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Abstract

The Lovász theta function and the associated convex sets known as theta bodies are fundamental
objects in combinatorial and semidefinite optimization. They are accompanied by a rich duality theory and
deep connections to the geometric concept of orthonormal representations of graphs. In this thesis, we
investigate several ramifications of the theory underlying these objects, including those arising from the
illuminating viewpoint of duality. We study some optimization problems over unit-distance representations
of graphs, which are intimately related to the Lovász theta function and orthonormal representations. We
also strengthen some known results about dual descriptions of theta bodies and their variants. Our main
goal throughout the thesis is to lay some of the foundations for using semidefinite optimization and convex
analysis in a way analogous to how polyhedral combinatorics has been using linear optimization to prove
min-max theorems.

A unit-distance representation of a graph G maps its nodes to some Euclidean space so that adjacent
nodes are sent to pairs of points at distance one. The hypersphere number of G, denoted by t(G), is the
(square of the) minimum radius of a hypersphere that contains a unit-distance representation of G. Lovász
proved a min-max relation describing t(G) as a function of ϑ(G), the theta number of the complement of G.
This relation provides a dictionary between unit-distance representations in hyperspheres and orthonormal
representations, which we exploit in a number of ways: we develop a weighted generalization of t(G),
parallel to the weighted version of ϑ; we prove that t(G) is equal to the (square of the) minimum radius of
an Euclidean ball that contains a unit-distance representation of G; we abstract some properties of ϑ that
yield the famous Sandwich Theorem and use them to define another weighted generalization of t(G), called
ellipsoidal number of G, where the unit-distance representation of G is required to be in an ellipsoid of a
given shape with minimum volume. We determine an analytic formula for the ellipsoidal number of the
complete graph on n nodes whenever there exists a Hadamard matrix of order n.

We then study several duality aspects of the description of the theta body TH(G). For a graph G, the
convex corner TH(G) is known to be the projection of a certain convex set, denoted by T̂H(G), which lies in
a much higher-dimensional matrix space. We prove that the vertices of T̂H(G) are precisely the symmetric
tensors of incidence vectors of stable sets in G, thus broadly generalizing previous results about vertices of
the elliptope due to Laurent and Poljak from 1995. Along the way, we also identify all the vertices of several
variants of T̂H(G) and of the elliptope. Next we introduce an axiomatic framework for studying generalized
theta bodies, based on the concept of diagonally scaling invariant cones, which allows us to prove in a
unified way several characterizations of ϑ and the variants ϑ′ and ϑ+ introduced independently by Schrijver,
and by McEliece, Rodemich, and Rumsey in the late 1970’s, and by Szegedy in 1994. The beautiful duality
equation which states that the antiblocker of TH(G) is TH(G) is extended to this setting. The framework
allows us to treat the stable set polytope and its classical polyhedral relaxations as generalized theta bodies,
using the completely positive cone and its dual, and it allows us to derive a (weighted generalization of a)
copositive formulation for the fractional chromatic number due to Dukanovic and Rendl in 2010 from a
completely positive formulation for the stability number due to de Klerk and Pasechnik in 2002. Finally,
we study a non-convex constraint for semidefinite programs (SDPs) that may be regarded as analogous to
the usual integrality constraint for linear programs. When applied to certain classical SDPs, it specializes
to the standard rank-one constraint. More importantly, the non-convex constraint also applies to the
dual SDP, and for a certain SDP formulation of ϑ, the modified dual yields precisely the clique covering
number. This opens the way to study some exactness properties of SDP relaxations for combinatorial
optimization problems akin to the corresponding classical notions from polyhedral combinatorics, as well as
approximation algorithms based on SDP relaxations.

iii



Acknowledgements

I feel very grateful to my supervisor Levent Tunçel for his incredible support, guidance, and advice, in
academic matters and otherwise.

I also thank the C&O faculty, staff, and fellow grad students for providing a pleasant work environment.

Thanks to my family for their unwavering support.

And most of all, let me thank my wonderful wife Cris for making my days shine.

iv



Table of Contents

List of Figures vii

1 Introduction 1

1.1 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Hypersphere Representations of Graphs 12

2.1 Hypersphere Numbers for Basic Graph Classes . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 A Min-Max Relation Involving the Lovász Theta Number . . . . . . . . . . . . . . . . . . . 18

2.3 Theta Number Results in Hypersphere Space . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 A Weighted Hypersphere Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Unit-Distance Representations in Euclidean Balls . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Graph Homomorphisms and Sandwich Theorems . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Ellipsoidal Representations of Graphs 33

3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 SDP-based Lower Bound for Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Hadamard Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Vertices of Spectrahedra Arising from the Theta Body 49

4.1 Extreme Hypersphere Representations and Homomorphisms . . . . . . . . . . . . . . . . . . 51

4.2 Normal Cones of Spectrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 The Elliptope, the Boolean Quadric Body, and Their Variants . . . . . . . . . . . . . . . . . 57

4.4 Vertices of the Theta Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Vertices of the Lifted Theta Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



5 An Axiomatic Generalization of Theta Bodies 70

5.1 Theta Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Polyhedral Diagonally Scaling-Invariant Cones . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Geometric Representations from Theta Bodies . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Liftings of Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Reformulations of Antiblocking Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 A Plethora of Theta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 The Stable Set Polytope as a Theta Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 Hoffman Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Integrality Constraints for SDPs 97

6.1 A Rank-Constrained SDP Formulation for Clique Covering Number . . . . . . . . . . . . . 99

6.2 Primal and Dual SDPs with Integrality Constraints . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Integrality Constraint for the Dual of a MaxCut SDP . . . . . . . . . . . . . . . . . . . . . 104

6.4 Integrality Constraints for a Vertex Cover SDP . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 The Lovász-Schrijver Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 A Burer-like Embedding for Packing Problems . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Future Research Directions 114

7.1 Ellipsoidal Representations and Computational Complexity . . . . . . . . . . . . . . . . . . 114

7.2 Boundary Structure of Combinatorial Spectrahedra . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Exactness and Interpretation of Dual SDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

References 121

Appendices 131

A Proofs for the Sake of Completeness 132

A.1 Ellipsoidal Numbers of Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 Some Folklore Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vi



List of Figures

1.1 A unit-distance representation of the Petersen graph . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Hypersphere representations of K2 and K3 corresponding to Slater points . . . . . . . . . . 13

2.2 Optimal hypersphere representations of K3 and K4 . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 An optimal hypersphere representation of the 9-cycle . . . . . . . . . . . . . . . . . . . . . . 17

3.1 An optimal solution for E(K3; Diag(1, 3)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The Mosers spindle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 The gadget graph H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



Chapter 1

Introduction

A classical approach for solving a combinatorial optimization problem relies on embedding its finite set of
candidate solutions as points in some geometric space and analyzing their convex hull using tools from
linear algebra, polyhedral theory, and convex analysis. The past half century of development of this
method, epitomized by polyhedral combinatorics [132, 133, 134], has revealed an abundance of pleasant
correspondences between combinatorial properties of the problem at hand and geometric and algebraic
properties of the associated convex set. Some highlights include:

(i) the equivalence between optimization and separation [59] as a consequence of the far-reaching ellipsoid
method;

(ii) the solutions of the “hardest” combinatorial optimization problems known to be tractable, such as
submodular function minimization [59, 131, 75], the weighted linear matroid matching problem [74, 115],
and the weighted stable set and coloring problems over perfect graphs [59];

(iii) the development of lift-and-project methods [137, 101, 80, 81, 85, 86] for obtaining hierarchies of
nested relaxations for arbitrary binary integer programming problems.

A related area of study, not nearly as systematic, is that of regarding graphs essentially as geometric
objects, and investigating correspondences between their combinatorial and geometric properties. One
very elegant and prototypical correspondence of this kind, and probably one of the first, is Steinitz’s
Theorem [142, 143] from the early 1920’s. Hailed by Grünbaum [60] as “the most important and deepest
known result on 3-polytopes,” it characterizes the graphs that are skeletons of full-dimensional polytopes
in R3 as precisely the 3-connected planar graphs. Thus, by the planarity criteria of Kuratowski [83]
and Wagner [154], we may regard Steinitz’s Theorem as identifying, for a given graph, the geometric
property of being the skeleton of a full-dimensional polytope in R3 with the combinatorial property of
being 3-connected and having no K5- or K3,3-minor. Subsequently to Steinitz’s Theorem, a host of other
similarly flavored results have been proved involving a rich variety of interrelated geometric representations
of graphs, touching on a broad range of directions, such as:

(i) the Circle Packing Theorem of Koebe [79], Andre’ev [4, 5], and Thurston [148], and its ramifica-
tions [128, 18, 110, 157];
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(ii) the Tutte [151, 120, 92] method of barycentric representations;

(iii) the orthonormal representations of graphs introduced by Lovász [94] to solve a long-standing conjecture
of Shannon [135] and further exploited very fruitfully in combinatorial optimization [58, 59, 78] and
other areas [99, 100, 118];

(iv) the exploration [141, 43, 146, 113] of the chromatic number of Rd;

(v) the interpretation of graphs as tensegrity frameworks, going back to Cauchy (see, e.g., [1, Ch. 13]),
with the study of several variations of the concept of rigidity [124, 29, 67, 31], specially in the context
of low dimensions [84, 104, 13], as well as in more applied settings [139, 140];

(vi) a spectral graph invariant introduced by Colin de Verdière [28], defined using algebraic geometry
concepts, and surprisingly connected to topological properties of graphs, such as planarity and linkless
embeddability [102, 70], as well as to Steinitz’s Theorem [103, 95];

(vii) the development [127, 152] of algorithmic and complexity results for certain “geometric graphs” and
other applications in theoretical computer science [91, 7].

See Lovász’s survey [97] for a nice presentation of some of these results.

A centerpiece lying in the intersection of polyhedral combinatorics and the study of geometric representa-
tions of graphs is the Lovász theta function, often denoted by ϑ. First introduced together with orthonormal
representations in the seminal paper by Lovász [94] to solve a problem in information theory, the theta
function was further developed in the 1980’s, along with applications of the ellipsoid method [58, 59], via a
compact semidefinite optimization formulation. This led to a weighted generalization of ϑ that may be
approximated to an arbitrary precision in polynomial time and to a semidefinite relaxation of the stable
set polytope of a graph known as the theta body. This relaxation is tight for perfect graphs, and it leads
to the only known (strongly) polynomial algorithm for finding optimal stable sets and colorings in such
graphs, even after the proof of the Strong Perfect Graph Theorem [27] and the design of a recognition
algorithm for perfect graphs [26]. Since then, the theory surrounding the Lovász theta function has been
further extended [101, 44, 106], and it has been used in the design of approximation algorithms [76, 77, 23],
in complexity theory [147, 42, 10, 9], and in graph entropy [107, 138]. These developments corroborate
Goemans’ quote [51, p. 147] that “it seems all paths lead to ϑ!”

For a graph G = (V,E), the theta body of G may be defined as the set

TH(G) =

{
x ∈ RV : ∃X ∈ SV , Xii = xi ∀i ∈ V, Xij = 0∀ij ∈ E,

[
1 xT

x X

]
∈ S{0}∪V+

}
. (1.1)

Here, SV denotes the set of V × V symmetric matrices and S{0}∪V+ is the set of symmetric positive
semidefinite matrices on the index set {0} ∪ V ; we assume that 0 is not an element of V . One of the many
possible definitions of the theta number ϑ(G) of G is

ϑ(G) = max
{∑

i∈V xi : x ∈ TH(G)
}
. (1.2)

Equation (1.2) describes ϑ(G) as the optimal value of a semidefinite program (SDP), that is, a problem of
optimizing a linear function over the intersection of an affine subspace and the cone of positive semidefinite
matrices [3, 156]. Like linear programs (LPs), every SDP has an associated dual SDP for which Weak
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Duality holds. Unlike the case for LPs, it is not generally true that an SDP and its dual have equal optimal
values, even if both are finite, and even if both primal and dual have optimal solutions (see [150] and
references therein). However, under certain so-called regularity conditions, a Strong Duality Theorem holds,
so both primal and dual SDPs have optimal solutions and their optimal values coincide. This is the case
for the SDPs involving the theta function. As a consequence, the number ϑ(G) may be approximated to an
arbitrary precision in polynomial time by the ellipsoid method in theory [59], and by interior-point methods
in theory and in practice [111, 65, 3, 149].

From the SDP formulation (1.2), it is easy to prove that α(G) ≤ ϑ(G), where α(G) denotes the stability
number of G. In fact, we have STAB(G) ⊆ TH(G), where STAB(G) is the stable set polytope of G, i.e., the
convex hull of the incidence vectors of the stable sets in G. By inspecting the SDP dual to (1.2), it is also
easy to prove that ϑ(G) ≤ χ(G), where χ(G) is the clique covering number of G. The combined inequalities

α(G) ≤ ϑ(G) ≤ χ(G) (1.3)

constitute what is known as the Sandwich Theorem [94, 78]. Thus, the number ϑ(G), which is efficiently
computable, lies sandwiched between the graph invariants α(G) and χ(G), which are NP-hard to approxi-
mate [105, 6, 63], let alone compute. This sandwich inequality is perhaps the most famous property of
the theta function. It has prompted a number computational experiments to approximate these NP-hard
quantities (see [35, 36] and references therein). However, the bounds provided by (1.3) are in general rather
weak [40, 41].

From a purely theoretical viewpoint, however, the use of the theta function has been very fruitful, as we
have previously discussed. This owes to the fact that the theta function and related concepts form very
natural objects, worthy of a study of their own, not just as a proxy for the stability or clique covering
numbers. This fact is attested by the multitude [94, 59, 44, 106] of characterizations of ϑ(G). Many of such
wealth of interesting characterizations arguably come from SDP Strong Duality. A particularly illuminating
manifestation of this duality is the identity [58, Corollary 3.4]

abl(TH(G)) = TH(G), (1.4)

that is, the antiblocker of TH(G) is the theta body of G, the complement of G.

Some equivalent characterizations of ϑ(G) rely on the concept of orthonormal representations. An
orthonormal representation of a graph G = (V,E) is a map from V into the unit vectors of some Euclidean
space that sends non-adjacent nodes of G to pairs of orthogonal vectors. That is, an orthonormal
representation of G is a map u : V → Rd for some positive integer d such that ui has unit norm for each
i ∈ V and the inner product 〈ui, uj〉 is zero whenever i and j are non-adjacent nodes of G. One of the
consequences of (1.4) is that

(1.5)the members of TH(G) are precisely the vectors x ∈ RV of the form xi = 〈u0, ui〉2 for
each i ∈ V , where u is an orthonormal representation of G and u0 is a unit vector of
the appropriate dimension.

The theory surrounding the Lovász theta function thus involves a rich interplay among combinatorial
properties of graphs and their stable sets, the geometric representations of graphs that compose the theta
body, and semidefinite optimization duality and the corresponding min-max relations. In this thesis, we
investigate some of the ramifications of this theory, focusing mainly on geometric representations of graphs
and the descriptions of the theta body, using duality as our guiding viewpoint. Our aim is to lay some
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foundations for using semidefinite optimization and convex analysis in a way analogous to how polyhedral
combinatorics has been using linear optimization to prove min-max theorems. The main tool at our
disposal is a Strong Duality Theorem for SDPs, or a similarly flavored Strong Duality Theorem for conic
optimization problems.

Figure 1.1: A unit-distance representation of the Petersen graph; see [96, Fig. 6.8].

In Chapters 2 and 3, our subject is optimization problems over unit-distance representations of graphs.
(A subset of their contents appeared in [22].) A unit-distance representation of a graph is a map from its
node set to some Euclidean space that sends adjacent nodes to pairs of points at distance one. Figure 1.1
illustrates a unit-distance representation of the Petersen graph on the plane. In Chapter 2, we focus on the
problem of finding the smallest radius of a hypersphere that contains a unit-distance representation of a
given graph G. The (square of) the radius of such a hypersphere representation is called the hypersphere
number of G, and it was proved by Lovász to be a function of ϑ(G). Lovász’s result shows that hypersphere
representations may be regarded as dual objects to orthonormal representations, and it establishes a
dictionary between results involving the theta function and the hypersphere number. We exploit this
dictionary in a number of ways:

(i) we define a weighted generalization of the hypersphere number that satisfies some properties parallel
to those of the weighted theta number;

(ii) we prove that the hypersphere number of a graph G is equal to the (square of the) smallest radius
of an Euclidean ball that contains a unit-distance representation of G, and an analogous equality
holds involving representations in hyperspheres and Euclidean balls where we prescribe upper or lower
bounds for the length of each edge;

(iii) we define the concept of hom-monotone graph invariants as the invariants that satisfy two axioms
that yield sandwich theorems, and argue that such invariants naturally arise from certain geometric
representations.

Partially motivated by the notion of hom-monotone graph invariants that yield sandwich theorems, we
introduce in Chapter 3 another weighted generalization of the hypersphere number. For a graph G and
a positive semidefinite matrix A, the ellipsoidal number of G with respect to A, denoted by E(G;A), is
the optimal value of an optimization problem that may be interpreted as finding the smallest ellipsoid
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of shape given by A that contains a unit-distance representation of G. We prove some basic properties
of these optimization problems, which include the existence of an optimal solution and the fact that
ellipsoidal numbers yield graph invariants that satisfy the first axiom for hom-monotone graph invariants.
Unfortunately, we are not able to prove that the second axiom is satisfied, as it requires us to find analytic
formulas for E(Kn;A), a task that turns out to be surprisingly difficult. We use basic techniques from
convex analysis, as well as other weighted variations of the hypersphere number, to prove lower bounds
for E(Kn;A), which we show to be tight for a class of unit-distance representations of complete graphs
arising from Hadamard matrices. We are thus able to derive an analytic formula for E(Kn;A) whenever
there is an n× n Hadamard matrix. We prove in Section A.1 an analytic formula for E(K3;A) that differs
significantly from the previously mentioned formula, and suggests a possibly erratic behavior of ellipsoidal
numbers of complete graphs. Moreover, the non-existence of an n× n Hadamard matrix may be certified
by a lower bound on E(Kn;A), if the bound lies above the analytic formula we obtain for some positive
semidefinite matrix A. We also prove that the problem of computing ellipsoidal numbers is NP-hard in
general.

Having studied many variations of hypersphere representations, which have orthonormal representations
as dual objects, we move on to study a convex set mainly composed by the latter. Namely, we study the
geometric structure of the theta body, whose members arise from orthonormal representations as described
in (1.5). In Chapter 4, we undertake the study of the vertices of the lifted theta body. The definition (1.1)
describes the theta body TH(G) as a projection of the set

T̂H(G) :=
{
X̂ ∈ S{0}∪V+ : X̂00 = 1, X̂ii = X̂i0 ∀i ∈ V, X̂ij = 0∀ij ∈ E

}
, (1.6)

which we call the lifted theta body of G. Recall that a vertex of a convex set is an extreme point whose
normal cone is full dimensional, and that the feasible region of an SDP is called a spectrahedron. We
derive a simple formula for the dimension of the normal cone of a spectrahedron at a given point. By
carefully analyzing this formula, we prove that all vertices of T̂H(G) have rank one, and thus correspond to
the symmetric tensors of incidence vectors of stable sets of G. This generalizes a result of Laurent and
Poljak [87, 88] that characterizes the vertices of the elliptope, the feasible region of the famous SDP for
MaxCut. Their result is essentially ours applied to graphs with no edges. Our characterization can also
be regarded as a lifted counterpart to an observation by Shepherd [136] that the vertices of TH(G) are
precisely the incidence vectors of stable sets in G. We also determine all the vertices of some other SDPs
used to formulate ϑ(G) and some variants.

Some of these variants of ϑ(G) are usually defined similarly as in (1.2) where the theta body defined
in (1.1) is slightly modified to require some sign constraints on entries of the matrix X corresponding to
edges or non-edges of the graph. These modified theta bodies yield, for instance, the parameters known
as ϑ′ and ϑ+. In Chapter 5, we introduce an axiomatic framework to study these generalized theta bodies,
denoted by TH(A, K̂) and their support functions. Besides allowing sign constraints on the off-diagonal
entries of the matrix X, which are encoded in the cone A, we also allow the cone S{0}∪V+ of positive
semidefinite matrices to be replaced by a cone K̂ of matrices. The most important property we require of K̂
is that it is diagonally scaling invariant, i.e., K̂ must be closed under taking congruences by nonnegative
diagonal matrices. Many of the convenient characterizations of theta also hold for the support functions
of TH(A, K̂). We are thus able to derive several characterizations of ϑ, ϑ′ and ϑ+ in a unified manner.
Most importantly, we derive the analogue of the antiblocking duality relation (1.4). As a consequence
of a result due to de Klerk and Pasechnik [32], the generalized theta body obtained by changing the
cone of positive semidefinite matrices with the cone of completely positive matrices is precisely the stable
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set polytope STAB(G). Combined with antiblocking duality, we obtain as a corollary a description the
fractional stable set polytope, usually denoted by QSTAB(G), as a generalized theta body arising from the
cone of copositive matrices. This yields a weighted generalization of the copositive formulation for the
fractional chromatic number described by Dukanovic and Rendl [37].

In Chapter 6, we study a (non-convex) constraint for SDPs which, in some important cases, acts
analogously to integrality constraints in LPs. It is well known that the classical SDP relaxations for the
maximum cut and stable set problems, with the additional constraint that the matrix variable is rank-one,
yields exact formulations for the corresponding problems. However, adding the same rank constraint for,
say, the dual SDP for the Lovász theta number, does not yield a formulation for a natural combinatorial
problem; the modified problem is in fact infeasible except in trivial cases. This is in contrast to the
analogous situation in linear programming, where one may add integrality constraints for both primal and
dual LPs arising from combinatorial optimization problems, and in many cases both the modified primal
and dual encode sensible combinatorial problems. We introduce a non-convex constraint for SDPs, which
satisfy a strong form of primal-dual symmetry, that may play a similar role to integrality constraints in LPs.
In many cases, our non-convex constraint reduces to the usual rank-one constraint. When applied to the
dual SDP for a formulation of the Lovász theta number, it yields the clique covering problem. We also show
how this non-convex constraint generalizes the usual integrality constraint from LPs which are formulated
as SDPs via a diagonal embedding. We then study how this non-convex constraint affects the dual SDPs of
certain formulations of the maximum cut problem, the vertex cover problem, and formulations arising from
the stable set problem via some more general methods.

1.1 Preliminaries and Notation

Our terminology and notation are mostly standard. We collect some of our notation in this section for ease
of reference.

The set of real numbers is denoted by R, the set of nonnegative real numbers is denoted by R+ and the
set of positive real numbers is denoted by R++. The set of integers is denoted by Z, and we set Z+ := Z∩R+

and Z++ := Z ∩ R++. The set of natural numbers is denoted by N := Z+. For any n ∈ Z+, we abbreviate
[n] := {1, . . . , n}, where by convention we set [0] := ∅. We overload the bracket notation to include the
extremely convenient Iverson bracket : if P is a predicate, we set

[P ] :=

{
1 if P holds,
0 otherwise.

When the predicate P is false, we consider [P ] to be “strongly zero,” in the sense that we sometimes write
expressions of the form [x 6= 0](1/x) for x ∈ R, meaning that, if x = 0, we take the whole expression to
be 0. For a finite set V and k ∈ Z+, the set of all subsets of V of size k is denoted by

(
V
k

)
. A set of size 2

is usually abbreviated as ij := {i, j}. The symmetric group on V is denoted by SymV . The composition of
functions f and g is denoted by f ◦ g, so that (f ◦ g)(x) = f(g(x)) for each x in the domain of g and where
g(x) lies in the domain of f . The restriction of a function f to a subset S of its domain is denoted by f�S .
The set of all functions from a set X to a set Y is denoted by Y X .

Let V be a finite set. When V = [n], the vector space R[n] is abbreviated as Rn, and we shall follow
this convention with other sets indexed by V whenever V = [n]. The standard basis vectors of the vector
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space RV are { ei : i ∈ V }. The vector of all ones is denoted throughout simply by ē, its ambient space
being easily deduced from the context. The support of a vector x ∈ RV is supp(x) := { i ∈ V : xi 6= 0}.
For j ∈ V , the jth component of a vector x ∈ RV is usually denoted by xj . However, we shall deal
heavily with functions of the form x : V → RW , where W is a finite set, and for which we use the notation
xi := x(i) ∈ RW for each i ∈ V . In these cases, we refer to the jth component of xi ∈ RW as [xi]j . We also
use this notation when referring to components of vectors and matrices with subscripts. For instance, the
incidence vector of a subset S ⊆ V is the vector 1S ∈ RV defined by [1S ]j := [j ∈ S] for every j ∈ V . In
all such cases the ground set V shall be clear from the context.

We generally work with finite-dimensional inner product spaces over R, and we denote them by E and Y.
The inner product of two points x and y is usually denoted by 〈x, y〉. The dual of E is denoted by E∗.
The adjoint of a linear transformation A : E → Y is the linear transformation A∗ : Y∗ → E∗ defined by
〈x,A∗(y)〉E := 〈A(x), y〉Y for every x ∈ E and y ∈ Y∗. For C ⊆ E, the automorphism group Aut(C ) of C is
the set of all nonsingular linear transformations T : E→ E such that T (C ) = C . The vector space RV is
equipped with the standard inner product defined by 〈x, y〉 := xTy =

∑
i∈V xiyi for every x, y ∈ RV . The

orthogonal complement of a subset C of E is denoted by C⊥. If p ≥ 1 is a real number, the p-norm of a
vector x ∈ RV is ‖x‖p := (

∑
i∈V |xi|

p
)
1/p. Moreover, the ∞-norm of x ∈ RV is ‖x‖∞ := max{ |xi| : i ∈ V }.

Unless otherwise specified, the norm of a vector x ∈ RV is its 2-norm ‖x‖2 = 〈x, x〉1/2, and we always
denote ‖x‖ := ‖x‖2. A real-valued function f defined on some subset of E is coercive if ‖xn‖ → ∞ implies
f(xn)→∞ for every sequence (xn)n∈N in the domain of f .

Let V and W be finite sets. The vector space of all V ×W matrices with real entries is denoted
by RV×W . The transpose of a matrix A ∈ RV×W is denoted by AT. The trace of a matrix X ∈ RV×V
is Tr(X) :=

∑
i∈V Xii. The vector space RV×W is equipped with the Frobenius inner product defined by

〈X,Y 〉 := Tr(XTY ) =
∑
i∈V, j∈W XijYij . The identity matrix is denoted by I. If S ⊆ V and T ⊆W , and

A ∈ RV×W , then A[S, T ] denotes the submatrix of A in RS×T indexed by S × T . When V = W , we also
abbreviate A[S] := A[S, S]. The linear transformation diag : RV×V → RV extracts the diagonal entries of a
matrix, and its adjoint is denoted by Diag. Sometimes we abuse the notation and write Diag(x1, . . . , xn)
for Diag(x) when x ∈ Rn. For L ∈ RV×V , the congruence map CongrL : RV×V → RV×V is

CongrL(X) := LXLT ∀X ∈ RV×V . (1.7)

Note the identity
(CongrL(X))

T
= CongrL(XT) ∀X ∈ RV×V . (1.8)

Let V be a finite set. The set of orthogonal V × V matrices is denoted by OV . The vector subspace
of RV×V of all symmetric V ×V matrices is denoted by SV . The set of V ×V positive semidefinite matrices
is denoted by SV+, and the set of V × V positive definite matrices is denoted by SV++. It is well known
that every matrix X ∈ SV may be written as X = QDiag(x)QT for some Q ∈ OV and x ∈ RV . Thus, the
columns of Q forms an orthonormal basis of RV of eigenvectors of X, with corresponding eigenvalues given
by x. The vector in R|V | obtained from x by sorting its components in non-increasing order is denoted
by λ↓(X), i.e., λ↓1(X) ≥ · · · ≥ λ↓|V |(X). The vector λ↑(X) is defined analogously but with the reverse

ordering, namely, λ↑1(X) ≤ · · · ≤ λ↑|V |(X). We also set λmax(X) := λ↓1(X) and λmin(X) := λ↑1(X). The
symmetrization map Sym: RV×V → SV denotes the orthogonal projection onto SV , that is,

Sym(X) := 1
2 (X +XT) ∀X ∈ RV×V . (1.9)
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Note that Sym commutes with any congruence map CongrL, i.e., if X,L ∈ RV×V , then

CongrL(Sym(X)) = Sym(CongrL(X)) ∀X ∈ RV×V . (1.10)

1.1.1 Linear Conic Optimization Duality

We use mostly standard terminology of convex analysis and refer the reader to [123].

Let K ⊆ E be a pointed closed convex cone with nonempty interior. Let x, y ∈ E. We use the notation
x �K y to mean that x− y ∈ K. Similarly, x �K y means that x− y ∈ int(K). Note that �K is a partial
order on E. When K = Rn+, we write �K as ≥ and when K = Sn+, we write �K as �.

Now we describe the basic setting of conic optimization. Let K ⊆ E be a pointed closed convex cone with
nonempty interior. Let A : E→ Y∗ be a linear transformation. Let c ∈ E∗ and b ∈ Y∗. An optimization
problem of the form

sup
{
〈c, x〉 : A(x) = b, x ∈ K

}
(1.11)

is called a conic optimization problem. The dual of (1.11) is the conic optimization problem

inf
{
〈b, y〉 : y ∈ Y, A∗(y) �K∗ c

}
. (1.12)

Here, K∗ := { s ∈ E∗ : 〈s, x〉 ≥ 0 ∀x ∈ K} is the dual cone of K. It is easy to check that 〈c, x〉 ≤ 〈b, y〉
whenever x is feasible for (1.11) and y is feasible for (1.12), i.e., Weak Duality holds. Sometimes it is
convenient to add an explicit slack variable to (1.12), in which case we rewrite it as

inf
{
〈b, y〉 : y ∈ Y, A∗(y)− s = c, s ∈ K∗

}
. (1.13)

The optimization problem (1.11) is sometimes called the primal problem to distinguish it from the dual
problem (1.12).

When K is the direct sum of copies of the nonnegative line R+ and the full real line R, then the conic
optimization problems (1.11) and (1.12) form a routine pair of dual linear programs in some standard
format. The Duality Theory for this class of optimization problems is well known. For instance, if any of
the values (1.11) or (1.12) is finite, then they both are, the optimal values coincide, and both optimization
problems have optimal solutions. This is known as LP Strong Duality; we refer the reader to [130].

In the case of more general cones K, such as when K = Sn+, it need not be the case that the optimal
values of (1.11) and (1.12) coincide, even if both are finite, and even if additionally both problems have
optimal solutions; see, e.g., [150]. However, under certain so-called regularity conditions, a Strong Duality
Theorem does hold. One such condition involves the existence of a Slater point for (1.11) or (1.12). A
feasible solution x̄ for (1.11) such that x̄ ∈ int(K) is called a Slater point for (1.11). A feasible solution ȳ
for (1.12) such that A∗(ȳ) �K∗ c is called a Slater point for (1.12), in which case we also say that ȳ ⊕ s̄
is a Slater point for (1.13) where s̄ := A∗(ȳ)− c. Note that, if we rewrite (1.13) in the format of (1.11),
the concept of Slater points coincide for both forms. A usual assertion of Strong Duality problems states
that, if a conic optimization problem has a Slater point and its optimal value is finite, then its dual has
an optimal solution and the optimal values coincide. The latter property is usually referred to as a “zero
duality gap.”

We shall use a slightly more general setting that allows for explicit linear inequalities in the description
of the feasible region, and that uses a weaker variation of the Slater point. Let K ⊆ E be a pointed closed
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convex cone with nonempty interior. Let A : E→ Rp and B : E→ Rq be linear functions. Let a ∈ Rp and
b ∈ Rq. Now our primal takes the form

sup
{
〈c, x〉 : A(x) = a, B(x) ≤ b, x ∈ K

}
. (1.14)

In this case the dual of (1.14) is defined to be

inf
{
〈a⊕ b, y ⊕ z〉 : y ∈ Rp, z ∈ Rq+, A∗(y) + B∗(z) �K∗ c

}
. (1.15)

Note that (1.14) may be rewritten in the form (1.11) by adding a new slack variable and taking the direct
sum of K with Rq+. However, in that case, a Slater point for the translated optimization problem would
require the inequality B(x) ≤ b to be strict, which is slightly inconvenient. To work around this, we use
a variant of the Slater condition. A restricted Slater point of (1.14) is a feasible solution x̄ for (1.14)
such that x̄ ∈ int(K). A restricted Slater point for (1.15) is a feasible solution ȳ ⊕ z̄ for (1.15) such that
A∗(ȳ) + B∗(z̄) �K∗ c. As before, in the latter case we also say that ȳ ⊕ z̄ ⊕ s̄ is a restricted Slater point for

inf
{
〈a⊕ b, y ⊕ z〉 : y ∈ Rp, z ∈ Rq+, A∗(y) + B∗(z)− s = c, s ∈ K∗

}
. (1.16)

It is well known that the existence of a restricted Slater point and the finiteness of the optimal value for
the primal ensure zero duality gap and the existence of an optimal solution for the dual. For the sake of
completeness, we include a proof of this result. It assumes some basic properties about linear programming
and the Hyperplane Separation Theorem. For those, we refer the reader to [130] and [123].

Theorem 1.1 (A Strong Duality Theorem; see, e.g., [149, Theorem 2.14]). Let K ⊆ E be a pointed closed
convex cone with nonempty interior. Let A : E→ Rp and B : E→ Rq be linear functions. Let a ∈ Rp and
b ∈ Rq. Suppose the optimization problem (1.15) has a restricted Slater point and its optimal value is
finite. Then (1.14) has an optimal solution and the optimal values of (1.14) and (1.15) coincide.

Proof. Assume that the optimization problem (1.15) has a restricted Slater point and its optimal value is
finite. Let v∗ ∈ R denote the optimal value of (1.15). We may assume that

a⊕ b 6= 0⊕ 0 (1.17)

since otherwise x∗ := 0 is an optimal solution for (1.14) and v∗ = 0. Define

C :=
{
A∗(y) + B∗(z)− c : y ⊕ z ∈ Rp ⊕ Rq+, 〈a⊕ b, y ⊕ z〉 ≤ v∗

}
.

By definition, there exists a sequence (yn ⊕ zn)n∈N in Rp ⊕Rq+ with 〈a⊕ b, yn ⊕ zn〉 → v∗ as n→∞. Since
the LP inf{ 〈a⊕ b, y ⊕ z〉 : y ⊕ z ∈ Rp ⊕ Rq+} has an optimal solution or is unbounded, it follows that

C 6= ∅.

We claim that
C ∩ int(K∗) = ∅. (1.18)

Suppose otherwise, and let ȳ ⊕ z̄ ∈ Rp ⊕ Rq+ such that 〈a ⊕ b, ȳ ⊕ z̄〉 ≤ v∗ and A∗(ȳ) + B∗(z̄) �K∗ c.
Then, using (1.17), for some ε > 0 the point ŷ ⊕ ẑ := (ȳ ⊕ z̄)− ε(a⊕ b) is feasible in (1.15) and satisfies
〈a⊕ b, ŷ ⊕ ẑ〉 < v∗. This contradicts the definition of v∗ and completes the proof of (1.18).
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It follows from the Hyperplane Separation Theorem (see, e.g., [123, Theorem 11.3]) and (1.18) that
there exists a nonzero x̃ ∈ E such that

sup
{
〈x̃, s〉 : s ∈ C

}
≤ inf

{
〈x̃, s〉 : s ∈ int(K∗)

}
. (1.19)

Since C 6= ∅, we know that the RHS of (1.19) is bounded from below. Moreover, since int(K∗) is a cone,
we must have 〈x̃, s〉 ≥ 0 for every s ∈ int(K∗) whence x̃ ∈ K∗∗ = K (see, e.g., [123, Theorem 14.1]). By
sending s ∈ int(K∗) to 0 in the RHS of (1.19), we find that the RHS is 0. Thus, by the definition of C , for
every y ⊕ z ∈ Rp ⊕ Rq+ such that 〈a⊕ b, y ⊕ b〉 ≤ v∗, we have 〈A∗(y), x̃〉+ 〈B∗(z), x̃〉 ≤ 〈c, x̃〉, i.e.,

(1.20)〈A(x̃)⊕ B(x̃), y ⊕ z〉 ≤ 〈c, x̃〉 for every y ⊕ z ∈ Rp ⊕ Rq+ such that 〈a⊕ b, y ⊕ z〉 ≤ v∗.

Thus, by LP Duality there exists µ ∈ R+ such that

µa = A(x̃), (1.21a)
µb ≥ B(x̃), (1.21b)
µv∗ ≤ 〈c, x̃〉. (1.21c)

We claim that
µ > 0. (1.22)

Let ỹ ⊕ z̃ be a restricted Slater point for (1.15), so that s̃ := A∗(ỹ) + B∗(z̃)− c ∈ int(K∗). Suppose that
µ = 0. Then (1.21) and x̃ ∈ K \ {0} imply

0 ≤ 〈c, x̃〉 = 〈ỹ,A(x̃)〉+ 〈z̃,B(x̃)〉 − 〈s̃, x̃〉 ≤ −〈s̃, x̃〉 < 0.

This proves (1.22).

Set x∗ := x̃/µ. We get from (1.21) that A(x∗) = a and B(x∗) ≤ b so x∗ is feasible for (1.14). Moreover,
〈c, x∗〉 ≥ v∗ by (1.21c) so x∗ is optimal for (1.14) by Weak Duality.

1.1.2 Combinatorial Optimization and Graph Theory Notation

Let G = (V,E) be a graph, i.e., V is an arbitrary set, usually finite, and E is a subset of
(
V
2

)
. To avoid

potential conflicts with the geometric object called vertex, we refer to the elements of V as the nodes of G.
We assume throughout that 0 is not in the node set of any graph, since we shall constantly need to add a
“new” element to V and form the set {0} ∪ V . We sometimes use the notation V (G) to denote the node set
of G and E(G) to denote the edge set of G. If S ⊆ V , the set of edges induced by S is E[S] := E ∩

(
S
2

)
and

the subgraph of G induced by S is G[S] := (S,E[S]). The automorphism group of G is denoted by Aut(G).
We say that G is node-transitive if Aut(G) acts transitively on V , and G is edge-transitive if Aut(G) acts
transitively on E. The degree of a node is the number of edges incident to it. A node of G is isolated if its
degree is zero. We say that G is regular if all nodes in G have the same degree, and we call the common
degree the valency of G. A coloring of G is a function from V to some set (whose elements are called
colors, and usually has the form [k] for some k ∈ Z++) that assigns distinct colors to adjacent nodes. The
complement of G is the graph G :=

(
V,
(
V
2

)
\ E
)
. The complete graph on a finite set V is denoted by KV .

If f is a function on graphs, we use the notation f for the function

f(G) := f(G). (1.23)
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The stability number of G, denoted by α(G), is the largest size of a stable set in G; the clique number of G
is ω(G) := α(G). The chromatic number of G, denoted by χ(G), is the smallest number of stable sets of G
that partitions V ; the clique covering number of G is χ(G). A graph G is called perfect if ω(G[S]) = χ(G[S])
for every S ⊆ V (G). The stable set polytope of G is

STAB(G) := conv
{
1S : S ⊆ V (G), S a stable set of G

}
. (1.24)

All our graphs are simple, that is, they have no loops nor parallel edges, unless explicitly mentioned
otherwise.

We include a proof of the following elementary result for the sake of completeness:

Proposition 1.2. Let u : [k] → Rd and v : [k] → Rd. Then there exists Q ∈ Od such that Qui = vi for
every i ∈ [k] if and only if 〈ui, uj〉 = 〈vi, vj〉 for every i, j ∈ [k], or, equivalently, if and only if ‖ui‖ = ‖vi‖
for every i ∈ [k] and ‖ui − uj‖ = ‖vi − vj‖ for every ij ∈

(
V
2

)
.

Proof. The equivalence between the latter two conditions is straightforward. We prove the equivalence
between the existence of Q ∈ Od such that Qui = vi for every i ∈ [k] and the equality between the Gram
matrices of u and v. Clearly, existence of such an orthogonal matrix implies that the Gram matrices of u
and v are equal. We shall prove the converse, so assume the Gram matrices of u and v are equal. The proof is
by induction on k, the case k = 1 being trivial. Assume that k > 1 and d > 1. For each i ∈ [k], set ti := ‖ui‖.
We may assume that ti > 0 for every i. Since Od is a group, by possibly replacing each ui with Quui and
each vi with Qvvi, for some matrices Qu, Qv ∈ Od, we may assume that uk = tked = vk. Set xi := ui�[d−1]

and yi := vi�[d−1] for each i ∈ [k − 1]. Let i ∈ [k − 1]. Then tk[ui]d = 〈ui, uk〉 = 〈vi, vk〉 = tk[vi]d, so

[ui]d = [vi]d ∀i ∈ [k − 1]. (1.25)

Thus, for i, j ∈ [k− 1], we have 〈xi, xj〉 = 〈ui, uj〉− [ui]d[uj ]d = 〈vi, vj〉− [vi]d[vj ]d = 〈yi, yj〉. By induction,
there exists P ∈ Od−1 such that Pxi = yi for each i ∈ [k − 1]. Hence, Q := P ⊕ 1 ∈ Od is such that
Qui = vi for each i ∈ [k].
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Chapter 2

Hypersphere Representations of Graphs

Let G = (V,E) be a graph. A unit-distance representation of G is a map u : V → Rd for some d ∈ Z++

such that ‖ui − uj‖ = 1 for every ij ∈ E. A unit-distance representation of G contained in a hypersphere
centered at the origin is a hypersphere representation of G. (Here, by hypersphere, we mean the boundary
of an Euclidean ball.) The radius of a hypersphere representation u of G is the number ‖ui‖ for any
i ∈ V . Define the hypersphere number of G, denoted by t(G), to be the square of the smallest radius of a
hypersphere representation of G; the reason for using the square shall be clear in a moment.

It is easy to see that the hypersphere number of G may be formulated as an SDP. Indeed, let u : V → Rd
be an arbitrary function for some d ∈ Z++, and form a matrix UT ∈ R[d]×V by setting UTei := ui for each
i ∈ V . Define X to be the Gram matrix X := UUT of u. Then we may read off from the entries of X the
numbers ‖ui‖2 = Xii for each i ∈ V and ‖ui − uj‖2 = Xii − 2Xij +Xjj for each ij ∈ E. Moreover, since
the dimension d is arbitrary, there is no constraint on the rank of the Gram matrix X. We thus have

t(G) = min t

t−Xii = 0 ∀i ∈ V,
Xii − 2Xij +Xjj = 1 ∀ij ∈ E,
X ∈ SV+,

t ∈ R.

(2.1)

This SDP may be written more compactly by using the Laplacian of G, i.e., the linear transformation
LG : RE → SV defined by

LG(z) :=
∑
ij∈E

zij(ei − ej)(ei − ej)T ∀z ∈ RE . (2.2)

Note that the adjoint of LG is the linear transformation L∗G : SV → RE such that, for each ij ∈ E, the ijth
component of L∗G(X) is 〈L∗G(X), eij〉 = 〈X,LG(eij)〉 = 〈X, (ei − ej)(ei − ej)T〉 = Xii − 2Xij +Xjj . Thus,
(2.1) may be rewritten as

t(G) = min
{
t : tē− diag(X) = 0, L∗G(X) = ē, X ∈ SV+, t ∈ R

}
. (2.3)
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The SDP dual to (2.3) is

t(G) = max
{
ēTz : y ∈ RV , z ∈ RE , −Diag(y) + LG(z) � 0, ēTy = 1

}
. (2.4)

Note that X ⊕ t = 1
2 (I ⊕ 1) is a Slater point for (2.3), whereas y⊕ z = |V |−1

ē⊕ 0 is a Slater point for (2.4).
(See Figure 2.1.) Thus, by the Strong Duality Theorem, the optimal values of (2.3) and (2.4) coincide and
they are both attained.

1√
2 1√

2

Figure 2.1: Hypersphere representations of K2 and K3 corresponding to Slater points.

In this chapter, we undertake a detailed study of the hypersphere number and related objects. Lovász [96]
proved a formula that relates the hypersphere number of G and the Lovász theta number of G. In fact,
each of these parameters is a function of the other. This formula may be interpreted as a min-max relation
involving hypersphere representations of G and orthonormal representations of G; the latter is a class of
geometric representations closely related to the theta number, as we briefly mentioned in Chapter 1. This
intimate relation between hypersphere and theta numbers allows us to get a better understanding of both
parameters, as it encodes a dictionary between results involving the corresponding geometric representations.
For instance, some basic results about the Lovász theta function seem very naturally proved in the context
of hypersphere representations. These include the famous Sandwich Theorem that relates the Lovász theta
number to the clique and chromatic numbers, and some formulas describing the behavior of the theta
function with respect to some fundamental graph operations. We also rely on the weighted version of the
theta number to define a weighted counterpart for the hypersphere number. We shall see that, as in the
case for theta, the weighted hypersphere number encodes the unweighted hypersphere number of a certain
“blown-up” graph. On the reverse direction, we shall use a “non-convex” property of the theta number to
prove that the hypersphere number of a graph G coincides with the square of the smallest radius of an
Euclidean ball that contains a unit-distance representation of G. Finally, we shall identify, from the proof
of the Sandwich Theorem in the context of hypersphere representations, some sufficient conditions for a
graph invariant to yield a sandwich theorem like the one involving the theta number. Naturally, these
conditions involve the concept of graph homomorphisms.

The main contribution in this chapter is the viewpoint of the presentation. However, Theorem 2.18
seems to be new, along with the content from Section 2.6 on the relation with graph homomorphisms, and
they motivate the main object of study in the next chapter. The content from Section 2.4 on the weighted
hypersphere number is also new.
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2.1 Hypersphere Numbers for Basic Graph Classes

We start by computing the hypersphere number for some basic classes of graphs. We also compute an
optimal hypersphere representation in some cases. It is by now a standard technique, going back at least to
Lovász [94] in 1979, to use the symmetries of an SDP to decrease its size, sometimes reducing the SDP
to an LP; see also [8]. We will use this technique to compute the hypersphere number for a class of very
symmetric graphs. (For a generalization to a broader class of symmetric graphs, including distance-regular
graphs, we refer the reader to [49, Corollary 5.3] and Theorem 2.4 below.) We shall use the following
notation. Recall that SymV denotes the symmetric group on a finite set V . If σ ∈ SymV , the linear map
Pσ : RV → RV is defined as the linear extension of the map ei ∈ RV 7→ eσ(i). The adjacency matrix of a
graph G is denoted by AG, and we extend our notation for eigenvalues to any graph by applying it to the
corresponding adjacency matrix; e.g., we set λmin(G) := λmin(AG).

Proposition 2.1 ([96, Section 6.4.1]). Let G = (V,E) be a node- and edge-transitive graph. Suppose that
E 6= ∅. Let k be the valency of G. Then

t(G) =
k

2
(
k − λmin(G)

) . (2.5)

Proof. Set n := |V |. The key argument in the proof is to show that

(2.6)there exists an optimal solution ȳ ⊕ z̄ for the dual SDP (2.4) where ȳ = 1
n ē and z̄ is a

scalar multiple of ē.

Define π : Aut(G)→ SymE by setting π(σ) : {i, j} ∈ E 7→ {σ(i), σ(j)}. Then,

(2.7)for a feasible solution y ⊕ z of (2.4) and σ ∈ Aut(G), the point Pσy ⊕ Pπ(σ)z is also
feasible for (2.4) and has the same objective value as y ⊕ z.

Note that ēTPσy = ēTy = 1 and ēTPπ(σ)z = ēTz. It is easy to check that Pσ Diag(y)PT
σ = Diag(Pσy).

Moreover,

PσLG(z)PT
σ =

∑
ij∈E
〈eij , z〉Pσ(ei − ej)(ei − ej)TPT

σ

=
∑
ij∈E

〈
eσ(i)σ(j), Pπ(σ)z

〉(
eσ(i) − eσ(j)

)(
eσ(i) − eσ(j)

)T
= LG(Pπ(σ)z).

