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Abstract

We investigate the uses of gravitational lensing for analysing the dark matter haloes

around galaxies, comparing galaxies within groups and clusters to those in the field.

We consider two cases: when only photometric redshift data is available, and when

spectroscopic redshift data is available for a sufficiently large sample of galaxies.

For the case of data with photometric redshifts, we analyse the CFHTLenS dataset.

This dataset is derived from the CFHTLS-Wide survey, and encompasses 154 deg2 of

high-quality shape data. Using the photometric redshifts to estimate local density, we

divide the sample of lens galaxies with stellar masses in the range 109M� to 1010.5M�

into those likely to lie in high-density environments (HDE) and those likely to lie in low-

density environments (LDE). Through comparison with galaxy catalogues extracted

from the Millennium Simulation, we show that the sample of HDE galaxies should

primarily (∼ 61%) consist of satellite galaxies in groups, while the sample of LDE

galaxies should consist of mostly (∼ 87%) non-satellite (field and central) galaxies.

Comparing the lensing signals around samples of HDE and LDE galaxies matched in

stellar mass, we show that the subhaloes of HDE galaxies are less massive than those

around LDE galaxies by a factor 0.65 ± 0.12, significant at the 2.9σ level. A natural

explanation is that the haloes of satellite galaxies are stripped through tidal effects in

the group environment. Our results are consistent with a typical tidal truncation radius

of ∼ 40 kpc.

For the case of data with spectroscopic redshifts, we analyse the GAMA-I and the

ongoing GAMA-II surveys. We demonstrate the possibility of detecting tidal stripping

of dark matter subhaloes within galaxy groups using weak gravitational lensing. We

have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation

to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for

galaxies and groups, using various models with different distributions of mass between

galaxy and group haloes to simulate different stages of group evolution. Using these mock

catalogues, we forecast the lensing signals that will be detected around galaxy groups

and satellite galaxies, as well as test two different methods for isolating the satellites’

lensing signals. A key challenge is to determine the accuracy to which group centres can

be identified. We show that with current and ongoing surveys, it will possible to detect

stripping in groups of mass 1012 M�–1015 M�.
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Chapter 1

Introduction

The evolution and growth of galaxies is not a simple process. It depends not only on the

intrinsic properties of the galaxy, but also on the environment the galaxy resides within.

While many galaxies in the universe are relatively isolated, so-called “field” galaxies,

and experience “secular” evolution, most galaxies are gravitationally bound to one or

more other galaxies. These structures of galaxies are termed “groups” or “clusters,”

depending on their masses.

While there is no clear dividing line between groups and clusters, there is evidence that

various properties of their constituent galaxies depend on the total mass of the structure

in which they reside. In particular, the mass-to-light ratios, morphologies, and colours

of galaxies show a strong dependence on the mass of the structure in which they reside.

This is illustrated for the mass-to-light ratios of central galaxies in Fig. 1.1, which is

taken from Figure 13 of Velander et al. (2013). While there is disagreement among

different datasets about the exact nature of the trend, the data do agree on the overall

trend in mass-to-light ratio for red galaxies: for low-stellar-mass galaxies, the mass-to-

light ratio decreases as the stellar mass increases, reaching a minimum at a stellar mass

of ∼ 5× 1010M�. The ratio then begins to increase with increasing stellar mass.

The implication of these data is that, at the low-mass end, galaxies become more efficient

at forming stars as they increase in mass. However, galaxies with stellar mass greater

than ∼ 5×1010M�, which typically reside in the centres of groups or clusters, appear to

become less efficient at forming stars as their stellar mass increases. This implies that

some effect within a group environment efficiently quenches star formation. However, an

open question remains as to how steep this change in mass-to-light ratio is with respect

to mass; while data compiled by Leauthaud et al. (2012a), shown as the shaded region

in Fig. 1.1, imply a steep rise in mass-to-light ratio, other weak-lensing measurements
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Figure 1.1: Figure 13 from Velander et al. (2013), illustrating mass-to-light ratios
measured through weak gravitational lensing for red/early-type central galaxies (top
panel) and blue/late-type central galaxies (bottom panel). Note that the COSMOS
dataset makes no distinction between red and blue galaxies, so the same points are

illustrated in both panels.
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presented by Velander et al. (2013) imply a shallower rise. More data will be needed to

assess which of these results is correct.

At present, it is still unknown what mechanism may be behind this star-formation

quenching of galaxies near the centres of groups and clusters. Possibilities include galaxy

mergers, which will cause an initial burst of star formation followed by a long period of

quiescence; supernova feedback, in which the energy output of supernova activity slows

or prevents future star formation; and AGN feedback, in which the energy output of an

active galactic nucleus (AGN) slows or prevents star formation. Of these factors though,

only mergers are likely to strongly depend on environment.

In addition to the lower rates of star formation exhibited by central galaxies within

groups and clusters, this effect can also be seen in satellite galaxies. The population of

satellite galaxies is significantly redder than for field galaxies (Dressler, 1980, Butcher

and Oemler, 1984, Moore et al., 1996, Balogh et al., 1999, 2004), which implies that

something quenches their star formation in a group environment which is not active

for field galaxies. As with central galaxies, mergers can contribute to this for satellite

galaxies. Additionally possibilities include ram pressure stripping, in which a galaxy

passes through a dense region of the intra-cluster medium (ICM), and the gas in it is

stripped away by pressure from the ICM; and tidal stripping, in which a galaxy passes

near a more massive galaxy, and the massive galaxy pulls gas away from the less-massive

galaxy. In either of the latter cases, the loss of gas, termed “strangulation,” results in

the galaxy’s star formation being quenched (Abadi et al., 1999, Balogh and Morris, 2000,

Quilis et al., 2000, Kawata and Mulchaey, 2008). All of these processes are believed to

take place, but it is not known which might be the dominant cause of star-formation

quenching, and if the dominant factor depends on group mass.

In this thesis, we focus on tidal stripping. Tidal stripping affects not only the baryonic

content of galaxies, but also their dark matter haloes (Hayashi et al., 2004, Kazantzidis

et al., 2004, Springel et al., 2008). As neither of the other possible quenching mechanisms

in groups affects dark matter haloes, investigation of the dark matter haloes of galaxies

in groups of varying mass can in principle indicate whether or not tidal stripping is

occurring in galaxy groups, and in which group mass range it occurs. To do this, we use

weak gravitational lensing to measure the profiles of galactic dark matter haloes, and

compare these to the haloes of galaxies of similar stellar mass in the field. We design

our lens catalogues to maximize the fraction of satellite galaxies within them, which will

allow us a much cleaner picture of tidal stripping than previous datasets which included

all galaxies, making no distinction between satellites and centrals.

In the introduction to this thesis, we will present an overview of the evolution of small-

and large-scale structure in the universe, and how this affects the structure observed

3



today. We go on to discuss how galaxies form and evolve, and how this depends on the

environment in which they reside. We then discuss the tools and techniques relevant

to our analysis: gravitational lensing, photometric redshift estimation, and methods for

identifying galaxy groups.

1.1 Dark Matter Structure

In this section, we discuss the role of dark matter in forming structure in the universe.

Since dark matter comprises ∼ 85% of all matter in the universe, it dominates the

gravitational potential. It can thus be considered alone, without reference to baryonic

physics, in a first-order approximation. The structure that forms from dark matter

will then provide the gravitational potential in which baryonic physics can act. In

Section 1.1.1, we will discuss the physics behind the collapse of dark matter structures,

in Section 1.1.2, we will discuss models commonly used for the density profiles of dark

matter haloes, and in Section 1.1.3 we will discuss substructure within dark matter

haloes, and the mechanism of tidal stripping and its effects.

1.1.1 Structure Formation

Through cosmic inflation, quantum fluctuations in the early universe were expanded

to cosmic scales at early times (∼ 10−43 − 10−36 s), resulting in primordial density

fluctuations. Since these quantum fluctuations were roughly Gaussian and nearly scale-

invariant, single-field inflation models predict that the same will hold true for primordial

fluctuations in the immediate aftermath of inflation. This leads to a Gaussian random

distribution of density fluctuations, which can be characterized as a density field in which

the following holds true:

p(δ, V ) =
1√

2πδ∗(V )
exp

(
−1

2
δ2/δ∗(V )2

)
(1.1)

(Press and Schechter, 1974), where δ is the overdensity of a region of space, p(δ, V ) is

the probability that a region of space with volume V will have overdensity δ, and δ∗ is

the standard deviation of δ for a region of space of volume V .

Alternatively, structure fluctuations can be expressed in terms of the power spectrum

P (k), where P (k) is the Fourier transform of the autocorrelation function of the over-

density (Bertschinger, 1987). For a Gaussian random field, P (k) will have the form:

P (k) ∝ kn, (1.2)
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where n is of order unity. This form is typically more useful for calculations involving

the clustering of structure.

These primordial density fluctuations presented the groundwork for the growth of struc-

tures over the life of the universe. Under the standard cosmological model (Lambda Cold

Dark Matter, or LCDM) for describing structure formation, these fluctuations grew in

magnitude over cosmic time, eventually forming the structures we observe today.

The growth of structure is not a simple process, but it benefits analysis to look at

simplified scenarios in which the equations are analytically solvable. In the radiation-

dominated era of expansion, density fluctuations of small magnitude grew as δ ∝ t

for scales larger than the particle horizon, and stagnated for smaller scales. During

the matter-dominated phase of expansion, small-magnitude density fluctuations grew as

δ ∝ t2/3 on all scales. Eventually, these structures reached a non-linear scale, collapsing

into self-bound structures. For dark matter, which comprised ∼ 85% of the universe,

and is unable to radiate away its energy, the final state is a halo, supported by the

random motion of its constituent particles.

Let us consider the simplified case of a spherical overdensity at the time of matter-

radiation equality, having overdensity δ and radius r0. Since this overdensity is denser

than its surroundings, and its surroundings can be expected to be isotropic, the grav-

itational influence of all matter outside of the overdensity can be expected to cancel

out and have no effect on the evolution of this overdensity. Similarly, the LCDM model

predicts that dark matter, which composes the majority of matter in the universe, is

non-interactive, it will exert no pressure. The exterior to this overdensity will then

have no influence on what happens inside of it. We can thus treat this region as a

self-contained universe, and safely ignore the exterior.

For the sake of mathematical simplicity, let us treat this overdensity with a spherical

top-hat model, where the overdensity is δ for all points within distance r0 of the centre

of the sphere, and 0 for all points outside of this sphere. Imagine a single dark matter

particle at distance r < r0 from the centre of this region. Per Birkhoff’s theorem, it will

experience no net gravitational acceleration from matter at larger radii. Its acceleration

can then be calculated as:

d2r

dt2
= −

Gc
(

4
3πr

3ρ [1 + δ]
)

r2

= −4
3
πGcrρ (1 + δ) , (1.3)

(White, 2009) where ρ is the background density of the universe. For comparison, the

evolution equation for the scale factor of a mass-dominated universe is:
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d2a

dt2
= −4

3
πGρa. (1.4)

(White, 2009)

From the comparison of Equation (1.3) and Equation (1.4), we can see that this overdense

region behaves exactly like a universe in its own right, with the same initial time and

expansion rate as the surrounding universe, but different scale factor and density. We can

then apply the same philosophy as in calculating the time-behaviour of a mass-dominated

universe to determine the behaviour of this overdensity. Since the background density

of the universe is close to the critical density, and δ > 0, this overdensity will behave

as a positively-curved universe. It will initially expand, reach a maximum size at some

time, and eventually collapse to a point. As previously discussed, dark matter cannot

perfectly collapse, however, as it cannot radiate away its energy, and so this discussion

is valid only prior to the time at which the halo is supported by its own virial energy

(until it is “virialized”).

Let us first consider the parameterization of a matter-dominated universe:

a/am =
1
2

(1− cos η)

t/tm = (η − sin η)/π, (1.5)

where a is the scale factor of the universe, am is the maximum scale factor, t is the time,

tm is the time at which the scale factor a is a maximum, and η is a parameter. This

universe will collapse when a = 0, which implies η = 2π, which in turn implies that

t = 2tm. We can then relate this to the linear approximation, which is valid when η is

close to zero, by considering the Taylor expansion of the parameterization for small η.

This gives us the relation:

δlinear =
3
20

(6πt/tm)2/3 . (1.6)

(White, 2009) At the time of collapse t = 2tm, we get:

δlinear =
3
20

(12π)2/3 ≈ 1.686. (1.7)

Using this result, we can then use the linear approximation for all calculations, and

assume that by the time this approximation predicts an overdensity will reach δc = 1.686,

the overdensity will in fact have collapsed. Since the time at which a structure collapses

depends only on when, in the linear approximation, it reaches this overdensity, the time
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of collapse depends only on the initial overdensity of the structure. Additionally, since

the initial overdensity δ is only a small perturbation to the background density, the total

mass of the structure depends only on the initial size. However, the initial overdensity

and initial size are statistically related: Large regions are less likely to be very overdense

than are small structures, per Equation (1.1), which implies that low-mass structures

will tend to collapse before high-mass structures.

Press and Schechter (1974) then show that the number density of collapsed structures

at present day, with mass between M and M + dM is:

N(M)dM ≈ 1√
π

(
1 +

n

3

) ρ

M2

(
M

M∗

)(3+n)/6

exp

(
−
(
M

M∗

)3+n/3
)
dM, (1.8)

where n is the slope of the power spectrum (see Equation (1.2)) and M∗ is a characteristic

mass below which structures will typically have collapsed, which increases over time.

From this, we can put together a qualitative picture of structure formation. Structures

collapse at a wide variety of times, but lower-mass structures tend to collapse first.

As time proceeds, higher-mass structures will begin to collapse. These higher-mass

structures, which comprise larger regions of space, will typically contain many lower-

mass structures within them, which have already collapsed. The collapse of this massive

structure can then be seen as a merger of low-mass structures.

The situation becomes significantly more complicated when baryonic physics is consid-

ered, as galaxies do not merge as readily as dark matter haloes. The general picture is

that galaxies form in the first structures to collapse, and the larger collapsing structures

form groups and clusters of galaxies. The exact physics of how and when galaxies in

groups and clusters interact with each other and merge remains an open question, which

this thesis aims to investigate.

1.1.2 Halo Models

Under the LCDM paradigm, dark matter consists of non-relativistic, non-interacting,1

massive particles. Since the particles are noninteracting, dark matter haloes cannot be

supported by pressure. One naive model for a halo is the singular isothermal sphere

(SIS), which is characterized by the velocity dispersion, and thus temperature, being

the same at any radius from the centre. It has the density profile:

ρ(r) =
σ2

V

2πGcr2
, (1.9)

1Except through gravity, and possibly weak nuclear interactions.
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where σV is the velocity dispersion. While this profile in fact provides a reasonable fit to

many measurements of halo densities (through kinematics and gravitational lensing), it

has a few problems. Notably, the total mass of the profile diverges; since the density at

a given radius is proportional to r−2, the total mass in a spherical shell is independent of

radius. This can be solved by truncating the profile at some radius, through a truncated

profile such as:

ρ(r) =
σ2

V

2πGcr2

r2
t

r2 + r2
t

. (1.10)

While the SIS profile provides a reasonable fit to most haloes, it was found in simulations

that haloes typically have a shallower slope near the core, ρ ∝ r−1 , and a steeper slope

at the edges, ρ ∝ r−3) (Frenk et al., 1988, Efstathiou et al., 1988, Hernquist, 1990).

Thus, Navarro et al. (1997) (NFW) proposed the following density profile, which shows

this behaviour:

ρ(x) =
M0

4πr3
s

1
x(1 + x)2

, (1.11)

where rs is the scale radius of the halo and x = r/rs. This profile requires an additional

parameter, the scale radius (or alternatively, the concentration c = r200/rs), but it does

a significantly better job than the SIS profile at fitting simulated mass distributions.

