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Abstract

In this thesis, we study two problems in combinatorial optimization, the dominating
set problem and the robustness problem. In the first half of the thesis, we focus on the
dominating set problem in grid graphs and present a distributed algorithm for finding
near optimal dominating sets on grids. The dominating set problem is a well-studied
mathematical problem in which the goal is to find a minimum size subset of vertices
of a graph such that all vertices that are not in that set have a neighbor inside that
set. We first provide a simpler proof for an existing centralized algorithm that constructs
dominating sets on grids so that the size of the provided dominating set is upper-bounded

by
⌈
(m+2)(n+2)

5

⌉
for m× n grids and its difference from the optimal domination number of

the grid is upper-bounded by five. We then design a distributed grid domination algorithm
to locate mobile agents on a grid such that they constitute a dominating set for it. The
basis for this algorithm is the centralized grid domination algorithm. We also generalize the
centralized and distributed algorithms for the k-distance dominating set problem, where
all grid vertices are within distance k of the vertices in the dominating set.

In the second half of the thesis, we study the computational complexity of checking
a graph property known as robustness. This property plays a key role in diffusion of
information in networks. A graph G = (V,E) is r-robust if for all pairs of nonempty and
disjoint subsets of its vertices A,B ⊂ V , at least one of the subsets has a vertex that has
at least r neighbors outside its containing set. In the robustness problem, the goal is to
find the largest value of r such that a graph G is r-robust. We show that this problem is
coNP-complete. En route to showing this, we define some new problems, including the
decision version of the robustness problem and its relaxed version in which B = V \A. We
show these two problems are coNP-hard by showing that their complement problems are
NP-hard.
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Chapter 1

Introduction

In this thesis, we study two problems in combinatorial optimization. Both these problems
are defined on graphs, which are powerful models widely used in mathematics, engineering
and many other fields of science to represent objects, settings, etc. We start this thesis
by going through some basic concepts in graph theory that are later needed to introduce
the two studied problems. We then briefly discuss these two problems and continue with
the preliminary materials needed throughout this document. Previous work, a summary
of our contributions and the overall organization of this thesis are later discussed in this
chapter.

1.1 Background on Graph Theory

Before discussing the problems studied in this thesis, we provide a background on the
material in graph theory that will be needed in defining our problems. Those familiar with
basic graph terminology can skip directly to the problem definitions in Section 1.2. Also,
more details on these topics can be found in theoretical computer science and combinatorial
optimization references, such as [7] and [12].

A graph G = (V,E) is defined as a set of vertices V connected by a set of edges
E ⊆ V × V . The vertices that are connected by an edge are called the endpoints, ends or
end vertices of that edge and we say that these vertices are incident with that edge, and
vice versa. Note that there might exist some vertices in a graph that are not incident to
any edge.
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Graphs can be categorized into two main types: directed and undirected graphs. A
directed graph (usually called a digraph for brevity), is a graph in which edges are ordered
pair of vertices, meaning that existence of an edge from a vertex u to another vertex v
does not necessitate the existence of the edge from v to u. These type of graphs can be
imagined as streets in cities, where both two-way and one-way streets might be found. The
edge from vertex u to vertex v in directed graphs is denoted by (u, v) and the edge from v
to u is shown by (v, u).

On the other hand, there are undirected graphs in which edges are not ordered pair of
vertices. In other words, in undirected graphs we care about two vertices being connected
to each other; whereas, in directed graphs in addition to that the direction of the edge
matters. In undirected graphs, an edge connecting vertices u and v is denoted by uv or
{u, v} to point out edges uv and vu (similarly, {u, v} and {v, u}) are not different.

Notice that all the graphs discussed in this thesis are undirected. Moreover, throughout
this document we only consider simple graphs, meaning that any pair of distinct vertices
are connected by at most one edge, and there is no edge that starts from and ends to the
same vertex. In the following, we list some graph theoretic concepts and definitions that
are later referred to. All these concepts are defined on a simple undirected graph G with
vertex set V and edge set E.

Neighbors A vertex u ∈ V is called a neighbor of vertex v ∈ V if uv ∈ E. The set of all
neighbors of vertex v is denoted by N(v). Moreover, for a set of vertices U ⊆ V , we
define N(U) as

⋃
u∈U

N(u), that is, the set of all vertices that have a neighbor in U .

Paths and Cycles A sequence of vertices v0v1 . . . vk form a path with length k in graph
G = (V,E) if v0, . . . , vk ∈ V and for any 0 ≤ i ≤ k − 1 edge vivi+1 ∈ E. The vertex
at which the path starts is called its start point and the vertex at which it ends is
called its end point. If no vertex is visited more than once on a path, then that path
is called a simple path. Moreover, a cycle is a path whose start and end points are
the same. A simple cycle can be defined similarly.

Connectivity An undirected graph G is connected if and only if for every pair of distinct
vertices u and v, there is a path from u to v. Otherwise, we say that the graph is
disconnected. Moreover, we say that connectivity of graph G is c if and only if for
any two distinct vertices of G there are c pairwise disjoint paths connecting them.
If the connectivity of the graph is c, then for any nonnegative integer d ≤ c, we say
that the graph is d-connected. By Menger’s theorem, the connectivity of graph G is
equal to the minimum number of vertices whose removal results in the graph being
disconnected.

2



Figure 1.1: Figure (a) shows a 10×10 grid. In Figure (b), the edges of the grid are removed. For simplicity
of presentation we do not demonstrate edges of grids in this document. Figure (c) shows an 8 × 8 grid
that is the sub-grid of the grid in Figure (a).

Distance The distance between two vertices in a graph is defined as the number of edges
in the shortest path joining these two vertices. Observe that if there exists no such
path between two vertices, then the distance between them is taken to be infinite.

Cliques A subset C of vertices of a graph form a clique if and only if any two vertices in
C are joined by an edge.

Grid Graphs An m × n grid graph G = (V,E) is defined as a graph with vertex set
V = {vi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge set E = {vi,jvi,j′ | |j − j′| = 1} ∪
{vi,jvi′,j| |i− i′| = 1}; see Figure 1.1. For ease of exposition, we will fix an orientation
and labelling of the vertices, so that vertex v1,1 is the lower-left vertex and vertex
vm,n is the upper-right vertex of the grid. For brevity, we refer to grid graphs as grids.
Moreover, for an m × n grid G, we define the boundary of G, denoted by B(G), as
the set of vertices with less than 4 neighbours. An m× n grid G = (V,E) is called a
sub-grid of an m′ × n′ grid G′ = (V ′, E ′) if G is induced by vertices v′i,j ∈ V ′, where
2 ≤ i ≤ m′ − 1 and 2 ≤ j ≤ n′ − 1. If G is a sub-grid of G′, then G′ is called the
super-grid of G (see Figure 1.1).

Cuts For a graph G = (V,E), a cut C = (S, V \S) is defined as a partition of nodes of
G into two nonempty subsets S ⊂ V and V \S. The cut-set of a cut C = (S, V \S),
denoted by δ(S) or δ(V \S), is defined as the subset of the edges of G with one
endpoint in S and the other in V \S. Mathematically, we have δ(S) = {uv ∈ E |
|S ∩ {u, v}| = 1}. Note that set S can include only one vertex of the graph, say v.
In this case, for simplicity we use δ(v) to denote the cut-set, that is, δ({v}).

3



Figure 1.2: The dashed edges in Figure (b) are the subset of the edges of the graph depicted in Figure (a)
that make a matching.

(a) (b)

Figure 1.3: Figures (a) and (b) show a 3× 3 grid graph and its second power, respectively. Vertices within
distance two are connected to each other in (b).

Matching A subset of edges of a graph forms a matching if and only if no two edges in
that subset share an endpoint; see Figure 1.2.

Graph Power For a graph G = (V,E), its k-th power, denoted by Gk = (V ′, E ′), is a
graph with the same vertex set as G, i.e., V = V ′, in which two distinct vertices
share an edge if and only if their distance in G is at most k (see Figure 1.3).

1.2 Studied Problems

In this thesis, we focus on two problems: (i) dominating set problem, and (ii) robustness
problem. These two problems are defined on graphs and they are both motivated by
problems in multi-agent systems. For both of these problems it can be assumed that a
set of agents located on the graph aim to fulfill some goals related to the objective of the
problems. This section contains two parts each dedicated to one of the main problems

4



Figure 1.4: The black and grey vertices in Figures (b) and (c), respectively, make two dominating sets
with different sizes for the graph depicted in Figure (a). It can be shown that the domination number of
the graph is 2 and the grey vertices in Figure (c) correspond to it.

considered in this thesis. A short introduction of each of these problems is provided here
and they will be studied in more details in the following chapters.

1.2.1 Dominating Set Problem

For a graph G = (V,E), we say that a subset of the vertices of the graph S ⊆ V constitutes
a dominating set for G, if and only if each vertex1 v of the graph is either in S, or shares
an edge with a vertex that is in S. The vertices in set S are called dominating vertices
and the vertices who share edges with dominating vertices are called dominated vertices.
In particular, if a vertex v /∈ S is connected to a vertex u ∈ S, then we say that v is
dominated by u. Figure 1.4 demonstrates two different dominating sets for a graph, where
one has size two and the other has size three.

In the dominating set problem, the goal is to find a subset of the vertices of a given graph
G that is a dominating set for G and has the minimum size among all other dominating sets
of the graph. A dominating set with minimum cardinality is called an optimal dominating
set of graph G; its cardinality is called the domination number of G and is denoted by
γ(G). Note that although the domination number of a graph, γ(G), is unique, there may
be different optimal dominating sets.

Many different versions of the dominating set problem have been studied in the litera-
ture. Among these are the weighted dominating set problem (where vertices of the graph

1We use the terms vertex and node interchangeably in this document.
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Figure 1.5: The black vertex is a 2-distance dominating set for the graph depicted in Figure 1.4(a).

have weights and the goal is to find a dominating set with minimum weight), connected
dominating set problem (in which each vertex in the dominating set should be connected
to other vertices in that set), independent dominating set problem (where no two vertices
in the dominating set should share an edge), etc. Another variation of the dominating
set problem is when a feasible solution is a subset of vertices of a given graph such that
any vertex that is not in that set has distance at most k from some vertex in the set.
This problem is called the k-distance dominating set problem, see Figure 1.5. Although all
these different versions of the dominating set problem have been intensely studied in the
literature, in this thesis we only focus on the original version of this problem as well as the
k-distance dominating set problem. Moreover, the concentration of this document is on
studying the dominating set problem on a special class of graphs, called grid graphs, that
is discussed further in the next section.

1.2.2 Robustness Problem

Before discussing the robustness problem, we need to introduce some definitions as follows.

Definition 1.1 (r-Reachable) Consider a graph G = (V,E) and let S be a subset of its
vertices, i.e., S ⊆ V . For some r ∈ Z≥12, the set S is r-reachable if there exists at least
one vertex v ∈ S such that v is connected to at least r vertices of G that are not in S.

Definition 1.2 (r-Robust) A graph G is r-robust if for any two disjoint and nonempty
subsets of its vertices, at least one of them is r-reachable.

2Note that Z≥i denotes the set of all integers greater than or equal to i ∈ Z.
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Figure 1.6: Figure (a) shows a graph with connectivity 4. In Figure (b) two subsets of vertices of the
graph, one with black vertices and the other with grey vertices, are demonstrated. It can be seen that
each vertex is only connected to one vertex outside its set and hence the graph is only 1-robust.

In other words, a graph G = (V,E) is r-reachable if for any two nonempty sets S1, S2 ∈
V such that S1∩S2 = ∅, at least one of these sets has at least one vertex that is connected
to at least r vertices outside its containing set. Note that if a graph is r-robust, then for
any two disjoint and nonempty subsets of its vertices, at least one of them has a node that
shares at least r edges with nodes outside its set and hence gets sufficiently influenced by
the vertices (or agents located on vertices) outside its set. The concept of robustness plays
a role in the study of diffusion of information in networks [15, 38]. With the above two
definitions, we are now ready to discuss our problem. The goal in the robustness problem
is to find the largest value of r such that the given graph is r-robust.

Note that although robustness and connectivity seem closely related to each other, the
concept of robustness is much stronger than connectivity. If the connectivity of a graph is
r, then for any two disjoint and nonempty subsets of its vertices, the nodes in each of these
sets are connected to at least r distinct vertices outside their sets, in total. In contrast, a
graph is r-robust if there is vertex in one of such sets that is connected to at least r vertices
by itself. Figure 1.6 shows this difference more clearly. In this document, we characterize
the complexity of determining the largest r for which a given graph is r-robust.

7



1.3 Notations and Preliminaries

This section discusses the material that will be needed in the following chapters, including
complexity classes, reductions and approximation algorithms.

1.3.1 Complexity Classes and Reducibility

Before introducing the complexity classes that are used later in this document, note that
more detailed discussion on complexity classes can be found in [3]. Let us discuss what
we mean by decision problems. Loosely speaking, a decision problem is a question with a
‘Yes’ or ‘No’ answer about the characteristics of a certain input. An example of this type
of problem is the question whether a given a graph G has a clique with k vertices.3

Many mathematical problems are of another type called optimization problems, in which
the goal is to find the best feasible solution. For most optimization problems it is possible
to define an associated decision problem, called the decision version of that optimization
problem. For example, the clique decision problem discussed above is the decision version
of the clique problem, in which the goal is to find the maximum size clique in a graph.
Note that usually if one can solve the decision version of a problem, then she can also solve
the original problem by using binary search or other techniques.

A decision problem is nondeterministically polynomial or in NP, if and only if an input
instance x can be verified that it is a ‘Yes’ instance of the problem in polynomial time.
To verify a problem is in NP, for any ‘Yes’ instance x a certificate with polynomial size is
needed, which would be the solution of the problem to instance x. For instance, consider
the clique decision problem. The certificate for this problem is a set of k vertices of G that
form a clique. Note that this is checkable in polynomial time by first checking the number
of given vertices and also verifying that these vertices are all connected to each other.

The group of problems that are solvable in polynomial time, such as finding the shortest
path between two vertices in a graph, are said to be in class P. For problems in this class,
since the problems can be solved efficiently (i.e., in polynomial time) both ‘Yes’ and ‘No’
instances are verifiable in polynomial time. Hence, class P is a subset of class NP, i.e.,
P ⊆ NP. However, it is yet an open problem whether or not P = NP.

In addition to these two complexity classes, we will later refer to a complexity class
called coNP. A problem is in class coNP if and only if an input instance y can be verified
that is a ‘No’ instance of the problem in polynomial time. Similar to class NP, to verify a

3This problem is known as the “clique decision problem” in the literature.
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problem is in coNP, a polynomial size certificate should be provided for any ‘No’ instance
y. An example of a problem in coNP is the problem of finding whether or not a given
number n is prime. If n is not prime, then one can verify it by giving a factor of n not
equal to 1 or n.

For a given decision problem, its complement is obtained by reversing the ‘Yes’ and
‘No’ answers to the input instances. It can be shown that a problem is in class coNP
if and only if its complement is in NP [3]. However, note that class coNP is not the
complement of the class NP, as the intersection of these two is nonempty and is equal to
class P. This is due to the fact that a problem is in P if it is solvable in polynomial time;
therefore, both its ‘Yes’ and ‘No’ instances are verifiable in polynomial time.