Thus, −Diag(Pσy) + LG(Pπ(σ)z) = Pσ
(
−Diag(y) + LG(z)

)
PT
σ � 0. This proves (2.7). We may now

prove (2.6). Let y∗ ⊕ z∗ be an optimal solution for (2.4). Then by (2.7) we have that

ȳ ⊕ z̄ :=
1

|Aut(G)|
∑

σ∈Aut(G)

(
Pσy

∗ ⊕ Pπ(σ)z
∗) (2.8)

is a convex combination of optimal solutions, and thus is also optimal. Moreover, since Pσ ȳ⊕Pπ(σ)z̄ = ȳ⊕ z̄
for every σ ∈ Aut(G) and Aut(G) acts transitively on V and E, it follows that both ȳ and z̄ are scalar
multiples of ē, whence ȳ = 1

n ē since ēTȳ = 1. This proves (2.6).
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1√
3

Figure 2.2: Optimal hypersphere representations of K3 and K4.

Since LG(ē) = kI −AG, we may use (2.6) to reformulate (2.4) as

t(G) = max
{
β|E| :

(
1
n − kβ

)
I + βAG � 0, β ∈ R

}
. (2.9)

Note that β ∈ R is feasible in (2.9) if and only if 1/n ≥ β
(
k − λ↓i (G)

)
for each i ∈ [n]. Since k ≥ λ↓i (G) for

each i ∈ [n] and the inequality is strict for i = n since E 6= ∅, we find that an optimal solution for (2.9) is

β∗ :=
1

n
(
k − λmin(G)

)
with objective value

β∗|E| = 1

n
(
k − λmin(G)

) kn
2

=
k

2
(
k − λmin(G)

) .
Let us use Proposition 2.1 to compute the hypersphere number for certain natural classes of graphs.

We begin with complete graphs. For every n ∈ Z++, the complete graph Kn is regular with valency n− 1
and λmin(Kn) = −1; in fact, by writing the adjacency matrix of Kn as ēēT − I, it follows that all the
eigenvalues of Kn but the largest one are equal to −1. We thus get from (2.5) that

t(Kn) =
1

2

(
1− 1

n

)
. (2.10)

An optimal solution for (2.3) is given by X∗ ⊕ t(Kn) with

X∗ :=
1

2

(
I − 1

n
ēēT
)
. (2.11)

It is easy to check that X∗ ⊕ t(Kn) satisfies the affine constraints in (2.3). For the positive semidefiniteness
constraint, note that 2X∗ is the orthogonal projection onto {ē}⊥, and thus its own square. See Figure 2.2.

Complete graphs are important enough that we take the time to describe a slightly different, inductive
construction for their optimal hypersphere representations. For K1, just take u1 := 0 ∈ R1. Now let
n ∈ Z++ with n ≥ 2. Given an optimal hypersphere representation v : [n − 1] → Rn−1 of Kn−1, we can
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build an optimal hypersphere representation u : [n]→ Rn of Kn by setting

ui :=

[
β
vi

]
∀i ∈ [n− 1], where β := −

[
2n(n− 1)

]−1/2
, (2.12a)

un :=

[
γ
0

]
, where γ :=

(
n− 1

2n

)1/2

. (2.12b)

Note that here we are embedding the optimal representation of Kn−1 into the hyperplane {x ∈ Rn : x1 = β}
and embedding the new point un as a scalar multiple of e1, and then adjusting the constants β and γ so
that this yields a hypersphere representation of Kn.

It is not difficult nor surprising that, by an appropriate relabeling, the hypersphere representation given
by (2.12) corresponds to a Cholesky factorization of the optimal solution (2.11) for the SDP (2.3) applied
to Kn. One just has to make sure that, when forming a matrix with columns {ui : i ∈ [n]}, the pattern of
zeros arising from (2.12b) yields an upper triangular matrix.

Next we look at cycles. We could use Proposition 2.1 again to compute the hypersphere number of
every even cycle, but it is more instructive here to provide a proof for all bipartite graphs:

Proposition 2.2. Let G = (V,E) be a graph. Then t(G) = 1/4 holds if and only if G is bipartite and has
at least one edge.

Proof. For the ‘if’ part, the existence of edges implies that t(G) ≥ 1/4. Equality in the latter is obtained
by considering the hypersphere representation i ∈ V 7→ (−1)[i∈A]1/2, where {A,B} is a partition of V into
stable sets of G.

Next we prove the ‘only if’ part. The existence of an edge follows from t(G) > 0. Now suppose we
have an optimal hypersphere representation. The hypersphere has radius 1/2. The only pairs of points
at distance 1 in this hypersphere are pairs of antipodal points. Thus, if we consider a great circle in
this hypersphere not containing any of the embedded vertices, then the hemispheres of this great circle
determine a partition of V into two stable sets of G.

It is easy to see that the proof of the ‘if’ part in Proposition 2.2 may be further generalized if we
consider arbitrary colorings of a graph. Together with an obvious bound for subgraphs, we shall obtain a
formula for the hypersphere number of all perfect graphs.

Proposition 2.3. Let G be a graph. Then

t(Kω(G)) ≤ t(G) ≤ t(Kχ(G)). (2.13)

In particular, if ω(G) = χ(G), as is the case whenever G is a perfect graph, we have t(G) = t(Kω(G)).

Proof. Clearly, t(H) ≤ t(G) for every subgraph H of G. Thus, t(Kω(G)) ≤ t(G). Next let c : V → [p] be a
coloring of G for some p ∈ Z++, and let u be an optimal hypersphere representation of Kp. It is easy to
check that the map i ∈ V 7→ uc(i) is a hypersphere representation of G. Hence, t(G) ≤ t(Kp). Since c is an
arbitrary coloring of G, we get t(G) ≤ t(Kχ(G)).

16



The proof of Proposition 2.3 already hints at a strong connection with graph homomorphisms. We shall
look at it with more detail in Section 2.6.

Let us now consider optimal hypersphere representations of odd cycles. It is well known that the
eigenvalues of a cycle Cn on n nodes are τ + τ−1, where τ ranges over the nth complex roots of unity; this
follows from the structure of eigenvalues of circulant matrices and the discrete Fourier transform (see, e.g.,
Biggs [15, Proposition 3.5]). Thus, if n = 2k + 1 for some k ∈ Z++, then λmin(Cn) = 2 cos(2πk/n). Hence,
by Proposition 2.1, we have

t(Cn) =
1

2
(
1− cos(2πk/n)

) . (2.14)

An optimal representation is given by an n-pointed star in R2, i.e., the map that sends node j of
V (Cn) = {0, . . . , n− 1} to √

t(Cn)

[
cos(2πkj/n)
sin(2πkj/n)

]
.

This is illustrated in Figure 2.3.

≈ 0.5077133≈ 0.5077133

Figure 2.3: An optimal hypersphere representation of the 9-cycle.

We compute the hypersphere number for one final class of very symmetric graphs. Let n, k ∈ Z++ with
2k ≤ n. Define the graph Kn:k on node set

(
[n]
k

)
where nodes S, T ∈

(
[n]
k

)
are adjacent if S ∩ T = ∅. (Note

that one may still take 2k > n, though the resulting graph will be empty.) Such graphs are known as
Kneser graphs. Note that K5:2 is the Petersen graph. Kneser graphs are node- and edge-transitive, so we
may indeed apply Proposition 2.1. By using the facts that the valency of Kn:k is

(
n−k
k

)
= n−k

k

(
n−k−1
k−1

)
and

that λmin(Kn:k) = −
(
n−k−1
k−1

)
(see [50, Theorem 9.4.3]), that proposition yields

t(Kn:k) =
1

2

(
1− k

n

)
. (2.15)

Thus, the hypersphere number of the Petersen graph K5:2 is 3/10.
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2.2 A Min-Max Relation Involving the Lovász Theta Number

We recall one of the many possible definitions of the Lovász theta number. For a finite set V and a subset
E of

(
V
2

)
, define the linear map AE : SV → RE by setting

A∗E(eij) := Sym(eie
T
j ) ∀ij ∈ E. (2.16)

Let G = (V,E) be a graph. The theta number of G is

ϑ(G) = max
{
〈ēēT, X〉 : 〈I,X〉 = 1, AE(X) = 0, X ∈ SV+

}
. (2.17)

This graph parameter was first introduced by Lovász in the seminal paper [94], albeit in a different form.
We shall still use some other equivalent formulations of the theta number in this chapter. For proofs of
their equivalence, we refer the reader to Chapter 5, where we discuss this definition and many other guises
of the theta number in depth.

Lovász [96] noted a nonlinear formula relating the numbers t(G) and ϑ(G). We include a proof here
for the sake of completeness. Note that the proof essentially describes the dual SDP (2.4) for t(G) as a
projectively scaled version of the SDP (2.17) applied to G.

Theorem 2.4 ([96, Sec. 6.4.1]). Let G = (V,E) be a graph. Then

2t(G) +
1

ϑ(G)
= 1. (2.18)

Proof. The dual SDP (2.4) can be rewritten as

max
{ 〈

1
2

(
ēēT − I

)
, Y
〉

: 〈ēēT, Y 〉 = 1, AE(Y ) = 0, Y ∈ SV+
}

(2.19)

by taking Y := Diag(y)− LG(z). For any feasible solution Y of (2.19), its objective value is〈
1
2

(
ēēT − I

)
, Y
〉

= 1
2

[
〈ēēT, Y 〉 − 〈I, Y 〉

]
= 1

2

[
1− 〈I, Y 〉

]
by the first constraint in (2.19). Thus, the optimal value of (2.19) is

t(G) = 1
2

[
1− t̃(G)

]
, (2.20)

where
t̃(G) := min

{
〈I, Y 〉 : 〈ēēT, Y 〉 = 1, AE(Y ) = 0, Y ∈ SV+

}
. (2.21)

Note that each optimal solution for (2.21) is also an optimal solution for (2.19), and vice-versa. In particular,
t̃(G) is attained. It is clear that

t̃(G)ϑ(G) = 1; (2.22)

see, e.g., Lemma A.9. Thus, (2.18) follows from (2.20) and (2.22).

Theorem 2.4 may be interpreted as a nonlinear min-max relation involving hypersphere and orthonormal
representations, as we now describe. Let G = (V,E) be a graph. Recall from Chapter 1 that an orthonormal
representation of G is a map from V to the unit vectors of some Euclidean space that sends non-adjacent
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nodes of G to pairs of orthogonal vectors. That is, an orthonormal representation of G is a map v : V → Rd
for some d ∈ Z++ such that ‖vi‖ = 1 for every i ∈ V and 〈vi, vj〉 = 0 for every ij ∈ E. Such representations
were also introduced by Lovász in [94].

Naturally, hypersphere representations of a graph are intimately related to orthonormal representations
of its complement, as described in [96, Section 6.4.1]. Indeed, for a graph G = (V,E), it is easy to check
that,

(2.23)(i) if u is a hypersphere representation of G with squared radius t ≤ 1/2, then the map
i ∈ V 7→ 21/2

(
( 1

2 − t)
1/2 ⊕ ui

)
is an orthonormal representation of G;

(ii) if i ∈ V 7→ µ−1/2 ⊕
√

2ui is an orthonormal representation of G for some µ ∈ R++,
then u is a hypersphere representation of G with squared radius 1

2 (1− 1
µ ).

Orthonormal representations are also closely related to the theta body of a graph (see, e.g., [58]).
Let G = (V,E) be a graph. An orthonormal representation constraint of G is an inequality of the form∑
i∈V 〈v0, vi〉2xi ≤ 1 on a variable x in RV , where v : V → Rd is an orthonormal representation of G for

some d ∈ Z++ and v0 ∈ Rd is a unit vector. The theta body of G may be defined as the set

TH(G) =
{
x ∈ RV+ : x satisfies all orthonormal representation constraints of G

}
. (2.24)

The theta body yields yet another characterization of the theta number of a graph G:

ϑ(G) = max
{
〈ē, x〉 : x ∈ TH(G)

}
. (2.25)

Let us describe Theorem 2.4 as a min-max relation involving the elements of TH(G):

Corollary 2.5. Let G = (V,E) be a graph. If t is the squared radius of a hypersphere representation of G
and x ∈ TH(G) is nonzero, then

2t+
1

〈ē, x〉
≥ 1, (2.26)

with equality if and only if t = t(G) and 〈ē, x〉 = ϑ(G).

Proof. Let u : V → Rd be a hypersphere representation of G with squared radius t for some d ∈ Z++. If
t ≥ 1/2, then (2.26) holds, so assume that t < 1/2. Let x ∈ TH(G) be nonzero. Define an orthonormal
representation v : V → R⊕ Rd of G from u as in (2.23)(i). Put v0 := 1⊕ 0 ∈ R⊕ Rd. Then

(1− 2t)〈ē, x〉 =
∑
i∈V
〈v0, vi〉2xi ≤ 1

by the definition of TH(G). This proves (2.26). The equality case follows from Theorem 2.4.

Corollary 2.5 may be read as a purely geometric min-max relation by using the well-known fact [58,
Theorem 3.5] that

(2.27)x ∈ RV lies in TH(G) if and only if x has the form x : i ∈ V 7→ 〈v0, vi〉2 for some
orthonormal representation v of G and unit vector v0 of the appropriate dimension.
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Corollary 2.6. Let G = (V,E) be a graph. If t is the squared radius of a hypersphere representation of G,
v : V → Rd is an orthonormal representation of G for some d ∈ Z++ and v0 ∈ Rd is a unit vector such that
v0 6∈ { vi : i ∈ V }⊥, then

2t+
1∑

i∈V 〈v0, vi〉2
≥ 1, (2.28)

with equality if and only if t = t(G) and
∑
i∈V 〈v0, vi〉2 = ϑ(G).

Proof. Immediate from Corollary 2.5 via the characterization (2.27) of members of TH(G).

Corollary 2.6 has the pleasing feature that both the primal and the dual objects are purely geometric.
Indeed, one could argue that the fact that the hypersphere number t(G) may be expressed as the SDP (2.3)
immediately yields via the Strong Duality Theorem a min-max relation for t(G). Such min-max relation,
however, involves a positive semidefinite constraint on the dual side which seems somewhat unnatural
given the original, SDP-free statement of the problem of computing t(G). Moreover, it does not seem
easy to interpret the dual SDP (2.4) as an optimization problem over purely geometric objects. This is
accomplished by Corollary 2.6.

One may in fact avoid duality entirely and use only the transformations (2.23) to prove an identity that
is equivalent to (2.18) via a dual characterization of the theta number. However, as expected, this shall not
yield a “good characterization” in the same sense as in Corollary 2.6.

We shall use a fact equivalent to the lower-comprehensiveness of TH(G). However, for the sake of
presenting the proof as purely geometric, we shall prove that fact separately:

Lemma 2.7. Let G = (V,E) be a graph. Let u be an orthonormal representation of G and let u0 be a
unit vector of appropriate dimension. Let k ∈ V and β ∈ R such that 0 ≤ β < 〈u0, uk〉2. Then there exists
an orthonormal representation v of G and a unit vector v0 such that, for each i ∈ V , we have

〈v0, vi〉2 =

{
β, if i = k,

〈u0, ui〉2, otherwise.

Proof. Set µ := β1/2/〈u0, uk〉 ∈ [0, 1] and α :=
√

1− µ2. Define vk := µuk ⊕ α and vi := ui ⊕ 0 for every
i ∈ V \ {k}. Finally, set v0 := u0 ⊕ 0. Clearly, 〈vi, vj〉 = 0 whenever 〈ui, uj〉 = 0, and all images under v
have unit norm. So v is an orthonormal representation of G. It is trivial to check that v and v0 satisfy the
desired condition.

Proposition 2.8. Let G = (V,E) be a graph. Then

2t(G) + max
u,u0

min
i∈V
〈u0, ui〉2 = 1,

where u ranges over all orthonormal representations of G and u0 over unit vectors of the appropriate
dimension.
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Proof. We first prove that
t(G) ≤ 1

2

(
1−max

u,u0

min
i∈V
〈u0, ui〉2

)
. (2.29)

It suffices to prove that
t(G) ≤ 1

2

(
1−min

i∈V
〈u0, ui〉2

)
(2.30)

for any orthonormal representation u of G and unit vector u0 of the appropriate dimension. So fix those,
and set β := mini∈V

{
〈u0, ui〉2

}
. If β = 0, then the hypersphere representation i 7→ 2−1/2ei ∈ RV shows

that t(G) ≤ 1/2 as desired, so assume that β > 0. Use Lemma 2.7 to get from u and u0 an orthonormal
representation v of G and a unit vector v0 such that 〈v0, vi〉2 = β for each i ∈ V . By possibly rotating v0

and the vectors in the image of v, we may assume that v0 = e1. Moreover, by replacing some vectors vi’s
by their opposites if necessary, we may assume that 〈v0, vi〉 ≥ 0 for every i ∈ V . Thus, we may apply
the transformation (2.23)(ii) with µ := 1/β to get a hypersphere representation of G with squared radius
1
2 (1− β). This proves (2.29).

Next we prove that
max
u,u0

min
i∈V
〈u0, ui〉2 ≥ 1− 2t(G). (2.31)

It suffices to find an orthonormal representation v of G and a unit vector v0 such that 〈v0, vi〉2 ≥ 1− 2t(G)
for every i ∈ V . Let u : V → Rd be a hypersphere representation of G with squared radius t(G) for
some d ∈ Z++. Build an orthonormal representation v : V → R ⊕ Rd of G as in (2.23)(i) and pick
v0 := 1⊕ 0 ∈ R⊕ Rd. Then 〈v0, vi〉2 = 1− 2t(G) for every i ∈ V . This proves (2.31).

The equivalence between Proposition 2.8 and Theorem 2.4 follows from the following dual characterization
of ϑ(G):

ϑ(G) = min
u,u0

max
i∈V

1

〈u0, ui〉2
, (2.32)

where u ranges over all orthonormal representations of G and u0 over unit vectors of the appropriate
dimension. (In fact, (2.32) was the original definition of ϑ(G) by Lovász [94].) As we mentioned previously,
though, Proposition 2.8 does not yield a good characterization of t(G); it is more akin to the Gallai identities
for graphs [98, Lemmas 1.0.1 and 1.0.2].

In this section, we have studied the formula (2.18) relating certain geometric representations of
graphs to the reciprocal of the fundamental Lovász theta number via the projective transformation
underlying (2.22). A similar formula holds involving other geometric graph embeddings and the reciprocal
of a key spectral invariant involving the Laplacian, namely Fiedler’s absolute algebraic connectivity, also via
an analogous projective transformation. This was studied in [55], which also proved connections involving
the combinatorial structure of the graph and geometric properties of the corresponding optimal embeddings.
Variations on these geometric embedding problems were also studied in [66, 56, 53, 54] which, along
with [55], also established somewhat surprising relations with some key concepts in Graph Minors Theory.

2.3 Theta Number Results in Hypersphere Space

We may now use Theorem 2.4 to understand better some known results about the Lovász theta number, by
looking at them from the context of hypersphere representations, and the other way around as well. Let us
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start with two basic properties of the theta number which, albeit simple to prove, fit nicely in the context
of hypersphere representations.

Perhaps the most interesting property of the number ϑ(G) is that, although it is possible to approximate
it arbitrarily well in polynomial time, it lies sandwiched between two graph invariants which are NP-hard
to compute, namely, the clique and chromatic numbers of G.

Theorem 2.9 (The Sandwich Theorem [94, Lemma 3 and Theorem 10]). If G is a graph, then

ω(G) ≤ ϑ(G) ≤ χ(G).

Proof. Immediate from Proposition 2.3 via Theorem 2.4 and (2.10).

The Sandwich Theorem 2.9 is usually proved by showing that, for every stable set S of G, the point
1
|S|1S1

T
S is a feasible solution for (2.17) with objective value |S|, and similarly for clique coverings of G and

the SDP dual to (2.17). Proposition 2.3, on the other hand, presents it via a clean geometric construction
using colorings, and in fact it reveals a simple relation to graph homomorphisms which we shall explore in
Section 2.6.

Lovász [96] mentions that a graph G is bipartite if and only if ϑ(G) ≤ 2. A standard proof relies on
showing that ϑ(Cn) > 2 for every odd cycle Cn. Indeed, computing ϑ(Cn) is straightforward, e.g., by
using the standard technique used in the proof of Proposition 2.1, and we get ϑ(Cn) = 1− 1/ cos(2πk/n) if
n = 2k + 1. (The formula also follows from Theorem 2.4 and (2.14).) While this proof is perfectly fine, the
proof of Proposition 2.2, which yields the same characterization via Theorem 2.4, describes a much more
pleasing geometric viewpoint:

Proposition 2.10 ([96, Sec. 6.6.1]). A graph G is bipartite if and only if ϑ(G) ≤ 2.

Proof. Immediate from Proposition 2.2 via Theorem 2.4.

The theta function has a simple behavior with respect to some graph operations; see [94, 78] and
references therein. Some of these results also have geometrically attractive proofs in the context of
hypersphere representations, which we shall consider in the next subsections.

2.3.1 Graph Sums

We shall consider the sum and cosum of graphs. Let G = (V,E) and H = (W,F ) be graphs. By
possibly relabeling the nodes, assume that V ∩ W = ∅. The direct sum of G and H is the graph
G+H := (V ∪W,E ∪ F ). The direct cosum of G and H is the graph G+H defined by G+H := G+H.
We shall use the simple fact that,

(2.33)for every t ∈ R such that t ≥ t(G), there exists a hypersphere representation of G with
squared radius t.

Indeed, let X∗ ⊕ t∗ be an optimal solution for the SDP (2.3) and let X ∈ SV such that X ⊕ t lies in the
line segment joining X∗ ⊕ t∗ to 1

2 (I + (2t̃− 1)ēēT)⊕ t̃, where t̃ := max{t, 1
2}. Then the columns of X1/2

form a hypersphere representation of G with squared radius t.
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Proposition 2.11 ([78, Sec. 18 and 19]). Let G = (V,E) and H = (W,F ) be graphs such that V ∩W 6= ∅.
Then

t(G+H) = max{t(G), t(H)}, (2.34a)

t(G+H) =
1− 4t(G)t(H)

4(1− t(G)− t(H))
. (2.34b)

Equivalently,

ϑ(G+H) = max{ϑ(G), ϑ(H)}, (2.35a)
ϑ(G+H) = ϑ(G) + ϑ(H). (2.35b)

Proof. Let us start by proving (2.34a). Clearly ‘≥’ holds. For the reverse inequality, assume that t(G) ≥ t(H)
and note that there is a hypersphere representation of H with squared radius t(G) by (2.33), which may be
glued to a hypersphere representation of G with squared radius t(G).

Next we prove (2.34b). We start with the ‘≥’ part. Let v be an orthonormal representation of G and v0

a unit vector of the appropriate dimension such that

2t(G) +
1∑

i∈V 〈v0, vi〉2
= 1.

Similarly, let w be an orthonormal representation of H and w0 a unit vector of the appropriate dimension
such that

2t(H) +
1∑

j∈W 〈w0, wj〉2
= 1.

Such representations exist by Corollary 2.6. We may assume that the images of v and w live in the same
space, and by possibly applying a rotation, we may assume that v0 = w0. Then the map z on V ∪W such
that z�V = v and z�W = w is an orthonormal representation of G+H. Hence, by Corollary 2.6, we have

2t(G+H) ≥ 1− 1∑
i∈V 〈v0, vi〉2 +

∑
j∈W 〈w0, wj〉2

=
1− 4t(G)t(H)

2(1− t(G)− t(H))
,

thus proving ‘≥’ in (2.34b).

For the reverse inequality, let v be an optimal hypersphere representation of G, and let w be an optimal
hypersphere representation of H. Define a map u on V ∪W by setting

ui :=

 vi
ξ(G)

0

 ∀i ∈ V, uj :=

 0
−ξ(H)
wj

 ∀j ∈W,

where
ξ(F ) :=

1− 2t(F )

2
(
1− t(G)− t(H)

)1/2
for F ∈ {G,H}. It is easy to check that u is a hypersphere representation of G+H with squared radius
given by the RHS of (2.34b). This concludes the proof of (2.34b).

The identities (2.35) are equivalent to (2.34) by Theorem 2.4.
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Note that (2.34a) implies that t(G) = max{ t(C) : C a component of G}. In fact, the latter equation
generalizes to

t(G) = max
{
t(B) : B a block of G

}
. (2.36)

Recall that a block of a graph is a maximal subgraph with no cut-node, where a cut-node of a graph G is a
node whose deletion increases the number of components of G. The formula (2.36) follows from the next
result, which describes the behavior of the hypersphere number with respect to clique sums. We shall use
the following notation. If Gi = (Vi, Ei) is a graph for each i ∈ [2], then G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2) and
G1 ∩G2 := (V1 ∩ V2, E1 ∩ E2).

Proposition 2.12. Let G = (V,E) be a graph, and suppose G = G1 ∪G2 for graphs G1 and G2, where
G1 ∩G2 is a complete graph. Then

t(G) = max{t(G1), t(G2)}. (2.37)
Equivalently,

ϑ(G) = max{ϑ(G1), ϑ(G2)}. (2.38)

Proof. Clearly ‘≥’ holds in (2.37). We may assume that t(G1) ≥ t(G2). Let u be a hypersphere repre-
sentation of G1 with squared radius t(G1), and let v be a hypersphere representation of G2 with squared
radius t(G1), which exists by (2.33). We may assume that the images of u and v live in the same space.
Since the nodes of G1 ∩G2 are mapped into points with squared norm t(G1) and they are pairwise one unit
apart, by Proposition 1.2 there exists an orthogonal matrix Q such that Qui = vi for every i ∈ V (G1 ∩G2).
Thus, if we take the hypersphere representation u′ : i ∈ V (G2) 7→ Qui of G2 and glue it with v, we obtain a
hypersphere representation of G with squared radius t(G1). This proves (2.37), which is equivalent to (2.38)
by Theorem 2.4.

The behavior of the hypersphere number and ϑ with respect to clique sums described by Proposition 2.12
is shared by many other graph parameters, e.g., the clique and chromatic numbers, the Hadwiger number
(the size of the largest clique minor), and the graph invariant λ introduced in [69].

2.3.2 Local Graph Operations

We now discuss the behavior of the hypersphere number with respect to edge contraction. For a graph G
and an edge e of G, we shall denote by G/e the graph obtained from G by contracting e.

Proposition 2.13. Let G = (V,E) be a graph and let e ∈ E. If ȳ ⊕ z̄ is an optimal solution for the
SDP (2.4), then z̄e ≥ t(G)− t(G/e). Equivalently, if X̄ is an optimal solution for the SDP (2.17) applied
to ϑ(G), then ϑ(G) ≤ (2X̄ij + 1)ϑ(G/e).

Proof. Let ȳ ⊕ z̄ be an optimal solution for (2.4). We will construct a feasible solution for (2.4) applied
to G/e with objective value t(G)− z̄e. Assume e = ab and V ′ := V (G/e) = V \ {b}, so we are denoting
the contracted node of G/e by a. Let M be the V ′ × V matrix defined by M := eae

T
b +

∑
i∈V ′ eie

T
i . Then

MLG(z̄)MT = LG/e(ẑ), where ẑ ∈ RE(G/e) is obtained from z̄ as follows. In taking the contraction G/e
from G, immediately after we identify the ends of e, but before we remove resulting parallel edges, there
are at most two edges between each pair of nodes of G/e, as we assume that G is simple. If there is exactly
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one edge between nodes i and j, we just set ẑij := z̄ij . If there are two edges joining nodes i and j, say f
and f ′, we put ẑij := z̄f + z̄f ′ . Similarly, if we define ŷ : V ′ → R by putting ŷi := ȳi for i ∈ V ′ \ {a} and
ŷa := ȳa + ȳb, then M Diag(ȳ)MT = Diag(ŷ). Since M SV+MT ⊆ SV ′+ , we see that ŷ⊕ ẑ is a feasible solution
for (2.4) applied to G/e, and its objective value is 〈ē, ẑ〉 = 〈ē, z̄〉 − z̄e.

To prove the inequality involving ϑ(G), we use Theorem 2.4 together with its proof to see that X̄
corresponds to an optimal solution ȳ ⊕ z̄ for (2.4) with X̄/ϑ(G) = Diag(ȳ)− LG(z̄), so z̄e = X̄ij/ϑ(G) if
e = ij.

Finally, we consider a neat geometric proof in the context of hypersphere representations for a result
whose counterpart in terms of ϑ is a property also shared by the clique number, the chromatic number,
and the fractional chromatic number (see (5.86) for a definition). The property we refer to is the following.
Let G = (V,E) be a graph. For each j ∈ V , denote by N(j) the set of neighbors of j. Let i ∈ V such that
N(i) 6= ∅. If β ∈ {ω, χ, χ∗}, then β(G) ≥ β(G[N(i)]) + 1. The proof is inspired by [76, Lemma 4.3].

Proposition 2.14. Let G = (V,E) be a graph and let i ∈ V such that N(i) 6= ∅. Then

t(G[N(i)]) ≤ 1− 1

4t(G)
. (2.39a)

Equivalently,
ϑ(G) ≥ ϑ(G[N(i)]) + 1. (2.39b)

Proof. Let u : V → Rd be a hypersphere representation of G with squared radius t := t(G) for some
d ∈ Z++. By possibly replacing u with the map i ∈ V 7→ Qui for some Q ∈ Od, we may assume that
ui = t1/2ed. For every j ∈ N(i), we have 1 = ‖ui − uj‖2 = ‖ui‖2 + ‖uj‖2 − 2〈ui, uj〉 = 2t − 2t1/2[uj ]d.
Hence, [uj ]d = (2t− 1)/(2t1/2) =: β for every j ∈ N(i). Define the following hypersphere representation of
G[N(i)]: for each j ∈ N(i), set vj := uj�[d−1]. The squared radius of v is t− β2, which is equal to the RHS
of (2.39a). This proves (2.39a), which is equivalent to (2.39b) by Theorem 2.4.

2.4 A Weighted Hypersphere Number

The proof of Theorem 2.4 works by showing that the dual SDP (2.4) for the hypersphere number is
a projectively scaled version of the SDP (2.17) for the Lovász theta number. The latter SDP may be
generalized to a weighted version of the theta number, so it seems natural to define a corresponding weighted
generalization of the hypersphere number. In this section, we shall define the weighted hypersphere number
t(G;w) as the optimal value of an SDP by using the proof of Theorem 2.4 as a guide, and we shall show
how to interpret geometrically an optimal solution to the corresponding SDP as a compressed encoding of
an optimal hypersphere representation of a “blown-up” graph from G.

First, we recall the weighted version of the theta number. Let G = (V,E) be a graph, and let w ∈ RV+.
The parameter ϑ(G;w) is defined by

ϑ(G;w) = max
{〈√

w
√
w

T
, X
〉

: 〈I,X〉 = 1, AE(X) = 0, X ∈ SV+
}
, (2.40)

where
√
w ∈ RV is defined by

[
√
w ]i :=

√
wi ∀i ∈ V. (2.41)

25



We want to define a parameter t(G;w) such that

2t(G;w) +
1

ϑ(G;w)
= 1

for every graph G = (V,E) and every w ∈ RV+ with w 6= 0. Let us start by writing a weighted version of
the dual SDP (2.4) for t(G). Following (2.20) and (2.21), define

t(G;w) := 1
2

[
1− t̃(G;w)

]
,

where
t̃(G;w) := min

{
〈I, Y 〉 : 〈

√
w
√
w

T
, Y 〉 = 1, AE(Y ) = 0, Y ∈ SV+

}
. (2.42)

Let Y be a feasible solution for (2.42). Then Y has the form Y = Diag(y) − LG(z) for a unique
y ⊕ z ∈ RV ⊕ RE . The constraint 〈

√
w
√
w

T
, Y 〉 = 1 may be written as

1 =
〈√

w
√
w

T
,Diag(y)− LG(z)

〉
= 〈w, y〉 −

〈
L∗G(
√
w
√
w

T
), z
〉
,

and we have
1
2

[
1− 〈I, Y 〉

]
= 1

2

[〈√
w
√
w

T − I,Diag(y)− LG(z)
〉]

= 1
2

[
〈w − ē, y〉+

〈
2ē− L∗G(

√
w
√
w

T
), z
〉]
.

So, we shall define t(G;w) as the optimal value of the dual SDP of

t(G;w) = max 1
2 〈w − ē, y〉+

〈
ē− 1

2L
∗
G

(√
w
√
w

T)
, z
〉

y ∈ RV ,
z ∈ RE ,
−Diag(y) + LG(z) � 0,

〈w, y〉 −
〈
L∗G
(√
w
√
w

T)
, z
〉

= 1.

(2.43)

i.e., as
t(G,w) = min t

tw − diag(X) = 1
2 (w − ē),

L∗G(X)− tL∗G
(√
w
√
w

T)
= ē− 1

2L
∗
G

(√
w
√
w

T)
,

X ∈ SV+.

(2.44)

Note that X̄ ⊕ t̄ := 1
2 (I ⊕ 1) and ȳ ⊕ z̄ := ē/〈ē, w〉 ⊕ 0 are Slater points for (2.44) and (2.43), respectively.

Thus, the Strong Duality Theorem justifies the use of min and the equation in (2.44).

Before we state a weighted min-max relation corresponding to (2.18), we translate the transformation
described in (2.23)(i):

Proposition 2.15. Let G = (V,E) be a graph, and let w ∈ RV+ be nonzero. Let X̄ ⊕ t̄ be a feasible
solution for (2.44). If t̄ ≤ 1/2, and X̄ is the Gram matrix of the vectors {ui : i ∈ V }, then the map

v : i ∈ V 7→
√

2

[(
( 1

2 − t̄ )wi
)1/2

ui

]
(2.45)

is an orthonormal representation of G.
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Proof. Feasibility of X̄ ⊕ t̄ in (2.44) implies that

X̄ii = 1
2 −

(
1
2 − t̄

)
wi ∀i ∈ V,

X̄ii − 2X̄ij + X̄jj = 1−
(

1
2 − t̄

)
[L∗G(

√
w
√
w

T
)]ij ∀ij ∈ E.

Thus, ‖vi‖2 = 2
(
( 1

2 − t̄ )wi + X̄ii

)
= 1 for every i ∈ V , and 〈vi, vj〉 = 2

(
( 1

2 − t̄ )(wiwj)
1/2

+ X̄ij

)
=

2( 1
2 − t̄ )(wiwj)

1/2
+ X̄ii + X̄jj − 1 + ( 1

2 − t̄ )[L∗G(
√
w
√
w

T
)]ij = 0 whenever ij ∈ E.

We now state the weighted version of Corollary 2.5.

Proposition 2.16. Let G = (V,E) be a graph, and let w ∈ RV+ be nonzero. Let X̄ ⊕ t̄ be a feasible
solution for the SDP (2.44), and let x̄ ∈ TH(G) such that 〈w, x̄〉 6= 0. Then

2t̄+
1

〈w, x̄〉
≥ 1, (2.46)

with equality if and only if X̄ ⊕ t̄ is an optimal solution for (2.44) and 〈w, x̄〉 = ϑ(G,w).

Proof. We may assume that t̄ < 1/2. Let v : V → R⊕ Rd be an orthonormal representation of G arising
from X̄ ⊕ t̄ as in Proposition 2.15. Take v0 := 1⊕ 0. Note that 〈v0, vi〉2 = (1− 2t̄ )wi for every i ∈ V . Then

(1− 2t̄ )〈w, x̄〉 =
∑
i∈V

(1− 2t̄ )wix̄i =
∑
i∈V
〈v0, vi〉2x̄i ≤ 1,

since x̄ ∈ TH(G). This proves (2.46). The assertion about the equality case follows by construction.

The weighted theta number ϑ(G;w) for arbitrary w ∈ RV+ is determined by the values of ϑ(G;w) on
w ∈ ZV+, by homogeneity and continuity. The latter values, in turn, are determined combinatorially from G
in a well-understood manner: if w ∈ ZV+, then it is well known that ϑ(G;w) is equal to the theta number of
the graph obtained from G by replacing each node i with a stable set of size wi. Thus, it is expected that
optimal solutions for the SDP (2.44) for the weighted hypersphere number encode optimal hypersphere
representations of similarly blown up graphs obtained from G. Let us describe the construction precisely.

Let G = (V,E) be a graph, and let w ∈ ZV+. For the remainder of this section, we let Gw denote the
graph on node set

⋃
i∈V {i} × [wi], where nodes (i, p) and (j, q) are adjacent in Gw if i = j or ij ∈ E. Then

we have
ϑ(G;w) = ϑ(Gw). (2.47)

Thus, by Proposition 2.16, we have t(G;w) = t(Gw).

Let X̄ ⊕ t̄ be a feasible solution for the SDP (2.44). Write X̄ = UUT for some [d] × V matrix UT,
and define u : V → Rd by ui := UTei for i ∈ V . For each i ∈ V with wi > 0, let vi : {i} × [wi] → Rdi be
an optimal hypersphere representation of the complete graph on node set {i} × [wi]. We shall build a
hypersphere representation z : V (Gw)→ Rd ⊕

(⊕
i∈V Rdi

)
with squared radius t̄. We may assume that

wi > 0 for every i ∈ V . For (i, k) ∈ V (Gw), with i ∈ V and k ∈ [wi], set

z(i, k) := w
−1/2
i ui ⊕

[⊕
j∈V

[j = i]vi(i, k)

]
.

It is easy to check that z is a hypersphere representation of Gw with squared radius t̄.
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2.5 Unit-Distance Representations in Euclidean Balls

The hypersphere number of a graph G is the smallest (squared) radius of a hypersphere that contains a
unit-distance representation of G. A potentially more natural graph invariant is the smallest (squared)
radius of an Euclidean ball that contains a unit-distance representation of G. In this section we study this
and some other variations of the hypersphere number.

For a graph G, let tb(G) denote the smallest (squared) radius of an Euclidean ball that contains a
unit-distance representation of G. As in the case of hyperspheres, we may restrict our attention to Euclidean
balls centered at the origin, and so it is trivial to modify the SDP (2.3) to formulate this graph invariant:

tb(G) = min
{
t : tē− diag(X) ≥ 0, L∗G(X) = ē, X ∈ SV+, t ∈ R

}
. (2.48)

Note that the dual of (2.48) is

tb(G) = max
{
ēTz : y ∈ RV+, z ∈ RE , −Diag(y) + LG(z) � 0, ēTy = 1

}
, (2.49)

i.e., it is obtained from (2.4) by requiring y to be nonnegative. In particular, as for the dual pair of
SDPs (2.3) and (2.4), the points X ⊕ t = 1

2 (I ⊕ 1) and y ⊕ z = |V |−1
ē ⊕ 0 are restricted Slater points

for (2.48) and (2.49), respectively, which justifies the equation in (2.49) and the use of ‘min’ and ‘max’.

It is obvious that tb(G) ≤ t(G) for any graph G. In fact, equality holds, as we proceed to show. We shall
mimic the proof of Theorem 2.4 to show that an analogue of the equation (2.18) holds with t(G) replaced
with tb(G) and ϑ(G) replaced with a variant, call it ϑb(G). The proof then follows from Theorem 2.4 and
the fact that ϑb(G) = ϑ(G) for every graph G. The proof of this latter fact follows from the following result
of Gijswijt’s [47], as was pointed out by Oliveira Filho [114].

Proposition 2.17 ([47, Proposition 9]). Let K ⊆ Sn be a cone such that Diag(h)X Diag(h) ∈ K whenever
X ∈ K and h ∈ Rn+. Let X∗ be an optimal solution of the optimization problem

max
{
ēTXē : Tr(X) = 1, X ∈ Sn+, X ∈ K

}
.

Then there exists µ ∈ R++ such that diag(X∗) = µX∗ē.

Proposition 2.17 is restated in a slightly more general form as Lemma 5.7 in Chapter 5, where we
provide a self-contained proof for the sake of completeness. For now, we shall just mention that the proof
relies essentially on the ad hoc, “non-convex” fact that every local maximizer of the Rayleigh quotient is a
global maximizer.

We shall state a slightly more general result in terms of variations of unit-distance representations in
hyperspheres and Euclidean balls, where we may change some of the unit-distance constraints to upper or
lower bounds on the edge lengths:

Theorem 2.18. Let G = (V,E) be a graph, and let E+, E− ⊆ E. Define

M :=
{
z ∈ RE : z�E+ ≥ 0, z�E− ≤ 0

}
.

Then

min
{
t : tē− diag(X) = 0, L∗G(X) �M ē, X ∈ SV+, t ∈ R

}
= min

{
t : tē− diag(X) ≥ 0, L∗G(X) �M ē, X ∈ SV+, t ∈ R

}
. (2.50)
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In particular,
t(G) = tb(G). (2.51)

Proof. Denote the LHS of (2.50) by t=(G) and the RHS by t≥(G). The dual SDPs of the LHS and RHS
of (2.50) are, respectively,

t=(G) = max
{
ēTz : y ∈ RV , z ∈M∗, −Diag(y) + LG(z) � 0, ēTy = 1

}
, (2.52a)

t≥(G) = max
{
ēTz : y ∈ RV+, z ∈M∗, −Diag(y) + LG(z) � 0, ēTy = 1

}
. (2.52b)

Thus, X ⊕ t = 1
2 (I ⊕ 1) and y ⊕ z = |V |−1

ē⊕ 0 are respective restricted Slater points for primal and dual
in both pairs of SDPs, which justifies the equations in (2.52) and the use of ‘min’ and ‘max’. As in the
proof of Theorem 2.4, we have

2t=(G) +
1

ϑ=(G)
= 1, (2.53a)

2t≥(G) +
1

ϑ≥(G)
= 1, (2.53b)

where

ϑ=(G) := max
{
〈ēēT, X〉 : 〈I,X〉 = 1, AE(X) ∈M∗, AE(X) = 0, X ∈ SV+

}
, (2.54a)

ϑ≥(G) := max
{
〈ēēT, X〉 : X is feasible in (2.54a) and

〈
Sym(eiē

T), X
〉
≥ 0∀i ∈ V

}
. (2.54b)

Clearly, ϑ≥(G) ≤ ϑ=(G). Let X∗ be an optimal solution for ϑ=(G). By Proposition 2.17, we have
diag(X∗) = µX∗ē for some µ ∈ R++. Hence, X∗ē = µ−1 diag(X∗) ≥ 0, so 〈Sym(eiē

T), X〉 = eTi X
∗ē ≥ 0

for every i ∈ V , i.e., X∗ is feasible in the SDP described by the RHS of (2.54b). This proves

ϑ=(G) = ϑ≥(G). (2.55)

Now (2.50) follows from (2.53) and (2.55).

2.6 Graph Homomorphisms and Sandwich Theorems

The proof of the Sandwich Theorem 2.9 we presented relies on Proposition 2.3, which in turn displays very
simple combinatorial and geometric constructions. They may be summarized by saying that a hypersphere
representation of a graph “contains” a hypersphere representation of each of its subgraphs, and that a
hypersphere representation of the complete graph Kp “contains” a hypersphere representation of any
p-colorable graph. Both constructions may be regarded as the same if we view them in the context of graph
homomorphisms.

Let G and H be graphs. A function φ : V (G)→ V (H) is called a homomorphism of G to H if it maps
edges of G to edges of H, i.e., if {i, j} ∈ E implies {φ(i), φ(j)} ∈ E(H). If there exists a homomorphism
from G to H, we write G → H, and we use φ : G → H to denote that φ is a homomorphism from G
to H. Note that, if G is a subgraph of H, then G→ H via the identity function. Moreover, for a graph G
and an integer p ∈ Z++, we have G → Kp if and only if G has a coloring with p colors, since the set of
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homomorphisms from G to Kp is precisely the set of colorings of G with the set of colors [p]. We refer the
reader to [64, 62, 50] for more properties of graph homomorphisms.

The proof of Proposition 2.3 boils down to the following property of the hypersphere number:

if G→ H for graphs G and H, then t(G) ≤ t(H). (2.56)

Indeed, if u : V (H) → Rd is a hypersphere representation of H with squared radius t for some d ∈ Z++

and φ : V (G)→ V (H) is a homomorphism from G to H, then u ◦ φ is a hypersphere representation of G
with squared radius t, as is easily checked. This observation completes the proof of Proposition 2.3, since

Kω(G) → G→ Kχ(G) for every graph G. (2.57)

Arguably, this monotonicity property of the hypersphere number with respect to graph homomorphisms
lies at the root of the Sandwich Theorem 2.9. Based on this, we say that a graph invariant f is hom-monotone
if it satisfies

(2.58)(i) f(G) ≤ f(H) whenever G and H are graphs such that G→ H,
(ii) there exists a non-decreasing function g : Im(f)→ R such that g(f(Kn)) = n for every

n ∈ Z++.

In this case, we get from (2.57) and (2.58)(i) that f(Kω(G)) ≤ f(G) ≤ f(Kχ(G)) whence

ω(G) ≤ g
(
f(G)

)
≤ χ(G) for every graph G (2.59)

by (2.58)(ii). (A similar use of these ideas may be found in [21].)

The second condition in (2.58) may be regarded as a non-degeneracy property of the graph invariant f ,
since the first condition implies that f(Kn) ≤ f(Kn+1) for every n ∈ Z++. In the case f = t, the function g
may be taken to be g(x) := (1− 2x)−1 for every x ∈ R with x < 1/2, by (2.10).

In fact, from the construction given in the proof of (2.56) one might guess that other optimization
problems over geometric representations of graphs “should” yield graph invariants that satisfy (2.58)(i). It
seems plausible that the only required properties are that all edges and nodes of the graph are treated
“uniformly” by the optimization problem. There is a further requirement on the objective function, which is
harder to state precisely, that it should not depend additively on quantities associated with individual nodes
and edges. To illustrate this, consider the graph invariant G 7→ min

{
〈I,X〉 : L∗G(X) = ē, X ∈ SV (G)

+

}
and

note that it does not satisfy (2.58)(i).

We have already seen one variation of the hypersphere number in Section 2.5, namely, the graph
invariant tb(G). The proof that tb is hom-monotone is identical to that of (2.56). However, as we have seen
from (2.51), this graph invariant is identical to t(G) and we do not gain a new sandwich inequality. We
may also try a variation of the hypersphere number where we constrain adjacent nodes to be at least one
unit apart, i.e., define for a graph G the number

t′(G) := min
{
t : tē− diag(X) = 0, L∗G(X) ≥ ē, X ∈ SV+, t ∈ R

}
. (2.60)

It is easy to check that the proof of (2.56) carries over for t′, and the same for Proposition 2.1. Consequently
t′(Kn) = t(Kn) is also given by (2.10). Thus, the function g(x) := (1−2x)−1 certifies that property (2.58)(ii)
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holds. Hence, t′ is hom-monotone, and it satisfies the corresponding sandwich inequality (2.59). The proof
of Theorem 2.4 also carries over to show that

2t′(G) +
1

ϑ′(G)
= 1, (2.61)

where ϑ′ is the graph invariant

ϑ′(G) = max
{
〈ēēT, X〉 : 〈I,X〉 = 1, AE(X) = 0, AE(X) ≥ 0, X ∈ SV+

}
, (2.62)

introduced independently by McEliece, Rodemich, and Rumsey [108] and Schrijver [129]. Thus, g(t′(G)) =
ϑ′(G) and the sandwich inequality (2.59) obtained from t′ is nothing but ω(G) ≤ ϑ′(G) ≤ χ(G). Similarly,
the parameter

t+(G) := min
{
t : tē− diag(X) = 0, L∗G(X) = ē, L∗

G
(X) ≤ ē, X ∈ SV+, t ∈ R

}
(2.63)

is hom-monotone1, and the corresponding sandwich inequality involves its counterpart

ϑ+(G) = max
{
〈ēēT, X〉 : 〈I,X〉 = 1, AE(X) ≤ 0, X ∈ SV+

}
, (2.64)

introduced by Szegedy [145].

We note that the numbers t(G), t′(G), and t+(G) are all equal if the graph G is edge-transitive2. Indeed,
suppose the latter holds. We may assume that G has no isolated nodes. If G is also node-transitive, then
the proof of Proposition 2.1 shows that all three numbers are equal and they are given by (2.5). Otherwise,
G is bipartite (see [50, Lemma 3.2.1]) and all three numbers are easily seen to equal 1/4. In fact, Godsil
proved that the numbers ϑ, ϑ′, and ϑ+ coincide for a more general class of graphs, called 1-homogeneous;
see [49, Lemma 5.2].

