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ABSTRACT 

Layout Decision Analysis and Design is a ubiquitous problem in a variety of work domains that is 
important from both strategic and operational perspectives. It is largely a complex, vague, difficult, 
and ill-structured problem that requires intelligent and sophisticated decision analysis and design 
support.  

Inadequate information availability, combinatorial complexity, subjective and uncertain 
preferences, and cognitive biases of decision makers often hamper the procurement of a superior 
layout configuration. Consequently, it is desirable to develop an intelligent decision support system 
for layout design that could deal with such challenging issues by providing efficient and effective 
means of generating, analyzing, enumerating, ranking, and manipulating superior alternative 
layouts.  

We present a research framework and a functional prototype for an interactive Intelligent System 
for Decision Support and Expert Analysis in Multi-Attribute Layout Optimization (IDEAL) based on 
soft computing tools. A fundamental issue in layout design is efficient production of superior 
alternatives through the incorporation of subjective and uncertain design preferences. Consequently, 
we have developed an efficient and Intelligent Layout Design Generator (ILG) using a generic two-
dimensional bin-packing formulation that utilizes multiple preference weights furnished by a fuzzy 
Preference Inferencing Agent (PIA). The sub-cognitive, intuitive, multi-facet, and dynamic nature 
of design preferences indicates that an automated Preference Discovery Agent (PDA) could be an 
important component of such a system. A user-friendly, interactive, and effective User Interface is 
deemed critical for the success of the system. The effectiveness of the proposed solution paradigm 
and the implemented prototype is demonstrated through examples and cases. 

This research framework and prototype contribute to the field of layout decision analysis and 
design by enabling explicit representation of experts’ knowledge, formal modeling of fuzzy user 
preferences, and swift generation and manipulation of superior layout alternatives. Such efforts are 
expected to afford efficient procurement of superior outcomes and to facilitate cognitive, 
ergonomic, and economic efficiency of layout designers as well as future research in related areas. 

Applications of this research are broad ranging including facilities layout design, VLSI circuit 
layout design, newspaper layout design, cutting and packing, adaptive user interfaces, dynamic 
memory allocation, multi-processor scheduling, metacomputing, etc. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation  

The continuous development of such sophisticated and pervasive applications as Facilities buildings, 

VLSI Circuits, Human-Machine Interfaces, and the Web Page layout design has engendered a strong 

appeal in formulating and automating layout design algorithms and guidelines (Dowsland et al., 2002; 

Tompkins et al., 2002; Youssef et al., 2003). These applications have motivated many areas of 

Operations Research and Decision Sciences and culminated in significant research in formalizing 

layout design algorithms, preferences, and fitness measures. Nevertheless, despite being an active 

research area, layout design is still a vaguely defined field (Tommelein, 1997; Youssef et al., 2003). 

The existing research largely provides design algorithms and guidelines in a very rigid and overly 

simplistic framework, largely without an elaborate methodology for utilizing those (Tompkins et al., 

2002). The usefulness of such overwhelmingly scattered knowledge is further limited by cognitive 

limitations of users. In order to address some shortcomings of the existing research, this thesis 

presents a new research paradigm and solution methodology for undertaking the Layout Design 

problem. It tackles some important issues encountered in layout design by providing means for 

incorporating sub-cognitive, subjective, and uncertain preferences into the design process and fast 

generation and manipulation of superior layout alternatives.  

1.2 Layout Design  

The Layout Design (henceforth, LD) process is geared towards seeking superior outcomes in 

assigning space to various activities and components. More specifically, it involves spatial 

configuration of modules in a specified space, satisfying given preferences and constraints, and 

optimizing some fitness evaluation objectives. These preferences involve a high degree of 

subjectivity, uncertainty, dynamism, and complexity (Karray et al., 2001b; Singh & Wang, 1994; 

Youssef et al., 2003a). The knowledge-intensive nature, absence of accurate models that capture 

complex decision-making dynamics, and non-availability of expert advice in a timely or economical 

fashion highlight the need for resorting to some knowledge-based decision support and expert system 
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methodologies. Indeed, decision support and expert system technologies have been successfully 

developed and deployed in such diverse disciplines as Engineering, Business, Mining, Medicine, etc. 

(Marakas, 2002; Negnevitsky, 2002; Turban and Aronson, 2001). However, little such efforts have 

been expended in the important area of LD (Ahmad et al., 2004b; Tommelein, 1997; Eom and Lee, 

1990). 

Evidently, the creativity of designers as well as synergy and trade-offs of various competing and 

complementing faculties lie at the core of the LD process (Berkun, 2001; Tompkins et al., 2002). 

Incidentally, it has long been noted that “ … most [computerized] layout design techniques have 

limited or ignored the creativity and the natural ability of [the layout planner] to understand complex 

flow and spatial relationships” (Blair, 1985, pp. 92). Paradoxically, such statements are as true today 

as were two decades ago (Ligget, 2000; Tompkins et al., 2002). We believe that this state of affairs is 

primarily an outcome of adopting an Optimization paradigm instead of a more relevant Decision-

Making paradigm.  

In this regard, we recommend a paradigm shift towards seeking a synergistic bliss of the cognitive 

and sub-cognitive expertise of decision-makers as well as technologies that are efficacious in 

modeling such subjective problems. It should be noted that the Expert System paradigm is known to 

be very effective in such uncertain, subjective, and knowledge-intensive application domains as LD. 

On the same note, Fuzzy Logic has been an effective and increasingly popular technology for 

incorporating subjective and uncertain preferences in the knowledge-base of expert systems 

(Negnevitsky, 2002; Turban & Aronson, 2001). Similarly, such machine learning technologies as 

Artificial Neural Networks and Reinforcement Learning hold the promise of automatically 

discovering, validating, and updating some of the implicit and explicit preferences (Lok & Feiner, 

2001). In short, we believe that automated LD systems based on an intelligent expert system 

paradigm, utilizing synergic strengths of various complementary soft computing technologies, 

provide a promising research direction. Such integrated approaches are largely missing from the LD 

literature. Nevertheless, persistent and concerted efforts in this direction are expected to enhance the 

cognitive, economic, and ergonomic efficiency and efficacy of layout designers and produce 

outcomes sensitive to financial, social, political, or environmental merits. 
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1.3 Proliferation of the Layout Design Problem 

This thesis is motivated by the widespread operational and strategic applications of the LD problem 

and the inadequacy of existing automated LD systems. The significance and prevalence of this 

problem is also evident from hundreds of research papers and scores of books written in this area. 

Consequently, it is not possible to outline the application areas and proliferation of the LD problem in 

few lines. As such, here we summarize some prominent LD applications to underscore its importance. 

1.3.1 Facilities Planning 

Facility Layout Design problem has been addressed analytically for the last several decades and 

received considerable interest from the research community. Indeed, the facility location and layout 

has profound effects on organizational productivity and profitability. For instance, about 20-50% of 

operating costs in manufacturing relates to materials handling, a factor highly correlated to the quality 

of the facility layout. Furthermore, US businesses spend about a trillion dollars on new facilities 

annually (Tompkins et al., 2002). Consequently, Facilities LD remains an active research area with 

significant potential for automation. 

1.3.2 VLSI Circuit Design 

Efforts in automating the Circuit Layout Design gained prominence with the onset of such 

challenging applications as VLSI. Conceivably, designing the layout configuration of a circuit 

containing hundreds of millions of components is a very hard problem. As such, the VLSI circuit 

design process is broken down into such steps as defining macrocells, their connectivity, and 

placement, etc. Macrocells are a collection of circuit elements that are grouped together based on 

some connectivity or functionality criteria (Mazumdar & Pianki, 1999). Once macrocells are defined, 

a block layout is developed where the physical location of each macrocell is specified. This block LD 

problem is very similar to the bin-packing problem discussed in Chapter 2. An automatically 

optimized VLSI layout would result not only in a shorter development cycle time but also bring about 

improvements in various critical circuit performance parameters (Youssef et al., 2003). 

1.3.3 Cutting and Packing 

In packing problems, the objective is to pack the most objects in the least number of fixed space bins, 

while maximizing the space utilization. This problem is also relevant to industries where cutting of 

rectangular patterns from a larger rectangular piece is involved such as sheet metal, paper, plastic, and 
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textile industries (Al-Sultan et al., 1996). Interestingly, applications of packing techniques span 

apparently disparage domains from scheduling of jobs in assembly lines to dynamic memory 

allocation and multi-processor scheduling in computing and metacomputing services (Burke et al., 

2004). In addition, this problem is also pertinent to transportation industries (Islier, 1998). The 

enormity of the transportation market is indicated by over $1.5 trillion spent every year in this sector 

in USA (DOT, 2004). Conceivably, even a slender improvement in the packing efficiency could 

result in savings of billions of dollars.  

1.3.4 Adaptive User Interfaces 

Research in automating the visual User Interface design acquired eminence through such pervasive 

applications as adaptive Web and Mobile services (Akouminiakis, 2000). The process of mapping the 

domain objects and their properties into corresponding visual properties in the LD is critical to the 

success of such services. However, an extremely diverse target population makes it an extremely 

difficult problem and a popular strategy is to use stereotypical categories and deliver visual layouts 

based on behavioral and cognitive traits of users. In this regard, the need of a knowledge-based 

decision aid system cannot be overemphasized. Indeed, the return on investment in designing superior 

interface layouts can be dramatically large. For instance, studies in Sun Microsystems™ have shown 

how spending about $20,000 in improving the layout and other usability determinants could yield a 

savings of more than $150 million dollars (Rhodes, 2000).  

1.4 Problem Statement 

Our intention is to build a generic research framework for the layout design. However, here we 

employ an oriented and orthogonal two-dimensional rectangular packing problem (2D-BPP) for 

investigation and illustration purposes, which is considered to be among the most general and difficult 

formulations for the two-dimensional LD (Burke et al., 2004; Dyckhoff, 1990; Garey & Johnson, 

1981; Ligget, 2000). Importantly, this formulation may easily be adapted to other LD problems by 

largely changing the knowledge-base that contains rules and preferences, thus providing a basis for 

developing a generic approach to the LD problem. In an orthogonal 2D-BPP, the objective is to pack 

rectangular modules in a rectangular packing space in an orthogonal manner. This problem has been 

formulated variously by different researchers (Bazaraa, 1974; Dowsland et al., 2002; Garey & 

Johnson, 1979). One representative and generic formulation for 2D-BPP is provided in Section 4.2. 
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1.5 Thesis Objectives 

The foremost task in automating the layout design process is the generation of superior Layout 

Decision Alternatives (Francis & White, 1992; Gomez et al., 2003; Muther, 1961; Tompkins et al., 

2002). Such decision alternatives characterize various choices available to layout planners for further 

consideration and manipulation. In this regard, our approach involves elaboration, articulation, 

enumeration, categorization, and manipulation of competing design alternatives through propagation 

of design knowledge into the development cycle (Akoumianakis 2000; Triantaphyllou et al., 1998). 

An interactive decision support system directed at mitigating the cognitive and information overload 

of the layout planners by providing fast and easy approaches to generating, analyzing, and revising 

superior alternatives seems to be a rational choice. Such a system would afford various salient domain 

specific aspects that go beyond the expertise or the cognitive capabilities of users. 

Following are the thesis objectives in specific terms: 

1. Develop a conceptual framework for intelligent and knowledge-based decision support in 

the layout design and analysis. 

2. Develop fast layout design heuristics that provide superior layout alternatives with higher 

aesthetic contents. 

3. Develop an Intelligent Layout Generator that could efficiently generate superior decision 

alternatives in an automated manner. 

4. Develop a fuzzy Preference Inferencing Agent for employing subjective and uncertain 

preferences in guiding the generation of superior decision alternatives. 

5. Design and implement computer interfaces for systems developers, domain experts, and 

end-users that provide visible, effective, and efficient means for modifying various 

system/design parameters as well as manipulating and refining layout alternatives. 

6. Test the viability of the notion of automated preference discovery in the automated layout 

design context. 

The main objective of this dissertation is to develop, implement, and validate an architectural 

research framework and a research prototype of an Intelligent System for Decision Support and 

Expert Analysis in Layout Design (henceforth, IDEAL) for facilitating effective and efficient layout 

planning process. Notably, the emphasis of this research framework is not on the pursuit of some 
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perfect methods but rather on the development of a generic research paradigm and a tool that could be 

used in furthering the research in layout planning by supplementing the knowledge, experience, and 

design intuition of layout planners. In achieving these objectives, our approach involves tackling 

various important aspects of the problem through a synergistic utilization of some promising soft 

computing techniques, advanced heuristics, and metaheuristics. 

Indeed, the demonstrated success of the expert system paradigm in a variety of complex and 

subjective task domains makes it our rational choice (Ayyub, 2001; Marakas 2002; Negnevitsky 

2000; Turban & Aronson, 2001). An efficient algorithm for generating superior layout decision 

alternatives is an important step in this regard. Consequently, we have developed various efficient 

algorithms for the use in a hybrid fuzzy-genetic Intelligent Layout Generator (ILG). The intelligence 

aspect emanates from the use of fuzzy rules and preferences for obtaining penalties and rewards in the 

evaluation of a genetic fitness function. Accordingly, a fuzzy logic based Preference Inferencing 

Agent (PIA) seems to be a logical component for such a tool. However, the evolutionary and implicit 

nature of knowledge suggests that an online Artificial Neural Network based Pattern Discovery and 

Validation Agent (PDA) could add value by providing some cognitive and sub-cognitive preferences 

in an automated and self-updated manner. Consequently, we have built a small-scale PDA for testing 

the concept. A prototype for an interactive end-user interface has also been developed and tested. 

Details of our approach to the LD problem are provided in Chapter 3. 

1.6 Challenges Involved 

The LD problem is so vast in scope and engages such a myriad of tangible and intangible factors as 

well as dynamism that legitimacy of any decreed optimal outcome could easily be contested (Berkun, 

2001; Irani & Huang, 2000). Furthermore, the clientele of certain LD applications, such as e-Store or 

e-Learning services, have diverse backgrounds, cultures, and mental/social metaphors. Conceivably, 

they have conflicting needs and preferences.  

Moreover, the efficacy and applicability of existing LD procedures are severely constrained by the 

cognitive abilities of users in comprehending, appreciating, and quantifying system related 

characteristics (Akoumianakis, 2000). In addition, various mathematical formulations for the LD 

problem are known to be NP-Hard in a strong sense. Consequently, even for modestly large 

problems, reasonably fast procurement of an optimal solution becomes elusive even with powerful 

computing resources (Mak et al., 1998; Martello & Vigo, 1998).  
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In short, layout design is a tedious process and requires sophisticated decision modeling and tools 

(Tompkins et al., 2002; Epstein et al., 2001). It is a complex and ill-structured problem where 

evolving tasks and inadequate information availability and processing capability hamper the 

realization of a superior outcome (Abdinnour-Helm & Hadley, 2000).  

Such barriers imply that LD is not readily amenable to automation and have a role in the reluctance 

to the study of the problem in an encompassing manner (Whyte & Wilhelm, 1999a). Nevertheless, 

computerized tools and heuristics may be advantageous in modeling some salient features and 

enumerating some superior LD alternatives (Tompkins et al., 2002). Accordingly, it is possible to 

support layout designers through various prudently selected means. The ubiquity of layout design 

applications further highlights the significance of automating the design and analysis process (Burke 

et al., 2004). Consequently, it is important to alleviate the cognitive and information overload 

encountered by layout designers in acquiring, remembering, understanding, analyzing, and employing 

the vast body of the existing domain-specific LD knowledge. 

1.7 Organization of the Thesis 

This thesis is organized as follows. Chapter 1 provides motivation and rationale for this thesis. 

Chapter 2 presents a brief literature review of some of the relevant faculties and tools as well as their 

significance in this research. Chapter 3 delineates the research framework and its various major 

constituents. Chapter 4 describes the proposed layout optimization algorithms and approaches as well 

as the implementation and working of the Intelligent Layout Generator. Chapter 5 contains details 

about modeling of, and inferencing from, subjective and uncertain preferences as well as the design, 

implementation, and working of the Preference Inferencing Agent. It also describes a small-scale 

Preference Discovery Agent for testing the idea of automated preference discovery and revision. 

Chapter 6 concludes the thesis with a summary of a number of valuable interpretations of results and 

insights gained through this research. In addition, some promising future research directions are 

summarized. 

1.8 Summary 

In this chapter, we have described the layout design problem, its significance and relevance, as well 

as the solution methodology adopted by us. We presented the idea of designing and developing an 

intelligent layout decision analysis and design support system based on the expert system paradigm 

and other soft computing methodologies. We indicated that the synergy of three intelligent 
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complementary components namely an Intelligent Layout Generator, a Preference Inferencing Agent, 

and a Preference Discovery Agent offers the promise of tackling the layout deign problem more 

effectively. This approach is expected to provide good reference to experts and novice layout 

designers and facilitate their cognitive advancement. In the subsequent chapter, we provide an 

overview of the related literature. 
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Chapter 2 

LITERATURE REVIEW   

2.1 Introduction 
This thesis draws from broad ranging disciplines including layout design, human factors, human 
cognition, decision support systems, expert systems, soft computing, intelligent systems, etc. 
Consequently, a comprehensive review of all such concepts, literature, and ensuing efforts is beyond 
the scope of this thesis. Nevertheless, we provide an overview of relevant concepts and literature from 
an automated LD perspective. We delineate some of the major limitations of the existing automated 
LD approaches. Furthermore, we propose some promising research methodologies to alleviate some 
of these limitations.  

2.2 Layout Design 
The Layout Design process is geared towards seeking some superior outcome in the spatial 
arrangement of modules in a given space, satisfying given preferences and constraints, and optimizing 
some fitness metrics. It is a tedious process necessitating sophisticated modeling techniques and 
decision aids (Epstein et al., 2001; Tompkins et al., 2002; Zhang et al., 2002). More specifically, it is 
a complex, subjective, and ill-structured problem where the evolving task dynamics, inadequate 
information availability/processing capabilities, cognitive biases, as well as uncertain and conflicting 
preferences often hamper the achievement of a superior outcome (Abdinnour-Helm & Hadley, 2000). 
Indeed, there is overwhelming evidence that due to complexities of the task and cognitive limitations 
decision-makers often resort to simplified cognitive strategies or heuristics (Stam & Silva, 2003; 
Yang & Kuo, 2003).  

Indeed, the diverse scope of the LD problem means that a substantial literature is available in a 
variety of work domains (Abdinnour-Helm & Hadley, 2000; Ahmad et al., 2004e; Burke et al., 2004; 
Akoumianakis 2000; Karray et al., 2000a; Tompkins et al. 2002; Youssef et al., 2003a; Zhang et al., 
2002). It has been variously referred to as topology optimization (Mir & Imam, 1992), block 
placement (Siarry et al., 1987), macro cell placement or VLSI layout design (Esbensen & Mazumder, 
1994; Schnecke & Vornberger, 1997), layout optimization (Cohoon et al., 1991), facilities layout 
(Tam & Li, 1991), plant layout or machine layout (Hassan & Hogg, 1994; Singh & Wang, 1994), bin-
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packing (Jakobs, 1996), partitioning (Moon & Kim, 1998), etc. However, we may classify LD 
problems into four major application categories that would include Facilities LD, Circuit LD, User 
Interface LD, and Cutting/Packing. A brief description of the significance and prevalence of the LD 
problem within these contexts is provided here. 

2.2.1 Facilities Layout Design 

In facilities LD, various activities and components are allocated spaces in the given periphery 
(Abdinnour-Helm & Hadley, 2000). The layout of facility establishes the physical relationship among 
activities and their objectives (Badiru & Arif, 2000; Welgama et al., 1995). It may also have profound 
effects on such relatively intangible matters as environment and safety. Consequently, these space 
allocation decisions are based on various commutation, communication, political, social, 
environmental, and safety considerations (Meller & Gau, 1996). Indeed, an adequately designed 
facility layout improves the efficiency, efficacy, productivity, and profitability of an organization 
(Norman & Smith, 2002). The relative permanency of outcome and the scale of strategic investment 
stipulations mean more efforts have been dedicated to facility LD than any other LD area.  

2.2.2 VLSI Circuit Layout Design 

The design of VLSI microchips involves several phases including specification, functional design, 
circuit design, physical design, and fabrication (Mazumder & Rudnick, 1999). An important step in 
physical design is the macrocell placement based on a range of subjective and conflicting preferences 
and constraints (Moon & Kim, 1998; Kang et al., 1994; Murata et al., 1996). Macrocells are the 
circuit components lumped together in functional entities with connection terminals along their 
borders. These terminals are required to be connected by signal nets, along which signals or power is 
transmitted among the various components. As such, the macrocell placement also characterizes 
routes selected for the signal nets. Generally, the fitness metric is the space utilization in terms of the 
area of the enclosing rectangle, where the enclosing rectangle is the smallest rectangle that completely 
encompasses the whole layout (Ahmad et al., 2004b). The area of the enclosing rectangle is also 
dependent on the routing space, i.e., the space between the macrocells occupied by the signal net 
wirings. Nevertheless, due to combinatorial complexity, the placement phase is typically kept 
independent of the computation of actual routes for the signal nets (Mazumder & Rudnick, 1999). 
Consequently, during the macrocell placement phase, an estimated amount of routing space or white 
space is added between the cells. These estimates for inter-module separation are mainly determined 
using experts’ judgments and heuristics. 
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Estimates for inter-module separation are critical for the quality of solution and typically based on 
subjective, uncertain, and incomplete information. Moreover, several critical design and performance 
parameters are inherently dependent on the block layout of macrocells. For instance, the capacitive 
crosstalk in interconnect is the foremost factor in signal delay and results in a variety of signal 
integrity problems (Mazumder & Rudnick, 1999; Youssef et al., 2003a). Indeed, Macrocell Layout-
based solution for signal integrity is an important consideration in chip design (Murata et al., 1996).  
In reality, the macrocell placement phase might be repeated several times before a workable solution 
can be found. In short, increasing innovations, complexities, and miniaturizations in VLSI designs 
underscore the need for continuously advancing layout optimization techniques (Khan & Sait, 2002). 

2.2.3 User Interface Layout Design 

The physical manifestation of a user interface communicates structure, purpose, operations, and 
significance of the underlying system (Ahmad et al., 2004c; McTear, 2000). Conceivably, a good 
interface layout performs a crucial role in the success of the whole system (Ngo & Law, 2003). Users 
of various human-machine interfaces come from different backgrounds. Moreover, the user behavior 
evolves with the change in context of use and the cognitive progress of the user (McTear, 2000; Ngo, 
2001). Such a diverse and evolutionary nature of the user behavior signifies the need for adaptive user 
interfaces for meeting user needs and expectations in both layout structure and functionalities 
(Akoumianakis, 2000).  

Adaptive User Interfaces have a long history rooted in the emergence of such technologies as 
Artificial Intelligence, Soft Computing, Graphical User Interface, Intelligent User Interfaces, JAVA, 
Intelligent Multimedia Educational Systems, Internet, and Mobile Services (Brusilovsky & Maybury, 
2002; Conati et al., 2002). More specifically, the advent and advancement of the Web and Mobile 
Services have brought forward adaptivity as an important issue for both efficacy and acceptability of 
such services (McTear, 2000). However, such applications constitute an extremely difficult class of 
LD problems due to the particularly diverse target population (Brusilovsky, 2001). Nevertheless, it 
has been demonstrated that good user-modeling endeavors can be very robust over a diverse 
population and may assist in customizing interfaces (Albrecht et al., 1999). Conceviably, automated 
tools would play important role in this area (Corbett et al., 2000). Extensive discussions on related 
issues are available in the literature (Ahmad et al., 2004e; Brusilovsky, 2001; McTear, 2000). 

2.2.4 Bin-Packing 

The bin-packing problem is directed at packing the maximum number of items in the smallest number 
of specified size bins (Dyckhoff, 1990). As such, the typical goal is to maximize the space utilization 
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(Kim et al., 2001). There are several variants of this general bin-packing problem based on 
dimensions and shapes of modules such as linear, 2D, 3D, Polygon Packing, Circle packing, fixed or 
flexible shaped modules, irregular shaped modules, etc. Furthermore, variation in performance 
criteria results in such variants as minimize volume, minimize weight, maximize total utility, 
maximize performance, etc. (Burke et al., 2004; Dowsland et al., 2002; Garey & Johnson, 1979; 
Wang et al., 2002).  

In this thesis, we limit ourselves to the discussion of oriented and orthogonal two-dimensional 
rectangular packing problem (2D-BPP). It is because 2D-BPP forms a generic formulation that can 
readily be adapted to many prevalent LD contexts (Dyckhoff, 1990; Garey & Johnson, 1981). 
Furthermore, it requires minimal post-optimization processing compared to other existing 
formulations (Ahmad, 2002; Mir and Imam, 2001). In oriented and orthogonal 2D-BPP, the packing 
of rectangular modules with definite shape and orientation is sought in a given two-dimensional 
packing space with edges of modules parallel to edges of the packing space. This problem is relevant 
to various cutting, packing, storing, transporting, and scheduling functions of businesses (Dyckhoff, 
1990; Islier, 1998; Lodi et al., 2002; Marten, 2004). Intriguingly, it has such seemingly unrelated 
applications as dynamic memory allocation and multi-processor scheduling in improving 
performance and utilization of computational resources (Ahmad et al., 2004b,e; Burke et al, 2004). 
However, it should be noted that the 2D-BPP is also strongly NP-Hard (Ahmad, 2002; Garey & 
Johnson, 1979). As such, our emphasis is on efficient and robust heuristic, metaheuristic, and 
knowledge-based solution approaches. 

2.3 Mathematical Formulations 
A range of formulations for the LD problem has been proposed in the literature. A good account of 
such formulations can be found in Bozer & Meller (1997). The most popular of such formulations 
include the Quadratic Assignment Problem or QAP (Bazaraa, 1975), the Quadratic Set-Covering 
problem or QSC (Bazaraa, 1975) and the Two-Dimensional Bin-Packing Problem or 2D-BPP 
(Heragu & Kusiak, 1991). Here we briefly describe these formulations with their pros and cons. 

2.3.1 Quadratic Assignment Problem 

Quadratic Assignment problem (QAP) formulations in LD deal with scenarios involving location of 
interacting modules of equal area. It has been applied to a variety of LD applications. This approach 
works by assigning one module to every location and at most one module to a given location. The 
cost of positioning a module at a given location is deemed dependent on the location of interacting 
modules resulting in a quadratic objective function.  
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Some variations of QAP involve assigning interdepartmental distances to department pairs as a 
measure of inter-module interaction. Nevertheless, the underlying principle remains the same and the 
problem seeks an optimal mapping of n activities/modules to n or more locations each of which may 
accommodate at most one activity. Each pair of activity (i,j) has some cost due to inter-module 
interaction C(i,j) and each pairs site (k,l) has some cost due to spatial separation δ (i,j). Furthermore, 
some sort of fixed cost F(i,k) might be involved with the placement of activity i in site k. If S(i) 
denotes the site to which activity i is allocated in a mapping A of activities to sites, the total cost of 
solution is: 

[ ]∑∑∑ ×+=
i ji
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Due to NP-Complete nature, it is very hard to procure a verifiably optimal solution for more than 
16 modules even with very powerful computing facilities (Bazaraa, 1975; Garey & Johnson, 1979). 
Solution approaches to QAP are mostly based on branch-and-bound methodologies. Techniques that 
are more efficient involve heuristic fathoming of branches to expedite or limit the search (Kaku et al., 
1991; Meller & Gau, 1996). 

Incidentally, QAP formulation assumes that all modules are identical in size and shape and possible 
locations for assignment of modules are fixed and known a priori. Nevertheless, QAP may also be 
employed for solving problems consisting of unequal modules by discretizing them into smaller sub-
modules of equal area. The integrity of a module is ensured through assignment of an artificially very 
large interaction among the sub-modules (Liao, 1993; Kusiak & Heragu, 1987).  Nevertheless, the 
increased size of the new problem means that QAP cannot even solve a problem with few non-
identical modules (Gloria, 1994). In addition, it is hard to retain the original shape of the module and 
it often results in outcomes with irregular and unrealistic shapes, requiring substantial post-
optimization processing (Mir & Imam, 2001). 

Requirement of objectivity and accuracy of design preferences and fitness evaluation metrics adds 
to limitations of QAP. For instance, it is assumed that the interaction weight between any pair of 
modules is predetermined and remains fixed regardless of the arrangement of modules. It implies that 
the interaction between any pair of modules is independent of the interaction of the two modules with 
other modules. Such simplifying assumptions are not valid in most LD applications. 

2.3.2 Quadratic Set-Covering Problem 

The LD problem may also be formulated as a Quadratic Set Covering (QSC) problem. The main data 
requirements for the QSC formulation include the size of each module, candidate locations of each 
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module, and utilities of each module. Allowing layout designers to introduce candidate locations of 
each module helps in eliminating undesirable placements. It also takes the advantage of the intuition 
and expertise of the user, while reducing computational efforts by restricting the search space. 
Nevertheless, QSC requires a large number of user inputs for every module under consideration 
(Bazara, 1973; Ligget, 2000).  

Here we provide a simplified QSC formulation where we ignore the effect of mutual position of 
modules. We also, assume that all utilities are calculated based on a module’s distance from a pre-
determined focal point in the packing space as shown in Figure 2-1. 

Assumptions 

¾ The total area of packing space is divided into small blocks of equal size. 

¾ A list of n modules with positive utilities is given. 

¾ All modules are rectangular and oriented with width wi and height hi. 

¾ Modules can be packed immediately one after another without any need for white space. 

¾ Space between modules does not give rise to usability and utility considerations. 

¾ All packing spaces are rectangular and have standard size with width W and height H. 

¾ The geometric center of a module determines its position for utility calculations. 

¾ The reference point for the bin is its bottom-left corner with coordinates (x,y)=(0,0). 

¾ The reference point for each module Mi is its bottom-left corner with coordinates (xi,yi). 

Module Position 

The position of any module on the packing space could be determined by measuring two parameters: 
the Euclidean distance (alternatively, Manhattan distance) between the point of focus on the packing 
space and the center of the module, denoted by iδ , and the angular distance between the line joining 
the point of focus on the packing space to the center of the module and the positive x-axis, denoted by 

iθ . 

   These two parameters can be calculated using the following formulae: 
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Figure 2-1: Location and Angle of approach from the point of Focus in Placement Decisions 

The farthest a module could be placed from the center could be: 
22
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Decision Variables 

The xi and yi are the two decision variables that would determine the position of any module in the 
packing space. Our objective is to maximize the total utility of the layout configuration as given by: 
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In this QSC formulation of LD problem, the first set of constraints restricts the assignment of each 

module to at most one location. Whereas, the second set of constraints ensures that each location is 
occupied by at most one module. The objective function consists of the difference between the utility 
of modules and the disutility of the unused space. 

2.3.3 Two-Dimensional Bin-Packing Problem 

The LD problem may also be formulated as an oriented and orthogonal two-dimensional rectangular 
packing problem (2D-BPP). It has the advantage of maintaining the integrity and the shape of 
modules. Furthermore, it requires minimal post-optimization processing in comparison with other 
prevailing LD problem formulations. Furthermore, it constitutes a generic approach to many LD 
problems (Burke et al., 2004; Dyckhoff, 1990; Garey & Johnson, 1981). However, the traditional bin 
packing formulations strive for maximizing the number of modules to be packed in the bin(s). In 
contrast, our objective is to maximize the total utility of the modules packed into one or more bins or 
packing spaces. Furthermore, a number of domain specific constraints needs to be incorporated, 
including consideration of relative positions of modules (Ahmad, 2002; Lodi et al., 2002). 

In Chapter 4, we provide a bin-packing formulation of the problem, within the context of the ILG, 
where a finite number of rectangular modules Mi, i = 1, 2, 3,…, n, and m rectangular bins are given. 

2.3.4 Graph-Theoretic Formulations 

Graph algorithms are formulated in terms of operations on the vertices and edges of the graph 
representing a layout (Foulds, 1995, 1998).  In such formulations, each module is represented as a 
node in a graph with an arc representing the adjacency stipulations, ignoring the size and shape of the 
module. It is assumed that the adjacency requirements of each pair of modules are known in advance 
(Meller & Gau, 1996). 



 

 17 

The objective function in such formulations is the optimization of the inter-module interaction 
(Foulds, 1998). It is optimized when all module-pairs with positive interactions have arcs between 
them, which means those are adjacent to each other. Accordingly, such approaches require 
constructing a dual of the problem (a graph) that maximizes the sum of pair-wise weights on 
adjacency (arcs) between modules (nodes).  As such, these approaches are primarily relevant to such 
problems as minimizing material handling costs, in facility LD context, under static and objectively 
known preferences. 

2.3.5 Constraint Satisfaction 

Instead of focusing on optimization of some LD fitness objective, the constraint satisfaction approach 
focuses on finding an arrangement that satisfies a diverse set of constraints or relations (Ligget, 
2000). Such constraints may involve factors like position, orientation, adjacency, distance, shape, etc. 
In short, the problem becomes finding a feasible solution. This approach has formed the basis of 
various small-scale research prototypes in automated LD (Hower & Graf, 1996). Some examples 
include General Space Solver (Eastman, 1973), Design Problem Solver (Pfefferkorn, 1975), SEED 
(Flemming et al., 1994), etc. However, such systems do not have the ability to handle problems of 
any realistic scale (Borning et al., 2000; Lok & Feiner, 2001; Zahn & Hower, 1996). Conceivably, 
this approach has not been the basis of commercial software in LD (Ligget, 2000). 

2.4 Shortcomings of Existing Formulations 
Existing mathematical formulations of LD problem have substantial limitations that make these 
formulations somewhat incompatible with most real world applications. For instance, the QAP does 
not allow control over the shape of modules in the resulting layout and QSC requires a large number 
of user inputs for every module under consideration (Deb & Bhattacharyya, 2004). These 
mathematical models offer little practical advantage in dealing with real layouts of any consequence 
due to the prohibitive size of the associated mathematical program. Such core issues as ill-structured, 
subjective and uncertain character of the layout preferences further exacerbate the situation 
(Malakooti & Tsurushima, 1989).  

In addition, such mathematical programs rely on crisp values of various parameters that are, 
presumably, measured accurately and attributed to specific dynamics of the problem (Irani & Huang, 
2000; Mir & Imam, 2001). In reality, such data is often available only for some unrealistically 
simplified layout planning scenarios. Consequently, these formulations are of little practical 
advantage when a modestly large size problem, involving subjective and uncertain preferences, is 
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considered. Consequently, fast and efficient heuristics that consistently provide superior solutions are 
the major focus in this area (Burke et al., 2004). 

2.5 Solution Methodologies  
Various heuristic and analytical techniques have been published for finding solutions to the LD 
problem. The heuristic techniques find solutions to the problem mostly by treating it as QAP 
(Bazaraa, 1975; Welgama & Gibson, 1993). The 2-dimensional plane is discretized into a grid 
structure resulting in high computational costs (Gloria et al., 1994). Other solution approaches 
include tree search algorithms (Pierce & Crowston, 1971), binary mixed integer-programming (Love 
& Wong, 1976), and network decomposition (Mak et al., 1998) etc. Here we provide a brief overview 
of various methodologies for solving the LD problem. 

2.5.1 Traditional Approaches 

The NP-Hard and subjective nature of the LD problem means that traditional hard optimization 
approaches do not hold much promise. However, a significant body of research is available in this 
area. Here we briefly discuss some existing traditional approaches to the LD problem with an 
emphasis on their limitations. 

Graph Algorithms 

The development of a layout through a graph theoretic approach involves three main steps. First, 
developing an adjacency graph using inter-module interactions of adjacent pairs of modules. Second, 
constructing the dual graph of the adjacency graph. Third, converting the dual graph to a block layout 
specifying actual shapes and areas of modules.  

It should be noted that the combinatorial nature of the number of arcs in the second step makes the 
problem particularly difficult to solve. It implies that some heuristics must be employed to limit the 
number of arc incidents on each module. In addition, similar to the QAP approach, even a small size 
problem involving unequal modules cannot be solved with guaranteed optimal solution. Detailed 
review of such graph-search approaches and heuristics can be found in the literature (Foulds, 1995; 
Hassan, 1995; Hassan & Hogg, 1994). 

Tree Search  

Tree search methods are more relevant to constraint satisfaction style formulation of the LD problem 
(Hower, 1997). Such search mechanisms incrementally construct layout solutions by adding one 
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module at a time to a partial layout while testing for any violation of feasibility constraints (Zahn & 
Hower, 1996).  

A tree search method may employ a breadth-first search, enumerating all possible ways of adding a 
new module, or depth-first search, creating a full layout by placing all the modules sequentially (Akin 
et al., 1992; Flemming et al., 1992). However, such an approach is inherently inefficient and 
frequently requires backtracking when some feasibility constraint is violated, which adds to the 
computational complexity (Ligget, 2000; Zahn & Hower, 1996). 

Analytical Algorithms 

There are various analytical techniques dealing with continuous design space with relatively minimal 
computational requirements (Adya et al., 2003; Mir & Imam, 19992, 1996, 2001; Tam, 1992; 
Welgama & Gibson, 1993).  However, analytical approaches have yet to be developed to furnish 
results comparable to advanced heuristic and metaheuristic techniques (Mir & Imam, 2001). 
Nevertheless, such research provides more insights to the structure of the problem leading to advance 
and effective heuristics. 

2.5.2 Heuristic Approaches 
Decision-makers often resort to heuristics for dealing with difficult and uncertain problems. The NP-
Hard and subjective nature of the LD problem suggests that heuristics can be very effective in solving 
the problem. Accordingly, various heuristic algorithms for solving the difficult 2D-BPP are available 
in the literature (Ahmad et al., 2004d, 2004f; Berky & Wang, 1987; Chung et al., 1982; Dowsland et 
al., 2002; El-Bouri et al., 1994; Hopper & Turton, 2001; Jakobs, 1996; Johnson et al., 1982; Kim et 
al., 2001; Leung et al., 2003; Liu & Teng, 1999; Lodi et al., 1999; Martens, 2004).  

In this regard, the importance of effectively limiting the otherwise very large and intractable search 
space to some reasonable subset of possible solution topologies cannot be overemphasized (Dowsland 
et al.  2002; Hopper & Turton, 2001; Tompkins et al., 2002). Understandably, several effective 
metaheuristic solution methodologies are proposed in the literature. The core of such approaches is 
quite simple and involves treating the LD problem as a packing problem by defining an ordering of 
modules in the form of a sequence or permutation and a placement or decoding heuristic for placing 
modules in the determined order (Ahmad, 2002; Leung et al., 2003). Recent metaheuristics that have 
shown good results for LD include simulated annealing (Adya et al., 2003; Souilah, 1995), genetic 
algorithms (Ahmad et al., 2004f; Gloria et al., 1994; Martens, 2004), tabu search (Hopper & Turton, 
2001), random search (Ahmad et al., 2004f; Jakobs, 1996; Liu & Teng, 1999), naive evolution 
(Hopper & Turton, 2001), and hybrids (Lee & Lee, 2002). The key to these methods generally lies in 
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some effective means for getting out of local minima. However, the speed and effectiveness of such 
metaheuristic approaches are largely determined by the speed and effectiveness of decoding heuristics 
(Hopper & Turton, 2001).  

Earlier research on the relative performance of some of these popular metaheuristics in solving the 
LD problem, at best, provides mixed results (Hopper & Turton, 2001; Leung et al., 2003; Youssef et 
al., 2003b). Nevertheless, some knowledge of the merits and the demerits of these metaheuristic 
approaches, within the context of the LD problem, could result in a more judicious selection of 
optimization approach. Consequently, here we discuss some merits and demerits to provide some 
insights to these popular metaheuristics. 

Genetic Algorithms 

Genetic Algorithms (GA) are primarily used due to the non-deterministic and global optimization 
approach that has the potential to provide several near optimal and diverse layout alternatives 
(Youssef et al., 2003b). Furthermore, GA allow incorporation of domain-specific knowledge into the 
fitness of individual solutions, which guides the search. The domain specific knowledge may also be 
exploited in other forms such as selection and genetic operations (Youssef et al., 2003b). It should be 
noted that GA demand more efforts, when compared to other popular metaheuristics, in terms of 
complexity of implementation and tuning of parameters. Nevertheless, the GA have inherent 
characteristics that, if employed judiciously, may result in significant computational savings and 
performance gains. Moreover, GA maintain a population of solutions that are optimized 
simultaneously. Accordingly, it takes advantage of the experience gained from past explorations and 
directs more extensive search, or exploitation, of promising regions in the solution space, while the 
mutation operator provides a mechanism for escaping local optima.  (Sait et al., 2003). In this regard, 
detailed discussion of philosophical, theoretical, and practical aspects of GA can be found in the 
literature (Goldberg, 1989). 

GA have been applied to the LD problem in various ways. However, much of the research deals 
with relatively simple problems requiring assignment of identical modules to given locations. 
Comparative studies of GA with other metaheuristics show superiority of GA in LD (Hopper & 
Turton, 2001). Consequently, GA provide a very promising approach for LD through generation of a 
diverse set of superior alternatives (Ahmad et al., 2004b; Lee & Lee, 2002; Martens, 2004; Moon & 
Kim, 1998; Sait et al., 2003). Some favorable characteristics of GA within the context of LD are 
further discussed in Section 2.8.1. 
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Simulated Annealing 

Simulated Annealing (SA) is a well-known, high-performance, and effective stochastic optimization 
technique for combinatorial problems (Mir & Imam, 2001; Souliah, 1995). SA is motivated by an 
analogy to a phenomenon in crystallization. It is very effective in solving complex and large LD 
problems (Hopper and Turton, 2001; Tompkins et al., 2002). Any domain specific knowledge is 
incorporated mainly in the SA cost function (Youssef et al., 2003b). SA starts with a random solution 
and makes incremental refinements by moving genes from their current location to new locations, 
generating new solutions. Moves that decrease the cost are accepted while moves that increase the 
cost are also accepted with a probability that decreases exponentially with time. Accordingly, in the 
beginning many high cost or inferior solutions are accepted and, subsequently, fewer high cost 
solutions are accepted. Thus, it avoids being trapped in a local optimum by accepting inferior 
solutions, too.  

SA is known to be a stable metaheuristic approach capable of finding a global optimal solution 
(Youssef et al., 2003b). However, SA is generally very slow to converge to good solutions when 
compared to GA. Nevertheless, when sufficient time is available, SA may provide solutions 
comparable to or marginally better than GA (Hopper & Turton, 2001; Youssef et al., 2003b). 
However, the downside is that SA operates on only one solution at a time and has a meager history or 
memory for learning from past explorations. In short, SA can be characterized as a serial algorithm 
that is not easily amenable to parallel processing without significant communications overhead.  
Another implication is the production of closely related solutions, eluding the requirement of having 
both superior and diverse layout alternatives (Ahmad et al., 2004b).  