Another tool that is used in this document is the notion of a reduction. Consider two
problems L1 and L2 that are in NP. Also, let U1 and U2 denote the set of all possible
inputs to L1 and L2, respectively. There is a polynomial time reduction from problem L1

to L2 (i.e., problem L1 is polynomially reducible to L2), if one can find a polynomial time
algorithm that can transform any input of L1, i.e., u1 ∈ U1, to another input of L2, i.e.,
u2 ∈ U2, such that u1 is a ‘Yes’ instance of L1 if and only if u2 is a ‘Yes’ instance of L2. In
other words, if L1 is reducible to L2, then the inputs of L1 can be converted to inputs of L2

in polynomial time so that if some algorithm can solve L2 efficiently, then it can efficiently
solve L1 as well.

A problem B is NP-hard if any problem A in NP can be reduced to it in polynomial
time, i.e., it is at least as hard as any problem in NP. Moreover, problem B is said to be
NP-complete if it is NP-hard and it is also in NP. Hence, NP-complete problems are
the hardest problems in class NP. Note that in order to show that problem B is NP-hard
it is not necessary to reduce all problems in NP to B. Since NP-complete problems are
the most difficult problems in NP, to show that B is NP-hard it suffices to find an NP-
complete problem A that is reducible to B in polynomial time. Similarly, a problem B′ is
coNP-hard if any problem in coNP is polynomially reducible to it. Moreover, problem
B′ is coNP-complete if it is coNP-hard and it is a member of class coNP. It can be
shown that a problem is NP-hard if and only if its complement problem is coNP-hard.
Therefore, another way of showing that a problem in coNP is coNP-complete is to show
that its complement problem, which is in NP, is NP-hard.

1.3.2 Approximation Algorithms

Although there is no approximation algorithm discussed in this thesis, the reader should
be acquainted to this concept for some sections of this work. Some very good references
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on this topics are [35] and [36] that discuss different aspects of this field.

Consider an optimization problem Γ. This problem is defined by a set of constraints
and an objective function. A solution to Γ is called a feasible solution if it does not violate
any of its constraints. Also, it is of interest to find a feasible solution to the problem that
maximizes or minimizes (whichever the problem specifies) the objective function, in case
such solution exists. To clarify the point, consider the problem of finding a clique that
has the maximum number of vertices in a graph G. A solution to this problem should
be a subset of vertices of G and it is a feasible solution if these vertices constitute a
clique. Moreover, the objective function is the number of vertices in the clique provided
as a solution. The optimal solution is a clique with maximum number of vertices among
the other cliques in the graph. Problem Γ is called a maximization problem if its goal
is to maximize the objective function; otherwise, if the goal is to minimize an objective
function, it is called a minimization problem. For simplicity, in this section we only consider
minimization problems and maximization problems can be analyzed similarly.

For a minimization problem Γ, we say a polynomial time algorithm ALG is an α-
approximation algorithm if the solution it finds for any input instance φ, i.e., ALG(φ), is
(i) a feasible solution to Γ, and (ii) the value of the objective function of Γ for φ is at most α
times its optimum value for instance φ. The optimum value of the objective function for an
instance φ is usually denoted by OPTφ or OPT for brevity. If Γ is a maximization problem,
then an α-approximation algorithm would provide feasible solutions such that the value
of the objective function of Γ for them is at least OPT

α
. Moreover, for both maximization

and minimization problems, α is referred to as approximation factor, approximation ratio
or guarantee of approximation.

Note that problems in class P are efficiently solvable and hence there is no point in
approximating them. However, for problems that are NP-complete or coNP-complete,
it is usually of interest to find approximation algorithms with polynomial runtime in the
size of the input. However, in certain instances it can be shown via a reduction that for
some α, if an algorithm can approximate a problem Γ within a factor of α in polynomial
time, then it can also solve an NP-complete problem (or similarly, a coNP-complete
problem) in polynomial time. In this case, it can be concluded that there is no polynomial
time approximation algorithm for Γ with approximation guarantee less than or equal to α,
unless P = NP (or similarly, P = coNP).
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1.4 Previous Work

In this section, a summary of the relevant previous work of each of the two main problems
discussed in this thesis, i.e., the dominating set and robustness problems, are provided.

1.4.1 Dominating Set Problem

Significant attention has been devoted in recent years to the study of large-scale sensor
and robotic networks due to their promise in fields such as environmental monitoring [24],
inventory warehousing [18], and reconnaissance [5]. One of the key objectives in such
networks is to ensure coverage of a given area, where every point in the space is within the
sensing radius of one or more of the agents (i.e., sensors or robots). Various algorithms
have been proposed to achieve coverage based on differing assumptions on the mobility
and sensing capabilities of the agents [9].

In certain scenarios, the environment may impose restrictions on the feasible locations
and motion of the agents [22]. In such cases, it is natural to model the environment as
a graph, where each node represents a feasible location for an agent, and edges between
nodes indicate available paths for the agents to follow. The coverage capabilities of any
given agent are then related to the shortest-path distance metric on the graph: an agent
located on a node can cover all nodes within a certain distance of that node. The goal of
selecting certain nodes in a graph so that all other nodes are within a specified distance
of the selected nodes is classical in graph theory, and is known as the dominating set
problem [16]. Versions of this problem appear in settings such as multi-agent security
and pursuit [1], routing in communication networks [37], and sensor placement in power
networks [14].

Finding the domination number (i.e., the size of a smallest dominating set) of arbitrary
graphs is NP-hard [16]. In fact, Raz and Safra showed that achieving an approximation
ratio better than c log n for the dominating set problem in general graphs is NP-hard,
where c > 0 is some constant and n is the number of vertices of the graph [32]. However,
there are several algorithms known for the dominating set problem for which the ratio
between the size of the resulting dominating set and graph domination number can closely
reach the c log n bound. The simplest of these algorithms is a greedy algorithm that at each
step adds one vertex to the dominating set. The vertices that are already in the dominating
set are marked as ‘black’, the vertices that share edges with black vertices are marked as
‘gray’ and other vertices are ‘white’. At each step, a white vertex that shares the maximum
number of edges with other white vertices are added to the dominating set and the color
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labels of all vertices are updated according to the aforementioned rules. Another widely
used approximation algorithm for the problem uses a linear programming relaxation. Both
greedy and linear programming approaches for the dominating set problem are known to
have (lnn+ 1)-approximation ratios [21, 27], which are in O(log n).

Even though in general graphs one cannot obtain an approximation ratio in o(log n),
in special types of graphs better approximation ratios are obtainable. One of the most
important classes of graphs are planar graphs. A planar graph is a graph that can be drawn
in a plane so that none of its edges intersect except at their ends [7]. The dominating set
problem is still NP-hard for planar graphs; however, the domination number of this type
of graphs can be approximated within a factor of (1 + ε) for an arbitrarily small ε > 0 [4].

Grid graphs are a special class of graphs that have attracted attention due to their
ability to model and discretize rectangular environments [25, 26]. Grids can be used in
simplifying the underlying environment by representing a certain area of the environment
with only one node in the grid [6]. Moreover, due to the special structure of grid graphs
that do not leave any area of environment unrepresented while transferring the problem
environment into a tractable domain, they can be used as environment models on which
area coverage can be performed. Hence grids are used very commonly in the network
coverage and delectability literature [10, 26]. For these reasons, we focus on studying the
dominating set problem when the underlying graph is a grid.

As discussed above, it is NP-hard to find the domination number of general or even
planar graphs. It can be easily observed that grid graphs lie in the class of planar graphs and
hence their domination number can be obtained within a small ratio. However, due to the
special structure of grids, their domination number can in fact be determined optimally.

For m × n grid graphs, an upper bound of
⌊
(m+2)(n+2)

5

⌋
− 4 on the size of the optimal

dominating set was shown in [11] for 8 ≤ m ≤ n using a constructive method. Various
attempts have been made in recent years to find a tight lower bound on the size of the
optimal dominating set. In [2], the authors used brute-force computational techniques
to find optimal dominating sets in grids of size up to n = m = 29. The paper [17]
showed finally that the lower bound on the domination number is equal to the upper
bound for 16 ≤ m ≤ n, thus characterizing the domination number in grids.

1.4.2 Robustness Problem

The robustness problem was introduced in [23] in the context of diffusion of information
in networks. In this context, there is usually a graph or a complex network with some
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properties/information on some nodes (or agents) of the graph that spreads throughout
the network. Hence, it is of interest to find the topological properties that allow ‘good’
information to diffuse throughout the network, while restricting the propagation of ‘incor-
rect’ information. An instance of such scenario is a network of sensors in a city that aims to
report the true value of some measurements (i.e., good information), while several sensors
within it report false measurements, e.g., due to faults or attacks. Hence, one might want
to know what topological properties limit the spread of misinformation in the network.

Classically, the connectivity of a network plays the key role in the study of information
dissemination algorithms (see [20, 28] for more information). However, these algorithms
typically assume that the agents (or nodes of the network) have complete information about
the structure of the graph, which is not a realistic assumption in large scale networks [34].
A more pragmatic assumption is that each agent has only local information about the
topology of the network. In [23], it was shown that if a network is sufficiently robust, then
there are algorithms that limit the spread of misinformation without requiring detailed
knowledge of the global network. In [38], it was shown that certain random graph models
inherently possess a certain degree of robustness.

Recall that a graph G = (V,E) is r-robust if and only if for any two disjoint and
nonempty subsets of its vertices, at least one of them has a vertex with at least r neighbors
outside its set. The robustness problem can be defined as an optimization problem whose
goal is to find the value of r for which a given graph is r-robust. As mentioned above, this
problem is important in studying propagation of information in networks.

Another problem that is closely related to the robustness problem is called the “matching-
cut problem” (this connection is fully discussed in Chapter 3). In the matching-cut problem,
the goal is to find whether the input graph has a cut that is also a matching, i.e., any vertex
of the graph is connected to at most one edge in the cut-set. Although the robustness prob-
lem was crystalized in the context of complex networks and diffusion of information, the
matching-cut problem was first introduced in the graph drawing literature [13, 30]. It can
be seen that if a graph has a matching-cut, then it is not 2-robust. It is shown in [29] that
the matching-cut problem is NP-complete. Also, Bonsma in [8] studied the complexity of
the problem in some classes of graphs, and showed that the problem is NP-complete even
in planar graphs. Despite the known hardness of the matching-cut problem for different
types of graphs, to the best of our knowledge, this is the first result on the complexity of
the robustness problem.
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1.5 Our Contribution

A summary of the contributions to the two problems studied in this document is provided
in this section. Chapters 2 and 3 will be devoted to discuss these results in more details.

1.5.1 Dominating Set Problem

In this thesis, we make three contributions to the study of dominating sets on grids and
their application to multi-agent coverage. First, we provide a new and simpler proof for
an existing constructive method to obtain near-optimal dominating sets (i.e., that require
no more than 5 vertices over the optimal number) in grids by Chang [11].

Second, based on the aforementioned centralized algorithm, we design a distributed al-
gorithm that places a set of agents on the vertices of an m×n grid such that they construct
a dominating set for the grid, with a number of agents that is within a constant additive
error from the optimal. The agents require only limited memory, sensing and communi-
cation abilities, and thus the solution is applicable to multi-robot coverage applications
where the environment can be discretized as a grid. Third, we generalize the construction
introduced by Chang to the k-distance dominating set problem, where a given vertex can
cover all other vertices within a distance k from it. We show that our distributed algorithm
can also be generalized to work in the k-distance domination scenario.

1.5.2 Robustness Problem

In this document, we fill a hole in the literature by showing that the robustness prob-
lem is coNP-complete. En route to proving this result, we introduce some new problems
and study their complexities as well. We first introduce the decision version of the ro-
bustness problem, called the r-robustness problem. Later, we relax the constraints in
the r-robustness problem and define the relaxed-r-robustness problem, in which a graph
G = (V,E) is relaxed-r-robust if and only if for any nonempty subset of its vertices S ( V
there is vertex in S or V \S that has at least r neighbors outside its containing set. To
show that the relaxed-r-robustness in coNP-complete, we use that fact that the problem
is in coNP and show that its complement problem, called the relaxed-ρ-degree cut problem
which is a generalization of a known problem called the “matching-cut” problem, is NP-
hard. We later use our construction for proving the complexity of the relaxed-ρ-degree cut
problem to demonstrate that its non-relaxed version, called the ρ-degree cut problem, is
also NP-hard. Later, utilizing the fact that the ρ-degree cut problem is the complement
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of the r-robustness problem, we show that the latter problem is coNP-complete, which
results in the coNP-completeness of the robustness problem. Moreover, we show that it
is not possible to provide a polynomial time approximation algorithm with guarantee less
than 2 for the problem of finding the smallest ρ such that a given graph has a ρ-degree
cut, unless P = NP.

1.6 Thesis Organization

In Chapter 2, we discuss the constructive centralized grid domination algorithm introduced
by Chang and introduce a new and simpler proof for that construction. These materials
are later used to design a distributed algorithm for the dominating set problem. We then
generalize the results on both the centralized and distributed algorithms to the k-distance
dominating set problem.

In Chapter 3, we discuss the decision version of the robustness problem and introduce
its relaxed form. We then show that these problems are in coNP and their complements
are NP-hard and hence conclude that they are coNP-complete. Later, using these results
we infer that the robustness problem is also coNP-complete. We then briefly discuss the
hardness of approximation of a problem closely related to the robustness problem.

Finally, Chapter 4 concludes the thesis and discusses the corresponding open problems.

15



Chapter 2

Dominating Set Problem on Grids

Recall that in a graph G = (V,E), for a set of vertices U ⊆ V , we say the vertices in N(U),
i.e., the set of vertices that have neighbors in U , are dominated by the vertices in U . For
graph G, a set of vertices S ⊆ V is a dominating set if each vertex v ∈ V is either in S or
is dominated by S.

A dominating set with minimum cardinality is called an optimal dominating set of a
graph G; its cardinality is called the domination number of G and is denoted by γ(G).
Note that although the domination number of a graph, γ(G), is unique, there may be
different optimal dominating sets.

As discussed in the previous chapter, we study the dominating set problem on a special
class of graphs called grid graphs. Recall that an m × n grid graph G = (V,E) is defined
as a graph with vertex set V = {vi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge set E =
{vi,jvi,j′ | |j−j′| = 1}∪{vi,jvi′,j| |i− i′| = 1}. Also remember that for ease of exposition, we
fix an orientation and labelling of the vertices, so that vertex v1,1 is the lower-left vertex
and vertex vm,n is the upper-right vertex of the grid. We denote the domination number
of an m× n grid G by γm,n = γ(G).

Moreover, as introduced in Chapter 1, for an m × n grid G = (V,E), we define the
boundary of G, denoted by B(G), as the set of vertices with less than 4 neighbors. Also, an
m× n grid G = (V,E) is called a sub-grid of an m′ × n′ grid G′ = (V ′, E ′) if G is induced
by vertices v′i,j ∈ V ′, where 2 ≤ i ≤ m′ − 1 and 2 ≤ j ≤ n′ − 1. If G is a sub-grid of G′,
then G′ is called the super-grid of G (see Figure 2.1(a)).