Let G be graph. Let dim(G) be the minimum d ∈ Z+ such that there is a unit-distance representation
of G in Rd. Here we consider R0 := {0}. Note that G→ H implies dim(G) ≤ dim(H). We show later in
Lemma 3.9 that dim(Kn) = n − 1. Thus, the function g(x) := x + 1 shows that dim is hom-monotone,
so ω(G) ≤ dim(G) + 1 ≤ χ(G). However, as was proved in [73, Theorem 2] (and also shown later in
Theorem 3.14), computing dim(G) is NP-hard. (A similar parameter was introduced in [39].)

One may also define some variants of the parameter dim(G) by requiring extra properties from the unit-
distance representation or considering other geometric representations entirely. For instance, define dimh(G)
as the minimum d ∈ Z+ such that there is a hypersphere representation of G in Rd with squared radius ≤ 1/2,
and define dimo(G) as the minimum d ∈ Z+ such that there is an orthonormal representation of G in Rd.
The parameters dimh and dimo are also hom-monotone.

Clearly dim(G) ≤ dimh(G) holds for every graph G, and strict inequality occurs for the Mosers spindle
(see Figure 3.2 and the proof of Theorem 3.14). Since (2.23)(i) shows that dimo(G) ≤ dimh(G) + 1 and [94,
Theorem 11] shows that ϑ(G) ≤ dimo(G), these parameters are related by

ω(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ dimo(G) ≤ dimh(G) + 1 ≤ χ(G).

1Roberson [121] noted an error in page 11, line 10 of our paper [22], where we say that t+ is not hom-monotone.
2Roberson [122] pointed out the following typo in page 9, line -2 of our paper [22]: ‘node-transitive’ should be ‘edge-

transitive.’
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Note that dimh(G) ≤ χ(G) − 1 ≤ ∆(G), where ∆(G) is the maximum degree of G. In fact, by Brooks’
Theorem, dimh(G) ≤ ∆(G)− 1 when G is connected but not complete nor an odd cycle.

One shortcoming in the concept of hom-monotone graph invariants is that it does not include the strongest
sandwich inequality known to be satisfied by the Lovász theta number, namely, ω(G) ≤ ϑ(G) ≤ χ∗(G);
see [94, Theorem 10] and refer to (5.86) for a definition of χ∗. Indeed, the graph invariant χ is easily checked to
be hom-monotone, and the corresponding sandwich inequality is the trivial inequality ω(G) ≤ χ(G) ≤ χ(G),
but it is not the case that χ(G) lies sandwiched between ω(G) and χ∗(G), e.g., for the 5-cycle.

In the next chapter, we shall study another graph invariant arising from geometric representations that
could potentially be hom-monotone; see Theorem 3.6.
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Chapter 3

Ellipsoidal Representations of Graphs

We have seen in Section 2.5 the hypersphere number of a graph G coincides with the smallest (squared)
radius of an Euclidean ball that contains a unit-distance representation of G. In this chapter, we introduce
a generalization of the latter problem: find the smallest (squared) radius of an ellipsoid of a given shape
that contains a unit-distance representation of G.

The graph invariant tb(G) may be regarded as the optimal value of the optimization problem over
unit-distance representations of G = (V,E) which assigns the objective value ‖(uTi ui)i∈V ‖∞ to each such
representation u : V → RV . Here, ‖(uTi ui)i∈V ‖∞ is the ∞-norm of the vector (uTi ui)i∈V . To generalize
this to an ellipsoid of a given shape, let A ∈ Sd++ for some d ∈ Z++, and associate with each unit-distance
representation u : V → Rd the objective value ‖(uTi Aui)i∈V ‖∞. If the optimal value of this problem is t
and it is attained, then the smallest scalar multiple of the ellipsoid {x ∈ Rd : xTAx ≤ 1} that contains a
unit-distance representation of G is {x ∈ Rd : xTAx ≤ t}. See Figure 3.1.

It thus makes sense to define, for a graph G = (V,E) and a matrix A ∈ Sd+ for some d ∈ Z++, the
ellipsoidal number of G with respect to A as

E(G;A) := inf
{∥∥diag(UAUT)

∥∥
∞ : L∗G(UUT) = ē, UT ∈ R[d]×V

}
. (3.1)

(In this setting, we shall call A a “cost matrix.”) Note that we allow A to be singular, in which case we are
dealing not with ellipsoids, but with elliptic cylinders (see [82] for a related problem). In fact, since it is
clear that we are probably dealing with a hard problem, we might as well take the plunge and define an
even further generalization. Let G = (V,E) be a graph, and let A ∈ Sd+ for some d ∈ Z++. If p ∈ [1,∞],
then the p-norm ellipsoidal number of G with respect to A is defined as

Ep(G;A) := inf
{∥∥diag(UAUT)

∥∥
p

: UT ∈ Ud(G)
}
, (3.2)

where the feasible region is
Ud(G) :=

{
UT ∈ R[d]×V : L∗G(UUT) = ē

}
. (3.3)

Besides the fact that the parameter E(G;A) is a natural generalization of the graph invariant tb(G), a
further motivation to study this parameter is the fact that it might lead to new sandwich theorems. This is
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Figure 3.1: A unit-distance representation of K3 in the ellipsoid {x ∈ R2 : x2
1 + 3x2

2 ≤ (5/6)2}; the ellipsoid
corresponding to any smaller RHS does not contain a unit-distance representation of K3.

not surprising given our discussion about hom-monotone graph invariants in Section 2.6. We shall derive
from this parameter a family of graph invariants that satisfy the condition (2.58)(i) of hom-monotonicity;
currently we do not know whether the other condition, (2.58)(ii), is satisfied. The main difficulty is that
finding an analytic formula for the number E(Kn;A) for an arbitrary A ∈ Sn+ turns out to be quite hard.
We shall only be able to provide such a formula for a small but infinite family of complete graphs. For
the non-trivial task of proving a lower bound for E(Kn;A), we rely on the 1-norm variant E1(Kn;A),
another, weighted variant of the hypersphere number t(G), and, unsurprisingly, on basic tools from convex
optimization, namely the Strong Duality Theorem for conic optimization. The tightness of this lower bound
for a family of complete graphs will follow from a class of unit-distance representations built from some
very remarkable objects: Hadamard matrices. The analytic formula for E(Kn;A) in this infinite family of
complete graphs is quite simple. However, we shall provide an analytic formula for E(Kn;A) for a single
complete graph not in this family, namely for E(K3;A), and it looks quite different. This seems to indicate
a rather intricate parameter. Indeed, we shall prove the unsurprising fact that the problem of computing
the ellipsoidal number of an arbitrary graph G = (V,E) and cost matrix A ∈ SV+ is NP-hard.

The main contributions in this chapter are Corollary 3.11, which computes ellipsoidal numbers for
complete graphs under the 1-norm, and Theorem 3.12, which shows how certain unit-distance representations
built from Hadamard matrices are optimal for ellipsoidal numbers. However, all results in this chapter are
new except for Theorem 3.14; we provide a shorter proof for the latter nevertheless.

3.1 Basic Properties

Throughout this chapter, we shall make heavy use of the convenient fact, obvious from the outset, that the
feasible region Ud(G) of Ep(G; ·) is invariant under the action of the orthogonal group. This will allow us to
assume almost everywhere that the cost matrix A in Ep(G;A) is diagonal.

Proposition 3.1. Let G = (V,E) be a graph, and let d ∈ Z++. Then Od Ud(G) = Ud(G). Consequently,
for every p ∈ [1,∞], the function A ∈ Sd+ 7→ Ep(G;A) is spectral, and

Ep(G;A) = Ep(G; Diag(λ↓(A))) ∀A ∈ Sd+. (3.4)
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Proof. If UT ∈ Ud(G) and Q ∈ Od, then L∗G(UQTQUT) = L∗G(UUT) = ē, whence QUT ∈ Ud(G). Thus,
QUd(G) ⊆ Ud(G) for every Q ∈ Od, whence Ud(G) = QTQUd(G) ⊆ QTUd(G) ⊆ Ud(G). Equality
throughout proves that QUd(G) = Ud(G), so Od Ud(G) = Ud(G). Now let p ∈ [1,∞] and A ∈ Sd+. For any
Q ∈ Od, we have

Ep(G;QAQT) = inf
{∥∥diag(UQAQTUT)

∥∥
p

: UT ∈ Ud(G)
}

= inf
{∥∥diag(ZAZT)

∥∥
p

: ZT ∈ QTUd(G)
}

= inf
{∥∥diag(ZAZT)

∥∥
p

: ZT ∈ Ud(G)
}

= Ep(G;A).

Thus, the function A ∈ Sd+ 7→ Ep(G;A) is spectral. In particular, (3.4) holds.

Now, we prove that the infimum in (3.2) is attained whenever finite. This is non-trivial since we allow the
cost matrix A to be singular. For instance, if A ∈ Sd+ is diagonal and all diagonal entries of A are nonzero
except for, say, Add, then it is advantageous to “push a large portion of the representation” UT ∈ Ud(G)
onto its dth row, which has zero cost. That is, by making the entries in the dth row larger and larger
relative to the entries on the other rows, while preserving the unit-distance constraint, it is conceivable
that the objective function could decrease arbitrarily without attaining its infimum value. We will show
that this situation cannot occur by a slightly more careful application of the standard compactness and
continuity argument1.

Theorem 3.2. Let G = (V,E) be a graph. Let p ∈ [1,∞] and let A ∈ Sd+ for some d ∈ Z++. If
Ep(G;A) < +∞, then there exists UT ∈ Ud(G) such that Ep(G;A) = ‖diag(UAUT)‖p, i.e., the infimum in
the definition (3.2) of Ep(G;A) is attained.

Proof. By Proposition 3.1, we may assume that A = Diag(λ), where λ := λ↓(A), and that λ 6= 0. Let
k ∈ [d] be largest so that λk 6= 0. Throughout this proof, let P : R[d] → R[k] denote the projection onto the
first k components, and let Q : R[d] → R[d]\[k] denote the projection onto the last d− k components, i.e.,
x = (Px)⊕ (Qx) for every x ∈ Rd. Note that

A = PT(A[[k]])P (3.5)
and

A[[k]] � λkI. (3.6)

The proof relies on modifying the RHS of (3.2) by adding constraints that do not change the optimal
value but which make the feasible region compact.

Let M ∈ R such that Ep(G;A) ≤M . We claim that adding the constraints

‖PUTei‖22 ≤ B := (M + 1)/λk ∀i ∈ V, (3.7)

does not change the optimal value of the RHS of (3.2), i.e.,

Ep(G;A) = inf
{∥∥diag(UAUT)

∥∥
p

: UT ∈ Ud(G), UT satisfies (3.7)
}
. (3.8)

1The corresponding result in our paper [22], Theorem 5.1, contains an error in the proof, where we say that we may assume
that the graph G is connected. This assumption can be made without loss of generality provided p =∞. The proof in this
thesis fixes that error.
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Suppose UT ∈ Ud(G) violates (3.7), and let i ∈ V such that ‖PUTei‖22 > (M + 1)/λk. By (3.5) and (3.6),
we have ∥∥diag(UAUT)

∥∥
p
≥ eTi UAUTei = eTi UP

T(A[[k]])PUTei

≥ eTi UPT(λkI)PUTei = λk‖PUTei‖22
> M + 1 ≥ Ep(G;A) + 1,

so UT may be discarded from the feasible region of the RHS of (3.2) without changing its optimal value.
This proves (3.8).

If k = d, the proof is complete, since the feasible region of the RHS of (3.8) is compact, so

assume that k < d.

Let H denote the set of components of G. For each i ∈ V , denote by H(i) the component of G which
contains i. For each H ∈ H, choose i ∈ H arbitrarily and call it i(H). We claim that adding the constraints

QUTei(H) = 0 ∀H ∈ H, (3.9)

does not change the optimal value in the RHS of (3.8), i.e., that

Ep(G;A) = inf
{∥∥diag(UAUT)

∥∥
p

: UT ∈ Ud(G), UT satisfies (3.7) and (3.9)
}
. (3.10)

Let UT ∈ Ud(G) satisfy (3.7). Define a matrix ZT ∈ R[d]×V by setting PZTej := PUTej and QZTej :=
QUT(ej−ei(H(j))) for every j ∈ V . Since ZT is obtained from UT by applying the same shift to the columns of
each component of G, we have ZT ∈ Ud(G). Since ZT satisfies (3.7) and (3.9) by construction, ZT is feasible
in the RHS of (3.10). Moreover, by (3.5), we have ZAZT = ZPT(A[[k]])PZT = UPT(A[[k]])PUT = UAUT,
so diag(ZAZT) = diag(UAUT), i.e., ZT has the same objective value as UT. Together with (3.8), this
completes the proof of (3.10).

To finish the proof, we show that the feasible region U in the RHS of (3.10) is compact. Clearly U is
closed, so we must only prove that U is bounded. Let UT ∈ U . Since the columns of UT form a unit-distance
representation ofG, the distance between nodes i and j is an upper bound for ‖UTei−UTej‖2 for any i, j ∈ V .
Hence, for every j ∈ V , we have ‖UTej‖2 ≤ ‖UTei(H(j))‖2 + |V | = ‖PUTei(H(j))‖2 + |V | ≤ B1/2 + |V |. Thus,
U is bounded, and thus compact. This concludes the proof, since the objective function is continuous.

We may refine Theorem 3.2 slightly by ensuring the existence of an optimal solution UT for (3.2) which
is “close to the origin” in the sense that the origin lies in the convex hull of the columns of UT. It will be
convenient in this result to switch to a functional notation for unit-distance representations.

Theorem 3.3. Let G = (V,E) be a graph. Let p ∈ [1,∞] and let A ∈ Sd+ for some d ∈ Z++. If Ep(G;A) <
+∞, then there exists a unit-distance representation u : V → Rd of G such that Ep(G;A) = ‖(uTi Aui)i∈V ‖p
and 0 ∈ conv{ui : i ∈ V }.

Proof. We start as in the proof of Theorem 3.2. By Proposition 3.1, we may assume that A = Diag(λ),
where λ := λ↓(A), and that λ 6= 0. Let k ∈ [d] be largest so that λk 6= 0. Throughout the proof, let
P : R[d] → R[k] denote the projection onto the first k components.
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Let u : V → Rd be a unit-distance representation ofG. Let U be the set of all unit-distance representations
of G of the form i ∈ V 7→ ui + r for some r ∈ Null(P ). Note that if k = d, then U is a singleton. Clearly,
every element of U has the same objective value as u. We will show that

if 0 6∈ conv{ vi : i ∈ V } for all v ∈ U , then Ep(G;A) < ‖(uTi Aui)i∈V ‖p. (3.11)

Suppose that 0 6∈ conv{ vi : i ∈ V } for every v ∈ U . Since 0 does not lie in the set⋃
v∈U

conv{ vi : i ∈ V } =
⋃

r∈Null(P )

conv{ui + r : i ∈ V } = conv{ui : i ∈ V }+ Null(P ),

which is a polyhedron, by Farkas’ Lemma there exists h ∈ Rd and α ∈ R++ such that hTvi ≥ α for every
v ∈ U and i ∈ V . Note that hj = 0 whenever j ∈ [d] \ [k], since the linear function hTui + thj = hT(ui + tej)
of t is bounded below by α. Thus,

hTui ≥ α > 0 ∀i ∈ V and h ∈ Im(A). (3.12)

Let x ∈ Rd such that Ax = h and let s := εx, where ε > 0 will be chosen later. Define z : V → Rd by
zi := ui − s for every i ∈ V . Let i ∈ V . Then

zTi Azi = (ui − s)TA(ui − s) = uTi Aui − 2sTAui + sTAs = uTi Aui − 2εhTui + ε2xTAx.

Hence zTi Azi < uTi Aui if and only if 2εhTui > ε2xTAx. Thus, we will be done if we can find ε > 0 such
that 2hTui > εxTAx. Since hTui ≥ α > 0, such ε exists. Thus, by choosing ε > 0 small enough, we
find a unit-distance representation z : V → Rd of G such that zTi Azi < uTi Aui for every i ∈ V . Hence,
‖(zTi Azi)i∈V ‖p < ‖(uTi Aui)i∈V ‖p, which shows that z has objective value strictly less than that of u. This
proves (3.11).

The result now follows from (3.11) and Theorem 3.2.

Let G = (V,E) be a graph. Let p ∈ [1,∞] and let A ∈ Sd+ for some d ∈ Z++. For the next two results
we shall use the fact that the map A ∈ Sd+ 7→ Ep(G;A) is monotone with respect to the Löwner partial
order, i.e.,

A � B implies Ep(G;A) ≤ Ep(G;B). (3.13)

This follows easily from the fact that p-norms are monotone with respect to the partial order on Rn induced
by Rn+.

The next result describes a situation in which one may work on a lower dimensional space by dropping
some of the most expensive coordinates.

Proposition 3.4. Let G = (V,E) be a graph. Let p ∈ [1,∞] and let A ∈ Sd+ for some d ∈ Z++. If
ŪT ∈ Ud(G) is an optimal solution for Ep(G;A) and k is an integer such that rank(Ū) ≤ k ≤ d, then

Ep(G;A) = Ep(G; Diag(λ↑1(A), . . . , λ↑k(A))). (3.14)

Proof. Set
D := Diag(λ↑1(A), . . . , λ↑k(A)).
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By Proposition 3.1, we may assume that A = Diag(λ), where λ := λ↑(A).

We shall start by proving ‘≤’ in (3.14). Let UT ∈ Uk(G), and set Z :=
[
U 0

]
∈ RV×[d], i.e., append

d − k zero columns to U . Then ZT ∈ Ud(G) and Ep(G;A) ≤ ‖diag(ZAZT)‖p = ‖diag(UDUT)‖p. This
proves ‘≤’ in (3.14).

Next we prove ‘≥’ in (3.14). Let Q ∈ Od be such that, for each i ∈ V , the final d− k rows of QŪT are
zero; this is possible since k ≥ rank(ŪT). Set B := (QAQT)[[k]]. We will be done once we prove that

Ep(G;A) ≥ Ep(G;B) (3.15)
and

Ep(G;B) ≥ Ep(G;D). (3.16)

Let ZT ∈ R[k]×V be obtained from QŪT by dropping the final d − k (zero) rows. Clearly, ZT ∈ Uk(G).
Then

ZBZT =
[
Z 0

]
QAQT

[
ZT

0

]
= ŪQTQAQTQŪT = ŪAŪT,

so Ep(G;A) = ‖diag(ŪAŪT)‖p = ‖diag(ZBZT)‖p ≥ Ep(G;B). This proves (3.15). Set µ := λ↑(B). Since
λ = λ↑(QAQT), the eigenvalues of B interlace the eigenvalues of A (see, e.g., [72, Theorem 4.3.8]), so
µ ≥ λ�[k] and Diag(µ) � D. Thus, by Proposition 3.1 and (3.13) we have Ep(G;B) = Ep(G; Diag(µ)) ≥
Ep(G;D). This completes the proof of (3.16).

Corollary 3.5. Let G = (V,E) be a graph. Let p ∈ [1,∞] and let A ∈ Sd+ for some d ∈ Z++. If d ≥ |V |−1,
then

Ep(G;A) = Ep(G; Diag(λ↑1(A), . . . , λ↑|V |−1(A))). (3.17)

Proof. Equation (3.17) holds trivially if Ep(G;A) = +∞, so assume that Ep(G;A) < +∞. Let r ∈ Z++

such that there exists an optimal solution ŪT ∈ Ud(G) of rank r. Then r ≤ |V | − 1 =: k by Theorem 3.3.
Thus, (3.17) follows from Proposition 3.4.

We can adapt the proof of Proposition 3.4 above to construct some graph invariants from ellipsoidal
numbers which satisfy condition (2.58)(i) of hom-monotonicity.

Theorem 3.6. Let a : Z++ → R++ be a non-decreasing sequence of real numbers. Define An :=
Diag(a1, . . . , an) for each n ∈ Z++. For a graph G on n nodes, set f(G) := E(G;An). If G and H
are graphs such that G→ H, then f(G) ≤ f(H).

Proof. Let φ : G→ H be a graph homomorphism. We denote the number of vertices of a graph F by n(F ).
Let ŪT ∈ Un(H)(H) be a feasible solution for E(H;An(H)).

Suppose first that n(H) ≤ n(G). Define Z̄T ∈ R[n(G)]×V (G) by setting Z̄Tei := ŪTeφ(i) ⊕ 0 for
each i ∈ V (G). The fact that φ is a homomorphism implies that Z̄T ∈ Un(G)(G). For any i ∈ V (G), we
have eTi Z̄An(G)Z̄

Tei = eTφ(i)ŪAn(H)Ū
Teφ(i). Thus, ‖diag(Z̄An(G)Z̄

T)‖∞ ≤ ‖diag(ŪAn(H)Ū
T)‖∞, and it

follows that f(G) = E(G;An(G)) ≤ E(H;An(H)) = f(H).
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Suppose next that n(H) > n(G). Define Ȳ T ∈ R[n(H)]×V (G) by setting Ȳ Tei := ŪTeφ(i) for each i ∈
V (G). The fact that φ is a homomorphism implies that Ȳ T ∈ Un(H)(G). Let Q ∈ On(H) such that the final
n(H)− n(G) rows of QȲ T are zero. Set B := (QAn(H)Q

T)[[n(G)]. We shall be done once we prove

E(H;An(H)) ≥ E(G;B) (3.18)
and

E(G;B) ≥ E(G;An(G)). (3.19)

Let Z̄T ∈ R[n(G)]×V (G) be obtained from QȲ T by dropping the final n(H) − n(G) (zero) rows. Clearly,
Z̄T ∈ Un(G)(G). For i ∈ V (G), we have

eTi Z̄BZ̄
Tei = eTi

[
Z̄ 0

]
QAn(H)Q

T

[
Z̄T

0

]
ei = eTi Ȳ Q

TQAn(H)Q
TQȲ Tei = eTφ(i)ŪAŪ

Teφ(i),

so E(G;B) ≤ ‖diag(Z̄BZ̄T)‖∞ ≤ ‖diag(ŪAn(H)Ū
T)‖∞. This proves (3.18). Set µ := λ↑(B). Since

a�[n(H)] = λ↑(QAn(H)Q
T) and the eigenvalues of B interlace the eigenvalues of An(H) (see, e.g., [72,

Theorem 4.3.8]), we have µ ≥ a�[n(G)] and Diag(µ) � An(G). Thus, by Proposition 3.1 and (3.13), we have
E(G;B) = E(G; Diag(µ)) ≥ E(G;An(G)). This completes the proof of (3.19).

3.2 SDP-based Lower Bound for Complete Graphs

The p-norm variants of the ellipsoidal numbers were not introduced frivolously: inequalities involving
p-norms yield inequalities involving the corresponding numbers Ep(G;A). Thus, they serve as tools for
studying our main object, the ellipsoidal number E(G;A). For instance, since the inequality ‖x‖∞ ≥

1
n‖x‖1

holds for every x ∈ Rn, it follows that

E∞(G;A) = inf
{
‖diag(UAUT)‖∞ : UT ∈ Ud(G)

}
≥ 1

n
inf
{
‖diag(UAUT)‖1 : UT ∈ Ud(G)

}
=

1

n
E1(G;A)

(3.20)

for every graph G and every A ∈ Sd+.

In this section, we shall provide an analytic formula for E1(Kn;A), the 1-norm ellipsoidal number of a
complete graph. This yields via (3.20) a lower bound for E(Kn;A), which we shall show in Section 3.3 to
be tight for an interesting infinite family of complete graphs. Our main tool is a family of SDPs resembling
the hypersphere SDP (2.3).

For every W ∈ SV , define

tW (G) := inf
{
〈W,X〉 : L∗G(X) = ē, X ∈ SV+

}
, (3.21)

and note that its dual is
sup
{
ēTz : z ∈ RE , LG(z) �W

}
. (3.22)

Thus,
t(G) = sup{ tDiag(y)(G) : y ∈ RV , ēTy = 1} (3.23)

by (2.4), so the hypersphere number t(G) of G may be written as a two-stage optimization problem where
the inner problem is the SDP (3.21). The same can be said about E1(G;A):
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Proposition 3.7. Let G = (V,E) be a graph. Let p ∈ [1,∞] and A ∈ SV+. Then

Ep(G;A) = inf
{∥∥diag(X1/2QTAQX1/2)

∥∥
p

: L∗G(X) = ē, X ∈ SV+, Q ∈ OV
}
. (3.24)

In particular,
E1(G;A) = inf

Q∈OV
tQTAQ(G). (3.25)

Proof. Let q∗ denote the RHS of (3.24).

We first show that Ep(G;A) ≤ q∗. Let (X,Q) be a feasible solution for the RHS. Set UT := QX1/2.
Then L∗G(UUT) = L∗G(X1/2QTQX1/2) = L∗G(X) = ē and the objective value of UT in the RHS of (3.2) is
‖diag(UAUT)‖p = ‖diag(X1/2QTAQX1/2)‖p, which is the objective value of (X,Q) in the RHS of (3.24).

Next we show that q∗ ≤ Ep(G;A). Let UT ∈ UV (G), and set X := UUT. By Proposition 1.2,
we have X1/2 = QUT for some Q ∈ OV . The objective value of (X,QT) in the RHS of (3.24) is
‖diag(X1/2QAQTX1/2)‖p = ‖diag(UAUT)‖p, which is the objective value of UT in the RHS of (3.2). This
proves (3.24).

To prove (3.25) note that the objective value of a feasible solution (X,Q) for the RHS of (3.24) is
‖diag(X1/2QTAQX1/2)‖1 = Tr(X1/2QTAQX1/2) = Tr(QTAQX) = 〈QTAQ,X〉.

Before we proceed to compute tW (Kn), we should inspect whether the optimal value tW (G) in (3.21) is
attained.

Theorem 3.8. Let G = (V,E) be a connected graph and let W ∈ SV . If ēTWē > 0 or ē ∈ Null(W ), then
the SDP (3.21) has an optimal solution. Otherwise, tW (G) = −∞.

Proof. Assume throughout that V = [n].

Suppose that ēTWē < 0. Since X̄t := 1
2I + tēēT is feasible for every t ∈ R+, then limt→∞〈W, X̄t〉 =

1
2 〈W, I〉+ limt→∞ tēTWē = −∞ implies that tW (G) = −∞.

Now we will show that,

if ēTWē > 0, then (3.22) has a Slater point. (3.26)

(In fact, if (3.22) has a Slater point z̄ ∈ RE , then ēTWē = ēT(W − LG(z̄))ē > 0.) Let Q ∈ On such that
Qe1 = ē/‖ē‖2. Then QTLG(ē)Q = 0⊕ L for some matrix L ∈ Sn−1

+ . In fact, since G is connected, we have
rank(LG(ē)) = n− 1 (see, e.g., [50, Lemma 13.1.1]) whence L ∈ Sn−1

++ . Let γ ∈ R, b ∈ Rn−1, and A ∈ Sn−1

such that
QTWQ =

[
γ bT

b A

]
.

Note that γ = eT1Q
TWQe1 = ēTWē/‖ē‖22 > 0. Thus, for any λ ∈ R, the relation QT(W − λLG(ē))Q � 0 is

equivalent to A− λL � γ−1bbT by Schur complement. The latter relation holds if we choose λ negative
with |λ| sufficiently large, since L � 0. Thus, W � LG(λē) holds for some λ ∈ R and (3.26) is proved.
Since 1

2I is feasible in (3.21), the existence of an optimal solution for (3.21) follows from (3.26) and the
SDP Strong Duality Theorem.
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In the remainder of the proof, we shall deal with the case where ēTWē = 0. We first reduce to the case
where ē ∈ Null(W ):

if ēTWē = 0 and tW (G) > −∞, then ē ∈ Null(W ). (3.27)

The SDP (3.21) has 1
2I as a Slater point. Together with the assumption that tW (G) > −∞, this implies

by the Strong Duality Theorem that there is an optimal solution z̄ for its dual (3.22). Let Q ∈ On such
that Qe1 = ē/‖ē‖2. Since QT(W − LG(z̄))Q � 0 and eT1QT(W − LG(z̄))Qe1 = ēT(W − LG(z̄))ē/‖ē‖22 = 0,
we find that

(Qek)
T
Wē = eTkQ

T(W − LG(z̄))ē = ‖ē‖2e
T
kQ

T
(
W − LG(z̄)

)
Qe1 = 0

for every k ∈ [n]. Thus, Wē ∈ (Im(Q))
⊥

= {0}. This proves (3.27).
For the remainder of the proof,

assume that ē ∈ Null(W ). (3.28)

Let us show that we may add a constraint to (3.21) without changing its optimal value:

tW (G) = inf
{
〈W,X〉 : L∗G(X) = ē, X ∈ SV+, 〈ēēT, X〉 = 0

}
. (3.29)

Clearly ‘≤’ holds in (3.29). Let X̄ be feasible for (3.21). Let U ∈ Rn×n such that X̄ = UUT. Set
b := 1

nU
Tē. Note that b is the barycenter of the unit-distance representation of G given by the columns

of the matrix UT. Let ZT := UT − bēT, i.e., each column of ZT is equal to the corresponding column
of UT translated by −b. Then ZTē = UTē − 1

nU
TēēTē = 0. Hence, X̃ := ZZT is feasible in (3.21) and

〈X̃, ēēT〉 = ēTZZTē = 0. Moreover, X̃ = (U−ēbT)(UT−bēT) = X̄−2 Sym(UbēT)+‖b‖2ēēT so 〈W, X̃−X̄〉 =

−2〈W, Sym(UbēT)〉+ ‖b‖2〈W, ēēT〉 = −2〈W,UbēT〉 = −2ēTWUb = 0 by the assumption (3.28). Thus, X̃
is feasible in the RHS of (3.29) and its objective value is the same as that of X̄ in (3.21). This concludes
the proof of (3.29).

To complete the proof, it is enough to show that the SDP on the RHS of (3.29) has an optimal solution.
Its dual is

sup
{
ēTz : z ∈ RE , LG(z) + µēēT �W, µ ∈ R

}
. (3.30)

Since ēT(W + ēēT)ē > 0, it follows from (3.26) that there exists z̄ ∈ RE such that LG(z̄) ≺W + ēēT. Thus,
(z̃, µ̃) := (z̄,−1) is a Slater point for (3.30). The existence of an optimal solution for the RHS of (3.29) now
follows from the Strong Duality Theorem.

Next we will derive an analytic formula for tW (Kn). First, we shall state some convenient properties of
the feasible region of the SDP (3.21) for G = Kn.

Lemma 3.9. If n ∈ Z++, then{
X ∈ Sn+ : L∗Kn(X) = ē

}
=
{

1
2I + 1

2 Sym(yēT) : y ∈ Rn, ‖ē‖‖y‖ ≤ 2 + ēTy
}

(3.31)
and

rank(X) ≥ n− 1 for every X ∈ Sn+ such that L∗Kn(X) = ē. (3.32)

Proof. Let X ∈ Sn and set x := diag(X). Then L∗Kn(X) = ē if and only if Xij = 1
2 (xi + xj − 1) for

every ij ∈
(

[n]
2

)
, i.e., if and only if 2X = 2 Sym(xēT) − ēēT + I. Note that 2 Sym(xēT) − ēēT + I =

2 Sym
(
(x− 1

2 ē)ē
T
)

+ I = Sym(yēT) + I for y := 2x− ē. Thus,{
X ∈ Sn : L∗Kn(X) = ē

}
=
{

1
2 Sym(yēT + I) : y ∈ Rn

}
. (3.33)
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Let y ∈ Rn. Since

λ↑
(
Sym(yēT)

)
=


1
2 (ēTy − ‖ē‖‖y‖)

0
...
0

1
2 (ēTy + ‖ē‖‖y‖)

 ,
we find that

λmin

(
Sym(yēT + I)

)
= 1

2 (ēTy − ‖ē‖‖y‖) + 1,

which is nonnegative precisely when ‖ē‖‖y‖ ≤ 2 + ēTy. Moreover, λ↑2
(
Sym(yēT + I)

)
= 1 shows that

rank
(
Sym(yēT + I)

)
≥ n− 1 for all y ∈ Rn.

Lemma 3.9 allows us to compute a formula for tW (Kn) via the Strong Duality Theorem applied to a
second-order cone program. The second-order cone is defined as

SOCV := {x0 ⊕ x ∈ R⊕ RV : ‖x‖2 ≤ x0}.

Note that, like SV+ and RV+, the closed convex cone SOCV is self-dual, i.e., it is its own dual.

Theorem 3.10. If n ∈ Z++ and W ∈ Sn, then

2tW (Kn) =


〈W, I〉 − ‖Wē‖2

ēTWē
if ēTWē > 0,

〈W, I〉 if Wē = 0,

−∞ otherwise.

(3.34)

Proof. Let W ∈ Sn. By Theorem 3.8, we have tW (Kn) = −∞ unless ēTWē > 0 or Wē = 0, in which case
tW (Kn) has an optimal solution. Assume we are in the latter case.

Let y ∈ Rn. Set w := Wē. Then 〈W, 1
2 Sym(yēT + I)〉 = 1

2 〈W, yē
T〉+ 1

2 〈W, I〉 = 1
2w

Ty + 1
2 〈W, I〉. Thus,

Lemma 3.9 implies that

2tW (Kn) = 〈W, I〉+ min{wTy : y ∈ Rn, ‖ē‖‖y‖ ≤ 2 + ēTy}. (3.35)

If Wē = 0, then (3.35) coincides with (3.34), so

assume that ēTw = ēTWē > 0. (3.36)

The minimization problem in the RHS of (3.35) may be written as the second-order cone program

min
{
〈0⊕ w, y0 ⊕ y〉 : ‖ē‖y0 − ēTy = 2, y0 ⊕ y ∈ SOCn

}
, (3.37)

which has

ỹ0 ⊕ ỹ :=

(
2 + ‖ē‖2

‖ē‖

)
⊕ ē

as a Slater point. The dual of (3.37) is

max{ 2µ : µ ∈ R, µ(‖ē‖ ⊕ (−ē)) �SOCn 0⊕ w}. (3.38)
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By the Strong Duality Theorem, the optimal values of (3.37) and (3.38) coincide. Note that feasibility of
µ ∈ R in (3.38) is equivalent to membership of (−µ‖ē‖)⊕ (w + µē) in SOCn, i.e., to the inequalities µ ≤ 0

and ‖w + µē‖2 ≤ µ2‖ē‖2. Thus, the feasible region of (3.38) is{
µ ∈ R : µ ≤ −‖w‖

2

2ēTw

}
.

Thus, the optimal value of (3.38) is −‖w‖2/(ēTw). If follows from (3.35) that 2tW (Kn) = 〈W, I〉 −
‖w‖2/(ēTWē), and the proof of (3.34) is complete.

We can finally derive an analytic formula for E1(Kn;A):

Corollary 3.11. Let n, d ∈ Z++. Let A ∈ Sd+. Then

E1(Kn;A) =

{
1
2

∑n−1
i=1 λ

↑
i (A) if d ≥ n− 1,

+∞ otherwise.
(3.39)

Proof. The key part of the proof is to show that

2E1(Kn;A) = Tr(A)− λmax(A) ∀A ∈ Sn+. (3.40)

Let A ∈ Sn+. If A = 0, then (3.40) holds, so suppose A 6= 0. If Q ∈ On sends ē to Null(A), then
2tQTAQ(Kn) = 〈QTAQ, I〉 = Tr(A) by Theorem 3.10. Thus, by (3.25) and Theorem 3.10, we have

2E1(G;A)− Tr(A) = inf

{
−‖Q

TAQē‖2

ēTQTAQē
: AQē 6= 0, Q ∈ On

}

= − sup

{
ēTQTA2Qē

ēTQTAQē
: AQē 6= 0, Q ∈ On

}
= − sup

{
hTA2h

hTAh
: Ah 6= 0, ‖h‖ = ‖ē‖, h ∈ Rn

}
= − sup

{
hTA2h

hTAh
: Ah 6= 0, h ∈ Rn

}
= − sup

{
xTAx

xTx
: A1/2x 6= 0, x ∈ Im(A)

}
= −λmax(A),

where we used the change of variables h := Qē followed by x := A1/2h. The constraint ‖h‖ = ‖ē‖ may be
dropped since the numerator and denominator in the objective function are homogeneous in ‖h‖2, and the
last supremum is attained by any nonzero x ∈ Rn such that Ax = λmax(A)x. This proves (3.40).

By (3.32), the formula (3.39) is correct when d < n− 1. So suppose that d ≥ n− 1. By Proposition 3.1,
we may assume that A = Diag(λ), where λ := λ↑(A). Then by Theorem 3.3, we may apply Proposition 3.4
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twice with k = n− 1 to get

E1(Kn;A) = E1(Kn; Diag(λ↑1(A), . . . , λ↑n−1(A)))

= E1(Kn; Diag(λ↑1(A), . . . , λ↑n−1(A))⊕ λ↑n−1(A))

=
1

2

n−1∑
i=1

λ↑i (A),

where the last equation follows from (3.40).

3.3 Hadamard Representations

Recall that an n× n matrix H is called a Hadamard matrix if all entries of H are in {±1} and HTH = nI.
Such matrices are very remarkable objects, and they have applications in quite diverse areas, such as
error-correcting codes and pattern recognition; see the survey [71].

It is well known that, if there is an n× n Hadamard matrix, then either n ∈ {1, 2} or n is divisible by 4.
It is a long-standing conjecture that there is an n × n Hadamard matrix for every integer n which is a
multiple of 4. On the positive side, it is well known that if H is an n× n Hadamard matrix and H2 is the
Hadamard matrix

H2 :=

[
1 1
1 −1

]
then H2 ⊗H is a Hadamard matrix; this is known as Sylvester’s construction. Here, ⊗ denotes the tensor
product, also known as Kronecker product. It implies that, whenever n ∈ Z++ is a power of 2, there exists
an n× n Hadamard matrix. This yields a “thin” but infinite family of Hadamard matrices.

Let H be an n× n Hadamard matrix. By possibly replacing H with H Diag(HTe1), we may assume
that H has the form

H =

[
ēT

LT

]
for some LT ∈ R(n−1)×n. Then LLT = HTH − ēēT = nI − ēēT, so L∗Kn(LLT) = 2nē. Thus,

L̄T := (2n)−1/2LT ∈ Un−1(Kn). (3.41)

The matrix in (3.41) is called the Hadamard representation of Kn associated with H.

Theorem 3.12. Let H be an n× n Hadamard matrix for some n ∈ Z++. Suppose that eT1H = ēT, and
let L̄T be the Hadamard representation of Kn associated with H. Then for every p ∈ [1,∞] and every
diagonal A ∈ Sn−1

+ , the matrix L̄T is an optimal solution for Ep(Kn;A).

Proof. Let us start with a p-norm analogue of (3.20). Let p ∈ [1,∞], and let q ∈ [1,∞] such that 1
p + 1

q = 1.
We claim that

Ep(Kn;A) ≥ Tr(A)

2n1/q
, (3.42)
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where we interpret the denominator on the RHS as 2 if p = 1. In that case, (3.42) follows from Corollary 3.11,
so assume p > 1. Note that

‖x‖p ≥
‖x‖1
n1/q

∀x ∈ Rn.

We may assume that x ∈ Rn+ since the validity of the inequality is invariant under re-signing the components
of x. Apply Hölder’s inequality to get ‖x‖1 = xTē ≤ ‖x‖p‖ē‖q = ‖x‖pn1/q. Thus,

Ep(Kn;A) = inf
{∥∥diag(UAUT)

∥∥
p

: UT ∈ Ud(Kn)
}

≥ 1

n1/q
inf
{
‖diag(UAUT)‖1 : UT ∈ Ud(Kn)

}
=

1

n1/q
E1(Kn;A) =

Tr(A)

2n1/q
,

where the last equation follows from Corollary 3.11. This proves (3.42).

The feasibility of L̄T was proved in (3.41). Note that

diag(L̄AL̄T) =
Tr(A)

2n
ē. (3.43)

Indeed, let a ∈ Rn−1 such that A = Diag(a). Let i ∈ [n]. Then all entries of L̄T lie in {±(2n)−1/2}, so
eTi L̄AL̄

Tei = eTi L̄Diag(a)L̄Tei =
∑n−1
j=1 ajL̄

2
ij = 1

2n ē
Ta = 1

2n Tr(A). Thus, the objective value of L̄T in
Ep(Kn;A) is

Tr(A)

2n
‖ē‖p =

Tr(A)

2n
n1/p =

Tr(A)

2n1/q
.

Thus, L̄T is optimal for Ep(Kn;A) by (3.42).

Let n ∈ Z++ such that there exists an n × n Hadamard matrix H. Let L̄T be the Hadamard
representation of Kn associated with H. It seems natural to try to modify L̄T to obtain a unit-distance
representation of Kn+1 with a low objective value for E∞(Kn+1;A). Let a ∈ Rn−1

+ and M ≥ ‖a‖∞, and
set A := Diag(a) and B := Diag(a ⊕M). We know by Theorem 3.12 that L̄T is optimal for E∞(Kn;A),
and conv{ L̄Tei : i ∈ [n]} is an (n− 1)-dimensional simplex ∆n−1. We must add a new vertex v to ∆n−1 to
form a simplex ∆n which is a unit-distance representation of Kn+1. The shortest distance between the
new vertex v and its opposite face ∆n−1 is the line segment joining v to the barycenter of ∆n−1. It makes
sense to align this line segment with the axis considered most expensive by the cost matrix B. That is, we
consider members of Un(Kn+1) of the form

UT =

[
L̄T 0
αēT β

]
,

where α, β ∈ R.

Note that
UUT =

[
L̄L̄T + α2ēēT αβē

αβēT β2

]
,
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so

L∗Kn+1
(UUT) = L∗Kn(L̄L̄T + α2ēēT)⊕

(
diag(L̄L̄T + α2ēēT) + β2ē− 2αβē

)
= ē⊕

(
diag(L̄L̄T) + α2ē+ β2ē− 2αβē

)
= ē⊕

(
n− 1

2n
+ (α− β)

2

)
ē,

i.e., UT ∈ Un(Kn+1) if and only if (α− β)2 = n+1
2n . By symmetry, we shall consider matrices of the form

UT
α :=

[
L̄T 0
αēT βα

]
, (3.44a)

where

βα := α+
(n+ 1

2n

)1/2

. (3.44b)

Note that by our previous discussion, we have

UT
α ∈ Un(Kn+1) ∀α ∈ R. (3.45)

The next proposition determines which of these representations of Kn+1 yields the smallest objective
value in E∞(Kn+1;B).

Proposition 3.13. Let n ∈ Z++ be such that there exists an n× n Hadamard matrix H. Suppose that
eT1H = ēT. Let L̄T be the Hadamard representation of Kn associated with H. For each α ∈ R, define UT

α

as in (3.44). Let a ∈ Rn−1
+ and M ∈ R++ such that M ≥ ‖a‖∞. Set

A := Diag(a), B := Diag(a⊕M). (3.46)

Then

inf
α∈R

∥∥diag(UαBU
T
α )
∥∥
∞ =

(
Tr(B) +Mn

)2
8Mn(n+ 1)

=
Tr(B)

2(n+ 1)
+

(
Tr(B)−Mn

)2
8Mn(n+ 1)

. (3.47)

In particular,

E∞(Kn+1;B) ≤ Tr(B)

2(n+ 1)
+

(
Tr(B)−Mn

)2
8Mn(n+ 1)

. (3.48)

Proof. Let α ∈ R. We have

eTn+1UαBU
T
α en+1 = Mβ2

α = Mα2 +M
(n+ 1)

2n
+ 2Mα

(n+ 1

2n

)1/2

=: f0(α),

and, for every i ∈ [n], we have

eTi UαBU
T
α ei = Mα2 +

n−1∑
j=1

ajL̄
2
ij = Mα2 +

Tr(A)

2n
=: f1(α),

so that
∥∥diag(UαBU

T
α )
∥∥
∞ = max{f0(α), f1(α)}.
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We have

f1(α) ≤ f0(α) ⇐⇒ α ≥ Tr(A)−M(n+ 1)

4Mn

(n+ 1

2n

)−1/2

=: ᾱ. (3.49)

Hence,
∥∥diag(UT

αBU
T
α )
∥∥
∞ = f[α<ᾱ](α). Let α∗ be a global minimizer of the LHS of (3.47), which exists

since the objective function is continuous and coercive. The vertex of the parabola y = f1(α) lies at α1 := 0,
and since M ≥ ‖a‖∞, we have ᾱ ≤ 0. Thus, α∗ ≥ ᾱ, and the LHS of (3.47) is infα≥ᾱ f0(α). It is easy to
check that the vertex of the parabola y = f0(α) lies at

α0 := −
(
n+ 1

2n

)1/2

.

Since α0 < ᾱ, it follows that f0(α) is increasing on α ≥ ᾱ, so α∗ = ᾱ. It is easy to check that both
expressions of (3.47) are equal to f0(α∗). This completes the proof of (3.47). Now (3.48) follows from (3.47)
and (3.45).

The proof of Proposition 3.13 describes a form of local optimality of the representation (3.45) for
E(Kn+1; ·) with α := ᾱ given in (3.49). The upper bound (3.48) is in fact tight for n = 2. The proof of this
is a bit long, and not very enlightening. It does not fit well with the usual tools we have been using, so it is
presented in Section A.1 in the Appendix, which culminates with Theorem A.8, stating equality in (3.48)
for n = 2.

3.4 Computational Complexity

The difficulty in proving an analytic formula for E(Kn;A) even for a “thin” infinite family of complete
graphs (Theorem 3.12) and the somewhat erratic behavior for the formula even as n ranges from 2 to 4
(Theorem A.8) indicate how intricate this parameter is. In this section, we prove the unsurprising fact
that computing these ellipsoidal numbers for arbitrary graphs is NP-hard. We discuss some further issues
related to the computational complexity of geometric representations of graphs in Section 7.1.

For a graph G and a matrix A ∈ Sd+ for some d ∈ Z++, it is clear that Ep(G;A) = 0 if and only if
dim(G) ≤ dim(Null(A)); recall that dim(G) was defined in Section 2.6. So deciding whether dim(G) ≤ k
for any fixed k reduces to computing Ep(G;A) for any p ∈ [1,∞] where A is a matrix of nullity k. It was
shown in [73, Theorem 4] that the former decision problem is NP-hard. Below we give a shorter proof.

Theorem 3.14 ([73]). The problem of deciding whether dim(G) ≤ 2 for a given graph G is NP-hard.

Proof. Let k be a fixed positive integer. Saxe [127, Lemma 4.4] showed that the following problem is
NP-hard: given an input graph G and ` : E → R+, decide whether there exists u : V → Rk such that
‖u(i)− u(j)‖ = `ij for every ij ∈ E. Saxe showed that the problem remains NP-hard even if we require
` ∈ {1, 2}E .

We will show a polynomial-time reduction from the above problem with k = 2 and ` ∈ {1, 2}E to the
problem of deciding whether dim(G) ≤ 2. It suffices to show how we can replace any edge of the input
graph G which is required to be embedded as a line segment of length 2 by some gadget graph H so
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a

b

c
d

e

f

g

Figure 3.2: The Mosers spindle; see [141].

i j

Figure 3.3: The gadget graph H.

that every unit-distance representation of H in R2 maps two specified nodes of H to a pair of points at
distance 2.

Consider the graph M known as the Mosers spindle shown in Figure 3.2. The subgraph of M induced
by {a, b, c, d} has exactly two unit-distance representations in R2 modulo rigid motions: one of them as
displayed in Figure 3.2, and the other one maps nodes a and b to the same point. We claim that, in any
unit-distance representation u of M in R2, the nodes a and b are not mapped to the same point. Indeed,
‖u(a)− u(b)‖2, ‖u(a)− u(e)‖2 ∈ {0, 3} and ‖u(b)− u(e)‖2 ∈ {0, 1} imply that u(a), u(b), u(e) are distinct
points.