However, like the SIS profile, the NFW profile’s total mass diverges. At large radii, its

density obeys ρ ∝ r−3, and so the mass in a spherical shell is ∝ r−1, which diverges

when integrated to infinity. This can be solved similarly to the SIS profile, giving the

truncated NFW profile:

ρ(x) =
M0

4πr3
s

1
x(1 + x)2

τ2

τ2 + x2
, (1.12)

(Baltz et al., 2009) where τ = rt/r200, and rt is the truncation radius.

Unlike the SIS profile, the NFW profile has no theoretical basis for its functional form;

it is purely an empirical fit to halo density profiles found in simulations of structure

formation. The reason for this form remains an open question, but it is most commonly

believed to be an consequence of the halo’s accretion history (Wechsler et al., 2002, Zhao

et al., 2003, Lu et al., 2006, Ludlow et al., 2013).

1.1.3 Halo Substructure

The above profiles all treat dark matter haloes as smooth and spherically-symmetric,

but neither is the case in reality. Haloes are in fact more commonly triaxial (Jing and

Suto, 2002), and they exhibit a large amount of substructure, caused by remnants of

smaller haloes that merged with the larger halo. In the limit of galaxy clusters, most of

the mass is contained within a single dark-matter halo, with the constituent galaxies and
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their surrounding subhaloes contributing only small perturbations to the density profile

(Mandelbaum et al., 2006a, Natarajan et al., 2007, Mandelbaum et al., 2008, Natarajan

et al., 2009). Tidal interactions will strip both the stellar content and dark matter haloes

of galaxies near the cores of clusters to ∼< 50kpc (Richstone, 1976, Merritt, 1983). Grav-

itational lensing measurements have shown that the haloes around individual galaxies

within clusters are significantly smaller than the haloes around comparably-luminous

field galaxies, and this effect is more extreme with galaxies closer to the centres of clus-

ters (Limousin et al., 2007, Natarajan et al., 2009). At the other extreme of the mass

spectrum, namely field galaxies, gravitational lensing measurements have confirmed that

the surrounding haloes can be well-approximated by an NFW density profile (Hoekstra

et al., 2004, Kleinheinrich et al., 2006, Mandelbaum et al., 2008).

However, between the extremes of field galaxies and rich clusters, the picture is less

clear. Since multiple galaxies must merge together to eventually form clusters, at some

point the mass in the galaxies’ individual haloes must migrate into a shared halo. This

process most likely occurs through tidal stripping: when two galaxies pass near each

other, the particles in the halo of the less massive galaxy will tend to be “stripped”

from it and thus join the more massive galaxy’s halo. We discuss this process in more

detail in Section 1.1.3.1. Tidal stripping, along with ram pressure stripping, is also

expected to remove hot gas from less massive galaxies, which will have the effect of

cutting off their supply of cold gas and quenching their star formation in a process known

as “strangulation” (Tinsley and Larson, 1979, Balogh and Morris, 2000). Galaxies in

dense environments are known to be significantly redder on average than field galaxies

(Dressler, 1980, Butcher and Oemler, 1984, Moore et al., 1996, Balogh et al., 1999,

2004), and both tidal and ram pressure stripping may contribute to the quenching of

star formation (van den Bosch et al., 2008, Kawata and Mulchaey, 2008), so there

is a strong motivation to understand the mechanics and timing of tidal stripping, to

determine how much of a role it plays relative to ram pressure stripping and other

mechanisms. While the mechanics of tidal stripping on individual satellites have been

well-studied in simulations (Hayashi et al., 2004, Kazantzidis et al., 2004, Springel et al.,

2008), its aggregate effects on a population of satellite galaxies, including whether the

aggregate stripping of satellites is rapid or gradual, remains unclear. This can in part

be investigated through analysis of the group and cluster scales on which tidal stripping

can be observed to occur.

In this thesis, we focus on galaxy groups, an intermediate mass scale between field

galaxies and clusters (typically structures in the mass range 1012 M� ∼< Mhalo ∼< 1014 M�

are considered groups, and more massive structures are considered clusters). Weak

gravitational lensing provides the only practical tool to measure the density profiles and

masses of dark matter haloes around satellite galaxies within groups, as tracers such as
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globular clusters and planetary nebula are rare at distances ∼> 50 kpc and difficult to

detect in distant groups (Gavazzi et al., 2007, van de Ven et al., 2009). Lensing analyses

of groups (Hoekstra et al., 2001, Parker et al., 2005, Mandelbaum et al., 2006a, Johnston

et al., 2007, Hamana et al., 2009, Leauthaud et al., 2010, Ford et al., 2012) have shown

that the group lensing signal can be measured and is on average consistent with an NFW

density profile. However, it is unclear how much of this signal results from a central halo,

and how much is due to the contributions of satellites (Gillis et al., 2013b). As such, it is

necessary to measure the lensing signals around satellites themselves to get a full picture

of the mass distribution. Only limited work has been done in the group regime to date.

For example, Suyu and Halkola (2010) studied a strong-lensing system and determined

that tidal stripping did seem to occur around the satellite studied, which lies in a group

of mass on the order of 1012M�. While this result is promising, a broader base of

data will be needed to develop a general understanding of the dark matter properties of

satellite galaxies in galaxy groups.

1.1.3.1 Tidal Stripping of Dark Matter

In this section we present a basic analysis of the process of tidal stripping. Let us start

with a simplified scenario, in which a satellite travels in a circular orbit around the

centre of a galaxy group. We start by modelling both the satellite and group as point

masses, and assume that the satellite is much less massive than the group. Let M be

the mass of the group, m be the mass of the satellite, and R be the separation between

the group and the satellite.

Consider a dark matter particle in the satellite’s halo. Since the mass of this particle is

negligible compared to the satellite and group masses, we can treat the group-satellite-

particle system as the “restricted three-body problem” (Szebehely and Grebenikov,

1969). The satellite and group in this problem will rotate about their centre-of-mass at

angular speed:

Ω =

√
G (M +m)

R3
, (1.13)

and we can thus rotate our frame of reference along with this frame. Under this frame,

the Jacobi integral will be conserved for the dark matter particle:

EJ =
1
2
v2 + Φ(~r)− 1

2

∣∣∣~Ω× ~r∣∣∣2 , (1.14)

(Binney and Tremaine, 2008) where v is the velocity of the dark matter particle, ~r is the

position within this rotating frame of reference, and Φ(~r) is the gravitational potential

at position ~r.

10



Figure 1.2: Figure 8.6 from Binney and Tremaine (2008), illustrating the effective
gravitational potential in a rotating frame of reference for the restricted three-body
problem. Lines illustrate contours of equal effective potential, and Ln illustrate the
positions of the five Lagrange points, where the potential has an extremum or saddle

point. The two masses, M and m, lie at minima of the effective potential.

Equation (1.14) thus gives us a constraint on the positions in which the dark matter

particle may be found, since we must have v2 > 0. As such, we have the constraint:

Φeff(~r) ≡ Φ(~r)− 1
2

∣∣∣~Ω× ~r∣∣∣2 ≤ EJ. (1.15)

The form of Φeff can be seen in Fig. 1.2. If a dark matter particle is initially constrained

by one of the nearly-circular contours surrounding only m, it will remain in this region

for the indefinite future. Otherwise, it will be bound to either M alone or the system as

a whole. The subset of particles bound strictly to m can thus be characterized as those

which lie within a contour that surrounds only m. The largest such contour is the one

which passes the the L3 Lagrange point, which represents a saddle point in the effective

potential between M and m.

We can thus approximate the tidal radius of the satellite in this scenario as the distance
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between it and the L3 point, as no particle which is at any point found outside this

radius will be bound strictly to the satellite. In the approximation that m � M , the

distance from the satellite to the L3 point can be approximated as:

rtidal =
( m

3M

)1/3
R (1.16)

(Binney and Tremaine, 2008). In the point-mass approximation, we can calculate the

mean density of the satellite and group contained within spheres of radii rtidal and R

respectively as ρsat = m/
(

4
3πr

3
tidal

)
and ρgroup = m/

(
4
3πR

3
)
. This then gives us the

relation between these two mean densities:

ρsat = 3ρgroup (1.17)

(Binney and Tremaine, 2008).

From Equation (1.17), we can state that, under the approximations made here, a satellite

will be stripped to a radius such that its mean density is within order unity of the mean

density of the host group within the satellite’s orbital radius. This result is independent

of the satellite and group masses, as well as the relative velocity of the satellite and

group. From the form of Equation (1.16), we can see stripping increases in strength (the

tidal radius lowers) with decreasing satellite mass, increasing group mass, and decrease

orbital radius, and has no explicit dependence on the relative velocities of the satellite

and group. However, the assumptions made thus far differ from the a more realistic

model of dark matter subhaloes orbiting a larger group or cluster halo:

1. Satellites and groups are not point masses, which affects the effective potential.

2. Satellites do not follow circular orbits within groups, and so they aren’t stripped

at a constant radius. Stripping is strongest when the satellite passes pericentre

and weaker at other times. Satellites also experience dynamical friction, causing

their orbits to decay over time. This results in the satellites passing closer to the

group centre every orbit (Taylor and Babul, 2004).

3. Satellites interact not only with the group centre, but also with other satellites.

A typical satellite in a rich cluster will have had one close encounter with an-

other satellite before passing pericentre (Binney and Tremaine, 2008). This effect,

known as harassment, will also contribute to mass loss from the satellite’s halo, as

each encounter will typically inject energy into the satellite’s halo, allowing some

particles to escape (Moore et al., 1996, Gnedin et al., 1999, Kravtsov et al., 2004).

To properly account for the eccentricities of satellite orbits, we first must identify the

satellite-group separation in Equation (1.16) with the pericentre distance of the satellite
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from the group centre. In addition to this, each pass of the satellite near the group

centre will result in a tidal shock, which adds energy to the satellite’s halo and allows

some particles to escape. The energy added for a close encounter can be calculated to

be:

∆E ∝ M2m2

V 2R4
U(R/rh) (1.18)

(Binney and Tremaine, 2008), where ∆E is the energy input, rh is the half-mass radius of

the group halo, and U(R/rh) is a factor which corrects for the fact that the group’s halo

has an extended mass distribution, which can be calculated numerically for a given halo

model. For a typical halo model, U(R/rh) converges to zero for R → 0 and converges

to 1 for R � rh. The energy input, and thus the strength of tidal shocks, increases

with increasing group mass, decreasing relative velocity, and it peaks at R ∼ rh. As

the binding energy of the satellite’s halo varies with m2, the efficacy of tidal shocks in

removing dark matter shows no strong reliance on satellite mass.

Taking these factors into consideration, numerical simulations are able to model indi-

vidual stripping events to high accuracy (Hayashi et al., 2004, Kazantzidis et al., 2004,

Springel et al., 2008). Observational constraints are needed, however, to test the predic-

tions of these simulations, and in particular the aggregate effects of tidal stripping on

the populations of satellite galaxies within groups.

1.1.4 Outstanding Issues in LCDM

While the LCDM paradigm has done a very good job at explaining most cosmologi-

cal observations, and the existence of dark matter has received direct evidence from

the Bullet Cluster (Clowe et al., 2004), there remain some open questions about the

model. In this section we will briefly discuss some of the biggest open questions in the

LCDM model: the nature of dark matter (Section 1.1.4.1), the missing satellites problem

(Section 1.1.4.2), and the cusp-core problem (Section 1.1.4.3).

1.1.4.1 Nature of Dark Matter

Firstly, there is the question of the nature of dark matter. Many particles have been hy-

pothesized which could correspond to dark matter, and there has recently been tentative

evidence for direct detection of some such particles from DAMA (Bernabei et al., 2008,

2010) and CDMS (CDMS Collaboration et al., 2013), both of which found evidence for

dark matter particles with mass of ∼ 1 − 10 GeV. This mass is sufficiently large to

qualify as “cold” dark matter, as opposed to “warm” or “hot” dark matter. However,

these detections are inconsistent with other negative results (CDMS II Collaboration
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et al., 2010, Ahmed et al., 2011, Angle et al., 2011, Aprile et al., 2012). These results

are all relatively new, though, and it is quite possible that a consensus will emerge before

too long.

The most well-motivated candidate dark matter particles include:

• Axions: Particles proposed to explain the lack of CP-violation in strong nuclear

processes, with expected mass in the range of µeV. While this mass would not

typically correspond to a “cold” dark matter particle, axions are not expected to

have ever been in thermal equilibrium, and would have formed a Bose-Einstein

condensate at the time of decoupling (Sikivie, 2010).

• Neutralinos: Particles predicted under supersymmetry, with a predicted mass

range of 45 GeV < Mχ < 7 TeV (Martin, 1998).

• Sterile neutrinos: A class of neutrinos motivated by the fact that all observed

neutrinos have left-handed chirality, while all other known fermions have been

observed with both left- and right-handed chirality. Sterile neutrinos have a very

wide range of allowed masses, from ∼ 1 eV to ∼ 1015 GeV (Drewes, 2013).

1.1.4.2 Missing Satellites Problem

A significantly more longstanding problem in the LCDM paradigm is the “missing sub-

structure” problem (Klypin et al., 1999, Moore et al., 1999a). In the LCDM model,

the structures formed by dark matter are self-similar; a galaxy should have as much

substructure as a cluster, only scaled down. This has been confirmed repeatedly by

N-body simulations of dark matter, but it is difficult to test in reality, as we cannot di-

rectly observe dark matter structure. We can see the luminous galaxies which populate

dark matter haloes, however, and these show evidence for significantly less substructure

around galaxies than around clusters. For example, in the Local Group, there are only

between a tenth and half as many visible satellites (depending on the mass range ex-

amined) as would be expected if every dark matter halo were populated with a galaxy

(Kauffmann et al., 1993, Klypin et al., 1999, Moore et al., 1999a). This problem is par-

ticularly notable among the more massive substructures found in N-body simulations,

which are deemed “too big to fail” at forming galaxies, and for which cold dark mat-

ter simulations also overpredict their abundance. The recent discoveries of low-surface

brightness dwarf galaxies in the Local Group (Willman, 2010) have somewhat, but not

entirely mitigated this problem (Bullock, 2010), however, and it is possible that future

such discoveries will resolve the issue.
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One possible explanation for this problem is that feedback or environmental effects

inhibit the formation of low-mass galaxies, which results in the low number of dwarf

galaxies observed in the Local Group relative to the expected number of dark matter

subhaloes. These effects, and their possible roles in the missing substructure problem,

are discussed further in Section 1.2.3 and Section 1.2.5.

Alternatively, it is possible that the Local Group is simply an extreme outlier, with an

unusually low number of dark matter subhaloes in it. To determine whether or not this is

the case, it is necessary to search for dwarf galaxies in other groups. However, identifying

dwarf galaxies within the Local Group is already quite difficult, and so it is not an easy

task at all to detect dwarfs in other groups. It is, however, in principle possible to use

distortions in strong lensing detections to estimate the typical substructure abundance

(Vegetti et al., 2010), but this will require significantly more strong lensing detections

than are presently available to generate a significant result. This methodology notably

can detect even dark substructure, and so could in principle help discern whether the

cause of this problem is due to some aspect of baryonic physics, or otherwise a problem

with the LCDM model.

