practice, and one has to

resort to some kind of statistical description of the ensemble. This is the spirit behind the

density operator approach. This method can be understood from the properties of the

expectation value of an observable. Consider a single spin in the state |ψ〉, it then follows

that the expectation value of an operator Q is given by 〈Q〉 = 〈ψ|Q|ψ〉. Equivalently,

one can use the trace operation to rewrite the expectation value as 〈Q〉 = tr(|ψ〉〈ψ|Q).

Let’s now suppose there are two independent (i.e. uncoupled) spins, respectively in states

|ψ1〉 and |ψ2〉. Say we measure Q on both spins and then add up the two measurements,

the expectation value would be 〈ψ1|Q|ψ1〉 + 〈ψ2|Q|ψ2〉 = tr((|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|)Q).

Extending this logic to N independent spins, and defining the density operator ρ as

ρ = N−1(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ · · ·+ |ψN〉〈ψN |), (2.2)

it follows that the average contribution of each spin to the macroscopic observation of Q

for the entire ensemble is given by tr(ρQ). This motivates the use of the density operator

when it comes to describe ensembles. According to the definition, we see that any density

operator ρ has to obey the following properties

i. tr(ρ) = 1,

ii. tr(ρ2) ≤ 1,

iii. ρ = ρ†,

iv. ρ is positive semi-definite.

To further discuss the matrix form of the density operator, we shall introduce the Pauli

matrices {I,X, Y, Z}, which are defined as

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (2.3)
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One can see that the Pauli matrices form a basis such that any 2× 2 complex matrix can

be written as a linear combination of them. In particular, considering an ensemble of

non-interacting spins-1⁄2, the density operator can always be written in the form

ρ =
1

2
I +

px
2
X +

py
2
Y +

pz
2
Z, (2.4)

where px, py and pz are real numbers such that p2
x + p2

y + p2
z ≤ 1, and are connected to the

net polarization (or net alignment) of the spins along the x-, y- and z-axis respectively.

These quantities are given by

px = tr(Xρ), py = tr(Y ρ), pz = tr(Zρ). (2.5)

To further establish the connection between the conceptual Hilbert space and the actual

physical space, it is useful to represent the density matrix ρ in the Bloch sphere repre-

sentation. In the Bloch sphere representation, the state ρ is represented by a point at

coordinates (px, py, pz) in a unit sphere. States located on the surface of the sphere are

called pure states and states located within the sphere and called mixed states.

The density operator method can be extended to describe the state of ensembles of n

interacting spins-1⁄2. First, one need to introduce the product operators {Bj}4n−1
j=0 . These

operators are defined to be tensor products of n Pauli matrices. By convention, we have

B0 := I⊗n, and the other product operators are of the form

Bj ∈

{
n⊗
k=1

σk | σk ∈ {I,X, Y, Z}

}
. (2.6)

The product operators form a basis such that any 2n × 2n complex matrix can be written

as a linear combination of them. For ensembles of n interacting spins, the density operator

can in fact always be written in the form

ρ =
1

2n
I⊗n +

4n−1∑
j=1

pj
2n
Bj. (2.7)

Again, the {pj} are real numbers such that
∑

j p
2
j ≤ 2n− 1, and are given by pj = tr(Bjρ).

In this section, we introduced the notion of density operator, which can be used to

described the state of an ensemble of non-interacting or interacting spins-1⁄2. We also

discussed the matrix form of the density operator. In the following section, we present the

natural and control Hamiltonians in liquid crystal state NMR. These drive the dynamical

evolution of the spins-1⁄2 systems on which they are acting.
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2.3 Hamiltonians in liquid crystal state NMR

In the framework of quantum mechanics, Hamiltonians are used to describes interactions.

Consequently, the dynamics of quantum systems, such as interacting spins-1⁄2, is dictated

by their Hamiltonian. In the NMR experiments under consideration here, the situation is

that of an ensemble of identical molecules dissolved in an environment, and subject to

a static homogenous magnetic field along the z-axis. The molecules are the frameworks

within which the interacting spins are trapped, and the molecular structure thus shapes

the interactions between the spins. As for the solvent, its state of matter determines

the molecular mobilities, possibly averaging out certain molecular interactions. In this

section, we explore spin-1⁄2 interactions, and the natural Hamiltonian that results for

liquid crystal solvents. We also present the control Hamiltonian, generated via the use of

radio-frequency fields.

2.3.1 Molecules & the liquid crystal state

A molecule is an electron cloud containing more than one nucleus, and is in fact the frame-

work inside which the nuclear spins are trapped. The particular geometric configuration

of a molecule is determined by the quantum mechanical motion of the electrons. Very

often, the motion of molecules can be treated classically, by which we mean that ignoring

the quantum nature of molecular motion almost always gives reasonable answers [7]. Most

importantly, the molecular mobilities depend on the environment, i.e. the solvent, and

greatly affect the spin dynamics by possibly averaging out certain spin interactions.

When dissolved into a liquid crystal, i.e. an anisotropic liquid, the molecules adopt a

non-isotropic spatial configuration, meaning that the molecular mobilities depend on the

direction in space. In nematic phase liquid crystals (see Figure 2.1), the molecules are

shape like ellipses and, on average, they are aligned in space along a particular direction

called the director. In nematic phase liquid crystals, it is thus easier for the molecules

to rotate along an axis parallel to the director than around an axis perpendicular to the

director. As a consequence of this motional anisotropy, the dipolar interactions, which

would have been averaged out in the liquid state, remain present in the liquid crystal state,

leading to much more complicated NMR spectra. Despite this configuration, the molecules

are still very mobile and the substance flows under shear forces, leading to averaging out

intermolecular interactions [7]. Thus, the dynamics of spins systems dissolved in liquid

crystals is driven by the interactions of each single spin with the other spins within the

same molecule, and by the interactions between the spins and the external magnetic field.
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2.3.2 Spin-1⁄2 interactions & the natural Hamiltonian

We are now interested in spin-1⁄2 interactions, which are electromagnetic in nature. From

these interactions, we will derive the natural Hamiltonian for interacting spins-1⁄2 in liquid

crystal state environments. We will also briefly introduce the control Hamiltonian.

Let’s consider the interaction of a single nucleus with electric and magnetic fields. The

nucleus interacts with the electric field via its electric charge, and it interacts with the

magnetic field via its magnetic moment. The nuclear spin Hamiltonian thus contains two

parts: an electric part, which describes how the nuclear electric energy changes as the

nucleus rotates, and a magnetic part, which describes how the nuclear magnetic energy

changes as the nucleus rotates. For spin-1⁄2 nuclei, it can be shown that the electric spin

Hamiltonian vanishes because the nuclear electric energy is independent of the orientation

of the nucleus in space [7]. On the other hand, the magnetic spin Hamiltonian is still

present. Let’s consider that a static and homogenous strong magnetic field is present along

the z-axis. The large interactions with the high magnetic field tend to mask some parts

of the internal spin interactions, and we can thus use the so-called secular approximation.

The interaction of spin j ’s magnetic dipole with the externally applied static magnetic

field along the z-axis is represented by the Hamiltonian H Z
j and is given by H Z

j =
ωL
j

2
Zj ,

where ωLj is called the Larmor frequency, and Zj denotes the Pauli matrix Z at spin

location j. In practice, this part of the Hamiltonian vanishes due to the fact that we are

working in the rotating frame [7, 8], i.e. the frame rotating at the Larmor frequency.

The Hamiltonian H CS
j is due to the disturbance of the orbital motion of nearby

electrons inducing a magnetic field that adds to the external one and results in shifting

the Larmor frequency of spin j by a quantity 2πνj, called offset frequency [7, 8],

H CS
j = πνjZj. (2.8)

The Hamiltonian H DD
jk is due to the direct spin-spin coupling via the dipolar interaction,

which is characterized by the the dipolar coupling constant Djk [7, 8],

H DD
jk =

πDjk

2
×

2ZjZk, if heteronuclear,

(2ZjZk −XjXk − YjYk), if homonuclear,
(2.9)

where the XjXk and YjYk terms are averaged out in the heteronuclear case due to the

large gap between the Larmor frequency of different species [7]. The same holds below.

The Hamiltonian H J
jk is due to the indirect electron-mediated interaction, which is

characterized by the scalar coupling constant Jjk [7, 8],

H J
jk = πJjk ×

ZjZk, if heteronuclear,

(ZjZk +XjXk + YjYk), if homonuclear.
(2.10)
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The expression of the internal Hamiltonian can then be obtained by adding up these

parts for each spins in the molecule, and the natural Hamiltonian thus has the form

H nat =
∑
j

H CS
j +

∑
j,k>j

(
H DD

jk + H J
jk

)
. (2.11)

In this expression, the intermolecular interactions are neglected. In fact, additional terms

should be present to take into account those interactions that lead to decoherence. The

spin-1⁄2 interactions are summarized in Figure 2.1. In addition to the static magnetic

field, transverse electromagnetic fields can be applied to control the state of the ensemble.

These transverse fields generate the control Hamiltonian, which is next presented.

Figure 2.1: (Left) Alignment of the molecules along the director in nematic phase liquid

crystals. (Right) Pictorial representation of the spin interactions.

2.3.3 Control Hamiltonian

In principle, quantum control of interacting spins-1⁄2 can be implemented by applying

radio-frequency (r.f.) fields perpendicularly to the static field. By applying these fields,

we can induce transitions whose frequency is resonant with the r.f. field. In practice,

each isotope requires his own spectrometer’s channel, each of which need an amplifier to

achieve control. In the rotating frame, the control Hamiltonian thus has the form [7,8]

H C(t) =
∑
m

(
xm(t)

∑
lm

Xlm + ym(t)
∑
lm

Ylm

)
, (2.12)

where m indexes the different isotopes, and lm indexes the nuclear spins of isotope m. The

control amplitudes xm(t) and ym(t) are discretized into timesteps, and the sequences for

a particular desired unitary evolution are found using the GRAPE algorithm [9], which

is explained in details in chapter 4. In the next section, we explain how the state of

interacting spins-1⁄2 evolve under the natural Hamiltonian, and also in the presence of a

control Hamiltonian. This will allow us to understand and simulate NMR experiments.
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2.4 Time evolution

Here, we first present how the state of spins-1⁄2 systems evolves under their natural

Hamiltonian, and we then present time evolution in the presence of a control Hamiltonian.

The material discussed here will allow us to understand and simulate NMR spectra of

spins-1⁄2 systems, which is the topic of the next section.

Consider some Hamiltonian H (t). According to quantum mechanics, the dynamical

evolution of the density operator ρ obeys the Schrödinger equation (with ~ = 1)

ρ̇ = −i[H (t), ρ(t)], (2.13)

where [A,B] = AB − BA is the commutator of matrices A and B. This differential

equation can be integrated from time t0 to time t to give a solution of the form

ρ(t) = U(t, t0)ρ(t0)U †(t, t0), (2.14)

where ρ(t0) is the density matrix at time t0, and U(t, t0) is called the propagator, calculated

by integrating the instantaneous propagator,

U(t, t0) =
∞∑
n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnH (t1)H (t2) . . .H (tn)

:= D exp

[
−i
∫ t

t0

H (τ)dτ

]
, (2.15)

where D denotes the Dyson time ordering operator. Let us first consider the specific case

where only the natural Hamiltonian is present, i.e. H (t) = H nat.

2.4.1 Free evolution

We consider here the case of free evolution, which is when only the natural Hamiltonian

is present. The total Hamiltonian of the system is thus given by H (t) = H nat, and is

therefore constant in time. One can easily see that Eq.(2.15) then takes the form

U(t, t0) = exp
[
−iH nat(t− t0)

]
. (2.16)

Let {Ωk} and {|k〉} respectively denote the eigenvalues and corresponding eigenvectors

of the natural Hamitonian H nat, it can then be shown that the time evolution of the

coherence ρrs(t) = 〈r|ρ(t)|s〉 takes the following form [7]

ρrs(t) = ρrs(t0) exp [−i(Ωr − Ωs)(t− t0)] . (2.17)
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The Hamiltonian 2.11 doesn’t take decoherence into account. Each molecule is in fact

not totally decoupled from the rest of the environment and a damping decay constant λrs

must be included to account for relaxation [7], leading to an actual evolution of the form

ρrs(t) = ρrs(t0) exp [(−i(Ωr − Ωs)− λrs)(t− t0)] . (2.18)

The free evolution is thus fairly simple to understand. However, the dynamics become

more complicated in the presence of the control Hamiltonian H C(t), which was previously

introduced, due to the fact that the total Hamiltonian becomes piecewise constant in time.

We consider this case in the following.

2.4.2 Controlled evolution

We now consider the case where a control Hamiltonian H C(t) is present. The total

Hamiltonian of the system is thus given by H (t) = H nat + H C(t). We mentioned that

in practice, H C(t) is approximately piecewise constant in time. Hence, it follows that

H (t) is also approximately piecewise constant in time. In other words, the evolution

from time t0 to time t is divided into N intervals of length ∆t, and for each timestep j

the Hamiltonian H (tj) is constant. Thus, the propagator for timestep j is given by

Uj = exp [−iH (tj)∆t] . (2.19)

The complete unitary U(t, t0) is then obtained by multiplying all the Uj together,

U(t, t0) =
N−1∏
j=0

Uj. (2.20)

At this point, a relevant question might be asked: do we have complete control? In

other words, can the full Hilbert space be explored? There is a simple and intuitive

result for this question. In fact, it can be shown that we can fully control any system in

which arbitrary single qubit rotations can be implemented and with a two body coupling

Hamiltonian connecting all qubits [10]. In practice, achieving quantum control is a

serious challenge. The control Hamiltonian as to be engineered using very sophisticated

numerical optimization algorithms. Moreover, as we will discuss in chapter 4, for dipolar

coupled systems, numerical brute force quickly becomes insufficient as the number of

qubit increases, and one has to develop strategies to help the numerical search.

In the following section, we present the basic principles of NMR spectroscopy, and we

show how to calculate NMR spectra from the density matrix. This will be very useful in

chapter 3, where we will be challenged with the problem of extracting the parameters of

the Hamiltonian from NMR thermal spectra.
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2.5 The NMR experiment

Later, in chapter 3, we will address the problem of extracting the parameters of the

natural Hamiltonian from NMR thermal spectra. This will be achieved using home-made

computer programs that analyze NMR spectra. In practice, we use methods to simplify

the spectra, these are presented in the next section. In this section, we show how to

calculate NMR spectra, but first we introduce the NMR thermal equilibrium state.

2.5.1 Thermal equilibrium

In NMR, the thermal equilibrium state of the system is the maximally mixed state with

a small deviation that is due to the externally applied magnetic field which breaks the

isotropy of the magnetization distribution and causes the sample to acquires a small net

magnetic moment along the external field, i.e. along the z-axis [7, 8]. Considering an

ensemble of n-spin systems, the thermal state is described by the density matrix [7]

ρfullth =
1

2n
I⊗n + ε

∑
j

γjZj, (2.21)

where γj is the gyromagnetic ratios of spin j, and ε is a small constant (∼ 10−5) depending

on the magnitude of the field and the temperature. In an NMR experiment, the identity

term is unobservable and unchanged by the dynamics. It is therefore typically dropped

and only the second term, called the deviation density matrix, is written down. In NMR,

the deviation density matrix at thermal equilibrium thus has the following form

ρth ∝
∑
j

Zj. (2.22)

By applying an oscillating magnetic field (r.f. pulse) of appropriate frequency and duration,

the polarization of every single spin can be rotated by an angle π/2 around the y-axis,

the macroscopic magnetization is then along the x-axis and the deviation density matrix,

at time t = 0, thus has the form

ρ(0) ∝
∑
j

Xj. (2.23)

The system is then allowed to evolve freely over a time interval t. The NMR spectrometer

has a set of independent frequency channels, allowing one to access a small number of

narrow frequency windows, each of which may be centred on a different reference frequency.

By tuning the channels of the different nuclear species around their Larmor frequencies,

one is effectively observing the different nuclear species in their respective rotating-frame

and the time evolution is given by Eq.(2.18). We now show how to calculate NMR spectra.