Let H be the gadget shown in Figure 3.3, which consists of two copies of M sharing a triangle (some
edges of M are drawn in dots for the sake of ease of visualization). Then, every unit-distance representation
of H in R2 maps the nodes i and j to points at distance 2. Thus, if we replace the corresponding edges {i, j}
of the input graph G by H, we obtain a graph G′ such that dim(G′) ≤ 2 if and only if G can be embedded
in R2 with the prescribed edge lengths.
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Chapter 4

Vertices of Spectrahedra
Arising from the Theta Body

In the previous chapters, our focus has been on hypersphere representations of graphs and their variants.
From the viewpoint of Theorem 2.4, the hypersphere number may be seen as yet another manifestation of
the Lovász theta number, via the intimate connection between hypersphere and orthonormal representations,
as exemplified by Corollary 2.6 and the proof of Proposition 2.8. We now turn our attention to orthonormal
representations of graphs and the crucial convex set that they describe (cf. (1.5)): the theta body TH(G).
In this chapter and the next, we concern ourselves with various descriptions of TH(G), again guided by
duality. The subject of this chapter is the boundary structure of convex sets.

The study of the boundary structure of polyhedra arising from combinatorial optimization problems
has been a very successful undertaking in the field of polyhedral combinatorics. Part of this success
relies on a very rich interplay between geometric and algebraic properties of the faces of such polyhedra
and corresponding combinatorial structures of the problems they encode. This remains true even in
the context of some NP-hard problems, where one is generally resigned to seek partial characterizations
of the boundary structure via some families of facets. Interestingly, analogous results for SDPs arising
from combinatorial optimization problems are rather scarce [87, 88, 136], despite our somewhat good
understanding [24, 93, 90, 12, 116, 117, 11, 2, 112, 14] of the boundary structure of spectrahedra, as feasible
regions of SDPs are called. This is partially explained by the fact that spectrahedra are much richer in
complexity than polyhedra. However, or perhaps owing to that, it is reasonable to presume the existence
of a wealth of combinatorial information encoded in the boundary structure of spectrahedra arising from
combinatorial optimization problems. Indeed, since semidefinite optimization is a strict generalization of
linear optimization, SDPs should in principle encode at least all that is known via polyhedral combinatorics.
This is, in fact, our beacon throughout this thesis.

It is instructive to briefly compare some important qualitative differences between polyhedra and
spectrahedra. From the viewpoint of linear conic optimization, a (pointed) polyhedron is the intersection
of the nonnegative orthant Rn+ with an affine subspace of Rn, whereas a spectrahedron is the intersection
of the positive semidefinite cone Sn+ with an affine subspace of Sn. By regarding Sn as Rn(n+1)/2 (and thus
stripping off the extremely convenient algebraic structure of Sn), one could argue that nothing is gained in
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terms of ambient space or affine constraints when moving from polyhedra to spectrahedra. On the other
hand, the boundary structure of the cone Sn+, while completely understood (see, e.g., [156]), is far more
intricate than that of Rn+. The latter is in fact separable in that it may be written as the direct sum of n
copies of R+. In this context, one is comparing the rich boundary structure of Sn+ with the trivial boundary
structure of R+. This difference in complexity goes even further when contrasting the boundary structure
of spectrahedra and polyhedra, since the intersection of the affine subspace with Sn+ can be so pathological
that Strong Duality as well as Strict Complementarity may fail for SDPs; see, e.g., [156]. Even the faces of
dimension zero of well-behaved spectrahedra have a substantially different structure than that of polyhedra.
Recall that an extreme point of a convex set is called a vertex if its normal cone is full-dimensional. For
a polyhedron, extreme points and vertices coincide, and there are only finitely many of them. On the
other hand, the unit ball {x ∈ Rd : ‖x‖ ≤ 1}, which is linearly isomorphic to a spectrahedron, has infinitely
many extreme points and no vertices whenever d ≥ 2.

Vertices of a convex set can be regarded as the only likely points to optimize a uniformly chosen linear
function, in the following sense. Fix a full-dimensional convex set C ⊆ Rn and a point x̄ ∈ C . Now choose
a unit vector c ∈ Rn uniformly at random. Then the probability that x̄ is an optimal solution for the
optimization problem maxx∈C 〈c, x〉 is positive if and only if x̄ is a vertex of C . This property of the vertices
may have practical significance in some contexts where one formulates an SDP relaxation to a problem and
the vertices of the feasible region correspond exactly to the combinatorial (or non-convex) objects from that
problem. This kind of situation may be useful in low-rank recovery schemes; see [126]. Other instances
occur in combinatorial optimization, in some previous results which suggest that vertices of feasible regions
of SDPs play an analogous role to that of for extreme points in polyhedral combinatorics.

In this chapter, we make progress on the relationship between geometric and combinatorial properties
of a fundamental spectrahedron related to the Lovász theta function: the lifted theta body T̂H(G), defined
in (1.6). We prove that the vertices of T̂H(G) are precisely the symmetric tensors of (lifted) incidence
vectors of stable sets in G. Our result generalizes a characterization due to Laurent and Poljak [87, 88] of the
vertices of the elliptope, the spectrahedron arising from the famous SDP relaxation for MaxCut exploited
by Goemans and Williamson [52] in their approximation algorithm. Laurent and Poljak’s characterization
is in fact equivalent to the application of our result to the lifted theta body of a graph with no edges. Our
result may also be seen as a lifted version of an observation by Shepherd [136] that the vertices of TH(G)
are precisely the incidence vectors of stable sets in G. All these results state that the vertices of these
spectrahedra coincide with the exact solutions of the problems of which they are relaxations. We shall also
determine the vertices of some relatives of T̂H(G) corresponding to the variants ϑ′ and ϑ+ of ϑ described
by (2.62) and (2.64), as well as for spectrahedra arising from other characterizations of ϑ.

The remainder of the chapter is organized as follows. After a quick warm-up section on a neat relationship
between graph homomorphisms and hypersphere representations corresponding to extreme points, we
develop simple formulas for the normal cone of a spectrahedron at a given point and its dimension. We use
our formulas to review some of the previous results in the literature, including Laurent and Poljak’s [87, 88]
characterization of the vertices of the elliptope and Shepherd’s [136] characterization of vertices of TH(G).
We then exploit our formula to determine all the vertices of T̂H(G) and several related spectrahedra.

The main contribution in this chapter is the content from Section 4.5, especially Theorem 4.16.

We should remark that throughout the chapter we only study spectrahedra in a very special form. In
the literature, it is common to define spectrahedra as sets of the form { y ∈ Rm : A0 +

∑m
i=1 yiAi ∈ Sn+} for

given matrices A0, . . . , Am ∈ Sn; the defining constraint is known as a linear matrix inequality (LMI). For
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the sake of convenience, we shall instead focus only spectrahedra defined as the intersection of the cone Sn+
with an affine subspace of Sn. The advantage is that, by confining ourselves to subsets of symmetric
matrices, we retain the ability to use the simple but powerful algebraic structure of the underlying space Sn.
In that sense, to consider other representations of the feasible region which make it harder to exploit the
algebraic structure, such as the LMI form, seems akin to just regarding Sn as Rn(n+1)/2.

4.1 Extreme Hypersphere Representations and Homomorphisms

Let G = (V,E) be a graph, and let t ∈ R. Define

Rt(G) := {X ∈ SV+ : diag(X) = tē, L∗G(X) = ē}, (4.1)

so that Rt(G) is precisely the set of Gram matrices of hypersphere representations of G with squared
radius t. Clearly, Rt(G) 6= ∅ if and only if t ≥ t(G). If t ≥ t(Kn), then Rt(Kn) is a singleton, e.g., by
Lemma 3.9. On the other hand, for t ∈ R++, the set Rt(Kn) is the set of all positive semidefinite matrices
with constant diagonal, a set which we shall study with more detail later in the chapter.

In this section, we shall look at some simple properties relating some extreme points of Rt(G) and
graph homomorphisms. We briefly recall some basic concepts in convex analysis.

Let C ⊆ E be convex. A face of C is a convex subset F of C with the following property: if x, y ∈ C
and λx+ (1− λ)y ∈ F for some λ ∈ (0, 1), then x, y ∈ F . That is, a convex subset F of C is a face of C
if, whenever the relative interior of some line segment contained in C meets F , the whole line segment
lies in F . A point x ∈ C is an extreme point of C if {x} is a face of C . The concepts of faces and
extreme points are fundamental in convex analysis and polyhedral combinatorics; see, e.g., [123, Section 18]
or [132, 133, 134].

The intersection of any set of faces of C is again a face of C . Therefore, every point x ∈ C is contained
in a unique minimal face of C , which we denote by FaceC (x). The minimal face FaceC (x) is characterized
by the fact that x lies in the relative interior of FaceC (x). When C is a spectrahedron, the dimension of
the set FaceC (X) for some X ∈ C is determined in the following way, as is well known (see, e.g., [90] or [88,
Theorem 1.1]):

Theorem 4.1 ([90]). Let C := {X ∈ Sn+ : A(X) = b} for some linear map A : SV → Rm and b ∈ Rm. Let
X̄ ∈ C , set r := rank(X̄), and write X̄ = URUT for some U ∈ Rn×r and R ∈ Sr. Set Ai := A∗(ei) for each
i ∈ [m]. Then

dim
(
FaceC (X̄)

)
= dim(Sr)− dim

(
span{UTAiU : i ∈ [m]}

)
. (4.2)

In particular,

X̄ is an extreme point of C if and only if {UTAiU : i ∈ [m]} spans Sr. (4.3)

Let us use Theorem 4.1 to find out which hypersphere representations of a graph correspond to extreme
points of Rt(G). Let G = (V,E) be a graph, and let t ≥ t(G). Let X̄ ∈ Rt(G). Set r := rank(X̄) and write
X̄ = UUT for some UT ∈ R[r]×V , so that i ∈ V 7→ UTei =: ui is a hypersphere representation of G with
squared radius t. By (4.3), the Gram matrix X̄ is an extreme point of Rt(G) if and only if

{uiuTi : i ∈ V } ∪ { (ui − uj)(ui − uj)T : ij ∈ E} spans Sr. (4.4)
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We shall thus say that a hypersphere representation u : V → Rr of a graph G = (V,E) is extreme if (4.4)
holds.

Proposition 4.2. Let G = (V,E) be a graph, and let t ∈ R. Let X ∈ SV . Then X is an extreme point
of Rt(G) if and only if there is an extreme hypersphere representation u : V → Rr with squared radius t
such that X is the Gram matrix of u.

Proof. The proof is almost immediate by Theorem 4.1 and the previous discussion. The ‘only if’ part is
trivial. For the ‘if’ part, let X be the Gram matrix of an extreme hypersphere representation u : V → Rr
with squared radius t. By Theorem 4.1, it suffices to show that L := span{ui : i ∈ V } is equal to Rr.
Let d ∈ L⊥. Then 〈ddT, yyT〉 = 0 for each y ∈ {ui : i ∈ V } ∪ {ui − uj : ij ∈ E}, so that ddT lies in the
orthogonal complement of {uiuTi : i ∈ V } ∪ { (ui − uj)(ui − uj)T : ij ∈ E}. Since u is extreme, it follows
that ddT = 0, so d = 0, and L = Rr.

We can use graph homomorphisms to “lift” some extreme hypersphere representations. We refer the reader
to Section 2.6 for the definitions and notation concerning graph homomorphisms. Let G and H be graphs,
and let φ : G→ H. Then φ determines a function from E(G) to E(H) by setting φ({i, j}) := {φ(i), φ(j)}
for every ij ∈ E(G). We say that φ is complete if φ(V (G)) = V (H) and φ(E(G)) = E(H).

Proposition 4.3. Let G be a graph. Let u : V (G) → Rr be a hypersphere representation of G with
squared radius t. Let H be a graph and suppose that φ : H → G is a homomorphism. If the hypersphere
representation u ◦ φ of H is extreme, then u is extreme. Moreover, if the homomorphism φ is complete,
then the implication above is an equivalence.

Proof. The proof is immediate: u ◦ φ is extreme if and only if{
uiu

T
i : i ∈ φ(V (H))

}
∪
{

(ui − uj)(ui − uj)T : ij ∈ φ(E(H))
}
spans Sr.

The above condition implies that u is extreme, since φ(V (H)) ⊆ V (G) and φ(E(H)) ⊆ E(G). If φ is
complete, then equality holds on both set equations, whence the implication is clearly an equivalence.

We may use this proposition to prove that some hypersphere representations are extreme in case the
graph has a large enough clique.

Proposition 4.4. Let u : V → Rr be a hypersphere representation of a graph G = (V,E) with squared
radius t. If ω(G) = r + 1 holds, or if both ω(G) = r and t > t(Kr) hold, then u is extreme.

Proof. We shall apply Proposition 4.3 with H ∈ {Kr,Kr+1} and φ := ι : H → G as the embedding map.
We will set v := u ◦ ι and show that v is an extreme hypersphere representation of H. By elementary linear
algebra, v is extreme if and only if { vi : i ∈ V (H)} spans Rr. Thus, it suffices to prove that the Gram
matrix X of v has rank ≥ r. If H = Kr+1, then rank(X) ≥ r by Lemma 3.9. If H = Kr and t > t(Kr),
then we also have rank(X) ≥ r by Lemma 3.9. This concludes the proof.

Corollary 4.5. If u : V → R2 be a hypersphere representation of a nonbipartite graph G = (V,E), then u
is extreme.
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Proof. If G contains a triangle, then ω(G) ≥ 2 + 1, so equality must hold. If G contains no triangle, then
ω(G) = 2 but the squared radius t of u satisfies t > 1/4 = t(K2) by Proposition 2.2 since G is nonbipartite.
In both cases, we are done by Proposition 4.4.

We know that a graph G = (V,E) satisfies χ(G) ≤ 3 if and only if there is a hypersphere representation
of G in R2. This can now be refined to the following statement: a graph G = (V,E) satisfies χ(G) = 3 if
and only if there is an extreme hypersphere representation of G in R2.

For the remainder of the chapter, we shall turn our attention to vertices of spectrahedra related to
orthonormal representations of graphs, which may be regarded as dual objects to hypersphere representations
by Corollary 2.6.

4.2 Normal Cones of Spectrahedra

In this section, we develop some tools to study normal cones of spectrahedra. We use elementary duality
results to obtain formulas for the normal cones of a spectrahedron and their dimensions. These formulas
are crucial for our main result in Section 4.5.

Let C ⊆ E be a convex set and let x̄ ∈ C . The normal cone of C at x̄ is defined as

Normal(C ; x̄) :=
{
c ∈ E∗ : 〈c, x〉 ≤ 〈c, x̄〉 ∀x ∈ C

}
.

We say that x̄ is a vertex of C if dim(Normal(C ; x̄)) = dim(E∗).

The Strong Duality Theorem leads to a dual characterization of normal cones of the feasible region of
any conic optimization problem with a restricted Slater point.

Proposition 4.6. Let K ⊆ E be a pointed closed convex cone with nonempty interior. Let A : E→ Rp and
B : E→ Rq be linear functions. Let a ∈ Rp and b ∈ Rq. Set C := {x ∈ K : A(x) = a, B(x) ≤ b}. Suppose
that C ∩ int(K) 6= ∅. If x̄ ∈ C , then

Normal(C ; x̄) = Im(A∗) +
{
B∗(z) : z ∈ Rq+, supp(z) ∩ supp

(
B(x̄)− b

)
= ∅

}
−
(
K∗ ∩ {x̄}⊥

)
. (4.5)

Proof. First we prove ‘⊆’. Let c ∈ Normal(C ; x̄). Then x̄ is an optimal solution for the conic programming
problem

sup
{
〈c, x〉 : A(x) = a, B(x) ≤ b, x ∈ K

}
,

which has a restricted Slater point by assumption. By the Strong Duality Theorem, its dual

inf
{
〈a, y〉+ 〈b, z〉 : y ∈ Rp, z ∈ Rq+, A∗(y) + B∗(z) �K∗ c

}
has an optimal solution ȳ ⊕ z̄ ∈ Rp ⊕ Rq+ whose slack s̄ := A∗(ȳ) + B∗(z̄) − c ∈ K∗ satisfies 〈s̄, x̄〉 = 0
by complementarity. (Here we use the usual inner-product 〈a, b〉 = aTb in the dual space.) Again by
complementarity, we also have 〈B(x̄) − b, z̄〉 = 0. Together with B(x̄) ≤ b and z̄ ∈ Rq+, this implies that
supp(z̄) ∩ supp

(
B(z̄)− b

)
= ∅. Since c = A∗(ȳ) + B∗(z̄)− s̄, we find that c lies in the set described by the

RHS of (4.5).
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Next we prove ‘⊇’. Let s̄ ∈ K∗ ∩ {x̄}⊥, let ȳ ∈ Rp and z̄ ∈ Rq+ such that supp(z̄)∩ supp
(
B(x̄)− b

)
= ∅.

Set c := A∗(ȳ) + B∗(z̄)− s̄. If x ∈ C , then

〈c, x〉 = 〈A∗(ȳ), x〉+ 〈B∗(z̄), x〉 − 〈s̄, x〉 = 〈ȳ,A(x)〉+ 〈z̄,B(x)〉 − 〈s̄, x〉 = 〈ȳ, a〉+ 〈z̄,B(x)〉 − 〈s̄, x〉
≤ 〈ȳ, a〉+ 〈z̄, b〉 = 〈ȳ, a〉+ 〈z̄, b〉 − 〈s̄, x̄〉 = 〈ȳ,A(x̄)〉+ 〈z̄,B(x̄)〉 − 〈s̄, x̄〉
= 〈A∗(ȳ), x̄〉+ 〈B∗(z̄), x̄〉 − 〈s̄, x̄〉 = 〈c, x̄〉.

Thus, c ∈ Normal(C ; x̄).

Now, we move back to the special case of SDP. In this setting, it is beneficial to exploit the extra
algebraic properties of the underlying space Sn. A conspicuous extra feature is the fact that each point in a
spectrahedron, as a matrix, has a range, a nullspace, and a rank. We shall use these concepts to massage
the identity (4.5) for the normal cone and obtain a simple formula for its dimension.

In what follows, we shall frequently use the following elementary identity. Let A : E→ Y be a nonsingular
linear map, and let L ⊆ E be a linear subspace. Then(

A(L )
)⊥

= A−∗(L ⊥). (4.6)

We start by examining the rightmost term in (4.5), namely K∗ ∩ {x̄}⊥, known as the conjugate face
of x̄ in K∗. When K is the positive semidefinite cone Sn+, the conjugate face of a point X̄ in Sn+ may be
described as a lifted copy of a smaller semidefinite cone, appropriately rotated via a linear automorphism
of Sn+ which depends only on the range of X̄. This allows us to associate the dimension of the conjugate
face to the rank of X̄, as shown by the following well-known result:

Proposition 4.7. Let X̄ ∈ Sn+. Let Q ∈ On such that X = QDiag
(
λ↓(X̄)

)
QT, and set r := rank(X̄).

Then

Sn+ ∩ {X̄}
⊥

= Q
(
0⊕ Sn−r+

)
QT, (4.7)

dim
(
Sn+ ∩ {X̄}

⊥)
=

(
dim

(
Null(X̄)

)
+ 1

2

)
, (4.8)

Sn+ ∩ {X̄}
⊥

= cone
{
bbT : b ∈ Null(X̄)

}
. (4.9)

Proof. Set λ := λ↓(X̄). Let us prove that

Sn+ ∩ {Diag(λ)}⊥ = 0⊕ Sn−r+ . (4.10)

It is clear that ‘⊇’ holds. For the reverse inclusion, let Y ∈ Sn+ ∩ {Diag(λ)}⊥. Then 0 = 〈Y,Diag(λ)〉 =
〈diag(Y ), λ〉, which together with diag(Y ) ≥ 0 and λ ≥ 0 implies that Yii = 0 for each i ∈ supp(λ) = [r].
Since Y ∈ Sn+, we find that Yij = 0 for each i ∈ [r] and j ∈ [n], so Y ∈ 0⊕ Sn−r+ . This proves (4.10).

Set D := Diag(λ) and apply the linear isomorphism CongrQ = Congr−∗Q to both sides of (4.10) to obtain

Q
(
0⊕ Sn−r+

)
QT = CongrQ

(
Sn+ ∩ (span{D})⊥

)
= CongrQ(Sn+) ∩ CongrQ

(
(span{D})⊥

)
= Sn+ ∩

(
Congr−∗Q (span{D})

)⊥
= Sn+ ∩ (span{X̄})⊥.
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This proves (4.7).

To prove (4.8), use (4.7) and the fact that the nonsingular map CongrQ preserves dimension:

dim(Sn+ ∩ {X̄}
⊥

) = dim
(
CongrQ(0⊕ Sn−r+ )

)
= dim

(
0⊕ Sn−r+

)
= dim

(
Sn−r+

)
=

(
n− r + 1

2

)
=

(
dim

(
Null(X̄)

)
+ 1

2

)
.

Finally, we prove (4.9). Let Y ∈ Sn+ be arbitrary, and write Y as Y =
∑k
i=1 hih

T
i where {hi : i ∈ [k]} ⊆

Rn. Since Y ∈ Sn+, the equation 〈X,Y 〉 = 0 is equivalent to hTi Xhi = 0 for each i ∈ [k]. Since X ∈ Sn+, the
latter is equivalent to hi ∈ Null(X) for each i ∈ [k].

As the proof of Proposition 4.7 illustrates, it is often helpful to restrict our attention to a specific class
of positive semidefinite matrices (e.g., diagonal matrices) for which it is easy to prove a result, and then
extend it by changing the basis, e.g., by applying a congruence CongrQ. We now look at how normal cones
behave when we apply such transformations.

Let C ⊆ E be a convex set and let x̄ ∈ C . If T : E→ E is a linear bijection, then

Normal
(
T (C );T (x̄)

)
=
{
c ∈ E∗ : 〈c, T (x)〉 ≤ 〈c, T (x̄)〉 ∀x ∈ C

}
=
{
c ∈ E∗ : 〈T ∗(c), x〉 ≤ 〈T ∗(c), x̄〉 ∀x ∈ C

}
=
{
T−∗(d) ∈ E∗ : 〈d, x〉 ≤ 〈d, x̄〉 ∀x ∈ C

}
= T−∗

(
Normal(C ; x̄)

)
.

(4.11)

The identity (4.11) shows that the coordinate-free properties of normal cones remain invariant under
linear bijections. In the case of SDPs, we can say a bit more in terms of the rank of a feasible matrix X̄.

Lemma 4.8. Let A : Sn → Rp and B : Sn → Rq be linear functions. Let a ∈ Rp and b ∈ Rq. Let L ∈ Rn×n
be nonsingular, and define

AL := A ◦ Congr−1
L , BL := B ◦ Congr−1

L ,

C := {X ∈ Sn+ : A(X) = a, B(X) ≤ b},
CL := CongrL(C ) = {Y ∈ Sn+ : AL(Y ) = a, BL(Y ) ≤ b}.

Then, for any X̄ ∈ C , we have:

(i) C ∩ Sn++ 6= ∅ if and only if CL ∩ Sn++ 6= ∅;

(ii) Normal
(
CL; CongrL(X̄)

)
= Congr−∗L

(
Normal(C ; X̄)

)
whence dim

(
Normal

(
CL; CongrL(X̄)

))
=

dim
(
Normal(C ; X̄)

)
;

(iii) Im(A∗L) = Congr−∗L
(
Im(A∗)

)
whence dim

(
Im(A∗L)

)
= dim

(
Im(A∗)

)
; and analogously for Im(B∗L);

(iv) Null
(
CongrL(X̄)

)
= L−T Null(X̄) whence rank

(
CongrL(X̄)

)
= rank(X̄).

Proof. Most of the proof follows from the fact that the map CongrL is an automorphism of Sn+. Note that
CL ∩ Sn++ = CongrL(C ) ∩ Sn++ = CongrL

(
C ∩ Sn++

)
. This proves (i). Statement (ii) follows from (4.11),

whereas (iii) is elementary linear algebra. For (iv), let h ∈ Rn and note that LX̄LTh = 0 is equivalent to
X̄LTh = 0, i.e., LTh ∈ Null(X̄).
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Next we derive the principal tool for our main result: a simple algebraic expression for the dimension of
the normal cone of a spectrahedron at a given point.

Theorem 4.9. Let A : Sn → Rp and B : Sn → Rq be linear functions. Let a ∈ Rp and b ∈ Rq. Set
C := {X ∈ Sn+ : A(X) = a, B(X) ≤ b}. Suppose that C ∩ Sn++ 6= ∅. Let X̄ ∈ C , and let P denote the
orthogonal projection onto { z ∈ Rq : supp(z) ∩ supp(B(X̄)− b) = ∅}. Then

dim
(
Normal(C ; X̄)

)
= dim(Sn)− dim

(
Null(A) ∩Null(P ◦ B) ∩ span

{
Sym(X̄uvT) : u, v ∈ Rn

})
. (4.12)

In particular, if X̄ = x̄x̄T for some nonzero x̄ ∈ Rn, then

dim
(
Normal(C ; x̄x̄T)

)
= dim(Sn)− dim

((
{Aix̄ : i ∈ [p]} ∪

{
Bix̄ : i ∈ [q] \ supp

(
B(x̄x̄T)− b

)})⊥)
, (4.13)

where Ai := A∗(ei) for all i ∈ [p] and Bi := B∗(ei) for all i ∈ [q]; thus,

(4.14)if x̄x̄T ∈ C for some nonzero x̄ ∈ Rn, then x̄x̄T is a vertex of C if and only if{
Aix̄ : i ∈ [p]

}
∪
{
Bix̄ : i ∈ [q] \ supp(B(x̄x̄T)− b)

}
spans Rn.

Proof. We start by proving that[
span

(
Sn+ ∩ {X̄}

⊥)]⊥
= span

{
Sym(X̄uvT) : u, v ∈ Rn

}
. (4.15)

Let Q ∈ On such that X̄ = QDiag(λ)QT, where λ := λ↓(X̄). Set D := Diag(λ) and r := rank(X̄). Note
that [

span
(
Sn+ ∩ {D}

⊥)]⊥
= span

{
Sym(DuvT) : u, v ∈ Rn

}
, (4.16)

since, by Proposition 4.7, we have[
span

(
Sn+ ∩ {D}

⊥)]⊥
=
[
span

(
0⊕ Sn−r+

)]⊥
=
[
0⊕ Sn−r

]⊥
= span

{
Sym(eie

T
j ) : i ∈ [r], j ∈ [n]

}
= span

{
Sym(DuvT) : u, v ∈ Rn

}
.

In the latter equality, the inclusion ‘⊆’ is obvious. For the reverse inclusion, let u, v ∈ Rn and note that
Sym(DuvT) =

∑n
i=1

∑n
j=1 uivj Sym(Deie

T
j ) =

∑r
i=1

∑n
j=1 uivj Sym(Deie

T
j ). This proves (4.16).

To prove (4.15), apply CongrQ to both sides of (4.16) to get[
span

(
Sn+ ∩ {X̄}

⊥)]⊥
=
[
span

(
Sn+ ∩ {CongrQ(D)}⊥

)]⊥
=
[
span

(
Sn+ ∩ Congr−∗Q ({D}⊥)

)]⊥
=
[
span

(
Congr−∗Q (Sn+ ∩ {D}

⊥
)
)]⊥

=
[
Congr−∗Q

(
span(Sn+ ∩ {D}

⊥
)
)]⊥

= CongrQ
((

span(Sn+ ∩ {D}
⊥

)
)⊥)

= CongrQ
(
span

{
Sym(DuvT) : u, v ∈ Rn

})
= span

{
CongrQ

(
Sym(DuvT)

)
: u, v ∈ Rn

}
= span

{
Sym

(
CongrQ(DuvT)

)
: u, v ∈ Rn

}
= span

{
Sym

(
X̄uvT

)
: u, v ∈ Rn

}
.
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By Proposition 4.6 and (4.15), we have(
span

(
Normal(C ; X̄)

))⊥
=
(

Im(A∗) + Im(B∗ ◦ P )− span
(
Sn+ ∩ {X̄}

⊥))⊥
= Null(A) ∩Null(P ◦ B) ∩

[
span

(
Sn+ ∩ {X̄}

⊥)]⊥
= Null(A) ∩Null(P ◦ B) ∩ span

{
Sym(X̄uvT) : u, v ∈ Rn

}
.

This proves (4.12).

For the remainder of the proof, suppose that X̄ = x̄x̄T for some nonzero x̄ ∈ Rn. Note that (4.15)
specializes to [

span
(
Sn+ ∩ {x̄x̄T}

⊥)]⊥
=
{

Sym(x̄hT) : h ∈ Rn
}

(4.17)

since the RHS of (4.17) is a linear subspace of Sn.

Let h ∈ Rn. Then
[
A(Sym(x̄hT))

]
i

= hTAix̄ for i ∈ [p] and
[
B(Sym(x̄hT))

]
i

= hTBix̄ for i ∈ [q]. Thus,
using (4.17), we find that

Null(A) ∩Null(P ◦ B) ∩
[
span

(
Sn+ ∩ {X̄}

⊥)]⊥
=
{

Sym(x̄hT) : h ∈
(
{Aix̄ : i ∈ [p]} ∪ {Bix̄ : i ∈ [q] \ supp

(
B(x̄x̄T)− b

)
}
)⊥}

,

which has the same dimension as
(
{Aix̄ : i ∈ [p]} ∪ {Bix̄ : i ∈ [q] \ supp

(
B(x̄x̄T)− b

)
}
)⊥ since the linear

map h ∈ Rn 7→ Sym(x̄hT) is injective. This concludes the proof of (4.13), from which (4.14) follows
immediately.

4.3 The Elliptope, the Boolean Quadric Body, and Their Variants

Two spectrahedra recur as building blocks for semidefinite relaxations of combinatorial optimization
problems: the elliptope and the boolean quadric body. In this section, we define them and review previous
results in the literature about their vertices. These results suggest that vertices of spectrahedra may be
regarded as a natural counterpart for extreme points in polyhedral combinatorics.

Let V be a finite set. The set
conv

{
xxT : x ∈ {±1}V

}
is sometimes called the cut polytope. Since we have{

xxT : x ∈ {±1}V
}

=
{
X ∈ SV+ : diag(X) = ē, rank(X) = 1

}
,

a natural relaxation for the cut polytope is the set

EV :=
{
X ∈ SV+ : diag(X) = ē

}
,

known as the elliptope. This set is the feasible region of the SDP used by Goemans and Williamson [52] in
their approximation algorithm for MaxCut.
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The set
conv

{
(1⊕ x)(1⊕ x)T : x ∈ {0, 1}V

}
(4.18)

is a lifting of what is sometimes called the boolean quadric polytope. Define the map

B{0}∪V : X̂ ∈ S{0}∪V 7→ B{0}(X̂)⊕ BV (X̂) ∈ R{0} ⊕ RV , (4.19a)

where B{0} : S{0}∪V → R{0} and BV : S{0}∪V → RV are defined by

B∗{0}(e0) := e0e
T
0 and B∗V (ei) := Sym

(
ei(ei − e0)T

)
∀i ∈ V. (4.19b)

(Recall that we assume throughout the thesis that 0 6∈ V .) Since we have{
(1⊕ x)(1⊕ x)T : x ∈ {0, 1}V

}
=
{
X̂ ∈ S{0}∪V+ : B{0}∪V (X̂) = 1⊕ 0, rank(X̂) = 1

}
,

a natural relaxation for the boolean quadric polytope is the set

BQ{0}∪V :=
{
X̂ ∈ S{0}∪V+ : B{0}∪V (X̂) = 1⊕ 0

}
. (4.20)

Define the square matrix Bool on index set {0} ∪ V as

Bool := 1
2

∑
k∈{0}∪V

ek(e0 + ek)
T

=
1

2

[
2 0T

ē I

]
. (4.21)

Then CongrBool is a linear isomorphism from E{0}∪V to BQ{0}∪V , i.e.,

CongrBool

(
E{0}∪V

)
= BQ{0}∪V . (4.22)

To see this, let X̂ ∈ S{0}∪V , and note that〈
B∗{0}(e0),CongrBool(X̂)

〉
=
〈
e0e

T
0 , X̂

〉
,〈

B∗V (ei),CongrBool(X̂)
〉

= 1
4

〈
(eie

T
i − e0e

T
0 ), X̂

〉
∀i ∈ V.

Thus, diag(X̂) = ē is equivalent to B{0}∪V
(
CongrBool(X̂)

)
= 1⊕ 0. We refer the reader to the papers [33,

89, 45] for more details on the relationship between the cut polytope and the boolean quadric polytope,
and their relaxations.

Laurent and Poljak studied the facial structure of the elliptope in the papers [87, 88]. They characterized
the vertices of the elliptope as precisely the matrices of the form xxT with x ∈ {±1}V , i.e., they are
precisely the extreme points of the cut polytope, of which the elliptope is a relaxation. Thus, by Lemma 4.8,
the vertices of the set BQ{0}∪V are also the matrices of the form (1⊕ x)(1⊕ x)T with x ∈ {0, 1}V . In the
remainder of the section, we shall go over their proofs for the sake of completeness.

We first state a slightly generalized version of a result by Laurent and Poljak [88].

Theorem 4.10 ([88, Theorem 2.10]). Let A : Sn → Rm be a linear map, and let Ai := A∗(ei) for each
i ∈ [m]. Let b ∈ Rm such that supp(b) = [m]. Set C := {X ∈ Sn+ : A(X) = b}. Suppose that C ∩ Sn++ 6= ∅
and that rank(

∑m
i=1Ai) =

∑m
i=1 rank(Ai). Then, for every X̄ ∈ C , we have

dim
(
Normal(C ; X̄)

)
= dim

(
Im(A∗)

)
+

(
dim

(
Null(X̄)

)
+ 1

2

)
. (4.23)
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Proof. The proof of ‘≤’ in (4.23) follows from Proposition 4.6 and (4.8).

Now we prove the reverse inequality. We shall use the fact that

(4.24)if L ∈ Rn×n is nonsingular, then the hypotheses and conclusion of the result hold if
and only if they also hold if A is replaced with AL := A ◦ Congr−1

L and C is replaced
with CL := CongrL(C ).

Note that rank
(∑m

i=1A∗L(ei)
)

= rank
(∑m

i=1A∗(ei)
)

=
∑m
i=1 rank

(
A∗(ei)

)
=
∑m
i=1 rank

(
A∗L(ei)

)
since

rank(A∗L(y)) = rank(L−TA∗(y)L−1) = rank(A∗(y)) for each y ∈ Rm. Together with Lemma 4.8, this
proves (4.24).

Let us prove that

we may assume that AiAj = 0 whenever i, j ∈ [m] are distinct. (4.25)

For each i ∈ [m], set ri := rank(Ai) and let Bi ∈ Rn×ri have full column-rank such that Im(Ai) = Im(Bi).
Set r :=

∑m
i=1 ri. Then the n× r matrix

B :=
[
B1 · · · Bm

]
has full column-rank, since our hypothesis and the relation Im(

∑m
i=1Ai) ⊆

∑m
i=1 Im(Ai) =

∑m
i=1 Im(Bi) =

Im(B) imply that

r =
∑m
i=1 ri = rank

(∑m
i=1Ai

)
= dim

(
Im
(∑m

i=1Ai
))
≤ dim(Im(B)) = rank(B).

Thus, there exists a nonsingular L ∈ Rn×n such that LB =
∑r
k=1 eke

T
k . If i, j ∈ [m] are distinct,

then Im(LBi) ⊥ Im(LBj) holds and so does Im(CongrL(Ai)) ⊥ Im(CongrL(Aj)). Therefore, we have
CongrL(Ai) CongrL(Aj) = 0 whenever i, j ∈ [m] are distinct. Thus, by replacing A with A◦Congr−1

L−T and
applying (4.24), this proves (4.25).

Next we shall refine (4.25) and show that

(4.26)we may assume that Ai = Diag(ai) for each i ∈ [m], where a1, . . . , am ∈ Rn are vectors
with pairwise disjoint supports.

Since the matrices A1, . . . , Am pairwise commute by (4.25), there exists P ∈ On such that PTAiP is diagonal
for each i ∈ [m]; see, e.g., [72, Theorem 1.3.19]. Let ai ∈ Rn such that Ai = P Diag(ai)P

T for each i ∈ [m].
For distinct i, j ∈ [m], we have 0 = PT(AiAj)P = Diag(ai) Diag(aj), whence supp(ai) ∩ supp(aj) = ∅.
Thus, by replacing A with A ◦ Congr−1

P−1 and applying (4.24), this proves (4.26).

Let X̄ ∈ C , let {R1, . . . , Rp} be a basis of Sn−rank(X̄), and let Q ∈ On such that X̄ = QDiag(λ)QT,
where λ := λ↓(X̄). To prove ‘≥’ in (4.23), it suffices by Proposition 4.6 to show that the set {A1, . . . , Am}∪
{Q(0⊕R1)QT, . . . , Q(0⊕Rp)QT} is linearly independent. Let α ∈ Rm and β ∈ Rp such that

m∑
i=1

αiAi +

p∑
j=1

βjQ(0⊕Rj)QT = 0. (4.27)

Let u ∈ Null(X̄)⊥. Then QTu ∈ QT Im(X̄) = Im(QTX̄) = Im
(
Diag(λ)QT

)
⊆ Im

(
Diag(λ)

)
, whence

supp(QTu) ⊆ [rank(X̄)]. Thus, if we multiply (4.27) on the right by u, we obtain u ∈ Null
(∑m

i=1 αiAi
)
.

So Null(X̄)⊥ ⊆ Null
(∑m

i=1 αiAi
)
, or, equivalently,

Im
(∑m

i=1 αiAi
)
⊆ Null(X̄).
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Let k ∈ [m]. Then from (4.26) we have Im(αkAk) ⊆ Im(
∑m
i=1 αiAi) ⊆ Null(X̄) so αkX̄Ak = 0. Since

0 6= bk = 〈Ak, X̄〉 = Tr(AkX̄), we have X̄Ak 6= 0, so it must be the case that αk = 0. This proves that
α = 0, whence β = 0. This concludes the proof of (4.23).

By Theorem 4.10, the dimension of a normal cone at matrix X̄ of the elliptope is completely determined
by the rank of X̄. In particular, this leads to a characterization of the vertices of the elliptope:

Corollary 4.11 ([87, Theorem 2.5]). Let V be a finite set. Then a point X̄ of EV is a vertex of EV if and
only if rank(X̄) = 1. Thus, the vertices of EV are precisely the matrices of the form xxT with x ∈ {±1}V .

Proof. Theorem 4.10 implies that a point X̄ ∈ EV is a vertex of EV precisely when Null(X̄) has dimension
|V | − 1.

Corollary 4.12 ([87]). Let V be a finite set. Then a point X̄ of BQ{0}∪V is a vertex of BQ{0}∪V if and
only if rank(X̄) = 1. Thus, the vertices of BQ{0}∪V are precisely the matrices of the form (1⊕ x)(1⊕ x)T

with x ∈ {0, 1}V .

Proof. Immediate from Corollary 4.11 and (4.22), via Lemma 4.8.

In the proof of Corollary 4.11 by Laurent and Poljak in the paper [87], the fact that x̄x̄T is a
vertex of En if x̄ ∈ {±1}n follows from the simple observation that { (−1)[x̄ix̄j<0] Sym(eie

T
j ) : i, j ∈ [n]} ⊆

Normal(En; x̄x̄T). For the proof that all vertices of En have rank one, Laurent and Poljak give the following
argument, which we include for the sake of completeness:

Proposition 4.13 ([87]). Let A : Sn → Rm and b ∈ Rm and set C := {X ∈ Sn+ : A(X) = b}. Suppose
that C ∩ Sn++ 6= ∅. Suppose that for some k ∈ [n − 1] there exists a linearly independent subset
{h0} ∪ {hi : i ∈ [k]} of Rn such that { Sym(h0h

T
i ) : i ∈ [k]} ⊆ Null(A). Then every vertex of C has rank

≤ n− k.

Proof. We first show that,

(4.28)if L ∈ Rn×n is nonsingular, then the hypotheses and conclusion of the result hold if
and only if they also hold if A is replaced with AL := A ◦ Congr−1

L and C is replaced
with CL := CongrL(C ).

Note that linear independence of {h0}∪ {hi : i ∈ [k]} ⊆ Rn is equivalent to that of {Lh0}∪ {Lhi : i ∈ [k]},
and the inclusion { Sym(h0h

T
i ) : i ∈ [k]} ⊆ Null(A) is equivalent to

{ Sym(Lh0h
T
i L

T) : i ∈ [k]} = CongrL
(
{ Sym(h0h

T
i ) : i ∈ [k]}

)
⊆ Null(A ◦ Congr−1

L ) = Null(AL).

The proof of (4.28) follows from these facts together with Lemma 4.8.

By applying (4.28) with L ∈ Rn×n nonsingular such that Lh0 = en and Lhi = ei for i ∈ [k],

we may assume that h0 = en and hi = ei for all i ∈ [k].
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Set d := dim(Null(A)). Let PNull(A) : Sn → Sn denote the orthogonal projection onto Null(A). Since the
elements of {Sym(ene

T
i ) : i ∈ [k]} ⊆ Null(A) are pairwise orthogonal, we have

PNull(A)

(
Sym(ene

T
i )
)

= Sym(ene
T
i ) ∀i ∈ [k] (4.29)

and

there is a linear isomorphism ϕ : Null(A)→ Rd such that [ϕ(X)]i = Xin for all i ∈ [k]. (4.30)

Let X̄ be a vertex of C . By Propositions 4.6 and 4.7, we have

Normal(C ; X̄) = Im(A∗)− (Sn+ ∩ {X̄}
⊥

) = Im(A∗)− cone
{
bbT : b ∈ Null(X̄)

}
.

Then
PNull(A)

(
Normal(C ; X̄)

)
= − cone

{
PNull(A)(bb

T) : b ∈ Null(X̄)
}

has dimension d. Hence, there exists a set { bj : j ∈ [d]} ⊆ Null(X̄) such that, for Bj := bjb
T
j for j ∈ [d], the

set {PNull(A)(Bj) : j ∈ [d]} is linearly independent. So the d×d matrixM whose jth row is ϕ(PNull(A)(Bj))
is nonsingular, and its submatrix M1 := M [[d], [k]] has k linearly independent rows. By possibly relabeling
the set {Bj : j ∈ [d]}, we may assume that the first k rows of M1 are linearly independent, i.e.,{

[bj ]n
(
bj�[k]

)
: j ∈ [k]

}
=
{
ϕ(PNull(A)(Bj))�[k] : j ∈ [k]

}
is linearly independent,

where the equation follows from (4.29) and (4.30) since, for every i, j ∈ [k], we have[
ϕ(PNull(A)(Bj))

]
i

=
[
PNull(A)(Bj)

]
in

=
〈
PNull(A)(Bj),Sym(eie

T
n)
〉

=
〈
Bj ,Sym(eie

T
n)
〉

= [Bj ]in = [bj ]n[bj ]i.

In particular, [bj ]n 6= 0 for each j ∈ [k] and { bj : j ∈ [k]} is linearly independent. Since bj ∈ Null(X̄) for
each j ∈ [k], we get rank(X̄) ≤ n− k.

When Proposition 4.13 is applied to En in the proof of Corollary 4.11 with h0 := en and hi := ei for
each i ∈ [n− 1], we find again that each vertex of En is rank-one.

Note, however, that the bound provided by Proposition 4.13 may be quite weak. To see this, consider
the set

C :=
{
X ∈ Sn+ :

〈
Sym(eie

T
j ), X

〉
= 0∀ij ∈

(
[n]
2

)}
.

Note that the polyhedral cone C has a unique vertex (and extreme point) and its rank is 0. Now suppose
{h0}∪{hi : i ∈ [k]} ⊆ Rn is a linearly independent set for some k ∈ [n−1] such that Sym(h0h

T
i ) is diagonal

for each i ∈ [k]. For x, y ∈ Rn, the matrix Sym(xyT) is diagonal if and only if, for each i ∈ supp(x), we
have y�[n]\{i} = −(yi/xi)x�[n]\{i}. Thus, k ≤ 1. Thus, Proposition 4.13 gives the upper bound n− 1 for
the rank of the vertices of C .

Proposition 4.13 has nonetheless a quite unexpected consequence:

Corollary 4.14. Let A : Sn → Rm be a linear map. Let b ∈ Rm. Define C := {X ∈ Sn+ : A(X) = b}.
Suppose that C ∩ Sn++ 6= ∅. Then every vertex of Ĉ :=

{
X̂ ∈ S{0}∪[n]

+ : X̂[[n]] ∈ C
}
has rank one.
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Proof. Immediate from Proposition 4.13 applied with hi := ei for each i ∈ {0} ∪ [n].

Thus, the seemingly innocuous operation of embedding a spectrahedron into a higher-dimensional space
completely transforms the boundary structure: the sets C in Corollary 4.14 could potentially have vertices
of all ranks from 1 to n whereas the higher-dimensional set Ĉ can only have vertices of rank one. While
one may argue that the transformation described is very easy to detect, upon applying a congruence to the
system defining Ĉ this may no longer be the case.

4.4 Vertices of the Theta Body

In the next section, we will determine the vertices of the lifted theta body of a graph G = (V,E), defined as

T̂H(G) :=
{
X̂ ∈ S{0}∪V+ : B{0}∪V (X̂) = 1⊕ 0, AE(X̂[V ]) = 0

}
;

recall that the linear map AE was defined in (2.16). In this section, we shall present a proof of an observation
made by Shepherd [136] that the vertices of the theta body

TH(G) =
{

diag(X̂[V ]) : X̂ ∈ T̂H(G)
}

(4.31)

are precisely the incidence vectors of stable sets of G.

Theorem 4.15 ([136, p. 281]). Let G = (V,E) be a graph. Then a point x̄ of TH(G) is a vertex of TH(G)
if and only if x̄ is the incidence vector of a stable set in G.

Proof. For the ‘if’ part, let x̄ be the incidence vector of a stable set in G and note that TH(G) ⊆ [0, 1]V

implies that { (−1)[x̄i=0]ei : i ∈ V } ⊆ Normal(TH(G); x̄).

Now we prove the ‘only if’ part. Set n := |V |. Let x̄ be a vertex of TH(G). If n = 1, then TH(G) = [0, 1]V

so x̄ must be the incidence vector of a stable set of G. Assume henceforth that n > 1. Then

we may assume that x̄i > 0 for every i ∈ V .

Suppose that x̄i = 0 for some i ∈ V . Then x̄ lies in the face F := {x ∈ TH(G) : xi = 0} of TH(G).
Note that aff(F ) = x̄ + {ei}⊥ and that F = { y ⊕ 0 : y ∈ TH(G− i)}. It is easy to check that the
cone { d ∈ {ei}⊥ : 〈d, x〉 ≤ 〈d, x̄〉 ∀x ∈ F} has dimension n− 1. Thus, if we form ȳ ∈ RV \{i} by dropping
coordinate i from x̄, we find that the cone

{
d ∈ RV \{i} : 〈d, y〉 ≤ 〈d, ȳ〉 ∀y ∈ TH(G− i)

}
has dimension

n− 1, i.e., ȳ is a vertex of TH(G− i), and we are done by induction.

We will use the fact that TH(G) is a convex corner, i.e., a compact, lower-comprehensive convex subset
of RV+ with nonempty interior. Let c ∈ Normal(TH(G); x̄). Then 〈c, x̄〉 ≥ 〈c, x̄− x̄iei〉 = 〈c, x̄〉−cix̄i whence
cix̄i ≥ 0 and ci ≥ 0. Hence,

Normal
(
TH(G); x̄

)
⊆ RV+. (4.32)

Let c ∈ Normal(TH(G); x̄) be nonzero. Since c ≥ 0 by (4.32), we have εc ∈ TH(G) for some sufficiently
small ε > 0, whence 0 < 〈c, εc〉 ≤ 〈c, x̄〉. Thus,

〈c, x̄〉 > 0 ∀c ∈ Normal
(
TH(G); x̄

)
\ {0}. (4.33)
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Let { cj : j ∈ [n]} be a linearly independent subset of Normal
(
TH(G); x̄

)
. By (4.33), we know that

by possibly replacing each cj with cj/〈cj , x̄〉, we may assume that 〈cj , x̄〉 = 1 for each j ∈ [n]. Then
〈cj , x〉 ≤ 〈cj , x̄〉 = 1 for all x ∈ TH(G), so { cj : j ∈ [n]} lies in the antiblocker of TH(G), which is TH(G)
by (1.4). Thus, {

cj : j ∈ [n]
}
⊆ TH(G) ∩ {x ∈ RV : 〈x, x̄〉 = 1}. (4.34)

Since TH(G) ⊆ {x ∈ RV : 〈x, x̄〉 ≤ 1} and dim(aff({ cj : j ∈ [n]})) = n − 1, it follows from (4.34) that
〈x, x̄〉 ≤ 1 is a facet-defining inequality for TH(G). By [133, Theorem 67.13], we find that x̄ is the incidence
vector of some clique of G.

