Novel High Voltage Electrodes for Liion Batteries by Rajesh Tripathi A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2013 © Rajesh Tripathi 2013 # **AUTHOR'S DECLARATION** | I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. | |--| | I understand that my thesis may be made electronically available to the public. | | Rajesh Tripathi | #### Abstract Li-ion batteries, as energy storage devices, have seen a remarkable improvement during the last two decades. The first and second generation of the positive electrode materials for Li-ion batteries, namely oxides and phosphates, were already known compounds in both in the mineralogical and chemical literature before being examined for their electrochemical properties. The latter compounds are known as the polyanion class of materials. Amongst them, the olivine LiFePO₄, which has a redox couple at 3.4 V vs Li, has been most extensively investigated due to its ease of synthesis and non-toxic properties. However, the understanding of the material's electrochemical behavior, especially why it can sustain such very high rates of discharge, is still not completely understood. Na-ion batteries, which operate on a similar principle as Li-ion batteries, are a very attractive alternative due to a relatively higher abundance of the sodium in nature. However, Na⁺ ion is larger, heavier and less electronegative than Li⁺ which significantly impacts Na⁺ intercalation behavior in transition metal oxides and polyanion materials. As a result, the search for suitable electrode materials for Na-ion battery has not been as successful as for Li-ion battery. An alternate family of "high" voltage (where the equilibrium voltage lies between 3.6 V and 4.2 V) polyanion cathode materials is reported in this thesis with the objective of improving specific energy density (Wh/kg) and developing a better understanding of polyanion electrochemistry. The electrochemical properties, synthesis and the structure of novel fluorosulfate materials crystallizing in the tavorite and the triplite type mineral structures are described. These materials display highest discharge voltages reported for any Fe²⁺/Fe³⁺ redox couple. LiFeSO₄F was prepared in both the tavorite and the triplite polymorphs using inexpensive and scalable methods. Complete structural characterization was performed using X- ray and neutron based diffraction methods. A rapid synthesis of fluorosulfates can be achieved by using microwave heating. The local rapid heating created by the microwaves generates nanocrystalline LiFeSO₄F tavorite with defects that induce significant microstrain. To date, this is unique to the microwave synthesis method. Phase transformation to the more stable triplite framework, facilitated by the lattice defects which include hydroxyl groups, is therefore easily triggered. The formation of nanocrystalline tavorite leads to nanocrystalline triplite, which greatly favors its electrochemical performance because of the inherently disordered nature of the triplite structure. Direct synthesis of the electrochemically active triplite type compound can be carried out either by extending the duration of the solvothermal reactions or by the partial substitution of Fe by Mn to produce LiFe_{1-x}Mn_xSO₄F. This study, overall, has led to a better understanding of the transformation of tavorite to the triplite phase. To examine Li and the Na ion conduction and their correlation with the electrochemical performance of 3-D, 2-D and 1-D ion conductors, atomistic scale simulations have been used to investigate tavorite type LiFeSO₄F, NaFeSO₄F, olivine type NaMPO₄ (M= Fe, Mn, Fe_{0.5}Mn_{0.5}) and layered Na₂FePO₄F. These calculations predict high mobility of the Li-ion in the tavorite type LiFeSO₄F but sluggish Na-ion transport in iso-structural NaFeSO₄F. High mobility of the Na-ion is predicted for phosphate layered and olivine structures. Finally, the synthesis and structural details of NaMSO₄F (M=Fe, Mn) and NH₄MSO₄F (M=Fe, Mn) are presented in the last chapter to show the structural diversity present in the fluorosulfate family. #### **Acknowledgements** I am indebted to my supervisor Professor Linda F. Nazar for her input and guidance. Her approach towards science and materials discovery, particularly, her emphasis on independent thinking has greatly inspired, motivated and shaped my approach for the last few years. I would like to thank my PhD committee members Professor Holger Kleinke, Professor Pavle Radovanovic and Professor Dmitriy Soldatov (University of Guelph) for their time and guidance during this period. I am grateful to Professor M. Saiful Islam (University of Bath, UK) for a very fruitful collaboration and guidance in atomistic scale simulation studies. I am very thankful to Dr. Ashfia Huq (Oak Ridge National Lab, USA) for assistance in neutron diffraction studies. I would also thank Professor Jeffrey Dahn from Dalhousie University and Professor Zhongwei Chen from the Chemical Engineering department for their time being the external committee members. I would also like to extend my sincere thanks to Dr. Guerman Popov, Dr. Brian Ellis, Dr. Ramesh Aditya, Dr. Prakash Badi, Dr. Xiulei Ji, Dr. Guang He, Dr. Grahame Gardiner (University of Bath, U.K.), Xiaoqi Sun, Elahe Talaie Pashiri, Stepehen M. Wood (University of Bath, U.K.) and many more current and previous lab members for their support and assistance during these years. I would like to thank my friends Vishal, Kammy, Puneet, Pragya, Avishek, Aishwarya Ajay, Swati, and many others in Waterloo for their continuous support and positive spirit without which I could not have succeeded. Last but not the least; I am very thankful to my wife Mamta not only for her encouragement and support but also for making this process very eventful. # अम्मा और बाबूजी को समर्पित Dedicated to My Parents ## **Table of Contents** | | Lis | st of figuresxi | ĺ | |---|-------------------------|-------------------------------------|-----| | | Lis | st of tablesxx | | | | Lis | st of Abbreviationsxxii | i | | | | | | | C | Chapter 1. Introduction | | | | | 1.1 | Energy Storage | . 1 | | | 1.2 | Li-Based Batteries | . 2 | | | 1.2.1 | Positive Electrodes | . 4 | | | 1.2.2 | Negative Electrodes | 24 | | | 1.3 | Na- Ion Batteries | 26 | | | 1.4 | Scope of the Thesis | 31 | | C | hapter 2 | 2. Methods and techniques | 33 | | | 2.1. | Introduction | 33 | | | 2.2. | Synthesis Techniques | 34 | | | 2.2.1. | Conventional Tolvothermal Synthesis | 34 | | | 2.2.2. | Microwave Solvothermal Synthesis | 35 | | | 2.3. | Characterization Techniques | 36 | | | 2.3.1. | Diffraction Techniques | 36 | | | 2.3.1.1. | Powder X-ray Diffraction | 38 | | | 2.3.1.2. | Time of Flight Neutron Scattering | 40 | |---|-----------|---|----| | | 2.3.2. | Structure Refinement | 41 | | | 2.4. | Electron Microscopy | 43 | | | 2.5. | Thermal Analysis | 43 | | | 2.6. | Infrared Spectroscopy | 43 | | | 2.7. | Electrochemical Characterization | 44 | | | 2.8. | Simulation Methods | 44 | | (| Chapter 3 | 3. Synthesis and electrochemistry of Li-transition-metal fluorosulfates | 48 | | | 3.1. | Introduction | 49 | | | 3.2. | Experimental | 50 | | | 3.2.1. | Synthesis | 50 | | | 3.2.1.1. | MSO ₄ ·H ₂ O | 50 | | | 3.2.1.2. | Tavorite -Type-LiMSO ₄ F: | 50 | | | 3.2.1.2. | 1. Conventional Solvothermal (ST) | 51 | | | 3.2.1.2.2 | 2. Microwave Solvothermal (MW) | 52 | | | 3.2.1.3 | Triplite-Type-LiMSO ₄ F | 53 | | | 3.2.1.3. | 1. Conventional Solvothermal (ST) | 53 | | | 3.2.1.3.2 | 2. Microwave Solvothermal (MW) | 53 | | | 3.3. | Results and Discussion | 54 | | | 3.3.1. | Szomolnokite (FeSO ₄ ·H ₂ O) | 54 | |---|------------|--|-----| | | 3.3.2. | Tavorite-Type-LiMSO ₄ F | 55 | | | 3.3.3. | Triplites-Type-LiMSO ₄ F: | 62 | | | 3.3.4. | Chemical Delithiation of LiFeSO ₄ F | 76 | | | 3.3.5. | Impact of Moisture Exposure | 78 | | | 3.3.6. | Electrochemistry | 80 | | | 3.3.6.1. | Tavorite-Type-LiFeSO ₄ F | 80 | | | 3.3.6.2. | Triplite-Type-Li(Fe,Mn)SO ₄ F | 80 | | | 3.3.7. | Origin of the Voltage Increase: | 88 | | | 3.3.8. | Origin of the Phase Transition | 89 | | | 3.4. | Conclusions | 92 | | (| Chapter 4. | Alkali-ion conduction in tavorite, layered and olivine type structures | 94 | | | 4.1. | Introduction | 94 | | | 4.2. | Method | 97 | | | 4.3. | Results and Discussion | 100 | | | 4.3.1. | Crystal Structure and Potential | 100 | | | 4.3.2. | Intrinsic Atomic Defects | 107 | | | 4.3.3. | Li-ion Migration in Tavorite-Type-LiFeSO ₄ F | 110 | | | 4.3.4. | Na- ion Migration in Tavorite-Type-NaFeSO ₄ F | 111 | | | 4.3.5. | Na-ion Migration in Olivine NaMPO ₄ (M=Fe, Mn, Fe _{0.5} Mn _{0.5}) | . 118 | |---|-----------|---|---------------| | | 4.3.6. | Na-ion Migration in Layerd Na ₂ FePO ₄ F | . 119 | | | 4.3.7. | Estimation of Diffusion Coefficient | . 125 | | | 4.3.8. | Electrochemical Behavior vs. Ionic Conduction | . 125 | | | 4.4. | Conclusions | . 127 | | (| Chapter 5 | . Synthesis and crystal structures of AMSO ₄ F (A= Na, NH ₄ , M=Fe, Mn) | . 130 | | | 5.2. | Experimental | . 131 | | | 5.3. | Results and Discussion | . 132 | | | 5.3.1. | NaFeSO ₄ F | . 132 | | | 5.3.2. | Electrochemistry of NaFeSO ₄ F | . 138 | | | 5.3.3. | NaMnSO ₄ F | . 138 | | | 5.3.4. | NH ₄ FeSO ₄ F and NH ₄ MnSO ₄ F | . 142 | | | 5.4. | Conclusions | . 149 | | (| Chapter 6 | 5. Summary And Future Outlook | . 1 50 | | | Lis | t of
publications | .154 | | | Ref | ferences | 155 | ## **List of Figures** | Figure 1.1 | Schematic energy diagram in a working Li-ion battery. E _c and E _v represent | |-------------|---| | | conduction and valence band of the electrolyte respectively; E_{g} represents the | | | difference between HOMO and LUMO in the electrolyte; φ_c and φ_a are the work | | | functions of the cathode and anode respectively and V is the voltage of the cell. SEI | | | represents the solid-electrolyte interface | | Figure 1.2 | Various Li-ion cell assemblies: a) cylindrical cell, b) prismatic cell, c) coin cell, and | | | d) a flexible cell made of plastic electrodes and electrolyte | | Figure 1.3 | Electrochemical charge-discharge curve of Li _x TiS ₂ | | Figure 1.4 | Electrochemical charge-discharge curve of Li _x V ₂ O ₅ | | Figure 1.5 | V ₂ O ₅ framework transformation on initial Li insertion; red polyhedra represent VO ₅ | | | square pyramids. Note that the Li atoms have been removed. Drawn with VESTA | | | using CIF files obtained from ICSD database | | Figure 1.6 | View of the structures of a) $LiCoO_2$ and b) $LiTiS_2$ along b -axis. Black atoms | | | represent Li ions, red-oxygen, yellow-sulfur, blue and cyan - transition metals 9 | | Figure 1.7 | Electrochemical charge-discharge curve of Li _x CoO ₂ | | Figure 1.8 | Density of states vs. energy diagram of Li _x MO ₂ | | Figure 1.9 | a) Unit cell of spinel LiMn ₂ O ₄ projected on a 2-D plane, pink atoms represent Mn, | | | red-O and black-Li; b) framework showing Li -ion diffusion channels. Drawn with | | | VESTA using CIF files obtained from ICSD database | | Figure 1.10 | Electrochemical charge-discharge curve of Li _x Mn ₂ O ₄ | | Figure 1.11 | Li-Mn-O Phase diagram. An expanded view of the phase triangle MnO-Li ₂ MnO ₃ . | |-------------|---| | | λ -MnO ₂ is shown on the right | | Figure 1.12 | Dependence of Li intercalation voltage on framework and the nature of the | | | polyanion in various phosphates and sulfates | | Figure 1.13 | Atom distribution in the a) unit cell of olivine LiFePO ₄ , grey atoms are Fe, light | | | pink - P, red-O and black-Li; b) framework showing Li-ion tunnel. Drawn with | | | VESTA using CIF files obtained from ICSD database | | Figure 1.14 | Electrochemical charge-discharge curve of carbon coated Li _x FePO ₄ | | Figure 1.15 | Charge-discharge mechanism in a spherical LiFePO ₄ particle | | Figure 1.16 | Electrochemical charge-discharge curve of carbon coated Li ₂ FeSiO ₄ | | Figure 1.17 | Electrochemical charge-discharge curve of Li _{1+x} FePO ₄ F | | Figure 1.18 | Electrochemical charge-discharge curve of Na _x CoO ₂ . Inset shows an expanded | | | view of the curve. A 2D projection of the structure of NaCoO ₂ is also shown. The | | | numbers indicate different phases formed during Na-intercalation | | Figure 1.19 | Electrochemical charge-discharge curve of Na _x FePO ₄ F | | Figure 1.20 | Electrochemical charge-discharge curve of olivine Na _x Fe _{0.5} Mn _{0.5} PO ₄ | | Figure 2.1 | Conventional solvothermal reaction container setup | | Figure 2.2 | Anton Parr microwave system | | Figure 2.3 | A representative plot for temperature and pressure increase during a microwave | | | reaction. The data was obtained during the reaction using internal probes 37 | | Figure 2.4 | Bragg scattering of X-rays from a parallel plane of atoms | | Figure 3.1 | X-ray diffraction pattern of FeSO ₄ ·H ₂ O. Black bars indicate the characteristic peak | |------------|--| | | positions of the pure product derived from the cif file | | Figure 3.2 | Thermo-gravimetric analysis curve of FeSO4·H2O | | Figure 3.3 | Comparison of szomolnokite and tavorite structures. FeO ₆ (in FeSO ₄ ·H ₂ O) and | | | FeO ₄ F ₂ (in LiFeSO ₄ F) coordination polyhedra are shown in brown. SO ₄ ²⁻ tetrahedra | | | are in yellow. Oxygen atoms are shown in red and fluorine atoms in grey 57 | | Figure 3.4 | Powder X-ray diffraction refinement of tavorite type LiFeSO ₄ F prepared via | | | conventional solvothermal method. Black points represent experimental data, red | | | solid lines show fitted data while blue lines show the difference map between | | | observed and calculated data. Black bars indicate the phase markers. X-ray | | | diffraction agreement factors: $R_{\rm wp} = 8.94\%$, $R_{\rm p} = 6.95\%$, $R_{\rm F}^2 = 7.25\%$ | | Figure 3.5 | SEM images of the tavorite type LiFeSO ₄ F prepared by conventional solvothermal | | | method. 61 | | Figure 3.6 | EDX spectra of LiFeSO ₄ F61 | | Figure 3.7 | X-ray diffraction pattern of tavorite LiFeSO ₄ F prepared via microwave solvo- | | | thermal method. Black bars indicate the peak positions for the tavorite phase 63 | | Figure 3.8 | SEM images of the tavorite LiFeSO ₄ F product obtained by microwave assisted | | | solvothermal method | | Figure 3.9 | X-ray diffraction patterns of LiF and FeSO ₄ ·H ₂ O mixture in TEG obtained at | | | different reaction time under conventional solvothermal reaction conditions: a) 2- | | | days of reaction time; b) 7-days of reaction time; b) 14-days of reaction time; d) | | | representation of tavorite crystal structure; f) representation of triplite crystal | | | structure; FeO_4F_2 octahedra are represented in brown and SO_4 tetrahedra in | |-------------|---| | | yellow | | Figure 3.10 | X-ray patterns of various triplite compounds prepared under conventional | | | solvothermal conditions | | Figure 3.11 | SEM images of various triplite LiFe _{1-x} (Mn,Zn) _x SO ₄ F ($0 \le x < 1$) obtained \emph{via} a | | | conventional solvothermal method; a) and b) triplite LiFeSO ₄ F; c) triplite | | | $LiFe_{0.8}Mn_{0.2}SO_4F; d) \ LiFe_{0.8}Zn_{0.2}SO_4F \\ 67$ | | Figure 3.12 | Comparison of X-ray diffraction pattern of triplite LiFeSO ₄ F prepared by a) heating | | | tavorite LiFeSO ₄ F obtained from microwave synthesis at 350°C for 1 hr under Ar. | | | b) extending conventional solvothermal synthesis for 2 weeks c) heating tavorite | | | LiFeSO ₄ F obtained by conventional solvothermal at 350°C for 12 hr under Ar. | | | Asterisk (*) represents oxide and sulfide impurity peaks | | Figure 3.13 | Powder X-ray diffraction refinement of the triplite type LiFeSO ₄ F obtained by | | | microwave assisted process. Black points represent experimental data, red solid | | | lines show fitted data while blue lines show the difference map between observed | | | and calculated data. Black bars indicate phase markers. X-ray diffraction | | | agreement factors: $R_{wp} = 3.16\%$, $R_p = 1.34\%$, $\chi^2 = 3.15$ | | Figure 3.14 | SEM images of triplite type LiFeSO ₄ F obtained by microwave assisted process 71 | | Figure 3.15 | Combined X-ray and neutron refinement of LiFe _{0.8} Mn _{0.2} SO ₄ F. Black points | | | represent experimental data, red solid lines show fitted data while blue lines show | | | the difference man between observed and calculated data. Black bars indicate | | | phase markers. X-ray diffraction agreement factors: $R_{wp} = 2.33\%$, $R_p = 1.56\%$, χ^2 | |-------------|---| | | = 5.90 | | Figure 3.16 | Refinement of (λ = 0.4122 Å) of FeSO ₄ F structure from PXRD of FeSO ₄ F obtained | | | via chemical delithiation of tavorite LiFeSO ₄ F. Black points represent | | | experimental data, red solid lines show fitted data while blue lines show the | | | difference map between observed and calculated data; red bars indicate phase | | | markers. X-ray diffraction agreement factors: $R_{wp} = 10.30\%$, $R_p = 8.07$, $R_F^2 = 9.55$ 77 | | Figure 3.17 | X-ray refinement of moisture exposed triplite LiFeSO ₄ F. Black points represent | | | experimental data, red solid lines show fitted data while blue lines show the | | | difference map between observed and calculated data; Black and red bars represent | | | peak positions for triplite and szomolnokite phases. X-ray diffraction agreement | | | factors: $R_{wp} = 2.23\%$, : $R_p = 1.53\%$, $\chi^2 = 4.01$ 79 | | Figure 3.18 | Electrochemical charge-discharge curve of tavorite type LiFeSO ₄ F (rate: C/10, | | | active materials 80%, Super P: 20%). Inset shows capacity retention | | Figure 3.19 | Electrochemical charge-discharge curve of triplite LiFe _{0.9} Mn _{0.1} SO ₄ F (rate: C/10, | | | active materials 70%, Super P:30%) | | Figure 3.20 | Electrochemical charge-discharge curve of triplite LiFe _{0.9} Zn _{0.1} SO ₄ F (rate: C/20, | | | active materials 70%, Super P:30%) | | Figure 3.21 | Electrochemical charge-discharge curve of triplite LiFeSO ₄ F prepared via | | | microwave assisted synthesis process (rate: C/20, active materials 80%, Super P | | | :20%). Inset shows the capacity retention after cycling | | Figure 3.22 | Comparison between electrochemical charge-discharge curve of triplite LiFeSO ₄ F | |-------------|---| | | prepared by extended conventional solvothermal and microwave assisted process | | | (rate: C/20, active materials 80%, Super P :20%) | | Figure 3.23 | Differential capacities vs. voltage curves for tavorite and triplite LiFeSO4F. Blue, | | | red and black curves show 2nd, 5th and 10th cycles respectively | | Figure 3.24 | FT-IR spectra collected for a) tavorite prepared by conventional solvothermal b) | | | tavorite prepared by microwave solvothermal and c)
triplite prepared by heating | | | microwave tavorite sample | | Figure 3.25 | TGA curve for triplite (red) tavorite (blue) LiFeSO ₄ F | | Figure 3.26 | Comparison of unit cell volumes of tavorite and triplite; b) Phase transition | | | mechanism in MW-LiFeSO ₄ F | | Figure 4.1 | Schematic illustrating the various Li distances in tavorite LiFeSO ₄ F along the | | | primary tunnels a). [100] and b). [010]. The preferable Li ion hopping paths are | | | shown where each color belongs to a unique hop with distinct activation energy. | | | Corresponding long range transports within the lattice are shown in c) and d). e) | | | and f) show coordination polyhedra around Li and hopping window for Li-ion | | | migration. The same color code is followed as in (a) | | Figure 4.2 | Schematic showing the various Na-Na distances in NaFeSO ₄ F along the primary | | | tunnels a) [110] or [-110]. Preferable Na ion hopping paths are depicted in color, | | | where each color belongs to an unique hopping activation energy; b) | | | Corresponding long range transport within the lattice; c) coordination polyhedra | | | around Na site and corresponding nopping window for Na-ion diffusion. Same | |------------|---| | | color code is followed as in (a) | | Figure 4.3 | Full view of the structure and ion conduction pathways: 3D Li ion conduction in | | | LiFeSO ₄ F | | Figure 4.4 | Full view of the structure and ion conduction pathways : 1D Na ion conduction in | | | NaFeSO ₄ F | | Figure 4.5 | a) Unit cell of olivine type NaFePO ₄ (brown polyhedra: FeO ₆ and yellow polyhedra: | | | PO ₄) and Na-Na distance along b-axis b) tunnel dimensions for olivine NaFePO ₄ | | | are (numbers in brackets show these lengths for isostructural LiFePO ₄). c) | | | coordination polyhedra (dark grey) around Na-site and hopping window for long | | | range Na migration along <i>b</i> -axis in olivine NaMPO ₄ | | Figure 4.6 | Na ion migration path along <i>b</i> -axis in olivine NaMPO ₄ . Black spheres represent Na | | | atom sites in the olivine structures and most facile pathway for Na-ion hopping is | | | represented by green colored atoms. MO ₆ and PO ₄ polyhedra are represented in | | | grey and yellow color respectively | | Figure 4.7 | a) Unit cell of layered Na ₂ FePO ₄ F (grey polyhedron: FeO ₆ and yellow polyhedron: | | | PO ₄) and Na-Na distance (cutoff distance: 4Å) b) Fe and Na layers in layered | | | Na ₂ FePO ₄ F. Coordination polyhedron around Na-site in Na ₂ FePO ₄ F and examples | | | of hopping window for long range Na migration path c) along a-axis; and d) along | | | <i>c</i> -axis | | Figure 4.8 | Na-ion migration path along a and c -axes in Na ₂ FePO ₄ F, octahedra FeO ₄ F ₂ and | | | tetrahedra PO ₄ are represented by grey and yellow color respectively. a) along <i>c</i> - | | | axis; long range migration path is formed by combination N4-N3-N6. b) along a - | |------------|--| | | axis Na-ions migrate by a combination of N3-N5 hops | | Figure 5.1 | a) PXRD pattern of NaFeSO ₄ F. Black points represent experimental data, red solid | | | lines show fitted data while blue lines show the difference map between observed | | | and calculated data. Blue bars indicate the phase markers. X-ray diffraction | | | agreement factors: $R_{wp} = 2.91\%$, $R_p = 2.19\%$ $\chi^2 = 2.11$ b) unit cell of NaFeSO ₄ F | | | obtained from the refinement (grey octahedra: FeO ₄ F ₂ , yellow tetrahedra: SO ₄ , red | | | atoms: O, black atoms: Na) | | Figure 5.2 | Electrochemical charge-discharge curve of tavorite NaFeSO ₄ F (rate: C/20, active | | | materials 80%, Super P: 20%). | | Figure 5.3 | a) PXRD pattern of NaMnSO ₄ F Black points represent experimental data, red solid | | | lines show fitted data while blue lines show the difference map between observed | | | and calculated data. Blue bars indicate the phase markers. X-ray diffraction | | | agreement factors: $R_{wp} = 3.49\%$, $R_p = 2.53\%$ $\chi^2 = 2.14$. b) unit cell of NaMnSO ₄ F | | | obtained from the refinement (pink octahedra: (Mn, Na)O ₄ F ₂ , yellow tetrahedra: | | | SO ₄ , pink atoms: Mn, black atoms: Na), | | Figure 5.4 | a) PXRD pattern of NH ₄ FeSO ₄ F Black points represent experimental data, red solid | | | lines show fitted data while blue lines show the difference map between observed | | | and calculated data. Blue bars indicate the phase markers. X-ray diffraction | | | agreement factors: R_{wp} =4.27%, $R_p = 1.92\%$ $\chi^2 = 2.22$ b) unit cell of NH ₄ FeSO ₄ F | | | obtained from the refinement(grey octahedra: FeO ₄ F ₂ , yellow tetrahedra: SO ₄ , red | | | atoms: O, black tetrahedra :NH ₄ ⁺), | ### **List of Tables** | Table 3.1 | Structural data obtained by refinement from powder XRD pattern of the tavorite | |-----------|--| | | type LiFeSO ₄ F prepared <i>via</i> conventional solvothermal methods | | Table 3.2 | Bond lengths obtained by refinement from powder XRD pattern of tavorite | | | LiFeSO ₄ F prepared <i>via</i> conventional solvothermal methods | | Table 3.3 | Structural data obtained by refinement from powder XRD pattern of triplite | | | LiFeSO ₄ F72 | | Table 3.4 | Summary of bond lengths obtained by refinement from PXRD of triplite-type- | | | LiFeSO ₄ F73 | | Table 3.5 | Refined structural parameters of LiMnSO ₄ F, LiFe _{0.5} Mn _{0.5} SO ₄ F, LiFe _{0.8} Mn _{0.2} SO ₄ F | | | and LiFe _{0.9} Mn _{0.1} SO ₄ F. Rietveld analyses of powder neutron and X-ray diffraction | | | data were done in the $C2/c$ space group with all atoms in general positions 75 | | Table 3.6 | Structural data of FeSO ₄ F synthesized by chemical delithiation of tavorite type | | | LiFeSO ₄ F | | Table 4.1 | Short range potential parameters for tavorite (LiFeSO ₄ F and NaFeSO ₄ F) | | Table 4.2 | Short-Range Potential Parameters for olivine type Na[Fe,Mn]PO ₄ and layered | | | Na_2FePO_4F | | Table 4.3 | Calculated and experimental structural parameters for AFeSO ₄ F (A=Li, Na) 102 | | Table 4.4 | Calculated and experimental structural parameters for layered Na ₂ FePO ₄ F and | | | olivine type NaFePO ₄ 103 | | Table 4.5 | Comparison of selected bond lengths of experimental and calculated tavorite | |-------------------|---| | | LiFeSO ₄ F structure | | Table 4.6 | Comparison of selected bond lengths of experimental and calculated tavorite | | | NaFeSO ₄ F structure | | Table 4.7 | Comparison of selected bond lengths of experimental and calculated layered | | | Na ₂ FePO ₄ F structure 106 | | Table 4.8 | Comparison of selected bond lengths of the experimental and calculated olivine | | | NaFePO ₄ structure | | Table 4.9 | Energies of formation of intrinsic defects in AFeSO ₄ F (A=Li, Na): | | Table 4.10 | Energies of formation of intrinsic defects in Na ₂ FePO ₄ F and NaFePO ₄ 110 | | Table 4.11 | Calculated activation energies for most favorable paths of alkali ion migration in | | | LiFeSO ₄ F | | Table 4.12 | Calculated activation energies for most favorable paths of alkali ion migration in | | | NaFeSO ₄ F | | Table 4.13 | Calculated activation energies for most favorable paths of alkali ion migration in | | | Na-olivines | | Table 4.14 | Calculated activation energies for the most favorable paths of alkali ion migration in | | | layered Na ₂ FePO ₄ F. 122 | | Table 5.1 | Structural data obtained by refinement from powder XRD pattern of tavorite type | | | NaFeSO ₄ F | | Table 5.2 | Selected bond lengths obtained by refinement from powder XRD pattern of tavorite | |-----------|---| | | type NaFeSO ₄ F | | Table 5.3 | Structural data obtained by refinement from powder XRD pattern of triplite type | | | NaMnSO ₄ F | | Table 5.4 | Selected Bond lengths obtained by refinement from powder XRD pattern of triplite | | | type NaMnSO ₄ F | | Table 5.5 | Structural data obtained by refinement from powder XRD pattern of NH ₄ FeSO ₄ F | | | | | Table 5.6 | Selected bond lengths obtained by refinement from powder XRD pattern of triplite | | | NH ₄ FeSO ₄ F | | Table 5.7 | Structural data obtained by refinement from powder XRD pattern of NH ₄ MnSO ₄ F | | | | | Table 5.8 | Selected bond lengths obtained by refinement from powder XRD pattern of | | | NH_4MnSO_4F | ### **List of Abbreviations** | RD X-ray diffraction | XRD | |--|---------| | RD Powder X-ray diffraction | PXRD | | Time of flig | TOF | | EG Tetraethylene glyc | TEG | | Microwa Microwa | MW | | ST Solvotherm | ST | | YST Microwave solvotherm | MWST | | EM Scanning electron microscop | SEM | | DX Energy dispersive X-ray spectroscop | EDX | | ΓΙR Fourier transform infrared spectroscop | FTIR | | Sodium Iron Fluorosulphate (NaFeSO ₄ | NSF | | Lithium Iron Fluorosulphate (LiFeSO ₄ | LSF | | SF Microwave prepared Lithium Iron Fluorosulfate (LiFeSO ₄ | MWLSF | | SF Lithium Iron Fluorosulfate (LiFeSO ₄ F) by conventional solvothermal heating | STLSF | | b, c Crystallographic ax | a, b, c | | E _a Activation energy | E_a | | SG Space grou | SG | # Chapter 1 ## Introduction #### 1.1 Energy Storage Due to an increased emphasis on the production and use of pollution free energy along with the tremendous growth pattern in many developing countries, the demand for electrical energy storage is projected to double by 2050. The current energy distribution and storage system will not be able