The domination number of grid graphs is computable. The following theorem gives the
domination number of grids with size greater than 16..
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Figure 2.1: In Figure (a), a 12× 12 grid G′ is demonstrated and its 10× 10 sub-grid G is highlighted by a
red dashed square. Grid G′ is diagonalized by a set U ′ of 28 vertices. In Figure (b), vertices in U ′\V are
projected onto their neighbors in G.

Theorem 2.1 (Gonçalves etal, [17]) For an m × n grid with 16 ≤ m ≤ n, γm,n =⌊
(m+2)(n+2)

5

⌋
− 4.

In this chapter, we provide a distributed algorithm that locates a set of agents on
the vertices of a grid such that they constitute a dominating set with near optimal size
for it. Our distributed grid domination algorithm is based on a procedure developed
by Chang [11]. To obtain the tools needed in our distributed algorithm, we discuss an
overview of the construction introduced by Chang in Section 2.1. These tools are used
in Sections 2.2 and 2.3 in the distributed domination algorithm and in developing the
k-distance dominating set results.

2.1 Overview of Centralized Grid Domination Algo-

rithm

In [2], Alanko et al. provided examples of optimal dominating sets for n × n grids with
1 ≤ n ≤ 29, obtained via a brute-force computational method. A visual inspection of
these examples shows that as the size of the grid increases, the patterns of dominating
vertices become more regular in the interior of grids, with irregularities at the boundaries.
Figure 2.2 demonstrates some examples of patterns that arise in the dominated grids in [2].

Among the patterns used to dominate grids, the one illustrated in Figure 2.2(b) is the
most efficient, since there is no vertex that is dominated by more than one dominating
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Figure 2.2: Examples of dominating vertex patterns that appear in the instances of optimal dominating
sets of Alanko et al. [2]. The black vertices are the dominating vertices. The red line segments form regions
so that in each region there exist one black vertex and at most four white vertices dominated by that black
vertex.

vertex in this pattern. Hence, this pattern would be useful in obtaining dominating sets
with near optimal size. We refer to the structure in Figure 2.2(b) as a diagonal pattern.
In [11], Chang used these patterns to provide a constructive upper-bound on the domination
number of grids. In this section, we provide an overview of the construction introduced by
Chang, as it will be used in the subsequent sections. First, we define the diagonal patterns
formally as follows. Note that the x and y axes are as shown in Figure 2.2.

Definition 2.1 (Diagonal Pattern) A set of vertices U ⊂ V constitutes a diagonal pattern
on grid G = (V,E) if there exists a fixed r ∈ {0, 1, 2, 3, 4} such that for any vertex vx,y ∈ U
we have y − 2x ≡ r (mod 5).

Definition 2.2 (Diagonalization) A set of vertices U ⊂ V diagonalizes grid G = (V,E) if
it constitutes a diagonal pattern and there exists no vertex v ∈ V \U that can be added to
U so that U remains a diagonal pattern.

An example of a diagonalization is shown in Figure 2.1(a).1 The construction that
Chang introduced consists of the following two main steps:

1One can also define a diagonal pattern as a set of vertices whose (x, y) coordinates satisfy x− 2y ≡ r
(mod 5), for some fixed r. This corresponds to swapping the x and y axes. For the proofs we only analyze
the case mentioned in Definition 2.1; the other case can be treated similarly.

18



1. Diagonalization: At this step, a set of vertices U that diagonalizes the grid is provided.

2. Projection: Using a process called projection, the vertices that were not dominated
by vertices in U are characterized and new vertices are added to U to dominate those
vertices as well.

We now discuss these two steps in more details. Chang showed that if a grid G = (V,E)
is diagonalized by a set of vertices U ⊂ V , then for any vertex v ∈ (V \U) that is not
located on the grid’s boundary, there exists exactly one vertex in U that shares an edge
with v. In other words, every node that is not located on the grid’s boundary, i.e., B(G),
is dominated by exactly one vertex in U . Moreover, he proved that if a set of vertices
U ⊂ V diagonalizes an m × n grid G = (V,E), then U contains at most

⌈
mn
5

⌉
vertices.

To construct a dominating set for G, it only remains to add some vertices to U so that
the resulting set dominates the vertices on the boundary of the grid as well. The vertices
located on B(G) with no neighbor in U are called orphans and are defined formally as
follows.

Definition 2.3 (Orphans) Let U ⊂ V be a set of vertices that diagonalizes grid G =
(V,E). A vertex v ∈ V that has no neighbor in U is called an orphan (see Figure 2.1(a)).

To dominate orphans, Chang used the super-grid of G, denoted by G′ = (V ′, E ′).
Since the vertices on the boundary of G lie inside grid G′, a set of vertices U ′ ⊂ V ′ that
diagonalizes G′ dominates all vertices of G. Moreover, it can be easily seen that the set of
vertices U = U ′ ∩ V is also a diagonalization for grid G.

Recall that diagonalization results in every vertex being dominated by at most one
vertex in the diagonal pattern. Therefore, if a set of vertices U ′ ⊂ V ′ diagonalizes the
super-grid G′ = (V ′, E ′), then there are vertices in B(G) that are dominated by vertices in
U ′\V . Hence, the orphan of a vertex v ∈ U ′\V is a vertex u ∈ B(G) such that u ∈ N(v),
and is denoted by u = orphan(v).

Corollary 2.1 For an m× n grid G, the number of orphans is O(n+m).

Since by diagonalizing G′ the orphans in G, i.e, vertices in N(U ′\U)∩V , are dominated
by the dominating vertices on the boundary of G′, a procedure called projection is intro-
duced that projects the dominating vertices in B(G′) inside sub-grid G. Hence, projection
results in having all vertices in G being dominated. This procedure is defined formally as
follows.
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Definition 2.4 (Projection) Consider a grid G = (V,E) and its super-grid G′ = (V ′, E ′).
For a set U ′ ⊆ V ′, its projection is defined as the set U ′′ =

(
N(U ′\V )∪U ′

)
∩V . Similarly,

we say a vertex v ∈ U ′\V is projected if it is mapped to its neighbor in V .

Figure 2.1(b) shows an example of a projection. For grid G = (V,E), its super-grid
G′ = (V ′, E ′), and set U ′ ⊂ V ′ that diagonalizes G′, by performing projection, the size of
the obtained dominating set of G is between |U ′|−4 and |U ′|. This is due to the fact that a
vertex v ∈ U ′ located at any corner of G′ has no neighbor in V and hence, after projection
it is not mapped into V . Since G′ has four corners, for the result of projection of U ′, i.e.,
U ′′, we have |U ′| − 4 ≤ |U ′′| ≤ |U ′|. Hence, the number of dominating vertices used in
diagonalizing the super-grid of G, |U ′|, is an upper-bound on the number of dominating
vertices used to fully dominate G by diagonalization and projection. Since the size of

super-grid of an m×n grid G is (m+2)× (n+2), |U ′| ≤
⌈
(m+2)(n+2)

5

⌉
. Hence,

⌈
(m+2)(n+2)

5

⌉
is an upper-bound on the number of dominating vertices used to dominate grid G by this
construction. The following theorem reflects this upper-bound.

Theorem 2.2 (Chang [11]) For any m×n grid G = (V,E) with m,n ∈ N, a dominating

set S ⊂ V can be constructed in polynomial-time, such that |S| ≤
⌈
(m+2)(n+2)

5

⌉
. Moreover,

for grids with 16 ≤ m ≤ n we have |S| − γm,n ≤ 5.

For an m × n grid G with 16 ≤ m ≤ n, the difference between the cardinality of the
provided dominating set S from the domination number, γm,n, is upper-bounded by virtue
of Theorem 2.1. An example of constructing dominating sets for grids using diagonalization
and projection is shown in Figure 2.1.

In the following we provide a new and simpler proof for Theorem 2.2 by showing that
if a subset of vertices of an m× n grid diagonalizes it, then the size of that set is at most⌈
mn
5

⌉
.

Lemma 2.1 If a set U ⊂ V diagonalizes an m × n grid G = (V,E), where m,n ∈ Z≥1,
then |U | ≤

⌈
mn
5

⌉
.

Proof. We first show that the difference between the size of any two sets that diagonalize
an a × b grid, where 0 < a, b < 5, is at most one. We then use this to show that the size
of a set that diagonalizes an m× n grid, where m,n ≥ 1, is at most

⌈
mn
5

⌉
.

Since set U diagonalizes G, it constitutes a diagonal pattern on G such that no more
vertices can be added to it while maintaining a diagonal pattern. Therefore, among each
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five consecutive vertices in any row or column there is exactly one vertex from U . Hence,
the number of vertices of U in a row/column of t vertices is at most

⌈
t
5

⌉
.

Thus, there are at most five vertices from U in any 5×5 grid. Hence, in any (5q)× (5p)
grid with p, q ∈ Z≥1, there are at most 5pq vertices from U . For an m× n grid G = (V,E)
with m = 5q + a, n = 5p+ b and 0 ≤ a, b < 5, we partition V into the following four sets:

V1 = {vi,j | 1 ≤ i ≤ 5q, 1 ≤ j ≤ 5p},

V2 = {vi,j | 5q + 1 ≤ i ≤ m, 1 ≤ j ≤ 5p},

V3 = {vi,j | 1 ≤ i ≤ 5q, 5p+ 1 ≤ j ≤ n},

and
V4 = {vi,j | 5q + 1 ≤ i ≤ m, 5p+ 1 ≤ j ≤ n}.

As stated, |V1∩U | ≤ 5pq. Grid V2 has a columns each having 5p vertices, hence |V2∩U | ≤
pa. Similarly, we have |V3 ∩ U | ≤ qb. In summary, we so far have |(V1 ∪ V2 ∪ V3) ∩ U | ≤
5pq + qb+ pa. Note that 5pq + qb+ pa = mn

5
− ab

5
.

It remains to upper-bound |V4∩U |. Note that V4∩U also diagonalizes the grid induced
by the set of vertices V4, which we denote by G4 = (V4, E4). Also, recall that for any
vertex vx,y in a set U that diagonalizes a grid G, we have y − 2x ≡ r (mod 5) for a fixed
r ∈ {0, 1, 2, 3, 4}. Hence, there are five different subsets of vertices of V4 that diagonalize
grid G4, denoted by U0, U1, U2, U3 and U4. Moreover, for a vertex vx,y ∈ V4, we define its r-
value as the value of y−2x modulo 5. Therefore, all vertices in Ui, where i ∈ {0, 1, 2, 3, 4},
have the same r-values. Without loss of generality, assume that among these five sets, U0

and U1 have the maximum and minimum sizes, respectively.

Any vertex that is not on the boundary of a grid has exactly four neighbors, one at
each side, that is, left, above, right and bottom. Consider vertex vx,y that is not on the
grid boundary, and its four neighbors vx−1,y, vx,y+1, vx+1,y and vx,y−1. It can be seen that
these five vertices have different r-values. Hence, each of them belong to a distinct set of
U0, . . . , U4. Also, if vertices u, v are on the same side (say left) of vertices u′, v′ ∈ Ui for
some i ∈ {0, 1, 2, 3, 4}, then the r-values of u and v are the same. Thus, the set of vertices
that are on the same side (i.e., left, above, right, or below) of the vertices in U0 have the
same r-values.

Let B(G4) denote the boundary of G4. If there exists no vertex in B(G4) that is in U0,
i.e., U0 ∩ B(G4) = ∅, then we argue that |U0| = |U1|. The reason is that since no vertex
of U0 is located on the boundary, every vertex in U0 has exactly four neighbors, each in a
different set U1, . . . , U4. Hence, for every vertex in U0 (i.e., a set that diagonalizes G4 and
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has the maximum size), there is a vertex in U1 (i.e., a set with that diagonalizes G4 and
has the minimum size). Therefore, it can be concluded that |U0| = |U1|.

Note that since 0 ≤ a, b < 5, at most one vertex in each row or column of G4 can be in
U0. Also, for any vertex u ∈ U0 that lies on the boundary of G4, one of the two following
cases happens: (i) vertex u is not on any corners of the grid and hence misses at most one
of its neighbors, or (ii) it is located on a corner of the grid and misses two of its neighbors.
If case (i) holds for all the vertices of U0 that are on the boundary, then vertices in U0 miss
at most four of their neighbors and each of the missing neighbors is on a different side of
the vertices in U0. If case (ii) happens for a vertex u ∈ U0 that lies on the boundary, then
u misses two of its neighbors. However, since it is located on both a row and a column, it
does not allow another vertex in U0 to be placed on that row or column. Therefore, similar
to the previous case, vertices in U0 have at most four missing neighbors and these missing
neighbors are on different sides of the vertices in U0. Hence they have different r-values.
Thus, each of them belongs to a different set U1, . . . , U4. Therefore, the size of U1 is at
most one less than the size of U0.

Now, note that sets U0, . . . , U4 partition the set V4; therefore, U0∪U1∪U2∪U3∪U4 = V4.
Moreover, we showed that the difference between the size of U0 and any other set among
U1 . . . U4 is at most one. Hence, we have 5|U0| − 4 ≤ |V4|, resulting in |U0| ≤ |V4|+4

5
. Recall

that G4 is an a× b grid and thus V4 = ab. Therefore it can be concluded that |U0| ≤ ab+4
5

and hence for any set U ′ that diagonalizes grid G4 we have |U ′| ≤ ab+4
5

. In particular,
|U ∩ V4| ≤ ab+4

5
; therefore, |(V1 ∪ V2 ∪ V3 ∪ V4) ∩ U | ≤ mn

5
− ab

5
+ ab+4

5
. In other words,

|U | ≤
⌈
mn
5

⌉
. �

Consider the greedy algorithm discussed in Section 1.4.1. Since at each step of this al-
gorithm, an undominated vertex that has the maximum number of undominated neighbors
is added to the dominating set, it might result in the same solution as projection and di-
agonalization. In the following lemma, we show that using a simple greedy algorithm does

not necessarily result in diagonalizing the grid or using at most
⌈
(m+2)(n+2)

5

⌉
dominating

vertices to dominate the grid.

Lemma 2.2 In the worst case, the size of the dominating set obtained by a greedy algo-
rithm on an m× n grid G is lower-bounded by

⌈
m
3

⌉ ⌈
n
3

⌉
+ 2

⌊
m
3

⌋ ⌊
n
3

⌋
.

Proof. As discussed in Section 1.4.1, after the first vertex v is added to the dominating
set S, the greedy algorithm chooses a vertex that does not share any neighbors with v, if
one exists. Although this is also a property of the diagonal patterns, we argue that they
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Figure 2.3: In Figure (a), after adding the black vertex to the dominating set, the next vertex that a
greedy algorithm adds to that set without dominating any vertex by two dominating vertices can be any
of the blue, red or green vertices. In Figure (b), a dominating set is built for another grid, by starting from
the black vertex and keep adding the green vertices shown in Figure (a) to the set. Each dotted rectangle
contains four vertices that are not dominating by the obtained dominating set.

will not have the same result. The set of all the vertices around v that can be added to
S using diagonal patterns has size at most four (see Figure 2.2(b)). However, there are 12
vertices around v that do not share any neighbors with v and hence are candidates to be
added to S in a greedy algorithm (Figure 2.3(a)). At each step of a greedy algorithm, one
of these 12 vertices is chosen arbitrarily. Choosing only all red vertices or all blue vertices
would start developing a diagonal pattern. Other combinations of candidate vertices would
fail to diagonalize the grid and in the end, some vertices of the graph would be dominated
by more than one dominating vertex. Hence, the size of the constructed dominating set

would be greater than
⌈
(m+2)(n+2)

5

⌉
.

