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Abstract

Decision-theoretic systems, such as Markov Decision Processes (MDPs), are used for
sequential decision-making under uncertainty. MDPs provide a generic framework that can
be applied in various domains to compute optimal policies. This thesis presents techniques
that offer explanations of optimal policies for MDPs and then refine decision theoretic
models (Bayesian networks and MDPs) based on feedback from experts.

Explaining policies for sequential decision-making problems is difficult due to the pres-
ence of stochastic effects, multiple possibly competing objectives and long-range effects of
actions. However, explanations are needed to assist experts in validating that the policy
is correct and to help users in developing trust in the choices recommended by the policy.
A set of domain-independent templates to justify a policy recommendation is presented
along with a process to identify the minimum possible number of templates that need to
be populated to completely justify the policy.

The rejection of an explanation by a domain expert indicates a deficiency in the model
which led to the generation of the rejected policy. Techniques to refine the model param-
eters such that the optimal policy calculated using the refined parameters would conform
with the expert feedback are presented in this thesis. The expert feedback is translated into
constraints on the model parameters that are used during refinement. These constraints
are non-convex for both Bayesian networks and MDPs. For Bayesian networks, the refine-
ment approach is based on Gibbs sampling and stochastic hill climbing, and it learns a
model that obeys expert constraints. For MDPs, the parameter space is partitioned such
that alternating linear optimization can be applied to learn model parameters that lead to
a policy in accordance with expert feedback.

In practice, the state space of MDPs can often be very large, which can be an issue for
real-world problems. Factored MDPs are often used to deal with this issue. In Factored
MDPs, state variables represent the state space and dynamic Bayesian networks model the
transition functions. This helps to avoid the exponential growth in the state space asso-
ciated with large and complex problems. The approaches for explanation and refinement
presented in this thesis are also extended for the factored case to demonstrate their use
in real-world applications. The domains of course advising to undergraduate students, as-
sisted hand-washing for people with dementia and diagnostics for manufacturing are used
to present empirical evaluations.

iii



Acknowledgments

Pascal Poupart, was my mentor and supervisor for the last six years. I am forever indebted
to him for taking me under his guidance and teaching me how to approach research with
singular focus and persistence, always making himself available when I needed his assistance
and feedback, and for his constant understanding, patience and support when I started
working before the completion of this work. I could not have asked for a better supervisor.

This work originally began with Jay Black, who remained my co-supervisor for a large
portion of this work while he was at Waterloo. I am grateful to him for always allowing me
the freedom to pursue areas of my interest and insisting on clarity of thought in technical
exposition. Jay has also been a constant source of sound technical and personal advice. I
am fortunate to have spent time with him.

I thank John Mark Agosta for allowing me to frame my research in terms of a real-world
problem by providing me with access to an invaluable data set. I have benefited immensely
by observing his attention to detail and commitment to stay abreast of new research.

I am grateful to my thesis committee: Robin Cohen and Dan Brown for their detailed
and critical review of this work, Derek Koehler for helping me draw connections of this
work with research in psychology, and Judy Goldsmith for being my external examiner and
carefully reading my thesis. Their recommendations have only made this thesis better.

My colleagues from the AI Lab and Shoshin Lab also deserve a mention here. The
weekly seminars in the AI Lab allowed me to broaden my research horizons while the
members of Shoshin provided me with a desk, even after Jay had left.

Margaret Towell in the Computer Science Grad Office has always been an invaluable
resource who was untiring in her readiness to assist me whenever I needed any help in
navigating the maze of the paperwork necessary for all Ph.D. students at Waterloo.

I would also like to acknowledge that funding for portions of this research came from
Natural Sciences and Engineering Research Council of Canada (NSERC), David R. Cheri-
ton School of Computer Science, University of Waterloo, and Intel Corporation.

I formed several life-lasting friendships during my stay at Waterloo that only made this
period of life more memorable. The one that I’ll cherish the most is the one with Kamran.
Thank you for being my listening board on all things life, making sure I remained grounded,
and teaching me how to give without ever expecting anything back in return.

My parents have offered me their unconditional love, support and prayers for everything
in life that I have ever pursued. None of this would have been possible without them. They
will remain my role models for parenthood and I can only hope to do for them a fraction
of what they did for me. Thank you.

iv



Dedication

To my life partner, Farheen, for being as accommodating and understanding as she is
to all my shortcomings and quirkiness.

v



Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Decision Theory and Decision-Theoretic Planning . . . . . . . . . . . . . . 7

2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Diagnostic Bayesian Networks . . . . . . . . . . . . . . . . . . . . . 9

2.3 Dynamic Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Influence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Markov Decision Processes: . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Factored MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 MDPs for Recommender Systems . . . . . . . . . . . . . . . . . . . 18

2.5.3 MDPs for Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.4 MDPs for Course Advising . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



3 Explanations for MDPs 25

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Explanations for Intelligent Systems . . . . . . . . . . . . . . . . . . 26

3.2.2 Explanations for Decision-Theoretic Systems . . . . . . . . . . . . . 29

3.3 Explanations for MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Templates for Explanations . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Minimum Sufficient Explanations (MSE) for Flat MDPs . . . . . . 34

3.3.3 Minimum Sufficient Explanations (MSE) for Factored MDPs . . . . 35

3.3.4 Workflow and Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Feedback from Advisors . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 User Study with Students . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Refining Models for Bayesian Networks 47

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Model Refinement for Bayesian Networks . . . . . . . . . . . . . . . . . . . 49

4.3.1 Augmented Diagnostic Bayesian Network . . . . . . . . . . . . . . . 49

4.3.2 MAP Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Evaluation and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Correctness of Model Refinement . . . . . . . . . . . . . . . . . . . 59

4.4.2 Experimental Results on Synthetic Problems . . . . . . . . . . . . . 59

4.4.3 Experimental Results on Large Scale Diagnostic Problems . . . . . 62

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



5 Refining Models for Markov Decision Processes 67

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Inverse Reinforcement Learning and Apprenticeship Learning . . . . 68

5.2.2 Reinforcement Learning with Expert Feedback . . . . . . . . . . . . 69

5.2.3 Imprecise and Robust MDPs . . . . . . . . . . . . . . . . . . . . . . 70

5.2.4 Constrained MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Model Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Flat Model Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Factored Model Refinement . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Evaluation and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Experimental Results on Synthetic Problems . . . . . . . . . . . . . 80

5.4.2 Experimental Results on Diagnostic Problems . . . . . . . . . . . . 82

5.4.3 Experimental Results on Large Scale Diagnostic Problems . . . . . 85

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 90

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Extensions for Policy Explanation . . . . . . . . . . . . . . . . . . . 92

6.2.2 Extensions for Model Refinement . . . . . . . . . . . . . . . . . . . 92

References 94

viii



List of Tables

3.1 Explanations for Course Advising Domain (Reward Variables=2, Values per
Variable=2+2, Max. Terms=4) . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Explanations for Handwashing Domain (Reward Variables=3, Values per
Variable=2+2+15, Max. Terms=19) . . . . . . . . . . . . . . . . . . . . . 40

ix



List of Figures

2.1 A graphical representation of a Bayesian network. . . . . . . . . . . . . . 10

2.2 A graphical representation of a DBN. . . . . . . . . . . . . . . . . . . . . 12

2.3 A graphical representation of an influence diagram. . . . . . . . . . . . . . 14

2.4 A graphical representation of an MDP . . . . . . . . . . . . . . . . . . . . 16

2.5 Sample flat recommender MDP . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Sample diagnostic recommender MDP . . . . . . . . . . . . . . . . . . . . 21

2.7 Dynamic decision network encoding of the course advising MDP . . . . . . 22

3.1 User perception of MDP explanations . . . . . . . . . . . . . . . . . . . . . 42

3.2 Comparison of MDP and Advisor explanations . . . . . . . . . . . . . . . . 43

4.1 Diagnostic Bayesian network with 2 causes and 2 tests . . . . . . . . . . . 50

4.2 Augmented diagnostic Bayesian network with parameters and constraints . 50

4.3 Augmented diagnostic Bayesian network with parameters and data . . . . 53

4.4 Augmented diagnostic Bayesian network extended to handle inaccurate feed-
back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Difference in Gini impurity for the network in Fig. 4.1 when θ1
2 and θ2

2 are
the only parameters allowed to vary. . . . . . . . . . . . . . . . . . . . . . 57

4.6 Posterior of parameters of network in Figure 4.2 calculated through dis-
cretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Posterior of parameters of network in Figure 4.2 estimated through sampling. 58

4.8 Comparison of Convergence Rates for Model Refinement Techniques for
Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



4.9 Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for Bayesian Networks to True Model with Initial Model – Synthetic
Diagnostic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Test Consistency after Model Refinement for Bayesian Networks – Synthetic
Diagnostic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 Large Scale Diagnostic Bayesian Network . . . . . . . . . . . . . . . . . . . 63

4.12 Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for Bayesian Networks to True Model with Initial Model – Large
Scale Diagnostic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.13 Test Consistency after Model Refinement for Bayesian Networks – Large
Scale Diagnostic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Sample Policy Graph after 1 iteration of Algorithm 6 . . . . . . . . . . . . 76

5.2 Sample Policy Graph after 2 iterations of Algorithm 6 . . . . . . . . . . . . 76

5.3 Sample Policy Graph after 3 iterations of Algorithm 6 . . . . . . . . . . . . 76

5.4 Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for MDPs to True Model with Initial Model – Synthetic Problem 81

5.5 Ratio of Refined Policy Value after Model Refinement for MDPs to Initial
Policy Value – Synthetic Problem . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Policy Consistency after Model Refinement for MDPs – Synthetic Problem 82

5.7 Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for MDPs to True Model with Initial Model – Diagnostic Problem 83

5.8 Ratio of Refined Policy Value after Model Refinement for MDPs to Initial
Policy Value – Diagnostic Problem . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Policy Consistency after Model Refinement for MDPs – Diagnostic Problem 84

5.10 Large Scale Diagnostic Bayesian Networks converted to MDP . . . . . . . 85

5.11 Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for MDPs to True Model with Initial Model – Large Scale Diag-
nostic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.12 Ratio of Refined Policy Value after Model Refinement for MDPs to Initial
Policy Value – Large Scale Diagnostic Problem . . . . . . . . . . . . . . . . 87

xi



5.13 Policy Consistency after Model Refinement for MDPs – Large Scale Diag-
nostic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



Chapter 1

Introduction

In many situations, a sequence of decisions must be taken by an individual or system
(e.g., course selection by students, diagnosing a fault in a machine, assisting a person
with dementia in everyday tasks). Traditionally, these tasks are handled by human ex-
perts (student advisors provide advice to students regarding course selection, technicians
diagnose faults, and caregivers prompt elderly with dementia to help them complete their
tasks). Domain experts can be assisted by providing them with an intelligent automated
assistant, in the form a recommender system, that can suggest the best available choice
for a situation. When experts are not available, these recommender systems can also be
used to make recommendations directly to end-users or execute actions on their behalf.
Decision-theoretic planning provides a framework through which the optimal choice in a
given situation can be calculated. Such an approach allows harnessing the computational
power of machines to optimize difficult scenarios but it also results in the issue of trust.
Recommendations that have been automatically generated by machines may not be read-
ily accepted by users. If an explanation can also be generated, in addition to calculating
the optimal choice, it may help users in accepting the recommendation. In some domains
(such as diagnostics), there is also a need to incorporate feedback from experts to adjust
the model since sufficient data (used to develop the models) can never be collected, and
repeatedly making sub-optimal recommendations is not acceptable. This thesis addresses
these issues of automated policy explanation and model refinement in decision-theoretic
planning, more specifically policy explanation for Markov decision processes (MDPs) and
model refinement for Bayesian networks and MDPs.
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1.1 Motivation

Decision theory [80] provides a framework to evaluate different actions in a given state.
The actions are evaluated using a transition function and a reward function. The transi-
tion function provides a distribution of the possible outcomes over each action in a given
state whereas the reward function encodes the preferences for each possible outcome. The
objective of decision-theoretic planning [15] then is to provide a process through which the
action with the maximum possible reward can be chosen. This suggests that transition
and reward functions need to be specified or learnt to compute optimal policies.

Reinforcement learning [89] is used when the transition and reward functions are not
known a priori. Reinforcement learning learns the dynamics of the system (transition and
reward functions) by balancing the exploration-exploitation trade-off. The exploration step
is concerned with acquiring new samples to learn more about the effects of different actions
and the preferences of the user. This can lead to the execution of sub-optimal actions. The
exploitation step utilizes knowledge from previous exploration to select the action that is
believed to provide the maximum expected reward. In most domains, it is not acceptable
to allow the system to explore and execute sub-optimal actions due to an incomplete model.
If the system is providing advice to a human, exploration may not be possible at all. If
humans feel the recommendation is sub-optimal, they may never execute that action and
the system will never be able to learn that it is sub-optimal. This can happen even if an
action recommended by the system is actually optimal for a state, as the human may not
necessarily agree with this choice. Also, if the observations are dependent on a human
executing an action, often it may not be possible to collect enough data to learn the model
in any case. Finally, if a user is presented a recommendation and she ignores it in favor
of an alternate action, her assumption may be that the system will learn not to make
the mistake again which is not obvious under the reinforcement learning paradigm. The
system repeating the same mistakes will lead to user frustration.

Uncertainty in the effect of actions and complex objectives make understanding the
optimality of an action notoriously difficult. This can lead to two key issues. First, design-
ers find it difficult to create accurate models or to otherwise debug them. It is difficult to
design MDPs because real-world MDPs often have hundreds of thousands, if not millions
of states. There is a need for tools for experts to examine and/or debug their models.
The current design process involves successive iterations of tweaking various parameters
to achieve a desirable output. At the end, the experts still cannot verify if the policy is
indeed reflecting their requirements accurately.

Second, users find it difficult to understand the reasoning behind an automated rec-
ommendation. Users also have to trust the policy by treating it as a black box, with no
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explanations whatsoever regarding the process of computing the recommendation or the
confidence of the system in this recommendation. They cannot observe which factors have
been considered by the system while making the recommendation. The system also cannot
accept suggestions from the user to modify the policy and update the model to reflect this
preference.

Both of these issues are among key bottlenecks to the widespread use of decision-
theoretic planners such as Markov decision processes (MDPs) [79]. Thus, there is a need
for explanations that enhance understanding of model to establish user trust in the MDP
recommendations. Similarly, there is also a need for automated refinement of models when
users disagree with the optimal choice of the model and recommend an alternate choice.
Explanations in this environment will help validate the models and any technique to correct
the model such that it reflects their desired outcome would speed up the process of creating
accurate MDP models.

In this thesis, techniques to explain MDP policies and refine models for Bayesian net-
works [72] and MDPs based on feedback from experts are presented. Just as MDPs can
be solved using techniques like value iteration without any changes specific to domains,
the intent here is to develop techniques to explain MDP policies in different domains with-
out any domain-specific changes as well refine models generating these policies based on
feedback from experts in a generic manner.

1.2 Contributions

The major contributions of this thesis are as follows:

• Explanations for MDP Policies. Previous approaches to generating explanations for
experts in intelligent systems involve presenting users with reasoning traces. How-
ever, similar techniques cannot be used for MDPs. The techniques required to solve
MDPs involve mathematical optimization so the complete numerical process cannot
be presented as an execution trace. The challenge here is to abstract the process of
solving the policy, yet retain sufficient information for experts, so that they can com-
prehend the computation to detect any inconsistencies or errors and be reasonably
confident of the accuracy of their models. Chapter 3 presents an approach to present
explanations for MDP policies in a domain-independent fashion. These explanations
are presented by filling in templates that provide information about the consequences
of executing an action. A method to select the minimum number of templates needed
to justify an action is also described.

3



• Refinement of Parameters for Bayesian Networks. Chapter 4 presents an approach
to refine models for Bayesian networks by incorporating non-convex constraints ob-
tained from expert feedback. Previously, various techniques have been presented that
incorporate constraints from domain knowledge but these techniques assume linear
constraints. The constraint arising from an expert choosing one action over another
is non-convex and cannot be incorporated using prior work. The approach presented
in this chapter augments Bayesian networks by explicitly modeling the constraint in
the network. Gibbs sampling is then used on this augmented network to compute a
maximum a posteriori (MAP) estimate and obtain a refined model.

• Refinement of Parameters for Markov Decision Processes. The process of learning
user preferences and consequently the reward function in an MDP has been studied
under preference elicitation and inverse reinforcement learning paradigms. The prob-
lem of learning the reward function can be posed as a linear optimization problem
if the transition function is known. On the other hand, if the reward function is
known and the transition function needs to be learned, the problem is non-convex.
Chapter 5 presents an approach, based on alternating linear optimization, that allows
learning the transition function with expert feedback.

Explanations for MDP optimal policies will provide insight into the reasoning of the
system and explain why the optimal action is the best action given the transition func-
tion specified for the MDP. This will help MDP designers understand if the model has
been specified correctly and provide end-users some level of justification that may increase
their trust in the recommendation from the MDP. The refinement of Bayesian networks
and MDPs will provide a process for designers of these models to refine them such that
the recommendations from the refined models match the choices passively observed from
domain experts.

Domain experts are not necessarily assumed to be well-versed with probabilistic ap-
proaches such as Bayesian networks or MDPs. However, they are considered experts for
the domain the recommender system is being built for. This means that if an expert is
passively observed, the recommendations of the expert can be treated as the correct be-
havior that the recommender system should mimic. The refinement techniques presented
in Chapters 4 and 5 are based on taking advantage of feedback from domain experts.

4



1.3 Thesis Outline

The thesis is structured as follows. Chapter 2 describes the relationship between decision
theory, probability theory and utility theory. Various models such as Bayesian networks,
influence diagrams and Markov decision processes are formally introduced. In practice,
real-world problems often require the use of factored models so the concept of factored
MDPs is also discussed. Example domains of course advising and diagnostics are also
explained in this chapter, as they will be used as running examples through the thesis.