Tabu Search 

Tabu Search  (TS) is another successful, effective, and robust metaheuristic approach for solving 
complex combinatorial and continuous optimization problems (Youssef et al., 2003b). Tabu search 
has a huge range of sophistications and adaptations in many of its applications. However, the generic 
TS is an iterative procedure that starts from some initial feasible solution and attempts to determine a 
better solution. It works by making several neighborhood moves. The set of admissible solutions 
explored at a particular iteration forms a candidate list and TS selects the best solution from the 
candidate list. The candidate list size is a trade-off between quality and performance (Wang et al., 
2002).  

A distinguishing feature of TS is its exploitation of an adaptive and explicit form of memory in the 
shape of a tabu list, which is used to prevent back cycling and influence the search (Youssef et al., 
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2003b). The tabu list is analogous to a window on accepted moves (Sait et al., 2003). In short, tabu 
restrictions permit the search to go beyond the points of local optimality while making the best 
possible move.  

Naive Evolution 

The rationale behind Naive Evolution  (NE) search is somewhat similar to that of GA. However, it 
employs only a mutation operator in order to generate successive populations of solutions (Youssef et 
al., 2003b). Understandably, it is very easy to implement. However, NE lacks the structured search 
engendered by crossover operators in GA. Nevertheless, the complexity and subjectivity involved in 
most LD applications mean that the even NE may turn out to be an effective and efficient search 
strategy (Hopper & Turton, 2001).  

Random Search 

Random Search  (RS) is another naive search strategy where the ordering of modules is generated 
randomly (Ahmad et al., 2004c, 2004f; Hopper & Turton, 2001). Again, the subjectivity and 
complexity in most LD applications mean that an RS strategy could result in quite superior outcomes. 
However, the superiority of such solutions does not match to those generated by such advanced 
metaheuristics as SA and GA (Youssef et al., 2003b). 

2.5.3 Decoding or Placement Heuristics 
As already mentioned that the GA and other metaheuristic based solution approaches to the LD 
problem require effective and efficient placement or decoding heuristics for determining the physical 
position of modules in the resulting layout configuration. In effect, a module placement algorithm 
takes one gene (or module) at a time from a chromosome (or sequence of modules) and determines its 
position in the packing space based on pre-specified steps. The position of modules in the layout is 
used for calculating the fitness of the sequence of modules generated by the metaheuristic. Such 
decoding heuristics are usually designed to realize some local search improvements (Healy et al., 
1999; Wu et al., 2002). 

Indeed, it has been argued that the computational cost of such a metaheuristic-based layout 
optimization process is determined by the cost of the decoding heuristic, as it is executed every time 
the solution quality is evaluated (Burke et al., 2004). Consequently, an efficient module placement 
strategy that generates superior quality layouts is critical for the efficacy of such an endeavor 
(Dowsland et al., 2002).  
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Keeping the importance of placement heuristics in perspective, we discuss some of the simplest as 
well as the most popular and efficient decoding heuristics and their deficiencies. Inquisitive readers 
may find details of various heuristics in the literature (Hopper & Turton, 2001; Lodi et al., 1999; 
Leung et al., 2003; Lodi et al., 2002; Wu et al., 2002). However, the majority of heuristics are either 
not very effective or inappropriate due to speed and scalability issues as well as tedium involved in 
comprehending and implementing those. Indeed, the efficiency and efficacy of such algorithms are 
also known to deteriorate drastically with increase in the problem size (Burke et al., 2004; Hopper & 
Turton, 2001; Wu et al., 2002). Time complexities of such algorithms are also quite prohibitive. For 
instance, the time complexities of a couple of Least Flexibility First (LFF) algorithms proposed by 
Wu et al. (2002) are O(n4 log n) and O(n5 log n). Similarly, the Bottom-Left Fill (BLF) algorithm 
originally proposed by Chazelle (1983) has a time complexity of O(n3) and for large-scale problems it 
provides results comparable to our proposed algorithms even after 50,000 evaluations against less 
than 1,000 evaluations of proposed algorithms. The Difference Process (DP) strategy is another 
decoding heuristic, but it is not designed to take advantage of any non-rectangular empty spaces in the 
partial layout configuration (Leung et al., 2003). As such, even for moderately sized problems, about 
25 modules, the trim loss exceeds 6% and the performance declines drastically with the increase in 
the problem size. In addition, there exist such efficient greedy algorithms as Best-Fit and its 
adaptations (Burke et al., 2004; Garey and Johnson, 1979). However, such greedy algorithms do not 
meet the requirements of most LD applications and are not suitable for some generic approach to the 
problem (Dowsland, et al., 2002). 

Consequently, here we limit ourselves only to the discussion of most efficient, effective, and 
documented decoding heuristics, namely Bottom-Left, Improved Bottom-Left, and Bottom-Left Fill 
(Burke et al., 2004; Dowsland, et al., 2002; Hopper & Turton, 2001). In Chapter 4, we provide some 
new decoding heuristics and demonstrate their efficiency, effectiveness, and robustness through an 
extensive/multi-facet comparison regime.  

Bottom-Left Algorithm 

The Bottom-Left placement algorithm or BL has drawn considerable attention from researchers 
(Ahmad et al. 2004d; Baker et al., 1980; Chazelle, 1983; Dowsland et al., 2002; Healy et al., 1999; 
Hopper & Turton, 2001; Jakobs, 1996; Lai & Chen, 1997; Liu & Teng, 1999). It calls for placing a 
module at the bottom-most and left-most feasible position through successive vertical and horizontal 
movements of the module. Starting from the top-right corner of the packing space, each module is 
pushed as far as possible to the bottom and then as far as possible to the left of the packing space 
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(Jakobs, 1996). These operations are repeated until the module occupies a stable position from where 
it can be moved neither to the bottom nor to the left. 

The basic premise in BL is quite long-standing and widespread. The apparent advantages of such 
approaches include speed and simplicity (Dowsland et al.  2002). However, BL tends to leave holes 
in the packing pattern resulting in poor space utilization. Nevertheless, the interest in the BL 
placement strategy has been boosted by modern metaheuristics like TS, SA, and GA (Hopper & 
Turton, 2001).   

Improved Bottom-Left Algorithm 

Various improvement schemes have been proposed for the BL such as the Improved-BL heuristic or 
IBL (Liu & Teng, 1999). Such improved strategies comprise of refinement of placement decisions in 
BL by conferring precedence to a shift towards the bottom and some allowance for module rotations. 
However, even these improvised strategies encounter such problems as dead-area and inferior 
aesthetic contents. Nevertheless, such improvement schemes are quite popular and deemed 
reasonably efficient and effective. Consequently, we have included IBL in our comparison analyses.  

Bottom-Left Fill Algorithm 

Bottom-Left Fill (BLF) is another more sophisticated version of BL heuristic. It attempts to fill empty 
spaces by placing a rectangle into the lowest available position and left-justifying it. As such, it is 
capable of filling existing gaps in the packing pattern and results in denser packing. Here a list of 
location points in a bottom-left ordering is maintained to indicate candidate placement locations. The 
algorithm starts with the lower-most and left-most point, places the module, and left justifies it. It 
then checks for overlap and boundary conditions. If no violations occur then the module is placed and 
the list of candidate placement locations is updated. However, if an overlap occurs the next point in 
the list is tested and the process is repeated until the module can be placed without an overlap. 
Consequently, BLF overcomes the problem of poor space utilization in BL or IBL. Nevertheless, as 
mentioned, the major disadvantage lies in its O(n3) time complexity without furnishing significant 
improvement in aesthetic contents of solutions (Burke et al., 2004; Chazelle, 1983; Hopper & Turton, 
2001). 

Deficiencies of BL, IBL, and BLF 

The BL and the IBL are overly simplistic placement strategies with such inherent deficiencies as poor 
space utilization and inability to obtain some simple optimal solutions. The poor space utilization is 
also evident from Figure 2-2 that shows creation of dead area that cannot be used by the BL or the 
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IBL through subsequent placements. Furthermore, if we know an optimal packing pattern of n 
modules that fulfills the BL-condition, we cannot always write out a permutation for the BL-
algorithm corresponding to it (Jakobs, 1996). In other words, the optimal packing configuration 
cannot be obtained by the BL-algorithm even if all permutations are enumerated, as the case with the 
layout shown in Figure 2-3. In addition, the BL, the IBL, and the BLF are not very effective in 
incorporating such qualitative design considerations as symmetry, balance, equilibrium, cohesion, etc.  
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Figure 2-2: Poor Space Utilization with BL. Figure 2-3: A Simple Pattern Not Possible with BL.

It should also be noted that the BL and its adaptations are more appropriate for cases where the 
objective is directed at minimizing the height of the packing pattern; for instance, stamping patterns 
out of a fixed width roll of a steel sheet. Under such fitness objective if two configurations have the 
same height then their fitness values are same.  Nevertheless, one of the packing patterns can be 
deemed superior to the other based on other objectives like the sum of inter-module distances. In 
addition, the BL converges modules at the bottom-left corner of the packing space, which might not 
be a useful strategy in many cases. For instance, some facility LD application may require modules 
near/around some focal point(s). 

The BLF provides better space utilization than BL and IBL at the expense of computational time. 
Nevertheless, layouts generated by BL, IBL, and BLF lack aesthetic value with BLF faring better 
than BL and IBL. Consequently, the quest for efficient and effective module placement strategies is 
an interesting and popular research direction (Burke et al., 2004). 

2.6 Subjectivity and Uncertainty in LD 
Despite being an active research area, LD is still a vaguely and inadequately defined field and the 
existing literature offers LD guidelines and algorithms largely without a thorough scheme for utilizing 



 

 26 

those (Abdinnour-Helm & Hadley, 2000; Khan & Seit, 2002; Youssef et al., 2003b; Zhang et al., 
2002). The usefulness of such vastly scattered knowledge is further limited by the cognitive capacity 
of layout designers.  

2.6.1 Sources of Uncertainty 
Subjective and uncertain considerations intrinsic to LD preferences stem from multiple sources. 
Detailed discussions on such considerations in various LD contexts can be found in the literature 
(Ahmad, 2002; Ahmad et al., 2004c; Head & Hassanein, 2002; Jain & Krishnapuram, 2001; Karray et 
al., 2001b; Mazumder & Rudnick, 1999; Youssef et al., 2003a). However, here we briefly mention a 
few instances of such subjective, uncertain, and inconsistent preferences, in various LD contexts, for 
elaboration purposes.  

In Facility LD context, layout planning requires a priori specifications of the objectives of the 
facility, its primary and support activities, the interrelationships among those activities, and the space 
requirements of all activities (Benjaafar, 2000). Aside from this largely abstract definition process, 
preferences obtained from experts about inter-module relationships are inherently linguistic and 
uncertain, which are amenable to different interpretations by different people at different times. Such 
preferences encompass safety, structural integrity, operability, maintainability, flow relationships, 
control relationships, process relationships, organizational or personnel relationships, political 
considerations, and environmental relationships (Baykasoglu & Gindy, 2001; Tompkins et al., 2002).  

In Circuit LD context, almost every preference in the macro cell placement is in conflict with some 
other equally critical consideration (Khan & Sait, 2002; Youssef et al., 2003a; Mazumder & Rudnick, 
1999). Furthermore, these considerations are often vague and inadequately defined. For instance, one 
consideration in reducing circuit delays and increasing the speed of the circuit is to keep circuit 
components close to each other, which may simultaneously deteriorate the circuit performance 
through crosstalk and overheating. Some other examples of subjective and uncertain considerations in 
a circuit layout configuration are wire length, wire congestion, power dissipation, circuit delays, 
crosstalk, layout width/area  (Khan & Sait, 2002; Murata et al., 1996; Schnecke & Vonberger, 1995; 
Youssef et al., 2003a). Indeed, such parameters could only be imprecisely estimated before finalizing 
the ultimate VLSI circuit design (Youssef et al., 2003a).  

A few representative instances of subjective preference parameters in the User Interface LD context 
would include the amount of white space, symmetry, color scheme, chronological value, intrinsic 
utility, size of modules, location of modules, etc. The diversity in cultural and emotional preferences 
of users makes it a particularly difficult problem (Akoumianakis et al., 2000; Head & Hassanein, 
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2002; McTear, 2000). Furthermore, the potentially diverse scope of such applications means that 
these considerations cannot be static across demographic and temporal dimensions (Brinck et al., 
2000; Brusilovsky, 2001). 

In general, the quality of an optimal or superior layout is always judged using some fitness metric. 
Nevertheless, optimality itself is a quite subjective notion that refers to the most desirable outcome 
under specific constraints and evaluated using some specific criterion. These LD fitness metrics may 
involve a wide range of perspectives that may be varying, overlapping, and even conflicting (Singh & 
Wang, 1994). The ensuing lack of consensus on accommodating conflicting requirements makes the 
task particularly difficult. Consequently, the diversity, volatility, and subjectivity of LD objectives 
make consideration of the entire spectrum of goals beyond the cognitive and functional capabilities of 
decision makers as well as information processing capabilities of most automated LD system 
(Abdinnour-Helm & Hadley, 2000; Tompkins et al., 2002; Zhang et al., 2002). Furthermore, these 
complexities render the solution space quite noisy, underscoring the need for a composite or multi-
criteria fitness evaluation regime combining various desirable characteristics (Schnecke & Vonberger, 
1997). Recently, various composite multi-criteria fitness measurement schemes in LD have been 
proposed for obtaining more encompassing layout fitness evaluation regimes (Ahmad et al. 2004b; 
Khan & Sait, 2002; Youssef et al., 2003b).  

2.6.2 Classification of Uncertainty 
A generic classification scheme of subjective and uncertain preferences, constraints, and fitness 
metrics could serve as a sound basis for choosing an appropriate modeling and reasoning mechanism 
for a specific consideration. As such, we classify subjectivity and uncertainty in the domain 
knowledge into categories, namely, incomplete, inconsistent, imprecise, and vague knowledge 
(Ahmad et al. 2003; Negnevitsky 2002). The term incompleteness suggests the unavailability of some 
of the information and necessitates the use of rules of thumb and approximate reasoning. 
Inconsistency indicates the difference or conflict in the knowledge elicited from experts highlighting 
the problem in transforming the available information into working rules and guidelines. Imprecision 
refers to values that are imprecisely or loosely defined or measured inaccurately.  Vagueness points 
towards the subjectivity in the estimate about some value or rule and underscores the impediments in 
appropriately interpreting the available information. In general, the LD guidelines, preferences, and 
constraints are intrinsically incomplete, inconsistent, imprecise, and vague (Abdinnour-Helm & 
Hadley, 2000; Ahmad et al., 2004c; Youssef et al., 2003a).  
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Any layout design and evaluation mechanism requires robust ways of coping with such 
uncertainties (Chung, 1999). Nevertheless, the majority of theories and tools devised to handle 
subjectivities and uncertainties in information are quantitative in nature. In general, such tools do not 
afford the subjectivity and uncertainty in information that falls into more than one of the 
aforementioned classes. In the next section, we provide a brief overview of uncertainty management 
techniques employed in LD with some pros and cons. However, a somewhat detailed survey of 
uncertainty management techniques in a generic LD context can be found in Ahmad et al. (2004c).  

2.6.3 Traditional Approaches to Uncertainty Management 
It should be noted that such a high degree of complexity, subjectivity, and ambiguity is encountered 
in a variety of other work domains and extensive research has been done on modeling of subjective 
preferences. However, some peculiar characteristics render LD problem distinct from other subjective 
problems. For instance, it is often effortlessly easy for a domain expert to judge the quality of a layout 
by just taking one glance (Berkun, 2001). Unfortunately, there is a relative dearth of research 
literature on modeling of subjective design considerations within the context of the LD problem 
(Whyte & Wilhelm, 1999a). Likewise, there is little work on integrative or comparative review of 
techniques available for tackling such issues.  

Incidentally, the first research work employing some stochastic parameters in LD is attributed to 
Shore & Tompkins (1990) who studied various discrete scenarios using lowest likelihood penalty. 
This notion of multiple discrete scenarios, or layout alternatives, formed the core of the research in 
stochastic layout planning. Since then, there were several publications employing the idea of 
uncertainty in the LD preferences and constraints (Cheng et al., 1996; Kouvelis et al., 1992; Norman 
& Smith, 2002; Rosenblatt & Kropp, 1992). However, the uncertainty tackled in such research is 
largely limited to the uncertainty in the occurrence of a well-defined event such as uncertainty in 
demand forecasts. Nevertheless, LD problems also involve uncertainty in the event itself due to 
incomplete, imprecise, inconsistent, and vague information. 

As stated, uncertainties and dynamics of the LD problem require a methodology pertinent to 
incomplete, imprecise, inconsistent, and vague preferences and rules. However, the majority of 
existing preference modeling techniques fail to deliver in uncertain environments falling in more than 
one of these classes.  This shortcoming is more evident and imperative under incomplete information 
(Abdinnour-Helm & Hadley, 2000; Zhang et al., 2002). In addition, most uncertainty management 
techniques are suitable only when deterministic data is reliably available and assignable to specific 
dynamics of the design process. Furthermore, the majority of such techniques are ad hoc in the sense 
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that there is no underlying theory to support them. Such methodologies may only be validated 
through empirical testing. 

A sound understanding of existing and promising techniques could motivate research in uncertainty 
in LD preferences, constraints, and fitness objectives. As such, we present an overview of modeling 
techniques for subjective and uncertain preferences in LD.  

Deterministic Approaches 

Deterministic approaches work under the simplifying assumption that all subjective preferences can 
easily be quantified and made available when needed. Such approaches usually use some arbitrary 
default or expected values, which are possibly further refined by the user during interaction with 
alternative solutions (Tompkins et al., 2002). For instance, some extended formulations of the 
unequal area facilities LD problem are available that explicitly consider uncertainty in information by 
using expected values of forecasts. However, even under relatively deterministic environment, the 
cost of procuring exact and complete information could often be prohibitive (Ahmad et al., 2004c; 
Francis & White, 1992; Tsuchiya et al. 1996). Furthermore, most LD applications are so intricate that 
the validity of these deterministic approaches could easily be disputed. Conceivably, these myopic 
approaches are ineffective in such complex and dynamic areas as LD. Paradoxically, the major 
portion of relevant literature builds on such incredibly simplifying assumptions (Ahmad et al., 2004b, 
2004c; Ligget, 2000; Francis & White, 1992; White & Taket, 1994). 

User-Oriented Approaches 

Similar to the deterministic approach, many existing models in LD rely on manually procuring 
weights, preferences, and properties through user inputs (EOS, 2005; Unigraphics, 2005). Although 
such an approach renders a higher degree of flexibility and control, users are usually overwhelmed by 
the flood of data and domain specific knowledge. Consequently, the usefulness of such approaches is 
severely limited in wake of prevailing cognitive, economic, ergonomic, and other resource 
constraints. Moreover, at times, it is not possible to get access to a domain expert for procuring the 
required inputs. Consequently, we deem the user-supplied approach as inflexible and counter 
productive. 

Constraint-Based Approaches 

Constraint processing techniques such as knowledge representation and inference mechanism have 
extensively been used for automated graphical LD (Hower & Graf, 1996). Research suggests that 
constraints provide a powerful yet simple formalism for specifying preferences in such dynamic 
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domains as the Web page LD (Hurst, 2003). It has been argued that constraints like semantic-
pragmatic, inter-relational, spatial, temporal, etc. can be represented in terms of equalities and 
inequalities permitting a flexible, intuitive, and declarative representation of complex preferences 
(Graf et al., 1998). Such an approach could result in simplification of perceived informal domain 
features (Hurst, 2002). For instance, the relationship between two certain categories of modules can 
be specified using a single set of constraints instead of delineating it for each pair of modules. 
Consequently, this approach is close to the knowledge-based approach in a broad sense. Nevertheless, 
the goal is feasibility and not satisfiability or satisficing, as the general case in knowledge-based 
approaches. Although the work in this area is largely theoretical, inquisitive readers can find 
extensive surveys of constraint-based approaches in the literature (Hower & Graf, 1996; Hurst, 2002).  

From-To Chart (FTC) 

From-To Chart (FTC), or Flow Matrix, is one of the earliest tools adopted for assisting layout 
designers (Francis & White, 1992). It normally contains numbers representing some measure of 
interactions between pairs of modules. For instance, it could contain some measure of material, 
personnel, and information flow between two departments in the facility LD context. These FTC 
values are ultimately translated into some sort of proximity measure or Closeness Rating (Heragu, 
1997). Despite being intended as a tool for representing quantitative values, FTC has often been used 
for representing qualitative values, as well (Heragu, 1997). However, it is a widely accepted premise 
that even the values that are generally considered quantitative in nature are not easily quantifiable due 
to subjectivity and uncertainty in the collection and processing of such data (Ahmad et al., 2004b, 
2004c; Francis & White, 1992; Heragu, 1997; Liggit, 2000; Tompkins et al., 2002). Consequently, 
FTC provides a very rigid and myopic solution. Nevertheless, FTC was one of the earliest tools used 
to provide necessary inputs in a simplified form for computerized LD systems. 

Relationship Chart (REL) 

Activity Relationship Chart (REL) is among the earliest and most popular tools for expressing 
subjective, uncertain, and linguistic considerations in LD (Tompkins et al., 2002). Typically, activity 
relationships are translated into some relative proximity requirement between pairs of modules for use 
in placement decisions. These proximity requirements are expressed in REL through a closeness 
rating such as: A (Absolutely necessary), E (Especially important), I (Important), O (Ordinary 
proximity is all right), U (Unimportant) and X (Undesirable). In short, REL contains ordinal 
proximity rating information for evaluating the utility of layouts in the form of a Total Closeness 
Rating (Tompkins et al., 2002).  



 

 31 

The REL is originally designed to facilitate consideration of qualitative factors, political needs, or 
dynamic situations where precise data cannot be made available due to temporal, financial, and other 
practical constraints (Francis & White, 1992). Yet, the underlying idea remains deterministic and 
crisp ratings do not provide a means for handling conflicting and inconsistent preferences. For 
instance, one expert could assign an A rating for a certain pair of modules while a second expert 
might provide a U rating for the same pair of modules creating a conflict. Moreover, there is no 
elaborate methodology to work with incomplete and/or dynamic preferences. Furthermore, the 
multiplicity of inter-module interaction modes requires separate REL for every dimension of 
interaction contributing to its inflexibility and limitations (Tompkins et al., 2002). However, several 
innate advantages of REL such as ease of use, ease of understanding, and the structured nature have 
positively contributed to the wide acceptance of its various adaptations. 

An interesting extension in this direction is the use of Fuzzy REL charts (Blair & Miller, 1985). 
Fuzzy Logic provides excellent means for tackling such inconsistencies in the information. In f-REL, 
fuzzy inferencing mechanism is used to generate activity relationship charts. Some small-scale and 
tightly defined simulation studies have demonstrated the effectiveness of f-REL charts in generating 
superior layouts against both fuzzy and non-fuzzy fitness metrics (Dweiri, 1999). However, REL or f-
REL cannot encompass all subjective and uncertain preferences, constraints and fitness objectives in 
LD (Ahmad et al., 2004c; Deb & Bhattacharyya, 2004). Consequently, we believe that a general 
fuzzy logic based approach, encompassing modeling, analytic, and algorithmic aspects of design 
process, would deliver most. 

Computer Simulations  

The typical absence of some encompassing, closed-form, and analytical fitness functions in LD 
render computer simulations a useful alternative (Azadivar & Tompkins, 1999; Gupta, 1986). Such an 
approach would provide detailed analysis, modeling, and evaluation of complex LD problems 
(Azadivar & Wang, 2000; Bookbinder & Higginson, 1986; Grobley, 1986). However, simulation 
models are not easily amenable to optimization, and amendments, and make procurement of a 
superior layout alternative difficult to achieve (Chan et al., 1995). Recently, some efforts have been 
made to optimize LD simulation models using GA in various facility LD contexts to expedite the 
process and procure a diverse set of superior LD alternatives (Azadivar & Wang, 2000).  
Nevertheless, computer simulations are usually very time consuming and become prohibitive in the 
LD process. 
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2.6.4 Soft Computing Approaches to Uncertainty Management 
Most existing methodologies for handling uncertainties in the domain knowledge through 
approximate reasoning are mainly quantitative in nature. In such approaches, uncertainties are 
quantified in the form of some measures that are propagated during reasoning (Jameson, 1996; 
Zukerman & Albrecht, 2001). Examples include the Bayesian Networks, Certainty Factors, 
Dempster-Shafer, etc. The key issue in using such quantitative approaches is accurate representation 
of the probabilistic, or otherwise, dependencies in the task domain. Here we describe some popular 
soft computing approaches to uncertainty management. 

Bayesian Networks 

Bayesian Networks (BN) are a popular formalism for establishing policies in handling uncertainty in 
information. BN is a probabilistic approach based on Bayes’ theorem in which evidence is encoded in 
a directed acyclical graph with nodes corresponding to variables and links corresponding to 
probabilistic influence relationships (Conati et al., 2002; Mayo & Mitrovic, 2000). It requires a very 
large number of probabilities and, hence, large number of experiments. Moreover, such a probabilistic 
approach is suited when there is uncertainty in the occurrence of the event (Albrecht et al., 1999; 
Bunt & Conati, 2003). Alternatively, such conditional probabilities could be estimated by domain 
experts or obtained through some general theory about the interactions among variables. However, ad 
hoc estimations of such conditional probabilities by human experts are often inconsistent and biased 
(Bianchi-Berthouze et al., 1999). Moreover, the approach is valid only under the simplifying 
assumption that the presence of evidence also affects the negation of conclusion, which is often an 
invalid assumption (Negnevitsky, 2002). Furthermore, people are not reliable Bayesian reasoners and 
are prone to discount older information and accord more weight to more recently presented evidence, 
commonly termed as availability heuristic (Tversky & Kahneman, 1973). Moreover, people are over-
confident in judgments and have inadequate comprehension of sampling and probability theory 
(Tversky & Kahneman, 1974). 

Furthermore, such an approach requires a large number of inputs from experts making knowledge 
elicitation both a tedious and an expensive enterprise. Indeed, the computational complexity of BN is 
often prohibitive and representing a realistic problem solution could be quite large. In fact, it has been 
shown that the exact application of the BN technique is an NP-hard problem (Jameson, 1996). Under 
dynamic conditions, the size and topology of the networks may hamper updating BN in real time. 
Moreover, even a small change in the knowledge representation may affect, and require updating of, a 
large number of sub-networks (Jameson, 1996). Approximation techniques for applying BN can be 



 

 33 

useful; however, such techniques are effective only under specified conditions. In addition, the BN is 
rather inappropriate for providing explanation facilities, which are deemed essential in such 
knowledge-intensive and uncertain domains (Jameson, 1996; Negnevitsky 2002).  

Certainty Factors 

Certainty Factors (CF) is another quantitative modeling approach that attempts to address such 
problems as the need for repeated experiments required in estimating probabilities in the BN. In CF, 
the knowledge is expressed in the form of rules and a confidence factor associated with each rule. It 
does not call for some statistical basis for supplying beliefs in events. Furthermore, it allows 
simultaneous rule representation and quantification of uncertainty that makes it a simpler and efficient 
approach in comparison to BN. However, the CF approach is also an ad hoc regime, which is not built 
on a solid theoretical foundation. It often results in many weaknesses in the reasoning mechanism 
(Negnevitsky, 2002). For instance, the CF approach works under the implicit assumption of 
independence among hypotheses, which is often an invalid postulation. Furthermore, the need for a 
large number of inputs tends to become a major preoccupation for the user (Ahmad et al, 2004e). 

Dempster-Shafer Theory 

The Dempster-Shafer (DS) theory of evidence addresses some of the weaknesses of the probabilistic 
approaches including the representation of ignorance, the unnecessary requirement that the sum of 
beliefs in an event and its negation be unity, etc. DS formalism has been applied to the quantitative 
modeling of preferences in situations with partially or even completely missing statistical data and to 
compute the impact of new observations on the resulting assessment. However, it does not specify 
how the probabilities are to be computed or results are to be interpreted. Furthermore, in certain 
instances, obviously incorrect conclusions can be reached (Negnevitsky, 2002). Moreover, the 
exponential nature of evidence and hypothesis spaces means application of DS is in the NP class. The 
only way around is to use heuristics to compute approximate solutions (Jameson, 1996). In short, DS 
is also an ad hoc approach and not suitable for incorporating explanation facilities. 

Fuzzy Logic 

Fuzzy Logic (FL) is a set of formal mathematical principles for knowledge representation involving 
degrees of membership of a given piece of information. It ventures to model the cognitive uncertainty 
and vagueness in human sense of words, opinions, decision-making and common sense tainted with 
imprecision, incompleteness, inconsistency, and vagueness (Cordon et al., 2004; Tam et al., 2002; 
Triantaphyllou & Lin, 1996). Indeed, people often reason in terms of vague and context dependent 
concepts in dealing with uncertain situations (Turban & Aronson, 2001). For instance, experts may 
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describe preferences regarding the amount of white space in the layout in fuzzy terms as ‘small’, 
‘medium’ or ‘large’.  

The use of ‘degrees of membership’ and ‘partial matching’ techniques in FL offers formalism to 
model uncertainty in linguistic rules (Raoot & Rakshit, 1993). Indeed, FL has been shown to be an 
effective and robust technique in a variety of fields involving reasoning with incomplete, inconsistent, 
imprecise, and vague information (Negnevitsky, 2002). In addition, fuzzy logic focuses on the 
imprecision of the event itself; whereas techniques like CF and BN are concerned with the 
imprecision associated with the outcome of a well-defined event (Negnevitsky, 2002). Moreover, FL 
is superior to other uncertainty management tools in computational complexity. Consequently, we 
believe, FL has a significant role to play in cost-effective and robust LD preference modeling and 
reasoning under uncertain conditions. Further discussions on this promising technique follows in 
Section 2.8. 

Automated Preference Discovery 

Machine Learning (ML) techniques are capable of expressing a rich variety of non-linear decision 
surfaces (Zukerman & Albrecht, 2001). Observations of user behavior and history of interactions are 
treated as training examples by learning components. The knowledge acquisition is automatic and 
incremental (Conati & Zhao, 2004). Examples of ML include Artificial Neural Networks, Case-Based 
Reasoning, Memory-based Learning, Decision Tree Induction, Reinforcement Learning, Learning 
Automata, and hybrids (Billsus et al., 2002; Jameson, 1996). Nevertheless, the knowledge-
representation in ML is implicit and formats of learning results (probabilities, decision trees, etc.) are 
specific to the learning algorithm.  

2.6.5 Comparison of Uncertainty Management Techniques 
In order to have some kind of comparative evaluation of some of the aforementioned modeling 
techniques, we carried out an exploratory survey. In this survey, eight long time researchers and 
practitioners in LD field were asked to subjectively rank these uncertainty management techniques on 
a scale of 1 to 10 against various considerations such that higher scores represent rankings that are 
more favorable. Among those practitioners, three have expertise in facility LD, three have expertise in 
VLSI circuit LD (macrocell placement), and two have expertise in visual interface LD (interface 
design). The given techniques had varying familiarity rating among those evaluators. The ranking 
scores based on averages of experts’ evaluations as well familiarity with techniques are shown in 
Table 2-1.  
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 Evaluation Criteria 

Technique Familiarity Ease of 
Concept. Ease of Use Flexibility Expressive

 Power Robustness Tractability 

Deterministic 9.6 9.9 8.3 3.7 3.1 1.2 2.9 
User-Controlled 9.5 8.6 6.3 3.9 3.8 3.6 2.0 

REL-Chart 9.0 8.0 6.5 6.0 5.5 5.3 4.8 
Bayesian 7.2 3.5 3.5 2.3 4.3 3.2 2.8 

Certainty Factors 8.1 6.7 5.9 4.3 5.8 5.1 6.5 
Dempster-Shafer 7.1 5.1 3.7 3.7 4.2 3.8 4.4 

Fuzzy Logic 7.3 7.2 6.9 7.3 7.5 7.8 6.3 
Simulations 5.8 2.9 1.7 1.4 6.9 2.2 1.8 

Table 2-1: Subjective Ranking of Uncertainty Modeling Techniques in Layout Design 

Among other evaluation criteria, the Ease of Conceptualization or understanding plays a key role 
in adoption of any methodology. Another important determinant of the success of a methodology is 
the Flexibility, which refers to the ease with which parameters and components of the system can be 
modified under dynamic conditions or during some sort of scenario analyses (Baldoni et al., 2000). 
Robustness signifies the capability to perform reliably and effectively in changing situations and is 
another important determinant of the success of any technology employed in subjective, uncertain, 
and dynamic problem domains. Expressive Power implies the capability to represent a given scenario 
as accurately as possible. Tractability is an important dimension in modeling tools for complex 
domains such as the LD where combinatorial explosion could severely limit the efficiency and 
efficacy of the solution methodology.  

Intuitively, deterministic and user-controlled techniques are rated as simplest to conceptualize and 
easiest to employ among all techniques. Nevertheless, these techniques received very low ratings for 
flexibility, expressive power, robustness and tractability of the approach, which are very important 
factors in determining the applicability and efficacy of such techniques. Indeed, higher ratings for 
ease of conceptualization and ease of use do not endorse these tools as valid option for large-scale 
problems where large volume of information is involved. 

Similarly, computer simulation received the lowest ratings for all considerations reflecting the 
enormity of the task involved in simulation modeling and the difficulty in swiftly adapting to 
changing scenarios. Notably, FL received high ratings for these important determinants of efficiency 
and efficacy, implying its perceived promise in the LD research.  
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Despite significant limitations, this exploratory study provides grounds for comparing modeling 
techniques and selecting a more appropriate one. A well-thought out empirical study in this area 
would be an interesting research direction. A more critical classification and comparative review of 
effective modeling techniques for subjective and uncertain preferences specific to each uncertainty 
category, or combination of categories, delineated earlier would be a valuable extension of this work.  

It is evident from the brief overview that some approximate reasoning mechanisms are more 
suitable for modeling subjective and uncertain preferences, constraints and fitness objectives in the 
LD. Indeed, a serious impediment in the extraction of knowledge from human experts is the 
imprecise, linguistic, or fuzzy manner of human conceptualization and articulation (Jackson, 1999). 
Experts think in vague and imprecise terms, for instance, ‘very high’ and ‘low’; ‘fast’ and ‘slow’; 
‘heavy’ and ‘light’ etc. Furthermore, complex decision-making problems, such as LD, are full of 
uncertainties and ambiguities (Ahmad et al., 2003, 2004b; Ayyub, 2001; Jameson, 1996; Tompkins et 
al., 2002). Accordingly, the majority of LD guidelines and rules are essentially vague, ambiguous, 
and even conflicting in character.  

Moreover, very little or no a priori knowledge is available in such dynamic domains. As such, the 
complexity and dynamics of the LD process make it impossible to gather meaningful statistical data, 
or even subjective probabilities, that could allow the use of some objective probabilistic approach. 
Furthermore, probabilistic approaches are concerned with the imprecision associated with the 
outcome of a well-defined event. For instance, there is 50% chance that a fair coin will come tails; 
however, when the coin is actually tossed, it comes down either 100% heads or 100% tails (Jackson, 
1999).  

In contrast, soft computing approaches like FL also focus on the uncertainty and imprecision 
inherent of the event itself (Negnevitsky, 2002). Such uncertainty is also referred to as non-statistical 
uncertainty. While statistical uncertainty may be resolved through observations, non-statistical 
uncertainty or fuzziness cannot be altered or resolved by observations (Engelbrecht, 2002). As 
mentioned, decisions in LD are based more on human intuition, creativity, common sense, and 
experience rather than the availability and precision of data. FL provides a very natural representation 
of human abstraction and partial matching by permitting incorporation of imprecision, 
incompleteness, and subjectivity in information into the model formulation, solution process, and 
analysis of alternatives. As a result, FL based modeling of predominantly subjective design guidelines 
applications has been proposed in various LD contexts (Ahmad et al., 2003, 2004b; Badiru & Arif, 
1996; Dweiri & Meier, 1996; Youssef et al., 2003a). We see significant potential in using ‘degrees of 
membership’ and ‘partial matching’ techniques provided by the FL.  
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2.7 Automated Layout Design  
Automating the LD process through computerized generation, evaluation, and treatment of superior 
layout alternatives by decision-makers is deemed a fundamental ingredient in any layout planning 
process (Ahmad et al., 2004b, 2004c; Akoumianakis & Stephenidis 1997; Akoumianakis et al., 2000; 
Francis & White 1992; Tompkins et al., 2002). However, the majority of available computerized LD 
tools go little further than CAD-style drawing and documentation aids (Ahmad et al. 2004b; Ligget, 
2000; Tompkins et al., 2002). Conceivably, the high degree of complexity, subjectivity, uncertainty, 
and multiplicity of preferences and fitness objectives have deterred the study of the LD problem in an 
analytical manner (Ahmad et al. 2004b; Mir & Imam, 2001; Whyte & Wilhelm, 1999a).   

Nevertheless, research in the LD area has resulted in several Automated Layout Design systems 
(henceforth, ALD). Such systems have their pros and cons. Consequently, we deem a critical 
overview of existing systems essential for any efforts directed at developing advanced ALD systems. 

2.7.1 Existing Systems 
Here we discuss some limitations of existing ALD systems in three most commonly encountered 
application domains, namely, Facilities Layout (e.g. Buildings), Circuit Layout (e.g. VLSI) and the 
Visual Interface Layout (e.g. the Web Page Layout). Despite all the assertions of flexibility and 
relative superiority, existing ALD systems have considerable limitations from various standpoints. 
Indeed, a majority of automated LD aids are computer-aided design (CAD) based documentation and 
drawing tools that typically do not afford automatic generation of superior layout alternatives or their 
improvement (Tompkins et al., 2002; Whyte & Wilhelm, 1999b). Nevertheless, for reference 
purposes, here we mention some of the existing ALD systems in various application domains. 

Facilities Layout Design 

The development and application of automated Facility Layout Design (henceforth, FLD) systems 
started in the early 1960s. However, only a few such systems were made available in the market and 
still fewer earned some prominence (Tompkins et al., 2002). A representative, nonetheless non-
exhaustive, list of such FLD systems would include CRAFT (Buffa et al., 1964), CORELAP (Lee & 
Moore, 1967), ALDEP (Seehof & Evans, 1967), SPACECRAFT (Johnson et al., 1982), FLING 
(Blair & Miller, 1985), MOCRAFT (Svestka, 1990), BLOCPLAN (Donaghey & Pire 1990), LayOPT 
(Montreuil, 1991), CLASS (Jojodia et al., 1992), MULTIPLE (Meller et al., 1996), EDSLP (Osman 
et al., 2003), FactoryOpt (Unigraphics, 2005), FACOPT (Balakrishnana et al., 2003), FEMBUS, VIP-
PlanOpt (EOS, 2005), etc. It should be noted that most existing FLD systems do not correspond to 
relatively more ambitious and pertinent research in FLD. In addition, only a handful of commercially 
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available FLD systems incorporate layout generation, with the majority just furnishing some sort of 
layout evaluation coupled with computer-aided drawing (Meller & Gau, 1996). Apart from the few 
more recent FLD systems, an analysis of the capabilities, limitations, and other attributes of most 
available systems can be found in Sly (1995). 

In existing FLD systems, various deterministic procedures are used to incorporate preferences 
regarding relative position of modules (Irani & Huang, 2000). These include Relationship Charts 
(REL) and Move Desirability Table (MDT) etc. (Francis & White, 1974). Such procedures typically 
handle preferences through some fixed inputs and essentially generate solutions alternatives by 
experimenting with those input values at different runs of the solution procedure (Tompkins et al., 
2002). Conceivably, such a complex and tedious process obliterates the very purpose of automation in 
this uncertain problem domain (Ahmad et al., 2004c; Tompkins et al., 2002).  

Moreover, many existing systems do not treat a given module as an integral whole and often 
generate layouts with irregular and unrealistic module shapes entailing tedious manual adjustment 
and post-optimization processing. In addition, most existing systems tackle the relatively simpler one-
to-one assignment problem in which all given modules are assumed to be of the same size and shape 
that are to be assigned to an equal number of fixed locations (Hassan, 1991). The inability of existing 
systems to consider a large number of modules for placement decisions is another important concern. 
Experience has shown that the VIP-PlanOpt™ is likely to be the fastest and the most robust among 
these available systems for handling FLD problems consisting of more than 40 modules (Ahmad et 
al., 2004b). 

Circuit Layout Design  

Efforts in automated Circuit Layout Design systems (henceforth, CLD) gained prominence with the 
onset of such challenging, applications as VLSI.  Due to rapid advances in complexity and 
miniaturization of VLSI chips, establishing a clearly dominant macro-cell placement strategy is not 
possible (Moon & Kim, 1998). Nevertheless, the importance of efficient and robust means of 
automatically generating superior alternatives cannot be overemphasized. Some examples of existing 
CLD systems are PROUD (Tsay et al., 1988), GORDIAN (Kleinhans et al., 1991), DOMINO (Doll 
et al. 1991), Cadence (CDS, 2004), Dragon (Yang et al., 2002), Plato/Kraftwerk (Eisenmann & 
Johannes, 1998), Magic (Hamachi et al., 1996). However, all existing CLD systems have good 
performance only under a rigidly specified set of conditions that cannot be attained in physical 
setting. An expert system, employing the automation capability of several good placement algorithms 
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as well as flexibility of manual refinement, could afford the much needed efficiency and robustness in 
CLD systems. 

Interface Design 

Research in automating Interface Layout Design systems (henceforth, ILD) acquired eminence with 
the advent of such influential applications as Graphic User Interfaces (GUI) and the Web page layout 
in e-stores. These efforts could be surmised as a search for an adequate representation to encapsulate 
the required design knowledge and development of reasoning mechanisms to address interface related 
problems (Ahmad et al., 2004e; McTear, 2000). The goal is to improve the effectiveness and 
efficiency of human–computer interactions through intelligent, adaptive, or multiple GUI.  

Some examples of existing ILD systems are ADDI (El-Said et al., 1997), UIDE (Foley et al., 
1991), LayLab (Graf 1997), Intelligent Agent based GUI (Agah & Tanie, 2000), GENITOR (Kameas 
& Pintelas, 1997), InterBook (Brusilovsky et al., 1998c), KBS Hyperbook (Henze & Nejdl, 1999); 
IMAGEN (De Bo & Vervenne, 2003). However, such interface builders are either very primitive or 
they typically furnish a set of widgets to facilitate layout design of the visual interface and little or no 
support is afforded for designing the domain-specific layouts used by end-users. The process of 
mapping the domain objects and their properties into corresponding visual properties in the layout 
configuration is largely left to the user who face high cognitive and information overload that might 
result in inadequate layout configuration even when designers have ample graphics expertise (El-
Said, et al. 1997). Some work has been done towards creating a visual knowledge-base to ameliorate 
this problem (El-Said, et al. 1997). Furthermore, efforts have been expended to automate graphics 
layouts within the context of electronic albuming (Giegel & Loui, 2001).  