In particular, the algorithm might add all the green vertices to S and repeat the same
pattern in the grid (Figure 2.3(b)). However, using this pattern, between any four green
vertices there remains a set of four vertices that are not dominated by any vertex in S.
These vertices are highlighted by dotted rectangles in Figure 2.3(b). To dominate each of
these sets of vertices, at least two extra dominating vertices should be added to S. There-
fore, the number of obtained dominating vertices would be at least

⌈
m
3

⌉ ⌈
n
3

⌉
+ 2

⌊
m
3

⌋ ⌊
n
3

⌋
,

which is much greater than the size of the dominating set obtained by diagonalization and

projection, i.e.,
⌈
(m+2)(n+2)

5

⌉
. �
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2.2 Distributed Grid Domination

In the preceding section, a centralized algorithm was discussed that produced a dominating

set S for a given m× n grid G such that |S| ≤
⌈
(m+2)(n+2)

5

⌉
. In this section, we show how

to achieve the same upper-bound in a distributed way.

2.2.1 Model and Notation

Here we assume that the environment is an m × n grid G = (V,E) with m,n ∈ N. The
goal is to dominate the grid environment in a distributed fashion using several robots
(or agents) without any knowledge of environment size. Initially, there exist k agents in
the environment, where k can be smaller or greater than the number of agents needed to
dominate the grid. The following assumptions are made for the grid and agents.

Grid Assumptions: Agents can be located only on the vertices of the grid and are
able to move between the grid vertices only on the edges of the grid. At each moment,
a vertex can contain more than one agent. We refer to the vertices using the standard
Cartesian coordinates defined in Section 1.1.

Agent Assumptions: The agents, denoted by a1, . . . , ak, are initially located at ar-
bitrary vertices on the grid. The agents have three modes: (a) sleep, (b) active, and (c)
settled. The mode of an agent a and the vertex it is located at are denoted by mode(a) and
v(a), respectively. Only agents in the active and settled modes are able to communicate.
At the beginning of the procedure, all the agents are in the sleep mode and throughout
the procedure it is assumed that they activate asynchronously. The activation sequence of
agents is arbitrary (e.g., it can be scheduled in advance or it can be random). During each
epoch, that is, a time interval with a specified length, one newly activated agent moves
along the edges of the grid to find a suitable vertex and settles on it. The active agent can
communicate with the settled agents to perform the distributed dominating set algorithm.
Once an agent activates and performs its part in the algorithm, it goes to settled mode.
Ultimately, all the settled agents go back to sleep mode and will not activate again.

Here, each agent is equipped with suitable angle-of-arrival (bearing) and range sensors.
Using these sensors, agent a computes the coordinates of other agents in its own coordinate
frame Σa with its origin at v(a) and an arbitrary orientation, fixed relative to agent a.
Each agent also has a compass to determine its heading direction. Additionally, agents are
equipped with short-ranged proximity sensors to sense the environment boundary. Agents
are able to sense the boundary only if they are on a vertex v whose neighbor is a boundary
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Figure 2.4: Non-activated agents are marked by black crosses and the already settled agents are shown
by black circles. Agents in cluster C have red crosses as their modules. Figure (a) shows the first active
agent, as in Step 6 of Algorithm 1. In Figure (b), an active agent is highlighted by a blue square. Step 13
of the algorithm is depicted in Figure (c), where a dashed blue square shows the closest valid slot to the
active agent. In Figure (d), the active agent moves to the valid slot and joins C, as in Step 15. In Figure
(e), the list of valid slots is updated as in Step 24 of the algorithm. In Figure (f), the grey circle shows an
agent that goes from settled to sleep mode, as in Step 26 of Algorithm 1.

vertex of the grid, i.e., N(v) ∩ B(G) 6= ∅. The compass helps agents to distinguish which
of the four boundary edges they are approaching.

2.2.2 Overview of Algorithm

The main idea in this algorithm is to implement the diagonal pattern defined in Section 2.1
on grid G = (V,E), using communications among active and settled agents. A special unit
called a module is defined for the active and settled agents. A module is a cross-like shape
consisting of the agent at its center with the associated dominated vertices in the arms
of the cross (see Figure 2.2(b)). For each module m, the vertex that contains the agent,
i.e., the center vertex, is referred to as the module center, denoted by c(m). As an agent
moves on the grid to contribute to the diagonal pattern, its module moves with it as well.
Modules m1 and m2 with module centers c(m1) = vi,j and c(m2) = vi′,j′ can connect to
each other if vi′,j′ ∈ {vi+1,j+2, vi+2,j−1, vi−1,j−2, vi−2,j+1} (see Figure 2.4(f)). This condition
is called the module connection condition. The set of centers of the connected modules is
called a cluster. We will later show that the module connection condition ensures that the
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Figure 2.5: Non-activated agents are marked by black crosses and the already settled agents are shown by
black circles, with red crosses as their modules. In Figure (a), a settled agent, highlighted by a solid blue
square, realizes one of its slots, shown by a dashed blue square, is outside the grid boundary. In Figure
(b), the settled agent replaces the slot outside the grid boundary with its orphan and name the resulting
set as its valid slots. In Figure (c), the active agent locates at the orphan.

module centers are a diagonalization of the vertices covered by the modules in the cluster.

Valid Slots: Let G′ = (V ′, E ′) be the super-grid of G. A vertex va,b ∈ V ′ is called a
slot if va,b is not already a center for a module in the cluster and there exists a module
m in the cluster with center vi,j such that va,b ∈ {vi+1,j+2, vi+2,j−1, vi−1,j−2, vi−2,j+1}. For
a settled agent a located at v(a), denote the set of all its slots by slots(a). Recall that
the orphan of a vertex v ∈ V ′\V , i.e., orphan(v), is a vertex u ∈ B(G) such that u ∈
N(v). The set of all valid slots for settled agent a, denoted by vslots(a), is defined as
(slots(a) ∩ V ) ∪ orphan(slots(a)\V ). Newly activated agents can settle only on the valid
slots of the settled agents.

Updating Valid Slots: When an active agent settles, it creates the list of its valid slots
as follows. If a settled agent a cannot sense the boundary (i.e., it has no neighbor on the
boundary), slots(a)\V = ∅ and hence vslots(a) = slots(a). Conversely, a settled agent can
also determine which of its slots lie outside the grid boundary (Figure 2.5(a)). Each newly
settled agent marks the vertices on the grid boundary that are neighbors of slots(a)\V as
orphans and so vslots(a) = (slots(a) ∩ V ) ∪ orphan(slots(a)\V ) (Figure 2.5(b)). By the
definition of valid slots, no valid slot exists in an orphan’s neighborhood. Therefore, each
orphan needs one agent to be located on itself or one of its neighbors to be dominated. For
simplicity we always put an agent on the orphan itself.

When an agent activates, it transmits a signal to find the settled agents on the grid
and waits for some specified time for a response from them. Since there is no settled agent
in the environment when the first agent activates, it receives no signal and concludes it is
the first one activated. Thus, the agent stays at its initial location and goes to the settled
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mode. Subsequently, each active agent translates to the closest settled agent.2

2.2.3 Distributed Grid Domination Algorithm

During the distributed grid domination algorithm, active agents can either contribute to
grid diagonalization by locating on non-orphan valid slots or can settle on orphans. In
each epoch, the set of the non-orphan vertices containing the previously settled agents is
called the cluster and is denoted by C, while the set of occupied orphans is denoted by
P . At the beginning of the algorithm C = P = ∅. It should be mentioned that C and P
are not saved by any agent, and are used only to aid in the presentation of the algorithm.
Moreover, we denote the set of all settled agents at each moment by As, where at the
beginning of the algorithm As = ∅. Also if agent a is already settled and is now in sleep
mode done(a) = 1, otherwise done(a) = 0. The distributed procedure for dominating grids
is reflected in Algorithm 1.

Remark 2.1 (Comments on Algorithm 1)
1) Since agents can move only on the grid edges, the distance between two vertices can
be computed simply by adding their x-coordinate and y-coordinate differences, i.e., ∆x
and ∆y. There exist many shortest paths between any two vertices of a grid and agent a
arbitrarily chooses one of them to traverse; for instance it can first traverse the x-coordinate
and then the y-coordinate.
2) Note that the algorithm can be applied even if the agents have different coordinate frames.
In Step 11 of the algorithm, agent a locates s in Σa (i.e., coordinate frame of a), while
vslots(s) is computed by s in Σs in Step 12. In Step 13, agent a converts the coordinates
of vslots(s) from Σs to Σa for traversing, using relative sensing techniques [31].
3) When an agent settles, all settled agents wait for a specified amount of time for the next
agent to activate. If no agent activates, Algorithm 1 halts and the previously settled agents
construct a subset of a dominating set of the grid. This happens when the initial number
of agents is not sufficient to dominate the grid.
4) If the agents are equipped with GPS, then they can agree on a fixed diagonalization (i.e.,
agree on a value of r), and move to the vertices U in that diagonalization. At this point,
only orphan vertices exist. The remaining agents can move along the boundary to find and
cover all orphans and consequently dominate the grid. Hence, in this thesis we study the
case that agents are not armed with GPS.

2Note that for completeness of the algorithm, it is not necessary for the active agents to go to the
closest settled agents. An active agent can go toward any arbitrary settled agent to occupy its valid slot.
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Algorithm 1: Distributed Grid Domination
Input: An m× n Grid and a set of agents A

1 while ∃ agent a ∈ A with mode(a) = sleep and done(a) = 0 do
2 mode(a) := active, a sends out signal to As (Figure 2.4(b)).
3 if As 6= ∅ then
4 At least one agent in As sends a signal out to a.

5 if a receives no signal then
6 mode(a) := settled (Figure 2.4(a)).
7 As := {a}.
8 C := {v(a)}.
9 Skip to Line 22.

10 if vslots(As) 6= ∅ then
11 Agent a computes the closest settled agent s ∈ As and notifies As.
12 Agent s sends the coordinates of vslots(s) to a.
13 Agent a moves toward the closest v ∈ vslots(s).
14 if v(a) = v then
15 mode(a) := settled (Figure 2.4(d)).
16 As := As ∪ {a}.
17 if v(a) and v(s) satisfy the module connection condition then
18 C := C ∪ {v(a)}.
19 else
20 P := P ∪ {v(a)} (Figure 2.5(c)).
21 mode(a) := sleep.

22 for i = 1→ |As| do
23 if v(As(i)) ∈ C and mode(As(i)) 6= sleep then
24 Update vslots(As(i)) (Figures 2.4(e)).
25 if vslots(As(i)) = ∅ then
26 mode(As(i)) := sleep (Figure 2.4(f)).
27 done(As(i)) := 1.

28 else
29 Break.

30 The remaining non-activated agents leave the grid.
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2.2.4 Analysis of Distributed Grid Domination Algorithm

We now prove that the set of vertices determined by Algorithm 1, i.e., C ∪ P , creates a
dominating set for the grid. Recall that at each epoch, C is the set of non-orphan vertices
containing the previously settled agents and P is the set of occupied orphans.

Lemma 2.3 During the operation of Algorithm 1, the module connection condition forces
the vertices in C to create a diagonal pattern.

Proof. This will be proved using induction on the size of C during the operation
of the algorithm. According to the module connection condition, the module of agent
a located at vertex v(a) = vi′,j′ /∈ C can connect to the module of vertex vi,j ∈ C if
vi′,j′ ∈ {vi+1,j+2, vi+2,j−1, vi−1,j−2, vi−2,j+1}. The base of induction is |C| = 0, when the first
agent is about to be added to C. In this case, the first agent settles at its current location
v(a) = vi,j and establishes the value r ≡ j − 2i (mod 5).

For |C| > 1, C already has a diagonal pattern and an active agent a at v(a) = vi′,j′ aims
to join it by connecting to a module centered at vi,j. Since vi,j is already in C, j − 2i ≡ r
(mod 5). It can be seen that for a vertex vi′,j′ that satisfies the module connection condi-
tion with respect to vi,j we have j′ − 2i′ ≡ r (mod 5). Therefore, the resulting set has a
diagonal pattern. �

Theorem 2.3 The number of agents used to dominate an m × n grid G = (V,E) by

Algorithm 1 is upper-bounded by
⌈
(m+2)(n+2)

5

⌉
. For grids with 16 ≤ m ≤ n, the number of

agents used is upper-bounded by γm,n + 5.

Proof. We first prove Algorithm 1 is correct and then show the upper-bound holds.
Let G′ = (V ′, E ′) be the super-grid of G and C denote the non-orphan vertices occupied
by previously settled agents when the algorithm finishes. By Lemma 2.3, C constitutes a
diagonal pattern and by the condition in Step 10 of the algorithm no other agent can be
added to C; therefore, C diagonalizes G. Moreover, orphans are neighbors of the vertices
in V ′\V that are initially detected as slots by the settled agents and hence diagonalize G′

by Lemma 2.3. Thus, locating one agent on each orphan is equivalent to the projection
process. Hence, if a sufficient number of agents exist in the grid, Algorithm 1 provides
a dominating set for G (from Theorem 2.2). Consequently, the algorithm is complete,
meaning it always finds a solution, if one exists.
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(a) (b) (c)

Figure 2.6: A 10× 15 grid is depicted with agents shown in blue. In Figure (a) the initial configuration of
the agents is shown and Figure (b) demonstrates the agents configuration when Algorithm 1 is finished.
In Figure (c), all non-settled and non-asleep agents leave the grid.

Furthermore, since Algorithm 1 performs diagonalization and projection on G, from
Theorem 2.2 it immediately follows that the number of agents used in the algorithm,

na, is upper-bounded by
⌈
(m+2)(n+2)

5

⌉
. Also by Theorem 2.1, for 16 ≤ m ≤ n we have

na − γm,n ≤ 5. �

Note that while the agents do not form a dominating set for G, an active agent finds a
valid slot in at most n+m steps. A step is a specified time duration within which an agent
performs its basic operation, such as traversing an edge or transmitting signals. Since the
number of agents needed to dominate an m× n grid is less than mn, Algorithm 1 takes at
most mn(m+ n) steps to construct a dominating set for G.

2.2.5 Simulations

To augment and examine the results discussed in this section, we simulated Algorithm 1
on various grids and different initial configurations of agents on grid vertices. Figure 2.6(a)
demonstrates a 10× 15 grid graph with 41 agents located randomly on it. The first agent
that activates is located on vertex (5, 9) and hence stays on that vertex. Figure 2.6(b)
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shows the location of the agents when Algorithm 1 is complete. It can be seen that every
vertex is dominated. However, there are some agents located at vertices (such as (6, 5),
(6, 12) and (7, 15)) that are never activated in the algorithm. These are the additional
agents that are not required to dominate the grid and they are removed in Figure 2.6(c).