to fulfill these requirements. Additionally, fossil fuel based energy sources create environmental problems and now it is widely recognized that any future energy scenario must exclude environmentally unfavorable options.² Nuclear energy is increasingly recognized as unsafe, and geothermal energy can be harnessed only at certain locations. The most abundant and unused energy sources are wind and solar energy but they need to have a strong backup of energy storage to become a reliable source of supply. Energy storage will be required in a modern grid system for load leveling. Powerful energy storage systems are also needed to power the next generation of electric and hybrid electric vehicles. Here, the requirement is urgent due to the threats of environmental instability. Each of these requirements imposes certain restrictions on the mode and methods of energy storage. Unlike mobile devices, grid scale storage places less emphasis on the energy stored per unit of weight,³ but stability requirements are more stringent. A long stable life, high specific energy density and lower cost are all considerations that must be explored for the replacement of fossil fuel driven automobiles.¹ Technological innovations, in combination with fundamental scientific discoveries of the last two decades, have created an enormous change in energy storage and how it is used in our daily life. Today, all electronic gadgets are powered by batteries. Indeed, it is the success of batteries in small scale energy storage which has caused them to be looked upon as the likely, and perhaps the only, solution to the current energy storage crisis. Among these, Li-ion batteries currently dominate the energy storage market because of their light-weight and high specific energy density. Na-ion batteries operate on the similar principle as Li-ion and they are projected as the best candidates for the grid scale storage. The development of some of the positive and negative electrodes for these battery systems are described below. #### 1.2 Li-Based Batteries The most electropositive and the lightest metal in the periodic table, lithium is found in nature in the form of two isotopes ⁶Li and ⁷Li. The most abundant isotope ⁷Li is about 92.5% of all atoms. Lithium has high mobility in many inorganic solids and can be easily and reversibly intercalated in many complex 1-D, 2-D and 3-D structures. In a Li-metal battery (or Li-battery), the negative electrode is Li metal and the positive electrode is generally a crystalline material which can reversibly intercalate Li⁺ ions. Li is deposited or stripped from the negative electrode during the charge and discharge. In a Li-ion battery, both the electrodes are intercalation materials. Electrolytes generally contain a Li-salt in an organic solvent to ensure good conductivity of Li-ions as well as wide electrochemical stability window. Figure 1.1 demonstrates schematic energy diagram in the electrodes and the electrolyte of a Li (ion) cell. The difference between HOMO and LUMO electronic states of the electrolyte provides a region where no electron transfer can take place between electrodes and the electrolyte which is an essential criteria for the thermodynamic stability of the cell.⁴ This means that the Fermi level of the electrodes must lie within the this gap Eg of the electrolyte (Figure 1.1). Therefore, the maximum voltage of a Li (ion) cell is limited by the electrolyte and determined by the Fermi energy level of the electrodes. The difference between the Fermi level (or work function) of the two electrodes is the voltage of the cell (e is the magnitude of electronic charge and ϕ the work function): $$\Delta V = (\phi_{positive\text{-}electrode} - \phi_{negative\text{-}electrode})/e$$ **Figure 1.1** Schematic energy diagram in a working Li-ion battery.4 E_c and E_v represent conduction and valence band of the electrolyte respectively; E_g represents the difference between HOMO and LUMO in the electrolyte; ϕ_c and ϕ_a are the work functions of the cathode and anode respectively and V is the voltage of the cell. SEI represents the solid-electrolyte interface. As shown in **Figure 1.2**, Li-ion cells can be assembled in cylinder, prism and coin geometries. Plastic Li-ion technology provides the added advantage of flexibility. The following sections provide a detailed structural and electrochemical description of the Li-ion battery electrode materials with added emphasis on the positive electrode. **Figure 1.2** Various Li-ion cell assemblies⁵: a) cylindrical cell, b) prismatic cell, c) coin cell and, d) a flexible cell made of plastic electrodes and electrolyte #### 1.2.1 Positive Electrodes Intercalation chemistry is at the root of the current generation of Li-ion batteries. Intercalation based positive electrodes were first developed during the early 1970s. It was observed that the electron donating elements, such as lithium could be intercalated in chalcogenides (MS₂, M=Ta, Ti) and it leads to change in the properties of the compound. TiS₂ was better choice due to its lighter weight and semiconductor properties. Alexagonal anion packing, and Ti is located in the octahedral site between alternating sulfur sheets. The structure is stabilized by partial covalent character of S and van der Waals forces between S-S layers. Intercalation of the Li-ion reversibly occurs over the whole composition range $\text{Li}_x \text{TiS}_2$ ($0 \le x \le 1$) in a single phase reaction. Such electrochemical results are normally reported in a charge-discharge curve as shown in **Figure 1.3**. The ease of intercalation permitted deep discharge over 1000 cycles with less than 0.05% loss in each cycle. Exxon marketed this technology with LiAl negative electrode and TiS_2 positive electrode as button cells. The competitive disadvantage of a Li-battery with TiS_2 as the positive electrode material soon became clear after it was revealed that Li forms dendrites on the negative electrode side upon cycling which leads to unsafe battery operation. Replacement of the Li-metal as the negative electrode meant that the voltage of the full cell with TiS_2 positive electrode was low and the specific energy density lower than the Ni-Metal hydride system. Later Haering *et al.* 12 introduced modified layered MoS_2 structure in the market and Moli energy commercialized Licells based on these positive electrode. **Figure 1.3** Electrochemical charge-discharge curve of Li_xTiS₂¹³ TiS_2 is a semiconductor and therefore the Fermi energy level of the compound is very close to the top of the valence band ($S^{2-}:3p^6$). One way to increase the voltage of the cell is to replace Ti with transition metals that display lower Fermi level. This can be achieved by using high valence redox couples. However, high valence chalcogenides of first row transition metals are not stable. As an alternative, the subsequent decade saw the development and commercialization of the Li-ion battery system based on layered oxides which are described below in detail. Layered V_2O_5 was the first oxide positive electrode investigated for intercalation of Li ions^{11,14,15} in 1976 and since then it has remained an active area of research for many research groups across the world. The gravimetric capacity of this compound is very high due to low molecular weight of the compound. Substantial structural changes are observed as Li is intercalated in the structure ($V_2O_5 => Li_xV_2O_5$) and these are summarized in the charge-discharge curve of **Figure 1.4**. The initial α -phase (x < 0.1) changes to the ϵ -phase as intercalation progresses (0.35 < x < 0.7) and at x = 1 the structure changes to the δ polymorph. Intercalation beyond one lithium irreversibly transforms the structure to the γ phase (for $x \le 2.0$). Li₃ V_2O_5 adopts yet another structure (rock salt type) known as the ω -phase¹⁴ (**Figure 1.4** and **Figure 1.5**). This latter phase can intercalate 3 Li atoms reversibly and displays solid solution behavior over the whole intercalation range. However all of these phases show poor capacity retention upon cycling. Figure 1.4 Electrochemical charge-discharge curve of $\text{Li}_x V_2 O_{5.}^{-14}$ **Figure 1.5** V₂O₅ framework transformation on initial Li insertion; red polyhedra represent VO₅ square pyramids. Note that the Li atoms have been removed. Drawn with VESTA using CIF files obtained from ICSD database. Layered lithium transition metal oxides (e.g. LiCoO₂) adopt cubic packing of the anions. The Li⁺ ions occupy the octahedral sites between the anion sheets similar to LiTiS₂. Among all the transition metal analogues, LiCoO₂¹⁶ adopts the most cation ordered structure. The layered LiFeO₂ cannot be directly synthesized and LiNiO₂ forms with considerable cation disorder which negatively impacts its electrochemical performance. Goodenough *et al.* proposed LiCoO₂ as the positive electrode for Li (ion)-batteries in 1980 (**Figure 1.6** and **Figure 1.7**). Substantial rearrangement of the anion stacking occurs upon Li-removal from LiCoO₂. The initial delithiation is followed by an elongation in the interlayer c-axis due to an increased repulsion among the oxygen layers. ^{17,18,19} Subsequently an order-disorder transition occurs ¹⁹ at $x \approx 0.5$ and the final transition occurs through an intermediate $\text{Li}_{0.12}\text{CoO}_2$. ^{20,21} The half-lithiated composition $\text{Li}_{0.5}\text{CoO}_2$ can also form as a metastable spinel phase and traces of the spinel phase are seen after extensive cycling. ²² Almost completely delithiated material $\text{Li}_{0.05}\text{CoO}_2$ adopts a TiS_2 -like structure. ²³ Although full Li-extraction from LiCoO_2 gives a very high gravimetric capacity, only approximately half of that is reversible due to the instability of the completely delithiated structure. The capacity loss upon cycling is
substantial after extraction of more than 70% lithium. The SONY corporation commercialized this technology ^{24,25} in 1990. In 2005-06 several batteries were reported to catch fire during operation and the SONY corporation announced that it would recall about 340,000 batteries due to safety fears. ²⁶ One of the main reasons, for this incident, was found to be the loss of oxygen from the lattice framework of LiCoO₂ on deep charge followed by the reaction between the electrode and the electrolyte. ^{27,28} The incident highlighted an important drawback in the cobalt based layered metal oxides. As the Co (electronic configuration: $3d^6$: $t_{2g}^6 e_g^0$) is oxidized, because of the closeness of the " t_{2g} " level of the metal and "p" level of the oxygen (**Figure 1.8**), the oxygen starts giving up the bonding electron and migrates to the surface²⁹ where it may react with the electrolyte at higher temperatures. ^{30,31,32} A study done by Chembiam *et al.*²⁹ indicates that no oxygen evolution occurs until the average Co oxidation state reaches 3.35 after which the extraction of Li is not accompanied by the increase in the oxidation state, indicating a loss of oxygen from the lattice. Therefore, to maintain the chemical stability, LiCoO₂ cannot be fully charged. **Figure 1.6** View of the structures of a) $LiCoO_2$ and b) $LiTiS_2$ in a plane perpendicular to b-axis. Black atoms represent Li ions, red-oxygen, yellow-sulfur and blue and cyan - transition metals. Drawn with VESTA using CIF files obtained from ICSD database. **Figure 1.7** Electrochemical charge-discharge curve of Li_xCoO₂³³ Figure 1.8 Density of states vs. energy diagram of Li_xMO₂²⁹ To remove the oxidative instability associated with the Co-based compounds it was suggested that compounds, in which either "t2g" band is much above "p" band of oxygen (ex.: Mn) or electron population is higher (ex: Ni), should be used instead of Co. Ni³⁺ (3d⁷) has one electron $(t_{2g}^{6}e_g^{1})$ in the e_g orbital in the low spin configuration (**Figure 1.8**) which is higher in energy than the O-2p level and therefore oxygen is not released from the lattice framework even under deep-charge conditions. However, pure LiNiO₂ is slightly cation disordered when synthesized using conventional methods due to the tendency of Ni-ions to enter the Li-layer which effectively reduces the Li-diffusion coefficient and hence adversely impacts the power capability of the cell.³⁴ The Co and Al substituted LiNiO₂ have been studied in more detail where Co prevents the Ni migration to the Li-layer and Al is electrochemically inactive preventing the complete removal of the Li.35 Study of the samples obtained via chemical delithiation of LiNi_{0.85}Co_{0.15}O₂ show a linear increase of the oxidation state of the Ni with the degree of Li-extraction from the sample providing strong evidence that the oxygen evolution does not occur in this system until very low lithium content.²⁹ However thermal stability of the charge material in both cases (LiNiO₂ and LINi_{0.8}Co_{0.2}O₂) has been shown to be much lower than charged LiCoO₂.³⁶ Manganese is abundant in nature and costs less than 1% of Co, hence Li containing manganese oxides are some of the least expensive positive electrode materials. However, ordered-layered LiMnO₂ could only be synthesized by ion-exchange³⁷ from the isostructural NaMnO₂. LiNi_xMn_xCo_{2-x}O₂ (NMC) is a high capacity and high voltage electrode material with excellent safety characteristics. In particular, the material, LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂^{38,39} has become one of most successful positive electrode material for Li-ion batteries. In this compound, the oxidation states of Ni, Co and Mn are 2+, 3+ and 4+ respectively. Such oxidation state distribution leaves Mn inactive during the charge process; Ni²⁺ oxidizes to Ni⁴⁺ upon charge and Co³⁺ becomes Co⁴⁺; thus enabling the removal of one lithium per transition metal on average. This leads to a very high reversible capacity. In addition, Mn⁴⁺ acts as a pillar in the structure and only a maximum unit cell volume expansion of 2% is observed after the removal of 70% lithium. Induction of Co in the structure reduces cation disorder and an excellent rate capability is observed. In the charged material shows very good tolerance towards oxygen release to the current generation of Li-ion batteries. Like lithium containing layered oxides, spinels (general composition: AB_2X_4) also form with cubic close packing of the anions and the cations occupy either the octahedron (cation B) or tetrahedron (cation A) site. Thackeray *et al.* have studied^{51,52,53,54} these compounds (ex: Fe₃O₄, Mn₃O₄ and LiMn₂O₄) in great detail and the main conclusions are as following: 1. Li can be reversibly inserted in Fe₃O₄ (inverse spinel). The Intercalated Li-ion occupies the empty octahedral site (16c) and displaces Fe³⁺ ions from the tetrahedral (8a) site to - empty octahedral site (16c) but the Fe₃O₄ framework of the spinel structure remains intact. - 2. The interstitial space formed by the Fe₃O₄ framework and comprising of vacant octahedral and tetrahedral sites provides a 3-D conduction pathway for the Li-ions - 3. Li intercalation in Mn_3O_4 follows a similar process and $LiMn_3O_4$ is isostructural to $LiFe_3O_4$. - 4. Li can also be intercalated in LiMn₂O₄ (**Figure 1.9**). However, unlike Fe₃O₄, intercalation of the additional lithium on the neighboring octahedral site does not lead to any site reconfiguration in the parent framework. Electrochemically this process occurs at 3 V (Mn⁴⁺/Mn³⁺, **Figure 1.10**). However, the cooperative Jahn-Teller distortion forces phase separation in the system beyond the intercalation of 0.2 Li.⁵² Hunter *et al.* reported direct formation of the Mn_2O_4 spinel framework (λ -MnO₂) obtained by acid treatment of LiMn₂O₄ in 1981.⁵⁵ This study proved that tetrahedrally coordinated Li can be topotactically removed from the spinel-LiMn₂O₄. Electrochemically, this process occurs at 4 V. Two different voltages for the same active redox couple ($Mn^{3+/}Mn^{4+}$) in the spinel-LiMn₂O₄ underline the role of Li-coordination in determining the voltage (**Figure 1.10**). Subsequently, LiMn₂O₄ has been studied ^{56,57,58,59} with great interest by various groups due to the ease of its synthesis, environmental benignity and abundance of Mn in nature. However, after long term cycling, some problems occur which are described below: - 1. Dissolution of the Mn from the spinel, particularly if the electrolyte is slightly acidic. Since only Mn²⁺ ions dissolve under acidic conditions, the process is expected to occur *via* disproportion reaction of Mn³⁺ to Mn²⁺ and Mn⁴⁺. - 2. Delithiated spinel is unstable in the presence of the organic electrolyte. 3. Overcharge during the cycling can lead to excess of Mn^{3+} on the surface and hence a strained structure due to Jahn-Teller distortion of the Mn^{3+} . **Figure 1.9** a) Unit cell of spinel LiMn₂O₄ projected on a 2-D plane, b) framework showing Li –ion diffusion channels (projected along [110]). Pink atoms represent Mn, red-O and black-Li Drawn with VESTA using CIF files obtained from ICSD database. **Figure 1.10** Electrochemical charge-discharge curve of $\text{Li}_x \text{Mn}_2 \text{O}_4^{\ 60}$ To avoid the problems associated with Jahn-Teller distortion, substitution of Mn^{3+} by subvalent cations has been extensively explored. Substitution with divalent cations such as Mg, 61 Zn, 61 Co⁶² and Ni^{63, 64, 65} in LiMn₂O₄ reduces the amount of Mn³⁺ in the material and hence the 4 V capacity of the material decreases. Doping of more than 50% divalent cation forces all the Mn to the tetravalent form and hence no Li can be extracted from these compounds. However the composition LiMn^{IV}_{1.5}Ni^{II}_{0.5}O₄ displays an interesting electrochemical activity at 4.7 V. Subsequent investigations have revealed that this voltage plateau can be attributed to direct oxidation of the Ni²⁺ to Ni⁴⁺. Li substitution on the Mn site yielding the general chemical formula Li [Mn_{2-x}Li_x]O₄ has been reported to successfully stabilize the capacity retention with slightly less capacity. 61 **Figure 1.11** Li-Mn-O Phase diagram. An expanded view of the phase triangle MnO-Li₂MnO₃- λ -MnO₂ is shown on the right. **Figure 1.11** shows the Li-Mn-O phase diagram with an expanded view of the important phases displayed on the right taken from the work of Thackeray *et al.*⁶⁰ The phases on the tie line formed by connecting the compounds Li₂O and MnO₂ are of particular interest. Closer to the MnO₂ compound is Li₄Mn₅O₁₂ or Li $[Mn_{(2-1/3)}Li_{1/3}]O_4$ i.e. a Li-rich spinel with only tetravalent Mn ions. This material can be discharged to Li_{6.5}Mn₅O₁₂ at 3 V. Li₂MnO₃ is another important composition in the Li₂O-MnO₂ (1 Li₂O· 1 MnO₂) tie line. It shows interesting electrochemical activity upon charge to 4.6 volts despite the fact that all of the Mn is in the tetravalent state. The compound can be classified as possessing an ordered rock salt type structure. However due to cationic ordering the structure is classified in monoclinic space group *C*2/*c*.⁶⁶ Unusual electrochemical activity has been reported due to the release of oxygen from the structure, which is an irreversible process. Iron-based compounds are amongst the cheapest and some of the least toxic materials, and therefore best suited, for large scale energy storage (electric vehicles and grid scale). The difficulty of synthesizing the layered LiFeO₂ and an impractically high voltage of the Fe³⁺/Fe⁴⁺ redox couple in these compounds prompted Goodenough *et al.* to investigate^{67,68,69} various polyanion based iron compounds for Li intercalation during 1990s with the general formula Li_aFe_b(XO₄)_c (X=S, P). Based on the electrochemical and structural characterization of several Fe-based phosphates and sulfates, the following rules were suggested for mapping
the redox energy (voltage) of Fe²⁺/Fe³⁺ couple in a polyanion based compound: - (XO₄)ⁿ⁻ polyanion based compounds adopt framework structures which provide facile channels for Li ion conduction. - 2. In a given framework, as covalent mixing at the iron from Fe-O bond decreases, the energy of the corresponding redox couple also decreases causing an increase in the voltage. Therefore, the energy of a given redox couple can be tuned by selecting the appropriate X cation. As the electronegativity of the X cation increases, the transition metal faces more competition for covalent mixing with oxygen. As a result, when - phosphates are replaced by sulfates and if this is not accompanied by a change in the structure, an increase of 0.8 V is observed for $\text{Li}_a\text{Fe}_b(\text{XO}_4)_c$ compounds (**Figure 1.12**). - 3. The redox energy can also be tuned by changing the Fe-O-X connectivity (i.e. changing framework, **Figure 1.12**). - 4. Introduction of the polyanion in the framework increases the distance between transitional metal atoms resulting in a decreased electronic conductivity. - 5. LiFePO₄ crystallizing in the olivine type mineral framework displays the highest redox voltage (Fe²⁺/Fe³⁺) among all Fe-phosphate frameworks. The olivine type M_2XO_4 structure has M atoms in half of the octahedral sites and X atoms in $1/8^{th}$ of the tetrahedral sites in a hexagonally close packed lattice of oxygen atoms (**Figure 1.13**). Therefore it is the HCP analogue of $X[M_2]O_4$ spinels. For smaller X cations such as P^{5+} , B^{3+} and Si^{4+} the olivine type structure is preferred over the spinel type. In LiFePO₄, cation-cation Coulombic repulsion causes a distortion of the HCP array of anions. Fe forms a chain of corner shared FeO₆ octahedra along the *c*-axis and shares 2 edges with LiO₆ octahedra. It also shares one edge with the PO₄ tetrahedra. **Figure 1.12** Dependence of Li intercalation voltage on framework and the nature of the polyanion in various phosphates and sulfates. ^{67,69} **Figure 1.13** Atom distribution in the a) unit cell of olivine LiFePO₄, b) framework showing Liion tunnels. Grey atoms represent Fe, light pink- P, red-O and black-Li; Drawn with VESTA using CIF files obtained from ICSD database. **Figure 1.14** Electrochemical charge-discharge curve of carbon coated Li_xFePO₄. ⁷⁰ Initially LiFePO₄ was predicted to be a replacement electrode in batteries only for low power applications due to its poor electronic and ionic conductivity. However, this material has displayed some of the highest charge and discharge rates, achieved by post processing of the material to either tune the electronic or the ionic conductivity. These and many other interesting properties of LiFePO₄ have been followed with a great interest in the past decade resulting in more than 3000 peer-reviewed publications. The main discoveries and ensuing discussions are summarized below: - 1. The intrinsic material can be coated with a conductive carbon by using organic precursors^{71,72,73}or conductive inorganic materials⁷⁴ during the synthesis. The coated material displays much better reversible gravimetric capacity and power capability.⁷⁵ The positive effect is mainly attributed to the increased electronic conductivity. - 2. Better electrochemical properties can also be obtained by reducing the primary particle size.⁷⁶ This results in a shorter Li-diffusion distance and hence improved kinetics of the de/-intercalation process.⁷⁷ - 3. Charge conduction in the material occurs through a polaron-hopping⁷⁸ mechanism and the olivine type structure restricts ion-conduction to only one direction.⁷⁹ However, the presence of defects can force 2-D ion conduction in the material.⁸⁰ - 4. Li-intercalation in the micro-sized material occurs *via* two phase boundary formation with FePO₄ and LiFePO₄ phase separating after 5-10% Li de/intercalation (**Figure 1.15**). Miscibility of the two phases can be increased by reducing the particle size and below ~50nm, these are completely miscible in to each other. Complete miscibility can also be achieved by raising the temperature to above 350°C. Some reports also suggest that a dynamic intercalation process occurs through a non-equilibrium path which does not involve formation of two separate phases.⁸⁵ - LiMnPO₄ also crystallizes in the olivine type structure and charge-discharge in this compound occurs at an average of 4.1 V.⁸⁶ However the electronic and ionic conductivity is poorer than LiFePO₄.⁸⁷ - 6. Mixed olivines LiFe_{1-x}Mn_xPO₄ have also been studied in good detail due to higher theoretical specific energy density. LiFe_{0.2}Mn_{0.8}PO₄, recently⁸⁸ has been demonstrated to be a high specific energy density positive electrode material with a very stable cycling capacity. High power density was also achieved for carbon coated material.⁸⁸ Figure 1.25 Charge-discharge mechanism in a spherical LiFePO₄ particle⁸⁹ Silicates are abundant materials in the earth's crust and easily form various transition metal silicates.⁹⁰ Due to higher charge/weight ratio, polyanionic materials with (SiO₄)⁻⁴ as the anion group provide higher specific energy density than phosphates of similar composition. ⁹¹ In addition, common lithium transition metal silicates of general composition Li_2MSiO_4 (M= transition metal), accommodate two lithium per transition metal. Therefore, theoretical gravimetric capacity is very high. However, the voltage for Li_2FeSiO_4 is lower than $LiFePO_4$ because of the inductive effect and a different framework. During the last decade, the silicate compositions Li_2FeSiO_4 and Li_2MnSiO_4 have been studied in great detail. Li_2MSiO_4 (M=Fe, Mn) adopt tetrahedral structures based on the framework of the Li_3PO_4 type (β or γ). ⁹² These structures are made by distorted HCP packing of the oxides (tetragonal packing) within which half of the tetrahedral sites are occupied by Li and transition metals such that no two tetrahedra share faces with each other. ⁹³ Li₂MSiO₄ frameworks can be broadly divided into the β and γ -types. The main conclusions regarding their polymorphism and structural preference are summarized below: 94,95,96,97,98,99,100,101 1. β-Li₂FeSiO₄ can be synthesized at 700°C and its framework contains chains of LiO₄ tetrahedra which connect to parallel chains of the alternate FeO₄ and SiO₄ tetrahedra *via* edge sharing. Synthesis at 800°C yields γ_s-Li₂FeSiO₄ (space group $P2_1/n$) in which LiO₄ tetrahedra are corner shared. Synthesis at 900°C results in the formation of the Υ_{II} polymorph (space group : *Pmnb*) which differs from the β-polymorph (space group : *Pmn*2₁) in the orientation of the tetrahedra. Hydrothermal synthesis yields an ordered β_{II}-polymorph (space group : *Pmn*2₁). In addition, Bruce *et al.* have recently identified another structure designated as inverse-β_{II} in which Li and Fe atoms display mixed site occupancy.⁹⁹ The "Y" polymorphs are, in general, more stable at higher temperatures. - 2. Li₂MnSiO₄ has been studied extensively due to its higher intercalation potential than Li₂FeSiO₄ along with the possibility of extracting two Li from the structure. It also adopts Li₃PO₄ based tetrahedral structures like Li₂FeSiO₄. However, after few cycles, Li₂MnSiO₄ has been reported to become largely amorphous which results in rapid capacity degradation. - 3. Li₂CoSiO₄ has also been reported and structurally and electrochemically characterized. Hydrothermal synthesis at 150°C yields the β_{II}-polymorph (space group: *Pmn*2₁). Heat treatment of the β_{II}-polymorph at 700°C results in a phase transformation to the β_I –polymorph (space group : *Pmn*2₁). Another polymorph γ₀ (space group: *P*2₁/*n*) appears when β_I is heated to 1100°C and quenched. No site mixing is observed in the γ₀ polymorph. Attempts of reversible intercalation of Li in Li₂CoSiO₄ show very poor electrochemical activity in the sample, mostly due to electrolyte instability associated with its high redox couple (Co²⁺/Co³⁺) which is over 4.8 V. Figure 1.36 Electrochemical charge-discharge curve of carbon coated $\text{Li}_2\text{FeSiO}_4^{\ 102}$ The electrochemical performance of Li₂FeSiO₄ has been reported extensively and stable cycling has been achieved for reversible intercalation of one Li in the structure. However, the voltage is quite low which results in inferior specific energy density compared to olivine type LiFePO₄. The reversible intercalation of two Li in the structure has been demonstrated in one report but the capacity fades quickly after few cycles.¹⁰³ The capacity fade is even more severe in the case of Li₂MnSiO₄. The presence of Fe⁴⁺ or Mn⁴⁺ in the charged material was not confirmed in this report.¹⁰³ The capacity fade in tetrahedra based structures can be understood by invoking the preference of transition metal of "d⁴" electronic configuration for octahedron coordination. Topotactic removal of one or two lithium respectively from Li₂MnSiO₄ or Li₂FeSiO₄ results in tetrahedrally coordinated Mn³⁺ or Fe⁴⁺. Both of these ions contain 4 electrons in the "d" band and therefore tetrahedral coordination is very unstable configuration which leads to amorphization and consequently capacity degradation after few cycles. In order to overcome the inherent structural limitations imposed by the olivine type LiFePO₄ on Li-ion conductivity, modification of the structure using the F polyanion has been proposed. ^{104,105} LiFe³⁺PO₄F adopts a triclinic structure similar to mineral "tavorite" found in nature as LiFePO₄ (F, OH). ¹⁰⁶ In this case, the modifier F opens up the structure which allows multidimensional pathways for Li-ion diffusion. Instead of edge sharing, polyhedra are now corner shared. Such connectivity among polyhedra provides two intersecting tunnels in the structure in which Li ions are located. LiVPO₄F adopts a similar structure. Both of these materials display very good capacity retention upon cycling. LiVPO₄F can be