13



2.5.2 NMR spectra

We start by describing the acquisition of the NMR signal. The interaction of the net

magnetic moment of the sample with the external magnetic field results in the rotation

of the macroscopic magnetization in the xy-plane. This transverse magnetization decays

slowly since the spins gradually get out of phase with each other due to slight fluctuations

of the microscopic magnetic fields on different spins. This precessing magnetization can be

detected by coils along the x-axis and y-axis, and the oscillating electric current induced

is called free-induction decay (FID). The signals along the x-axis and y-axis may be

interpreted as the real and imaginary components of a single complex signal of the form

s(t) = sx(t)− isy(t), (2.24)

where sx(t) and sy(t) are respectively the signals along the x- and y-axis. The quantum

mechanical observable associated to the measurement of this signal is given by

O =
1

2

∑
j

(Xj − iYj) , (2.25)

where the summation is over all observed spins. The measured signal is then given by [7]

s(t) ∝ 〈O〉 = tr(ρ(t)O) =
∑
r

∑
s

〈r|ρ(t)|s〉〈s|O|r〉

=
∑
r

∑
s

ρrs(t)Osr

=
∑
r

∑
s

ρrs(0)Osr exp{[iΩrs − λrs]t}, (2.26)

where Ωrs := −Ωr + Ωs and Osr := 〈s|O|r〉, and where {Ωk} and {|k〉} respectively denote

the eigenvalues and eigenvectors of the natural Hamitonian. The NMR spectrum is the

the Fourier transform of the signal s(t), and takes the form [7]

S(Ω) =

∫ ∞
0

s(t) exp{−iΩt}dt ∝
∑
r

∑
s

ars

(
1

λrs + i(Ω− Ωrs)

)
, (2.27)

where Ω is the frequency, and ars is the amplitude of the transition between energy levels

r and s, and given by [7]

ars = ρrs(0)Osr. (2.28)

The above equations show us how to simulate NMR spectra. In particular, we can start

thinking about using spectral fitting to extract the parameters of the natural Hamiltonian

from NMR thermal spectra. These approaches are discussed in chapter 3. In the next

section, we present a few experimental methods that we will use later.
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2.6 Additional experimental methods

In this section we present a few experimental methods that we will use later in this work.

The first two methods are to simplify spectral analysis. The third method shows how we

can prepare a pseudo-pure state for a 2-qubit system.

2.6.1 Heteronuclear decoupling

Consider a molecule with two species of nuclei: 1H and 19F. Then, there exists a simple

method, called heteronuclear decoupling [7], to eliminate the heteronuclear couplings and

thus simplify spectral analysis. To eliminate the 1H− 19F splitting from 1H spectra, one

has to acquires the 1H NMR signal at the same time as applying an r.f. field at the 19F

Larmor frequency. This is illustrated in Figure 2.2. The 1H − 19F couplings are then

averaged out as a result [7]. The same technique can be used to eliminate the 1H− 19F

splitting from the 19F spectra, but by applying the r.f. field on the 1H nuclei.

2.6.2 Transition selection

In this work, we propose another method to further simplify spectral analysis of het-

eronuclear systems. The starting point is the fact that it is experimentally possible to

excite specific transitions. To do this, one needs to apply a long low-power pulse. To help

visualize this, one just have to look at the Fourier transformed sine function

FT[sin(2πν0t)] =
i

2
[δ(ν + ν0)− δ(ν − ν0)], (2.29)

where δ(x) is the Dirac delta function. One can see that as ν0 get smaller, the region

excited in the frequency domain also gets smaller. The scheme to simplify spectral analysis

then goes as follow: a decoupling pulse is applied while exciting a particular transition.

The decoupling is then stopped and the excited transition is acquired. Many of those

experiments can be done, allowing us to break the full spectrum into subspectra.

Figure 2.2: Experimental methods to simplify spectral analysis. Heteronuclear decoupling

is illustrated as Exp1, and transition selection is illustrated as Exp2. These methods will

be used later to simplify spectral analysis and measure the natural Hamiltonian.
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2.6.3 2-qubit pseudo-pure state preparation

Here, we present a simple method for preparing a pseudo-pure state in a 2-qubit system.

The starting point is the observation that the state |00〉〈00| can be written as

|00〉〈00| = 1

4

(
I⊗2 + Z1 + Z2 + Z1Z2

)
. (2.30)

Therefore, if we can prepare the state’s deviations Z1, Z2 and Z1Z2, we can prepare a

state with deviation proportional to |00〉〈00|. How can we prepare Z1 and Z2? Starting

from the thermal state, one can rotate the first spin by −π/2 around the x-axis,

Z1 + Z2 → Y1 + Z2. (2.31)

The first spin can also be rotated by π/2 instead,

Z1 + Z2 → −Y1 + Z2. (2.32)

We can then add the result of these two experiments to obtain Z2. Obviously, can also

obtain Z1 using a similar strategy. Therefore, we can prepare Z1 and Z2. To prepare

Z1Z2, we start from Z1 and then rotate the first spin by −π/2 around the x-axis,

Z1 → Y1. (2.33)

We then apply a pulse with propagator given by eiZ1Z2π/4,

Y1 → X1Z2. (2.34)

Finally, we rotate the first spin such that

X1Z2 → Z1Z2. (2.35)

Thus, we are also able to prepare Z1Z2. In practice, we will use this method later when

we will certify the experimental implementation of quantum gates in a 2-qubit system.

This marks the end of the first chapter. We have first introduced the concept of spin,

and we then explained how the quantum state of spin systems can be described using the

density operator approach. We have also presented the spin-1⁄2 interactions and we have

given the natural and control Hamiltonians in liquid crystal state NMR. Then, we have

shown how spin systems evolve under these Hamiltonians. Using this and a few notions

of NMR spectroscopy, we have then derived the equations to calculate NMR spectra.

Finally, we presented two methods to simplify experimental spectra, and also a method

for preparing a 2-qubit pseudo-pure state. In the next chapter, we present and discuss

methods for measuring the natural Hamiltonian of dipolar-coupled spin systems.
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Chapter 3

Characterization of the Hamiltonian

In order to control a spin system for purpose of quantum information processing, measuring

its natural Hamiltonian is of critical importance due to the fact that current optimal

control algorithms depend on the full information of the Hamiltonian. How can we

extract the Hamiltonian’s parameters from experimentally measured data? Actually,

characterizing the Hamiltonian of dipolar coupled spin systems is usually a difficult

task due to the high complexity of their spectra. Currently, molecules with unknown

geometrical structure and low symmetry are extremely tedious or impossible to analyze

by sheer spectral fitting. In this chapter, we present a novel method that addresses the

problem of spectral analysis, and report experimental results of extracting, by spectral

fitting, the parameters of an oriented 6-spin system with very low symmetry in structure,

without using a priori knowledge or assumptions on the molecular geometry or order

parameters. The advantages of our method are achieved with the use of a new spectral

analysis algorithm - NAFONS (Non-Assigned Frequency Optimization of Nmr Spectra),

and by the use of simplified spectra obtained by transition selective pulses. The new

method pushes the limit of spectral analysis for dipolar coupled spin systems, and is

helpful for related fields, such as quantum computation and molecular structure analysis.
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3.1 Introduction

Characterizing the Hamiltonian of a system by extracting parameters from experimentally

measured data is a kind of inverse problem, one of fundamental problems in physics. In

order to control a system, e.g. for purpose of quantum information processing [12], this

task is critically important, because current optimal control algorithms, such as gradient

ascent pulse engineering [9] and strongly modulating pulse [13] algorithms, depend on

the full information of the Hamiltonian. In addition, the Hamiltonian of spin systems

provides valuable information for molecular structure analysis [14].

In dipolar coupled spin systems, such as molecules dissolved in liquid crystals in NMR

experiments [15], the Hamiltonian is not naturally diagonal due to the interaction terms

with dipolar couplings, which are usually too strong for the weakly coupling approximation

to be satisfied. Consequently, the spectra are usually very complex in multiple-spin systems,

where the number of peaks corresponding to single coherence increases rapidly with the

number of interacting spins. Furthermore, in liquid crystal solvents, the dipolar couplings

depend on the solute’s size and shape, and are scaled by the order parameters, which are

sensitive to multiple factors, such as the characteristics of the solvents, magnetic fields,

temperature, etc, making almost impossible the theoretical calculation for obtaining the

dipolar couplings. Moreover, first-order analysis of dipolar coupled spectra is usually not

possible, and the Hamiltonian has to be diagonalized numerically.

Measuring the parameters of dipolar coupled spins from NMR spectra is currently a

hard problem. One approach, called pure frequency fitting [16–24], is to minimize by least

squares the difference between the observable peak frequencies and the simulated transition

frequencies. The well-known major drawback of this approach is the requirement of spectral

assignment, a manual procedure to determine which experimental peak corresponds to

which simulated transition. To avoid spectral assignment, the straightforward strategy is

to fit the spectrum, directly obtained from the thermal state via nonselective pulses, using

a least squares algorithm. This approach, called line shape fitting [28–34], is associated

with immense computational resources and is seriously limited by the huge number of

local minima. For this reason, evolutionary algorithms [35–39], which are able to search

through many local minima, have been proposed and used for line shape fitting, with

impressive but still limited success. In fact, these methods are unable to cope with a

large search space, making them suitable mainly for molecules with high symmetry and

accurately known geometrical structure [38]. For all of the above methods, proper initial

guess and bounds of the parameters are thus required to approach the desired solution.

Additional spectra are necessary for this purpose, where Z-COSY [40,41] and homonuclear

decoupling [42–46] techniques are helpful for obtaining crucial clues to estimate certain

parameters. In addition, strategies based on multiple quantum coherence NMR [38,47,48]
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have been developed to reduce the number of local minima, exploiting the fact that the

number of higher order transitions is much less than the number of single order transitions.

The high order transitions can be observed through 2D experiments. Implementation of

such experiments requires to optimize the delay in the preparation period, and therefore

usually requires a long measurement time. In addition, the resolution of the second

dimension is usually low. Recently, theoretical strategies based on local control techniques

were proposed through accessing the system partially, and an experimental demonstration

was implemented in three spins with well known Hamiltonian using NMR [49–51].

In this chapter, we present Non-Assigned Frequency Optimization of Nmr Spectra

(NAFONS), a pure frequency fit method in which spectral assignment is incorporated into

a standard numerical optimization problem that can be addressed by a computer. Our

global optimization strategy is based on the injection of random perturbations designed

to enable the solver to escape local minima. Another way of thinking about our global

optimization strategy is that we use multiple objective functions that have different local

minima but that share the same global minimum. Thus, when we reach a local minimum

we just have to switch to some other objective function, hoping that by repeating this

process we will eventually reach the desired solution. The spectra to be fitted are obtained

by standard 1D experiments. In experiment, we apply our algorithm to solve a 6-spin

system with low symmetry in structure, without using knowledge on the interspin distances

or order parameters, and even without a first-order estimation of the parameters. The

parameters of the Hamiltonian are well estimated in a few minutes and with no operator

intervention. In addition, our algorithm is compatible with the standard pure frequency

fitting approach in the sense that both methods could be combined in a single unified

algorithm. This is discussed later in this chapter. We also introduce an experimental

method to simplify spectral analysis of heteronuclear systems. This method uses transition

selective pulses in order to reduce the complete thermal spectrum into simpler sub spectra.

In the next section, we give the details of our NAFONS algorithm, which is a numerical

optimization over the Hamiltonian parameters. We refer the reader to section 2.3.2 for the

description of the natural Hamiltonian in liquid crystal state NMR. Given that the dipolar

couplings are much larger (up to 2-3 order of magnitudes) than the scalar couplings, we

thus firstly search for the {νi, Dij}, which are stored in a vector ~x. We measure the scalar

couplings in an isotropic solvent, e.g. chloroform, and then use them as initial guess in the

anisotropic solvent to further adjust all the parameters. In principle, the fitting cannot

distinguish heteronuclear scalar couplings from the corresponding dipolar ones. Thus, not

including the heteronuclear scalar couplings in the search might be more appropriate, but

here we do not care since most are within the error bars of the dipolar couplings. Many

variations of our approach could have been presented. In fact, later in this chapter we

discuss how our approach can be unified with standard pure frequency fitting.
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3.2 The NAFONS algorithm

In NAFONS, transitions assignment is encoded in the objective function, such that at

each evaluation of the objective function, the program automatically assigns a group of

simulated transitions to the group of experimental ones, and then assigns the individual

transitions within the two groups. Spectral assignment can thus vary at any step of the

optimization of the parameters, but is assumed to be correct at the optimum, so that the

assignment problem is effectively incorporated within the optimization problem.

In practice, we first extract the experimental frequencies of the N peaks with biggest

integrals (where N is a suitable and sufficiently large number), and store them in increasing

order in a vector ~F exp. For example, consider the spectrum illustrated below. Then, for

N = 4 and N = 5, we have ~F exp = (−1, 0, 1, 3) and ~F exp = (−2,−1, 0, 1, 3) respectively.

ï3 ï2 ï1 0 1 2 3
Frequency

Similarly, we define ~F sim as the vector containing the frequencies, in increasing order,

of the N simulated transitions with largest integrals. An important point to make here is

that ~F sim depends on the Hamiltonian underlying the simulated spectrum.Obviously, this

implies that ~F sim varies during an optimization over the parameters of the Hamiltonian.

It is important to point out is that the frequency of the coherences is not the only source

of changes in the vector ~F sim. In fact, the group of selected coherences can change, and

their positions in ~F sim can change as well. For example, consider again the blue spectrum

above. Let’s say that the parameters used in simulation are a little off from their actual

values, and that the simulated spectrum looks like the red spectrum below.

ï3 ï2 ï1 0 1 2 3
Frequency

We see that the position of the coherences has changed a little, but the important

difference here is that if N = 4, then ~F sim = (−2.1,−1.1,−0.3, 1.2). In other words,

20



the four coherences selected in the red spectrum are not even the same as the four

coherences selected in the blue spectrum. This illustrates how much the vector ~F sim

can be so fundamentally different from the vector ~F exp. The key point here is that we

must have ~F sim = ~F exp when the parameters of the simulation are correct. Thus, if the

optimization procedure is carried by minimizing the difference between ~F sim and ~F exp,

then the spectral assignment problem has effectively been incorporated into a standard

optimization problem that can be addressed by a computer rather than a human. At

first, finding the global minimum might seem impossible to achieve. In the following, we

present a global optimization strategy for solving this problem.

We now present a global optimization strategy for minimizing the difference between
~F sim and ~F exp. The optimization procedure is done as follows, starting from an arbitrary

Hamiltonian parameters vector ~x0, which is a list of the couplings and offset frequencies.

1 Find a minimizer ~x∗ of f(~x) =
∑

j (F exp
j − F sim

j (~x))
2

2 Update the initial guess: ~x0 = ~x∗

3 Generate a random vector ~w, with each entry chosen uniformly at random in {0,1}

4 Find a minimizer ~x∗ of f~w(~x) =
∑

j wj(F
exp
j − F sim

j (~x))
2

5 Update the initial guess: ~x0 = ~x∗

6 Repeat all these steps until the global minimum is reached

Algorithm 1: Basic global optimization strategy used in our NAFONS method.

In the NAFONS approach, assignment of the transitions is thus encoded in the objective

function using simple rules: for each point of the parameters space, the group of simulated

transitions is selected using their integrals, and the assignment is done by sorting the

frequencies in increasing order. This is a natural way of optimizing both the parameters

and the assignment of the transitions.

We now elaborate on our formulation of the optimization problem to solve, so as to

understand the origin of its claimed robustness. The problem to solve is represented as

min
~x∈Ω

f~w(~x) =
∑
j

wj(F
exp
j − F sim

j (~x))
2
, (3.1)

where ~x is the vector of parameters, Ω is the search domain, ~F exp is the vector of sorted

experimental frequencies, ~F sim is the vector of sorted simulated frequencies and ~w is a

vector of random weights. The goal is to find a ~x∗ that is a solution to problem (3.1) for

any value of ~w. In principle, this is possible only for the optimal solution, in which case
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all of the experimental and simulated peaks should be in (quasi) exact agreement. In this

case, we should have ~F exp = ~F sim, or equivalently (~F exp − ~F sim) = ~0, and thus follows

that for any ~w ∈ RN we have
∑

j wj(F
exp
j − F sim

j )
2

= 0.

In a sense, this formulation of the problem is a way of avoiding suboptimal solutions by

using the fact that the number of objective functions that we could globally minimize

to get the Hamiltonian is infinite. In other words, it is not the typical approach in

which one wants to minimize a particular function. Here, we consider a large number of

objective functions which do not share the same suboptimal solutions, but that do share

a same optimal solution, and that overlap mainly for low error suboptimal solutions. This

approach is also supported by the fact that the problem is greatly overdetermined, due to

the redundancy of single order quantum coherence spectra, so that we could choose that

only a few elements of ~w are non-zero and still have a valid objective function f~w.