Finally, it is possible that this problem represents a flaw in the LCDM model. One pos-

sible solution would be if dark matter were “warm” - that is, non-relativistic, but with a

non-negligible free-streaming distance. This would smooth out dark matter haloes, and

decrease the amount of substructure present on scales less than the free-streaming dis-

tance (Bode et al., 2001, Lovell et al., 2012). However, the problem with this hypothesis

is that it may eliminate substructure too well: It is difficult to tune the mass of the dark

matter particle to predict the abundance of substructure accurately on all scales in the

Local Group (Polisensky and Ricotti, 2011). Nevertheless, warm dark matter models

typically do a better job than cold dark matter models at fitting the observed structure

in the Local Group; the abundance of substructure in the Local Group observed to-date

is best fit by a warm dark matter particle with mass on the order of ∼ 4 − 10 keV

(Polisensky and Ricotti, 2011, Viel et al., 2013). However, this dark matter particle

mass may not fit with measured masses. For instance, CDMS (CDMS Collaboration

et al., 2013) finds a best-fit particle mass of 8.6 GeV, which is inconsistent with warm

dark matter, if this result turns out to be sound. This does not rule out mixed dark

matter, however, which would allow for a cold particle in this mass range, in addition

to a warm particle (Davis et al., 1992, Borgani et al., 1996, Boyarsky et al., 2009b,a).
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1.1.4.3 Cusp-Core Problem

In dark matter simulations, dark matter is observed to form arbitrarily dense cusps

at the centres of haloes, limited only by the simulation resolution. However, rotation

curves near the centres of galaxies show significantly flatter profiles; they form “cores,”

rather than cusps (Moore et al., 1999b, Alam et al., 2002, Kuzio de Naray et al., 2008).

This problem is not easily solved by appealing to baryonic physics. Unlike dark matter,

baryons can cool through radiating away energy, and so they typically form even denser

structures, which would be the opposite of what is needed to solve this problem.

However, this naive argument neglects the effects of supernova feedback (see Section 1.2.3).

Periodic bursts of supernova activity can pump energy into not only the surrounding

baryons, but also into the dark matter haloes through suddenly making the potential

more shallow, allowing dark matter particles to escape. This could have the effect of

smoothing out dark matter haloes near the centres of galaxies, and advanced hydrody-

namical simulations have been able to accurately reproduce the observed rotation curves

near the centres of galaxies, when they allow for a sufficiently high density threshold for

star formation and efficient feedback (Pontzen and Governato, 2012, Governato et al.,

2012, Teyssier et al., 2013).

As with the missing satellites problem, it is possible that the cusp-core problem might

be solved by warm dark matter. Warm dark matter could in principle flatten the density

profiles near the centres of haloes and better fit observations (Avila-Reese et al., 2001,

Bode et al., 2001). However, this explanation is controversial, and some authors argue

that it cannot explain observed data (Macciò et al., 2012). As with the missing satellites

problem, a measured mass for the dark matter particle could potentially rule out this

scenario.

1.2 Galaxy Formation

In comparison to dark matter physics, baryonic physics is vastly more complicated and

more difficult to simulate. The primary difficulty arises due to the fact that, while dark

matter interacts only through gravity, which is scale-independent, baryons additionally

experience electromagnetic, nuclear, and chemical interactions, all of which typically

take place on significantly smaller scales than gravitational interactions. This makes it

prohibitively expensive to accurately simulate all possible interactions at once. However,

unlike dark matter, baryonic matter is much more easily observable, and the physics of

its interactions is much better understood. This allows baryonic simulations to model

various possible interactions, conserving computer time to focus on aspects which are
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more difficult to model (such as hydrodynamics). The results of these simulations can

then be compared with observables to test the accuracy of the physical assumptions

behind them.

The observable light in distant galaxies is due almost entirely to their constituent stars,

and hot gas within galaxy clusters (the intracluster medium, or ICM) radiates light

in the X-ray spectrum. This section will discuss the history of star formation within

galaxies, while the applications and interpretations of ICM detections will be discussed

in Section 1.5. In Section 1.2.1, we will discuss the cooling and collapse of galaxies, and

how this leads to star formation. In Section 1.2.3, we will discuss feedback effects within

galaxies which may slow or prevent star formation, and in Section 1.2.5, we will discuss

the role that environmental effects play on galaxy evolution.

1.2.1 Cooling

One of the primary differences between baryons and dark matter is that, while dark

matter haloes readily merge with each other and wash out substructure given sufficient

time, the same does not appear to be the case with baryons. While in a cluster, most

of the dark matter will merge into a single, unified halo over time, galactic mergers

are significantly rarer. Some galactic mergers do indeed happen in groups and clusters,

forming larger galaxies (Bright Cluster Galaxies, or BCGs), which lie at the centre of

the dark matter potential, but these are the minority.

The reason that galactic mergers are rarer than dark matter mergers is that galaxies

are more tightly-bound than are dark matter haloes. This is due to the fact that, unlike

dark matter, baryonic matter is able to radiate away its thermal energy, allowing it to

cool and contract, becoming more tightly bound in the process. The behaviour of a gas

cloud as it cools depends on the relative length of its cooling timescale and its collapse

timescale. If the cooling timescale is shorter than the timescale for collapse, the galaxy

will be able to cool efficiently and begin to form stars. Alternatively, if the collapse

timescale is shorter than the cooling timescale, the gas cloud will collapse until it is

supported by its internal pressure. If the cooling timescale is shorter than the age of the

galaxy, the cloud will collapse and begin forming stars, but otherwise the cloud will be

observable today in an uncooled state as it gradually cools.

In order to calculate the cooling timescale of a gas cloud, we must consider the physics

behind cooling. The primary cooling mechanisms in gas clouds are thermal Bremsstrahl-

ung radiation and recombination radiation. Let us first consider thermal Bremsstrahl-

ung radiation. Bremsstrahlung radiation occurs when charged particles accelerate, and

is proportional to the acceleration of these particles. Gas clouds will typically consist
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of an ionized plasma, which contains ionized particles in the form of electrons and ions.

Since electrons are orders of magnitude less massive than ions, the thermal Bremsstrahl-

ung radiation of this plasma will be dominated by the radiation caused by accelerating

electrons.

We can estimate the intensity of thermal Bremsstrahlung radiation by considering the

frequency of electron-ion interactions. The more electrons are present, the more frequent

interactions will be, and similarly for ions. Therefore, we can say:

f ∝ neni, (1.19)

where f is the frequency of interactions, ne is the number density of electrons, and ni

is the number density of ions. Additionally, the frequency of interactions will depend

on the relative velocities of electrons and ions. Assuming that the cross-section for

interactions is, to first order, independent of the relative velocities of the particles, then

the frequency of interactions will also be proportional to the typical relative velocity

between an electron and an ion. Since electrons are significantly less massive than ions

and assuming the electrons and ions are at the same temperature, the electrons’ velocities

will be the primary determinants of the frequency of interactions. The typical velocity

of an electron is proportional to T 1/2/me, where T is the temperature of the plasma,

and me is the electron mass.

Putting this together, and accounting the fact that some ions will produce more than

one electron each, we obtain the density of Bremsstrahlung radiation per unit volume

as:

ε = 1.4× 10−27 erg cm−3 s−1 K−1/2 T 1/2neniZ
2gB, (1.20)

(Rybicki and Lightman, 1986) where Z is the proton number of the ion, and gB is the

Gaunt factor, which is of order unity.

In addition to Bremsstrahlung radiation, gas can cool through recombination radiation.

This occurs when atoms within a gas collide, exciting or freeing electrons. When these

electrons recombine with ions, they release energy in the form of radiation. The intensity

of recombination radiation, similar to Bremsstrahlung radiation, will be proportional to

the number density of ions in the gas. Since it is primarily ion-ion interactions that

enable recombination radiation, we can say the frequency of interactions is:

f ∝ n2
b, (1.21)

where nb is the number density of baryons in the gas. In addition to the density, the

frequency will also depend on the temperature of the gas, but the reliance on temperature
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is non-trivial. For most astrophysical systems, however, it can be fairly approximated

as f ∝ T−1/2 (Padmanabhan, 1993).

Since both Bremsstrahlung and recombination radiation depend on the square of the

number density of particles, we can thus express the total radiative power as:

P ∝
(
ABT

1/2 +ART
−1/2

)
n2

b, (1.22)

where AB and AR are coefficients, dependent on the composition of the gas, which deter-

mine the exact strengths of Bremsstrahlung and recombination radiation respectively.

From this, we can see that Bremsstrahlung radiation will typically dominate at high

temperatures, and recombination radiation will dominate at lower temperatures.

The cooling time of a gas will be proportional to the total energy in the gas, and inversely

proportional to the total radiative power, tcool ∝ nbT/P . Inserting the proper constants,

we thus find the cooling time to be:

tcool = 8 ∗ 106 year
( nb

cm−3

)−1
[(

T

106 K

)−1/2

+ 1.5fm

(
T

106 K

)−3/2
]−1

, (1.23)

(Padmanabhan, 1993) where fm is a constant which depends on the composition of the

gas. For a primordial composition of hydrogen and helium, fm is of order unity. For

typical solar metallicity, fm ≈ 30. This equation uses a temperature of 106 K, above

which Bremsstrahlung will be the dominant source of radiative cooling, and below which

recombination will be the dominant source, although the exact temperature is dependent

on the metallicity of the gas. Typically, galaxies will have temperatures lower than this

threshold, and will thus be dominated by recombination cooling.

To determine whether a galaxy will be able to cool efficiently, we must compare the

calculated cooling time to the time it takes for the galaxy to collapse. If a galaxy is

going to collapse as efficiently as possible, we can model the collapse as the free-fall of

a particle at the edge of the spherically-symmetric gas cloud, giving the relation:

tfreefall =
√

3π
32Gcρ0

, (1.24)

where ρ0 is the initial density of the gas cloud, including its dark matter content. Since

ρ0 = M/
(

4
3πR

3
0

)
, where M is the mass of the gas cloud, and R0 is its initial radius, we

then obtain the relation tfreefall ∝ M
−1/2
0 R

3/2
0 . In units typical of gas clouds, we then

obtain the equation:

tfreefall = 1.5 ∗ 109 yr
(

M

1012 M�

)−1/2( R0

200 kpc

)3/2

. (1.25)
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(Padmanabhan, 1993)

In order to relate this timescale to the cooling timescale calculated in Equation (1.23),

we must relate the mass and radius of the gas cloud to its initial temperature. We can

do this through application of the Virial Theorem, which gives us the relation:

3
5
GcM

R
=

3
2
kBT

mp
, (1.26)

where kB is Boltzmann’s constant and mp is the typical particle mass in the gas. Using

this, and assuming that a fraction F of the total mass of the structure is baryonic (the

rest being dark matter), and with the constraint that a galaxy will be able to cool

efficiently only if its cooling timescale is lower than its collapse (freefall) timescale, we

thus obtain the constraint for efficient cooling:

M < 6.4 ∗ 1011 M�fm

(
F

0.1

)
. (1.27)

(Padmanabhan, 1993)

Equation (1.27) tells us that there is an effective upper limit to the mass of a gas cloud

that can cool efficiently. This depends on both the baryon fraction and the metallicity of

the cloud, and implies that more massive galaxies will be able to form in more metal-rich

regions (since the presence of metals allows more cooling channels through recombina-

tion), or regions with a higher fraction of baryonic matter. While the latter scenario is

not as likely, the former is possible in regions that have a history of star formation.

Notably, while these considerations explain why there is an effective upper limit to

the masses of galaxies (which is only surpassed through mergers, which are relatively

rare), there is no justification here for a lower limit on the mass. If these were the only

considerations, then we would expect arbitrarily small galaxies to form, in a hierarchy of

substructure down to the mass where there is insufficient gas to form any stars. However,

as discussed in Section 1.1.4, there are fewer low-mass galaxies in the Local Group than

expected. In Section 1.1.4, we discussed possible alterations to the LCDM model which

may contribute to this, and in Section 1.2.3, Section 1.2.4, and Section 1.2.5, we will

discuss mechanisms within galaxies and groups which can inhibit star formation.

1.2.2 Star Formation

Once a gas cloud has collapsed to the point where star formation is possible, it is no

longer valid to assume that the cloud is reasonably smooth and spherically-symmetric. In

particular, spherical symmetry is not at all a valid assumption, as star-forming galaxies
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often have a disk shape due to conservation of angular momentum (usually with a bulge

in the centre which is not presently forming stars). Additionally, galaxies are not smooth.

Even before the formation of spiral arm structure, gas clouds will have regions of high-

and low-density, and these will not all be aligned radially.

Galactic gas also cannot be considered to be a single fluid. Galaxies typically have two

different types of gas: a reservoir of hot, atomic hydrogen; and smaller local regions of

cold, molecular hydrogen (Schaye, 2004, Krumholz et al., 2011). The transition between

these two phases of hydrogen is relatively rapid, due to a positive feedback loop that

forms in regions with sufficiently high densities, including thermal instability at inter-

mediate temperatures and self-shielding from UV radiation, so these components can

typically be considered separately (Schaye, 2004).

The gas in a galaxy also cannot be considered to be a fixed mass. Galaxies constantly

accrete gas throughout their lifetimes. Hot gas is slowly added to the galaxy’s reservoir,

and it is also commonly believed that “cold flows” directly replenish the galaxy’s cold gas

(Dutton et al., 2010, Genzel et al., 2010). Additionally, environmental interactions (see

Section 1.2.5) can strip away a galaxy’s hot or cold gas, inhibiting future star formation.

Overall, star-forming galaxies must be seen as active processes, and their appearance will

thus depend not only on their current activity, but on their history (mergers, interactions

with other galaxies, etc.). In Section 1.2.3, Section 1.2.4, and Section 1.2.5 we will

continue this discussion, with reference to how star-formation can be affected by feedback

effects and by environment.

1.2.3 Stellar Feedback

In order to form a full picture of star formation, we also must understand the processes

that can inhibit or prevent it. One class of these processes is the effects of feedback.

These are effects which are caused by star formation, but which slow or stop further

star formation in the region. Two important classes of feedback are stellar feedback and

AGN feedback. We will discuss stellar feedback in this section, and AGN feedback in

Section 1.2.4.

Stellar feedback is due to the fact that, once stars form, they emit significant amounts

of energy into the surrounding gas. For most stars, this is a negligible effect, but super-

novae, although rare, are significantly energetic to provide a significant amount of energy

to the surrounding gas. This is particularly notable during starburst events, which are

typically triggered by galaxy mergers, and which result in regions of extremely dense

gas and rapid star formation (Martin, 1999, Springel et al., 2005a). Since gas needs to
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cool and contract to form stars, this extra energy will slow down the process of star

formation.

The feedback from supernovae can be approximated relatively easily. If we assume that

for a unit mass of gas, ε0 of energy will be added back to the gas through supernova

feedback, then we can estimate the decrease in the star formation rate Ṁ0 as:

∆Ṁ
Ṁ0

=
1

1 + v2
c/ε0

, (1.28)

(White, 2009) where vc is the mean circular velocity of the galaxy. If feedback is

maximally-efficient, then ε0 will be (∼ 700 km/ s)2. A typical star forming galaxy will

have vc ∼< 300 km/ s, and so if feedback is near its maximum efficiency, it can almost

completely inhibit star formation in a galaxy with a low circular velocity (and thus

low mass). This discussion gives an effective lower limit for the circular velocity of

∼ 100 km/ s, depending on how efficient feedback is, as below this threshold, stars will

form too slowly to form a visible galaxy. However, numerous galaxies below this thresh-

old can be observed in the Local Group, and so it is apparent that this elementary

analysis is insufficient at properly characterizing supernova feedback. Other consider-

ations, such as how the efficiency of supernova feedback varies with gas density, must

also be considered to properly account for the observed mass distribution of galaxies.

In addition to the energy that supernovae add into the surrounding gas, it is also possible

that, in smaller galaxies, supernova activity might completely eject gas from the galaxy,

preventing all future star formation. This could in principle explain why there is a

dearth of low-mass galaxies in the Local Group. If galaxies are not sufficiently massive,

then after they begin to form a small number of stars, supernovae may eject all gas from

the potential well, preventing any other stars from forming. The resulting “galaxy” will

often be undetectable.