4.5 Vertices of the Lifted Theta Body

We have seen in Corollary 4.11 that the vertices of the elliptope are the extreme points of the cut polytope,
the set for which the elliptope is a relaxation. Similarly, by Theorem 4.15, the vertices of the theta body
TH(G) of a graph G are the extreme points of the stable set polytope of G, for which TH(G) is a relaxation.
These results also indicate that vertices of these nonpolyhedral convex sets are natural counterparts to the
extreme points of polyhedral relaxations often studied in polyhedral combinatorics.

An important qualitative difference between these results is that they deal with quite different classes
of sets. The elliptope EV is a spectrahedron, whereas the theta body TH(G) of a graph G is only known
to be a projection of a spectrahedron, namely, as a projection of the spectrahedron T̂H(G), as defined
in (4.31). In a sense, TH(G) potentially has a more complicated structure than the lifted set T̂H(G).
Indeed, spectrahedra are in general facially exposed, whereas their projections need not be so; see, e.g.,
[25] for some substantial qualitative differences between spectrahedra and their projections. On the other
hand, when solving optimization problems over TH(G), the latter is represented via T̂H(G). Thus, it is
very important to understand the facial structure of the lifted representation T̂H(G) of the theta body.

In this section, we shall prove that all vertices of T̂H(G) have rank one. This result is a generalization
of Corollary 4.11 and it may be seen as a lifted version of Theorem 4.15. We shall also discuss analogous
results for variants of the lifted set T̂H(G), which we introduce next. For a graph G = (V,E), these sets
may be defined as

T̂H′(G) :=
{
X̂ ∈ S{0}∪V+ : B{0}∪V (X̂) = 1⊕ 0, AE(X̂[V ]) = 0, AE(X̂[V ]) ≥ 0

}
,

TH′(G) =
{

diag
(
X̂[V ]

)
∈ RV : X̂ ∈ T̂H′(G)

}
,

and
T̂H+(G) :=

{
X̂ ∈ S{0}∪V+ : B{0}∪V (X̂) = 1⊕ 0, AE(X̂[V ]) ≤ 0

}
,

TH+(G) =
{

diag
(
X̂[V ]

)
∈ RV : X̂ ∈ T̂H+(G)

}
.

Some well-known variants of the Lovász theta number are the support functions of these sets, i.e., for a
graph G = (V,E) and w ∈ RV+, we have

ϑ′(G;w) = max
{
〈w, x〉 : x ∈ TH′(G)

}
, (4.35)

ϑ+(G;w) = max
{
〈w, x〉 : x ∈ TH+(G)

}
. (4.36)
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We refer the reader to [78, 61] and the references therein for more details.

Now the motivation for our main result below should be clear:

Theorem 4.16. Let V be a finite set, and let E+, E− ⊆
(
V
2

)
. Set

Ĉ :=
{
X̂ ∈ S{0}∪V+ : B{0}∪V (X̂) = 1⊕ 0, AE+(X̂[V ]) ≥ 0, AE−(X̂[V ]) ≤ 0

}
.

Let X̂ ∈ Ĉ . Then X̂ is a vertex of Ĉ if and only if rank(X̂) = 1.

Proof. Note that
1

2n

[
2n ēT

ē I

]
∈ Ĉ ∩ S{0}∪V++

for n := |V |, so we may apply Theorem 4.9.

We first prove the ‘if’ part. Let X̂ ∈ Ĉ be rank-one, so that X̂ is of the form X̂ = (1⊕ x̄)(1⊕ x̄)T for
some x̄ ∈ RV . Since BV (X̂) = 0, we have x̄ ∈ {0, 1}V . Then [B∗{0}(e0)](1⊕ x̄) = e0e

T
0 (1⊕ x̄) = e0 and, for

i ∈ V , we have 2[B∗V (ei)](1⊕ x̄) = 2 Sym(ei(ei− e0)T)(1⊕ x̄) = (x̄i− 1)ei + x̄i(ei− e0) =
(
2x̄i− 1

)
ei− x̄ie0.

These vectors form a basis for R{0}∪V , whence X̂ is a vertex of Ĉ by Theorem 4.9.

Now we prove the ‘only if’ part. Let X̂ be a vertex of Ĉ . For each k ∈ V , define

1
2Ck := Sym(X̂eke

T
0 ) +

∑{
X̂k`

X̂``

Sym
(
X̂e`e

T
`

)
: ` ∈ V, X̂`` > 0

}
.

For E ∈ {E+, E−}, denote the orthogonal projection onto { z ∈ RE : supp(z) ∩ supp(AE(X̂[V ])) = ∅}
by PE . Let F : S{0}∪V → RV ⊕ RE+ ⊕ RE− be defined as

F(Ŷ ) := BV (Ŷ )⊕
(
PE+ ◦ AE+

)(
Ŷ [V ]

)
⊕
(
PE− ◦ AE−

)(
Ŷ [V ]

)
∀ Ŷ ∈ S{0}∪V .

(Note the absence of {0} in the index set of BV .) Let us prove that

Ck ∈ Null(F). (4.37)

Let i, j ∈ {0} ∪ V . Then

[Ck]ij = X̂ik[j = 0] + [i = 0]X̂kj +
∑{

X̂k`

X̂``

(
X̂i`[` = j] + [` = i]X̂`j

)
: ` ∈ V, X̂`` > 0

}
= X̂ik[j = 0] + [i = 0]X̂kj +

∑{
X̂k`

X̂``

(
X̂ij [` = j] + [` = i]X̂ij

)
: ` ∈ V, X̂`` > 0

}
= X̂ik[j = 0] + [i = 0]X̂kj + X̂ij

∑{
X̂k`

X̂``

(
[` = j] + [` = i]

)
: ` ∈ V, X̂`` > 0

}
.

(4.38)

Thus, if i, j ∈ V are distinct and X̂ij = 0, then [Ck]ij = 0. Let i ∈ V . Then

[Ck]ii = X̂ii

∑{
X̂k`

X̂``

2[` = i] : ` ∈ V, X̂`` > 0

}
= 2[X̂ii > 0]X̂ki = 2X̂ki
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whereas

[Ck]i0 = X̂ik + X̂i0

∑{
X̂k`

X̂``

[` = i] : ` ∈ V, X̂`` > 0

}
= X̂ik + [X̂ii > 0]X̂ki = 2X̂ki. (4.39)

This concludes the proof of (4.37).

We claim that

if k, ` ∈ V are such that X̂kk > 0 and X̂`` > 0, then X̂kk = X̂`` = X̂k`. (4.40)

Let k, ` ∈ V be distinct such that X̂kk > 0 and X̂`` > 0. Set

D :=
1

X̂kk

Ck −
1

X̂``

C`.

Note that [Ck]00 = 2X̂0k = 2X̂kk and [C`]00 = 2X̂0` = 2X̂``, whence D00 = 0. Hence, D ∈ Null(B{0}).
By (4.37), we also have D ∈ Null(F). Thus, by Theorem 4.9, we must have D = 0. Now from (4.39) we get

0 = Dk0 =
[Ck]k0

X̂kk

−
[C`]k0

X̂``

=
2X̂kk

X̂kk

− 2X̂`k

X̂``

=⇒ X̂`` = X̂`k

and

0 = D`0 =
[Ck]`0
X̂kk

−
[C`]`0
X̂``

=
2X̂k`

X̂kk

− 2X̂``

X̂``

=⇒ X̂kk = X̂k`.

This concludes the proof of (4.40).

From (4.40) we find that there exists η ∈ R such that

X̂ = (1− η)
[
(1⊕ 0)(1⊕ 0)

T]
+ η
[
(1⊕ 1S)(1⊕ 1S)

T] (4.41)

where S := supp(diag(X̂[V ])). If S = ∅, the proof is complete, so assume that S 6= ∅. Then X̂ � 0 is
equivalent to η ∈ [0, 1]. If η = 0 the proof is complete, so assume η > 0. Then (4.41) describes the extreme
point X̂ as a convex combination of two distinct points of Ĉ , from which we conclude that η = 1, whence
rank(X̂) = 1.

We immediately obtain from Theorem 4.16 the vertices of all the lifted theta bodies described above:

Corollary 4.17. Let G = (V,E) be a graph. Let Ĉ ∈
{

T̂H(G), T̂H′(G), T̂H+(G)
}
. Then a point X̂ of Ĉ

is a vertex of Ĉ if and only if rank(X̂) = 1. Thus, the vertices of Ĉ are precisely the matrices of the form
(1⊕ 1S)(1⊕ 1S)T where S ⊆ V is a stable set of G.

Proof. Immediate from Theorem 4.16: for Ĉ = T̂H(G), take E+ := E− := E; for Ĉ = T̂H′(G), take
E+ :=

(
V
2

)
and E− := E; for Ĉ = T̂H+(G), take E+ := ∅ and E− := E.
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Let V be a finite set. Define

BQ′{0}∪V :=
{
X̂ ∈ BQ{0}∪V : X̂[V ] ≥ 0

}
,

BQ′′{0}∪V :=
{
X̂ ∈ BQ{0}∪V :

〈
Sym

(
(e0 − ei)(e0 − ej)T

)
, X̂
〉
≥ 0, ∀ij ∈

(
V
2

)}
.

Like BQ{0}∪V , these sets are also well-known relaxations for the lifting (4.18) of the boolean quadric
polytope. Also, define the square matrix Flip on index set {0} ∪ V as

Flip := e0e
T
0 +

∑
i∈V

ei(e0 − ei)T =

[
1 0T

ē −I

]
. (4.42)

Note that Flip(1⊕1S) = (1⊕1V \S) for each S ⊆ V . It is easy to check that CongrFlip is an automorphism
of BQ{0}∪V , and that

CongrFlip

(
BQ′{0}∪V

)
= BQ′′{0}∪V . (4.43)

Corollary 4.18. Let V be a finite set. Let Ĉ ∈
{

BQ{0}∪V ,BQ′{0}∪V ,BQ′′{0}∪V
}
. Then a point X̂ of Ĉ is

a vertex of Ĉ if and only if rank(X̂) = 1. Thus, the vertices of Ĉ are precisely the matrices of the form
(1⊕ 1S)(1⊕ 1S)T where S ⊆ V .

Proof. For Ĉ ∈
{

BQ{0}∪V ,BQ′{0}∪V
}
, this follows from Corollary 4.17 via Lemma 4.8, since BQ{0}∪V =

T̂H(KV ) and BQ′{0}∪V = T̂H′(KV ). For Ĉ = BQ′′{0}∪V , this follows from the previous sentence together
with (4.43) and Lemma 4.8.

Currently, we do not know whether all the vertices of the relaxation BQ′{0}∪V ∩BQ′′{0}∪V of the
lifting (4.18) of the boolean quadric polytope have rank one.

Let V be a finite set. Define

E ′{0}∪V :=
{
X̂ ∈ E{0}∪V :

〈
Sym

(
(e0 + ei)(e0 + ej)

T
)
, X̂
〉
≥ 0, ∀ij ∈

(
V
2

)}
,

E ′′{0}∪V :=
{
X̂ ∈ E{0}∪V :

〈
Sym

(
(e0 − ei)(e0 − ej)T

)
, X̂
〉
≥ 0, ∀ij ∈

(
V
2

)}
.

Like E{0}∪V , these sets are also relaxations for the set conv
{

(1⊕ x)(1⊕ x)T : x ∈ {±1}V
}
, which is a

variant of the cut polytope. It is easy to check that

CongrBool(E{0}∪V ) = BQ{0}∪V , (4.44a)

CongrBool(E
′
{0}∪V ) = BQ′{0}∪V , (4.44b)

CongrBool(E
′′
{0}∪V ) = BQ′′{0}∪V . (4.44c)

We thus immediately get the following generalization of Corollary 4.11:

Corollary 4.19. Let V be a finite set. Let Ĉ ∈
{
E{0}∪V ,E

′
{0}∪V ,E

′′
{0}∪V

}
. Then a point X̂ of Ĉ is a

vertex of Ĉ if and only if rank(X̂) = 1. Thus, the vertices of Ĉ are precisely the matrices of the form
(1⊕ xS)(1⊕ xS)T where xS = 1S − 1V \S for some S ⊆ V .

Proof. Immediate from Corollary 4.18 and (4.44) via Lemma 4.8.
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Corollary 4.19 allows us to gauge the extent to which Corollary 4.17 generalizes Corollary 4.11: the
latter result characterizes the vertices for one convex set for each positive integer n, whereas the former
does the same for each positive integer n and every graph with n nodes.

Kleinberg and Goemans [77] presented SDP relaxations for the vertex cover problem. For a graph
G = (V,E), the feasible regions of their relaxations are:

V̂C(G) :=
{
X̂ ∈ E{0}∪V :

〈
Sym

(
(e0 − ei)(e0 − ej)T

)
, X̂
〉

= 0, ∀ij ∈ E
}
,

V̂C′(G) := V̂C(G) ∩ E ′′{0}∪V .

It is easy to verify that

V̂C(G) =
(
Congr−1

Bool ◦CongrFlip

)(
T̂H(G)

)
, (4.45a)

V̂C′(G) =
(
Congr−1

Bool ◦CongrFlip

)(
T̂H′(G)

)
, (4.45b)

i.e., V̂C(G) is obtained from T̂H(G) by complementing each entry via the map x ∈ RV 7→ ē− x and then
converting to a {±1} formulation.

Corollary 4.20. Let G = (V,E) be a graph. Let Ĉ ∈
{

V̂C(G), V̂C′(G)
}
. Then a point X̂ of Ĉ is a

vertex of Ĉ if and only if rank(X̂) = 1. Thus, the vertices of Ĉ are precisely the matrices of the form
(1⊕ 1S)(1⊕ 1S)T where S ⊆ V is a vertex cover of G.

Proof. Immediate from Corollary 4.17 and (4.45) via Lemma 4.8.

Let G = (V,E) be a graph. The Lovász theta number is usually presented in the form

ϑ(G) = max
{
〈ēēT, X〉 : 〈I,X〉 = 1, AE(X) = 0, X ∈ SV+

}
, (4.46)

as we have seen in (2.17). Note that, if S ⊆ V is a stable set of G, then 1
|S|1S1

T
S is feasible in (2.17) with

objective value |S|. Moreover, if we add the constraint rank(X) = 1, then every optimal solution is of the
form 1

|S|1S1
T
S for some maximum stable set S of G. Thus, the feasible solutions of the SDP (4.46) which

we would consider the exact solutions have the form 1
|S|1S1

T
S for some S ⊆ V . Similarly, the variants ϑ′(G)

and ϑ+(G) are usually presented as

ϑ′(G) = max
{
〈ēēT, X〉 : Tr(X) = 1, AE(X) = 0, AE(X) ≥ 0, X ∈ SV+

}
, (4.47)

ϑ+(G) = max
{
〈ēēT, X〉 : Tr(X) = 1, AE(X) ≤ 0, S ∈ SV+

}
, (4.48)

as we have seen in (2.62) and (2.64). For both of these SDPs, the feasible solutions that are sensible to be
called exact also have the form 1

|S|1S1
T
S for some S ⊆ V . However, as the next result shows, the vertices of

the feasible regions of these SDPs do not coincide with what we consider their exact solutions. We shall
denote the degree of a node k in a graph G by degG(k).

Theorem 4.21. Let V be a finite set, and let E+, E− ⊆
(
V
2

)
. Let H denote the graph (V,E+ ∪E−), and

set
C :=

{
X ∈ SV+ : Tr(X) = 1, AE+(X) ≥ 0, AE−(X) ≤ 0

}
,

Then the set of vertices of C is
{
eke

T
k : degH(k) = |V | − 1

}
.
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Proof. We first show that

if X̄ is a vertex of C , then X̄ = eke
T
k for some k ∈ V . (4.49)

Let X̄ be a vertex of C . Let k, ` ∈ V be distinct. Set

1
2D := X̄`` Sym(X̄eke

T
k )− X̄kk Sym(X̄e`e

T
` ).

If i, j ∈ V , then

Dij = X̄``

(
X̄ik[k = j] + [k = i]X̄kj

)
− X̄kk

(
X̄i`[` = j] + [` = i]X̄`j

)
= X̄``X̄ij

(
[k = j] + [k = i]

)
− X̄kkX̄ij

(
[` = j] + [` = i]

)
= X̄ij

[
X̄``

(
[k = j] + [k = i]

)
− X̄kk

(
[` = j] + [` = i]

)]
.

For ij ∈
(
V
2

)
, we clearly have Dij = 0 whenever X̄ij = 0. We also have

Tr(D) = Dkk +D`` =
(
2X̄kkX̄``

)
+
(
−2X̄``X̄kk

)
= 0.

Note that |V |−1
I lies in C ∩ SV++, so we may apply Theorem 4.9 to get D = 0. Thus, 0 = Dkk = 2X̄kkX̄``.

Since k and ` were arbitrary, (4.49) follows from Tr(X̄) = 1.

We will now show that,

for k ∈ V , the point eke
T
k is a vertex of C if and only if degH(k) = |V | − 1. (4.50)

Let k ∈ V . Set E := E+ ∪ E−. By Theorem 4.9, the point eke
T
k is a vertex of C if and only if

{ek} ∪ { 2 Sym(eie
T
j )ek : ij ∈ E} spans RV . The latter set is {ek} ∪ { [j = k]ei + [i = k]ej : ij ∈ E} =

{ek} ∪ { ej : jk ∈ E}, so it spans RV precisely when degH(k) = |V | − 1.

The result now follows from (4.49) and (4.50).

Corollary 4.22. Let G = (V,E) be a graph. Set P := { k ∈ V : degG(k) = |V | − 1}. Then

(i) the set of vertices of {X ∈ SV+ : Tr(X) = 1, AE(X) = 0} is { ekeTk : k ∈ P};
(ii) the set of vertices of {X ∈ SV+ : Tr(X) = 1, AE(X) = 0, AE(X) ≥ 0} is { ekeTk : k ∈ V };
(iii) the set of vertices of {X ∈ SV+ : Tr(X) = 1, AE(X) ≤ 0} is { ekeTk : k ∈ P}.

Proof. Immediate from Theorem 4.21, as in the proof of Corollary 4.17.

The results in this chapter significantly extend the combinatorially-inspired spectrahedra whose vertices
are completely understood. However, we do not know the set of vertices of some of their simplest variants,
such as BQ′{0}∪V ∩BQ′′{0}∪V or even{

X̂ ∈ BQ{0}∪V :
〈
Sym

(
ei(ei − ej)T

)
, X̂
〉
≥ 0, ∀(i, j) ∈ V × V

}
; (4.51)

the constraints of the latter usually appear in spectrahedra arising from the lift-and-project operator of
Lovász and Schrijver [101]. This is just a hint of the complexity of the vertex structure of spectrahedra.
We roughly discuss some other difficulties next.
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When considering sufficient conditions which bound the rank of vertices of a spectrahedron, such as
the ones from Theorem 4.10 and Proposition 4.13, ideally one seeks to obtain coordinate-free conditions
that are easy to check and that have a built-in detection for a change of basis. Let us use Theorem 4.10 to
explain this. Suppose we replace the rank hypothesis from that theorem with the condition that AiAj = 0
for distinct i, j ∈ [n]. Note that we eventually reach this assumption in (4.25) in its proof. Then the
modified theorem would be applicable to the elliptope E{0}∪V , but not to its linear isomorphic image{

X̂ ∈ S{0}∪V+ :
〈
(e0 − 2ei)(e0 − 2ei)

T, X̂
〉

= 1∀i ∈ {0} ∪ V
}
,

which is nothing but BQ{0}∪V . What happened in this case was that we have the following equivalence:
there exists a nonsingular L ∈ Rn×n such that CongrL(Ai) CongrL(Aj) = 0 for distinct i, j ∈ [n] if and
only if the rank condition from Theorem 4.10 holds. That is, a simple algebraic condition subsumes an
existential predicate about a convenient basis; the rank condition factors out the trivial congruences. This
is in contrast with the existential hypothesis from Proposition 4.13, which is harder to check, and thus
harder to apply. However, Theorem 4.10 is not yet entirely coordinate-free; this may be seen from the fact
that it does not apply directly to BQ{0}∪V using its description in (4.20), since the theorem requires the
RHS of the defining linear equations to be nonzero everywhere. In this sense, Theorem 4.10 still has room
for improvement.

The algebraic aspects just described have a complementary role to geometry in some situations. For
instance, it is easy to see how to start with a spectrahedron all of whose vertices have rank one and
transform it into one that has all vertices of rank two; one could take a direct sum with a constant nonzero
block, and apply a congruence transformation to “hide” the triviality of this transformation. Here the
geometric aspect of the transformation is trivial. However, a broad sufficient condition to bound the rank
of vertices needs to factor out all these congruences. This seems hard to describe algebraically without an
existential hypothesis. On the other direction, Corollary 4.14 describes a transformation of spectrahedra
that is trivial in terms of algebra, but geometrically it modifies the boundary structure drastically.
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Chapter 5

An Axiomatic Generalization of
Theta Bodies

The Lovász theta function may be defined in a number of equivalent forms, that is to say, it has a
host of alternative characterizations. Some of these involve the geometric object known as orthonormal
representation of a graph, as was already mentioned throughout Chapter 2. The graph invariant ϑ(G) also
admits a weighted generalization ϑ(G;w) for any nonnegative weight function w on the nodes of G. When
w is integral, ϑ(G;w) is just the theta number of a certain “blown up” graph, as was briefly alluded to in
Section 2.4. This weighted theta number also admits numerous characterizations, each of which being more
convenient than the others depending on the context. The monograph [59, Sec. 9.3], which develops much
of the theory surrounding the theta number, defines weighted parameters ϑi(G;w) for each i ∈ [4] and
shows that they are all equal to ϑ(G;w) by proving the chain of inequalities

ϑ(G;w) ≤ ϑ1(G;w) ≤ ϑ2(G;w) ≤ ϑ3(G;w) ≤ ϑ4(G;w) ≤ ϑ(G;w); (5.1)

see also [78, Sec. 5]. The proofs of some of these inequalities can be summarized as a change of variables,
at the risk of not giving them due justice. Others are deeper and require a more refined tool, namely the
Strong Duality Theorem for SDPs, and this leads us immediately to a geometric viewpoint on the theta
function.

For a graph G = (V,E), the function w ∈ RV+ 7→ ϑ(G;w) is the support function of the convex subset
of RV+ known as the theta body of G, denoted by TH(G). Thus, it can be said that the function ϑ(G; ·) and
the convex set TH(G) encode precisely the same information. The set TH(G) is in fact a convex corner,
that is, it is a compact, lower-comprehensive convex subset of the nonnegative orthant with nonempty
interior. In this geometric context, the characterizations of ϑ(G;w) that involve the Strong Duality Theorem
correspond to applications of Antiblocking Duality to TH(G). It is arguable that all such characterizations
are subsumed by the beautiful duality relation

abl(TH(G)) = TH(G), (5.2)

where abl(·) denotes the antiblocker.
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The relation (5.2) is striking in a number of ways. Consider the fact that the set TH(G) is a nonlinear
object in general, since it is known to be non-polyhedral whenever G is not a perfect graph. The boundary
structure of TH(G) is thus expected to be much more complex than that of the objects usually studied in
polyhedral combinatorics. Since the boundary of TH(G) is completely described by its antiblocker, it is
quite surprising that abl(TH(G)) may be obtained from TH(G) by such a primitive combinatorial operation
as taking the complement of G. The simplicity of the latter operation also translates to a simple change in
algebraic description, since TH(G) is given by the following expression:

TH(G) =

{
x ∈ RV : ∃X ∈ SV , Xii = xi ∀i ∈ V, Xij = 0∀ij ∈ E,

[
1 xT

x X

]
∈ S{0}∪V+

}
. (5.3)

To describe another remarkable feature of (5.2), namely its primal-dual symmetry, we shall bring some
other similar duality relations into the picture. These relations are

abl(STAB(G)) = QSTAB(G), (5.4)

abl(TH′(G)) = TH+(G). (5.5)

In (5.4), STAB(G) is the stable set polytope of G and QSTAB(G) is the fractional stable set polytope of G;
in fact, (5.4) is usually taken to be the definition of the latter. As for (5.5), the convex corners TH′(G)
and TH+(G) arise from the weighted variants ϑ′(G; ·) and ϑ+(G; ·) analogously as TH(G) arises from ϑ(G; ·),
and (5.5) is usually proved in a similar way to (5.2). The duality relations (5.2), (5.4), and (5.5) are
equivalent to corresponding Cauchy-Schwarz-type inequalities involving the support functions of the
underlying convex corners: for each w, w̄ ∈ RV+, we have

〈w, w̄〉 ≤ ϑ(G;w)ϑ(G; w̄), (5.6)

〈w, w̄〉 ≤ α(G;w)χ∗(G; w̄), (5.7)

〈w, w̄〉 ≤ ϑ′(G;w)ϑ+(G; w̄). (5.8)

Here α(G; ·) and χ∗(G; ·) are the support functions of STAB(G) and QSTAB(G), respectively. Some other
inequalities of this type, though in unweighted form, are proved in [61, Theorem 3.1, Proposition 3.5] and
in [37, Proposition 8]. By comparing either (5.2) with (5.4) and (5.5), or (5.6) with (5.7) and (5.8), it is
clear that (5.2) and (5.6) enjoy a strong form of primal-dual symmetry. Moreover, the striking similarity
between the duality relations (5.2), (5.4), and (5.5), involving such fundamental convex sets related to the
stable set and clique covering numbers of graphs, seems to demand a common generalization, hopefully
shedding some light on the primal-dual symmetry enjoyed by TH(G).

The weighted variants ϑ′(G; ·) and ϑ+(G; ·) of the theta function also admit some of the alternative
characterizations of ϑ(G; ·). Namely, each of the functions ϑi(G; ·) for i ∈ [4] may be adapted to the
contexts of ϑ′(G; ·) so that a chain of inequalities corresponding to (5.1) holds, and similarly for ϑ+(G; ·).
For instance, in [51], after developing some of the functions ϑi(G; ·) with i ∈ [4], Goemans precedes the
corresponding functions ϑ′i(G; ·) for ϑ′(G; ·) by saying: “The validity of these formulations follow easily
from the same arguments as before.” Thus, to prove the validity of the chain of inequalities for ϑ′(G; ·)
corresponding to (5.1), we are led to the error-prone process of adapting each of the corresponding proofs
for ϑ(G; ·), rather than applying a black-box result. (And indeed there are errors in the literature concerning
the functions ϑ′i(G; ·), as we pointed out in [22, Sec. 4.1].) This inconvenience is aggravated by the fact that
the proofs for ϑ(G; ·) under consideration seem to rely on ad hoc properties of orthonormal representations.
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It thus seems appropriate to develop a framework that allows each of these proofs to be applied as a
black-box to the parameters ϑ(G; ·), ϑ′(G; ·), and ϑ+(G; ·), and perhaps more. Moreover, by abstracting
the most essential parts of the proofs of (5.1), one may gauge the full power of the proof methods involved.

In this chapter, we shall present a framework that achieves some of the aforementioned goals. We will
define a family of generalized theta bodies, which include the members TH(G), TH′(G), TH+(G), STAB(G),
and QSTAB(G), and we shall prove a generalized antiblocking duality relation which includes (5.2), (5.4),
and (5.5). The chain of inequalities corresponding to (5.1) shall also be proved for a generalized theta
function ϑ, defined as the support function of the generalized theta body under consideration, and the
corresponding variants ϑi with i ∈ [4].

The main contribution in this chapter is Theorem 5.16, which subsumes the antiblocking relations (5.2),
(5.4), and (5.5). However, the full significance of that theorem is only revealed by the axiomatic development
in the chapter seen as a whole. This includes Theorem 5.9 on the convexity of a certain cone, and the
descriptions of some classical relaxations of the stable set polytope as generalized theta bodies, given by
Propositions 5.11 and 5.18 and Corollary 5.21.

Some of our results may be regarded as a weighted generalization of part of [37, Sec. 5], and they are
quite different from another generalization of theta bodies introduced in [57].

We set the following notation. Throughout the chapter, V shall denote a finite set. For w ∈ RV+, we
denote by

√
w the vector in RV defined by

[
√
w ]i :=

√
wi ∀i ∈ V. (5.9)

The Hadamard product � is the componentwise product: if x, y ∈ RV , then x� y denotes the vector in RV
defined by

[x� y]i := xiyi ∀i ∈ V, (5.10)

and if X,Y lies in RV×W for some finite set W , then X � Y denotes the matrix in RV×W defined by

[X � Y ]ij := XijYij ∀(i, j) ∈ V ×W. (5.11)

If A ∈ RV×W , then A† denotes the Moore-Penrose pseudoinverse of A; see [72] for a definition and basic
properties. For E+, E− ⊆

(
V
2

)
, set

AE+,E− := {X ∈ SV : AE+(X) ≥ 0, AE−(X) ≤ 0}, (5.12)

where for E ⊆
(
V
2

)
the linear map AE : SV → RE is defined as in (2.16). We also make use of the linear

map B{0}∪V : S{0}∪V → R{0}∪V defined in (4.19). We shall use some basic concepts from convex analysis,
and we follow mostly the notation from [123]. Let C ⊆ E. The closure of C is denoted by cl(C ). The
support function of C is the (extended-real-valued) map δ∗(· |C ) on E∗ defined by

δ∗(w |C ) := sup
{
〈w, x〉 : x ∈ C

}
∀w ∈ E∗. (5.13)

The gauge of C is the function:

γ(x |C ) := inf
{
µ : µ ∈ R+, x ∈ µC

}
∀x ∈ E. (5.14)

The polar of C is
C ◦ :=

{
y ∈ E∗ : 〈x, y〉 ≤ 1 ∀x ∈ C

}
. (5.15)

For C ⊆ RV+, the antiblocker of C is
abl(C ) := C ◦ ∩ RV+. (5.16)
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5.1 Theta Bodies

For each h ∈ RV , define the diagonally scaling map

Dh := CongrDiag(h) . (5.17)

Note that Dh(X) = X � hhT for every X ∈ SV and h ∈ RV . A subset K of SV is called diagonally
scaling-invariant if Dh(K) ⊆ K for every h ∈ RV+. Some examples of scaling invariants subsets of SV are the
positive semidefinite cone SV+, the set of nonnegative symmetric matrices SV≥0, and sets of the form AE+,E−

for some E+, E− ⊆
(
V
2

)
. Clearly, every diagonally scaling-invariant set is a cone, and since the map Dh is

self-adjoint, diagonal scaling invariance is preserved under duality. Moreover,

if K ⊆ SV is diagonally scaling-invariant, then {Dh : h ∈ RV++} ⊆ Aut(K). (5.18)

For sets A ⊆ SV and K̂ ⊆ S{0}∪V , define

T̂H(A, K̂) :=
{
X̂ ∈ K̂ : B{0}∪V (X̂) = 1⊕ 0, X̂[V ] ∈ A

}
(5.19)

and
TH(A, K̂) :=

{
diag(X̂[V ]) : X̂ ∈ T̂H(A, K̂)

}
. (5.20)

We are interested in sets of the form TH(A, K̂), where A and K̂ are diagonally scaling-invariant convex cones
with a few extra properties. The most important examples of sets of this form are the theta body TH(G)
of a graph G = (V,E) and its variants TH′(G) and TH+(G). In fact, we define

TH(G) := TH
(
AE,E ,S{0}∪V+

)
, (5.21a)

TH′(G) := TH
(
A(V2),E ,S

{0}∪V
+

)
, (5.21b)

TH+(G) := TH
(
A∅,E ,S{0}∪V+

)
. (5.21c)

It thus makes sense to call sets of the form TH(A, K̂) as theta bodies. We shall see later that the stable set
polytope and some of its classical relaxations are also theta bodies. To avoid confusion, whenever we refer
to the specific theta body TH(G), we shall call it the theta body of G.

We shall prove that, under certain simple hypotheses, every theta body is a convex corner, i.e., a
compact, lower-comprehensive convex subset of the nonnegative orthant with nonempty interior. Recall that
a subset C of RV+ is called lower-comprehensive if, for any x, y ∈ RV , the relations x ∈ C and 0 ≤ y ≤ x
imply y ∈ C . In what follows, the extra hypotheses (5.22) and (5.23) on A and K̂ may be thought of as
requiring that A is not “too small”, and that K̂ is neither “too small” nor “too big.”

Proposition 5.1. Let A ⊆ SV and K̂ ⊆ S{0}∪V be diagonally scaling-invariant closed convex cones.
Suppose that A satisfies

Diag(RV+) ⊆ A, (5.22)

and suppose that K̂ satisfies

K̂ ⊇
{

(e0 + ei)(e0 + ei)
T : i ∈ V

}
(5.23a)
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and
diag

({
X̂ ∈ K̂ : B{0}∪V (X̂) = 1⊕ 0

})
⊆ [0, 1]{0}∪V . (5.23b)

Then TH(A, K̂) is a convex lower-comprehensive subset of [0, 1]V with nonempty interior. In particular,
cl
(
TH(A, K̂)

)
is a convex corner.

Proof. Convexity follows from the fact that TH(A, K̂) is a projection of the convex set T̂H(A, K̂). It is clear
from (5.23b) that TH(A, K̂) ⊆ [0, 1]V . To prove that the convex set TH(A, K̂) is lower-comprehensive, it
suffices to show that if x ∈ TH(A, K̂) then x−xiei ∈ TH(A, K̂) for each i ∈ V . Let X̂ ∈ T̂H(A, K̂) such that
x = diag(X̂[V ]). Let i ∈ V . Set Ŷ := D1⊕h(X̂) ∈ K̂ for h := ē− ei. Then diagonal scaling invariance of A
and K̂ imply that Ŷ ∈ T̂H(A, K̂). Thus, x− xiei = diag(Ŷ [V ]) ∈ TH(A, K̂). This proves that TH(A, K̂) is
lower-comprehensive. It remains to show that TH(A, K̂) has nonempty interior. Let i ∈ V . By (5.22), we
have eieTi ∈ A. Thus, (e0 + ei)(e0 + ei)

T ∈ T̂H(A, K̂) by (5.23a) whence ei ∈ TH(A, K̂). Now convexity of
TH(A, K̂) implies that 1

n ē ∈ TH(A, K̂), where n := |V |. Since TH(A, K̂) is lower-comprehensive, we find
that 1

2n ē ∈ int(TH(A, K̂)).

Under a mild condition on the cone K̂, already applicable to the descriptions of the sets TH(G), TH′(G),
and TH+(G) in (5.21), we can show that TH(A, K̂) is actually closed, and hence a convex corner:

Corollary 5.2. Let A ⊆ SV and K̂ ⊆ S{0}∪V be diagonally scaling-invariant closed convex cones such
that (5.22) and (5.23a) hold. If

K̂ ⊆
{
X̂ ∈ S{0}∪V : X̂[S] � 0, ∀S ∈

({0}∪V
2

)}
, (5.24)

then (5.23b) holds and T̂H(A, K̂) is compact. In particular, TH(A, K̂) is closed, and hence a convex corner.

Proof. Let M̂ be the set of all X̂ in the RHS of (5.24) such that B{0}∪V (X̂) = 1⊕ 0. Then M̂ is bounded.
To see this, first use sets S ∈

({0}∪V
2

)
containing 0 to show that diag(M̂) ⊆ [0, 1]{0}∪V . Note that this

already proves (5.23b). Next, use (5.24) with sets S ∈
(
V
2

)
to show that all off-diagonal entries of X̂ ∈ M̂

have absolute value bounded above by 1. Since T̂H(A, K̂) ⊆ M̂, it follows that T̂H(A, K̂) is compact. Now
closedness of TH(A, K̂) follows from the fact that TH(A, K̂) is a linear image of the compact set T̂H(A, K̂).
The rest follows from Proposition 5.1.

For many of the theta bodies in this chapter, the cone K̂ shall be a subset of S{0}∪V+ , and hence (5.24)
shall be satisfied. An important diagonally scaling-invariant closed convex cone which does not satisfy (5.24)
is the cone of copositive matrices. A matrix X ∈ SV is said to be copositive if hTXh ≥ 0 for every h ∈ RV+,
and the set of all copositive matrices in SV is denoted by CV . Since S{0}∪V≥0 ⊆ C{0}∪V , it is clear that C{0}∪V
does not satisfy (5.24). The copositive cone is also an example of a diagonally scaling-invariant closed
convex cone with a rather complex facial structure. Namely, if n ≥ 2, then each ray of Cn of the form
R+eie

T
i , with i ∈ [n], is extreme but not exposed; see [34, Theorem 4.4]. We shall deal with theta bodies

arising from the copositive cone in Section 5.7, where we shall prove the closedness of the corresponding
theta body directly.
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5.2 Polyhedral Diagonally Scaling-Invariant Cones

When studying a theta body TH(A, K̂), we think of A as an “easy” cone, while K̂ is (potentially) a “hard”
cone. Here our use of the terms “easy” and “hard” is more similar to their intuitive use in continuous
optimization, rather than their precise meaning bestowed by computational complexity. In the most
important instances of theta bodies, described in (5.21), the cone A is polyhedral, whereas K̂ is the
nonlinear cone S{0}∪V+ , whose corresponding membership problem is much harder. In general, it makes
sense to focus on the case where A is polyhedral. At any rate, when defining a theta body TH(A, K̂), any
trace of “non-polyhedrality” may be “pushed” away from A and into K̂. We shall show next that requiring a
closed convex cone to be both diagonally scaling-invariant and polyhedral severely constrains its structure.

We shall need a family of cones slightly more refined than the cones AE+,E− defined in (5.12). Let
V +, V − ⊆ V and E+, E− ⊆

(
V
2

)
. Define

AV +,V −,E+,E− :=
{
X ∈ SV : diag(X[V +]) ≥ 0, diag(X[V −]) ≤ 0, AE+(X) ≥ 0, AE−(X) ≤ 0

}
.

Clearly, every set of this form is diagonally scaling-invariant and polyhedral. In fact, every polyhedral
diagonally scaling-invariant cone is of this form:

Proposition 5.3. Let A ⊆ SV be a diagonally scaling-invariant closed convex cone. If A is polyhedral,
then A is of the form A = AV +,V −,E+,E− for some subsets V +, V − ⊆ V and E+, E− ⊆

(
V
2

)
.

Proof. It suffices to show that

every extreme ray of A∗ is of the form ± R+ Sym(eie
T
j ) for some i, j ∈ V. (5.25)

We first show that,

if R+X is an extreme ray of A∗, then
∣∣supp

(
diag(X)

)∣∣ ≤ 1. (5.26)

Suppose that R+X is an extreme ray of A∗ such that Xii 6= 0 6= Xjj for distinct i, j ∈ V . Since A∗ is also
diagonally scaling-invariant, we have {Dh : h ∈ RV++} ⊆ Aut(A∗). For t ∈ R++, define

h(t) := tei + t−1ej + 1V \{i,j}.

Thus, {R+Dh(t)(X) : t ∈ R++} is an infinite set of extreme rays of A∗. This contradicts the fact that A∗
is polyhedral and thus proves (5.26).

To prove (5.25), let R+X be an extreme ray of A∗. Let us show that

Xij Sym(eie
T
j ) ∈ A∗ ∀i, j ∈ V. (5.27)

Let i, j ∈ V . If i = j then (5.27) holds by diagonal scaling invariance of A, so assume i 6= j. By (5.26),
at most one of Xii and Xjj is nonzero. We may assume by symmetry that Xii = 0. For t ∈ R++, define
h(t) := tei + t−1ej and note that Dh(t)(X) ∈ A∗ for every t ∈ R++. By driving t to ∞ we find that
2Xij Sym(eie

T
j ) = limt→∞Dh(t)(X) lies in the closed set A∗. This proves (5.27).

Since
X =

∑
i,j∈V

2[i 6=j]Xij Sym(eie
T
j )

and R+X is an extreme ray of A∗, it follows from (5.27) that at most one of the terms in the RHS is
nonzero. This proves (5.25) and concludes the proof.
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We next show that, under the hypotheses (5.22) and (5.23) on A and K̂ from Proposition 5.1 and the
additional assumption that A is polyhedral, the constraints on the diagonal entries of A are irrelevant in the
context of theta bodies. Thus, we shall not lose much when focusing only on cones A of the form AE+,E− .

Corollary 5.4. Let A ⊆ SV and K̂ ⊆ S{0}∪V be diagonally scaling-invariant closed convex cones such
that (5.22) and (5.23) hold. If the cone A is polyhedral, then TH(A, K̂) = TH(A + Im(Diag), K̂).

Proof. Set A′ := A + Im(Diag). It suffices to prove that

T̂H(A, K̂) = T̂H(A′, K̂) (5.28)

The inclusion ‘⊆’ follows from A ⊆ A′. For the reverse inclusion, first note that Proposition 5.3 ensures the
existence of V +, V − ⊆ V and E+, E− ⊆

(
V
2

)
such that A = AV +,V −,E+,E− . Then (5.22) implies V − = ∅.

Let X̂ ∈ T̂H(A′, K̂), and set X := X̂[V ]. Assumption (5.23b) and the inclusion X ∈ A′ = A∅,∅,E+,E− show
that X ∈ AV,∅,E+,E− ⊆ A. This proves ‘⊇’ in (5.28).

5.3 Geometric Representations from Theta Bodies

The theta bodies described in (5.21) all have the form TH(AE+,E− ,S
{0}∪V
+ ) for some E+, E− ⊆

(
V
2

)
. The

elements of these sets arise from certain vectors which may be regarded as geometric representations of
graphs:

Proposition 5.5. Let E+, E− ⊆
(
V
2

)
. Then TH(AE+,E− ,S

{0}∪V
+ ) consists of all vectors x ∈ RV of the

form
xi = 〈u0, ui〉2 ∀i ∈ V (5.29)

for vectors {ui : i ∈ {0} ∪ V } ⊆ R{0}∪V satisfying the following properties:

〈u0, ui〉 ≥ 0 ∀i ∈ V, (5.30a)
‖ui‖ = 1 ∀i ∈ {0} ∪ V, (5.30b)

〈ui, uj〉 ≥ 0 ∀ij ∈ E+, (5.30c)

〈ui, uj〉 ≤ 0 ∀ij ∈ E−. (5.30d)

Proof. Set A := AE+,E− . Denote by C the set of all vectors x of the form given by (5.29) for vectors
{ui : i ∈ {0} ∪ V } ⊆ R{0}∪V satisfying (5.30).

We first verify that
C ⊆ TH(AE+,E− ,S

{0}∪V
+ ). (5.31)

Let {ui : i ∈ {0} ∪ V } ⊆ R{0}∪V satisfy (5.30). Define U ∈ R({0}∪V )×V by setting Uei := ui for every
i ∈ V . Next, set

Y := U Diag(UTu0)

and

X̂ :=

[
1 xT

x X

]
:=

[
uT0u0 uT0Y

Y Tu0 Y TY

]
=

[
uT0
Y T

] [
u0 Y

]
∈ S{0}∪V+ ,
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where we used (5.30b). Let us verify that

X ∈ AE+,E− , (5.32a)
diag(X) = x, (5.32b)

xi = 〈u0, ui〉2 ∀i ∈ V. (5.32c)

We start with (5.32a). Note that X = Y TY = DUTu0

(
UTU

)
and UTu0 ≥ 0 by (5.30a). Since AE+,E− is

diagonally scaling-invariant, it suffices to show that UTU ∈ AE+,E− . But this is immediate from (5.30c)
and (5.30d). This proves (5.32a). For (5.32c), note that

x = Y Tu0 = [Diag(UTu0)UT]u0 = (UTu0)� (UTu0). (5.33)

By (5.30b), we have diag(UTU) = ē. Thus, diag(X) = diag
(
DUTu0

(UTU)
)

= (UTu0) � diag(UTU) �
(UTu0) = (UTu0)� (UTu0) = x by (5.33), thus proving (5.32b). It follows that x ∈ TH(AE+,E− ,S

{0}∪V
+ ),

and the proof of (5.31) is complete.

Now we show that
TH(AE+,E− ,S

{0}∪V
+ ) ⊆ C . (5.34)

Let X̂ ∈ T̂H(AE+,E− ,S
{0}∪V
+ ). Set X := X̂[V ] and x := diag(X). Let Y ∈ R({0}∪V )×({0}∪V ) such that

X̂ = Y TY . Set yi := Y ei for each i ∈ {0} ∪ V . Let Z := { i ∈ V : yi = 0}. Define ui := yi/‖yi‖ for each
i ∈ {0} ∪ (V \ Z) and let {ui : i ∈ Z} be an orthonormal basis for a subspace of {ui : i ∈ {0} ∪ (V \ Z)}⊥
of appropriate dimension.

We must show that (5.30) holds. Note that (5.30a) for i ∈ V \ Z follows from x = diag(X) ≥ 0 and
B{0}∪V (X̂) = 1⊕0, and for i ∈ Z it holds by construction. We also know that (5.30b) holds by construction.
Let us check (5.30c). Let ij ∈ E+. If i or j is in Z, then 〈ui, uj〉 = 0, so we may assume that i, j ∈ V \ Z.
Then

〈ui, uj〉 =
〈yi, yj〉
‖yi‖‖yj‖

=
Xij

‖yi‖‖yj‖
≥ 0

since X ∈ AE+,E− . This completes the proof of (5.30c). The proof of (5.30d) is analogous, so (5.30) holds.

Lastly, we show that x is given by (5.29). Let i ∈ V . Since B{0}∪V (X̂) = 1⊕ 0, we have xi = [Y TY ]0i =

〈y0, yi〉 = ‖y0‖‖yi‖〈u0, ui〉 = X
1/2
ii 〈u0, ui〉 = x

1/2
i 〈u0, ui〉. If xi > 0, then x

1/2
i = 〈u0, ui〉. Otherwise,

ui ⊥ u0 by construction, so xi = 0 = 〈u0, ui〉2. This proves that x is given by (5.29) and completes the
proof of (5.34).

Recall from Section 2.2 that an orthonormal representation of a graph G = (V,E) is a map u that
sends V into the unit vectors of some Euclidean space such that 〈ui, uj〉 = 0 whenever ij ∈ E. If,
additionally, 〈ui, uj〉 ≥ 0 whenever ij ∈ E, then u is called an acute orthonormal representation of G.
Finally, an obtuse representation of G is a map u from V to the unit vectors of some Euclidean space so
that 〈ui, uj〉 ≤ 0 whenever ij ∈ E.

Proposition 5.5 immediately leads to the following internal description of the sets in (5.21).

Corollary 5.6. Let G = (V,E) be a graph. Let C ∈ {TH(G),TH′(G),TH+(G)}. Then C consists of all
vectors x ∈ RV of the form xi = 〈u0, ui〉2 for every i ∈ V for some unit vectors in {ui : i ∈ {0} ∪ V } ⊆
R{0}∪V such that

77



(i) u is an orthonormal representation of G, if C = TH(G);

(ii) u is an acute orthonormal representation of G and 〈u0, ui〉 ≥ 0 for all i ∈ V , if C = TH′(G);

(iii) u is an obtuse representation of G and 〈u0, ui〉 ≥ 0 for all i ∈ V , if C = TH+(G).

Proof. Immediate from Proposition 5.5. When C = TH(G), the constraint 〈u0, ui〉 ≥ 0 may be dropped,
since for each orthonormal representation u of G and i ∈ V , the map obtained from u by replacing some
image ui by −ui is also an orthonormal representation of G.