We review here the global optimization strategy used in our method. To solve problem

(3.1), we start from a guess ~x0 and then find a minimizer ~x∗ of f(~x) =
∑

j (F exp
j − F sim

j (~x))
2
.

Then, the solution ~x∗ is used as the initial guess for minimizing a randomly modified

objective function of the form f~w(~x) =
∑

j wj(F
exp
j − F sim

j (~x))
2
, where the elements of ~w

are chosen randomly to be either 0 or 1. If the solution ~x∗ is a global minimizer of f , then

the solver will not modify the solution, otherwise the solver continues the optimization

with the modified objective function f~w. These two steps can be done repeatedly in a

loop. To generalize this scheme, one could chose to solve a randomly modified problem

M times at each iteration of the loop, so that a loop has the form

Solve min
~x∈Ω

f(~x) =
∑
j

(F exp
j − F sim

j (~x))
2
,

Solve×M min
~x∈Ω

f~w(~x) =
∑
j

wj(F
exp
j − F sim

j (~x))
2
,

(3.2)

where the vector ~w is generated randomly for each different minimization. The equilibrium

state of this process is the commonly shared optimal solution.

To solve each minimization problem, we used an interior-point approach [52], and also

found that including pattern searches [53] could help to locate the optimum. Then, when

the desired solution is found, a least squares fit [54] of the spectrum line shape is finally

done, mainly to adjust the decoherence rates of each spin and the scalar couplings.

In the following section, we present experimental results for characterizing the Hamilto-

nian of a 6-spin system. We also introduce an experimental method for simplifying the

analysis of NMR spectra for heteronuclear spin systems. For this experiment, we also

successfully tested a random walk approach in which the loop (3.2) is replaced by a single

step taken into the direction that minimizes f followed by an other single step in the

direction that minimizes a randomly chosen f~w.

22



3.3 Results for 2,3-Difluorobenzaldehyde

In this section, we present the experimental results for our characterization of the Hamil-

tonian of the spin system of 2,3-Difluorobenzaldehyde (C7H4F2O) molecules dissolved into

the liquid crystal ZLI-1132. The molecular structure is schematically represented in Figure

3.1. Experimental data are taken in a Bruker 600 MHz spectrometer. The temperature is

controlled at 284K. We measure the Hamiltonian parameters through fitting the following

spectra: 1) fluorine spectrum with proton decoupling, 2) proton spectrum with fluorine

decoupling, 3) spectra obtained by selective transition pulses based on spectrum 2), 4)

fluorine spectrum without proton decoupling, and 5) proton spectrum without fluorine

decoupling. We use the standard composite decoupling pulses, i.e. GARP [55] to decouple

fluorine spins, and SPINAL-64 [56] to decouple proton spins. The selective transition

pulses are Gaussian shaped pulses with duration of 20 ms.
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F
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(2)

(3)

(4)

(5)
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Figure 3.1: Molecular structure of 2,3-Difluorobenzaldehyde and the spin labelling.

For this experiment, the NAFONS approach is implemented in a highly simplified

configuration. The optimization is done directly over the chemical shifts and dipolar

couplings, i.e. without assuming or guessing the molecular geometry and order parameters.

In addition, the optimization is done without a proper initial guess (0 Hz for each

parameter) and without proper bounds (±2500 Hz for each parameter). Moreover, the

diagonalizations of the Hamiltonian are done with a general QZ algorithm [57]. Finally,

the program is implemented in MATLAB and runs on a laptop.

After having obtained the chemical shifts and dipolar couplings with our NAFONS

method, we use a standard curve fitting algorithm to fine tune these parameters and also

to estimate the scalar couplings. The estimation of the parameters is reported in Table

3.1. The errors are estimated by comparing the values obtained from the different fitted

spectra and by using the standard deviation assuming a typical gaussian noise. In the

following, we present the details of this experiment.
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H1 H2 H3 H4 F5 F6

H1 -1770(3) -424(3) -144(3) -154(2) -1505(4) -232(3)
H2 0.13(0.06) -149(2) -2166(8) -368(4) -42(4) -106(2)
H3 -0.03(0.06) 2.7(0.1) 172(2) -931(5) -62(4) -46(3)
H4 0.13(0.08) 0.61(0.06) 2.9(0.3) -234(3) -236(3) -384(3)
F5 -0.02(0.06) 2.8(0.2) 0.7(0.3) 4.1(0.2) -885(3) -1589(7)
F6 -0.32(0.08) 0.76(0.03) 2.5(0.4) 4.8(0.8) 7(1) 948(2)

Table 3.1: Parameters of the Hamiltonian for 2,3-Difluorobenzaldehyde measured in the

liquid crystal solvent ZLI-1132. The scalar couplings, chemical shifts and dipolar couplings

(in Hz) are respectively given below, on, and above the main diagonal of the table. The

chemical shifts are given with respect to transmitter frequencies, around 600.13 MHz and

564.62 MHz, for proton and fluorine spins respectively.

3.3.1 Fluorine spectrum with proton decoupling

The first spectrum to be analyzed is the one of the two fluorines decoupled from the

protons. There are two chemical shifts and one dipolar coupling to estimate. The four

main transitions are selected for the optimization, and convergence is easily reached within

a second. In fact, this problem is very simple and can even be solved analytically (see

Appendix A). The agreement between the simulation and the experiment shown as Figure

3.2 indicates a reliable estimation of the parameters. It can be seen that there is a “junk”

peak in the experimental spectrum, possibly due to the imperfection of decoupling. The

results for the chemical shifts (in Hz) of F5 and F6 are: −894(2) and 937(2) with respect

to a transmitter frequency. The result for the dipolar coupling (in Hz) is: −1595(7).

�3000 �1500 0 1500 3000

(a)

(b)

Experiment

Simulation

Figure 3.2: Fluorine spectrum with proton decoupling, obtained in (a) experiment, and

by (b) simulation. The agreement indicates a reliable estimation of the parameters.
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3.3.2 Proton spectrum with fluorine decoupling

The next spectrum to be analyzed is the one of the protons decoupled from the fluorines.

The 26 transitions with biggest integrals are selected for an optimization. For several

trials, convergence is usually reached within 10 minutes. The mean error for the coher-

ences frequency is 0.25 Hz, and is probably due to line-overlap, which is not taken into

consideration in pure frequency fitting. The chemical shifts (in Hz) for H1, H2, H3 and H4

are respectively: −1783(2), −158(1), 165(1) and −242(1). The agreement between the

simulation and the experiment shown as Figure 3.3 indicates a reliable estimation of the

couplings in Table 3.1. Some small differences in the relative heights of the transitions are

present, and might be explained as the imperfection in our way of modelling decoherence.

The estimation of the parameters is again supported by the molecular structure shown

in Figure 3.1. The coupling is stronger for neighbor nuclear spins. The shape of the

experimental spectrum supports these values as well. Around -2000 Hz, the cluster of

transitions with strong decoherence corresponds to H1. These transitions are closely

distributed around the chemical shift value, due to the fact that the couplings involving H1

are small (< 450 Hz). The two sets of 4 transitions with high amplitudes on the extreme

left and extreme right of the spectrum both correspond to a mix of H2 and H3 transitions.

They are at the extremities of the spectrum due to the large coupling (-2166 Hz) between

H2 and H3. The transitions corresponding to H4 are distributed on a width of ∼1600 Hz

around the centre of the spectrum. This is mainly due to the coupling between H3 and

H4 (-931 Hz). The chemical shifts (up to a scaling factor) are further verified by a 2D

experiment using Lee Goldburg decoupling technique [58,59].

�4000 0 4000

(a)

(b) Simulation

Experiment

Figure 3.3: Proton spectrum with fluorine decoupling, obtained in (a) experiment and by

(b) simulation. The agreement indicates a reliable estimation of the parameters.
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3.3.3 Measuring dipolar couplings between heteronuclear spins

We now introduce a new experimental method for simplifying the analysis to measure

dipolar couplings between heteronuclear spins. As we will see, this is a very powerful

method when it applies. Having previously obtained the protons chemical shifts and

protons homonuclear couplings, shown in Table 3.1, the proton Hamiltonian can be

diagonalized, and each eigenvector can be expressed in the computational basis, i.e.

{|0〉, |1〉}, so as to build the map between transitions and energy levels. We can exploit

transition selective pulses to individually excite certain transitions in the spectrum shown

in Figure 3.3(a). The goal is to make easier the numerical analysis for estimating the

dipolar couplings between protons and fluorines. There are about ten well resolved peaks

in Figure 3.3(a) that can be well addressed by Gaussian shaped pulses with 20 ms. Five

experimental spectra obtained through transition selective pulses are shown as the spectra

in Figures 3.4(b)-(f). Figure 3.4(a) is the same spectrum as in Figure 3.3(a), and is at the

top of Figure 3.4 for identifying the peaks in Figures 3.4(b)-(f). Figure 3.4(g) shows the

full proton spectrum without fluorine decoupling.

We select the five transitions mentioned above, each of which corresponds to a density

matrix that can be written as the external product of the eigenstates involved in the

transition, represented as

ρHij = |Ei〉〈Ej|, (3.3)

where |Ei〉 and |Ej〉 denote eigenstates of the proton Hamiltonian. Then, we switch

off the decoupling channel for fluorine spins, and take the spectrum with the couplings

between heteronuclear spins. The spectra corresponding to spectra in Figures 3.4(b)-(f)

are respectively shown in Figures 3.4(h)-(l). The corresponding states are represented as

ρij = ρHij ⊗ I2, (3.4)

where I2 denotes a 4×4 identity matrix, representing the state of the two fluorine spins.

We use the {ρij} as the input states to simultaneously analyze the spectra shown in Figures

3.4(h)-(l) and extract all the heteronuclear dipolar couplings. Here, by simultaneously

analyzing the spectra, we mean that the objective functions for the different spectra are

combined into a single one, which is minimized by the algorithm. Then again, we use

our NAFONS approach to do this optimization. The chemical shifts are allowed to vary

± 50 Hz from their values obtained with decoupling pulses. For several trials, convergence

is usually reached within 10 minutes. We now have all the parameters of the Hamiltonian,

and we are thus ready to see if the full proton and the full fluorines spectra match with

their corresponding simulation. This is the final step of the analysis.
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Figure 3.4: Spectra for extracting the dipolar couplings between heteronuclei. (a) Full

proton spectrum with fluorine decoupling and (b)-(f) corresponding subspectra obtained

by transition selective pulses. (g) Full proton spectrum without fluorine decoupling and

(h)-(l) corresponding subspectra obtained by the same transition selective pulses.

3.3.4 Complete fluorine and proton spectra

We now analyze the complete fluorine and proton spectra. Having all the parameters of

the natural Hamiltonian, we use these parameters to fit the complete fluorine and proton

spectra using least squares on the spectral line shape. This is done mainly to adjust the

decoherence rates of the spins and the scalar couplings. In fact, during this line shape fit,

the Hamiltonian parameters all change less than 1% from the values previously obtained.

These changes are most probably due to line-overlap, which is not taken into consideration

during the pure frequency fit. In other words, this least squares fit of the spectral line

shape is mainly to fine tune the parameters and visualize the agreement between the

simulation and the experiment. In fact, as it will be discussed in the next section, least

squares fitting of the spectral line shape is rarely helpful for dipolar coupled spin systems,

unless very good initial guesses are available.

The results for the fluorine and proton spectra are shown respectively in Figure 3.5

and Figure 3.6. Then again, the parameters of the Hamiltonian are listed in Table 3.1.

The T2
∗ (in ms) for H1, H2, H3, H4, F5 and F6 are respectively: 80.2(0.3), 65.8(0.2),

60.4(0.3) 62.4(0.2), 11.6(0.3) and 15.9(0.1). The agreement between the simulation and

the experiment is again very good, showing that we do in fact have an accurate estimate

of the Hamiltonian of 2,3-Difluorobenzaldehyde in the liquid crystal ZLI-1132.
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Figure 3.5: Fluorine spectrum without proton decoupling, obtained in (a) experiment and

by (b) simulation. The occasional difference in heights is probably due to our modelling of

decoherence (see text). The agreement indicates a reliable estimation of the parameters.
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Figure 3.6: Proton spectrum without fluorine decoupling, obtained in (a) experiment and

by (b) simulation. The occasional difference in heights is probably due to our modelling of

decoherence (see text). The agreement indicates a reliable estimation of the parameters.

This concludes of presentation of the experimental results obtained for the characteriza-

tion the Hamiltonian of 2,3-Difluorobenzaldehyde in the liquid crystal ZLI-1132. Solving

such a spin system is considered to be a hard problem, and it thus shows the potential

of the methods presented in this chapter. In the next section, we explicitly compare our

methods to other methods in the literature.
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3.4 Discussion

In this section, we compare our NAFONS approach to other spectral analysis approaches

in the literature. There are three main types of methods in the literature: pure frequency

fitting, total line shape fitting and integral transform fitting. We discuss the weaknesses

of each of these methods. Doing this will make it clear that our approach successfully

addresses fundamental problems in spectral analysis of dipolar coupled spin systems. We

also discuss how exactly our experimental method to simply the analysis of heteronuclear

spin systems helps the numerical search for the correct parameters of the Hamiltonian.

In the approach introduced by Castellano and Bothner-By [16], the differences between

the observable peak frequencies and the simulated transition frequencies are minimized

using a least squares algorithm. The well-known major drawback of this method is the

requirement of spectral assignment, to establish which experimental peak correspond

to which simulated transition. In traditional programs such as LAOCOONOR [20],

PANIC [21] and LEQUOR [22], both the parameters and the spectral assignment have to

be adjusted by the operator before each trial fitting. An estimated Hamiltonian is therefore

required such that a sufficient number of transitions can initially be assigned for subsequent

iterations that aim to refine the parameters and enlarge the set of assigned transitions,

using the intelligence, intuition and patterns recognition ability of an experimented human

user. The assignment step requires a great deal of time and effort by the user, and

cannot be easily automated because only the operator can discriminated between the

different assignments. Successful attempts of automating the assignment procedure have

been reported in programs such as PAREMUS [23] and MIMER [24], but these are

limited to simple solutes in isotropic solvents. Thus, in traditional pure frequency fitting

algorithms, the procedure of spectral assignment is still the most decisive and difficult

step, rapidly rendering them impossible to apply, especially when the molecular geometry

and orientational parameters are unknown or difficult to guess.

Automatic methods which do not require spectral assignment have been developed as

an alternative. These approaches, called integral transform (IT) and total line shape

(TLS), use the full spectral line shape. In the IT approach, introduced by Diehl, Sýkora

and Vogt [25], the spectrum is transformed into a small set of coefficients by means of

linear integral transforms using orthogonal bases. The differences between the coefficients

obtained from the experimental spectrum and those obtained from the simulated one

are minimized with a standard optimization routine. In the TLS approach, the total

line shape of the NMR spectrum is fitted. The idea was first demonstrated by Glidewell,

Rankin and Sheldrick [28], and also studied by Heinzer [29]. A matrix method derived

from a general formulation of the least squares problem was then developed by Stephenson

and Binsch [30, 31]. The originality in their method was the use of cross-correlation
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functions to smooth the landscape, other techniques such as spectrum broadening [34]

and integral curves [35] have also been proposed for this purpose. This method, and its

subsequent modifications - DAISY [32] and WIN-DAISY [33], were later improved by

the use of Genetic Algorithms (GA’s) [35–39], which are able to search through many

basin of attractions. It is known that for GA’s, if the search ranges become too large,

there is insufficient coverage of the parameter space to locate the global minimum [38].

Some improvements can be obtained by the use of Evolutionary Strategies (ES’s), which

usually converge faster than GA’s [38]. Evolutionary algorithms such as GA’s and ES’s

are thus suitable only for molecules with high symmetry and with accurately known

geometrical structure [38]. In general, both the IT and TLS approaches suffer from severe

limitations: they are computationally very much slower than frequency fitting [23, 26, 27];

their global optimization strategy is either absent or operational only in small search

spaces; the operator has hardly any means of interacting with the program to increase

its efficiency. Due to these limitations, automatic analysis is not routinely employed [48],

and the Castellano-Bothner-By approach is still by far the most widely used [20], despite

the requirement of spectral assignment.