However, incorporation of subjective and uncertain preferences and properties is still an elusive 
objective. Nevertheless, ensuing efforts are growing fast and there is some research work directed at 
designing the model-based interaction (Brusilovsky & Eklund, 1998a; Foly et al., 1991; Neches et 
al., 1993), the knowledge-based interaction (Akoumianakis & Stephenidas, 1997; El-Said et al., 
1997; Keeble & Macredie, 2000; McTear, 2000), and the agent-based interaction (Agah & Tanie, 
2000). It should be noted that the design of such static human-machine interfaces as process 
controllers are also an important category of the ILD problem. In general, the ultimate goal in all such 
human-machine interface design problems is to improve efficiency and efficacy of human-computer 
or human-machine interactions through intelligent, and possibly adaptive, user interfaces by tapping 
on knowledge of behavior and ergonomics of users as well as criticality and economics of operations.  
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2.7.2 Limitations of Existing Systems 
Despite much advancement and innovation in ALD systems, the core issues of automated layout 
design have largely remained the same (Ligget, 2000; Tompkins et al., 2002; Youssef et al., 2003a). 
Although existing ALD systems have their pros and cons, in general, the existing systems are 
inflexible, myopic, slow, and incapable of tackling large-scale problems. The laggings become more 
evident when we observe that most LD applications are not well-defined. Typical examples of such 
applications are circuit layout design (Youssef et al., 2003b) and Web page layout design (Ahmad et 
al., 2002; McTear, 2000). Such ill-structured applications involve highly subjective, ill-defined as 
well as domain- or user-dependent issues. Here we discuss some limitations of existing ALD systems 
in more details. 

Flexibility 

Inflexibility is the hallmark of existing ALD systems that emanates from many sources. One such 
source is the rigidity and myopia of the fitness function(s) based on which the optimized layout 
alternatives are afforded (Ahmad et al. 2003, 2004b, 2004d; Azadivar, 1999; Irani & Huang, 2000; 
Singh & Wang, 1994; Tompkins et al., 2002). Most existing systems deal with the LD problem as a 
single rigid criteria optimization problem. However, the superiority of a layout is often determined by 
a multitude of competing formal and informal criteria. 

Furthermore, it has been argued, frequently and vehemently, that due to high subjectivity and 
strong NP-Hard character of structured mathematical formulations the procurement of such rigidly 
optimal layouts is not a compelling strategy (Ahmad et al., 2004b; Tompkins et al., 2002; Youssef et 
al., 2003b). The rigid data and preference handling methods add to the inflexibility of existing ALD 
systems (Azadivar, 2000). The special format of data to enable storage and manipulation of layout 
descriptions using ‘crisp’ values often results in a large overhead in ‘digitizing’ the linguistic values 
and tackling scaling issues (scaling problems are further discussed in Section 5.3 and Section 5.4 
within the context of multi-criteria decision-making). As such, existing ALD systems lack the 
flexibility to meet most needs of layout designers. Such inflexibility is, in part, responsible for the 
rather lethargic response from layout design practitioners in adopting ALD systems. 

Creativity 

The data handling methods in most existing ALD systems is suitable only when reliable deterministic 
or crisp interaction data is available and assignable to specific activities. Nonetheless, such data either 
does not exist or exists for some designated unknown and unrealistic modeling conditions. Thus, 
effective means of layout analysis and revision through the incorporation of subjective preferences as 
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well as designers’ intuition, creativity, and expertise are virtually nonexistent. Such disregard of less-
formal and intuitive information results in an inability to capture many vital process dynamics (White 
& Taket, 1994). Moreover, the rationale of an ALD is to generate superior alternatives in a timely 
fashion as well as facilitate fast and easy means of manipulating those. 

Primarily, it is because the existing techniques usually adopt an optimization approach, instead of a 
more pertinent decision-making paradigm (Abdinnour-Helm & Hadley, 2000; Ahmad, 2002; Ahmad 
et al., 2004b; Badiru & Arif, 2000; Azadivar, 2000; Foulds, 1997; Osman et al., 2003; Tam et al., 
2002; Zhang et al., 2002). Consequently, such indifference to cognition, intuition, and vision of 
decision-makers is critical from practical perspective and severely limits the applicability of these 
techniques (Kintsch, 1998; Tompkins et al., 2002). 

Productivity 

Productivity of the existing ALD systems, as measured by speed of execution in generating and 
manipulating superior layout alternatives, is another issue of concern. Indeed, the speed of existing 
ALD systems is among the bigger obstacles in the adoption of these systems (Ligget, 2000). Many 
dynamic and intricate applications cannot wait forever to acquire superior layout alternatives. Our 
personal experience has demonstrated that VIP-PlanOpt™ (EOS, 2004) is superior to many existing 
ALD systems in terms of speed and capability to handle large-scale problems. However, even VIP-
PlanOpt seems to be severely constrained in terms of flexibility and applicability under most practical 
situations. Consequently, there is a considerable need for developing efficient and robust placement 
solutions. In this direction, employing a combination of multiple placement algorithms is also 
considered worthwhile, an approach we followed in building our ILG (Adya et al., 2003; Yang et al., 
2002). 

Scalability 

The applicability of existing ALD systems is further constrained by an inability to consider more than 
few scores of modules in layout decisions (Ligget, 2000). Such ALD systems often cannot handle 
most real world problems. Incidentally, a problem of 40 or more modules has not been presented in 
the ALD literature until very recently (Ahmad et al., 2004d, 2004f; Hopper & Turton, 2001; EOS, 
2004). Once again, we found VIP-PlanOpt superior to other existing ALD systems in handling large-
scale problems, keeping in view that it could handle problems consisting of more than 500 modules.  
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Generalizability  

In addition, most systems solve the problem using relatively simpler linear or quadratic assignment 
models. In such one-to-one assignment models, it is assumed that all modules are of equal size and 
there are exact-fit locations available in the packing space to which these modules are to be assigned. 
Despite existence of some applications fulfilling such conditions, these are largely unwarranted 
assumptions. Furthermore, the use of single and rigidly defined fitness measure do not model the 
realistic LD scenarios (Irani & Huang, 2000; Ligget, 2000). 

Diversity  

In general, layout alternatives are generated by following a set of largely predefined steps and the 
optimization process works with various untenable simplifying assumptions (Ahmad et al., 2004c; 
Irani & Huang, 2000; Ligget, 2000). Obviously, such unwarranted assumptions cannot be eliminated 
by the users from the underlying process. Consequently, such procedures do not search the solution 
space in appropriate and diversified manner. As such, the limitations are imposed on much desired 
comprehensiveness required for obtaining a truly superior solution. 

Portability and Reusability  

In general, the existing ALD systems are designed for the use on some specific platform, employing 
some rigid data representation schemes that cannot be readily used by other applications. User 
interfaces seem to lack many usability and effective human-computer interaction aspects. 

Learnability  

Inability to learn from the experience or user behavior is another source of ineffectiveness and does 
not bode well for the future of ALD systems. Indeed, some renowned layout design practitioners have 
been recommending that people design and code their own layout optimization aids, as each LD 
situation is unique in itself (Irani, 1992, 2003). Paradoxically, the inadequacy in assimilating 
subjective design preferences in ALD systems has lead researchers to recommend large input 
requirements to obtain both a better control on the LD process as well as the quality of outcome 
(Levary & Kalchik, 1985; Tompkins et al., 2002). However, such approaches are inherently 
inefficient and irrational for most applications (Ahmad et al., 2004b; Zhang et al., 2002).  

2.8 Promising Soft Computing Tools 
This section provides an overview of the soft computing technologies that are considered valuable for 
providing intelligent decision support in the LD. The Soft Computing paradigm characterizes one of 
the most recent fields in the area of computational intelligence that could deal effectively with 
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complex structuring and ill-defined dynamics of the LD problem. Intelligent systems are designed to 
solve problems that usually do not have clearly defined good or bad solutions (Cordon et al., 2004; 
Karray & de Silva, 2004; Negnevitsky, 2002). 

The Soft Computing paradigm is concerned with modes of computing in which precision is traded 
for facilitating tractability, efficiency, flexibility, efficacy, robustness, implementation, and user-
acceptance. The common denominator in soft computing techniques is their digression from classical 
reasoning and modeling approaches (Baron et al., 2001; Cordon et al., 2004; Zha, 2003). The 
principal components of soft computing are fuzzy logic, artificial neural networks, genetic algorithms, 
probabilistic reasoning, approximate reasoning, decision support systems, expert systems, chaos 
theory, etc.  

Such techniques could afford means for imitating the impressive human capability of expressing 
knowledge through linguistic representation of information. Indeed, such approaches are gaining 
acceptance for modeling cognition, intelligent systems, and artificial intelligence because the 
procedures involved are most analogous to human reasoning. Here we identify the key strengths, 
merits, and the synergy of some of the relevant tools, which are promising choices for tackling the 
problem at hand. It should be noted that some of the soft computing approaches such as Certainty 
Factors (CF), Dempster-Shafer (DS), and Bayesian Networks (BN) have already been discussed in 
previous sections, within the context of uncertainty management 

2.8.1 Genetic Algorithms (GA) 
Genetic Algorithms (GA) are motivated by biological reproduction process imitating the natural 
selection and biological evolution. GA combine the idea of ‘the survival of the fittest’, random but 
still structured search, and parallel evaluation of nodes in the search space (Karray & DeSilva, 2004; 
Holland, 1975). A typical GA evolution cycle consists of a generation of solutions out of which some 
parents are selected for genetic evolution. The genetic evolution results in a new generation of 
solutions and the cycle repeats.   

The encoding of variables, simplicity and ease of operations, minimal computational requirements, 
random initial population, probabilistic search rules, multiple search points, suitability for parallel 
processing, independent control of exploitation and exploration aspects, robustness, and global 
perspective of GA have made them applicable to a wide variety of domains. Several of these 
advantages are, explicitly or implicitly, derived from the population-based search where GA 
determine next search points using fitness values of current search points, which are spread 
throughout the search space. GA have demonstrated their power for solving difficult problems 
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making them a good choice for decision support in the LD due to the ability to provide a population 
or a set of superior alternatives.  

There is a substantial body of literature available on application of GA in various LD work-
domains in different ways (Ahmad et al., 2004d; Chan & Tansri, 1994; Geigel & Loui, 2001; Mak et 
al., 1998; Mazumder & Rudnick, 1999; Norman & Smith, 2002; Tate & Smith, 1995; Youssef et al., 
2003a, 2003b). Notably, GA have been shown to supersede other search methods in solving LD 
problems in terms of speed and efficacy (Hopper & Turton, 2001). Detailed surveys of research 
conducted in this direction can be found in the literature (Kado, 1995). Further details of GA in LD 
are discussed in Chapter 4 within the context of ILG. 

2.8.2 Fuzzy Logic (FL) 
The concept of Fuzzy Logic (FL) was pioneered by Lotfi Zadeh (1965) as a system of logic for 
representing conditions that could not be easily denoted by crisp values like ‘true’ or ‘false’ in 
Boolean and conventional logic. The role model for FL is the human mind in which a proposition is 
neither True nor False, but may be true or false to some degree. FL provides a means to model these 
continuums of values through fuzzy sets. Details of fuzzy logic and fuzzy set theory can be found in 
the literature (Karray & De Silva, 2004). However, here we discuss some salient and valuable 
features of FL from LD perspective. 

Indeed, FL has been successfully employed for representation of, and reasoning with, the 
knowledge in expert systems (Guiffrida & Nagi, 1998; Negnevitsky, 2002). It furnishes a very natural 
representation of human conceptualization and partial matching, which inherently relies on common 
sense as well as vague and ambiguous terms (Nyongesa et al., 2003). Consequently, apart from partial 
matching, another aspect of subjectivity and uncertainty in preferences is their linguistic and 
imprecise descriptions. For instance, experts can describe preferences regarding the amount of white 
space in the layout in fuzzily through such adjectives as ‘small’, ‘medium’ or ‘large’. In order to 
model the imprecision of such linguistic terms, Zadeh (1965) advocated the notion of a linguistic 
variable defined as a variable whose values are words or sentences in some natural or artificial 
language. The collection of all probable values of a linguistic variable defines the universe of 
discourse. A fuzzy set of a universe of discourse is defined by a function, commonly termed as the 
Membership Function (MF), that maps elements of a fuzzy set into a real value in an interval between 
0 and 1.  

Interestingly, FL furnishes the ability to separate the computational logic from the fuzziness in data 
and rules (Kelly, 1997). In conventional binary logic, rules need to be updated once either logic or 
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fuzziness in data is changed. However, FL revises fuzzy rules when the logic needs to be changed and 
adapts membership functions that characterize the fuzziness when fuzziness should be changed 
(Negnevitsky, 2002). Moreover, FL incorporates the notion of hedges or terms that modify the shape 
of fuzzy sets. These linguistic hedges include such adverbs as very, significantly, somewhat, quite, 
more, less, slightly, etc. In general, human speak about linguistic hedges with narrowing effect (e.g. 
very, significantly, etc.) and with widening effect (e.g. more, less, slightly, etc.). These hedges act as 
operators and create new fuzzy sets from given fuzzy sets such as very small, slightly heavy, etc. 
(Dvorak & Novak, 2004). It means that given linguistic/fuzzy rules may be augmented without even 
changing the rule, but by only applying a hedge operation on given rules. It furnishes a powerful and 
robust tool in reducing the size of the rule-base required for any fuzzy inferencing system. 
Consequently, FL has the potential to significantly reduce not only the knowledge acquisition cost but 
also the computational cost (Cintula & Navara, 2004; Rommelfagner & Slowinski, 1998). By virtue 
of fuzzy sets and hedges, FL often renders more than 90 per cent reduction in the number of rules 
(Negnevitsky, 2002).  

It should be noted that FL has been extensively applied in operations research. Furthermore, a large 
body of literature exists on fuzzy multi-criteria decision-making. The success of FL in a variety of 
subjective and uncertain domains also inspired efforts in employing fuzzy inferencing mechanisms in 
various LD work domains (Badiru & Arif, 1996; Dweiri & Meier, 1996; Grobelny, 1987a; Grobelny, 
1987b; Karray et al. 2000a, 2000b; Kang et al., 1994; Raoot & Rakshit, 1993; Raoot & Rakshit, 
1991).   

Applications modes of FL in Layout Design 

Incidentally, FL can be utilized in LD in various forms (Cordon et al., 2004;). For instance, it can be 
used as a Linguistic Tool to model problems comprising of fuzzy phenomena or relationships and to 
acquire/represent the domain-specific knowledge. In addition, FL can be employed as an Analytical 
Tool to advance insights into the problem through analysis of Fuzzy Decision Making (FDM) models. 
Furthermore, the use of FL as an Algorithmic Tool could make solution methods faster, robust, and 
stable. Notably, all these application modes of FL are inherently pertinent to the research in the layout 
optimization. Here, a brief overview of these application modes of FL in LD is provided.  

The most popular application mode of FL in LD is as a linguistic tool (Dvorak & Novak, 2004). In 
such cases, FL is used to model linguistic patterns or preferences mainly in solving the FLD problem 
(Ahmad et al., 2004b; Blair & Miller, 1985; Evans et al., 1987; Kim et al., 2001; Nyongesa et al., 
2003; Tompkins et al., 2002). For instance, the subjective, uncertain, or linguistic preferences 
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corresponding to relationships like ‘importance’ and ‘closeness’ of modules can effectively be 
modeled using FL.  

In addition, FL has been used as an analytical tool where layout fitness metrics are modeled as a 
multi-criteria decision making (MCDM) problem (Khan & Sait, 2002; Nyongesa et al., 2003; Soltani 
& Fernando, 2004; Youssef et al., 2003). Such approaches essentially form a hybrid layout fitness 
metric using an amalgamation of both quantitative and qualitative criteria.  

Moreover, FL has also been used in LD as an algorithmic tool where placement decisions and the 
spatial relationships are determined by fuzzy rules (Evans et al., 1987; Youssef et al., 2003). In such 
cases, the solution algorithm utilizes various linguistic variables for expressing qualitative and 
quantitative characteristics affecting placement decisions.  

The efficacy of such procedures is demonstrated in the literature. Consequently, there has been 
growing interest in the use of FL in the LD. Nevertheless, an encompassing application of FL 
covering all aforementioned notions is largely missing. Furthermore, the important issue of efficacy 
and speed of these procedures for larger problems has not been adequately addressed. In Chapter 5, 
we provide the design and implementation of a fuzzy Preference Inferencing Agent (PIA) and details 
of some relevant issues. 

2.8.3 Artificial Neural Networks (ANN) 
A traditional knowledge-based system cannot learn and improve through experience. However, an 
automated learning mechanism could improve the speed and quality of knowledge acquisition. The 
ability of Artificial Neural Networks (ANN) to learn from historical cases could generate rules 
automatically, thus eluding tedious and expensive processes of knowledge acquisition, validation and 
revision. ANN represent a class of powerful and general-purpose tools that have shown enormous 
promise in a wide array of applications (Nauck et al. 1997; Zha & Lim, 2003). This information-
processing and discovery paradigm is inspired by the structure and function of the human brain and 
consists of a number of simple and highly interconnected processors termed as neurons. These 
neurons are connected by weighted links that transmit signals from one neuron to another and ANN 
learn through repeated adjustments of weights. These weights implicitly store the knowledge required 
to solve specific problems (Nauck et al., 1997).  

As stated, the LD rules and preferences are quite dynamic and evolutionary in nature as people 
learn new concepts and outgrow old ideas. This dynamic nature of preferences often results from 
decision-makers’ interaction with existing or intermediate layout solutions, a phenomenon often 
referred to as dynamic rationality (Billot, 1998; Bouyssou & Vincke, 1998). It suggests that some 
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online ANN based Pattern Discovery and Validation Agent would offer value by providing patterns 
of LD rules and preferences in an automated and self-updated manner (Ahmad et al., 2003, 2004b; 
Chung, 1997; Turban & Aronson, 2001; Tsuchiya et al., 1996). Further issues related to automatic 
preference discovery are dealt with in details in Chapter 5 within the context of a Preference 
Discovery Agent (PDA). 

2.8.4 Reinforcement Learning (RL) 
Reinforcement Learning (RL) is another machine learning paradigm that attempts to learn from 
environment and adapt the system accordingly. RL could assist in automatic refinement and 
enhancement of knowledge or preferences by continuously monitoring the layout designers’ 
interaction with, or ranking of, the available layout alternatives. Consequently, RL could be very 
useful in modestly evolving scenarios by reducing the need for the tedious revision of knowledge-
base. However, little work can be found regarding the use of RL in LD problems. In Chapter 5, we 
discuss some issues related to automated preference revision in details. However, we have left 
incorporation of RL into our system as future work. 

2.8.5 Knowledge-based Systems (KBS) 
Various knowledge-based systems, such as decision support systems (DSS) and expert systems (ES), 
have been successfully deployed in a variety of work domains involving subjective and uncertain 
information (Ayyub, 2001; Hall & Kandel, 1992; Negnevitsky, 2002; Turban & Aronson, 2001). 
Indeed, knowledge is deemed as the only factor of production that is not subjected to diminishing 
returns (Hirji, 2001). Although descriptions of various DSS or ES for LD are reportedly available in 
literature, we believe that the real potential of such powerful paradigms is largely untapped. The 
existing knowledge-based systems in LD use very restricted definition of decision support or expert 
systems. Nevertheless, we deem these paradigms very valuable in the context of the LD problem. As 
such, in the next section, we introduce the capabilities and caveats pertinent to DSS and ES 
approaches. Moreover, a critical review of existing DSS and ES for LD is provided in Section 2.9.3. 

2.9 Knowledge Based Layout Design (KBLD) 
Complex decision making problems often require considering enormous amount of incomplete, 
imprecise, inconsistent, and vague information distributed across many variables (Jackson, 1999). 
Such is often a case with the LD problem and alleviating even some of the limitations in the existing 
ALD systems could prove a daunting task. However, such barriers should not deter researchers from 
addressing the problem, albeit in an incomplete sense (Bazaraa, 1973; Silver, 2004). In this regard, 
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such knowledge-based approaches as DSS and ES appear quite promising. A solution approach that 
synergistically combines the benefits of knowledge-based systems technology with the optimization 
power of metaheuristics as well as powerful preference acquisition and modeling tools of soft 
computing should offer substantial benefits.  

Although several existing ALD systems boast to be knowledge-based in one way or other, such 
claims are made in a very narrowly defined perspective of knowledge-based systems.  Such systems 
tend to focus on integrated problem solving experience instead of the actual LD process (Ligget, 
2000). As such, we deem it appropriate to include an overview of the two most popular knowledge-
based problem solving approaches, namely DSS and ES, and a disjunctive survey of 
capabilities/limitations of the existing knowledge-based LD systems. 

2.9.1 Decision Support Systems (DSS) 
A decision strategy that is completely informed, perfectly logical, and oriented towards economic 
reward is referred to as perfect rationality (Simon, 1955). However, in practice, decision makers often 
resort to bounded-rationality reflecting on inadequacy of tangible and intangible resources 
(Greenberg et al., 2000; Simon, 1957a, 1957b). Decision makers often face various impediments in 
solving LD problems. The most taxing issue is the ill-structured nature of problem that tends to be 
complex, relatively novel, subjective, and uncertain and require a high degree of creativity and 
expertise (Ignizio & Cavalier, 1993; Ignizio, 1991).  

In addition, decision-makers often resort to making presumptions regarding some aspects of the 
available information, an affinity referred to as framing (Greenberg et al., 2000). Such cognitive 
biases for procuring and dealing with information in an error-prone fashion may emerge in various 
ways. For instance, there is an instinctive human tendency to rely on more recent or readily available 
information, a phenomena commonly referred to as the availability heuristic (Johns, 1996). In 
addition, there is often a propensity to expose only the information that conforms to one’s own 
analysis of the situation, referred to as the confirmation bias (Greenberg et al., 2000). Such biases are 
also an outcome of the information overload where more information is acquired or available than is 
necessary to make effective decisions (George & Jones, 1996).  

The Search of an objective measure for evaluation and comparison of alternatives adds to other 
temporal, computational, sociological, psychological, and resource constraints that hamper effective 
decision-making (Simon, 1955, 1957b). Consequently, decision makers often resort to satisficing 
approaches instead of rational optimizing methodologies (March & Simon, 1958). Satisficing refers 
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to the process of formulating an adequate degree of acceptability for a solution to a problem and 
screening solutions until one that surpasses this benchmark is found (Bower & Zi-Lei, 1992). 

Decision Support Systems (DSS) represent a class of computerized information systems that utilize 
the knowledge about a specific application domain to assist decision makers by recommending 
appropriate actions and strategies (Turban & Aronson, 2001). A typical DSS consists of a Database, a 
Model Base, a Communications Component, and a User Interface (Power, 2001). However, the term 
DSS may encompass a wide array of systems, tools, and technologies with the aim of achieving 
efficacious decision-making (Marakas, 2002). 

The DSS problem-solving paradigm provides a means for assisting decision makers in retrieving, 
summarizing, and analyzing decision relevant data. Consequently, it results in a reduction in the 
cognitive overload faced by the decision maker(s). Research has shown that DSS techniques are 
useful in generating and evaluating a large number of alternative solutions and effectively helping 
decision-makers in arriving at better decisions (Turban & Aronson, 2001; Greenberg et al., 2000). 
However, it should be emphasized that a DSS neither automates the decision process nor imposes 
solutions. It simply provides analytical and information processing support in an interactive 
environment. 

Incidentally, the layout design is not an exact science. Indeed, it is irrational to expect that a 
specific layout would surpass all others for every evaluation objective (Tompkins et al., 2002). 
Consequently, the generation of superior layout alternatives in a flexible and automated manner is 
critical to any layout planning process (Tompkins et al., 2002). Conceivably, some DSS mechanism 
could be beneficial in solving the LD problem. As such, some research can found in the literature that 
attempts to solve the problem through the DSS paradigm. Here we describe a couple of such systems 
reported in the literature. 

LayoutManager 
Foulds (1993a; 1997) describes a system called LayoutManager that is reportedly deemed a decision 
support system in facilities planning. It employs various graph-theoretic algorithms from the existing 
literature (Foulds, 1991, 1993b; Hassan & Hogg, 1987). LayoutManager contains a menu-driven 
interface that permits users to select the layout design algorithm and other necessary starting 
conditions. Furthermore, it permits users to select one of several layout fitness evaluation metrics. 
The problem specific data must be provided in a standard format through a text file. Any 
modifications to the design parameters require direct editing of this text file. In order to generate a 
layout alternative, user selects a starting module, a graph search heuristic, and a fitness metric. 
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Further alternatives may be generated through successive trials in which the starting module, graph 
heuristic, or fitness metric is changed. 

Proximity stipulations are provided in the form a of REL chart. Some provisions are available that 
allow users to assign values to various REL parameters. However, it does not provide any means for 
resolving conflicts in preferences. Furthermore, no means are available to restrict the combinatorial 
explosion of REL charts, which are required for every pair of modules. It is stated that for some 
heuristics this number reaches ( ) 12 3 +−n , where n is the number of modules considered (Foulds, 
1997). 

The author mentions the possibility of employing stochastic search strategies like simulated 
annealing and tabu search as promising. However, the system described in Foulds (1993a) and Foulds 
(1997) does not contain any stochastic search capability. Layout solutions are created by using one of 
the deterministic graph search heuristics available with the system. Such algorithms, beside other 
laggings, do not allow diversified and extensive search of the solution space. Moreover, the tree 
search performed by the heuristics is also restricted to only three children per parent node in order to 
speed up the processing.  

The notion of ‘gradualism’ is mentioned as a key idea in layout design, referring to the gradual 
progress towards the final solution through a series of manipulations and transformations of an initial 
layout alternative. However, the LayoutManager does not provide any means for giving users any real 
control over the proceedings. In addition, the shape or even the location of modules cannot be 
controlled. In short, it does not provide functionalities that would allow users to interactively make 
any informed or knowledge-based interventions or even manipulations of the layout alternatives 
produced by the system.  

Furthermore, the LayoutManager provides users the ability to select one of the several rigid and 
myopic layout fitness metrics. As such, those metrics cannot be utilized in some hybrid multi-criteria 
decision-making (MCDM. User cannot make any informed amendments, hybridizations, or 
augmentations to the available fitness metrics. In addition, details of the system and its usage are very 
complex and difficult to follow. In short, the system lacks the flexibility, efficiency, efficacy, 
scalability, and robustness that would be logical requisites for a DSS in LD. 

NSF-DSS 
Tam et al. (2002) describe a nonstructural fuzzy decision support system (NSF-DSS) that integrates 
both experts’ judgment and computer decision modeling, making it suitable for the appraisal of 
complicated construction problems. The system allows assessments based on pairwise comparisons of 
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alternatives. However, this pairwise comparison approach is inherently inefficient and requires 
frequent and expensive backtracking. Nevertheless, the research by Tam et al. (2002) provides many 
useful insights and future research directions in this field. 

2.9.2 Expert Systems (ES) 
An Expert System (ES) is defined as an intelligent computer program that applies reasoning 
methodologies or the knowledge in a specific domain to render advice or recommendations – much 
like a human expert (Turban & Aronson, 2001). ES are usually characterized by the existence of a 
large repository of knowledge for solving problems in a very constricted work domain (Malakooti & 
Tsurushima, 1989; Turban, 1995). Such a knowledge repository may comprise of human knowledge 
and expertise formulated as specific rules and heuristics (Jackson, 1999; Turban & Aronson, 2001). 
An ES aids decision-making by overcoming the otherwise undesirable and unavoidable situation 
where there is too much to learn, too much to know, and too little time and resources to employ.  

The distinguishing feature between ES and DSS is the separation of knowledge and the reasoning 
method involved in an ES. Such a separation of domain knowledge and inferencing mechanism 
results in greater modularity in the system (Negnevitsky, 2002). As such, it affords a greater degree of 
flexibility, thus making it the paradigm of choice for our research in automating the LD process. 
Furthermore, ES provide explanation capability as a mean of understanding the reasoning mechanism 
involved in arriving at some decision.  

A traditional ES is shown in Figure 2-4. It has five basic components, namely a Knowledge 
Acquisition Module, a Knowledge Base, an Inference Engine, an Explanation Facility, and an 
interactive User Interface (Negnevitsky, 2002; Nikolopoulos, 1997). The details about individual 
components and their synergy follow in Chapter 3 within the context of the proposed intelligent 
system for decision support and expert analysis in layout design. 

Indeed, an ES designed specifically to aid decision makers continuously increases productivity, 
lowers costs, and spurs innovation (Konar, 2001; Marakas, 2002). However, existing literature on the 
application of the ES paradigm in LD is quite meager. In addition, such systems have considerable 
shortcomings and do not engender most benefits that are usually attributed to ES. Here we provide an 
overview of such existing systems. 
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FADES 
Fisher & Nof (1984) present a FAcilities Design Expert System (FADES) for machine LD 
applications. The reported prototype contains various FLD heuristics and an inferencing mechanism 
to select a heuristic appropriate for the given scenario. The inference engine is developed using a 
PROLOG interpreter with a forward-chaining depth-first search. Knowledge is represented using 
first-order predicate logic. However, FADES can only solve small-scale problems consisting of equal 
size modules. Furthermore, it cannot handle conflicting preferences. Moreover, the prohibitive 
computational cost means that the algorithms used in FADES are not very efficient. Above all, it does 
not engender a diverse set of layout alternatives, a key requisite in generation of LD decision 
alternatives. 

IFLAPS 
Kumara et al. (1985, 1986, 1988) present a machine layout design ES (IFLAPS) that deals with the 
one-to-one assignment type scenarios. It employs a few simple rules of thumb consisting of 
deterministic and pre-defined steps. It contains a module consisting of production rules that determine 
the facility to be assigned first in the block plan. However, simple deterministic rules of thumb mean 
that it neither affords any actual optimization nor furnishes any diversity in alternatives. Furthermore, 
IFLAPS requires a significantly high degree of user inputs and interventions. Moreover, it does not 
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Figure 2-4: A Typical Expert System. 
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provide functionalities to modify or refine the alternative generated by the system. In addition, 
IFLAPS employs arbitrarily chosen priority indices or user intervention for resolving conflicts in 
preferences. Moreover, IFLAPS is not suited for problems with more than a score of modules.  

ES-MCFL 
Malakooti & Tsurushima (1989) report an ES for multiple-criteria FLD (ES-MCFL) that employs a 
forward chaining reasoning mechanism. Authors argue that despite the quantitative nature of MCDM, 
the ability to handle multiple conflicting goals might resemble experts’ cognitive treatment of 
subjective and uncertain preferences. However, ES-MCFL considers only one criterion at a time 
based on priority rules and does not impart the requisite flexibility and robustness to the system. 
Furthermore, it uses mostly crisp data, crisp logic, and deterministic heuristics. In order to generate 
alternatives, users are required to change the priorities and repeat the procedure. Consequently, the 
layout alternatives do not offer much diversity. In addition, the user interface is not designed to 
permit decision-makers to manipulate and refine a given alternative. Moreover, the system cannot 
efficiently handle even modestly large problems. 

KBML 
Heragu  (1990) presents a Knowledge-based Machine Layout (KBML) system that tackles one-to-one 
assignment type scenario. It is claimed to be capable of solving relatively larger problems in 
comparison to other KBLD systems existing at that time. It employs both quantitative and qualitative 
data. However, the crisp nature of data means it cannot adequately capture subjective and uncertain 
dynamics of the problem domain. Furthermore, conflicting preferences require user intervention. 
KBML employs various models and algorithms, each of which is suitable to some specific scenario, 
with a hope that a collection of models would cover most of the scenarios. KBML requires manual 
modification in parameters to generate new feasible solutions and may require several uninformed 
iterations before producing a workable solution. Furthermore, the deterministic nature of algorithms 
does not afford an adequate level of optimization and diversity in alternatives.  In addition, the 
computational cost of procuring a viable alternative is still quite prohibitive. 

SightPlan 
SightPlan is an ES that generates layouts for temporary facilities on construction sites (Tommelein, 
1989, 1997). However, it does not provide ways to incorporate soft constraints and preferences. 
Furthermore, it cannot handle conflicting preferences and requires user to rectify conflicts manually 
pre-defined steps. The layout solutions do not have any diversity, a key requirement in providing 
design support to LD experts. 
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2.9.3 Limitations of Existing Knowledge-based Systems  
Most existing Knowledge-based Layout Design (KBLD) systems are not very robust and flexible, as 
users might want or as state of affairs might necessitate. Such lack of robustness and flexibility are a 
result of various factors. Here we describe some of the more salient factors. 

Scope 
In general, a relatively simpler version of the one-to-one assignment type LD scenario is tackled. 
Such problem formulations have some important applications in various work domains like machine 
or job shop LD. However, such formulations do not suffice for most LD domains. Consequently, the 
existing systems do not seem to be effective even in modestly subjective and complex situations. 

Scalability 
Existing KBLD systems may handle only small-scale problems reasonably fast. However, even for 
modestly large problems, these systems entail prohibitively large computational time. More general 
LD scenarios require solutions for large-scale continuous space layout problems consisting of unequal 
size modules with relatively little computational efforts.  

Diversity of Alternatives 
In general, heuristics employed for obtaining layout solutions are deterministic in nature. In some 
KBLD systems, it may involve adding a few production rules to guide the optimization search 
process. Consequently, despite some claims, these KBLD systems do not present a diverse set of 
superior layout alternatives. Nevertheless, the diversity in alternatives is a key ingredient in providing 
decision support in such complex problem domains.  

Quality of Alternatives 
In addition to diversity, the superiority of solution alternatives lies at the core of any knowledge-
based solution methodology in layout decision analysis and design. However, the deterministic nature 
of LD algorithms and the lack of diversity in decision alternatives mean that the existing systems 
require many reruns before obtaining a satisficing alternative. The primary reason is the difficulty in 
modeling sub-cognitive and implicit preferences, which includes difficulty in quantifying the 
qualitative determinants of layout fitness. 

Transparency 
Existing KBLD systems offer very restricted, if any, explanation facilities. Towards this end, simply 
providing the sequence of the rules employed in reaching a decision is considered sufficient. Relating 
the accumulated heuristic knowledge to deeper understanding of the problem domain is still an 
elusive objective. 
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Learnability and Reusability 
It should be noted that developing an ES for such a complex problem as LD might take efforts 
equivalent to several scores of person-years (Turban & Aronson, 2001). Conceivably, such gigantic 
and concerted efforts are hard to justify if most system improvements and adaptations call for 
significant and time-consuming additional labor from its developers (Negnevitsky, 2002). 
Consequently, there is a pressing need for developing ES that learn and update knowledge in an 
automated manner. Most existing KBLD systems offer little or no ability to learn from their 
experience and observation of user behavior. 

Interactivity 
The interactivity in KBLD systems would enable swift change of rules, parameters, algorithms, 
priorities etc. (Ligget, 2000). However, most existing KBLD systems lack user interface that could 
afford effective and interactive analysis and design. Apparently, most interfaces were designed by the 
LD practitioners themselves. Consequently, these interfaces lag considerably in interactivity, 
usability, and suitability to the ecology of the work domain. 

2.10 Summary 
In this chapter, we provided a review of concepts and the literature in domains relevant to the goal of 
enabling intelligent decision support in LD. We have identified the key problems associated with the 
task and existing automated layout design systems. In addition, we have described some promising 
tools for achieving the desired objective. Moreover, we identified key strengths, merits, and synergy 
of such tools that render them promising choices. In the subsequent chapter, we provide a new 
research paradigm for an Intelligent System for Decision Support and Expert Analysis in the Layout 
Design (IDEAL) as well as its philosophy.  
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Chapter 3 

 RESEARCH FRAMEWORK 

3.1 Introduction 

In this chapter, a research framework for an Intelligent System for Decision Support and Expert 

Analysis in Layout Design (IDEAL) is presented. The research framework is aimed at addressing 

some of the major issues involved in using the sub-cognitive, subjective, and fuzzy design 

knowledge/preferences as a key to enhancing productivity of layout designers.  

Layout design is a tedious process that entails sophisticated decision analysis and design support. 

Multiplicity, subjectivity, uncertainty, and evolving nature of layout design preferences and 

objectives mean that the synergistic use of available modeling and design tools as well as an expertise 

in tradeoffs lies at the heart of any layout design and analysis process. Consequently, any good 

automated layout design system should be flexible and robust enough to facilitate adaptation to the 

evolving scenarios as well as incorporation of cognitive and sub-cognitive expertise of domain 

experts. However, most traditional approaches to the layout design problem lack the requisite 

flexibility, efficacy, and robustness (Abdinnour-Helm & Hadley, 2000; Ahmad et al., 2004b, 2004c; 

Badiru & Arif, 2000; Osman, 2003). Furthermore, layout designers encounter a high cognitive 

overhead in acquiring, remembering, understanding, and applying the vast body of subjective and 

uncertain information/preferences available to them.  

Recent developments in the field of intelligent systems design have rendered powerful alternatives 

for tackling with such complex and uncertain problems as the layout design. Such soft computing 

tools include an array of emerging computing disciplines such as Fuzzy Logic, Neural Networks, 

Genetic Algorithms, and hybrids like neuro-fuzzy-genetic systems (Ahmad et al., 2004b; Karray & de 

Silva, 2004; Zha, 2003). All these technologies share the common denominator in their digression 

from classical reasoning and modeling approaches through a set of more flexible computing 

technologies (Negnevitsky, 2002). Such technologies have demonstrated the power and philosophy to 

solve complex and ill-defined nonlinear problems and offer significant potential in dealing with 

layout design problems. Such approaches are gaining favor in modeling cognition, intelligent 
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systems, and artificial intelligence as procedures involved are most analogous to human reasoning 

(Ahmad et al., 2003, 2004c; Akoumianakis 2000; Zadeh, 1999). IDEAL seeks synergistic employment 

of some of these powerful tools, which is described in detail here. 

The rest of the chapter is organized as follows. Section 3.2 presents the research framework. 

Section 3.3 describes rationale and role of various components in IDEAL. Section 3.4 outlines the 

philosophy and synergy of various intelligent components in IDEAL. Section 3.5 provides data 

requirements of IDEAL. Section 3.6 summarizes the chapter. 

3.2 Research Framework 

It should be noted that the computer-based algorithms could not replace human judgment and 

experience as these algorithms do not always capture the qualitative and intelligence aspects of layout 

design (Tompkins et al., 2002; White & Taket, 1994). Nevertheless, it is often effortless for experts to 

visually inspect some layout alternative and endorse its acceptability or otherwise. Conceivably, there 

are strong prospects for devising some incomplete models and soft methods to supplement human 

erudition and intuition. For instance, computerized generations of alternate layouts could provide 

efficacious support to the layout analyst by assisting in aptly addressing some of the complex problem 

dynamics.  

Indeed, the possibility of significantly enhancing the productivity of layout analyst and the quality 

of final solution through automated and expedited production, analysis, and treatment of a large 

number of superior layout alternatives has been advocated and sought since long (Armour & Buffa, 

1963; Bazaraa, 1975; Tompkins et al., 2002). In this regard, various popular solution approaches have 

their strengths and weaknesses. The usual tradeoff involved between the flexibility in incorporating 

the problem-specific details and the exhaustiveness of the search involved with various LD 

optimization tools is depicted in Figure 3-1 (Barakat et al., 1995; Chung, 1999). 

It can be seen from Figure 3-1 that on one end of the spectrum are enumerative search techniques, 

which are superior in terms of exhaustiveness in exploration of solution space. However, such general 

techniques incorporate very meager level of details from the problem-specific information. 

Furthermore, the application of such techniques is marred by the process speed and computational 

complexity. On the other end of the spectrum, human designers command high level of flexibility and 

are capable of incorporating high level of details of problem-specific information into the design 

process. However, the cognitive and information processing limitations of human designers translate 
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into very meager level of search in the solution space. Between these two extremes are techniques 

that provide various degrees of flexibility through selection of tools, algorithms, and parameters that 

incorporate varying level of details in the representation of problem-specific information and design 

process. Conceivably, an intelligently formulated hybrid approach involving metaheuristics (random 

search), placement algorithms (local search), soft computing modeling and computational tools 

(approximate reasoning), and human intuition could deliver a higher degree of flexibility as well as 

superior outcomes. 

In short, various modeling and computational tools and heuristics could help in characterizing 

possible outcomes, and the behavioral data may express some salient points about the designers’ 

behavior and preferences (Moe & Fader, 2000). In this regard, computerized tools may be viewed as a 

mechanism for redistributing cognition (Walenstein, 2002). Indeed, provisions of some kind of 

decision support are largely redistribution of cognition. Such tools provide support through various 

means such as process distribution, data distribution, plan distribution, etc. (Walenstein, 2002). 
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Consequently, the emphasis of this thesis is not on the pursuit of some perfect system but rather on 

the development of a tool that could supplement the knowledge, experience, and design intuition and 

other cognitive resources of human layout designer. 

Our research framework is based on the expert system paradigm for facilitating intelligent decision 

support in layout design, as depicted in Figure 3-2. Our selection of ES as a research paradigm is 

inspired by such inherent characteristics of an ES as the encoded knowledge, the separation of 

domain knowledge from the control knowledge, the ability to reason under uncertainty, the 

explanation facility, the knowledge acquisition capability, and the interactive user interface.  

However, an efficient and effective means of tackling the subjectivity and uncertainty in the layout 

design problem requires complementing of the traditional ES paradigm, as shown in Figure 2-4, 

through various intelligent components. Such intelligent components in our research framework 

would afford effective, efficient, and robust means of capturing and utilizing subjective and uncertain 

design preferences, while generating a diverse suite of superior layout alternatives. Consequently, our 

research paradigm, as depicted in Figure 3-2, contains some components that are not associated with 

traditional expert systems. These include an Intelligent Layout Generator (ILG), a Preference 

Inferencing Agent (PIA), and a Preference Discovery Agent (PDA). It should be noted that this 

research framework evolved during the course of this thesis as more insights are about the structure of 

the problem at hand and underlying dynamics. 