Chapter 3 focuses on the problem of explaining MDP policies. A review of existing
literature on explanations for intelligent systems is presented to analyze the type of ex-
planations that have been historically used to explain automated reasoning and planning.
More specifically, the literature on explanations for Bayesian networks, influence diagrams
and MDPs is also reviewed. Then, a set of templates for MDP policy explanations are pre-
sented that can be populated at run-time in a domain independent fashion. A technique to
select the minimum number of templates required to sufficiently explain an optimal action
is also presented for both the flat and factored cases. Sample explanations are presented
for the hand-washing and course advising domains. The results of a user study conducted
to evaluate the course advising explanations are also discussed in this chapter.

Chapter 4 presents a solution to the problem of model refinement for Bayesian networks
based on expert feedback. First, the constraints obtained from experts are formally defined.
Then, the existing literature on refining parameters for Bayesian networks is reviewed and
it is shown that expert constraints cannot be incorporated using prior approaches due to
non-convexity of these constraints. A solution, based on Gibbs sampling, is presented to
tackle the problem of refining the parameters by using these constraints. Two variants of
the technique are discussed, one with rejection sampling and the other without any rejec-
tion. The techniques are then evaluated on synthetic and real-world diagnostic Bayesian
networks obtained from a manufacturing domain.

Chapter 5 focuses on the issue of refining the transition functions of MDPs based on
expert feedback. A review of existing literature on MDP model refinement (transition and
reward functions) is presented. The problem of model refinement is then formalized by
representing the feedback from experts as constraints on the model. A technique based
on alternating linear optimization is presented to refine the parameters for flat MDPs.
The concepts of policy graphs and Monte Carlo value iteration, that have been previously
proposed for partially observable MDPs, are adapted for use with factored MDPs. This
is necessary to demonstrate the scalability of factored MDPs on large scale problems. A
technique is then described that enables model refinement of large scale factored MDPs

5



by using policy graphs and Monte Carlo value iteration. Experimental results are then
evaluated on synthetic and real-world diagnostic MDPs obtained from a manufacturing
scenario.

Finally, Chapter 6 concludes by presenting a summary of the contributions of this thesis
and discusses some directions for future work.
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Chapter 2

Background

This chapter introduces the concept of decision-theoretic planning by referring to proba-
bility and utility theory. Different methods for probabilistic reasoning are then discussed.
Techniques such as Bayesian networks and dynamic Bayesian networks are introduced as
they are used to represent the dynamics of the model. Techniques such as influence dia-
grams and Markov decision processes are introduced as they are used for selecting optimal
actions. This chapter also introduces the domains of course advising and diagnosis that are
used as sample domains to demonstrate the techniques of policy explanation and model
refinement presented in the rest of the thesis.

2.1 Decision Theory and Decision-Theoretic Planning

Decision theory [80] deals with identifying optimal actions under uncertain conditions. It
draws upon principles from probability theory and utility theory [97] to compute optimal
policies. Probability theory allows representation of uncertainty while utility theory allows
specification of preferences.

Probabilities are used for the dual purposes of dealing with uncertainty about the
current state, and dealing with uncertainty in the effect of a particular action. If the state
is represented by a random variable X, then Pr (X = x) denotes the probability of the
current state being x, or in other words, the degree of belief that the current state is x. A
belief state represents a probability distribution over all possible states or all possible values
of X. The prior probability distribution on X can be represented as Pr (X). The prior
represents the belief state, before any evidence is received. Evidence provides information

7



about observed values of X or other random variables. If evidence e is observed, then the
new belief can be represented using Pr (X|e) and is known as the posterior probability
distribution. Beliefs are updated with the accumulation of more evidence using Bayes’
Theorem, shown in Equation 2.1.

Pr (X|e) =
Pr (e|X)Pr (X)

Pr (e)
(2.1)

where Pr (e|X) represents the probability of observing evidence e given the belief about X
and Pr (e) is a normalization constant that can be computed as Pr (e) =

∑
X Pr (e|X)Pr(X).

Thus, prior probabilities are used to compute posterior probabilities when new evidence
is available. Bayes’ Theorem is used widely in decision-theoretic systems for probabilistic
inference.

Probabilities only encode uncertainty about the likelihood of occurrence of events, and
do not provide any information regarding the desirability of those events. Utilities (also
known as rewards or costs) are used to express preferences across different events. Utility
can be composed of multiple attributes, with each attribute expressing preference over
different aspects of an event or an outcome. In such cases, it is generally assumed that
utility is additive, i.e., utilities for all attributes are added.

The expected utility of an outcome is computed by using Equation 2.2.

EU =
n∑
i=1

Pr (si)U (si) (2.2)

where si ∈ S and S is the set of all possible outcomes, |S| = n, Pr (si) is the probability of
si occurring, and U (si) is the utility of outcome si. Thus, the expected utility is computed
by combining information regarding the desirability and the likelihood of occurrence of
each event or outcome. The principle of maximum expected utility underlines the basic
assumption of utility theory. The principle states that a rational agent will always act to
maximize its expected utility. Decision-theoretic systems are also based on this principle
and choose the action that maximizes expected utility. It is also known that the optimal
action computed using expected utility remains invariant under positive linear transforma-
tions [97]. Thus, the designers can choose any scale to express their preferences as desired,
without impacting the optimal decision.

MDPs can be well understood using the context of probabilistic systems such as Bayesian
networks and dynamic Bayesian networks, and decision-theoretic systems such as influ-
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ence diagrams, so these techniques are briefly introduced next before formally introducing
MDPs.

2.2 Bayesian Networks

A Bayesian network [72] is a directed acyclic graph in which each node represents a random
variable and each arc represents a conditional dependency. The node from which the arc
originates is called the parent of the node on which the arc terminates. A conditional prob-
ability distribution is associated with each node that quantifies the effect of all its parents
on it. For discrete variables, the conditional probability distribution can be represented
as a conditional probability table (CPT). Figure 2.1 shows a graphical representation of a
Bayesian network. All nodes in the network are assumed to have binary values.

Bayesian networks provide information about direct dependencies between different
variables, and hence can be used to perform inference. They can be used to calculate the
full joint distribution using Equation 2.3, where Parents (Xi) denotes the actual values of
the parents of the variable Xi.

Pr (X1 = x1, . . . , Xn = xn) =
n∏
i=1

Pr (xi|Parents (Xi)) (2.3)

Thus, a Bayesian network can be considered as a compact representation of the joint
probability distribution which can then be used to answer different queries using some
available evidence. Techniques such as variable elimination [103], that use Bayes’ Theorem,
are used for inference in Bayesian networks.

2.2.1 Diagnostic Bayesian Networks

Diagnostic Bayesian networks [7] are used to model the incorrect behavior of a system that
can be caused by one or more possible causes. Diagnostic Bayesian networks are used in
Chapter 4 to demonstrate the technique to refine models for Bayesian networks.

A class of bipartite Bayesian networks is widely used as diagnostic models where the
network forms a sparse, directed, causal graph, where arcs go from causes to observable
node variables. Upper case is used denote random variables; C for causes, and T for
observables (tests). Lower case letters denote values in the domain of a variable, e.g.
c ∈ dom(C) = {c, c̄}, and bold letters denote sets of variables. A set of marginally
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Figure 2.1: A graphical representation of a Bayesian network.
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independent binary-valued test variables C with distributions Pr(C) represent unobserved
causes, and condition the remaining conditionally independent binary-valued test variable
nodes T. Each cause conditions one or more tests; likewise each test is conditioned by
one or more causes, resulting in a graph with one or more possibly multiply-connected
components. The test variable distributions Pr(T |C) incorporate the further modeling
assumption of Independence of Causal Influence, the most common example being the
Noisy-Or model [43]. To keep the exposition simple, it is assumed in this thesis that all
variables are binary and that conditional distributions are parametrized by the Noisy-
Or; however, the techniques described in the thesis generalize to any discrete non-binary
variable models.

A diagnostic sequence is defined as consisting of the assignment of values to a subset of
tests. The diagnostic process embodies the choice of the best next test to execute at each
step in the sequence, by measuring the diagnostic value among the set of available tests at
each step, that is, the ability of a test to distinguish among the possible causes.

Conventionally, unobserved tests are ranked in diagnosis by their Value Of Information
(VOI) [48] conditioned on tests already observed. To be precise, VOI is the expected
gain in utility if the test were to be observed. The complete computation requires a model
equivalent to a partially observable Markov decision process. An alternate measure to rank
tests is based on Gini impurity, also known as Gini index. This involves ordering the test
variables based on the expected remaining uncertainty in the underlying cause, which can
be measured by the Gini impurity as shown in Equation 2.4. The Gini impurity measures
the expected error rate when c is chosen at random according to Pr(C = c|T = t).

GI(C|T ) =
∑
t

Pr(T = t)
[∑

c

Pr(C = c|T = t)(1− Pr(C = c|T = t))
]

(2.4)

VOI can also be approximated by a greedy computation of the Mutual Information
between a test and the set of causes [10].It has also been shown that Mutual Information
can be well approximated to second order by the Gini impurity [38] and thus can be used
as a surrogate for VOI, as a way to rank the best next test in the diagnostic sequence. In
Chapter 4, Gini impurity will be used as a way to rank tests.

2.3 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are an extension to Bayesian networks, that take into
account evidence accumulated over time. In DBNs, just like Bayesian networks, certain
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Figure 2.2: A graphical representation of a DBN.

variables are observable and the rest are hidden. However, the difference is that with the
progression of time, different values for the observable variables are observed, which in turn
influence the values of the hidden variables. DBNs employ the Markov property, according
to which the probability distribution of hidden variables at time t is only dependent on
their distribution at time t − 1 and the observed evidence. Thus, there is a Bayesian
network for each time slice. An additional assumption is that the model is stationary,
i.e., the conditional probabilities do not change over time. Figure 2.2 shows a graphical
representation of a DBN. All nodes are assumed to have binary values.

The process of inferring a distribution over the current state given the distribution
over the previous state and all evidence observed is known as filtering. Inference in DBNs
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can be performed using the same techniques as in Bayesian networks, such as variable
elimination, by unrolling the DBN into a Bayesian network. Unrolling creates a larger
Bayesian network with each time slice replicated to incorporate all observed evidence.

DBNs provide a compact representation for the transition dynamics of a system. This
representation will be used later to represent the transition function in an MDP.

2.4 Influence Diagrams

Influence diagrams [49], also known as decision networks, extend Bayesian networks to
support decision-making. Figure 2.3 shows a graphical representation of an influence di-
agram. Ovals represent chance nodes, rectangles represent decision nodes, and diamonds
represent utility nodes.

Influence diagrams contain two additional types of nodes called decision and utility
nodes. Decision nodes represent possible actions whereas utility nodes represent the utility
associated with a state. The random variables in Bayesian networks are represented in
influence diagrams as chance nodes. The principle of maximum expected utility is used
to choose the action that yields the highest expected value for the utility nodes. The
expected utility is computed by performing inference and using variable elimination. Note
that influence diagrams only provide a recommended action for a single step, and not a
sequence of inter-related actions.

2.5 Markov Decision Processes:

Markov decision processes (MDP) [79] are decision-theoretic systems that are used for se-
quential decision making under uncertainty. While influence diagrams can model arbitrary
configurations of decision points, MDPs assume a single sequence of decision points, i.e.,
the same distribution is assumed over each time step and the choice of executing an ac-
tion has to be made repeatedly. MDPs are typically represented using DBNs and hence
also employ the Markov property. Note that the expected utility in MDPs combines the
expected utilities of all future actions.

An MDP is formally defined by a tuple {S,A, T, ρ, γ}, where

• S is a set of states s. A state is defined by the joint instantiation of a finite set of
state variables.
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• A is a set of actions a. It is assumed in this document that this set is finite.

• T represents the transition model, such that T : S × A × S → [0, 1] specifies the
probability Pr (s′|a, s) of an action a in state s leading to a state s′.

• ρ represents the reward model, such that ρ : S×A→ R specifies the utility or reward
ρ (s, a) associated with executing action a in state s. The reward function can be
defined by a set R of reward variables R such that the sum of their values r is the
reward at any given state (e.g. ρ (s, a) =

∑
R∈R rR,s,a). Thus, it is assumed in this

document that the reward function is additive and allows for separate encoding of
different objectives.

• γ represents the discount factor, 0 ≤ γ ≤ 1. A low value of the discount factor
indicates that a reward accumulated earlier is preferred to that accumulated later.
If the discount factor is 1, then it indicates that there is no preference for acquiring
rewards sooner.

Figure 2.4 shows a graphical representation of an MDP.

An MDP policy π : S → A consists of a mapping from states to actions. The value
V π (s) of a policy π when starting in state s is the sum of the expected discounted rewards
earned while executing the policy. This is shown in Eq. 2.5, which is also known as the
value function.

V π (s0) = E

[
∞∑
t=0

γtρ (st, at)

∣∣∣∣π, s0

]
(2.5)

The expectation here is over the transitions induced by following policy π. A policy can
be evaluated by using Bellman’s equation (Eq. 2.6) which measures the value of a state.

V π (s) = ρ (s, π (s)) + γ
∑
s′

T (s′, a, s)V π (s′) (2.6)

An optimal policy π∗ earns the highest value for all states (i.e., V π∗(s) ≥ V π(s) ∀, s, π 6=
π∗). Optimal policies for MDPs can be computed using techniques such as value iteration
in which Bellman’s optimality equation (Eq. 2.7) is treated as an update rule that is applied
iteratively. Essentially, the utility of a state is determined by adding the immediate reward
with the expected discounted utility of the next state determined by choosing the optimal
action.
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Figure 2.4: A graphical representation of an MDP
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V π∗ (s) = max
a

[
ρ (s, a) + γ

∑
s′

T (s′, a, s)V π∗ (s′)

]
(2.7)

Action-value functions [89], also known as Q-functions, represented as Qπ (s, a), are
used to evaluate the expected value of executing an action, a in a state s, and executing
a policy, π, thereafter. This can be considered a function that assigns a value to every
state-action pair and can be computed using Equation 2.8.

Qπ (s, a) = ρ (s, a) + γ
∑
s′

T (s′, a, s)V π (s′) (2.8)

These concepts of value functions and Q-functions will be used through the rest of the
thesis in policy explanation and model refinement for MDPs.

2.5.1 Factored MDPs

The state space for most real-world problems is often defined by the cross-product of the
domain of several variables. Converting such problems to a traditional representation
of MDPs defined in the previous section (also referred to as a flat representation) can
result in exponential explosion in the state space and make the problem of solving for an
optimal policy computationally prohibitive. In such a case, a factored representation is
more suitable where the state space is instead represented by storing the value of each
variable. Such MDPs are often referred to as factored MDPs [16] since the transition
function is the product of several factors, each corresponding to a conditional distribution
of a variable given its parents.

For this thesis, it is assumed that each state variable is discrete and can take a finite
number of possible values. The current state of an MDP, s is then defined by the current
values of all state variables. The transition function, T , for a factored MDP is a factored
transition model in which the transitions can be represented by a DBN. This allows for a
compact representation of the transition function and it is reasonable since actions typically
affect only a subset of state variables. These effects also depend only on a subset of state
variables and can thus be represented compactly using a DBN.

Since the state space is represented by instantiating each variable with a certain value,
it is possible to define the concept of a scenario for factored MDPs. A scenario represents a
collection of states that corresponds to the instantiation of a subset of the state variables.
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The states in the scenario can then be obtained by taking a cross product of the values of
the assigned and unassigned variables. The concept of a scenario will be used in Chapter 3
when explaining MDPs.

2.5.2 MDPs for Recommender Systems

In this thesis, the focus is on recommender systems where an MDP recommends to a user an
action at each step. Examples of recommender MDPs include diagnostics, course advising,
and so on. Recommender systems lend themselves naturally to a factored representation.
The state contains one variable for the outcome of each action i.e., diagnostic tests or grades
for courses. The actions are recommendations for the next diagnostic test to execute or
the next course to register. It is assumed that repeating an action does not change the
result, so no states are revisited in the MDP.

Figure 2.5 depicts the flat representation of a factored recommender MDP with three
state variables {A1,A2,A3}. Each node represents a state, each arc represents a transition
from one state to another via an action corresponding to the label of the arc. In this
example, the variables have domain {T, F, }. A null value, “ ”, for a variable indicates that
this action has not yet been executed and thus its results has not yet been observed. The
actions here are the recommendations to observe the value of a variable. More generally,
recommender MDPs can be structured in a similar way with variables that can take n
values corresponding to n− 1 observations or the null value .

It is clear from Figure 2.5 that transition functions for MDPs have a special structure
that lends itself naturally to a factored representation. When an action (corresponding to
observing a variable) is executed in a state, the new state will be the union of the previously
observed values with the observed value of the action executed in this step.

The states in a recommender MDP can be organized in levels, where each level groups
all the states with the same number of variables instantiated. For instance, in Figure 2.5
at level 0, no variable has been observed and only one state is part of this level. All actions
are available at this level. At level 1, each state has one variable observed, so the number of
actions available at Level 1 is two since the action corresponding to the observed variable is
no longer available. Similarly, at level 3, three variables have been observed and no further
actions are available with all variables already observed. This concept of levels can be used
to enforce a partial ordering on the states such that all states in Level 0 are ordered lower
than all states in Level 1, and all states in Level 1 are ordered lower than all states in Level
2, and so on. This ordering also makes it clear that states are never visited more than once
in a recommender MDP. This is because an action once executed is never repeated. Thus,
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every time an action is executed the state transition results in a new previously unvisited
state.

This thesis uses the domains of diagnostics and course-advising for the purpose of
demonstrating the techniques presented for explanation and refinement. The next two
sections explain how these domains can be modeled as recommender MDPs.

2.5.3 MDPs for Diagnostics

The policy for a diagnostic recommender MDP recommends the optimal action to execute
at any given state, where an action may be executing a diagnostic test or predicting the
underlying fault/cause. The reward function can be used to fulfill various criteria such as
diagnosing the fault as quickly as possible, reducing the overall cost of executing costs, or
minimizing the cost of mis-classification.