The originality of our approach can now be seen: it is a pure frequency fit program which

incorporates the spectral assignment problem into a standard numerical optimization

problem that can be addressed by a computer. In contrast with traditional automatic

methods, evaluation of the objective function does not require the expensive computation

of the spectral line shape. Moreover, our global optimization strategy, based on the

injection of randomness, is able to cover a large search space without getting trapped in

local minima. The most interesting feature of our approach is perhaps its compatibility

with operator interventions. In fact, at any moment, the operator could pause the program,

so as to visually compare the spectra and possibly choose to impose constraints on the

spectral assignment, gradually removing the suboptimal attractors from the landscape.

The intelligence of the operator can thus be effectively injected into the search. For these

reasons, we think that this new approach successfully addresses the fundamental problems

usually encountered in spectral analysis.

It is also relevant to emphasis the relationship between the experimental method

presented in section 3.3.3 and the computational method. The experimental method

allows to select specific transitions so as to minimize the complexity of the analysis to

be done. Not only the number of transitions is much less, but the number of possible

assignments for these remaining transitions is also reduced. For this experiment, only 21

transitions are used to extract the heteronuclear dipolar couplings, but only 4!·5!·4!·4!·4!

assignments are possible instead of 21!. The experiment also makes it possible to identify

which transitions should be used for the analysis, otherwise the presence of overlap becomes

an obstacle to this step.
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3.5 Conclusion

We proposed a new method for solving NMR spectra of solutes dissolved in liquid crystals,

and applied it to solve a 6-spin system with very low symmetry in structure and without

the use of a priori knowledge or assumptions on the interspin distances or order parameters,

which is in contrast with the results in previous experiments [14,17–20,30,31,33,35–39,48].

Our method includes a new spectral analysis program - NAFONS, and experimental

techniques to simplify spectral analysis for extracting the dipolar couplings between

heteronuclear spins. In contrast with traditional pure frequency fitting methods [16–24],

NAFONS does not require spectral assignment, and is thus fully automatic. In contrast

with line shape fitting methods [28–39], evaluation of our objective function does not

involve the expensive computation of the spectral line shape, and the global optimization

strategy can cope with a large search space. We believe that our results should be helpful

to implement spectral analysis of dipolar coupled systems, and can be extended to larger

systems. Using these methods, it should now be much easier to create a library of molecules

for chemical structure analysis and other filed depending on the full Hamiltonian such as

quantum computing. In the next chapter, we present how the 6-spin system introduced

in this chapter can be controlled using pulse sequences design algorithms.
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Chapter 4

Quantum Optimal Control

In the previous chapter we have successfully measured the Hamiltonian of an oriented

6-spin system. How can we control this system in practice? For simple solutes dissolved

in liquid state environments, control sequences to implement specific unitaries can often

be written down by hand and optimized heuristically. The situation is quite different

for dipolar coupled spin systems, for which the spectra are usually very complicated

and single spin addressability is lost. As a consequence, even pulse sequences for single

spin rotations can rarely be designed analytically. In recent years, sophisticated pulse

sequence design algorithms have been developed as a result, marking the emergence

of a new field known as quantum optimal control. The idea behind this approach has

already been introduced in chapter 2, were we presented the control Hamiltonian in

section 2.3.3, and the evolution under this Hamiltonian in section 2.4.2. In particular,

we also mentioned that the amplitudes of the control Hamiltonian could be discretized

into timesteps, and that the control sequences for a particular desired unitary evolution

could be found using numerical optimization algorithms. In this chapter, we present

such an algorithm, known as GRAPE (GRadient Ascent Pulse Engineering). We also

explain how to design experimentally robust pulses, and how the numerical search can

be fasten using a subsystem approach. Moreover, we discuss the errors that occur in

experimental implementations, and how pulse smoothing and pulse fixing can help to

reduce these errors. Then, we present GRAPE pulses for single spin rotations, obtained

for 2,3-Difluorobenzaldehyde. We start by considering the full 6-spin system, in which

case pulse design is very challenging. Then, we present results for the proton subsystem

decoupled from the fluorines.
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4.1 The GRAPE algorithm

Here, we present the GRadient Ascent Pulse Engineering (GRAPE) algorithm [9]. The

purpose of this well-known numerical optimization algorithm is to design pulse sequences

that implement desired unitaries for specific systems. As we will see, this approach requires

the full knowledge of the natural Hamiltonian, showing the importance of the previous

chapter. We also discuss how to design experimentally robust pulses and how the search

can be fasten using a subsystem approach. Finally, we discuss experimental errors that

occur when GRAPE pulses are implemented in practice, and we show how these errors

can be reduced by smoothing the pulses and also by using a method known as pulse fixing.

As described in section 2.4.2, the evolution of a spin system is driven by both its

natural Hamiltonian H nat and the control Hamiltonian H C(t). In practice, the control

Hamiltonian consists of a sum of control knobs {Hj} with control amplitudes {uj(t)},

H C(t) =
∑
j

uj(t)Hj. (4.1)

The particular form of the control Hamiltonian for NMR implementations was given is

section 2.3.3. In practice, each uj(t) is piecewise constant in time. To be more precise,

the time evolution is divided into N timesteps of length ∆t. For the sake of notation, in

the following we will write uj(k) to denote the value of uj during timestep k.

Assuming that we have universal control over the system, it follows that for any desired

unitary there exist a control sequence to implement it. How can we find such a control

sequence? This is the problem addressed by optimal control theory. The first step is to

define a metric for optimality. Given the control amplitudes {uj(t)} and a good model for

the system and apparatus, we can simulate the unitary on a classical computer to obtain

Usim. The simulated gate can then be compared to the desired gate Ugoal. Given that

globals phases do not matter, it follows that a good choice for the fidelity function is

Φ =

∣∣∣tr(U †goalUsim) ∣∣∣2
D2

, (4.2)

where D is the dimension of the Hilbert space. Given this fidelity function, one can then

start thinking about using numerical optimization to search for the best pulse. Of course,

the result is only as good as the search method is at finding global maxima. Moreover,

finding a “good” pulse sequence does not imply that a better one does not exist. These are

common problems in global optimization. However, the real problem for pulse finding in

particular is the cost of the fitness function: evaluating it requires simulating the quantum

evolution. This is where the clever part of the method is: to update control uj(k), we
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take the derivative of Φ with respect to uj(k) using back-propagation. The idea behind

back-propagation is to simulate the unitary both backwards starting from the goal unitary

and forwards starting from the identity. The unitaries at each point are stored in memory.

Using these stored unitaries, instantaneous derivatives of Φ can be obtained with only a

few matrix multiplications, rather than by simulating the entire dynamics.

We now give the details of the GRAPE method. The unitary for timestep k is

Uk = exp

[
−i∆t

(
H nat +

∑
j

uj(k)Hj

)]
. (4.3)

To first order, we have
δUk
δuj(k)

≈ −i∆tHjUk, (4.4)

where we require
∣∣∣∆t(H nat +

∑
j uj(k)Hj

) ∣∣∣� 1 for this approximation to be accurate.

The total unitary for all N timesteps can then be calculated as

Usim = UN−1UN−2 . . . U1U0. (4.5)

To first order in ∆t, the gradient of Φ can then be calculated as

δΦ

δuj(k)
=

1

D2

[
tr

((
U †k+1 . . . U

†
N−1Ugoal

)† δUk
δuj(k)

Uk−1 . . . U0

)
+ c.c.

]
. (4.6)

On the left side of the derivative is the partial propagator backwards in time, and on

the right side is the one forwards in time. By storing these into memory, the gradient

information can be calculated much faster, leading to a much more efficient search of

the direction in which the control parameters should be modified. We can then use a

simple steepest-ascent algorithm. A basic example of a GRAPE algorithm is given below.

1 Guess the initial controls {uj(k)}

2 while Φ < Φthr do

Calculate {δΦ/δuj(k)} using Eq.(4.6) and Eq.(4.4)

Update all the controls as uj(k)→ uj(k) + ε δΦ
δuj(k)

, where ε is a small step size

end

Algorithm 2: Basic GRAPE algorithm. Here, Φthr is the fidelity threshold.

The pulse finder program used in this work was developed by C. A. Ryan and closely

follows the GRAPE approach, but with some modifications [11,60]. In the following, we

present an approach to search for experimentally robust pulses, and we also discuss how

breaking the spin system into subsystems can help to fasten the numerical search.

34



4.1.1 Robust pulses & the subsystem approach

There exists an approach to search for experimentally robust pulses. This is required

due to the presence of several sources of errors that reduce the fidelity of the pulses in

experiments. The most relevant error sources are inhomogeneities across the sample in the

static field and the r.f. field. Moreover, the parameters of the natural Hamiltonian could be

difficult to measure with high accuracy, or they might also have changed slightly since their

measurement. To handle these experimental errors, we can define a new fidelity function

which is the average fidelity of the pulse simulated over a range of parameters [11,60].

Pulse finding can be very difficult, but there exists a subsystem approach to fasten

the search [11,60]. The idea is to decompose the system into subsystems, such that for

each subsystem A the desired unitary can be factored as Ugoal = UA ⊗ UAC
, where AC

is the complement of subsystem A, and US denotes a unitary acting only on system S.

We can then define the fitness function as a weighted sum of the fitness function for each

subsystem, and simulate the subsystems individually to reduce the computational time.

Obviously, the subsystems must be defined such that the dominant dynamics is captured.

4.1.2 Smooth pulses & pulse fixing

The GRAPE algorithm presented above assumes that the control amplitudes can be varied

arbitrarily and that unlimited power is available. This is of course not true experimentally.

For example, the finite slew rate of the amplifier will lead to a switching transient, and we

must also ensure that the power starts and ends at zero. There exists a solution to this

problem that also has the advantage of speeding up the search [11,60]. In practice, one

finds that having many timesteps is rarely needed to find high fidelity pulses. This implies

that we can start by finding a high fidelity pulse using relatively long timesteps (but such

that the approximate gradient is still accurate). Then, we can digitally smooth the pulse

with shorter timesteps, and use this smooth version of the pulse as the starting point for

a new numerical optimization. This process can be repeated many times if required.

Do the r.f. control fields at the sample match what they are supposed to be? In practice,

the actual pulse sequence can differ largely from the intended one. This is due in part to

bandwidth constraints of the probe-resonant circuit, and to non-linearities in the pulse

generation and amplification. This problem can be solved by pulse fixing, i.e. measuring

the field at the sample and using a feedback loop to iteratively adjust the controls so that

the field at the sample matches the simulation. The details can be found in [11,60].

In the next section, we present GRAPE pulses for 2,3-Difluorobenzaldehyde, which is

the molecule that we characterized in the previous chapter. Specifically, we are interested

in single qubit rotations. These will be used in chapter 5 to certify quantum gates.
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4.2 Results for 2,3-Difluorobenzaldehyde

In this section we present the GRAPE pulses obtained for 2,3-Difluorobenzaldehyde. We

start with the results for the full 6-spin system, in which case pulse design is quite a

challenge. In fact, we were unable to find pulses with fidelity above 95%. In addition, these

pulses are neither robust nor smooth. Then, we present results for controlling the proton

subsystem while applying a decoupling pulse. The results are much better, as we were

able to find robust smooth pulses with 98% fidelity for all single-spin π/2 rotations. In

practice, the pulses are found using large clusters, so as to run as many trials as possible.

4.2.1 Pulses for the full system

For the full 6-spin system, pulse design is in fact very tedious. Our goal was to obtain all

six single-spin π/2 rotations about the x-axis. We could then obtain the single-spin π/2

rotations about the y-axis simply by changing the phase of the pulse.

Although we were able to find all pulses, these are neither robust nor smooth, with

fidelity that never surpasses 95%. The pulses found have timestep’s lengtht ∆t = 1µs and

total length 4ms. When using the subsystem approach, the subsystems are {H1,F5,F6}
and {H2,H3,H4}. One can see from Table 3.1 that this definition of the subsystems

captures the dominant dynamics. In general, the pulses were found as follows:

1) Find a 99% fidelity pulse with ∆t = 4µs, using the subsystem approximation.

2) Use this pulse as the initial guess for finding a 95% fidelity pulse with ∆t = 4µs.

3) Smooth the pulse with ∆t = 2µs and optimize its fidelity to reach 95%.

4) Smooth the pulse with ∆t = 1µs and optimize its fidelity to reach 95%.

We tested one of these pulses experimentally, mainly in order to further confirm our

estimation of the Hamiltonian. The fluorine spectrum for the implementation (without

pulse fixing) of a π/2 rotation about the x-axis on F5 is shown in Figure 4.1, were we

also show the spectrum obtained by simulating the same GRAPE pulse. By comparing

the two spectra, we can see that the agreement is reasonable despite the fact that the

pulse is not robust or smooth and that it is implemented without pulse fixing. Thus,

we can reasonably conclude that we do in fact have an accurate estimate of the natural

Hamiltonian. Still, the fact that we were unable to find robust smooth pulses discourages

us from attempting to perform complicated experiments using the full 6-spin system. In

fact, by applying a heteronuclear decoupling pulse, we can use 2,3-Difluorobenzaldehyde

as a 2-qubit system or a 4-qubit system. In the following, we present results for finding

GRAPE pulses acting on the protons, when these are decoupled from the fluorines.
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Figure 4.1: Fluorine spectrum after a π/2 rotation about the x-axis on F5, obtained in

(a) experiment and by (b) simulation of the GRAPE pulse. The pulse is neither robust

nor smooth, and is implemented without pulse fixing. Its duration is 4 ms and its fidelity

is 95%. These results support our estimation of the natural Hamiltonian.

4.2.2 Pulses for the proton subsystem

As we have discussed above, controlling the full 6-qubit system of 2,3-Difluorobenzaldehyde

seems to be a very challenging task. However, we can use heteronuclear decoupling to sup-

press the couplings between protons and fluorines, implying that 2,3-Difluorobenzaldehyde

can also be used as a 2-qubit system or as a 4-qubit system. Here we consider the later

case, i.e. the proton subsystem, and our goal is to obtain all four single-spin π/2 rotations

about the x-axis. We can then obtain the single-spin π/2 rotations about the y-axis

simply by changing the phase of the pulse. The method and the results for obtaining such

GRAPE pulses are explained in the following.

Our objective here is to obtain 98% fidelity pulses with timestep’s lengtht ∆t = 1µs and

a total duration of 4ms. The pulses should also be experimentally robust the chemical

shifts variations of ±10Hz and r.f. inhomogeneities of ±3% across the sample. The steps

to obtain these pulses are as follows:

1) Find a 99% fidelity pulse with ∆t = 4µs, and then smooth it with ∆t = 2µs.

2) Optimize the pulse’s fidelity to reach 99%, and then smooth the pulse with ∆t = 1µs.

3) Optimize the pulse’s fidelity to reach 99%, and then smooth the pulse.

4) Use this pulse as the initial guess for finding a robust pulse with fidelity 98%.
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We were able to obtain all four single-spin π/2 rotations about the x-axis. In contrast,

directly trying to find a robust pulse was unsuccessful. The pulse shape for a π/2 rotation

of H1 about the x-axis is illustrated in Figure 4.2. Due to a lack of equipment, we did

not test theses pulses in experiment. The reason is that one of the spectrometer available

to us misses the equipment required to implement heteronuclear decoupling. Another

spectrometer available to us is equipped to implement heteronuclear decoupling, but not

to implement pulse fixing. However, the pulses found here will be used in simulations in

chapter 5, were we will present methods for certifying the implementation of gates.
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Figure 4.2: Pulse shape for a π/2 rotation of H1 about the x-axis. The power is in units

of the angular Rabi frequency. The blue curve is the power for the x-phase and the red

curve is the power for the y-phase. The pulse’s duration is 4ms and its fidelity is 98%.