2.3 k-Distance Domination on Grids

In this section, we generalize the centralized algorithm for grid domination discussed in
Section 2.1 to the k-distance dominating set problem, where a vertex dominates all the
vertices within distance k from it. Before defining the problem formally, let d(u, v) denote
the shortest path distance between vertices v, u ∈ V in G = (V,E). Moreover, vertex u ∈ V
is defined as a k-neighbor of vertex v ∈ V , if 0 < d(u, v) ≤ k. The set of all k-neighbors of
v is denoted by Nk(v). Moreover, for a set of vertices W ⊂ V and a vertex v ∈ V \W , we
have u = friendk(v,W ) if (i) u ∈ W , (ii) u ∈ Nk(v), and (iii) d(v, u) ≤ d(v, w),∀w ∈ W . In
other words, u = friendk(v,W ) if u is the closest vertex in W to v that is within distance
k from v.

Definition 2.5 (k-Distance Dominating Set Problem) Given a graph G = (V,E), a k-
distance dominating set is a set of vertices S ⊆ V such that for any vertex v ∈ V \S, there
exists a vertex u ∈ S where u ∈ Nk(v). In the k-distance dominating set problem, the goal
is to find a k-distance dominating set that has minimum cardinality. The cardinality of a
smallest k-distance dominating set for G is called the k-distance domination number of G
and is denoted by γk(G) [19].

We say that vertex u ∈ S k-distance dominates v ∈ V \S if d(u, v) ≤ k. The regular
dominating set problem is a special case of the k-distance dominating set problem, where
k = 1. Therefore, k-distance domination is also NP-hard on general graphs. However, to
the best of our knowledge the k-distance domination number of grids is not known and
the complexity of the problem is open. In Section 2.3.1, we generalize the approaches in
Sections 2.1 and 2.2 to provide a k-distance dominating set for an m× n grid graph G.

2.3.1 Centralized k-Distance Domination on Grids

Before discussing the k-distance domination algorithms on grids we introduce the following
definitions.
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Definition 2.6 (k-Sub-Grids and k-Super-Grids) An m × n grid G = (V,E) is called a
k-sub-grid of an m′ × n′ grid G′ = (V ′, E ′) if G is induced by vertices v′i,j ∈ V ′, where
k+ 1 ≤ i ≤ m′− k and k+ 1 ≤ j ≤ n′− k. If G is a k-sub-grid of G′, then G′ is called the
k-super-grid of G.

Definition 2.7 (k-Boundary) For an m × n grid G = (V,E), the k-boundary, denoted
by Bk(G), is defined as the set of vertices of G that are not in the k-sub-grid of G, denoted
by G′ = (V ′, E ′), i.e., Bk(G) = V \V ′.

Lemma 2.4 For an m× n grid G = (V,E), we have |Nk(v)| ≤ 2k2 + 2k + 1.

Proof. Since G is a grid, the k-neighbors of v form a diamond around it with a diameter
of 2k + 1 (see the red regions in Figure 2.7). Thus |Nk(v)| is upper-bounded by the area

of this region, which is
⌈
(2k+1)2

2

⌉
= 2k2 + 2k + 1. �

In what follows we define Nk
max = 2k2 + 2k + 1.

Definition 2.8 (k-Diagonal Pattern) A set of vertices U ⊂ V constitutes a k-diagonal
pattern on grid G = (V,E) if there exists a fixed 0 ≤ r < Nk

max, r ∈ Z≥1 such that for any
vertex vx,y ∈ U we have ky − (k + 1)x ≡ r (mod Nk

max) (see Figure 2.7).

Definition 2.9 (k-Diagonalization) A set of vertices U ⊂ V k-diagonalizes grid G =
(V,E) if it constitutes a k-diagonal pattern and there exists no vertex v ∈ V \U that can be
added to U so that U remains a k-diagonal pattern.

Moreover, for a grid G = (V,E) and its k-super-grid G′ = (V ′, E ′), the k-projection is
defined as a special mapping from a subset of vertices in V ′\V to their k-neighbors in V .
It is defined formally as follows.

Definition 2.10 (k-Projection) Consider a grid G = (V,E) and its k-super-grid G′ =
(V ′, E ′). The k-projection for a set U ′ ⊆ V ′ is defined as the set U ′′ =

⋃
v∈U ′\V

{friendk(v, V )}∪

(U ′ ∩ V ) (see Figure 2.8).
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Figure 2.7: A 2-diagonal pattern and a 3-diagonal pattern are depicted. Observe that the structure is
similar to the regular diagonal pattern.

Lemma 2.5 Let U be a set of vertices that k-diagonalizes a grid G = (V,E). For any two
vertices vx,y, vx′,y′ ∈ U we have d(vx,y, vx′,y′) ≥ 2k + 1.

Proof. Since vx,y, vx′,y′ ∈ U , we have y = 1
k
((k+ 1)x+ r+ qNk

max) and y′ = 1
k
((k+ 1)x′+

r + q′Nk
max), where r, q, q′ ∈ Z and 0 ≤ r < Nk

max. We define ∆q = q′ − q, ∆x = x′ − x
and ∆y = y′ − y = k+1

k
∆x + Nk

max

k
∆q. The shortest distance between vx,y, vx′,y′ is equal to

|∆x| + |∆y|. From ∆y = k+1
k

∆x + Nk
max

k
∆q it can be observed that as ∆x grows, ∆y grows

faster compared to ∆x. Hence |∆x|+ |∆y| is minimum when ∆y = 0 and |∆x| = |N
k
max

k+1
∆q|.

Note that the minimum (non-zero) distance occurs for ∆q = 1 and also is an integer, hence

it is lower-bounded by
⌈
2k2+2k+1

k+1

⌉
= 2k + 1. �

Lemma 2.6 Consider a grid G = (V,E) and its k-super-grid G′ = (V ′, E ′). If U ′ ⊂ V ′

k-diagonalizes G′, then each vertex in V is k-distance dominated by exactly one vertex from
U ′.

Proof. For each vertex vx,y ∈ V , let rvx,y ≡ ky − (k + 1)x (mod Nk
max). Consider any

vertex v ∈ V and its k-neighborhood Nk(v). The distance between any two vertices in
J = {v} ∪ Nk(v) is at most 2k. Also, there are exactly Nk

max vertices in this set. Thus,
for any two distinct vertices u,w ∈ J we have ru 6= rw by Lemma 2.5. Hence each vertex
u ∈ Nk(v) has a distinct value of ru. Consequently, for the value of r that corresponds to
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Figure 2.8: A 16× 16 grid G and its 2-super-grid G′ are shown by solid and dashed squares, respectively.
Both grids are 2-diagonalized. The black circles are the vertices that 2-diagonalize G. The union of the
red and black circles 2-diagonalizes G′. The green circles are the 2-projections of the red circles onto G.
Before projection the currently green vertices are called orphans.

the diagonalization U ′, there is exactly one vertex in the k-neighborhood of v such that
rv = r and thus v is k-distance dominated by exactly one vertex from U ′. �

Lemma 2.7 If a set of vertices U ⊂ V k-diagonalizes an m× n grid G = (V,E), then U

contains at most
⌈

mn
Nk

max
+ k
⌉

vertices.

Proof. Similar to the proof of Lemma 2.1, we partition the set of vertices of grid G
and argue about the number of vertices of U that lies in each of those partitions. Since
U k-diagonalizes G, it constitutes a k-diagonal pattern on G such that no more vertices
can be added to it while maintaining a k-diagonal pattern. Therefore, among each Nk

max

consecutive vertices in any row or column there is exactly one vertex from U . Hence, the

number of vertices of U in a row/column of t vertices is at most
⌈

t
Nk

max

⌉
.

Thus, there are at most Nk
max vertices from U in any Nk

max ×Nk
max grid. Hence, in any

(qNk
max) × (pNk

max) grid with p, q ∈ Z≥1, there are at most pqNk
max vertices from U . For
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an m × n grid G = (V,E) with m = qNk
max + a, n = pNk

max + b and 0 ≤ a, b < Nk
max, we

partition V into the following four sets:

V1 = {vi,j| 1 ≤ i ≤ qNk
max, 1 ≤ j ≤ pNk

max},

V2 = {vi,j| qNk
max + 1 ≤ i ≤ m, 1 ≤ j ≤ pNk

max},

V3 = {vi,j| 1 ≤ i ≤ qNk
max, pN

k
max + 1 ≤ j ≤ n},

and
V4 = {vi,j| qNk

max + 1 ≤ i ≤ m, pNk
max + 1 ≤ j ≤ n}.

As stated, |V1 ∩ U | ≤ pqNk
max. Grid V2 has a columns each having pNk

max vertices, hence
|V2 ∩ U | ≤ pa. Similarly, we have |V3 ∩ U | ≤ qb. In summary, we so far have |(V1 ∪ V2 ∪
V3) ∩ U | ≤ pqNk

max + qb+ pa. Note that pqNk
max + qb+ pa = mn

Nk
max
− ab

Nk
max

.

It remains to upper-bound |V4∩U |. By an argument similar to the proof of Lemma 2.1

we show that |V4∩U | ≤ ab+(Nk
max−1)k

Nk
max

. Let G4 = (V4, E4) denote the grid induced by the set

of vertices V4 and observe that |V4 ∩ U | k-diagonalizes this grid. There are Nk
max different

subsets of vertices of G4 that k-diagonalize it, each with a different r-value. We denote
these sets by U0, U1, . . . , UNk

max−1. Without loss of generality assume that U0 and U1 have

the maximum and minimum sizes among these sets. By showing that |U0| ≤ ab+(Nk
max−1)k

Nk
max

we can conclude that |V4 ∩ U | ≤ ab+(Nk
max−1)k

Nk
max

.

Consider the case that no vertex in U0 is in Bk(G4), that is, the k-boundary of G4.
By an argument similar to the one provided in the proof of Lemma 2.1, it can be seen
that in this case |U0| = |U1|. Moreover, since the dimensions of G4, i.e., a and b, are less
than Nk

max, at most one vertex of any row or column of G4 is in U0. We now argue that
|U0| − |U1| ≤ k.

Let the vertices in U1 be written of the form vx+i,y+j for some x, y ∈ Z1 such that the
value of y − 2x modulo Nk

max corresponds to the r-value associated with set U0 and i and
j are integers such that −k ≤ i, j ≤ k, −k ≤ i + j ≤ k and i + j 6= 0. Assuming i, j < 0
(the other three cases can be analyzed similarly), the only vertices in U0 that are missing
neighbors from U1 are those that are either in the |j| bottommost rows of the k-boundary
of G4 or in the |i| leftmost columns of the k-boundary. Recall that |i+ j| ≤ k; hence, there
are at most k such rows and columns in total. Also, each of these rows/columns contains
at most one vertex of U0. Hence, |U0| − |U1| ≤ k.

Since sets U0, . . . , UNk
max−1 partition the set of vertices of G4, |U0| + . . . + |UNk

max−1| =
|V4| = ab. Moreover, we showed that for any i ∈ {1, . . . , Nk

max − 1}, |Ui| ≥ |U0| − k;
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therefore, we have Nk
max|U0| − (Nk

max − 1)k ≤ ab. Thus, |V4 ∩ U | ≤ |U0| ≤ ab+(Nk
max−1)k

Nk
max

.

Combining this with |(V1 ∪ V2 ∪ V3) ∩ U | ≤ mn
Nk

max
− ab

Nk
max

and the fact that k < Nk
max, we

have |(V1 ∪ V2 ∪ V3 ∪ V4) ∩ U | ≤ mn
Nk

max
+ (Nk

max−1)k
Nk

max
=
⌈

mn
Nk

max
+ k
⌉
. �

Theorem 2.4 For an m × n grid G = (V,E), a k-distance dominating set S ⊂ V can
be constructed using k-diagonalization and k-projection in polynomial-time such that |S| ≤⌈
(m+2k)(n+2k)

Nk
max

+ k
⌉

.

Proof. The proof follows from Lemmas 2.4, 2.6 and 2.7 and by replacing the diagonal-
ization and projection operations with the k-diagonalization and k-projection operations
in the proof of Theorem 2.2 [11]. �

Lemma 2.8 If S ⊂ V is a k-distance dominating set for an m× n grid G = (V,E), then

|S| ≥
⌈

mn
Nk

max

⌉
.

Proof. According to Lemma 2.4, a vertex v ∈ V k-distance dominates at most Nk
max

vertices. Hence, at least
⌈

mn
Nk

max

⌉
dominating vertices are needed to k-distance dominate

an m × n grid. Note that we use |S| ≥
⌈

mn
Nk

max

⌉
instead of |S| ≥

⌊
mn
Nk

max

⌋
since dominating

vertices in the k-neighborhood of vertices on the grid boundary do not have all their k-
neighbors in V . �

Corollary 2.2 Let S be a k-distance dominating set for an m×n grid G = (V,E) obtained
by k-diagonalization and k-projection and let L denote the lower-bound for the size of
set S from Lemma 2.8. For any constant k ∈ Z≥1, the approximation ratio |S|

L
satisfies

limn,m→∞
|S|
L

= 1.

Proof. From Theorem 2.4 and Lemma 2.8, we have

|S|
L
≤
⌈
(m+ 2k)(n+ 2k)/Nk

max + k
⌉

dmn/Nk
maxe

.

36



Therefore,
(m+ 2k)(n+ 2k)/Nk

max + k

mn/Nk
max + 1

≤ |S|
L
,

and
|S|
L
≤ (m+ 2k)(n+ 2k)/Nk

max + k + 1

mn/Nk
max

.

Hence, we have
(m+ 2k)(n+ 2k) + kNk

max

mn+Nk
max

≤ |S|
L
,

and
|S|
L
≤ (m+ 2k)(n+ 2k) + (k + 1)Nk

max

mn
.

For constant k we have

lim
n,m→∞

(m+ 2k)(n+ 2k) + kNk
max

mn+Nk
max

= lim
n,m→∞

(m+ 2k)(n+ 2k) + (k + 1)Nk
max

mn
= 1.

Therefore by the Squeeze Theorem limn,m→∞
|S|
L

= 1. �

Recall from Section 1.1 that for a graph G, its k-th power, denoted by Gk = (V ′, E ′),
is a graph with the same vertex set as G, i.e., V = V ′, in which two distinct vertices are
connected by an edge if and only if their distance in G is at most k. Hence, in Gk each
vertex is connected to the vertices it k-distance dominates in G. We finish this section
with the following remark that relates the k-distance dominating set problem in grids to
the regular dominating set problem in their k-th power graphs.

Remark 2.2 (k-th Power of Grids) It might seem that a reasonable approach for k-
distance domination on a grid G = (V,E) is to simply take the k-th power of the grid
to obtain Gk, and then perform regular domination algorithms on Gk. Note that by the
definition of Gk, a regular dominating set in Gk is equivalent to a k-distance dominating
set in G and hence γ(Gk) = γk(G). Unfortunately, Gk is no longer a grid (e.g., there
are diagonal edges connecting vx,y to vx+1,y+1 for k ≥ 2). In fact, it is not even a planar
graph for m × n grids with m,n ≥ 2. Therefore, as discussed in Section 1.4.1, choosing
dominating vertices greedily in Gk might obtain a dominating set with size as large as
O(log(|V |))γk(G).
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2.3.2 Distributed k-Distance Domination on Grids

Using the algorithm explained in Section 2.3.1, a distributed k-distance domination al-
gorithm can be designed for grids. In practice, the k-distance dominating set problem
corresponds to settings where agents are equipped with longer range sensory equipment
and can sense vertices up to distance k from them. Therefore, the goal is to arrange the
agents on the grid vertices in a distributed way such that for each vertex there exists at
least one agent with distance at most k from it.