As already mentioned, an array of efficient algorithms for generating superior and diverse layout 

alternatives is an important step in automating the layout design process. Consequently, we use a 

hybrid fuzzy-genetic Intelligent Layout Generator towards this end. The intelligence aspect emerges 

from the employment of fuzzy rules/preferences in obtaining penalties and rewards for some 

composite genetic fitness evaluation function. Accordingly, a fuzzy Preference Inferencing Agent 

(PIA) seems to be a rational component for such an aiding tool.  

However, layout design rules and preferences are both implicit and dynamic in nature. People learn 

new concepts and outgrow old ideas, thus pronouncing the necessity for re-learning of design rules by 

layout designers. Such an implicit and evolutionary character of preferences suggests that an online 

Artificial Neural Network based Preference Discovery and Validation Agent (PDA) could augment 

the overall power of the system by discovering some pattern of design rules and preferences in an 

automated and self-updated manner.  
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It should be mentioned that not all details of these components are made explicit in this framework 

for parsimony sake. For instance, our PDA is designed in a manner that it could furnish the learned 

knowledge in the form of usable knowledge by creating preference profiles of decision makers. As 

such, PDA would not require any explicit and separate knowledge acquisition module. 

Through the employment of some meta-rules and heuristics, IDEAL has the capability to reason with 

uncertain and imprecise information and avoid the impractical search of an infinite solution space. An 

advantage of considering this kind of total solution approach is that, unlike usual partial layout 

construction procedures, it does not typically require backtracking over poor placement decisions. 

Indeed, backtracking is a computationally very expensive process (Ligget, 2000). In addition, 

backtracking procedures make the behavior of the system difficult to comprehend. The usual layout 

construction procedures do not have any robust means for pruning the search space, as there is no 

suitable evaluation measure for partial configurations allowing informed decisions in preferring one 

partial solution to another. In short, a system of spatial and functional relationships is a complex 
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whole and it succeeds or fails as such (Ibid.). Consequently, we have adopted the approach of 

generating complete superior solutions for consideration by the decision maker. 

3.3 Components of IDEAL 

Here we provide further details of various components of IDEAL, including their philosophy and 

operation. Details regarding implementation of these components are tackled in subsequent chapters. 

3.3.1 Intelligent Layout Generator (ILG) 

The primary task involved in automating the layout design process is to produce superior layout 

alternatives for further consideration and treatment by decision makers (Akoumianakis, 2000; 

Tompkins et al., 2002). In this regard, past studies have demonstrated that Genetic Algorithms 

provide a promising search and optimization approach (Abdinnour-Helm & Hadley, 2000; Ahmad et 

al., 2004d, 2004e; Geigel & Loui, 2001; Kado et al., 1995; Youssef et al., 2003b). Our system 

incorporates experts’ knowledge and user preferences in the layout design process through composite 

fitness functions of the ILG. This fitness function utilizes crisp preference weights furnished by the 

Preference Inferencing Agent.  

Indeed, GA have been applied to the layout design problem in various modes (Chan & Tansri, 

1994; Geigel & Loui, 2001; Mazumder & Rudnick, 1999; Mak et al., 1998; Martens, 2004; Tate & 

Smith, 1995; Youssef et al., 2003a). However, detailed discussions on these issues are beyond the 

scope of this thesis and some good surveys in these directions can be found elsewhere (Hopper & 

Turton, 2001; Kado, 1995). Nevertheless, most of the existing research applies GA in solving layout 

problem consisting of identical modules to be placed at identical locations. Such a problem can be 

treated as a relatively simpler one-to-one assignment of identical modules to the given cells/locations. 

In relatively advanced scenarios, the size of modules is considered fixed while leaving the 

determination of the shape of module to the solution procedure. 

Still, some advanced research work employs GA in solving problems with fixed dimensional and 

oriented modules to be placed in a two-dimensional plane. However, employing GA in such more 

advanced and generic layout design scenarios requires efficient and efficacious decoding or 

placement heuristics. Such heuristics are important in order to generate layout alternatives in a timely 

fashion. Indeed, the importance of such pre-processor algorithms in terms of efficiency, efficacy, and 

reliability cannot be overemphasized. Various decoding or placement heuristics are available in the 

literature, for instance, BL (Dowsland et al., 2002; Jakobs, 1996), IBL (Liu & Teng, 1999), BLF 
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(Chazelle, 1983), and DP (Leung et al. 2003). However, there is a relative dearth of decoding 

algorithms that are not only fast but also robust and effective in furnishing superior layout alternatives 

with higher aesthetic contents. In order to address this shortcoming, we have proposed some very 

effective decoding or placement heuristics. Details of these algorithms as well as our vision and 

implementation of ILG are provided in Chapter 4. 

3.3.2 Preference Inferencing Agent 

The brain of any ES is an Inference Engine that contains general algorithms capable of manipulating, 

and providing reasoning about, the knowledge stored in the knowledge base for solving problems by 

devising conclusions (Turban and Aronson, 2001). However, the inference engine in an ES is kept 

separate from the domain knowledge and is largely domain-independent.  

A major problem in building intelligent systems is the extraction of knowledge from human experts 

who think in an imprecise or fuzzy manner. The same is true with the layout design problem where 

the knowledge associated with the layout decision analysis and design is usually imprecise, 

incomplete, inconsistent and uncertain.  In the scope of our thesis, the term imprecision refers to 

values that cannot be measured accurately or are vaguely defined. Likewise, incompleteness implies 

the unavailability of some or all of the values of an attribute, inconsistency signifies the difference or 

even conflict in the knowledge elicited from experts, and uncertainty suggests the subjectivity 

involved in estimating the value or validity of a fact or rule.  

The inherently vague, differing, and conflicting nature of most layout design guidelines and rules 

renders fuzzy technology an excellent candidate for modeling the system dynamics as well as 

implementation of the inference engine. Indeed, FL provides a means to work with these imprecise 

terms and has been successfully employed for automated reasoning in expert systems in various 

subjective and uncertain work-domains (Konar, 2000). However, little effort has been done in 

formalizing such application of fuzzy logic in ALD systems. Nevertheless, an FL based Preference 

Inferencing Agent seems to be an important component for any decision aid tool in the layout design 

(Ahmad, 2002, 2003; Karray et al., 2001b; Raoot & Rakshit, 1993). 

As such, the underlying concept in IDEAL’s inferencing mechanism is the use of a Preference 

Inferencing Agent (PIA) comprising of fuzzy sets, rules and preferences for obtaining penalties and 

rewards in the layout fitness evaluation function for ranking and comparison purposes as well as for 

the automatic generation of layouts. The potential for utilizing FL arises from the fact that it provides 
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a very natural representation of human conceptualization and partial matching. Indeed, the human 

decision-making process inherently relies on common sense as well as the use of vague and 

ambiguous terms. FL provides means for working with such ambiguous and uncertain terms 

(Negnevitsky, 2002; Nikolopoulos, 1997). Consequently, an FL based PIA is expected to deliver 

much of the flexibility in the automated layout design process that the layout design practitioners 

have always longed for. As such, we deem PIA as one of the core components, along with ILG, in 

tackling and automating the layout design process as well as in furthering the research in this 

important area. Further details of our vision and realization of the PIA are given in Chapter 5.  

3.3.3 Preference Discovery and Validation Agent 

The task of extracting knowledge from experts is extremely tedious, expensive, and time consuming. 

Furthermore, the subjective and dynamic nature of preferences in such domains as layout design 

frustrates the creation of an up-to-date knowledge base. In this regard, the importance of knowing 

decision-makers’ needs and expectations through the quantitative analysis of behavioral data cannot 

be overemphasized. However, a traditional ES cannot automatically learn preferences or improve 

through experience. 

Indeed, an automated learning mechanism could improve the speed and quality of knowledge 

acquisition as well as effectiveness and robustness of ES. Incidentally, Artificial Neural Networks 

(ANN) have been proposed as a leading methodology for such data mining applications (Vellido, 

2002). ANN can especially be useful in dealing with the vast amount of intangible information 

usually generated in subjective and uncertain environments.  The ability of ANN to learn from 

historical cases or decision-makers’ interaction with layout alternatives could automatically furnish 

some domain knowledge and design rules, thus eluding tedious and expensive processes of 

knowledge acquisition, validation and revision (Marakas, 2002). Consequently, the integration of 

ANN with ES could enable the system to solve tasks that are not amenable to solution by traditional 

approaches (Negnevitsky, 2002).  

Fortunately, the layout design problem renders itself to automatic learning of non-quantifiable and 

dynamic design rules from both superior layout designs and test cases. Furthermore, it is possible to 

automatically learn some decision-makers’ preferences from their evaluation and manipulation of 

accepted or highly ranked layouts using some online ANN based validation agent.  However, in the 

absence of core components like ILG and PIA, which would exploit the layout design preferences, an 

effective PDA could not be developed and tested. Consequently, we have given PDA a lower priority 
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in developing IDEAL. Nevertheless, in Chapter 5, we have provided design and implementation of a 

small-scale prototype of PDA for demonstrating the viability of concept. In future, we intend enhance 

capabilities of our PDA and to employ Reinforcement Learning technology to complement ANN 

through incremental learning. 

3.3.4 Knowledge Base 

Knowledge is the primary raw material in an ES (Turban & Aronson, 2001). The conceptual model of 

the elicited knowledge needs to be converted to a format suitable for computer manipulation through 

a process called the Knowledge Representation (Marakas, 2002).  The processes of knowledge 

elicitation and representation are not necessarily sequential. Typically, knowledge elicitation 

continues throughout the lifecycle of the system development and its usage because knowledge could 

be incomplete, inaccurate, and evolutionary in nature. 

The knowledge of IDEAL consists of facts and heuristics or algorithms. It also contains the relevant 

domain specific and control knowledge essential for comprehending, formulating and solving 

problems. There are various ways of storing and retrieving preferences/rules including ‘If-Then’ 

production rules. The fact that representing knowledge in the form of such traditional production rules 

enhances the modularity of the system prompted us to adopt this approach. However, traditional and 

conventional logic based representation does not allow simple addition of new decision rules to the 

ES without any mechanism for resolving conflicts, thus resulting in inflexibilities that are not 

conducive to automated layout design systems (Chan & Lau 1997).  This furnished another reason for 

our choice of fuzzy logic modeling preferences and building the inference engine for IDEAL.  

3.3.5 Knowledge Acquisition Module 

Knowledge acquisition is the accumulation, transmission, and transformation of problem solving 

expertise from experts or knowledge repositories to a computer program for the creation and 

expansion of the knowledge base (Turban & Aronson, 2001). It should be noted that knowledge 

acquisition is a major bottleneck in the development of an ES (Jackson, 1999). It is primarily due to 

mental activities happening at the sub-cognitive level that are difficult to verbalize, capture, or even 

become cognizant of while employing the usual cognitive approach of knowledge acquisition from 

experts (Marakas, 2002). Consequently, the task of extracting knowledge from an expert is extremely 

tedious and time consuming. It is estimated that knowledge elicitation through interviews generate 

between two and five usable rules per day (Jackson, 1999). 
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Knowledge could be elicited by domain experts or derived from the existing knowledge base. 

However, knowledge could be acquired automatically by the system itself using some machine 

learning mechanism. We intend to formulate our PDA in a manner that could provide knowledge 

about user preferences in a form readily usable by ILG and PIA. However, the automated knowledge 

acquisition has not been tackled rigorously in this thesis.  

3.3.6 Explanation Facility 

The ability to trace responsibility for conclusions to their sources is crucial to transfer of expertise, 

problem solving, and acceptance of proposed solutions (Turban & Aronson, 2001). The explanation 

unit could trace such responsibility and explain the behavior of the ES by interactively answering 

questions. For instance, an explanation facility enables a user to determine why a particular piece of 

information is needed and how intermediate or ultimate conclusions are obtained.  

Explanation Facilities are very important from both developmental and marketing perspectives. For 

instance, the explanation facility is critical for both debugging of the knowledge base as well as user 

acceptance and adoption. These facilities may include user input help facility, design process 

information, and interrogation facilities. In its simplest form, an explanation facility could furnish the 

sequence of rules that were fired in reaching a certain decision. Indeed, the capability of an expert 

system to explain the reasoning behind its recommendations is one of the main reasons in choosing 

this paradigm over other intelligent approaches for the implementation of our concept.  

Once again, a well-designed, interactive and effective user interface is an important ingredient in 

enabling a good explanation facility. In addition, incorporation of effective explanation capabilities is 

elusive without conducting a meticulously designed empirical study with actual users. However, such 

an extensive study is beyond the scope of this thesis. However, IDEAL contains a basic explanation 

capability through which experts can trace the sequence of rules that are used in arriving at certain 

conclusions. In the future, we intend to augment this explanation capability with even more 

informative and effective techniques. 

3.3.7 User Interface 

The user interface (UI) defines the way in which an ES interacts with the user, the environment, and 

such related systems as databases. The need for an interactive and user-friendly UI cannot be 

overemphasized and it is deemed to be an important factor in rendering the system easy to learn and 

easy to use. Indeed, “the interface is critical to the success of any information system, since to the 
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end-user the interface is the system” (Head & Hassanein, 2002). Furthermore, research has shown 

that interface aesthetics as well as interactivity perform a larger role in users’ attitudes than users 

would admit (Kuroso & Kashimura, 1995; Ngo, 2001). As such, the perceived usefulness of the 

interface, or users perception about the usefulness of the interface in a given work domain, plays an 

implicit role in longer-term user acceptance and performance (Ngo & Law, 2003; Preece et al., 1996; 

Shneiderman, 1997a). Accordingly, we strive for an interactive graphical user interface (GUI) for 

IDEAL.  

Our GUI has the capability to accept input for the layout design from data files saved in text, csv, 

or Excel format (e.g. dimensions of packing space and modules as well as other parameters). It also 

has the provision for manual data entry or overriding of preferences from decision makers. Moreover, 

it enables fast and easy as well as informed and interactive manipulation of layout alternatives by the 

decision-maker.  Some snapshots of Experts’ User Interface and Knowledge Acquisition Modules as 

well as the prototype of end user interface are included in Appendix B for reference purposes. 

Incidentally, our interface is still evolving. It is because IDEAL is still in the development stage and 

most of its existing functionalities are designed for developers. Consequently, some of its modules 

contain a higher degree of complexity to meet ecological requirements of system developers and 

experts. Indeed, experts operating in complex and dynamic decision-making ecologies prefer to have 

interfaces that are more complex, nevertheless, powerful (Burns & Hajdukiewicz, 2004). However, a 

prototype of an end-user interface has been developed, and tested, using the philosophy of Ecological 

Interface Design as well as various usability and Human-Computer Interaction guidelines. We 

employed a combination of digital and analog displays for increasing the efficacy of the interface. 

Furthermore, our design affords information about the context through various textual, graphical, 

analogical, and iconic references. Such an interactive interface could become the single most 

important factor to the eventual success of IDEAL. 

Nevertheless, we intend to enhance the usability and interactivity of the interface in the near future. 

For instance, we could have a window showing one layout and another window showing the modules 

not included in the layout, enabling the decision maker to move modules in and out of the layout 

and/or rearrange them in the given layout while simultaneously observing changes in the fitness 

metrics used to rate that layout. In another mode of interaction, the user might be allowed to see a pair 

of highly ranked layouts for direct visual comparison and manipulation while observing the changes 

in fitness values in real time. Some mode of displaying contributions of various determinants of 
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fitness in multi-criteria decision analysis as well as other experts’ rating of a layout could augment 

both interactivity and efficacy of IDEAL. Indeed, IDEAL’s interface affords intervention from 

decision-makers into the process of generating alternate layouts by modifying membership functions 

of preferences or weights in the fitness function etc. However, as IDEAL continues to evolve and 

remove constraints on what could be afforded in its various modes of interaction whould furnish 

creative ways in which they can support decision-makers’ work. 

3.4 Synergy of Intelligent Components 

The proposed framework for IDEAL differs from a traditional ES by virtue of various intelligent 

components. Consequently, we deem it appropriate to elaborate the philosophy and synergic potential 

of such intelligent components, as these have been the primary focus of this research. This is because 

of our belief that these components furnish a significant amount of realizable automation in 

generating and manipulating superior layout alternatives by addressing the core issues in building the 

whole system. Furthermore, these components furnish a vehicle for carrying out further research in 

this direction. A somewhat detailed discussion of each intelligent component of IDEAL is provided in 

the following chapters.  

The need for intelligent components arises from limitations of conventional systems design 

techniques that typically work under the implicit assumption of a good understanding of the process 

dynamics and related issues. Conventional systems design techniques fall short of providing 

satisfactory results for ill-defined processes operating in unpredictable and noisy environments such 

as layout decision analysis and design. Consequently, the use of such non-conventional approaches as 

Fuzzy Logic (FL), Artificial Neural Networks (ANN), and Genetic Algorithms (GA) is required.  

The knowledge of strengths and weaknesses of these approaches could result in hybrid systems that 

mitigate limitations and produce more powerful and robust systems (Ahmad et al., 2004b; Cordon et 

al., 2004; Negnevitsky, 2002). Indeed, the potential of these technologies is limited only by the 

imagination of their users (Cordon et al., 2004; Ruan, 1997). 

 Among the intelligent components of IDEAL, Intelligent Layout Generator (ILG) generates 

superior layout alternatives based on pre-specified and user-specified constraints and preferences as 

well as preference weights furnished by PIA. The Preference Inferencing Agent (PIA) incorporates 

the soft knowledge and reasoning mechanism in the inference engine. The Preference Discovery 
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Agent (PDA) complements the ILG and the PIA by automatically discovering and refining some 

preferences. 

The proposed synergy of the ILG, the PIA, and the PDA is shown in Figure 3-3. The PIA receives 

fuzzy preferences and rules from various sources including domain experts, the knowledge base and 

the PDA. These fuzzy preferences and rules are defuzzified by the PIA that, through its inferencing 

mechanism, furnishes crisp weights for use in the ILG. The ILG, in turn, generates superior layout 

alternatives for ranking and further manipulation by decision-makers. The layout alternatives 

generated by the ILG could be validated by the user or by the PDA. Consequently, the experts’ 

ranking of layout alternatives serve as learning instances for updating and refining the knowledge-

base, fuzzy rules, and preferences. Incremental learning technologies like Reinforcement Learning 

might prove useful here. 

These intelligent components combine powers of the three main soft computing technologies 

representing various complementary aspects of human intelligence needed to tackle the problem at 

hand (Cordon et al., 2004; Zha, 2003). The real power is extracted through the synergy of expert 

system with fuzzy logic, genetic algorithms, and neural computing, which improve adaptability, 
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Figure 3-3: The Synergy of the Intelligent Components in IDEAL. 
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robustness, fault tolerance, and speed of knowledge based systems (Ahmad et al., 2004c; Cordon et 

al., 2004; Negnevitsky 2002; Zha, 2003). 

 We want to emphasize that these components have deliberately been designed to primarily have a 

generic character. The rationale behind this philosophy is our belief that a generic approach is more 

suitable in such subjective, uncertain, and dynamic problem domain as layout design that has 

applications in a diverse set of work domains. Consequently, a generic approach would result in 

minimal efforts from design engineer in adapting the system for any specific layout design problem. 

3.5 Data Requirements 

IDEAL requires various sorts of knowledge. These include the knowledge about components, such 

dimensions of packing space, number of modules, dimensions of modules, intrinsic utilities of 

modules, etc. Such knowledge is stored in a separate data file, which is distinct from the rule-base and 

may be seen as static knowledge. 

In addition, IDEAL requires the knowledge about preferences, such as constraints, rules, inter-

module flow relationships (which indicate adjacency requirements based on quantitative connectivity 

requirements), inter-module interaction relationships (which indicate adjacency requirements based 

on qualitative issues), etc. Such knowledge is stored in a rule-base in the form of production rules and 

may have both static and dynamic contents.  

Furthermore, IDEAL requires knowledge about procedures, such as algorithms and heuristics. 

These include domain specific control knowledge such as attributes and applicability of various 

heuristics and metaheuristic search procedures and their control parameters. Such knowledge would 

facilitate good decisions about selection of procedures. 

3.6 Summary 

In this chapter, we have presented a framework for building an interactive Intelligent System for 

Decision Support and Expert Analysis in the Layout Design based on Soft Computing technologies.  

We have provided description of various components and data requirements of the system. 

Furthermore, we have explained the philosophy and synergy of the three intelligent components of 

the system. In the subsequent chapter, we provide details of design and implementation of an 

Intelligent Layout Generator with some promising placement heuristics. 
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Chapter 4 

INTELLIGENT LAYOUT GENERATOR 

4.1 Introduction 

Endeavors towards automating the layout design process have a long history and numerous solution 

approaches, algorithms, and heuristics have been proposed in this direction. However, it is still a 

fertile research field due to the high degree of computational complexity and subjectivity involved. 

On one hand, computerized algorithms cannot substitute human intelligence, intuition, or erudition 

due to impediments in capturing subjective, qualitative, and political aspects of the work domain. On 

the other, computerized systems could increase the productivity and efficacy of the layout analyst 

through automated and fast generation, evaluation, and treatment of a large number of high-quality 

layout alternatives.  

Consequently, the prime task in automating the layout design process is the generation of superior 

layout alternatives for consideration and manipulation by domain experts. As such, an Intelligent 

Layout Generator (ILG) for generating superior layout decision alternatives in an expedited manner is 

a core component in any automated decision support system for layout design. We deem the ILG as a 

stepping-stone in furthering the research in this area. 

In this chapter, we present a Genetic Algorithms (GA) based approach for building such an ILG by 

employing various layout design heuristics, including some new ones that are fast and efficacious. 

The intelligence aspect comes from the employment of penalties/rewards or preference weights, 

furnished by a Preference Inferencing Agent, in the evaluation of a genetic fitness function.  

It should be noted that we carried out preliminary experiments with various layout design problem 

formulation including QAP, QSC, and 2D-BPP. Furthermore, we employed several popular solution 

approaches including analytical and heuristic solution methodologies as well as such metaheuristics 

based search mechanisms as GA, SA, TS, NE, and RS, etc. Our preliminary studies resulted in the 

selection of 2D-BPP as the formulation for this thesis due to its more generic and natural 

characterization of the layout design problem. In addition, we adopted GA, in conjunction with some 

efficient placement heuristics, as a solution methodology due to its global scope and non-
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deterministic search mechanism as well as potential to furnish a diverse set of superior layout 

alternatives. 

In short, these preliminary studies were the driving force in the selection of the approach we have 

employed in this thesis. This approach involves hybridization of the global search mechanism through 

GA and the local optimization through deterministic placement heuristics. Indeed, our approach has 

some innate characteristics, discussed later on, which are advantageous in providing effective 

decision support in layout design. 

The rest of the chapter is organized as follows. Section 4.2 provides a general mathematical 

formulation of the problem at hand and some computational experience with LINGOTM. Section 4.3 

discusses the significance of Genetic Algorithms in generating superior alternate layouts. Section 4.4 

describes the basic premise involved in metaheuristics based layout optimization approaches. Section 

4.5 provides details about various GA operators and parameters as well as some effective and 

encompassing quantitative fitness evaluation functions. Section 4.7 provides some very promising 

decoding heuristics. Section 4.8 provides results of comparative studies of some existing and our 

proposed decoding heuristics. Section 4.9 provides some test cases for demonstrating the 

effectiveness of the research paradigm.  Section 4.10 summarizes the chapter. 

4.2 Mathematical Formulation 

Here we provide a generic formulation of the two-dimensional oriented bin-packing problem (2D-

BPP) where a finite number of rectangular modules Mi (i = 1, 2, 3, …, n) and m rectangular bins are 

given. The width and height of modules are wi and hi and all bins or packing spaces are rectangular in 

shape with standard width W and height H, respectively. An orthogonal packing pattern is desired 

that, by definition, involves a disjunctive placement of rectangles on the packing space in a manner 

that edges of each module Mi are parallel to x- and y- axes of the packing space. As all modules are 

oriented, rotations of modules are not allowed. The bottom-left corner of the bin is the reference point 

for the bin with coordinates (x,y)=(0,0). The geometric center of a module Mi determines the spatial 

location of modules on the packing space for utility calculations, as depicted in Figure 2-1. The 

bottom-left corner of each module Mi is the reference point for the position of the module with 

coordinates (xi,yi). These determinants of module location, xi and yi are the decision variables besides 

the binary variable bi that determines the inclusion or exclusion of module Mi in the packing 

configuration. Similarly, we assume that (Xc,Yc) represent the reference point on the bin for the 
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purpose of utility calculations. In this simplistic formulation, we assume that the mutual position of 

modules does not affect the utility of a packing pattern. All utilities can be calculated based on a 

module’s distance from a pre-determined point of focus on the bin or the location of the module in the 

overall packing, as depicted in Figure 2-1.  

Objective Function 

The objective is to maximize the Total Utility of modules packed into the given packing spaces. The 

Euclidean distance between the point of focus, here the center, of the packing space and the center of 

a module Mi, denoted by iδ , is given by: 
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     Equation 4-1 

Alternatively, the Manhattan distance function, which is a very popular distance measure in when 

inter-module distances are small such as in a User Interface, can be employed. The Manhattan, 

rectilinear, distance measure would result in linear distance function and would be advantageous 

when some derivative based method is used for the exploration of the solution space. Indeed, a 

provision for users to readily select one of these two popular measures of inter-module distances 

would increase the scope of any ALD system (Ahmad, 2002; Mir and Imam, 2001). However, here 

we limit ourselves to the Euclidian distance measure for illustration and simulation purposes. 

The goal for this simplified formulation is to maximize the weighted sum of utilities of modules 

minus weighted loss due to unused area. It could be mathematically expressed as follows: 
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     Equation 4-2 

Here, ui is a function of intrinsic utility ( iα ) and the spatial location (xi,yi) of the module Mi in the 

packing space; ζ is the disutility of unused/waste space; and, m is the number of bins required to 

pack given modules (in situations where more than one identical packing spaces available). This 

expression could be simplified into the following: 
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Boundary Conditions 

A given module Mi lying within the boundary of the packing space should satisfy the following 

boundary constraints.  

ii wWx −≤          Equation 4-4 

ii hHy −≤          Equation 4-5 

0, ≥ii yx          Equation 4-6 

These constraints can easily be adapted when there are multiple and identical packing spaces 

available by incorporating a binary decision variable bi that is set to 1 when a module is included in 

the packing space and set to 0 when the module is not a part of a partial or final layout solution.  
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    Equation 4-8 

No-Overlap Constraints 

In order to ensure that a module Mi does not overlap with a module Mj, satisfying any one of the 

following four conditions would suffice for all i, j =1,2, … n and ji ≠ . 

1. The module Mi is completely on the left of the module Mj. 

2. The module Mi is completely on the right of the module Mj. 

3. The module Mi is completely below the module Mj. 

4. The module Mi is completely above the module Mj. 

The first condition can be modeled using the following constraint: 

iji wxx ≥+−  
A similar approach would result in the following four constraints corresponding to each of the four 

conditions listed above: 

iji wxx ≥+−           Equation 4-9 

jji wxx ≥−         Equation 4-10 
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iji hyy ≥+−         Equation 4-11 

jji hyy ≥−         Equation 4-12 

It can be seen that Expressions 4-9 and 4-10 are mutually exclusive. The same is true for expressions 

4-11 and 4-12. If any one of these four constraints is satisfied then it is a sufficient condition to 

confirm a non-overlap (Ahmad, 2002). 

Therefore, this either-or set of constraints can be transformed into the standard Linear 

Programming Formulation by subtracting a big constant D from the R.H.S. of these requirement type 

constraints: 
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     Equation 4-13 

As already mentioned, in order to ensure that a module Mi does not overlap with a module j, any one 

of the four conditions listed in expression 4-13 should be satisfied for all i, j =1,2, … n and ji ≠ . In 

the following, we provide proof for this axiom. 

4.2.1 Simplified Single Bin Formulation 

This formulation can be simplified for a case where layout for only one packing space or bin is being 

considered. This would result in the following formulation: 
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We employed this simplified formulation in our comparative studies of placement algorithm as 

well as implementation of the ILG. However, in order to learn some insights about the structure of the 

problem, we employed such popular and powerful general-purpose optimization software as 

LINGO™ (Industrial Version 7.0). We used an Intel Xeon 3.06 GHz processor with 256MB of RAM 

under Windows XP. The computational experience is summarized in Table 4-1. 

In these experiments, inputs were dimensions and utilities of modules and outputs were coordinates 

on the packing space where the modules were placed. The first column in Table 4-1 provides the size 

of layout design problems tested, varying n between 4 and 10. Furthermore, we treated coordinates (x, 

y) as both Integer (I) and Continuous(C) variables, as indicated in the second column. The third 

column contains the time spent by the LINGO in solving the problem. The fourth column depicts the 

quality of solution (global vs local optimum). The fifth column provides some comments on these 

solutions based on visual evaluation.  

Size Type Time Quality of Solution Comments based on visual evaluation 

4 C 9 min. Local Optimum Poor solution; Poor space utilization 

4 I 5 min. Local Optimum Poor solution; Poor space utilization 

6 C 32 min. Local Optimum Poor solution; Poor space utilization 

6 I 28 min. Local Optimum Poor solution; Poor space utilization 

10 C > 7 days No feasible solution Several trials resulting in similar fate. 

10 I > 7 days No feasible solution Several trials resulting in similar fate. 

Table 4-1: Computational Experience with LINGO for 2D-BPP. 
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These results were largely as per expectations as the problem is known to be strongly NP-Hard. It 

should be noted that constraints restricting the overlap are dynamic in character unlike constraints in 

normal non-linear optimization problems. These constraints depend on the current topology of the 

modules at any optimization stage (Mir & Imam, 2001). Any perturbation, however small it may be, 

in the current topology of the layout results in an entirely new problem and hence an entirely new 

solution space without any discernible change in the topology.  

Moreover, even a small-scale problem required large amount of empty space for the movement of 

modules. In these experiments, a tighter packing space that was sufficient to comfortably 

accommodate all the modules always resulted in infeasible solution. A sample problem and its layout 

solution, obtained from LINGO, are shown in Table 4-2 and Figure 4-1 for reference. For this reason 

and because of other inherent characteristics of the problem, the typical methods of solving 

constrained non-linear optimization problems cannot be useful (Imam & Mir, 1989). In conclusion, 

the exact algorithms are unpromising; consequently, there is a need for some efficient module 

placement strategy that could effectively reduce the size of the search space to some tractable subset 

of solutions.  

 An unexpectedly thorny observation was the long time taken by LINGO in coming up with an 

initial feasible solution/layout even in cases where number of modules was very small and the size of 

the packing space was quite large compared to the size of individual modules. For test cases studied, 

it is observed that the time needed to obtain a layout (optimal or sub-optimal) in the 2D-BPP using 

LINGO is exceedingly prohibitive. In short, exact solution approaches are not promising. 

Conceivably, the whole exercise suggests the need for some efficient module placement strategies, 

which could effectively reduce the size of the search space to some tractable limit. 

n = 6; W = 10; H = 10; ζ  = 1;  
Objective = 491.1 

i wi hi ui xi yi 

1 1.9 2.5 5 3.09 2.45 

2 2 2.5 6 1.45 6.27 

3 2 1 10 3.46 4.96 

4 1 0.75 14 2.08 4.2 

5 4 1.9 12 5.47 4.36 

6 5 3.8 8 5.00 0.55 

10

10(0, 0)

1

2

4
3 5

6

 

Table 4-2: Solved Example for 2D-BPP. Figure 4-1: Solved Example for 2D-BPP. 
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The subsequent sections provide details of a Genetic Algorithm formulation and a range of 

proposed module placement strategies that are expected to solve large layout design problems 

reasonably fast. It should be noted that the given exact formulation can be easily and quickly adapted 

for such intelligent search techniques as Genetic Algorithms. 

4.3 Genetic Algorithms in Layout Design 

The high degree of subjectivity, multiplicity of evaluation criteria, and combinatorial complexity of 

the layout design problem indicates the difficulty in automating the layout design process. Intuitively, 

metaheuristics have been successfully employed and studies have demonstrated the efficacy and 

promise of such approaches (Mazumder & Rudnick, 1999; Lee & Lee, 2002; Martens, 2004; Tate & 

Smith, 1995; Wu et al., 2002;). Among such metaheuristics, GA are the most frequently elected and 

researched ones (Ahmad et al., 2004f; Dowsland et al., 2002; Hopper & Turton, 2001; Tate & Smith, 

1995). We have elected for GA in developing our ILG due to various inherent features, which are 

advantageous in procuring superior diverse layout alternatives. Incidentally, the diversity in layout 

alternatives is a critical factor in effective decision-making in the layout design.  

Indeed, the freedom conferred by relatively relaxed requirements of GA in terms of problem 

formulation is also a big advantage. GA do not require much knowledge on the underlying rules or 

search space but simply a fitness function to evaluate how the fitness of solutions. Furthermore, GA 

may also be used for simultaneous and parallel optimization against several fitness metrics. As such, 

GA may be perceived as logically complementing the abilities of a knowledge-based system to reason 

about the application of different rules in dynamic, subjective, and uncertain scenarios, which is often 

the case with layout design problems. 

4.4 Basic Premise 

The core of our GA based approach is quite simple and involves treating the layout design as a 

packing problem. This process involves defining an ordering of modules (genotype) and a placement 

or decoding algorithm for obtaining the actual layout (phenotype) by placing modules in the given 

order (Ahmad et al., 2004b; Dowsland et al., 2002; Liu & Teng, 1999).  

The efficiency and effectiveness of our approach is largely determined by the speed and 

effectiveness of the placement algorithm employed in decoding (Ahmad et al., 2004b, 2004d, 2004f; 

Dowsland et al., 2002; Jakobs, 1996; Liu & Teng, 1999; Wu et al., 2003). Consequently, superior 
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placement algorithms are critical for the usefulness of such an approach. However, existing placement 

algorithms lack the requisite efficiency and efficacy required in most layout design problem domains. 

These limitations become more pronounced when aesthetic values, such as symmetry, are among the 

determinants of layout utility. Consequently, an important step in designing and realizing an effective 

ILG is the development of some improved heuristics, especially ones that may provide layouts with 

higher aesthetic values.  

4.5 Key Features 

In addition to an efficient and effective decoding or placement heuristic, the GA based approach for 

solving the layout design problem involves determining several other problem-specific and generic 

critical features. The problem-specific decisions concern the fitness metric(s), initial 

solution/generation, encoding scheme, as well as the operators employed to navigate through the 

search space. Generic decisions comprise of the probabilities at which the search space navigation 

through crossover and mutation operators are applied, the population and generation sizes, and the 

stopping criteria. 

4.5.1 Encoding Scheme 

Our GA encoding scheme represents a layout using a sequence (or permutation when repetitions are 

not permitted) of modules. For example: {12, 4, 11, 20, 9, 14, 2, 6, 13, 1, 15, 3, 18, 10, 7, 5, 19, 17, 

16, 8} shows a sequence of 20 modules to be placed in a given packing space. The total length l of a 

the sequence S, or chromosome, can be specified either by domain experts or through some algorithm 

based on a maximum number of modules that could be placed in a given packing space, amount of 

white space desired, etc. It has a significant role in determining the speed of the whole process. In our 

studies, we used a sequence length equal to the total number of modules, as we have not allowed 

leaving some modules out of the layout design. Such a representation of a layout solution as a 

sequencing problem permits the use of popular manipulation techniques for the searching the solution 

space. For instance, we may employ some order-based crossover operators instead of formulating 

some problem-specific operators that can only be applicable in one specific context. 

4.5.2 Population Size 

Population Size (P) also has significant role in determining the speed of the process. However, our 

preliminary experiments as well as earlier studies demonstrate that even a modest population of the 
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size 10 to 20 could afford good results without expending computational resources unnecessarily 

(Ahmad, et al., 2004d, 2004f; Tate & Smith 1995, Jakobs 1996). Consequently, we elected to employ 

a pre-specified and static population size during the evolution process. As such, the initialization step 

in the GA randomly generates P sequences of modules (S1, S2,…, SP) to create the initial population.  

In our studies, we elected to employ a population size of 50. A larger initial population may be 

unnecessary since the GA automatically generates new members of the population in the process of 

searching the solution space. Alternatively, we can have a population pool that grows steadily with 

each generation (i.e. number of children slightly exceeds the decreased number of parents). 

4.5.3 Genetic Operators and Parameters 

In GA, genetic evolution of the population creates new solutions through genetic operations on 

individuals from previous generation. In the layout design context, genetic operations produce new 

layout solutions through evolution of existing solutions (crossover and mutation of individual layouts 

from previous generations). The means of performing these operations must be defined for the layout 

design problem. Since an order based encoding is employed, it must be ensured that valid 

chromosomes are engendered by these operations. A variety of genetic operators could be suggested 

for the GA.  

We propose a new crossover and a couple of new mutation operator suitable for layout design 

problem. Among the published genetic operators, we limit ourselves to genetic operators similar to 

those employed by Tate & Smith (1995) and Jakobs (1996) for our application. These constitute a 

popular extract of possible operators. The final set of evolution operators (selection, crossover, 

mutation, and replacement) and parameters (population size, crossover rates, mutation rates, and 

termination criteria) are determined after some preliminary trials. Nevertheless, our preliminary 

studies as well as past studies show that the effectiveness of GA methodology remain largely 

insensitive to the exact values of such parameters (Ahmad, et al., 2004d; Leung et al., 2003; Tate & 

Smith, 1995). 

Selection Operator 

The selection operator selects individual layout solutions for genetic evolution. There is a diverse set 

of selection strategies available in the literature. However, a rank based elitist selection strategy, 

commonly known as biased Roulette Wheel selection, is one of the most common selection strategies 

with a bias towards selecting the fitter solutions (Negnevitsky, 2002). Selecting fittest individuals is 

also a popular strategy. Another common strategy is the random selection.  
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Intuitively, the rank based strategy should be more efficient as it gives more weightage to fitter 

solutions. However, as already mentioned, our ultimate goal is to develop an automated layout 

alternative generator as a decision and design aid for layout design. Such a system would be more 

effective when an array of superior but diverse layout alternatives available to decision makers. As 

such, a random selection strategy might be deemed more effective, if not efficient, for such systems. 

It is because a rank based selection might result in faster convergence to a few relatively inferior 

solutions. 

However, our preliminary studies did not show any systematic difference resulting from the choice 

of selection strategy. Although we have allowed decision-makers to override the default option and 

employ others selection strategies, we adopted the biased Roulette Wheel selection strategy for our 

studies. The Roulette Wheel selection culls individual solutions with a probability given by:  
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 where fi is the fitness value of layout solution i Equation 4-14 

In practice, the interval I = [0, 1) is divided into P subintervals such that each individual layout 

solution is assigned a sub-interval as follows: 

S1 ↔ I1 = [0, p1),  
S2 ↔ I2 = [p1, p1+p2), 

: 

SP ↔ I2 = [1- pP, 1). 

Selection is done by generating a random number in the interval [0, 1) and the corresponding 

interval determines the individual layout. It can be seen that this is very much like spinning a roulette 

wheel where each individual layout has a segment on the wheel proportional to its fitness giving it the 

name Roulette Wheel selection. 

Mutation Operator 

In mutation, altering a single solution generates new individuals. In the context of the layout design 

problem, mutation results in diminutive changes in an existing layout. In itself, mutation amounts to 

random search of solution space with an incremental random modification of the existing layout and 

accepting it if there is an improvement. In the GA, crossover operator is the most efficient search 

mechanism. However, crossover itself does not guarantee the accessibility of the entire search space 
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with a finite population size. The mutation operation makes the entire search space reachable, despite 

a finite population size. 

The mutation rate is the probability of mutating a selected chromosome. If mutation rate is very 

low then there are higher chances of being trapped in a local optimum. However, if the mutation rate 

is very high then there would be too many random perturbations and offspring might lose their 

resemblance to the parents. Based on our preliminary studies, we selected the mutation rate to be high 

(more than 50%). The requirement of a diverse set of superior solutions entails such a higher mutation 

rate to ensure diversity in the population of layouts and prevent the population from becoming too 

homogenized. Indeed, these observations conform to results reported in past studies (Tate & Smith, 

1995; Leung et al., 2003). The following mutation operators are used in the proposed GA: 

1. Tate and Smith (1995) proposed following set of mutation operators:  

a. Reverse the subsequence of the sequence in the mutating layout solution with 

random selection of the mutating solution and mutating subsequence. 

b. Add a new breakpoint resulting in splitting of a sequence or layout configuration 

by moving a random subsequence of modules to a new packing space or bin. 

c. Remove a breakpoint resulting in merger of two layout subsequences into one 

packing space or bin; i.e. consolidation of modules by reducing the number of bins. 

2. Jakobs (1996) used the following set of mutation operators:  

a. Same as in 1(a). 

b. Exchange elements of two randomly selected layout subsequences. 

3. Remove a subsequence of random length from the beginning of the sequence and append it 

at the end of the sequence. 

4. Replace a randomly selected module with another randomly selected module from 0, 1, 2, 

… n. Where the module ‘zero’ represents a dimensionless dummy module ensuring that the 

real number of modules in a sequence may even be reduced (thus reducing the number of 

modules placed in a given packing space). A tabu list may be maintained to avoid 

introduction of a recently removed module back to the layout for a specified number of 

mutation iterations. Such an approach has similarities with the Tabu search mechanism 
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discussed in Section 2.5 and would increase the probability of diversity among solutions. 

However, such a random swapping of modules might not be feasible due to come 

proximity or usability constraints. Nevertheless, such prohibited moves would result in the 

debased fitness value of the resulting solution and thus reduce the probability of being 

selected for further evolution. 

It should be noted that the first set of mutation operators is applicable only for multiple packing 

space layout design problem. While, the second and third set of mutation operators could be applied 

in both single and multiple packing space layout design problem.  

Crossover Operator 

During crossover, one or more offsprings are derived from two or more parents. In the layout design 

context, crossover results in combining parts of two existing layouts in order to generate a new 

layout. In this regard, an appropriate set of crossover operators as well as crossover rate is needed. A 

higher crossover rate, or probability, permits a more extensive exploration of the solution space and 

reduces the chances of trapping in a false optimum. On the other hand, a lower crossover probability 

enables exploitation of superior solutions, or search points, in the existing population. In view of the 

highly subjective nature of most layout design applications, we selected a crossover rate of 20% in 

order to exploit existing solutions more. 

The following crossover operators are used on two parents (say Sj and Sk) selected randomly based 

on their ranks in the population.  

1. Tate and Smith (1995) Crossover consists of following steps:  

i. Fill each position in the offspring layout by randomly selecting a gene present at the 

same position from the first or second parent layout (resolving conflicts to guarantee that 

the result was in fact a sequence). 

ii. Insert leftover genes in order (or in random order) to fill in the blanks (unresolved 

conflicts). 

iii. Borrow breakpoints set randomly from one of the parents. 