In this chapter, we presented the GRAPE pulse sequence design algorithm, and we

also explained how to design pulses that are robust to variations in the r.f. amplitudes

and Hamiltonian parameters. In addition, we discussed how the numerical search can

be fasten using a subsystem approach, and also how pulse smoothing and pulse fixing

can help to reduce errors that occur in experimental implementations. Then, we used a

GRAPE program in practice to find single-spin π/2 rotations for the oriented spin system

of 2,3-Difluorobenzaldehyde. We first considered the full 6-spin system, in which case we

found pulse design to be highly challenging. In fact, we were unable to find pulses with

fidelity above 95%, and these are neither robust nor smooth. Then, we considered the

proton subsystem decoupled from the fluorines, in which case we were able to find robust

smooth pulses with 98% fidelity and 4ms length. In the next chapter, we present methods

and results for certifying experimental implementations of quantum gates. The goal will

be to measure how close the experimental gates are to the desired ideal ones.
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Chapter 5

Certification of Quantum Gates

In chapter 3 we have proposed a new method for characterizing the Hamiltonian of dipolar

coupled spin systems, and used it in experiment to characterize the oriented 6-spin system

of 2,3-Difluorobenzaldehyde. Then, in chapter 4, we have presented how this system can

be controlled using pulse sequence design algorithms. At this point, we thus have in hand

a prototype quantum computing device. How faithful is this implementation to an ideal

quantum computer? In other words, how close the implemented operations are to the

desired ideal ones? This is the question addressed in this chapter. One approach to answer

this question is to fully characterize the experiments via quantum process tomography [61],

and calculate the average fidelity between the experimental and ideal operators to quantify

how close these are. The main drawback of this approach is that the number of parameters

required for complete characterization grows exponentially with the size of the system [62],

making it impracticable for moderately large systems. As a result, significant efforts have

been made to develop approaches that do not require complete characterization. In this

chapter, we present such an approach known as twirling. We first start by discussing the

concepts of average fidelity and averaged quantum channel. Then, we show how twirling

can be used to measure the average fidelity of Clifford unitaries. Following this, we present

a statistical analysis to obtain rigorous bounds for the accuracy of the results. We also

present our own Monte Carlo approach in order to further investigate the accuracy of

twirling experiments. Finally, we present results for 2,3-Difluorobenzaldehyde, obtained in

experiments and also by simulations. A quick word about the notation: in the following,

we will often denote quantum maps with a special font style, e.g. U , V .
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5.1 Average fidelity & averaged channel

In this section, we discuss the concepts of average fidelity and averaged channel. We also

introduce briefly a technique known as twirling, which will be explored in more details in

the next section. We first start by explaining what are the types of quantum channels

under consideration, and we then define the notions of average fidelity and averaged

channel. Finally, we give a simple expression for calculating the average fidelity.

We start with some definitions. In this work, Pn denotes the n-qubit Pauli group

Pn :=

{
n⊗
j=1

Pj | Pj ∈ {I, X, Y, Z}

}
, (5.1)

where I, X, Y and Z are the usual single qubit Pauli matrices. Also, the weight of an

operator P ∈ Pn is denoted wt(P ) and is defined as the number of non identity terms

in its tensor product form, e.g. wt(I ⊗ X) = 1. Finally, the quantum channels under

consideration in this work will be completely positive maps of the form

Λ(ρ) =
∑

Pi,Pj∈Pn

[χ]ijPiρPj, (5.2)

where ρ is a density matrix, and χ is a matrix of dimension 4n × 4n with tr(χ) = 1,

[χ]ii ≥ 0, and [χ]ij = [χ]ji
∗. By convention, we will always have P0 := I⊗n. Also, quantum

channels with a diagonal χ matrix will be called Pauli channels.

We now introduce the concept of average fidelity. First, the gate fidelity between two

superoperators U and Ũ with respect to a state |ψ〉 is defined as

F|ψ〉(U , Ũ) = 〈ψ|U † ◦ Ũ(|ψ〉〈ψ|)|ψ〉. (5.3)

To get an expression independent of |ψ〉, we average over a unitarily invariant distribution

of pure states to obtain the average fidelity between U and Ũ

F̄ (U , Ũ) =

∫
dµ(ψ)〈ψ|U † ◦ Ũ(|ψ〉〈ψ|)|ψ〉, (5.4)

where dµ(ψ) is the unitarily invariant distribution of pure states known as the Fubini-Study

measure [63]. We are interested in the noisy part of Ũ , so we define

Ũ = Λ ◦ U , (5.5)

where Λ is the channel representing the undesired part of the evolution. It follows that

F̄ (U , Ũ) =

∫
dµ(ψ)〈ψ|U † ◦ Λ ◦ U(|ψ〉〈ψ|)|ψ〉 =

∫
dµ(ψ)〈ψ|Λ(|ψ〉〈ψ|)|ψ〉, (5.6)
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where the last equality is due to the fact that dµ(ψ) is unitarily invariant. We see that the

average fidelity depends only on the error channel Λ, i.e. F̄ (U , Ũ) = F̄ (Λ). Also, a random

state can be generated from a fixed state by applying a random unitary. Thus, we can

equivalently average over a distribution of random unitaries invariant under conjugation

F̄ (Λ) =

∫
dµ(V )〈ψ|V† ◦ Λ ◦ V(|ψ〉〈ψ|)|ψ〉, (5.7)

where dµ(V ) is a unitarily invariant distribution of random unitaries known as the Haar

measure [63]. Defining the averaged channel as

Λ̄ =

∫
dµ(V )V† ◦ Λ ◦ V , (5.8)

one can see that the average fidelity of Λ is in fact the gate fidelity of Λ̄ with respect to

the identity operation. The channel Λ̄ is also known as the Haar twirl of Λ.

It is possible to obtain an analytical expression for the average gate fidelity. The starting

point is to find a set of unitary gates {Vi} and a probability distribution Pr(Vi) such that

F̄ (Λ) =

∫
dµ(V )〈ψ|V† ◦ Λ ◦ V(|ψ〉〈ψ|)|ψ〉 =

∑
i

Pr(Vi)〈ψ|V†i ◦ Λ ◦ Vi(|ψ〉〈ψ|)|ψ〉. (5.9)

Such mathematical objects are called unitary 2-designs, and one example of them is the

n-qubit Clifford group Cn [64]. In other words, averaging over Cn and averaging over the

Haar measure lead to the same average fidelity. When we average a channel Λ over the

Clifford group Cn, it can be shown that the averaged channel, denoted Λ̄Cn , acts as [65]

Λ̄Cn(|ψ〉〈ψ|) = p|ψ〉〈ψ|+ (1− p)I
⊗n

2n
, (5.10)

where p = 4n[χ]00−1
4n−1

. Calculating the gate fidelity of Λ̄Cn with respect to the identity

operator, we find that the average fidelity of Λ is given by [65]

F̄ (Λ) =
2n[χ]00 + 1

2n + 1
. (5.11)

Therefore, an estimate of the average fidelity can be obtained by measuring [χ]00.

In this section, we have presented the concepts of average fidelity and averaged channel.

We also showed that by averaging over the n-qubit Clifford group, we can obtain a simple

formula for calculating the average fidelity. According to this formula, in order to estimate

the average fidelity of some quantum channel, we need to estimate [χ]00. How can we

measure [χ]00 is practice? This is the topic of the next section, where we will show that

this can be achieved via a technique known as twirling.
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5.2 Twirling protocol

In this section, we present the twirling protocol introduced by O. Moussa [66], and we

show how it allows us to estimate the average fidelity of Clifford gates. We first introduce

a new group of unitary gates, denoted C1Π. Then, we average an error channel Λ over this

group, and we show that [χ]00 can be written as a linear combination of the eigenvalues

of the averaged channel Λ̄C1Π. Finally, we show precisely how these eigenvalues can be

measured experimentally for NMR systems in particular.

The group C1Π is defined as the composition of Πn and C⊗n1 , where Πn is the group

of permutation of n qubits and C⊗n1 is the n fold tensor product of the 1-qubit Clifford

group. The C1Π twirl of a channel Λ is denoted Λ̄C1Π, and is defined as

Λ̄C1Π =
1

|C1Π|
∑
Vi∈C1Π

Vi† ◦ Λ ◦ Vi. (5.12)

It can be seen that twirling over C1Π transforms Λ into a Pauli channel with error

probabilities depending only on the weight of the error. In fact, it can be shown that [65]

Λ̄C1Π(ρ) =
n∑

ω=0

Pr(ω)Mp
ω(ρ), (5.13)

where Pr(ω), the probability that a Pauli error of weight ω occurs, and Mp
ω are given by

Pr(ω) =
∑

wt(Pi∈Pn)=ω

[χ]ii, Mp
ω(ρ) =

1

3ω
(
n
ω

) ∑
wt(Pi∈Pn)=ω

PiρPi. (5.14)

In particular, we have Pr(0) = [χ]00. We see from Eq.(5.11) that we only need to measure

the probability of no error Pr(0) in order to get an estimate of the average fidelity.

The problem of measuring the average fidelity has been translated into the problem of

measuring the probability of no error. How do we measure Pr(0) in practice? First, we

have to make the observation that the elements of Pn are eigenoperators of Λ̄C1Π. This

can be understood from Eq.(5.14) and the fact that Pauli operators either commute or

anti-commute with each other. In fact, it can be demonstrated that [65]

Λ̄C1Π(P ) = λωP, where P ∈ Pn and ω = wt(P ). (5.15)

The eigenvalues {λω} are real numbers in the interval [−1, 1] and depend only on the

weight of their associated Pauli operator [65]. By default, we have λ0 = 1. It can be

42



demonstrated that the relationship between the {λω} and the {Pr(ω)} is [65]

λω =
n∑

ω′=0

[Ω]ω,ω′Pr(ω′), Pr(ω) =
n∑

ω′=0

[Ω−1]ω,ω′λω′ , (5.16)

where the matrices Ω and Ω−1 are given by [65]

[Ω]ω,ω′ =

[
n∑

L=0

(
n−ω
ω′−L

)(
ω
L

)(
n
ω′

) 3L + (−1)L

3L

]
− 1 (5.17)

[
Ω−1

]
ω,ω′

=
3ω+ω′

(
n
ω

)(
n
ω′

)
4n

[Ω]ω,ω′ . (5.18)

In particular, for Pr(0), this implies that

Pr(0) =
n∑

ω=0

3ω
(
n
ω

)
4n

λω. (5.19)

The problem of measuring the average fidelity has been translated into the problem of

measuring the eigenvalues {λω} of the twirled channel Λ̄C1Π. How can this be achieved? If

we would have access to the twirled channel Λ̄C1Π, then we could measure the eigenvalues

by doing n different experiments, each using one of the following n input state’s deviations

ρω = Z⊗ωI⊗n−ω, ω ∈ {1, . . . , n}. (5.20)

In each experiment, we would send the input state through the averaged channel and

then measure its expectation value, i.e. its projection onto itself, to get the corresponding

eigenvalue. Obviously we do not actually have access the averaged channel, rather we only

have access to the original channel Λ. Let’s look at the expression of a specific λω, and let

wt(P ) = ω. Remembering that the definition of Λ̄C1Π is given by Eq.(5.12), it follows that

λω =
1

2n
tr
(
P Λ̄C1Π(P )

)
=

1

2n|C1Π|
∑
vi∈C1Π

tr
(
Pvi

†Λ(viPvi
†)vi
)

=
1

2n|C1Π|
∑
vi∈C1Π

tr
(
Λ(viPvi

†)viPvi
†)

=
1

2n3ω
(
n
ω

) ∑
wt(Pi∈Pn)=ω

tr (Λ(Pi)Pi) . (5.21)

where the last line follows from the fact that there are only 3ω
(
n
ω

)
different values of

Pi = viPvi
† for vi ∈ C1Π. We see that λω is the average of a uniformly distributed random

variable Tω that can take any of the 3ω
(
n
ω

)
values in the set

Tω = {ti | ti = 1
2n

tr (Λ(Pi)Pi) , Pi ∈ Pn, wt(Pi) = ω}. (5.22)
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The problem of measuring λω has been translated into the problem of measuring the

elements of Tω. We now present the experimental procedure to achieve this. Let’s consider

an n-qubit system, and assume that the available initial states are those in the set

D = {πkZ⊗ωI⊗n−ωπk†| ω ∈ {1, . . . , n}, πk ∈ Πn}, (5.23)

where Πn is the group of permutation of n qubits. In other words, we can start the

experiment with any state in the set D. In addition, we will assume that only single-spin

π/2 rotations are available. Now, let’s say that we want to measure ti = 1
2n

tr (Λ(Pi)Pi),

where Pi ∈ Pn and wt(Pi) = ω. We proceed as follows: we start with the operator P ∈ D
that has weight ω and that has its identity terms at the same positions than the identity

terms of Pi. For example, if Pi = XIIY , then we would start with P = ZIIZ. Next,

we find the sequence of single-spin π/2 rotations, here we denote this sequence by vi,

such that Pi = viPvi
†. Finally, we measure the expectation value of Pi. The circuit

summarizing this protocol is illustrated below in Figure 5.1

Figure 5.1: Circuit to measure ti = 1
2n

tr (Λ(Pi)Pi), where Pi ∈ Pn such that wt(Pi) = ω.

Here, P ∈ D has weight ω and, in the tensor product form, its identity terms are at the

same positions than the identity terms of Pi. The operator vi represents a sequence of

single-spin π/2 such that Pi = viPvi
†.

In the scheme presented above, it is implied that Λ is the error associated to an

experimental implementation of the identity gate. However, as it is shown in [66], this

scheme can be extended to the case for which the gate to be certified is an element of

the Clifford group. This can easily be understood. Let Λ be the error associated to some

unitary gate U , and let’s assume that we only have access to the imperfect implementation

of U . For the following scheme to work, we will see that U has to be an element of

the Clifford group, and that its imperfect implementation can be written in the form

Ũ = U ◦ Λ. Then, by inserting the identity gate as U † ◦ U in the circuit of Figure 5.1, it

can be seen that this circuit can be written as in Figure 5.2.

Figure 5.2: Modification of the circuit of Figure 5.1 by inserting the identity gate as U † ◦U ,

where U is a Clifford and Ũ = Λ ◦ U is its faulty implementation. The measurement

Mi = U(Pi) is also a Pauli operator. This circuit is equivalent to that of Figure 5.1.
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In the context of NMR implementations, the circuit of Figure 5.2 needs to be slightly

modified in order to account for the fact that we can’t measure operators that do not

correspond to (-1)-coherences. In other words, it won’t always be possible to directly

perform the measurement in Figure 5.2. However, there is a workaround using readout

pulses. Let’s say that a Pauli operator Mi can’t be directly observed. Then, we can still

apply a readout pulse R and then measure a different operator Oi = RMiR
†, where R

is chosen so that Oi can be observed in a NMR experiment. Due to the fact that Mi

is a Pauli operator, single-spin π/2 rotations are sufficient to map Mi to another Pauli

operator that can be observed. Thus, R is a sequence of single-spin π/2 rotations and Oi

is a Pauli operator. The above explanation is summarized in Figure 5.3

Figure 5.3: Here, Mi ∈ Pn is an operator that can’t be observed directly in an NMR

experiment. However, we can find a sequence R of single-spin π/2 rotations so that the

Pauli operator Oi = RMiR
† can be directly observed in an NMR experiment.

To account for this experimental constraint, we have to modify the circuit of Figure 5.2.

The corrected circuit uses readout pulses and is illustrated in Figure 5.4.

Figure 5.4: Modification of the circuit of Figure 5.2 using a readout pulse R consisting of

single-spin π/2 rotations, and such that the Pauli operator Oi = RMiR
† can be directly

measured in the context of an NMR implementation.

Thus, by repeating the experiment of Figure 5.4 with different vi, we can measure each of

the elements of the set Tω, and thus estimate the eigenvalue λω. Repeating this procedure

for all eigenvalues, we can then calculate the probability of no error with Eq.(5.19). Given

that Pr(0) = [χ]00, we can then calculate the average fidelity using Eq.(5.11).

In this section, we have presented a twirling protocol to estimate the average fidelity of

Clifford gates. Although in practice we only have access to noisy measurements, repetitions

can be used to decrease the noise. Therefore, in the following sections we won’t consider

the presence of noise in the measurements. How many elements of Tω do we need to

measure in order to estimate λω to some desired accuracy? Two approaches will be

explored in order to answer this question. The first one uses an analytical result known

as the Hoeffding’s inequality. The second approach uses Monte Carlo simulations.
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5.3 Statistical analysis

In the previous section, we have shown that the average fidelity of Clifford gates can be

estimated by measuring the eigenvalues of the C1Π twirled channel. We also showed that

each of these eigenvalues can be written down as the statistical mean of a set of measured

expectation values. In principle, measuring all of these expectation values is unnecessary

if one only desires to approximate the mean. How many of these expectation values do we

need to measure in order to reach a desired accuracy? This is the question addressed in

the section. We will follow the work of J. Emerson et al. [67] and use two known results

in probability and statistics: the Hoeffding’s inequality, and the union bound.