Bayer-Zubek and Dietterich [13] presented a model for diagnostic MDPs that is used
in Chapter 5 to demonstrate the refinement of model parameters for an MDP. The total
number of actions in such an MDP are the total number of tests that can be executed
plus the action of predicting the cause. Once the cause has been predicted, the MDP
terminates. In diagnostic MDPs, the cause is not directly observable. Since all variables
in the MDP are observable, the MDP state does not explicitly represent the cause. But
the reward function requires this information (high reward if correct diagnosis and vice
versa). To account for this, the reward function is represented using a misclassification cost,
MC(fk, y), that represents the cost of predicting cause k when the true cause is y. Since
the correct diagnosis is not available in the state, the actual cost of executing an action can
be viewed as a random variable that takes the value MC (fk, y), with probability Pr(y|s).
The expected cost of executing an action can then be computed as shown in Equation 2.9.

C (s, fk) =
∑
y

Pr (y|s) ·MC (fk, y) (2.9)

Consider the MDP represented in Figure 2.6 with two tests and two possible causes.
The state space of this factored MDP has three variables, one each corresponding to the
tests and the third for the prediction of the cause. Once the MDP has predicted a cause,
it terminates.
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2.5.4 MDPs for Course Advising

The policy for a course advising MDP recommends the optimal course(s) in which a student
should register in future terms. The reward function can encode various student preferences
such as minimal time to graduate, maximize grade point average, or balance diversity vs
specialization in choice of elective course.

A course advising MDP is used in Chapter 3 to demonstrate explanations generated for
MDPs. The problem of course advising is modeled as a factored MDP that recommends
elective courses to upper year students, based on their previous performance. The Dynamic
Decision Network (DDN) associated with the MDP model is depicted in Figure 2.7. The
assumption here is that the grades of a student in a new course can be predicted based on
grades in pre-requisites and the cumulative grade point average (CGPA).
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The model is based on a subset of the requirements at the David R. Cheriton School
of Computer Science at the University of Waterloo. Undergraduate students must choose
two elective courses in each of their last three terms, subject to fulfilling pre-requisite
and course area constraints. Each course belongs to one of three areas. The grades are
discretized and each course has a a grade variable taking one of four values {G, P, F, N }
corresponding to Good, Pass, Fail, and Not Taken. The default value is N. These variables
correspond to the nodes in the recommender system in Figure 2.5.

In addition, book-keeping variables are used to store the CGPA (cumulative grade point
average) with two possible values {G, P}, the total number of courses completed, whether
each area has been covered, and the number of terms remaining. Each term corresponds
to a level.

The action is choosing a pair of courses. The MDP policy depends on the values of
all variables mentioned above, and recommends two courses to be taken in the next term.
The transition function was constructed using historical data from University of Waterloo
over several years (14,000 students). The reward function is decomposed additively into
two components based on the degree requirements. Two utility variables, course reward
and area reward are created that have high utility values for states in which 6 courses are
passed and three areas are fulfilled. The rewards are only awarded at the end of the third
term to avoid multiple accrual if a requirement is completed before the end of the last
term. The objective is to maximize the values of these utility variables. Since the problem
is finite-horizon the rewards are not discounted.

2.6 Summary

This chapter has formally introduced the framework of decision-theoretic planning. Decision-
theoretic systems are based on probability theory and utility theory. Probability theory
allows the explicit representation of uncertainty whether due to lack of sufficient knowl-
edge or stochasticity in the environment. Utility theory allows the specification of user
preferences. Both are then combined to model the problem of recommending an optimal
action to a user, whether for a single-shot decision (modeled using Bayesian networks and
influence diagrams) or in sequential planning (modeled as MDPs).

Real-world problems invariably result in exponential state space explosion and the so-
lutions for optimal policies are computationally prohibitive. Factored models are often
used to represent the state using a set of variables and also to compactly represent the
transition function. Recommender MDPs, where the policy of the MDP is a recommenda-
tion to a user, can be modeled as factored MDPs. Two example recommender MDPs for
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diagnostics and course advising are also introduced in this chapter. Course advising is used
in Chapter 3 to demonstrate generation of explanations for MDP policies. Diagnostics is
used in Chapter 4 to demonstrate refinement of Bayesian network model parameters and
in Chapter 5 to demonstrate refinement of MDP model parameters.
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Chapter 3

Explanations for MDPs

Often, a sequence of decisions must be taken by an individual or system. However, de-
ciding on a course of action is notoriously difficult when there is uncertainty in the effects
of the actions and the objectives are complex. Markov decision processes (MDPs) [79]
provide a principled approach for automated planning under uncertainty. While such an
automated approach harnesses the computational power of machines to optimize difficult
sequential decision making tasks, the users no longer understand why certain actions are
recommended. This lack of understanding is a serious bottleneck that is holding back the
widespread use of MDPs as planning tools. Hence, there is a need for explanations that
enhance the user’s understanding and trust of these plans and help MDP designers to
debug and validate their systems.

Merriam-Webster [1] defines explanation as the process of explaining. To explain is
defined as to make known, or to make plain or understandable, or to give reason for
or cause of, or to show the logical development or relationships. In terms of intelligent
systems, explanation may be considered to be giving the reason or cause of the choice
made by the system to make it understandable to the user. In terms of MDPs, this
would mean demonstrating the process of computing the optimal policy for the MDP. The
explanation of decision would require elaborating why a certain decision was chosen. It
has been shown that explanations are needed either when the system performs an action
that is not in accordance with the user’s mental image [40], or when the cost of failure is
high [88]. In this chapter, understanding and verifying the model that led to the optimal
policy is the primary motivation.

Preliminary versions of parts of this chapter have been published in the 19th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS) [52] and more recently
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as a book chapter in a book on decision theory models [53].

3.1 Problem Statement

In MDPs, actions are selected according to the principle of maximum expected utility.
Hence, explaining a decision amounts to explaining why the chosen action has highest
expected utility. The expected utility depends on the probability of an event occurring and
the utility of that event. Since MDPs deal with sequential planning, thus it is not intuitive
to estimate the probability of an event occurring, possibly a few steps later. To address this
issue, simple and easy-to-understand explanations need to be presented that provide insight
into the expected utility computation by exposing some key pieces of information. More
specifically, the frequencies of certain events that are more critical to the computation of the
maximum expected utility are highlighted through explanation templates in this chapter.
The focus of this work is not on natural language generation or sophisticated graphical user
interfaces but on providing an intuition regarding the optimality of the policy by filling in
pre-defined templates at run-time.

3.2 Literature Review

There has been less research on explanations in probabilistic and decision-theoretic systems
compared to explanations for intelligent systems, such as expert and rule-based systems.
This section first surveys the work on intelligent systems and then examines prior work on
probabilistic and decision-theoretic systems.

3.2.1 Explanations for Intelligent Systems

Explanations for intelligent systems have been considered an essential component of such
systems from their very outset. The primary focus of this previous work on explanations
has been to provide users confidence regarding the recommendations made by the system.

Initial approaches to explanations in expert systems were based on presenting the ex-
ecution traces to the users. This technique was used by the MYCIN [21] expert system
for medical diagnosis. It provided users with answers to certain types of “Why” questions.
They were answered by listing the rule that required certain information being asked from
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the user as well as by providing a trace of the execution of that rule indicating the conclu-
sion that rule could lead to. There have been other proposals to examine the code being
run, and describe it in English as an execution trace [91].

The issue with providing an execution trace is that it can yield too much information,
not necessarily all of which is relevant to understanding the final decision. Further, it is also
not necessary that the structure of the expert system yields itself to user comprehension.

Another criticism of explanation systems based on execution traces has been that they
do not provide justifications in their explanations. While the expert system can function
and arrive at the correct conclusions by just knowing the rules, it is not possible to justify
these conclusions without external domain knowledge which may be needed for certain do-
mains. These kinds of explanations were needed especially for intelligent tutoring systems,
in which the goal is to transfer knowledge to the user. Xplain [90] was one of the first
systems to provide justifications of its decisions to users. To provide justifications, it main-
tained a knowledge base in addition to the rules used by the expert system. The knowledge
base provided domain-specific information, called deep-knowledge by its designers, used for
creating justifications.

In some domains other strategic information such as the ordering of those rules may
also be needed to understand the choice of the best action. NEOMYCIN [21], an extension
to MYCIN, addressed this problem by retaining strategic information of this nature, as
well as requiring the designer to label different phases of the reasoning process explicitly.
Examples of such phases could include establishing a hypothesis space, or exploring and
refining that hypothesis space. The user was then given an explanation that included
information about the high-level goals or sub-goals of the system relevant to the rule under
consideration. In such a case, there is an additional burden on the designer of the system
to record such information along with the rules or to explicitly divide the expert system’s
execution into such stages.

All the explanation techniques discussed above focus on exposing the line of reasoning
of the expert system to the user. Wick and Thompson [100] argue that the best explanation
may not necessarily be based on this line of reasoning. The reasoning process includes es-
tablishing potential hypotheses, then rejecting a few by considering additional information,
and finally determining the strength of the best candidate hypothesis. Previous techniques
would provide all of this information to the users, which might be too complex for them
to understand. Thus, they advocate differentiating the line of explanation from the line of
reasoning.

The line of explanation may be separated from the line of reasoning by making the expla-
nation disregard the process used by the expert system. Given the conclusion of the expert
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system, explanations may then be formulated by using additional domain knowledge[19].
Reconstructive explanations may not be reflective of the reasoning of the expert system,
but at the same time they should not be factually incorrect. For this reason, such expla-
nations are also called white lies [90].

Reconstructive explanations are not suitable for experts who are debugging the system.
Their explanations must be based on the actual line of reasoning of the system for them
to exactly understand how the system is behaving in a given configuration. Another issue
with these explanations is the need for additional domain knowledge to construct the
explanations.

Several systems also provide explanations based on similarity with other situations
or cases known to the user. Quite a few recommender systems are based on collaborative
filtering techniques in which users are grouped in different clusters based on their similarity
on certain aspects. The system assumes that similar users have similar preferences. Thus,
a user is recommended items (e.g., movies, books or songs) based on whether other users
similar to her liked those items. Explanations for such recommendations [45, 94] convey
how many users liked this item, or the attributes on which other users, who liked this item,
were similar to the current user.

Case-based reasoning systems function on the principle of identifying other situations
or events, called cases, that are most similar to the current case and then identifying the
decisions taken in those cases. The users are then presented those cases as explanation for
the chosen decision. Various similarity measures can be defined with the simplest being
that the nearest neighbor is chosen as an explanation [2]. Another example of similarity
can be the nearest neighbor that lies between the current situation and nearest unlike case,
which in some cases can serve as a better explanation [28].

Similar cases have also been used as explanations for systems that use a complex math-
ematical technique, such as neural networks or regression [71]. In this case, the training
data of the system is searched for a similar case with a similar result that can be presented
to the user. Such explanations can be considered a form of reconstructive explanation,
since the actual reason behind the choice is the mathematical technique rather than the
similarity to the case in the training data.

Frame based systems [66] are not exactly a technique used to generate explanations,
but they provide a similar functionality. Frames, originally proposed for computer vision
and later also used in natural language processing, provide a method to represent informa-
tion related to a specific situation. They provide high-level constructs that help identify
the current state, and then low-level constructs, mirroring the properties of each high-level
situation, to describe it. Slots are provided in frames to be populated at run-time, depend-
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ing on different situations. This approach can be considered to provide different types of
templates for different situations, that then need to be populated depending on the state
of the system. Explanations for MDPs can be viewed similarly, where different types of
explanations are needed for different situations, and templates need to be filled in with
information about to explain the current situation.

3.2.2 Explanations for Decision-Theoretic Systems

While there has been a lot of work on explanations for intelligent systems, such as expert
and rule-based systems, there has not been much work for probabilistic and decision-
theoretic systems. The main reason behind this discrepancy is the difference in processes
through which they arrive at their conclusions. For probabilistic and decision-theoretic
systems, there are well-known axioms of probability that are applied to perform inference
and theorems from utility theory that are used to compute a policy. Since these systems
are based on a principled approach, experts do not need to examine the reasoning trace
to determine if the inference or policy computation process is correct. The trace would
essentially refer to concepts such as Bayes’ theorem, or the principle of maximum expected
utility, or other axioms of probability and utility theory. These techniques are well-known,
and if it is assumed that they have been coded correctly, then there is no doubt that they
will yield the correct result. This is in clear contrast with expert and rule-based systems.
The experts need to examine what rules have been triggered as a result of the current state,
and whether their sequence of instantiation and then execution is correct. This explains
the large number of projects to generate explanations for expert and rule-based systems.
On the other hand, for probabilistic and decision-theoretic systems, the requirement is to
highlight portions of the input that lead to a particular result rather than to explain the
principles behind these techniques. In the past, decision-theoretic approaches have not
been scalable for real-world problems, which explains the lack of literature on explanations
for MDPs and POMDPs. Decision-theoretic systems are now being proposed for use for
relatively larger sized real-world problems [14, 67, 73], which now motivates the need
for explanations in them. The use of larger sized real-world problems has also led to
the proposal of approximate techniques for inference and policy generation to deal with
scalability concerns. If the technique is approximate, then in such a case, it is again more
important to provide an explanation to convince the expert that the approximation has
not resulted in an incorrect solution.

The explanations of the previous section provide a good starting point for explaining
MDPs, but do not serve the purpose completely. None of the systems discussed are stochas-
tic, like MDPs. In most cases, the policy is already known to the designer, unlike MDPs in
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which the policy is numerically computed. Also, none of them need to focus on a sequence
of inter-related decisions, which is more complicated than explaining a single isolated deci-
sion. The complex numerical computations involved in finding optimal policies also make
it difficult for users to gain an insight into the decision-making process. Druzdzel [30]
rejected the notion that explanations for probabilistic systems cannot be generated due to
these issues. In his work, causality was identified as a key component that could provide
users with insight regarding the reasoning process. Since decision-theoretic systems (such
as MDPs) are normative and not descriptive, it is even more important to provide users
with explanations.

It may be noted here that a key issue in explanation of stochastic systems is the
presentation of probability in different forms, such as numerical, verbal or graphical. An
issue with using verbal explanations is that different people have different interpretations
for terms such as “possibly”, “probably”, “likely” or “usually” [29].

Explanations in Bayesian Networks

Lacave et al. [56] provide a survey of different techniques in this area, and define three
different types of explanations that are generated for Bayesian networks. The first type is
related to explanation of evidence, in which the system explains what values of observed
variables led to a certain conclusion. This technique is known as abduction. The second
type is related to the explanation of the model in which the static knowledge, encoded in
the Bayesian network, is presented or displayed to the user. The third technique refers to
the explanation of reasoning in which the user is told how the inference process unfolds.
This can be done by showing the reasoning process that led to certain results (possibly
including intermediate results), or by showing the reasoning process that led to rejection
of a hypothesis (possibly including intermediate results), or by providing knowledge to
the user about hypothetical situations in which the result would have changed, if certain
variables in the current state were different.

Chajewska and Helpburn [18] presented an approach for explanations in probabilistic
systems by representing causality using Bayesian Networks and exploiting different links.
The approach presented in this chapter is similar as it also uses templates to generate
explanations and analyze the effects of the optimal action. However, the analysis is not
restricted to a single relevant variable and the the long-term effects of the optimal action
(beyond one time step) are also considered.
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Explanations in Influence Diagrams

Lacave et al. [57, 58] present different approaches to explain graphical models, including
Bayesian networks and influence diagrams. Their explanations are geared to users with a
background in decision analysis, and they present utilities of different actions graphically
and numerically. This work can be used to assist experts, and the authors mention that
they have used it to construct and debug models to help medical doctors in diagnosis
and decision-making. Similar techniques may be used to debug and validate the reward
function for an MDP, but not the transition function. Furthermore, there is still a need to
consider the effect of sequential decision-making.

Explanations in MDPs

There has been very little research on explanation of policies generated using MDPs with
the exception of two other streams of work, that of Elizalde et al. [33, 32, 34] which was
formulated at the same time as the work in this chapter and the work by Dodson et
al., [25, 26] that was published subsequent to the publication of the work in this chapter.

In the work of Elizalde et al., [33, 32, 34] an explanation comprises three components:
an optimal action, a relevant variable, and explaining why the optimal action is the best
in terms of the relevant variable. They identify the relevant variable by determining which
variable affects the utility function the most. Two heuristics are provided to determine a
relevant variable. In the first method, they keep the rest of the state fixed and only change
the values of one variable under consideration. By doing this, they measure the difference
in the maximum and minimum values of the utilities of the states which are similar for all
other variables except for the variable being considered. This process is repeated for all
variables, and the variable with the largest difference between the maximum and minimum
value is then considered relevant. In the second heuristic, they examine the optimal action
for different states, such that only the value of the variable under consideration is changed
and other values are kept fixed. They consider a variable more relevant if the optimal
policy changes more frequently by changing the value of that variable, while keeping the
values of other variables fixed. Such explanations belong to the category of reconstructive
explanations since they do not mirror the reasoning process. They provide users intuition
regarding the optimal action, by discussing the relevant variable and its possible impact
but may not be useful for debugging purposes. It is also conceivable that multiple relevant
variables may need to be combined to construct a more meaningful and intuitive explana-
tion. It will be interesting to explore the long-term effects of the optimal action, rather
than only focusing on the change of utility while identifying a relevant variable.
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Subsequent to the publication of the work in this chapter [52], Dodson et al., [25, 26]
have also described an approach based on natural language argumentation for explanations
of MDP policies. Coincidentally, they also use the domain of academic course advising [41]
similar to the evaluation domain used in this chapter. The technique described by Dodson
et al., [25, 26] is more focused in helping end-users, who may not be very knowledgeable
about the concept of an MDP or comfortable with the use of probabilities, to understand
the explanations. Thus, the goal is not essentially to provide the minimum information
required to prove the optimality of the policy but to convince an average user to trust the
policy. In line with this goal, they also focus on presenting the explanations using a natural
language interface. They also conduct a user study to compare their explanations with
those presented in this thesis and demonstrate that users are more accepting of explanations
provided in their natural language interface. The focus of the work in this chapter is to
help experts understand the model and determine if any corrections are necessary to the
transition function.