2. Jakobs (1996) Crossover consists of following steps:  

i. Copy q elements of the sequence Sj at a random position p in the new sequence Snew. 
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It should be noted that nqpl ≤≤ , . 

ii. Fill up the remaining elements of Snew with other elements of Sk in the same order. 

3. Append a randomly selected subsequence from one parent to another, overwriting the trailing 

subsequence in the second parent (possibly, with an additional breakpoint) and removing any 

duplication, if necessary. 

It should be noted that the first crossover operator is applicable only for multi-bin layout design 

problem. While, the second crossover operator is applicable only for a single bin layout design 

problem. Furthermore, the second crossover is a sort of a drastic mutation operator. 

Replacement Strategy 

A traditional GA generates P offspring layouts before sorting out the poor ones by selection. We 

argue that module placement strategies are computationally very costly; consequently, we propose 

that GA sort out the worst individual after a new offspring layout is created on an ongoing basis. As a 

result, fitter offspring could influence the layout solution quality (an approach similar to the one used 

by Jakobs, 1996). This strategy results in a steady state or incremental GA as opposed to a 

generational GA where multiple offspring are created to replace the current population. 

4.5.4 Fitness Function 

The most taxing and application specific task in employing GA is the definition of fitness function(s) 

(Al-Sultan et al., 1996). The fitness function is used to differentiate between a superior and an 

inferior layout solution. It should be selected with great prudence, as the GA will converge on layout 

solutions deemed fit against the fitness function employed. In the layout design context, the best, 

though somewhat impractical, approach would be to let experts or users judge the fitness through 

visual evaluation (Ahmad et al., 2004b; Lok & Feiner, 2001). However, one of the important 

objectives in developing IDEAL is to minimize user inputs once the preliminary preferences have been 

identified through various means. We discuss details of our fitness metrics in Section 4.6. 

4.5.5 Termination Criteria 

We opted to terminate the GA iterations when the improvement in the fitness of a new population 

over the preceding population is less than a certain value (say 0.1%) for a pre-specified number of 

iterations. Typically, we terminated the GA after 1,000 to 5,000 iterations, as experience revealed that 
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the layout fitness obtained after few thousand iterations is only marginally different from those 

obtained by 50,000+ iterations. Moreover, some marginal gain in fitness with regard to some rigid and 

myopic fitness metric offer little meaning and practical advantage in such subjective and uncertain 

domains. Nevertheless, the termination criteria can readily be changed by the user of IDEAL. 

Furthermore, experience has shown that very large number of GA iterations is more likely to 

converge on few closely related layout alternatives, defeating the objective of having a diverse set of 

superior layout alternatives.  

4.6 Fitness Evaluation Metrics 

As already noted, the layout design problem involves such a plethora of subjective and uncertain 

considerations that no single objective could solely be used to generate layout alternatives. However, 

automated layout design systems require some fitness quantification and evaluation mechanism in 

order to guide the search to superior solutions (Ligget, 1992). We, therefore, propose the use of some 

hybrid fuzzy-genetic fitness function that would combine multiple objectives in terms of 

rewards/penalties arising from various layout design considerations. As such, various determinants of 

the layout utility are combined through some crisp weights or Significance Parameters (SP) to 

penalize deviation from the desired values or Preference Parameters (PP).  These significance and 

preference parameters may be determined by the layout planners or through the PIA using the 

existing knowledge. The development of such a multi-attribute layout fitness function is dealt with in 

Section 5.4. As a preliminary research model, we envisaged the following major categories of design 

preferences/parameters as determinants of layout fitness: 

a. Intrinsic Utility of a module 

b. Inter-Module Interaction 

c. Space Utilization 

d. Qualitative Fitness or Aesthetic Appeal 

Despite all the subjectivity and uncertainty involved in calculating the intrinsic utility of a module, 

the inter-module interaction, and the space utilization, we classify these as quantitative measures of 

layout fitness. The rationale is that these measures may be quantitatively captured in an automated or 

semi-automated fashion with relative ease, given that the required data is complete and known with 

certainty. Nevertheless, the evaluation of aesthetic appeal cannot be readily measured using some 

tangible factors. Consequently, we classify determinants of the layout aesthetics as qualitative 

measures of layout fitness. Here, we describe these fitness measures in details. 
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4.6.1 Intrinsic Utility of Module 

Intrinsic utility of a module is the utility a module brings when it is included in a layout design. 

Although it forms an important component of the total fitness of the layout, for simplicity sake and 

without any loss of generalization, we ignore inherent utility of a module in our prevailing 

discussions. It is because our subsequent comparative analyses involve single bin scenarios where all 

modules need to be included in a packing configuration. As such, the intrinsic utility of a module 

would only constitute a constant term in the total fitness. 

4.6.2 Inter-Module Interaction 

The inter-module interaction is an important determinant of layout fitness in many layout design work 

domains. For instance, this inter-module interaction may define the material, personnel, or 

information flow from one facility to another in the facility layout design context. In such scenarios, it 

will be an important factor in determining the material, personnel, and information transfer costs of 

operations. For instance, it is estimated that about 25% of operating costs in manufacturing facilities 

are due to materials handling (Tompkins et al., 2002). Another instance would be the wire length and 

routing in VLSI circuit design that is usually done after macrocell placements. These wire lengths and 

routings may deteriorate the circuit performance through such nuisances as crosstalk and signal 

delays (Youssef et al., 2003).  

Indeed, we consider inter-module interaction as an important determinant of layout fitness. 

Consequently, IDEAL has been equipped with functionalities for modifying these inter-module 

interactions through editing values in an interaction matrix (also termed as connectivity matrix or 

flow matrix in some layout design work domains). The interaction matrix provides the interaction 

between all pairs of modules. An element of this matrix is denoted by fi,j and represents the flow 

between any two modules Mi and Mj. 

The fi,j may or may not be same as fj,i, i.e. the interaction matrix may also be asymmetric. 

Consequently, IDEAL has been equipped with the flexibility in formulating both symmetric and 

asymmetric interaction matrices. For elaboration purposes and without any loss of generalization in 

our comparative analyses, we assume that the inter-module interaction among all modules is identical 

and unity. Furthermore, we calculate it as the sum of mutual distances between geometric centers of 

all pairs of modules or the Total Inter-Module Distances (IMD). This specific case of our general 

inter-module interaction constitutes a popular fitness evaluation metric in the literature. 
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4.6.3 Space Utilization 

Space utilization is among the more popular layout design fitness metrics.  Apparent reasons for such 

popularity may include the relative ease in automating the quantification of layout fitness. 

Nevertheless, here too the inherent subjectivity and uncertainty involved in layout designing often 

complicates the issue. In order to facilitate the foregoing discussion, we have elaborated some basic 

terminology used here in Figure 4-2. 

In Figure 4-2, the large rectangle represents the bin or packing space. Within this packing space, 

we find another rectangle, which is the smallest rectangle that fully encompasses the other five 

smaller rectangular modules placed in the layout. We term this smallest rectangle that encompasses 

the whole layout as Enclosing Rectangle (ER). In the given packing configuration, we see some 

empty spaces that are surrounded by modules on all sides. We term such an empty space as Dead 

Space. 

With this basic terminology, we proceed to the definition of fitness metrics. Indeed, there are 

numerous measures of space utilization available in the literature including the height of the packing, 

the module tightness, the amount of dead space, the amount of usable spare space, etc. Evidently, all 

these measures of space utilization have merits and demerits, as revealed by the following discussion, 

Packing Space
(Bin)

2

4

1

3

5 Enclosing Rectangle
(Enclosure / ER)

Modules

Trapped Dead Space

Empty Area in ER

Trapped Dead Space

 
Figure 4-2: Basic Bin-Packing Terminology 
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and no single measure can be deemed as truly and fully capable of capturing the space utilization in a 

given layout configuration. Nevertheless, we have employed the Packing Height (HT), the 

Contiguous Remainder (CR), and the Module Tightness (MT) for our comparative evaluation of 

decoding heuristics in terms of space utilization.  

The underlying principles for selecting these metrics involved rationality of the concept, 

consistency and robustness, feasibility and ease of implementation, as well as popularity within the 

scientific community. Indeed, these metrics, along with inter-module interaction, are found to provide 

a rational regime for gauging the space utilization. Nevertheless, our experiments also reveal that 

these metrics capture different rational notions of space utilization, as discussed in the following 

paragraphs. 

Height (HT) 

The Height (HT) of the packing pattern is the most widely used measure of space utilization (Ahmad 

et al., 2004d; Hopper & Turton, 2001; Leung et al., 2003). It is based on the notion that a lower 

packing height implies availability of more spare space for further placement of modules. 

Nevertheless, this measure of space utilization has serious shortcomings. These shortcomings can be 

illustrated from Figure 4-3 where both layout topologies have identical heights. Accordingly, the two 

packing patterns have the same fitness value in terms of HT.  However, layout B might be deemed 

more fitting in terms of space utilization. In short, some packing pattern might be deemed superior to 

other packing patterns of the same HT in terms of other objectives like sum of distances from some 

focal point, inter-module interactions, etc.  

Apparently, the ease in quantifying height of a layout pattern in an automated manner has been the 

major contribution to its popularity (Dowsland et al., 2002; Jakobs, 1996; Hopper & Turton, 2001). 

Consequently, we have included HT as one of the measure of space utilization for the ease of 

comparison with earlier heuristics. In computational terms, the negative of HT is employed as the GA 

fitness function. 

In order to facilitate use of HT in some hybrid GA fitness metric for MCDM, we need to normalize 

it against some suitable benchmark value. Towards this end, we introduce the notion of  “Benchmark 

Packing Height” (BPH). We calculate the BPH as ratio of the Total Module Area and the Width of 

the packing space, as shown in the following Equation:  
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In reality, it is a lower bound on the packing height, which is possible only if all the modules are in 

a manner that there is no dead space or spare space in the enclosing rectangle (i.e. 100% MT). Thus, 

the actual packing height in any practical problem is usually greater than BPH. Using this BPH, we 

may calculate a normalized measure of packing height ( TĤ ) in the following Equation:  

100ˆ ×−=
BPH

HTBPHTH        Equation 4-16 

This normalization scheme was adopted after experimentation with the behavior of GA with 

several other normalizations. With the above normalization, the Packing Quality will be 100% in a 

hypothetical supreme condition. In all practical cases it will be less than 100 and may even be 

negative for extremely poor packing. In IDEAL, user has an option to readily select either HT or its 

normalized type TĤ . 

Contiguous Remainder (CR) 

The research literature has long been proposing the Contiguous Remainder (CR) or the ‘reusable trim 

loss’ as a more appropriate measure of space utilization (Jakobs, 1996; Liu & Teng, 1999). The CR 

refers to the largest contiguous vacant portion of the packing space available for additional module 

placements (Ahmad et al, 2004d, 2004f; Jakobs, 1996; Liu & Teng, 1999). In other words, CR is the 

empty area on a given bin or packing space outside the edges of the boundaries created by the packed 

modules in a layout configuration, as depicted in Figure 4-4. Conceivably, a larger value of CR 

implies that more space is available for further placements.  

 
Figure 4-3: Two Layout Patterns with the Same Height 
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Figure 4-4: Elaboration of the concept of Contiguous Remainder 

 

Figure 4-5: Three Layout Patterns with the Same Height 

For further elaboration and comparison purposes, we consider Figure 4-5 where three layout A, B, 

and C have exactly the same HT. However, the CR in the layout A is less than that of in layout B and 

C. Note that CR does not include the dead spaces surrounded from all sides, as is the case with layout 

A where some space is surrounded by modules 2, 3, 4, and 5.  

Despite widespread recommendations for the adoption of CR as a more appropriate measure of 

space utilization, we are not aware of any research literature that actually employs CR for 

comparative studies. Apparently, the conceptual and computational rigor involved in automatically 

quantifying the value of CR hampered the adoption of CR as more viable measure of space utilization 

by the scientific community. 
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Indeed, in many instances, CR proves to be a better measure of space utilization than HT. For 

instance, the layout pattern B in Figure 4-3 has larger CR than the pattern A. Similarly layouts B and 

C in Figure 4-5 have higher CR than layout A. However, CR alone does not capture sufficient 

information regarding space utilization. For instance, Figure 4-5 has layouts B and C that have 

identical CR; however, some layout experts might prefer to rate the space utilization of the layout C 

higher than that of B as some part of CR in layout B consists of a thin slice of space that might not be 

useful in a given layout design scenario. Nevertheless, our preliminary experiments have consistently 

shown CR as a better measure of space utilization than HT. 

The Contiguous Remainder can be calculated by using the following expressions: 

SpaceDeadTrapppedAreaModuleTotalAreaPageCR −−=   Equation 4-17 

SpaceDeadhwWHCR
n

i
ii −−×= ∑

=1

     Equation 4-18 

A dual of CR is the White Space Level (WSL). Both CR and WSL in effect provide the same 

measure of the quality of the packing; however, the WSL is a normalized function and suits the GA 

and MCDM paradigm more than the CR.  The WSL may also be termed as normalized CR or RC ˆ  and 

is calculated as follows: 
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iihw
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)

       Equation 4-19 

The Trapped Dead Space is an important measure of space utilization in itself as well as in 

calculation of other metrics as CR and WSL. Its calculation however is not straightforward. An 

algorithm was developed for IDEAL since no algorithm for the exact calculation of the trapped dead 

space or the contiguous remainder was found in the published literature. IDEAL calculates the exact 

dead space by detecting the trapped spaces through a digital scanning of the packing created at any 

instance when a module is placed. This algorithm keeps track of all areas occupied by the placed 

modules and thus finds the trapped dead spaces as the areas not occupied by any module.   

Module Tightness (MT) 

In addition to HT and CR, we incorporated Module Tightness as one of our fitness determinants for 

space utilization. We define Module Tightness (MT) as the difference between Area of Enclosing 

Rectangle (AER) and total space used by modules (∑n

i iihw ) and is expressed as a percentage of 
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AER. The Module Tightness is a measure of how tightly the modules have been packed with as little 

trapped dead space as possible. A higher value of MT implies better space utilization. Here, Enclosing 

Rectangle (ER) refers to the smallest rectangle that circumscribes the whole layout. For illustration 

purposes, we use the Figure 4-6 that shows two topologies of a 16-module problem. In these 

topologies, the packing space is shown in dotted lines and the enclosing rectangle is shown in solid 

lines representing smallest rectangle circumscribing the whole layout. If AER is the area of the 

Enclosing Rectangle then MT can mathematically be expressed as follows: 

100/1
1

×














 −−= ∑
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i
ii      Equation 4-20 

 In Figure 4-6, all the space in layout A circumscribed by Enclosing Rectangle is utilized in packing 

the modules and there is no dead space inside this Enclosing Rectangle. Consequently, the MT for the 

layout A is 100%, representing the highest degree of space utilization. However, it is not true in the 

layout pattern B shown in Figure 4-6. As such, the layout B has an MT of 81.2%, signifying that about 

81% of space inside the Enclosing Rectangle has been utilized. 

A B

 
Figure 4-6: The Enclosing Rectangle – the smallest rectangle circumscribing the whole packing. 

Hybrid Metrics 

We want to emphasize that all these measures (namely HT, CR, MT, IMD) capture some aspects of 

space utilization. For instance, Figure 4-7 depicts two layouts with almost identical values of HT, CR, 

and MT. Nevertheless, one layout might be deemed superior to other by the decision maker. 

Accordingly, it should be left to the user to select an appropriate measure of space utilization, 

possibly as a combination of multiple measures. Consequently, our system (IDEAL) provides a very 
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visible and usable way of selecting and combining these measures through the setting of appropriate 

weights or significance parameters. Alternatively, IDEAL may employ preference weights generated 

by PIA.  

4.6.4 Aesthetic Appeal 
Aesthetic values are subjective measures of layout quality. Such values cannot easily be defined in 

specific terms and usually depend on users’ personal judgments. As the saying goes: beauty lies in the 

eye of beholder; the perceived aesthetic appeal of a given layout may be rated differently by different 

people. Consequently, we classify aesthetic appeal of a layout as a qualitative measure of fitness. It 

should be noted that GA are also known to be promising search strategy when fitness functions 

involve qualitative decision variables (Azadivar & Wang, 2000; Azadivar & Tompkins, 1999). 

However, to the best of our knowledge, no earlier study has compared computerized layout design 

algorithms in terms of ability to generate solutions with higher aesthetic appeal. 

In addition to aforementioned quantitative fitness metrics, we employed subjective visual 

evaluation of layout alternatives by two experts with decades of researching and practicing experience 

in LD. We provided those experts with the top 10 layouts generated by each algorithm and asked 

them to rate those based on their personal judgment. It means that experts ranked 70 randomly 

ordered alternatives, as we were initially comparing seven placement algorithms. Experts had neither 

any knowledge about the method used for generating those alternatives nor they were under any time 

constraint for furnishing those ratings.  

In addition, we have formulated some methods and robust measures for quantifying the aesthetic 

value of a layout in an automated fashion. However, the details of such qualitative fitness metrics as 

cohesion, distribution, and density, etc. are tackled in Section 5.3.  

Figure 4-7: Layouts with almost Identical HT, MT, and CR 
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4.7 Decoding Algorithms 
As discussed in Section 2.5.3, existing decoding algorithms lack the requisite efficiency and efficacy. 

Such shortcomings are more pronounced when layout evaluation criteria include such aesthetic values 

of the layout as cohesion, proportion, distribution, density, etc. – tackled in greater detail in Section 

5.3. Such aesthetic values are considered among the key determinants of layout utility and are 

generally ignored in the research literature in layout design. In this section, we outline some new, 

efficient, efficacious, and robust placement algorithms for constructing the actual layouts with higher 

aesthetic contents.  

These placement algorithms work with an ordering of modules obtained through some non-

deterministic and evolutionary metaheuristic-based approach, which is GA in case of IDEAL. These 

new module placement algorithms are inspired by the fact that for any given packing space the 

number of modules at hand for placement is a small integer. Moreover, if we confine our placement 

possibilities only to the corners of ‘in-place’ modules then for a particular module there exist at most 

O(n) possible locations. Accordingly, the combinatorial complexity should not pose a significant 

problem if some intelligent and fast pseudo-exhaustive exploration is carried out in a hierarchical 

manner for enhancing the space utilization and the layout quality. 

It should be noted that the flexibility requirements in any ALD system calls for several efficient 

and effective heuristics available to the decision-maker. Consequently, we strived to develop several 

efficacious placement heuristics. Nevertheless, we want to make it explicit that the primary 

motivation in our quest for improved heuristics was our desire to generate layouts with both higher 

aesthetic contents and better space utilization. Consequently, we were willing to make a tradeoff in 

speed in order to get improved quality. Nevertheless, comparative studies have shown that proposed 

algorithms are more efficient in terms of overall speed of the metaheuristic-based layout optimization 

than other existing heuristics. 

We compare these proposed placement algorithm with other popular and efficient existing 

placement strategies, such as the Bottom-Left or BL (Jakobs 1996), the Improved-BL or IBL (Liu & 

Teng, 1999), and the Bottom-Left Fill or BLF (Hopper & Turton, 2001; Chazelle, 1983) that have 

drawn considerable attention of the research community. Indeed, the BL property, where no module 

in a layout can be shifted further to the left and to the bottom of the packing space, has been a basis of 

numerous placement heuristics Nevertheless, the BL, the IBL, and the BLF algorithms are among the 

more popular deterministic placement heuristics. Evidently, the popularity of these heuristics stems 
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from the simplicity of concept, ease of implementation, and speed of operation. Nevertheless, 

heuristics like BL, IBL, and BLF are not suitable for cases where the packing space is binding in both 

horizontal and vertical dimensions. 

The decoding heuristics we have proposed also retain the BL property. However, these algorithms 

provide significant improvements over BL, IBL, and BLF. Our comparative evaluation demonstrates 

the superiority of the new placement algorithm in terms of efficiency, efficacy, robustness, and 

aesthetic appeal of the outcome. 

4.7.1 The Minimization of Enclosing Rectangle Area (MERA) Algorithm 
The first placement algorithm is Minimization of Enclosing Rectangle Area (MERA). Its title is 

inspired by the underlying notion where a reduction of the rectangular area of the packing pattern 

(AER) is sought during all placement decisions with a bias term favoring lower placements. The 

optimization part in the placement strategy is not an extensive or expensive optimization but a sort of 

a heuristic refinement – a pseudo-exhaustive search. Such a hierarchical optimization scheme 

facilitates improvement in space utilization as well as quality of layouts. This pseudo-exhaustive 

method is outlined here.  

In the pseudo-code for MERA, index A corresponds to four corners of an in-place module (ML) and 

index B corresponds to four corners of an in-coming module (MK). The Step 2 proceeds by 

investigating the placement prospects for all four corners of an in-coming module at all four corners 

of all in-place modules. The second term in the composite newOBJ is meant to bias placement to the 

bottom-left position in the layout, which is a general packing preference in various placement 

heuristics or LD contexts such as bin-packing. 

The computational cost of BL-algorithm is O(n2). It follows from the fact that every in-coming 

module can be shifted a maximum of i times as every shift is restricted by one of the 1−i  previously 

placed modules or by the boundaries of the bin. However, in case of MERA, each in-coming module 

can be placed at a maximum of )1(16 −i corner points (a very weak upper bound) where 1−i  

modules are previously in place. As such, theoretically the MERA algorithm also has the same O(n2) 

cost as for BL and IBL (Jakobs, 1996; Liu & Teng, 1999). Moreover, an increase in the 

computational complexity would be considered quite rational and acceptable if significant 

improvements in terms of both quantitative and qualitative fitness metrics are realized, as 

demonstrated by comparative analyses in Section 4.8.  
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Let: 
Blocks   = No. of Modules at hand for Placement 
Nplaced = No. of Modules Already Placed 
ER         = Enclosing Rectangle  
AER       = Area of Enclosing Rectangle 
yi                 = y-coordinate of the bottom-left corner of ith module. 
newOBJ = AER +  (yi + width of ER)/2  
1) Place module 1 at the bottom-left corner of the packing space 
2) Set OBJ to a big value  
3) FOR K = 2 to Blocks 
       FOR L = 1 to NPlaced 
         FOR A = 1 to 4    
           FOR B = 1 to 4   
               Place corner B of MK on corner A of ML 

              Calculate the newOBJ  
              IF newOBJ is less than OBJ THEN   
                     OBJ = newOBJ  
                     Save placement of module MK 
               ENDIF   
       END B   
     END A    
END L 

END K   
4) Stop if no room for more modules. 

4.7.2 Minimization of Enclosing Rectangle Area under Gravitational Attraction 
The MERA module placement heuristic can easily be adapted for various commonly encountered 

situations through simple modifications of the objective function. One such application is the 

optimization of some measure of inter-module interactions. For instance, minimization of total inter-

module distance in a facility layout involving material handlings or a VLSI layout involving 

macrocell interconnects. Such scenarios mimic gravitational attraction among modules. As such, we 

call it the Minimization of Enclosing Rectangle Area under Gravitational Attraction (MERAG). 

Following the familiar reasoning approach, we can establish that the theoretical computational 

complexity of MERAG is also O(n2). 
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As mentioned, the MERAG decoding or module placement heuristic works in a similar way to 

MERA but differs in the minimization objective employed for making placement decisions. Here 

again, a composite minimization objective is employed for placement stipulations that include the 

Area of the Enclosing Rectangle plus the Weighted Sum of All Module Distances from a Single Point 

as depicted in following Equation:  

        AERweightd
i j

jiji ×+∑ ∑ ,,α       Equation 4-21 

This is analogous to gravitational pull towards a center or focal point with a force proportional to 

the distance between the focal point and modules. Here, weight is a user-defined value to permit the 

user to change the weightage given to AER in these placement decisions (the default value in IDEAL 

is unity). Whereas, ji ,α is the connectivity or interaction between the Module Mi and the Module Mj.  

The values of ji ,α  could also be manipulated by the user to control the module placement decisions 

with respect to the focal point. The ability to control ji ,α  in the range of [-1, 1] provides another level 

of user control on the inter-module interaction resulting from relative positions of pairs of modules 

(i.e. mutual distances between modules). For instance, a larger value of ji ,α  would tend to bring the 

Module Mi and the Module Mj closer to each other. Similarly, a negative value of ji ,α would tend to 

keep the Module Mi and the Module Mj distant from each other. However, as a default, we have kept 

all values of 0, =jiα  for all pairs of modules except when i=0, representing a dummy module of zero 

dimensions and zero utility to be served as a focal point or center of gravity in the packing space, 

where 1,0 =jα . As before, the user has control over deciding which modules should be closer to the 

focal point by controlling j,0α . Nevertheless, all our experimental results reported in this Chapter are 

based on default values of all 0, =jiα , without any loss of generalization.  

It should be noted that there is no bias term added to the minimization objective function for 

making placements at the bottom-most and left-most positions preferable. It is because we also want 

to breakaway from the traditional goal of minimizing the packing height, as the case with existing 

packing heuristics. We reiterate that our motivation was to procure superior solutions not only in 

terms of space utilization but also in terms of aesthetic contents. Furthermore, as discussed earlier, HT 

is not always a good choice for measuring the space utilization. For instance, CR is a more viable 
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fitness measure of space utilization, as indicated by several researchers. As results in Section 4.8 

show, MERAG without the bottom-left bias provides solutions with higher aesthetic contents and CR. 

Let: 
Blocks   = No. of Modules at hand for Placement 
NPlaced = No. of Modules Already Placed 
newOBJ = Sum of Inter-module Distances 
AER         = Area of Enclosing Rectangle 

1) Place module 1 at the bottom-left corner of the page 
2) Set OBJ to a big value  
3) FOR K = 2 to Blocks    

FOR L = 1 to NPlaced 
FOR A = 1 to 4    

FOR B = 1 to 4   
   Place corner B of MK on corner A of MJ 

  Calculate the newOBJ = AERweightd
Ki

i

NPlaced

j
jiji ×+∑ ∑

=

= =1 1
,,α    

            IF newOBJ is less than OBJ THEN   
         OBJ = newOBJ  

                   Save placement of module MK 
            ENDIF  
       END B   
     END A    

      END L 
   END K  
4) Stop if no room for more modules. 

4.7.3 Minimization of Enclosing Rectangle Area under Magnetic Attraction 

Just like MERAG, we can readily adapt MERA to conform to a situation where every module 

potentially interacts with every other module in the layout. Such a situation mimics magnetic 

attraction of modules to specific focal points. As such, we call it the Minimization of Enclosing 

Rectangle Area under Magnetic Attraction (MERAM) strategy. This algorithm also works in a 

similar way to MERA but differs in the minimization objective. In MERA, the objective is to 

minimize the area of the Enclosing Rectangle; whereas, in MERAM a composite minimization 

objective is used that includes the Area of the Enclosing Rectangle plus the Sum of Inter-module 
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Distances. This is as if all the modules apply force of attraction on each other with force proportional 

to the distance between a pair of modules. The composite objective is shown in the following 

Equation: 

     AERweightd ji
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α       Equation 4-22 

Here weight is a user-defined value and ji,α  is the connectivity or interaction between the Module 

Mi and the Module Mj and is assumed unity for all pairs (i.e. 1, =jiα  for all pairs of modules); 

however, ji,α could be manipulated by the user to control the placements of modules with respect to 

each other. Consequently, this technique would allow users to incorporate preferences regarding 

relative positions of modules. For instance, if a pair of modules is required to be closer to each other 

then positive ji,α  ( 0, >jiα ) could be used. Alternatively, a negative ji,α  ( 0, <jiα ) would imply 

that proximity between a particular pair of modules is undesirable. Similar to BL and MERA, we can 

establish that the theoretical computational complexity of MERAM is O(n2).  

4.8 Comparative Evaluation of Decoding Algorithms 

In order to test and validate the efficiency, efficacy, and robustness of our placement algorithms in 

producing layout of higher aesthetic contents, we employed both automated capturing of quantitative 

measures as well as visual evaluations by experts in layout design. We employed some randomly 

generated and some benchmark problems from the existing research literature for these comparisons.  

A computer program was written in Visual BASIC to implement the BL, IBL, BLF, MERA, 

MERAG, and MERAM as well as the GA based optimization component including various 

qualitative and quantitative fitness evaluation functions. In comparative studies, all aspects are kept 

identical except the module placement strategy. Consequently, the reported results do not account for 

any interactions between the module placement strategy and some GA parameters, which is in itself a 

good research direction. Furthermore, our implementation of IBL and BLF does not involve rotation 

of modules, as our intended work domain that involves only oriented modules. Nevertheless, IDEAL 

supports the rotation of modules, if needed. The computer program is used for comparative analyses 

on Intel Xeon 3.06GHz processor and 256MB of RAM under Windows XP.  

Our initial quantitative analyses are centered on packing height, module tightness, contiguous 

remainder and inter-module distances. Furthermore, three facility layout design researchers and 
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practitioners were asked to provide subjective rating of some layout alternatives in terms of 

symmetry. These experts have decades long experience in teaching, researching, and practicing in 

layout design applications. These experts had no knowledge of the algorithm/method used for 

generating these alternatives. Furthermore, they did not have any indication of fitness metrics/values 

used by us. In addition, these experts were under no time constraint for furnishing their ratings. All 

three experts have decades long experience in teaching, researching, and practicing in layout design 

applications. These ratings were on a scale of 1-10 with a higher score representing higher aesthetic 

value perceived by the expert. We want to emphasize that a layout quality rating of 10 represents a 

highly symmetric layout configuration, which usually cannot be achieved for problems consisting of 

randomly generated unequal modules or when modules dimensions have high variability. 

Consequently, we found that a Layout Quality rating of around 5 implies that the layout alternative is 

quite superior, in terms of symmetry, for the given problem instance. Furthermore, experts were given 

only the top 10 layout alternatives, in terms of CR, for subjective rating. This approach meant that 

experts remained keenly interested in our experiments. Rating a large number of layout alternatives 

might have diminished their interest and, subsequently, the reliability of their subjective estimates. 

Nevertheless, such a practice confounds the measure of layout quality with the CR. In short, a rating 

close to 5 on a scale of 1-10 should not been seen as inferior even if modules dimensions permit a 

higher degree of symmetry. 

We used several benchmark problems consisting of 25-, 49-, 50-, 97- and 100-modules from the 

literature for our comparative studies – shown in Appendix C (with two instances each for 25- and 

50-module cases). We initially employed a Random Search approach for our comparative studies by 

generating 100 random sequences of modules. As already mentioned, Random Search and Naive 

Evolution are among the most effective search strategies, though not at par with GA or SA, for layout 

design problems.  

The relative performance of the BL, IBL, BLF, MERA, MERAG, and MERAM placement 

strategies for 100 random sequences of each benchmark problem instance is depicted in Table 4-3 to 

Table 4-9. In these tables, the first column shows the fitness metric against which the performance of 

various algorithms is measured as well as the optimal or benchmark values of those performance 

metrics. Since it is not easy to verifiably come up with an optimal value of IMD, we have used the 

IMD of a layout alternative that has optimal HT, MT, and CR as a reference value. The second 

column shows placement heuristics that are being compared for the given fitness metric. The third 
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column shows the number of instances a particular algorithm performed better than others in 100 

Random Search (RS) iterations. Columns 4 to 7 represent the best outcome, the worst outcome, the 

mean fitness, and the standard deviation of fitness values, respectively, for the corresponding 

algorithm. For ease of comprehension, the best outcome in each column is shown in boldface. 

Results show that MERA and its adaptations, MERAG and MERAM, outperform the existing 

algorithms by wide margins. The proposed algorithms generate superior outcomes in terms of the 

packing Height or HT (the lower the better), the Module Tightness or MT (the higher the better), the 

Contiguous Remainder CR (the higher the better), the Inter-Module Distances or IMD (the lower the 

better) and the layout Quality Rating QR  (the higher the better). The performance gains are more 

pronounced for larger problems. This superior performance can be shown as statistically significant 

using means and standard deviations.  

More specifically, results indicate that MERA is more suitable for generating superior layout 

alternatives in terms of HT, MT, and layout quality QR. Notably, shortcomings of BL, IBL, and BLF 

discussed in Chapter 2 were so overwhelming that often we were required to increase the height of 

the packing space for providing these algorithms sufficient room to generate feasible solutions. 

In addition to MERA, its adaptations MERAG and MERAM generally fared significantly better 

than BL, IBL, and BLF in terms of CR and IMD. However, in comparison to MERA, MERAG and 

MERAM seem to be more appropriate for generating superior layout alternatives with CR and IMD as 

fitness metrics. Furthermore, MERAG and MERAM also provided layout alternatives that were 

generally rated higher in QR by experts. 

To elaborate more on these results, we consider the 100-module problem (A100) for which 

performance comparisons are presented in Table 4-9. These performance comparisons are depicted in 

Figure 4-8 to Figure 4-11 as a percentage distance from the optimal or benchmark values for visual 

comparison purposes. In Figure 4-8 to Figure 4-11, the first picture from top represents the number of 

times each algorithm outperformed all other algorithms for the given fitness measure in 100 RS 

iterations. The second picture represents the best outcome obtained from each algorithm. The third 

picture shows the mean performance of each algorithm. Likewise, the fourth picture depicts the worst 

outcome from each algorithm. 

In terms of HT, the optimal value was 100 units and the outcome closest to the optimal value was 

generated by MERA. Furthermore, MERA generated superior outcomes more frequently than any 
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other algorithm. Although MERAG and MERAM generated much superior outcomes in comparison 

to BL or IBL, these adaptations of MERA do not seem to outperform BLF in terms of HT. These 

observations may be visually appraised in Figure 4-8.  

Indeed, MERAG and MERAM are not geared towards generating solutions with lower HT, as there 

is no bias term used for giving priority to a lower placement position in their composite fitness 

objectives. Nevertheless, a simple adaptation of the respective composite fitness objective in MERAG 

and MERAM, by adding a bias towards a lower placement position, may provide layout solutions 

with improved HT. Furthermore, our preliminary studies indicate that even reducing the weight of the 

AER in the composite fitness objective results in layout alternatives with significantly reduced HT. 

Nevertheless, we have not tested this notion in a scientific manner. Similar observations can be made 

with regard to MT and can be visually appraised using Figure 4-9. However, performance of MERAG 

and MERAM with regard to MT may also be improved by adding a bias term or by changing the 

weight assigned to AER in their respective composite fitness function. 

In terms of CR, MERA and both of its adaptations perform significantly better than the existing 

algorithms, as can be seen from Table 4-9 as well as Figure 4-10. In particular, MERAM frequently 

provided solutions better than other algorithms. Nevertheless, MERA has also provided very good 

solutions as well as the best outcome. Moreover, MERAG also provided solutions that were 

frequently superior to those provided by the existing algorithms. 

Similarly, in terms of IMD, the proposed algorithms outperform the existing ones. In particular, 

MERAG provided superior solutions very frequently. We used the IMD of a layout alternative that 

has optimal HT, MT, and CR as a reference value, which is 563,000 units. Indeed, it constitutes a very 

realistic benchmark value of IMD, which is not necessarily optimal. The performance of all 

algorithms relative to this benchmark value may be visually appraised using Figure 4-11. It is 

interesting to observe that the proposed algorithms exceed this reference by several percentage points. 

Above all, the proposed algorithms provided solutions that received relatively very high subjective 

QR rating from experts. Indeed, procurement of solutions with higher aesthetic value was the 

motivation behind developing these new algorithms. However, as observed, the proposed algorithms 

also provide superior solutions against other fitness measures. 
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Fitness Objective Algorithm Wins Best Worst Mean Std. Dev.
BL 5 17 22 19.56 1.12 

IBL 8 17 22 18.96 1.10 

BLF 29 17 21 18.48 0.92 

MERA 58 17 21 18.42 0.91 

MERAG 0 23 30 26.62 1.77 

HT 
(Optimal = 15) 

The Lower the Better 

MERAM 0 23 30 26.65 1.60 

BL 5 88.24 68.18 77.05 4.39 

IBL 7 88.24 68.18 79.43 4.53 

BLF 28 88.24 64.10 80.76 3.82 

MERA 46 90.50 71.43 81.91 4.43 

MERAG 4 88.89 53.05 71.41 6.74 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM 10 88.89 63.03 78.29 5.53 

BL 0 577 477 525.70 22.74 

IBL 0 579 459 538.45 25.32 

BLF 2 587 501 553.09 17.88 

MERA 14 597 506 562.12 16.70 

MERAG 40 595 528 570.89 16.42 

CR 
(Optimal = 600) 

The Higher the Better 

MERAM 44 598 522 575.08 13.79 

BL 0 9010.55 11008.92 10008.77 443.21 

IBL 0 8733.58 10545.81 9702.29 444.79 

BLF 0 8665.30 10479.1 9760.64 383.11 

MERA 0 8518.17 10580.62 9470.92 426.84 

MERAG 54 6649.22 9118.25 7629.36 417.29 

IMD 
(Reference = 9558) 
The Lower the Better 

MERAM 46 7009.07 8337.42 7668.98 297.82 

BL 0 3.0 1.75 2.55 0.44 

IBL 0 5.25 2.5 3.18 0.89 

BLF 0 3.75 2.5 3.23 0.45 

MERA 5 5.5 2.75 3.98 0.81 

MERAG 2 4.75 1.75 3.38 1.02 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM 3 4.75 2.25 3.80 0.76 

Table 4-3: Comparison of Decoding Heuristics for 100 random sequences of Problem H25 
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Fitness Objective Algorithm Wins Best Worst Mean Std. Dev.
BL 3 18 28 21.92 1.94 

IBL 7 18 26 21.40 2.02 

BLF 25 17 24 19.55 1.38 

MERA 65 17 24 19.31 1.31 

MERAG 0 24 30 27.26 1.62 

HT 
(Optimal = 15) 

The Lower the Better 

MERAM 0 23 30 27.36 1.59 

BL 1 83.33 53.57 69.23 5.99 

IBL 5 83.33 57.69 70.93 6.56 

BLF 12 90.50 62.50 78.26 5.33 

MERA 40 90.52 62.50 78.39 5.04 

MERAG 13 85.71 58.82 74.79 5.74 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM 29 90.91 65.93 77.89 4.65 

BL 0 573 454 529.78 23.19 

IBL 6 584 470 547.13 21.14 

BLF 7 590 509 563.45 14.52 

MERA 38 593 526 569.84 11.86 

MERAG 31 598 530 567.03 12.97 

CR 
(Optimal = 600) 

The Higher the Better 

MERAM 18 587 544 568.08 9.11 

BL 0 8300.1 11678.4 10102.7 619.37 

IBL 0 8585.9 9604.0 9604.0 465.35 

BLF 0 8254.69 10411.4 9496.0 460.93 

MERA 0 8369.7 10255.7 9285.7 405.21 

MERAG 71 7141.3 8760.1 7885.1 332.31 

IMD 
(Reference =9048) 

The Lower the Better 

MERAM 29 7290.3 8715.1 8045.0 309.8 

BL 0 2.75 1.25 1.88 0.54 

IBL 0 3.5 2.0 2.80 0.44 

BLF 0 4.25 2.25 3.28 0.57 

MERA 4 5.0 3.0 4.13 0.60 

MERAG 1 5.5 3.25 3.83 0.76 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM 5 6.0 3.0 4.33 0.99 

Table 4-4: Comparison of Decoding Heuristics for 100 random sequences of Problem J25 

 



 

 104 

 

Fitness Objective Algorithm Wins Best Worst Mean Std. Dev.
BL 1 78 116 90.8 7.53 

IBL 0 73 106 88.2 6.6 

BLF 20 70 94 77.0 4.43 

MERA 43 68 93 76.91 5.13 

MERAG 7 70 100 79.8 4.8 

HT 
(Optimal = 60) 

The Lower the Better 

MERAM 29 70 94 77.3 4.22 

BL 1 77.1 51.9 66.8 5.43 

IBL 0 83.8 56.8 68.6 5.14 

BLF 15 85.9 64.0 78.5 4.31 

MERA 40 90.1 65.8 79.8 5.08 

MERAG 9 87.4 64.5 77.5 4.36 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM 35 87.4 65.1 80.2 4.1 

BL 0 4313 3073 3841.3 247.81 

IBL 0 4456 3611 4085.9 175.44 

BLF 6 4591 4171 4403.03 95.88 

MERA 29 4653 4281 4522.1 74.92 

MERAG 21 4658 4254 4506.3 80.35 

CR 
(Optimal = 4800) 

The Higher the Better 

MERAM 44 4685 4348 4545.6 63.85 

BL 0 79208.6 107309.3 91311.7 5565.9 

IBL 0 75610.0 96652.0 85878.7 3838.6 

BLF 3 71581.5 88750.4 80338.8 3425.3 

MERA 5 69330.9 85086.8 78213.9 2978.7 

MERAG 70 67883.1 80514.2 73741.0 2797.5 

IMD 
(Reference = 73600) 
The Lower the Better 

MERAM 22 67979.2 83308.6 75893.7 2836.4 

BL 0 3.25 1.25 2.1 0.56 

IBL 0 3.5 2.25 2.88 0.4 

BLF 0 4.75 1.5 3.58 1.07 

MERA 3 6.5 3.75 5.35 0.75 

MERAG 2 6.75 3.75 4.85 1.12 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM 5 7.0 3.5 5.48 1.13 

Table 4-5: Comparison of Decoding Heuristics for 100 random sequences of Problem H49 
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Fitness Objective Algorithm Wins Best Worst Mean Std. Dev.
BL 1 66 99 79.0 5.66 

IBL 1 68 91 77.21 4.73 

BLF 15 65 79 69.2 3.12 

MERA 81 64 78 68.7 3.17 

MERAG 0 74 117 84.6 5.54 

HT 
(Optimal = 55) 

The Lower the Better 

MERAM 0 76 93 83.9 3.60 

BL 1 83.49 56.22 70.19 4.88 

IBL 1 81.03 60.55 71.72 4.27 

BLF 11 85.16 70.45 80.60 3.52 

MERA 67 86.73 71.36 81.04 3.57 

MERAG 4 82.98 60.55 74.07 4.56 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM 16 82.96 66.93 76.33 3.19 

BL 0 1848 365 1404.6 248.84 

IBL 0 2025 976 1600.4 191.66 

BLF 2 2101 1738 1805.7 95.79 

MERA 29 2251 1835 2051.1 88.89 

MERAG 19 2256 1386 1992.1 157.62 

CR 
(Optimal = 2500) 