The Hoeffding’s inequality [68] is a general result in probability and statistics that we

are going to use in this section. It states that if x1, . . . , xN are independent realizations of

a random variable X, confined to the interval [a, b] and with statistical mean E(X) = µ,

then for any δ > 0 we have

Pr(|X̄ − µ| > δ) ≤ 2e−2δ2N/(b−a)2 , (5.24)

where X̄ = 1
N

∑N
i=1 xi is the estimator of the exact mean µ, and where Pr(E) denotes

the probability of event E . In other words, the Hoeffding’s inequality provides an upper

bound to the probability that the estimated mean is off by a value greater than δ.

We now apply Hoeffding’s inequality to the random variable Tω, which was defined in

the previous section as a uniformly distributed random variable that can take any of the

3ω
(
n
ω

)
values in the set

Tω = {ti | ti = 1
2n

tr (Λ(Pi)Pi) , Pi ∈ Pn, wt(Pi) = ω}.

We see that Tω is bounded to the interval [−1, 1]. Our goal to estimated the mean

E(Tω) = λω. Let t1, . . . , tkω be independent realizations of Tω. The estimator of λω is

hence λ̃ω = 1
kω

∑kω
i=1 ti, and from Hoeffding’s inequality it follows that for any δ > 0,

PrEω := Pr
(
|λ̃ω − λω| > δ

)
≤ 2e−δ

2kω/2. (5.25)

By taking the natural logarithm of each side of this inequality, we see that the number of

realizations required to estimate λω to precision δ with constant probability obeys

kω ≤
2 ln(2/PrEω)

δ2
. (5.26)

This upper bound is sufficient if we want to estimate a single eigenvalue λω. We next use

the union bound to extend this result to the estimation of the complete set {λ1, . . . , λn}.
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The union bound [68] is a general result in probability and statistics that applies for an

arbitrary set of possible events {E1, . . . , En}. Let PrEω denote the probability that event

Eω happens, and let Pr∨Eω denote the probability that at least one of the possible events

happens. Then, the union bound states that

Pr∨Eω ≤
n∑

ω=1

PrEω . (5.27)

We now apply this result to our particular problem, in which case Eω denotes the

event |λ̃ω − λω| > δ. In other words, Eω is the event that λ̃ω is outside of the precision δ.

Similarly, ∨Eω denotes the event that at least one element of {λ̃1, . . . , λ̃n} is outside of

the precision δ. Applying the union bound and using Eq.(5.25), it follows that

Pr∨Eω ≤ 2
n∑

ω=1

e−δ
2kω/2. (5.28)

If we make the assumption that k1 = k2 = · · · = kn, then it follows that

Pr∨Eω ≤ 2n e−δ
2kω/2. (5.29)

Then again, taking the natural logarithm of each side, we find that

kω ≤
2 ln(2n/Pr∨Eω)

δ2
. (5.30)

The previous result is an upper bound to the number of independent realizations that

are required for estimating each element of the set {λ1, . . . , λn} to precision within δ with

constant probability. We now discuss the practical limitations of this result.

The problem with the approach presented in this section is that it is useful only when n

is large enough. This is due to the fact that this approach works for any random variable

confined to [−1, 1], i.e. the approach is very general. For our particular problem, the set

Tω has 3ω
(
n
ω

)
elements. Therefore, if the upper bound on kω is bigger than

Kω = 3ω
(
n

ω

)
, (5.31)

then the results obtained in this section are useless from a practical point of view.

In this section, we have shown how Hoeffding’s inequality and the union bound can

be used to derive an upper bound on the number of measurements required to estimate

the eigenvalues of a twirled channel. We have also shown that this upper bound is an

asymptotical result that is useful only when the number of qubits n is large enough. In

the next section, we will explore an alternate approach based on Monte Carlo simulations.
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5.4 Monte Carlo simulations

We have seen that the average fidelity of a quantum channel Λ can be obtained from

the eigenvalues {λ0, . . . , λn} of its twirled channel Λ̄C1Π. By default we have λ0 = 1, but

we still need to measure the n remaining eigenvalues. In this section we explore how

Monte Carlo simulations can help us understand how many measurements we need to

do to approximate these eigenvalues. We explore two noisy channel models and study

their statistical properties numerically and analytically. We show that there is a relation

between the number of measurements required and the spread in the elements of the χ

matrix of the channel. Using this relation, we numerically study worst case scenarios.

Let’s first remind us of the problem that we are interested to solve here. As we have

see in section 5.2, the eigenvalues of the twirled channel Λ̄C1Π can be written as

λω =
1

3ω
(
n
ω

) ∑
wt(Pi∈Pn)=ω

ti, where ti = 1
2n

tr (Λ(Pi)Pi) .

The terms {ti} can be measured experimentally, but measuring all of them is unnecessary

if one only desires to obtain a reasonable approximation. How many of these ti do we need

to measure in order to get a good estimate of λω? In the previous section, we saw that

Hoeffding’s inequality can be applied to this problem, but only to derive an asymptotical

result that is useful when the number n of qubits is large enough. Here, we study an

alternate approach, based on Monte Carlo simulations, that aims to estimate the standard

error in the estimator of λω as a function of the number of measurements.

Let us first discuss the notation that we will use in the rest of this section. As the

reader already knowns, in probability theory, the average, the variance and the standard

deviation of a random variable X are usually denoted respectively by E[X], Var(X)

and Std(X). Here, we will extend this notation to deterministic sets and vectors. Let

S = {s1, s2, . . . , sN} be a set with deterministic elements, and let v = (v1, v2, . . . , vM)>

be a vector with deterministic components. Then, we have the following notation rules

ES[S] =
1

N

N∑
i=1

si, EV [v] =
1

M

M∑
i=1

vi,

VarS(S) =
1

N

N∑
i=1

s2
i − ES[S]2, VarV (v) =

1

M

M∑
i=1

v2
i − EV [v]2,

StdS(S) =
√

VarS(S), StdV (v) =
√

VarV (v).

The reason for this notation is that we will often store the possible outcomes of uniformly

distributed random variables into sets or vectors. Thus, this notation provides a shortcut

when we want to denote statistical properties of such random variables.
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We now return to the problem of estimating an eigenvalue λω of the twirled channel.

The set of all possible measurements for a given λω is

Tω = {ti | ti = 1
2n

tr (Λ(Pi)Pi) , Pi ∈ Pn, wt(Pi) = ω}.

In section 5.2, we have shown that ES[Tω] = λω. Now let’s choose at random kω different

elements of this set. In other words, we choose a random subset I ⊂ Tω such that |I| = kω.

The average value ES[I] of this subset is a realization of the estimator of λω. The estimator

of λω is denoted λ̃ω and is itself a random variable, meaning that if we repeat the process

of choosing a random subset of Tω and take its average value, then for kω small enough

we will most likely get a different value than the one previously obtained. Obviously, we

have E[λ̃ω] = λω for any value of kω, and here we are interested in the uncertainty in the

estimator as a function of kω. Specifically, we will study the standard deviation of λ̃ω as a

function of kω. Of course, without the ability to make educated assumptions about the

specific quantum channel to be certified, the best we can do is to study a large number

of randomly chosen channels. Here, we will consider Pauli channels with average fidelity

F̄ ∈ [0.7, 1], and we will later show why this analysis should be sufficient. In the following,

we describe a first approach to generate such random Pauli channels.

Many algorithms for generating quantum channels could have been explored, and many

types of channels with different properties could have been studied. The goal here is to

show how the general procedure works, and propose models that are relevant. In the

following, we present one way of generating random Pauli channels with desired average

fidelity. The first step in generating a random Pauli channel is to choose uniformly at

random its average fidelity F̄ in the interval [0.7, 1], and then calculate the probability of

no error as Pr(0) = (2n+1)F̄−1
2n

. Next, we choose the other probabilities {Pr(1), . . . ,Pr(n)}
uniformly at random in the interval [0, 1], and then divide them by a same constant such

that they sum up to 1− Pr(0). Then, we have to generate the elements of the χ matrix,

which is a diagonal matrix since we consider Pauli channels. We have already shown that

the relationship between the elements of χ and the probabilities of errors is given by

Pr(ω) =
∑

wt(Pi∈Pn)=ω

[χ]ii.

In particular, this implies that [χ]00 = Pr(0). The strategy to choose the remaining entries

of χ is again to generate random sets with elements in [0, 1] and then normalize them so

that they sum up to their corresponding Pr(ω). In summary, the idea is to start from the

average fidelity of the channel, then choose randomly the elements of {Pr(1), . . . ,Pr(n)},
and finally choose randomly the entries of the χ matrix. This method for generating

random Pauli channels is summarized in the pseudo-code below.
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1 Choose F̄ uniformly at random in [0.7, 1]

2 Compute Pr(0) = (2n+1)F̄−1
2n

3 Choose the elements of {Pr(ω)|ω = 1, . . . , n} uniformly at random in [0, 1]

4 Divide them by a same constant s.t.
n∑

ω=1

Pr(ω) = 1− Pr(0)

5 for ω = 0 : n do
Choose the {[χ]ii | wt(Pi ∈ Pn) = ω} uniformly at random in [0, 1]

Divide them by a same constant s.t.
∑

wt(Pi∈Pn)=ω

[χ]ii = Pr(ω)

end

Algorithm 3: Pseudo-code to generate a random Pauli channel with 0.7 ≤ F̄ ≤ 1.

We now describe how we study the standard deviation of the estimator λ̃ω as a function

of the number of measurements kω. The first step is to generate a random Pauli channel

using the algorithm described above. Then, for each value of ω ∈ {1, . . . , n}, we compute

the standard deviation of the estimator λ̃ω for each value of kω ∈ {1, . . . , 3ω
(
n
ω

)
}. We

repeat the whole process a large number of times and we average over a sufficiently large

number of random Pauli channels. The details of the algorithm are summarized in the

pseudo-code below. The output is the standard deviation of the estimator λ̃ω as a function

of the number of measurements kω. The standard deviation is averaged over a large

number of random Pauli channels, and is thus denoted Std.

1 Generate a random Pauli channel Λ

2 for ω = 1 : n do

Compute the set Tω = {ti | ti = 1
2n

tr (Λ(Pi)Pi) , Pi ∈ Pn, wt(Pi) = ω}

for kω = 1 : 3ω
(
n
ω

)
do

for j = 1 : N do

Choose a subset I ⊂ Tω at random and s.t. |I| = kω

Compute ES[I] and store this value at position j in vector λ̃ω
end

Compute StdV (λ̃ω) and store this value at position kω in vector stdω
end

end

3 Repeat a large number of times and average over all random Pauli channels

Algorithm 4: Monte Carlo algorithm for estimating the standard deviation of the

estimator λ̃ω as a function of the number of measurements kω. Here, N is a number

sufficiently large. The standard deviation is averaged over a large number of channels.

50



We performed this Monte Carlo simulation considering n = 4 qubits and taking the

average over 300 random Pauli channels. The results are given in Figure 5.5. We see

that the standard deviation is quite small even for small values of kω. This is intuitively

due to the variance in the elements of the χ matrix. In fact, we can show that there is a

relationship between the variance of χ and the variance of Tω.
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Figure 5.5: Monte Carlo simulations for n = 4. Each graph corresponds to a specific value

of ω. The y-axis is the average standard deviation of the estimator λ̃ω, and the x-axis is

the number of measurements. The right limit of each graph is Kω. The average is taken

over 300 random Pauli channels with 0.7 ≤ F̄ ≤ 1, and the error bar’s length is twice

the standard deviation over these 300 channels. The average values of λω for these 300

channels from ω = 1 to ω = 4 are 0.858, 0.841, 0.825, and 0.818. The standard error is

very low even for small kω. We did not plot the variance of Pr(0) since it depends on

many parameters, i.e. k1, k2, k3 and k4. From Eq.(5.19), we see that the error bar on

Pr(0) is a linear combination of the error bars from the {λ̃ω}.

We now derive the relationship between the variance in the elements of the χ matrix

and the variance in the elements of Tω = {ti | ti = 1
2n

tr (Λ(Pi)Pi) , Pi ∈ Pn, wt(Pi) = ω}.
For a general channel Λ, we have that

Λ(Pi) =
∑

Pj ,Pk∈Pn

[χ]jkPjPiPk =
∑

Pj ,Pk∈Pn

(−1)cik [χ]jkPjPkPi, (5.32)

where
cik =

{
0 if Pi and Pk commute

1 if Pi and Pk anti-commute.
(5.33)

This is due to the fact that Pauli operators either commute or anti-commute with each

others. From this, it follows that we can write down ti as

ti = 1
2n

tr (Λ(Pi)Pi) =
∑
Pj∈Pn

(−1)cij [χ]jj. (5.34)
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Taking the variance of the set Tω, as described at the beginning of this section, we obtain

VarS(Tω) =
1

3ω
(
n
ω

)
 ∑

wt(Pi∈Pn)=ω

ti
2

− λω2. (5.35)

From the above equation, it seems that we should be looking for an expression for ti
2.

From Eq.(5.34), we obviously have that

ti
2 =

 ∑
Pj∈Pn

(−1)cij [χ]jj

( ∑
Pk∈Pn

(−1)cik [χ]kk

)
=

∑
Pj ,Pk∈Pn

(−1)cij+cik [χ]jj[χ]kk

=
∑
Pj∈Pn

[χ]jj
2 +

∑
Pj ,Pk∈Pn
(Pj 6=Pk)

(−1)cij+cik [χ]jj[χ]kk. (5.36)

Therefore, it follows that

∑
wt(Pi∈Pn)=ω

ti
2 =

∑
wt(Pi∈Pn)=ω

 ∑
Pj∈Pn

[χ]jj
2 +

∑
Pj ,Pk∈Pn
(Pj 6=Pk)

(−1)cij+cik [χ]jj[χ]kk



= 3ω
(
n

ω

) ∑
Pj∈Pn

[χ]jj
2 +

∑
wt(Pi∈Pn)=ω

 ∑
Pj ,Pk∈Pn
(Pj 6=Pk)

(−1)cij+cik [χ]jj[χ]kk


≈ 3ω

(
n

ω

) ∑
Pj∈Pn

[χ]jj
2, (5.37)

where the last line follows from the fact that the second term is very small (typically less

than 2% of the full value), and can thus be neglected to a very good approximation. From

Eq.(5.35), it follows that the variance in the elements of Tω is given by

VarS(Tω) ≈

 ∑
Pj∈Pn

[χ]jj
2

− λω2. (5.38)

Now, let χdiag denote the vector containing the diagonal entries of the χ matrix. Given

that χ has dimensions 4n × 4n and that tr(χ) = 1, it follows that the variance of χdiag is

VarV (χdiag) =
1

4n

 ∑
Pj∈Pn

[χ]jj
2

− ( 1

4n

)2

. (5.39)
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We see that for a fixed value of λω, the variance of Tω increases as the variance in the

diagonal entries of χ increases. For a given set of probabilities {Pr(ω)}, the variance of

Tω is therefore maximized by choosing the matrix χ such that its diagonal entries have

maximal variance. This is done by choosing that only n + 1 entries of the diagonal of

χ are non zero with value equal to one of the elements of {Pr(ω)}. We can now start

to think about studying some kind of worst case scenario. Namely, we will still consider

random Pauli channels with 0.7 ≤ F̄ ≤ 1, but the elements of the χ matrix will now

be chosen randomly with the constraint that they must maximize the variance of their

distribution. According to our proof, this ensures that the elements of Tω will also have

a maximized variance. Moreover, as we have shown above, for a fixed λω we have that

Var(Tω) depends mainly on the variance in the diagonal entries of the χ matrix. This

implies that considering Pauli channels is sufficient. Hence, the Monte Carlo simulation

will effectively correspond to a worst case scenario, even if we only consider Pauli channels.

This method to generate random Pauli channels is summarized in the pseudo-code below.

1 Choose F̄ uniformly at random in [0.7, 1]

2 Compute Pr(0) = (2n+1)F̄−1
2n

3 Choose the elements of {Pr(ω)|ω = 1, . . . , n} uniformly at random in [0, 1]

4 Divide them by a same constant s.t.
∑n

ω=1 Pr(ω) = 1− Pr(0)

5 for ω = 0 : n do

Set i by randomly picking one element of the set {i | wt (Pi ∈ Pn) = ω}

Set [χ]ii = Pr(ω)

end

Algorithm 5: Pseudo-code to generate a random Pauli channel with 0.7 ≤ F̄ ≤ 1 and

maximized variance. Only n+ 1 entries of χ are non zero.