further charged at an average voltage of 4.05 V with 90% reversibility at C/10 rate. ¹⁰⁷ LiFePO₄F cannot be charged further due to difficulty of obtaining Fe⁴⁺ within electrolyte stability range. However, discharge to Li₂FePO₄F occurs at an average of 3 V with very good capacity retention. The fact that these excellent electrochemical results could be obtained without any size reduction efforts confirms that tavorites are very good ionic conductors. Low voltage of intercalation for LiFePO₄F, however, renders it less desirable than LiFePO₄. **Figure 1.17** Electrochemical charge-discharge curve of $\text{Li}_{1+x}\text{FePO}_4\text{F}$. ¹⁰⁸ ## 1.2.2 Negative Electrodes In a Li-metal battery, Li metal itself is used as the negative electrode. Li⁺ ion is deposited on the Li metal sheet and stripped from it during charge and discharge respectively. However, after few cycles lithium does not deposit uniformly leading to dendritic growth of the metal and short circuit of the cell. Due to serious safety issues, use of Li-metal as a negative electrode has been discontinued for any scalable assembly of batteries. Carbon based materials are the most popular negative electrodes used currently in commercial Li-ion batteries. ^{112,113,114} Naturally occurring graphite intercalates Li at 0.1-0.2 V vs. Li/Li⁺ between the carbon layers. It displays much higher theoretical and practical gravimetric capacity than the common positive electrode materials due to the lighter weight of the carbon. The fully intercalated composition can be written as LiC_6 where the intercalation occurs through various intermediate compositions. Comparatively lower volume expansion of the graphite during the intercalation process is a major advantage of this material. Other forms of carbon have been suggested to improve the gravimetric capacity further. Disordered carbon, for example, may increase the capacity by interfacial reaction with lithium instead of intercalation only between the layers. Porous carbon can also increase the interfacial capacity during charge-discharge. Li-metal alloys have been extensively investigated as negative electrode materials for Li-ion batteries. ^{118,119,120} Many of the group 4 and 5 metals and semimetals can be alloyed with lithium during the electrochemical process or by using solid state synthesis methods. These materials provide very high specific energy density and react with Li at low potential *vs.* Li/Li⁺. However, their most common problem is the large volume expansion observed during the Li de/intercalation. Several approaches such as nano-sizing, using a second matrix and alloying with a third electrochemically inactive component have been employed to overcome the huge volume change. ¹²¹ However, these result only in partial success. Silicon is one of the most abundant elements on the earth. It reacts with Li at 0.6 V vs. Li/Li⁺ and therefore can be used as a negative electrode material. Lithium can be alloyed with silicon up to 4.4 atoms of lithium per silicon atom leading to a final stoichiometry of Li₂₂Si₅. Such a high Li to Si ratio results in about 10 times higher gravimetric capacity than graphite. However, the unit cell volume of the Si expands by about 400% during the electrochemical reaction and therefore rapid capacity degradation is observed during cycling of the cell. The issue of large volume expansion has been addressed by essentially two basic approaches: the first is to modify the morphology of the silicon (e.g. silicon nanowires), ¹²⁶ and the second is to use a carbon matrix to confine the Si and provide greater electronic conductivity. ^{127,128} More than 80% capacity retention after 100 cycles has been achieved using Si/C composites. ¹²⁹ Crystalline Si undergoes solid state amorphization upon initial reaction with lithium which exhibits homogeneous volume expansion. However, upon further lithiation, a crystalline phase of composition Li₁₅Si₄ precipitates. ^{130,131,132} Silicon nanowires, however, show absence of any crystalline phase in the lithiated silicon even after deep charging ¹³³ which enables the material to display greater capacity retention with high gravimetric capacities. ^{134,135} Among other materials, Li₄Ti₅O₁₂ has been studied in great detail for reversible intercalation of Li. ¹³⁶ The compound crystallizes in the spinel structure and the octahedral sites are shared by 1/3 Li and 5/3 Ti, while rest of the Li is located on the tetrahedral sites. Reversible intercalation of Li⁺ in the material occurs at 1.55 volt. ¹³⁷ This material provides very stable cycling capacity at very high rates, however, its high intercalation voltage results in lower specific energy density compared to intermetallics and Si. ### 1.3 Na- ion batteries Na is a much more inexpensive alkali metal than Li, in addition, it is only slightly more electropositive than Li (difference ~0.3 V). Hence replacing Li with Na is an attractive option for the batteries where a slight loss in specific energy density is acceptable with a decrease in the price. Na-ion batteries operate on the similar principle as Li-ion batteries and many similar negative and positive electrode combination pairs can, at least theoretically, provide moderate to high specific energy density. ^{138,139} In the last 20 years various structures and compositions have been proposed and examined as negative or positive electrode materials for Na-ion batteries. Some of them are summarized below. Due to similar operating principles and criteria, most of the Na-ion positive and negative electrode materials/structures are similar to those extensively researched for the Li-ion cells. NaMnO₂ can be crystallized in either the α (monoclinic) or β (orthorhombic) polymorphs. ¹⁴⁰ The first report of the electrochemical behavior of both of these polymorphs was published as early as 1985, 141 showing reversible intercalation of 22% and 15% Na in α or β polymorph respectively. Recently, much improved reversible capacities (~200mAh/g, ~80%) have been reported for the monoclinic α-phase. ¹⁴² Unlike LiMO₂, charging of NaMO₂ takes place in several voltage steps. This is due to the formation of various stable intermediates of Na_xMO₂ composition during the process. As a result of the Na-vacancy ordering and the simultaneous gliding of oxygen layers during cycling of the material, and a large hysteresis is observed between the charge and discharge. Due the relatively large ion size, however, Na⁺ does not migrate to the tetrahedral coordination during the cycling and therefore unlike Li_{0.5}MnO₂, Na_{0.5}MnO₂ does not convert to the spinel phase. Na_xCoO₂ may adopt any of the O3, P2 or P3 type structures depending on the value of x. 143,144 Here, O and P respectively represent the structure with octahedral or prismatic coordination polyhedra around the Na and the numbers 2 and 3 represent count of CoO₆ sheets in one unit cell of the structure. ¹⁴³ Na_{0.66}CoO₂ is the easiest to synthesize and it crystallizes in the P2 type phase. Sodium intercalation in this material also results in many intermediate compositions and many steps are seen in the charge-discharge curve. Among mixed layered oxides, Na_{0.66}Co_{0.66}Mn_{0.33}O₂ has been examined most thoroughly and shows solid solution behavior except for one intermediate at Na_{0.5}Co_{0.66}Mn_{0.33}O₂. ¹⁴⁵ Na_{0.44}MnO₂ adopts an orthorhombic crystal structure with MnO₆ octahedra and MnO₅ square pyramid coordination polyhedra as building units. 146,147 Na insertion is fully reversible between 0.25 to 0.65 Na content in the overall composition. Reversible Na-insertion in single crystal nanowires of the material has been demonstrated up to 1000 cycles with very good capacity retention. 148 P2- type $Na_x[Fe_{0.5}Mn_{0.5}]O_2$ has been recently explored in detail and it displays very promising electrochemical behavior. 149,150 Among polyanionic materials, NASICONs (Natrium Super Ionic Conductors) have been extensively studied as Na-ion cell positive electrodes. 151,152 Most important of these is $Na_3V_2(PO_4)_3$. Na can be extracted from this material at 3.4 V (V^{3+}/V^{4+}) or inserted at 1.6 V. Therefore it can be used as either negative or positive electrode. Sodium vanadium fluorophosphates are another class of attractive positive electrode materials for Na-ion batteries. Two compositions; specifically $NaVPO_4F^{153}$ and $Na_3V_2(PO_4)_2F_3$, 154 have been examined for electrochemical insertion/extraction of Na. Na extraction from $NaVPO_4F$ occurs in two steps with the first being at 3 V and the second at 3.7 V vs. Na/Na^+ . $Na_3V_2(PO_4)_2F_3$ also charges in two voltage steps at 3.6 and 4 V vs. Na/Na^+ . Na₂FePO₄F was first proposed by Ellis *et al.* in 2007 and it is isostructural with Na₂MgPO₄F.¹⁵⁵ The layered structure contains Na ions located between the sheets of interconnected FeO₄F₂ and PO₄ tetrahedra. It is very suitable for reversible Na intercalation and experiences only about a 3.5% volume change as Na is removed or inserted. Electrochemically obtained charge-discharge curve displays distinct voltage plateaus between 2.9 and 3.05 V during discharge and charge. Formation of two distinct plateaus in the electrochemical charge-discharge curve (**Figure 1.19**) indicates the formation of an intermediate composition which was identified as Na_{1.5}FePO₄F. **Figure 1.18** Electrochemical charge-discharge curve of Na_xCoO₂. Inset shows an expanded view of the curve. A 2D projection of the structure of NaCoO₂ is also shown. The numbers indicate different phases formed during Na-intercalation Figure 1.19 Electrochemical charge-discharge curve of $Na_xFePO_4F^{157}$ NaFePO₄, when synthesized using conventional methods, does not crystallize in the olivine type structure unlike its Li-analogue LiFePO₄. Instead, high temperature synthesis routes yield the maricite type framework. The maricite type framework does not possess open pathways for ion migration similar to
olivine and therefore it exhibits no electrochemical activity upon charge or discharge. Recently, however, it has been reported that olivine NaFePO₄ can be obtained by inserting Na electrochemically in the olivine type FePO₄. ¹⁵⁸ Olivine FePO₄ in this case is obtained by delithiating isostructural LiFePO₄. Interestingly, while only a single plateau at 2.8 V is observed upon discharge, upon charge, an intermediate step corresponding to the composition of Na_{0.7}FePO₄ appears. Subsequent cycling shows severe capacity fade. NaMnPO₄ and NaFe_{0.5}Mn_{0.5}PO₄ can be crystallized in the olivine type structure *via* an ion exchange method from NH₄MnPO₄·H₂O and NH₄Fe_{0.5}Mn_{0.5}PO₄·H₂O. Interestingly, this material displays a sloping electrochemical profile suggesting solid solution behavior. Figure 1.20 Electrochemical charge-discharge curve of olivine Na_xFe_{0.5}Mn_{0.5}PO₄¹⁵⁸ Substantial research work has been devoted to developing suitable negative electrodes for Na ion batteries. Sodium metal itself, just like Li, cannot be used for long term cycling because of dendritic growth of the Na on charge which leads to short circuiting. The most common negative electrode for Li ion batteries, graphite, does not intercalate Na between its layers due to the larger size of the ion. Among other carbon based electrodes petroleum coke show good potential for Na-intercalation. Electrochemical potential for Na insertion in hard carbon is same as that of the metal itself which indicates that the insertion occurs through surface pores. Following investigation, Na was found to intercalate among disordered layers of the carbon and it can display high gravimetric capacities at low rates. It has been shown recently that high rates in non-graphitic carbons can be achieved by tuning the microstructure and the porosity. Among the non-carbon and the non-silicon based negative electrodes for Na-ion batteries, Na_xTiO₂ has been shown to intercalate Na around 1 V. Na₂Ti₃O₇ intercalates Na at 0.3 V and Na₂Ti(PO₄)₃ at 2.1 V. 164 # 1.4 Scope of the Thesis This thesis deals with the synthesis and characterization of fluorosulfate based high voltage positive electrode material for the Li and Na-ion cells using solvothermal techniques. A number of compounds belonging to this family were synthesized and electrochemically characterized in a Li-batteries. The structure of each of them was solved using X-ray and neutron diffraction methods. Sodium based compounds of similar compositions were also synthesized. Various characterization techniques have been employed to understand the structure, ionic conduction and electrochemical performance. The possibility of synthesizing alternate structures to improve the electrochemical performance was also explored by changing the nature of the alkali or transition metal cation. Chapter 2 describes the synthesis and characterization methods/techniques used in this thesis. **Chapter 3** details the synthesis, structural analysis and electrochemistry for fluorosulfate of general composition LiMSO₄F (M=Fe, Mn, Fe_{1-x}Mn_x). **Chapter 4** describes the application of computer simulation methods to determine the Li and Na ion migration pathways in various phosphate and sulfate based framework. **Chapter 5** deals with the synthesis and structural characterization of sodium and ammonium based fluorosulfate materials. **Chapter 6** presents the overall summary and the roadmap for future work. # Chapter 2 # **Methods and Techniques** ## 2.1 Introduction To understand and improve a material's property, it is important that it is characterized using modern tools available to the scientific community. An in-depth characterization of the fluorosulfate materials is complicated by the fact that these are air sensitive and must be synthesized and processed only under a dry and oxygen free atmosphere. Various techniques and methods have been used to prepare and characterize these materials to determine their structure, morphology and electrochemical properties. These provide an in-depth understanding of mechanisms that operate during preparation and subsequent application of these materials as positive electrodes for Li-ion batteries. Diffraction methods reveal detailed information about crystalline materials at the atomic scale and have been extensively used in the current work. Electron microscopy provides morphological and compositional information and therefore it was used to examine the material's purity and particle size correlation with electrochemical performance. Electrochemical methods were used to study the material's behavior as a positive electrode in Li batteries. Characterizations based on Fourier transform infrared infra-red (FTIR) spectra were used to study the nature of chemical bonds in the structures and thermogravimetric analysis (TGA) established the thermal stability of the materials. Atomistic scale simulations were carried out to investigate migration pathways of Li and Na ions in various structural frameworks. This chapter outlines the basic scientific and technical details about the synthesis and characterization methods used in the current work. ## 2.2 Synthesis Techniques ### 2.2.1 Conventional Solvothermal Synthesis Solvothermal synthesis methods have been extensively used to prepare various novel phases and morphologies. ^{165,166,167} In contrast with traditional solid state methods, solvothermal synthesis is carried out in an organic solvent in a closed system at moderately high temperature-usually above the boiling point of the solvent. Under such conditions, critical properties of solvents such as dielectric constant and viscosity are considerably modified. This results in a lower activation energy barrier for the reaction. The reaction container used in the current work is described in **Figure 2.1**. Figure 2.1 Conventional solvothermal reaction container Reactants are first transferred in a TeflonTM container along with the solvent and then placed in a stainless steel (SS) autoclave. The use of the autoclave provides physical strength against the inside pressure and the Teflon™ lining provides protection against corrosion due to the solvent. Magnetic stir bars can be added in the reaction mixture if stirring is needed. The container is sealed using various caps as shown. Finally the mixture is transferred to a preheated oven for a required time and temperature. ### 2.2.2 Microwave Solvothermal Synthesis Microwave solvothermal synthesis differs from conventional solvothermal methods in that the heating of the reaction mixture is now carried out in a microwave oven where it occurs through microwave-matter interaction. The frequency normally used in commercial microwaves is 2.45 GHz which is optimum for generating maximum heat with common solvents. Under microwave heating, polar solvents try to align their dipolar moment along the electric field generated by the microwave. As this electric field quickly fluctuates, dipolar moments try to realign themselves accordingly and heat is generated in this process due to the friction and dielectric losses. ¹⁶⁸ The energy loss during this interaction is quantified by the term known as the tangent loss which is defined as the following: $$\tan \delta = \epsilon''/\epsilon'$$ where ε '' is the dielectric loss and ε ' is the polarizability of the molecules under the electric field. Due to this specific interaction under microwave irradiation, temperature gradients in solvent are almost absent during the reaction, and temperatures can rise very quickly throughout the reaction medium. However, the reasons behind the remarkable ability of the microwave methods to rapidly synthesize compound within minutes that otherwise takes hours and days are still under debate. 169 Organic solvents are generally classified in three categories for microwave synthesis. Solvents with $\tan \delta > 0.5$ are high microwave absorbers and therefore can generate a great deal of heat very quickly under microwave irradiation. Solvents with $0.1 < \tan \delta < 0.5$ and $\tan \delta < 0.1$ are known as medium and low grade solvents for microwave synthesis respectively. Glycols, in general, have been noted as ideal candidates for microwave solvothermal synthesis as these materials interact very strongly with the microwaves. During recent years microwaves have been effectively used for the synthesis of many battery related materials such as $LiFePO_4^{170,171}$ and $Li_2FeSiO_4^{102}$. These methods are rapid and provide interesting morphology along with good size control. However, due to low temperatures and very rapid synthesis routes, frequently, the product displays poor crystallinity and high concentration of defects which may require post synthesis heat treatment. ## 2.3 Characterization Techniques ## 2.3.1 Diffraction Techniques Diffraction is one of the consequences associated with a wave's interaction with an obstacle in the path of its propagation. Each point on the obstacle acts as a new point source and intensity of the resulting wave is produced as a result of interference. Similarly, when neutrons of a certain energy interact with an obstacle, due to their wave like behavior at high velocity, they can also produce diffraction patterns. Effects of the diffraction are intensified if the obstacle is of the similar size range as the wavelength of the incident wave. If the obstacle is periodic in nature, diffraction patterns can be analyzed to study the nature of the periodicity and local distribution. This is one of the very popular techniques adapted to study crystal structures where incident waves are X-rays or neutrons. Figure 2.2 Anton Parr microwave system **Figure 2.3** A representative plot for temperature and pressure increase during a microwave reaction. The data was obtained during the reaction using internal probes. ## 2.3.2 Powder X-ray Diffraction X-rays have an electric field which oscillates perpendicular to their movement. They
are located in the electromagnetic spectrum between the γ -rays and the ultraviolet. Depending on the energy, they can be classified either as hard X-rays (high energy) or soft X-rays (low energy). When an electron comes under the influence of an X-ray beam it starts to accelerate or de- accelerate with the frequency of the incident beam. This phenomenon is called "Thompson scattering". If an X-ray beam encounters a distribution of the electrons which is periodic in nature, these multiple scattered beams interfere with each other to produce a diffraction pattern. Prof. Max von Laue, first $(1912)^{172}$ identified the basic mechanism by which crystals can be used as a grating for the diffraction of the X-ray beam. He showed that when a stream of X-rays is passed through the crystal of a zinc blende structure, a pattern of bright spots appear on the screen according to the laws of diffraction. Subsequently Lawrence Bragg simplified and explained the underlying principle in a more simple and effective manner by assuming each plane of atoms in the crystal behaved as a reflecting surface. The schematic shown in **Figure 2.4** outlines the diffraction of X-rays from an array of atoms. A monochromatic parallel set of beam striking at an angle Θ from a plane of atoms is reflected back and the reflecting beam makes a 2Θ angle from the incident beam. It can be shown using geometry that two scattered beams of wavelength λ from a set of parallel planes at distance d from each other will have zero phase difference if following condition is satisfied (n is an integer number): $$n \lambda = 2d * \sin \theta$$ The implication of the above equation simply means that at any given orientation of a crystal a set of parallel monochromatic X-rays will constructively interfere for only one set of parallel planes. In other words a set of bright points will appear on the screen when a spectra of X-rays (a set of λ) are passed through the crystal at a given orientation. Each bright point in this case can be analyzed for a set of parallel planes. It is difficult to prepare single crystals of many complex and metastable materials. Therefore an alternative technique, known as the Debye-Scherrer method, was developed to collect X-ray diffraction patterns from powder samples. Modern techniques use diffractometer in which the sample and the diffracted beams are rotated with respected to the incident beam to collect the pattern for a range of angles. An angle vs intensity plot is analyzed to extract the crystal structure. In this thesis, powder X-ray diffraction was performed on a Bruker D8-Advance powder diffractometer equipped with a Vantec-1 detector, using Cu-K α radiation (λ_{avg} = 1.5418 Å) in the range from 10° to 120° 2 θ at a step size of 0.025° using Bragg-Brentano geometry. Figure 2.4 Bragg scattering of X-rays from parallel plane of atoms # 2.3.3 Time of Flight Neutron Scattering Due to wave particle duality, neutrons of moderate energy also produce a diffraction pattern when they are passed through a crystal. Unlike X-rays, neutrons directly interact with the nucleus of the atom. The interaction of the neutron with a nucleus can result in either incoherent or coherent scattering. The coherent scattering from a crystal appears as Laue diffraction spots and is used in the identification of the structure. Strength of the scattering is measured in terms of a scattering length which is specific to each atom in the periodic table. Therefore, the neutron diffraction pattern complements the X-ray diffraction in the sense that former is generated by waves scattered by the nucleus and later is generated by waves scattered from the electrons surrounding the nucleus. Lighter atoms such as Li cannot be located based on X-ray diffraction pattern and neutron diffraction is essential. Additionally, X-rays cannot distinguish between two atoms with close atomic numbers while neutron diffraction can generally provide this information depending on the scattering lengths. Neutron experiments reported in the current work were carried out at the Oak Ridge National Lab, Tennessee (ORNL), USA. This facility uses a spallation method to produce neutrons, in which a stream of protons is first bombarded at a heavy nucleus resulting in high energy neutrons. These neutrons are then passed through a moderator to decrease their energy. The moderate energy beam (thermalized neutrons) is used to probe the crystal structure of the microcrystalline sample. Samples were placed in a vanadium can and POWGEN diffractometer at ORNL was used to collect the diffraction data. This diffractometer is capable of probing the 0.3Å to 3Å d-range with a resolution of < 1%. Bragg's law can be modified for a spectrum of diffracted neutron beams collected on a single orientation Θ for a period of time t: $$t = (2m/h)*L*sin \theta * d$$ Where m and h are the mass of the neutron and Planck's constant respectively, L is the length travelled by neutron after bombarding the sample, Θ is the angle of data collection and d is the interplanar distance in the crystal. Clearly, for a range of λ values, the diffracted beam hits the target at different times and this can be used to extract the d or Θ vs. intensity plot. This method is known as "time of flight" data collection for neutron diffraction. #### 2.3.4 Structure Refinement Relevant structural parameters such as lattice parameters and atomic positions are obtained from the experimentally collected diffractogram by using an iterative fitting process starting from a given model of the structure. This process is known as structural refinement. To identify the initial model of the crystal structure from the collected diffraction pattern, the pattern is matched to the inorganic crystallographic structure database. This strategy was adopted for compounds reported in Chapter 3 and 5. Once a good model has been found, exact values of atomic position and lattice parameters can be extracted by iterative refinement. The technique was developed by Hugo Rietveld in the 20th century and it is now extensively used to derive accurate structural parameters for a wide range of materials, and to determine structures of microcrystalline materials. Three kinds of information can be extracted from a diffractogram: 1. The position (2 Θ or d) of the peaks provides clues as to the symmetry of the structure; 2. The intensity of the peaks provides the information about the atom type (scatterer), and their location in the unit cell; 3. The peak shape provides information about the nature of the crystal (coherence length). The goal of the Rietveld refinement is to minimize the difference between the observed and the calculated diffraction pattern using least squares methods. This is achieved by refining the factors influencing the peak position, height and shape. Peak positions are refined starting from given model of the unit cell and the sample position parameters; the later accounts for the relative position of the sample with respect to the incident beam. This is followed by refinement of a set of other parameters such as profile functions and the atomic positions which adjust themselves to yield the right peak shape and intensity. In the Rietveld refinement method, the intensity of a diffraction peak obtained by powder x-ray diffraction (PXRD) is formulated as follows: $$I_{Calc} = S_F \Sigma_k L_k |F_k|^2 S (2\theta_i - 2\theta_k) P_{k,A} + bkg_i$$ Here, bkg_i is the background intensity, S_F the beam intensity scale factor, $S(2\theta_i-2\theta_k)$ the profile shape function, L_k the polarization factor, A the absorption factor and P_k the preferred orientation factor. F_k is known as structure factor and depends on the type and location of atoms in the structure. For a plane with hkl Miller indices the structure factor is defined as follows: $$F(hkl) = \sum_{n=1}^{N} f_n e^{2\pi i(hx_n + ky_n + lz_n)}$$ Here, f is atomic scattering factor and is considered analogous to the scattering length discussed above in the context of neutron scattering. Similar formulations exist for neutron diffraction as well. In addition two parameters specific to time of flight neutron diffraction exist in GSAS: DIFC, and DIFA. These two respectively represent theoretical time of flight and wavelength absorption correction and are refined accordingly. In the current work Rietveld refinement has been performed using either GSAS on the EXPGUI^{173,174} platform or the Bruker-AXS TOPAS 4.2 (Bruker-AXS, 2008)[®] software program. ## 2.4 Electron Microscopy Electron microscopy is used to visually inspect the sample, its topology and primary particle size. In an electron microscope, electrons are thermally produced from the source and focused on to the sample with the help of condenser and objective lenses. Electron's interaction with the matter results in emission of secondary electrons, backscattered electrons and X-rays, and the image of the sample can be produced by analyzing these. Images in this thesis were taken on a LEO 1530 field emission electron microscope in back scattered imaging mode. Energy Dispersive X-ray (EDX) analysis was carried out on a system attached to the scanning electron microscope (SEM) to determine the elemental composition of the sample. ## 2.5 Thermal Analysis Thermal analysis was carried out to determine the stability of the fluorosulfate and hydroxyl sulfate compounds. The technique involves heating of the sample with continuous monitoring of the weight loss. The measurements were performed under a controlled atmosphere on a SDT Q600 analyzer. ## 2.6 Infrared Spectroscopy Infrared spectroscopy (IR) determines the energy levels that can absorb incident infrared wavelength. In this technique a spectrum of infrared rays are passed through the material and the resulting absorption spectrum is analyzed. A standard table exists for most of the known