5.4 Liftings of Cones

After this short interlude, we turn our attention back to the geometric structure of the theta bodies. In the
next few sections, we will develop the aspects of duality theory required to generalize the relation (5.2) to a
rich family of theta bodies. Preferably, we would like to have the antiblocker of a theta body in this family
to be another theta body in the same family, so that the family is closed under antiblocking duality. As in
the case of the Lovász theta function, our investigation encodes the complete structure of theta bodies
via their support functions. A careful study of alternative formulations for such functions will lead to the
desired generalization of (5.2).

We briefly outline our approach to motivate the upcoming concepts. We follow to a degree the
development from [59, Sec. 9.3]. We start by fixing a theta body TH(A, K̂) from a restricted but sufficiently
rich family, with the goal of computing its antiblocker as another theta body. The theta function ϑ(A, K̂; ·)
is defined simply as the support function of abl(TH(A, K̂)) on the nonnegative orthant. We then define
several new functions, call them ϑi(A, K̂; ·) for each i ∈ [4], all of which will turn out to be equal to the
original theta function ϑ(A, K̂; ·). The function ϑ4(A, K̂; ·) shall be defined as the support function of
another theta body, which is then the antiblocker of TH(A, K̂) by standard Duality Theory.

In [59, Theorem 9.3.12] (and in [78, Sec. 12]), the proof that the functions ϑ and ϑ1, . . . , ϑ4 are all equal
is obtained by proving the chain of inequalities (5.1), which corresponds in our setting to

ϑ(A, K̂;w) ≤ ϑ1(A, K̂;w) ≤ ϑ2(A, K̂;w) ≤ ϑ3(A, K̂;w) ≤ ϑ4(A, K̂;w) ≤ ϑ(A, K̂;w) ∀w ∈ RV+. (5.35)

The proof of some of these inequalities boil down to a change of variable, while others make an essential use of
duality. In fact, Grötschel, Lovász, and Schrijver [59] identify the proof of the inequality ϑ2(G;w) ≤ ϑ3(G;w),
corresponding to

ϑ2(A, K̂;w) ≤ ϑ3(A, K̂;w), (5.36)

as “the heart of the proof,” where an application of the Strong Duality Theorem is paramount to prove that
the parameters ϑ2(A, K̂;w) and ϑ3(A, K̂;w), defined as the optimal values of certain optimization problems,
are equal.

Our development is similar, though our proof does not prove the chain (5.35) directly, rather, each
inequality is proved separately as an equation. (Not all of the new functions ϑi’s are needed, but we include
them to generalize the chain (5.1) completely to our setting.) Most importantly, a difficulty arises at the
proof of the critical inequality (5.36): the corresponding pair of dual problems in [59] involves optimization
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over a cone K in the space SV rather than over the “lifted” cone K̂, which lives in S{0}∪V . In there, this is
not a problem since no lifted space S{0}∪V is even mentioned, and TH(G) is defined purely in terms of the
ad hoc concept of orthonormal representations of G, in a way related to the previous section.

To work around this difficulty, we shall prove that certain optimization problems involving a lifted
cone K̂ ⊆ S{0}∪V may be reformulated to involve only a lower-dimensional cone K ⊆ SV . It does not seem
reasonable to expect that all cones K̂ in S{0}∪V may be crammed into a lower-dimensional cone K in SV
while preserving all the information we need. Thus, rather than allowing for arbitrary (though always
diagonally scaling-invariant) closed convex cones K̂ to define our theta bodies, we shall instead start with a
given cone K ⊆ SV and build a lifting K̂ of K in the space S{0}∪V . That is, we focus on theta bodies that
have the form TH(A, K̂) where K̂ is a function of a cone K, which lives in the space SV . (In view of this,
to keep our outline accurate, all occurrences of the functions ϑ(A, K̂;w) and ϑi(A, K̂;w) in our previous
discussion should be replaced with ϑ(A,K;w) and ϑi(A,K;w), since K̂ is built from K.) In fact, on each
side of the inequality (5.36), we shall use a different lifting of the cone K. In the next subsections, we shall
define these liftings and the basic properties we shall need to prove from them a generalization of (5.2).

5.4.1 PSD Liftings of Cones

Let K ⊆ SV . Define the PSD lifting of K as

Psd(K) :=
{
X̂ ∈ S{0}∪V+ : X̂[V ] ∈ K

}
. (5.37)

Note that if K is diagonally scaling-invariant, then so is Psd(K). Moreover,

Psd(SV+) = S{0}∪V+ . (5.38)

Before using PSD liftings, we shall need the following straightforward weighted generalization of [47,
Proposition 9], a special case of which was already stated as Proposition 2.17.

Lemma 5.7. Let M ⊆ SV be a diagonally scaling-invariant closed convex cone. Suppose that

diag(M) ⊆ RV+, (5.39a)
if Xii = 0 for some X ∈M and i ∈ V, then Xij = 0 for all j ∈ V, (5.39b)

{X ∈M : Tr(X) = 1} is compact. (5.39c)

Let w ∈ RV+. Let X∗ be an optimal solution of

max
{√

w
T
X
√
w : Tr(X) = 1, X ∈M

}
, (5.40)

and suppose that
√
w

T
X∗
√
w > 0. Set

d := diag(X∗),

X̄ := Diag(
√
d)†X∗Diag(

√
d)†,

λ := λmax(D√w(X̄)).
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Then

D√w(X̄)
√
d = λ

√
d, (5.41a)

λ =
√
w

T
X∗
√
w, (5.41b)

X∗
√
w = λDiag(

√
w)†d. (5.41c)

Proof. We first show that
supp(d) ⊆ supp(w). (5.42)

Let i ∈ supp(d), so that X∗ii > 0. Suppose that wi = 0. If X∗ii = 1, then X∗ = eie
T
i by (5.39a) and (5.39b)

whence
√
w

T
X∗
√
w = 0. If X∗ii < 1, then (1−X∗ii)−1Dē−ei(X∗) is feasible for (5.40) with objective value

(1 − X∗ii)−1
√
w

T
X∗
√
w, hence strictly larger than the objective value of X∗. In either case, we get a

contradiction. This proves (5.42).

If di = 0 for some i ∈ V , we are done by induction on |V |; the verification of this fact is long and tedious
but straightforward. Thus, from (5.42) we may assume that

supp(d) = supp(w) = V. (5.43)

Set d−1/2 := diag
(
Diag(

√
d)−1

)
so that X̄ = Dd−1/2(X∗) ∈ M and diag(X̄) = ē. For every h ∈ RV+ with

‖h‖ = 1, the point Dh(X̄) is feasible for (5.40) with objective value
√
w

TDh(X̄)
√
w = hTD√w(X̄)h. Since

X∗ = D√d(X̄) is optimal for (5.40), it follows that
√
d is an optimal solution for

max
{
hTD√w(X̄)h : h ∈ RV+, ‖h‖ = 1

}
.

In fact, since [
√
d ]i > 0 for all i ∈ V , we find that

√
d is a local optimal solution for

max
{
hTD√w(X̄)h : h ∈ RV , ‖h‖ = 1

}
,

hence also a global one; see Theorem A.10. Thus, D√w(X̄)
√
d = λ

√
d. This proves (5.41a). Now we unroll:

λd = λDiag(
√
d)
√
d = Diag(

√
d)D√w(Dd−1/2(X∗))

√
d = Diag(

√
d)Dd−1/2

(
D√w(X∗)

)√
d

= Diag(
√
d) Diag(d−1/2)D√w(X∗) Diag(d−1/2)

√
d = Diag(

√
w)X∗Diag(

√
w)ē

= Diag(
√
w)X∗

√
w.

This proves (5.41c). Finally, λ = λTr(X∗) = λēTd = ēT Diag(
√
w)X∗

√
w =

√
w

T
X∗
√
w so (5.41b) is

proved.

We can now show that the support function of some theta bodies of the form TH(A,Psd(K)) may be
formulated as a conic optimization problem over the cones A and K. Note that the next result does not
make use of Duality Theory.

Theorem 5.8. Let A ⊆ SV and K ⊆ SV+ be diagonally scaling-invariant closed convex cones. Let w ∈ RV+.
Suppose that Diag(RV+) ⊆ A ∩K. Then

δ∗(w | TH(A,Psd(K))) = max
{
〈
√
w
√
w

T
, X〉 : 〈I,X〉 = 1, X ∈ A, X ∈ K

}
. (5.44)
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Proof. We begin by proving ‘≤’. Let y ∈ TH(A,Psd(K)) and let Ŷ ∈ T̂H(A,Psd(K)) such that y = diag(Y )
for Y := Ŷ [V ]. We will show that there exists a feasible solution X for the RHS of (5.44) with objective
value ≥ 〈w, y〉. We may assume that 〈w, y〉 > 0; otherwise, take X = eie

T
i for any i ∈ V . Set

h := 〈w, y〉−1/2√
w ≥ 0,

X := Dh(Y ) ∈ A ∩K.

Then
Tr(X) =

1

〈w, y〉
Tr(D√w(Y )) =

1

〈w, y〉
〈
√
w �
√
w,diag(Y )〉 = 1,

whence X is feasible on the RHS of (5.44). Moreover,[
1 (h� y)T

h� y X

]
= D1⊕h

([
1 yT

y Y

])
∈ D1⊕h(Psd(K)) ⊆ Psd(K) ⊆ S{0}∪V+ .

Thus, by Schur complement, we get X � 〈w, y〉−1
(
√
w � y)(

√
w � y)

T and

√
w

T
X
√
w ≥ 1

〈w, y〉
√
w

T(
Diag(

√
w)y

)(
Diag(

√
w)y

)T√
w =

1

〈w, y〉
〈w, y〉2.

This completes the proof of ‘≤’.

Now we prove ‘≥’. For that, we will show that,

if X ∈ A ∩K and X
√
w ≥ 0, then

√
w

T
X
√
w ≤ [Tr(X)]〈w, y〉 for some y ∈ TH(A,Psd(K)). (5.45)

So, let X ∈ A ∩K such that X
√
w ≥ 0. We may assume that

√
w

T
X
√
w > 0; otherwise take y = 0. Since

X ∈ K ⊆ SV+, there exists B ∈ RV×V such that X = BTB. Define

c :=
(√
w

T
X
√
w
)−1/2

B
√
w,

d := diag(X),

B̃ := B
[
Diag(

√
d)
]†
,

B̄ := B̃Diag(B̃Tc),

y := B̄Tc = Diag(B̃Tc)B̃Tc = (B̃Tc)� (B̃Tc).

We will show that
y ∈ TH(A,Psd(K)). (5.46)

Set Y := B̄TB̄ and note that

Ŷ :=

[
1 yT

y Y

]
=

[
1 cTB̄
B̄Tc B̄TB̄

]
=

[
cT

B̄T

] [
c B̄

]
∈ Psd(K); (5.47)

to see that Y = B̄TB̄ ∈ K, note that Y = Dh(X) for some h ≥ 0 since

B̃Tc ≥ 0, (5.48)
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which follows from (
√
w

T
X
√
w)

1/2
B̃Tc =

[
Diag(

√
d)
]†
BTB

√
w =

[
Diag(

√
d)
]†
X
√
w ≥ 0. We also get that

Y = Dh(X) ∈ Dh(A) ⊆ A.

Thus, Ŷ ∈ T̂H(A,Psd(K)). Finally,

diag(Y ) = diag(B̄TB̄) = diag
(

Diag(B̃Tc)B̃TB̃Diag(B̃Tc)
)

= (B̃Tc)� diag(B̃TB̃)� (B̃Tc)

= (B̃Tc)� diag
([

Diag(
√
d)
]†
BTB

[
Diag(

√
d)
]†)� (B̃Tc)

= (B̃Tc)� 1supp(d) � (B̃Tc) = (B̃Tc)� (B̃Tc) = y,

where we used for the second-to-last equation the fact that dj = 0 implies that (B̃Tc)j = eTj B̃
Tc =

eTj
[
Diag(

√
d)
]†
BTc = 0TBTc = 0. This proves (5.46).

We also have B̃Diag(
√
d) = B

[
Diag(

√
d)
]†

Diag(
√
d) = BDiag(1supp(d)) = B since di = 0 implies

Bei = 0. Thus,

√
w

T
X
√
w =

( √
w

T
BTB

√
w

(
√
w

T
X
√
w)

1/2

)2

=
(√

w
T
BTc

)2

=
(√

w
T

Diag(
√
d)B̃Tc

)2

=
(√

d
T

Diag(
√
w)
√
y
)2

≤
∥∥√d∥∥2∥∥Diag(

√
w)
√
y
∥∥2

= [Tr(X)]〈w, y〉.

This completes the proof of (5.45).

Let X be an optimal solution for the RHS of (5.44). By Lemma 5.7, we have X
√
w ≥ 0. Thus,

δ∗(w | TH(A,Psd(K))) ≥
√
w

T
X
√
w by (5.45) and the proof of ‘≥’ is complete.

5.4.2 Schur Liftings of Cones

Let K ⊆ SV . Define the Schur lifting of K as

Schur(K) :=

{[
x0 xT

x X

]
∈ S{0}∪V : X ∈ K, x0 ∈ R+, x0X �K xx

T

}
. (5.49)

Note that Schur(SV+) = S{0}∪V+ . It is instructive to rewrite the PSD lifting Psd(K) in the following format
similar to Schur(K):

if K ⊆ SV+, then Psd(K) =

{[
x0 xT

x X

]
∈ S{0}∪V : X ∈ K, x0 ∈ R+, x0X � xxT

}
; (5.50)

note the difference in the last (conic) inequality.

Whereas the expression (5.37) makes it clear that the PSD lifting of a closed convex cone is convex, the
same can not be said about the Schur lifting. We shall now show that, under certain simple conditions, the
Schur lifting of a convex cone is also convex, and in fact it may be used as the cone K̂ in Proposition 5.1:
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Theorem 5.9. Let K ⊆ SV be a diagonally scaling-invariant closed convex cone such that K ⊇ SV+ and
diag(K) ⊆ RV+. Then Schur(K) is a diagonally scaling-invariant closed convex cone that satisfies (5.23).
In particular, if A ⊆ SV is a diagonally scaling-invariant polyhedral cone such that (5.22) holds, then
cl
(
TH(A,Schur(K))

)
is a convex corner contained in [0, 1]V .

Proof. To see that Schur(K) is closed, note that x0X �K xx
T is equivalent to 〈H,x0X − xxT〉 ≥ 0 for each

H ∈ K∗, and the function [
x0 xT

x X

]
7→ x0X − xxT

is continuous.

Set
M̂ :=

{[
x0 xT

x X

]
∈ S{0}∪V : X ∈ K, x0 ∈ R++, x0X �K xx

T

}
.

We start by noting that
Schur(K) = cl(M̂ ). (5.51)

The inclusion ‘⊇’ follows from the closedness of Schur(K). For the reverse inclusion, let

X̂ :=

[
x0 xT

x X

]
∈ Schur(K).

If x0 > 0, then obviously X̂ ∈ M̂. If x0 = 0, then 0 = x0X �K xx
T and diag(K) ⊆ RV+ imply that x = 0.

Thus, X ∈ K implies that X̂ is clearly the limit of a sequence that lies in M̂ with x0 converging to 0 from
above. This proves (5.51).

It is obvious that Schur(K) is a cone. We shall prove that Schur(K) is convex by showing that

M̂ is convex. (5.52)

Since
M̂ =

{[
x0 xT

x X

]
∈ S{0}∪V : X ∈ K, x0 ∈ R++, 〈H,x0X − xxT〉 ≥ 0 ∀H ∈ K∗

}
,

it suffices to show that, for each H ∈ K∗, the set{[
x0 xT

x X

]
∈ S{0}∪V : x0 ∈ R++,

xTHx

x0
− 〈H,X〉 ≤ 0

}
is convex. Thus, it suffices to show that, for each H ∈ K∗,

the function fH : x0 ⊕ x ∈ R++ ⊕ RV 7→ xTHx

x0
is convex. (5.53)

Let H ∈ K∗. The gradient of fH is

∇fH(x0 ⊕ x) = −x
THx

x2
0

⊕ 2Hx

x0
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and its Hessian is
∇2fH(x0 ⊕ x) =

2

x2
0

[
xTHx/x0 −(Hx)T

−Hx x0H

]
.

From the hypothesis that K ⊇ SV+ we get K∗ ⊆ SV+ whence H � 0, so we may write H =
∑
h∈H hhT

for a finite subset H of RV . For u := x
1/2
0 ⊕ x−1/2

0 ē ∈ R{0}++ ⊕ RV++, we have

x2
0

2
Du
(
∇2fH(x0 ⊕ x)

)
=

[
xTHx −(Hx)T

−Hx H

]
=
∑
h∈H

[
〈h, x〉2 −〈h, x〉hT
−〈h, x〉h hhT

]
=
∑
h∈H

D〈h,x〉⊕ē
([

1 −hT
−h hhT

])
=
∑
h∈H

D〈h,x〉⊕ē
(

(−1⊕ h)(−1⊕ h)
T
)
� 0.

This concludes the proof of (5.53), whence (5.52) is proved. Therefore, Schur(K) is convex by (5.51).

To see that Schur(K) is diagonally scaling-invariant, let

X̂ :=

[
x0 xT

x X

]
∈ Schur(K),

and let h0 ⊕ h ∈ R{0}+ ⊕ RV+. The condition Dh0⊕h(X̂) ∈ Schur(K) is equivalent to Dh(X) ∈ K and
h2

0x0Dh(X) �K h
2
0(h� x)(h� x)

T
= h2

0Dh(xxT), both of which follow from the diagonal scaling invariance
of K. It is easy to check that Schur(K) satisfies (5.23a). For (5.23b), let X̂ ∈ Schur(K) and set X := X̂[V ]
and x := diag(X). Then x− (x� x) = diag(X − xxT) ≥ 0 since diag(K) ⊆ RV+ whence x ⊆ [0, 1]V . This
completes the proof that (5.23) holds.

Now, if A ⊆ SV is a diagonally scaling-invariant polyhedral cone such that (5.22) holds, then Proposi-
tion 5.1 implies that cl

(
TH(A,Schur(K))

)
is a convex corner contained in [0, 1]V .

The hypothesis that K ⊇ SV+ holds cannot be dropped from Theorem 5.9. Consider the cone C∗V of
completely positive matrices, dual to the cone CV of copositive matrices. A matrix X ∈ SV is said to be
completely positive if X =

∑k
i=1 hih

T
i for some h1, . . . , hk ∈ RV+. Now take V := [n] for some n ≥ 2 and

note that both 1{0,1}1
T
{0,1}+1{2}1

T
{2} and 1{0,2}1

T
{0,2}+1{1}1

T
{1} lie in Schur(C∗V ), whereas their midpoint

does not.

As we hinted in the discussion in Section 5.4, PSD and Schur liftings of cones are in a sense dual to
each other. In the next result, we make the picture a bit clearer by stating a containment relation between
theta bodies defined using these two liftings. The relation may be regarded as a form of Weak Duality, and
we shall later prove that equality, and hence a form of Strong Duality, holds.

Proposition 5.10. Let A ⊆ SV be a diagonally scaling-invariant polyhedral cone such that (5.22) holds.
Let K ⊆ SV+ be a diagonally scaling-invariant closed convex cone such that K ⊇ Diag(RV+). Then

TH(Im(Diag)− A∗,Psd(K)) ⊆ abl(cl(TH(A,Schur(K∗)))). (5.54)

Proof. By continuity, it suffices to show that 〈x, y〉 ≤ 1 if x ∈ TH(Im(Diag) − A∗,Psd(K)) and y ∈
TH(A,Schur(K∗)). Let x ∈ TH(Im(Diag) − A∗,Psd(K)), and let X̂ ∈ T̂H(Im(Diag) − A∗,Psd(K)) such
that x = diag(X) for X := X̂[V ]. Let y ∈ TH(A,Schur(K∗)), and let Ŷ ∈ T̂H(A,Schur(K∗)) such that
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y = diag(Y ) for Y := Ŷ [V ]. Write X = Diag(u)−B where B ∈ A∗. By Corollary 5.4, we may assume that
Im(Diag) ⊆ A whence u = x. Then

0 ≤ 〈X,Y − yyT〉 = 〈Diag(x)−B, Y 〉 − yTXy = 〈x, y〉 − 〈B, Y 〉 − yTXy

≤ 〈x, y〉 − yT(xxT)y = 〈x, y〉 − 〈x, y〉2.

Hence, 〈x, y〉 ≤ 1.

A result analogous to Theorem 5.8 holds for Schur liftings, i.e., a certain optimization problem
over Schur(K) may be reformulated as an optimization problem over K. We postpone its presentation to
the next section, where we can give a better motivation for the corresponding optimization problems. For
now, we shall show that another classical polyhedral relaxation for the stable set polytope is a theta body
defined via a Schur lifting.

Let G = (V,E) be a graph. The weak fractional stable set polytope of G is the polytope

FRAC(G) := {x ∈ [0, 1]V : BT
Gx ≤ ē}, (5.55)

where BG denotes the V × E incidence matrix of G.

Proposition 5.11. Let G = (V,E) be a graph such that |V | ≥ 2. Set

K2 :=
{
X ∈ SV : X[e] � 0 ∀e ∈

(
V
2

)}
. (5.56)

Then
FRAC(G) = TH(AE,E ,Schur(K2)). (5.57)

Proof. We first prove ‘⊇’. Let x ∈ TH(AE,E ,Schur(K2)), and let X̂ ∈ T̂H(AE,E ,Schur(K2)) such that
x = diag(X) for X := X̂[V ]. By Theorem 5.9, we have x ∈ [0, 1]V . Let e = ij ∈ E. Set Y := X[e] and
y := x�e. Then X �K2 xx

T implies Y � yyT so 1 xi xj
xi xi 0
xj 0 xj

 � 0 =⇒

 1 −xi −xj
−xi xi 0
−xj 0 xj

 � 0 =⇒ 1− xi − xj =

〈 1 −xi −xj
−xi xi 0
−xj 0 xj

 , ēēT〉 ≥ 0.

Thus x ∈ FRAC(G), and ‘⊇’ is proved.

For the reverse inclusion, it suffices by Theorem 5.9 to show that TH(AE,E ,Schur(K2)) contains all
the extreme points of FRAC(G). So let x be an extreme point of FRAC(G). By [133, Theorem 64.7], all
coordinates of x lie in {0, 1

2 , 1}. Define

X̂ :=

[
1 xT

x X

]
∈ S{0}∪V

by setting diag(X) := x and Xij :=
[
ij ∈ E

][
xi+xj > 1

]
xixj for every ij ∈

(
V
2

)
. Note that X ∈ AE,E ∩K2

holds, and that X �K2
xxT is equivalent to

Y ij :=

 1 xi xj
xi xi Xij

xj Xij xj

 ∈ S{0}∪{i,j}+ .
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for each ij ∈
(
V
2

)
. So let ij ∈

(
V
2

)
. If xi + xj ≤ 1, then Xij = 0 and either 0 ∈ {xi, xj} or xi = xj = 1

2 ,
so Y ij � 0 is easily verified. So assume xi + xj > 1. If xi = xj = 1, then ij ∈ E, so Xij = xixj , and
Y ij = ēēT � 0. If xi = 1 and xj = 1

2 , then

Y ij =

1 1 1
2

1 1 1
2

1
2

1
2

1
2

 = Dē−e2/2
(
ēēT + e2e

T
2

)
� 0.

Thus, X̂ ∈ Schur(K2) and the proof of ‘⊆’ is complete.

5.5 Reformulations of Antiblocking Duality

In this section, we study some reformulations of optimization problems leading up to a problem over the
Schur lifting of a cone K which may be reformulated over K itself. We shall use these results in the next
section to prove a generalization of (5.2).

In the next result, we shall follow the rules set for [59, Eq. (9.3.6)] to interpret the quotient wi/x∗i :

(5.58)if wi = 0, then we take the fraction to be 0, even if the denominator is 0; if wi > 0 but
the denominator is 0, we take the fraction to be +∞.

Proposition 5.12. Let C ⊆ RV be a convex corner. Let w ∈ RV+. Then

δ∗(w |C ) = min
s∈abl(C )

max
i∈V

wi
si
. (5.59)

In particular,
δ∗(w | abl(C )) = min

x∈C
max
i∈V

wi
xi
. (5.60)

Proof. If w = 0, then (5.59) is trivially true, so suppose w 6= 0.

Let us prove ‘≤’. Let s ∈ abl(C ). We may assume the max on the RHS is finite so that, by following
the rules from (5.58), we have supp(w) ⊆ supp(s). Let x ∈ C . Set W := supp(w) and S := supp(s). Then

〈w, x〉 =
∑
i∈W

wixi =
∑
i∈S

wi
si
sixi ≤

(
max
i∈S

wi
si

)∑
i∈V

sixi ≤ max
i∈V

wi
si
,

where (5.58) is only used in the rightmost term. This proves ‘≤’ in (5.59).

Let ϑ := δ∗(w |C ) > 0. Then 〈w, x〉 ≤ ϑ for all x ∈ C implies that s := 1
ϑw ∈ abl(C ). Since

maxi∈V wi/si = ϑ, we find that the RHS of (5.59) is bounded above by ϑ = δ∗(w |C ). This proves ‘≥’
in (5.59), as well as attainment for its RHS.

Equation (5.60) follows from (5.59) by antiblocking duality, i.e., abl(abl(C )) = C .

We shall later formulate the parameter ϑ1 (see the discussion at the beginning of Section 5.4) essentially
as the optimization problem on the RHS of (5.60) applied to a theta body. In a way, that formulation is
unnecessary for the proof of the generalization of (5.2), and it may be further simplified as a line-search,
i.e., by a gauge function:
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Proposition 5.13. Let C ⊆ RV be a convex corner. Let w ∈ RV+. Then

min
x∈C

max
i∈V

wi
xi

= min{λ ∈ R+ : w ∈ λC }. (5.61)

Proof. If w = 0, then (5.61) is easily seen to hold, so assume w 6= 0.

First we show ‘≤’. Let λ ∈ R+ such that w ∈ λC . Then λ > 0 since w 6= 0 and C is bounded. Set
x := 1

λw ∈ C . Then wi/xi = [wi 6= 0]λ for every i ∈ V , according to the rules from (5.58), so that
maxi∈V wi/xi = λ, whence the LHS of (5.61) is ≤ λ. This proves ‘≤’.

For the reverse inequality, let x ∈ C attain the LHS of (5.61), and let λ := maxi∈V wi/xi. Since w 6= 0,
we have λ > 0. Set y := 1

λw. We claim that y ≤ x. Indeed, if wi = 0 then yi = 0 ≤ xi. If wi > 0,
then λ < ∞ implies xi > 0, whence wi/xi ≤ λ implies yi = wi/λ ≤ xi. Since 0 ≤ y ≤ x ∈ C and C is
lower-comprehensive, we find that y ∈ C , i.e., w ∈ λC . This proves ‘≥’ on (5.61), as well as attainment on
its RHS.

The RHS of (5.61) is the gauge function γ(w |C ) of C at w. From Propositions 5.12 and 5.13, we
recover the fact that

for a convex corner C ⊆ RV+, we have δ∗(· | abl(C )) = γ(· |C ) on RV+; (5.62)

see [123, Theorem 14.5].

A gauge function is oblivious to the upper surface of a set which is “almost” a convex corner:

Proposition 5.14. Let C ⊆ RV+ be a lower-comprehensive convex set with nonempty interior. Then

γ(w |C ) = γ(w | cl(C )) ∀w ∈ RV+. (5.63)

Proof. The proof of ‘≥’ is obvious. For the reverse inequality, let w ∈ RV+ and let λ ∈ R+ such that
w ∈ λ cl(C ). If λ = 0, then w = 0 and γ(w |C ) = 0 = γ(w | cl(C )), so assume λ > 0. We will show that
w ∈ (λ+ ε)C for every ε > 0. Let ε > 0. Since C is lower-comprehensive and has nonempty interior, there
exists M ∈ R++ such that ē/M ∈ int(C ). Thus, for every µ ∈ R such that 0 < µ ≤ 1, we have

µ

M
ē+

1− µ
λ

w ∈ int(C ).

For µ := ε/(λ+ ε), this gives
ε

M(λ+ ε)
ē+

1

λ+ ε
w ∈ int(C ),

and since C is lower-comprehensive, we get w ∈ (λ + ε)C . Since ε > 0 was arbitrary, this proves ‘≤’
in (5.63).

We are now ready to show how an optimization problem over Schur(K) may sometimes be reduced to
an optimization problem over K. We shall use the following simple fact:

if K ⊇ SV+, then
[

1 xT

x X

]
∈ Schur(K) if and only if X �K xx

T. (5.64)
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Proposition 5.15. Let A ⊆ SV and K̂ ⊆ S{0}∪V be diagonally scaling-invariant closed convex cones such
that (5.22) and (5.23) hold. Let w ∈ RV+ be nonzero. Then

δ∗(w | abl(cl(TH(A, K̂)))) = inf

{
λ ∈ R+ : W ∈ A, diag(W ) = λē,

[
1

√
w

T

√
w W

]
∈ K̂

}
. (5.65)

In particular, if A is polyhedral, then

δ∗(w | abl(cl(TH(A, K̂)))) = inf

{
λ ∈ R+ : Y ∈ −A ∩Null(diag),

[
1

√
w

T

√
w λI − Y

]
∈ K̂

}
, (5.66)

and if K ⊆ SV is a diagonally scaling-invariant closed convex cone such that K ⊇ SV+ and diag(K) ⊆ RV+
then

δ∗(w | abl(cl(TH(A,Schur(K))))) = inf
{
λ : λI �K Y +

√
w
√
w

T
, Y ∈ −A ∩Null(diag)

}
. (5.67)

Proof. From Propositions 5.1 and 5.14 and from (5.62), we have

δ∗(w | abl(cl(TH(A, K̂)))) = γ(w | TH(A, K̂)) = inf
{
λ ∈ R++ : w ∈ λTH(A, K̂)

}
= inf

{
λ ∈ R++ : W ∈ A, diag(W ) = 1

λw,

[
1 1

λw
T

1
λw W

]
∈ K̂

}
.

Using the diagonal scaling invariance of A and K̂ and the change of variable

X̂ = D1⊕λw−1/2

([
1 1

λw
T

1
λw W

])
=

[
1

√
w

T

√
w Dλw−1/2(W )

]
,

where

[w−1/2]i :=

{
w
−1/2
i if wi > 0,

1 otherwise,

we get

δ∗(w | abl(cl(TH(A, K̂)))) = inf

{
λ ∈ R++ : X ∈ A, diag(X) = λ1supp(w),

[
1

√
w

T

√
w X

]
∈ K̂

}
, (5.68)

since
diag(Dλw−1/2(W )) = (λw−1/2)� diag(W )� (λw−1/2) = λ1supp(w)

if diag(W ) = 1
λw.

Note that the constraint λ ∈ R++ in (5.68) may be relaxed to λ ∈ R+. For suppose there exists X ∈ A
such that diag(X) = 0 and [

1
√
w

T

√
w X

]
∈ K̂.

By the diagonal scaling invariance of K̂ and assumptions (5.22) and (5.23a), we find thatX+εDiag(1supp(w))
is feasible on the RHS of (5.68) for each ε > 0, so the RHS of (5.68) is 0.
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To prove (5.65), it suffices by (5.68) to show that

inf

{
λ ∈ R+ : W ∈ A, diag(W ) = λē,

[
1

√
w

T

√
w W

]
∈ K̂

}
= inf

{
λ ∈ R+ : X ∈ A, diag(X) = λ1supp(w),

[
1

√
w

T

√
w X

]
∈ K̂

}
. (5.69)

If λ⊕W is a feasible solution for the LHS of (5.69), then λ⊕D1supp(w)
(W ) is feasible for the RHS. Conversely,

if λ⊕X is feasible for the RHS of (5.69), then λ⊕ [X + λDiag(ē− 1supp(w))] is feasible for the LHS by
diagonal scaling invariance of A and K together with assumptions (5.22) and (5.23a). This completes the
proof of (5.65).

Suppose that A is polyhedral, and set A′ := A + Im(Diag). Then by Corollary 5.4 and (5.65), we have

δ∗(w | abl(cl(TH(A, K̂)))) = δ∗(w | abl(cl(TH(A′, K̂))))

= inf

{
λ ∈ R+ : W ∈ A′, diag(W ) = λē,

[
1

√
w

T

√
w W

]
∈ K̂

}
. (5.70)

Let λ ∈ R+ and W ∈ SV . We claim that

(5.71)W ∈ A′ and diag(W ) = λē hold if and only if there exits Y ∈ −A ∩ Null(diag) such
that W = λI − Y .

The proof of the ‘if’ part is clear. For the ‘only if’ part, suppose that W ∈ A′ and diag(W ) = λē hold.
Then Y := λI −W ∈ Im(Diag)− A′ ⊆ −A′, whence Y ∈ −A′ ∩ Null(diag). By Proposition 5.3, we have
−A′ ∩Null(Diag) = −A ∩Null(Diag); see the proof of Corollary 5.4. This completes the proof of (5.71),
from which (5.66) follows. Finally, (5.67) follows from (5.66) and Theorem 5.9, using the equivalence (5.64).
The constraint λ ∈ R+ may be dropped since diag(K) ⊆ RV+.

5.6 A Plethora of Theta Functions

We are now ready to carry out the plan outlined in the beginning of Section 5.4.

Let A ⊆ SV and K ⊆ SV . For each w ∈ RV+, define:

ϑ(A,K;w) := δ∗(w | abl(cl(TH(A,Schur(K∗))))),

ϑ1(A,K;w) := inf

{
max
i∈V

wi
xi

: x ∈ cl(TH(A,Schur(K∗)))
}
,

ϑ2(A,K;w) := inf
{
λ : λI �K∗ Y +

√
w
√
w

T
, Y ∈ −A ∩Null(Diag)

}
,

ϑ3(A,K;w) := sup
{√

w
T
X
√
w : Tr(X) = 1, X ∈ K, X ∈ Im(Diag)− A∗

}
,

ϑ4(A,K;w) := δ∗(w | TH(Im(Diag)− A∗,Psd(K))).
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Theorem 5.16. Let A ⊆ SV be a diagonally scaling-invariant polyhedral cone such that (5.22) holds. Let
K ⊆ SV+ be a diagonally scaling-invariant closed convex cone such that K ⊇ Diag(RV+). Let w ∈ RV+. Then

ϑ(A,K;w) = ϑ1(A,K;w) = ϑ2(A,K;w) = ϑ3(A,K;w) = ϑ4(A,K;w). (5.72)

In particular,
abl(cl(TH(A,Schur(K∗)))) = TH(Im(Diag)− A∗,Psd(K)). (5.73)

Proof. Equation ϑ2(A,K;w) = ϑ3(A,K;w) follows by Conic Programming Strong Duality. Although the
conic formulation for ϑ3(A,K;w) may not have a Slater point, the assumptions that A is polyhedral and
K∗ ⊇ SV+ show that, by taking λ large enough and Y set to 0, we get a restricted Slater point for the conic
program ϑ2(A,K;w). Equation (5.72) follows from ϑ2(A,K;w) = ϑ3(A,K;w), Propositions 5.12 and 5.15,
and Theorem 5.8 since cl(TH(A,Schur(K∗))) is a convex corner by Theorem 5.9. Now (5.73) follows from
conjugate duality applied to ϑ(A,K;w) = ϑ4(A,K;w) for every w ∈ RV+.

Theorem 5.16 implies (5.2) using the descriptions (5.21), and also that

abl(TH′(G)) = TH+(G) (5.74)

for every graph G, which is also a well-known result. Theorem 5.16 and Proposition 5.11 also yield a
description of abl(FRAC(G)) = (conv{1ij : ij ∈ E} − RV+) ∩ RV+, for a graph G = (V,E) with no isolated
nodes, as

abl(FRAC(G)) = TH(AE,E , ,K
∗
2),

where
K∗2 =

∑{
Se+ ⊕ 0 : e ∈

(
V
2

)}
⊆ SV .

Note also that we could have mimicked the proof of the chain (5.1) as in [59] and [78]; the proof that
ϑ4(A,K;w) ≤ ϑ(A,K;w) is essentially contained in Proposition 5.10.

In the context of Theorem 5.16, the support functions of the two theta bodies that appear in (5.73)
are gauges polar to each other1; see [123, Sec. 15]. The corresponding polar inequality (that is, the
corresponding Cauchy-Schwarz inequality) for these gauges is stated next; compare it to [37, Proposition 8
and Theorem 18]. We recall that the symmetric group on V is denoted by SymV and that, for each
σ ∈ SymV , the linear map Pσ : RV → RV is defined as the linear extension of the map ei ∈ RV 7→ eσ(i).

Corollary 5.17. Let A ⊆ SV be a diagonally scaling-invariant polyhedral cone such that (5.22) holds. Let
K ⊆ SV+ be a diagonally scaling-invariant closed convex cone such that K ⊇ Diag(RV+). If w, w̄ ∈ RV+, then

〈w, w̄〉 ≤ δ∗(w | TH(Im(Diag)− A∗,Psd(K)))δ∗(w̄ | cl(TH(A,Schur(K∗)))). (5.75)

Moreover, if there exists a subgroup Γ of SymV acting transitively on V and such that

{CongrPσ : σ ∈ Γ} ⊆ Aut(A) ∩Aut(K), (5.76)

then
n = δ∗(ē | TH(Im(Diag)− A∗,Psd(K)))δ∗(ē | cl(TH(A,Schur(K∗)))), (5.77)

where n := |V |.
1To be completely precise: if C ,D ⊆ RV

+ are convex corners such that abl(C ) = D , then the support functions δ∗(· |C ) and
δ∗(· |D) are equal to the gauges γ(· |C ◦) and γ(· |D◦), respectively, when restricted to RV

+ , by (5.62). Under this restriction
to RV

+ , we also have γ(· |D◦) = γ(· | abl(D)), and the gauge γ(· | abl(D)) = γ(· |C ) is polar to γ(· |C ◦).
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Proof. By Theorem 5.9, we know that cl(TH(A,Schur(K∗))) is a convex corner. By (5.62) and Theorem 5.16,
the gauge function γ(· | cl(TH(A,Schur(K∗)))) is the support function δ∗(· | TH(Im(Diag)− A∗,Psd(K))).
Hence, the support functions δ∗(· | cl(TH(A,Schur(K∗)))) and δ∗(· | TH(Im(Diag)−A∗,Psd(K))) are gauges
polar to each other; see [123, Corollary 15.1.2]. Now (5.75) follows immediately.

Next, we prove that ‘≥’ holds in (5.77) if w = w̄ = ē and (5.76) holds. Assume the latter, and set
Γ̂ :=

{
σ̂ ∈ Sym{0}∪V : σ̂(0) = 0, σ̂�V ∈ Γ

}
. It is clear that{

CongrPσ̂ : σ̂ ∈ Γ̂
}
⊆ Aut

(
K̂
)

∀ K̂ ∈
{

Psd(K),Schur(K∗)
}
.

Together with {CongrPσ : σ ∈ Γ} ⊆ Aut(A), this yields{
CongrPσ̂ : σ̂ ∈ Γ̂

}
⊆ Aut

(
Ĉ
)

∀Ĉ ∈
{

T̂H(Im(Diag)− A∗,Psd(K)), T̂H(A,Schur(K∗))
}
,

whence {
Pσ : σ ∈ Γ

}
⊆ Aut

(
C
)

∀C ∈
{

TH(Im(Diag)− A∗,Psd(K)),TH(A,Schur(K∗))
}
.

Thus, each support function on the RHS of (5.77) is attained by a fixed point of the map

x ∈ RV 7→ 1

|Γ|
∑
σ∈Γ

Pσx.

Since Γ acts transitively on V , there exist µ, ν ∈ R such that µē attains δ∗(ē | TH(Im(Diag)−A∗,Psd(K)))
and νē attains δ∗(ē | cl(TH(A,Schur(K∗)))). By (5.73) from Theorem 5.16, we get 〈µē, νē〉 ≤ 1 so µνn ≤ 1.
Thus,

δ∗(ē | TH(Im(Diag)− A∗,Psd(K)))δ∗(ē | cl(TH(A,Schur(K∗)))) = 〈ē, µē〉〈ē, νē〉 = µνn2 ≤ n.

The preceding results apply to the Lovász theta number and the variants ϑ′ and ϑ+ as follows. Let
G = (V,E) be a graph. We may now finally define, for each w ∈ RV+, the parameters

ϑ(G;w) := ϑ(AE,E ,S
V
+;w), (5.78)

ϑ′(G;w) := ϑ(A∅,E ,S
V
+;w), (5.79)

ϑ+(G;w) := ϑ(A(V2),E ,S
V
+;w). (5.80)

5.7 The Stable Set Polytope as a Theta Body

In this section, we show that the stable set polytope of a graph and one of its classical fractional versions
are theta bodies. The key result we use to prove this is a completely positive formulation for the stability
number of a graph, due to de Klerk and Pasechnik [32]. As a consequence of the antiblocker duality relation
from Theorem 5.16, we shall derive a weighted generalization of a copositive formulation for the fractional
chromatic number of a graph, due to Dukanovic and Rendl [37].

We shall use the cone CV of copositive matrices and its dual C∗V , the cone of completely positive matrices.
Recall that a matrix X ∈ SV is said to be copositive if hTXh ≥ 0 for every h ∈ RV+, and X is said to be
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completely positive if X =
∑
h∈H hh

T for some finite subset H of RV+. There has been much interest around
these cones recently; see, for instance, [19, 119, 17, 20].

Let G = (V,E) be a graph. For each w ∈ RV+, we set

α(G;w) := δ∗(w | STAB(G)); (5.81)

recall that the stable set polytope STAB(G) was defined in (1.24).

The key argument of the next result comes from [32, Theorem 2.2]:

Proposition 5.18. If G = (V,E) is a graph, then

TH(AE,E ,Psd(C∗V )) = STAB(G). (5.82)

Proof. If S ⊆ V is a stable set of G, then 1S ∈ TH(AE,E ,Psd(C∗V )) since (1 ⊕ 1S)(1 ⊕ 1S)
T ∈ Psd(C∗V )

and 1S1
T
S ∈ AE,E . This proves that STAB(G) ⊆ TH(AE,E ,Psd(C∗V )).

For the reverse inclusion it suffices by conjugate duality and Corollary 5.2 to show that, for w ∈ RV+, we
have α(G;w) ≥ δ∗(w | TH(AE,E ,Psd(C∗V ))). Thus, it suffices by Theorem 5.8 to show that, for w ∈ RV+, we
have

α(G;w) ≥ max
{√

w
T
X
√
w : Tr(X) = 1, X ∈ AE,E , X ∈ C∗V

}
. (5.83)

Let w ∈ RV+. If w = 0 then (5.83) holds trivially, so assume w 6= 0. The extreme rays of the cone C∗V ∩AE,E
are of the form R+xx

T with x ∈ RV+ and supp(x) stable in G. So there exists an optimal solution for the
RHS of (5.83) of the form x̄x̄T for some x̄ ∈ RV+ such that ‖x̄‖2 = Tr(x̄x̄T) = 1 and supp(x̄) is a stable set
in G. In fact, for any y ∈ RV+ such that ‖y‖2 = 1 and supp(y) ⊆ supp(x̄), the point yyT is feasible in the
RHS of (5.83) with objective value 〈

√
w, y〉2 whence

max
{√

w
T
X
√
w : Tr(X) = 1, X ∈ AE,E , X ∈ C∗V

}
= max

{
〈
√
w, y〉2 : y ∈ RV+, ‖y‖

2
= 1, supp(y) ⊆ supp(x̄)

}
. (5.84)

The optimality conditions for the RHS of (5.84) (i.e., Cauchy-Schwarz) show that an optimal solution is
given by ȳ :=

√
u

‖
√
u‖ where u := w � 1supp(x̄), and its objective value is

〈
√
w,
√
u〉2

‖
√
u‖2

=
〈
√
u,
√
u〉2

‖
√
u‖2

= ‖
√
u‖2 = 〈w,1supp(x̄)〉.

Since supp(x̄) is stable, this concludes our proof of (5.83).

Let G = (V,E) be a graph. The fractional stable set polytope of G is defined as

QSTAB(G) := abl(STAB(G)), (5.85)

and for w ∈ RV+, we set
χ∗(G;w) := δ∗(w | QSTAB(G)). (5.86)

Proposition 5.18 yields immediately a weighted generalization of [37, Corollary 5]:
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Corollary 5.19. Let G = (V,E) be a graph. Let w ∈ RV+. Then

χ∗(G;w) = inf

{
λ : Y ∈ A⊥

E,E
,

[
1

√
w

T

√
w λI − Y

]
∈ Psd(C∗V )

}
. (5.87)

Proof. By Proposition 5.18 and (5.66) from Proposition 5.15, we have

χ∗(G;w) = δ∗(w | QSTAB(G)) = δ∗(w | abl(STAB(G))) = δ∗(w | abl(TH(AE,E ,Psd(C∗V ))))

= inf

{
λ ∈ R+ : Y ∈ −AE,E ∩Null(diag),

[
1

√
w

T

√
w λI − Y

]
∈ Psd(C∗V )

}
= inf

{
λ : Y ∈ A⊥

E,E
,

[
1

√
w

T

√
w λI − Y

]
∈ Psd(C∗V )

}
.

The constraint λ ∈ R+ may be dropped since diag(C∗V ) ⊆ RV+.

By the antiblocker relation from Theorem 5.16, we know that QSTAB(G) is the closure of a theta body.
Unlike in the cases presented so far, the fact that the latter theta body is actually closed does not follow
from our previous results. Thus, we proceed to prove the closedness separately. We shall use an argument
from [46, Theorem 5] (more specifically, in the proof of (5.94) below).

Theorem 5.20. Let A ⊆ SV be a diagonally scaling-invariant polyhedral cone. Then

TH(A,Schur(CV )) =
{

diag(X̂[V ]) : X̂ ∈ T̂H(A,Schur(CV )), ‖X̂‖∞ ≤ 1
}
. (5.88)

Consequently, TH(A,Schur(CV )) is a convex corner.

Proof. The inclusion ‘⊇’ in (5.88) is trivial. For the reverse inclusion, let x ∈ TH(A,Schur(CV )), and let
Ŷ ∈ T̂H(A,Schur(CV )) such that x = diag(Y ) for Y := Ŷ [V ]. We shall use (5.64) throughout the proof
without further mention. Note that Y − xxT ∈ CV implies that x− (x� x) = diag(Y − xxT) ≥ 0 so

x ∈ [0, 1]V . (5.89)

Let us prove that
we may assume that Y ∈ SV≥0 and Y = Y [supp(x)]⊕ 0. (5.90)

Indeed, the principal submatrix Y = Ŷ [V ] from Ŷ may possibly be replaced with

Y − 2
∑{[

Yij < 0
]
Yij Sym(eie

T
j ) : ij ∈

(
V
2

)}
without affecting the relations Ŷ [V ] ∈ A or Ŷ [V ] �CV xxT, by Proposition 5.3 and the trivial fact that
CV + SV≥0 = CV . Clearly, for S := supp(x) and x̄ := x�S , we have Y [S] �CS x̄x̄T. Thus, by possibly
replacing Ŷ [V ] with Ŷ [S]⊕ 0, we shall have Y = Y [supp(x)]⊕ 0, and the proof of (5.90) is complete. Thus,
by possibly restricting our attention to the index set supp(x),

we may assume that supp(x) = V . (5.91)
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Write D := Diag(x) and B := Y − D. Let G be the graph on V where ij ∈
(
V
2

)
is an edge if Bij > 0.

Define A ∈ A by setting Aij := 1
2 [ij ∈ E]

(
1/xi + 1/xj

)
for each ij ∈

(
V
2

)
. We claim that

D−1 +A− ēēT ∈ CV . (5.92)

We shall need to consider the following optimization problem in our proof:

min
{
hT(D−1 +A)h : h ∈ RV+, 〈ē, h〉 = 1

}
. (5.93)

Let us show that

there exists an optimal solution h̄ for (5.93) whose support is a stable set in G. (5.94)

Indeed, let h̄ be an optimal solution for (5.93) with minimal support. Note that an optimal solution exists
by continuity and compactness. Suppose that ij ⊆ supp(h̄) for some ij ∈ E. For each t ∈ R, define
ht := h̄ + t(ei − ej), and note that ht is feasible for (5.93) whenever t ∈ [−h̄i, h̄j ]. The objective value
of ht in (5.93) is, hTt (D−1 + A)ht = h̄T(D−1 + A)h̄ + 2t(ei − ej)T(D−1 + A)h̄ = h̄T(D−1 + A)h̄, where
the final equation follows from the optimality of h̄ = h0. Since ht̄ is feasible in (5.93) for t̄ := h̄i and
supp(ht̄) ( supp(h̄), the proof of (5.94) is complete.