We perform the Monte Carlo simulations again, but now using the above algorithm

to generate the random Pauli channels, so as to maximize the variance of the estimator

λ̃ω. Again, we choose the same threshold for the average fidelity and we average over 300

random Pauli channels. The results for n = 4 qubits are given in Figure 5.6. Although

the standard error is increased roughly an order of magnitude with respect to the previous

simulations, only half of the total number of measurements seems to be required in order

to have an average standard error less than 0.02. Thus, doing half of the experiments

should be enough to have at least this kind of statistical accuracy, since this analysis with

Pauli channels can be applied to our particular channel to be certified in experiment as

we have demonstrated above. In fact, the standard error can be used as the error bar

since λ̃ω is Gaussian distributed, as it can be observed from Figure 5.7.
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Figure 5.6: Results of the “worst case” Monte Carlo simulations for n = 4. Each graph

corresponds to a specific ω. The y-axis is the average standard deviation of the estimator

λ̃ω, and the x-axis is the number of measurements. The right limit of each graph is Kω.

The average is taken over 300 random Pauli channels with 0.7 ≤ F̄ ≤ 1 and such that the

elements of χ have maximal variance. The average values of λω for these 300 channels

from ω = 1 to ω = 4 are 0.864, 0.850, 0.835, and 0.828. The standard error is increased

roughly by an order of magnitude compared to Figure 5.5.
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Figure 5.7: Histogram for the distribution of the estimator λ̃ω for a 4-qubit random Pauli

channel, fitted to a Gaussian distribution. The parameters are kω = 50 and ω = 3. The

random Pauli channel is generated using (Left) Algorithm 3, and (Right) Algorithm 5.

The two means are different since the two histograms are generated independently.

The histograms displayed in Figure 5.7 give the frequency distribution of the estimator

λ̃3 with k3 = 50 for some 4-qubit random Pauli channel. The results are given for a

random channel generated using Algorithm 3, and also using Algorithm 5. The two

distributions fit well to a Gaussian distribution. Therefore, we could use the confidence

interval for Gaussian distributions as the statistical error bar for λ̃ω.
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We now discuss an other important observation to be made from Eq.(5.38). In fact, it

can be seen from this expression that the variance in the elements of Tω should be smaller

for large values of λω. From Eq.(5.16), it can be seen that we have

λω = Pr(0) +
n∑

ω′=1

[Ω]ω,ω′Pr(ω′), where |[Ω]ω,ω′| ≤ 1. (5.40)

It thus follows that as the average fidelity approaches 1, Pr(ω > 0) approaches 0 and λω

therefore approaches 1 as well. From Eq.(5.38) we conclude that as the average fidelity

approaches 1, the variance in the elements of Tω approaches zero. From this observation,

we conclude that for channels with an average fidelity that is expected to be high, less

measurements should be required. In fact, we can prove and illustrate this point by

deriving an upper bound for the variance in Tω as a function of the average fidelity.

First, let’s derive a lower bound for λω using Eq.(5.40). We can achieve this by letting

[Ω]ω,ω′ = −1, even though this is not actually true, it does allow us to derive a valid lower

bound for λω. Using the fact that
∑n

ω′=1 Pr(ω′) = 1− Pr(0), we find that

λω ≥ Pr(0)− (1− Pr(0)) = 2 Pr(0)− 1 (5.41)

Next, we focus on deriving an upper bound for the term
∑

j [χ]jj
2. Using the convention

that [χ]00 = Pr(0), it follows that the first term in the summation is Pr(0)2. One can

easily understand that the case that maximizes
∑

j [χ]jj
2 is when there is only one other

term that is nonzero. This term must then be equal to (1− Pr(0))2. Thus, we conclude

that a valid upper bound for
∑

j [χ]jj
2 is∑

j

[χ]jj
2 ≤ Pr(0)2 + (1− Pr(0))2 = 2 Pr(0)2 − 2 Pr(0) + 1. (5.42)

We now have all the pieces that we need to formulate an upper bound for VarS(Tω). In

fact, assuming the approximation in Eq.(5.37), and using Eq.(5.38) together with the

lower bound (5.41) and the upper bound (5.42), we find this upper bound for VarS(Tω)

VarS(Tω) ≤ (2 Pr(0)2 − 2 Pr(0) + 1)− (2 Pr(0)− 1)

⇒ VarS(Tω) ≤ 2 Pr(0)2 − 4 Pr(0) + 2

⇒ VarS(Tω) ≤ 2(Pr(0)− 1)2

⇒ StdS(Tω) ≤
√

2|Pr(0)− 1|. (5.43)

Now, using the expression Pr(0) = (2n+1)F̄−1
2n

, we can plot this upper bound as a function

of F̄ , so as to verify if the standard deviation is bounded above by lower values as F̄

increases. The results for n = 3, n = 4 and n = 6, are illustrated in Figure 5.8.
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Figure 5.8: Upper bound for the standard deviation of Tω as a function of the average

fidelity, assuming the approximation in Eq.(5.37). We see that for F̄ = 1, the upper bound

is at zero, which is a very sensible result. Thus, less experiments should be required for

channels with expected high fidelities. As the average fidelity decreases, the upper bound

increases following a straight line. The results are given for n = 3, n = 4 and n = 6 qubits.

The graph of Figure 5.8 illustrates perfectly that the standard deviation in the elements

of Tω is bounded above by smaller values when the average fidelity is higher, demonstrating

that in principle less experiments are required to reach the same statistical accuracy when

the average fidelity of the channel is expected to be high. Now wether or not we do have

access to this kind of information in reality is a different question.

In this section we have explored how Monte Carlo simulations can help us to estimate

how many experiments we need to do in order to approximate the eigenvalues of a twirled

channel Λ̄C1Π. We considered random Pauli channels with average fidelity 0.7 ≤ F̄ ≤ 1,

but other models could have been explored. The choice of these bounds for the average

fidelity is justified by the assumption that the average fidelity of the channel to be certified

is expected to be in that range. We derived an equation that shows how the variance in

the elements of Tω is related to the variance in the diagonal entries of the χ matrix. We

then used this relation to define a worst case Monte Carlo method, so as to get an idea of

how many experiments we should do in the worst cases. The purpose of this chapter was

to gain a better understanding of the relation between the χ matrix of the channel Λ to

be certified, and the number of experiments that we should do to reach a desired accuracy.

In practice, it is not necessary to know the number of experimental runs prior to start the

experiment. As we perform the experimental runs we can monitor the variance in the

data, and decides wether or not we need to do more experiments. In the next section, we

will simulate the twirling certification experiment for a 4-qubit system.
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5.5 Results for 2,3-Difluorobenzaldehyde

In this section, we apply the twirling protocol of section 5.2 to the task of certifying

quantum gates implemented with the oriented spin system of 2,3-Difluorobenzaldehyde.

We first consider the 4-qubit proton subsystem of the molecule, and simulate a twirling

certification experiment using actual GRAPE pulses, the goal here being to study what

happens when the single-spin π/2 rotations used for preparation and readout are imperfect.

Then, we consider the 2-qubit fluorine subsystem, and perform the twirling protocol

experimentally to certify the implementation of a controlled-NOT (C-NOT) gate.

5.5.1 Simulations for the proton subsystem

In section 5.4, we used Monte Carlo simulations to study the statistical accuracy of the

twirling protocol assuming that we had perfect single-spin π/2 rotations and perfect mea-

surements. Here, we now simulate the single-spin π/2 rotations using the actual GRAPE

pulses found in section 4.2.2 for the 4-qubit proton subsystem of 2,3-Difluorobenzaldehyde.

We start by capturing the effect of the imperfect single-spin π/2 rotations by certifying

the do nothing operation. Then, we simulate a certification experiment for a Clifford gate

that is also simulated from a GRAPE pulse sequence. The experiments simulated in this

section were not performed due to the lack of equipment discussed in section 4.2.2.

The first certification experiment is more of a calibration procedure that aims to capture

the errors in preparation and readout. It is equivalent to certify the do nothing operation,

which is a perfect implementation of the identity gate. The form of the circuit describing

each experimental run is illustrated in Figure 5.4 where Ũ = I⊗4. In practice, each

measurement’s value is obtained directly by projecting the simulated final state on the

appropriate Pauli operator, rather than by fitting the simulated spectrum. There is a

total of 255 experiments that could be simulated. We first start by studying the standard

deviation of each estimator λ̃ω as a function of the ratio kω/Kω, were kω and Kω are

respectively the actual and maximum number of simulated experiments for a specific

value of ω. The results are presented in Table 5.1, where the standard deviation of λ̃ω

is denoted σλ̃ω . We see that the standard deviations are quite small, which should be

expected since we are certifying a perfect implementation of the identity gate. However,

the average fidelity obtained is less than 1 as we discuss next.

Having performed the simulations, we now compute the probability of no error Pr(0)

and the average fidelity F̄ . Here, we use all possible experimental runs, i.e. kω = Kω.

We obtain λ1 = 0.987, λ2 = 0.980, λ3 = 0.958, and λ4 = 0.947. Of course, if we would

have used perfect single-spin π/2 rotations, then each eigenvalue would have been equal

to 1. Here, we see that λ1 > λ2 > λ3 > λ4. This is in fact expected since the number
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of single-spin π/2 rotations required is in general greater for larger values of ω. Using

Eq.(5.19), we obtain Pr(0) = 0.960. Finally, we use Eq.(5.11) with [χ]00 = Pr(0) to obtain

F̄ = 0.962. Next, we certify a Clifford unitary and we will use the average fidelity of the

calibration procedure to rescale the measured average fidelity of the Clifford.

kω/Kω σλ̃1 σλ̃2 σλ̃3 σλ̃4
10−3 10−3 10−3 10−3

1/6 1.225 3.985 4.912 5.724
1/3 0.791 2.578 3.098 3.672
1/2 0.571 1.828 2.195 2.576
2/3 0.392 1.333 1.579 1.860
5/6 0.239 0.820 0.957 1.112

Table 5.1: Standard deviation of each estimator λ̃ω. Here, kω is the number of experiments

simulated, and Kω, given by Eq.(5.31), is the maximum number of experiments for a partic-

ular value of ω. These results are obtained by simulation of the GRAPE pulses and are for

certifying the do nothing operation in the proton subsystem of 2,3-Difluorobenzaldehyde.

We now simulate the twirling protocol for certifying the Clifford unitary illustrated in

Figure 5.9. There is no specific reason for choosing this particular unitary, other than

the fact that it has recently been proposed for purpose of quantum error correction. The

GRAPE pulse obtained for this unitary has a duration of 8ms and was obtained following

the steps described in section 4.2.2.

Figure 5.9: Quantum circuit for the Clifford unitary certified in simulation with the

4-qubit proton subsystem of 2,3-Difluorobenzaldehyde. Here, H denotes the Hadamard

gate and the other gates are C-NOTs.

Then again, we study the standard deviation of each estimator λ̃ω as a function of the

ratio kω/Kω. The results are presented in Table 5.2. Again, to calculate Pr(0) and F̄ ,

we use all possible experimental runs. We find λ1 = 0.974, λ2 = 0.966, λ3 = 0.956 and

λ4 = 0.945. The probability of no error is thus Pr(0) = 0.956 and the average fidelity is

F̄ = 0.958. Dividing this average fidelity by the one obtained for the calibration procedure,

we obtained the average fidelity of the Clifford gate as F̄c = 0.996.
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kω/Kω σλ̃1 σλ̃2 σλ̃3 σλ̃4
10−3 10−3 10−3 10−3

1/6 13.488 3.851 3.867 3.821
1/3 7.806 2.461 2.383 2.434
1/2 5.767 1.701 1.703 1.776
2/3 4.052 1.228 1.219 1.262
5/6 2.576 0.772 0.786 0.754

Table 5.2: Standard deviation of each estimator λ̃ω. Here, kω is the number of experiments

simulated, and Kω, given by Eq.(5.31), is the maximum number of experiments for a partic-

ular value of ω. These results are obtained by simulation of the GRAPE pulses and are for

certifying the Clifford of Figure 5.9 in the proton subsystem of 2,3-Difluorobenzaldehyde.

Then again, we see in Table 5.2 that the standard deviations are quite small. This can

easily be understood since the pulses used in simulation all have a fidelity of 98%. As we

have shown in section 5.4, a low standard deviation in the estimator λ̃ω is expected for

gates with high average fidelity. For the Clifford gate illustrated in Figure 5.9, the average

fidelity that we obtained in simulation is quite good. This is expected since there are

virtually no implementation errors in simulation. Moreover, the T2 effects are negligible

for the particular simulations that we performed. In other words, the errors come mainly

from the fact that the pulses have a fidelity Φ < 1. Also, due to the fact that T2 errors

are negligible in our simulations, we did not design the sequences with the constraint that

they must all have the same duration. In experiment, when T2 effects are expected to

be comparable to the errors in pulse implementations, we can design identity gates and

use them to make all experimental runs have the same duration. However, as mentioned

above, doing this is not required in our case.

The goal of this section was mainly to study how the twirling protocol works when the

pulses used for preparation and measurements are not perfect. In practice, this implies

that we have to perform a calibration procedure to capture the errors in preparation

and readout. In this section, we have also shown that we can in fact design a twirling

experiment that could be performed in the lab at some point, if the lack of equipment

discussed in section 4.2.2 is solved. In other words, we have the GRAPE pulses required to

implement the experiments presented here, and the software for designing and analyzing

the experiments is also ready. In practice, the design and analysis of the experimental runs

is automated with a MATLAB program. In the next section, we present experimental

results for the certification of a controlled-NOT gate in the 2-qubit fluorine subsystem

of 2,3-Difluorobenzaldehyde. As we will discuss, the results won’t be as good as those

obtained in this section, mainly due to the fact that we don’t use pulse fixing, and that

we are performing experiments rather than simulations.
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5.5.2 Experiments for the fluorine subsystem

We now present experimental results for the fluorine subsystem of 2,3-Difluorobenzaldehyde.

We certify the implementation of a C-NOT gate. Then again, the single-spin π/2 rotations

are obtained with our GRAPE algorithm. We also use our algorithm to design pulses

for double-spin π/2 rotations and for the identity gate as well. All of these pulses have

a duration of 1.2ms and a fidelity of 0.999, averaged over appropriate distributions of

chemical shifts and r.f. fields inhomogeneity. We first use randomized benchmarking [66] to

get an idea of the average error per gate for the single-spin and double-spin π/2 rotations.

We next present the certification results for the calibration procedure and the C-NOT

gate. The measurement values are extracted by fitting the spectra obtained in experiment.

We first use randomized benchmarking [66] to get an idea of the average error per π/2

rotations. These pulses are not expected to have an experimental fidelity close to their

design fidelity since they are implemented without pulse fixing. In this benchmarking

experiment, the average fidelity of random pulse sequences that compose to the identity is

measured for sequences of different lengths. Because of the fast decay in our spin system,

the maximum sequence length that we use is ten. We then fit the average fidelity decay

to F = A0p
m + B0, where m is the sequence length. Given that T1 is expected to be

about 1s in our case, we can assume unital gate errors, and thus that B0 = 1/2 [66]. The

average error per gate is then given by r = 1−p
2

. We perform the experiment for single-

and double-spin π/2 rotations and obtain the results given in Figure 5.10.
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Figure 5.10: Randomized benchmarking of π/2 rotations. Each of the four first data

points is the average fidelity of 4 sequences, and each of the three last data points is the

average fidelity of 10 sequences. We find an average error per gate of 0.052 for pulses

acting on F5, 0.042 for pulses acting F6, and 0.042 for pulses acting on both F5 and F6.
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Here, we do not concern ourself with error bars since the goal is only to get some rough

idea of the error per gate. For our single- and double-spin π/2 rotations, we find an

average error per gate of 0.052 for pulses acting on F5, 0.042 for pulses acting F6, and

0.042 for pulses acting on both F5 and F6. Such large errors might be surprising at first,

because the design fidelity of the pulses is 0.999, but these errors actually reasonable since

the pulses are implemented without pulse fixing. In fact, O. Moussa showed that in a

3-qubit system at solid state, pulse fixing could improve the fidelity very significantly [66].