chemical bonds and the corresponding absorption peak. In the current work, a Bruker Tensor infrared spectrometer was used to collect spectra of as-prepared materials ground with KBr and pressed into pellets. Pellets were dried overnight at 100°C in a vacuum oven before characterization. ## 2.7 Electrochemical Characterization To study the electrochemical properties of the materials, they were cycled under a galvanostatic mode. In this mode, a constant current is applied to a cell and voltage is recorded as a function of the number of lithium ions and electrons de/-inserted into the active material in the electrode. The current direction is changed at the cut-off potentials to reverse the flow of the charge and test the reversibility. Electrode characteristics, such as capacity, rate capability and cycle life can be extracted from the results. Electrochemical evaluations of the Li (ion) batteries were mainly carried out in SwagelokTM cells using a commercial (VMP3) multichannel galavanostat/potentiostat. To prepare a working electrode, the active material was typically first ball milled with Super P carbon. A slurry was formed by adding N-methylpyrrolidinone (NMP) solvent to this mixture. The slurry was spread onto a carbon coated current collector and dried overnight. Typical loading of the active mass was between 3 and 5 mg/cm². The cells were assembled in an argon-filled glove box with oxygen and moisture levels lower than 5 ppm. The electrolytes were composed of a 1 to 1.2 M LiPF₆ solution in a polar organic solvent (EC:DMC:: 1:1), and lithium metal foil was used as the counter electrode. #### 2.8 Simulation Methods Simulation of materials is considered now a well-established field in solid state chemistry. Due to significantly increased computational capabilities in last few decades, it has become possible to simulate some of the very complex calculations. Various techniques have been developed based on the current understanding of the atomic and molecular interactions to predict properties of the materials which are otherwise very difficult to measure. There are three broad methods ¹⁷⁵ that are currently used to calculate the properties of solid state materials. First, quantum-mechanical (QM or ab initio) calculations are used to calculate the electronic structure. Introduction of local charge correlations in the calculation during last decade has made this method increasingly accurate for the prediction of various properties. Second are molecular dynamic (MD) methods, which are based on explicit dynamical solution of the ensemble of particles for which Newton's laws of motion are solved. The third category is known as the *atomistic simulation* method and it is based on the formulation of the total energy of the system. This energy is minimized to determine accurate potential parameters for further calculations for a given structure. Atomistic simulations methods as embodied in the General Utility Lattice Program (GULP)¹⁷⁶ code have been used extensively in **Chapter 4** of the current thesis. The atomistic scale simulation method calculates the total energy of the system, 177 by dividing the solid into two kinds of interatomic forces: short range and long range. Long range force consists of the electrostatic interaction among atoms and it is expressed as the general Coulombic interaction equation between two point charges. Short range forces are mainly represented by attractive dispersive forces and repulsive van der Waals interaction. The energy of the total system is written in terms of nuclear coordinates. Minimization of the energy is not straight forward due to diverging nature of the Coulombic forces since the number of interaction increase as $4\pi r^2 N_p$ where N_p is the atomic pair density. To solve this problem, Ewald summation technique is used which divides the whole charge interaction in to real and reciprocal space: 178,179 $$\begin{split} U^{real} &= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_i q_j}{r_{ij}} erfc\left(\eta^{\frac{1}{2}} r_{ij}\right) \\ U^{recip} &= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{G} \frac{4\pi}{V} q_i q_j \exp\left(iG.r_{ij}\right) \frac{\exp\left(-\frac{G^2}{4\eta}\right)}{G^2} \\ U^{self} &= -\sum_{i=1}^{N} q_i^2 \left(\frac{\eta}{\pi}\right)^{\frac{1}{2}} \\ U^{electrostatic} &= U^{real} + U^{recip} + U^{self} \end{split}$$ Here, U is the energy term, G the reciprocal lattice vector, q the charge on the ion and V is the volume of the unit cell. Parameter η controls the division of work in real and reciprocal space and it is defined as follows (*w* represents the relative computational expense term in real *vs.* reciprocal space): ¹⁷⁸ $$\eta_{opt} = \left(\frac{Nw\pi^3}{V^2}\right)^{\frac{1}{3}}$$ Short range interactions are modeled using a Buckingham potential which is defined as follows: $$V_{ij}(r_{ij}) = A \exp^{-\frac{r_{ij}}{\rho}} - \frac{C}{r_{ij}^{6}}$$ A, ρ and C are ion-ion potential parameters and r is the inter-atomic distance. In this case as well, both, the van de Waals and dispersion interaction can be quickly converged by splitting them in reciprocal and real space. A list of other functions and their detailed discussion can be found here. For the higher covalent degree of interaction in the sulfate group, Morse potentials were used to describe intra-molecular bond-stretching interactions between the S and O ions: $$\phi_{ii}(r_{ii}) = D\{1 - \exp[-\beta(r_{ii} - r_0)]\}^2$$ Here r_0 is the equilibrium atomic separation between ions i and j, and D is the dissociation energy of the molecule or polyatomic ion, and β is a parameter that controls the width of the potential well. Three-body (covalent) bond-bending forces within the SO_4^{2-} (or PO_4^{3-}) tetrahedra were modeled using a harmonic potential, $$\phi_{ijk}(\theta_{ijk}) = \frac{1}{2}k(\theta_{ijk} - \theta_0)^2,$$ where k is a force constant and Θ_0 is the equilibrium angle subtended by ions j and k about ion i. Interactions between ions in the same sulfate group were assumed to be entirely non-Coulombic. To account for the polarization of the atoms, a core-shell model developed by Dick and Overhauser is employed in which charge is distributed on the core and massless shell of the atom attached to it by a harmonic force. This is important to calculate the dielectric properties and impact of defects in the structure. Initial distribution of the charge distribution on the core and shell was taken from the literature data and relaxed to fit the input structure. Most of the cations are assumed to be rigid in the current work and therefore formal charges are assigned to the core of the atoms. Shell and core both are simultaneously refined in the GULP code. Once the energy of the system has been defined in terms of the nuclear coordinates, an initial structure is provided as the first guess and the interatomic potential parameters are relaxed to simulate the crystal structure by minimizing the calculated energy of the system. In the current work, simulations have been performed under constant pressure conditions. In this case, lattice vectors and coordinates are adjusted to remove forces on both the unit cell and the individual atom. Energy minimization is achieved by using Newton-Raphson procedure. An important feature of the atomistic scale simulations is their ability to calculate the energy of formation of point defects. GULP incorporates this feature by adopting the strategy developed by Mott and Littleton. In this scheme, polarization response of the lattice to a charged defect is studied by dividing the region of interaction in to two parts. The inner region is relaxed explicitly and the outer region is calculated by assuming continuum approximation. These simulation methods have been extensively used in the past to study various oxides, phosphate, silicates and other ionic and semi ionic solids. They provide valuable information about ionic conduction, defect chemistry and other structural information that is otherwise either difficult or impossible to probe using physical characterization tools. In the context of the battery materials they have been used to understand the mechanism of defect chemistry and ionic conduction in olivine⁷⁹ LiFePO₄ and recently Li₃PO₄ type¹⁸¹ Li₂FeSiO₄ materials. # **Chapter 3** # Synthesis and Electrochemistry of Li-Transition-Metal Fluorosulfates #### 3.1 Introduction Li transition metal fluorosulfates were proposed as promising Li-ion battery positive electrode materials in 2002 along with a synthesis procedure for obtaining phase pure tavoritetype-LiMgSO₄F. 182 The synthesis of LiMgSO₄F was carried out using conventional high temperature solid state methods which involved heating MgSO₄·H₂O, Li₂CO₃ and NH₄F together at 550°C. However, isostructural Li-transition metal-fluorosulfates cannot be synthesized using the same method because of the precipitation of more thermodynamically stable sulfates and oxides. Solid state reaction among NH₄F, Li₂CO₃ and FeSO₄·H₂O, for example, produces LiF and FeSO₄ below 400°C and various other products above 400°C. This indicates that activation energy needed for the crystallization of LiFeSO₄F cannot be achieved within thermodynamic stability limits of this compound in a conventional solid state reaction. Solution based synthesis methods can reduce the kinetic energy barrier during a reaction by providing better contact among reactants. However, water based solvents dissolve the fluorosulfate product and therefore cannot be used. It was reported in 2010 by Recham et al. 183,184 that the thermodynamic metastability of LiFeSO₄F means that crystallization must be effected in hydrophobic liquid medium using FeSO₄·H₂O and LiF as reactants. The ionic liquids, while offering much promise of tailoring reactivity, are prohibitively expensive at ca. \$500/g, and removal of excess LiF reagent is almost impossible owing to its low solubility. The structure type (szomolnokite) of
FeSO₄·H₂O has a strong structural resemblance to the fluorosulfate LiFeSO₄F tavorite type structure and the H-OH in FeSO₄·H₂O (i.e. HFeSO₄OH) is replaced by Li-F to generate LiFeSO₄F in an ionothermal reaction, as noted. Thus, the reaction between the alkali metal fluorides and FeSO₄·H₂O involves two simultaneous processes: 1) loss of water from FeSO₄·H₂O and 2) insertion of LiF into the structure. To obtain a pure product, the reaction rate (step 2) must be greater than the dehydration rate (step 1) so that the crystallization of FeSO₄ can be avoided. Increasing the temperature lowers the activation energy barrier for the reaction. However, it will also accelerate the dehydration of the precursor. Therefore a balance must be struck between these two competing processes of dehydration and reaction in order to crystallize LiFeSO₄F. This is achieved in ionothermal synthesis¹⁸³ due to the tendency of hydrophobic ionic liquid medium to delay the release of water from the precursor and allow an increase in the reaction temperature. Organic solvents are ideal candidates for the synthesis of novel compounds, particularly, in the case of water sensitive compounds. They have been used in the past to synthesize metastable compounds, 185 complex morphologies 186 and nanosized materials. 187 However, the topotactic reaction under solvothermal conditions in common hydrophobic solvents such as toluene does not result in the fluorosulfate product. This chapter describes the synthesis method of tavorite and triplite type LiMSO₄F (M =Fe, Mn, Fe_{1-x}Mn_x) in hydrophilic glycol media followed by their structural and electrochemical characterization. ## 3.2 Experimental ### 3.2.1 Synthesis #### 3.2.1.1 MSO₄·H₂O Monohydrate precursor FeSO₄·H₂O was obtained by heating FeSO₄·7H2O under Ar atmosphere. In order to synthesize FeSO₄·7H₂O, Fe-powder (5g) and dilute H₂SO₄ (45 ml, 33% w/w) were mixed together in a beaker. The reaction solution first became transparent and then changed to slightly green color after 1 hour of the reaction. FeSO₄·7H₂O was precipitated by adding ethanol in 2:1 volume ratio to the solution. The precipitate was filtered and the resultant green product was characterized as FeSO₄·7H₂O. FeSO₄·7H₂O was heated at 100°C for 3 hours in Ar atmosphere to obtain FeSO₄·H₂O which was characterized using XRD and TGA (**Figure 3.1**) and **Figure 3.2**). MnSO₄·H₂O was directly purchased from Sigma-Aldrich. To synthesize mixed transition metal monohydrate Fe_{1-x}Mn_xSO₄·H₂O, required moles of Fe powder were first dissolved in dilute H₂SO₄, and MnSO₄·H₂O was added to it after the solution turned completely transparent. After one hour of continuous stirring, mixed-metal-sulfate hydrate was precipitated by adding ethanol in 2:1 volume ratio to the solution. Filtered product was heated at 150°C for 2 hours in Ar atmosphere to obtain the monohydrate sulfate compound. ### 3.2.1.2 Tavorite -Type-LiMSO₄F #### 3.2.1.2.1 Conventional Solvothermal (ST) Synthesis of LiMSO₄F was performed using well known conventional solvothermal methods. Tetraethylene glycol (TEG) was used as a solvent. TEG has high boiling point (314°C) at atmospheric pressure), moderately low viscosity at room temperature (58.3mPs) and moderate dielectric constant (15.7). Therefore, it serves as an ideal candidate for the synthesis of metastable compounds below 300°C. Temperatures as low as 220 °C are ideal in glycol for the topotactic reaction as FeSO₄·H₂O dehydrates at temperatures greater than 230 °C. The reaction in more hydrophilic solvents such as triethylene glycol does not result in the fluorosulfate product. To obtain phase pure product, monohydrate transition metal sulfate (MSO₄·H₂O) and LiF (Sigma-Aldrich) were well mixed in 1:1.1 molar ratio. The mixing was achieved in a planetary ball mill (Fritsch pulverisette 5) under Ar atmosphere with typically 1:30 weight ratio of precursor powder to agate balls (10mm diameter) in an agate container after 10 hours of milling at 300 rpm. The ball-milled mixture was transferred into a 43 ml TeflonTM-lined Parr reactor along with 30 ml of the tetraethylene glycol (TEG) and stirred for 30 min. The reactor was then placed in an oven preheated to 220°C for the synthesis of LiFeSO₄F. After 60 hours of heating, the reactor was taken out of the oven and cooled down on a lab bench to room temperature. Product was washed with dry acetone or tetrahydrofuran (THF) three times and vacuum filtered in a bench top glove-box filled with nitrogen followed by overnight drying in a vacuum oven at 100°C before characterization. #### 3.2.1.2.2 Microwave Solvothermal (MW) To perform the microwave synthesis, LiF and FeSO₄·H₂O (1.1:1) were mixed under argon atmosphere for 2 hours in a planetary ball mill under similar conditions as above. The homogeneous reaction mixture, along with 20 ml tetraethylene glycol (TEG), was sealed in a closed 100 ml Teflon[™] vessel which was fitted to a rotor with a pressure and temperature probe. The rotor containing the closed Teflon[™] vessels was then placed on a turntable for uniform heating in an Anton Paar microwave synthesis system (Synthos 3000). The desired microwave exposure time and temperature were software controlled. A preset profile (desired time, temperature) was followed automatically by continuously adjusting the applied microwave power (0-1200W, 2.45 GHz); the temperature was raised to 220°C in 5 min and maintained for 10 min. The pressure increased almost linearly with the temperature upto 20 bar but remained constant at this value once the temperature ramp reached its plateau. #### 3.2.1.3 Triplite Type-LiMSO₄F #### 3.2.1.3.1 Conventional Solvothermal (ST) LiFe_{1-x}Mn_xSO₄F (x = 0, 0.05, 0.1, 0.2, 0.5 and 1) powders were synthesized *via* solvothermal chemistry following the procedure described above. Monohydrate powder was ball milled (Fritsch pulverisette 5) with LiF in 1:1.1 ratio for 10 hours at 300 rpm. The mixed precursors were transferred into a 43 ml TeflonTM-lined reactor, and 30 ml of tetraethylene glycol was added. The mixture was stirred for 30 minutes and the reactor was transferred to an oven (T = 250 °C) for 60 hours for $0.1 \le x \le 1$ and for 1 and 2 weeks respectively for x = 0.05 and x = 0. Product was washed with dry acetone or tetrahydrofuran (THF) three times and vacuum filtered in a bench top glove-box filled with nitrogen followed by overnight drying in a vacuum oven at 100°C before characterization. #### 3.2.1.3.2 Microwave Solvothermal (MW) Tavorite LiFeSO₄F obtained by microwave synthesis method was heated at 350°C for one hour under Ar atmosphere. ## 3.3 Results and Discussion ### 3.3.1 Szomolnokite (FeSO₄·H₂O) X-ray powder diffraction pattern of Fe monohydrate sulfates (FeSO₄·H₂O) is shown in **Figure 3.1**. TGA curves of FeSO₄·H₂O are shown in **Figure 3.2**. Dehydration of this compound starts around 230°C and the resulting compound FeSO₄ is stable until above 500°C. Monohydrate iron sulfate adopts szomolnokite mineral type structure which is classified in monoclinic space group C2/c. The structure consists of corner shared metal octahedral chain along the c-axis and two hydrogen atoms are attached to the linking oxygen atom of the Fe-O-Fe chain as shown in **Figure 3.3**. Thus, linking oxygen atoms is the most electronegative ligand which leaves the structure as H₂O after a heat treatment. # 3.3.2 Tavorite-Type-LiMSO₄F The crystallographic structures of FeSO₄·H₂O and LiFeSO₄F are very similar as shown in **Figure 3.3**. During the reaction with LiF, H-OH molecule of FeSO₄·H₂O is replaced respectively by Li-F followed by rotation of the framework around c-axis to form LiFeSO₄F: $$LiF + FeSO_4 \bullet H_2O \rightarrow LiFeSO_4F + H_2O \dots (1)$$ Milling of the reactants ensures a smaller particle size and intimate mixing. These factors speed up the reaction as opposed to slowing down the dehydration, thus favoring the topotactic conversion at lower temperatures in inexpensive hydrophilic solvents and reducing the energy and materials cost of producing LiFeSO₄F. **Figure 3.1** X-ray diffraction pattern of FeSO₄·H₂O. Black bars indicate the characteristic peak positions of the pure product derived from the cif file. Figure 3.2 Thermo-gravimetric analysis curve of FeSO₄·H₂O Mechanism of the reaction can be understood by assuming that it initiates by exchange of H and OH moieties of surface FeSO₄·H₂O by Li and F respectively. Ion exchange on the surface is followed by rotation of the framework to form tayorite type LiFeSO₄F. Thus, an interphase boundary is formed between FeSO₄·H₂O and newly formed tavorite type LiFeSO₄F on the surface. This phase front moves inwards as the reaction progresses and when the interfacial stress induced by structural difference between the two phases exceeds a certain limit, crystallites of tavorite type LiFeSO₄F break off from the parent FeSO₄·H₂O particle. At the end of the reaction, parent FeSO₄·H₂O fragments in several smaller crystallites of the tavorite type LiFeSO₄F. As shown later in Chapter 5, particle size of the tavorite type NaFeSO₄F prepared by using similar precursors and methods is much smaller than tavorite type LiFeSO₄F. This can be explained by taking in to account the higher unit cell volume of NaFeSO₄F which exerts higher stress on the product-precursor interface and therefore crystallites of smaller size break off from the surface as product NaFeSO₄F than those of LiFeSO₄F. During the microwave synthesis this mechanism is perturbed to produce very small LiFeSO₄F particles, which will be discussed later in this chapter. The LiFeSO₄F structure parameters were refined from the X-ray powder diffraction pattern with very good fitting statistics (**Figure 3.4**). The tavorite structure can be described by considering the basic units of the FeO₄F₂ octahedra and the SO₄ tetrahedra. The octahedra share corners along the c-axis forming parallel chains of repeating sequence Fe-F-Fe. These chains are cross linked via SO₄
tetrahedra in a and b-direction. Thus, each tetrahedron links three Fe-chains. Such networking among polyhedra opens up a tunnel like space along a and b directions. The tunnel provides an empty space in the framework and creates facile diffusion paths for the lithium ions. In the tavorite type structure (eg. LiFePO₄OH), ¹⁸⁸ Li site is refined as located on two neighboring sites which are very close to each other. In LiFeSO₄F, Li is refined to be equally distributed (occupancy: 0.5) between these 2 sites which are 0.80 Å away from each other. Some reports also exist where Li in tavorites has been refined on a single site (such as in LiGaPO₄OH), however the X-ray diffraction data did not allow such distinction and the LiFeSO₄F X-ray refinement "goodness of fit" parameters remain unchanged whether Li is refined by the former model or the later. Adjacent octahedra in the Fe-F-Fe chain are rotated with respect to each other by approximately 22° and neighboring Fe-atoms occupy crystallographically distinct sites. Refined structural parameters are presented in **Table 3.1**. **Table 3.2** presents a summary of bond lengths obtained from the refinement. SEM and EDX results are summarized in **Figures 3.5** and **3.6**. **Figure 3.3** Comparison of szomolnokite and tavorite structures. FeO₆ (in FeSO₄·H₂O) and FeO₄F₂ (in LiFeSO₄F) coordination polyhedra are shown in brown. SO_4^{2-} tetrahedra are in yellow. Oxygen atoms are shown in red and fluorine atoms in grey. **Figure 3.4** Powder X-ray diffraction refinement of tavorite type LiFeSO₄F prepared *via* conventional solvothermal method. Black points represent experimental data, red solid lines show fitted data while blue lines show the difference map between observed and calculated data. Black bars indicate phase markers. X-ray diffraction agreement factors $R_{wp} = 8.94\%$, $R_p = 6.95\%$, $R_F^2 = 7.25\%$. **Table 3.1** Structural data obtained by refinement from powder XRD pattern of the tavorite type LiFeSO₄F prepared by conventional solvothermal methods | ST-LiFeSO ₄ F | | |------------------------------------|--| | Space group: P-1 (#2), Triclinic | | | $M_{\rm w} = 177.85 \ {\rm g/mol}$ | | | $D = 3.230 \text{ g cm}^{-3}$ | | | a = 5.1751(1) Å | | | b = 5.4915(1) Å | | | c = 7.2211(2) Å | | | $\alpha = 106.506(2)^{\circ}$ | | | $\beta = 107.178(2)^{\circ}$ | | | $y = 97.865(2)^{\circ}$ | | | $V = 182.440(5) \text{ Å}^3$ | | | Atom | Wyck. | x/a | y/b | z/c | Occ. | $U_{iso}(\mathring{A}^2)$ | |-------|------------|-----------|-----------|-----------|------|---------------------------| | Li(1) | 2i | 0.35(1) | 0.67(1) | 0.82(1) | 0.5 | 0.015(2) | | Li(2) | 2i | 0.18(1) | 0.61(1) | 0.73(1) | 0.5 | 0.015(3) | | Fe(1) | 1 <i>a</i> | 0 | 0 | 0 | 1.0 | 0.007(5) | | Fe(2) | 1 <i>b</i> | 0 | 0 | 1/2 | 1.0 | 0.007(6) | | S | 2i | 0.3197(6) | 0.6318(6) | 0.2490(5) | 1.0 | 0.009(8) | | O(1) | 2i | 0.599(1) | 0.745(1) | 0.4074(9) | 1.0 | 0.015(2) | | O(2) | 2i | 0.104(1) | 0.6334(9) | 0.3470(9) | 1.0 | 0.012(2) | | O(3) | 2i | 0.319(1) | 0.353(1) | 0.1428(9) | 1.0 | 0.013(2) | | O(4) | 2i | 0.288(1) | 0.778(1) | 0.106(1) | 1.0 | 0.016(2) | | F | 2i | 0.1323(9) | 0.910(1) | 0.7578(8) | 1.0 | 0.012(2) | **Table 3.2** Bond lengths obtained by refinement from powder XRD pattern of tavorite type LiFeSO₄F prepared by conventional solvothermal methods | Atom 1 | Atom 2 | Multiplicity | Length (Å) | |--------|--------|--------------|------------| | Fe(2) | F(1) | 2x | 2.0013(2) | | | O(3) | 2x | 2.1196(2) | | | O(4) | 2x | 2.1127(2) | | | | | | | Fe(1) | F(1) | 2x | 2.0013(2) | | | O(1) | 2x | 2.1713(2) | | | O(2) | 2x | 2.1855(2) | | | | | | | S(1) | O(1) | 1x | 1.4045(2) | | | O(4) | 1x | 1.4556(2) | | | O(2) | 1x | 1.4576(3) | | | O(3) | 1x | 1.5165(3) | | | | | | | Li(1) | Li(2) | 1x | 0.8059(6) | | | O(3) | 1x | 1.6731(3) | | | F(1) | 1x | 1.9786(2) | | | O(4) | 1x | 2.1773(3) | | | O(2) | 1x | 2.4748(2) | | | O(1) | 1x | 2.5156(2) | | | | | | | Li(2) | Li(1) | 1x | 0.8059(6) | | | F(1) | 1x | 1.7565(2) | | | O(2) | 1x | 1.8069(9) | | | O(3) | 1x | 2.3147(4) | | | O(1) | 1x | 2.4353(1) | | | O(4) | 1x | 2.5287(1) | **Figure 3.5** SEM images of tavorite type LiFeSO₄F prepared by conventional solvothermal method. $\textbf{Figure 3.6} \ EDX \ spectra \ obtained \ from \ tavorite \ type \ LiFeSO_4F$ Figure 3.7 shows a selected region of the XRD pattern of LiFeSO₄F prepared by microwave heating of the precursors in tetraethylene glycol (TEG) for 10 minutes. The characteristic reflections identify it as a tayorite type compound and clearly differentiate from the starting material FeSO₄·H₂O. The SEM images show randomly shaped particles with sizes ranging from 100 to 200 nm (Figure 3.8). As discussed in Chapter 2 microwave heating occurs through interaction with the chemical bonds and therefore thermal gradients during the synthesis are absent. In addition, rapid heating ensures that higher number of new phase nuclei appear on the surface of the precursor and grow to become separate crystallites as discussed previously. Thus, higher rate and uniform heating during microwave synthesis results in smaller sized crystallites. Very rapid crystallizations also does not allow the strain generated during the topotactic exchange of atoms to be completely relieved and therefore the diffraction pattern of the microwave-prepared tavorite type LiFeSO₄F (MW-ST) exhibits noticeably different peak shapes compared to those of the solvothermal tavorite (ST). Comparison of the diffraction patterns of the microwave and solvothermal tayorite also reveals intensity redistribution that cannot be described by cation disorder. The low symmetry (SG: P-I) and moderate x-ray fluorescence from iron in the sample preclude detailed analysis of microstrain and texture in the MW tavorite and a reasonable fit could not be obtained. # 3.3.3 Triplite-Type-LiMSO₄F Phases and compounds obtained by ion-exchange or topotactic replacement of the atoms are generally metastable in nature. The conventional solvothermal reaction of tavorite LiFeSO₄F when extended over few weeks at 250°C precipitates as a completely new phase (**Figure 3.9**). Clearly, the tavorite type LiFeSO₄F slowly converts into another phase. It takes 2 weeks to complete the conversion of the tavorite in to this new polymorph of the LiFeSO₄F which adopts triplite type mineral framework. The triplite framework is adopted by (Mn,Fe)PO₄F family of mineral compounds. The structure is formed by edge shared metal-octahedra networked with SO₄ tetrahedra *via* corner sharing. Unlike tavorites, triplites have additional symmetry elements and they are classified under monoclinic space group *C*2/*c*. Unlike LiFeSO₄F, triplite LiMnSO₄F could be obtained only after 2-days of conventional-solvothermal reaction between LiF and MnSO₄·H₂O at 220°C. Tavorite type LiMnSO₄F could not be obtained using solvothermal methods. **Figure 3.7** X-ray diffraction pattern of tavorite LiFeSO₄F prepared *via* microwave solvothermal method. Black bars indicate the peak positions for the tavorite phase **Figure 3.8** SEM images of the tavorite LiFeSO₄F product obtained by microwave assisted solvothermal methods. To study the impact of the transition metals on the structural preference of the LiMSO₄F, compounds of general composition LiFe_{1-x}M_xSO₄F (M=Mn, Zn) were synthesized. Zinc was chosen as the other substituent because LiZnSO₄F has been shown to crystallize in orthorhombic space group and is isostructural with sillimanite type compounds¹⁹⁰ which are different from either of the tavorite or triplite. **Figure 3.10** shows the X-ray pattern of the products obtained after conventional solvothermal reaction at 250°C for 3 (x \neq 0) to 14 (x = 0) days. No reaction was detected at temperatures lower than 250°C for "0.1 \leq x \leq 1" indicating that triplites form at slightly higher temperature. For $x \le 0.1$, the product remained tavorite and for x=1 and M=Mn (LiMnSO₄F), the product was triplite. No tavorite intermediate could be isolated for $x \ge 0.1$ in LiFe_{1-x}Mn_xSO₄F. Eventual formation of triplite for any value of the composition parameter x establishes this as the thermodynamically favored phase for fluorosulfate compounds. **Figure 3.11** shows the SEM images for these samples. **Figure 3.9** X-ray diffraction patterns of LiF and $FeSO_4$ · H_2O mixture in TEG obtained at different reaction time under conventional solvothermal reaction conditions: a) 2-days of reaction time; b) 7-days of reaction time; b) 14-days of reaction time; d) representation of tavorite crystal structure; f) representation of triplite crystal structure; FeO_4F_2 octahedra are represented in brown and SO_4 tetrahedra in yellow and black spheres represent Li atoms. **Figure 3.10** X-ray patterns of various triplite compounds prepared under conventional solvothermal conditions. Orange bars represent phase markers for triplite LiMnSO₄F Under the microwave solvothermal synthesis conditions triplite LiFeSO₄F cannot be obtained directly in the microwave even after heating the reaction mixture up to 300°C and 3 hours. However, pure phase triplite type LiFeSO₄F can be obtained by very short heat treatment (as little as one hour) of microwave prepared tavorite type LiFeSO₄F at 350°C. Tavorite type LiFeSO₄F samples prepared by methods other than microwave assisted synthesis does not undergo such rapid conversion. **Figure 3.11** SEM images of various triplite $\text{LiFe}_{1-x}(\text{Mn,Zn})_x \text{SO}_4\text{F}$ ($0 \le x < 1$)obtained *via* conventional solvothermal method; a) and b) triplite LiFeSO_4F ; c) triplite $\text{LiFe}_{0.8}\text{Mn}_{0.2}\text{SO}_4\text{F}$; d) $\text{LiFe}_{0.8}\text{Zn}_{0.2}\text{SO}_4\text{F}$ Figure 3.12 compares the impact of the heat treatment (at 350°C) on tavorite LiFeSO₄F prepared by microwave and conventional solvothermal methods. The latter do not show any phase transformation after heat treatment for one hour; a prolonged
heat treatment of 12 hours is necessary which also results in significant formation of extraneous iron oxides. These impurities have been reported to form during direct solid state synthesis of the triplite type LiFeSO₄F using a 1:1 ratio of LiF and FeSO₄·H₂O.¹⁹¹ The complete lack of impurities in the microwave-assisted preparation of triplite type LiFeSO₄F suggests that the kinetics governing the conversion of tavorite to triplite type compound is dramatically enhanced. This provides a very easy and scalable route for the synthesis of the triplite type LiFeSO₄F. Rietveld fit of the X-ray diffraction pattern obtained by refining microwave prepared triplite type LiFeSO₄F are shown in **Figure 3.13** and the structural data is reported in **Table 3.3** and **Table 3.4**. **Figure 3.12** Comparison of X-ray diffraction pattern of triplite LiFeSO₄F prepared by a) Heating tavorite type LiFeSO₄F obtained from microwave synthesis at 350°C for 1 hr under Ar. b) extending conventional solvothermal synthesis for 2 weeks c) heating tavorite LiFeSO₄F obtained by conventional solvothermal at 350°C for 12 hr under Ar. Asterisk (*) represents oxide and sulfide impurity peaks. **Figure 3.13** Powder X-ray diffraction refinement of the triplite type LiFeSO₄F obtained by microwave assisted process. Black points represent experimental data, red solid lines show fitted data while blue lines show the difference map between observed and calculated data. Black bars indicate phase markers. X-ray diffraction agreement factors: $R_{wp} = 3.16\%$, $R_p = 1.34\%$, $\chi^2 = 3.15$. The structure refinement studies of the triplite type LiFe_{1-x}Mn_xSO₄F were based on the initial model of triplite mineral Mn₂PO₄F. Structures of LiFe_{0.5}Mn_{0.5}SO₄F, LiFe_{0.8}Mn_{0.2}SO₄F and LiFe_{0.9}Mn_{0.1}SO₄F were refined using combined (i.e. simultaneously refined) neutron and X-ray diffraction data. Owing to the very different scattering lengths in each couple, the ability of neutron diffraction to discriminate easily between Li and Fe (-1.9 and 9.4 fm respectively) and Fe and Mn (9.4 and -3.7 fm respectively) and the ability of X-ray diffraction to distinguish readily between the light Li and the heavy transition metals was utilized. A complete picture of the cation order/disorder for all three cations could thus be obtained. The XRD and neutron diffraction patterns and refined data for LiFe_{0.8}Mn_{0.2}SO₄F are shown in **Figure 3.15** as an example. The results of the Rietveld refinement are summarized in **Table 3.5**. Considered as a whole, the diffraction studies reveal that there is no significant ordering of Li/Fe/Mn on the two M1 and M2 sites in any of the materials. For LiFe_{0.2}Mn_{0.8}SO₄F, the refinement reveals a slight ordering of 0.57 Li (site 2)/0.43 Li (site 1), which is a little more developed in LiFe_{0.1}Mn_{0.9}SO₄F to give an ordering of 0.59 Li (site 2)/0.41 Li (site 1). This is not that different from "fully" (i.e. 50/50) disordered triplite LiMnSO₄F (**Table 3.5**). A previous Mössbauer study on natural triplite (Mn,Fe)₂PO₄F and related minerals also found a lack of significant ion ordering on the M1 and M2 sites. ¹⁹² That study detected that the smaller ion had a slight preference for the M2 site, in accord with our refinement results where the smallest ion (Li[†]) shows a minor preference for the M2 site. In short, although we observe a distinct, very non-linear trend that shows that Li prefers site 2 as the Fe content increases this is far from the degree of ordering that we might expect would strongly affect Li-ion mobility. The fact that the pure iron triplite phase LiFeSO₄F which has the highest theoretical gravimetric capacity of the series exhibits the least practical capacity suggests that other factors are also at play (see below). Figure 3.14 SEM images of triplite type LiFeSO₄F obtained by microwave assisted process. Table 3.3 Structure data obtained by refinement from powder XRD pattern of triplite LiFeSO₄F ## Triplite-LiFeSO4F Space group: C 2/c (#15), Monoclinic $M_w = 177.85 \text{ g/mol}$ $D = 3.330 \text{ g cm}^{-3}$ a = 13.0328(1) Å b = 6.3936(1) Å c = 9.8413 (1) Å $\beta = 119.750(3)^{\circ}$ V = 711.960(8) Å³ | Atom | Wyck. | x/a | y/b | z/c | Occ. | $U_{iso}(\mathring{ m A}^2)$ | |-------|------------|-----------|------------|-----------|----------|------------------------------| | Fe(1) | 8 <i>f</i> | 0.6469(2) | 0.8947(4) | 0.8475(3) | 0.574(2) | 0.0215(8) | | Fe(2) | 8 <i>f</i> | 0.9473(3) | 0.2482(5) | 0.0007(4) | 0.426(2) | 0.027(1) | | S(1) | 8 <i>f</i> | 0.3279(2) | 0.5923(4) | 0.1967(3) | 1.0 | 0.0271(7) | | O(1) | 8 <i>f</i> | 0.2150(3) | 0.63399(4) | 0.1929(3) | 1.0 | 0.0430(1) | | O(2) | 8 <i>f</i> | 0.5792(3) | 0.5354(4) | 0.1443(3) | 1.0 | 0.0239(8) | | O(3) | 8 <i>f</i> | 0.6928(2) | 0.4155(5) | 0.4138(3) | 1.0 | 0.0236(8) | | O(4) | 8 <i>f</i> | 0.6350(3) | 0.7720(4) | 0.3589(3) | 1.0 | 0.0234(8) | | F(1) | 8 <i>f</i> | 0.9867(3) | 0.4037(6) | 0.6091(4) | 1.0 | 0.0209(7) | | Li(1) | 8 <i>f</i> | 0.6469(2) | 0.8947(4) | 0.8475(3) | 0.426(2) | 0.0215(8) | | Li(2) | 8 <i>f</i> | 0.9473(3) | 0.2482(5) | 0.0007(4) | 0.574(2) | 0.0270(1) | $\label{eq:Table 3.4} \textbf{ Summary of bond lengths obtained by refinement from PXRD of triplite-type-LiFeSO_4F}$ | Atom 1 | Atom2 | Multiplicity | Bond Length | |-------------|-------|--------------|-------------| | Fe(2)/Li(2) | F(1) | 1x | 1.9710(8) | | | O(2) | 1x | 2.0712(6) | | | O(1) | 1x | 2.1165(6) | | | O(4) | 1x | 2.1494(9) | | | F(1) | 1x | 2.1984(8) | | | O(1) | 1x | 2.4335(8) | | | | | | | Li(1)/Fe(1) | F(1) | 1x | 1.9713(8) | | | O(3) | 1x | 2.0964(8) | | | O(2) | 1x | 2.1077(9) | | | O(4) | 1x | 2.1701(7) | | | O(3) | 1x | 2.2278(5) | | | F(1) | 1x | 2.2591(5) | | | | | | | S(1) | O(4) | 1x | 1.4457(8) | | | O(1) | 1x | 1.4685(8) | | | O(2) | 1x | 1.5079(6) | | | O(3) | 1x | 1.5120(9) | **Figure 3.15** Combined a) X-ray and b) neutron refinement of LiFe_{0.8}Mn_{0.2}SO₄F. Black points represent experimental data, red solid lines show fitted data while blue lines show the difference map between observed and calculated data. Black bars indicate phase markers. Combined (X-ray and neutron) diffraction agreement factors: $R_{wp} = 2.33\%$, $R_p = 1.56\%$, $\chi^2 = 5.9$. **Table 3.5** Refined structural parameters of LiMnSO₄F, LiFe_{0.5}Mn_{0.5}SO₄F, LiFe_{0.8}Mn_{0.2}SO₄F and LiFe_{0.9}Mn_{0.1}SO₄F. Rietveld analyses of powder neutron and X-ray diffraction data were done in the C2/c space group. | | | LiMnSO ₄ F | LiFe _{0.5} Mn _{0.5} SO ₄ F | LiFe _{0.8} Mn _{0.2} SO ₄ F | LiFe _{0.9} Mn _{0.1} SO ₄ F | |---------------------|-----------------------------|-----------------------|---|---|---| | | | 300K | 300K XRD + | 300K XRD + | 300K XRD + | | | | XRD | neutron | neutron | neutron | | | | | combined | combined | combined | | a (Å) | | 13.2406(2) | 13.1150(2) | 13.0713(2) | 13.0539(8) | | b (Å) | | 6.4082(1) | 6.3889(1) | 6.3958(1) | 6.3945(4) | | c (Å) | | 10.0229(2) | 9.9077(2) | 9.8735(2) | 9.8577(6) | | β (deg) | | 120.499(1) | 120.187(1) | 119.891(1) | 119.830(1) | | $V(\mathring{A}^3)$ | | 732.76(3) | 717.59(3) | 715.63(3) | 713.8(1) | | Li(1)/ | Occ. | 0.484(3)/ | 0.433(8)/ | 0.430(3)/ | 0.434(4)/ | | Fe(1)/Mn(1) | | 0/0.516(3) | 0.318(2)/0.249(2) | 0.475(3)/0.095(3) | 0.483 + 0.083(4) | | | x/a | 0.6474(3) | 0.6484(9) | 0.6462(2) | 0.6462(4) | | | y/b | 0.8942(5) | 0.896(2) | 0.8934(5) | 0.8935(8) | | | z/c | 0.8449(3) | 0.853(2) | 0.8473(3) | 0.8470(5) | | | U_{iso} (Å ²) | 0.029(1) | 0.015(1) | 0.026(1) | 0.036(2) | | | Li/(Fe,Mn) | | | | | | Li(2)/ | Occ. | 0.516(3)/ | 0.567(8)/ | 0.570(3)/ | 0.566(4)/ | | Fe(2)/Mn(2) | | 0/0.484(3) | 0.182(2)/0.251(2) | 0.325(3)/0.105(3) | 0.417 + 0.017(4) | | | x/a | 0.9481(2) | 0.979(4) | 0.9475(3) | 0.9484(5) | | | y/b | 0.2526(5) | 0.336(6) | 0.2516(7) | 0.246(1) | | | z/c | 0.0068(3) | 0.036(5) | 0.0025(5) | 0.0050(7) | | | U_{iso} (Å ²) | 0.022(1) | 0.015 (1) | 0.031(1) | 0.046(3) | | | Li/(Fe,Mn) | | | | | | S | x/a | 0.3271(3) | 0.3262(4) | 0.3276(3) | 0.3287(5) | | | y/b | 0.5912(4) | 0.5923(7) | 0.5936(5) | 0.5909(8) | | | z/c | 0.1976(3) | 0.1936(5) | 0.1966(3) | 0.1981(5) | | | U_{iso} (Å ²) | 0.0280(6) | 0.0084(8) | 0.0307(9) | 0.035(2) | | F | x/a | 0.9849(4) | 0.9865(2) | 0.9864(3) | 0.9828(7) | | | y/b | 0.4001(8) | 0.4053(4) | 0.4042(5) | 0.408(1) | | | z/c | 0.6079(4) | 0.6093(3) | 0.6089(3) | 0.6113(8) | | | U_{iso} (Å ²) | 0.024(1) | 0.0159(6) | 0.040(1) | 0.054(4) | | O(1) | x/a | 0.2132(4) | 0.2152(2) | 0.2157(3) | 0.218(1) | | | y/b | 0.6426(8) | 0.6424(3) | 0.6406(4) | 0.650(2) | | | z/c | 0.1857(5) | 0.1913(2) | 0.1918(3) | 0.1863(9) | | | U_{iso} (Å ²) | 0.023(2) | 0.0072(5) | 0.0261(8) | 0.052(5) | | O(2) | x/a | 0.5811(5) | 0.5809(2) | 0.5808(2) | 0.5826(9) | | | y/b | 0.5363(8) | 0.5344(3) | 0.5358(4) | 0.530(1) | | | z/c | 0.1451(6) | 0.1456(3) | 0.1448(3) | 0.143(1) | | | U_{iso} (Å ²) | 0.020(2) | 0.0070(4) | 0.0264(8) | 0.016(3) | | O(3) | x/a | 0.6949(4) | 0.6930(2) | 0.6921(2) | 0.6961(6) | |--------------|-----------------------------|-----------|-----------|-----------|-----------| | | y/b | 0.4189(8) | 0.4164(4) | 0.4162(5) | 0.415(2) | | | z/c | 0.4152(5) | 0.4132(2) | 0.4127(3) | 0.4134(9) | | | U_{iso} (Å ²) | 0.022(2) | 0.0072(5) | 0.0280(9) | 0.024(3) | | O(4) | x/a | 0.6338(4) | 0.6345(2) | 0.6352(2) | 0.6386(8) | | | y/b | 0.7765(8) | 0.7756(3) | 0.7744(4) | 0.774(1) | | | z/c | 0.3545(5) | 0.3588(2) | 0.3576(3) | 0.3573(9) | | | U_{iso} (Å ²) | 0.019(2) | 0.0070(5) | 0.0242(8) | 0.014(3) | | χ^2 | | 2.31 | 2.79 | 5.90 | 5.66 | | R_p (%) | | 1.50 | 3.02 | 1.56 | 1.31 | | R_{wp} (%) | | 1.97 | 2.09 | 2.33 | 1.90 | ### 3.3.4 Chemical Delithiation of LiFeSO₄F LiFeSO₄F can be readily oxidized with NOBF₄ in acetonitrile to produce the delithiated
framework, FeSO₄F. The XRD pattern obtained by chemical delithiation of tavorite type LiFeSO₄F is the same as that derived through electrochemical oxidation, but is free of any contaminants arising from the cell. To obtain unequivocal structural information on this phase in order to better understand the electrochemical redox process, a diffraction pattern was collected using a synchrotron source which affords higher intensity and resolution. The diffraction pattern shown in **Figure 3.16** was indexed, and the structure readily refined in a monoclinic cell (space group C2/c). **Table 3.6** summarizes the data obtained by refinement. The chemical delithiation of triplite type LiFeSO₄F results in slightly different framework than that obtained from the tavorite type compound and the resulting composition after 24 hour chemical delithiation (Li_{0.45}FeSO₄F) has been reported by Barpanda *et al.* ¹⁹³ in C2/c space group. **Figure 3.16** Refinement of ($\lambda = 0.4122 \text{ Å}$) of FeSO₄F structure from PXRD of FeSO₄F obtained *via* chemical delithiation of tavorite LiFeSO₄F. Black points represent experimental data, red solid lines show fitted data while blue lines show the difference map between observed and calculated data; red bars indicate phase markers. X-ray diffraction agreement factors: $R_{wp} = 10.30\%$, $R_p = 8.07$, $R_F^2 = 9.55\%$ **Table 3.6** Structural data of FeSO₄F synthesized by chemical delithiation of tavorite type LiFeSO₄F | | FeSO ₄ F | | | | | | | | |--|---|-----|------------|------|------|-----------------------------|--|--| | Space group: C 2/c (#15), Monoclinic | | | | | | | | | | | $M_{\rm w} = 170.91 \text{ g/mol}$ | | | | | | | | | D = 3.46 | 60 g cm ⁻³ | | | | | | | | | a = 7.30 | ` / _ | | | | | | | | | b = 7.07 | ` ′ - | | | | | | | | | c = 7.31 | ` / | | | | | | | | | $\beta = 119.$ | | | | | | | | | | V = 328 | $.017(8) \text{ Å}^3$ | | | | | | | | | Atom | Wyck. | x/a | y/b | z/c | Occ. | U_{iso} (Å ²) | | | | Fe | 4 <i>d</i> | 1/4 | -1/4 | 0 | 1.0 | 0.0082(2) | | | | S | S 4e 1/2 0.1357(2) 1/4 1.0 0.0087(3) | | | | | | | | | O(1) | O(1) 8 <i>f</i> 0.3363(3) 0.0173(2) 0.0868(4) 1.0 0.0090(6) | | | | | | | | | O(2) 8 <i>f</i> 0.4030(1) 0.2571(3) 0.341(1) 1.0 0.0089(4) | | | | | | | | | | F | 4e | 0 | -0.1635(3) | -1/4 | 1.0 | 0.0095(7) | | | ### 3.3.5 Impact of Moisture Exposure Fluorosulfates are known to be very reactive in the presence of moisture. The impact of exposure of the LiFe_{0.8}Mn_{0.2}SO₄F triplite to the atmosphere was examined, and the results are shown in **Figure 3.17**. Exposure of the tavorite type LiFeSO₄F results in similar reaction. Contact at 60% relative humidity for 8 h results in the appearance of 6.5% (w/w) monohydrate [Fe,Mn]SO₄·H₂O visible in the XRD pattern (**Figure 3.17**). Note that the triplite structure is closely related to tavorite which in turn is very similar to the monohydrate ("szomolnokite") product of this reaction. Thus the reaction is likely to proceed through a transformation where the LiF moiety is replaced with H-OH by reaction of H₂O with the framework. It has been reported¹⁹⁴ recently that air-aging of olivine type positive electrode materials such as LiFe⁽²⁺⁾PO₄ results in formation of tavorite type LiFe⁽³⁺⁾PO₄OH_{0.39} In case of fluorosulfates, due to structural similarities, reaction with H_2O is kinetically favored for the formation of the monohydrate ferrous product before oxidation of the Fe^{2+} to Fe^{3+} occurs. Such ease of hydrolysis presents a significant problem for storage and processing of fluorosulfate materials. **Figure 3.17** X-ray refinement of moisture exposed triplite LiFeSO₄F. Black points represent experimental data, red solid lines show fitted data while blue lines show the difference map between observed and calculated data. Black and red bars represent peak positions for triplite and szomolnokite phases. X-ray diffraction agreement factors: $R_{wp} = 2.23\%$, $R_p = 1.53\%$, $\chi^2 = 4.01$. # 3.3.6 Electrochemistry #### 3.3.6.1 Tavorite-Type-LiFeSO₄F The high intercalation voltage and theoretical specific capacity of LiFeSO₄F (151 mA h g⁻¹) has led to its proposal and realization as a suitable new positive electrode material. The electrochemical behavior of the tavorite type LiFeSO₄F synthesized by conventional solvothermal method is shown in **Figure 3.18**. At C/10 rate, a reversible capacity of 0.86 Li (130 mAh g⁻¹) was sustained at an average potential of 3.6 V. This performance is similar to the tavorite type LiFeSO₄F prepared by ionothermal methods. ¹⁸³ Notable is that the equivalent unit cell volumes of the parent LiFeSO₄F (182.4 Å³), and delithiated (FeSO₄F: 164.0 Å³) phases differ by 10.1 %. This is far greater than the volume contraction reported for the olivine LiFePO₄↔FePO₄ of 6.7 %. Coupled with the change in unit cell symmetry, it suggests that considerable strain should be associated with the redox-driven phase transition. However, facile reversible intercalation of Li-ions without any surface carbon coating indicates that good electrochemical properties are the result of higher ionic conductivity displayed by the tavorite than olivine type structure as shown in **Chapter 4**. #### 3.3.6.2 Triplite-Type-Li(Fe,Mn)SO₄F The electrochemical behavior of triplite type LiFe_{0.9}Mn_{0.1}SO₄F prepared using conventional solvothermal technique is shown in **Figure 3.19**, the best performance is observed for materials with 5 and 10% Mn or Zn content. For LiFe_{0.9}Mn_{0.1}SO₄F, the theoretical gravimetric capacity is 150 mA h/g. At a rate of 0.05C (1 Li in 20 hours) with 70% (w/w) active material in the electrode mixture, 0.70 Li could be reversibly extracted. The resulting reversible gravimetric capacity of 105 mAh g⁻¹ is the same as that reported for materials prepared by the solid state route. 195 Since Mn and Zn are reported to be electrochemically inert, the gravimetric capacity of the material increases with Fe content in the compound. A negligible reversible capacity is observed for samples with more than 50% Mn content. The electrochemistry of the Zn doped sample LiFe_{0.9}Zn_{0.1}SO₄F shows significant improvement (**Figure 3.20**) over the same material prepared by using solid state methods (reversible capacity of 0.70 Li vs. 0.55 Li). 196 This can mainly be attributed to the superior phase purity of the sample obtained under solvothermal conditions, which lacks any unreacted precursors. The electrochemical properties are poorer for unsubstituted triplite type LiFeSO₄F (**Figure 3.21**) prepared by conventional solvothermal synthesis compared to LiFe_{0.9}Mn_{0.1}SO₄F, in agreement with previous reports. 195 The electrochemical properties of triplite type LiFeSO₄F obtained from microwave-tavorite type LiFeSO₄F (**Figure 3.22**) are greatly improved in comparison to the compound prepared by conventional solvothermal method. Nearly 80% of the Li could be reversibly intercalated at C/20 rate which is far better than reported for triplite LiFeSO₄F (~55% Li) prepared by other methods. ^{193,197} This is the result of the smaller particle size afforded by the microwave process. It is well known that Li de/-intercalation kinetics can be significantly increased by using smaller particles owing to the shorter pathways required for Li-ion transport. ¹⁹⁸ This is particularly a factor for triplite because of the disorder on the Li/Fe sites which additionally blocks the Li-migration pathways. In large particles this significantly impacts the Li ion diffusion coefficient. ¹⁹⁸ The improvement in electrochemical properties with reduction in particle size is in accord with previous reports of inferior practical gravimetric capacity of 3-4 μm LiFeSO₄F (**Figure 3.22**) compared to 1-2 μm LiFe_{0.9}Mn_{0.1}SO₄F despite lower theoretical capacity of the later. The specific energy of triplite type LiFeSO₄F is high despite the lower gravimetric capacity because of the increased voltage of (de)intercalation compared to other phosphates. The average charge–discharge voltage is 300 mV higher than tavorite type LiFeSO₄F and 450 mV higher than olivine LiFePO₄. This increased potential puts the specific energy density of triplite type LiFeSO₄F on par with tavorite type LiFeSO₄F and olivine type LiFePO₄. Differential capacity curves for both the compounds are shown in **Figure 3.23**. The tavorite LiFeSO₄F shows two oxidation and two reduction peaks in each cycle with long tails. This is in agreement with the behavior observed for ionothermally prepared tavorite sample where the smaller peak was attributed to solid solution behavior displayed by the tavorite compound at the end of oxidation and initial reduction. The triplite compound, on the other hand, clearly shows only one peak indicative of first phase transformation at 3.91 V during oxidation and at 3.88 V during reduction. This is similar to the electrochemical differential capacity curve of the triplite samples prepared by solid state methods. Slight loss in the peak height in both cases after few cycles is in accordance with the capacity loss with cycling shown in the inset of **Figures 3.18** and **3.19**. **Figure 3.18** Electrochemical charge-discharge curve of tavorite LiFeSO₄F (rate: C/10, active materials 80%, Super P : 20%). Inset shows the capacity retention after cycling. **Figure 3.19** Electrochemical charge-discharge curve of triplite LiFe_{0.9}Mn_{0.1}SO₄F (rate: C/10, active materials 70%, Super P :30%) **Figure 3.20** Electrochemical charge-discharge curve of triplite LiFe_{0.9}Zn_{0.1}SO₄F (rate: C/20, active materials 70%, Super P :30%) **Figure 3.21** Electrochemical charge-discharge curve of triplite LiFeSO₄F prepared *via* microwave assisted synthesis process (rate: C/20, active materials 80%, Super P :20%). Inset shows the capacity retention after cycling. **Figure 3.22** Comparison between
electrochemical charge-discharge curve of triplite LiFeSO₄F prepared by extended conventional solvothermal and microwave assisted process (rate: C/20, active materials 80%, Super P:20%) **Figure 3.23** Differential capacities *vs.* voltage curves for tavorite and triplite LiFeSO₄F. Blue, red and black curves show 2nd, 5th and 10th cycles respectively #### 3.3.7 Origin of the Voltage Increase The difference in the intercalation voltage between tavorite and triplite type compound can be understood by considering the differences in framework connectivity in both the structures. In the triplite (unlike the tavorite) the coordination polyhedra of the metal cations share edges with each other. Such an arrangement leads to increased cation–cation repulsion. As a result, the octahedron increases in size to partially counter the decreased proximity between transition metals. In triplite type compound the average bond length around M1 is 2.124 Å while for M2, it is 2.153 Å. For tavorite LiFeSO₄F (corner shared transition metal octahedra) these values are in the range 2.078–2.119 Å. The slightly longer bond lengths for the triplite are indicative of the decreased charge density on the metal site which is in agreement with the 300 mV increase in the redox voltage. A lower charge density is expected to lower the Fermi level and therefore increase the redox voltage. #### 3.3.8 Origin of the Phase Transition The phase transition of the tavorite type to the triplite type LiFeSO₄F is considered largely driven by the higher entropy of the disordered triplite phase. However, in the light of the unique phase transition displayed by the microwave prepared tavorite type LiFeSO₄F (as described above), additional characterization of the sample was carried out to understand the reasons behind this phenomenon. Figure 3.24 shows FTIR spectra collected for both the tavorite and the triplite type LiFeSO₄F polymorphs synthesized using the microwave-assisted and conventional solvothermal methods. Peaks characteristic of the SO_4^{2-} group are present in the region of 1400-400 cm⁻¹, similar to previously reported fluorosulfate compounds. Hydroxyl bands are also visible. The signatures of the OH groups associated with inorganic compounds normally appear²⁰⁰ at 3700-3500 cm⁻¹ while OH groups associated with the solvent TEG have been reported²⁰¹ at ~3400 cm⁻¹. The presence of broad peaks around 3400 cm⁻¹ and a shoulder at ~3600 cm⁻¹ in the microwave prepared tavorite type LiFeSO₄F therefore indicates the presence of framework OH groups along with some glycol on the surface. On conversion to triplite, the framework OH disappears, although a trace of glycol remains. Presence of glycol peaks is not unusual even after heat treatment in solvothermally prepared samples²⁰¹ with glycol as the solvent. In contrast, lattice hydroxyl is not visible in the conventional solvothermal tavorite which shows only a surface glycol peak contribution at ~3400 cm⁻¹. In short, the microwave tavorite is characterized by a lattice hydroxyl contribution that disappears upon conversion to triplite type polymorph, whereas this feature is absent for the conventional solvothermal tayorite type polymorph of the compound. Another evidence that this is a surface initiated phase transformation, was obtained when microwave prepared tavorite LiFeSO₄F was mixed with sucrose in 2:1 weight ratio and the mixture was heated at 350°C for 1 hour. There was no change observed in the XRD pattern of the tavorite type LiFeSO₄F and complete conversion to phase pure triplite type polymorph occurs only after 8 hrs. At this stage, it can be safely concluded that the sucrose-tavorite mixture, upon heat treatment, results in small tavorite particles coated with a carbonaceous layer which retards the dehydrogenation of OH groups present on the surface of the particles. Therefore, the phase transformation is delayed. A comparison of the TGA curves of both of tavorite and triplite compounds obtained by microwave assisted methods is shown in **Figure 3.25**. Slightly higher weight lost in 300-400°C in tavorite type compound is attributed to loss of OH groups. Both the compounds decompose after 400°C to produce a combination of Fe₂O₃, FeS₂, LiF and SO₂ among other products. Based on the above results **Figure 3.26** presents a possible mechanism for rapid phase transformation from tavorite to triplite. Upon heating, condensation of the surface hydroxyl groups releases H_2O [Fe-(OH $)_2 \rightarrow H_2O + Fe(O^2, \square)$], generating oxygen vacancies. The reduced unit cell volume on the surface of the material generates a surface tension along the plane parallel to the surface. The net result of this would be a radial compressive stress generated in a spherical particle. This stress is released by transforming the underlying tavorite type material to the denser atomic packing provided by the triplite type structure that exhibits a ~2% lower unit cell volume per formula unit ($\Delta V/Z$). This provides the trigger for the phase transformation. **Figure 3.24** FT-IR spectra collected for a) tavorite type LiFeSO₄F prepared by conventional solvothermal b) tavorite type LiFeSO₄F prepared by microwave solvothermal and c) triplite type LiFeSO₄F prepared by heating microwave tavorite sample. Figure 3.25 TGA curve for triplite (red) tavorite (blue) type LiFeSO₄F **Figure 3.26** Comparison of unit cell volumes of tavorite and triplite; b) phase transition mechanism in MW-LiFeSO₄F #### 3.4 Conclusions Fascinating and complex structural and electrochemical properties are exhibited amongst the polymorphs of the lithium metal fluorosulfate family. The solvothermal synthesis route provides the most powerful and simple ways to access these materials as phase-pure compounds. Lithium iron fluorosulfate first crystallizes in a cation-ordered tavorite type structure that completely converts to a cation-disordered triplite structure on prolonged heating under solvothermal conditions, a process driven by entropic factors. The combined XRD and neutron study of the triplite type compounds show a complete disorder of the Li over the two cation sites. No preferential segregation is observed on any one site. Microwave-assisted solvothermal synthesis rapidly generates nanocrystalline LiFeSO₄F tavorite with defects that induce significant microstrain. To date, this is unique to the microwave synthesis method which remains a largely unexplored technique capable of producing unique outcomes. Phase transformation to a more stable triplite framework is quickly triggered by heat, facilitated by the defects and the hydroxyl groups. This provides a quick and scalable route for the synthesis triplite type LiFeSO₄F. The electrochemical performance of triplite type LiFeSO₄F is strongly dependent on the particle size whereas no such dependence is observed for the tavorite polymorph owing to its highly ordered structure that provides a clear pathway for Li-ion migration. In contrast, the inherently disordered nature of the triplite structure results in a tortuous high-activation pathway for Li-ion migration, rendering a fraction of Li ions in the core of the material inaccessible even at intermediate rates in micron-sized particles. The nanocrystallite dimensions afforded by the microwave route largely overcome this limitation. The rapid 3D ion transport characteristics of the framework at the atomic level, and comparable specific energy density to that of LiFePO₄ owing to its higher voltage (543 Wh kg⁻¹ vs. 581 Wh kg⁻¹) also auger well for future importance of LiFeSO₄F as a practical electrode material. The contrasting electrochemical performance of the two polymorphs presents an excellent opportunity to revisit some of the most debated issues in the field such as framework dependence of ion conduction and electrochemical voltage. More detailed studies of Li-ion conduction in these materials using simulation methods will be presented in the next chapter. # Chapter 4 # Alkali-Ion Conduction in Tavorite, Layered and Olivine Type Structures #### 4.1 Introduction In Li-ion battery, Li-ions shuttle back and forth between the negative and positive electrode through the middle layer of the electrolyte to counter the charge imbalance created by the flow of electrons in the outer circuit. Therefore, for a fast charge and discharge, ions must be able to quickly move inside the electrode's crystal structure as well as in the electrolyte. Since typically used liquid electrolytes are much better Li-ion conductors than solid electrodes, Li-ion diffusion coefficient in the later is a rate limiting step during charge and discharge of the battery. Similarly, Na-ion batteries (NIB), which operate on the same principle as Li-ion batteries must be able to quickly transport Na-ion from one end to the other for a good charge and discharge rate. According to the classical model of ion conduction, ions migrate in a crystal structure *via* hopping from one crystallographic site to another. In the process, they must pass through an energy barrier since crystallographic sites are energy minima in the energy landscape of the crystal. This energy barrier is known as activation energy for ion diffusion and depends strongly upon the structure and migrating ion type as shown later in this chapter. Chemical defects are aberrations present in the regular structure of the material. The presence of point defects (*i.e.* vacancies and interstitials) up to a certain concentration is a thermodynamic necessity as they increase the entropy of the material. Concentration of defects in a material depends on the energetics of their formation which can often be controlled by the choice of synthesis method. For example, theoretical and experimental evidence exists suggesting that the antisite defect concentration (formed by intersite ion exchange) can be tuned in LiFePO₄ by using either hydrothermal or solid state synthesis methods.^{202,203} Defects can potentially change
many properties of the materials including ionic and electronic conductivity. A higher concentration of antisite defects in olivine LiFePO₄ has been shown to considerably slow down Li-ion migration kinetics resulting in a poor electrochemical behavior. Substantial effort has been expended in previous decades to prepare positive electrode materials for Na-ion batteries that can easily intercalate and transport Na-ions at suitable potentials. Recently P2-type NaFe_{0.5}Mn_{0.5}O₂ has been shown to be an excellent positive electrode material which can reversibly intercalate Na-ions in 2-4.5 V range with good rates of charge and discharge. 149 Many other oxides such as NaCoO2, 143 NaCrO2, 204 NaVO2 and NaNi_{0.5}Mn_{0.5}O₂ show good initial reversible gravimetric capacities. However, in general, P2-type NaMO₂ compounds in which Na-ion are located in prismatic coordination display higher gravimetric capacity than O3-type in which Na-ions are located in octahedral geometry due to the slightly higher thermodynamic stability of the charged (desodiated) structure in the former case. Electrochemical de-intercalation of Na⁺ cations from these oxides occurs via phase transitions between multiple intermediate phases, adding to the complexity of ion-migration during charge and discharge. Recently this topic has been examined in detail using computational studies that suggest that Na-ion migration energetics in oxides can be highly $favourable.^{211}\ Among\ polyanion\ materials\ Na_{0.44}MnO_2,^{206,146,147,207}\ NASICON,^{208}\ NaVPO_4F,^{153}$ NaFePO₄, ^{209,158} and Na₂FePO₄F, ^{155,157,210} intercalate Na-ion in the range of 2.5-4 V thereby providing ideal behavior as positive electrode materials. These materials display a robust framework and better capacity retention than oxides at the expense of poorer conductivity (ionic and electronic). Unlike the oxides, they usually display flat voltage behavior upon Na(de)intercalation due to the structural energetics that drives two-phase behavior and formation of a phase boundary between Na-rich and Na-poor phases. While there have been many theoretical and experimental studies of Li-ion migration behavior in such systems only one recent paper has analyzed the energetics of Na-ion migration. ²¹¹ Na₂FePO₄F was synthesized in 2005 by Ellis et al. The initial study demonstrated facile and reversible intercalation of Li⁺ when the material was used as a positive electrode in a Li cell, via rapid exchange of Na⁺ in one of the sites with Li⁺. Na₂FePO₄F also intercalates Na⁺-ion reversibly at an average of 3.0 V, as later demonstrated for both ionothermally ¹⁵⁷ and solid state^{210,212157} prepared material. Particularly good performance was obtained with as little as 1.3 wt% carbon coating using ascorbic acid as the carbon source, which also had the positive effect of reducing the particle size. 212 The material exhibits only a small volume difference (3.7%) when Na ions are de-intercalated from the 2-D layers of the structure resulting in a stable capacity retention at reasonable current densities (110 mAh/g at 0.1C).²¹⁰ Another equally important material olivine NaFePO₄ can be synthesized using earth abundant and relatively inexpensive materials. It de/-intercalates Na-ions at 3.2 V. 209,158 The mixed Fe-Mn system NaFe_{0.5}Mn_{0.5}PO₄ was also synthesized recently in olivine form and it gives a characteristically different electrochemical curve than isostructural NaFePO₄ when cycled in a Na-cell.¹⁵⁸ Conflicting reports have emerged regarding the electrochemical properties of olivine NaFePO₄. While the initial study by Moreau et al.²⁰⁹ indicated that carbon coating of the parent material LiFePO₄ did not impact the electrochemical performance of the olivine NaFePO₄, recent investigations by Wang et al.²¹³ have demonstrated much superior electrochemistry (~100 mAh/g at 0.1C rate). However these values are still inferior to those of the carbon coated lithium analogue. In contrast with LiFePO₄, deintercalation of Na from NaFePO₄ occurs *via* intermediate Na_{0.7}FePO₄.²⁰⁹ First stage of Na deintercalation (from NaFePO₄) occurs at ~2.9 volt while the second stage occurs at ~3.1 volt (from Na_{0.7}FePO₄). However, only single voltage plateau during discharge of the material is observed. Such asymmetry of the charge-discharge has been recently studied using combination of TEM and XRD.²¹⁴ The study concludes that all the three phases (NaFePO₄ Na_{0.7}FePO₄ and FePO₄) are simultaneously present during the discharge owing to the large unit cell volume difference between completely charged (FePO₄) and other two compounds (NaFePO₄ and Na_{0.7}FePO₄). During charge (desodiation), small volume difference between NaFePO₄ and Na_{0.7}FePO₄ restricts the formation of FePO₄ until all of NaFePO₄ has first converted to Na_{0.7}FePO₄. To fully understand the local structural and transport features influencing the electrochemical behavior of above mentioned materials, it is clear that fundamental knowledge of their underlying defect and transport properties is needed on the atomic scale. Atomistic modeling technique provides a powerful means of investigating these key solid-state issues, but has not been applied to Na-layered type fluorophosphates, (Li,Na) tavorite type fluorosulfates or Na-olivine type materials. This chapter describes energetics of defect formation, alkali ion migration and corresponding activation energy barriers for tavorite (LiFeSO₄F, NaFeSO₄F), layered (Na₂FePO₄F) and olivine (NaFePO₄) type materials. #### 4.2 Method As described in **Chapter 2** atomistic scale simulations are based on the energy minimization of the structure by employing interatomic potential parameters. ¹⁷⁶ The structure obtained from the X-ray refinement studies was used as input to the General Utility Lattice Program (GULP) as describe in Chapter 2. Interactions between ions in the fluorosulfate, phosphate and fluorophosphate structures consist of a long-range Coulombic term and a shortrange component representing electron-electron repulsion and van der Waals interactions. The short-range interactions were modeled using the two-body Buckingham potential (Table 4.1 and **Table 4.2**). An additional three-body term was used for the XO_4^{n-} (X =P, S) units to account for the angle dependent nature of O-X-O bonds, as previously used for other sulfates²¹⁵ and phosphates.⁷⁹ The well-known shell model²¹⁶ was employed to account for the polarizability effects of charged defects on the electronic charge clouds. The Fe-O and Li-O, P-O and O-P-O interatomic potentials were taken from a study on LiFePO₄. The Na-O, S-O, O-F, Fe-F and A-F (A= Li, Na) interactions were obtained by refining parameters from previous studies on fluorides and oxyfluorides.²¹⁷ For the sulfate component, the interatomic potential model successfully formulated to simulate M_2SO_4 (M = Na, K, Rb and Cs) and XSO_4 (X = Sr, Ca, Ba)²¹⁵ was used. A Morse potential was used to describe intra-molecular bond-stretching interactions between S and O ions in the sulfate group. 215 The lattice relaxation about defects (such as Li vacancies) and migrating ions was calculated by an implementation of the Mott-Littleton scheme incorporated in the GULP code.²¹⁸ This method partitions the crystal lattice into two regions, where ions in the inner region immediately surrounding the defect (on the order of >700 ions) are relaxed explicitly. The classic hopping model of ion diffusion was used to calculate the activation energy barrier for migration of the Li or Na –ion in the structure. To find the least energy hopping path, the energy of the structure was calculated for the intermediate ion-vacancy distribution during hopping. To accomplish this, ten points were chosen on the line joining closest Li or Na sites in the structure and energy of simultaneous creation of two vacancies (at either end of the hop) and the migrating alkali ion interstitial at each of the ten points as their initial position were calculated separately. The position of the alkali ion was allowed to change during simulation and thus minimum energy path was mapped for alkali ion migration between any two sites. **Table 4.1** Short range potential parameters for tavorite type LiFeSO₄F and NaFeSO₄F | | (a) Buckingham potentials | | | | | | | | |---|---------------------------|------------|-------|--------|--------------------|--------|---|------------| | Pair | A (eV | <i>J</i>) | ρ (Å) | C (e | VÅ ⁶) | Y(e) | K(eVÅ ⁻²) | Cutoff (Å) | | Li ⁺ - O ^{0.84-} | 4787 | .6 | 0.20 | 0.0 | 00 | 1.00 | 99999 | 20 | | Na ⁺ - O ^{0.84-} | 9150 | .6 | 0.22 | 0.0 | 00 | 1.00 | 99999 | 20 | | Li ⁺ - F | 400. | 6 | 0.27 | 0.0 | 00 | 1.00 | 99999 | 20 | | Na ⁺ - F | 4000 | .6 | 0.22 | 0.0 | 00 | 1.00 | 99999 | 20 | | Fe ²⁺ - O ^{0.84-} | 7500 | .0 | 0.22 | 0.0 | 00 | 2.997 | 19.26 | 20 | | Fe ²⁺ - F | 5609 | .2 | 0.23 | 0.0 | 00 | 2.997 | 19.26 | 20 | | F - F | 1153 | .0 | 0.14 | 0.0 | 00 | -2.321 | 63.58 | 20 | | O ^{0.84-} - F | 200. | 0 | 0.30 | 8.9 | 99 | -0.84 | 99999 | 20 | | O ^{0.84-} - O ^{0.84-} | 1035 | 8 | 0.20 | 25. | .93 | -0.84 | 99999 | 20 | | | 1 | | | (b) Th | ree boo | dy | | | | Bond | | | K | | $\Theta_0(^\circ)$ | | Cutoffs R _{ij} ,R _{ik} ,R _{jk} (Å) | | | $O^{0.84}$ - $S^{1.36+}$ - $O^{0.84-}$ | $O^{0.84}$ | 15.000 | | | 109.47 | 1.8 | ,1.8,3.2 | | | | (c) Morse potential | | | | | | | | | Bond | | D | | | В | R_0 | Cutoff (Å) | | | O ^{0.84-} - S ^{1.36+} - O | $O^{0.84}$ | | 5.000 | | | 1.200 | 1.505 | 1.8 | Table 4.2 Short-Range Potential Parameters for olivine Na[Fe,Mn]PO₄ and layered Na₂FePO₄F | | (a) Buckingham potentials | | | | | | |------------------------------------|---------------------------|------------|------------------------------|-------|-----------|--------------------------------| | Pair | A (eV) | ρ(Å) | $C(eV \cdot \mathring{A}^6)$ | Y | K(eV·Å | Cutoff