It follows from (5.94) that h̄TAh̄ = 0 and h̄TD−1BD−1h̄ = 0. Thus, since D−1Y D−1 �CV D−1xxTD−1

by the diagonal scaling invariance of CV , we get

h̄T(D−1 +A)h̄ = h̄TD−1h̄ = h̄T(D−1DD−1)h̄ = h̄T(D−1(D +B)D−1)h̄

≥ h̄TD−1xxTD−1h̄ = h̄TēēTh̄ = 1.

Thus, min{hT(D−1 +A− ēēT)h : h ∈ RV+, ēTh = 1} ≥ 0 and (5.92) is proved. Set X := Dx(D−1 + A).
Then (5.92) implies X �CV Dx(ēēT) = xxT. Moreover, diag(X) = x and, for ij ∈ E, we have

Xij =
[
Dx(A)

]
ij

=
xixj

2

(
1

xi
+

1

xj

)
=
xj + xi

2
≤ 1

by (5.89). Since Xij = 0 for ij ∈ E, it follows that

X̂ :=

[
1 xT

x X

]
∈ T̂H(A,Schur(CV ))

and ‖X̂‖∞ ≤ 1. This completes the proof of (5.88). It follows that the set TH(A,Schur(CV )) is closed,
since it is described by (5.88) as the linear image of a compact set. Thus, TH(A,Schur(CV )) is a convex
corner by Theorem 5.9.

Corollary 5.21. Let G = (V,E) be a graph. Then

QSTAB(G) = TH(AE,E ,Schur(CV )). (5.95)

In particular, for every w ∈ RV+, we have

χ∗(G;w) = max
{
〈w, x〉 : X ∈ AE,E , diag(X) = x, X �CV xxT

}
. (5.96)
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Proof. By Theorems 5.16 and 5.20 and Proposition 5.18, we get

abl(TH(AE,E ,Schur(CV ))) = TH(AE,E ,Psd(C∗V )) = STAB(G).

Thus, (5.95) follows from antiblocking duality. Now (5.96) follows from (5.95) and (5.64) since, for each
w ∈ RV+, we have

χ∗(G;w) = δ∗(w | QSTAB(G)) = δ∗(w | TH(AE,E ,Schur(CV ))).

5.8 Hoffman Bounds

The Lovász theta number ϑ(G) may be regarded as the “best” lower bound for the clique covering number
of G from a family of bounds inspired by a result of Hoffman. In this section, we shall generalize this
observation to our framework.

Hoffman [68] proved the following classical lower bound for the chromatic number of a graph G = (V,E):

χ(G) ≥ 1− λmax(AG)

λmin(AG)
. (5.97)

Here, AG denotes the adjacency matrix of G. Lovász [94, Theorem 6] proved that the lower bound (5.97)
on χ(G) remains valid if the adjacency matrix AG is replaced with any matrix in A⊥E,E , and that the tightest
lower bound on χ(G) arising in this manner is precisely ϑ(G). Knuth [78, Sec. 33] defined another graph
parameter, denoted by ϑ6(G;w), which is in fact equal to ϑ(G;w). The parameter ϑ6(G;w) is defined as an
optimization problem, and the objective value corresponding to ϑ6(G; ē) yields precisely the expression of
the RHS of (5.97) when applied to an arbitrary matrix A ∈ A⊥E,E . We shall partially extend our framework
in this direction.

Let A ⊆ SV and K ⊆ SV . Following Knuth [78, Sec. 33], we define

ϑ6(A,K;w) := sup
{
λmax(B) : diag(B) = w, B ∈ K, B ∈ Im(Diag)− A∗

}
(5.98)

for every w ∈ RV+. Note that the optimization problem on the RHS above is not convex. The next result
relates ϑ6(A,K;w) to ϑ3(A,K;w).

Proposition 5.22. Let M ⊆ SV be a diagonally scaling-invariant closed convex cone such that (5.39)
holds. Suppose that Diag(RV+) ⊆ M, and that either Dh(M) ⊆ M for every h ∈ RV or M ⊆ SV≥0. Let
w ∈ RV+. Then

max
{√

w
T
X
√
w : Tr(X) = 1, X ∈M

}
= max

{
λmax(B) : B ∈M, diag(B) = w

}
. (5.99)

Proof. It is easy to check that (5.99) holds if w = 0 by using (5.39b). Thus, we may assume that w 6= 0.
Together with the assumption that Diag(RV+) ⊆ M we know that the LHS of (5.99) is positive, whence
Lemma 5.7 may be applied.

We start by proving ‘≤’ in (5.99). Let X∗ be an optimal solution for the LHS of (5.99). Define d and X̄
as in Lemma 5.7. Then B̄ := D√w(X̄) + Diag

(
w � 1V \supp(d)

)
is feasible for the RHS and its objective

value is λmax(B̄) ≥ λmax

(
D√w(X̄)

)
=
√
w

T
X∗
√
w by (5.41b).
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Next we prove ‘≥’ in (5.99). Let B̄ be an optimal solution for the RHS of (5.99). (An optimal
solution exists by continuity and compactness, where compactness is an easy consequence of (5.39c).)
Let λ := λmax(B̄) and let b ∈ RV be a unit vector such that B̄b = λb. Note that supp(b) ⊆ supp(w)
by (5.39b). The matrix X̃ := Diag(

√
w)†B̄Diag(

√
w)† satisfies diag(X̃) = 1supp(w), whence X̄ := Db(X̃)

satisfies Tr(X̄) = 1. If Dh(M) ⊆ M for each h ∈ RV , then X̄ ∈ M follows from B̄ ∈ M. If M ⊆ SV≥0, then
X̄ ∈M follows from B̄ ∈M and by the diagonal scaling invariance of M, since we may assume that b ≥ 0
by the Perron-Frobenius Theorem; see, e.g., [72, Theorem 8.3.1] or [50, Theorem 8.8.1]. In either case,
we find that X̄ ∈ M, whence X̄ is feasible in the LHS of (5.99). Finally, its objective value in the LHS
of (5.99) is √

w
T
X̄
√
w =

√
w

TDb(X̃)
√
w = bTD√w(X̃)b = bTB̄b = λ,

where we used (5.39b) to get B̄ = D√w(X̃). This completes the proof of (5.99).

Next we shall show that, when applied to w = ē, the objective value of the RHS of (5.99) has the same
form as the RHS of (5.97), and thus generalizes it:

Proposition 5.23. Let A ⊆ SV be a diagonally scaling-invariant polyhedral cone. Let K ⊆ SV be a
diagonally scaling-invariant closed convex cone. Suppose that I ∈ K. Then

max
{
λmax(B) : B ∈ A ∩K, diag(B) = ē

}
= max

{
1− [µ 6= 0]

λmax(A)

µ
: A ∈ A ∩Null(diag), µ ∈ −R+, A �K µI

}
. (5.100)

Proof. We have

max
{
λmax(B) : B ∈ A ∩K, diag(B) = ē

}
= max

{
λmax(I +A) : I +A ∈ A ∩K, diag(A) = 0

}
= max

{
1 + [ν 6= 0]νλmax(A) : A ∈ A ∩Null(diag), ν ∈ R+, νA �K −I

}
= max

{
1− [µ 6= 0]

λmax(A)

µ
: A ∈ A ∩Null(diag), µ ∈ −R+, A �K µI

}
.

Note that we used Proposition 5.3 on the second equation.

Let G = (V,E) be a graph. Then we have

max

{
1− [A 6= 0]

λmax(A)

λmin(A)
: A ∈ A⊥E,E

}
= ϑ6(AE,E ,SV+; ē) by Proposition 5.23,

= ϑ3(AE,E ,SV+; ē) by Proposition 5.22,

= δ∗(ē | TH(AE,E ,S
V
+)) by Theorem 5.16,

≤ δ∗(ē | TH(AE,E , CV )) since SV+ ⊆ CV ,

= δ∗(ē | QSTAB(G)) by Corollary 5.21,
= χ∗(G; ē) ≤ χ(G).

This proves that the best bound from this family of lower bounds for χ(G) is ϑ(G), as was already shown
by Lovász [94, Theorem 6].
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Chapter 6

Integrality Constraints for SDPs

In polyhedral combinatorics, one usually considers a chain of inequalities of the form

max{ cTx : Ax ≤ b, x ≥ 0, x ∈ Zn} (6.1a)

≤ max{ cTx : Ax ≤ b, x ≥ 0, x ∈ Rn} (6.1b)

≤ min{ bTy : y ≥ 0, ATy ≥ c, y ∈ Rm} (6.1c)

≤ min{ bTy : y ≥ 0, ATy ≥ c, y ∈ Zm}, (6.1d)

where the feasible region of (6.1a) is contained in {0, 1}n, and some optimal solution of (6.1d) lies in {0, 1}m.
In many interesting cases, equality holds throughout in (6.1), and a combinatorial min-max theorem follows.
For instance, if A is the E × V incidence matrix of a graph G = (V,E) with no isolated nodes, b = ē,
and c = ē, then (6.1a) is a formulation for the stable set problem and (6.1d) yields a formulation for the
minimum edge-cover problem. Equality throughout holds in (6.1) if G is bipartite. Alternatively, if A is
the K × V incidence matrix of G, where K is the set of all cliques of G, then (6.1a) still formulates the
stable set problem, but (6.1c) formulates the fractional clique-covering number, and (6.1d) is a formulation
for the clique-covering number. Equality throughout holds in (6.1) if G is perfect, even if we allow c
to be an arbitrary vector in ZV+. However, even when we do not have equality throughout in (6.1), the
conceptual framework provided by this chain of inequalities is quite valuable theoretically, e.g., in the
design of primal-dual approximation algorithms [153, 155].

In the context of SDPs, the following partial analogue of the chain (6.1) is usually considered:

sup
{
〈C,X〉 : A(X) ≤ b, X ∈ Sn+, rank(X) = 1

}
(6.2a)

≤ sup
{
〈C,X〉 : A(X) ≤ b, X ∈ Sn+

}
(6.2b)

≤ inf
{
〈a, y〉 : y ∈ Rm+ , A∗(y) � C

}
. (6.2c)

The (non-convex) optimization problem (6.2a) usually models a combinatorial optimization problem exactly,
so its role is similar to that of (6.1a). Analogously, (6.2b) is an SDP relaxation of (6.2a) and (6.2c) is its
dual, so they correspond to the LPs (6.1b) and (6.1c) from the chain (6.1). It is desirable to extend the
chain of inequalities (6.2) to be as complete as (6.1), so that new concepts of exactness of SDP formulations
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may be studied, akin to classical polyhedral combinatorics concepts such as total dual integrality (see,
e.g., [38] or [130, Chapter 22]). We regard the integrality constraints of the endpoints of (6.1), as well
as the rank constraint from (6.2a), as non-convex constraints used to formulate combinatorial problems
exactly. Similarly, we would like to have a non-convex constraint that, when added to the dual SDP (6.2c),
yields a sensible problem, much like the integrality constraint in (6.1d) usually yields sensible combinatorial
problems for a wide class of combinatorial optimization problems formulated in the format of (6.1a).

It is easy to add a non-convex constraint to the dual (6.2c) so as to extend the chain of inequalities (6.2)
to match (6.1) in a way that “generalizes” the latter. For instance, suppose the problem (6.1b) is embedded
into an SDP in the format of (6.2b) as

sup 〈Diag(0⊕ c), X̂〉
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ej(ej − e0)T), X̂〉 = 0 ∀j ∈ [n],

〈−bi ⊕Diag(ATei), X̂〉 ≤ 0 ∀i ∈ [m],

X̂[[n]] ≥ 0,

X̂ ∈ S{0}∪[n]
+ .

(6.3)

(The reasons for using slightly differently constants multiplying the constraint matrices, compared to
previous chapters, shall be explained later; for now, just note that each constraint matrix has only integral
components if A and b are integral.) The dual SDP, written with an explicit slack, is

inf η
η ∈ R, u ∈ Rn, y ∈ Rm+ , Z ∈ Sn≥0,[
η −uT
−u Diag(2u)− Z

]
+
∑
i∈[m]

yi

[
−bi 0T

0 Diag(ATei)

]
− Ŝ =

[
0 0T

0 Diag(c)

]
,

Ŝ ∈ S{0}∪[n]
+ .

(6.4)

Suppose we add the constraint rank(Ŝ) ≤ 1 to (6.4). Then each feasible solution y for (6.1d) yields a
feasible solution for the modification of problem (6.4), with the same objective value: just take η⊕u⊕Z :=
〈b, y〉 ⊕ 0⊕Diag(ATy− c), so that the corresponding dual slack is Ŝ = 0. In fact, if A, b, and c are integral,
we may even add integrality constraints on the variable η ⊕ u ⊕ y ⊕ Z. The resulting extension of the
chain (6.2) is then at least as tight as (6.1).

However, when trying to extend the chain (6.2), we want to include not only the chain (6.1) arising
from binary integer linear programs, but also some important SDP relaxations not arising as (6.3). In this
respect, the rank constraint on the dual slack seems quite unsatisfactory, since it does not meet one crucial
minimum requirement, namely, it does yield an “adequate” modified dual when applied to the SDP for the
Lovász theta number. Indeed, let G = (V,E) be a graph, and let w ∈ ZV++. Let us consider the formulation
for ϑ(G;w) given by:

ϑ(G;w) = max 〈Diag(0⊕ w), X̂〉
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
〈2 Sym(eie

T
j ), X̂〉 = 0 ∀ij ∈ E,

X̂ ∈ S{0}∪V+ .

(6.5)
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Its dual, written with an explicit slack, is

inf η

η ∈ R, u ∈ RV , z ∈ RE ,[
η −uT
−u 2 Diag(u)

]
+
∑
ij∈E

zij

[
0 0T

0 2 Sym(eie
T
j )

]
− Ŝ =

[
0 0T

0 Diag(w)

]
,

Ŝ ∈ S{0}∪V+ .

(6.6)

Suppose we add the constraint rank(Ŝ) ≤ 1 to (6.6). Since η > 0 for any feasible solution by Weak Duality,
the constraint rank(Ŝ) ≤ 1 is equivalent to

Diag(2u− w) + 2
∑
ij∈E

zij Sym(eie
T
j ) = 1

ηuu
T.

Moreover, supp(w) = V implies that supp(u) = V , since diag(Ŝ) ≥ 0 whenever Ŝ is a feasible dual slack.
However, then either E =

(
V
2

)
or the modified dual is infeasible.

In this chapter, we present a non-convex constraint for the dual SDP that achieves our minimum
requirements, i.e., it generalizes the chain (6.1) and yields sensible modified duals for the SDP formulation
of the Lovász theta number. The “mirror image” of this non-convex constraint for the primal SDP reduces in
many cases to the rank constraint from (6.2a). In this sense, the new constraint enjoys a form of primal-dual
symmetry. We describe the modified duals for SDP formulations for the maximum cut and the vertex cover
problems. We also use general methods for obtaining SDP relaxations of binary integer linear programs and
examine the effect of the non-convex constraint on the dual SDPs, with a focus on the stable set problem.

Throughout the chapter, we shall state some SDP formulations using slightly different constraint
matrices than in previous chapters; see the observation following (6.3). Up to this chapter in the thesis, all
of our considerations were essentially of a geometric nature, so that equality and inequality constraints
could be freely rescaled without changing the corresponding feasible regions. From now on, since we are
concerned about integrality, and in fact mostly about {0, 1} solutions, the scale has been fixed. This is
no different than the analogous situation in LP relaxations in the context of Integer Programming. For
instance, any rational system of inequalities can be made totally dual integral1 by multiplying it by a “large”
natural number; see [48] or [130, Ch. 22, Eq. (36)]. In the current context, it seems natural to require the
constraint matrices of an SDP to have only integral entries, and similarly for the right-hand sides. This is
why some constraints on the SDPs (6.3) and (6.5) were rescaled when compared to previous formulations.

The main contributions in this chapter are the primal-dual symmetric integrality constraints (6.10)
and (6.11), which provide the basis for Theorem 6.3, and their preliminary study when applied to some
important SDP formulations, given by Propositions 6.1 and 6.6.

6.1 A Rank-Constrained SDP Formulation for Clique Covering
Number

Let us start by considering the dual SDP for a formulation of the theta number and a sensible integrality
constraint for it. As in previous chapters, we shall first derive a more general result which we then specialize

1A rational system Ax ≤ b of linear inequalities is called totally dual integral if the LP min{ bTy : ATy = c, y ≥ 0} has an
integral optimal solution for each integral vector c for which the minimum is finite.
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to statements concerning formulations for ϑ and the variants ϑ′ and ϑ+.

Let V be a finite set, and let w ∈ ZV+. Let E+, E− ⊆
(
V
2

)
. Set E := E− and G := (V,E). Consider the

optimization problem
max 〈Diag(0⊕ w), X̂〉

〈e0e
T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
〈2 Sym(eie

T
j ), X̂〉 ≥ 0 ∀ij ∈ E+,

〈2 Sym(eie
T
j ), X̂〉 ≤ 0 ∀ij ∈ E−,

X̂ ∈ S{0}∪V+ .

(6.7)

The SDP (6.7) plays the role of (6.2b). When we add the constraint rank(X̂) = 1 to (6.7), the resulting
optimization problem corresponds to (6.2a) and it is an exact formulation for α(G;w); recall the definition
of the latter from (5.81). The dual of (6.7), written with an explicit slack, is:

inf η

η ∈ R, u ∈ RV , z+ ∈ RE+

+ , z− ∈ RE−+ ,[
η −uT
−u 2 Diag(u)

]
−
∑
ij∈E+

z+
ij

[
0 0T

0 2 Sym(eie
T
j )

]
+
∑
ij∈E−

z−ij

[
0 0T

0 2 Sym(eie
T
j )

]
− Ŝ =

[
0 0T

0 Diag(w)

]
,

Ŝ ∈ S{0}∪V+ .

(6.8)

If we were working with the LP relaxation max{ 〈w, x〉 : x ∈ QSTAB(G)}, then the addition of integrality
constraints for the variables of the dual LP would yield an exact formulation for the weighted clique covering
number χ(G;w); in fact, this may be taken as the definition of χ(G;w). We would like to add a non-convex
constraint to (6.8) to emulate the same behavior in the lifted space of that formulation. Our previous
observation actually guides us in that direction. If K ⊆ V is a clique of G, then the inequality 〈1K , x〉 ≤ 1,
valid for QSTAB(G), is embedded into the positive semidefiniteness constraint of SDP (6.7) in the form

0 ≤ (1⊕−1K)T
[

1 xT

x X

]
(1⊕−1K) = 1− 2〈1K , x〉+ 1

T
KX1K

= 1− 2〈1K , x〉+ 〈1K , x〉+
∑

ij∈(V2)

Xij [i ∈ K][j ∈ K]

≤ 1− 2〈1K , x〉+ 〈1K , x〉.

(6.9)

Thus, it makes sense to require the following constraint for the dual slack Ŝ in (6.8):

(6.10)Ŝ is a sum Ŝ =
∑N
k=1 Ŝ

(k) of rank-one matrices Ŝ(1), . . . , Ŝ(N) ∈ S{0}∪V+ such that,
for each k ∈ [N ], we have 〈e0e

T
0 , Ŝ

(k)〉 = 1 and 〈Sym(ei(ei + e0)T), Ŝ(k)〉 = 0 for
every i ∈ V .
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The constraint (6.10) is equivalent to requiring that Ŝ has the form Ŝ =
∑
K∈K(−1⊕ 1K)(−1⊕ 1K)

T for
some family K of subsets of V . By family we mean a set in which each element may occur more than once;
the number of occurrences of an element is its multiplicity in the family.

The “mirror image” of this constraint on the primal space of (6.7) is:

(6.11)X̂ is a sum X̂ =
∑N
k=1 X̂

(k) of rank-one matrices X̂(1), . . . , X̂(N) ∈ S{0}∪V+ such
that, for each k ∈ [N ], we have 〈e0e

T
0 , X̂

(k)〉 = 1 and 〈Sym(ei(ei− e0)T), X̂(k)〉 = 0
for every i ∈ V .

Note that, since the SDP (6.7) also has the constraint 〈e0e
T
0 , X̂〉 = 1, the non-convex constraint (6.11)

specializes to rank(X̂) = 1.

Now we prove that the addition of the non-convex constraint (6.10) to the SDP (6.8) yields a formulation
for the clique covering number:

Proposition 6.1. Let V be a finite set, and let w ∈ ZV+. Let E+, E− ⊆
(
V
2

)
. Set E := E− and G := (V,E).

If the constraint (6.10) is added to the SDP (6.8), then the optimal value of the resulting optimization
problem is χ(G;w).

Proof. Suppose we add the non-convex constraint (6.10) to (6.8), so that the dual slack Ŝ is required
to have the form Ŝ =

∑
K∈K(−1 ⊕ 1K)(−1 ⊕ 1K)

T for some family K of subsets of V . Then the affine
constraints from (6.8) translate to:

|K| = Ŝ00 = η,

−
∑
K∈K

1K = Ŝ[V, 0] = −u,∑
K∈K

1K = diag(Ŝ[V ]) = 2u− w,∑
K∈K

[i ∈ K][j ∈ K] = Ŝij = −[ij ∈ E+]z+
ij + [ij ∈ E−]z−ij ∀ij ∈

(
V
2

)
.

Thus, in every feasible solution, we have z+�E+\E− = 0 and each K ∈ K is a clique of G. Thus, the problem
(6.8) with the additional constraint (6.10) may be restated as

min |K|
K a family of subsets of V,
G[K] is complete for each K ∈ K,
w =

∑
K∈K 1K .

(6.12)

This is precisely the formulation of the clique covering problem for G with weights given by w.

We now specialize Proposition 6.1 to the formulations of ϑ, ϑ′, and ϑ+. In this chapter, we formulate
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these parameters as

ϑ(G;w) = max 〈Diag(0⊕ w), X̂〉
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
〈2 Sym(eie

T
j ), X̂〉 = 0 ∀ij ∈ E,

X̂ ∈ S{0}∪V+ ,

(6.13)

ϑ′(G;w) = max 〈Diag(0⊕ w), X̂〉
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
〈2 Sym(eie

T
j ), X̂〉 = 0 ∀ij ∈ E,

〈2 Sym(eie
T
j ), X̂〉 ≥ 0 ∀ij ∈ E,

X̂ ∈ S{0}∪V+ ,

(6.14)

ϑ+(G;w) = max 〈Diag(0⊕ w), X̂〉
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
〈2 Sym(eie

T
j ), X̂〉 ≤ 0 ∀ij ∈ E,

X̂ ∈ S{0}∪V+ .

(6.15)

Corollary 6.2. Let G = (V,E) be a graph. Let w ∈ ZV+. For each of the SDPs (6.13), (6.14), and (6.15),
if the constraint (6.10) is added to its dual, then the optimal value of the resulting optimization problem
is χ(G;w).

Proof. Immediate from Proposition 6.1.

Note that Proposition 6.1 remains true even if the constraint that “η⊕ u⊕ z+ ⊕ z− is integral” is added
to (6.8).

We further note that the paper [109] describes an integrality constraint for the dual of an SDP formulation
of the theta number, yielding the chromatic number of a graph. That approach, however, is ad hoc and
thus not widely applicable.

6.2 Primal and Dual SDPs with Integrality Constraints

The non-convex constraints (6.10) and (6.11) for dual pairs of SDPs extends the chain of inequalities (6.2)
and yields a generalization of (6.1) to the context of SDPs:
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Theorem 6.3. Let A : S{0}∪[n] → Rm be a linear function. Let b ∈ Rm and Ĉ ∈ S{0}∪[n]. Then

sup
{
〈Ĉ, X̂〉 : A(X̂) ≤ b, X̂ ∈ S{0}∪[n]

+ , X̂ satisfies (6.11)
}

(6.16a)

≤ sup
{
〈Ĉ, X̂〉 : A(X̂) ≤ b, X̂ ∈ S{0}∪[n]

+

}
(6.16b)

≤ inf
{
〈b, y〉 : y ∈ Rm+ , A∗(y) � Ĉ

}
(6.16c)

≤ inf
{
〈b, y〉 : y ∈ Zm+ , A∗(y)− Ŝ = Ĉ, Ŝ ∈ S{0}∪[n]

+ , Ŝ satisfies (6.10)
}
. (6.16d)

If there exists either X̂ ∈ S{0}∪[n]
++ such that A(X̂) ≤ b or y ∈ Rm+ such that A∗(y) � Ĉ, then the middle

inequality in (6.16) holds with equality. The chain (6.16) remains true if the constraint y ∈ Zm+ is relaxed
to y ∈ Rm+ in (6.16d).

Proof. The proof of the chain of the inequalities (6.16) is trivial, except possibly for the middle inequality,
which is Weak Duality for SDPs. The statement about the middle inequality holding with equality follows
from the Strong Duality Theorem.

We have seen in the previous section that, when applied to a certain formulation of the Lovász theta
number, the optimization problems from (6.16) compute the graph invariants α(G;w), ϑ(G;w), and χ(G;w).
To see why (6.16) “generalizes” (6.1), let us reconsider the diagonal embedding (6.3) of a linear program
in the format (6.1b), whose dual SDP is given by (6.4). We proceed as in the proof of Proposition 6.1.
Suppose we add the constraint (6.10) to (6.4), so that Ŝ is of the form Ŝ =

∑
K∈K(−1⊕ 1K)(−1⊕ 1K)T

for some family K of subsets of V := [n]. Then the affine constraints for (6.4) translate to:

|K| = Ŝ00 = η − 〈b, y〉,

−
∑
K∈K

1K = Ŝ[V, 0] = −u,∑
K∈K

1K = diag(Ŝ[V ]) ≤ 2u+ATy − c,∑
K∈K

[i ∈ K][j ∈ K] = Ŝij ≤ 0 ∀ij ∈
(
V
2

)
.

The latter two conditions are equivalent to c ≤ u+ATy and |K| ≤ 1 for all K ∈ K. Thus, the dual (6.4)
with the additional constraint (6.10) may be restated as:

inf ēTu+ bTy

c ≤ u+ATy,

y ∈ Rm+ ,
u ∈ Zn+.

(6.17)

Even upon adding the integrality constraint y ∈ Zm+ , which appears in (6.16d), every feasible solution
for (6.1d) yields a feasible solution for (6.17) with the same objective value, by taking u := 0. In this sense,
the extended chain (6.16) generalizes (6.1).

In the next sections, we shall repeat the previous procedure for some SDP formulations of MaxCut,
vertex cover problem, and others. That is, we assume that dual slack satisfies the constraint (6.10), so that
it is determined by a family K of subsets of V , then we translate the affine constraints of the dual SDP in
terms of K, and restate it in an almost purely combinatorial form, as we did in (6.12) and in (6.17).
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6.3 Integrality Constraint for the Dual of a MaxCut SDP

Recall that the MaxCut problem is that of, given a graph G = (V,E) and a function w ∈ RE+, find
max{ 〈w,1δ(S)〉 : S ⊆ V, S 6∈ {∅, V }}, where δ(S) := { {i, j} ∈ E : |{i, j} ∩ S| = 1} for each S ⊆ V . We set
δ(i) := δ({i}) for each i ∈ V . In this section, we shall consider the following SDP formulation for MaxCut:

max 〈0⊕ LG(w), X̂〉,
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
X̂[V ] ≥ 0,

X̂ ∈ S{0}∪V+ .

(6.18)

(We refer the reader back to (2.2) for the definition of the Laplacian LG of G.) Note that, modulo the
nonnegativity constraint X̂[V ] ≥ 0, the SDP (6.18) is obtained from the usual SDP relaxation for MaxCut,
namely max

{
1
4 〈0⊕ LG(w), Ŷ 〉 : Ŷ ∈ E{0}∪V

}
, by using the change of variable X̂ := CongrBool(Ŷ ); see [52].

The dual of (6.18), written with an explicit slack, is:

inf η

η ∈ R, u ∈ RV , Z ∈ SV≥0,[
η −uT
−u Diag(2u)− Z

]
− Ŝ =

[
0 0T

0 LG(w)

]
,

Ŝ ∈ S{0}∪V+ .

(6.19)

Suppose we add the non-convex constraint (6.10) to (6.19), so that the dual slack Ŝ is required to have
the form Ŝ =

∑
K∈K(−1⊕ 1K)(−1⊕ 1K)

T for some family K of subsets of V . Then the affine constraints
of (6.19) translate to

|K| = Ŝ00 = η,

−
∑
K∈K

1K = Ŝ[V, 0] = −u,∑
K∈K

[i ∈ K] = Ŝii ≤ 2ui − 〈1δ(i), w〉 ∀i ∈ V,∑
K∈K

[i ∈ K][j ∈ K] = Ŝij ≤ [ij ∈ E]wij ∀ij ∈
(
V
2

)
.

Thus, the problem (6.19) with the additional constraint (6.10) may be restated as:

min |K|
K a family of subsets of V,
G[K] is complete for each K ∈ K,
〈1δ(i), w〉 ≤

∑
K∈K[i ∈ K] ∀i ∈ V,∑

K∈K[ij ∈ E[K]] ≤ wij ∀ij ∈ E.

(6.20)
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We shall prove that, if w ∈ ZE+, then (6.20) has a unique optimal solution K∗ of a trivial form, namely,
the incidence vector of K∗ is precisely w ⊕ 0. Here, the incidence vector of a family K of subsets of V is
the function that maps each subset of V to its multiplicity in K∗. We shall need the following auxiliary
optimization problem:

min |K|
K a family of subsets of V,
G[K] is complete for each K ∈ K,
〈1δ(i), w〉+ di ≤

∑
K∈K[i ∈ K] ∀i ∈ V,∑

K∈K[ij ∈ E[K]] ≤ wij ∀ij ∈ E,

(6.21)

where d ∈ RV .

Lemma 6.4. Let G = (V,E) be a graph, let w ∈ ZE+ and d ∈ ZV+. Let C be a clique of G with |C| ≥ 2.
Set w̄ := w − 1E[C] and d̄ := d+ (|C| − 2)1C . If K is a feasible solution for (6.21) with weight functions w
and d such that C ∈ K, then K \ {C} is feasible for (6.21) with weight functions w̄ and d̄, and w̄ ≥ 0.
Conversely, if K̄ is a feasible solution for (6.21) with weight functions w̄ and d̄, then K̄ ∪ {C} is feasible
for (6.21) with weight functions w and d.

Proof. Let K be feasible for (6.21) with weight functions w and d. Suppose that C ∈ K. Set K := K \ {C}.
Let ij ∈ E. Then [ij ∈ E[C]] +

∑
K∈K[ij ∈ E[K]] =

∑
K∈K[ij ∈ E[K]] ≤ wij whence

∑
K∈K[ij ∈ E[K]] ≤

wij − [ij ∈ E[C]] = w̄ij and w̄ij ≥ 0. Next, let i ∈ V . Then

〈1δ(i), w̄〉+ d̄i + [i ∈ C] = 〈1δ(i), w〉 − [i ∈ C](|C| − 1) + di + [i ∈ C](|C| − 2) + [i ∈ C]

= 〈1δ(i), w〉+ di ≤
∑
K∈K

[i ∈ K] = [i ∈ C] +
∑
K∈K

[i ∈ K], (6.22)

whence 〈1δ(i), w̄〉+ d̄i ≤
∑
K∈K[i ∈ K]. This proves that K is feasible with weights w̄ and d̄.

Now, let K be feasible for (6.21) with weight functions w̄ and d̄. Set K := K ∪ {C}. Let ij ∈ E. Then∑
K∈K

[ij ∈ E[K]] = [ij ∈ E[C]] +
∑
K∈K

[ij ∈ E[K]] ≤ [ij ∈ E[C]] + w̄ij = wij .

Let i ∈ V . Then∑
K∈K

[i ∈ K] = [i ∈ C] +
∑
K∈K

[i ∈ K] ≥ [i ∈ C] + 〈1δ(i), w̄〉+ d̄i = 〈1δ(i), w〉+ di,

where the last equation is derived as in (6.22). Thus, K is feasible for (6.21) with weight functions w
and d.

Lemma 6.5. Let G = (V,E) be a graph. Let w ∈ ZE+. Then, for every d ∈ ZV+, every optimal solution K∗
for (6.21) is such that, for each i ∈ V , the singleton {i} occurs in K∗ with multiplicity ≥ di.

Proof. The proof is by induction on ēTw, the case ēTw = 0 being trivial. Suppose w 6= 0. Let K∗ be an
optimal solution for (6.21). If every member of K∗ is a singleton, then the multiplicity of {i} in K∗ is the
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RHS of the constraint 〈1δ(i), w〉+ di ≤
∑
K∈K∗ [i ∈ K], and we are done, since the LHS is bounded below

by di. So suppose there exists C ∈ K∗ such that |C| ≥ 2. Define w̄ := w − 1E[C] and d̄ := d+ (|C| − 2)1C .
By Lemma 6.4, we find that K∗ \ {C} is optimal for (6.21) with weight functions w̄ ≥ 0 and d̄. Since
ēTw̄ < ēTw, we find by induction that, for each i ∈ V , the singleton {i} has multiplicity ≥ d̄i ≥ di in
K∗ \ {C}, and hence in K∗.

Now we can prove that (6.20) has a unique optimal solution and that it is trivial:

Proposition 6.6. Let G = (V,E) be a graph, and let w ∈ ZE+. Then the optimization problem (6.20) has
a unique optimal solution K∗, namely, all members of K∗ are edges of G, and each edge e ∈ E appears
in K∗ with multiplicity we.

Proof. Let K∗ be an optimal solution for (6.20). We first show that

|K| ≤ 2 ∀K ∈ K∗. (6.23)

Let C ∈ K∗ with |C| ≥ 3. By Lemma 6.4, we know that K∗ \ {C} is an optimal solution for (6.21) with
weight functions w̄ := w − 1E[C] and d̄ := d+ (|C| − 2)1C , where d := 0. By Lemma 6.5, we find that each
singleton {i} with i ∈ C has multiplicity ≥ d̄i ≥ |C| − 2 in K∗ \ {C}, and thus also in K∗. We now modify
the feasible solution K∗ as follows. Replace one instance of C and |C| − 2 instances of each singleton {i}
with i ∈ C with one instance of each member of E[C]. This new family K′ is feasible for (6.21) with weight
functions w and d, moreover

|K′| = |K∗| −
[
1 + |C|(|C| − 2)

]
+

(
|C|
2

)
= |K∗| − 1

2

(
|C| − 1

)(
|C| − 2

)
< |K∗|.

This proves (6.23).

Now suppose that some edge ij ∈ E does not occur with multiplicity wij in K∗. Since the maximum
multiplicity that an edge e ∈ E can have in K∗ is we by the edge constraints of (6.20), then the node
constraint for i and (6.23) shows that the singleton {i} must occur in K∗. Similarly, {j} must occur in K∗.
By replacing one instance of each of {i} and {j} in K∗ with ij, we obtain a feasible solution K′ with
|K′| < |K∗|. This proves that each edge ij occurs in K∗ with multiplicity wij . The result now follows, since
clearly no singleton occurs in K∗ by optimality.

6.4 Integrality Constraints for a Vertex Cover SDP

Recall that the vertex cover problem is that of, given a graph G = (V,E) and a function w ∈ RV+, find
min{ 〈w,1C〉 : C is a vertex cover of G}, where a subset C of V is defined to a vertex cover of G if V \ C
is a stable set of G. An SDP relaxation for this problem is:

inf 〈0⊕Diag(w), X̂〉
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
〈2 Sym((e0 − ei)(e0 − ej)T), X̂〉 = 0 ∀ij ∈ E,
X̂ ∈ S{0}∪V+ .

(6.24)

106



The SDP (6.24) is obtained from the SDP relaxation

min
〈

1
4

∑
i∈V wi(e0 + ei)(e0 + ei)

T, Ŷ
〉

diag(Ŷ ) = 1,

〈2 Sym((e0 − ei)(e0 − ej)T), Ŷ 〉 = 0 ∀ij ∈ E,
Ŷ ∈ S{0}∪V+

for the vertex cover problem, studied by Kleinberg and Goemans [77], by using the change of variable
X̂ := CongrBool(Ŷ ). The dual of (6.24), written with an explicit slack, is

sup η

η ∈ R, u ∈ RV , y ∈ RE ,[
η −uT
−u Diag(2u)

]
+
∑
ij∈E

yij

[
2 −1T

ij

−1ij 2 Sym(eie
T
j )

]
+ Ŝ =

[
0 0T

0 Diag(w)

]
,

Ŝ ∈ S{0}∪V+ .

(6.25)

Suppose we add the non-convex constraint (6.10) to (6.25), so that the dual slack Ŝ is required to have
the form Ŝ =

∑
K∈K(−1⊕ 1K)(−1⊕ 1K)

T for some family K of subsets of V . Then the affine constraints
from (6.25) translate to:

|K| = Ŝ00 = −η − 2〈ē, y〉, (6.26a)

−
∑
K∈K

1K = Ŝ[V, 0] = u+
∑
ij∈E

yij1ij , (6.26b)

∑
K∈K

1K = diag(Ŝ[V ]) = w − 2u, (6.26c)∑
K∈K

[i ∈ K][j ∈ K] = Ŝij = −[ij ∈ E]yij ∀ij ∈
(
V
2

)
. (6.26d)

This implies that G[K] is complete for each K ∈ K and ye = −
∑
K∈K[e ∈ E[K]] for each e ∈ E. The

objective function is

η = −|K|+ 2
∑
e∈E

∑
K∈K

[e ∈ E[K]] = −|K|+ 2
∑
K∈K

(|K|
2

)
=
∑
K∈K

(
|K|2 − |K| − 1

)
.

From (6.26b) we get
u = −

∑
K∈K

1K +
∑
K∈K

(|K| − 1)1K =
∑
K∈K

(|K| − 2)1K

whence (6.26c) becomes w =
∑
K∈K(2|K| − 3)1K . Thus, the problem (6.25) with the additional con-

straint (6.10) may be restated as

max
∑
K∈K

(
|K|2 − |K| − 1

)
K a family of subsets of V ,
G[K] is complete for each K ∈ K,
w =

∑
K∈K(2|K| − 3)1K .

(6.27)
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Note that singleton cliques contribute −1 to the objective function. If w = ē, then the last constraints
require |K| ≤ 2 for each K ∈ K, so every perfect matching of G is a feasible solution for (6.27).

It is reasonable to argue that we are looking at (6.25) on the wrong scale. The SDP (6.24) is obtained
from the SDP (6.5) by applying the map CongrFlip; see (4.42). Thus, the correct scale to look at dual
slacks of the form Ŝ =

∑
K∈K(−1⊕1K)(−1⊕1K)

T in the dual for (6.5) is to have the dual slacks of (6.25)
have the form∑

K∈K
Congr−∗Flip

(
(−1⊕ 1K)(−1⊕ 1K)

T)
=
∑
K∈K

(
(|K| − 1)⊕−1K

)(
(|K| − 1)⊕−1K

)T
.

Then the affine constraints (6.26) translate as follows. We still need each K ∈ K to be a clique by (6.26d),
and again ye = −

∑
K∈K[e ∈ E[K]] for each e ∈ E. The objective function, however, becomes

η = −
∑
K∈K

(|K| − 1)
2

+ 2
∑
K∈K

∑
e∈E

[e ∈ E[K]] =
∑
K∈K

(|K| − 1).

The LHS of (6.26b) is modified to −
∑
K∈K(|K|−1)1K , and so it yields u = 0. In this setting, the modified

dual may be restated as
max

∑
K∈K

(
|K| − 1

)
K a family of subsets of V ,
G[K] is complete for each K ∈ K,
w =

∑
K∈K 1K .

(6.28)

In this new problem, each perfect matching remains feasible, with the same objective value as in (6.27).
However, there are much more complex feasible solutions now, such as any partition of V into cliques.
This latter example shows that it is not always clear what the “correct” scale is to apply the non-convex
constraint (6.10).

6.5 The Lovász-Schrijver Embedding

Lovász and Schrijver [101] introduced a general procedure to generate an SDP relaxation for any binary
integer linear program. Their so-called lift-and-project method may be seen as a generalization of the SDP
formulation (6.5) for the theta number, and it is guaranteed to yield an exact formulation after a linear
number of recursive applications. The method is much more general than our short description for it; see,
e.g., [86]. In this section, we will embed a binary integer linear program in the format of (6.1a) into an
SDP using the Lovász-Schrijver procedure and specialize it to the formulation of the stable set problem via
the polytope FRAC(G) defined in (5.55). We shall show that every clique covering of G yields a feasible
solution for the dual SDP with the additional constraint (6.10).

Let V and E be finite sets. Suppose a polytope P ⊆ [0, 1]V is defined as P := {x ∈ RV : Ax ≤ b},
where A ∈ RE×V . In fact, in many important cases, every entry of A is an integer, so we shall assume this.
Let P0 be the homogenization

P0 := R+(1⊕ P ) =
{
x̂ ∈ R{0}∪V :

[
−b A

]
x̂ ≤ 0

}
.
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Then it is not hard to prove that

{x ∈ {0, 1}V : Ax ≤ b} ⊆
{

diag(X̂[V ]) : B{0}∪V (X̂) = 1⊕ 0, X̂ei, X̂(e0 − ei) ∈ P0 ∀i ∈ V, X̂ ∈ S{0}∪V+

}
.

Let w ∈ RV . Then max{ 〈w, x〉 : x ∈ P ∩ {0, 1}V } is bounded above by

max
{
〈Diag(0⊕ w), X̂〉 : B{0}∪V (X̂) = 1⊕ 0, X̂ei, X̂(e0 − ei) ∈ P0 ∀i ∈ V, X̂ ∈ S{0}∪V+

}
. (6.29)

The bound is tight if the constraint (6.11) is added to (6.29), since it specializes to rank(X̂) = 1 and
ensures that X̂ has the form X̂ = (1⊕ x)(1⊕ x)T with x ∈ {0, 1}V . Set ae := ATee for each e ∈ E. For a
given i ∈ V , the constraint X̂ei ∈ P0 is equivalent to

〈
Sym

(
(−be ⊕ ae)(0⊕ ei)T

)
, X̂
〉
≤ 0 for every e ∈ E,

whereas the constraint X̂(e0 − ei) ∈ P0 is equivalent to
〈
Sym

(
(−be ⊕ ae)(1 ⊕ −ei)T

)
, X̂
〉
≤ 0 for every

e ∈ E. Thus, after scaling some inequalities to ensure that all matrices defining our constraints have integer
entries, the problem (6.29) becomes:

sup 〈Diag(0⊕ w), X̂〉
〈Sym(e0e

T
0 ), X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,〈
2 Sym

(
(−be ⊕ ae)(0⊕ ei)T

)
, X̂
〉
≤ 0 ∀i ∈ V, ∀e ∈ E,〈

2 Sym
(
(−be ⊕ ae)(1⊕−ei)T

)
, X̂
〉
≤ 0 ∀i ∈ V, ∀e ∈ E,

X̂ ∈ S{0}∪V+ .

(6.30)

The dual of (6.30) may be written more compactly by using certain matrix variables. Let us associate
each constraint of the form

〈
Sym

(
(−be ⊕ ae)(0⊕ ei)T

)
, X̂
〉
≤ 0 with a dual variable Yie, where Y ∈ RV×E+ .

Similarly associate each constraint of the form
〈
Sym

(
(−be⊕ae)(1⊕−ei)T

)
, X̂
〉
≤ 0 with a dual variable Zie,

where Z ∈ RV×E+ . Note that∑
i∈V

∑
e∈E

Yie Sym
(
(−be ⊕ ae)(0⊕ ei)T

)
= Sym

([
0 0T

−Y b Y A

])
,

∑
i∈V

∑
e∈E

Zie Sym
(
(−be ⊕ ae)(1⊕−ei)T

)
= Sym

([
−ēTZb ēTZA
Zb −ZA

])
.

Thus, the dual of (6.30), written with an explicit slack, is

inf η

η ∈ R, u ∈ RV , Y ∈ RV×E+ , Z ∈ RV×E+ ,[
η − ēTZb (−u− (Y − Z)b+ATZTē)

T

−u− (Y − Z)b+ATZTē Diag(2u) + 2 Sym
(
(Y − Z)A

)]− Ŝ =

[
0 0T

0 Diag(w)

]
,

Ŝ ∈ S{0}∪V+ .

(6.31)

We are interested in the specialization of (6.31) when P = FRAC(G). We shall assume that G has no
isolated node, so that

FRAC(G) = {x ∈ RV : x ≥ 0, BT
Gx ≤ ē}; (6.32)

109



recall that BG is the V × E incidence matrix of G. Due to the structure of the system of inequalities
defining FRAC(G) in (6.32), it is convenient to rewrite (6.30) and (6.31) by treating the constraint x ≥ 0
separately. That is, if P = {x ∈ RV : x ≥ 0, Ax ≤ b}, then the SDP (6.30) may be rewritten as

sup 〈Diag(0⊕ w), X̂〉
〈Sym(e0e

T
0 ), X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,〈
2 Sym

(
(−be ⊕ ae)(0⊕ ei)T

)
, X̂
〉
≤ 0 ∀i ∈ V, ∀e ∈ E,〈

2 Sym
(
(−be ⊕ ae)(1⊕−ei)T

)
, X̂
〉
≤ 0 ∀i ∈ V, ∀e ∈ E,

X̂[V ] ≥ 0,〈
2 Sym(ei(ej − ei)T), X̂

〉
≤ 0, ∀i ∈ V, ∀j ∈ V,

X̂ ∈ S{0}∪V+ .

(6.33)

The dual of (6.33), written with an explicit slack, is

inf η

η ∈ R, u ∈ RV , Y ∈ RV×E+ , Z ∈ RV×E+ , U ∈ SV≥0, R ∈ RV×V+ , (6.34)[
η − ēTZb (−u− (Y − Z)b+ATZTē)

T

−u− (Y − Z)b+ATZTē 2 Diag(u−Rē) + 2 Sym
(
R+ (Y − Z)A

)
− U

]
− Ŝ =

[
0 0T

0 Diag(w)

]
,

Ŝ ∈ S{0}∪V+ .

We next show that the chain of inequalities (6.16) is at least as tight as (6.1) when applied to the primal
SDP (6.33) with A = BT

G:

Proposition 6.7. Let G = (V,E) be a graph, and w ∈ ZV+. Then the optimal value of (6.34), with
A := BT

G and b := ē, and the additional constraint (6.10), is bounded above by χ(G;w).

Proof. We start by rewriting (6.34) with the variables Z and R set to 0:

inf η

η ∈ R, u ∈ RV , Y ∈ RV×E+ , U ∈ SV≥0,[
η (−u− Y ē)T

−u− Y ē 2 Diag(u) + 2 Sym
(
Y BT

G

)
− U

]
− Ŝ =

[
0 0T

0 Diag(w)

]
,

Ŝ ∈ S{0}∪V+ .

(6.35)

Suppose we add the non-convex constraint (6.10) to (6.35), so that the dual slack Ŝ is required to have
the form Ŝ =

∑
K∈K(−1⊕ 1K)(−1⊕ 1K)

T for some family K of subsets of V . Then the affine constraints

110



from (6.35) translate to:

|K| = Ŝ00 = η,

−
∑
K∈K

1K = Ŝ[V, 0] = −u− Y ē∑
K∈K

[i ∈ K] = Ŝii ≤ 2ui − wi + 2eTi Y B
T
Gei ∀i ∈ V,∑

K∈K
[i ∈ K][j ∈ K] = Ŝij ≤ eTi Y BT

Gej + eTj Y B
T
Gei ∀ij ∈

(
V
2

)
.