McGuinness et al. [64] identify several templates to present explanations in task pro-
cessing systems based on predefined workflows. The approach in this chapter also uses
templates, but predefined workflows cannot be used due to the probabilistic nature of
MDPs.

3.3 Explanations for MDPs

The objective of generating an explanation of an MDP policy is to answer the ques-
tion,“Why has this recommendation been made?”. The technique presented in this section
populates generic templates at run-time, with a subset of those included in the explanation.

3.3.1 Templates for Explanations

The reward function reflects the preference amongst different states or scenarios. Rewards
are generally assigned to states or scenarios that have certain semantic value associated with
them. The policy for an MDP is computed by maximizing the sum of expected discounted
rewards (Equation 2.7). The explanations should indicate how this expectation is being
maximized by executing the optimal action. The approach in this section anticipates the
effects of an action and shows the contributions of those effects to the sum of expected
rewards.
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An alternate method to evaluate a policy involving occupancy frequencies [79] is used
in generating the explanations. The discounted occupancy frequency (hereafter referred as
simply occupancy frequency), λπs0 (s′), is the expected number of times one will reach state
s′ from starting state s0 by executing policy π. Occupancy frequencies can be computed
by solving Equation 3.1.

λπs0 (s′) = δ (s′, s0) + γ
∑
s∈S

T (s′, π (s) , s)λπs0 (s) ∀s′ (3.1)

where δ (s′, s0) is a Kroenecker delta which assigns 1 when s′ = s0 and 0 otherwise. The
occupancy frequency is not a probability so it can lie in [0, h]. In domains where it is
impossible to revisit a state, occupancy frequency will lie in [0, 1] and can be considered
as a probability. The dot product of occupancy frequencies and rewards gives the value of
a policy, as shown in Equation 3.2.

V π (s0) =
∑
s∈S

λπs0 (s) ρ (s, π (s)) (3.2)

The value of the policy is the sum of products of the occupancy frequency of each state
with its reward. An explanation for choosing an action could be the frequency of reaching
a state is highest (or lowest) relative to other actions. This is especially useful when this
state also has a relatively high (or low) reward. Below are a list of templates in which the
underlined phrases (states and their probabilities) are populated at run-time.

• Template 1:“ActionName is the only action that is likely to take you to State1

about λ times, which is higher (or lower) than any other action”

• Template 2: “ActionName is likely to take you to State1 about λ times, which is
as high (or low) as any other action”

• Template 3: “ActionName is likely to take you to State1 about λ times”

As mentioned earlier, the frequency λ can be higher than 1 if a state can be revisited.
While the frequencies are discounted they still represent an expectation of the number
of times a state will be visited. To understand this, consider an alternate yet equivalent
representation of the discount factor in which 1 − γ is the termination probability, i.e.,
the probability of the MDP terminating at each step. For problems, without any discount
factor, the frequencies will not be discounted. In general, all MDPs, including discounted
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problems, can be converted to stochastic shortest path MDPs [63] without any discount
factor and an indefinite horizon. The discount factor is retained in all equations in this
thesis, but it can be ignored without the loss of generality, if desired.

The above templates provide a method to present explanations but multiple templates
can be populated even for non-optimal actions; a non-optimal action may have the highest
frequency of reaching a state with a high reward, but it still may not have the maximum
expected utility. Thus, a process is needed to identify a set of templates to include in the
explanation to justify the optimal action.

3.3.2 Minimum Sufficient Explanations (MSE) for Flat MDPs

In this chapter, the concepts of minimum and sufficient explanations are introduced. An
explanation is defined as sufficient if it can prove that the recommendation is optimal, i.e.,
the selected templates show the action is optimal without needing additional templates. A
sufficient explanation cannot be generated for a non-optimal action since an explanation
for another action (i.e., optimal action) will have a higher utility. A sufficient explanation
is also defined as minimum if it includes the minimum number of templates needed to
ensure it is sufficient. The sufficiency constraint is useful in trying to debug the model.
The minimum constraint is useful in trying to understand the policy with as little infor-
mation as is necessary. If needed, either of the minimum or sufficiency constraints can be
relaxed to present more ore less templates depending upon the audience and purpose of
the explanation.

Let s0 be the state where additional information is desired to explain why π∗ (s0) is an
optimal action. The value of executing any action at state s0 can be calculated using the Q-
function defined in Equations 2.8. The Q-function can also be evaluated using occupancy
frequencies as defined in Equation 3.2. Since a template is populated by a frequency and
a state, the concept of a term t is introduced here to encapsulate this information as
t (s, π∗, s0) = λπ

∗
s0

(s) ρ (s, π∗ (s)). Now V π∗ can be computed using Equation 3.3.

V π∗ =
∑
s∈S

t (s, π∗, s0) (3.3)

The minimum sufficient explanation (MSE), defined above, comprises a subset of the
terms in Equation 3.3. For this reason, the expected utility of the terms included in the
MSE, VMSE, cannot exceed the value of the optimal action, V π∗ , but it must also be higher
than the value of any other action, i.e., V π∗ ≥ VMSE > Qπ∗ (s0, a) ∀a 6= π∗ (s0). In the
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worst case, all terms will have to be included in the explanation. To compute the MSE,
all terms in Equation 3.3 can be arranged in descending order, and then the first k terms
of this sequence, necessary to ensure that VMSE ≥ Qπ∗ (s0, a), can be selected. The value
of an MSE, VMSE, is formally defined using Equation 3.4.

VMSE =
∑
i≤k

ti +
∑
i>k

λπ
∗

s0
(si) r (3.4)

VMSE in Equation 3.4 comprises two components. First, the expected utility from all
the terms in the MSE, i.e.,

∑
i≤k ti. Second, for every term not included in the MSE, its

worst case is assumed by adding utility computed by using the minimum possible reward, r,
to the MSE. The second component is needed to ensure sufficiency if rewards are negative,
and minimum otherwise.

3.3.3 Minimum Sufficient Explanations (MSE) for Factored MDPs

In Equation 3.3, the total number of terms will equal the size of the state space. This
can be computationally prohibitive for large state spaces. Typically, factored MDPs are
used in such cases. Occupancy frequencies for scenarios, λπs0 (sc), in factored MDPs can be
defined as the expected number of times one will reach a scenario sc, from starting state
s0, by executing policy π i.e., λπs0 (sc) =

∑
s∈sc λ

π
s0

(s). Also, the reward function can be
defined by a set R of reward variables R such that the sum of their values r is the reward at
any given state (e.g. ρ (s, a) =

∑
R∈R rR,s,a, where rR,s,a represents the reward for reward

variable R in state s of executing action a). Let scR=r define the scenario for which reward
variable R has value r1, and V π∗

f represent the utility of executing π∗ for a factored MDP.
In Eq. 3.4, r represents the minimum value for the reward function. With multiple reward
variables, every variable may have its own minimum value which can be used instead. Let
ri define the minimum value for the reward variable used in term i in the sorted sequence.
Now, Equations 3.3 and 3.4 can be re-written as Equations 3.5 and 3.6 respectively.

V π∗

f =
∑
R∈R

∑
r∈dom(R)

λπ
∗

s0
(scR=r) r (3.5)

1For the sake of completeness, it should be pointed out that the special case where a set of scenarios
for reward variable R have value r can also be handled by computing the occupancy frequency for each
scenario independently and then adding them to create a single term for use in Equation 3.5 or otherwise
retain a separate term for each such scenario.

35



VfMSE =
∑
i≤k

ti +
∑
i>k

λπ
∗

s0
(sci) ri (3.6)

The number of terms is now significantly lower since only a single term per value of
each reward variable is needed. This allows computing an MSE even for domains with
large state spaces. Additionally, the templates can also be modified for the factored case
as listed below:

• Template 1:“ActionName is the only action that is likely to take you to
V ar1 = V al1, V ar2 = V al2, ... about λ times, which is higher (or lower) than any
other action”

• Template 2: “ActionName is likely to take you to V ar1 = V al1, V ar2 = V al2, ...
about λ times, which is as high (or low) as any other action”

• Template 3: “ActionName is likely to take you to V ar1 = V al1, V ar2 = V al2, ...
about λ times”

It is known that the optimal policy is invariant to positive linear transformations on
the reward function [97]. This property in the MSE is also desired to ensure that the MSE
only changes if the model has changed. This will assist designers in debugging the model
efficiently.

Proposition 1. MSE remains invariant under affine transformations of the reward func-
tion.

Proof. Let V̌f
π

denote the expected utility for any policy π when rewards have been scaled
by adding any constant c. If r is substituted by r + c in Eq. 3.5 it can be rewritten as
V̌f

π
= V π

f + c
∑

R∈R
∑

r∈dom(R) λ
π
s0

(scR=r) r. Since occupancy frequencies computed for

an MDP must add up to the horizon (
∑

r∈dom(R) λ
π (scR=r) r = h), so V̌f

π
= V π

f + c|R|h,

where |R| is the total number of reward variables. Similarly V̌fMSE = VfMSE + c|R|h.
Since VfMSE > V π

f , thus V̌fMSE > V̌f
π

for any constant c. Also V̌fMSE will comprise the
same scaled reward values and frequencies as those in VfMSE otherwise the explanation
would not remain either sufficient or minimum. For discounted domains, the frequencies
will add up to the expected discounted horizon instead of h. A similar proof can also be
presented for the case where rewards are multiplied by a positive constant.
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3.3.4 Workflow and Algorithm

The basic workflow for the explanation process is as follows. The designer identifies the
states and actions, and specifies the transition and reward functions of an MDP. The
optimal policy is computed by using a technique such as value iteration. Now the designer
can consult an optimal policy to determine an optimal action and request an explanation.
The explanation is generated using the process listed below:

1. Compute scR=r, the scenario which comprises the set of all states that lead to each
value r of each reward variable R. This information is directly available from the
dependencies encoded in the reward function. For each partial assignment of value r
to variable R, note the set of states that receive reward r to compute the scenario.

2. For every scenario scR=r, compute the occupancy frequency λπ
∗
s0

(scR=r) for every
action using Eq. 3.1. The occupancy frequency for a scenario is computed efficiently
by summing the occupancy frequencies of each state in it using variable elimination.
The recurrence is terminated after a number of steps equal to the horizon of the MDP
or when convergence is achieved (due to the goal state in indefinite horizon problems
or otherwise the discount factor) for infinite horizon problems.

3. Compute the term t (sci, π
∗, s0) and λπ

∗
s0

(sci) ri for every scenario scR=r. They re-
spectively represent the advantage and disadvantage of including and excluding a
term from the MSE.

4. Sort ti−λπ
∗
s0

(sci) ri in descending order and select the first k terms from this sequence
to include in the MSE for which VMSE > Qπ∗ (s0, a) ∀a 6= π∗ (s0). Note that ti and
λπ
∗
s0

(sci) ri respectively represent the advantage and disadvantage associated with
including and excluding a term from the MSE, so their difference indicates the benefit
of this term in the explanation versus excluding it.

5. Present each term in the explanation to the user in one of the defined templates.
Choose templates using the following criteria.

(a) Use template 1 if the optimal action has the highest (or lowest) expected fre-
quency to reach that scenario by a significant margin2.

(b) Use template 2 if the optimal action has the highest (or lowest) expected fre-
quency, but not by a significant margin.

2In the implementation for experiments in this chapter, a significant margin means twice as high as the
next highest. It can be adjusted depending on the domain.
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(c) Use template 3 if neither of the previous templates can be used.

The above process to compute MSE can be summarized as Algorithm 1.

Algorithm 1 Computing Minimum Sufficient Explanations at state s0 using policy π∗

computeMSE(s0,π∗)
1 for each r in R
2 sc [r] ← computeScenarios(r)
3 λ[r] ← computeOccupancyFrequency(sc [r])
4 utilTemplate [sc, π∗, s0]← λ [r] · r
5 utilNoTemplate [sc, πa, s0]← λ [r] · r̄
6 netUtil [sc, r]← utilTemplate [sc, π∗, s0]− utilNoTemplate [sc, πa, s0]
7 sortedNetUtil← sortDescending(netUtil)

Initialize VMSE ← 0, VTemplates ← 0 and VNoTemplates ←
∑
utilNoTemplate

Initialize k ← 0, MSE ← {} and Pairs← {}
8 repeat
9 add sc [r] , λ [r] for sortedNetUtil [k] in Pairs

10 VTemplates ← VTemplates + utilTemplate [k]
11 VNoTemplates ← VNoTemplates − sortedNetUtil [k]
12 VMSE ← VTemplates + VNoTemplates
13 k ← k + 1
14 until (VMSE < Vnext)
15 MSE ← generateTemplates(Pairs)
16 return MSE

The function computeScenarios returns the set of scenarios with reward value r
which is available in the encoding of the reward function. The function computeOccu-
pancyFrequency is the most expensive step which corresponds to solving the system of
linear equations defined in Equation 3.1, which has a worst case complexity that is cubic
in the size of the state space. However, in practice, the running time can often be sublinear
by using variable elimination [103] to exploit conditional independence and algebraic deci-
sion diagrams [46] to automatically aggregate states with identical values/frequencies. The
variable Vnext refers to the value function of the state with the second highest value. The
function generateTemplates chooses an applicable template, from the list of templates,
in the order of the list, with the last always applicable.
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For any given state, an MSE is guaranteed to exist; in the worst case it will need to
include all the terms in the MSE from Eq. 3.3 or Eq. 3.5. Thus, the upper bound on the
number of templates displayed to the user is also given by the number of terms, which will
depend on the structure of the MDP being explained. A relatively large number of terms
in the MSE will indicate that the effect of the optimal action is not substantially different
from that of at least one other action. It can also be argued that for every term there is at
least one template that can be used to present the information to the user since Template
3 can always be used. While template 3 may not seem to provide much information in
itself, it does indicate that there are better or worse actions available if the scenario being
depicted is of particular interest to the user or designer.

3.4 Experiments and Evaluation

The approach to generate MSE was evaluated by running experiments on two different
domains: course advising and handwashing. The course-advising MDP has 4 core courses
and 7 elective courses (from which the student has to choose), with each course having 4
possible letter grades and belonging to a certain area. It has 21 possible actions, with each
action representing a pair of elective courses. The objective is to pass 6 elective courses in 3
terms by taking at least one course in 3 different areas. The transition model was obtained
by using historical data collected over several years (for 14,000 undergraduate students) at
the University of Waterloo. The reward function provides rewards for completing different
degree requirements with the reward function decomposed in two different variables, one
for each degree requirement, with 2 values per variable. The horizon of this problem is
3 steps, each step representing one term and it is undiscounted. The other domain was
the handwashing POMDP developed by Hoey et al. [47], available online, to assist people
with dementia in handwashing. The POMDP was converted into an MDP, assuming all
states are observable and changing variable names and values to make them more user-
friendly. The horizon for this domain is 100 steps and discount factor is 0.95. There are
three different reward variables in the reward function with 19 distinct values for rewards.
Explanations for this domain are intended for a caregiver/nurse to evaluate the validity of
the prompt, and not for the person washing hands.

MSEs were calculated for different starting states in the course advising and hand-
washing MDPs. The results are shown in Table 3.1 and Table 3.2. It can be seen that
the MSE generally contains very few terms for both domains, more evident in the hand-
washing domain in which there was a total of 19 terms, and only 6 were needed for any
given optimal action in 382 different starting states generated randomly. It is natural to
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Table 3.1: Explanations for Course Advising Domain (Reward Variables=2, Values per
Variable=2+2, Max. Terms=4)

Terms in MSE 1 2 3–4

Frequency 134 48 0
Mean ±STD of Qπ∗ (s0, a

′) /V π∗ 0.46±0.41 0.81±0.24 -

Table 3.2: Explanations for Handwashing Domain (Reward Variables=3, Values per Vari-
able=2+2+15, Max. Terms=19)

Terms in MSE 1 2 3 4 5 6

Frequency 0 142 94 119 2 25
Mean ±STD of Qπ∗ (s0, a

′) /V π∗ - 0.51±0.22 0.62±0.10 0.68±0.04 0.61±0.15 0.69±0.05

expect an explanation to be more complicated if two policies have similar effects. The
complexity of an explanation is estimated by the number of terms included in it. Also
two policies are considered to have similar effects if the ratio of their normalized expected
values is close to 1. It can be seen from both tables that if the ratio between the expected
utility of the second best policy, Qπ∗ (s0, a

′), and optimal policies, V π∗ , is high then the
explanation includes more terms. On the other hand, if the ratio is low it means that the
optimal action is much superior and we can see that fewer terms are needed in the MSE.
This result is intuitive as more templates would be expected in the MSE if the optimal
policy is pretty similar to another policy.

Two sample explanations, one from each domain, are shown below.

• Action TakeCS343&CS448 is the best action because:-

– It is likely to take you to CoursesCompleted = 6, TermNumber = Final about
0.86 times, which is as high as any other action

• Action DoNothingNow is the best because:-

– It is likely to take you to handswashed = Y ES, planstep = Clean&Dry about
0.71 times, which is the higher than any other action

– It is likely to take you to prompt = NoPrompt about 12.71 times, which is as
high as any other action3

3The variable names have been changed from those in [47]
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The occupancy frequency in the last template is higher than 1 because it is possible visit
a state multiple times with a reward for not issuing a prompt every time.

The optimal policies for both domains were pre-computed since they do not need to be
recomputed for every explanation. It took approximately 1 and 4 seconds respectively to
generate explanations for the course advising and handwashing problems on a Pentium IV
1.66 GHz laptop with 1GB RAM using Java on Windows XP with the optimal policy and
second best action precomputed. Note that the course advising problem has 117.4 million
states and the handwashing problem has 207,360 states. The simpler reward function (two
reward variables with two values each) in the course advising domain resulted in faster
execution despite a larger number of states.