 | $Na^+ - O^{2-}$ | 560 | 0.32 | 0.00 | 1 | 99999.0 | 20 | | $Na^+ - O^{2-}$ | 1497.83 | 0.28748 | 0 | 1 | 99999.0 | 20 | | Na ⁺ - F ⁻ | 8000 | 0.20 | 0 | 1 | 99999.0 | 20 | | Fe ²⁺ - O ²⁻ | 1105.25 | 0.31 | 0.00 | 2.99 | 19.26 | 20 | | $Mn^{2+} - O^{2-}$ | 1305.25 | 0.31 | 0.00 | 2.99 | 19.26 | 20 | | P ⁵⁺ - O ²⁻ | 897.25 | 0.35 | 0.00 | 5 | 99999.0 | 20 | | $O^{2}-O^{2}$ | 22764.3 | 0.14 | 44.53 | -2.96 | 65.00 | 20 | | O ² -F | 200 | 0.3 | 8.99955 | - | - | 200 | | F - F | 1153 | 0.1365 | 0 | -2.32 | 63.57 | 1153 | | | (b) Three body | | | | | | | Bond | k (eV·rad ⁻²) | Θ_0 | (°) | | Cutoffs F | R_{ij} , R_{ik} , R_{jk} | | $O^{2}-P^{5+}-O^{2-}$ | 1.322 | 109 | 0.47 | | 1.8,1.8, | 3.2 | #### 4.3 Results and Discussion # 4.3.1 Crystal Structure and Potential The structure of LiFeSO₄F belongs to the tavorite family of mineral structures, crystallizing in the triclinic P-1 space group as described in **Chapter 3**. The structure encompasses chains of alternately oriented corner-shared FeO₄F₂ octahedra that run along the c-axis and share fluorine located on opposite vertices. Each of the four oxygen atoms in the polyhedron is also bonded to a sulfur atom, forming Fe-O-S-O-Fe chains that cross-link the structure. The separation between the FeO₄F₂ octahedral chains introduced by the corner-sharing SO₄ tetrahedra results in three primary open tunnels along the [100], [010], and [101] directions in the structure that house the Li ions (**Figure 4.1**). In NaFeSO₄F, the connectivity between atoms is essentially the same, as seen in the structure illustrated in **Figure 4.2** (and **Chapter 5**). However, the lattice adopts a higher symmetry space group (P2 $_1/c$) compared to that of LiFeSO₄F and thus there are subtle differences. Most importantly, the corresponding crystallographic directions between the two structures are different. They can be correlated by noting that the tunnels along the [100] and [010] directions in the LiFeSO₄F correspond to the [110] and [-110] directions in the NaFeSO₄F. The starting structural parameters of the current simulation study were the observed crystal structure, in which the LiFeSO₄F structure has been refined experimentally with two half-occupied Li sites. This was modeled in a *P-1* supercell with alternate occupation of these two sites, where Li_A and Li_B represent the alternate full occupancy of the Li1 and Li2 sites respectively. The potential parameters used in this study were used to simulate optimized structures, with a direct comparison of the experimental and the calculated structures reported in **Table 4.3**, **Table 4.5** and **Table 4.6**. The calculated *a*, *b* and *c* unit cell parameters deviate from experiment by at most 0.07 Å, and in most cases much less. In the olivine NaMPO₄ structure (space group: *Pnma*), MO₆ octahedra link to each other *via* corner sharing in the *ab* plane. Sandwiched between these planes are PO₄ tetrahedra which share corners and edges with the MO₆ octahedra. Such a framework provides open channels along *b*-axis in which Na ions are located (**Figure 4.5**). In the layered-Na₂FePO₄F structure, iron is located on two crystallographic sites (Fe1 and Fe2) and the coordination polyhedra around them are connected to form face shared bi-octahedron units (**Figure 4.7**). These units are connected in the *a*-direction to from Fe-F-Fe chain. The chains are connected to each other by PO₄ tetrahedra along the *c*-direction, forming a layer of Fe₂O₆F₃-PO₄ units in the *ac* plane. Na ions reside in these interlayer spaces. Calculated lattice parameters and comparison to the experimentally reported values for olivine NaMPO₄ and layered Na₂FePO₄F are shown in **Table 4.4** and **Table 4.7**. Lattice parameters (unit cell lengths and angles) for all four compounds could be simulated within a maximum difference of 0.09 Å from experimentally reported values. Bond lengths were also very similar. The successful reproduction of the complex crystal structures provide additional support that the potential models can be used reliably in the defect and migration calculations. **Table 4.3** Calculated and experimental structural parameters for AFeSO₄F (A=Li, Na) | Lattice Parameters | LiFeSO ₄ F | | | NaFeSO ₄ F | | | |--------------------|-----------------------|---------|--------|-----------------------|---------|--------| | | Calc. | Exp. | Δ | Calc. | Exp. | Δ | | a (Å) | 5.102 | 5.174 | -0.072 | 6.648 | 6.673 | -0.025 | | b (Å) | 10.919 | 10.988 | -0.068 | 8.676 | 8.699 | -0.022 | | c (Å) | 7.184 | 7.222 | 0.038 | 7.252 | 7.187 | 0.065 | | α (°) | 105.878 | 106.522 | -0.643 | 90.000 | 90.000 | 0.000 | | β (°) | 107.210 | 106.485 | 0.724 | 111.839 | 113.524 | -1.684 | | γ (°) | 96.746 | 97.791 | -1.044 | 90.00 | 90.00 | 0.00 | Table 4.4 Calculated and experimental structural parameters for Na₂FePO₄F and NaFePO₄ | Lattice parameters | a (Å) | b (Å) | c (Å) | | | | |--------------------|-----------------------|------------------|--------|--|--|--| | | NaFePO ₄ | | | | | | | Expt. | 10.410 | 6.228 | 4.952 | | | | | Calculated | 10.316 | 6.163 | 4.929 | | | | | Δ | -0.094 | -0.065 | -0.022 | | | | | | NaM | nPO ₄ | | | | | | Expt. | 10.557 | 6.335 | 4.996 | | | | | Calculated | 10.666 | 6.302 | 4.960 | | | | | Δ | 0.109 | -0.034 | -0.035 | | | | | | NaFe _{0.5} N | $Mn_{0.5}PO_4$ | | | | | | Expt. | 10.493 | 6.296 | 4.980 | | | | | Calculated | 10.462 | 6.218 | 4.944 | | | | | Δ | -0.032 | -0.078 | -0.037 | | | | | Na_2FePO_4F | | | | | | | | Expt. | 5.220 | 13.854 | 11.779 | | | | | Calculated | 5.231 | 13.847 | 11.744 | | | | | Δ | -0.011 | 0.008 | 0.034 | | | | **Table 4.5** Comparison of selected bond lengths of experimental and calculated tavorite LiFeSO₄F structure | Atom 1 | Atom 2 | Count | Distances ([Å], (Experimental)) | Distances ([Å], Calculated) | |--------|--------|-------|---------------------------------|-----------------------------| | Fe(1) | F(1) | 2x | 2.02 | 2.03 | | | O(3) | 2x | 2.13 | 2.13 | | | O(4) | 2x | 2.15 | 2.14 | | Fe(2) | F(1) | 2x | 2.01 | 2.02 | | 10(2) | O(1) | 2x | 2.14 | 2.12 | | | O(2) | 2x | 2.23 | 2.15 | | S(1) | O(1) | 1x | 1.47 | 1.45 | | , | O(4) | 1x | 1.47 | 1.47 | | | O(2) | 1x | 1.48 | 1.45 | | | O(3) | 1x | 1.50 | 1.45 | | Li(1) | O(1) | 1x | 2.51 | 2.20 | | | O(3) | 1x | 1.84 | 2.05 | | | F(1) | 1x | 1.90 | 1.81 | | | O(4) | 1x | 2.03 | 2.08 | | | O(2) | 1x | 2.25 | 2.13 | | | | | | | | Li(2) | F(1) | 1x | 1.84 | 1.81 | | | O(2) | 1x | 1.95 | 2.13 | | | O(3) | 1x | 2.07 | 2.05 | | | O(1) | 1x | 2.25 | 2.20 | | | O(4) | 1x | 2.54 | 2.08 | $\label{table 4.6} \textbf{Table 4.6} \ \text{Comparison of selected bond lengths of experimental and calculated tavorite} \\ NaFeSO_4F \ \text{structure}$ | Atom 1 | Atom 2 | Count | Distances ([Å], (Experimental)) | Distances ([Å], Calculated) | |--------|--------|-------|---------------------------------|-----------------------------| | Na | F(1) | 1x | 2.17 | 2.02 | | | O(2) | 1x | 2.30 | 2.47 | | | O(3) | 1x | 2.39 | 2.50 | | | O(4) | 1x | 2.54 | 2.57 | | | O(1) | 1x | 2.48 | 2.55 | | Fe | F(1) | 1x | 1.92 | 1.97 | | | F(1) | 1x | 2.02 | 1.98 | | | O(4) | 1x | 2.13 | 2.14 | | | O(1) | 1x | 2.17 | 2.15 | | | O(3) | 1x | 2.25 | 2.15 | | | O(2) | 1x | 2.27 | 2.16 | | S | O(2) | 1x | 1.46 | 1.47 | | | O(1) | 1x | 1.50 | 1.47 | | | O(3) | 1x | 1.51 | 1.47 | | | O(4) | 1x | 1.53 | 1.47 | $\label{eq:comparison} \textbf{Table 4.7} \ \text{Comparison of selected bond lengths of experimental and calculated layered} \\ Na_2 FePO_4 F \ \text{structure}$ | Atom 1 | Atom 2 | Count | Distances ([Å], (Experimental)) | Distances ([Å], Calculated) | |--------|--------|-------|---------------------------------|-----------------------------| | Fe(1) | F(2) | 1x | 2.04 | 2.01 | | | O(1) | 1x | 2.10 | 2.07 | | | O(4) | 1x | 2.12 | 2.08 | | | F(1) | 1x | 2.14 | 2.10 | | | O(4) | 1x | 2.17 | 2.18 | | P(1) | O(2) | 1x | 1.51 | 1.51 | | | O(1) | 1x | 1.53 | 1.54 | | | O(4) | 1x | 1.55 | 1.56 | | | O(3) | 1x | 1.56 | 1.57 | | | | | | | | Na(1) | F(1) | 1x | 2.35 | 2.37 | | | O(2) | 1x | 2.36 | 2.38 | | | O(3) | 1x | 2.41 | 2.41 | | | O(1) | 1x | 2.42 | 2.46 | | | O(2) | 1x | 2.46 | 2.46 | | | F(2) | 1x | 2.52 | 2.59 | | No(2) | 0(2) | 1,, | 2.29 | 2.28 | | Na(2) | O(2) | 1x | | | | | F(1) | 1x | 2.32 | 2.36 | | | O(3) | 1x | 2.38 | 2.38 | | | F(2) | 1x | 2.41 | 2.45 | | | O(4) | 1x | 2.41 | 2.47 | | | O(1) | 1x | 2.29 | 2.28 | **Table 4.8** Comparison of selected bond lengths of experimental and calculated olivine NaFePO₄ structure | Atom 1 | Atom 2 | Count | Distances ([Å], (Experimental)) | Distances ([Å], Calculated) | |--------|--------|-------|---------------------------------|-----------------------------| | Na(1) | O(1) | 2x | 2.29 | 2.30 | | | O(2) | 2x | 2.33 | 2.30 | | | O(3) | 2x | 2.41 | 2.45 | | | | | | | | Fe(1) | O(2) | 1x | 2.05 | 2.02 | | | O(3) | 2x | 2.13 | 2.11 | | | O(1) | 1x | 2.15 | 2.14 | | | O(3) | 2x | 2.32 | 2.26 | | | | | | | | P(1) | O(3) | 2x | 1.54 | 1.52 | | | O(2) | 1x | 1.55 | 1.56 | | | O(1) | 1x | 1.55 | 1.57 | #### 4.3.2 Intrinsic atomic defects The isolated defect (vacancy and interstitial) energies were calculated for LiFeSO₄F, NaFeSO₄F, NaMPO₄ and Na₂FePO₄F which were then combined to determine the formation energy for Frenkel and Schottky-type intrinsic defects. The following equations represent the reactions involving these defects (using Kröger-Vink notation; A = Li or Na): A Frenkel: $$A_A^x \rightarrow V_A^i + A_i^{\bullet}$$ (3) M Frenkel $$M_M \rightarrow M_i^{\bullet \bullet} + V_M^{\prime \prime}$$ (4) F Frenkel $$F_F^x \rightarrow V_F^{\bullet} + F_i^{'}$$ (5) AF Schottky-type: $$A_A^x + F_F^x \rightarrow V_A^{'} + V_F^{\bullet} + AF$$ (6) FeF₂ Schottky-type: $$Fe_{Fe}^x + F_F^x \rightarrow V_{Fe}^v + 2V_F^{\bullet} + FeF_2$$ (7) A/Fe "anti-site" pair defect which involves the interchange of an A⁺ ion with an Fe²⁺/Mn²⁺ ion, was also examined. This is worth investigating since Li/Fe "cation exchange" effects have been a
significant topic of discussion for LiFePO₄.⁷⁹ This process can be described by the following equation: Anti-site: $$A_A^x + M_M^x \rightarrow A_{Fe}^{'} + M_A^{\bullet}$$ (8) Examination of the resulting defect energies in tavorite type structures, listed in **Table 4.9** reveal two main predictions. First, the formation of all Frenkel and Schottky defects is unfavorable in both of the tavorite type AFeSO₄F (A= Li. Na) structures. Interestingly, the results suggest that fluoride vacancies and fluoride interstitials are unlikely to exist in the pure (undoped) materials. Second, the anti-site energies are also relatively high which indicates that there would be no significant concentration of Fe on A sites at operating temperatures in the tavorite-type fluorosulfates. These results suggest that "blocking" effects involving Fe on Li or Na sites are much less likely in the tavorite type AFeSO₄F positive electrode materials than in olivine type LiFePO₄.⁷⁹ The calculated defect energies for NaMPO₄ (M = Fe, Mn, Fe_{0.5}Mn_{0.5}) are shown in **Table 4.10**. A positive energy of formation indicates that all of the Frenkel and Schottky defects are unfavorable in olivine type materials. Therefore, their concentration in the bulk is not expected to be significant. This trend is similar to the energy of defect formation previously reported for the olivine type LiFePO₄ using atomistic simulation methods.⁷⁹ In contrast, antisite defects are found to be the most favorable (lower energy of formation than corresponding values in olivine type LiFePO₄) which indicates that these are most frequently occurring defects in the olivine type NaMPO₄. The lower energy of antisite defect formation is in agreement with the observation that upon heat treatment, olivine NaFePO₄ transforms to maricite²⁰⁹ structure in which metal sites are completely switched as compared to the olivine structure i.e. M1 site is occupied by the transition metal and M2 site is occupied by the Na. The different connectivity of the Fe and Na octahedra in maricite compared to olivine does not provide a facile Na-ion migration pathway (as confirmed by preliminary calculations that suggest the alkali diffusion barrier is very high)²¹¹ and results in a structure that is not amenable to Na⁺ (de)insertion. In its thermodynamically stable form, NaMnPO₄ adopts the maricite structure, although in another polymorph of NaMnPO₄, natrophilite, the M1 and M2 sites are both half occupied by Mn²⁺ (0.83 Å) and Na⁺. As a result, the only method for preparing electrochemically active olivine NaMPO₄ relies on the topotactic conversion of olivine LiMPO₄ (for M= Fe) via a delithiation-sodiation process or a low temperature synthesis method involving a topotactic conversion of NH₄Fe_xMn_{1-x}PO₄·H₂O in NaFe_xMn_{1-x}PO₄. The fact that direct methods cannot be used to prepare crystalline olivine NaFePO₄ confirms the highly metastable nature of this phase and consequently its tendency for cation disorder. The topotactic synthesis method ensures that the obtained product forms with a minimum concentration of antisite defects. However, the extraction of Na during electrochemical charge may trigger the formation of antisite defects as has been observed for Li_{0.90}Ni_{0.45}Ti_{0.5}SO₂ obtained from Na_{0.90}Ni_{0.45}Ti_{0.55}O₂. ²¹⁹ The anti-site defects can block diffusion paths for alkali ion migration and force additional diffusion directions ultimately raising the energy barrier for Na/Li ion migration in the structure. This results in a poor electrochemical performance for 1-D ion conductors of the olivine type. Like olivine NaFePO₄, in the layered Na₂FePO₄F as well (**Table 4.10**) all the Frenkel and Schottky defects are unfavorable. The energy of formation of antisite defects is much lower. This will result in a small but significant percentage of the Fe on the Na sites and vice versa. However, this is not expected to impact the Na-ion migration in the material as discussed below. **Table 4.9** Energy of formation of intrinsic defects in AFeSO₄F (A=Li, Na): | Disorder type | Energy (eV) | | | |--------------------------------|-----------------------|-----------------------|--| | | LiFeSO ₄ F | NaFeSO ₄ F | | | | | | | | A Frenkel | 3.79 | 2.99 | | | | | | | | Fe Frenkel | 7.60 | 10.09 | | | | | | | | F Frenkel | 4.84 | 3.10 | | | | | | | | AF Schottky-type | 4.22 | 4.10 | | | | | | | | FeF ₂ Schottky-type | 8.38 | 8.23 | | | | | | | | A/M antisite | 2.50 | 2.40 | | | | | | | Table 4.10 Energy of formation of intrinsic defects in Na₂FePO₄F and NaFePO₄ | Defects | NaFePO ₄ | NaFe _{0.5} Mn _{0.5} PO ₄ | NaMnPO ₄ | Na ₂ FePO ₄ F | |--------------------------------|---------------------|---|---------------------|-------------------------------------| | Na-Frenkel | 2.25 | 2.29 | 2.35 | 3.22 | | Fe- Frenkel | 6.60 | 5.01 | - | 5.24 | | Mn- Frenkel | - | 4.91 | 7.28 | - | | Na ₂ O Schottky | 10.05 | 10.06 | 9.71 | 10.78 | | FeO Schottky | 7.31 | 7.48 | - | 5.19 | | FeF ₂ Schottky | - | - | - | 4.31 | | MnO Schottky | - | 9.79 | 9.38 | - | | Na/Fe Antisite pair (isolated) | 0.86 | 0.86 | - | 1.00 | | Na/Mn Antisite pair (isolated) | - | 1.02 | 1.06 | - | #### 4.3.3 Li-ion Migration in Tavorite-Type-LiFeSO₄F In the LiFeSO₄F unit cell, there are two Li sites occupy two diametrically disposed positions in the tunnels that run along either the [100] or [010] directions, as shown in **Figure 4**. From this, main migration paths between adjacent Li sites were identified. There are three possible Li-Li hop distances along [100] and three Li-Li hop distances along [010] as shown in **Figure 4.1a**. These hops (L1-L6) represent all the possible migration paths between adjacent Li sites. The calculated activation energies for Li ion migration in LiFeSO₄F are included in Figure 4.1 (and listed in Table 4.11), revealing three main points. First, the lowest migration energies are 0.36 - 0.46 eV for hops involving paths L3 to L6. Such relatively low values suggest high Li mobility in the LiFeSO₄F material, important for good electrochemical behavior. Second, the results indicate that the favorable Li migration paths are a combination of two diagonal hops. These diagonal or zig-zag hops form continuous pathways through the structure and allow long-range diffusion along the tunnels in the [100], [010] and [111] directions, with the lowest energy path along [111]. The 3D-view of the structure (Figure 4.3) reveals that four unique hops (L3-L6) are possible for each Li ion which leads to continuous interconnecting paths and effective 3D transport of Li ions. Note that L1 and L2 are hops between symmetryequivalent sites (i.e., Li_A-Li_A), along the [100] and [010] directions respectively, and are found to have high and unfavorable activation energies (> 1.0 eV); this is probably due to the migrating Li ion coming into close proximity to the FeO₄F₂ octahedra. Finally, although direct comparison with Li-ion conductivity data is not straightforward, the calculated values of about 0.4 eV is consistent with experimental activation energies for Li diffusion in other related framework materials.²²⁰ $\begin{tabular}{l} \textbf{Table 4.11} Calculated activation energies for most favorable paths of alkali ion migration in \\ LiFeSO_4F \end{tabular}$ | Net diffusion direction | Jumps involved | Activation energy (eV) | |-------------------------|----------------|------------------------| | [100] | L3 + L4 | 0.46 | | [010] | L5 + L6 | 0.44 | | [001] | L3 + L6 | 0.46 | | [101] | L4 + L6 | 0.44 | | [011] | L3 + L5 | 0.46 | | [111] | L4 + L5 | 0.36 | Depending upon synthesis conditions, experimental values of the activation energy for Li ion mobility in fluorosulfate tavorites measured by impedance spectroscopy are reported to be in the range 0.77-0.99 eV for LiFeSO₄F^{183,221} and 0.94 eV for LiMgSO₄F.¹⁸² An estimated diffusion coefficient using such values of the activation energy would be of the order of ~ 10⁻¹⁹ cm²/s, implying extremely limited ion mobility. These values are in contrast to the excellent electrochemical and ion-conducting behavior exhibited by these two materials. LiFeSO₄F is known to have low thermal stability, therefore, inability to hot press the material leads to a poor particle-particle contact. This may heavily impede ionic motion in the samples leading to high activation energy values obtained by impedance measurements. A minimum value of 0.3 eV for LiFeSO₄F has been calculated along an unspecified direction using DFT methods.²²² The discrepancy between the calculated and experimentally measured activation energies have been rationalized²²² by including Li vacancy formation energy in stoichiometric LiFeSO₄F. However, this is unlikely as the thermodynamic minimum, guided by the entropy of the system always exists at a certain non-zero point defect concentration. Thus such systems will always have a finite concentration of Li vacancies. **Figure 4.1** Schematic illustrating the various Li distances in tavorite LiFeSO₄F along the primary tunnels a). [100] and b). [010]. The preferable Li ion hopping paths are shown where each color belongs to a unique hop with distinct activation energy. Corresponding long range transports within the lattice are shown in c) and d); e) and f) show coordination polyhedra around Li and hopping window for Li-ion migration. The same color code is followed as in (a). # 4.3.4 Na- ion Migration in Tavorite-Type-NaFeSO₄F NaFeSO₄F crystallizes in a different space group (P2₁/c) to LiFeSO₄F (P-I) with only one Na⁺ ion site in the unit cell (Figure 4.2, see Chapter 5 for structural details). Hence, the two intersecting tunnels, that are inequivalent in LiFeSO₄F (along [100] and [010] directions) become equivalent in NaFeSO₄F (i.e., along [110] and [-110] directions) and therefore only one schematic is shown in Figure 4.2. As with the LiFeSO₄F, the main migration paths in NaFeSO₄F between adjacent Na sites were identified.
The calculated activation energies for Na ion migration in NaFeSO₄F are included in Figure 4.2 (and listed in Table 4.12), indicating two key results. First, the lowest migration energy is 0.6 eV for hops involving paths N4 and N5, with other paths (N3-N5) involving short Na-Na distances (< 4.5Å) having activation energies of about 0.9 eV. Hence, the Na migration energy in NaFeSO₄F is higher than that for Li migration in LiFeSO₄F, which suggests lower Na mobility. Second, the favorable Na migration paths are also a combination of diagonal or zig-zag hops forming continuous diffusion pathways through the structure. This large difference in magnitude indicates that Na⁺ ion diffusion in NaFeSO₄F is effectively one dimensional. The tunnel-structured material Na₄TiP₂O₉ has been reported to be a Na-ion conductor with activation energy as high as 1 eV, based on single crystal experiments. 223 The 3D-view of the structure (**Figure 4.4**) reveals that the lowest energy hop (0.6eV) leads to continuous interconnecting paths but only through the [101] tunnel and effective 1D Na⁺ transport. As in the LiFeSO₄F, the highest energy migration path (1.9eV) involving N1 and N2 is close to the FeO₄F₂ octahedra, which is probably due to stronger steric interactions with the larger Na⁺ ion. Overall, these simulations suggest that the ionic conductivity of NaFeSO₄F should be lower than LiFeSO₄F. It has been pointed out earlier that split site occupancy of Li ions as opposed to fixed Na ion site may indicate higher Li ion mobility in the structure and this is also confirmed by comparing bond sums (0.99 in LiFeSO₄F vs. 1.16 in NaFeSO₄F). However, direct comparison with electrochemical behavior is not straightforward. Indeed, electrochemical (de)insertion in any electrode does not solely depend on the ionic conductivity. These may be nested in the two-phase driven (de)intercalation process (with a 14.5% volume difference in the end-member phases in case of NaFeSO₄F), which adds a substantial additional phase boundary migration energy term. **Table 4.12** Calculated activation energies for most favorable paths of alkali ion migration in NaFeSO₄F | Net diffusion direction | Jumps involved | Activation energy (eV) | |-------------------------|--------------------|------------------------| | [100] | N3 + N4 + N5 | 0.91 | | [010] | N3 + N4 or N3 + N5 | 0.91 | | [001] | N5 | 0.91 | | [110] | N3 + N4 + N5 | 0.91 | | [-110] | N3 + N4 + N5 | 0.91 | | [101] | N4 + N5 | 0.60 | **Figure 4.2** Schematic showing the various Na-Na distances in NaFeSO₄F along the primary tunnels a). [110] or [-110]; The preferable Na ion hopping paths are depicted in color, where each color belongs to an unique hopping activation energy; b) Corresponding long range transport within the lattice; c) Coordination polyhedra around Na site and corresponding hopping window for Na-ion diffusion. Same color code is followed as in (a). Figure 4.3 Full view of the structure and ion conduction pathways : 3D Li ion conduction in $LiFeSO_4F$. Figure 4.4 Full view of the structure and ion conduction pathways : 1D Na ion conduction in NaFeSO₄F ### 4.3.5 Na-ion Migration in Olivine NaMPO₄ (M=Fe, Mn, Fe_{0.5}Mn_{0.5}) As described previously, the olivine structure is formed by edge and corner sharing octahedra and tetrahedra in orthorhombic space group Pnma (no. 62). Such arrangement of cations in the structure provide tunnel like features along b axis in which alkali ion (Li or Na) is located. To study the Na ion migration in olivine NaMPO₄ the pathways similar to already identified⁷⁹ for the most facile migration of Li in olivine LiFePO₄ were chosen for the investigation. It is expected that being the same crystal structure; least-hindered paths for alkali ion migration will be similar in both the compounds. These paths are: 1) along [010], 2) along [001], and 3) along [101]. Path along the b-axis [010] of the structure provides facile channels for Na ion migration. Along path "[001]", Na-atoms are placed at relatively far distances from each other and coordination polyhedra surrounding Fe and P provide a narrow window for ion migration. Path along [101] bisects a and c-axes and passes through a narrow window formed by MO₆ and PO₄ polyhedra. Figure 4.5 presents the hopping activation energy values. Activation energy along [001] and [101] are relatively much higher in energy and therefore these are unfavorable for Na ion migration. This is similar to what was reported for Li ion migration in olivine LiFePO₄. The activation energy along [010] is lowest and it is even lower than the activation energy calculated for Li ion migration along the same path in the corresponding Liolivine compound. Figure 4.6 shows minimum energy migration path way for Na ions. For half substituted NaFe_{0.5}Mn_{0.5}PO₄, migration energy barriers are slightly increased (**Table 4.11**). However they still remain much smaller than their Li analogues (LiFe_{0.5}Mn_{0.5}PO₄). These trends continue for NaMnPO₄. The activation energy barrier for Na ion migration in this compound along b-axis is highest among the Na-olivines but lower than its Li-analogue LiMnPO₄. It is noteworthy that along [101] axis, activation energy barriers actually decrease upon substitution of Fe by Mn in the composition (unlike their Li-analogues) but they still remain much higher than along the b-axis. Higher mobility of Na in NaFePO₄ in comparison to Li in isostructural LiFePO₄ can be attributed to much longer average Na-O bond lengths (2.34 Å) than Li-O (1.96 Å). As a result, tunnels along b-axis are wider in Na-compounds (**Figure 4.5**) but naturally the size of the Na⁺ cation is also larger than that of Li⁺. **Figure 4.5c** shows two edge shared NaO₆ polyhedra both of which are slightly tilted towards each other thereby opening the faces below shared edge considerably. Such distortion clearly adds to the migration space for the curved path by providing larger opening for Na-hopping from one site to another. In addition, it is known that polarizability effects are important in which there are differences between the transport behavior of highly polarizing cations such as Li⁺ and that of less polarizing cations such as Na⁺. # 4.3.6 Na-ion Migration in Layered Na₂FePO₄F Layered Na₂FePO₄F unit cell consists of 6 unique Na-Na distances (numbered N1 to N6). Possible hopping directions for Na-ion migration are shown in **Figure 4.7** (cutoff length = 4 Å). As shown, the smallest repeating unit of the sodium consists of 8 atoms. Calculations were restricted to all possible inter-atomic hopping of Na ions/vacancies among these atoms of which 4 are on Na1 site and the other four are on Na2 site. **Figure 4.7c** and **d** show examples of hopping window available for migration of Na along *a* and *c*-axes. Na –polyhedra connected by hops N2, N5 and N6 share edge with each other and polyhedra connected by hop N3 share faces while those connected by N4 share edges. **Figure 4.8** shows the least activation energy migration path for the Na ion and activation energy barrier (in eV) for Na₂FePO₄F. Ion migration in the *c*-direction occurs through N4-N3-N6 (0.3 eV) hop sequences, and along the *a*-direction occurs through a N2-N3-N5-N6 pathway (0.44 eV). These results show that there should be high Na⁺ mobility within the a-axis and c-axis channels, and 2D Na migration in the ac plane. This behaviour contrasts with that of NaFePO₄, which only allows Na⁺ migration along 1D channels parallel to the b axis. Most importantly, ion blocking by anti-site defects is much less likely to make a significant difference to Na–ion migration in Na₂FePO₄F than it does in olivine materials exhibiting 1D diffusion. It is interesting that the calculated energy barriers in Na₂FePO₄F are almost the same as in olivine NaMPO₄ (~ 0.3 eV), but much lower than the values found for tavorite-type NaFeSO₄F (> 0.6 eV) using similar simulation methods. **Table 4.13** Calculated activation energies (in eV) for most favorable paths of alkali ion migration in Na-olivines | Direction | E _a ,NaFePO ₄ | E _a , NaFe _{0.5} Mn _{0.5} PO ₄ | E _a , NaMnPO ₄ | |-----------|-------------------------------------|--|--------------------------------------| | [010] | 0.32 | 0.36 | 0.46 | | [001] | 2.73 | 2.90 | 3.10 | | [101] | 3.03 | 1.50 | 1.51 | **Figure 4.5** a) Unit cell of olivine type NaFePO₄ (brown polyhedra: FeO₆ and yellow polyhedra: PO₄, Black atoms represent Na) and Na-Na distance along *b*-axis b) tunnel dimensions for olivine NaFePO₄ are (numbers in brackets show these lengths for isostructural LiFePO₄). c) coordination polyhedra (dark grey) around Na-site and examples of hopping window for long range Na migration along b-axis in olivine NaMPO₄. **Figure 4.6** Na ion migration path along b-axis in olivine type NaMPO₄. Black atoms represent Na in the olivine structures and most facile pathway for Na-ion hopping is represented by green colored atoms. MO₆ and PO₄ polyhedra are represented in brown and yellow color respectively. **Table 4.14** Calculated activation energies (in eV) for most favorable paths of alkali ion migration in olivine Na₂FePO₄F. | Direction | Jumps involved | E _a | |-----------|---|----------------| | [100] | N3+N5 | 0.29 | | [001] | Various combinations of N2, N3, N4 and N5 | 0.44 | | [010] | - | >2 | **Figure 4.7** a) Unit cell of layered Na₂FePO₄F (brown polyhedron: FeO₆ and yellow polyhedron: PO₄, Black atoms represent Na) and Na-Na distance (cutoff distance: 4Å) b) Fe and Na layers in layered Na₂FePO₄F. Coordination polyhedron around Na-site in Na₂FePO₄F and hopping windows for long range Na migration path c) along *a*-axis; and d) along *c*-axis. **Figure 4.8** Na-ion migration path along a and c-axes in Na₂FePO₄F, octahedra FeO₄F₂ and tetrahedra PO₄ are represented by brown and yellow color respectively. a) along c-axis; long range migration