This algorithm is similar to Algorithm 1 in Section 2.2.3, except for two modifications.
The first modification is that in the distributed k-distance domination, module m2 and
module m1 with module centers c(m1) = vi,j and c(m2) = vi′,j′ can now connect to each
other if vi′,j′ ∈ {vi+k,j+k+1, vi+k+1,j−k, vi−k,j−k−1, vi−k−1,j+k} (see Figure 2.7). These con-
stitute the slots. The second modification is the definition of orphans. If U ′ is a set of
vertices that k-diagonalizes the k-super-grid of G, then vertex v ∈ V is an orphan if it
satisfies the two following conditions: (i) v has no k-neighbor in U ′∩V , and (ii) v is in the
k-neighborhood of a vertex u ∈ U ′\V with the same x or y coordinates. Hence, valid slots
are defined for each settled agent as the union of its slots located inside the grid and the
orphans of its slots located outside the grid (see Figure 2.8).
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Chapter 3

Robustness Problem

As discussed in Chapter 1, the notion of robustness was first introduced in [23] as a topo-
logical property in graphs. Before discussing this concept, some preliminary definitions
should be provided. Consider a simple undirected graph G = (V,E). We say that the
connectivity of G is c if and only if for any two vertices u, v ∈ V there are at least c pair-
wise disjoint paths that connect them. Also, from Definition 1.1 recall that a nonempty
subset of vertices A ⊂ V is said to be r-reachable if there exists a vertex u ∈ A such that
u has at least r neighbors that are not in A, i.e., |N(u)\A| ≥ r, where r ∈ Z≥0. Moreover,
as discussed in Definition 1.2, graph G is r-robust if for any two nonempty and disjoint
subsets of its vertices A,B ⊂ V , at least one of them is r-reachable, where again r ∈ Z≥0.
In other words, graph G is r-robust if for any ∅ 6= A,B ⊂ V such that A ∩ B = ∅, there
exists a vertex u ∈ A ∪B so that u has at least r neighbors outside its containing set.

A natural question is given a graph G and a number r, how hard is it to determine
whether G is r-robust? One can formalize this decision problem into an optimization
problem and ask to find the largest value of r for which a given graph G is r-robust. In
the next section, we formally define these problems and discuss their hardness. Before
going through those results, let us show the relation between the notion of robustness and
connectivity in the following lemma.

Lemma 3.1 If a graph G = (V,E) is r-robust, then the connectivity of G is at least r [23].

Proof. Assume, by the way of contradiction, that the connectivity of G is less than r.
Hence, there exists a subset of vertices S ⊂ V with cardinality less than r whose removal

39



results in several disjoint connected components. Take any two of these components and
let A and B denote their set of vertices. Now, consider the same subset of vertices in G
and call them sets A′ and B′. It can be observed that neither of these sets are r-reachable;
otherwise, there is vertex u in A′ or B′ with at least r neighbors outside its set. Since the
size of the removed subset of vertices is less than r, then u has neighbors in other disjoint
connected components caused by the removal of S which contradicts the disjointness of
those components. �

In the rest of this chapter, we study the complexity of the robustness problem and show
that it lies in the complexity class coNP-complete. Furthermore, we discuss a short result
on the hardness of approximating a problem closely related to the robustness problem,
which is defined in the following section.

3.1 Complexity of Determining Degree of Robustness

in General Graphs

The following simple result establishes the complexity of checking whether a given graph
is 1-robust.

Lemma 3.2 A graph G is 1-robust if and only if it is 1-connected.

Proof. By Lemma 3.1, we know that 1-robustness implies 1-connectedness; hence, we
just need to prove the opposite statement. If the graph is 1-connected, then every subset
of its nodes has at least one neighbor outside that set; otherwise, the graph will be discon-
nected. Thus, for every pair of disjoint and nonempty sets, each of them contains at least
one node with at least one neighbor outside its set and so the graph is 1-robust. �

Since there exist polynomial time algorithms to determine graph connectivity [12], 1-
robustness can be checked in polynomial time. However, in the rest of this section we will
show that finding whether general graphs are r-robust for r ≥ 2 is coNP-hard. This is
done by showing that a problem closely related to the robustness problem is NP-hard in
general graphs. Before discussing the reduction, recall from Chapter 1 that for a graph
G = (V,E), a cut C = (S, V \S) is defined as a partition of nodes of G into two nonempty
subsets S ⊂ V and V \S. The cut-set of a cut C = (S, V \S) is defined as the subset of the
edges of G with one endpoint in S and the other in V \S. We now can define the robustness
and r-robustness problems formally.
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Definition 3.1 (Robustness and r-Robustness Problems) Given a connected graph
G, the robustness problem determines the largest value of r such that G is r-robust. The
r-robustness problem is the decision version of the robustness problem that determines
whether graph G is r-robust for a given r ∈ Z≥1.

If a graph is not r-robust, then there exist two nonempty and disjoint subsets of nodes
A and B such that all nodes in these sets have at most r − 1 neighbors outside their
containing sets. Note that nodes in set X = V \(A∪B) can have any number of neighbors
outside X. In other words, if one claims that a graph is r-robust, then there is no apparent
way to prove this without checking all pairs of disjoint and nonempty subsets of vertices of
that graph and showing that at least one set in each pair is r-reachable. This is intractable
as the number of such subsets is exponential in the size of the input graph. On the other
hand, to prove that a graph is not r-robust, one only needs to provide one pair of disjoint
and nonempty subsets of vertices such that neither of them are r-reachable. Therefore,
in the r-robustness problem, the ‘No’ instances (input graphs that are not r-robust) have
certificates that can be checked in polynomial time. Thus, the r-robustness problem is in
the complexity class coNP [3].

The complexity of the robustness problem is equivalent to the complexity of the r-
robustness problem within a factor of O(log n) (as a binary search can be used for finding
the largest value of r for which the graph is r-robust). To prove the coNP-completeness
of the r-robustness problem, we instead show that the complement of the r-robustness
problem, which we call the “ρ-degree cut problem”, is NP-hard. Note that the complement
of a decision problem is obtained by reversing the ‘Yes’ and ‘No’ answers of all input
instances. In other words, if problems P1 and P2 are complements, then the output of
P1 to an input instance is ‘Yes’ if and only if the output of P2 to that instance is ‘No’.
Therefore, the complement of a problem in NP is in coNP, and vice versa. Hence, the
ρ-degree cut problem, formally defined below, is in NP.

Definition 3.2 (ρ-Degree Cut Problem) Given a connected graph G = (V,E), the ρ-
degree cut problem determines whether there exist two nonempty and disjoint subsets of
vertices A,B ⊂ V such that each vertex in A (resp. B) has at most ρ neighbors outside A
(resp. B), where ρ ∈ Z≥0.

It can be shown that if a problem is NP-hard, then its complement is coNP-hard
(see [3] for a detailed discussion on complexity classes NP and coNP). Hence, instead
of directly showing that the r-robustness problem is coNP-complete we show that its
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complement, i.e. the ρ-degree cut problem, is NP-hard. Moreover, recall that the r-
robustness problem is in coNP; therefore, knowing that the ρ-degree cut problem is NP-
hard it can be concluded that the r-robustness problem is coNP-complete. To prove the
NP-hardness of the ρ-degree cut problem we first study the hardness of a relaxed version
of this problem called the relaxed-ρ-degree cut problem, defined as follows.

Definition 3.3 (Relaxed-ρ-Degree Cut Problem) The relaxed-ρ-degree cut problem
determines whether there exists a cut C = (A, V \A) in a given graph G such that each
node of the graph is incident to at most ρ edges in the cut-set, where ρ ∈ Z≥0.

Note that the relaxed-1-degree cut problem is equivalent to a known problem called
the “matching-cut problem” in which the goal is to find whether there exists a cut in the
graph which is also a matching, i.e., the edges in the cut-set form a matching [29]. By the
definition of matching, a set of edges form a matching if and only if they do not share an
endpoint [12]. It can be seen that this is the same as the definition of the relaxed-1-degree
cut problem and hence the two problems are equivalent. Moreover, in [29] it is shown that
the matching-cut problem is NP-complete via a reduction from NAE3SAT [33]. By the
equivalence of the relaxed-1-degree cut problem and the matching-cut problem, this shows
the NP-hardness of the relaxed-1-degree cut problem as well. However, in order to prove
the NP-hardness of the 1-degree cut problem (and subsequently the ρ-degree cut problem),
we will need some alterations to the proof in [29]. We will thus start by modifying the
reduction in [29] from NAE3SAT to the matching-cut problem (or the relaxed-1-degree cut
problem) and then extend that to prove the NP-hardness of the 1-degree cut problem and
eventually the ρ-degree cut problem. We start by defining NAE3SAT formally [33].

Definition 3.4 (NAE3SAT) For a set of clauses each containing three literals from a set
of boolean variables in Conjunctive Normal Form (CNF), NAE3SAT determines whether
there exists a truth assignment of the variables so that each clause contains at least one
true and one false literal.

It was shown by Shaefer in [33] that NAE3SAT is NP-complete. Here, we discuss a
reduction from NAE3SAT to the relaxed-1-degree cut problem by constructing a graph
G(φ) for any given CNF formula φ such that G(φ) has a relaxed-1-degree cut (i.e., G(φ)
has a cut where each vertex of the graph is incident to at most one edge in the cut-set)
if and only if φ can be satisfied within the NAE3SAT constraints. Let formula φ consist
of m clauses C1, . . . , Cm, where each clause contains three literals from the set of variables
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Figure 3.1: The True-block and False-block in the construction of G(φ). Each block is a complete subgraph
with 4m+ t vertices.

X = {x1, . . . , xt}. The construction of graph G(φ) from a given CNF formula φ is as
follows.

We first build two blocks, where each block is a complete graph of 4m + t vertices.
The upper and lower blocks are labeled the True-block and False-block, respectively, as
illustrated in Figure 3.1. We complete the construction of G(φ) by adding subgraphs
representing the variables and clauses of φ to these blocks in such a way that if G(φ) has
a relaxed-1-degree cut, then there exists a cut that separates the two blocks by cutting
through these subgraphs and partitioning the vertices into two sets that are 1-reachable
but not 2-reachable.

The subgraphs to be added to the blocks are of two types: (i) variable-gadgets, and (ii)
clause-gadgets. A variable-gadget is incorporated for each variable xi ∈ X. This gadget
contains two vertices representing xi and x̄i (the binary complement of xi), each connected
to the True and False-blocks as illustrated in Figure 3.2(a). Moreover, for each clause in
φ, a clause-gadget is constructed by connecting three nodes (each representing a literal
of the clause) in addition to some extra nodes to the True and False-blocks as depicted
in Figure 3.2(b). Finally, there are edges, called the ‘intermediate edges’, connecting each
literal-node in each clause-gadget to its corresponding variable-node in the variable-gadgets.
An example of G(φ) for x̄1 ∨ x2 ∨ x3 is demonstrated in Figure 3.3.

If graph G(φ) has a relaxed-1-degree cut, then there exists a cut C = (A, V \A) that
partitions the nodes of G(φ) into two sets A and B = V \A such that no node of the graph
has more than one neighbor outside its set. In the following lemmas, we show that this
cut C satisfies some useful properties (all of these lemmas assume that graph G(φ) has a
relaxed-1-degree cut and pertain to the cut C = (A,B) just described).
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Figure 3.2: Figure (a) demonstrates the variable-gadget for variable xi, and (b) shows the clause-gadget
for clause x̄i ∨ xj ∨ xk.

Lemma 3.3 Let T (resp. F ) be the set of all the vertices in the True-block (resp. False-
block) of graph G(φ). Then, T ⊆ A or T ⊆ B (resp. F ⊆ A or F ⊆ B).

Proof. Since each block is a complete graph with more than three nodes, cut C = (A,B)
cannot separate the nodes in the same block; otherwise, there exists a node in the block
that has at least two neighbors outside its own set. �

By the above lemma, cut C cannot go through the True and False-blocks of G(φ). We
assign true values to the vertices in the variable and clause-gadgets that are left connected
to the True-block by C and false values to the others, i.e., vertices that are left connected
to the False-block by C.

Lemma 3.4 Cut C = (A,B) has the following two properties:

1. For each variable-gadget, cut C leaves the variable-node and its negation node in
opposite sets, i.e., they have opposite truth assignments.

2. For each clause-gadget, cut C leaves at least one literal-node in set A and one literal-
node in B, i.e., at least one literal-node has true assignment and one has false as-
signment.
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Figure 3.3: The construction of clause x̄1 ∨ x2 ∨ x3 with each literal-node connected to its corresponding
variable-node in the variable-gadgets.

Proof. By Lemma 3.3, there are only two cases to consider: (i) all nodes in both the
True and False-blocks are in A (or in B), and (ii) all nodes in the True-block are in A and
all nodes in the False-block are in B (or vice versa).

In case (i), if there exists a node from a variable-gadget in set B, then that node
immediately has at least two neighbors in A, contradicting the definition of cut C (see
Figure 3.2(a)). Similarly, it can be argued that in this case no node of any clause-gadget
can be in set B (see Figure 3.4). The vertices labeled 1, 2, 3, 7, 8 and 9 cannot be in B
since they would have at least two neighbors in A otherwise. Since vertices 2, 3, 7 and
8 are in A, vertices 4 and 6 cannot be in B either. Thus vertex 5 should also be in A;
otherwise, it violates the definition of cut C.

Hence, the only possibility is that all nodes in variable-gadgets and clause-gadgets are
in A. This makes B empty and violates the definition of cut C. Thus, case (i) cannot hold
and it only remains to study case (ii).

In case (ii), if both nodes of a variable-gadget are in the same set (say A), then a node
from the False-block in set B has two neighbors in A (as seen in Figure 3.2(a)). This
contradicts the definition of cut C. The only possible cuts through variable-gadgets for
this case are shown in Figure 3.5, which leave any variable-node and its negation node on
opposite sides of C and thus concludes the first property in the lemma.

Moreover, in case (ii) suppose all three literal-nodes of a clause-gadget are in set A (the
case that all three literal-nodes of a clause-gadget are in B can be handled via identical
arguments). Since the vertex labeled 5 (in Figure 3.4) is in set A, then to respect the prop-
erties of cut C, at least one of its neighbors should also lie in A. Without loss of generality
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Figure 3.4: All the nine vertices in a clause-gadget are labeled.