From the above discussion, it might seem that supernova feedback would do a good

job at inhibiting galaxy formation, and perhaps account for the missing substructure

problem (see Section 1.1.4.2). However, recall that the problem is not due simply to a

lower limit in the mass of observed satellite galaxies, but an underabundance of galaxies

in all mass ranges below the Milky Way’s mass. Such galaxies do exist, but there are not

as many as would be predicted if all dark matter haloes are populated. While supernova

feedback might explain why low-mass haloes are not populated at all (at least visibly),

it does not explain why only a fraction would be populated, unless one postulates a

greatly-varying efficiency of feedback.
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1.2.4 AGN Feedback

An active galactic nucleus (AGN) consists of a black hole and its accretion disk near

the centre of a galaxy. The deep potential well at the black hole’s event horizon allows

infalling matter to gain a large amount of energy. However, since the infalling matter

cannot easily shed its angular momentum, it forms a dense accretion disk around the

black holes. This disk is sufficiently dense that friction will occur between concentric

rings, and the energy that matter picked up by falling into the potential well will be

radiated outward.

If we make the assumption that all of the energy a particle gains by falling into the black

hole is radiated out before it crosses the black hole’s event horizon, we can estimate how

powerful an AGN will be in proportion to the rate at which mass is fed into it. Assume

that the black hole has mass MBH and an infalling particle has mass Mp. If the black

hole is non-rotating, its innermost stable circular orbit (ISCO) can be calculated to be:

RISCO =
6GcMBH

c2
. (1.29)

The potential energy at this orbit will then be:

UISCO(MP) = −GcMBHMP(
6GcMBH

c2

) =
1
6
MPc

2. (1.30)

From this, a particle would radiate out energy equal to 1/6 of its rest energy if it were

to fall into a black hole. In practice, the actual fraction is closer to 1/10, as not all of

the energy a particle gains by falling in is radiated out.

This is an extremely large amount of energy per unit gas mass that is accreted by the

black hole, and it can in fact be significant enough to shut down all star formation in a

galaxy. To obtain actual numbers on how much the AGN will inhibit star formation, we

would need to make some assumptions about the size of the black hole. However, black

holes found at the centres of galaxies vary over an extremely large mass range, and so

the effects of AGN feedback will be highly individualized to each galaxy (Croton et al.,

2006).

1.2.5 Environmental Effects

Most galaxies in the universe reside in some sort of large-scale structure, such as a

group or cluster of galaxies (Marinoni et al., 2002, Robotham et al., 2011, Velander

et al., 2013). In these circumstances, the environment can have a very strong influence
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on the evolution of galaxies. Of particular note, red and elliptical (or “early-type”)2

galaxies exist almost exclusively in groups and clusters (Dressler, 1980, Butcher and

Oemler, 1984, Moore et al., 1996, Balogh et al., 1999, 2004). It is apparent that some

environmental effect in these regions of space triggers the transformation of blue galaxies

into red galaxies, and disk galaxies into ellipticals.

There are three main mechanisms through which a galaxy’s environment can have an

effect on it: mergers, ram pressure stripping, and tidal stripping. Mergers occur when

galaxies collide with each other. Most galaxy merges are “minor” mergers, where one

galaxy is significantly more massive than the other. These mergers result in little dis-

ruption to the larger galaxy, and the smaller galaxy is absorbed into the larger one.

Minor mergers can effectively be “cold flows” of gas into larger galaxies, fuelling star

formation in them. “Major” mergers, between galaxies of roughly equal mass, will sig-

nificantly disrupt both galaxies. The resulting galaxy may experience a brief starburst

phase, where the extreme gas densities created by the merger fuel rapid star formation,

followed eventually by a long period of quiescence. In the aftermath of these mergers,

after the starburst phase, the galaxies will typically appear as “red and dead” ellipticals

(Padmanabhan, 2002).

Ram pressure occurs when a galaxy passes the dense intracluster medium (ICM) of a

galaxy group or cluster. The pressure of the ICM against the galaxy strips away the

galaxy’s gas, which then joins the ICM. The amount of pressure will be proportional

to ρICMv
2
g, where ρICM is the density of the ICM, and vg is the velocity of the galaxy

through the ICM. Both of these values increase with the mass of the group or cluster, so

ram pressure stripping will have the most significant effect on galaxies in clusters, and

negligible effect on galaxies in groups (Quilis et al., 2000).

Tidal stripping, which is the main focus of this thesis, occurs when galaxies pass near

each other. Some of the hot gas in the halo of the less massive of the two galaxies

will be “stripped” away when the galaxies pass near each other, and this gas will join

the gas of the more massive galaxy. This will prevent the cold gas in the less massive

galaxy from being replenished, eventually stopping star formation in a process known

as “strangulation.” Close interactions of galaxies will also tend to add energy to the

gas in both of these galaxies, in what is known as “harassment,” which will slow down

the process of star formation (Tinsley and Larson, 1979, Moore et al., 1996, Balogh and

Morris, 2000, van den Bosch et al., 2008, Kawata and Mulchaey, 2008).
2The “early-type” description for galaxies does not refer to a temporal relation between “early-” and

“late-type” galaxies, nor is it in fact a misnomer based on a perceived temporal relation. When Edwin
Hubble classified galaxies on the “Hubble Fork,” he took these terms from the spectra classifications
of stars, in which the terms referred to positions along the spectral sequence. In the case of galaxies,
they refer to positions along the sequence of increasing complexity: “early-type” galaxies, or ellipticals,
appear relative simple, while “late-type” galaxies, or spirals, appear much more complex (Baldry, 2008).
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Given that ram pressure stripping has less effect in galaxy groups, and major mergers

may not be sufficiently frequent to explain the observed abundance of red galaxies in

groups, tidal stripping must be considered as a possible reason that galaxies in groups

tend to be redder than field galaxies. There is limited evidence of this, however, due to

the difficulty of detecting galaxy groups, and then determining whether or not stripping

has taken place within them. The approach we adopt in this thesis is to look at the dark

matter haloes around galaxies within groups, which will be affected by tidal stripping

the same way as gas is stripped (Hayashi et al., 2004, Kazantzidis et al., 2004, Springel

et al., 2008). We can thus examine the dark matter haloes around galaxies in groups,

and compare them to the haloes around galaxies in the field, to determine whether or

not tidal stripping occurs in a group environment.

Tidal stripping has been detected with gravitational lensing in cluster environments

previously by Limousin et al. (2007) and Natarajan et al. (2009). In both of these

papers, the authors looked at a sample of satellite galaxies within cluster environments.

The clusters’ mass profiles were fit by previous lensing data, and the satellites’ halo

profiles were then calculated through a maximum-likelihood analysis and compared to

the haloes of comparable field galaxies. Limousin et al. (2007) found that satellite

galaxies within clusters typically have more compact dark matter haloes than similar

field galaxies (truncation radius of ∼ 50 kpc compared to ∼ 200 kpc for field galaxies),

and Natarajan et al. (2009) found that the masses of satellites within ∼ 45kpc apertures

are only ∼ 20%− 50% as massive as similar field galaxies. Both of these results support

the hypothesis that tidal stripping has had a significant effect on the dark matter haloes

surrounding satellite galaxies.

Prior to the research presented in this thesis, however, the only detection of stripping

in a group environment was performed by Suyu and Halkola (2010). They studied a

strong-lensing system and determined that tidal stripping did seem to occur around the

satellite studied, which lies in a group of mass on the order of 1012M�. While this result

is promising, a broader base of data is needed in order to develop a general understanding

of the dark matter properties of satellite galaxies in galaxy groups. Stripping has also

been investigated in galaxy groups by Mandelbaum et al. (2006b) and later van Uitert

et al. (2011), who attempted to fit modelled galaxy and group lensing signals to samples

from the Sloan Digital Sky Survey (SDSS) and Red Cluster Survey 2 (RCS2). Neither

set of authors was able to detect tidal stripping, nor were they able to rule out its

presence. Here we aim to improve upon these studies with data from the Canada-France-

Hawaii Telescope Lensing Survey (CFHTLenS), which is significantly deeper than the

SDSS, and hence should provide a stronger lensing signal. In our investigation we also

apply a new environment estimator, which is tuned to work for photometric redshifts
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Figure 1.3: Figure 12 of Schneider et al. (2006), illustrating the deflection of light
due to a gravitational lens, resulting in a change in the source’s apparent position. In
the diagram, a ray of light from the source is deflected by angle α̂ before arriving at
the observer. This results in the position angle of the source moving from β, where it

would appear if no lensing were present, to θ.

(see Section 2.3.1), and a modified halo model designed to work with this environment

estimator (see Section 2.2.2.1).

1.3 Gravitational Lensing

Under Einstein’s Theory of General Relativity (GR), gravity operates by curving space-

time. As such, it affects not just matter, but all forms of energy, including light. This

effect is quite subtle, due to the high speed of light, but the large masses and distances

in astronomical surveys allow this effect to be observed via a phenomenon known as

“gravitational lensing.” The angle of deflection for a light ray travelling past a point

mass at a transverse distance from it, ξ � Rs, where Rs is the Schwartzschild radius of

the mass, can be calculated to be:

α̂ =
4GcM

ξc2
, (1.31)

26



where α̂ is the resulting deflection angle and M is the mass of the lensing object. Note

that a similar equation can be calculated through classical mechanics, through consid-

ering the change in momentum of a photon as it passes near a lens, except with a factor

of 2 in the numerator instead of 4. This extra factor of 2 arises purely through GR, and

this fact allowed gravitational lensing measurements to be used as some of the earliest

empirical evidence for GR by Dyson et al. (1920).

For the purposes of the discussion here, we assume that the source radiation encounters

only one lensing event before reaching the observer. In reality, each source will be lensed

by multiple objects before reaching the observer, and even in an isotropic universe, the

effects of these multiple deflections do not perfectly cancel out Brainerd (2010).

The effects of gravitational lensing can be most easily calculated under the “thin lens”

approximation, which assumes that the thickness of the lensing object along the line

of sight is negligible compared to the distance from the observer to the lens and the

distance from the lens to the source. In this scenario, we can calculate the deflection

angle α̂ at a position ξ in the lens plane in terms of the surface mass density distribution

Σ(ξ′):

~̂α =
4Gc

c2

∫
d2~ξ′Σ(~ξ′)

~ξ − ~ξ′∣∣∣~ξ − ~ξ′∣∣∣2 (1.32)

(Schneider et al., 2006).

Let us now assume that light is emitted from the source at position η relative to the

origin in a plane perpendicular to the line of sight and is deflected by the lens plane at

position ξ, as illustrated in Fig. 1.3. Let Dd be the angular diameter distance from the

observer to the lens, Ds be the angular diameter distance from the observer to the source,

Dds be the angular diameter distance from the lens to the source, β be the undeflected

position angle of the source, and θ be the deflected position angle of the source. If we

make the assumptions that all angles are small, and so sin α̂ ≈ tan α̂ ≈ α̂, we can say

from geometrical considerations that:

~η = Ds
~β

~ξ = Dd
~θ

~η = Ds
~θ −Dds

~̂α(~ξ). (1.33)

This then implies that:
~β = ~θ − Dds

Ds

~̂α(Dd
~θ). (1.34)

This can be rewritten as the lens equation:

~β = ~θ − ~α(~θ), (1.35)
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where:

~α(~θ) =
1
π

∫
d2~θ′κ(~θ′)

~θ − ~θ′∣∣∣~θ − ~θ′∣∣∣2 , (1.36)

and κ(~θ) is the “convergence,” defined as:

κ(~θ) =
Σ(Dd

~θ)
Σcr

, (1.37)

and where the critical surface density Σcr is:

Σcr =
c2

4πGc

Ds

DdDds
(1.38)

(Schneider et al., 2006).

Equivalently, we can define a lensing potential:

φ(θ) =
1
π

∫
d2~θ′κ(~θ′) ln

∣∣∣~θ − ~θ′∣∣∣ , (1.39)

which gives us ∇2φ = 2κ (Schneider et al., 2006).

Gravitational lensing can be classified into three regimes: strong lensing, in which dis-

tortions in a single light source are detectable with high signal-to-noise (S/N); weak

lensing, in which distortions in an ensemble of sources can be detected with statistically

significant S/N; and microlensing, in which temporary magnification of a source can be

detected as a mass traverses in front of it. Weak lensing is the primary focus of this

thesis, and so we will discuss it in-depth in Section 1.3.1, and present a brief overview

of strong lensing and microlensing here.

Strong gravitational lensing can appear in a few different forms, depending on the ge-

ometry of the structure acting as a lens. A source object with a small enough projected

distance from a lens may appear elongated and curved, forming an arc, as can be seen

for instance in the background of the cluster Abell 2218 (Kneib et al., 1996). If the lens

is axisymmetric, and the source lies behind it at the right distance, the source might

even appear as a ring encircling the lens, known as an “Einstein Ring.” This can be

seen with B1938+666, the first complete ring discovered (King et al., 1998), among oth-

ers. Rings are relatively rare, though, as they require an axially-symmetric lens mass

distribution. However, when the lens can be roughly modeled as a quadrupolar mass

distribution (such as an elliptical projected mass density), the source will be multiply

imaged, forming a total of three or five images depending on the alignment (though

one of these images will often be hidden behind the lens object). This effect can be

prominently seen in QSO 2237+0305, the “Einstein Cross” (Crane et al., 1991).
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Strong lensing systems can be used to investigate either the mass distributions of the

lenses, or, as lensing magnifies background objects, as cosmic telescopes which allow us to

investigate the properties of lensed objects at extremely high redshift (up to z ∼ 8−12).

In the former case, the geometry of strong lensing detections provides us with high S/N

determinations of the mass distributions of lenses, allowing measurements of cluster

masses, as well as evidence for dark matter substructure within clusters (Tyson et al.,

1998, among others). In the latter case, strong lensing allows us to observe objects at

early stages of the universe, including some quasars near the epoch of reionization, giving

us insight into early stages of star and galaxy formation. For instance, MACS0647-JD,

a galaxy at estimated redshift ∼ 11 is visible because of the magnification from the

foreground cluster MACS J0647.7+7015 (Coe et al., 2013).

Microlensing is performed in a greatly different manner from strong or weak lensing.

Rather than searching for existing lensing systems, microlensing is performed by mon-

itoring sources over a period of time, and recording the change in their luminosities.

When a transient passes in front of the source, the source’s luminosity will be temporar-

ily increased. The frequency and amplitude of such events can be used to estimate the

number density and masses of typical transients.

Microlensing has proven useful in ruling out one class of dark matter, known as Massive

Compact Halo Objects (MACHOs3). While the existence of dark matter was strongly

suspected for a long time, it was not known if it was composed of baryonic matter which

did not radiate light, such as black dwarves, asteroids, and rogue planets (MACHOs),

or whether it was composed of exotic particles (WIMPs). In the former case, these

objects would be expected to move throughout the Galaxy and occasionally pass in

front of luminous sources, magnifying their light through lensing. In the latter case,

the distribution of WIMPs would be too smooth for any microlensing detections to be

possible from them. Microlensing surveys were able to detect the frequency of MACHO

transitions, and they put a firm upper limit on the amount of dark mass which could

be explained due to MACHOs, which was much lower than the known amount of dark

matter in the galaxy (Alcock et al., 2000). This implied that there had to be some exotic

particle which comprised dark matter. More recently, microlensing has also been used

to find faint binary companions to stars, and even exoplanets (Bond et al., 2004).

1.3.1 Weak Lensing

In the so-called “weak lensing” regime, the effect of gravitational lensing manifests as

a coherent distortion of the shapes of background galaxies, stretching them tangential
3In contrast to Weakly-Interacting Massive Particles, “WIMPs.”
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to the foreground object, in an effect known as “shear.” Although the variation in

the intrinsic shapes of background galaxies is significantly larger than the shear caused

by foreground objects, the shape of any given background galaxy will still provide an

unbiased, albeit low signal-to-noise, estimate of the local shear. This makes it possible

to gather usable data by stacking a sufficient number of lens galaxies together.