A user study was conducted to evaluate explanations for course advising with advisors
and students. The results of this study are presented next.

3.4.1 Feedback from Advisors

The explanations were presented to the advisors for several states to undergraduate ad-
visors and to seek their feedback. The advisors noted that students not performing well
would benefit from these explanations as they would help them focus on requirements they
are likely to not fulfill. They also mentioned that grade-conscious students would also
appreciate such explanations. The advisors considered the model used by the MDP, i.e.,
the transition probabilities, as a useful tool to validate or correct their perception about
various courses being easy or hard. They were apprehensive that it would be difficult for an
online system to replace them as they consider more factors than completing degree require-
ments, which include preferences such as student’s interests, career path, difficulty level of
the course, stereo-types about areas, courses or professors. There has been some research
on preference elicitation to model student preferences for course advising in MDPs [83], so
it was explained to them that it is possible to extend the current course-advising model to
include such factors, but that is outside the scope of this work on explaining MDPs.

3.4.2 User Study with Students

A total of 37 students were recruited from the University of Waterloo’s Cheriton School
of Computer Science. These students were shown 5 recommendations with explanations
for different states. For each explanation, they were asked to rate the explanations on
various factors such as comprehensibility, trust-worthiness and usefulness. For 3 states,
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Figure 3.1: User perception of MDP explanations

the explanation was computed by our technique and for the other 2, the explanations were
provided by advisors.

The results regarding the user’s perceptions of these explanations are shown in Fig-
ure 3.1. 59% (65/111) of the respondents indicated that they were able to understand
the explanation without any other information. Most of the students who wanted more
information either wanted to know the occupancy frequencies for some other actions to
get a comparison, or more knowledge about the technique used to compute the transition
probabilities. For the first concern, this information can be provided as it is already com-
puted in Step 2 of algorithm for the MSE. For the second concern, this curiosity can be
attributed to the audience mostly being students in Computer Science who are interested
in understanding the system.

In 76% (84/111) of the cases, it was believed that the explanation provided by the
system was accurate. A few students wanted to know the sample size of the data used
to learn the transition function to judge the accuracy. Quite a few respondents, 69%
(77/111), indicated that they would require extra information beyond that presented in
the explanation. When asked what other type of information they may be interested in,
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Figure 3.2: Comparison of MDP and Advisor explanations

it was revealed that they considered the model inadequate and wanted a richer model
rather than the explanation being inadequate for the existing model. The requests for
the richer model included the ability to cater to preferences such as student’s interest,
future career plans, and level of difficulty. An important indicator of the usefulness of
these explanations is that 71% (79/111) of the students mentioned that the explanation
provided them with extra information that helped them in making a decision. Another
indicator of their influence is that while students initially disagreed 23% (26/111) of the
times with the recommendation, in 35% (9/26) of these cases the explanation convinced
them to change their mind and agree with the original recommendation. In most of the
other cases, again the students disagreed because their final decision depended upon some
factor, not modeled by the system, so their opinion could not have been changed by any
explanation without first enriching the model further.

To compare these explanations with advisor explanations, the students were asked
whether they preferred these automatically generated explanations, the advisor explana-
tion, or having access to both of them simultaneously. These results are shown in Figure 3.2.
57% (21/37) students found that the most convincing option was to access both explana-
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tions, as opposed to 32% in favor of only advisor explanations and 11% in favor of only
our explanations. Similarly, 46% (17/37) students considered both explanations viewed
together as more trustworthy as opposed to having only advisor explanations (38%) or
only our explanations (16%). As expected, most of the students (65% or 24/37) found it
easier to understand advisor explanations as they were more personal and human-oriented.
This is understandable since the advisors employ domain-specific constructs in their ex-
planations while our explanations are totally generic. However, a few students (32%) also
indicated that having a combination of the two would be easier to understand. Finally,
the students were also asked if they were provided access to such a system over the Inter-
net, in addition to the option of discussing their choices with an undergraduate advisor,
would they use this system. 86% of them mentioned they would use it from home while
trying to determine their choice of courses, 89% mentioned they would use it before meet-
ing with an advisor to examine different options for themselves, and 70% mentioned they
would use it after meeting with advisors to arrive at a final decision. Among the 30%,
who indicated they would not use it after meeting advisors, many expected the advisors to
incorporate the information from the automatically generated explanations in their advice
and thus considered it redundant to check it themselves. In any case, these numbers are
very encouraging as they show substantial interest in the explanations.

The explanations generated by the system are generic, while those provided by the
advisors are domain-specific. The results show that these two types of explanations are
complementary and students would like to access these explanations in addition to con-
sulting advisors. A recurring theme during the user study was students inquiring about a
facility to compare different choices, i.e., asking the question “Why is action a better than
action b?”, especially if their preferred action was different from the recommended action.
The system has now been extended to answer such questions by presenting the MSE for
the optimal action π∗ and then populating the templates for the same terms for the action
users want to compare against action b. The comparison demonstrates how action a is
better than action b as VMSE ≥ Qπ∗ (s0, b).

3.5 Summary

Transition functions for MDPs are often learnt from data which may not be sufficient
or otherwise representative of the actual problem being modeled. It is natural for hu-
man beings to question the rationale behind a decision which is being recommended for
a multi-step problem in an environment with stochastic effects. Thus, MDP policies need
to be explained when questioned by human beings. This chapter presents a mechanism to
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generate explanations for flat and factored MDPs in any domain without additional effort
from the MDP designer. The explanations are presented in easy to understand templates
that indicate the possible consequence of executing an action in terms of states and sce-
narios that are interesting for the reward function. The concept of a minimum sufficient
explanation is also introduced through which an action can be explained using the fewest
possible terms. The use of additional terms in the explanation is superfluous as they would
not effect the optimality of an action.

The technique to generate explanations is demonstrated on two real-world domains,
i.e., course-advising and handwashing. The results of a user study that evaluates the
effectiveness of these explanations for course advising are also presented. It is shown
that users appreciate the extra information provided by the generic explanation calculated
through the approach described in this chapter. However, the users also require domain-
specific information in the explanations to completely convince them. Most of the students
who participated in the user study considered the combination of MDP explanations along
side human advisor explanations as more effective than either one alone.

The technique for generating explanations presented in this chapter is agnostic to the
particular technique used to solve MDP policies. In particular, the implementation in
this chapter was based on an approach for solving MDPs based on Algebraic Decision
Diagrams (ADDs) [46] to demonstrate the solution on large sized real-world problems.
Other techniques, including approximate techniques, can also be used for the purpose of
solving MDPs and then computing the explanations without any loss of generality.

Explanations for MDPs presented in this chapter are generated with the assumption
of conveying information to a rational decision-maker. The objective here is to ensure
that a human being is provided the correct information required to understand the choice
of the system which the system believes will maximize the expected utility. Thus, the
goal of explanations is more oriented towards understanding if the model is correct. If the
primary purpose of the explanation is to gain user acceptance, then it is possible to generate
explanations that exploit various cognitive biases that human beings are susceptible to [86,
92]. For instance, explanations can include the notion of confidence of the system to convey
a sense of security, explanations can compare the choice with more extreme cases to present
the choice in a favorable fashion, non-relevant information may be added to an explanation
to sway the user, or the explanation can be framed in terms of positive concepts (reward
function is rescaled such that less favorable situations have low positive reward rather than
a negative reward). Similarly, instead of generating the minimum sufficient explanation,
the templates can also be chosen based on what may be most likely accepted by the user.

Explanations can help convince users but they will not be useful if the model through
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which the policy is computed is incorrect. In such a situation, the user will want to execute
an alternate action. The next two chapters discuss techniques to refine models for Bayesian
network and MDPs based on expert feedback.
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Chapter 4

Refining Models for Bayesian
Networks

Consider the problem of diagnostics where a diagnostic Bayesian network is available.
This Bayesian network can be used to infer a distribution over causes given some available
evidence in the form of observed tests. If the decision-making is being performed by an
expert, the natural objective would be to select the test that will yield the highest reduction
in uncertainty about the underlying cause. So if an expert can be observed performing some
tests, with the assumption that the tests are being selected optimally, then the Bayesian
network model should also be consistent with the expert. The consistency can be evaluated
by determining the test that provides the highest expected reduction in uncertainty and
comparing it against the expert’s choice. This chapter examines this problem.

A preliminary version of parts of this chapter have been published in the proceedings
for the 2011 conference on Neural Information Processing Systems (NIPS) [50].

4.1 Problem Statement

A model that is consistent with an expert would generate Gini impurity rankings (as defined
in Equation 2.4) consistent with the expert’s diagnostic sequence. This is because the Gini
impurity reduces the expected uncertainty and the expert is also assumed to be working
with the objective of selecting the test that would maximize the reduction in uncertainty
over the causes. The expert’s test choices are thus interpreted as implying constraints on
Gini impurity rankings between tests. To that effect,Agosta et al., [6] define the notion
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of Cause Consistency and Test Consistency, which indicate whether the cause and test
orderings induced by the posterior distribution over causes and the VOI of each test agree
with an expert’s observed choice. Assuming that the expert greedily chooses the most
informative test T ∗ (i.e., test that yields the lowest Gini impurity) at each step, then the
model is consistent with the expert’s choices when the following equations are satisfied for
each constraint:

GI(C|T ∗) ≤ GI(C|Ti) ∀i (4.1)

The objective of refining the parameters of the MDP is to ensure that all constraints learnt
from the experts are satisfied using the refined parameters.

4.2 Literature Review

Parameter learning for Bayesian networks can be viewed as searching in a high-dimensional
space. Adopting constraints on the parameters based on some domain knowledge is a way
of pruning this search space and learning the parameters more efficiently, both in terms
of data needed and time required. Qualitative probabilistic networks [98] allow qualitative
constraints on the parameter space to be specified by experts. For instance, the influence
of one variable on another, or the combined influence of multiple variables on another vari-
able [31] leads to linear inequalities on the parameters. Wittig and Jameson [101] explain
how to transform the likelihood of violating qualitative constraints into a penalty term to
adjust maximum likelihood, which allows gradient ascent and Expectation Maximization
(EM) to take into account linear qualitative constraints.

Other examples of qualitative constraints include some parameters being larger than
others, bounded in a range, within ε of each other, etc. Various proposals have been
made that exploit such constraints. Altendorf et al. [8] provide an approximate technique
based on constrained convex optimization for parameter learning. Niculescu et al. [69]
also provide a technique based on constrained optimization with closed form solutions
for different classes of constraints. Feelders [35] provides an alternate method based on
isotonic regression while Liao and Ji [60] combine gradient descent with EM. de Campos
and Ji [22] also use constrained convex optimization, however, they use Dirichlet priors
on the parameters to incorporate any additional knowledge. Mao and Lebanon [62] also
use Dirichlet priors, but they use probabilistic constraints to allow inaccuracies in the
specification of the constraints.

A major difference between the technique presented in this chapter and the previous
work is on the type of constraints. The constraints discussed in this chapter do not need to
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be explicitly specified by an expert. Instead, passively observing the expert and learning
from what choices are made and not made [74] allow the learning of these constraints.
Furthermore, as will be shown later, the constraints based on expert feedback are non-
convex, preventing the direct application of existing techniques that assume linear or convex
functions. In this chapter, Beta priors are used on the parameters, which can easily be
extended to Dirichlet priors for cases where the causes are not Boolean variables. The
constraints are incorporated in an augmented Bayesian network, similar to Liang et al. [59],
though their constraints are on model predictions as opposed to these which are on the
parameters of the network. Finally, this chapter also uses the notion of probabilistic
constraints to handle potential mistakes made by experts.

4.3 Model Refinement for Bayesian Networks

A recent approach for easing the bottleneck of knowledge acquisition grew out of the
realization that the best time to gain an expert’s insight into the model structure is during
the diagnostic process. Recent work in “Query-Based Diagnostics” [6] demonstrated a
way to improve model quality by merging model use and model building into a single
process. More precisely the expert can take steps to modify the network structure to add
or remove nodes or links, interspersed within the diagnostic sequence. In this chapter,
this variety of learning-by-example is extended to include refinement of model parameters
based on the expert’s choice of test, from which constraints are determined. The nature
of these constraints defined through expert feedback is derived from the value of the tests
to distinguish causes, so Gini impurity can be used to evaluate them.

The example of diagnostic Bayesian networks is used in this chapter but the techniques
mentioned here can be applied for other similar recommender Bayesian networks for other
domains.

4.3.1 Augmented Diagnostic Bayesian Network

Consider a simple diagnosis example with two possible causes C1 and C2 and two tests
T1 and T2 as shown in Figure 4.1. To keep the exposition simple, suppose that the priors
for each cause are known (generally separate data is available to estimate these), but the
conditional distribution of each test is unknown1. Using the Noisy-OR parameterizations

1The technique presented in this chapter can also be used for the case where the priors over causes are
not known
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Figure 4.1: Diagnostic Bayesian network
with 2 causes and 2 tests
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Figure 4.2: Augmented diagnostic
Bayesian network with parameters and
constraints

for the conditional distributions, the number of parameters are linear in the number of
parents instead of exponential, as shown in Equation 4.2

Pr(Ti = true|C) = 1− (1− θi0)
∏

j|Cj=true

(1− θij) (4.2)

Here, θi0 = Pr(Ti = true|Cj = false ∀j) is the leak probability that Ti will be true when
none of the causes are true and θij = Pr(Ti = true|Cj = true, Ck = false ∀k 6= j) is the
link reliability, which indicates the independent contribution of cause Cj to the probability
that test Ti will be true. In the rest of this chapter, it is described how to learn all the
parameters, Θ, while respecting the constraints implied by test consistency.

The objective is to learn the Θ parameters of diagnostic Bayes networks given test
constraints of the form described in Equations 2.4 and 4.1. To deal with non-convex
constraints and disconnected feasible regions, a Bayesian approach is pursued whereby
parameters and constraints are explicitly modeled as random variables in an augmented
Bayes network (see Fig. 4.2).

In Bayesian learning, parameters are treated as random variables. The augmented
Bayesian network thus contains a node corresponding to each parameter, θ, of the Bayesian
network. The node corresponding to each θ is the parent of the variables for which it defines
a conditional distribution. Now, θ can be estimated by computing the posterior over this
node.
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Similarly, the constraint is also modeled as a binary random variable, ω, such that its
value is set to True if the constraint is satisfied and False otherwise. Pr (ω = true) defines
a likelihood over the space of values for Θ. The objective then is to choose the values of Θ
such that the value of Pr(ω = true|Θ) is maximal in the interior of the feasible space and
gradually decreases as we get closer to the boundaries. In one version, Pr(ω = true|Θ)
is set to 0 when Θ violates the constraints. In the other version it has a low probability
which is useful when there is no feasible Θ.

The use of an augmented Bayesian network now allows framing the problem of learning
the parameters as an inference problem in a hybrid Bayes network of discrete (T, C, ω) and
continuous (Θ) variables. This augmented Bayesian network provides a unifying frame-
work to simultaneously learn from constraints and data, to deal with possibly inconsistent
constraints, and to express preferences over the degree of satisfaction of the constraints.

As mentioned earlier, if the variable ω is True the constraint is satisfied; otherwise
it is violated. Thus, if ω is true then Θ lies in the positive region of Fig. 4.5, and if
ω is false then Θ lies in the negative region. This chapter presents two techniques to
define the conditional probability table (CPT) for ω. In the first version, it is defined as
Pr(ω = True|Θ) = max(0, π), where π = GI(C|T1) − GI(C|T2). The term π provides
information regarding the satisfiability of the constraint as per Equation 4.1 and it lies in
the interval [−1, 1] so max (π, 0) is always in [0, 1], which can then be used to defined the
probability of ω = True. The intuition behind this definition of the CPT for ω is that a
constraint is more likely to be satisfied if the parameters lie in the interior of the constraint
region. Furthermore, if the constraint is violated, i.e., π < 0 then the probability is set to
zero. The second version uses a more permissive approach in which the CPT for ω is defined
as Pr (ω = True|Θ) = (π + 1) /2. This also ensures that the probability of ω is normalized.
The first proposal explicitly prohibits any set of parameters that violate the constraint, no
matter how small the violation is, whereas the latter caters for such violations and hence
may be more suited for the case where an expert may make a mistake.

Note that each parameter, θ, is in fact a Bernoulli distribution. When computing its
posterior using Gibbs sampling, it is helpful if the prior is expressed as its conjugate prior.
Beta distribution is the conjugate prior of Bernoulli distribution. Thus, a Beta prior is
placed over each θ parameter. Since the test variables are conditioned on the Θ parameters
that are now part of the network, their conditional distributions become known. For
instance, the conditional distribution for Ti (given in Equation 4.2) is fully defined given
the noisy-or parameters θij. Hence the problem of learning the parameters becomes an
inference problem to compute posteriors over the parameters given that the constraint is
satisfied. In practice, it is more convenient to obtain a single value for the parameters
instead of a posterior distribution since it is easier to make diagnostic predictions based on

51



one Bayes network. The parameters are estimated by computing a maximum a posteriori
(MAP) hypothesis given that the constraint is satisfied: Θ∗ = arg maxΘ Pr(Θ|ω = true).

The approach defined in this section maximizes the likelihood of satisfying the con-
straint given the parameters. Traditionally, parameter learning is performed by maximiza-
tion of likelihood of data given the parameters. Gibbs sampling can be easily used to learn
likelihood of parameters given data instead of constraints by simply discarding the nodes
associated with constraints in the augmented Bayesian network (in Figure 4.2) and instead
introducing nodes corresponding to the data samples, as shown in Figure 4.3. Each data
sample will represent an observation that is an assignment of values to all the tests and
causes. For the variables that have been observed the nodes will be restricted to their val-
ues and for variables that have not been observed their values will be sampled. Figure 4.3
depicts the case with one observed data point by introducing the additional nodes for each
test and cause (T di , C

d
i ). If additional data points are available they can be added to the

network in the same fashion by connecting them with the nodes for the parameters.