path is formed by combination N4-N3-N6. b) along a-axis Na-ions migrate by a combination of N3-N5 hops. #### 4.3.7 Estimation of Diffusion Coefficient The diffusion coefficient of any diffusion hop according to the dilute diffusion theory can be estimated using: $^{224}D = g\Gamma a^2$ where D is the chemical diffusion coefficient, g is the geometric factor, "a" the hop distance and Γ the hopping rate defined according to transition state theory: $^{225}\Gamma = v^* \exp^{(-E_a/KT)}$ where ν is the attempt frequency and E_a is the migration activation energy. Thus, the activation energy gives a direct estimate for the diffusion coefficient over a specific hop distance. For calculations in the current thesis, g is taken as 1 (spherical particle) and ν as 10^{13} s⁻¹ which is typically used for framework materials. 225 Dilute diffusion theory can be assumed to be reasonably valid for fluorosulfate, fluorophosphates and phosphate materials since (de)lithiation/sodiation in all of these material occurs *via* a two phase process over most of the compositional range. In this case, the new phase formed upon (de)lithiation remains nearly stoichiometric in nature, thus giving a very dilute, and therefore non-interacting, concentration of the charge carrying defects (Li⁺, Na⁺ ions or vacancies). Along the most facile ion transport path in LiFeSO₄F, diffusion coefficients for Li are estimated to be in the range of 10^{-8} - 10^{-10} cm²/s and for Na ion diffusion in NaFeSO₄F that value is $7.14*10^{-13}$ cm²/s. For olivine NaFePO₄ Na-ion diffusion coefficient along the tunnel (*b*-axis) was estimated to be $\sim 5*10^{-8}$ cm²/s and in Na₂FePO₄F, these values are $\sim 7.5*10^{-8}$ and $\sim 4.3*10^{-7}$ cm²/s along *c* and *a* directions respectively. Using electrochemical methods, the diffusion coefficient of Li in nearly stoichiometric LiFeSO₄F has been determined to be of the order of 10^{-12} cm²/s.²²⁶ #### 4.3.8 Electrochemical Behavior vs. Ionic Conduction Activation energy barriers in Na₂FePO₄F are similar to olivine type NaMPO₄ materials and much lower than the values calculated for tavorite type NaFeSO₄F. Na-de-/intercalation from Na₂FePO₄F has been observed to be much more facile than olivine NaFePO₄ and tavorite type NaFeSO₄F. This can be explained partially by invoking phase separation observed between charged and discharged phases during cycling. All of these compounds form a phase boundary between oxidized and reduced phases during charge/discharge which imposes an additional activation energy barrier that corresponds to the movement of the phase front in the material. Electrochemical performance is controlled by the amount of strain generated in this phase boundary, as well as by the activation energy barrier (E_a) for ion transport. Strain generated in the phase boundary is proportional to the difference in the unit cell volume (ΔV) of the oxidized and reduced phases which is ~17% for NaFePO₄, ~14% for NaFeSO₄F but only ~3.7% for Na₂FePO₄F. In the case of olivine type NaFePO₄, it has been recently pointed out that the stress generated by formation of the phase boundary is the root cause for different electrochemical profiles during charge and discharge. ²¹⁴ For mixed transition metal phosphate NaFe_{0.5}Mn_{0.5}PO₄, it has been reported that no phase boundary is formed upon Na de/-intercalation. 158 However, a very large strain in the material can still be expected during the charge-discharge process as unit cell volume difference between fully oxidized and fully reduced compositions is 21%. A large volume change between the end members also induces very significant polarization during charge and discharge as seen for olivine NaMPO₄. In contrast, polarization is almost absent in the case of carbon coated layered Na₂FePO₄F.²¹⁰ This may explain the poor electrochemical performance of NaFeSO₄F (E_a =0.60-0.91 eV, ΔV =14.3%) and NaFePO₄ (E_a = 0.32 eV, $\Delta V=15\%$) as compared to Na₂FePO₄F (E_a= 0.30-0.44eV eV, $\Delta V=3.7\%$). In the case of Liintercalation electrodes the volume difference for LiFeSO₄F is ~10% as compared to ~6.7% of LiFePO₄. Better electrochemical performance of LiFeSO₄F indicates that in this case strain generated by ~3% larger unit cell volume change at the phase boundary is easily overcome by very high 3-D diffusion coefficient of Li in the tavorite structure of LiFeSO₄F. #### 4.4 Conclusions The atomistic scale simulations show good reproduction of the observed structure of all the tavorite (LiFeSO₄F and NaFeSO₄F), olivine (NaMPO₄, M= Fe, Mn, Fe_{0.5}Mn_{0.5}) and layered (Na₂FePO₄F) materials. Formation of Frenkel and Schottky defects was found to be unfavorable in all cases. The Li/Fe and Na/Fe anti-site energies in tavorite type materials suggest that there would be no significant intrinsic concentration of Fe on Li or Na sites at operating temperatures in these fluorosulfates. Antisite defect formation energy in olivine NaMPO₄ is much smaller than LiFePO₄ suggesting a higher degree of Na on Fe sites in accordance with the known metastability of the ordered NaMPO₄ phases. Investigation of the transport paths in LiFeSO₄F indicates relatively low migration energies (~0.4eV), suggesting high Li mobility, which is important for good rate capability and capacity retention. The Li migration paths are a combination of diagonal jumps that form continuous diffusion pathways in the open tavorite structure. Li⁺ transport is found to be effectively 3D in LiFeSO₄F with diffusion along tunnels in the [100], [010] and [111] directions, with the lowest energy path along [111]. The Na ion transport in the monoclinic NaFeSO₄F is also mediated by a combination of zig-zag jumps, but with higher activation energies (~0.9eV) than that for Li migration in LiFeSO₄F. The estimated diffusion coefficient for the most favorable migration path through the [101] tunnel is at least six orders of magnitude higher than in any other direction, suggesting that NaFeSO₄F is effectively a 1D Na-ion conductor. Activation energy barrier for Liion transport measured using impedance spectroscopy are much higher than reported here. This discrepancy is mainly attributed to inability of obtaining dense pellets of tavorite LiFeSO₄F, required for an accurate measurement of impedance, which mainly stems from the fact that the material can not be sintered above 400°C. Activation energy barrier for the Na-ion conduction in phosphate olivine framework is much lower than for the Li-ion in similar framework. For layered Na₂FePO₄F, Na-ion conduction is largely 2-D in *ac* plane with diffusion coefficient being slightly lower along a-direction. Smaller activation energy barriers in the layered Na₂FePO₄F indicate that this compound as good ionic conductor as olivine type NaFePO₄. The relationship between ionic transport and electrochemical properties among these materials highlights the crucial importance of the volume expansion-induced strain on de(intercalation), which is more substantial for the larger Na⁺ (vs Li⁺) ion. This has also been highlighted recently by others.²¹³ The strain contributes significantly to the overall energy for redox phase transformation, and hence materials with a high volume difference between the end member phases will invariably lead to poor rate capability and also faster capacity fade owing to electrochemical "grinding" which induces amorphization of the active material during charge and discharge. Where this is coupled with high activation energy for Na-ion transport (e.g. ≥ 0.8 eV) extremely poor electrochemical properties can be predicted, an example being NaFeSO₄F which exhibits almost zero intercalation capacity despite having an open tavorite-like framework that is favorable for cation migration. High volume expansion combined with good ion transport gives better, but still poor properties for 1D conductors such as NaFePO₄, where antisite defects present additional barriers to Na⁺ diffusion. However, very promising electrochemical properties can be anticipated for Na⁺ ion materials with low volume expansion on redox - and where good electrical conduction is supported - since activation energy migration barriers can be low, as in the case of Na₂FePO₄F. Although the interplay of all the above factors is clearly complex and still under investigation, these findings provide guidelines for the future design and synthesis of high rate positive (and negative) electrodes for intercalation batteries. . # **Chapter 5** # Synthesis and Crystal Structures of AMSO₄F (A= Na, NH₄, M= Fe, Mn) #### 5.1 Introduction Electrochemical properties of electrode materials are closely related to their crystal structure. This has led to multiple attempts in the past to design various synthetic control parameters to obtain the desired structure for a given composition. For example, some of the layered oxides based on transition metals (LiMO₂, M=Mn, Ni) that cannot be synthesized in the ordered layered polymorph using traditional synthesis methods, have been obtained using ion-exchange from NaMO₂. Remarkable improvements in the electrochemical performance are seen in cosubstituted materials LiMn_{0.5}Ni_{0.5}O₂ when obtained using ion-exchange methods from NaMn_{0.5}Ni_{0.5}O₂. ²²⁷ The olivine LiMPO₄ are not thermodynamically stable as Li is replaced by Na. 228 NaMPO₄ crystalizes in maricite framework when synthesized using conventional solid state methods and does not show any electrochemical activity. Recently, however, it has been shown that olivine NaFe_{1-x}Mn_xPO₄ can be prepared by ion exchange method from NH₄Fe₁₋ _xMn_xPO₄·H₂O. ¹⁵⁸ The replacement of Li by Na-ions in well-known positive electrode materials for Li-ion batteries is a very popular technique for finding good electrode materials for Na-ion batteries. In most cases, Na-analogues display completely different thermodynamic stability regimes and electrochemistry due to large ionic radius and greater
mass of Na⁺ compared to Li⁺. This chapter describes the synthesis and crystal structure of various Na^+ and NH_4^+ based transition metal fluorosulfate $AMSO_4F$ ($A=Na^+$, NH_4^+ ; M=Fe, Mn). Similar methods, as described in previous chapters have been used to prepare these materials followed by PXRD and SEM characterizations. Rietveld refinements were carried out to determine structural details for each compound using TOPAS 4.2 and GSAS on EXPGUI platform. ## 5.2 Experimental Synthesis methods described in Chapter 2 and Chapter 3 were used to prepare all the compounds described in this chapter. NaF (Sigma-Aldrich) or NH₄F (Sigma-Aldrich) and MSO₄·H₂O (M=Fe, Mn) were used as precursors in order to synthesize NaMSO₄F or NH₄MSO₄F respectively. NH₄FeSO₄F could also be synthesized by using FeSO₄·7H₂O instead of FeSO₄·H₂O as the precursor. For the synthesis of NaMSO₄F compounds, precursors were ball milled in a planetary ball mill (Fritsch pulverisette 5) under Ar atmosphere with typically 1:30 weight ratio of precursors to agate balls (10mm diameter) in an agate container for 10 hours. The ball milled mixture was transferred into a 43 ml TeflonTM-lined Parr reactor along with 30 ml of the tetraethylene glycol (TEG) and stirred for 30 min. The reactor was then placed in an oven preheated to 220°C for the synthesis of NaMSO₄F. After 40 hours of heating, the reactor was taken out of the oven and cooled down on a lab bench to room temperature. No ball-milling of precursors was required for the synthesis of NH₄MSO₄F compounds, and in this case, they were separately added to the solvent tetraethylene glycol (TEG). The solution was transferred into a solvothermal reactor which was placed in a preheated oven at 200°C for 10 hours. Products were washed with dry acetone or tetrahydrofuran (THF) three times and vacuum filtered in a bench top glove-box filled with nitrogen followed by overnight drying in a vacuum oven at 100°C before characterization. #### 5.3 Results and Discussion #### 5.3.1 NaFeSO₄F Following a topotactic reaction between NaF and FeSO₄·H₂O in the glycol medium, NaFeSO₄F precipitates after 40 hours of the reaction at 220°C under the conventional solvothermal conditions. The X-ray pattern is shown in Figure 5.1 and displays all the characteristic peak of a tavorite-like compound. As shown in the SEM micrograph Figure 5.1 (inset), the particle size is much smaller than tayorite type LiFeSO₄F (see Chapter 3), despite identical iron monohydrate precursor used in preparing both the materials. This can be explained by considering the topotactic reaction mechanism, since replacement of H⁺ by bigger ion i.e. Na⁺ in the precursor MSO₄·H₂O creates much larger interfacial strain at the reactant-product phase boundary as compared to smaller Li⁺ cation and leads to multiple fragmentation of the parent crystallites as the product NaFeSO₄F. Overall, framework connectivity in the structure remains the same as the tavorite type structure of the LiFeSO₄F, where FeO₄F₂ octahedra are corner shared via Fe-F-Fe link and share other corners with the SO₄ tetrahedra. PXRD pattern is indexed in a monoclinic space group $(P2_1/C)$. Due to similar symmetry and lattice parameters, CaTi(Ge_{0.336}Si_{0.663})O₅ (P2₁/a, SG: 14) was chosen as the initial model for the refinement. The initial atomic positions of Ca, Ti, Ge/Si and one of the bridging O were replaced by Na, Fe, S and F atoms, and the setting was transformed to the standard $P2_1/c$ model. The structural details and bond lengths are listed in **Tables 5.1** and **5.2**. The differences with tavorite type LiFeSO₄F in the relative rotation and disposition of the framework polyhedra give rise to slightly nonequivalent pathways for ion migration. Bond lengths in Fe-coordination (Table 5.2) are slightly longer on average than tavorite type LiFeSO₄F and Na-X (X=O, F) distances are much longer than Li-X due to the bigger size of the Na⁺ cation. #### 5.3.2 Electrochemistry of NaFeSO₄F The results of electrochemical cycling of NaFeSO₄F in a Li-electrolyte cell cycled between 2.5 V and 4.5 V vs. Li/Li⁺ at a rate of C/20 are shown in **Figure 5.2**. On the initial charge cycle, a large overpotential is sustained up to 4.5 V, and there is no indication of a two-phase region indicative of Na extraction. Nonetheless, upon discharge, a plateau near 3.55 V is observed (as in LiFeSO₄F) and 55% of the theoretical capacity is achieved. We conclude that half the Na⁺ is removed from the NaFeSO₄F lattice on charge, possibly *via* ion-exchange with Li⁺ in the electrolyte as the first step. The fraction of FeSO₄F generated on charge becomes active for subsequent reversible Li⁺ insertion, and the second charge cycle is different from the first. The re-inserted Li⁺ is extracted near 3.65 V, and the same capacity is obtained as on first discharge. Additional overcharge to 4.5V on the second charge does not increase the capacity of the subsequent discharge step (**Figure 5.2**), indicating that some portion of the material is poorly accessible. Na⁺ could be completely extracted from NaFeSO₄F using an oxidizing agent, but more forcing conditions (1M NOBF₄ in acetonitrile for 4 days) were required compared to LiFeSO₄F. Table 5.1: Structural data obtained by refinement from powder XRD pattern of tavorite type NaFeSO₄F #### NaFeSO₄F Space group: $P2_1/c$ (#14), Monoclinic $M_w = 193.89 \text{ g/mol}$ $D = 3.35 \text{ g cm}^{-3}$ a=6.6836(2) Å *b*=8.7054(3) Å c=7.1912(2) Å β =113.5236(3)° V = 383.64(3) Å³ | Atom | Wyck. | x/a | y/b | z/c | Occ. | $\boldsymbol{B_{eq}}(\mathring{\mathrm{A}}^2)$ | |-------|------------|-----------|------------|-----------|------|--| | Na(1) | 4 <i>e</i> | 0.2560(2) | 0.0876(6) | 0.7189(2) | 1 | 3.82(8) | | Fe(1) | 4 <i>e</i> | 0.7493(2) | 0.2489(1) | 0.0067(2) | 1 | 2.27(9) | | S(1) | 4 <i>e</i> | 0.2501(3) | 0.43027(5) | 0.7457(2) | 1 | 2.41(2) | | F(1) | 4 <i>e</i> | 0.7617(3) | 0.33915(8) | 0.7528(3) | 1 | 2.41(2) | | O(1) | 4 <i>e</i> | 0.4144(4) | 0.3300(3) | 0.9035(3) | 1 | 2.41(2) | | O(2) | 4 <i>e</i> | 0.1006(4) | 0.3283(3) | 0.5987(3) | 1 | 2.41(2) | | O(3) | 4 <i>e</i> | 0.3656(4) | 0.5245(3) | 0.6373(3) | 1 | 2.41(2) | | O(4) | 4 <i>e</i> | 0.1398(4) | 0.5258(3) | 0.8527(3) | 1 | 2.41(2) | $\label{eq:table 5.2} \textbf{ Selected bond lengths obtained by refinement from powder XRD pattern of tavorite} \\$ $\label{eq:table 5.2} \textbf{ Selected bond lengths obtained by refinement from powder XRD pattern of tavorite} \\$ | Atom 1 | Atom 2 | Multiplicity | Length (Å) | |--------|--------|--------------|------------| | Na(1) | F(1) | 1x | 2.1793(9) | | | O(2) | 1x | 2.3804(3) | | | O(3) | 1x | 2.4050(3) | | | O(1) | 1x | 2.4892(2) | | | O(4) | 1x | 2.5594(3) | | | | | | | Fe(1) | F(1) | 1x | 1.9557(2) | | | F(1) | 1x | 1.9669 (3) | | | O(4) | 1x | 2.1346(3) | | | O(1) | 1x | 2.1937(3) | | | O(3) | 1x | 2.2333(3) | | | O(2) | 1x | 2.2519(3) | | | | | | | S(1) | O(2) | 1x | 1.4749(3) | | | O(1) | 1x | 1.4975(2) | | | O(3) | 1x | 1.4331(3) | | | O(4) | 1x | 1.5106(3) | **Figure 5.1** a) PXRD pattern of NaFeSO₄F. Black points represent experimental data, red solid lines show fitted data while blue lines show the difference map between observed and calculated data. Blue bars indicate the phase markers. X-ray diffraction agreement factors: $R_{wp} = 2.91\%$, $R_p = 2.19\%$ $\chi^2 = 2.11$. b) Unit cell of NaFeSO₄F obtained from the refinement (brown octahedra: FeO₄F₂, yellow tetrahedra: SO₄, red atoms: O, black atoms: Na). **Figure 5.2** Electrochemical charge-discharge curve of tavorite NaFeSO₄F (rate: C/20, active materials 80%, Super P : 20%). #### 5.3.3 NaMnSO₄F NaMnSO₄F was prepared by reacting NaF and MnSO₄·H₂O at 220°C for 40 hours under solvothermal conditions with tetraethylene glycol (TEG) as the solvent. The X-ray pattern is shown in **Figure 5.2** along with the SEM micrograph (inset). NaMnSO₄F is isostructural to the triplite type LiMnSO₄F and the Rietveld refinement was carried out starting with this structural model in Bruker-AXS TOPAS 4.2 (**Figure 5.2**). The structural details and bond lengths obtained from the refinement are listed in **Tables 5.3** and **5.4**. Na and Mn are distributed over two sites; however, Mn is slightly more concentrated on the M1 site. This is in contrast with earlier conclusions that smaller atoms in triplites tend to occupy M2 site. ¹⁹² Bond lengths around metal sites are much longer than LiMSO₄F triplites reported in **Chapter 3** due to larger size of the Na⁺ cation. Table 5.3 Structural data obtained by refinement from powder XRD pattern of triplite type $NaMnSO_{4}F \\$ ## NaMnSO₄F Space group: C2/c (#15), Monoclinic $M_w = 192.99 \text{ g/mol}$ $D = 3.18 \text{ g cm}^{-3}$ *a*=13.7657(9) Å b=6.6355(4) Å c=10.3446(7) Å β =121.4631(3)° V = 805.98(9) Å³ | Atom | Wyck. | x/a | y/b | z/c | Occ. | $\boldsymbol{B_{eq}}(\mathring{\mathrm{A}}^2)$ | |-------|------------|------------|------------|------------|-----------|--| | Mn(1) | 8 <i>f</i> | 0.64663(4) | 0.90407(9) | 0.83966(5) | 0.5907(9) | 4.48(2) | | Na(1) | 8 <i>f</i> | 0.64663(4) | 0.90407(9) | 0.83966(5) | 0.4093(9) | 4.48(2) | | Mn(2) | 8 <i>f</i> | 0.94901(4) | 0.25351(9) | 0.01104(5) | 0.4093(9) | 3.58(2) | | Na(2) | 8 <i>f</i> | 0.94901(4) | 0.25351(9) | 0.01104(5) | 0.5907(9) | 3.58(2) | | S(1) | 8 <i>f</i> | 0.32476(5) | 0.5876(1) | 0.19693(6) | 1 | 3.87(1) | | F(1) | 8 <i>f</i> | 0.99312(8) | 0.4119(1) | 0.61533(9) | 1 | 4.00(1) | | O(1) | 8 <i>f</i> | 0.21347(9) | 0.6272(2) | 0.1864(1) | 1 | 4.00(1) | | O(2) | 8 <i>f</i> | 0.5905(1) | 0.5238(1) | 0.1487(1) | 1 | 4.00(1) | | O(3) | 8 <i>f</i> | 0.69215(8) | 0.4046(2) | 0.4068(1) | 1 | 4.00(1) | | O(4) | 8 <i>f</i> | 0.63571(8) | 0.7526(2) | 0.3500(1) | 1 | 4.00(1) | $\label{eq:table 5.4} \textbf{Table 5.4} \ \text{Selected Bond lengths obtained by refinement from powder XRD pattern of triplite} \\ type
\ NaMnSO_4F$ | Atom 1 | Atom 2 | Multiplicity | Length (Å) | |-------------|--------|--------------|------------| | Mn(1)/Na(1) | O(3) | 1x | 2.1484(2) | | | F(1) | 1x | 2.1758(8) | | | F(1) | 1x | 2.2035(2) | | | O(1) | 1x | 2.2194(2) | | | O(4) | 1x | 2.2893(2) | | | O(3) | 1x | 2.3933(9) | | | | | | | Mn(2)/Na(2) | F(1) | 1x | 2.1296(1) | | | O(1) | 1x | 2.2432(1) | | | O(4) | 1x | 2.2752(2) | | | O(2) | 1x | 2.2912(1) | | | O(2) | 1x | 2.3397(1) | | | F(1) | 1x | 2.4037(1) | | | | | | | S(1) | O(4) | 1x | 1.4164(2) | | | O(2) | 1x | 1.4647(1) | | | O(1) | 1x | 1.5012(2) | | | O(3) | 1x | 1.5554(2) | **Figure 5.2** a) PXRD pattern of NaMnSO₄F (black), the Rietveld refinement fit (red) and the difference map (blue) along with phase markers (black). X-ray diffraction agreement factors: $R_{wp} = 3.49\%$, $R_p = 2.53\%$, $\chi^2 = 2.14$. b) Unit cell of NaMnSO₄F obtained from the refinement (pink octahedra: (Mn, Na)O₄F₂, yellow tetrahedra: SO₄, pink atoms: Mn, black atoms: Na), #### 5.3.4 NH₄FeSO₄F and NH₄MnSO₄F NH₄FeSO₄F can be synthesized by reacting NH₄F and FeSO₄·H₂O or FeSO₄·7H₂O at 200°C using solvothermal reaction conditions for 10 hours under conventional heating. Clearly, this is not a topotactic reaction as FeSO₄·7H₂O adopts a completely different structure than the product. The reactants used for NH₄MnSO₄F were NH₄F and MnSO₄·H₂O. The diffraction pattern and the refinement for NH₄FeSO₄F are shown in **Figure 5.3.** NH₄FePO₄F, which adopts orthorhombic space group Pna2₁ was used as the starting model for the refinement.²²⁹ These compounds belong to the KTiOPO₄ (KTP) structure type. ²³⁰ Combined analysis obtained from single crystal diffraction and Mössbauer study of NH₄FePO₄F has been reported to conclude that these compounds display strict ordering²²⁹ of O-F anions in this structure type. The structural details and bond lengths obtained from partial refinement of the pattern is reported in Table 5.5 and **Table 5.6**. The refinement was limited to only lattice parameters and atomic positions occupied by transition metal and S atoms to obtain reasonable bond lengths. The structure is constructed by corner shared zig-zag chain of MO₄F₂ octahedra in [011] and [0-11] directions and two fluorine atoms in the same octahedra are in cis position for the M1 site and in trans position for the M2 site. Other four corners of the octahedra are shared with SO₄ tetrahedra. NH₄⁺ cations are located in the tunnels which are oriented along a and b directions (Figure 5.3). NH₄MnSO₄F adopts similar structure as NH₄FeSO₄F (Figure 5.4). Structural details obtained from the refinement of the PXRD pattern of NH₄MnSO₄F are listed in **Table 5.7** and **Table 5.8**. Attempts of topotactic ion exchange in these materials in order to produce NaFeSO₄F or LiFeSO₄F did not produce single phase materials. To the best of my knowledge compounds NH₄FeSO₄F and NH₄MnSO₄F have never been reported before. **Figure 5.3** a) PXRD pattern of NH₄FeSO₄F (black), the Rietveld refinement fit (red) and the difference map (blue) along with phase markers (blue). X-ray diffraction agreement factors: R_{wp} =4.27%, R_p =1.92% χ^2 =2.22. b) Unit cell of NH₄FeSO₄F obtained from the refinement (brown octahedra: FeO₄F₂, yellow tetrahedra: SO₄, red atoms: O, black tetrahedra: NH₄⁺). Table 5.5 Structural data obtained by refinement from powder XRD pattern of NH₄FeSO₄F #### NH₄FeSO₄F Space group: Pna2₁ (#33), Orthorhombic $M_w = 188.94 \text{ g/mol}$ $D = 2.61 \text{ g cm}^{-3}$ *a*=13.2628(2) Å *b*=6.6525(7) Å c=10.8651(1) Å $V = 958.63(2) \text{ Å}^3$ | Atom | Wyck. | x/a | y/b | z/c | Occ. | $\boldsymbol{B_{eq}}(\mathring{\mathrm{A}}^2)$ | |-------|------------|-----------|-----------|-----------|------|--| | Fe(1) | 4 <i>a</i> | 0.3774(7) | 0.4953(4) | 0.0155(2) | 1 | 2 | | Fe(2) | 4 <i>a</i> | 0.2509(2) | 0.2662(2) | 0.2693(2) | 1 | 2 | | S(1) | 4 <i>a</i> | 0.5046(4) | 0.3394(2) | 0.2476(3) | 1 | 2 | | S(2) | 4 <i>a</i> | 0.1754(2) | 0.4982(5) | 0.4986(4) | 1 | 2 | | F(1) | 4 <i>a</i> | 0.2748 | 0.4717 | 0.1298 | 1 | 2 | | F(2) | 4 <i>a</i> | 0.2279 | 0.0327 | 0.3801 | 1 | 2 | | O(1) | 4 <i>a</i> | 0.4867 | 0.4729 | 0.1355 | 1 | 2 | | O(2) | 4 <i>a</i> | 0.5168 | 0.4686 | 0.3659 | 1 | 2 | | O(3) | 4 <i>a</i> | 0.4037 | 0.2024 | 0.2694 | 1 | 2 | | O(4) | 4 <i>a</i> | 0.5964 | 0.1893 | 0.2304 | 1 | 2 | | O(5) | 4 <i>a</i> | 0.1164 | 0.3098 | 0.532 | 1 | 2 | | O(6) | 4 <i>a</i> | 0.1166 | 0.6904 | 0.4756 | 1 | 2 | | O(7) | 4 <i>a</i> | 0.2538 | 0.5487 | 0.6163 | 1 | 2 | | O(8) | 4 <i>a</i> | 0.2552 | 0.457 | 0.3889 | 1 | 2 | | N(1) | 4 <i>a</i> | 0.3897 | 0.7825 | 0.3131 | 1 | 2 | | N(2) | 4 <i>a</i> | 0.0996 | 0.678 | 0.0646 | 1 | 2 | | H(1) | 4 <i>a</i> | 0.393 | 0.91 | 0.327 | 1 | 4 | | H(2) | 4 <i>a</i> | 0.39 | 0.761 | 0.235 | 1 | 4 | | H(3) | 4 <i>a</i> | 0.335 | 0.733 | 0.344 | 1 | 4 | | H(4) | 4 <i>a</i> | 0.441 | 0.724 | 0.346 | 1 | 4 | | H(5) | 4 <i>a</i> | 0.132 | 0.672 | 0 | 1 | 4 | | H(6) | 4 <i>a</i> | 0.117 | 0.584 | 0.11 | 1 | 4 | | H(7) | 4 <i>a</i> | 0.039 | 0.666 | 0.05 | 1 | 4 | | H(8) | 4 <i>a</i> | 0.11 | 0.785 | 0.099 | 1 | 4 | $\begin{tabular}{ll} \textbf{Table 5.6} Selected bond lengths obtained by refinement from powder XRD pattern of triplite \\ NH_4FeSO_4F \end{tabular}$ | Atom 1 | Atom 2 | Multiplicity | Length (Å) | |--------|--------|--------------|------------| | Fe(1) | F(1) | 1x | 1.8440(2) | | | O(1) | 1x | 1.9494(2) | | | F(2) | 1x | 2.0375(2) | | | O(6) | 1x | 2.0719(3) | | | O(5) | 1x | 2.0979(3) | | | O(2) | 1x | 2.1530(2) | | | | | | | Fe(2) | O(8) | 1x | 1.8110(2) | | | F(2) | 1x | 1.9828(2) | | | F(1) | 1x | 2.0581(2) | | | O(3) | 1x | 2.0686(3) | | | O(4) | 1x | 2.1108(3) | | | O(7) | 1x | 2.1965(2) | | | | | | | S(1) | O(1) | 1x | 1.5199(3) | | | O(2) | 1x | 1.5482(3) | | | O(4) | 1x | 1.5837(4) | | | O(3) | 1x | 1.6343(4) | | | | | | | S(2) | O(6) | 1x | 1.5160(3) | | | O(5) | 1x | 1.5189(3) | | | O(8) | 1x | 1.6120(3) | | | O(7) | 1x | 1.6762(3) | **Figure 5.4** a) PXRD pattern of NH₄MnSO₄F (black), the Rietveld refinement fit (red) and the difference map (blue) along with phase markers (blue). X-ray diffraction agreement factors: $R_{wp}=10.13\%, R_p=3.48\%$ $\chi^2=2.91$. b) Unit cell of NH₄FeSO₄F obtained from the refinement (pink octahedra: MnO₄F₂, yellow tetrahedra: SO₄, red atoms: O, black tetrahedra: NH₄⁺), Table 5.7 Structure data obtained by refinement from powder XRD pattern of NH₄MnSO₄F #### NH₄MnSO₄F Space group: Pna2₁ (#33), Orthorhombic Mw = 188.03 g/mol $D = 2.50 \text{ g cm}^{-3}$ *a*=13.3963(1) Å *b*=6.7181(8) Å c=11.0854(1) Å $V = 997.66(2) \text{ Å}^3$ | Atom | Wyck. | x/a | y/b | z/c | Occ. | $\boldsymbol{B_{eq}}(\text{Å}^2)$ | |-------|------------|-----------|-----------|-----------|------|-----------------------------------| | Mn(1) | 4 <i>a</i> | 0.3728(7) | 0.4899(4) | 0.0168(3) | 1 | 2 | | Mn(2) | 4 <i>a</i> | 0.2508(2) | 0.2642(3) | 0.2652(2) | 1 | 2 | | S(1) | 4 <i>a</i> | 0.5051(4) | 0.3391(3) | 0.2480(4) | 1 | 2 | | S(2) | 4 <i>a</i> | 0.1842(1) | 0.5025(7) | 0.4976(4) | 1 | 2 | | F(1) | 4 <i>a</i> | 0.26932 | 0.50888 | 0.12653 | 1 | 2 | | F(2) | 4 <i>a</i> | 0.23811 | 0.05966 | 0.38256 | 1 | 2 | | O(1) | 4 <i>a</i> | 0.48833 | 0.45012 | 0.13215 | 1 | 2 | | O(2) | 4 <i>a</i> | 0.51456 | 0.46239 | 0.36467 | 1 | 2 | | O(3) | 4 <i>a</i> | 0.41624 | 0.2227 | 0.27405 | 1 | 2 | | O(4) | 4 <i>a</i> | 0.59618 | 0.20125 | 0.23202 | 1 | 2 | | O(5) | 4 <i>a</i> | 0.12839 | 0.31557 | 0.53242 | 1 | 2 | | O(6) | 4 <i>a</i> | 0.1164 | 0.67685 | 0.48034 | 1 | 2 | | O(7) | 4 <i>a</i> | 0.24493 | 0.53686 | 0.61906 | 1 | 2 | | O(8) | 4 <i>a</i> | 0.2532 | 0.45676 | 0.38833 | 1 | 2 | | N(1) | 4 <i>a</i> | 0.3897 | 0.7825 | 0.3131 | 1 | 2 | | N(2) | 4 <i>a</i> | 0.0996 | 0.678 | 0.0646 | 1 | 2 | | H(1) | 4 <i>a</i> | 0.393 | 0.91 | 0.327 | 1 | 4 | | H(2) | 4 <i>a</i> | 0.39 | 0.761 | 0.235 | 1 | 4 | | H(3) | 4 <i>a</i> | 0.335 | 0.733 | 0.344 | 1 | 4 | | H(4) | 4 <i>a</i> | 0.441 | 0.724 | 0.346 | 1 | 4 | | H(5) | 4 <i>a</i> | 0.132 | 0.672 | 0 | 1 | 4 | | H(6) | 4 <i>a</i> | 0.117 | 0.584 | 0.11 | 1 | 4 | | H(7) | 4 <i>a</i> | 0.039 | 0.666 | 0.05 | 1 | 4 | | H(8) | 4 <i>a</i> | 0.11 | 0.785 | 0.099 | 1 | 4 | | Atom 1 | Atom 2 | Multiplicity | Length (Å) | |--------|--------|--------------|------------| | Mn(1) | F(1) | 1x | 1.8483(2) | | | O(5) | 1x | 2.0257(2) | | | O(6) | 1x | 2.1458(3) | | | F(2) | 1x | 2.1541(2) | | | O(1) | 1x | 2.1940(2) | | | O(2) | 1x | 2.2859(2) | | | | | | | Mn(2) | F(2) | 1x | 1.8805(3) | | | O(8) | 1x | 1.8995(3) | | | O(3) | 1x | 2.1168(3) | | | O(7) | 1x | 2.2267(3) | | | F(1) | 1x | 2.2362(3) | | | O(4) | 1x | 2.2637(3) | | | | | | | S(1) | O(4) | 1x | 1.4533(4) | | | O(1) | 1x | 1.5018(4) | | | O(2) | 1x | 1.5408(4) | | | O(3) | 1x | 1.5419(4) | | | | | | | S(2) | O(6) | 1x | 1.4942(4) | | | O(7) | 1x | 1.5113(4) | | | O(8) | 1x | 1.5543(4) | | | O(5) | 1x | 1.5899(4) | ## **5.4 Conclusions** NaFeSO₄F, NaMnSO₄F, NH₄MnSO₄F and NH₄FeSO₄F have been synthesized using solvothermal techniques by employing conventional solvothermal method. NaFeSO₄F adopts a tavorite like structure but with higher order of symmetry than tavorite like LiFeSO₄F. NaMnSO₄F is isostructural to LiMnSO₄F with almost equal distribution of Na and Mn on the two metal sites. Unlike other Mn and Fe based fluorosulfates (LiFeSO₄F-LiMnSO₄F and NaFeSO₄F-NaMnSO₄F), NH₄FeSO₄F and NH₄MnSO₄F are isostructural and both adopt KTiOPO₄ structure type. Attempts of ion exchange of NH₄⁺ with Na⁺ or Li⁺ in NH₄MSO₄F ions did not succeed. # **Chapter 6** ## **Summary and Future Outlook** Fluorosulfate based materials present an exciting opportunity to review and enrich our understanding of the basic electrochemistry-structure correlations in a metastable framework. The polymorphism displayed by LiFeSO₄F is intriguing yet remarkably rewarding in terms of the electrochemical diversity. The tavorite type LiFeSO₄F provides very facile Li-ion diffusion along