In practice, shear is usually observed and measured through the dimensionless param-

eter γt, known as the tangential shear. In the weak regime, the distortion of a source

image can be characterized by the Jacobian matrix of the lensing potential (see Equa-

tion (1.39)):

∂β

∂θ
=
(
δij −

∂2φ(θ)
∂θi∂θj

)
=

(
1− κ− γ1 −γ2

−γ2 1− κ− γ1

)
, (1.40)

where γ1 and γ2 are the components of the shear polar (Schneider et al., 2006). For

a circularly-symmetric mass distribution, source images will be sheared in a direction

perpendicular to the lens-source vector, and so the value of interest is the tangential

component of the shear, γt.

The tangential shear γt can be estimated from the mean tangential ellipticity et of source

objects in annuli around a sample of lenses, where:

et = −a− b
a+ b

cos (2φ) , (1.41)

(Schneider et al., 2006) where a and b are the semimajor and semiminor axes of the

source, and φ is the relative angle of the source’s semimajor axis and the vector from

the lens to the source. If we assume that sources are intrinsically randomly-oriented on

the sky, we can relate γt to et through:

γt = (1− κ) 〈e〉 (1.42)

(Schneider et al., 2006).

However, as the magnitude of γt depends on the redshifts of both the source galaxy and

the lens, for this thesis we will use the measurement ∆Σ, which depends only on the

surface mass density of the lens objects. The tangential shear γt is related to this surface

mass density through:

〈γt〉 =
Σ(< r)− Σ(r)

Σcr
≡ ∆Σ

Σcr
, (1.43)

(Miralda-Escude, 1991a) in a circle of any size r around any given point, where Σcr

is defined as in Equation (1.38), Σ(< r) is the surface density averaged for all points

contained within this circle, and Σ(r) is the surface density averaged for all points on
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the edge of this circle. This prescription works even for mass distributions that are not

axisymmetric, as long as all points in a given annulus around a lens object are stacked

together (Schneider et al., 2006).

Weak lensing can be used in many different mass regimes. Galaxy-galaxy lensing, where

both the sources and lenses are galaxies, can be used to measure the mean mass distri-

butions of an ensemble of galaxies, and it is been used to confirm that the dark matter

haloes around galaxies follow an NFW-type (Navarro et al., 1997) profile (Hoekstra et al.,

2004, Kleinheinrich et al., 2006, Mandelbaum et al., 2008). Weak lensing has also shown

that this profile can be used for galaxy clusters (Mandelbaum et al., 2006a, 2008). More

generally, weak lensing can be used to estimate mass-to-light ratios of galaxies (Brainerd

et al., 1996, Hudson et al., 1998, Guzik and Seljak, 2002, Leauthaud et al., 2010, van

Uitert et al., 2011, Velander et al., 2013) and how they evolve over redshift (Hudson

et al., 1998, Leauthaud et al., 2012a, Coupon et al., 2012, Tinker et al., 2012), as well

as provide insight into the fraction of galaxies which reside in groups and clusters (van

Uitert et al., 2011, Velander et al., 2013).

Most dramatically, weak lensing can be used to generate maps of the mass distributions

in galaxy clusters. This technique proved particularly valuable with the mass mapping of

the Bullet Cluster (Clowe et al., 2004), in which it was demonstrated to high confidence

that the mass within this systems was separated from the gas (where most of the mass

would be if there were no dark matter). This provided clear and convincing evidence

that dark matter was real, and modified gravity theories were likely unnecessary.

Weak gravitational lensing can also be used to measure “cosmic shear.” Cosmic shear

consists of coherent alignment in the shapes of distant galaxies caused by the coherent

weak lensing effects of large-scale structure in the universe. As these effects are a large-

scale phenomenon (most prominent on arcminute to degree scales), and it is not a priori

known which foreground structures cause this lensing, cosmic shear most prominently

seen in Fourier space or correlation functions (Blandford et al., 1991, Miralda-Escude,

1991b, Kaiser, 1992). As the lensing signal resulting from large-scale structure is directly

related to the extent, mass, and abundance of such structure, cosmic shear measurements

allow a direct probe of cosmological constants of the universe (Miralda-Escude, 1991b,

Bernardeau et al., 1997, Massey et al., 2007). This effect is an order of magnitude

smaller than the shear from galaxy-galaxy lensing, and it is also particularly sensitive

to systematic errors. For instance, if there is a systematic elongation of all galaxies

in a field along one axis, when lens-source pairs are averaged together, this elongation

will cancel out (approximately as many pairs will be parallel to this systematic axis as

will be perpendicular to it). However, since cosmic shear measurements use alignment

between sources, this systematic error will carry through to the final results. Advanced
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methods of shear measurement, such as the lensfit algorithm (Miller et al., 2012), are

needed to minimize the effects of systematic errors. This has allowed cosmic shear to

recently provide tight constraints on various cosmological parameters in the CFHTLenS

survey (Erben et al., 2013, Kilbinger et al., 2013, Heymans et al., 2013).

1.4 Photometric Redshifts

For distant galaxies, redshift measurements are the most accurate and practical method

to estimate distance from us. Spectroscopic redshifts (spectro-zs) use detections of

emission and absorption lines to measure redshifts. Spectro-zs are able to attain redshift

errors limited only by the signal-to-noise and resolution of the detection, but the presence

of peculiar velocities among galaxies limit how accurately redshifts can be interpreted

as a distance measurement. Peculiar velocities of galaxies in groups and clusters are of

the order ∼ 100−300 km/ s, equivalent to a blurring in redshift space of order ∼ 0.0001.

The effect of this on group-finding algorithms is discussed in Section 1.5 below.

However, while spectro-zs are very accurate and useful, they take a very large amount

of telescope time to acquire, and their high degree of accuracy is not always necessary.

Thus, the alternative method of photometric redshifts (photo-zs), which are orders of

magnitude less precise than spectroscopic redshifts (spectro-zs), but take orders of mag-

nitude less telescope time to obtain, can become useful.

Photo-zs require observations of a galaxy in a minimum of 3 filters, and more typically

4 or 5 (such as the UVRI or ugriz filter sets) are used. From these, a photo-z algorithm

will attempt to map the galaxy’s filter data to its redshift. Modern methods can achieve

redshift errors as low as σz ∼ 0.044 with the ugriz filter set, for galaxies with i < 22.5

(Hildebrandt et al., 2012), and this has been improved to as low as σz ∼ 0.01 when using

a set of 30 filters, as in the COSMOS-30 sample (Ilbert et al., 2009).

There are two classes of photo-z algorithms, which work in greatly different manners:

artificial neural network (ANN) methods and template-based methods. ANN methods

work by simulating the connections with a neural network, to map a galaxy’s photometry

to its redshift. These methods require no physical assumptions about the spectra of

galaxies, or even calculations of the physics of redshifting, but they do require a sample

of galaxies with both photometry and spectroscopic redshifts in order to “train” the

method to estimate redshifts. These methods can be seen, in essence, as fitting a function

of tens of parameters to sample data.
4Throughout this thesis we use the convention that σz refers to the root-mean-squared scatter of

measured photo-zs relative to spectro-zs δz, as opposed to it referring to δz/(1 + z).
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In ideal conditions, when a training set of galaxies with spectro-zs is available that well

approximates the set of galaxies whose redshifts are to be measured, ANN methods

typically out-perform template-based methods, having lower bias and scatter in their

redshift estimates. However, this ideal set of circumstances is rare in practice. Ideally,

a training set would need to be randomly drawn from the galaxies in the photometric

survey, but this typically is not practical. Photo-z surveys typically cover much wider

regions of the sky than spectroscopic surveys, and a random sample of their galaxies

would be too spread out to make gathering spectro-zs for them efficient; it would be

more practical to simply gather spectro-zs for most galaxies in the survey. Rather, a

more likely scenario would be gathering spectro-zs for a small patch of the wider survey.

This can reasonably approximate the entire survey, although, depending on the size of

the survey, galactic extinction may vary enough over its size to introduce errors into the

photo-z estimation. But even a random sample of a patch of a wider field is not very

likely to be useful; spectro-z surveys are typically limited to a brighter magnitude than

the photo-z data, which introduces large biases into the training set. As such, in almost

all practical circumstances, ANN methods will not perform as well as template-based

methods (Collister and Lahav, 2004, Abdalla et al., 2011).

Template-based photo-z methods use assumptions about the spectral energy distribu-

tions (SEDs) of galaxies of various types to estimate their redshifts. Template methods

use ∼ 5 or more SED templates, which approximate the SEDs of various types of galax-

ies at redshift zero. These templates are then redshifted to various test redshifts, and

expected photometry for each template at each test redshift are calculated, based on

the filter’s sensitivity and the redshifted SED. This expected photometry can then be

used as a look-up table with which to compare the photometry for each galaxy. A χ2

test or similar comparison can then be used to find the best-fit redshift and template

for the galaxy, as well as a probability distribution function for each, which allows one

to estimate the error in the redshift estimate.

One notable issue with photo-z estimation is the possibility of catastrophic errors, where

a galaxy’s estimated redshift differs from its actual redshift by a large amount (on the

order of σz ∼ 0.2 or more). To see why this is possible, consider the case of a red galaxy.

The SED for a red galaxy shows two major “breaks,” where there is a sharp jump in

the SED, one at 912 Å and another at 4000 Å. This allows for possible degeneracy

between a z ∼ 1 red galaxy and a z ∼ 6 red galaxy, as illustrated in Fig. 1.4. These

cases are relatively, rare, however, and typically fewer than ∼ 5% of galaxies at low

redshift (z ∼< 1) will have catastrophic errors in their photo-z estimates (Hildebrandt

et al., 2012).

33



Figure 1.4: Figure 15 from Capak et al. (2004), illustrating three possible galaxy SEDs
which are highly-degenerate. Without high-quality U data, it might be impossible to

discriminate between the three possible redshifts for the galaxy.

1.5 Group-Finding Methods

While it is simple to provide a qualitative description of a galaxy group - a gravitationally

bound structure of multiple galaxies - it is more difficult to identify such structures

in the universe. We can start with the physics of structure formation. If we apply

Equation (1.5) at η = 3
2π, which is the time at which the collapsing structure will be

supported by its virial energy, we find that structures will virialize when their density

is ∼ 174× the background density of the universe (Padmanabhan, 1993). We can thus

define a group as a clustering of galaxies which has a galaxy number density ∼ 200×
the background density of the universe, and tune group-finding algorithms to search for

galaxy overdensities which satisfy this criterion.

With this in mind, one of the most basic group-finding algorithms is the friends-of-friends

(FoF) algorithm. This algorithm works by starting a seed from an individual galaxy, and

then searching for all other galaxies that lie within a linking length rl of it. These galaxies

are then added to a group with the seed galaxy. The algorithm then iterates, adding

all galaxies within distance rl of any galaxy in the group until no more galaxies can be

added. If the linking length is set to 1/5 the mean inter-galaxy separation, then this will

34



result in the algorithm detecting groups that have an overdensity of ∼ (1/5)−3 = 125 at

their edges.

FoF algorithms work well, but not perfectly, in simulations; they can overlink galaxies

or dark matter particles and merge structures that should properly be considered as

separate groups. In the real universe, errors in distance estimates to galaxies (due to

peculiar velocities) introduce even more error into the groups detected by FoF algo-

rithms, even with spectroscopic redshifts. Groups appear to be elongated along the line

of sight, in what is known as the “fingers of God” effect. If FoF algorithms are run with-

out correcting for this effect, they will greatly underestimate the population of groups.

The standard method for correcting for this effect is to allow the linking length in the

redshift direction to be much larger than in the other directions. If the linking length

in z is increased by an amount equivalent to the velocity dispersion within a typical

group, the algorithm will better identify group populations. This does lead to a risk

of over-linking, however, and adding in “interlopers,” field galaxies that are projected

behind or in front of the group, but get mistakenly classified as being in the group, and

so the linking length must be tuned to balance this effect against under-counting group

galaxies. Typically, an FoF algorithm can simultaneously attain ∼ 80% purity and com-

pleteness for its catalogue, though it can trade between purity and completeness if one

is more desirable than the other for a given goal (Robotham et al., 2011).

In dark-matter simulations, FoF algorithms are typically run on the dark matter par-

ticles, instead of galaxies; if the simulation includes galaxies in a semi-analytic model,

they will be added only after haloes have been identified. The algorithm then classifies

the dark matter particles into haloes, which can be traced over the evolution of the

simulation. This is not enough to fully populate a simulation with galaxies, however; in

a group of galaxies, the FoF algorithm will only identify one shared halo for the group.

A further refinement is needed to identify subhaloes within a larger halo. The most

commonly-used method for this is the SUBFIND algorithm (Springel et al., 2001). This

algorithm works by first creating a density estimate at the location of each dark matter

particle, using the distance to the nth (tunable, typically a bit more than 10) nearest

neighbour. These densities are then used to interpolate a density field, and substructure

within the field will be defined by a self-bound region enclosed by an isodensity contour

which traverses a saddle point in the density field. This is performed by starting with a

high global density threshold and determining all contours at this density. This thresh-

old is then lowered, and saddle points are identified when two contours merge to become

a single contour. The algorithm then checks to ensure that the regions identified in this

matter are self-bound. These regions, aside from the one identified with the primary

halo, are then identified as subhaloes. They can then be populated with galaxies through
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a semi-analytic model, generating a full galaxy catalogue and group assignments for all

galaxies.

When spectroscopic redshifts are not available in galaxy surveys, FoF algorithms are not

viable without extensive modifications. One possible modified FoF algorithm proposed

by (Li and Yee, 2008) is the probability friends-of-friends algorithm (pFoF). As in a

traditional FoF algorithm, this algorithm starts with a single galaxy as a seed group,

using every galaxy in turn to start its own seed. The algorithm then progressively adds

galaxies to the seed group using a probability comparison, based on the full probability

distribution functions (PDFs) for the redshifts of the group and galaxy:

Pij =

∫ zmax

zmin
Pi(z)Pj(z)dz

Pij,max
, (1.44)

where Pi(z) is the PDF of the group, Pj(z) is the PDF of the galaxy, and Pij,max is a

normalization factor, determined through the maximum value of
∫ zmax

zmin
Pi(z−z0)Pj(z)dz

for zmin < z0 < zmax. This can be envisioned as shifting one of the PDFs so they overlap

as much as possible; the calculated Pij is then the ratio of the actual integral to how

large it could in principle be if the two PDFs were ideally aligned. If this galaxy passes

a cut on transverse linking length and minimum Pij , it is added to the group and the

PDF of the group is updated to be:

Pi(z) =
ΠkPk(z)∫ zmax

zmin
(ΠkPk(z′)) dz′

, (1.45)

where Pk(z) represents the PDF of each galaxy now within the group. This process is

then iterated until no more galaxies can be added to the group and is then repeated

for the next galaxy in the catalogue (even if it is already a member of a group). The

algorithm thus creates a group for each galaxy, which it then checks for duplicates.

Duplicate groups are merged with the most likely memberships, and groups of low

overall significance are removed from the group catalogue.

As the pFoF algorithm works on a friends-of-groups basis, it is less likely to make spurious

group detections than a standard FoF algorithm is, if redshift errors are significant. The

overall PDFs of groups provide a ready method to determine how likely a detection is to

be spurious, and groups with overly-broad PDFs are thus discarded. Li and Yee (2008)

claim ∼ 90% purity and > 99% completeness for groups of more than eight members.