The Higher the Better 

MERAM 50 2287 1756 2084.9 109.54 

BL 0 106743.9 132059.6 114929.0 4289.85 

IBL 0 102312.3 118215.9 110207.2 3149.32 

BLF 0 99970.8 115237.4 108215.1 2588.71 

MERA 0 99220.2 111803.2 106558.0 2307.54 

MERAG 84 91988.2 103857.1 96853.3 2338.76 

IMD 
(Reference =103000) 
The Lower the Better 

MERAM 16 93559.0 105806.7 100271.7 2507.35 

BL 0 3.0 1.5 2.1 0.54 

IBL 0 3.0 2.0 2.25 0.35 

BLF 0 5.25 2.5 4.08 0.97 

MERA 4 6.0 3.25 4.70 1.03 

MERAG 4 6.5 3.5 4.85 1.20 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM 2 6.0 3.25 4.68 0.99 

Table 4-6: Comparison of Decoding Heuristics for 100 random sequences of Problem A50 
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Fitness Objective Algorithm Wins Best Worst Mean Std. Dev.
BL 3 19 26 21.54 1.96 

IBL 5 18 30 22.57 2.47 

BLF 5 17 23 19.89 1.00 

MERA 87 17 21 19.24 0.95 

MERAG 0 25 40 28.83 2.56 

HT 
(Optimal = 15) 

The Lower the Better 

MERAM 0 26 31 27.97 1.22 

BL 1 80.53 58.85 71.48 5.35 

IBL 3 85.00 51.00 68.59 7.11 

BLF 3 89.21 69.33 78.58 4.39 

MERA 68 92.31 74.73 81.80 4.02 

MERAG 9 84.07 58.85 76.35 4.67 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM 16 87.18 70.35 78.29 3.16 

BL 1 573.0 463.0 515.4 18.77 

IBL 1 568.0 483.0 536.6 15.33 

BLF 1 574.0 513.0 550.5 7.91 

MERA 64 577.0 544.0 562.7 6.69 

MERAG 16 583.0 526.0 554.7 11.12 

CR 
(Optimal = 600) 

The Higher the Better 

MERAM 17 580.0 530.0 556.9 8.76 

BL 0 35217.2 45429.7 39956.7 1634.18 

IBL 0 35196.6 42107.4 38272.3 1510.05 

BLF 0 35485.4 42457.8 39547.4 1081.42 

MERA 0 34644.4 40339.8 37473.7 1067.66 

MERAG 87 30704.1 34141.4 32114.4 743.72 

IMD 
(Reference = 36670) 
The Lower the Better 

MERAM 13 30932.3 35528.8 33165.5 884.16 

BL 0 3.25 1.0 2.18 0.83 

IBL 0 3.25 2.0 2.75 0.39 

BLF 0 4.0 2.5 2.83 1.09 

MERA 5 6.0 3.25 5.0 0.82 

MERAG 4 6.5 3.25 4.85 1.37 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM 1 5.25 3.0 4.33 0.66 

Table 4-7: Comparison of Decoding Heuristics for 100 random sequences of Problem J50 
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Fitness Objective Algorithm Wins Best Worst Mean Std. Dev.
BL 0 170 256 197.49 16.92 

IBL 0 152 240 180.38 13.66 

BLF 13 136 186 154.92 9.48 

MERA 34 136 176 152.20 9.60 

MERAG 14 135 182 154.96 10.56 

HT 
(Optimal = 120) 

The Lower the Better 

MERAM 39 134 182 151.28 9.68 

BL 0 70.64 46.91 61.22 4.93 

IBL 0 79.01 50.04 66.94 4.86 

BLF 9 88.30 64.56 77.81 4.68 

MERA 31 89.42 69.10 80.21 4.96 

MERAG 18 89.47 66.82 79.0 5.27 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM 42 90.08 66.82 80.83 5.09 

BL 0 5023.0 763.0 3398.0 825.08 

IBL 0 5897.0 2111.0 4643.5 606.82 

BLF 1 6856.9 5321.8 6237.1 276.78 

MERA 22 6868.0 5017.0 6460.9 253.30 

MERAG 26 6795.0 5881.0 6497.3 204.31 

CR 
(Optimal = 7200) 

The Higher the Better 

MERAM 51 6928.0 5762.0 6596.0 200.94 

BL 0 535922.4 850390.9 675013.1 55187.0 

IBL 0 481388.8 686003.3 606174.2 40633.8 

BLF 0 477175.4 582486.8 524828.1 19899.6 

MERA 0 456947.5 546825.2 502645.6 18813.6 

MERAG 89 397695.3 515612.9 455439.8 21629.4 

IMD 
(Reference = 502700) 
The Lower the Better 

MERAM 11 433334.5 525795.4 479824.5 20728.5 

BL 0 2.25 1.25 1.75 0.35 

IBL 0 2.75 1.75 2.08 0.37 

BLF 0 4.25 2.25 3.33 0.71 

MERA 3 5.5 2.75 4.23 0.74 

MERAG 4 5.75 3.5 4.5 0.76 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM 3 5.75 3.0 4.5 0.97 

Table 4-8: Comparison of Decoding Heuristics for 100 random sequences of Problem H97 
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Fitness Objective Algorithm Wins Best Worst Mean Std. Dev.
BL 0 128.1 160.2 142.45 6.97 

IBL 0 125.2 158.3 139.78 6.50 

BLF 31 113.2 131.8 121.72 3.49 

MERA 39 112.1 128.3 118.88 3.23 

MERAG 8 116.1 134.1 124.09 3.60 

HT 
(Optimal = 100) 

The Lower the Better 

MERAM 12 117.4 129.8 123.14 2.68 

BL 0 77.52 62.05 69.99 3.39 

IBL 0 79.55 62.73 71.30 3.27 

BLF 10 87.81 75.74 81.76 2.27 

MERA 71 88.76 77.37 83.81 2.23 

MERAG 7 85.61 74.95 80.54 2.26 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM 12 85.44 76.66 81.13 1.81 

BL 0 3112.4 705.2 2069.2 2069.2 

IBL 0 3208.0 1045.1 2415.0 2415.0 

BLF 10 4163.72 3238.07 3764.85 200.34 

MERA 19 4546.0 3572.2 4042.1 175.79 

MERAG 6 4315.7 3252.8 3994.7 198.62 

CR 
(Optimal = 5000) 

The Higher the Better 

MERAM 65 4521.8 3866.9 4196.9 119.49 

BL 0 582589.4 696861.1 632092.7 22983.7 

IBL 0 566760.9 656799.0 606410.5 18531.7 

BLF 0 533895.3 591047.9 565016.8 11682.3 

MERA 6 518156.9 575072.4 551050.4 10414.5 

MERAG 79 499098.1 559710.5 533375.1 12315.8 

IMD 
(Reference = 563000) 
The Lower the Better 

MERAM 15 511928.0 571375.5 543029.4 12414.3 

BL 0 2.25 1.25 1.75 0.39 

IBL 0 3.25 1.75 2.43 0.50 

BLF 0 3.5 2.5 2.95 0.35 

MERA 3 5.0 3.0 4.05 0.71 

MERAG 6 5.75 3.75 4.65 0.61 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM 1 4.50 2.75 3.85 0.52 

Table 4-9: Comparison of Decoding Heuristics for 100 random sequences of Problem A100 
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Figure 4-8: Performance comparison of algorithms w.r.t. HT for 100-module problem (A100) 
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Figure 4-9: Performance comparison of algorithms w.r.t. MT for 100-module problem (A100) 
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Figure 4-10: Performance comparison of algorithms w.r.t. CR for 100-module problem (A100) 
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Figure 4-11: Performance comparison of algorithms w.r.t. IMD for 100-module problem (A100) 
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Before embarking on comparing the execution speed of algorithms, we reiterate that proposed 

algorithms were primarily motivated by the need for achieving improved layout quality and space 

utilization. As such, speed of execution was of secondary importance. Nevertheless, we have also 

compared the speed of these algorithms. The average CPU time taken by BL, IBL, BLF, MERA, 

MERAG, and MERAM for 100 random sequences of various problems is shown in Table 4-10. 

  Problem Size (number of modules) 

  10 15 25 50 100 

BL 0.00019 0.00279 0.00705 0.01716 0.4152 

IBL 0.000208 0.00372 0.00889 0.02273 2.5713 

BLF 0.00465 0.00967 0.04355 0.1741 3.427 

MERA 0.00841 0.01271 0.05207 0.2863 13.361 

MERAG 0.00916 0.01881 0.09322 1.0249 61.011 Pl
ac

em
en

t 
H

eu
ri

st
ic

 

MERAM 0.00613 0.00973 0.03971 0.2997 16.127 

Table 4-10: Average Time Elapsed (in seconds) per 100 iterations with HT as fitness metric. 

Apparently, the average time taken by MERA and its adaptations increases significantly with the 

increase in the problem size. However, this observation is quite deceiving from various pragmatic 

perspectives as explained in the following. First, our experience has demonstrated that only a few 

random module sequences often furnished layouts with proposed algorithms alone that were superior 

to the best obtained after a whole cycle of BL+GA, IBL+GA. Likewise, a few random sequences 

were sufficient to produce layout alternative either superior or comparable with those obtained after 

the whole cycle of BLF+GA, as evident from results in Table 4-11. 

Indeed, on a time-sharing multi-tasking system, measuring the running time of an algorithm has 

little meaning, because the CPU is being shared among many applications and the CPU elapsed time 

really measures the amount of competition among various applications running on the system (Mir & 

Imam, 2001). In addition, the execution time also depends on a range of factors like the CPU speed, 

size and speed of the main memory, size and speed of the cache memory, the size and speed of bus, 

computational efficiency of the code, computational efficiency of the programming language used, 

etc. (Mir & Imam, 2001). Visual BASIC is known to rank poorly in terms of computational efficiency 

when compared to such high-level programming languages as C, C++, FORTRAN, etc. (Mir & 

Imam, 2001). We opted for Visual BASIC mainly because of its capabilities in designing the 
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interface. Indeed, some preprocessing of input data might also speed up the process significantly. For 

instance, converting all data to integer values through some scaling operations would allow more 

efficient integer operations compared to expensive floating-point computations. 

Consequently, we believe that the real test of speed of an algorithm is the efficiency in quickly 

generating superior layout alternatives and not in quickly generating layout alternatives that may be 

inferior or offer little advantage. Indeed, MERA, MERAG, and MERAM not only resulted in better 

quality alternatives but also provided those faster than the ones obtained with several thousand 

iterations of GA with other existing placement algorithms like BL, IBL, and BLF (i.e. BL+GA, 

IBL+GA, and BLF+GA).  Results from GA based optimization process for a 100-module benchmark 

problem (A100) are reported in Table 4-11. Once again, we have compared these algorithms based on 

HT, MT, CR, IMD and QR.  

In Table 4-11, the first column shows the fitness metric used for contrasting the performance of all 

six algorithms, which are shown in the second column. The third column shows the fitness value of 

layout alternative obtained by a given algorithm for a given fitness metric. In order to readily gauge 

the relative performance of these algorithms, we have shown the percentage difference between the 

fitness of the layout alternative and the optimal or benchmark fitness value in parentheses. Evidently, 

the performance of the proposed decoding heuristics is significantly superior to that of existing ones 

when used in tandem with metaheuristics like GA.  

Interestingly, even the performance of MERAG+GA and MERAM+GA is significantly better than 

that of BLF+GA for HT and MT as fitness functions. This is in contrast with the relative performance 

of these algorithms when Random Search was used. Indeed, it provides evidence that all three 

proposed decoding heuristics are more effective than the existing ones.  

Furthermore, the superiority and diversity of layout alternatives obtained through proposed 

heuristics make any relatively higher computational cost compared to BL, IBL, and BLF a 

worthwhile trade-off. Moreover, the performance of BL, IBL, and BLF is known to deteriorate 

dramatically with the increase in the problem size as can be seen from Table 4-3 through Table 4-11 

and as demonstrated by a series of earlier studies (Ahmad et al., 2004d, 2004f; Jakobs 1996, Liu & 

Teng 1999, Hopper & Turton 2001, Wu et al.  2002).  
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 Objective Technique Fitness  
(% diff. from Optimal/Ref.) 

BL+GA 123.5 (-23.5%) 

IBL+GA 118.6 (-18.6%) 

BLF+GA 112.2 (-12.2%) 

MERA+GA 106.9 (-6.9%) 
MERAG+GA 108.1 (-8.1%) 

HT 
(Optimal = 100) 

The Lower the Better 

MERAM+GA 107.9 (-7.9%) 

BL+GA 78.8 (-21.2%) 

IBL+GA 83.5 (-16.5%) 

BLF+GA 89.75 (-10.25%) 

MERA+GA 95.4 (-4.6%) 
MERAG+GA 92.7 (-7.3%) 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM+GA 93.1 (-6.9%) 

BL+GA 3432 (-31.4%) 

IBL+GA 3905 (-21.9%) 

BLF+GA 4235 (-11.3%) 

MERA+GA 4709 (-5.8%) 

MERAG+GA 4811 (-3.78%) 

CR 
(Optimal = 5000) 

The Higher the Better 

MERAM+GA 4718 (-5.64%) 

BL+GA 553459.5 (+1.7%) 

IBL+GA 521419.6 (+7.4%) 

BLF+GA 483010.3 (+14.2%) 

MERA+GA 450759.9 (+19.9%) 

MERAG+GA 429224.7 (+23.8%) 

IMD 
(Reference = 563000) 
The Lower the Better 

MERAM+GA 450216.1 (+20.1%) 

BL+GA 1.5 

IBL+GA 1.75 

BLF+GA 3.5 

MERA+GA 4.5 

MERAG+GA 5.25 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM+GA 4.5 
 

Table 4-11: Comparison of Decoding Heuristics with GA for Problem A100 
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In contrast, MERA and its adaptations result in significantly higher performance improvements for 

larger problems furnishing another cogent reason for resorting to such approaches. Furthermore, the 

computational cost of MERA is not truly prohibitive in efficiently procuring an outcome better than 

that generated by BL, IBL, and BLF, as discussed earlier.  

A review of relevant literature shows that BL-Fill (BLF) is among the most superior, if not the 

superior, module placement algorithms (Hopper & Turton, 2001). The BLF algorithm has a time 

complexity of O(n3) and results in a relatively slower process both in terms of average computational 

time for each evaluation as well as the number of evaluations required to achieve superior results.  

A comparison of the best solutions obtained through 100 random sequences of benchmark 

problems shows that the performance of MERA is better than BLF. For instance, MERA results in the 

best outcome with a relative distance of 16.3% from optimal HT for a 50-module problem (ref. Table 

4-6). In contrast, BLF results in the best outcome having a relative distance of 18.1% from the 

optimal. In terms of MT, the best outcome obtained with MERA is 13.3% from the optimal and the 

one obtained with BLF is 14.9% from the optimal. In terms of CR, the best outcome obtained with 

MERA is 10% from the optimal and the one obtained with BLF is 12% from the optimal. In terms of 

IMD, the best outcome obtained with MERA is superior to the one obtained with BLF, too. 

Likewise, the relative distance between the best solution in terms of HT by MERA and the optimal 

solution is 12.1% for 100-module problem against 13.2% by BLF (ref. Table 4-9). In terms of MT, 

the best outcome obtained with MERA is 11.2% from the optimal against 12.2% with BLF. In terms 

of CR, the best outcome obtained with MERA is 9.1% from the optimal against 16.7% with BLF. In 

terms of IMD, the best outcome obtained with MERA is superior to the one obtained with BLF.  

In addition, the GA based optimization approach reveals that the advantage MERA and its 

adaptations have over BLF translates into significant gains through metaheuristic search procedures, 

as can be seen from Table 4-11 and Figure 4-12 to Figure 4-14. Contrasting these values reveals that 

MERA, MERAG, and MERAM are more effective than BLF. Furthermore, about 50,000 evaluations 

of BLF in a metaheuristics search results in layouts that are either inferior or, at best, comparable to 

those obtained in less than 1000 evaluations of MERA. Consequently, MERA is an efficient and 

effective placement algorithm for layout optimization. 

 Moreover, we compared layouts generated by BL, IBL, BLF, MERA, MERAG, and MERAM for 

the sequence in which modules are ordered with respect to Decreasing Length (DL). Such ordered 

sequences are known to produce large performance improvements in space utilization (Ahmad et al. 
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2004f; Burke et al., 2004; Jakobs 1996; Hopper & Turton 2001; Wu et al.  2002). The relative 

performance of all six algorithms for a DL sequence is summarized in Table 4-12.  

 Objective Technique Fitness  
(% diff. from Optimal/Ref.) 

BL+DL 123.8 (-23.8%) 

IBL+DL 128.2 (-28.2%) 

BLF+DL 115.2 (-12.2%) 

MERA+DL 107.9 (-7.9%) 
MERAG+DL 120.7 (-20.7%) 

HT 
(Optimal = 100) 

The Lower the Better 

MERAM+DL 113 (-13.0%) 

BL+DL 80.3 (-19.7%) 

IBL+DL 77.6 (-22.4%) 

BLF+DL 89.2 (-10.8%) 

MERA+DL 92.1 (-7.9%) 
MERAG+DL 82.5 (-17.5%) 

MT 
(Optimal = 100%) 

The Higher the Better 

MERAM+DL 88.0 (-12.0%) 

BL+DL 3356.6 (-32.8%) 

IBL+DL 3821.7 (-23.6%) 

BLF+DL 4287.5 (-14.2%) 

MERA+DL 4678.6 (-6.3%) 
MERAG+DL 4399.4 (-12.0%) 

CR 
(Optimal = 5000) 

The Higher the Better 

MERAM+DL 4595.3 (-8.1%) 

BL+DL 543561 (+3.45%) 

IBL+DL 570023 (-1.25%) 

BLF+DL 546666 (+2.90%) 

MERA+DL 523992 (+6.93%) 
MERAG+DL 540347 (+4.2%) 

IMD 
(Reference = 563000) 
The Lower the Better 

 

MERAM+DL 541458 (+3.83%) 

BL+DL 1.5 

IBL+DL 2.25 

BLF+DL 2.75 

MERA+DL 6.5 
MERAG+DL 5.5 

QR 
(Scale: 1-10) 

The Higher the Better 

MERAM+DL 5.0 

Table 4-12: Comparison of Decoding Heuristics for DL sequence for Problem A100 
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Notably, this single sequence of MERA+DL produces layouts that are superior to the best obtained 

by BL+GA and IBL+GA as can be seen from Table 4-11 and Table 4-12. It implies that only one 

evaluation of MERA is enough to beat such existing algorithms as BL and IBL by wide margins. 

Outcomes of such an ordered sequence for 100-module problem (A100) are shown in Appendix D for 

visual comparison purposes.  

Another interesting observation is that an increase in the number of GA iterations for BL and IBL 

may provide some marginal improvement against rigid fitness measures. However, the layout Quality 

Rating or QR, as measured by experts’ subjective ranking, deteriorates, as evident from Table 4-11. 

Furthermore, increasing the number of GA iterations is more likely to furnish a population that 

consists of identical or closely related solutions. Indeed, such closely related set of layout alternatives 

lacks the requisite diversity and does not provide a genuine range of superior alternatives to decision-

makers. Consequently, the resulting superior quality and diversity of layout decision alternatives 

obtained through MERA, MERAG, and MERAM makes any higher computational cost a worthwhile 

trade-off. 

In short, the MERA algorithm and its adaptations result in more efficient, robust, and superior 

layout optimization than the existing algorithms. It demonstrates that MERA, somehow, captures the 

dynamics of the layout design problem more aptly. 

The GA convergence rate of decoding heuristics for a 100-module problem (A100) with CR as 

fitness measure is shown in Figure 4-12 and Figure 4-13. It can be seen that BL, IBL, and BLF start 

with inferior solutions and converge to solutions that are comparable to the starting solution obtained 

from MERA, demonstrating the efficiency and effectiveness of MERA.  

Similarly, the convergence rate of placement algorithms for the same 100-module problem (A100) 

with HT as fitness measure is shown in Figure 4-14. Once again, it can be seen that MERA converges 

to solutions that are more superior. Whereas, BLF seems to perform marginally better than MERAG 

and MERAM. This is in league with our observation with RS, where BLF seemed to provide 

somewhat better solutions with respect to packing height than those obtained from MERAG and 

MERAM. However, as already discussed, the best outcome from a GA cycle with MERAG or 

MERAM is significantly superior, in terms of HT, to that obtained from a GA cycle with BLF, as can 

observed from Table 4-11. 
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Figure 4-12: GA Convergence (average CR) for the 100-module problem (A100) 
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Figure 4-14: GA Convergence (average HT) for the 100-module problem (A100) 

The comparison of MERA, MERAG, and MERAM is a bit tricky enterprise. It can be seen that 

MERA provides layouts superior in HT and CR more frequently than MERAG or MERAM. The 

same is true in terms of subjective layout quality rating QR. However, it should be noted that 

MERAG and MERAM seem to be more appropriate for applications where inter-module interaction 

calls for compact packing while minimizing the total inter-module distance, such as the wiring length 

in some VLSI layout design. In such a scenario, the layout design using MERA would require an 

auxiliary fitness evaluation and optimization mechanism that could debase the efficiency of the 

overall process. One effective methodology would be to employ metaheuristics in conjunction with 

MERA; however, such metaheuristics require a large number of evaluations even at the onset of the 

process. In contrast, only few random sequences of MERAG could provide a very good, if not the 

best, solution. However, we want to emphasize that our preliminary studies show that MERA is more 

consistent in furnishing layouts with higher space utilization and layout quality. 
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4.9 Bin-Packing Case Studies 

Here, we present few test cases to demonstrate the effectiveness of IDEAL and the proposed decision-

making paradigm for layout design. Ironically, there is not much literature available on benchmark 

problems that involve layout design using modules that are unequal in size, fixed in shape, fixed in 

orientation, and involve subjectivity and uncertainty in placement preferences.  

In order to test the viability of IDEAL, we generated several layout alternatives for a 25-module 

problem using various algorithms. This 25-module problem was procured from a packing industry 

and has been included in Appendix E. We gave those alternatives to an expert for getting subjective 

ratings based on space utilization and layout symmetry as well as any possible manipulation and 

refinement of those layouts. The expert have more than 20 years of teaching, researching, and 

practicing experience in layout design applications. The expert neither had knowledge of algorithms 

used to generate these alternatives nor had any information about the fitness metrics used to evaluate 

these layouts. Results of those evaluations were used in the training of PDA, as well, as discussed in 

Section 5.6. Few interesting instances of this exercise are presented here to demonstrate the efficacy 

of IDEAL. 

4.9.1 Case I 

The layout alternative presented in Figure 4-15 received a rating of 85 out of 100 from the expert. It 

can be seen that this packing topology has higher symmetry as well as space utilization. The values of 

fitness metrics as gauged by IDEAL are consistent with this high rating by the expert. For instance, CR 

shows 100% space utilization and MT is about 91%. The Symmetry of Count comes out to be 94%, 

the Symmetry of Cohesion comes out to be 75%. In addition, the sum of inter-module distances is 

around 4780 (against a benchmark value of 5150), which is quite superior.  

   It shows that fitness metrics used in IDEAL have high correlation with the experts’ subjective rating. 

Furthermore, this layout was obtained using a single random iteration with MERAM and 

demonstrates the ability of the heuristic to efficiently produce layout with higher space utilization as 

well as aesthetic contents. 
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Figure 4-15: Case I – Layout Alternative 

 
Figure 4-16: Case II – Layout Alternative Figure 4-17: Case II – Refined Layout 

4.9.2 Case II 

The layout alternative presented in Figure 4-16 received a rating a rating of 75 out of 100 from the 

expert. It can be seen that this packing topology can easily be modified to achieve higher symmetry as 

well as space utilization. For instance, we moved module-9 on top of module-3 and module-10 on top 

of module-2.  
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These simple moves improved the fitness of the layout significantly. For instance, the Symmetry of 

Density increased from 26% to 96% while Module Tightness increased from 83% to about 93%, 

Furthermore, the height of the packing pattern came closer to the optimal height as well as the sum of 

inter-module distances has been reduced from 5438 to 5114. The refined layout is shown in Figure 

4-17. Apparently, DM has given this alternative higher rating based on these intuitive observations. 

4.9.3 Case III 

The layout alternative presented in Figure 4-18 received a rating a rating of 70 out of 100 from the 

expert. Apparently, the layout shown in Figure 4-18 does not seem to be a superior outcome in terms 

of symmetry or space utilization. However, once again, the higher rating by the expert is a reflection 

on the fitness potential of the layout alternative following few simple manipulations. It can be seen 

that the modified topology shown in Figure 4-19 has higher symmetry as well as space utilization.  

It involved the following manipulations: move the module-5 to the bottom-right corner of the bin; 

move the module-23 on top of modules 5 and 18; move the module-11 to the right of the module-12; 

move modules 7, 17, and 21 on top of moduel-23; shift modules 1, 4, and 8 downwards and swap 

position of modules 1 and 4; move module-14 to the right of module-10. All these nine moves took 

less than 2 minutes to complete and naturally followed each other. It resulted in a superior outcome 

with the Module Tightness at around 87%, Symmetry of Density at around 92%, Symmetry of 

Distribution at around 88%, as well as significant decrease in the Height of the packing pattern. The 

resultant layout subsequently received a subjective a rating of 90 out of 100 by the DM. 

4.9.4 Case IV 

The layout alternative presented in Figure 4-20 received a rating a rating of 75 out of 100 from the 

expert. Once again, the higher rating by the expert is a reflection on the fitness potential of the layout 

alternative following few simple manipulations. It can be seen that the modified topology shown in 

Figure 4-21 has higher symmetry as well as space utilization.  

It involved the following moves: move module-21 to the right of module-11; move module-17 on 

top of module-21; move modules 16 and 20 on top of module-21; move module-1 on top of modules 

17 and 22; move module-4 on top of module-1; move module-8 on top of module-4. All these six 

moves took less than one and a half minute to complete and naturally followed each other. It resulted 

in a superior outcome with Module Tightness at around 90%, Symmetry of Distribution at around 



 

 125 

87%, as well as significant decrease in the Height of the packing pattern. When this resultant pattern 

in Figure 4-21 was given to DM, it received a subjective rating of 85 out of 100. 

 
Figure 4-18: Case III – Layout Alternative  

 
Figure 4-19: Case III – Refined Layout 

 
Figure 4-20: Case IV – Layout Alternative  

 
Figure 4-21: Case IV – Refined Layout 
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4.9.5 Case V 

The packing pattern Figure 4-22 also requires few simple and swift moves to significantly enhance 

the space utilization as well as layout symmetry, as shown in Figure 4-23. 

Figure 4-22: Case V – Layout Alternative Figure 4-23: Case V – Refined Layout 

4.10 Summary 

In this Chapter, we employed a 2D-BPP formulation of the layout design problem and described our 

vision and implementation of an Intelligent Layout Generator that is capable of employing 

preferences and parameters furnished by experts or some intelligent inferencing mechanism. We 

proposed some new placement algorithms and demonstrated the promise those algorithms hold in 

efficiently generating superior and diverse layout alternatives. The hierarchical optimization approach 

is realized through a GA based metaheuristic search hybridized with deterministic placement 

heuristics, which act both as a decoder and as a tuner of the layout solutions. Our hybridized 

optimization approach, as investigated in this thesis, not only achieved speed and efficacy but also 

superior quality layouts. Furthermore, we have formulated various encompassing quantitative 

determinants of layout utility. In the subsequent chapter, we provide our vision and implementation of 

the inferencing mechanism for reasoning with available knowledge and furnish preference weights 

and parameters to ILG. 
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Chapter 5 

PREFERENCE MODELING, INFERENCING, & DISCOVERY  

5.1 Introduction  

The brain of an expert system is the Inference Engine that contains general algorithms and 

functionalities for manipulating, and reasoning with, the knowledge stored in the knowledge base 

(Turban & Aronson, 2001). Here we describe the design and implementation of a fuzzy technology 

based prototypical Preference Inferencing Agent (PIA) for performing inferencing and reasoning 

tasks in IDEAL.  

The core concept involves employing a PIA comprising of fuzzy sets, rules, and preferences in 

obtaining penalties and rewards for the hybrid fitness evaluation functions as well as various critical 

parameters for ILG and PDA. The primary benefit of fuzzy rule-based system is that its functioning 

mimic more of human expert rules. The traditional rigid and myopic fitness functions do not serve 

well in such complex, subjective, and uncertain problem domains as layout design. Indeed, multi-

criteria fitness functions are deemed more appropriate for automatic generation, evaluation, and 

comparison of layout alternatives. However, IDEAL has provisions for decision-maker to specify 

Significance Parameter (SP) and Preference Parameter (PP) in both crisp and fuzzy manner, thereby 

increasing the flexibility and the ease with which decision-makers may creatively adapt their 

preferences.  

The rest of the chapter is structured as follows. Section 5.2 outlines benefits of employing fuzzy 

logic in various forms in layout optimization as well as our fuzzy preference modeling and 

inferencing approach. Section 5.3 presents some qualitative fitness evaluation metrics. Section 5.4 

describes our multi-criteria fuzzy decision making approach. Section 5.5 elaborates the working of 

PIA through an example. Section 5.6 discusses pros and cons of a neuro-based expert system enabling 

automated discovery of preferences and our vision of a multi-layer perceptron based backpropagation 

network. Section 5.7 summarizes the chapter. 
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5.2 Fuzzy Technology in Layout Design 

As already mentioned, the knowledge pertinent to layout design and analysis is usually imprecise, 

incomplete, inconsistent and vague. The abstract, subjective, and uncertain nature of most layout 

design guidelines and rules render fuzzy technology an excellent candidate for the implementation of 

the inference engine. As a modeling and inferencing tool, FL provides ability to work with 

incomplete or inconsistent information. (Konar, 2001; Negnevitsky, 2002). Indeed, there are various 

formalisms available for dealing with missing information (Liu et al., 1997; Tresp et al., 1994). 

However, the formalism available in FL for tolerating or predicting missing information has 

demonstrated to be more robust and tractable than other formalisms (Negnevitsky, 2002). Studies 

have shown that just a few fuzzy rules may provide better results than a few thousand rules of other 

common formalisms (Berthold & Huber, 1998).  

Our objective in developing a generic research framework, which might be adapted to various 

layout design applications, intensifies the need for employing robust preference modeling and 

reasoning methods. It is our belief that FL furnishes a more robust formalism through its powerful 

capabilities in linguistic modeling, inferencing, and analysis under uncertainty. The PIA described 

here translates the domain-dependent knowledge into domain-independent parameters for the use by 

ILG. Consequently, it brings a good deal of flexibility in the automated layout design process. 

Furthermore, FL simplifies the knowledge acquisition process by facilitating elicitation of expert’s 

opinion and readily transforming those in the suitable fuzzy functions (Cox, 1999). The simple 

linguistic formalism of preferences in FL also facilitates utilization of experts’ creativity in an easy, 

flexible, efficient, and informed manner. Consequently, the ability of FL to realize a complex non-

linear input-output relationship as a synthesis of multiple simple input-output relations offers great 

promise (Kavcic 2002).  

As noted, these favorable characteristics of FL have drawn attention from some researchers in the 

layout design. The fuzzy modeling and inferencing techniques have successfully been applied to 

placement decisions in general layout design problem and this body of literature is growing fast 

(Ahmad et al., 2003; Ahmad et al., 2004b; Aiello & Enea, 2001; Badiru & Arif, 1996; Deb & 

Bhattacharyya, 2004; Dweiri & Meier, 1996; Evans et al., 1987; Grobelny, 1987a; Grobelny, 1987b; 

Karray et al. 2000b; Kang et al., 1994; Kim et al., 2001; Raoot & Rakshit, 1993; Raoot & Rakshit, 

1991; Soltani & Fernando, 2004; Youssef et al., 2003a; Whyte & Wilhelm 1999a, 1999b; Zha & Lim, 

2003). In short, the application of FL is not a new inquiry in the LD field. Nevertheless, we want to 
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synergistically employ FL in its various efficacious application modes along with other powerful soft 

computing techniques.  

As already mentioned, most research employing FL in layout design has used FL as a linguistic 

modeling tool. However, some literature employing FL in layout design as an analytical tool also 

exists (Karray et al., 2000a; Tam et al., 2002). Nevertheless, the literature employing FL in LD as an 

algorithmic tool is very meager (Khan et al., 2002; Youssef et al., 2003). The PIA described in this 

chapter employs FL as both linguistic and analytical tools. Nonetheless, we plan to employ FL as 

algorithmic tool in future by drawing on some fuzzy rules for skipping less promising placement 

moves, thus expediting the overall layout generation process.  

One of the foremost requirements in the use of FL is the determination of fuzzy Membership 

Functions (MF) through experts’ knowledge. The MF completely defines fuzzy sets. Typically, MF 

used in fuzzy knowledge-based systems are the triangular and trapezoidal functions as those provide 

an adequate representation of experts’ knowledge and significantly simplify the computational 

process (Ahmad et al., 2003, 2004c; Negnevitsky, 2002; Saletic et al., 2002; Triantaphyllou & Lin, 

1996). Nevertheless, the choice of MF is based more on personal preference than any mathematical 

justification (Keely, 1997). In Figure 5-1, we have shown a triangular MF, which may mathematically 

be expressed in the following. It has three parameters 'a' (minimum), 'b' (middle) and 'c' (maximum) 

that determine the shape of the triangle. 
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Figure 5-1: A Triangular Membership Function. 

a

0.2

0.4

0.6

0.8

1.0

D
eg

re
e 

of
 M

em
be

rs
hi

p

Trapezoidal

b c d
 

Figure 5-2: A Trapezoidal Membership Function.



 

 130 

A trapezoidal MF is depicted in Figure 5-2, which may mathematically be expressed by the 

following: 
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  Equation 5-2 

For simplicity of implementation, experimentation, and interpretation sake, we have primarily 

employed triangular MF in our research prototype. However, the augmenting the prototype with the 

use of trapezoidal MF is not a difficult task. 

5.2.1 Preference Modeling 

Most linguistic rules in layout design consist of two parameters, the significance and the preference. 

A Significance Parameter (SP) tells ‘how important’ certain criterion is for the overall fitness of the 

layout. Whereas, a Preference Parameter (PP) tells ‘how much’ of a certain aspect/criteria should be 

incorporated in the layout generation (Giegel & Loui, 2001).  

Significance Parameter 

In a broad sense, an SP determines the weight that would be assigned to a specific fitness metric in 

a hybrid fitness function (Ahmad et al., 2004b; Evans, 1987). We have modeled SP with fuzzy MF 

shown in Figure 5-3. These mimic the idea used in REL charts for signifying proximity stipulations. 

These involve MF for A (Absolutely important), E (Especially important), I (Important), O 

(Ordinarily important), and U (Unimportant). The difference between classical REL and our approach 

is that here we do not have an MF for X or ‘not desirable’ as this scenario could easily be modeled by 

setting SP to unity and PP to zero.  

Preference Parameter 

As indicated, a preference parameter (PP) tells how much decision makers prefer to incorporate a 

certain aspect/criterion in layout alternatives (Ahmad et al., 2004b; Evans, 1987; Giegel & Loui, 

2001). In a broad sense, any departure from the PP of a specific measure would result in penalizing 

the hybrid fitness function, depending on the weight or SP assigned to that measure. Membership 

functions of PP for various considerations would depend on decision-makers’ preference. These 

membership functions will be used by PIA for generating preference weights for ILG. Alternatively, 

IDEAL furnishes decision-makers’ with an ability to provide absolute values for these parameters. 
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Figure 5-3: Membership Functions for the Significance Parameter. 

5.2.2 Inferencing Mechanism 

A typical fuzzy decision-making system (FDMS) accepts fuzzy and/or crisp preferences and 

transforms those into crisp weights, using the fuzzy rules present in the knowledge base, for 

employment in some layout fitness evaluation function (Karray & de Silva, 2004). One possible 

methodology for measuring the utility/fitness of the layout based on both tangible as well as 

intangible criterion would involve the development of a composite fitness function, comprising of 

weighted sums of utilities arising from various design issues. Weights in such a fitness function 

correspond to preferences provided by experts and must be calculated/inferred for further use (Ahmad 

et al., 2003, 2004b; Geigel & Loui, 2001; Triantaphyllou et al., 1998). Consequently, fuzzy 

inferencing can be described as a process of mapping a given input to an output by employing the 

theory of fuzzy sets. Incidentally, there is a variety of fuzzy inferencing mechanisms available in the 

literature. However, the Mamdani-style inference method is the most popular technique for capturing 

experts’ knowledge, sanctioning a more intuitive and human-like description of expertise 

(Negnevitsky 2002). 

The configuration of PIA, as depicted in Figure 5-4, comprises of four main components. These 

include the Fuzzification component, the Knowledge Base, the Rule Evaluation unit, and the 

Defuzzification unit. Here we discuss roles of these units within the context of the Mamdani-style 

fuzzy inferencing mechanism employed in PIA. The first step in Mamdani style fuzzy inferencing 

mechanism is to fuzzify all the crisp inputs and determine the degree to which these inputs belong to 
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each of the appropriate fuzzy sets. The Fuzzification component measures the values of input and 

output, transfers the range of values into a corresponding universe of discourse, and converts them 

into natural language. The Knowledge Base contains the experts’ knowledge of the application 

domain and the control rules of the process. These rules may be fuzzy or crisp. The MF for fuzzy 

rules are also determined by experts based on their knowledge of the problem domain.  

The Rule Evaluation unit applies decision-making logic that simulates the experts’ decision-

making process based on a fuzzy concept. This step requires taking the fuzzified inputs, and applying 

them to antecedents in the fuzzy rules (Karray & de Silva, 2004). The results of antecedent evaluation 

are then applied to the membership function of the consequent. The consequent membership function 

is ‘clipped’ or ‘scaled’ to the level of the truth-value of the rule antecedent. We adopted a scaling 

method in our rule evaluation as it retains the shape of the fuzzy MF. 

The rule evaluation is followed by the Aggregation step involving unification of the outputs of all 

rules (Negnevitsky, 2002). The input to the aggregation process is the clipped or the scaled 

consequent membership functions from the rule evaluation module and the output is one fuzzy set for 

each output variable. 

Fuzzification

Fuzzy or Crisp Preferences (Input)

Preference Weights (Output)

Knowledge Base Rule Evaluation

Fuzzy

Defuzzification

Fuzzy

 

Figure 5-4: Preference Inferencing Agent (PIA). 
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The fuzziness facilitates in evaluating rules in the layout design using FL; however, the final output 

of the PIA has to be a crisp number so that it could be used in some fitness function in ILG. This 

process of converting fuzzy values to crisp values is called defuzzification. The most prevalent 

technique for defuzzification in expert systems is the centroid technique where a vertical line carves 

the aggregate fuzzy set into two equal masses (Karray & de Silva, 2004). We have also employed this 

centroid method for defuzzification purposes in our system. This way vague linguistic rules are used 

in realizing important and useful crisp values for evaluation and generation of superior layout 

alternatives. These crisp values are used in ILG in the form of preference weights of a hybrid layout 

fitness function. The fuzzy inferencing mechanism is further elaborated in Section 5.5 with an 

example. 

5.3 Fitness Metrics 

As discussed in Chapter 4, we classify layout fitness metrics into two broad categories, namely 

Quantitative Fitness Metrics and Qualitative Fitness Metrics. We reiterate that we have termed some 

fitness metrics as quantitative only because the fitness values those metrics are designed to capture 

might be defined objectively with relative ease under highly certain and predictable scenarios, as 

opposed to such intrinsically subjective fitness measures as aesthetic values of a layout plan. 

5.3.1 Quantitative Fitness Metrics 

Various effective quantitative fitness evaluation metrics have already been mentioned in Chapter 4. 

These include Packing Height, Contiguous Remainder, Module Tightness, and Inter-Module 

Interaction. All these metrics capture some notion of space utilization and mutual positioning or 

interaction of modules in the given spatial configuration. The incommensurable attributes of layout 

fitness may be combined in some kind of hybrid fitness evaluation function through normalized 

values of fitness metrics (Triantaphyllou et al., 1998). The Module Tightness (MT) as described in 

Section 4.5.4 already takes a normalized form in which MT may vary from 0 to 100 with a higher 

value representing a better space utilization. Furthermore, normalization of fitness metrics like 

Packing Height (HT) and Contiguous Remainder (CR) against some appropriate standard or 

benchmark value is also described in Section 4.5.4.  
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5.3.2 Qualitative Fitness Metrics 

As already indicated, the quality and fitness of a layout solution is determined by a range of tangibles 

and intangibles. Indeed, terms like ‘quality’ and ‘aesthetic value’ are intrinsically subjective and 

prone to different interpretations by different people. The key to an understanding and judging 

aesthetics in layouts is to gain an understanding of what salient features are determining layout 

aesthetics in layouts. In this thesis, we describe a set of intuitively selected fitness metrics for gauging 

aesthetic contents in layouts. 

To the best of our knowledge, no earlier study has compared layout design algorithms in terms of 

the ability to generate solutions with higher aesthetic contents. Consequently, there is a relative dearth 

of fitness metrics capturing the aesthetic value of a layout in an automated manner. It should be noted 

that some qualitative fitness metrics have been employed in some past studies, especially those 

involving evaluation of a computer interface design. However, such comparisons were realized using 

visual evaluation of the layout and experts’ enumeration and estimation of the values of those metrics. 

In addition, such studies involved very small-scale problems and fitness values were calculated 

through visual evaluation and physical counting (Ngo & Law, 2003).  

We deem automating the qualitative/aesthetic evaluation of a layout configuration as an intricate 

undertaking. One reason is that different criteria represent different perspectives and are very much 

likely to be competing and conflicting. Furthermore, various attributes often involve different and 

incommensurable measurement units (Aouni et al., 2005; Triantaphyllou et al., 1998; Triantaphyllou 

& Lin, 1996). Nevertheless, a key motivation in developing IDEAL is to minimize user inputs once 

the preliminary preferences have been identified. Consequently, some means of measuring these 

qualitative values of the layout in an automated, but swift, objective, and less resource-intensive 

manner is another crucial step in extending the research in the layout design automation (Ahmad et 

al., 2003, 2004b; Head & Hassanein, 2002). Such an automatic evaluation of layouts requires 

quantifying highly subjective layout design guidelines, which come from experts’ opinions that are 

subjective and uncertain.  

We would like to point that some automated tools are available for fitness evaluation in some 

subjective domains somewhat related to layout design, for instance, e-Store structures (Head & 

Hassanein, 2002). However, such existing tools are far from being able to automate the process of 

qualitative fitness evaluation reasonably well (Ahmad et al., 2003; Head & Hassanein, 2002; Ngo & 

Law, 2003). It is primarily due to the inability of such tools to incorporate many of the important but 



 

 135 

subjective and uncertain layout design guidelines and system related characteristics into the 

evaluation mechanism. 