When both data and constraints are available it is also possible to maximize the like-
lihood of data and constraints simultaneously. The evaluation section will present results
for all three approaches, i.e., learning with data only, learning with constraints only and
learning with data and constraints.

The formulation of the problem based on the augmented network also allows for the case
where an expert makes mistakes and the constraints are inconsistent. For the case where
Pr (ω = True|Θ) = (π + 1) /2, the technique will still refine the model while maximizing
the degree of satisfaction of all constraints simultaneously without any change. For the
case where Pr(ω = True|Θ) = max(0, π), the rejection sampling step will reject all samples
since no set of parameters will exist that satisfies all the constraints if the constraints are
inconsistent. To account for the possibility of an expert making a mistake, a constraint
can be considered as probabilistic such that probability of the expert being correct is
represented as the confidence level of the expert. This can be accomplished by treating the
observed feedback as a probabilistic indicator of the true constraint and thus adding an
additional node in the Bayesian network to represent the true constraint that also needs to
be sampled. This is shown in Figure 4.4 where ω∗ represents the true constraint, ω is the
observed constraint (possibly inconsistent with the true constraint), δFP is the probability
of a false positive constraint and δFN is the probability of a false negative constraint.
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Figure 4.3: Augmented diagnostic Bayesian network with parameters and data
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4.3.2 MAP Estimation

Previous approaches for parameter learning with domain knowledge include modified ver-
sions of EM or some other optimization techniques that account for linear/convex con-
straints on the parameters. Since constraints received from experts are non-convex (as
shown in Figure 4.6), a new approach based on Gibbs sampling is proposed to approxi-
mate the posterior distribution, from which the MAP estimate is computed. Although the
technique converges to the MAP in the limit, it may require excessive time when using
rejection sampling. Hence, Gibbs sampling is modified to obtain more efficient stochastic
hill climbing and greedy search algorithms with anytime properties.

Algorithm 2 Pseudo Code for Gibbs Sampling, Stochastic Hill Climbing and Greedy
Search

1 Fix observed variables, let ω = true and randomly sample feasible starting state S
2 for i = 1 to #samples
3 for j = 1 to #hiddenV ariables
4 acceptSample = false; k = 0
5 repeat
6 Sample s′ from conditional of jth hidden variable Sj
7 S′ = S; Sj = s′

8 if Sj is cause or test, then acceptSample = true
9 elseif S′ obeys constraints ω

10 if algo == Gibbs
11 Sample u from uniform distribution, U(0,1)

12 if u < p(S′)
Mq(S′)

where p and q are the true and proposal

distributions respectively and M > 1
13 acceptSample = true
14 elseif algo == StochasticHillClimbing
15 if likelihood(S′) > likelihood(S), then acceptSample = true
16 elseif algo == Greedy, then acceptSample = true
17 elseif algo == Greedy
18 k = k + 1
19 if k == maxIterations, then s′ = Sj; acceptSample = true
20 until acceptSample == true
21 Sj = s′
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The pseudo code for this Gibbs sampler is provided in Algorithm 2. The two key steps
are sampling the conditional distributions of each variable (line 6) and rejection sampling
to ensure that the constraints are satisfied (lines 9 and 12). The rejection sampling is only
required for the case where the conditional of ω has a max in it. Each variable is sampled
given the rest according to the following distributions:

ti ∼ Pr(Ti|c, θi) ∀i (4.3)

cj ∼ Pr(Cj|c− cj, t, θ) ∝
∏
j

Pr(Cj)
∏
i

Pr(ti|c, θi) ∀j (4.4)

θij ∼ Pr(Θi
j|Θ−Θi

j, t, c, ω) ∝ Pr(ω|t,Θ)
∏
i

Pr(ti|cj, θi) ∀i, j (4.5)

The tests and causes are easily sampled from the multinomials as described in the
equations above. However, sampling the θ’s is more difficult due to the factor Pr(ω|Θ, t) =
max(0, π), which is a truncated mixture of Betas. So, instead of sampling θ from its true
conditional, it is sampled from a proposal distribution that replaces max(0, π) by an un-
truncated mixture of Betas equal to π + a where a is a constant that ensures that π + a
is always positive. This is equivalent to ignoring the constraints. Then to ensure that
the constraints are satisfied, samples that violate the constraints are rejected. Rejection
sampling is not required when Pr (ω|Θ, t) = (π + 1) /2 and thus the check in line 9 can be
skipped.

Once Gibbs sampling has been performed, a sample that approximates the posterior
distribution over the parameters given the constraints (and any data) is obtained. A
single setting of the parameters is returned by selecting the sampled instance with the
highest posterior probability (i.e., MAP estimate). Since this will only return the MAP
estimate, it is possible to speed up the search by modifying Gibbs sampling. In particular, a
stochastic hill climbing algorithm can be used by accepting a new sample only if its posterior
probability improves upon that of the previous sample (line 15). Thus, each iteration of
the stochastic hill climber requires more time, but always improves the solution.

As the number of constraints grows and the feasibility region shrinks, the Gibbs sampler
and stochastic hill climber with rejection sampling will reject most samples. This can be
mitigated by using a Greedy sampler that caps the number of rejected samples, after which
it abandons the sampling for the current variable to move on to the next variable (line 19).
Even though the feasibility region is small overall, it may still be large in some dimensions,
so it makes sense to try sampling another variable (that may have a larger range of feasible
values) when it is taking too long to find a new feasible value for the current variable.
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Figure 4.5: Difference in Gini impurity for the network in Fig. 4.1 when θ1
2 and θ2

2 are the
only parameters allowed to vary.

4.4 Evaluation and Experiments

Formally, for M∗, the true model that needs to be learnt, the diagnostic process determines
the choice of best next test as the one with the smallest Gini impurity. If the correct choice
for the next test is known (such as demonstrated by an expert), this information can be
used impose a constraint on the model. Let Γ+ denote the set of observed constraints
and Γ∗ the set of all possible constraints that hold for M∗. Having only observed Γ+,
the technique will consider any M+ ∈M+ as a possible true model, where M+ is the set
of all models that obey Γ+. Let M∗ denote the set of all models that are diagnostically
equivalent to M∗ (i.e., obey Γ∗ and would recommend the same steps as M∗) and by MMAP

Γ+

the particular model obtained by MAP estimation based on the constraints Γ+. Similarly,
when a dataset D is available, MMAP

D denotes the model obtained by MAP estimation
based on D and MMAP

DΓ+ the model based on D and Γ+.

The objective is to learn the model M∗, hence the KL divergence between the models
found and M∗ is reported. However, other diagnostically equivalent M∗ may recommend
the same tests as M∗ and thus have similar constraints, so test consistency with M∗ (i.e.,
# of recommended tests that are the same) is also reported.
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Figure 4.6: Posterior of parameters of network in Figure 4.2 calculated through discretiza-
tion.

Figure 4.7: Posterior of parameters of network in Figure 4.2 estimated through sampling.
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4.4.1 Correctness of Model Refinement

Given Γ∗, the technique for model refinement with Pr (ω|Θ) = max (0, π) is guaranteed to
choose a model MMAP ∈ M∗ by construction. If any constraint Γ∗ ∈ Γ∗ is violated, the
rejection sampling step of the technique would reject that set of parameters. To illustrate
this, consider the network in Figure 4.2. There are six parameters (four link reliabilities
and two leak parameters). If the leak parameters and the link reliability from the first cause
to each test is fixed, then the posterior surface over the two variable parameters can be
computed after discretizing each parameter in small steps and then calculating the posterior
probability at each step as shown in Figure 4.6. This surface can be compared with that
obtained after Gibbs sampling using the refinement technique as shown in Figure 4.7. It
can be seen that the refinement technique recovers the posterior surface from which the
MAP is then computed.

4.4.2 Experimental Results on Synthetic Problems

This section presents results on a 3-cause by 3-test fully-connected bipartite Bayes network.
It is assumed that there exists some M∗ ∈ M∗ that needs to be learnt given Γ+. The
refinement process described in this chapter is then used find MMAP. First constraints, Γ∗

for M∗ are computed to get the feasible region associated with the true model. Next, 100
other models are sampled from this feasible region that are diagnostically equivalent. These
models are then compared with MMAP (after collecting 200 samples with non-informative
priors for the parameters using the refinement technique).

Figure 4.8 compares the convergence rate of each technique to find the MAP esti-
mate. Gibbs sampling based on the technique without rejection sampling (Pr (ω|Θ, t) =
(π + 1) /2) is quite fast since there is no rejection sampling. Gibbs sampling with rejec-
tion sampling (Pr (ω|Θ, t) = max (π, 0)) is slower due to rejection sampling. However,
the use of stochastic hill climbing and greedy sampling can speed up the process consid-
erably. Also, note that the log-likelihood shown for the case without rejection sampling
converges to a different value than the other three techniques with rejection sampling since
the conditional for ω is defined differently. In Figure 4.8 the log likelihood for the case
without rejection sampling is normalized on the same scale as the other approach so the
convergence results can be compared against each other. Also note that while the values
for the log-likelihood are different for the two variants of the CPT of ω, the same set of
parameters will be returned in all cases when the techniques converge.

The KL-divergence of MMAP with respect to each sampled model is computed. The KL-
divergence should decrease as the number of constraints in Γ+ increases since the feasible
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Figure 4.8: Comparison of Convergence Rates for Model Refinement Techniques for
Bayesian Networks
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Figure 4.9: Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for Bayesian Networks to True Model with Initial Model – Synthetic Diagnostic
Problem

Figure 4.10: Test Consistency after Model Refinement for Bayesian Networks – Synthetic
Diagnostic Problem
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region becomes smaller. Figure 4.9 confirms this trend and shows that MMAP
DΓ+ has lower

mean KL-divergence than MMAP
Γ+ , which has lower mean KL-divergence than MMAP

D . The
data points in D are limited to the results of the diagnostic sessions needed to obtain Γ+.
As constraints increase, more data is also available and so the results for the approach
that combines data and constraints improves. The results shown in Figure 4.9 are for the
Gibbs sampling approach without any rejection sampling (results are similar for the other
techniques since they return the same MAP estimate).

The test consistency is also compared for the cases when learning from data only,
constraints only or both. Given a fixed number of constraints, the unobserved trajectories
are enumerated, and then the highest ranked test is computed using the learnt and sampled
true models, for each trajectory. The test consistency is reported as a percentage, with
100% consistency indicating that the learned and true models had the same highest ranked
tests on every trajectory. Figure 4.10 presents these percentages for the Gibbs sampling
approach without rejection (the results are again similar for the other techniques since
they return the same MAP estimate). It again appears that learning parameters with both
constraints and data is better than learning with only constraints, which is most of the
times better than learning with only data. Note that as more constraints are available, the
possibility of test consistency decreases when using constraints as only a few unobserved
trajectories remain over which the test consistency is computed. This is why when all
constraints are known, the test consistency is 100% with no possibility of any error.

Gibbs sampling without rejection converges to the same posterior as the other ap-
proaches, but before convergence, it is possible that the best MAP estimate available may
not satisfy all the constraints. This is because this approach does not explicitly rule out all
parameter settings which violate any constraint. All approaches with rejection sampling
ensure that the best estimate for the MAP at any time does not violate any constraints
from the expert. Any set of parameters that do violate the constraint would be rejected
in the rejection step.

4.4.3 Experimental Results on Large Scale Diagnostic Problems

The refinement technique presented in this chapter is also evaluated on a real-world di-
agnostic network collected and reported by Agosta et al. [6], where the authors collected
detailed session logs over a period of seven weeks in which the entire diagnostic sequence
was recorded. The sequences intermingle model building and querying phases. The model
network structure was inferred from an expert’s sequence of positing causes and tests.
Test-ranking constraints were deduced from the expert’s test query sequences once the
network structure is established.
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Figure 4.11: Large Scale Diagnostic Bayesian Network

Figure 4.12: Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for Bayesian Networks to True Model with Initial Model – Large Scale Diagnostic
Problem
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Figure 4.13: Test Consistency after Model Refinement for Bayesian Networks – Large Scale
Diagnostic Problem

The 157 sessions captured over the seven weeks resulted in a Bayes network with 115
tests, 82 root causes and 188 arcs. The network consists of several disconnected sub-
networks, each identified with a symptom represented by the first test in the sequence, and
all subsequent tests applied within the same subnet. There were 20 sessions from which
it was possibled to observe trajectories with at least two tests, resulting in a total of 32
test constraints. The diagnostic network was pruned to remove the sub-networks with no
constraints to get a Bayes network with 54 tests, 30 causes, and 67 parameters divided
in 7 sub-networks, as shown in Figure 4.11, on which the model refinement technique is
applied to learn the parameters for each sub-network separately.

Since the true underlying network is not available, the full set of 32 constraints were
treated as if they were Γ∗ and the corresponding feasible region M∗ as if it contained
models diagnostically equivalent to the unknown true model. Figure 4.12 reports the KL
divergence between the models found by the algorithms and sampled models from M∗ as
the number of constraints is increased. It can be seen that the ratio decreases slightly for
the case where only data is used as more data is collected. However, using only constraints
provides better performance. Furthermore, as the constraints increase (and the data used
also increases), the approach that combines the use of data and constraints, provides better
results than using constraints alone. Similar effects are also observed in Figure 4.13 for
test consistency where using constraints provides better results than using data alone.
Again, as more constraints are available (and more data is also consequently available),
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the results for the approach that combines data with constraints are better than using
only constraints or data. Unlike Figure 4.10, the test consistency does not reach 100%
because in this scenario, not all possible constraints have been incorporated (constraints
are exponential in the state space and cannot be enumerated for large problems).

4.5 Summary

The problem of learning by example has the promise to create strong models from a
restricted number of cases; certainly humans show the ability to generalize from limited
experience. Such approaches are especially important for domains in which the data has
to be collected through interactions with users. Not much data is likely to be available,
and even more so in domains such as diagnosis where faults are a rarity in any case. This
chapter presents an approach to learn the parameters of Bayesian networks by observing
the actions of experts in similar cases. These observations from experts are then modeled
as constraints on the parameters of the model.

Several approaches have been proposed to incorporate qualitative constraints on param-
eters for Bayesian networks. However, the constraints derived from observing experts are
non-convex in nature and thus require a different approach. This chapter presents different
techniques to incorporate these constraints implied by test ordering available from experts
in addition to using any data that may be available. The three major contributions of this
work are as follows. First, this is the first approach that exploits implicit constraints based
on value of information assessments. Secondly it is the first approach that can handle non-
convex constraints in learning the parameters of Bayesian networks. Third, the approach is
demonstrated on synthetic data as well as a real-world manufacturing diagnostic problem.
Since data is generally sparse in such domains, this work makes an important advance to
mitigate the model acquisition bottleneck, which has prevented the widespread application
of diagnostic networks so far.

The technique presented in this chapter is explained in the context of a diagnostic
Bayesian network. Diagnostic Bayesian networks are typically parameterized using Noisy-
OR CPTs. The refinement technique presented in this chapter can be as easily applied to
a Bayesian network that uses a complete parameterization by representing each parameter
explicitly in the augmented Bayesian network. Similarly, the technique is also not specific
to diagnostic Bayesian networks. It can be applied to a Bayesian network for any other
recommender system by representing the parameters for that network with out any loss of
generality. The only implementation detail that will require a change is the sampling of
variables (Equations 4.3, 4.4 and 4.5) depending on the structure of the Bayesian network.
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As mentioned earlier, Bayesian networks are not useful for sequential problems. The
next chapter addresses model refinement for sequential problems using MDPs and presents
an approach to incorporate these constraints from expert feedback in MDPs.
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Chapter 5

Refining Models for Markov Decision
Processes

Consider the problem of diagnostics where a Markov decision process is available. This
MDP can be used to compute a policy that will select the optimal action based on a
reward function. The reward function may optimize for disambiguating the cause as soon
as possible, executing tests with minimal costs, being risk averse to rule out the more
critical faults first, or some combination of these and any other factors. If the decision-
making is being performed by an expert, the expert would also be trying to optimize
for a similar objective. So if an expert can be observed performing some tests, with the
assumption that the tests are being selected optimally, then the MDP model should also
be consistent with the expert. The consistency can be evaluated by computing the MDP
policy with the highest value and comparing it against the expert’s choice. This chapter
examines this problem.

A preliminary version of parts of this chapter have been accepted for publication in the
proceedings of 2013 European Conference on Machine Learning and Principles of Knowl-
edge Discovery in Databases (ECML-PKDD) [50].

5.1 Problem Statement

MDPs are designed by defining the state variables, the actions, and then estimating/specifying
transition and reward functions, as well as a discount factor. In this chapter, the reward
function ρ and the discount factor γ are assumed to be specified accurately, while the
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transition function is imprecise. The imprecise transition function is denoted as T̃ and
the resulting imprecise MDP is denoted as M̃ = 〈S,A, T̃ , ρ, γ〉. Let the true underlying
MDP be denoted as M = 〈S,A, T, ρ, γ〉, where T is the actual transition function. Since
T̃ is imprecise, the optimal policy for M̃ , π̃∗, may also not be optimal for M . As the
expert reviews the policy for M̃ , she can point out non-optimal actions and specify true
optimal actions for those states, which would reflect π∗. These observations from experts
can be treated as constraints, where each constraint is represented as a state-action pair,
〈s, a〉, which indicates the true optimal action for that state. The objective in refining
the transition function is to modify T̃ to T̂ such that the optimal policy π̂∗ for this new
MDP M̂ = 〈S,A, T̂ , ρ, γ〉 obeys all constraints, and thus matches the true optimal policy
for these states, i.e., π̂∗(s) = π∗(s).

5.2 Literature Review

The idea of learning and refining an MDP model or a policy based on expert feedback
or demonstration has been widely used, but the focus has mostly been to either learn the
reward function or otherwise learn the optimal policy without learning the reward function.
This section reviews some of these techniques to learn or refine the model.