An alternative method we proposed in Gillis and Hudson (2011) is the “Photo-z Proba-

bility Peaks” (P3) algorithm. This algorithm will be discussed in detail in Section 2.3.1,

but it can be summarized as generating a 3D density distribution of galaxies and identi-

fying peaks in this distribution as potential groups. The threshold signal-to-noise (S/N)
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used to identify groups can be tuned for very high purity, but this comes at the expense

of completeness.

Group identification can be improved if some assumptions are made about the physi-

cal properties of groups, although this risks biasing the sample toward certain classes

of objects. For instance, clusters are known to typically emit strong X-ray radiation

through the hot gas contained within their ICMs. If X-ray observations are available,

detection of strong X-ray emissions can be used to generate a very pure and complete

cluster catalogue (Mulchaey and Zabludoff, 1998). X-ray detections also allow ready

detection of the centre of the cluster’s dark matter halo, which can greatly aid in certain

types of lensing analysis, such as the method we propose in Section 3.2. However, use

of X-ray detections will limit the group sample to groups with significantly dense ICMs.

It is likely that interesting physics happens in the transition between groups with and

without a detectable ICM, but this cannot be investigated if the group sample is limited

to only groups with detected ICMs.

Alternatively, groups can be detected using the presence of a bright cluster galaxy (BCG)

(Koester et al., 2009) or a strong concentration of red galaxies (Gladders and Yee, 2000).

As with X-ray detections, though, these methods will bias the resultant group catalogue

to one which contains the features they search for. Groups which lack a BCG or a strong

concentration of red galaxies will not appear in such catalogues, but it is necessary to

include these groups in a sample if one wishes to analyse the physics which may cause

the formation of a BCG or red galaxies.

One issue common to all methods that rely on photometric redshift estimates is that,

while they can show high purity and/or completeness in their detections of groups, this

does not extend to a pure and complete assignment of galaxies to groups. While with

spectroscopic catalogues ∼ 80% purity and completeness is typically possible, photo-z

methods typically cannot surpass ∼ 50% purity and completeness of their assignments

of galaxies to groups without trading off either purity for completeness or completeness

for purity. For our purposes, we value purity more than completeness and, in particular,

the purity of the satellite selection. Using a modified version of our P3 algorithm, we

are able to attain ∼ 60% purity and ∼ 45% completeness for identifying satellites in our

simulated catalogue as such, as tested against the group catalogues from the simulations.

1.6 Thesis Summary

In Chapter 2 of this thesis, we present the details of the surveys and simulated catalogues

used, we discuss the methodology we use to investigate tidal stripping when photometric
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redshift data are available, and we present the results of our investigation of tidal strip-

ping in the CFHTLenS catalogues. In Chapter 3, we discuss methods that can be used

to investigate tidal stripping if spectroscopic redshift information and spectroscopically-

derived group catalogues are available, and we present analysis of these methods. We

conclude in Chapter 4, and details of some of the approximations used throughout this

thesis are presented in Appendix A. In Appendix B, we present preliminary results from

the application of our methodology to the Sloan Digital Sky Survey, Data Release 8

dataset.

This thesis is based primarily on work published in Gillis et al. (2013b) and Gillis

et al. (2013a). Chapter 2 is composed primarily of material from Gillis et al. (2013a),

and Chapter 3.2 is composed primarily of material from Gillis et al. (2013b). Certain

paragraphs from these papers are also included in the introduction and conclusion to this

thesis, and the data section from Gillis et al. (2013b) is mostly merged into Section 2.1

and Section 2.2. Appendix A is composed of the appendix to Gillis et al. (2013b).

Appendix B is composed of unpublished work, which may be published at a later date.

All material in this thesis was originally written by the author, with proofreading and

recommendations from collaborators and members of the thesis committee.

For consistency with the Millenium Simulation, we use the following cosmological pa-

rameters: Hubble parameter at redshift zero H0 = 73 km s−1 Mpc−1, density parameters

of matter, dark energy, and baryonic matter Ωm = 0.25, ΩΛ = 0.75, and Ωb = 0.045

respectively. All stated magnitudes are in the AB system. Since there is no clear divi-

sion between galaxy groups and galaxy clusters, we use the terminology “galaxy groups”

throughout this thesis, even though some of the structures we refer to as such would be

more commonly deemed clusters. When masses are quoted in this thesis, M is used to

refer to the total (halo + baryonic) mass of a galaxy or group, and m is used to refer

to the stellar mass of a galaxy, unless otherwise specified. When radial measurements

are used in this thesis, R refers to a projected, 2D proper distance, and r refers to a 3D

distance, unless otherwise specified. All masses are in units of solar masses M� unless

otherwise specified.
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Chapter 2

Methods Using Photometric

Redshifts

In this chapter we discuss methods to detect the presence or absence of tidal stripping,

assuming only photometric redshift data are available, and we present an analysis of data

from the CFHTLenS survey using these methods. In Section 2.1, we discuss the galaxy

catalogue we use, drawn from the CHFTLenS, as well as how we process this catalogue

and select subcatalogues of lens galaxies. In Section 2.2, we discuss the simulated galaxy

catalogues we use for our analysis, including how the galaxy selections are prepared

to match our observed data and how we simulate lensing signals for these simulated

catalogues. In Section 2.3, we discuss methods we use to estimate the environments of

galaxies, as well as describe how the sample is divided into matched high-density and

low-density subsamples, and we also present the statistics of the galaxies in the HDE

and LDE samples. In Section 2.4, we detail the model we use to fit the lensing signals

measured in our analysis, and in Section 2.5, we discuss how we fit this model to the

data. We present the results of our analysis in Section 2.6.

2.1 Observations

CFHTLenS is a 154 deg2 survey (125 deg2 after masking) (Erben et al., 2013), based on

the Wide component of the Canada-France-Hawaii Telescope Legacy Survey (Heymans

et al., 2012), which was observed in the period from March 22nd, 2003 to November

1st, 2008, using the MegaCam instrument (Boulade et al., 2003). It consists of deep,

sub-arcsecond, optical data in the u∗g′r′i′z′ filters. CFHTLS-Wide observations were

carried out in four high-galactic-latitude patches:
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• W1: 72 pointings; RA=02h18m00s, Dec=−07d00m00s

• W2: 25 pointings; RA=08h54m00s, Dec=−04d15m00s

• W3: 49 pointings; RA=14h17m54s, Dec=+54d30m31s

• W4: 25 pointings; RA=22h13m18s, Dec=+01d19m00s.

As contamination from foreground stars and galaxies, cosmic rays, and other observa-

tional limitations can contribute to inaccuracy in weak lensing measurements, it was

necessary to mask out unusable regions of the observed fields. The automask tool (Di-

etrich et al., 2007, Erben et al., 2009) was used to automatically generate masks for the

fields, and this was compared with human-corrected masks. These latter masks were

developed by a team including the author, who expanded the automask masks to cover

all suspicious regions near contaminating objects. A lensing catalogue quality assess-

ment was performed, which found that the automask masks were sufficient for science

purposes and manual correction is not necessary (Heymans et al., 2012, Erben et al.,

2013).

Shapes of background galaxies in the unmasked regions were measured with the lensfit

shape measurement algorithm for galaxies with i′ < 24.7 (Miller et al., 2012), giving an

effective galaxy density of 11 sources/arcmin2 in the redshift range 0.2 < zphot < 1.3

(Heymans et al., 2012). For the analysis in this thesis, we use all fields in the survey, not

simply those that passed the systematics tests for cosmic shear measurements (Heymans

et al., 2012). It has been demonstrated that fields with systematics that may affect

cosmic shear have no effect on galaxy-galaxy lensing measurements (Velander et al.,

2013), and the analysis in this thesis requires as many lens-source pairs as possible.

Photometric redshifts for the survey were estimated with the BPZ code (Beńıtez, 2000).

BPZ, when used alongside accurate galaxy SEDS, was one of the redshift codes found

to perform best by the PHoto-z Accuracy Testing (PHAT) collaboration (Hildebrandt

et al., 2010). The PHAT team tested and compared various template- and neural-

network-based photo-z codes for precision and accuracy, including contributions from

the author in testing the ZEBRA code (Feldmann et al., 2006). The accuracy of photo-z

measurements for the CFHTLS-Wide survey was improved through homogenizing the

PSF through different bands in the CFHTLenS survey. Photo-zs were made available

for the entire survey, with a typical redshift uncertainty of ∼ 0.04(1 + z) in the redshift

range 0.2 < zphot < 1.3 (Hildebrandt et al., 2012).

We use the stellar mass estimates described by Velander et al. (2013), obtained by

fitting spectral energy distribution (SED) templates, following the method of Ilbert
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et al. (2010). These stellar masses were found to be in rough agreement with deeper

data such as WIRDS, which includes NIR filters (Bielby et al., 2012), up to z = 0.8.

Since we perform a differential measurement between samples, an overall bias in the

stellar masses would not affect our results. It is possible, however, for a relative bias in

the stellar mass estimates of red and blue galaxies to impact our results. This possibility

is investigated further in Section 2.6.4.1.

For this thesis, we use all unmasked galaxies with photometric redshifts in the range

0.2 < zphot < 0.8 as lens candidates. We divide these into HDE and LDE samples as

described in Section 2.3.1.

2.2 Simulations and Models

In this section we discuss the simulations used to generate our galaxy catalogues and our

models for the mass distributions of galaxies within these catalogues. In Section 2.2.1,

we discuss how we extracted our galaxy catalogues from the Millennium Simulation

and the properties of these catalogues. In Section 2.2.2 we discuss the mass distribu-

tions we assume for dark matter haloes surrounding the galaxies in our catalogues; in

Section 2.2.2.1, we discuss the mathematical form of the model we use, and in Sec-

tion 2.2.2.2, we discuss the different models we use for the presence or absence of tidal

stripping, along with other datasets we use for comparison purposes. In Section 2.2.3,

we discuss how we simulate shears and ellipticities for our source catalogues.

2.2.1 Simulated Catalogues

In order to assess the differences varying stripping models have between their lensing

signals, it is easiest to work with a simulated galaxy catalogue, where exact redshifts,

masses, mass distributions, and group assignments can be known. In this thesis, we used

a semi-analytic galaxy catalogue based on the Millennium Simulation (Springel et al.,

2005b) by De Lucia and Blaizot (2007). The Millennium Simulation is a collisionless

simulation of N = 21603 dark matter particles, each with a mass of 8.6× 108 h−1M�, in

a box with 500 h−1Mpc sides and periodic boundary conditions. The simulation used

the following cosmological parameters: h = 0.73, Ωm = 0.25, Ωv = 0.75, Ωb = 0.045,

σ8 = 0.9, n = 1. The simulation used force softening on a scale of 5 h−1 comoving kpc.

This causes an artificial smoothing of the cores of dark matter haloes, and as a result,

density measurements within ∼ 50 kpc of a halo’s core are unreliable.
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h Ωm Ωb σ8 n
Millennium 0.73 0.25 0.045 0.9 1
Planck 0.670+.015

−.009 0.318+.013
−.021 0.049+.003

−.004 0.835+.006
−.018 0.9619+.0057

−.0089

WMAP* 0.6933 ± .0088 0.288 ± .010 0.0472 ± .0010 0.830 ± .018 0.971 ± .010

Table 2.1: A comparison of the cosmological parameters used for the Millennium Sim-
ulation with the constraints of Planck (Planck Collaboration et al., 2013) and WMAP
(Hinshaw et al., 2012). *For WMAP, we use the constraints including the BAO and

H0 priors, as discussed in (Hinshaw et al., 2012).

The galaxy catalogues used in this thesis consist of lightcones within De Lucia and

Blaizot (2007)’s catalogue prepared by Hilbert et al. (2009). These catalogues are com-

plete for Mstellar > 109 M� and consist of thirty-two 16 deg.2 fields. We split these

catalogues into sub-catalogues of “lens” and “source” galaxies. The lens catalogues con-

sist of all galaxies in the parent catalogue with 0.05 < z < 0.8, and the source catalogues

consist of all galaxies in the parent catalogue with r < 24.5, approximately the limit

for shape data in the CFHTLenS (Heymans et al., 2012). We use all galaxies in the

lens catalogue for our ray-tracing simulations, The source galaxies have shears calcu-

lated from a ray-tracing simulation performed by Hilbert et al., which differs from ours

in that it uses the positions of dark matter particles within the Millennium Simulation

rather than our halo models (described in Section 2.2.2). As such, it provides a useful

comparison to check that our models generate reasonable results.

The resolution of redshift and mass within these catalogues was limited by the number of

snapshots of the original simulation which were saved. Sixty-four snapshots were saved

in total, of which 23 are below redshift 1.

In order to properly compare results from the Millennium Simulation to observed re-

sults, we must first consider how well the Millennium Simulation approximates reality.

First, let us consider whether the Millennium Simulation might have difficulty identi-

fying haloes and subhaloes. If it were to exhibit any problems in doing this, it would

likely be at the low-mass end, nearest the resolution limit. This can be investigated

through a comparison with the similar Millennium-II Simulation, which is identical to

the Millennium Simulation in cosmological parameters assumed, but has a volume and

particle mass a factor of 125 smaller (the box has 100 h−1Mpc sides and dark matter

particles each have a mass of 6.9 × 106 h−1M�). For this test, we look to the work of

Fakhouri et al. (2010), who tested halo merger rates of haloes and subhaloes in both the

Millennium and Millennium-II simulations. The authors found that in the small mass

range in which the two simulations overlapped, the agreement between them in all mea-

surements of merger rates tested was excellent. This implies that the number counts of

subhaloes in the Millennium Simulation are unlikely to be affected by resolution limits

at the low-mass end.
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Secondly, let us consider the cosmological parameters assumed for the Millennium Sim-

ulation. The most recent constraints on these parameters from the Planck (Planck

Collaboration et al., 2013) and WMAP (Hinshaw et al., 2012) observations are com-

pared with the parameters used for the Millennium Simulation in Table 2.1. With the

exception of Ωb, all of the listed parameters now differ from observational constraints

at at least 2σ significance. As such, we do not expect the measurements from the Mil-

lennium Simulation to perfectly match observations. It nevertheless provides a strong

qualitative test of the performances of our algorithms.

The dark matter haloes of the Millennium Simulation were populated with galaxies

through a semi-analytic model developed by De Lucia and Blaizot (2007). Dark matter

haloes are identified through a friends-of-friends algorithm with linking length of 0.2×
the mean interparticle separation, and haloes with at least 20 dark matter particles (M ∼
2× 1010M�) are populated with galaxies. Haloes are also analysed with the SUBFIND

algorithm (Springel et al., 2001) to identify subhaloes, and self-bound subhaloes of at

least 20 dark matter particles are similarly identified and populated with galaxies. All of

these galaxies are labeled with the ID of the dark matter halo or subhalo that contains

them. Haloes in adjacent snapshots are identified as descendants or progenitors if they

share at least 50% of their dark matter particles, and the galaxies they contain are

similarly linked.

In Fig. 2.1 we show a comparison of the stellar mass distributions of galaxies in our

simulated catalogues to the CFHTLenS catalogues, assuming the same observational

constraints. While the stellar mass distribution is similar, the simulated catalogue shows

a peak in the histogram at a higher stellar mass than the CFHTLenS, and then cuts off

much more sharply. We discuss the implications of this in Section 2.2.2.1.

We identified galaxies in these catalogues as either “central,” “satellite,” or “field” galax-

ies. Central galaxies are galaxies which share a host halo with at least one other galaxy

and are labeled by De Lucia and Blaizot (2007) as being at the centre of the group’s

dark matter halo. Satellite galaxies are galaxies which share a host halo with at least

one other galaxy and are not labeled as central galaxies. Field galaxies are galaxies

which do not share a host halo with any other galaxy: they are centrals in a halo with

no satellites.