Figure 3.5: The only two possible cuts through a variable-gadget resulting in all nodes having at most one
neighbor on opposite sides of the cut.

due to symmetry, assume that vertex 4 is in A. This implies that vertex 2 is also in A; oth-
erwise, cut C results in a 2-reachable set. Finally, since both vertices 1 and 2 are in A, the
vertex in the False-block connected to both of them has two neighbors in A. This contra-
dicts the definition of C; thus C cannot leave all literal-nodes in a clause-gadget in the same
set. The only possible cuts through clause-gadgets for this case are the ones illustrated
in Figure 3.6. It can be seen that none of these six cuts leaves all three literal-nodes of a
clause-gadget on one side of the cut. Hence the second property in the lemma also holds. �

Lemma 3.5 All literal-nodes have the same truth values as their corresponding variable-
nodes.
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Figure 3.6: The six allowed cuts through the clause-gadget shown in Figure 3.2(b) that result in two
1-reachable but not 2-reachable sets.

Proof. First, note that a literal-node has the same truth value as its corresponding
variable-node if and only if they lie on the same side of cut C = (A,B). In the proof of
Lemma 3.4, it was shown that the only possible case for the True and False-blocks is the
case that all nodes in the True-block are in A and all nodes in the False-block are in B (or
vice versa).

In this case, assume that there exists a variable-node x in set A such that its correspond-
ing literal-node lies in set B (the case that the variable-node is in B and the corresponding
literal-node is in A can be analyzed similarly). Then, node x has the following two neigh-
bors in set B: its corresponding literal-node and the node in the False-block that it is
connected to (see Figure 3.5). Hence, the edges connecting these two nodes to node x are
excised by cut C. This contradicts the fact that A is not 2-reachable and therefore is not
possible. �

Using the properties stated in the above lemmas we obtain the following result.

Lemma 3.6 The relaxed-1-degree cut problem is NP-hard.

Proof. We prove this claim holds by a reduction from NAE3SAT. To do that we show
graph G(φ) has a relaxed-1-degree cut if and only if φ has a solution within the NAE3SAT
constraints. Suppose that G(φ) has a relaxed-1-degree cut. Then, a cut C = (A,B), where
B = V \A, can be found such that all vertices of the graph are incident with at most one
edge in the cut-set.

By the first part of Lemma 3.4, cut C has to go through the edges of each variable-
gadget as depicted in Figure 3.5 and leaves each variable-node and its negation node on
opposite sides of the cut and so determines their truth assignments. Also, by the second
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xi xj xk Cut
T T T no cut
T T F I
T F T II
T F F III
F F T IV
F T F V
F T T VI
F F F no cut

Table 3.1: The truth assignments corresponding to different cuts in the clause-gadget demonstrated in
Figure 3.6.

part of Lemma 3.4, the clause-gadgets are cut by C according to one of the six cases
illustrated in Figure 3.6, which results in having at least one true and one false literal-node
in each clause-gadget. Furthermore, note that by Lemma 3.5, the intermediate edges are
never cut by C. Hence, all the literal-nodes corresponding to the same variable-node are
left in the same set as that variable-node and the negated literal-nodes are in the other set.
Consequently, if G(φ) has a relaxed-1-degree cut, then φ is satisfiable within the NAE3SAT
constraints.

On the other hand, if φ has a solution under the NAE3SAT constraints, then a cut
C = (A, V \A) can be found in G(φ) such that (i) each variable-gadget is cut so that the
variable-node and its negation node are connected to the blocks labeled with their truth
values, and (ii) each clause-gadget is cut according to its truth assignment as illustrated
in Table 3.1. It can be easily observed that using this cut, no node of graph G(φ) is in-
cident with more than one edge of the cut-set and hence G(φ) has a relaxed-1-degree cut. �

Recall that the relaxed-1-degree cut problem is equivalent to the matching-cut problem
that was shown to be NP-complete in [29]. The difference between the proof we provided
here and the proof in [29] is in the construction of the clause-gadgets; our construction
will allow us to show the NP-hardness of the (more general) 1-degree cut problem. These
changes are made so that if G(φ) has a 1-degree cut then X = ∅; which results in having
a relaxed-1-degree cut that was earlier shown to be NP-hard.

We now construct a graph based on G(φ) to show that the 1-degree cut problem is also
NP-hard. Graph H(φ) is built by taking three copies of G(φ) and adding edges to form one
complete subgraph on all nodes in the three True-blocks and another complete subgraph on
all nodes in the three False-blocks. We refer to each of these copies of G(φ) used in building
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H(φ) as a ‘box’. Figure 3.7 illustrates H(φ) using the graph G(φ) for φ = x̄1∨x2∨x3 from
Figure 3.3. Using this construction we can now prove the NP-hardness of the 1-degree cut
problem.

Figure 3.7: The construction of H(φ) from the graph G(φ) depicted in Figure 3.3.

Theorem 3.1 The 1-degree cut problem is NP-hard.

Proof. We show that the 1-degree cut problem is NP-hard by showing that H(φ) has a
1-degree cut if and only if G(φ) has a relaxed-1-degree cut for any instance φ of NAE3SAT.
It can be easily seen that if G(φ) has a relaxed-1-degree cut then H(φ) also has a relaxed-1-
degree cut (e.g., simply replicate the cut in G(φ) for each box in H(φ)) and thus a 1-degree
cut. It only remains to show if H(φ) has a 1-degree cut then G(φ) has a relaxed-1-degree
cut. Assume that sets A,B and X partition the nodes of H(φ) such that (i) A and B are
nonempty, and (ii) each node in A and B has at most one neighbor outside its own set
(i.e., A, B and X specify a 1-degree cut). Then, we show that there exist two nonempty
sets A′ and B′ that partition the nodes of G(φ) such that no node in A′ has more than one
neighbor in B′, and vice versa.

First, for any clique in H(φ) with at least three nodes, the fact that A and B are not
2-reachable implies the following two properties:

1. Set X can contain zero, one, or all nodes of the clique, and

2. If a node of the clique is in A (resp. B), then no node of that clique is in B (resp.
A).

Let T and F denote the set of all nodes in the True and False-blocks of graph H(φ).
Several different scenarios can take place for sets T and F with respect to sets A,B and
X. First, consider the case that both T and F are subsets of A (the case that both T and
F are subsets of B can be analyzed similarly). Since each box of H(φ) is isomorphic to
G(φ), by Lemma 3.3 this scenario is not possible. Now, by property (2) stated above and
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without loss of generality due to symmetry, assume that T ⊆ (A ∪X) and F ⊆ (B ∪X).
Suppose that T ∩X 6= ∅; therefore, by property (1) either T ⊆ X or |T ∩X| ≤ 1. In the
former case, the True-blocks of all boxes in H(φ) are subsets of X. In the latter case, there
exist at least two boxes in H(φ) whose True-blocks are subsets of A. The same argument
holds for the False-block of H(φ) and hence if F * X, then there exist at least two boxes
in H(φ) whose False-blocks are subsets of B. Consequently, there exists a box in H(φ),
denoted by G′(φ), such that its True-block is either a subset of A or X and its False-block
is either a subset of B or X.

Furthermore, if T ⊆ X and F ⊆ X, then due to nonemptiness of set A (resp. B),
there should exist at least one node in the set of all the other nodes in the variable and
clause-gadgets of H(φ) that is in A (resp. B). However, the variable-nodes in variable
gadgets and vertices labeled 1, 2, 3, 7, 8 and 9 in clause-gadgets (as in Figure 3.4) cannot
lie in sets A or B; otherwise, they have at least two neighbors in the union of T and F
which are subsets of X and hence imply that set A or B is 2-reachable. Now that vertices
2, 3, 7 and 8 are in X, in order to avoid set A or B being 2-reachable, vertices 4 and 6
should lie in X as well. This results in vertex 5 being in X, leaving A and B empty.

Consequently, it is not possible for the True and False-blocks of H(φ), i.e., sets T and
F , to both be subsets of set X. This implies that the True and False-blocks of G′(φ)
cannot both be subsets of X either. In summary, the only possible cases for the True
and False-blocks of G′(φ) are as follows: the True-block of G′(φ) is a subset of X and the
False-block is a subset of A or B (or vice versa), or the True-block of G′(φ) is a subset of
A and the False-block is subset of B (or vice versa). These cases are further studied in the
following. Before discussing these cases, recall that G′(φ) and G(φ) are isomorphic and
sets A and B can be used interchangeably in the arguments by symmetry.

First, assume that all nodes in the True-block of G′(φ) are in X and all nodes in the
False-block of G′(φ) are in B. The argument in this case is similar to the argument provided
for the case that both the True and False-blocks of H(φ) were in X. Again, nodes in the
variable-gadgets and vertices labeled 1, 2, 3, 7, 8 and 9 in the clause-gadgets cannot lie in
A. This results in vertices labeled 4 and 6 not being in A. Consequently, vertices labeled
5 cannot be in A either and hence set A becomes empty which is not admissible.

Therefore, we now assume that all nodes in the True-block of G′(φ) are in A. Hence,
all nodes in the False-block are either in X or B. If the nodes in the False-block are in
X, then the same argument as above shows that set B should be empty which violates its
properties and hence is not allowed. If all the nodes in the False-block are in B, then we
show that no node of G′(φ) can be in set X.
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Figure 3.8: Here, the True-block is a subset of A, the False-block is a subset of B and the variable-node
corresponding to x̄i is in X. Figure (a) shows the edges connected to node x̄i that are cut. In Figure (b),
without loss of generality, it is assumed that node xi is either in B or X and its incident edges with the
other endpoints in A are marked. It can be seen that the node in the True-block has two adjacent nodes
outside A.

Suppose that there exists a node in a variable-gadget in G′(φ) that lies in X. Then the
two nodes in the True and False-blocks connected to that node have a neighbor outside
their containing sets, i.e., a neighbor in X (Figure 3.8(a)). Moreover, the other variable-
node in that variable-gadget is in A,B or X. In all these cases this node is in a different
set from at least one of its two neighbors in the True and False-blocks (Figure 3.8(b)).
Hence, there exists at least one node in A or B that has two neighbors outside A or B,
respectively. Therefore, no node in the variable-gadgets can be in set X.

Furthermore, observe that since the True-block is a subset of A and the False-block
is a subset of B, then each variable-node has at least one neighbor outside its containing
set. Since it was assumed that each node in A and B has at most one neighbor outside
its set, it follows that all other neighbors of a variable-node should lie in the same set
as that node. Therefore, in G′(φ), the endpoints of all intermediate edges, i.e., the edges
connecting literal-nodes in the clause-gadgets to the corresponding variable-nodes, lie in
the same sets. This, in combination with the fact that none of the variable-nodes in G′(φ)
are in X shows that no literal-node in any clause-gadget of G′(φ) is in X. It only remains to
show that the non-literal-nodes in the clause-gadgets of G′(φ), i.e., nodes labeled 2, 3, 4, 6,
7 and 8 as in Figure 3.4, are not in X either. By the same argument as for variable-nodes,
nodes labeled 2 and 8 cannot lie in X. Also, note that since the True and False-blocks of
G′(φ) are subsets of A and B, respectively, and node 2 (resp. node 8) is either in A or
B, then one of the edges connecting node 2 (resp. node 8) to the True and False-blocks is
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excised. Therefore, all its other neighbors, i.e., nodes 3 and 4 (resp. nodes 6 and 7), should
lie in the same set as node 2 (resp. node 8). As a result, nodes 3, 4, 6 and 7 cannot be in
X. Consequently, no node of G′(φ) lies in X.

We have thus shown that if H(φ) has a 1-degree cut then G′(φ) has a relaxed-1-degree
cut. Since G(φ) and G′(φ) are isomorphic, graph G(φ) also has a relaxed-1-degree cut.
Also, we define sets A′ and B′ as the subsets of nodes in G(φ) that correspond to the
intersections of A and B with the set of nodes of G′(φ), respectively. Therefore, sets A′

and B′ are nonempty and partition the nodes of G(φ). Moreover, each node of G(φ) has
at most one neighbor outside its containing set. Consequently, H(φ) has a 1-degree cut if
and only if G(φ) has a relaxed-1-degree cut for any NAE3SAT instance φ. �

The NP-hardness of the 1-degree cut problem results in the coNP-hardness of its
complement problem, i.e., the 2-robustness problem. Since the 2-robustness problem is in
coNP, we can conclude that it is coNP-complete. We now seek a stronger result, that is,
showing that for any r ∈ Z≥2 the r-robustness problem is coNP-complete. This requires
the NP-hardness of the ρ-degree cut problem for any ρ ∈ Z≥1 and to prove this, we first
show that for any ρ ∈ Z≥1, the relaxed-ρ-degree cut problem is NP-hard. This is done
in the following lemma by making the necessary modifications to the graph G(φ) built for
the NAE3SAT instance φ, as introduced earlier in this section (e.g., Figure 3.3).

Lemma 3.7 For any ρ ∈ Z≥1, the relaxed-ρ-degree cut problem is NP-hard.

Proof. Recall that in order to show that the relaxed-1-degree cut problem is NP-hard,
for any NAE3SAT instance φ we constructed a graph G(φ) = (V,E) such that G(φ) had a
relaxed-1-degree cut if and only if φ was satisfiable within the NAE3SAT constraints. Here,
for any ρ ∈ Z≥1, we make two modifications to G(φ) to construct graph Gρ(φ) = (Vρ, Eρ) so
that Gρ(φ) has a relaxed-ρ-degree cut if and only if the original graph G(φ) has a relaxed-
1-degree cut. We can then conclude that the relaxed-ρ-degree cut problem is NP-hard.

The two modifications to graph G(φ) are: (i) a modification to the nodes in the True
and False-blocks of G(φ), and (ii) a modification to the other nodes of G(φ), i.e. nodes
in the variable and clause-gadgets. In modification (i), for any node v in the True-block
(resp. False-block) of G(φ), we add ρ− 1 nodes in the False-block (resp. True-block) and
connect them to v. Thus, this step adds a total of 2(ρ − 1)(4m + t) nodes to the graph.
In modification (ii), for any node u in the variable and clause-gadgets of G(φ) that is not
in the True or False-blocks, we add ρ − 1 nodes in each of the True and False-blocks and
connect u to them. This step adds a total of 2(ρ − 1)(9m + 2t) nodes to the graph. The
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new graph is called Gρ(φ). Note that the nodes added to the True and False-blocks of
G(φ) to construct Gρ(φ) are connected to all other vertices in those blocks and hence the
True and False-blocks of Gρ(φ) are complete subgraphs. Figure 3.9 demonstrates G2(φ)
for graph G(φ) shown in Figure 3.3.

Figure 3.9: Graph G2(φ) constructed from graph G(φ) demonstrated in Figure 3.3. The highlighted nodes
and edges are the ones that exist in G(φ) as well.

If graph Gρ(φ) has a relaxed-ρ-degree cut, then there exists a cut Cρ = (A, Vρ\A) that
partitions the nodes of Gρ(φ) into two nonempty sets A and B = Vρ\A such that no node
of the graph has more than ρ neighbors outside its containing set. It is easy to observe
that if G(φ) has a relaxed-1-degree-cut C = (A′, B′), then Gρ(φ) has a relaxed-ρ-degree cut
Cρ = (A,B), by assigning the vertices corresponding to those in A′ and B′ in G(φ) to sets
A and B in Gρ(φ), respectively. Furthermore, the newly added vertices in the True and
False-blocks of Gρ(φ) should be assigned to the sets the already allocated vertices in those
blocks are assigned to (recall that by Lemma 3.3, in the relaxed-1-degree cut problem all
the vertices in each of the True and False-blocks belong to the same subset of vertices).
So, it remains to prove the converse statement holds.