5.2.1 Inverse Reinforcement Learning and Apprenticeship Learn-
ing

Inverse reinforcement learning(IRL) deals with recovering a reward function using a known
policy and transition function [84, 68]. The assumption here is that the optimal policy is
implicitly using a fixed reward function. Inverse reinforcement learning can then be framed
as a linear optimization problem where the constraint is Qπ (s, π∗ (s)) ≥ Qπ (s, a′) ∀a′ 6=
π∗ (s). In the absence of a meaningful objective function, Ng and Russell [68] show that a
trivial solution to this problem is setting the reward function to zero as that would satisfy
any policy. To overcome this issue, meaningful penalty terms and regularization need to
be used, such as penalizing single-step deviations from the optimal policy by making them
as costly as possible or rewarding smaller reward values to higher ones.

IRL assumes the existence of a known optimal policy which is often not possible. The
other major difference is the assumption of a known transition function which is then used
to learn an unknown reward function. Learning the reward function can be framed as a
linear optimization problem whereas learning the transition function with a known reward
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function corresponds to a non-convex optimization problem, as will be discussed later in
this chapter.

Apprenticeship learning [3] is the process of observing an expert demonstrate a policy,
usually only partially, to learn the policy that would be obtained using the reward function
that the expert is trying to optimize. This is done without explicitly learning the reward
function that the expert is supposedly using. The approach here is to represent the reward
function as a linear combination of some pre-defined features and then to learn the weights
of these features by finding a maximum margin hyperplane separating two data points as
in SVMs [96].

The problem of learning a reward function with a known transition function and ob-
servations from experts has also been posed as a maximum margin planning problem such
that the margin between the value of the expert’s policy and other alternate policies is
increased [81]. This approach attempts to learn a direct mapping between the features and
the reward functions while minimizing a loss function.

5.2.2 Reinforcement Learning with Expert Feedback

Abbeel and Ng [4] present a technique to learn the dynamics of a system after observing
multiple expert trajectories. Their technique involves running several trials using the
expert’s policy and then saving all the produced trajectories. A maximum likelihood
technique is used on these state-action trajectories to estimate the transition function.
The estimated transition function is then used to compute a policy which is compared
with the expert’s policy. If the policies are not close enough the process is repeated by
re-estimating the transition function through maximum likelihood.

Imitation learning [77, 78] is a similar concept that has been used to accelerate the
process of reinforcement learning by differentiating between a mentor and observer. The
observer is assumed to have a known reward function but an unknown transition function
that it is trying to learn by observing the mentor. The observer updates its belief about a
state transition after observing the transition from a mentor and also can update its value
function using an augmented Bellman backup. The augmented backup contains a term to
indicate the expected value of duplicating the mentor’s action.

Knox and Stone [54, 55] present a technique that explicitly incorporates human gen-
erated feedback on the policy. This feedback is received in the form of a critique of a
state-action pair generated as a result of the policy, where the critique can either be posi-
tive or negative. Additionally, this critique is focused on reward functions and is used to
learn the optimal policy rather than refine the transition function.
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Approaches based on Bayesian reinforcement learning have also been proposed [11, 27]
that incorporate feedback from experts. A set of models are initially sampled from the
prior distribution and then a Bayesian update is performed to compute a posterior over
the distribution of the parameters for each model. The most unlikely models are then
discarded in favor of freshly sampled models.

Reinforcement learning combined with expert constraints is similar to the problem being
addressed in this chapter, except these approaches assume the availability of significant
feedback from experts. They are well-suited for problems of control in robotics and other
domains where a lot of data can be collected using limited interaction with an expert (such
as receiving hundreds of readings per second while observing a user drive a car) but not
for cases where this feedback is limited (such as diagnostics), which is likely the case for
recommender systems.

5.2.3 Imprecise and Robust MDPs

There is a wide section of literature that focuses on solving MDPs with imprecise probabil-
ities (MDP-IP) [85, 99, 95, 24] where transition probabilities are modeled as distributions.
Combined with some optimization criterion such as max-min, these distributions are then
used to produce a robust solution. Such solutions are generally computationally intensive
and do not scale well. Bounded parameter MDPs [39, 93] are an extension of MDP-IPs
such that the upper and lower bounds on the parameters are provided on the probabilities
of the transition parameters (as well as the reward functions).

A related section of literature focuses on accepting that the model is imprecise. Abbeel
et al., [5] present an approach that makes local improvements to the current policy using
techniques such as policy gradient methods. Nilim and Ghaoui [70] allow explicit repre-
sentation of the uncertainty on the transition matrices and present a technique to optimize
robust policies for MDPs under this uncertainty. Xu and Mannor [102] frame the problem of
robust control as a trade-off between nominal versus worst case performance. This ensures
the robust policies are not unnecessarily conservative. Delage and Mannor [23] formalize
this trade-off and present an approach under which policies for MDPs can be computed
using percentile optimization. This provides a formal guarantee about the performance of
the policy. Other approaches based on the preference elicitation framework have also been
proposed to compute policies that are robust to the uncertainty in the reward function of
an MDP [82].
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5.2.4 Constrained MDPs

There has been some work on representing MDPs with certain constraints [9, 37, 75, 20, 42].
These constraints are typically linear and allow multi-objective criteria to be satisfied such
as ensuring a maximum loss or minimum gain on certain attributes while maximizing the
utility otherwise. Techniques based on dynamic programming or linear optimization are
generally used to solve these MDPs. The constraints explored in this thesis based on
expert feedback are non-convex and cannot be satisfied using dynamic programming or
linear optimization.

5.3 Model Refinement

Let Γ be the set of constraints obtained from expert feedback of the form 〈s, a∗〉, which
means that executing a∗ should have a value at least as high as any other action in s.

Qπ̂∗(s, a∗) ≥ Qπ̂∗(s, a) ∀a (5.1)

Section 5.3.1 explains the technique to refine the transition model based on such con-
straints for flat MDPs and Section 5.3.2 for factored MDPs .

5.3.1 Flat Model Refinement

An optimization problem can be set up to find a refined transition model T̂ that maxi-
mizes the gap δ between optimal and non-optimal Q-values as specified by the expert’s
constraints.

max
T̂ ,δ

δ s.t. Qπ̂(s, a∗) ≥ Qπ̂(s, a) + δ ∀〈s, a∗〉 ∈ Γ,∀a (5.2)

When δ is non-negative, the refined model satisfies the expert’s constraints. If the user’s
constraints are inconsistent, this optimization will simply find a model that minimizes the
maximum degree of violation for any constraint. For problems with a finite horizon h, the
Q function can be re-written as a sum of expected rewards

Qπ(s0, a0) = ρ(s0, a0) +
h∑
t=1

γt
∑
st

Pr(st|s0, a0, π)ρ(st, π(st)) (5.3)
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where the probability Pr(st|s0, a0) is obtained by a product of transition probabilities.

Pr(st|s0, a0, π) =
∑
s1..t−1

Pr(s1|s0, a0)
t∏
i=2

Pr(si|si−1, π(si−1)) (5.4)

In a flat MDP, the transition probabilities are the transition parameters. Hence, θ can be
used to denote the vector of transition parameters θs′|s,a = Pr(s′|s, a). The optimization
problem (5.2) can then be re-written in terms of θ by substituting Equations 5.3 and 5.4:

max
θ̂,δ

δ

s.t.
∑
s′

θ̂s′|s,a = 1 ∀s, a (5.5)

θ̂s′|s,a ≥ 0 ∀s, a, s′ (5.6)

ρ(s, a∗) +
h∑
t=1

γt
∑
s1..t

Pr(s1|s, a∗)
t∏
i=2

θsi|si−1,π(si−1)ρ(st, at) ≥

ρ(s, a) +
h∑
t=1

γt
∑
s1..t

Pr(s1|s, a)
t∏
i=2

θsi|si−1,π(si−1)ρ(s, a) + δ ∀〈s, a∗〉 ∈ Γ,∀a (5.7)

This optimization problem is non-linear (and in fact non-convex) due to the product
of θ’s in the last constraint (equation 5.7.)

This section presents an approach to tackle the problem by alternating optimization
where a subset of the parameters are iteratively optimized while keeping the remaining
parameters fixed. This approach takes advantage of the fact that states in recommender
systems can be organized in levels to do this. As explained earlier in Section 2.5.2, states
are never visited twice since at each step one more variable is observed. Since each tran-
sition parameter θs′|s,a is associated with a state s, the transition parameters can also be
partitioned into levels and the same transition parameter won’t occur more than once in
any state trajectory. Hence, if only the parameters in level l are varied while keeping the
other parameters fixed, the Q function of the state-action pair of any constraint before
level l can be written as a linear function of the θ’s in level l.

Q(s, a∗) = c(nil) +
∑

sl,al,sl+1

c(sl, al, sl+1)θsl+1|sl,al

Here, c(sl, al, sl+1) is the coefficient of θsl+1|sl,al and c(nil) is a constant. Algorithm 3
describes how to compute the coefficients of the parameters at level l for the Q function at
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level j ≤ l. First, the value function at level l+ 1 is computed by value iteration, then the
coefficients for the Q function at level l are initialized and finally the coefficients of the Q
functions at previous levels are computed by dynamic programming.

Algorithm 3 Linear dependence of the Q function at level j on the θ’s at level l

levelLinearDependence(j, l, π)

Compute V π(sl+1) ∀sl+1

1 V π(sh) = ρ(sh, π(sh)) ∀sh
2 for t = h− 1 down to l + 1
3 V π(st)← ρ(st, π(st)) + γ

∑
st+1

θst+1|st,π(st)V
π(st+1) ∀st

Initialize the coefficients for the Q function at level l
4 for each sl, al
5 csl,al(nil)← ρ(sl, al)
6 csl,al(sl, al, sl+1)← γV (sl+1) ∀sl+1

7 csl,al(s, a, s
′)← 0 ∀〈s, a〉 6= 〈sl, al〉,∀s′

Compute the coefficients for the Q function at levels before l
8 for t = l − 1 down to j
9 for each st, at

10 cst,at(nil)← ρ(st, π(st)) + γ
∑

st+1
θst+1|st,π(st)cst+1,π(st+1)(nil)

11 cst,at(sl, al, sl+1)← γ
∑

st+1
θst+1|st,π(st)cst+1,π(st+1)(sl, al, sl+1) ∀sl, al, sl+1

12 return c

If the optimization problem (5.5) is restricted to the parameters at level l, the result is
a linear program (5.8) since the last constraint expresses an inequality between pairs of Q
functions that are linear combinations of the coefficients at level l.

max
θ̂,δ

δ s.t.
∑
s′

θ̂sl+1|sl,al = 1 ∀s, a θ̂sl+1|sl,al ≥ 0 ∀sl, al, sl+1 (5.8)

cs,a∗(nil) +
∑

sl,al,sl+1

cs,a∗(sl, al, sl+1)θ̂sl+1|sl,al ≥

cs,a(nil) +
∑

sl,al,sl+1

cs,a(sl, al, sl+1)θ̂sl+1|sl,al + δ ∀〈s, a∗〉 ∈ Γ

To summarize, instead of directly solving the non-linear optimization problem (5.5), an
alternating optimization technique (Algorithm 4) is used that solves a sequence of linear
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programs (5.8) by varying only the parameters at one level. The algorithm continues
until the gap δ is non-negative or until convergence. There is no guarantee that a feasible
solution will be found, but each iteration ensures that δ will increase or remain constant,
meaning that the degree of inconsistency is monotonically reduced. Given the non-convex
nature of the optimization, random restarts are employed to increase the chances of finding
a model that is as consistent as possible with the expert’s constraints.

Algorithm 4 Alternating optimization to reduce the degree of inconsistency of the tran-
sition model with the expert’s constraints in flat MDPs

alternatingOpt

1 repeat
2 Initialize θ randomly
3 repeat
4 for l = 1 to h
5 Compute coefficients for level l according to Algorithm 3
6 δ, {θsl+1|al,sl} ← solve LP (5.8) for level l
7 until convergence
8 until δ ≥ 0
9 return θ

5.3.2 Factored Model Refinement

The approach described in the previous section assumes that the Markov decision process
is flattened. This will only scale for small problems with a few recommendations and
observations since the number of states grows exponentially with the number of choices.
This sections presents a variant for problems with a large number of recommendations
that avoids flattening by working directly with a factored model. The transition function
is assumed to be factored into a product of conditional distributions for each variable X ′i
given its parents par(X ′i).

Pr(s′|s, a) =
∏
i

Pr(X ′i|par(X ′i))

Furthermore, the parents of each variable are assumed to be a small subset of all the
variables. For instance, in a course advising domain, the grade of a course may depend
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only on the grades of the pre-requisites. As a result, the total number of parameters for
the transition function shall be polynomial in the number of variables even though the
number of states is exponential. Let θX′i|par(Xi) denote the family of parameters defining
the conditional distribution Pr(X ′i|par(Xi)).

Two issues need to be handled in factored domains. First, dynamic programming can-
not be performed to compute the Q-values at each state in polynomial time. Instead Monte
Carlo Value Iteration [12] is used to approximate Q-values at a sample of reachable states.
Second, even though the same state is not revisited in any trajectory, the same transition
parameters will be used at each stage of the process. So instead of partitioning the pa-
rameters by levels, they are partitioned by families corresponding to different conditional
distributions. This allows alternation between a sequence of linear programs as before.

The Monte Carlo Value Iteration technique, originally designed for continuous POMDPs [12],
is adapted for use with factored discrete MDPs. Instead of storing an exponentially large
Q-function at each stage, a policy graph G = 〈N,E〉 is now stored. The nodes n ∈ N of
policy graphs are labeled with actions, and the edges e ∈ E are labeled with observations
(i.e., values for the test corresponding to the previous action). A policy graph G = 〈φ, ψ〉 is
parameterized by a mapping φ : N → A from nodes to actions and a mapping ψ : E → N
from edges to next nodes. Since each edge is rooted at a node and labeled with an obser-
vation, ψ is also referred to as a mapping from node-observation pairs to next nodes (i.e.
ψ : N ×O → N). Here an observation is the result of a test. A useful operation on policy
graphs will be to determine the best value that can be achieved at a given state by starting
in any node. Algorithms 5 describes how to compute this by Monte Carlo sampling. k
trajectories are sampled starting in each node. The node with the highest value is returned
along with its value.

The main purpose of the policy graph is to provide a succinct and implicit representation
of a value function. More precisely, the value of a state can be estimated by calling
evalGraph(G, s). While the policy graph could also be used as a controller, instead it is
used to perform a one step look ahead to infer the best action to execute at each step in
the same way that it would be done if an explicit value function was available to extract
a policy. In other words, given a value function V , the best action a∗ for any state s can
be extracted by computing

a∗ = arg max
a
ρ(s, a) + γ

∑
s′

Pr(s′|s, a)V (s′)

Similarly, the best action to execute at each time step when in state s can also be extracted
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Algorithm 5 Evaluate G at s

evalGraph(G, s)

1 Let N be the set of nodes for G = 〈φ, ψ〉
2 for each n ∈ N
3 V (n)← 0
4 repeat k times
5 V (n)← V (n) + evalTrajectory(G, s, n)/k
6 n∗ ← argmaxn∈NV (n)
7 return V (n∗) and n∗

evalTrajectory(G, s, n)
8 Let G = 〈φ, ψ〉
9 if n does not have any edge

10 return ρ(s, φ(n))
11 else
12 Sample o ∼ Pr(o|s, φ(n))
13 Let s′ be the state reached when observing o after executing φ(n) in s
14 return ρ(s, φ(n)) + γ evalTrajectory(G, s′, ψ(n, o))

Figure 5.1: Sample Policy
Graph after 1 iteration of
Algorithm 6

Figure 5.2: Sample Policy
Graph after 2 iterations of
Algorithm 6

Figure 5.3: Sample Policy
Graph after 3 iterations of
Algorithm 6
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based on policy graph G by computing

a∗ = arg max
a
ρ(s, a) + γ

∑
s′

Pr(s′|s, a)evalGraph(G, s′)

Algorithm 6 describes how to construct a policy graphG by approximate value iteration.
Here, value iteration is performed by approximate backups that compute and store a policy
graph instead of a value function at each step. Figures 5.1, 5.2, and 5.3 present a sample
trace of how the policy graph may appear after each iteration of the for loop in Algorithm 6
on line 2. Initially, all actions are present as disconnected nodes. As more iterations are
completed, more nodes are added to the graph. Each node represents an action and each
arrow represents the observation obtained after executing that action. The arrow links to
another node that indicates the next action to execute after an observation for a given
action.

The graph is constructed by performing point-based backups only at a set of states
setOfStates. This set of states can be obtained in several ways. It should be representative
of the reachable states and allow for the construction of a good set of conditional plans. As
it will be discussed later, it is desirable to include in setOfStates all the states s′ that are
reachable from the states s for which constraints 〈s, a∗〉 area available. At each iteration, a
new node is added to the policy graph for each state in setOfStates. Although not shown in
Algorithm 6, redundant nodes could be pruned from the policy graph to improve efficiency.

Similar to flat MDPs, the parameters of the conditional distributions need to be opti-
mized to satisfy the expert’s constraints. The Q-values on which we have constraints can
be approximated by the evalGraph procedure.