The latter two constraints may be rewritten as

wi + 2eTi Y
(
1δ(i) + 1E\δ(i)

)
≤
∑
K∈K

[i ∈ K] + 2eTi Y 1δ(i) ∀i ∈ V,∑
K∈K

[i ∈ K][j ∈ K] ≤ eTi Y 1δ(j) + eTj Y 1δ(i) ∀ij ∈
(
V
2

)
.

Thus, the modified dual may be restated as

min |K|
K a family of subsets of V ,
wi + 2eTi Y 1E\δ(i) ≤

∑
K∈K[i ∈ K] ∀i ∈ V,∑

K∈K[i ∈ K][j ∈ K] ≤ eTi Y 1δ(j) + eTj Y 1δ(i) ∀ij ∈
(
V
2

)
.

(6.37)

Suppose that K is a clique cover of G with respect to w, i.e., K is a family of subsets of V such that∑
K∈K 1K = w. Set

Yie := [e ∈ δ(i)]
∑
K∈K

[i ∈ K][e ∈ E[K]].

Then it is easy to check that (K, Y ) is feasible for (6.37). This completes the proof.

6.6 A Burer-like Embedding for Packing Problems

Burer [19] showed that every binary integer linear program max{ 〈c, x〉 : Ax = b, x ∈ {0, 1}V } may be
formulated exactly as a completely positive program as follows:

sup 〈0⊕Diag(c), X̂〉
B{0}∪[n](X̂) = 1⊕ 0,

〈0⊕Diag(ATei), X̂〉 = bi ∀i ∈ [n],

〈0⊕ eTi AATei, X̂〉 = b2i ∀i ∈ [n],

X̂ ∈ C∗{0}∪V .

(6.38)

In this section, we consider an SDP relaxation of a slight modification of the embedding (6.38) applied to
packing problems.
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Let V be a finite set. Let A be a collection of subsets of V and let w ∈ ZV+. Consider the LP

max{wTx : x ∈ RV+, 〈x,1A〉 ≤ 1∀A ∈ A}. (6.39)

Assume that
⋃
A = V so that the constraint x ≤ ē is implied. If the constraint x ∈ {0, 1}V is added

to (6.39), then one obtains the classical set-packing problem. We shall consider the following SDP relaxation
of the formulation (6.38) applied to (6.39):

sup 〈0⊕Diag(w), X̂〉
〈e0e

T
0 , X̂〉 = 1,

〈2 Sym(ei(ei − e0)T), X̂〉 = 0 ∀i ∈ V,
〈−1⊕Diag(1A), X̂〉 ≤ 0 ∀A ∈ A,
〈−1⊕ 1A1T

A, X̂〉 ≤ 0 ∀A ∈ A,
X̂[V ] ≥ 0,

X̂ ∈ S{0}∪V+ .

(6.40)

Its dual, written with an explicit slack, is

inf η

η ∈ R, u ∈ RV , y ∈ RA+, z ∈ RA+, Z ∈ SV≥0,[
η −uT
−u Diag(2u)− Z

]
+
∑
A∈A

yA

[
−1 0T

0 Diag(1A)

]
+
∑
A∈A

zA

[
−1 0T

0 1A1
T
A

]
− Ŝ =

[
0 0T

0 Diag(w)

]
,

Ŝ ∈ S{0}∪V+ .

(6.41)

Suppose we add the non-convex constraint (6.10) to (6.41), so that the dual slack Ŝ is required to have
the form Ŝ =

∑
K∈K(−1⊕ 1K)(−1⊕ 1K)

T for some family K of subsets of V . Then the affine constraints
for (6.41) translate to:

|K| = Ŝ00 = η − 〈ē, y〉 − 〈ē, z〉,

−
∑
K∈K

1K = Ŝ[V, 0] = −u,∑
K∈K

1K = diag(Ŝ[V ]) ≤ 2u− w +
∑
A∈A

(yA + zA)1A,∑
K∈K

[i ∈ K][j ∈ K] = Ŝij ≤
∑
A∈A

[ij ⊆ A]zA ∀ij ∈
(
V
2

)
.

Thus, the modified dual may be stated as:

inf |K|+ 〈ē, y〉+ 〈ē, z〉
K a family of subsets of V ,
w ≤

∑
K∈K 1K +

∑
A∈A(yA + zA)1A,∑

K∈K[i ∈ K][j ∈ K] ≤
∑
A∈A[ij ⊆ A]zA ∀ij ∈

(
V
2

)
,

y ∈ RA+, z ∈ RA+.

(6.42)
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Let us apply this formulation for A := E for a graph G = (V,E) with no isolated node, so that (6.39)
corresponds to optimization over FRAC(G). For a feasible solution (K, y, z) of (6.42), each K ∈ K is a
clique in G, and ze is bounded below by the number of cliques in K that induce the edge e.

The formulation (6.42) may be roughly interpreted as follows. We want to cover the nodes of G according
to the weight function w on V , that is, each node i ∈ V must be covered at least wi times. To cover the
nodes, there are two options. We may use an edge e of G, corresponding to the variable ye. The cost to
assign weight ye to the edge e is also ye. Alternatively, we may want to cover some nodes of G using a
clique K. The advantage of using a clique K is that it has unit cost, regardless of its size |K|. On the
other hand, once we use a clique K in the covering, we need to increase ze by 1 for each e ∈ E[K]. By
doing that, each node i ∈ K gets its cover increased by |K| units, and the cost of this whole operation
is 1 +

(|K|
2

)
. To compare the costs and benefits of each of the two options above, consider covering the

weight function w := |C|1C on a clique C of G. Using only covering by the y variable, an optimal solution
is to assign ye := |C|

|C|−1 for each e ∈ E[C], with a total cost of
(|C|

2

) |C|
|C|−1 = 1

2 |C|
2. However, if we use the

covering with K := {C} and z := 1E[C], the total cost is 1 +
(|C|

2

)
= 1

2 |C|
2 − 1

2 |C|+ 1. For w := ē, however,
it is never advantageous to have K 6= ∅ in an optimal covering, so that (6.42) reduces to the LP dual of
optimization over FRAC(G).

Next we consider the formulation (6.42) where A is the set of all cliques of a graph G = (V,E) with no
isolated node. We claim that,

for every w ∈ RV+, the optimal value of (6.42) is χ∗(G;w). (6.43)

First note that there is a straightforward correspondence between feasible solutions for the LP dual to
max{ 〈w, x〉 : 〈x,1A〉 ≤ 1∀A ∈ A} and feasible solutions for (6.42) with K = ∅ and z = 0. Now let (K, y, z)
be feasible for (6.42). Define ȳA := yA + zA + 〈1K, eA〉 for each A ∈ A; here the component A of the
incidence vector 1K is the multiplicity of A in K. Since each K ∈ K is a clique of G, we find that (∅, ȳ, 0)
is also feasible in (6.42) with the same objective value as (K, y, z). This concludes the proof of (6.43).
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Chapter 7

Future Research Directions

We now summarize some of the main avenues of future research suggested by some of the developments in
this thesis.

7.1 Ellipsoidal Representations and Computational Complexity

In Section 3.4, we proved that the problem of computing the ellipsoidal number Ep(G;A) of a given graph G,
with a matrix A ∈ Sd+ and for some given d ∈ Z++, is NP-hard. There, we relied in a fundamental way on
the fact that we allow the matrix A to be singular. The optimization problem (3.2) then corresponds not
to finding a smallest ellipsoid that contains a unit-distance representation of G, but, rather, it represents
the search for a “smallest elliptic cylinder” that contains a unit-distance representation of G. While the
latter problem is also interesting (see, for instance, [82]), it is arguably more natural to require A to be
nonsingular, so that it defines a standard ellipsoid. We do not know, however, whether the problem of
computing Ep(G;A) remains NP-hard when such a restriction is added, that is, when we require the given
matrix A to be positive definite. A natural attempt to adapt our proof of NP-hardness of computing Ep(G;A)
to the latter case leads to some interesting geometric problems and certain issues related to basic questions
in Semidefinite Optimization and Computational Complexity, as we discuss next.

Let us try to reduce the NP-hard problem of determining whether a given input graph G = (V,E) has a
unit-distance representation in Rk, for a given k ∈ Z++, to the problem of computing E(G;A), for a certain
positive definite matrix A ∈ Sd++. Of course, by taking d := k and A := I, then E(G;A) <∞ if and only if
dim(G) ≤ k, but let us consider the more interesting question where we take d := n := |V |. Our current
proof, where we allow A to be singular, takes A := Diag(1[n]\[k]) ∈ Sn, but now we need the cost matrix to
be nonsingular. The obvious approach then involves setting the cost matrix to B := Diag(ε1[k] + 1[n]\[k])
for some ε ∈ R++, where ε should be chosen to be “small.” Let us try to determine how small ε needs
to be. Suppose that G has a unit-distance representation in Rk. Then an optimal solution for the
problem (3.1) maps each node i ∈ V to a point ui ∈ Rn with supp(ui) ⊆ [k]. Moreover, by sending some
node of G to the origin, and assuming that G is connected, we may assume that ‖ui‖∞ ≤ n for each i ∈ V .
Thus, E(G;B) ≤ εn. Next, suppose that G does not have a unit-distance representation in Rk. Then
E(G;B) ≥ E(G;A) > 0. Thus, if we choose ε > 0 so that E(G;A) > εn, we obtain our desired reduction.
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Actually, since our reduction is not supposed to compute E(G;A), we must choose ε > 0 so that εn < µ,
where

µn,k := min
H
E(H;A), (7.1)

and H ranges over all graphs on at most n nodes such that dim(H) > k. Obviously such a number ε exists,
since µn,k > 0. However, since we want our reduction to be carried out in polynomial time, we need the
number µn,k to be have size polynomial in n. This leads us to the following question:

(7.2)given a graph G on n nodes, is there a lower bound on E(G; Diag(1[n]\[k])), where
k := dim(G)− 1, of size polynomial in n?

The existence of the number µn,k defined in (7.1) is related to a certain concept of “flattening” an “almost
flat” unit-distance representation of a graph. Suppose that u : V → Rn is a unit-distance representation
of a graph G = (V,E) such that |V | ≤ n and |[ui]j | ≤ µn,k for every i ∈ V and j ∈ [n] \ [k]. The latter
condition may be vaguely described as saying that the representation u is “almost flat:” since we expect
µn,k to be a small number, in the case k = 2, one could describe the representation u as being “almost”
contained in the plane. Then, by the definition of u, there exists a unit-distance representation of G in Rk,
i.e., the representation u may be “completely flattened,” and be made to lie completely in Rk. Note that the
previous discussions stems essentially from the attainment of ellipsoidal numbers, proved in Theorem 3.2.

The problem of determining lower bounds as requested in (7.2) seems hard to address. Even applying
the basic tools of Semidefinite Optimization may be insufficient: unlike the case of linear programs, there
exist some quite simple SDPs for which no feasible solution has size polynomially bounded by the size of
the input: consider, e.g., the feasible region{

x ∈ Rk :

[
1 2
2 x1

]
� 0,

[
1 xi
xi xi+1

]
� 0∀i ∈ [k − 1]

}
.

Of course, there are other very basic issues regarding complexity theory about SDPs using the Turing
machine model, such as SDPs for which there is no rational optimal solution.

The question (7.2) remains difficult even as we restrict our attention to the polynomially solvable
problem of determining whether a given graph G is such that dim(G) = 1. Obviously these are precisely
the bipartite graphs. Thus, question (7.2) essentially reduces to that of providing a polynomial-size lower
bound for E(Cn; Diag(1[n]\[1])) for any odd cycle Cn. Yet, we do not know of any such bounds.

7.2 Boundary Structure of Combinatorial Spectrahedra

In Chapter 4, we made progress on the boundary structure of some important “combinatorial spectrahedra,”
i.e., spectrahedra arising from problems in Combinatorial Optimization. We improved Laurent and Poljak’s
characterization of the vertices of the elliptope [87, 88] to the lifted theta body of an arbitrary graph. In
the latter setting, the vertices of the spectrahedron under scrutiny remains precisely the exact solutions to
the combinatorial problem for which the spectrahedron provides a relaxation. An important open problem
is to determine whether this phenomenon also occurs for other combinatorial spectrahedra.

As we pointed out in Section 4.5, we currently do not know whether the simple spectrahedron
BQ′{0}∪V ∩BQ′′{0}∪V has only rank-one vertices, and similarly for the spectrahedron described in (4.51). We
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noted that the former set is a relaxation of the lifting (4.18) of the boolean quadric polytope, whereas the
constraints of the latter arise from the Lovász-Schrijver lift-and-project operator discussed in Section 6.5.
We do not know either whether the spectrahedron obtained by applying the Lovász-Schrijver procedure
to FRAC(G) has only rank-one vertices.

A more open-ended fundamental research direction is the development of other aspects of the boundary
structure of combinatorial spectrahedra to a comparable extent to that of polyhedral combinatorics. As
mentioned in Chapter 4, everything that is known from polyhedral combinatorics may in principle be
proved using SDP Strong Duality. Still, the union of known results relating combinatorial and geometric
structures in combinatorial spectrahedra, as illustrated in the introduction of the aforementioned chapter,
is rather meager when compared to Schrijver’s monumental book [132, 133, 134] on a classical subset of
polyhedral combinatorics.

An essential difficulty, stemming from the potential non-linearity of spectrahedra, is that it is not clear
what satisfactory descriptions of the boundary should look like. More specifically, what would be a useful
compact representation of a smooth, nonlinear portion of the boundary of a combinatorial spectrahedron?
Here, ‘usefulness’ should be measured in terms of strong correspondences with natural combinatorial
structures of the associated problems. Knuth [78, Sec. 37] poses, for instance, the following problem:
“Describe TH(C5) geometrically.” It is not clear what a solution should look like. A potential answer could
be a closed-form formula for the function ϑ(C5; ·) in terms of familiar functions. Another answer could
be a finite system of polynomial inequalities defining TH(C5). However, whereas a small system of linear
inequalities makes it quite easy to compute the support function of the corresponding polyhedron (one
could even run the simplex method by hand), this is harder to argue for a system of polynomial inequalities.
The application of Algebraic Geometry tools to SDPs, however, has gained a lot of attention recently [16],
which may lead to more satisfactory answers. Note that it is easy to obtain a finite system of polynomial
inequalities describing a spectrahedron, e.g., using the principal minors criterion. However, TH(C5) is only
known to be the projection of the spectrahedron T̂H(C5).

Beside the issue about compact representation of smooth portions of the boundary of a spectrahedron,
it seems desirable to encode the adjacency structure of these portions, in some kind of structure analogous
to the face lattice of a polytope. It is not clear what this structure should look like either.

7.3 Exactness and Interpretation of Dual SDPs

In Chapter 6, we discussed a non-convex constraint that may be regarded as an analogue of the standard
integrality constraints in integer linear programs. This non-convex constraint sometimes reduces to the
usual rank-one constraint, but when applied to the dual SDP, it yields reasonable “combinatorial duals”
both for the standard diagonal embedding of LPs into SDPs, and for a certain formulation of the Lovász
theta function, where it yields the weighted clique covering problem.

Some very natural questions arise from this viewpoint of SDPs with the additional non-convex constraint.
Namely, is there a sufficiently well-behaved analogue of the notion of total dual integrality for SDPs? Even
without the non-convex constraint in the dual, one might pose questions about the SDPs analogues of
perfect and ideal matrices. Some progress in this direction was obtained in [125].

In some sections from Chapter 6, we focused some effort in trying to get “good interpretations” of the
modified dual SDP, i.e., the dual SDP with the additional non-convex constraint (6.10). In Section 6.1, we
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interpreted the modified dual as precisely the clique covering problem. In Section 6.3, while we did not
describe the modified dual problem exactly, we understood it well enough that we could prove a complete
description of the optimal solution (Proposition 6.6). Our understanding of the combinatorial nature of
the modified dual is considerably worse in Sections 6.4, 6.5, and 6.6. This is in contrast to the situation
in combinatorial optimization, where the dual LP with additional integrality constraints, corresponding
to (6.1d), usually yield easy-to-interpret, natural combinatorial problems.

Even without adding the non-convex constraint (6.10), dual SDPs are harder to interpret than dual
LPs. For several classical combinatorial optimization problems, the dual of the LP relaxation of a natural
integer programming formulation seems interesting in its own right, that is, regardless of the fact that it
appears as the dual of another problem. This is the case, for instance, for the dual LPs described in the
paragraph following the chain (6.1). One of these dual LPs defines the fractional chromatic number of a
graph G = (V,E), which may be described as

χ∗(G) = min
{
〈ē, y〉 :

∑
K∈K

yK1K = ē
}

;

here, K denotes the set of all cliques of G. Even though the coefficients yK are allowed to take on real values,
the graph invariant χ∗ is very natural combinatorially and it is deeply connected to graph homomorphisms
into Kneser graphs; see, e.g., [62, Proposition 4.26].

The situation seems to be rather different in the context of SDPs. This was already hinted at in
Chapter 6, and slightly more explicitly in Section 2.2, where dual SDP (2.4) for the hypersphere number was
interpreted as a purely geometric optimization problem, that is, without an explicit positive semidefinite
constraint. For that, however, we used the projective transformation underlying (2.22) in the proof of
Theorem 2.4. The reason is that it is not easy to interpret the dual SDP (2.4) directly using its own
coordinate system. This may be done, however, using some concepts from rigidity theory, as was already
done in, e.g., [144, 55, 53]. We shall show some of the elementary concepts in what follows.

Let G = (V,E) be a graph and let u : V → Rd for some d ∈ Z++. A function σ : E → R is a stress
function for u (describing a stress coefficient for each edge) if∑

j∈N(i)

σij
(
uj − ui

)
= 0 ∀i ∈ V. (7.3)

(Here, N(i) denotes the set of neighbors of node i.) This condition, for a fixed i ∈ V , can be interpreted as
follows. For an edge ij ∈ E with σij > 0, we regard the edge ij as a rubber band pulling node i towards
node j. If σij < 0, then the edge ij can be thought of as a strut pushing nodes i and j apart. An edge
ij ∈ E with σij = 0 is effectively non-existing. Then each of the terms of the sum in (7.3) can be seen as
the force acting on node i arising from the physical structure associated with the corresponding edge. In
this context, condition (7.3) means that the physical structure is in equilibrium.

The above interpretation shows why stress functions show up naturally in graph rigidity and tensegrity
theory. A related concept is that of an “energy function” (see, e.g., [97, ch. 4] and [30]). Fix a function
σ : E → R. We can associate to each map u : V → Rd the energy of u as

Eσ(u) :=
∑
ij∈E

σij‖uj − ui‖2.
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An interpretation of this energy is given as follows. Suppose σe > 0 for every e ∈ E. Then, as above, we
can interpret each edge as a rubber band pulling its ends closer together, and the term σij‖uj − ui‖2 can
be seen as the contribution of edge ij to the total potential energy Eσ(u) of the system.

In [92], the following problem is considered, in connection with Tutte’s barycentric representations [151]:
for a certain subset S ⊆ V of nodes, fix a position u0 : S → Rd, and find an extension u : V → Rd of u0

that minimizes the energy Eσ(u), where σ : E → R++ is fixed. This corresponds to nailing down the nodes
of S into their prescribed positions, then taking each edge e as a rubber band with “constant of elasticity”
given by σe, and letting the system vibrate until it reaches equilibrium. Thus, an optimal solution u of the
above optimization problem corresponds to a configuration in static equilibrium. Optimality conditions
then show that σ is “almost” a stress function for u, namely, (7.3) holds for all i ∈ V \ S.

The situation is a bit more complicated when we allow some entries of σ to be negative. Indeed, if
σij < 0, then we should interpret the edge ij as a strut pushing its ends further apart, but then the
contribution σij‖uj − ui‖2 of edge ij to the total potential energy Eσ(u) of the system is negative. This
might seem counterintuitive, but given the fact that edge ij is constantly pushing its ends apart, it somewhat
makes sense. The most important property that we must preserve for the above ideas to carry through is
that the energy function Eσ must have a minimum.

Let us briefly investigate for which functions σ : E → R the energy function Eσ has a minimum. Given
u : V → Rd, define a [d] × V matrix UT by setting UTei := ui for every i ∈ V . Let D be an arbitrary
orientation of G, i.e., D is any digraph whose underlying graph is G, and let BD denote the node-arc
incidence matrix of D. Then

Eσ(u) =

d∑
k=1

∑
ij∈E

(
[uj ]k − [ui]k

)
σij
(
[uj ]k − [ui]k

)
=

d∑
k=1

eTkU
TBD Diag(σ)BT

DUek = Tr
(
UTLG(σ)U

)
,

where we used the factorization

LG(z) = BD Diag(z)BT
D ∀z ∈ RE (7.4)

of the Laplacian LG of G.

Now it is easy to see that

Eσ has a minimum if and only if LG(σ) � 0. (7.5)

Indeed, suppose LG(σ) � 0. Then Eσ(u) ≥ 0 for every u : V → Rd, so u = 0 is a minimum of Eσ. Now
suppose hTLG(σ)h < 0 for some h ∈ RV . Set UT := e1h

T, and define u : V → Rd accordingly. Then
Eσ(u) = (hTLG(σ)h) Tr

(
e1e

T
1

)
< 0, so Eσ(λu)→ −∞ as λ→∞.

The previous concepts may be used to interpret the dual SDP (2.4). In fact, we will first look at the
following augmented SDP for hypersphere number:

t(G) = min
{
t : L∗H(X̂)− t1δH(0) = 1E(G), X ∈ S{0}∪V+ , t ∈ R

}
(7.6)
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where H denotes the cosum of G and the graph K{0}; see Subsection 2.3.1 for the definition of cosum.
Note that (7.6) really models t(G), and the only difference between this formulation of t(G) and the one
given by (2.3) is that here we do not insist that the hypersphere is centered at the origin. Thus, (7.6) has
an optimal solution. Moreover, since X̄ ⊕ t̄ = 1

2 (I ⊕ 1) is a Slater point of (7.6) and the dual SDP

max
{
〈1E(G), r〉 : r ∈ RE(H), LH(r) � 0, 〈−1δH(0), r〉 = 1

}
(7.7)

is feasible, it follows from SDP Strong Duality that there is no duality gap, and the dual has an optimal
solution. It should be easy to interpret (7.7) from our previous discussion of energy functions, by using the
change of variables σ = −r. Among all vectors σ : E(H)→ R giving rise to an energy function Eσ that has
a minimum, normalized so that 〈1δH(0), σ〉 = 1, choose one that minimizes 〈1E(G), σ〉.

Let X ⊕ t be an optimal solution for (7.6) and let r be an optimal solution for (7.7). Set σ := −r, write
X = UUT for some [d]× V (H) matrix UT, and put ui := UTei for every i ∈ V (H). By complementarity,
we have 0 = 〈LH(σ), UUT〉 = UTLH(σ)U , whence UTLH(σ) = 0. The latter equation is easily seen to be
equivalent to the fact that σ is a stress function for u.

It is easy to see how the augmented formulations (7.6) and (7.7) relate to the SDPs (2.3) and (2.4)
studied in Chapter 2. Namely, by writing r = −y ⊕ z, with y ∈ RV (G) and z ∈ RE(G), using the natural
correspondence between V (G) and δH(0), we have

LH(r) =

[
−〈ē, y〉 yT

y −Diag(y) + LG(z)

]
.

Thus, the rigidity interpretations using energy functions translate directly to the SDP (2.4). As before, the
parameters y ⊕ z which give rise to energy functions that have a minimum are precisely the ones for which
−Diag(y) +LG(z) � 0. Thus, (2.4) can be seen as the search for the “best” such parameters, normalized so
that 〈ē, y〉 = 1. Moreover, any optimal solution y ⊕ z for (2.4) also yields a stress function for any optimal
hypersphere representation of G, where we assume an extra node, corresponding to the single node of K{0},
has been placed at the origin.

The rigidity interpretation of (2.4) may be extended by regarding the constraint 〈ē, y〉 = 1 as an instance
of a general constraint of the form y ⊕ z ∈ P for some polyhedron P . The interpretation thus carries over
to the duals of the SDPs arising as the LHS of (2.50), and in particular to the dual SDPs for the variants t′
and t+ of the hypersphere number, defined in (2.60) and (2.63), respectively. In these cases, nonnegativity
or nonpositivity constraints on the dual variables require some edges rubber bands and others to be struts.
In all these cases, the automorphism group of the dual SDP acts transitively on the dual variables in y,
and its action on the edge variables is either transitive or, for the variant t+, it has only two orbits.

One way to write the MaxCut SDP used by Goemans and Williamson [52] on a graph G and with
weights given by w ∈ RE+ is

max
{
〈 14LG(w), X〉 : diag(X) = ē, X ∈ SV+

}
,

and its dual is
min

{
〈ē, y〉 : y ∈ RV , Diag(y) � 1

4LG(w)
}
.

This dual SDP also admits the rigidity interpretation where we require the variable y ⊕ z to lie in the
polyhedron RV ⊕ {w}.
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It would be desirable to find deeper connections between concepts from tensegrity theory, geometric
representations such as hypersphere and orthonormal representations, the Lovász theta function and the
MaxCut SDP, via SDP Duality. It is possible that, with an improved understanding of the dual SDPs for
some problems on graphs, more results of a polyhedral combinatorics flavor may be obtained in the context
of SDPs, and potentially for SDPs whose duals do not arise directly from graphs as well.
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Appendix A

Proofs for the Sake of Completeness

A.1 Ellipsoidal Numbers of Triangles

Our goal in this section is to provide a formula for the ellipsoidal number of K3, i.e., to prove that the upper
bound (3.48) from Proposition 3.13 is tight for n = 2. We shall reuse the notation set in the beginning of
Chapter 3.

The proof is long but rather pedestrian. It boils down to calculus applied to a formula for the radius of
the smallest circle enclosing a given triangle in the plane. The latter formula depends on which edge of the
triangle is longest. This dependence creates a complication, since it does not seem to play well with the
“smooth” functions we want to deal with to apply calculus.

To overcome this complication, we use a parametrization of the feasible region U2(K3) of E(K3; ·) for
which we always know which edge of our triangle is longest. In fact, we use the symmetries of the plane to
restrict ourselves to a subset of the full feasible region of E(K3; ·), which we show is enough.

The rest is just a long computation.

A.1.1 A Parametrization with a Known Longest Edge

Let us set the notation for the remainder of the section. The parametrization of U2(K3) that we will work
with is

U :=
{
R(θ)UT

0 + sēT : θ ∈ [0, π/3], s ∈ R2
}
, (A.1)

where

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
, ∀θ ∈ R, (A.2)

UT
0 :=

1

2

[
1 −1 0

0 0
√

3

]
. (A.3)
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Pay special attention to the range of θ in the definition of U . We shall show in Theorem A.3 below that we
may restrict our attention to U when computing E(K3; ·). For now, we content ourselves with identifying
the longest edge in a certain triangle arising from the parametrization given by U .

When reading the intermediate results in this section, the reader should keep in mind that our goal is
to compute E(K3; Diag(a, 1)) where a ∈ (0, 1).

Proposition A.1. Let a ∈ (0, 1) and A := Diag(a, 1). Let UT ∈ U and set PT := A1/2UT and pi := PTei
for i ∈ [3]. Then the longest edge of the triangle with vertex set {p1, p2, p3} is [p2, p3], i.e.,

‖p3 − p2‖2 ≥ ‖p2 − p1‖2 and ‖p3 − p2‖2 ≥ ‖p3 − p1‖2.

Proof. Let θ ∈ [0, π/3] and s ∈ R2 such that UT = R(θ)UT
0 + sēT. We have

PT =
1

2

[
a1/2 cos θ −a1/2 cos θ −

√
3a sin θ

sin θ − sin θ
√

3 cos θ

]
+A1/2sēT. (A.4)

Thus,

p2 − p1 =

[
−a1/2 cos θ
− sin θ

]
, (A.5a)

p3 − p1 =
1

2

[
−a1/2(

√
3 sin θ + cos θ)√

3 cos θ − sin θ

]
, (A.5b)

p3 − p2 =
1

2

[
−a1/2(

√
3 sin θ − cos θ)√

3 cos θ + sin θ

]
, (A.5c)

whence

‖p2 − p1‖22 = a cos2 θ + sin2 θ, (A.6a)

4‖p3 − p1‖22 = (3a+ 1) sin2 θ − 2
√

3(1− a) sin θ cos θ + (3 + a) cos2 θ, (A.6b)

4‖p3 − p2‖22 = (3a+ 1) sin2 θ + 2
√

3(1− a) sin θ cos θ + (3 + a) cos2 θ. (A.6c)

Thus, θ ∈ [0, π/3] ⊆ [0, π/2] implies that ‖p3 − p2‖22 − ‖p3 − p1‖22 =
√

3
2 (1− a) sin(2θ) ≥ 0.

Next note that

4
(
‖p3 − p2‖22 − ‖p2 − p1‖22

)
= (3a− 3) sin2 θ + 2

√
3(1− a) sin θ cos θ + (3− 3a) cos2 θ

= 3(1− a) cos(2θ) +
√

3(1− a) sin(2θ)

= 2
√

3(1− a) sin(2θ + π/3) ≥ 0,

where the last inequality holds since θ ∈ [0, π/3] implies 2θ + π/3 ∈ [0, π].

A.1.2 The Parametrization Contains an Optimal Representation

We need to describe some symmetries of the plane that allow us to focus on the parametrization given by U
instead of the full feasible region U2(K3). Recall that, for a permutation σ ∈ SymV of a finite set V , the
linear map Pσ : RV → RV is the linear extension of the map ei 7→ eσ(i). We shall use the standard cycle
notation for permutations.

133



Lemma A.2. Let x0 ∈ {±1}2, θ0 ∈ R, s0 ∈ R2, and σ0 ∈ Sym3. Set θ1 := θ0 − π/3. Then there exist
x1 ∈ {±1}2, s1 ∈ R2, and σ1 ∈ Sym3 such that

Diag(x0)R(θ0)UT
0 Pσ0 + s0ē

T = Diag(x1)R(θ1)UT
0 Pσ1 + s1ē

T. (A.7)

Proof. Set

D :=

[
1 0
0 −1

]
.

Using the fact that the sine function is odd and the cosine function is even, it is easy to check that, for
every θ ∈ R, we have

R(−θ)UT
0 = −DR(θ)UT

0 P(12), (A.8a)
R(θ)D = DR(−θ), (A.8b)

R(π3 )UT
0 = DUT

0 P(23) + s2ē
T (A.8c)

where s2 := (−1,
√

3)T/4.

Now using (A.8), we find that

Diag(x0)R(θ0)UT
0 Pσ0

+ s0ē
T = Diag(x0)R(θ1)R(π3 )UT

0 Pσ0
+ s0ē

T

= Diag(x0)R(θ1)
(
DUT

0 P(23) + s2ē
T
)
Pσ0

+ s0ē
T

= Diag(x0)DR(−θ1)UT
0 P(23)Pσ0

+ s3ē
TPσ0

+ s0ē
T

= Diag(−x0)R(θ1)UT
0 P(12)P(23)Pσ0

+ s1ē
T

where s3 := Diag(x0)R(θ1)s2 and s1 := s3 + s0. This completes the proof of (A.7).

Now we may finally state precisely what we mean when we say that it is enough to restrict our attention
to the subset U of the full feasible region U2(K3):

Theorem A.3. Let A ∈ S2
+ be diagonal. Then

E(K3;A) = inf
{
‖diag(UAUT)‖∞ : UT ∈ U

}
. (A.9)

Proof. Define
U ′ :=

{
Diag(x)UTPσ : x ∈ {±1}2, UT ∈ U , σ ∈ Sym3

}
.

Let us show that
U2(K3) = U ′. (A.10)

We first show ‘⊇’ in (A.10). Note that
U ⊆ U2(K3) (A.11)

since U0 ∈ U2(K3) and U2(K3) is closed under orthogonal transformations and shifts. Since U2(K3) is
also closed under permutation of columns, it follows that U ′ ⊆ U2(K3). For the reverse inclusion, let
UT ∈ U2(K3). Then there exists Q ∈ O2 and s0 ∈ R2 such that UT = QUT

0 + s0ē
T. Thus, for some
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x0 ∈ {±1}2, we know that UT is of the form UT = Diag(x0)R(θ0)UT
0 + s0ē

T, where 0 ≤ θ0 < 2π. Let
k ∈ Z+ be minimal such that 0 ≤ θ0 − kπ/3 < π/3. Then, by Lemma A.2, we find that

UT = Diag(x0)R(θ0)UT
0 I + s0ē

T = Diag(xk)R(θ − kπ/3)UT
0 Pk + skē

T.

This proves (A.10).

Now we will show that

inf
{
‖diag(UAUT)‖∞ : UT ∈ U

}
= inf

{
‖diag(UAUT)‖∞ : UT ∈ U ′

}
. (A.12)

The inequality ‘≤’ follows from (A.11) and (A.10). For the reverse inequality, let x ∈ {±1}d, UT ∈ U and
σ ∈ Sym3. Since diagonal matrices commute, the objective value of Diag(x)UTPσ in the RHS of (A.12) is

max
{
‖A1/2 Diag(x)UTPσei‖22 : i ∈ [n]

}
= max

{
‖Diag(x)A1/2UTei‖22 : i ∈ [n]

}
= max

{
‖A1/2UTei‖22 : i ∈ [n]

}
,

which is the objective value of UT ∈ U in the LHS of (A.12). This proves (A.12).

Since E(K3;A) = inf{ ‖diag(UAUT)‖∞ : UT ∈ U2(K3)} by definition, the theorem follows from (A.12)
and (A.10).

A.1.3 Reduction to Smallest Enclosing Circle

Now we show that we may formulate E(K3; ·) as a smallest enclosing circle problem.

Proposition A.4. Let A ∈ S2
++ be diagonal. Then

E(K3;A) = inf
θ∈[0,π3 ]

inf
{
t : ‖A1/2R(θ)UT

0 ei − c‖
2
2 ≤ t, ∀i ∈ [3], c ∈ R2, t ∈ R

}
. (A.13)

Proof. By Theorem A.3, we have

E(K3;A) = inf
{
t : ‖A1/2UTei‖22 ≤ t, ∀i ∈ [3], UT ∈ U

}
= inf

{
t : ‖A1/2R(θ)UT

0 ei +A1/2sēTei‖22 ≤ t, ∀i ∈ [3], θ ∈ [0, π3 ], s ∈ R2
}

= inf
{
t : ‖A1/2R(θ)UT

0 ei − c‖
2
2 ≤ t, ∀i ∈ [3], θ ∈ [0, π3 ], c ∈ R2

}
.

This completes the proof of (A.13).

Thus, given θ ∈ [0, π/3], the optimal value of t in the inner minimization problem of (A.13) is obtained
by finding the smallest enclosing circle containing the triangle whose vertices are the columns of the matrix

PT = A1/2R(θ)UT
0 . (A.14)

Next we provide an analytic solution for an arbitrary smallest enclosing circle problem.
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Proposition A.5 (Smallest Enclosing Circle). Let p1, p2, p3 ∈ R2 be affinely independent. Let c∗ ⊕ t∗ ∈
R2 ⊕ R be an optimal solution for

min{ t : ‖pi − c‖22 ≤ t, ∀i ∈ [3], c ∈ R2, t ∈ R}. (A.15)

Suppose that the triangle with vertex set {p1, p2, p3} has [p2, p3] as its longest edge, i.e., ‖p3 − p2‖2 ≥
‖p2 − p1‖2 and ‖p3 − p2‖2 ≥ ‖p3 − p1‖2. If

〈p1, p2 + p3 − p1〉 ≥ 〈p2, p3〉, (A.16)

then

t∗ =
‖p3 − p2‖22

4
. (A.17)

Otherwise,

t∗ =
‖p3 − p2‖22

4

[
1 +

(
〈p1, p2 + p3 − p1〉 − 〈p2, p3〉

〈d, p2 − p1〉

)2]
, (A.18)

where
d :=

[
0 −1
1 0

]
(p3 − p2). (A.19)

Proof. First note that (A.15) indeed has an optimal solution, as it may be equivalently formulated as the
unconstrained minimization over c ∈ R2 of the continuous and coercive function max{ ‖pi − c‖22 : i ∈ [3]}.

It is also clear that, at an optimal solution, there are at least two active constraints, say the ones
corresponding to points pi, pj ∈ {p1, p2, p3}. So c∗ lies at the perpendicular bisector of [pi, pj ]. If the
constraint of the other point is not active and c∗ is not the midpoint of [pi, pj ], then a perturbation argument
shows that c∗ is not optimal. Thus, either all three constraints are tight, or c∗ is the midpoint of an edge.
In either case, c∗ lies at the perpendicular bisector of [p2, p3], the longest edge. So c∗ is of the form

c∗ = cλ := m+ λd, λ ∈ R (A.20)

where m := 1
2 (p2 + p3). Moreover, t∗ = ‖p2 − c∗‖22. Hence,

t∗ = inf{ ‖p2 − cλ‖22 : ‖p1 − cλ‖22 ≤ ‖p2 − cλ‖22, λ ∈ R}. (A.21)

Since p2 −m ⊥ d, the objective function in (A.21) is:

‖p2 − cλ‖22 = ‖p2 −m− λd‖22 = ‖p2 −m‖22 + λ2‖d‖22 = ‖p3 − p2‖22
(

1
4 + λ2

)
.

The feasibility condition in (A.21) is:

‖p1 − cλ‖22 ≤ ‖p2 − cλ‖22 ⇐⇒ ‖p1‖22 − 2〈p1, cλ〉+ ‖cλ‖22 ≤ ‖p2‖22 − 2〈p2, cλ〉+ ‖cλ‖22
⇐⇒ ‖p1‖22 − 〈p1, p2 + p3〉 − 2λ〈p1, d〉 ≤ ‖p2‖22 − 〈p2, p2 + p3〉 − 2λ〈p2, d〉

⇐⇒ ‖p1‖22 − 〈p1, p2 + p3〉+ 〈p2, p3〉 ≤ 2λ〈p1 − p2, d〉.
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Hence, (A.21) may be rewritten as

t∗ = inf

{
‖p3 − p2‖22

(1

4
+ λ2

)
: ‖p1‖22 − 〈p1, p2 + p3〉+ 〈p2, p3〉 ≤ 2λ〈p1 − p2, d〉, λ ∈ R

}
. (A.22)

Note further that 〈p1 − p2, d〉 6= 0. For if p1 − p2 were orthogonal to d, then p1 − p2 would be parallel to
p3 − p2, which is orthogonal to d by construction, so that p1, p2, p3 would be affinely dependent.

Thus, (A.16) holds if and only if λ = 0 is feasible in (A.22), in which case t∗ is given by (A.17).
Otherwise, the optimal value is

‖p3 − p2‖22

[
1

4
+
(‖p1‖22 − 〈p1, p2 + p3〉+ 〈p2, p3〉

2〈d, p1 − p2〉

)2
]
,

which is equal to (A.18).

Define the functions f0, f1 : [0, π3 ]→ R by

f1(θ) :=
(1 + a) + (1− a) sin(2θ + π

6 )

8
,

f0(θ) := f1(θ)

(
1 +

( 1
2 (1− a)[2 sin(2θ + π

6 ) + 1]− 1)
2

3a

)
.

(A.23)

Let us apply Proposition A.5 to the triangle given by (A.13). We shall have occasion to apply Proposition A.1
that identified the longest edge of the triangle.

Proposition A.6. Let θ ∈ [0, π/3] and a ∈ (0, 1). Set A := [ a 0
0 1 ] and define PT as in (A.14). Let

c∗ ⊕ t∗ ∈ R2 ⊕ R be an optimal solution for (A.15) applied to p1, p2, p3, where pi := PTei for i ∈ [3]. If

2 sin(2θ + π
6 ) ≤ 1 + a

1− a
, (A.24)

then t∗ = f0(θ). Otherwise, t∗ = f1(θ). Moreover, if (A.24) holds with equality, then f0(θ) = f1(θ).

Proof. We apply Proposition A.5 together with Proposition A.1. Let x := 〈p1, p2 + p3 − p1〉 − 〈p2, p3〉. We
may use the same calculations for p2 − p1, p3 − p1, and p3 − p2 from (A.5). Using the fact that p1 = −p2,
we find that

2x = 2〈p1, p3 − 2p1〉+ 2〈p1, p3〉 = 4〈p1, p3 − p1〉

= −a cos2 θ − sin2 θ + sin θ cos θ(
√

3−
√

3a)

= (1− a)
√

3 sin θ cos θ − a cos2 θ + cos2 θ − 1

= (1− a)
[√

3 sin θ cos θ + cos2 θ
]
− 1

= (1− a)
[√

3
2 sin(2θ) + 1

2 (cos(2θ) + 1)
]
− 1

= (1− a)
[
sin(2θ + π

6 ) + 1
2

]
− 1

= 1
2 (1− a)

[
2 sin(2θ + π

6 ) + 1
]
− 1.

(A.25)
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Hence, x ≥ 0 is equivalent to 2 sin(2θ+ π
6 ) ≥ 1+a

1−a . Thus, if (A.24) does not hold, then by Proposition A.5
and (A.6), we have

16t∗ = 4‖p3 − p2‖22 = (1 + a) + 2a sin2 θ + 2 cos2 θ + 2
√

3(1− a) sin θ cos θ

= (1 + a) + 2a(1− cos2 θ) + 2 cos2 θ + 2
√

3(1− a) sin θ cos θ

= (1 + 3a) + 2(1− a) 1
2 (cos(2θ) + 1) +

√
3(1− a) sin(2θ)

= 2(1 + a) + 2(1− a)
(

1
2 cos(2θ) +

√
3

2 sin(2θ)
)

= 2
[
(1 + a) + (1− a) sin(2θ + π

6 )
]

= 16f1(θ).

(A.26)

So suppose that (A.24) holds. Define d as in (A.19), i.e.,

d :=
1

2

[
−
√

3 cos θ − sin θ

−a1/2(
√

3 sin θ − cos θ)

]
.

Then by Proposition A.5 and equations (A.25) and (A.26), we have

t∗ =
‖p3 − p2‖22

4

(
1 +

x2

3a/4

)
= f1(θ)

(
1 +

( 1
2 (1− a)[2 sin(2θ + π

6 ) + 1]− 1)
2

3a

)
= f0(θ). (A.27)

Finally, note that f0(θ) = f1(θ) if x = 0, i.e., if (A.24) holds with equality.

A.1.4 Calculus Application

Let us first compute a normalized version of E(K3; ·):

Theorem A.7. Let a ∈ (0, 1). Set

A :=

[
a 0
0 1

]
.

Then

E(K3;A) =
(a+ 3)

2

48
. (A.28)

Proof. By Propositions A.4 and A.6, we have

E(K3;A) = inf{ f(θ) : θ ∈ [0, π3 ]},

where

f(θ) :=

{
f0(θ) if 2 sin(2θ + π

6 ) ≤ 1+a
1−a ,

f1(θ) otherwise.

We first show that
E(K3;A) = inf{ f0(θ) : θ ∈ [0, π3 ]} (A.29)
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Let x := 1+a
1−a and note that x > 1. Let us solve the inequality 2 sin(2θ + π

6 ) > x for θ ∈ [0, π3 ]. Then
α := 2θ + π

6 ∈ [π6 ,
5π
6 ], so either the inequality 2 sin(α) > x has no solution, in which case (A.29) follows

trivially, or its solution set for α is (π2−ϕ,
π
2 +ϕ) for some ϕ ∈ [0, π3 ]. Hence, α = 2θ+ π

6 ∈ (π2−ϕ,
π
2 +ϕ) ⇐⇒

2θ ∈ (π3 − ϕ,
π
3 + ϕ) ⇐⇒ θ ∈ (π6 −

ϕ
2 ,

π
6 + ϕ

2 ) =: (θ0, θ1), so that θ0, θ1 ∈ [0, π3 ]. In this case, we have

f(θ) =

{
f1(θ) if θ ∈ (θ0, θ1),

f0(θ) otherwise.

Now 16f ′1(θ) = 4(1−a) cos(2θ+ π
6 ) and 16f ′′1 (θ) = −8(1−a) sin(2θ+ π

6 ). Thus, if θ ∈ (θ0, θ1), then sin(2θ+
π
6 ) > 0 and hence f ′′1 (θ) < 0. So the function f1 is concave on (θ0, θ1), and so inf{ f1(θ) : θ ∈ (θ0, θ1)} =
min{f1(θ0), f(θ1)}. However, at either θ0 or θ1, the functions f1 and f0 coincide by Proposition A.6, and it
is clear that f1(θ) ≤ f0(θ). These facts put together complete the proof of (A.29).

To compute (A.29), it suffices to compute f0(θ) at the stationary points of f0 in (0, π3 ) and the endpoints
of the interval [0, π3 ]. It is easy to check that 16af ′0(θ) = (1− a)3(4 sin2(2θ+ π

6 )− 1) cos(2θ+ π
6 ). Thus, the

stationary points of f0 in [0, π3 ] are {0, π6 ,
π
3 }. We have

f0(0) = f0(π3 ) =
(3 + a)

2

48
, f0(π6 ) =

(3a+ 1)
2

48a
.

The inequality f0(0) ≤ f0(π6 ) is equivalent to (1− a)3 ≥ 0. Thus, E(K3;A) = f0(0).

Now we can finally prove the general formula for E(K3; ·):

Theorem A.8. Let 0 < a < b. Then

E(K3; Diag(a, b)) =
(a+ 3b)2

48b
. (A.30)

Proof. Define a′ := a/b. Then by Theorem A.7 we have

E(K3; Diag(a, b)) = bE(K3; Diag(a′, 1)) = b
(a′ + 3)2

48
=

(a+ 3b)2

48b
.

A.2 Some Folklore Results

The next result establishes a well-known identity involving the optimal values of two conic optimization
problems related by a projective transformation. We provide a proof for the sake of completeness.

Lemma A.9. Let K ⊆ E be a pointed closed convex cone with nonempty interior. Let c ∈ K∗ \ {0} and
c′ ∈ int(K∗). Let A : E→ Y∗ be a linear transformation. Define the optimization problems

β := sup
{
〈c, x〉 : A(x) = 0, 〈c′, x〉 = 1, x ∈ K

}
, (A.31)

β′ := inf
{
〈c′, y〉 : A(y) = 0, 〈c, y〉 = 1, y ∈ K

}
(A.32)

and suppose both are feasible. Then β and β′ are both positive and attained, and ββ′ = 1.
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Proof. If y is feasible for (A.32), then y/〈c′, y〉 is feasible for (A.31) with positive objective value, whence
β > 0. Moreover, β is attained by continuity and compactness. Let x∗ be an optimal solution for (A.31).
Then y∗ := x∗/〈c, x∗〉 is feasible for (A.32) with objective value 1/β. If y is a feasible solution for (A.32),
then y/〈c′, y〉 is feasible for (A.31), so β ≥ 1/〈c′, y〉. Thus, 〈c′, y〉 ≥ 1/β = 〈c′, y∗〉, so y∗ is an optimal
solution for (A.32) and ββ′ = 1.

Theorem A.10. Let A ∈ Sn. Consider the optimization problem

max{xTAx : x ∈ Rn, ‖x‖ = 1}. (A.33)

Then every local optimal solution of (A.33) is also a global optimal solution.

Proof. Let x0 be a local optimal solution of (A.33). Let x1 ∈ Rn such that ‖x1‖ = 1 and Ax1 = λx1, where
λ := λmax(A). Assume that the set {x0, x1} is linearly independent; otherwise we are done. For each t ∈ R,
define

xt :=
x0 + tx1

‖x0 + tx1‖
and

f(t) := xTt Axt.

Then

f(t) =
xT0Ax0 + 2tλxT0x1 + t2λ

1 + 2txT0x1 + t2
,

so

f ′(0) = 2xT0x1
λ− xT0Ax0

(1 + 2txT0x1 + t2)
2 .

Thus, either xT0Ax0 = λ, in which case we are done, or we must have xT0x1 = 0. Assume the latter. Since

f(t) =
xT0Ax0 + t2λ

1 + t2
,

we find that
f ′′(0) = 2(λ− xT0Ax0).

From the fact that x0 is a local optimal solution for (A.33), we find that λ ≤ xT0Ax0, whence equality must
hold.
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