Note that the True and False-blocks of Gρ(φ) cannot both lie in set A (or similarly B).
It can be easily checked that except for vertices labeled 4, 5 and 6 as in Figure 3.4, if any
other vertex of Gρ(φ) lies in B, then it has at least 2ρ neighbors outside its containing set
in the True and False-blocks and hence violates the definition of cut Cρ. This results in
the fact that now vertices labeled 4 and 6 cannot lie in B, since they have 2ρ neighbors
in set A. Consequently, vertices labeled 5 should also lie in A which makes B empty and
hence is not allowed.

Without loss of generality, we now assume that the True-block of Gρ(φ) is a subset of
A and its False-block is a subset of B. In the following, we prove that in this case, cut Cρ
has three properties.

First, similar to the relaxed-1-degree cut problem, both a variable-node and its negation
node in a variable-gadget cannot lie in set A (resp. B); otherwise, the node in the False-
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block (resp. True-block) connected to both these nodes has ρ + 1 neighbors outside its
set.

Second, since a variable-node and its negation node in a variable-gadget lie in different
sets, each of these nodes are incident with ρ edges in the cut-set. Therefore, no other edge
connected to these nodes can be excised by cut Cρ. In particular, the intermediate edges
connecting literal-nodes in clause-gadgets to their corresponding variable-nodes should be
left uncut.

Third, we argue that the three literal-nodes in a clause-gadget cannot be in the same
subset of nodes, say A. Suppose that the literal-nodes corresponding to nodes labeled 1
and 9 in Figure 3.4 are in set A. Due to the same argument as variable-gadgets, the nodes
that share a neighbor in the True and False-blocks with these nodes, i.e., the nodes labeled
2 and 8 in Figure 3.4, should lie in B. This results in the fact that the other two nodes
connecting to each of these nodes, i.e., nodes labeled 3, 4, 6 and 7 in Figure 3.4, should
also be in B. Given this condition, now if the literal-nodes corresponding to vertex labeled
5 in Figure 3.4 lies in A, then it has at least ρ + 1 neighbors outside its containing set,
which is not admissible.

The above three properties force Cρ to partition the vertices of Gρ(φ) into two sets A
and B such that sets A′ = V ∩ A and B′ = V ∩ B are nonempty and partition vertices
of G(φ) into one of the forms shown in Figures 3.5 and 3.6, without cutting through the
True or False-blocks of G(φ). Therefore, if graph Gρ(φ) has a relaxed-ρ-degree cut then
G(φ) has a relaxed-1-degree cut and hence the relaxed-ρ-degree cut problem is NP-hard. �

Using the above lemma, we can now prove the following stronger result.

Theorem 3.2 For any ρ ∈ Z≥1, the ρ-degree cut problem is NP-hard.

Proof. As we did in the NP-hardness proof of the 1-degree cut problem, for the ρ-degree
cut problem we build graph Hρ(φ) by taking 2ρ + 1 copies of Gρ(φ) and adding edges to
construct complete subgraphs on all the nodes in the True and False-blocks of these 2ρ+ 1
copies. Again, each copy of Gρ(φ) in Hρ(φ) is called a box.

We prove that the ρ-degree cut problem is NP-hard by showing that Hρ(φ) has a ρ-
degree cut if and only if Gρ(φ) has a relaxed-ρ-degree cut. It is not hard to see that if Gρ(φ)
has a relaxed-ρ-degree cut, then Hρ(φ) has a ρ-degree cut and hence it remains to show the
converse statement also holds. As in the proof of Theorem 3.1, here we assume that sets A,
B and X partition the vertices of Hρ(φ) such that A and B are nonempty. The difference
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between this proof and the proof of Theorem 3.1 is that here each node in A and B has
at most ρ neighbors outside its set. We then show that there exist nonempty sets A′ and
B′ partitioning the set of vertices of Gρ(φ) such that no vertex has more than ρ neighbors
outside its containing set. It can be easily observed that the following generalized version
of the two properties in the proof of Theorem 3.1 holds for cliques with at least 2ρ + 1
nodes:

1. Set X can contain either up to ρ nodes or all nodes of the clique, and

2. If a node of the clique is in A (resp. B), then no node of that clique is in B (resp.
A).

We denote the True and False-blocks of Hρ(φ) by T and F , respectively. As in the proof
of Theorem 3.1, it can be argued that the only possible cases for T and F are T ⊆ (A∪X)
and F ⊆ (B ∪ X), or T ⊆ (B ∪ X) and F ⊆ (A ∪ X). The analysis of the latter case is
removed due to symmetry. Also, by property (1), either T ⊆ X or |T ∩ X| ≤ ρ. Hence,
either the True-blocks of all boxes in Hρ(φ) are subsets of X, or there exist ρ+ 1 boxes in
Hρ(φ) whose True-blocks are subsets of A. The same argument holds for the False-blocks
of the boxes in Hρ(φ). Consequently, there is a box in Hρ(φ) whose True and False-blocks
are subsets of A or X, and B or X, respectively. This box is denoted by G′ρ(φ).

The case where both the True and False-blocks of Hρ(φ) are subsets of X is not possible,
since it leaves sets A and B empty (by a similar argument as in the proof of Lemma 3.7).
Therefore, the only possible cases for the True and False-blocks of G′ρ(φ) are as follows: the
True-block of G′ρ(φ) is a subset of X and its False-block is a subset of B, or the True-block
of G′ρ(φ) is a subset of A and its False-block is subset of B. Note that we used the fact
that sets A and B can be used interchangeably to reduce the number of possible cases.

In the first case, if the True-block of G′ρ(φ) is a subset of X and its False-block is a
subset of B, then by the same argument as for the case that both the True and False-blocks
of Hρ(φ) were subsets of X it can be shown that set A becomes empty. Therefore, this
case is not allowed.

In the second case, we have that the True-block of G′ρ(φ) is a subset of A and its False-
block is a subset of B. We show that no node in G′ρ(φ) can lie in set X. Suppose that a
node in a variable-gadget of G′ρ(φ) lies in X. Regardless of the set the other node in that
variable-gadget is in, either the node in the True-block or the one in the False-block to
which both these variable-nodes are connected has ρ + 1 neighbors outside its set, which
is not allowed (see Figure 3.10 for ρ = 2).
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Figure 3.10: The True and False-blocks are subsets of A and B, respectively, and the variable-node
corresponding to x̄i is in X. Figure (a) shows the edges incident to node x̄i that are excised. In Figure (b),
without loss of generality, it is assumed that node xi is either in set B or X and the edges that connect
the vertices in A to it are depicted. Figure (c) demonstrates another edge that connects a vertex in A
that is in the True-block to a vertex in B that is in the False-block. It can be seen that the node in the
True-block connected to both the nodes in the variable-gadget has three neighbors outside its set.

Moreover, since the True and False-blocks of G′ρ(φ) are subsets of A and B, respectively,
each variable-node has ρ neighbors outside its set and hence cannot afford to be connected
to another vertex outside its set. Therefore, the edges connecting literal-nodes to their
corresponding variable-nodes, i.e., the intermediate edges, cannot be excised. This in
combination with the fact that no variable-node is in X gives that no literal-node in any
clause-gadget is in X. Also, by the same argument provided for variable-gadgets, it can
be shown that the nodes labeled 2 and 8 in Figure 3.4 cannot lie in set X. Moreover, the
nodes labeled 2, 3 and 4 in Figure 3.4 (resp. nodes labeled 6, 7 and 8) should lie in the
same set; otherwise, node 2 (resp. node 8) has more than ρ neighbors outside its set. Thus,
no node in any clause-gadget can be in X. As a result, no node in G′ρ(φ) is in X.

Thus, if Hρ(φ) has a ρ-degree cut, then G′ρ(φ) and hence Gρ(φ) has a relaxed-ρ-degree
cut, due to the fact that G′ρ(φ) and Gρ(φ) are isomorphic. Furthermore, sets A′ and B′

are defined as the subsets of nodes in Gρ(φ) corresponding to the intersections of A and
B with the set of nodes of G′ρ(φ), respectively. Note that A′ and B′ are nonempty and
partition the set of nodes of Gρ(φ) and any node in Gρ(φ) has at most ρ neighbors outside
its sets. Therefore, the converse statement is proved which concludes the NP-hardness of
the ρ-degree cut problem. �

Knowing that the ρ-degree cut is NP-hard for any ρ ∈ Z≥1, it can be concluded that
its complement problem, i.e., the r-robustness problem for any r ∈ Z≥2 is coNP-hard.
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Combining this with the fact that the the r-robustness problem is in coNP gives that
for any r ∈ Z≥2 the r-robustness problem is coNP-complete. Recall that earlier in this
section it was argued that the complexity of the robustness problem is within a logarithmic
factor of the complexity of the r-robustness problem. Hence, the following corollary can
be concluded.

Corollary 3.1 The robustness problem is coNP-complete.

3.2 Hardness of Approximation

Having established the complexity of the robustness problem, we now turn to the problem
of approximating the degree of robustness of graphs. To show that a graph is not r-
robust, one needs to find an (r − 1)-degree cut in that graph. For any given graph G, let
OPT(G) be the smallest nonnegative integer ρ such that G has a ρ-degree cut. Suppose
that we have a (polynomial-time) approximation algorithm ALG whose input is graph G
and whose output ALG(G) guarantees that graph G has an ALG(G)-degree cut. Define
the approximation ratio α of the algorithm to be such that ALG(G) ≤ αOPT(G) for all
graphs G. Observe that since the ρ-degree cut problem is NP-hard, one cannot hope to
reach an approximation ratio of α = 1, unless P = NP. In the following lemma, we show
that it is unlikely to find an approximation algorithm for this problem with approximation
ratio less than 2.

Lemma 3.8 The problem of identifying the smallest ρ such that a given graph has a ρ-
degree cut is not approximable within any factor less than 2, unless P = NP.

Proof. Assume that some polynomial-time algorithm ALG provides an approxima-
tion ratio 1 < α < 2 for all graphs G. Consider the set of connected graphs that have
a 1-degree cut; on any graph G from this set, the output of the algorithm must satisfy
ALG(G) ≤ αOPT(G) < 2, i.e., ALG(G) = 1. Thus, given any connected graph G, the
algorithm would output ALG(G) = 1 if and only if the graph has a 1-degree cut, contra-
dicting the fact that this is an NP-hard problem (as shown in Theorem 3.1). Therefore,
an approximation ratio less than 2 is not obtainable for the ρ-degree cut problem unless
P = NP. �

Note that the inapproximability result in Lemma 3.8 is a consequence of the two fol-
lowing facts: (i) parameter ρ only takes integer values, and (ii) the problem can be solved
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in polynomial time if the smallest value of ρ for which the input graph has a ρ-degree cut
is 0 and NP-hard if it is 1. Hence, this argument carries over for any other problem in
which the feasible solutions are integers and there is some a ∈ Z such that the problem is
efficiently solvable if the value of the solution is less than or equal to a, but NP-hard (or
coNP-hard) for solutions with values greater than a.
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Chapter 4

Conclusion

In this chapter, we review and conclude the studies discussed in this thesis. In Section 4.1,
the main results obtained in this document are reviewed. Section 4.2 discusses the future
research directions for the two problems studied in this thesis, i.e., the dominating set and
the robustness problems.

4.1 Review

Here, we go through the main results obtained for each of the two problems discussed in
this thesis.

4.1.1 Dominating Set Problem

In this thesis, we studied the dominating set and k-distance dominating set problems on
m× n grids. A set S ⊆ V constitutes a k-distance dominating set (which is equivalent to
a dominating set if k = 1) for graph G = (V,E) if for every vertex v ∈ V \S there is a
vertex in S whose distance from v is at most k. We discussed a construction from [11] to
obtain dominating sets for grids with near optimal size and generalized it to work in the
k-distance domination scenario.

Moreover, we used these constructions in distributed algorithms and showed that the

resulting dominating sets are upper-bounded by
⌈
(m+2k)(n+2k)

2k2+2k+1
+ k
⌉
. The difference between

the acquired upper-bound and the domination number of grid is at most five, for grids
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with 16 ≤ m ≤ n and k = 1. However, via a more detailed case-based analysis in the
grid corners, our distributed procedure can be used to obtain optimal dominating sets for
16 ≤ m ≤ n.

4.1.2 Robustness Problem

Another problem discussed in this thesis was the robustness problem. Graph G = (V,E)
is r-robust if for any two nonempty and disjoint subsets of its vertices A and B, at least
one of them has a vertex that has at least r neighbors outside its containing set. In the
robustness problem, the goal is to find the largest r for a graph G such that G is r-robust.

In Chapter 3, we showed that the robustness problem is coNP-complete. To do that,
we introduced the r-robustness problem and the relaxed-r-robustness problem which are
the decision version of the robustness problem and its relaxed version in which B = V \A,
respectively. We showed that both these problems are coNP-hard by proving that their
complement problems, which we called the ρ-degree cut problem and the relaxed-ρ-degree
cut problem, are NP-hard via a reduction from NAE3SAT. To be more specific, the ρ-
degree cut problem determines whether there are two nonempty and disjoint subsets of
vertices of a graph, A and B, such that no vertex in A or B is connected to more than ρ
vertices outside its own set. On the other hand, the relaxed-ρ-degree cut problem deter-
mines whether there is a cut in the graph such that no vertex is incident with more than
ρ edges in the cut-set. In fact, the relaxed-ρ-degree cut problem is a generalization of a
known NP-hard problem, called the “matching-cut problem”, in which ρ = 1.

Furthermore, a short result on the hardness of approximation of the problem of deter-
mining the smallest ρ for which the graph has a ρ-degree cut was discussed in Section 3.1.
We showed that for this problem an approximation algorithm with guarantee less than 2
is not obtainable, unless P = NP.

4.2 Future Directions

In this section, we propose some future directions for the dominating set problem on grids
and the robustness problem.
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4.2.1 Dominating Set Problem

There are many open problems that can be considered for grid domination. The complexity
of k-distance dominating grids and the k-domination number of grids are still unknown.
Moreover, in Section 2.3, we provided an upper-bound on the number of vertices to k-
distance dominate an m × n grid obtained by k-diagonalization and k-projection, i.e.,⌈
(m+2k)(n+2k)

Nk
max

+ k
⌉
, where Nk

max = 2k2 + 2k + 1. However, a tighter upper-bound on the

number of k-dominating vertices used by k-diagonalization and k-projection was obtained

by simulation, which is
⌈
(m+2k)(n+2k)

Nk
max

+ k−1
2

⌉
. This upper-bound is still open to be proved.

It is also of interest to find centralized and distributed algorithms for dominating sub-
graphs of grids, that is, grids with some of their vertices or edges missing. Generalizing
these algorithms to the cases where the underlying graphs are cubic or hyper-cubic grids
is another direction of this research.

4.2.2 Robustness Problem

Although we showed that there exists no approximation algorithm with guarantee less than
2 for determining the smallest ρ for which a graph G has a ρ-degree cut, we do not know
whether this bound is tight. Moreover, it is of interest to find approximation algorithms
for this problem.
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