QG(s, a) = ρ(s, a) + γ
∑
s′

Pr(s′|s, a)evalGraph(G,s’) (5.9)

Since the Q-function has a non-linear dependence on the transition parameters, the pa-
rameters are partitioned in families θX′i|par(Xi) corresponding to conditional distributions
Pr(X ′i|par(Xi)) for each test variable Xi with the corresponding action ai that selects to
observe Xi. Alternating between the optimization of different families of parameters en-
sures that the optimization is linear. In any trajectory, a variable Xi is observed at most
once and therefore at most one transition parameter for the observation of Xi participates
in the product of probabilities of the entire state trajectory. Hence, the Q function can be
written as a linear combination of the parameters of a given family

Q(s, a) = c(nil) +
∑
o,x

c(o, x) Pr(X ′i = o|par(Xi) = x) (5.10)
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Algorithm 6 Monte Carlo Value Iteration

MCVI(setOfStates, horizon)

1 Initialize G with no edge and |A| nodes such that φ maps each node to a different action
2 for t = 1 to horizon
3 for each s ∈ setOfStates
4 for each a ∈ A
5 Q(s, a)← ρ(s, a)
6 for each o observable from s after executing a
7 Let s′ be the state reached when observing o after executing a in s
8 [V (s′), na,o]← evalGraph(G, s′)
9 Q(s, a)← Q(s, a) + γPr(o|s, a)V (s′)

10 a∗ ← argmaxaQ(s, a)
11 Add new node n to G such that φ(n) = a∗ and ψ(n, o) = na∗,o
12 return G

where c(nil) denotes a constant and c(o, x) is the coefficient of the probability of observing
outcome o for X ′i given that the joint value of the parent variables of X ′i is x. Algorithm 7
shows how to compute the linear dependency on the parameters of Pr(X ′i|par(Xi)). More
precisely, it computes a vector c of coefficients by sampling k trajectories in G and aver-
aging the linear coefficients of those trajectories. In each trajectory, a recursive procedure
computes the coefficients based on three cases: i) when n is a leaf node (i.e., no edges),
it returns the reward as a constant in c(nil); ii) when a is executed for the first time, it
returns the value of each o in c(o, x); iii) otherwise, it recursively calls itself and adds the
reward in c(nil).

Similar to the linear program (5.8) for flat MDPs, a linear program can be defined to
optimize the transition parameters of a single family subject to linear constraints on Q-
values as defined in Equation 5.10. It is also possible to alternate between the optimization
of different families similar to Algorithm 4, but for factored MDPs.

5.4 Evaluation and Experiments

Formally, for M∗, the true MDP that needs to be learnt, the optimal policy π∗ determines
the choice of best next test as the one with the highest value function. If the correct choice
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Algorithm 7 Linear dependency of QG(s, a) on parameters of Pr(X ′i|par(Xi)) when
executing a in s and following G thereon. This function returns the coefficients c of
Pr(X ′i|par(Xi)) based on k sampled trajectories of G.

linearDependence(G, s, a, i)

1 c(nil)← ρ(s, a) and c(o, x)← 0 ∀o ∈ dom(X ′i), x ∈ dom(par(Xi))
2 repeat k times
3 Sample s′ from Pr(s′|s, a)
4 Let n′ be the node created in G for s′ ∈ setOfStates
5 c← c+ γlinearDependenceRecursive(G, s′, n′, i)/k
6 return c

linearDependenceRecursive(G, s, n, i)
7 if n does not have any edge
8 c(nil)← ρ(s, φ(n))
9 c(o, x)← 0 ∀o ∈ dom(X ′i), x ∈ dom(par(X ′i))

10 else if φ(n) = ai and φ(n) is executed for the first time
11 c(nil)← 0
12 Let x be the part of s referring to par(Xi)
13 c(o, x′)← 0 ∀o ∈ dom(Xi), x

′ 6= x
14 for each o observable when executing φ(n) in s
15 Let s′ be the state reached when observing o after executing φ(n) in s
16 c(o, x) = evalTrajectory(G, s′, ψ(n, o))
17 else
18 Sample o ∼ Pr(o|s, φ(n))
19 Let s′ be the state reached when observing o after executing φ(n) in s
20 c← γ linearDependenceRecursive(G, s′, ψ(n, o), i)
21 c(nil)← ρ(s, φ(n)) + c(nil)
22 return c
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for the next test is known (such as demonstrated by an expert), this information can be
used to include a constraint on the model. Let Γ+ denote the set of observed constraints
and Γ∗ denote the set of all possible constraints that hold for M . Having only observed
Γ+, the refinement technique discussed in this chapter will consider any M+ ∈ M+ as a
possible true model, where M+ is the set of all models that obey Γ+. Let M∗ denote the
set of all models that are constraint equivalent to M∗ (i.e., obey Γ∗) and M̃ denote the
initial model, and M̂Γ+ denote the particular model obtained by iterative model refinement
based on the constraints Γ+.

Ideally, the goal is to find the true underlying modelM∗, hence the KL-divergence(M∗, M̂Γ+)
is reported. However, other constraint equivalent models may recommend the same actions
as M∗ and thus have similar constraints, so test consistency with M∗ (i.e., # of states in
which optimal actions are the same) and the simulated value of policy of M̂Γ+ with respect
to the true transition function T are two other metrics by which the refined model is also
evaluated.

Given a consistent set of constraints Γ and sufficient time (for random restarts to find
the global optimum), this technique for model refinement will choose a model M̂Γ ∈ M∗

by construction. If the constraints specified by the expert are inconsistent (i.e., do not
correspond to any possible model), the approach minimizes the violation of the constraints
as much as possible through alternating optimization combined with random restarts. The
best solution found is reported after exhausting the time quota to perform refinement.

5.4.1 Experimental Results on Synthetic Problems

This section describes the results on a 4-test recommender system. The objective is to
discover the transition model of some model M∗ ∈ M∗. M∗ is selected by randomly
sampling its transition and reward functions. Given this model M∗, a set of constraints
Γ+ are sampled and the refinement technique is used to find M̂Γ+ . To evaluate M̂Γ+ , first
the constraints Γ∗ for M∗ are computed, then the set of constraint-equivalent models M∗

is estimated by sampling 100 models from M∗. These constraint equivalent models are
then compared with M̂Γ+ .

The KL-divergence between each constraint-equivalent model and the refined model
KL-DIV(M∗

i , M̂Γ+) is computed. Its ratio with the KL-divergence between the constraint
equivalent model and the initial model KL-DIV(M∗

i , M̃) is shown in Figure 5.4. A lower
value of this ratio indicates that the refined model M̂Γ+ is closer to the true model M∗ than
the initial model M̃ . It can be seen that the mean KL-divergence decreases as the number
of constraints in Γ+ increases since the feasible region becomes smaller. Figures 5.5 and 5.6
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Figure 5.4: Ratio of KL-divergence of True Model with Refined Model after Model Refine-
ment for MDPs to True Model with Initial Model – Synthetic Problem

Figure 5.5: Ratio of Refined Policy Value after Model Refinement for MDPs to Initial
Policy Value – Synthetic Problem
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Figure 5.6: Policy Consistency after Model Refinement for MDPs – Synthetic Problem

show similar trends for policy consistency and simulated value of the policy. Similar trends
were also observed for KL-divergence, policy consistency and simulated value of policy with
recommender system models with more than 4 variables.

5.4.2 Experimental Results on Diagnostic Problems

The refinement technique is evaluated specifically for diagnostic MDPs. To construct such
MDPs, the number of tests and causes are chosen. The total actions in the MDP are
the sum of the tests and causes with an action either being the option to execute a test
and observe its value or make a diagnostic prediction regarding the cause. Executing a
test has a small negative reward. The diagnostic prediction has a high positive reward if
the correct cause is diagnosed and a high negative reward for an incorrect diagnosis. No
discount factor is used as it is a finite horizon problem.

Diagnostic MDPs are better represented as factored MDPs since executing a test only
affects a part of the state space, i.e., the probabilities of other tests that are similar in
nature. While small diagnostic MDPs can be encoded with a flat representation, a factored
representation allows a more succinct representation with fewer parameters to be learned
for the transition function.
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Figure 5.7: Ratio of KL-divergence of True Model with Refined Model after Model Refine-
ment for MDPs to True Model with Initial Model – Diagnostic Problem
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Figure 5.8: Ratio of Refined Policy Value after Model Refinement for MDPs to Initial
Policy Value – Diagnostic Problem

Figure 5.9: Policy Consistency after Model Refinement for MDPs – Diagnostic Problem
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Figure 5.10: Large Scale Diagnostic Bayesian Networks converted to MDP

The results of model refinement are presented on the same diagnostic MDP represented
as a flat MDP, a factored MDP with exact value iteration and a factored MDP with Monte
Carlo Value Iteration (MCVI) in Figures 5.7, 5.8, and 5.9. These results are shown for a 4-
cause and 4-test network. It can be observed that the factored representation yields better
results than the flat representation. This is because the factored representation exploits
the inherent structure of the diagnostic MDP, whereas the flat representation is unable to
preserve this structure after refinement. This is clearly evident in the case of KL-divergence
where the resulting model does obey the constraints, but is in fact farther away from the
true model than the starting model. It can also be seen that considering a subset of states
for setOfStates in MCVI (states reachable from constraints with 50% of remaining states),
the results for KL-divergence, test consistency and value of policy deteriorate in comparison
to the exact factored case. In separate experiments, it is observed that increasing the size
of setOfStates results in improved refined models and decreasing them results in refined
models that are not as good. For the purpose of this work, MCVI is only being used
as a method to solve factored MDPs and demonstrate the technique for refinement on
a large problem. The question of determining an optimal setOfStates for MCVI is not
considered in this thesis, though this question has been extensively studied in point-based
value iteration algorithms for POMDPs [87].

5.4.3 Experimental Results on Large Scale Diagnostic Problems

The refinement technique is also evaluated in this section on real-world diagnostic networks
collected and reported by Agosta et al. [6]. These networks, also described in Section 4.4.3,
were collected through detailed session logs over a period of seven weeks in which the entire
diagnostic sequence was recorded. The sequences intermingle model building and querying
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Figure 5.11: Ratio of KL-divergence of True Model with Refined Model after Model Re-
finement for MDPs to True Model with Initial Model – Large Scale Diagnostic Problem

phases. The model network structure was inferred from an expert’s sequence of positing
causes and tests. Test-ranking constraints were deduced from the expert’s test query
sequences once the network structure is established.

The logs captured 157 sessions over seven weeks that resulted in a model with 115
tests and 82 root causes. The network consists of several disconnected sub-networks, each
identified with a symptom represented by the first test in the sequence, and all subsequent
tests applied within the same subnet. There were 20 sessions in which more than two tests
were executed, resulting in a total of 32 test constraints. The diagnostic network is pruned
to remove the sub-networks with no constraints to get 54 tests and 30 root causes, divided
in 7 sub-networks, as shown in Figure 5.10. The model refinement technique is applied
to learn the parameters for each sub-network separately. The largest sub-network has 15
tests and 10 causes resulting in 25 possible actions and more than 14 million states. MCVI
is used for larger networks of this scale as it would not be possible to solve them exactly
otherwise.

The 32 constraints extracted from the session logs are used to represent a feasible region
from which 100 true models are sampled. 1000 states are sampled in addition to the states
reachable by the constraints to form the setOfStates used by MCVI. The approximation
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Figure 5.12: Ratio of Refined Policy Value after Model Refinement for MDPs to Initial
Policy Value – Large Scale Diagnostic Problem

Figure 5.13: Policy Consistency after Model Refinement for MDPs – Large Scale Diagnostic
Problem
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in MCVI can result in situations where no feasible model is available during refinement.
In such a case, the experiments are stopped after an allocated amount of time and the
model that violates the constraints the least among those computed so far is reported. For
the experiments in this section, the refinement process was terminated after 10 random
restarts of the alternating optimization problem, i.e., randomly perturbing the parameters
10 times after the solution had locally converged before choosing the best solution available
till that time.

Figures 5.11, 5.12, and 5.13 show the results for KL-divergence, simulated value of policy
and policy consistency respectively for the real world diagnostic network. Since the total
number of constraints is exponential, a subset of constraints are randomly sampled and
the results are shown using these subsets instead of a percentage of all possible constraints.
Similarly, the policy consistency is also computed by randomly sampling 100 states and
then comparing optimal actions in those states, which also explains the high standard
deviation. It can be seen that using a small subset of constraints and a small number of
states as input to MCVI yields benefits in moving closer to the original model.

5.5 Summary

The computation of optimal policies for MDPs involves complicated numerical calculations.
If the policy is incorrect and it has been critiqued by an expert, the process of updating
the model to ensure the prevention of these mistakes is non-trivial for human beings. This
chapter presents an approach to refine the transition function of an MDP based on feedback
from an expert.

Several approaches have been proposed to refine reward functions based on inverse re-
inforcement learning with the assumption that the transition function is known. Refining
the reward function given a known transition function can be posed as a linear optimiza-
tion problem. However, the problem of learning the transition function given the reward
function is non-convex and has not been addressed. This chapter presents an approach
to incorporate these non-convex constraints implied from expert feedback on policies in
the process of refining the transition function. The three major important contributions
of this work are as follows. First, the problem of defining constraints on the parameters
of the transition function using feedback from an expert is formalized. This feedback may
be implicit when obtained from logs of diagnostic sessions performed by a domain expert.
Second, an approach to handle these non-convex constraints is provided for the flat and
factored version of an MDP. Third, the scalability of this approach is demonstrated in
the domain of diagnostics by adapting the technique of approximate Monte Carlo value
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iteration from large-scale POMDPs to large-scale MDPs. The results presented in this
chapter indicate that the refinement technique not only helps in getting closer to the true
transition function, but also improves policy consistency and the value of the policy.

The technique for refining MDPs presented in this chapter is demonstrated for factored
MDPs for which the optimal policy is calculated using Monte Carlo value iteration and
policy graphs. Other exact or approximate approaches to calculate the optimal policy for
a factored MDP can be used without affecting the refinement technique. The only change
will be the process through which the value function for future states (EvalGraph in 5.9)
is calculated.
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Chapter 6

Conclusion

Decision-theoretic planning provides a principled approach to computing policies in en-
vironments with stochasticity as well as account for complex objectives. There are two
key challenges that are preventing the widespread adoption of such approaches. First is
the lack of any mechanism to explain the policies or otherwise validate their correctness.
Second is the lack of methods to automatically refine these models by observing expert
behavior. This thesis deals with both of these problems.

6.1 Summary of Contributions

Chapter 3 presents an approach to explain policies for MDPs. These explanations are
presented by populating templates that report the occupancy frequencies of states with
high/low reward as they are the states which the users prefer/dislike. For factored MDPs,
instead of states the occupancy frequencies for scenarios are used. Sample explanations
for course advising and hand washing domains are presented. A user study is also con-
ducted to evaluate explanations in course advising. Feedback from students indicates that
the explanations are well-received as a supplementary source of knowledge in addition to
discussions with human advisor regarding the optimal set of courses.

Chapter 4 presents a technique to incorporate expert feedback in model refinement
of Bayesian network parameters. The feedback received from an expert is the preference
of one action over another in a given state. This feedback is translated as a constraint
using Gini index to determine which action should have the lowest value for Gini index.
Since this constraint is non-convex, Gibbs sampling is used to search for the MAP estimate

90



for the parameters of the Bayesian network that satisfy the test orderings obtained from
the expert. The first approach is based on rejection sampling to reject any samples that
violate these constraints. The second approach does not require rejection sampling but
converges to the same MAP for the parameters in much less time. Furthermore, if any
data is available, it can also be used as a part of the learning process. The KL-divergence
and test consistency of the refined models that use constraints are shown to be better than
the models refined only using data for diagnostic Bayesian networks drawn from real-world
manufacturing domains.

Chapter 5 extends the notion of incorporating expert feedback in model refinement to
MDPs. The expert feedback again translates into a constraint that the value function of
the action recommended by the expert should not be less than the value function for any
other action. This constraint is again non-convex for the case of known reward function and
unknown transition function. The parameters of the transition function are partitioned in
subsets such that each subset can then be optimized iteratively through linear optimization
while fixing the values of the parameters in the other subsets. To demonstrate the scal-
ability of this approach for large-scale MDPs, the technique of policy graphs with Monte
Carlo value iteration for POMDPs is adapted for use with MDPs. Under this setting, an
approach to refine the model parameters is presented. The results of refinement of MDP
model parameters are evaluated for KL-divergence, policy consistency and expected value
of policy. It is observed that the use of constraints results in improvement in all these
criteria when constraints are used.

Policy explanation should help recommender systems based on MDPs gain wider ac-
ceptance as it will be easier to understand the policy better and gain user trust as a conse-
quence. Model refinement based on user constraints allows incorporating expert feedback
into the model to avoid repetition of similar mistakes in future. It also allows harnessing
an important source of information since it is difficult to obtain lots of data to construct
accurate models when each data point requires the participation of a user.

6.2 Directions for Future Research

The work presented in this thesis can be extended in various directions. This section briefly
discusses some of these research directions.
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6.2.1 Extensions for Policy Explanation

• The current approach for explanations is based on populating pre-defined templates.
Explanations for end-users without any knowledge about probability theory or util-
ity theory may require more natural language generation or further abstraction by
even removing the notion of occupancy frequencies. Subsequent to the work on ex-
planations presented in this thesis, Dodson et al., [25, 26] in fact have presented an
approach for explanations of MDP policies based on natural language generation.
Other possibilities, such as visually depicting sequences of actions and their relation
to goal states may also be useful for users to understand the consequences of different
choices.

• The work on explaining MDPs will be interesting to extend for the case of POMDPs.
Since the states are not directly observable in POMDPs, it is not obvious how one
could generate an explanation that refers to the frequency with which some states
are visited. In fact, another aspect of the explanation for the POMDP may involve
providing some information regarding the current belief state.

• It would also be interesting to extend the work on explanations to reinforcement
learning where the parameters of the model (i.e., transition function and reward
function) are unknown or partially known. This may require incorporating some
ideas from robust MDPs and imprecise parameter MDPs to explanations or otherwise
evaluate the sensitivity of the explanation to the uncertainty of the model.

6.2.2 Extensions for Model Refinement

• The work on refining parameters for a MDP assumes a known reward function and
unknown transition function. The natural extension to this will be the case where
both the transition and reward functions are unknown or can be refined. It is not clear
if the alternating optimization approach can be adapted when the reward function is
also included as a variable in the optimization problem.

• Another possible extension for model refinement is to consider the case of POMDPs
and also refine the observation function in conjunction with the transition function.
Again it is not trivial to extend the alternating optimization technique as the con-
straint will include a product of the transition function with the observation function.
Another issue with the extension of this work to POMDPs is a more fundamental
question of formally representing the constraint. Since the state is not observable
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so some mechanism will need to be formulated to elicit the expert’s belief about the
current state on which the constraint is being formulated.
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