To further the research in this direction, we formulated and tested several empirical, nevertheless, 

informed qualitative measures of layout fitness. Our extensive testing resulted in narrowing down to 

four more effective and relatively robust qualitative fitness measures. Our preliminary studies have 

shown that these fitness metrics may be used in predicting expert’s subjective rating of the layout 

reasonably well. For instance, layout fitness gauged by these metrics have a significant correlation 

with experts’ subjective rating of the layout for a given layout optimization algorithm. Here we 

describe these qualitative fitness metrics. 

It should be noted that, as a convention within the scope of this thesis, our discussions about the 

aesthetic contents of a layout configuration are with reference to the Enclosing Rectangle and not the 

packing space itself. Towards this end, the Enclosing Rectangle is divided into four quadrants and 

symmetry is determined by contrasting those four quadrants with each other. This turned out to be a 

good tactic for small- and medium-scale problems. However, it is not as much effective in large-scale 

problems because the probability of all four quadrants of Enclosing Rectangle being comparable in 

terms of following metrics becomes high. One possible solution strategy would be to divide the 

Enclosing Rectangle in more sections determined through some fuzzy rules using the number of 

modules and the size of Enclosing Rectangle. However, we have not implemented such a scheme, yet.  

As such, our comparative analyses are based on partitioning the Enclosing Rectangle into four 

quadrants. Furthermore, we have tried to ensure that these normalized metrics always remain in the 

range of 0 to 1 (alternatively, 0% to 100%). However, this required us to have a large value of 

denominator in mathematical formulations of these metrics for normalization purposes. Such an 

approach resulted in less sensitive measures of symmetry. Employing a smaller denominator in these 

formulations made these very sensitive to aesthetic contents of the layout. However, such 

formulations occasionally resulted in negative values, contrary to the requirement of all normalized 

values lying in the range of 0 to 1. Consequently, we have tried to employ only mathematically 

appropriate formulations. However, subjectivity and uncertainty in gauging these measures of 

symmetry may be used as a rationale for having metrics that occasionally provide negative fitness 

values. In such a case, the fitness may be arbitrarily forced to 0. 
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Cohesion 

Cohesion is the extent to which modules on each side of vertical and horizontal axes of a layout 

configuration have same aspects ratios (AR). Towards this end, we divide the Enclosing Rectangle 

into four quadrants and find out the difference between the maximum AR (max ARk) and the 

minimum AR (min ARk) in each quadrant k. If we denote this quantity as cohesion_Dk then it can be 

mathematically expressed as follows 

}{minmax_ QuadrantktheforARARDcohesion th
kkk L−=  Equation 5-3 

If we let the sum of all cohesion_Dk (for all four quadrants) be cohesion_D then: 
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Now, a measure of total deviations (cohesion_D_total) can be found by using the sum of root mean 

square values of pairwise differences in cohesion_Dk as follows: 
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We divide this measure of total deviation or cohesion_D_total by Dcohesion_*3  to get a 

normalized measure of cohesion. The presence of 3 in the denominator arises from the fact that 

each quadrant is compared with three other quadrants in terms of cohesion to get the overall cohesion 

of the packing pattern:  
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This measure of Cohesion may vary from 1 to 100 with a higher value representing a higher degree 

of cohesion and better aesthetic contents. 
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Balance 

Balance is defined as the difference between total weighting of components on each side of vertical 

and horizontal axes. A measure of how the weight of a page is distributed is very important in 

determining the aesthetical quality of a layout configuration. Towards this end, we divide the 

Enclosing Rectangle into four quadrants and find out the difference between the maximum Area (max 

Areak) and the minimum Area (min Areak) in each quadrant k. It represents the difference of size 

between the largest and the smallest module in the kth quadrant of the Enclosing Rectangle. If we 

denote this quantity as balance_Dk then it can be mathematically expressed as follows: 

kkk AreareaADbalance minmax_ −=    Equation 5-8 

Let the sum of all balance_Dk be balance_D then: 
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Now, a measure of total deviations balance_D_total can be found by using the following sum of 

root mean square values of pairwise differences in balance_Dk as follows: 
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We divide this measure of total deviation or balance_D_total by Dbalance_*3  to get a 

normalized measure of balance. The presence of 3 in the denominator arises from the fact that each 

quadrant is compared with three other quadrants in terms of balance to get the overall measure of 

balance of the packing pattern: 

( )

( )
100*

_*3

__
1 4

1

23

1

4

1




















−

−=
∑

∑ ∑

=

= +=

k
k

k kl
lk

Dbalance

DbalanceDbalance
Balance  Equation 5-12 

This measure of Balance may vary from 1 to 100 with higher value representing a higher degree of 

balance and better aesthetic value of the layout. 
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Distribution/Count 

Distribution is the extent to which modules are equally divided, or distributed, in a layout design. 

This symmetry of distribution depends on the count of modules present in each quadrant of the 

Enclosing Rectangle. Towards this end, we find out the pairwise difference or deviation between the 

number of modules present in a quadrant k (Countk ) and the number of modules present in a quadrant 

l (Countl )  using the following mathematical expression: 

lklk CountCountDCount −=,_     Equation 5-13 

Now, a measure of total deviations in all quadrants Count_D_total can be found by using the sum 

of root mean square values of pairwise differences in Count_Dk,l as follows: 
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This measure of Count could vary from 1 to 100 with higher value representing a higher degree of 

uniformity in the distribution of modules and, in turn, a better aesthetic value of the layout. 

Density 

Density is the extent to which the percentage of module area on entire layout configuration is 

uniform. Towards this end, we divide the Enclosing Rectangle into four quadrants and find out the 

pairwise difference or deviation between the sum of areas of modules in a quadrant k (AQk ) and sum 

of areas of modules in a quadrant l (AQl) using the following mathematical expression: 
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lklk AQAQDDensity −=,_      Equation 5-16 

Now, a measure of total deviations in all quadrants Density_D_total can be found by using the 

following sum of root mean square values of pairwise differences in Density_Dk,l as follows: 
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is compared with three other quadrants in terms of cohesion to get the overall cohesion of the packing 
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This measure of Density could vary from 1 to 100 with higher value representing a higher degree of 

uniformity in the amount of space occupied by modules and, in turn, a better aesthetic value of the 

layout.   

Effectiveness of Qualitative Metrics  

In order to determine the effectiveness of these qualitative fitness metrics in gauging the aesthetic 

contents, we used 10 random sequences of the 100-module problem (A100) with MERA algorithm. 

The resultant layouts were subjectively rated by a couple of expert for the layout quality or aesthetic 

contents on a scale of 1-10 with a higher rating representing higher perceived aesthetic value of a 

given layout. We want to reiterate that a rating of 10 represents a highly symmetric layout topology, 

which cannot usually be achieved for problems consisting of randomly generated unequal modules or 

when modules dimensions have a high degree of variability. These experts have decades long 
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experience of researching and practicing in facilities layout design applications. It should be noted 

that these experts had no knowledge of algorithms or fitness metrics used for generating these 

layouts. They were simply asked to rate these layout based on aesthetic value of layouts. There was 

no time constraint imposed on experts for providing their rating of these layouts. Results from this 

exercise are summarized in Table 5-1.  In Table 5-1, the first column shows the iteration number. The 

second column presents the mean of experts’ subjective rating for each alternative. The third column 

shows the Cohesion of the layout as measured by Equation 5-7. Similarly, the fourth column shows 

the Density as calculated by Equation 5-19. The fifth column shows the Count as calculated by 

Equation 5-15. The sixth column shows the sum of Cohesion, Density, and Count. The bottom-most 

row in Table 5-1 shows the coefficient of correlation (r) between expert’s rating and the 

corresponding measure of symmetry. It can be seen that these measures of symmetry have high 

correlation with expert’s rating. For instance, the coefficient of correlation between Cohesion and 

expert’s rating is 0.46. Similarly, the coefficient of correlation between expert’s rating and Density is 

0.77. Likewise, the coefficient of correlation between expert’s rating and Count is 0.83.  

Iter# Experts’  
Rating 

(a) 
Cohesion 

(b) 
Density 

(c) 
Count 

Sum 
(a)+(b)+(c) 

1 6.0 55.31 94.07 86.21 235.59 

2 7.0 67.55 96.17 92.27 255.99 

3 6.5 64.55 94.89 85.88 245.32 

4 6.5 80.03 97.64 87.46 265.13 

5 5.0 61.34 80.26 73.09 214.69 

6 2.0 61.32 69.84 59.06 190.22 

7 5.5 58.41 92.30 81.92 232.63 

8 5.0 66.87 91.59 83.99 242.45 

9 4.0 47.23 94.31 86.25 227.19 

10 4.5 56.80 96.22 83.97 236.99 
Coefficient of Correlation 

(r) 0.46 0.77 0.83 0.89 

Table 5-1: Ten random iterations of MERA with expert’s rating & measures of symmetry (A100) 

Interestingly, the coefficient of correlation between expert’s rating and the sum of the three 

measures of symmetry is higher than correlation between expert’s rating and individual measures of 

symmetry. It demonstrates that these measures of symmetry together provide a rational regime for 

gauging aesthetic contents of the layout. Indeed, the provision of assigning different preference 
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weights to various measures of symmetry provides a means for adapting the fitness regime to decision 

maker’s preferences. In the next Section, we describe how preference weights produced by PIA may 

be used to facilitate multi-criteria decision-making in ILG for generating superior layout alternatives, 

as described in Chapter 4. 

5.4 Fuzzy Multi-Criteria Decision Making 

Here we describe some Multi-Criteria Decision Making (MCDM) schemes for use in ILG in 

generating superior layout alternatives. Indeed, an MCDM model has always been considered as more 

pragmatic, though seldom practiced, by researchers (Ahmad et al., 2004b, 2004c, 2004d; Armour & 

Buffa, 1963; Bazaraa, 1975; Blair & Miller, 1985; Dowsland et al., 2002; Ligget, 2000; Tompkins et 

al., 2002; Triantaphyllou & Lin, 1996; Youssef et al., 2003). In the presence of a large number of 

decision attributes, some hierarchical arrangement regime may be employed. One popular an 

effective scheme is Analytic Hierarchy Process or AHP (Ahmad, 2002; Triantaphyllou et al., 1998). 

One big obstacle in realizing an MCDM model in layout optimization is the scarcity of efficient, 

encompassing, and robust fitness metrics that could be combined in the form of some hybrid fitness 

model to facilitate MCDM. Furthermore, such MCDM approaches are mired not only by conflicting 

objectives but also by difference in the units of measurement (Triantaphyllou et al., 1998). 

Consequently, the subjectivity, uncertainty, and incommensurable units render MCDM paradigm 

inherently difficult to realize in layout analysis and design. 

In order to address this shortcoming, we have developed several quantitative and qualitative fitness 

metrics and culled those that have been demonstrated effective and robust through studies with a 

variety of large-scale problems. These fitness metrics are discussed in Section 4.5.4 as well as Section 

5.3. Here we propose a Fuzzy MCDM (f-MCDM) approach for combining such fitness metrics into a 

single hybrid fitness function. The ability of FL to realize complex non-linear input-output 

relationships as a synthesis of multiple simple input-output relations proves invaluable in this regard 

(Ahmad et al., 2003, 2004b, 2004c; Karray & de Silva, 2004; Negnevitsky, 2002). We want to 

emphasize that such Fuzzy MCDM approaches are best used as decision-aid tools and not as 

decision-making tools. Individual tendencies and intuitions of different decision makers are likely to 

result in different solutions.  
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5.4.1 Fuzzy Weighted-Sum Model 

In a Fuzzy Weighted-Sum Model (FWSM), the total utility or fitness of a layout alternative is 

calculated by adding up the product of fitness value κf of an individual attribute κ and the priority 

weight or significance κS assigned to that attribute. Mathematically, it can be represented by the 

following Equation: 

∑
=

=
p

FWSM fSF
1κ

κκ        Equation 5-20 

FWSM is the earliest and probably the most popular and easily amenable approach that has its 

roots in Utility Theory. The assumption that governs the FWSM is the additive utility. FWSM is 

appropriate for single-dimensional cases where the units of measurements are identical. However, in 

multi-dimensional cases where are units not commensurable, a conceptual violation occurs because of 

the usual assumption of additivity of utilities. Nevertheless, this conceptual violation can be overcome 

by normalizing fitness values for all attributes against some suitable benchmarks.  

5.4.2 Fuzzy Normalized Weighted-Sum Loss Function 

Here we propose a novel approach to f-MCDM for multi-dimensional multi-attribute decision 

problems, in general, and layout decision analysis, in particular. Our approach draws from the relative 

simplicity of FWSM and efficacy of relative fitness values (as in AHP). It is inspired by Taguchi’s 

quality loss function where any deviation from the nominal values results in a loss or reduction in 

utility depending upon the amount of deviation (Taguchi et al., 1989). Accordingly, our approach 

involves employing the normalized values of principal layout fitness metrics and calculating the 

deviation from some preferred nominal values. This deviation, in turn, is used to calculate penalties 

based on the weight or significance κS assigned to each fitness attribute κ . We term this approach as 

Fuzzy Normalized Weight-Sum Loss Function (f-NWSLF). 

Conceivably, the selection of these benchmarks for normalization in such subjective and uncertain 

work domain as layout design remains a contentious issue and constitutes an open research question. 

As such, the benchmarks employed for normalizing each fitness dimension mentioned in Section 

4.5.4 and Section 5.3 may be contended. However, the selection of these benchmarks was made after 

extensive preliminary studies with a range of intuitively selected benchmarks, which revealed these as 

satisficing benchmarks for our purposes.  
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In essence, the penalty function calculates the weighted sum of penalties, where weights are the 

significance κS assigned to a fitness attribute κ  and penalty is the deviation of normalized fitness 

value κf̂  from its preferred value κP . In this manner, we are combining the powers of three effective 

MCDM techniques. This penalty function may be made more or less precipice using a parameter 

1>ψ  based on decision-makers’ preferences. A value of ψ >1 would result in a more precipice loss 

function, whereas a value of 1<ψ  would result in relatively flat loss function. It should be noted that 

if ψ  is not a multiple of two then it requires the penalty function to be absolute deviation from κf̂ . 

However, currently we are using the penalty as proportional to the square of deviation (i.e. ψ = 2) in 

the following Equation: 

{ }ψ
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κκκ∑
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− −=
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NWSLf PfSF
1

ˆ       Equation 5-21 

It should be noted that certain parameters could have significant interaction with one another 

affecting more than one value of crisp weights used subsequently in the layout evaluation phase. 

Consequently, as a future research direction, we intend to develop some mechanism through which 

PIA can handle such interactions and interdependencies. In addition, the question of developing more 

effective and robust layout fitness metrics remains open for further research in MCDM field. We 

expect our efforts would increase interest in this important research direction. 

5.5 Working of Preference Inferencing Agent 

In order to elaborate the working of the PIA, we consider a scenario where the small size of the 

packing space would not permit placement of all the given modules in the layout configuration. Such 

a scenario is quite common in practice. For instance, only a handful of modules may be displayed on 

one page of an e-Store. We consider the same 100-module (A100) problem used in Chapter 4. The 

difference is in the reduced dimensions of packing space that precludes the placement of all 100 

modules.  

In our example, the amount of ‘white space’ and the ‘size of bin’ affect the maximum number of 

‘bin modules’ that could possibly be placed in a single bin or packing space. As indicated, this is an 

important parameter to be determined for the efficiency and efficacy of the whole process. For 

instance, it would affect the length of chromosome chosen for a GA used in the ILG. It has dramatic 

effect on efficiency and quality of results as it determines the search space in a GA. We considered a 
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simple bin-packing problem in which the limited size of the bin might leave some modules outside 

the resultant layout. In such a situation, employing a chromosome size of 100, as was the case earlier, 

would result in unnecessarily slow progression of the GA based optimization process.  

In our example, we let x, y, and z (white_space, bin_size, and chromosome_size respectively) be the 

linguistic variables; A1, A2, and A3 (small, medium, and large) be the linguistic values determined by 

fuzzy sets on the universe of discourse X (white_space); B1, B2, B3 and B4 (small, medium, large and 

ex-large) be the linguistic values determined by fuzzy sets on the universe of discourse Y (bin_size); 

C1, C2, and C3 (small, medium, and large) be the linguistic values determined by fuzzy sets on the 

universe of discourse Z (chromosome_size). The membership functions for these linguistic variables 

are shown in Figure 5-5. The complete set of fuzzy rules for determining choromosome_size using 

white_space and bin_size is provided in Table 5-2. 

 

Bin Size 
 Small (B1) Medium (B2) Large (B3) Ex-Large (B4) 

Small (A1) Small Small Medium Medium 

Medium (A2) Small Medium Medium Large 

W
hi

te
 

Sp
ac

e 

Large (A3) Medium Medium Large Large 

Table 5-2: Fuzzy Rules for determining the Chromosome Size. 

Our example consists of a simple two-input and one-output scenario involving the following two 

fuzzy rules specified by an expert: 

Rule 1:  

      If        x is A2 (white_space is medium) 

      Or       y is B3 (bin_size is large) 

      Then   z is C2 (chromosome_size is medium) 

 

Rule 2:  
      If          x is A3 (white_space is large) 

      Or        y is B4 (bin_size is ex-large) 

      Then    z is C3 (chromosome_size is large) 
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Figure 5-5: Fuzzy Sets For ‘White Space’, ‘Bin Size’ and ‘Chromosome Size’. 
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As a first step, we fuzzified all the crisp inputs and determined the degree to which these inputs 

belong to each of the appropriate fuzzy sets. The crisp input x1 (white_space rated by experts as 20%) 

corresponds to the MF A2 and A3 (medium and large) to the degrees of 0.6 and 0.2, respectively. 

Likewise, the crisp input y1 (bin_size rated as 44 units) corresponds to the MF B3 and B4 (large and 

ex-large) to the degrees of 0.15 and 0.5, respectively. The rule evaluation involved applying the 

fuzzified inputs to antecedents in the fuzzy rules. Here we used the min operator to evaluate the fuzzy 

OR operation and the max operator to evaluate the fuzzy AND operation, respectively. This resulted in 

the following degrees of memberships: 

[ ] 6.0)(,)(max)( 322 == yxz BAC µµµ  
[ ] 2.0)(,)(min)( 433 == yxz BAC µµµ  

The result of antecedent evaluation is applied to the MF of the consequent by ‘clipping’ the 

consequent MF to the level of the truth-value of the rule antecedent. The Aggregation involved 

unification of the outputs of all rules. Here, we used the clipped consequent MF. This way we 

evaluated the fuzzy rule for selecting the chromosome size in our layout problem. However, the final 

output of the PIA needs to be a crisp number for use in some GA parameter or fitness function. The 

most popular defuzzification technique is the ‘centroid’ technique where a vertical line carves the 

aggregate fuzzy set into two equal masses. Using the Mamdani technique in the given example, the 

crisp value for the chromosome_size comes out to be about 27. This whole inferencing mechanism is 

summarized in Figure 5-6. In this manner, the ILG could be adapted in terms of chromosome_size 

based on preferences furnished by experts/users through PIA. 

In order to evaluate the effect of the chromosome_size as determined by the PIA, we ran 1000 

iterations of the GA with a chromosome size of 100 as well as 1000 iterations with a chromosome 

size of 27. In this study, we employed the MERA as a decoding heuristic. The computer system used 

was Intel Xeon 3.06 GHz processor with 256 MB of RAM running under Windows XP. The average 

time per GA iteration with a chromosome size of 100 was 15.43 seconds. In contrast, the average 

time per GA iteration with a chromosome size of 27 was only 0.316 seconds. It elaborates how a 

simple adaptation of a GA parameter through fuzzy rules and inferencing could affect the efficiency 

of the overall process. Furthermore, this example illustrates how vague linguistic rules can be used to 

derive important and useful crisp values. Likewise, the PIA can be used to furnish other parameters 

for subsequent use. Our preliminary studies show that fuzzy logic constitutes an effective inferencing 

tool in layout design. It provided greater flexibility, expressive power, and ability to model vague 

preferences. 
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Figure 5-6: Example of Mamdani style Fuzzy Inferencing in Layout Design. 
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5.6 Discovering User Preferences  

The reliability and effectiveness of PIA significantly depends on the reliability of preferences. In this 

regard, the implicit and dynamic nature of preferences as well as efforts required for building and 

updating an expert system underscore the need for automated learning. Indeed, learning is an 

important constituent of any intelligent system (Negnevitsky, 2002).  

Although IDEAL permits users to enter preferences explicitly, we envision employing such ML 

tools as Artificial Neural Networks (ANN) and Reinforcement Learning (RL) for automated and self-

updated acquisition of knowledge. An automated LD fitness rating could form a basis for discovering 

implicit preferences of a user and result in creation of user profiles (Webb, 2001). Such profiles 

would facilitate personalized generation of superior alternatives for individual decision-makers. For 

instance, ILG could furnish alternatives that are more likely to be rated highly by the user with higher 

probability. Indeed, such automated knowledge acquisition and revision would instill another aspect 

of intelligence into IDEAL, namely, learning and evolution of knowledge. We want to make it explicit 

that this discussion does not imply that machine learning would eliminate the need for experts’ 

opinion or would enable automated discovery of all or most of the rules and preferences. However, an 

intelligent PDA in tandem with other knowledge-acquisition approaches could increase the 

effectiveness and robustness of the system.  

5.6.1 Neuro-Based Expert Systems 

Our vision of an ANN based PDA is motivated by the success of this powerful technology in 

improving the robustness of traditional rule-based expert systems (RBES). Indeed, the neuro-based 

expert systems (NBES) neatly complement the capabilities of RBES. In the presence of high-level 

expertise, RBES perform better because of a higher degree of utilization of expertise. However, when 

level of expertise available is low but the number of test examples is large then NBES is more 

appropriate, enabling capturing of some of the design knowledge hidden in the given data. Such 

interrelationship is depicted in Figure 5-7. The tedium involved in knowledge acquisition, difficulty 

of knowledge base modification, and inability to incorporate learning changes means that an 

innovative and synergistic combination of RBES and NBES could be useful (Chung, 1999; Ruan, 

1997; Yasdi, 2000; Zha & Lim, 1999, 2001). 

NBES provides capability to analyze and capture highly nonlinear complex dynamics of ill-

structured problems through its facility to learn from examples and real or simulation experiments. In 
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addition, the tolerance to imprecise and uncertain data and ability to generalize an approximate 

solution are valuable attributes in automated layout design. The popularity of ANN as a machine 

learning tool stems from its amazing versatility and ability to produce good results in complex 

domains (Negnevitsky, 2002). Conceivably, there have been attempts to tap on this powerful 

technology in the layout design applications in various modes. For instance, Tsuchiya et al. (1996) 

used ANN to directly solve a quadratic assignment problem involving n modules to be assigned to n 

potential locations. Likewise, Ilumoka (1997) used ANN models for simulation and optimization of 

VLSI circuits. Zha & Lim (1999, 2001) used neural computing for layout planning, design, and 

adjustments of a workbench. However, such studies involved very small-scale problems for 

demonstration purposes. 

Nevertheless, NBES are not readily amenable to providing explanation facilities as an ANN has 

implicit weights, rather than explicit rules, for representing knowledge and preferences (Maleki-

Dizaji et al., 2003; Ruan, 1997). The detailed discussions on relative merits of RBES and NBES 

outlining their complementary capabilities is beyond the scope of this thesis and can be found in the 

literature (Chung, 1999). 
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Devising a formal description and implementation of layout aesthetics are deemed very difficult. It 

forms the basis for our desire to investigate the possibility of using ANN, and other ML tools, for the 

evaluation of layout aesthetics. However, making a prudent selection of a representative set of layouts 

suitable for an ANN based PDA, some knowledge on layout aesthetics needs to be acquired (Yasdi, 

2000). We acquired such knowledge through interviews with two layout design practitioners. It 

enabled the choice of a few criteria that seem to neatly gauge layout aesthetics, as discussed in 

Section 5.3.2. However, our study of PDA is only exploratory in nature and relatively shallow. Our 

basic goal is the testing of the concept. As such, we elected to employ one qualitative measure of 

layout aesthetics and one quantitative measure of space utilization, for training of the PDA. The 

quantitative measure employed was Module Tightness and represents the first input (X1) to the PDA. 

Whereas, the qualitative measure employed was Symmetry of Distribution and represents the input 

(X2). The output of the PDA is the layout rating (Y), as shown in Figure 5-8. 

5.6.2 Multi-Layer Perceptron based PDA 

In order to test our concept, we used well-known Multi-Layer Perceptron Network (MLP). We 

employed a Feed Forward Multi-Perceptron ANN as we were able to generate a modest number of 

instances for training and testing. However, if there were relatively fewer number instances available 

then Bi-directional Associative Memory (BAM) or Reinforcement Learning (RL) might have been 

more appropriate for automated learning (Yasdi, 2000). BAM has incremental learning capabilities 

that inspired some research level prototypes and have reportedly shown promising results (Chung, 

1997). Whereas, RL is based on the notion of a learning system that adapts its behavior in order to 

maximize some reward (Sutton & Barto, 1998).  

In our PDA, we used a fully connected artificial neural network with one hidden layer, as depicted 

in Figure 5-8. The network consists of two input neurons, three hidden neurons, and a single output 

neuron forming a directed acyclic graph. The inputs to PDA consist of Module Tightness (X1) and 

Symmetry of Distribution (X2). Furthermore, the output of the PDA is the rating of the layout (Y) for 

the given inputs. The number of hidden nodes in a network is critical to the network performance. A 

neural network with too few hidden nodes can lead to underfitting and may not be able to learn a 

complex task, while a neural network with too many hidden nodes may cause oscillation, 

overlearning/memorization, and hamper the ability for generalization (Biron, 1999; Nauck et al. 

1997; Negnevitsjy, 2002). As such, after some initial experimentation, we deemed a hidden layer 
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comprising of three neurons sufficient for our purposes. The decision on the architecture of an ANN 

is typically done through a trial-and-error process choosing the architecture leading to the best 

performance. 

We used MATLAB to code our algorithm for training the PDA based on the popular back-

propagation supervised learning paradigm. In this paradigm, the network can be trained by 

measurement data from the training set. It propagates the errors backwards by allocating them to each 

neuron in accordance to the amount of this error for which the neuron is responsible. The prediction 

capability of the trained network can be tested for some test data. The caveat in using the back-

propagation algorithm and the MLP is that these require a large number of training examples.  

Data Collection 
In our PDA, we employed Module Tightness as the first input (X1) and Symmetry of Distribution as 

the second the input (X2) to the PDA. The output of the PDA is the layout rating (Y), as shown in 

Figure 5-8. We gave 80 layout alternatives, for a single test problem shown in Appendix E, to an 
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Error Signals
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Figure 5-8: Architecture of the Artificial Neural Network based PDA. 
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expert who have more than 20 years experience in researching and practicing in layout design 

applications. We asked the expert to assign a single rating for each layout alternative based on space 

utilization and layout symmetry on a scale of 1-100. The expert had neither any knowledge of 

algorithms used to generate those alternatives nor the values of X1 and X2 as calculated by IDEAL. 

Furthermore, there was no time constraint imposed on the expert for providing those ratings. We used 

the layout fitness ratings provided by the expert as target outputs (T) for the ANN. 

We employed 60 instances for training the PDA and another 20 instances for testing the PDA. We 

tried to select training and test examples that are representative of the entire spectrum, listed in 

Appendix E. It should be noted that we have not carried out extensive experiments in fine-tuning 

ANN parameters or conditioning the training data. The optimization of a given ANN is usually a 

tedious task. Our aim in this exploratory study is to test the concept and gain more insights in this 

research direction for future extensions of our work. 

5.6.3 Results and Insights 

We employed the popular Mean Square Error (MSE) as a measure of performance or convergence. 

We used a learning rate of 0.01 and programmed to terminate the training of the network after 50,000 

epochs or when Absolute MSE goes below 0.001, whichever occurs first. We generated a random 

permutation of training data set before proceeding to the training of the PDA. Furthermore, we scaled 

PDA inputs (X1 and X2) and target values (T) in the [0,1] range. As such, the PDA outputs (Y) are also 

obtained as scaled values in the [0,1] range. The convergence of PDA’s training is shown in Figure 

5-9. The convergence characteristics of an ANN may be described by the ability of ANN to converge 

to specific error levels (Yasdi, 2000). These figures demonstrate that the PDA has a sound 

convergence capability. For visual comparison purposes, we have shown the Pattern Error that is 

calculated as the difference between the target value and the actual output for the training set of PDA 

in Figure 5-10, with both T and Y scaled to a range of [0,1]. It can be seen that the pattern error 

remains reasonably low. In addition, we have shown the Pattern Error calculated as the difference 

between the target value and the actual output for the test set, scaled to a range of [0,1], of PDA in 

Figure 5-11. Once again, the pattern error remains reasonably low, revealing the capability of PDA to 

learn and generalize from the given training instances. 
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Figure 5-9: Convergence of the Training Phase of the PDA. 

The trained network had an MSE of 0.00367 for values scaled in the range [0,1]. Similarly, the 

MSE obtained with the test data is 0.002486. Considering low MSE for the training and test data sets, 

we consider the PDA to be reasonably trained with reasonable generalization capability. Furthermore, 

the ratio between the test MSE and the training MSE, commonly known as generalization factor, is 

0.67738, which is desirable as it indicates that test error was less than the training error. Nevertheless, 

we have shown the Actual and Target network outputs, without scaling, in Table 5-3 and Table 5-4. 

The mean absolute error (T-Y) for training data is 4.86 and for test data is 4.24, which also implies 

promise of generalization capability. However, detailed discussions on the tradeoff between training 

and generalization errors are beyond the scope of this thesis and may be found in the literature (Nauck 

et al., 1997; Negnevitsky, 2002). 
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Inputs Target Output Inputs Target Output # 

X1 X2 T Y 

# 

X1 X2 T Y 
1 70.8 78.75 60 59.61 31 74.3 82.21 70 68.11 
2 85.7 73.8 65 60.71 32 90.2 70.54 60 57.31 
3 70.6 69.38 35 40.46 33 83 78.37 75 67.27 
4 75 75.1 50 55.61 34 70.6 69.87 30 41.55 
5 75 69.18 35 43.21 35 70.6 68.3 30 38.10 
6 80 75.12 60 59.05 36 74.3 81.26 70 66.40 
7 80 71.74 50 52.26 37 84.2 77.18 70 65.82 
8 85.7 65.14 35 42.39 38 70.6 75.75 55 53.53 
9 85.7 63.4 35 38.53 39 78.9 80.19 75 67.71 

10 85.7 65.14 40 41.90 40 83 83.3 80 74.90 
11 75 70.95 45 46.54 41 70.2 87.14 75 73.28 
12 75 71.74 45 48.17 42 78.4 92.8 70 83.67 
13 85.7 59.17 30 29.73 43 74.3 73.85 50 52.61 
14 80 66.91 30 41.68 44 74.1 85.57 70 73.17 
15 80 71.74 55 51.66 45 83 84.41 85 76.29 
16 80 72.36 55 53.01 46 83 90.52 85 83.21 
17 85.7 65.14 40 41.9 47 83 90.52 90 83.22 
18 84.2 72.65 60 56.64 48 78.4 77.51 65 62.86 
19 90.2 71.74 75 59.01 49 88.2 80.2 75 73.30 
20 90.2 76.69 70 68.39 50 78.4 84.41 80 74.10 
21 84.23 67.2 45 45.63 51 83 89.79 85 82.64 
22 90.2 68.31 55 52.31 52 83 79.26 70 69.02 
23 84.2 77.18 65 65.63 53 78.4 85.72 85 75.97 
24 74.3 70.89 40 46.06 54 83 81.71 75 72.94 
25 90.2 70.53 65 56.84 55 78.9 80.1 65 68.02 
26 90.2 70.9 65 57.75 56 85.7 60.47 25 33.28 
27 84.2 81.26 85 72.42 57 78.9 70.95 45 50.35 
28 90.2 80.1 85 74.07 58 75 73.65 50 52.90 
29 78.9 68.82 45 45.72 59 88.2 86.82 80 81.57 
30 78.9 77.11 50 62.47 60 75 71.1 40 47.52 

Table 5-3: Contrast between the Expert’s Rating and the PDA Output (Training Data)     
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Figure 5-10: The Pattern Error for Training Data - Actual Output minus Scaled Target Value 

 

Inputs Target Output Inputs Target Output # 

X1 X2 T Y 

# 

X1 X2 T Y 
1 78.4 72 40 49.27 11 75 75.75 50 56.91 
2 70.6 70.92 40 43.59 12 74.1 78.55 65 61.62 
3 70.6 65.09 25 31.68 13 74.1 88.7 80 77.33 
4 90.2 79.92 60 58.09 14 83.3 78.37 75 67.43 
5 74.3 77.11 55 59.05 15 88.2 89.79 90 84.36 
6 84.2 69.51 45 50.94 16 85.7 60.91 30 33.76 
7 84.2 63.26 35 37.60 17 90.2 74.47 65 64.89 
8 78.9 76.42 60 61.02 18 78.9 80.1 70 67.58 
9 78.4 79.3 75 65.90 19 88.2 71 60 56.88 

10 78.9 78.75 70 65.27 20 84.2 83.3 75 75.45 

Table 5-4: Contrast between the Expert’s Rating and the PDA Output (Test Data) 
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Figure 5-11: The Pattern Error for Test Data - Scaled Target minus Scaled Actual Output 

It should be borne in mind that the PDA is geared towards predicting and modeling human expert’s 

rationalization and behavior. Indeed, modeling and predicting human behavior is a very challenging 

venture and imperfection in predicting human behavior makes such levels of error inevitable. 

Furthermore, the number of training instances is only modestly sufficient for such complex work 

domains as layout design. Consequently, we deem the output of PDA maps to the target output 

reasonably well. However, this exploratory study limited from several perspectives, as discussed 

below. 

Limitations 
This exploratory study has several limitations. For instance, training and test data were the layout 

alternatives generated for the single problem. However, using test data from various other problems 

would have provided a better assessment of generalization capability of the PDA. In addition, we did 

not employ any separate validation data set to ensure the MSE calculated during training also indicate 

good generalization capability and not mere overlearning of the PDA output to the target values. 
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Furthermore, as an empirical rule, the number of training instances should be about 10 times the 

number of weights being trained in the ANN. Indeed, in the current setup, we have about 11 training 

weights against only 60 training instances. The number of training instances is quite inadequate and 

may have resulted in overfitting to the training data, jeopardizing the much sought for generalization 

capability. However, these limitations are a direct consequence of limited data availability, as a large 

number of examples might have resulted in lost interest from the expert. 

Another limitation of the study emanates from the framing of the question posed to the expert who 

rated those layouts alternatives. Incidentally, we asked the expert to rate the given layouts as 

‘alternatives’, which tacitly meant that each solution may be treated as a starting point for further 

improvement and hence rated according to the expected utility after refinement rather than the 

inherent utility of a given layout alternative. Conceivably, a touch of intuition and foresight was 

involved in such ratings. A careful study of the data set we generated supports this hypothesis. Some 

representative cases of such trends have been elaborated in Section 4.9. In general, the expert gave 

higher ratings to layouts that can easily be modified to superior outcomes and are not merely 

inherently superior.  

However, offering those layout solutions as ‘final solutions’ and taking away any explicit or 

implicit notion of some possibility of fine-tuning might have resulted in different layout ratings and 

PDA training outcome. Nevertheless, it was not easy to carry out such experiments due to the degree 

of involvement required from experts. Such experiments are time consuming and if carried out for 

long periods then experts may lose interest in the whole exercise. In general, the enthusiasm shown in 

the beginning by participants of such studies does not last long, as it quickly becomes a repetitive and 

boring exercise for them. 

In short, the evaluation of results shows that predicting a decision-maker’s behavior provides a 

rough albeit indispensable guideline for determining an appropriate regime for decision alternative 

selection to be furnished to the decision-maker. It is argued that further improvements can be attained 

through some extensive experimentation and optimization of ANN as well as through some content-

based reinforcement learning process. 

5.7 Summary 

In this Chapter, we have provided our philosophy and implementation of a Preference Inferencing 

Agent. We have described a framework for fuzzy inferencing that could furnish crisp weights to a 
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hybrid fitness function as well as various parameters for the ILG. Furthermore, we provided the 

conceptual basis for an automated Preference Discovery Agent as well as some simulation results to 

demonstrate the viability of the concept. In the subsequent chapter, we conclude with contributions 

and insights gained through this thesis. In addition, we describe some limitations of this research. 

Moreover, we provide several interesting future research directions. 
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Chapter 6 

CONCLUSION  

6.1 Introduction 

In layout design, the solution elements are modules, and solutions are combinations of modules that 

form a complex configuration satisfying certain physical constraints and aesthetic considerations. 

However, such complex problems require the ability to construct and revise plans more flexibly from 

primitive actions or procedures.  

Automated layout design systems can play important role in not only improving efficiency, 

effectiveness, and productivity of layout designers but also achieving higher superiority and diversity 

in layout alternatives. Nevertheless, existing automated layout design systems are generally 

characterized by drawbacks in such important aspects as flexibility, efficiency, scalability, 

generalizability, and learnability of the system as well as ability to facilitate the creativity of designers 

and diversity in solution alternatives. The complexity and subjectivity of layout design necessitate the 

development of an intelligent system for layout design that deals with such challenging issues and 

provides efficient means of generating, analyzing and manipulating superior alternative layouts. 

This work is primarily motivated by the inadequacy of decision, design, and instructional aids in 

layout design. To address these needs, we have presented a research framework and a functional 

prototype for an interactive Intelligent Decision Support System for layout design based on an Expert 

System paradigm (IDEAL). It consists of an Intelligent Layout Generator that provides a diverse set of 

superior layout alternatives by employing crisp preferences from a fuzzy Preference Inferencing 

Agent. The Preference Inferencing Agent, in turn, obtains subjective rules and preferences from 

various knowledge sources. Furthermore, IDEAL supports interactive, efficient, and knowledge-based 

production and manipulation of superior layout alternatives. The usual time constraints and frequency 

of updates required in procurement of a layout justify such a system as an indispensable and high 

priority tool. Preliminary experiments with our prototype (IDEAL) have provided promising results in 

terms of both efficiency and quality of the outcome. 

Here we summarize the dissertation, results, insights, and its efficiencies and deficiencies. We also 

provide a summary of significant contributions to the existing research body. Furthermore, we 



 

 160 

delineate some interesting, challenging, and rewarding future research directions for extending the 

research in layout optimization, preference modeling, uncertainty management, automated learning, 

etc. both within the context of the layout design problem and in general. 

6.2 Summary of Dissertation 

Our research methodology involved surveying available models and methodologies in layout design, 

identifying their scope and limitations, developing a conceptual framework for alleviating some of 

their limitations, building a functional prototype for testing and validating the viability of our research 

framework, testing the prototype using case studies, and reporting conclusions and insights gained in 

the process.  

Layout design is such an intricate problem that it requires an interdisciplinary approach as well as a 

paradigm shift from the usual hard optimization approach to the one of decision-making and soft 

computing. As such, our conceptual framework employs a decision-making problem-solving 

paradigm involving synergistic use of several tools and techniques from Soft Computing and Machine 

Intelligence. The emphasis is on development of a tool that could supplement the knowledge, 

experience, and design intuition of layout designers. In addition, it provides a vehicle to further the 

research and instructional efforts in this important direction.  

In this thesis, we have limited ourselves to a two-dimensional oriented bin-packing (2D-BPP) 

formulation of the layout design problem. It is because a 2D-BPP formulation can easily be adapted 

for several important layout design applications. Consequently, we deem 2D-BPP as a generalized 

formulation that could form a basis for developing a generic approach towards solving the layout 

design problem.  

6.3 Interpretations of Results and Insights 

The exact approach to such subjective and uncertain problem domains as the layout design is neither 

efficient nor effective. Our results have demonstrated the efficacy of the proposed knowledge-based 

layout design approach as well as tools and heuristics employed.  

The Genetic Algorithms based approach, in conjunction with efficient and effective 

placement/decoding heuristics, can provide a diverse set of superior layout alternatives to decision-

makers. The fuzzy inferencing is useful in furnishing various parameters and weights for hybrid 

fitness evaluation function in the intelligent layout generator, resulting in improvements in overall 
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efficiency and efficacy. Furthermore, automated preference discovery is a viable knowledge 

acquisition option in layout design. Technologies like Artificial Neural Networks and Reinforcement 

Learning might prove valuable towards this end. 

This research framework and the prototype are explicitly designed to aid decision-makers and it is 

expected to continuously increase productivity, lower costs, reduce waste, improve customer 

satisfaction, and spur innovation. In addition, it is expected to reduce planning efforts and planning 

time. The shorter cycle time would in turn translate into reduction in the uncertainty involved. 

Time efficiency in generating superior layout outcomes is certainly among the more important 

measures of the success of an automated layout design system. A near-optimal and superior solution 

procured within a reasonable time-frame is often adequate for practical applications. IDEAL employs 

very efficient and effective procedures for layout alternative generation. However, the effectiveness 

and robustness of the system also determine the success of the system. IDEAL consistently provides 

superior layout alternatives. Furthermore, it provides interactive means for knowledge-based 

generation and manipulation of the layout alternatives.  

However, the caveat is that IDEAL may result in an anchoring effect – the tendency to make 

decisions based on inadequate adjustment of subsequent estimates from an initial estimate that serves 

as an anchor. As such, a solution rated as superior by an automated system might engender an 

inadequate judgment by the user. The Automation bias means that humans have a propensity to 

discount or not search for contradictory information in presence of a computer-generated solution that 

is deemed as an immaculate outcome (Mosier & Skitka, 1996; Parasuraman & Riley, 1997). The 

inherent complexity means decision support systems that integrate sophisticated levels of automation 

may inadvertently permit users to “perceive the computer as a legitimate authority, diminish moral 

agency, and shift accountability to the computer, thus create a moral buffering effect” (Parasuraman 

& Riley, 1997).  

However, such caveats are part of a typical layout design process, manual or otherwise and overly 

trusting automation in such complex system operations as layout optimization is a well-recognized 

decision support problem (Mosier & Skitka, 1996). Furthermore, the potential benefits of systems like 

IDEAL outweigh these shortcomings. Moreover, such shortcomings can easily be evaded with little 

prudence and creative thinking by users, coupled with a diverse set of superior alternatives, which are 

essential ingredients of any decision-making process. 
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6.4 Feedback from Practitioners and Researchers 

During the course of this thesis, some experienced researchers and practitioners have been selected to 

solicit feedback concerning our approach, in general, and IDEAL, in particular. One of those experts 

had more than 20 years of experience in teaching, researching, and publishing in the field of layout 

optimization and facilities design. Another has been researching and publishing in this area for more 

than 15 years; these communications started in February 2002. In addition, an anonymous technical 

support specialist from VIP-PlanOpt™ had provided many useful insights to the problem and market 

demands that helped guide this research; these interactions started in January 2003.  