We cut our source and lens catalogues to match observations as well as possible. We

assign and apply photo-z errors consistent with those in the CFHTLenS and apply the

P3 algorithm to the simulated data, and apply magnitude cuts of i < 24.7 (simulating

the CFHTLenS) to both the lens and source catalogues.

43



Figure 2.1: A comparison of the stellar mass distributions of all galaxies in the
simulated catalogues, drawn from the semi-analytic model of De Lucia and Blaizot
(2007), and the CFHTLenS catalogues. The simulated catalogue was cut to match the
observational limits of the CFHTLenS. Counts are normalized to share a maximum.

For the simulated photometric redshift measurements for these catalogues, we do not

directly calculate photo-zs from the simulated galaxy colours in the Millennium sim-

ulation. We tested this method using the publicly-available ZEBRA (Feldmann et al.,

2006) and BPZ (Beńıtez, 2000) codes for estimating photo-zs, but the resultant red-

shifts showed extremely large scatter compared to the actual redshifts of the galaxies

(σz ∼> 0.2), even without simulating any errors in the measured filter magnitudes. This

implies that the colours in the Millennium Simulation are not a sufficiently good match

for reality to allow use of photo-z codes with them. We thus decided to instead simu-

late photo-z errors by scattering the simulated redshifts by a Gaussian error, whose size

matches the errors in our datasets. This method has the advantage that it is easy to

simulate different qualities of photo-z data, although it does have the disadvantage that
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it doesn’t simulate effects such as catastrophic errors that are present in photometric

redshift measurements. However, the high quality of photo-zs in the CFHTLenS sample

results in less that 5% of galaxies likely having catastrophic errors. We further minimize

the potential contamination from this effect by weighting lens galaxies by their “ODDS”

parameter in our analysis. This parameter represents the probability that a galaxy does

not have a catastrophic error in its redshift estimate. As such, galaxies with low ODDS

are given low weight in our sample to minimize the contribution of catastrophic errors.

2.2.2 Models

2.2.2.1 Halo Models

For ease of calculations, we assume that all dark matter lies within spherically-symmetric

haloes1. We modeled the mass distributions of all lens haloes as truncated NFW profiles,

as defined by Baltz et al. (2009), with a density profile:

ρ(x) =
M0

4πr3
s

1
x(1 + x)2

τ2

τ2 + x2
, (2.1)

whereM0 = M200(ln(1+c)−c/(1+c))−1, rs = r200/c, and x = r/rs. c is the concentration

parameter, in principle unique to each halo, and τ = rtidal/rs determines the truncation

radius. This model provides an analytic form for the weak lensing signal, as outlined

in Baltz et al. (2009). In this thesis, we assume that for haloes that haven’t been

tidally disrupted, τ = 2c, which implies rtidal = 2r200. This assumption is consistent

with results from Hilbert and White (2010) and Oguri and Hamana (2011), the latter

of which supports a value of τ between 2c and 3c. We determine c using the mass-

concentration relation determined by Neto et al. (2007) for haloes in the Millennium

Simulation:

c = 4.67×
(

M200

1014h−1M�

)−0.11

. (2.2)

To see how weak lensing signals depend on the mass distribution within groups, we

experimented with different methods of apportioning a group’s mass to its constituent

galaxies. The catalogue from De Lucia and Blaizot (2007) provides the total mass of a

group’s halo (which includes the mass of all subhaloes) at any snapshot and the stellar

masses of all galaxies. Note that the stellar mass is not expected to evolve significantly
1Triaxial models (Jing and Suto, 2002) provide a more accurate representation of real dark matter

haloes, but this is not necessary for our purposes. Per Equation (1.43), with a sufficient number of lenses
and sources stacked together, the lensing signal of a triaxial halo (which appears elliptical in projection)
will be indistinguishable from the lensing signal of a spherically-symmetric halo. This is due to the fact
that the noise due to neglecting triaxiality is of order ∼ 20% per pair, while shape noise is 1–2 orders of
magnitude larger.
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after a galaxy joins a group (Padilla et al., 2009), so if there is a monotonic relation

between infalling halo mass and stellar mass, the latter can be used to estimate the

mass of the galaxy’s dark matter halo prior to joining the group. Here we make this

identification using the method of “abundance matching”, originally applied to entire

haloes (Marinoni and Hudson, 2002, Yang et al., 2003) and later subhaloes (Vale and

Ostriker, 2004, Conroy et al., 2006). We use the following formula from Guo et al. (2010)

to relate the stellar and halo masses:

0.129× mhalo

mstellar
=

((
mhalo

1011.4M�

)−0.926

+
(

mhalo

1011.4M�

)0.261
)2.44

. (2.3)

See Appendix A.1 for details on how we used this formula to calculate mhalo given

mstellar.2 From here on, we will refer to the halo mass calculated in this manner as the

“infall mass.” The mass of any given group is then the total mass of all of its constituent

galaxies’ haloes:

Mtot = Σmhalo. (2.4)

Note that the formula from Guo et al. (2010) was determined based on observational

data rather than data from the Millennium Simulation. As can be seen in Fig. 2.1, the

stellar mass distribution in the simulated catalogues used here is cut off more sharply at

high stellar mass than the data from the CFHTLenS. Since high stellar mass galaxies

are typically at the centres of groups, the result is that the group-central galaxies in the

simulated catalogues have less stellar mass than galaxies in similar-mass groups in the

CFHTLenS. As such, when we estimate halo mass from stellar mass in this method, we

typically underestimate group mass.

2.2.2.2 Stripping Models

Using the data for total group mass and satellite infall mass, we constructed the following

two models for the mass distributions of satellite and group haloes:

• No Stripping: A model expected to correspond to unrelaxed groups. Satellites

retain their infall masses. The mass of the central halo is then set equal to Mtot

minus the mass in satellite haloes.
2There is a log-normal scatter in this relation of ∼ 0.17 dex (Yang et al., 2012), which we do not

simulate. Testing showed that the effect of this scatter on our results was negligible.
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Figure 2.2: Fig. 15, upper-right panel of Gao et al. (2004), showing the mean (thick
black) and median (thin black) retained mass fractions for subhaloes within cluster
haloes. Our fit to it, Equation (2.5), is overlaid (red curve). The fit has mean residual

2.5× 10−4 and root-mean-square residual 1.8× 10−2.

• Stripping: A model expected to correspond to relaxed groups, on average. Masses

of satellite haloes are decreased relative to their infall mass by an amount depen-

dent on their projected distance from the group centre. The central halo’s mass is

then set equal to Mtot minus the mass that remains in satellite haloes.

We also compare with a “Matched Field” dataset, which is matched in redshift and

stellar mass to the satellite galaxies used in the above two models. This dataset allows

us to measure what the lensing signal around the galaxies in the No Stripping model

would look like if the contribution from being in a group environment were removed.

In order to model stripping within groups, we applied results from Fig. 15 of Gao

et al. (2004) to estimate a satellite’s retained mass fraction from the projected distance
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between it and its group’s centre, using the following function, fit by hand to the figure:

Mret

Minit
≈ −0.464

(
r

r200

)2

+ 1.03
(

r

r200

)
+ 0.058. (2.5)

A comparison of this fit to the plot by Gao et al. (2004) can be seen in Fig. 2.2. With

this prescription, we find that the mean retained mass after stripping is approximately

40% of the initial mass.

We modeled the reduction of satellite mass due to stripping by decreasing their tidal

radii. The relationship between mass within the virial radius and tidal radius is given

by:

Mhalo = M0
τ2

(τ2 + 1)2

[(
τ2 − 1

)
ln(τ) + τπ −

(
τ2 + 1

)]
(2.6)

(Baltz et al., 2009). As this equation is not analytically invertible, we use a solution-

space search to find the value of τ which gives the proper value for Mret
Minit

.

As has been shown by Gao et al. (2004), the fraction of group mass contained within

satellites at a given radius increases with distance from the group centre. This implies

that in the Stripping and No Stripping models, we should use a halo density profile for the

central halo which converges to the original profile near the core, but is progressively

lower than the original profile as the radius increases. We accomplish this with the

following, modified version of the truncated NFW profile, which we call the “contracted”

NFW profile:

ρ(x) =
M ′0fr
4πr′3s

1
x′(1 + x′)2

τ ′2

τ ′2 + x′2
, (2.7)

where fr is the fraction of mass retained by the group halo, and M ′0, r′s, x
′, and τ ′ are

calculated with new concentration c′ > c, which satisfies the equation:

c2

ln(1 + c)− c/(1 + c)
=

frc
′2

ln(1 + c′)− c′/(1 + c′)
. (2.8)

This ensures that in the region near the core, where x � 1, this profile will converge

with the profile given by Equation (2.1). Since this profile has a higher concentration

than the original profile, the density will decrease faster with radius than in the original

profile. There is no strong physical evidence for this specific model; it is used simply

because it meets the basic requirements of converging to the initial NFW profile near the

core while having a greater fraction of mass in satellites far from the core, and because

its lensing signal can be calculated analytically in the same manner as the lensing signal

of an NFW profile.
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Figure 2.3: Top panel: An illustration of our “contracted NFW” profile (red dashed)
compared to the initial profile (black solid), with a group of Mtot = 1013 M� and
Msat/Mtot = 0.25. The profile converges with the initial NFW profile near the core,
but falls below it away from the core. Bottom panel: The resultant fraction of mass
assumed to be in satellites at a distance r from the center of this profile. This curve

meets our requirements of decreasing to zero at the core and rising with radius.

An illustration of this transformation, along with a plot of the mass fraction assumed

to be contained within satellites under this model, can be seen in Fig. 2.3. The weak

lensing signal for this model can be calculated similarly to the original model, simply by

using a different concentration and applying fr as a scaling factor. For consistency, we

use this profile for all haloes, with fr = 1 for all satellite and field haloes.

2.2.3 Determining Ellipticity

While full ray-tracing, such as that performed by Hilbert et al. (2009), is a powerful

tool for estimating weak lensing signals caused by an arbitrary mass distribution, it has
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a few limitations. The accuracy of the ray-tracing is limited by the resolution of the

simulations used to generate the lens mass distribution, which causes the algorithm to

noticeably underestimate the lensing signal within 50 kpc of halo cores (this effect can

be seen in Fig. 3.3 below). Additionally, the algorithm has no method to easily model

different hypothetical mass distributions, as we wish to test here. Because of this, we

have developed a modified ray-tracing algorithm in which we assume that all dark matter

lies in spherical haloes in amounts and distributions dependent on the models described

in Section 2.2.2.2. The algorithm is as follows:

1. Lens galaxies are assigned mass, concentration, tidal radius, and scaling factor

under one of the models described in Section 2.2.2.2.

2. In order to eliminate edge effects, the catalogue of lens galaxies used for this

algorithm includes galaxies within a wider field of view than the catalogue of

source galaxies. Since the fields are 4 × 4 degrees, we accomplish this by only

using source galaxies within a central 1.4 x 1.4 degree square field, which also

significantly reduces the amount of computational time needed for later analysis.

For the rest of our analysis, we also only use lens galaxies that lie within this

central field.

3. Each source galaxy is initialized with zero ellipticity in both components (shape

noise is simulated at a later stage of analysis).

4. For each source galaxy, tangential shear is applied to it for every lens galaxy

where ([RAlens − RAsource]× cos(Declens))
2 +(Declens −Decsource)

2 < (∆max)2 and

zlens < zsource. Here ∆max is an upper limit to conserve computational time and

ensure that the rectangular boundaries of the field will not cause artefacts in

the lensing signal. The strength of the shear applied is determined using the

equations of Baltz et al. (2009) for a truncated NFW halo and our modifications

for a contracted NFW profile (see Section 2.2.2.2).3

5. Shear is added linearly to the ellipticity of the source galaxy for all lens galaxies

within this lightcone.

This process in principle accounts for the two-halo term seen in the lensing signal around

groups, which is caused by other nearby groups. However, our application of a cut-off

angle ∆max suppresses lensing signals at large radii, meaning the two-halo term is not

observable in our simulated lensing signals. This method does not account for dark

matter that is correlated with the positions of galaxies and groups but not considered
3We use an approximation for angular separation here to conserve computational time. With the

small separations involved (� 1 deg), this approximation is nearly exact.
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part of their haloes, which also results in a slight suppression of the lensing signal at

large (R ∼> 1000 kpc) scales. Since we are interested in the stripping of subhaloes, for

which the relative signal is strongest at intermediate (50 kpc ∼< R ∼< 400 kpc) scales,

this suppression at large scales will have no effect on our analysis.

2.3 Catalogue Analysis

In Section 2.3.1, we discuss the method we use to estimate the environments of galaxies.

In Section 2.3.2, we describe how the galaxy sample is divided into matched high-density

and low-density subsamples, and we present the statistics of the galaxies in the HDE

and LDE samples.

2.3.1 Determining Environment: The P3 Algorithm

It is not a trivial matter to determine which galaxies are members of groups. Even when

spectroscopic redshifts are available, the peculiar velocities of galaxies make it impossible

to determine the memberships of groups with absolute certainty (Robotham et al., 2011).

When only photometric redshifts are available, the best we can do is to select galaxies

that are likely to be members of groups. To do so, we use a modified version of the

Photo-z Probability Peaks (P3) algorithm (Gillis and Hudson, 2011). The P3 algorithm

generates a 3-D density field by smoothing the distribution of galaxies in the redshift

direction according to the probability distribution function of their photometric redshifts.

The algorithm identifies peaks in the pseudo-three-dimensional field with group centres.

Here we do not use the group centres, but rather use the entire P3 density field to

identify overdense regions. Rather than use the local P3 overdensity itself, we restrict

ourselves to regions in which we have high confidence in the overdensity, and instead use

the signal-to-noise (S/N) of the local overdensity, under the assumption that galaxies in

overdense regions of space are more likely to be in groups than galaxies in underdense

regions.

We now briefly review the technical details of the P3 algorithm. To determine the S/N

of a given test galaxy, the P3 algorithm compares the density of galaxies within a cir-

cular aperture (R = 0.5 Mpc) surrounding each test galaxy to the density of galaxies

within a larger annulus (Rinner = 1 Mpc, Router = 3 Mpc) surrounding each test galaxy

(to approximate the background density). The contribution of each galaxy to this mea-

surement is weighted by the probability that this galaxy lies at the same redshift as the

test galaxy (by taking the integral of the photo-z probability distribution function over
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a thin redshift slice). This gives the overdensity:

δ =
ρap − ρannu

ρannu
, (2.9)

where ρap and ρannu are the weighted densities of galaxies within the aperture and

annulus surrounding the test galaxy, respectively. This value can take the range −1 <

δ < ∞, where negative values correspond to regions less dense than the background

density, and positive values correspond to overdense regions. We then estimate the

noise in this value by assuming a Poisson distribution for galaxies:

σPoisson =

√(
ρap

nap

)2

+
(
ρannu

nannu

)2

, (2.10)

where nap and nannu are the numbers of galaxies in the aperture and annulus respectively

with more than a threshold weight.4 From this, we calculate the S/N ≡ δ/σPoisson for

each test galaxy. Note that this S/N can take negative values when δ is negative. The

distribution of the S/N values that results from this calculation depends on the choice

of threshold weight used, so our choices of S/N limits are not universally applicable. We

picked limits of S/N > 2 for the high-density sample and S/N < 0 for the low-density

sample based on an analysis of the simulated galaxy catalogues to maximize the expected

signal for tidal stripping.5

Since this environment estimator provides us with galaxy samples biased to lie in high-

and low-density environments, we cannot use the standard halo model (eg. Mandelbaum

et al., 2006b, Velander et al., 2013) for fitting our lensing signals. Instead, the models

we use are calibrated from simulations and are detailed in Section 2.2.2.