multiple channels leading to a 3-D ionic conduction. This is a significant improvement over the last generation of phosphate materials, namely the olivines, without much compromise on specific energy density since the loss in capacity is almost completely compensated by an increase in the voltage (3.45 V – 170 mAh/g in olivine *vs.* 3.6 V – 151 mAh/g in tavorite). The change in the structure of tavorite type LiFeSO₄F following a heat treatment or an extended reaction time is accompanied by a significant change in the lithium intercalation voltage (3.6 V-3.9 V) and Li⁺ transport, which manifest in a Li-ion cell in the form of higher specific energy density but inferior rate capability. Cationic disorder in the triplite type compound also leads to a very well connected framework with relatively high density of atoms which minimizes the volume change upon Li-deintercalation. LiFeSO₄F can only be synthesized by using szomolnokite type FeSO₄·H₂O as the precursor due to its metastability and that limits the synthetic access to this material. However, as reported in the current thesis, much studied solvothermal methods can be used to scale up the production of highly electrochemically active powders. Microwave heating can be used to produce slightly disordered tavorite type compound and surprisingly this can be converted to the triplite type polymorph by a quick heat treatment. This unique phase transition, which is not observed in the tavorite type LiFeSO₄F synthesized by other methods, provides the shortest and a very easy route for obtaining the triplite type LiFeSO₄F. In addition, microwave-assisted- method provides highly divided triplite type LiFeSO₄F, in contrast to the material obtained by conventional solvothermal technique. The fraction of lithium that can be reversibly intercalated in the triplite compounds is much higher for smaller size particles due to shortening of the lithium diffusion path lengths. However, more detailed study of the Li-intercalation process, long term cycling stability in a Li-ion cell and development of coating techniques to improve long term storage stability is required to further establish the credentials of these materials as positive electrodes. The layered and olivine type Na-ion battery positive electrode materials are highly promising due to the abundant availability of the raw materials and their environmental friendliness. The atomistic scale simulations indicate that Na-ion conduction in the olivine type NaMPO₄ compounds occur along characteristic channel of the structure but with lower activation energy barrier than Li-ion in the olivine type LiFePO₄. The activation energy barrier for Na-ion diffusion is similar for the layered-Na₂FePO₄F but due to the distinct layered structural features, Na-ion conduction occurs along the *ac* plane. As a result, the presence of antisite defects in the layered-Na₂FePO₄F does not impact its electrochemical performance while in the olivine type compounds, these defects can be a major cause for the sluggish kinetics and irreversible capacity loss. In the tavorite type NaFeSO₄F, Na-ion conduction is restricted along the 1-D channels with twice activation energy barrier than that of the olivine type or layered materials. This renders the material with almost negligible electrochemical activity. Another important contributing factor to the electrochemical performance is volume change observed upon Na-de/-intercalation. In the olivine and tavorite type materials this becomes the dominating factor since both of them undergo more than 10% volume change upon Na-de/-intercalation. In the layered Na₂FePO₄F, a more interconnected framework and the fact that only one Na is electrochemically extracted renders the framework much more robust which can sustain more cycling stability at higher rates. Next generation of high specific energy density electrode materials must be designed to meet the growing needs for energy storage in the transport sector specifically. In order to allow industrial production, such materials must be made of environmentally friendly and abundantly available raw constituents. Since Li or Na and a transition metal are the basic constituents, an ideal candidate should be made of combination of some or all of the following elements: Li, Na, Fe, Mn, Ni, P, Si, S, and O. Some of the promising candidates built from this list are silicates and phosphates. However, assuming one lithium intercalation per transition metal, capacity and voltage are somewhat lower for the compounds from either of these groups. For silicate compounds such as Li₂MSiO₄ (M=Mn, Fe), theoretically, it should be possible to extract two lithium per transition metal. Three parameters of primary importance here are the intercalation voltage, Li-ion diffusion kinetics and the reversible capacity (gravimetric and volumetric). As shown in the current work and by many other examples in the literature, all of these three are at least partially dependent on the crystal structure of the compound. The commonly adopted tetrahedra based structure (Li₃PO₄ type) for silicates becomes unstable after delithiation and shows rapid capacity fade. Therefore, possibility of new structural polymorphs in silicates needs to be thoroughly explored in order to find a better framework that can address the rapid capacity fading in these materials. Low temperature synthesis methods including the solvothermal and the microwave solvothermal provide a temperature and pressure region which is still relatively unexplored for inorganic synthesis of the functional materials and they should be vigorously pursued in order to synthesize new compounds for energy storage. #### List of publications in peer reviewed journals from this research work - Scalable Synthesis of Tavorite LiFeSO₄F and NaFeSO₄F Cathode Materials, Rajesh Tripathi, T. N. Ramesh, Brian L. Ellis, Linda F. Nazar, Angew. Chem. Int. Ed., 2010, 49, 8738–8742. - 2) Alkali-ion Conduction Paths in LiFeSO₄F and NaFeSO₄F Tavorite-Type Cathode Materials, **Rajesh Tripathi**, Grahame R. Gardiner, M. Saiful Islam, Linda F. Nazar, *Chem. Mater.*, 2011, 23, 2278–2284 - 3) Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: Synthesis strategies and effect of cation ordering, **Rajesh Tripathi**, Guerman Popov, Brian L. Ellis, Ashfia Huq, Linda F. Nazar, *Energy Environ. Sci.*, 2012, 5, 6238-6246. - 4) Ultrarapid microwave assisted synthesis of tavorite and triplite LiFeSO₄F, **Rajesh Tripathi**, Guerman Popov, Xioaqi Sun, Dominic H. Ryan, Linda F. Nazar, *J. Mater. Chem. A*, 2013, 1, 2990-2994 - 5) Na ion diffusion in Olivine Na[Fe,Mn]PO₄ and layered Na₂FePO₄F, **Rajesh Tripathi**, S.M. Wood, Saiful M. Islam, Linda F. Nazar, *Energy Environ. Sci.*, 2013, 6, 2257-2264 #### **References:** - J.B. Goodenough Report of the Basic Energy Science Workshop Department of energy, April 2007. - Nakecenovic, N. World energy assessment: energy and the challenge of sustainability, chapter 9: energy scenarios, United Nations Development Program, December 2000. - 3 Dunn, B.; Kamath, H.; Tarascon, J. M. Science **2011**, 334, 928. - 4 Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. - 5 Tarascon, J. M.; Armand, M. *Nature* **2001**, 414, 359. - 6 Whittingham, M. S. Science **1976**, 192, 1126. - Whittingham, M. S.; Chianelli, R. R. J. Chem. Educ. 1980, 57, 569. - 8 Whittingham, M. S. *Chemtech* **1979**, *9*, 766. - 9 Holleck, G. L.; Driscoll, J. P. *Electrochim. Acta* **1977**, 22, 647. - 10 Thompson, A. H. *Phys. Rev. Lett.* **1975**, *35*, 1786. - 11 Whittingham, M. S. J. Electrochem. Soc. **1976**, 123, 315. - 12 Haering, R. R.; Stiles, J. A. R.; Brandt, K. U.S. Patent 4 **1980**, 224. - 13 Whittingham, M. S. *Prog. Solid State Chem.* **1978**, *12*, 41. - Delmas, C.; Cognac-Auradou, H.; Cocciantelli, J. M.; Menetrier, M.; Doumerc, J. P. *Solid State Ionics* **1994**, *69*, 257 - 15 Walk, C. R.; Margalit, N. J. Power Sources **1997**, 68, 723. - Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. *Mater. Res. Bull.* **1980**,15, 783. - 17 Ohzuku, T.; Ueda, A. J. Electrochem. Soc. **1994**, 141, 2972. - 18 Yang, X. Q.; Sun, X.; McBreen, J. *Electrochem. Commun.* **2000**, 2, 100. - 19 Reimers, J. N.; Dahn, J. R. *J. Electrochem. Soc.*, **1992**, 139, 2091. - 20 Van der Ven, A.; Aydinol, M. K.; Ceder, G. *J. Electrochem. Soc.* **1998,** 145, 2149. - 21 Chen, Z. H.; Lu, Z. H.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1604. - 22 Rossen, E.; Reimers, J. N.; Dahn, J. R. *Solid State Ionics* **1993**, 62, 53. - 23 Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. J. Electrochem. Soc. **1996**, 143, 1114. - Nagaura, T.; Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. - 25 Ozawa, K. Solid State Ionics 1994, 69, 212. - 26 http://www.cpsc.gov/cpscpub/prerel/prhtml07/07011.html - 27 Delmas, C. Mater. Sci. Eng. 1989, B3, 97. - Endo, E.; Yasuda, T.; Kita, A.; Yamaura, K.; Sekai, K. *J. Electrochem. Soc.* **2000**, 147, 1291. - Chembiam , R.V. ,. Kannan, A.M ; Prado, F.; Manthiram, A. *Electrochem. Comm.* 2001,3, 624. - Dahn, J. R.; Fuller, E. W.; Obrovac, M.; von Sacken, U Solid State Ionics 1994, 69,265. - 31 MacNeil, D.D.; Dahn, J.R. J. Electrochem. Soc. **2001**,148, A1205. - 32 MacNeil, D.D.; Dahn, J.R. *J. Electrochem. Soc.* **2002**,149, A912. - 33 Jung, Y.S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S.H. J. *Electrochem. Soc.* **2010**, 157, A75. - 34 Rougier, A.; Gravereau, P.; Delmas, C. *J. Electrochem.* Soc. **1996**, 143, 1168. - 35 Conry, E.T.; Mehta, A.; Cabana, J.; Doeff, M.M. Chem. Mater. 2012, 24, 3307. - 36 MacNeil, D.D.; Lu, Z.; Chen, Z.; Dahn, J.R. *J. Power Sources* **2002**, 1, 8. - 37 Armstrong, A.; Bruce, P.G. *Nature* **1996**, 381, 499. - 38 Lu, Z.; MacNeil, D.D.; Dahn, J.R. Electrochem. Solid-State Lett. 2001, 12, A200. - 39 Ohzuku, T.; Naoaki, Y. J. Power Sources 2003, 119, 171. - 40 Hwang, B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G. Chem. Mater. 2003, 15, 3676. - 41
Kim, J. M.; Chung, H. T. *Electrochim. Acta* **2004**, 49, 937. - 42 Yabuuchi, N.; Makimura, Y.; Ohzuku, T. J. Electrochem. Soc. 2007, 154, A314. - 43 Choi, J.; Manthiram, A. J. Electrochem. Soc. **2005**, 152, A1714. - 44 Yin, S. C.; Rho, Y. H.; Swainson, I.; Nazar, L. F. Chem. Mater. 2006, 18, 1901. - Kobayashi, H.; Arachi, Y.; Emura, S.; Kageyama, H.; Tatsumi, K.; Kamiyama, T. *J. Power Sources* **2005**, 146, 640. - Whitfield, P. S.; Davidson, I. J.; Cranswick, L. M. D.; Swainson, I. P.; Stephens, P. W. Solid State Ionics 2005, 176, 463. - 47 Reale, P.; Privitera, D.; Panero, S.; Scrosati, B. Solid State Ionics 2007, 178, 1390. - 48 Cahill, L. S.; Yin, S. C.; Samoson, A.; Heinmaa, I.; Nazar, L. F.; Goward, G. R. *Chem. Mater.* **2005**, 17, 6560. - 49 Wang, Y. D.; Jiang, J. W.; Dahn, J. R. *Electrochem. Commun.* **2007**, 9, 2534. - 50 Yabuuchi, N.; Ohzuku, T. *J. Power Sources* **2003**, 119, 171. - Thackeray, M. M.; David W.I.F.; Goodenough, J.B. Mater. Res. Bull. 1982, 17, 785. - 52 Thackeray, M., M.; David, W.I.F.; Bruce, P.G.; Goodenough, J.B. *Mater. Res. Bull.*1983,18,461. - 53 Thackeray, M. M. *Prog. Solid State Chem* **1997**, 25, 1. - Yonemura, M.; Yamada, A.; Kobayashi, H.; Tabuchi, M.; Kamiyama, T.; Kawamoto, Y.; Kanno, R. *J. Mater. Chem.* **2004**, *14*, 1948. - 55 Hunter, J. C. J. Solid State Chem. **1981**, 39, 142. - 56 Barker, J.; Pynenburg R.; Koksbang, R. J. Power Sources 1994, 52, 185. - Tarascon, J.M.; Wang, E.; Shokoohi, F.K; McKinnon, W.R.; Colson, S. J. Electrochem. Soc. 1991, 138, 2859. - 58 Ohzuku, T.; Kitagawa, M.; Hirai, T. *J. Electrochem. Soc.* **1990,** 137,769 - Thackeray, M.M.; Johnson, P.J.; De Picciotto, L.A.; Bruce P.G.; Goodenough, J.B. *Mater. Res Bull.* **1984**, 179 - 60 Thackeray, M. M. *Prog. Solid State Chem.* **1997**, 25, 71. - 61 Gummow, R. J.; Kock, A.D., Thackeray, M.M. Solid State Ionics 1994, 69, 59. - 62 Bittihn, R.; Herr. R.; Hodge, D. *J. Power Sources* **1993**, 43, 223. - Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao Y.; Dahn, J.R. *J Electrochem Soc.* **1997**, 144, 205. - 64 Gao, Y.; Myrtle, K.; Zhang, M.; Reimers, J.N.; Dahn, J. R. *Phys. Rev.* **1996**, 54,16670. - 65 Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. J. Electrochem. Soc **1996**, 143, 1607. - 66 Russouw M. H.; Thackeray, M. M. Mater. Res. Bull. 1991, 26, 46. - Padhi, A.K.; Nanjundaswamy, K.S.; Masquelier, C.; Okada S.; Gooclenough J. B. *J. Electrochem. Soc.* **1997**,144, 1610. - Padhi, A.K.; Manivannan, V.; Goodenough, J. B. J. Electrochem. Soc. 1998,145, 1518. - 69 Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 2581. - Huang, H.; Yin, S.C.; Nazar, L.F. *Electrochem. Solid-State Lett.* **2001**, 4, A170. - 71 Chen, Z. H.; Dahn, J. R. J. Electrochem. Soc. **2002**, 149, A1184. - 72 Prosini, P. P.; Zane, D.; Pasquali, M. *Electrochim. Acta*, **2001**, 46, 3517. - 73 Yamada, A.; Chung, S. C.; Hinokuma, K. *J. Electrochem. Soc.* **2001**,148, A224. - 74 Herle, P. S.; Ellis, B.L.; Coombs, N.; Nazar, L. F. *Nature Mater.* **2004**, 3, 147. - Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Pejovnik, S.; Jamnik,J. J. Electrochem. Soc 2005,152, A607. - Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. *Electrochem. Solid-State Lett.* **2006,** 9, A352. - Striebel, K.; Shim, J.; Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2005, 152, A664. - 78 Ellis, B.L.; Perry, L.K.; Ryan, D.H.; Nazar, L.F. J. Am. Chem. Soc. **2006**, 128, 11416. - 79 Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. *Chem. Mater.* **2005**, 17, 5085. - 80 Amin, R.; Maier, J.; Balaya, P.; Chen, D. P.; Lin, C. T. Solid State Ionics, **2008**, 179, 1683. - 81 Srinivasan, V.; Newman, J. *J. Electrochem. Soc.* **2004,** 151, 10. - Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F.; Weill, F. *Nature Mater.* **2008** 7, 665. - Gibot, P.; Casas-C.-M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J-M.; Masquelier, C. *Nature Mater.* 2008, 7,741. - Yamada, A.; Koizumi, H.; Nishimura, S-I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. *Nature Mater* **2006**,5,357. - 85 Malik, R.; Zhou F.; Ceder G. *Nature Mater.* **2011**, 10, 587. - Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J.-M.; Masquelier, C. *Chem. Mater.* **2004**,16,93. - Pelacourt, C.; Laffont, L.; Bouchet, R.; Wurm, C.; Leriche, J.-B.; Morcrette, M.; Tarascon, J.-M.; Masquelier, C. *J. Electrochem. Soc.* **2005**,152,A913. - Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J.H.; Exnar, I.; Kay A.; Markovsky, B.; Aurbach, D. *Angew. Chem. Int. Ed.* **2009**, 48, 8559. - 89 Srinivasan, V.; Newman, J. *Electrochem. and Solid State Lett.* **2006**, 9, A110. - Dominko, R.; Bele, M.; Gaberscek, M.; Meden, A.; Remskar, M.; Jamnik, J. *Electrochem. Comm.* **2006**, 8,217. - 91 Kokalj, A.; Dominko, R.; Mali, G.; Meden, A.; Gaberscek, M.; Jamnik, J. *Chem. Mater.* **2007**, 19, 3633. - 92 Nyten, A.; Kamali, S.; Haeggstroem, L.; Gustafsson, T.; Thomas, J. O. *J. Mater. Chem.* **2006,** 16, 2266. - 93 Islam, M.S.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, R. A.; Bruce, P.G. J. Mater. Chem. **2011**, 21, 9811. - 94 Eames, C.; Armstrong A.R.; Bruce, P.G.; Islam M.S. *Chem. Mater.* **2012**, 24, 2155. - 95 Arroyo-de Dompablo, M. E.; Armand, M.; Tarascon, J. M.; Amador, U. *Electrochem.*Comm. 2006, 8, 1292. - 26 Zaghib, K.; Ait Salah, A.; Ravet, N.; Mauger, A.; Gendron, F.; Julien, C. M *J. Power Sources* 2006, 160, 1381. - 97 Nishimura S.-I.; Hayase, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. *J. Am. Chem. Soc.***2008**,130,13212. - Larsson, P.; Ahuja, R.; Nyten, A.; Thomas, J.O. Electrochem. Comm. 2006, 8, 797. - 99 Armstrong, A. R; Lyness, C.; Menetrier, M.; Bruce, P. G. Chem. Mater. 2010, 22, 1892. - 100 He, G.; Nazar, L.F. Chem. Mater. 2013, 25, 1024. - Sirisopanaporn, C.; Boulineau, A.; Hanzel, D.; Dominko, R.; Budic, B.; Armstrong, A.R.; Bruce, P. G.; Masquelier, C. *Inorg. Chem.* 2010, 49, 7446. - Muraliganth, T.; Stroukoff, K. R.; Manthiram A. Chem. Mater. 2010, 22, 5754. - Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. *Nano Lett.* **2012,** 12, 1146. - 104 Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. J. Electrochem. Soc. 2003, 150, A1394. - Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Chem. Mater. 2010, 22, 1059. - 106 Pizarro-Sanz, J. L.; Dance, J. M.; Villeneuve, G.; Arriortua-Marcaida, M. I. *Mater. Lett.*1994, 18, 327. - 107 Barker, J.; Gover, R. K. B.; Burns, P.; Bryan, A.; Saidi, M. Y.; Swoyer, J. L. *J. Power Sources* **2005**, 146, 516. - 108 Ramesh, T. N.; Lee, K.T.; Ellis, B. L.; Nazar, L.F. *Electrochem. Solid-State Lett.* **2010,** 13, A43. - Recham, N.; Chotard, J-N.; Jumas, J-C.; Laffont, L.; Armand M.; Tarascon, J.-M. Chem. Mater. 2010, 22, 1142. - Aurbach, D. ITE Letters on Batteries, New Technologies & Medicine 2001, 2, B42. - 111 Aurbach, D.; Moshkovich, M. J. Electrochem. Soc. 1998, 145, 2629. - Dahn J. R., Zheng, T.; Liu, Y.; Xue J.S. *Science* **1995**, 270, 590. - Dahn, J.R.; Sleigh, A. K.; Shi, H.; Reimers, J.N.; Zhong, Q.; Way B.M. J. New Mat. Electrochem. Systems 1993, 38, 1179. - 114 Ohzuku, T.; Iwakoshi, Y.; Sawai, K.; J. Electrochem. Soc. 1993 140, 2490. - 115 Sato, K.; Noguchi, M.; Demachi, A.; Oki N.; Endo, M. Science 1994, 264, 556. - 116 Kambe, N.; Dresselhaus, M. S.; Dresselhaus, G.; Basu, S.; McGhie, A. R.; Fischer, J. E. *Materials Sci.and Eng. 1979, 40, 1.** - 117 Dahn J. R. Phy. Rev. B. **1995**, 44, 17. - 118 Mao, O.; Dunlap, R.A.; Dahn J.R. J. Electrochem. Soc. 1999, 146, 405. - 119 Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Environ. Sci. 2011, 4, 2682. - 120 Obrovac, M. N.; Christensen, L.; Ba, L. D.; Dahn, J. R. J. Electrochem. Soc. 2007, 154, A849. - 121 Zhang, W-J J. Power sources **2011**, 196,13. - Kasavajjulaa, U.; Wanga, C.; Appleby, A.J. J. Power sources, 2007,163,1003. - 123 Chevrier, V. L.; Zwanziger, J. W.; Dahn, J. R. J. Alloys and Comp. **2010**,496,25. - Limthongkul, P.; Jang, Y.I.; Dudney, N.J.; Chiang, Y.M. Acta Materialia 2003, 51, 1103. - Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J.-M. *J. Electrochem. Soc.* **2008**, 155, A158. - 126 Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. *Electrochem. Solid-State Lett.* **2003**, 6, A194. - 127 Hertzberg, B.; Alexeev, A.; Yushin, G. J. Am. Chem. Soc. **2010**, 132, 8548. - Evanoff, K.; Magasinski, A.; Junbing, Y.; Yushin, G. Adv. Energy Mater. 2011, 1,495. - 129 Yi, R.; Dair, F.; Mikhail, L. G.; Chem, S.; Wang, D. Adv. Energy Mater. **2013**, 3, 295. - Obrovac, M. N.; Christensen, L. *Electrochem. Solid-State Lett.* **2004**, 7, A93. - 131 Li, J.; Dahn, J.R. J. Electrochem. Soc. 2007, 154, A156. - 132 Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J.M.; Grey, C. P. J. Am. Chem. Soc. 2009, 131, 9239. - 133 Chan, K.C.; Ruffo, R.; Hong, S.S.; Huggins, R.A.; Cui, Y. *J. Power sources* **2009**, 189, 34. - 134 Chan, K.C.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. *Nature Nanotech.* **2008**, 3, 31. - Kovalenko, I.; Bogdan, Z.; Magasinski, A.; Benjamin, H.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. *Science* **2011**, 334, 75. - Ferg, E.; Gummow, R. J.; de Kock, A.; Thackeray, M. M. J. Electrochem. Soc. 1994,141,L147. - 137 Ohzuku, T.; Ueda, A.; Yamamoto N. J. Electrochem. Soc. **1995**, 142, 1431. - 138 Slater, D.M.; Kim, D.M.; Lee, E.; Johnson, C.S. Adv. Funct. Mater. 2013, 23, 947. - Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.; Carretero-Gonzalez, J.; Rojo, T. *Energy and Env. Sci.* **2012**,5,5884. - Parant, J.P.; Olazcuaga, R.; Devalette, M.; Fouassier, C.; Hagenmuller, P. J. Solid State Chem. 1971, 3, 1. - Mendiboure, A.; Delmas, C; Hagenmuller, P J Solid State Chem 1985, 57, 323. - 142 Ma, X.; Chen, H.; Ceder, G. J. Electrochem. Soc. **2011**, 12, A1307. - Delmas, C.; Braconnier, J. J.; Fouassier, C.; Hagenmuller, P. *Solid State
Ionics* **1981**, 3-4, 165. - Braconnier, J. J.; Delmas, C.; Fouassier, C.; Hagenmuller, P. *Mater. Res. Bull.* **1980**, 15, 1797. - Carlier, D.; Cheng, J. H., Berthelot, R.; Guignard, M.; Yoncheva M.; Stoyanova R. *Dalton Trans* **2011**, 40, 9306. - 146 Doeff, M. M.; Richardson, T. J.; Kepley, L. J. Electrochem. Soc. 1996,143, 2507. - Lee, J.-H; Black, R.; Popov, G.; Pomerantseva, E.; Nan, F.; Botton, G. A.; Nazar, L. F. *Energy and Env. Sci.***2012**,11,9558. - 148 Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J. Adv. Mater. 2011, 23, 3155. - Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. *Nature Mater.* **2012**, 11, 512. - Kim, D.; Kang, S. H.; Slater, M.; Rood, S.; Vaughey, J.T.; Karan, N.; Balasubramanian,M.; Johnson, C.S. Adv. Energy Mater. 2011, 1, 333. - Plashnitsa, L. S.; Kobayashi, E.; Noguchi, Y.; Okada S.; Yamaki, J.-I. *J. Electrochem. Soc.* **2010**, 157, A536. - Patoux, S; Rousse, G; Leriche, J-B; Masquelier, C. Chem Mater 2003, 3, 2084. - Barker, J.; Saidi, M.Y.; Swoyer, J. L. Electrochem. Solid-State Lett. 2003, 6, A1. - 154 Meins, J. Le J. Solid State Chem. **1999**, 148, 260. - Ellis, B.L.; Makahnouk, W.R.M.; Makimura, Y.; Toghill K.; Nazar, L.F. *Nature Mater*. **2007,**6, 749. - Berthelot R., Carlier D., Delmas C. Nature Mater. 2011, 10, 74. - Recham N., Chotard J-N., Dupont L., Djellab K., Armand M., Tarascon J-M. *J Electrochem Soc* **2009**, 156:, A993. - Lee, K.T.; Ramesh, T.N.; Nan, F.; Botton, G.; Nazar, L.F. Chem. Mater. 2011, 23, 3593. - 159 Doeff, M.M.; Ma, Y.; Visco, S.J.; De Jonghe, L.C. *J. Electrochem. Soc.* **1993,**140, L169. - 160 Stevens, D.A.; Dahn, J.R. J. Electrochem. Soc. **2000**, 147, 1271. - Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Energy Environ Sci 2011,4, 3342. - 162 Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. J. Phys. Chem. Lett. 2011, 2, 2560. - 163 Senguttuvan, P.; Palacín, M.R. Chem. Mater. 2011, 23, 4109. - 164 Park, S.I.; Gocheva, I.; Okada, S.; Yamaki, J.-I. *J. Electrochem. Soc.* **2011**,158, A1067. - 165 Walton, R.I. Chem. Soc. Rev. 2002, 31, 230. - 166 Demazeau, G. J. Mater. Chem. 1999, 9, 15. - 167 Feng, S.; Xu, R. Acc. Chem. Res. 2001, 34, 239. - Baghbanzadeh, M.; Carbone, L.; Cozzoli, P.D.; Kappe C.O. Angew. Chem. Int. Ed. 2011, 50, 2. - Carriazo, D.;Rossell, M.D.;Zeng, G.B.;Bilecka, I.;Erni, R;Niederberger, M. *Small* **2012**, 8, 2231. - 170 Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Phys. Chem. C 2008, 112, 14665. - Bilecka, I.; Hintennach, A.;Rossell, M. D.; Xie, D.;N. Petr.; Niederberger, M. J. Mater. Chem. 2011, 21, 5881. - http://www.iucr.org/__data/assets/pdf_file/0010/721/chap4.pdf - 173 Larson, A.C.; Von Dreele; R.B. Los Alamos National Laboratory Report **2004**, LAUR 86-748. - 174 Toby, B.H. J. Appl. Cryst. 2001, 34, 210. - 175 Islam, M. S.; Slater, P. R. MRS Bulletin 2009, 34, 935. - 176 Gale, J.D. J. Chem. Soc. Faraday Trans 1997, 93, 629. - 177 Catlow, C. R. A. *Computer Modeling in Inorganic Crystallography* Academic Press: San Diego, CA, **1997**. - 178 Gale, J.D User Manual: General Utility Lattice Program: Version 4.0 - 179 Ewald. P.P. Ann. Phys. 1921, 64, 253. - 180 Gale, J.D *Philosophical Magazine B* **1996**, 73, 3. - 181 Kuganathan, N.; Islam, M. S. Chem. Mater. 2009, 21, 5196. - Sebastian, L.; Gopalakrishnan, J.; Piffard, Y. J. Mater. Chem. 2002, 12, 374. - Recham, N.; Chotard, J. N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J.-M. *Nature Mater.* **2010**, 9, 68. - Ati, M.; Walker, T.W.; Djellab, K.; Armand, M.; Recham, N.; Tarascon, J-M. *Electrochem. Solid-State Lett.* **2010**, 13, A150. - 185 Harrison, K.L.; Manthiram, A.; *Inorg. Chem.* **2011**, 50, 3613. - 186 Chen, M.; Xie, Y.; Lu, J.; Xiong, Y.; Zhang, S.; Qian, Y.; Liu, X. J. Mater. Chem.2002,12, 748. - Tang, K. B.; Qian, Y. T.; Zeng, J. H.; Yang, X. G. Adv. Mater. 2003, 15, 448 - 188 Yakubovich, O. V.; Urusov, V. S *Geokhimiya* **1997**, 7, 720. - Beitone, L.; Guillou, N.; Millange, F.; Loiseau, T.; Ferey, G Solid State Sci. 2002, 4, 1061. - Barpanda, P.; Chotard, J.-N.; Delacourt, C.; Reynaud, M.; Filinchuk, Y.; Armand, M.; Deschamps M.; Tarascon, J. M. *Angew. Chem., Int. Ed.* **2011**, 50, 2526. - Liu, L., Zhang, B.; Huang, X.J. Prog. In Nat. sciences: Mater. International 2011, 21,211. - 192 Kostiner, E. Am. Mineral. **1972**, 57, 1109. - Barpanda, P.; Ati, M.; Melot, B. C.; Rousse, G.; Chotard, J.-N.; Doublet, M.-L.; Sougrati, M. T.; Corr, S. A.; Jumas, J.-C; Tarascon, J.M. *Nature Mater.* 2011, 10, 772 - Cuisinier, M.; Martin, J.-F;. Dupre, N.; Yamada, A.; Kanno, R;. Guyomard, D. *Electrochem. Commun.* **2010**, 12, 238. - 195 Ati, M.; Melot, B. C.; Chotard, J. N.; Rousse, G.; Reynaud, M.; Tarascon, J. M. *Electrochem. Comm.* **2011**, 13, 1280. - 196 Ati, M.; Melot, B. C.; Chotard, J.-N.; Rousse, G.; Barpanda, P.; Tarascon, J.M. *Angew. Chem. Int. Ed.* **2011**, 50, 10574. - 197 Sathiya, M.; Boulineau, S.; Reynaud, M.; Abakumov, A.; Rousse, G.; Melot, B.; Van Tendeloo, G.; Tarascon, J.M. *J. Am. Chem. Soc.* **2012**, 134, 18380. - 198 Malik, R.; Burch, D.; Bazant, M.; Ceder, G. *Nano Lett.* **2010**, 10, 4123. - 199 Ati, M.; Sougrati, M.-T; Rousse, G.; Recham, N.; Doublet, M.-L.; Jumas, J.-C.; Tarascon, J.M. *Chem. Mater.* **2012**, 24, 1472. - Nakamoto K.; Infrared and Raman spectra of inorganic and coordination compounds part A: Theory and Applications in inorganic chemistry, 5th edition; John wiley and sons Inc. 1997, 160-161. - Azib, T.; Ammar, S.; Nowak, S.; Lau-Truing, S; Groult, H.; Zaghib, K.; Mauger, A.; Julien C.M. J. Power Sources 2012, 217,220. - 202 Chen, J.; Gratez, J. Appl. Mater. Interfaces 2011, 3, 1380. - 203 Chung, S.Y.; Choi, S.Y.; Yamamoto, T.; Ikuhara, Y. *Phys. Rev. Lett.* **2008**, 100,125502. - Komaba, S., Takei, C., Nakayama, T., Ogata, A. Yabuuchi, N. *Electrochem. Commun.*2010,12, 355. - 205 Didier, C. Electrochem. Solid-State Lett. 2011, 14, A75. - Doeff, M. M.; Peng, M. Y.; Ma, Y. P.; Dejonghe, L. C. J. Electrochem. Soc. 1994, 141,L145. - Braconnier, J. J.; Delmas, C.; Hagenmuller, P. Mater. Res. Bull 1982, 17, 993. - 208 Gaubicher, J.; Wurm, C., Goward, G.; Masquelier, C.; Nazar, L. *Chem. Mater.* **2000**, 12, 3240. - 209 Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. *Chem. Mater.* **2010**, 22, 4126. - Kawabe, Y.; Yabuuchi, N.; Kajiyama M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. *Electrochemistry* **2012**, 80, 8084. - 211 Ong, S.P.; Chevrier, V.L.; Hauteir, G.; Jai, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. - 212 Kawabe, Y.; Yabuuchi, N.; Kajiyama M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. *Electrochem. Comm.* 2011,13,1225. - 213 Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Nanoscale 2013, 5, 780. - Casas-Cabanas, M; Roddatis, V, V.; Saurel, D.; Kubiak, P.; Carretero-González, J.; Palomares, V; Serras, P.; Rojo, T. J. Mater. Chem 2012, 22, 17421. - a) Allan, N. L.; Rohl, A. L.; Gay, D. H.; Catlow, C. R. A.; Davey, R. J.; Mackrodt, W. C. Faraday Discuss. 1993, 95, 273 c) Sastre, G; Gale, J.D. Chem. Mater. 2005, 17, 730 d). Gomez-Hortiguela, L; Cora, F; Catlow, CRA; Perez-Pariente, J. J. Amer. Chem. Soc. 2004, 126, 12097. - 216 Dick, B. G.; Overhauser, A. W. Phys. Rev. 1958, 112, 90. - a) Jackson, R. A.; Valerio, M. E. G.; Lima, J. F. J. Phys. Condensed Matter 1996, 8, 10931 b) Islam, M. S.; D'Arco, S. Chem. Comm. 1996, 2291. - 218 Gale, J. D.; Rohl, A. L Mol. Simul. 2003, 29, 291. - 219 Kang, K.; Carlier, D.; Reed, J.; Arroyo, E.M.; Ceder, G.; Croguennec, L.; Delmas, C. *Chem. Mater.* 2003, 15, 4503. - Sebastian, L.; Gopalakrishnan, J J. Mater. Chem. 2003, 13, 433. - Ati, M; Sougrati, T. M.; Recham, N., Barpanda, P., Leriche, J.B.; Courty, M; Armand M.; Jumas, J. C.; Tarascon, J.M. *J. Electrochem. Soc.* **2010**, 157, A1007. - 222 Liu Z., Huang X. Solid State Ionics **2010**, 181, 1209. - 223 Schitz, A.K. I. Solid State Ionic 1997, 100, 149. - 224 Kutner, R. Phys. Lett. 1981, 81, 239. - 225 Van Der Ven, A.; Ceder G. J. Power Sources 2001, 97-98, 529. - 226 Delacourt, C.; Ati, M.; Tarascon, J. M. J. Electrochem. Soc. 2011, 158, A741. - 227 Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977. - 228 Lepage, Y.; Donnay, G. Can. Mineral. 1977, 15, 518. - 229 Loiseau, Th.; Calage, Y.; Lacorre, P.; Frey, G. J. Solid Sate Chem. 1994, 111, 390. - 230 Tordjman, I.; Masse, R.; Guitel, J.C. Z. Kristallogr. **1974**, 139,103.