We now proceed to the calibration step of the twirling certification experiment. This

first step aims to capture the errors in preparation and measurements. It is equivalent to

certify the do nothing operation (i.e. doing nothing for a zero amount of time), which

is a perfect implementation of the identity gate. The circuit for a generic experimental

run is illustrated in Figure 5.11, and the details and experimental results are given in

Table 5.3. The error bar for the measurement values is estimated from simulated spectra

with gaussian noise added to them. In the table, the notation (π/2)uk means that a π/2

rotation is applied to spin k ∈ {1, 2} about the axis u ∈ {±x,±y,±z}. In practice, pulses

such as (π/2)y1(π/2)−x2 are implemented as a single double-spin π/2 rotation, and identity

pulses are used to make all sequences 2.4ms long.

Figure 5.11: Circuit for a generic experimental run for the calibration step. The initial

state is denoted ρ0 and is mapped to some Pauli by the preparation operation Upre. The

readout pulse is denoted Upost and the measurement is denoted M . We choose that the

measurement is equal to the state ρ2, we thus have ρ2 = M . Here, Upre and Upost are

1.2ms long. The details for the specific values for each experiment are given in Table 5.3.

In practice, the initial states are created using the method explained in section 2.6.3.

Using the experimental results of Table 5.3, we calculate that λ1 = 0.787 ± 0.002 and

λ2 = 0.725 ± 0.002. This leads to a probability of no error Pr(0) = 0.766 ± 0.002, and

an average fidelity F̄ = 0.813 ± 0.002. The average fidelity might seem to be too low,

but this is in fact expected. As it was revealed by the randomized benchmarking of π/2

rotations, in the absence of pulse fixing the average error per π/2 rotation is about 4-5%,

explaining the low average fidelity obtained here.
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Experiment # ρ0 Upre ρ1 Upost M t± 0.005

1 IZ (π/2)y2 IX − IX 0.749
2 IZ (π/2)−x2 IY − IY 0.761
3 IZ − IZ (π/2)y2 IX 0.719
4 ZI (π/2)y1 XI − XI 0.866
5 ZI (π/2)−x1 Y I − Y I 0.793
6 ZI − ZI (π/2)y1 XI 0.835
7 ZZ (π/2)y1(π/2)y2 XX (π/2)−y2 XZ 0.785
8 ZZ (π/2)y1(π/2)−x2 XY (π/2)x2 XZ 0.789
9 ZZ (π/2)y1 XZ − XZ 0.849
10 ZZ (π/2)−x1 (π/2)y2 Y X (π/2)x1 ZX 0.672
11 ZZ (π/2)−x1 (π/2)−x2 Y Y (π/2)x1 ZY 0.675
12 ZZ (π/2)−x1 Y Z − Y Z 0.740
13 ZZ (π/2)y2 ZX − ZX 0.667
14 ZZ (π/2)−x2 ZY − ZY 0.681
15 ZZ − ZZ (π/2)−x2 ZY 0.668

Table 5.3: Details for the specific values of Figure 5.11. The notation (π/2)uk means that a

π/2 rotation is applied to spin k ∈ {1, 2} about the axis u ∈ {±x,±y,±z}. Each sequence

is 2.4ms long. Here, t is the experiment result of measuring the operator M .

In Table 5.3, we see that experiments 8 and 10 have quite different measurement values

despite having very similar pulse sequences. The same observation holds for experiments 9

and 13. This might be explained by the imperfection of the decoupling, in which case the

differences are due to the different environments of F5 and F6 (e.g. the coupling between

H1 and F5 is very strong compared to the coupling between H4 and F6).

We now certify the implementation of a C-NOT gate. The circuit for a generic

experimental run is illustrated in Figure 5.12, and the details and experimental results

are given in Table 5.4. Then again, the error bar for the measurements was estimated

from simulated spectra with gaussian noise added to them. Here, we again use identity

pulses to make all sequences the same length, i.e. 3.6ms.

Figure 5.12: Circuit for a generic experimental run for certifying the C-NOT gate. The

initial state is denoted ρ0 and is mapped to some Pauli by the preparation operation Upre.

Then, the C-NOT gate is applied to the state ρ1. The readout pulse is denoted Upost and

the measurement is denoted M . We choose that the measurement is equal to the state ρ2,

we thus have ρ2 = M . Here, Upre, C-NOT and Upost are 1.2ms long.
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Experiment # ρ0 Upre ρ1 ρ2 Upost M t± 0.005

1 IZ (π/2)y2 IX IX − IX 0.654
2 IZ (π/2)−x2 IY ZY − ZY 0.701
3 IZ − IZ ZZ (π/2)y2 ZX 0.637
4 ZI (π/2)y1 XI XX (π/2)−y1 ZX 0.541
5 ZI (π/2)−x1 Y I Y X (π/2)x1 ZX 0.616
6 ZI − ZI ZI (π/2)y1 XI 0.695
7 ZZ (π/2)y1(π/2)y2 XX XI − XI 0.772
8 ZZ (π/2)y1(π/2)−x2 XY Y Z − Y Z 0.756
9 ZZ (π/2)y1 XZ −Y Y (π/2)−x2 Y Z 0.602
10 ZZ (π/2)−x1 (π/2)y2 Y X Y I − Y I 0.598
11 ZZ (π/2)−x1 (π/2)−x2 Y Y −XZ − −XZ 0.786
12 ZZ (π/2)−x1 Y Z XY (π/2)x2 XZ 0.645
13 ZZ (π/2)y2 ZX ZX − ZX 0.528
14 ZZ (π/2)−x2 ZY IY − IY 0.628
15 ZZ − ZZ IZ (π/2)y2 IX 0.629

Table 5.4: Details for the specific values of Figure 5.12. The notation (π/2)uk means that a

π/2 rotation is applied to spin k ∈ {1, 2} about the axis u ∈ {±x,±y,±z}. Each sequence

is 3.6ms long. Here, t is the experiment result of measuring the operator M .

Using the results of Table 5.4, we calculate that λ1 = 0.641±0.002 and λ2 = 0.661±0.002.

This leads to a probability of no error Pr(0) = 0.674 ± 0.002, and an average fidelity

F̄ = 0.740± 0.002. In order to factor away the errors and preparation and measurement,

we can define the calibrated fidelity as F̄c = 0.740/0.813 = 0.910. Here, we must emphasize

that this last step is very tricky. In fact, due to the fact that we do not use pulse fixing,

our π/2 rotations have average errors of about 4-5%. Thus whether or not these errors

are factorable is not an easy question and is beyond the scope of this work. Assuming

that the errors in preparation and measurements can be factored away, then the average

fidelity of the C-NOT gate is about 91%. Then again, this low average fidelity is most

likely explained by the fact that we do not use pulse fixing, due to a lack of equipment.

Let’s now look at the standard deviation of these results. The standard deviation is

0.0589 for the results of experiments 1 - 6 and 0.0898 for the results of experiments 7 - 15.

Assuming random Pauli channels with 0.85 < F̄ < 0.95, basic Monte Carlo simulations,

such as those of Figure 5.5, tell us that the average standard deviation is about 0.02 for

both sets of experiments. On the other hand, worst case Monte Carlo simulations, such

as those in Figure 5.6, tell us that it is about 0.09. Here, a strong experimental standard

deviation is reasonable since we use imperfect gates for preparations and measurements.

Examples of fitted experimental spectra are shown in Figure 5.13.

In this section, we have presented experimental results of certifying the implementation

of a C-NOT gate in the fluorine subsystem of 2,3-Difluorobenzaldehyde. A benchmarking
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experiment was first performed in order to estimate the average error per π/2 rotations,

and found an average error per gate of about 4-5%. This large error per gate is most likely

explained by the fact that we do not use pulse fixing. For the C-NOT gate, assuming that

the errors from preparation and measurements can be factored away, we found an average

fidelity of about 91%. Again, such a result is reasonable since we do not use pulse fixing.

ï2000 ï1000 0 1000 2000 ï3000 ï2000 ï1000 0 1000 2000 3000

Figure 5.13: Fitting (red) of the experimental spectrum (blue) for (Left) experiment #

8 in certifying the identity, and (Right) experiment # 9 in certifying the C-NOT. The

quality of the fitting for these spectra is representative of the fitting for the other spectra.

This concludes this chapter on certification of quantum gates. We have presented the

twirling certification protocol by O. Moussa [66], and explained how it allows us to estimate

the average fidelity of Clifford gates. Next, we presented the usual statistical analysis

to obtain bounds for the accuracy of this method. We also proposed a Monte Carlo

method in order to further investigate the accuracy of twirling experiments. In addition,

we derived analytical formula that relate the statistical accuracy of the twirling protocol

to the variance in the diagonal entries of the χ matrix of the channel to be certified.

We also showed how quantum channels with average fidelities that are expected to be

high will require less experimental runs to reach a same desired statistical accuracy. We

then presented experiments and simulations for certifying the implementation of quantum

gates in the spin system of 2,3-Difluorobenzaldehyde. For the 4-qubit subsystem, we were

not able to perform the experiments due to a lack of experimental equipment. However,

we designed the software to design and analyze such experiments, and performed some

simulations as a demonstration that we should be able to perform such experiments in

practice. For the 2-qubit subsystem, we performed twirling certification experiments, but

without pulse fixing. We obtained an average fidelity of 91% for the implementation of a

controlled-NOT gate. This result could be improved significantly by using pulse fixing.
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Chapter 6

Conclusion

Quantum computers have the potential to revolutionize the world of information processing

by solving some problems more efficiently than their classical counterparts. Quantum

algorithms can however be quite challenging to implement in practice, and the quest is

then to search for physical systems that have the potential for the realization of quantum

information devices on a large scale. To this day, liquid state NMR has been the forerunner

in the experimental demonstrations of quantum algorithms. In liquid state NMR, mutual

couplings among the spins are provided by the scalar couplings. In contrast, in the liquid

crystal state, the intramolecular dipolar couplings, which have larger magnitudes and

longer ranges, survive and can be used for purposes of quantum information processing.

More importantly, the liquid crystal state offers advantages such as an increased clock

frequency and a faster recycling of algorithms. These advantages come to the cost of a

more complicated internal Hamiltonian, which makes the system harder to control and

characterize in practice. This thesis has promoted liquid crystal NMR quantum computing

by presenting methods and results towards solving these problems.

The main contribution offered in this thesis is that of chapter 3, were we proposed a new

method for analyzing NMR spectra of solutes dissolved in liquid crystals, and applied it to

solve a 6-spin system with very low symmetry in structure. This was achieved without the

use of a priori knowledge or assumptions on the interspin distances or order parameters,

which is in contrast with the results in previous experiments [14,17–20,30,31,33,35–39,48].

Our method includes a new spectral analysis algorithm - NAFONS. In contrast with

traditional pure frequency fitting methods [16–24], NAFONS does not require spectral

assignment, and is thus fully automatic. In contrast with line shape fitting methods [28–39],

evaluation of our objective function does not involve the expensive computation of the

spectral line shape, and the global optimization strategy can cope with a large search

space. Our method also includes new experimental techniques to simplify spectral analysis

for extracting the dipolar couplings between heteronuclear spins. We believe that our

65



results should be helpful to implement spectral analysis of dipolar coupled systems, and

can be extended to larger systems.

In chapter 4, we presented the well-known GRAPE pulse sequence design algorithm, and

we also explained how to design pulses that are robust to variations in the r.f. amplitudes

and Hamiltonian parameters. We also discussed how the search can be fasten using a

subsystem approach, and also how pulse smoothing and pulse fixing can help to reduce

errors occurring in practical implementations. In that chapter, we explored how well these

methods can be used in practice to control spin systems dissolved in liquid crystals. We

worked with the same 6-spin system that was characterized in the previous chapter, and

the goal was to find single-spin π/2 rotations. First considering the full 6-spin system,

we found pulse design to be highly challenging in this case. In fact, we were unable to

find pulses with fidelity above 95%, and these were neither robust nor smooth. Then, we

restricted ourselves to the 4-qubit subsystem, in which case we were able to find robust

smooth pulses with 98% fidelity and 4ms length. Thus, even with the GRAPE algorithm,

controlling oriented spin systems can be very tedious, and we think that new methods

will be required in order to control larger systems.

In chapter 5, we presented a known twirling certification protocol [66] and showed how

it can be used to measure the average fidelity of Cliffords. Following this, we presented

the usual statistical analysis to obtain bounds for the accuracy of this method. We also

presented our own Monte Carlo approach in order to further investigate the accuracy of

twirling experiments. In addition, we derived equations that relate the statistical accuracy

of the twirling protocol to the variance in the diagonal entries of the χ matrix of the

channel to be certified. We also showed how quantum channels with average fidelities

that are expected to be high will require less experimental runs to reach a same desired

statistical accuracy. We then presented experiments and simulations for certifying the

implementation of quantum gates in our 6-spin system. For the 4-qubit subsystem, we were

not able to perform the experiments due to a lack of experimental equipment. However,

we designed the software to design and analyze such experiments, and performed some

simulations as a demonstration that we should be able to perform such experiments in

practice. For the 2-qubit subsystem, we performed twirling certification experiments, but

without pulse fixing. We obtained an average fidelity of 91% for the implementation of a

controlled-NOT gate. This result could be improved significantly by using pulse fixing.
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Appendix A

Strongly-coupled spin-1⁄2 pairs

We solve here the case of dipolar coupled spin-1⁄2 pairs. We show how one can calculate

the NMR spectrum by diagonalizing the natural Hamiltonian. In particular, we can use

the equations derived here to verify the experimental parameters obtained in section 3.3.1.

We start by giving the natural Hamiltonian of the system, which is described in section

2.3.2. For a 2-qubit system, the natural Hamiltonian takes the form

H nat = πν1Z1 +πν2Z2 +
πD

2
(2Z1Z2−X1X2−Y1Y2) +πJ(Z1Z2 +X1X2 +Y1Y2). (A.1)

In matrix form, the Hamiltonian is block-diagonal,

H nat =
1

2


ΩA + ωA 0 0 0

0 ΩB − ωA ωB 0

0 ωB −ΩB − ωA 0

0 0 0 −ΩA + ωA

 , (A.2)

where

ΩA = 2π(ν1 + ν2), ΩB = 2π(ν1 − ν2), (A.3)

ωA = 2π(D + J), ωB = 2π(2J −D). (A.4)

We can use using basic methods to diagonalize the Hamiltonian and thus obtain its

eigenvalues and eigenvectors. The eigenvalues are given by

Ω1 =
1

2
(ΩA + ωA), Ω2 = −1

2
ωA +

1

2

√
ωB2 + ΩB

2,

Ω4 =
1

2
(−ΩA + ωA), Ω3 = −1

2
ωA −

1

2

√
ωB2 + ΩB

2. (A.5)
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The corresponding eigenvectors are given by

|1〉 =


1

0

0

0

 , |2〉 =


0

cos κ
2

sin κ
2

0

 , |3〉 =


0

− sin κ
2

cos κ
2

0

 , |4〉 =


0

0

0

1

 , (A.6)

where κ is defined such that

tanκ =
ωB
ΩB

. (A.7)

With the eigenvalues and eigenvectors of the Hamiltonian, the signal can now be

calculated. First, from the eigenvalues we can calculate the signal frequencies keeping in

mind that only single-quantum transitions are allowed. We obtain

Ω21 =
ΩA

2
+ ωA −

1

2

√
ωB2 + ΩB

2, (A.8)

Ω31 =
ΩA

2
+ ωA +

1

2

√
ωB2 + ΩB

2, (A.9)

Ω42 =
ΩA

2
− ωA +

1

2

√
ωB2 + ΩB

2, (A.10)

Ω43 =
ΩA

2
− ωA −

1

2

√
ωB2 + ΩB

2, (A.11)

where

Ωrs := −Ωr + Ωs. (A.12)

Next, the amplitudes can be calculated by applying the approach described in section2.5.2,

a21 =
1

2
(1 + sinκ), (A.13)

a31 =
1

2
(1− sinκ), (A.14)

a42 =
1

2
(1 + sinκ), (A.15)

a43 =
1

2
(1− sinκ). (A.16)

The NMR signal and spectrum can then be obtained by the calculation explained in 2.5.2.

One notices that κ = 0 corresponds to the weak coupling case, for which the amplitudes

are all equal. On the other hand, κ = π/2 is the case of magnetic equivalence. The

equations derived here can be applied to verify the results of section 3.3.1.
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