These practitioners demonstrated great interest in the research outcome and research ideas were 

deemed enablers of both productivity improvement of layout designers and procurement of superior 

layout designs. They were positive about the simplicity and usefulness of paradigms and heuristics 

presented in this thesis. The technical support specialist at PlanOpt.com demonstrated interest in 

incorporating such interactive decision support facilities in their future versions of software and was 

keen to know the progression and outcome of the research. The other two researchers in the layout 

optimization area employed earlier versions of IDEAL as teaching aids for undergraduate courses in 

facilities layout design. They were particularly interested in the interactivity and visibility of the 

design process where students were able to view and compare outcomes against a variety of fitness 

measures.  

Students had the opportunity to contrast the power, performance, productivity, and practicality of 

IDEAL with such popular and dedicated facility layout optimization software as SPIRAL, VIP-

PlanOpt, FACOPT, etc. We deemed comments from novices in the layout design field important from 

the ease of use, ease of learning, perceived usefulness, and speed of execution perspectives. Such 

comments were very useful in improving IDEAL. For instance, the idea of augmenting IDEAL with a 

comparison module in future, facilitating interactive comparisons and manipulations of a pair of 

superior layout alternatives, has come from one of the students who used IDEAL. Indeed, students 

only had access to the developers’ interface, as the planned user interface has still to be implemented 

completely. Nevertheless, students appreciated the visibility of process dynamics, the usability of 

rule-base creation module, and the ability to control the various process parameters. 

The following are some of the remarks made by those practitioners: 
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¾ IDEAL is suitable at the initial layout planning stage, at which time only imprecise 

information is available. It can help one arrive at a rational and multi-criteria based decisions 

quickly and help in some operational planning. 

¾ The repeated evaluation and selection process is suitable for activities that involve relatively 

permanent outcomes of strategic significance.  

¾ The evaluation metrics for considering a layout alternative can affect the outcome and 

necessitate that special attention be paid to the process of selecting fitness evaluation metrics. 

Equipping decision-makers with a variety of fitness metrics would alleviate this concern. 

¾ Linguistic modeling using fuzzy logic seems to provide flexibility and ease in knowledge 

acquisition and approximate reasoning through fuzzy inferencing seems appropriate in 

uncertain situations. However, the same might not be true if the problem at hand is structured 

and parameters can be predicted fairly accurately. 

6.5 Comparison of IDEAL with Existing ALD Systems 

This research is primarily motivated by lack of elaborate methodologies for tackling the layout design 

problem and inadequacy of existing ALD systems. IDEAL alleviates various limitations of existing 

ALD systems. In the following, we provide a meta-level comparison between capabilities of IDEAL 

and capabilities of most existing ALD systems. 

Attribute Existing ALD Systems IDEAL 

Scalability Cannot efficiently handle large-scale 
problems 

Scalable to handle large problems consisting of 
thousands of modules 

Productivity and 
Efficiency Slow and inefficient fast and efficient  

Fitness Metrics & 
MCDM Capability 

Single (or few) rigid and myopic 
quantitative fitness metric(s) to guide 
the optimization search 

Several encompassing quantitative and 
qualitative fitness evaluation metrics are 
available (and easy to augment further) for a 
hybrid fitness metric affording MCDM 

Quality of Alternatives 
Lower aesthetic value with no 
provision to afford layout aesthetics 
guiding the layout optimization 
process 

Generates superior alternatives against 
quantitative fitness metrics (more than 25% 
improvement for medium-scale problems); 
provision for incorporating layout aesthetics in 
the design process (more than two-fold experts’ 
qualitative ratings) 
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Diversity of 
Alternatives 

Little or no diversity; deterministic 
and localized search 

Generates many diverse and superior 
alternatives; Non-deterministic and global search

Preference Modeling 
& Uncertainty 

Handling 

Little or no capability to model and 
incorporate user preferences in design 
optimization; Lack robust means of 
handling uncertainty and subjectivity 
in preferences 

Flexible, linguistic, and natural modeling of user 
preferences; Fuzzy Logic provides capability to 
handle uncertainty and subjectivity in preferences

Simplicity, 
Usability, & 

Visibility of 
Interface Controls 

Simpler interface; fewer 
functionalities; lack powerful 
capabilities & flexibility required in 
such complex domains; Difficult to 
learn; limited user control 

Complex interface with many important and 
powerful functionalities and controls; usable and 
easy to use interface offering users much desired 
flexibility; easy to learn 

Creativity; 
Interactivity; User 
Control; ease of 

manipulation 

Difficult to learn; limited user control; 
little or no provision for manipulating 
alternatives; require auxiliary CAD 
software; Disregard human 
creativity/expertise 

Allows for interactive, extensive, visible, 
informed, and easy controls for 
generation/manipulation of alternatives and 
benefiting from human creativity; benefits from 
human creativity and expertise through extensive 
user control on layout generation/manipulation 

Learnability and 
Transparency 

Unable to learn from experience; little 
or no explanation capability 

Can be augmented to incorporate learning 
abilities; Affords basic explanation capability  

Backtracking & 
Post-Optimization 

Processing 

Most systems require expensive 
backtracking and/or post-optimization 
processing for generating feasible and 
practical solutions 

No need for backtracking; little or no need of 
post-optimization processing 

Gneralizability; 
Portability; 
Reusability 

Employ relatively simpler assignment 
models that are not applicable in most 
scenarios; little or no portability; non-
portable data storage/retrieval; 
difficult to adapt in changed scenarios

Employs a generic 2D-BPP problem formulation; 
easily adaptable to various 2D layout design 
applications; portable data and knowledge 
storage/retrieval system; separation of 
knowledge-base and inferencing mechanisms that 
affords reusability; flexible in augmenting or 
updating knowledge-base 

6.6 Summary of Contributions 

This thesis contributes to the fields of layout optimization, soft computing, and knowledge-based 

systems in various ways. Here we list some of these contributions: 

1. Surveyed available models and methodologies in layout planning and design: 

We provided an integrative and comparative survey of existing models, problem 

formulations, and solution methodologies in layout design and analysis. 
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2. Identified the scope and limitations of available models and methodologies for layout 

planning and design: 

a. We identified that most research on automation in layout design is limited to the 

development and improvement of algorithms, heuristics, and mathematical 

programs and is quite inadequate. It is primarily because the prevailing solution 

paradigm in layout design field is that of Optimization instead of a more relevant 

and effective Decision Making paradigm. 

b. We identified various existing ad hoc, user-controlled, deterministic, probabilistic, 

and machine learning techniques for modeling the layout design problem as well as 

user preferences and constraints. We compared these techniques based on several 

important aspects and discussed their pros and cons with some recommendations. 

c. We identified various ad hoc, probabilistic, and approximate reasoning inferencing 

mechanisms for utilizing subjective and uncertain user preferences. We compared 

these techniques based on several important aspects and discussed their pros and 

cons while providing some recommendations. 

d. We identified some promising tools, techniques, and solution paradigms for 

efficient and effective decision support through automated layout design/planning.  

e. We provided our recommendations regarding the selection of the preference 

modeling techniques in layout design. Furthermore, results of a small-scale 

exploratory study are provided, which involved subjective evaluation of merits and 

demerits of various popular modeling techniques by some experts in layout design. 

f. A mathematical formulation for a generic two-dimensional oriented bin-packing 

problem is provided and adapted for the use with genetic algorithms based layout 

optimization. 

3. Developed a conceptual framework for the layout planning and design process: 

a. We identified various major phases and related issues in the automated layout 

design process and the logical inter-relationship/flow among those components. 
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b. We formulated some effective quantitative and qualitative layout fitness evaluation 

metrics. Furthermore, we proposed an encompassing fitness evaluation regime 

affording Multi-Criteria Decision Making (MCDM) in layout design.  

c. We formulated a research framework for solving a generic layout design problem. 

We discussed the philosophy and the synergy of tools and techniques deemed 

promising for implementing the proposed research framework.  

4. Built a working and scalable research prototype of the proposed paradigm for testing 

and validating the viability and efficacy of the concept through simulation studies: 

a. We proposed several efficient, effective, and robust layout optimization heuristics, 

which provide superior solutions in terms of both quantitative and qualitative 

fitness. An ability to obtain solutions with high aesthetic contents is an important 

achievement in such subjective problem domains as layout design. Superiority of 

proposed heuristics is demonstrated through comparative analyses with various 

efficient and popular existing heuristics using several benchmark problems.  

b. We formulated a metaheuristics based approach for building a fast, effective, and 

robust system for automating the generation of diverse layout design alternatives. 

c. We developed a Fuzzy inferencing mechanism for modeling of, and reasoning 

with, subjective and uncertain design preferences. 

d. We developed a functional, scalable, and interactive prototype of the proposed 

paradigm for testing and validating the effectiveness of the solution paradigm in 

supplementing the experience, intuition, and erudition of layout designers. 

5. Tested the research prototype using real world case studies: 

We tested the efficacy of our system using case studies in bin-packing, besides testing on 

various benchmark problems. Results and insights of our case studies are reported in 

Chapter 4. 

6. Reported the conclusions and insights gained during this thesis: 
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Conclusions and insights gained during course of this thesis are reported in this 

dissertation with results and their interpretations in a variety of contexts. These 

conclusions and insights are summarized in this Chapter. 

7. Identified efficiencies, efficacies, and deficiencies of the research done during the 

course of this thesis: 

The system we have implemented employs very efficient and effective procedures for 

layout alternative generation. Our system consistently provides superior layout 

alternatives. Furthermore, our system provides interactive means for knowledge-based 

generation and manipulation of the layout alternatives. However, despite having 

superiority in terms of efficiency, scalability, and efficacy, this system is still a research 

tool that is continuously being evolved into an even more powerful and effective decision 

support system. Consequently, IDEAL has its limitations that are pointed out throughout 

the thesis and summarized in Section 6.7. 

8. Proposed some future directions for furthering this research: 

Automated layout design is a prolific research area with every research endeavor opening 

new vistas. Likewise, besides tackling several important issues, this thesis provides many 

interesting research directions in various contexts. Such research opportunities are 

pointed out throughout this thesis and summarized in Section 6.8.  

6.7 Limitations of Research 

Here we describe limitations in the scope of this thesis: 

¾ The scope of this research is largely limited to the Intelligent Layout Generator and the 

Preference Inferencing Agent. 

¾ It is assumed that all the necessary data is available and does not require any pre-processing. 

Furthermore, it is assumed that the modules were categorized based on suitable criteria and 

assigned a utility value based on economic and/or visual appeal. IDEAL does not have such 

pre-processing capabilities. 
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¾ Modules are assumed oriented in nature. However, some provision for decision maker to 

choose between oriented modules scenario and situation where module rotations are 

permitted would add to the scope of IDEAL. 

¾ It is assumed that Module shapes are pre-determined and rigid. However, some capability of 

handling flexible modules, as well, would broaden the scope of IDEAL. 

¾ It is assumed that modules are rectangular. However, some layout design applications may 

call for packing of non-rectangular modules such as polygons and circles. In such scenarios, 

algorithms currently employed in ILG would not work and a new knowledge base of 

procedures and algorithms would be required. 

¾ This research does not explicitly provide means to handle three dimensional layout designs 

such as those encountered in facilities and VLSI layout designs. Nevertheless, the problem-

solving paradigm still is still applicable and it is possible to extend this research to multi-bin 

scenarios and adapt it for the three-dimensional layout design problems. 

¾ The explanation facility is quite unsophisticated. Users might want to get more in-depth 

explanation of the behavior of IDEAL. 

¾ The automated preference discovery concept has been demonstrated as a viable option. 

However, the PDA has not been directly incorporated in IDEAL. 

¾ The end-user interface needs to be implemented and tested. 

¾ Data import and export formats are limited to text and csv (comma separated values) formats 

only, thereby limiting the portability of IDEAL. 

6.8 Future Work 

It is hoped that the exclusive and complementary features of various soft computing technologies will 

result in a synergistic integration that would provide new insights to practitioners and theoreticians 

and thus open up new frontiers. Here we list some of those interesting future research directions. 

6.8.1 Metaheuristics 

Currently, the GA based metaheuristic search approach in IDEAL supports layout design scenarios 

involving only one bin or packing space. However, the system can be modified to support both multi-
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bin and undersized bin scenarios. Under such scenarios, some peculiarities may transform the 

dynamics of the problem and open up some interesting research venues. 

In a multi-bin scenario, modules may be placed in a given number of bins, possibly with some 

effect on the total utility of the layout design. For instance, placement of a particular module on the 

homepage of an e-Store would have different utility than the case where the same module is placed in 

one of the subsequent pages. 

In an undersized bin scenario, the size of a bin might not be adequate to accommodate all modules. 

As such, only a subset of modules may be accommodated in a specific layout alternative. In such 

scenarios, the intrinsic utility of modules as well as inter-module interaction would have more 

significant role in determining the layout fitness. 

6.8.2 Layout Design Heuristics 

The need for efficient and effective heuristics in layout design is an ongoing research area where the 

quest for more useful heuristics would not only facilitate improvements in productivity but also 

provide more insights to the layout design problem. Heuristics capable of producing solutions with 

higher aesthetic contents are also important in such subjective problem domains as layout design.  

In future, we want to investigate means to facilitate fuzzy placement decisions, such as skipping 

some less promising placement steps for expediting the design process when the hamming distance 

between two genes is large. For instance, if the hamming distance between two modules in a 

chromosome, say A and B, is large then there is little promise in exploring placement of module B at 

the corners of module A, which are more likely to be occupied already. 

6.8.3 Uncertainty Management 

Uncertainty and subjectivity involved in most layout design work domains mean that developing 

robust methods for uncertainty management would remain an important issue. Although FL seems to 

be a logical choice in cost-effective and robust uncertainty management as well as explanation 

capabilities, it would be useful to compare the well-known modeling approaches by evaluating their 

relative merits and demerits. Thus, empirical and theoretical investigations regarding the suitability of 

different techniques under different operating conditions are desired. Generally, studies in various 

techniques for uncertainty management do not provide such comparative treatments. However, such a 

comparative treatment would potentially provide valuable insights to the strengths and weaknesses of 
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those techniques. Consequently, it would help in identifying suitable uncertainty management 

technique(s) for various sources of uncertainty in different work domains. It would enable future 

researchers in tapping on strengths of many techniques and making more informed decisions. An 

ability to account for interdependencies and interactions among various preferences in the inferencing 

mechanism provide very prolific but challenging research streams. 

6.8.4 Multi-Criteria Decision Making 

A review of existing and promising fitness evaluation metrics for various layout design domains 

would be a worthwhile effort. It would provide guidelines to layout designers regarding prudent 

selection of fitness metrics that may form the basis for Multi-Criteria Decision Making. We also 

aspire to explore ways of leveraging on extensive information theory literature in developing more 

encompassing and meaningful hybrid fitness layout metrics as well as comparison of those in terms of 

informational value. For instance, two seemingly different metrics for gauging different aspects of 

layout utility does not always mean any significant improvement in actual informational value.  

6.8.5 Automated Learning 
We have demonstrated that automated preference discovery is a pragmatic strategy that offers value 

in face of difficulty in explicitly articulating preferences by the decision maker. The promise of 

automated preference discovery provides several potential research streams. For instance, such 

automatically discovered preferences need to be adjusted or refined based on users’ interactions with 

the preliminary or intermediate alternatives. Explicitly articulating such adjustments in learned 

preferences by the decision maker might not always be a feasible or an efficient approach. As such, 

we also need some mechanism to automatically update these preferences. ANN may be used in such 

an incremental learning mode. However, we believe, few instances of user interactions might not 

provide sufficient or efficient re-training of the ANN. Consequently, we plan to incorporate a 

Reinforcement Learning (RL) mechanism for automated updating and refining of preferences and test 

the viability of automated preference discovery concept under dynamic scenarios. 

6.8.6 Graphical User Interface 
An effective and interactive end-user interface would have a crucial role in the effectiveness as well 

as acceptability of any computerized layout design approach. Towards this end, a prototype of an 

effective user interface has been developed, and tested, using the philosophy of ecological interface 

design as well as various usability and Human-Computer Interaction guidelines. However, we have 



 

 171 

not implemented the end-user interface as this work is still in the development phase and present 

interface reflects complexities of the task as well as functionalities required by experts and developers 

of the system.  

6.8.7 Explanation Facilities 
An explanation facility is the ability to thoroughly explore the implications of knowledge models and 

bases of system’s adaptations. Explanation Facilities indicating to users the reasoning behind actions 

is an important part of the proposed research paradigm. It would provide users a sense of control by 

making the system ‘scrutable’. However, such capabilities need to be both visible and comprehensible 

to the user. In this direction, a visible method for understanding and controlling the system’s 

adaptations or user profiles might augment the acceptability of the system.  

6.8.8 Personalized Decision Support 
Our system affords both individual and group decision making scenarios. However, as already 

mentioned in Section 5.6, various technologies can be employed to create profiles of decision makers. 

It would be interesting to customize the system based on the user profile for providing personalized 

decision support. For instance, users may have various cognitive biases, as discussed in Section 2.9. 

A personalized decision support may be used to compensate for such cognitive biases. Research in 

adaptive user interfaces would play a prominent role in realizing such endeavors. 

6.8.9 Empirical Evaluation 
The real-world deployment of such interactive decision support systems with a demonstrable 

effectiveness is a formidable task. Conceivably, a review of existing automated layout design systems 

reveals little work in this direction. Nevertheless, some carefully designed and conducted empirical 

studies of actual users would help reinforce, contradict, and refine designs to better accommodate and 

satisfy users. Some possible metrics for evaluating such systems may include users’ subjective 

evaluation of interaction quality, user-friendliness, effectiveness, generalizability, scalability, 

accessibility, acceptability, the degree of task simplification, etc. Despite the difficulty in quantifying 

these aspects, the subjects’ rating could be useful for evaluating IDEAL and its interaction quality. 

Comprehensive research materials on instruments and techniques for guiding such empirical 

evaluations are available in the literature (IS World, 2005).  
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6.9 Concluding Remarks 
In this thesis, we developed and implemented a new research paradigm for layout design. This 

efficient, effective, and intelligent neuro-fuzzy-genetic approach for solving the layout design 

problems provides interesting research directions as well as a vehicle for furthering this research. The 

research prototype (IDEAL) can solve large-scale continuous space layout design problems consisting 

of unequal size modules with relatively little computational efforts. The proposed framework and the 

research prototype system contribute to the field of decision support in the layout design by enabling 

explicit representation of experts’ knowledge and formal modeling of fuzzy user preferences. It is 

expected to improve the cognitive, ergonomic and economic efficiency and effectiveness of layout 

designers. 

This thesis should furnish researchers and practitioners in layout design area a better understanding 

of tools and ideas in tackling the layout design problem. This research framework may evolve in a 

natural progression towards developing some more powerful and robust systems. We believe that 

such research would prove a worthwhile effort in providing valuable decision support to the layout 

designers. Furthermore, it may find useful applications in such seemingly disparage areas as 

intelligent tutoring systems, dynamic memory allocation, multi-server scheduling, and 

metacomputing. It is expected that the proposed approach will provide answers to some questions 

raised in practical applications of layout design and facilitate further research in this direction. In 

addition, this work is expected to result in identification of other areas craving for such 

interdisciplinary solution approaches. This research also provides a basis to researchers in knowledge-

based systems, as well as subjective decision-making problems, on how to expand on existing toolsets 

for solving various complex operations management problems. 
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Appendix A – GLOSSARY OF TERMS 
Term Definition 

Automation Bias Human propensity to discount or not search for contradictory 
information in presence of a computer-generated solution that is 
deemed as an immaculate outcome 

Availability Heuristic The human tendency to rely on recent events and information or 
whatever information readily available to decision makers from their 
memory. It is a cognitive bias that cannot easily be established and 
rectified. 

Bounded Rationality Decision makers often resort to bounded-rationality reflecting on 
inadequacy of tangible and intangible resources (Greenberg et al., 2000; 
Simon, 1957a). Framing and cognitive biases demonstrate the operation 
of bounded rationality. 

Cognitive Overhead “The additional effort and concentration necessary to maintain several 
tracks or trails at one time” (Conklin, 1987, pp. 40). The term Cognitive 
Overload refers to a psychological phenomenon characterized by an 
overload of information for a decision maker (i.e. the magnitude of 
information surpasses the person’s cognitive capability). 

Confirmation Bias Confirmation bias refers to the tendency to dig out only the information 
that conforms one’s own view of the situation. It is a cognitive bias that 
inhibits people from acquiring additional relevant information 

Cognition The mental process or faculty of knowing, including aspects such as 
awareness, perception, reasoning, and judgment. 

Decision A decision is a plan of action that is ready for implementation and 
Decision-Making is the process of developing commitment to some 
specific course of action (George, 1996). Whereas, a problem exists if a 
gap is perceived between some existing state and the desired state 
(Johns, 1996). 
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Term Definition 

Decision Support Systems Power (1999) defines DSS as “interactive, computer-based tools 
intended to help decision makers use data, documents, knowledge, and 
models to identify and solve unstructured problems and make 
decisions”. Keen and Scott-Morton (1978) argue that the idea of 
decision support evolved from “the theoretical studies of organizational 
decision-making done at Carnegie Institute of Technology during the 
late 50’s and early 60’s and the technical work on interactive computer 
systems mainly carried out at MIT in 60’s”. The concepts involved in 
Decision Support Systems (DSS) were articulated as early as in 1971 by 
Scott-Morton using the term ‘Management Decision Systems’ (Scott-
Morton, 1971). 

Disorientation Disorientation is defined as “the tendency to lose one’s sense of 
location and direction in a nonlinear document” (Conklin, 1987, p. 40). 

Dynamic Rationality Changes in preferences resulting from decision-makers’ interaction with 
existing or intermediate solutions. 

Expert Systems An ES is a computer program capable of performing at the level of a 
human expert in a narrow domain (Negnevitsky, 2002). ES operate at 
the decision-gate conducting complex search and interpretive 
procedures to produce partial to complete solutions that appear as 
advice, recommendations, or even decisions. 

Framing Decision-makers often resort to making presumptions regarding some 
aspects of the available information, an affinity referred to as framing. It 
refers to the aspects of presentation of information about a problem that 
are presumed by decision makers. The way problems and decision 
alternatives are framed could have a powerful impact on resulting 
decisions. 

Ill-Structured Problem An ill-structured problem is one that tends to be complex, relatively 
novel, subjective, and uncertain. Such undertakings require high degree 
of creativity and expertise. Under most favorable conditions, a problem 
is well structured when existing and desired states are clear and the 
process involved in achieving the desired state is obvious. Such 
problems are simple, recurring, and familiar. Since decision-making is 
time consuming and error-prone, a ‘program’ or standardized procedure 
for solving well-structured problems is preferred. Ill-structured 
problems cannot be programmed and decision makers should opt to 
non-programmed decision-making. These would involve creativity and 
substantial efforts in collecting more information and be self-
consciously extra analytical in approach bringing as much structure to 
the unstructured problem as possible (George and Jones, 1996). 
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Term Definition 

Information Overload It refers to a situation where more information is acquired or available 
than is necessary to make effective decisions. The information overload 
interferes with performance. Problem is the inability to find key 
information, to separate the relevant information from noise, and to read 
all the relevant information – often impossibility. It is obvious that 
providing information to web designers automatically does not improve 
decision making and/or efficiency when information flow is so vast, 
chaotic, and corrupted. Decision makers facing information overload 
often attempt to use all the information at hand, and then get confused, 
and permit low-value or irrelevant information to affect their judgments.

Metacomputing A computing paradigm based on a set of machines networked together 
for increased computational performance. 

Neuron Neurons are the nerve cells that make up the central nervous system. 
They consist of a nucleus, a single axon that conveys electrical signals 
to other neurons and a host of dendrites, which deliver incoming 
signals. 

Perfect Rationality A decision strategy that is completely informed, perfectly logical, and 
oriented towards economic reward is referred to as perfect rationality 
(Simon, 1955). Nevertheless, the notion of rational decision-making is 
unrealistic as the assumption that decision makers have all the relevant 
information to make an optimal decision bears little resemblance with 
the real world (Simon, 1955). Another problem with decision-making 
relates to the evaluation of alternatives. In case of perfect rationality, the 
evaluation of alternatives is objective. In complex unstructured 
problems, such as Web page layout design, seeking an objective 
measure for evaluation and comparison of alternatives might not be an 
easy task. 

Production Paradox People are not always eager to learn new things, but they want to get 
their work done, i.e., getting the job done is the primary focus. The 
production paradox attempts to explain why increases in computational 
support do not necessarily result in increased productivity. One would 
only ever want to learn to use a new tool if one wanted first to get 
something done. Nevertheless, wanting to get something done can also 
be a problem, if one lacks the prerequisites: you have to learn to do in 
order to do. Merely wanting to use a new tool may be necessary but it is 
not sufficient. 
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Term Definition 

Satisficing Decision makers operate under bounded rationality and satisfice rather 
than optimize. Satisficing refers to ‘establishing an adequate level of 
acceptability’ for a solution to a problem and screening solutions until 
one that exceeds this level is found (Simon, 1957b; Bower and Zi-Lei, 
1992). 

Usability Accommodating users with different skills, knowledge, age, gender, 
handicaps, literacy, culture, income etc. 

User Interface The aspect of a computer or program that is visible to the user, giving 
and accepting information from him or her. 
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Appendix B – Graphical Interfaces in IDEAL - Screenshots 

B-I: Graphical Interface for Developers (Expert Controls) – Normal View 
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B-II: Graphical Interface for Developers (Expert Controls) – Zoomed View 



 

 194 

B-III: Graphical Interface for Knowledge Engineers (Knowledge Controls) 
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Appendix C – Benchmark Problems1  
J25 

Id x y w h Id x y w h Id x y w h 
0 0 0 40 30 11 19 0 6 4 22 35 4 3 5 
1 0 0 12 6 12 20 9 4 6 23 38 4 2 5 
2 0 6 4 7 13 24 12 6 3 24 35 0 3 4 
3 4 6 6 7 14 23 4 4 5 25 38 0 2 4 
4 0 13 10 2 15 25 0 2 4      

5 10 6 2 5 16 32 11 8 4      

6 10 11 6 4 17 27 0 8 6      

7 12 9 4 2 18 27 6 8 3      

8 16 9 4 6 19 24 9 6 3      

9 12 0 7 9 20 30 9 2 6      

10 19 4 4 5 21 32 9 8 2       

 

25-Module Problem from Jakobs (1996) and Liu and Teng (1999) 

                                                      
1 All Problems are shown with trimmed top of bins for ease of visualization. 
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H25 
Id x y w h Id x y w h Id x y w h 
0 0 0 40 30 11 0 0 3 5 22 0 0 12 4 
1 0 0 11 3 12 0 0 11 2 23 0 0 1 4 
2 0 0 13 3 13 0 0 2 2 24 0 0 5 2 
3 0 0 9 2 14 0 0 11 3 25 0 0 6 2 
4 0 0 7 2 15 0 0 2 3      

5 0 0 9 3 16 0 0 5 4      

6 0 0 7 3 17 0 0 6 4      

7 0 0 11 2 18 0 0 12 2      

8 0 0 13 2 19 0 0 1 2      

9 0 0 11 4 20 0 0 3 5      

10 0 0 13 4 21 0 0 13 5       
25-Module Problem (C2-P1) from Hopper and Turton (2001) 

 
Note: Hopper and Turton (2001) do not provide any visual depiction of the optimal layout for their 
benchmark problems. Apparently, their benchmark problems are designed with BLF algorithm in 
mind. It is reflected from the fact that the ordered sequence of modules (ordered by increasing module 
index) always resulted in the best layout in terms of the fitness measures used for comparison, namely 
HT (i.e. only one iteration of BLF was needed to obtain optimal). One instance is depicted above for 
illustration purposes. 
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H49 
Id x y w h Id x y w h Id x y w h 
0 0 0 60 210 18 0 0 14 6 36 0 0 4 17 

1 0 0 2 7 19 0 0 2 6 37 0 0 8 17 

2 0 0 24 7 20 0 0 6 10 38 0 0 3 10 

3 0 0 16 4 21 0 0 16 10 39 0 0 5 10 

4 0 0 18 4 22 0 0 3 5 40 0 0 7 6 

5 0 0 16 7 23 0 0 4 5 41 0 0 8 6 

6 0 0 18 7 24 0 0 8 12 42 0 0 15 12 

7 0 0 2 4 25 0 0 3 18 43 0 0 3 12 

8 0 0 24 4 26 0 0 3 3 44 0 0 11 10 

9 0 0 4 28 27 0 0 8 3 45 0 0 5 10 

10 0 0 6 18 28 0 0 5 20 46 0 0 4 2 

11 0 0 14 12 29 3.6 19.1 3 17 47 0 0 8 2 

12 0 0 2 12 30 0 0 3 7 48 0 0 10 2 

13 0 0 18 19 31 0 0 5 7 49 0 0 12 2 

14 0 0 9 8 32 0 0 3 7      

15 0 0 7 8 33 0 0 4 7      

16 0 0 9 11 34 0 0 4 21      

17 0 0 7 11 35 0 0 10 19       

 
49-Module Problem (C4-P1) from Hopper and Turton (2001) 
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A50 
Id x y w h Id x y w h Id x y w h 
0 0 0 100 200 18 14 29 10 14 36 83 42 9 13 

1 36 0 24 7 19 70 22 13 9 37 92 49 8 6 

2 60 0 10 18 20 0 38 14 9 38 7 47 18 8 

3 70 0 13 11 21 60 18 10 8 39 25 47 8 8 

4 83 0 9 15 22 52 22 8 10 40 33 47 15 5 

5 92 0 8 8 23 83 15 9 11 41 48 47 22 3 

6 0 6 12 12 24 0 47 7 8 42 61 50 9 5 

7 12 10 12 8 25 92 20 8 18 43 54 50 7 5 

8 24 14 22 8 26 83 26 9 5 44 50 50 4 5 

9 24 10 36 4 27 60 25 10 22 45 48 50 2 5 

10 36 7 24 3 28 70 31 13 10 46 33 52 4 3 

11 0 18 24 11 29 83 31 9 11 47 37 52 7 3 

12 24 22 13 13 30 37 32 23 10 48 44 52 4 3 

13 37 22 15 10 31 24 35 13 8 49 12 0 24 10 

14 0 29 14 9 32 14 43 23 4 50 0 0 12 6 

15 46 14 14 8 33 37 42 23 5      

16 70 11 13 11 34 70 41 13 14      

17 92 8 8 12 35 92 38 8 11       

 

50-Module Problem from Ahmad et al. (2004d) 
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J50 
Id x y w h Id x y w h Id x y w h 
0 0 0 40 15 18 16 9 4 3 36 26 12 4 3 

1 0 0 4 6 19 20 13 4 2 37 30 13 8 2 

2 4 0 8 6 20 20 9 4 4 38 30 9 2 4 

3 0 6 4 3 21 19 7 4 2 39 32 11 3 4 

4 0 9 4 4 22 19 4 4 3 40 35 11 3 4 

5 4 6 6 4 23 19 0 3 4 41 38 11 2 4 

6 4 10 6 3 24 22 0 3 4 42 32 9 3 2 

7 0 13 4 2 25 23 4 2 5 43 35 9 3 2 

8 4 13 6 2 26 25 4 2 5 44 38 9 2 2 

9 10 11 3 4 27 25 0 2 4 45 35 7 3 2 

10 13 11 3 4 28 27 0 3 6 46 38 7 2 2 

11 10 6 2 5 29 30 4 5 2 47 35 4 3 3 

12 12 9 4 2 30 30 0 5 4 48 38 4 2 3 

13 12 6 3 3 31 27 6 3 3 49 35 0 3 4 

14 12 0 3 6 32 30 6 5 3 50 38 0 2 4 

15 15 6 4 3 33 24 9 2 3      

16 15 0 4 6 34 26 9 4 3      

17 16 12 4 3 35 24 12 2 3       

 

50-Module Problem from Jakobs (1996) and Liu and Teng (1999) 
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H97 
Id x y w h Id x y w h Id x y w h 
0 0 0 80 150 34 43 121 6 2 68 27 45 4 26 

1 31 0 7 39 35 10 81 15 3 69 50 111 12 6 

2 41 42 8 33 36 49 42 30 5 70 67 35 3 1 

3 50 117 7 6 37 75 41 8 1 71 73 80 2 3 

4 25 115 5 3 38 69 115 10 4 72 71 84 3 2 

5 27 71 3 5 39 77 30 2 6 73 76 41 1 1 

6 38 0 39 6 40 0 81 6 23 74 33 102 2 3 

7 19 102 11 13 41 49 47 29 8 75 45 94 3 2 

8 68 91 3 4 42 0 76 26 5 76 25 118 5 2 

9 33 105 2 2 43 10 92 9 17 77 6 121 4 4 

10 5 117 5 2 44 31 39 7 3 78 57 120 8 2 

11 72 6 5 30 45 30 85 19 9 79 70 104 9 11 

12 70 35 2 1 46 38 36 36 6 80 10 122 3 2 

13 49 61 26 11 47 49 55 28 6 81 14 109 5 11 

14 23 45 4 5 48 0 55 6 20 82 62 109 7 9 

15 57 118 9 2 49 10 85 20 7 83 38 6 24 30 

16 62 6 10 29 50 19 92 11 2 84 77 0 2 11 

17 65 121 4 3 51 0 121 6 5 85 30 113 10 8 

18 74 36 5 5 52 45 108 5 13 86 0 119 9 2 

19 66 119 8 2 53 6 103 4 14 87 35 94 10 2 

20 49 80 24 4 54 19 94 16 8 88 40 113 3 11 

21 49 84 22 7 55 26 76 23 9 89 6 81 4 22 

22 77 21 2 9 56 49 72 26 8 90 19 115 6 9 

23 50 108 2 2 57 78 47 1 6 91 69 121 3 3 

24 62 35 5 1 58 12 50 15 26 92 71 86 7 18 

25 52 96 9 15 59 75 61 4 25 93 0 104 5 15 

26 31 42 10 33 60 23 0 8 45 94 61 96 9 13 

27 74 41 1 1 61 12 0 11 50 95 77 11 2 10 

28 74 119 4 4 62 49 91 19 5 96 25 121 6 5 

29 37 121 3 3 63 0 0 12 55 97 35 96 17 5 

30 14 120 4 4 64 6 55 5 20 

31 30 102 3 6 65 10 109 4 13 

32 35 101 16 7 66 30 108 15 5 

33 31 121 6 4 67 77 55 2 6  
97-Module Problem (C6-P2) from Hopper and Turton (2001) 
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A100 
Id x y w h Id x y w h Id x y w h 
0 0 0 100.0 150.0 42 31.7 35.0 25.0 6.5 84 76.0 96.0 8.0 4.0 
1 0.0 0.0 4.0 5.0 43 56.9 35.2 10.1 6.5 85 81.0 90.0 6.0 6.0 

2 4.0 0.0 22.0 5.0 44 76.9 44.8 22.9 5.1 86 84.0 96.0 16.0 4.0 
3 26.0 0.0 6.0 13.5 45 0.2 50.0 16.0 8.0 87 87.0 90.0 13.0 6.0 

4 32.0 0.0 13.0 10.0 46 16.2 50.0 10.0 25.0 88 75.3 56.0 12.0 6.0 
5 45.0 0.0 5.0 5.0 47 26.2 50.0 8.0 12.0 89 85.0 50.0 15.0 6.0 
6 50.2 0.0 6.5 7.8 48 34.2 50.2 16.0 12.0 90 87.0 56.0 13.0 6.0 

7 56.5 0.0 10.6 9.5 49 50.2 50.0 15.0 12.0 91 88.0 62.0 12.0 10.0 
8 67.2 0.0 10.0 5.0 50 65.2 50.0 10.0 12.0 92 30.0 41.5 5.0 8.5 

9 77.3 0.2 4.8 8.2 51 75.2 50.0 10.0 6.0 93 35.0 41.5 8.0 8.5 
10 82.0 8.0 5.0 9.0 52 0.2 58.0 16.0 10.0 94 43.0 41.5 4.0 4.5 

11 87.2 0.0 12.2 10.1 53 0.2 75.0 10.0 12.0 95 47.0 41.5 30.0 4.5 
12 0.2 5.3 26.2 3.8 54 10.2 75.0 14.0 12.0 96 433.0 46.0 6.0 4.0 
13 32.2 9.3 12.8 4.1 55 24.2 75.0 16.0 12.0 97 49.0 46.0 5.0 4.0 

14 45.0 5.1 5.2 8.2 56 40.2 75.0 8.0 8.0 98 54.0 46.0 6.0 4.0 
15 0.2 9.2 26.2 4.2 57 40.2 83.0 8.0 4.0 99 60.0 46.0 4.0 4.0 

16 50.3 7.7 6.2 5.5 58 48.2 75.0 14.8 15.0 100 60.0 46.0 17.0 4.0 
17 56.6 9.4 10.5 11.3 59 0.2 68.0 16.0 7.0 
18 67.3 5.1 9.8 7.7 60 26.2 62.0 25.0 10.0 

19 77.4 8.2 4.6 4.6 61 51.2 62.0 12.0 10.0 
20 82.2 8.9 4.8 4.0 62 63.2 62.3 25.0 9.8 

21 87.2 10.1 12.5 2.6 63 88.0 72.0 12.0 16.0 
22 24.9 13.5 31.5 6.4 64 26.0 72.0 62.0 3.0 

23 67.2 13.0 32.5 5.5 65 0.0 87.0 48.0 3.0 
24 0.2 13.5 24.7 4.3 66 0.0 90.0 13.0 10.0 
25 0.0 17.8 24.9 2.2 67 13.0 90.0 13.0 3.0 

26 67.1 18.5 32.6 1.9 68 13.0 93.0 6.0 7.0 
27 0.2 19.9 56.4 5.6 69 19.0 93.0 7.0 7.0 

28 56.6 20.7 43.4 5.0 70 26.0 90.0 6.0 10.0 
29 0.2 25.5 9.6 9.4 71 32.0 90.0 12.0 5.0 
30 10.0 25.5 16.2 5.1 72 44.0 90.0 5.0 5.0 

31 26.2 25.4 13.9 9.4 73 32.0 95.0 12.0 5.0 
32 9.8 30.5 16.3 4.4 74 49.0 90.0 7.0 5.0 

33 40.2 25.8 11.0 9.0 75 44.0 95.0 12.0 5.0 
34 51.0 25.7 16.0 9.2 76 56.0 90.0 10.0 10.0 

35 67.0 26.0 10.2 15.6 77 63.0 75.0 3.0 15.0 
36 77.2 26.0 22.5 8.2 78 66.0 75.0 9.0 15.0 
37 0.0 35.0 14.0 15.0 79 75.0 75.0 8.0 15.0 

38 77.2 34.4 8.8 10.4 80 83.0 75.0 5.0 15.0 
39 86.1 34.4 13.6 10.4 81 88.0 88.0 12.0 2.0 

40 13.9 41.5 16.1 8.5 82 66.0 90.0 10.0 10.0 
41 13.9 35.0 17.8 6.5 83 76.0 90.0 5.0 6.0 

 

100-Module Problem from Ahmad et al. (2004d) 
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100-Module Problem from Ahmad et al. (2004d) 
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Appendix D – Visual Comparison of Placement Algorithms 
 

  
BL + DL IBL + DL 

  
MERA + DL MERAG + DL 

Performance of various algorithms for the 100-Module (A100) Problem, Appendix C, in terms of CR 
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Appendix E – Training & Testing Data used for PDA 
 

D-I (Training Data for PDA) 
Module 

Tightness Symmetry Expert's 
Rating 

Module 
Tightness 

Symmetry Expert's 
Rating 

Inputs Target Inputs Target 

In
st

an
ce

 #
 

X1 X2 T In
st

an
ce

 #
 

X1 X2 T 
1 70.8 78.75 60 31 74.3 82.21 70 
2 85.7 73.8 65 32 90.2 70.54 60 
3 70.6 69.38 35 33 83 78.37 75 
4 75 75.1 50 34 70.6 69.87 30 
5 75 69.18 35 35 70.6 68.3 30 
6 80 75.12 60 36 74.3 81.26 70 
7 80 71.74 50 37 84.2 77.18 70 
8 85.7 65.14 35 38 70.6 75.75 55 
9 85.7 63.4 35 39 78.9 80.19 75 

10 85.7 65.14 40 40 83 83.3 80 
11 75 70.95 45 41 70.2 87.14 75 
12 75 71.74 45 42 78.4 92.8 70 
13 85.7 59.17 30 43 74.3 73.85 50 
14 80 66.91 30 44 74.1 85.57 70 
15 80 71.74 55 45 83 84.41 85 
16 80 72.36 55 46 83 90.52 85 
17 85.7 65.14 40 47 83 90.52 90 
18 84.2 72.65 60 48 78.4 77.51 65 
19 90.2 71.74 75 49 88.2 80.2 75 
20 90.2 76.69 70 50 78.4 84.41 80 
21 84.23 67.2 45 51 83 89.79 85 
22 90.2 68.31 55 52 83 79.26 70 
23 84.2 77.18 65 53 78.4 85.72 85 
24 74.3 70.89 40 54 83 81.71 75 
25 90.2 70.53 65 55 78.9 80.1 65 
26 90.2 70.9 65 56 85.7 60.47 25 
27 84.2 81.26 85 57 78.9 70.95 45 
28 90.2 80.1 85 58 75 73.65 50 
29 78.9 68.82 45 59 88.2 86.82 80 
30 78.9 77.11 50 60 75 71.1 40 
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D-II (Test Data for PDA) 

Module 
Tightness Symmetry Expert's 

Rating 
Module 

Tightness Symmetry Expert's 
Rating 

Inputs Target Inputs Target 

In
st

an
ce

 #
 

X1 X2 T In
st

an
ce

 #
 

X1 X2 T 
1 78.4 72 40 11 75 75.75 50 
2 70.6 70.92 40 12 74.1 78.55 65 
3 70.6 65.09 25 13 74.1 88.7 80 

4 90.2 79.92 60 14 83.3 78.37 75 
5 74.3 77.11 55 15 88.2 89.79 90 
6 84.2 69.51 45 16 85.7 60.91 30 

7 84.2 63.26 35 17 90.2 74.47 65 
8 78.9 76.42 60 18 78.9 80.1 70 
9 78.4 79.3 75 19 88.2 71 60 

10 78.9 78.75 70 20 84.2 83.3 75 

 

D-III (Problem Instance Used in Generating Alternatives for PDA Training Data) 
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