2.3.2 Galaxy Matching

2.3.2.1 Matching Algorithm

We use the S/N values obtained for each of the galaxies in Section 2.3.1 to form two

samples of galaxies from the catalogues. As we cannot ensure that a pair of random

samples of galaxies in high- and low-density environments will have the same distribution
4We use a threshold weight here of a > 0.001% chance of lying within a redshift of 0.01 of the test

galaxy.
5In a rough approximation, the expected signal-to-noise of a stripping measurement is proportional

to (fsat,HDE−fsat,LDE)
q
N−1

HDE +N−1
LDE, where fsat,HDE and fsat,LDE are the fractions of satellites in the

HDE and LDE samples respectively, and NHDE and NLDE are the number counts of galaxies in the HDE
and LDE samples respectively. We calculated this value for various S/N cuts, and the combination of
S/N > 2 for the HDE sample and S/N < 0 for the LDE sample provided the best expected signal-to-noise
for a stripping measurement.
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of stellar mass and redshift as each other, and both of these will affect the measured

lensing signal, we perform a matching between galaxies with S/N > 2 and galaxies with

S/N < 0 as follows:

1. For each galaxy with S/N > 2, we search through all galaxies with S/N < 0 within

the same pointing.6

2. For each S/N < 0 galaxy, if its stellar mass differs from the stellar mass of the S/N

> 0 galaxy by more than 20%, we exclude it as a possible match.

3. For each remaining S/N < 0 galaxy, we calculate a quality-of-match value:

d =

√(
zH − zL

zH

)2

+ (10(logmH − logmL))2 (2.11)

where zH and zL are the redshifts of the S/N> 2 and S/N< 0 galaxies, respectively,

and mH and mL are their stellar masses. This form significantly prioritizes a match

in mass over redshift, as the lensing signal depends much more strongly on mass

than redshift.

4. We select the four S/N < 0 galaxies with the lowest d values as matches for this

S/N > 2 galaxy. If there are fewer than four match candidates, we assign them all

as matches.

5. Assuming at least one match was found for it, we add this S/N > 2 galaxy to the

HDE sample, and we set its weight equal the number of matches we found. (This

weight is later applied when we stack lensing signals together, and this modification

is necessary to ensure the mass distributions of the HDE and LDE samples are

comparable.)

6. We assign all match galaxies to the LDE sample. If they were not already in

the LDE sample, we set each of their weights to 1. Otherwise, we increase their

weights by 1.

The resultant mass and redshift distributions of this scheme are assessed in Section 2.3.2.2.

2.3.2.2 Statistics of Galaxy Selection

Fig. 2.4 shows the distributions of stellar mass and redshift for the HDE and LDE

samples of lens galaxies in the CFHTLenS. The matching scheme results in a nearly

identical distribution of stellar masses for HDE and LDE galaxies, and a very similar

distribution of redshifts.
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Figure 2.4: The distributions of stellar mass (left) and redshift (right) for the samples
of HDE (solid line) and LDE (dashed line) galaxies in the CFHTLenS catalogues, which,
because of our matching algorithm, are virtually identical. The redshift distributions
differ slightly between HDE and LDE galaxies, but there is no apparent trend to the

deviation.

CFHTLenS
HDE LDE

logm z fred fblue fred fblue

9–9.5 0.57 0.13 0.73 0.08 0.80
9.5–10 0.56 0.28 0.60 0.18 0.70
10–10.5 0.56 0.54 0.30 0.44 0.38

10.5–11 0.57 0.78 0.10 0.72 0.13
11–11.5 0.57 0.95 0.02 0.90 0.03
9–10.5 0.56 0.43 0.43 0.33 0.51

Table 2.2: Statistics of galaxies in various stellar mass bins in the CFHTLenS, as
a function of environment. z is the mean redshift of the bin. fred is the fraction of
galaxies that are red, and fblue is the fraction that are blue, determined by the best-fit
photometric templates and defined in the same manner as by Velander et al. (2013).
Fractions do not add to unity as not all galaxies are classified as “red” or “blue.” See
Velander et al. (2013) for further explanation. All average values and fractions assume

galaxies are weighted by their stellar masses.

Table 2.2 shows statistics for lens galaxies in the HDE and LDE samples in the CFHTLenS,

for various stellar mass bins. The HDE sample contains a higher fraction of red galaxies

than the LDE sample, as expected, but the difference is at most 10% for a given stellar

mass bin. This difference in the fractions of red and blue galaxies could in principle lead

to a spurious detection of stripping if there is a relative bias in the stellar mass estimates

between red and blue galaxies. This issue is discussed further in Section 2.6.4.1, where

we conclude that this is unlikely to pose a problem for our analysis.
6Matching only within the same pointing is done to conserve computational time.
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Figure 2.5: The distributions of the types of galaxies classified as HDE and LDE
in the simulations (left), and, of those classified as satellites, the distributions of the
masses of the groups in which they reside (right). Plots assume detection limits and

photo-z quality similar to the CFHTLenS.

Simulated CFHTLenS
HDE LDE

logm M z fsat ffield fcen Mhost fsat ffield fcen Mhost

9–9.5 17 0.37 0.54 0.42 0.05 4700 0.14 0.79 0.07 1600
9.5–10 32 0.45 0.62 0.25 0.13 4000 0.15 0.61 0.24 1500
10–10.5 80 0.51 0.64 0.10 0.26 4300 0.13 0.32 0.54 1900

10.5–11 390 0.50 0.45 0.02 0.53 5600 0.09 0.12 0.79 3400
9–10.5 63 0.48 0.63 0.16 0.21 4300 0.14 0.43 0.43 1800

Table 2.3: Statistics of galaxies in the Millennium simulation for various stellar mass
bins, using our models for estimating halo mass and environment, and assuming similar
detection limits and photo-z quality to the CFHTLenS. logm is the stellar mass bin.
M is the mean halo mass of the galaxies in this bin in units of 1010M�, and z is their
mean redshift. fsat, ffield, and fcen are the fractions of galaxies that are satellites, field
galaxies, and group centrals, respectively. Mhost is the mean mass of the host group for
satellite galaxies in units of 1010M�. All values assume galaxies are weighted by their

stellar masses.

Fig. 2.5 shows the distributions of galaxy types for the mock HDE and LDE samples

drawn from the Millennium Simulation, and, for the satellite galaxies within each sample,

the distribution of the masses of the groups in which they reside. We classify galaxies as

“central” (the most massive galaxy in a group), “satellite” (in a group but not the most

massive galaxy) or “field” galaxy (not in a group). Table 2.3 shows the distributions of

galaxy types for the HDE and LDE samples for various stellar mass bins. This shows that

the fraction of satellites in the HDE sample remains roughly constant with stellar mass

and decreases slightly with stellar mass in the LDE sample. For all samples, the fraction

of centrals rises with stellar mass, while the fraction of field galaxies falls. No sample
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shows any significant change with stellar mass in the mean mass of the host groups for

satellites, except for a rise in the most massive stellar mass bin tested. HDE satellites

are observed to reside in groups of ∼ 4× 1013 M�. In contrast, for the small fraction of

LDE galaxies that are satellites, the characteristic host halo mass is ∼ 1.8× 1013 M�.

We note that the redshift distributions of galaxies in our simulated catalogues does not

well-match the redshift distributions of galaxies in our CFHTLenS catalogues. Galaxies

in the simulated catalogues typically reside at lower redshift (z ∼ 0.45) compared to the

galaxies in the CFHTLenS catalogues (z ∼ 0.55). However, as we match our HDE and

LDE samples on redshift in addition to stellar mass, and our results rely on a differential

comparison, this difference from simulations should have negligible effects on our results.

At most, this might affect the fraction of galaxies within our HDE sample which are

satellites; we investigate the effects that a different value of this parameter might have

on our results in Section 2.6.4.2.

2.3.2.3 Measuring the Lensing Signal

To calculate the lensing signal around the HDE and LDE lens galaxies, we stack together

all galaxies in a particular sample and stellar mass bin7. We then bin all lens-source

pairs (only using pairs where zphot,source > zphot,lens+0.1) based on the projected distance

between the lens and source, calculated at the redshift of the lens. For each pair, we

calculate the tangential ellipticity of the source relative to the lens, gt, and convert this

into units of surface mass density gradient ∆Σ using the equations in Section 1.3.1.

We compute the error in this value empirically from the root-mean-squared scatter in

calculated ∆Σ values for all lens-source pairs in each annular bin.

For the error calculations in our model fits, we assume the noise in all radial annuli is

independent. Strictly speaking, this is not true, as there is a small correlation between

the ellipticities of nearby sources due to the effects of cosmic shear, but this effect is

negligible except at extremely large radial annuli. For computational simplicity, we do

not apply the c2 correction to our CFHTLenS samples8 to source ellipticities in our

analysis. Because galaxy-galaxy measurements stack lens-source pairs over all position

angles, they are insensitive to this correction(see Velander et al., 2013, for further ex-

planation and justification of this). Moreover, here we are interested in a differential

measurement between galaxy-galaxy lensing samples, and so we expect our results to be

highly robust to this effect.
7This process is performed one pointing at a time due to computational limitations, and all pointings

are stacked together in the end.
8The c2 correction is an empirical correction to the e2 component of source ellipticity, based on the

assumption that the mean e2 across a given field should be close to zero.
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2.4 Halo Model

We expect the lensing signal around galaxies in the HDE sample to be reasonably well-

described by the following halo model (see, e.g., Velander et al., 2013):

∆Σ = ∆Σ1h + fsat∆ΣOG + ∆Σ2h (2.12)

where ∆Σ1h is the “one-halo” term, fsat is the fraction of galaxies in the sample that

are satellites ∆ΣOG is the “offset group halo” term, and ∆Σ2h is the “two-halo” term,

as described below:

• One-halo term: The lensing signal that results from the galaxy’s own dark matter

halo.

• Offset group halo term: This is the contribution to the lensing signal around a

satellite caused by the presence of its group’s halo.

• Two-halo term: Galaxies will typically reside near other massive structures, which

results in a contribution to the lensing signal at large radii.

Since galaxies in the HDE sample are more likely lie to in overdense regions, we cannot

apply exactly the same halo model as, e.g., Velander et al. (2013), who use all galaxies

independent of environment. This primarily affects the offset group halo term. See

Section 2.4.2 below for an explanation of how we modify our halo model to account for

this.

For LDE galaxies, we expect the signal to be described by the form:

∆Σ = ∆Σ1h + ∆ΣUD (2.13)

where ∆ΣUD is the “underdensity” term, which is the effective contribution from the

fact that galaxies in an underdense environment will see a negative contribution to their

lensing signal at large radii. This effect is analogous to the offset group halo term, except

arising from an underdensity instead of an overdensity, and is explained in more detail

in Section 2.4.3.

We can best compare the lensing signals that result from stacks of HDE and LDE

galaxies by fitting the signals with a model profile, and comparing these fits. The model

profile for the HDE sample includes just the “one-halo” and “offset group halo” terms.

Since the “underdensity” and “two-halo” terms are only significant at relatively large
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radii, we can safely ignore them if we do not fit the profiles out to large radii. We discuss

this further in Section 2.6.4.2.

These components are discussed in the sections below, and we discuss the procedure we

use to fit a model to the data in Section 2.5.

2.4.1 One-halo term

For the one-halo term, we assume that all galaxies reside in a dark matter halo that

can be approximated by a truncated NFW density profile, as formulated by Baltz et al.

(2009). This model has three free parameters: the halo mass M200, concentration c, and

the truncation parameter τ ≡ rtrunc/rs. In practice, we have found that the signal is not

strong enough to simultaneously constrain all three parameters. Therefore, for simplicity,

in our default fits discussed below, we fit only M200, with c fixed by Equation (2.2), taken

from Neto et al. (2007), and we also fix τ = 2c, which is a reasonable value for unstripped

haloes (Hilbert and White, 2010, Oguri and Hamana, 2011).

In Section 2.6.3.2, we investigate alternative fits in which c or τ are left free and fitted

to the data.

2.4.2 Offset group halo term

Since the P3 algorithm biases our galaxy selection such that the HDE sample predomi-

nantly consists of galaxies within groups, we cannot use the standard halo model (e.g.,

Velander et al., 2013) to calculate the contributions of nearby groups. Instead, we make

the assumption that the sample consists of a fraction fsat satellites, and the rest are

either central or field galaxies. The central and field galaxies will only have a one-halo

component in their lensing signals, while satellites will have both the one-halo component

and a contribution from their host groups. In order to model the average contribution

of group haloes to the lensing signal around galaxies in the HDE sample, we assume

that it takes the following form:

∆ΣOG(R) =
∫ ∞

0
∆Σhost(R,Rs)P(Rs)dRs, (2.14)

whereRS is the projected separation between a satellite and the group centre, ∆Σhost(R,Rs)

is the contribution of the group halo to the lensing signal around a point at projected

distance R from the group centre:
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∆Σhost(R,Rs) = Σhost(< R,Rs)− Σhost(R,Rs)

=
1

πR2

∫ R

0
2πR′

∫ 2π

0
Σhost(Rg)dθdR′

− 1
2π

∫ 2π

0
Σhost(Rg)dθ, (2.15)

where Σhost(Rg) is the projected surface density of the host group’s halo at projected

radius Rg =
√
R′2 +R2

s −R′Rs cos θ and P(Rs) is the probability that a satellite in the

sample will reside a distance Rs from the centre of its host group. We assume P(Rs)

takes the form:

P(Rs) =
1
MN

2πRsΣ(Rs,Mgr, csat)PHDE(Rs), (2.16)

where MN is a normalization factor, Σ(Rs,Mgr, csat) is the projected surface density of

an NFW halo with mass equal to the mass of the host group, Mgr, but a concentration

csat, different from the dark matter concentration c. Analyses of the satellite density in

groups and clusters (Lin et al., 2004, Budzynski et al., 2012) have indicated that the

spatial distribution of satellites can be well-modelled in this way, assuming an NFW

density profile with concentration ∼ 2.5, which is lower than the typical concentration

of the dark matter halo by a factor of ∼2.

The term PHDE(Rs) is the probability that a satellite at a distance Rs from the centre of

the host group will be included in the HDE sample. The form of PHDE(Rs) is determined

by the selection effects inherent in the P3 algorithm. To first order, P3 selects galaxies in

regions of high projected surface density for the HDE sample. We thus model PHDE(Rs)

as a smooth cut-off based on the projected surface density of the group. We wish for

it to converge to PHDE(Rs) = 1 for Σ(Rs) � Σt, and converge to PHDE(Rs) = 0

for Σ(Rs) � Σt. We therefore choose the following functional form, which has these

properties:

PHDE(Rs) =
Σ(Rs)2

Σ(Rs)2 + Σ2
t

, (2.17)

where Σ(Rs) is the projected surface density for a satellite at distance Rs from a group

centre and Σt is the threshold density. As we have no prior justification for any specific

density threshold to use, we leave this parameter free, to be fit by our algorithm.

For the HDE sample, we fix fsat to the value found in the mock HDE sample from

the Millennium Simulation. We do not expect this simulated result to perfectly match

the fraction of satellites we might find in the CFHTLenS dataset, and we investigate
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the impact that a different value of fsat might have in Section 2.6.4.2. For the LDE

sample, we do not include this term, since the form of the measured lensing signal in

both simulated and CFHTLenS data shows that the underdensity signal dominates at

large radii (see the simulated LDE signal in Fig. 2.7 and the measured LDE signal in

Fig. 2.8).

We choose to model the offset group halo term as if all groups are of the same mass. We

tested this assumption using a distribution of group masses, and the resulting signal was

not appreciably different from the single-mass signal. The use of a distribution of group

masses did tend to increase the resultant signal (the difference scaling with the spread of

the mass distribution), even when the mean mass is fixed, and so the single-mass model

will likely underestimate the mean host halo mass.

Fig. 2.6 illustrates how the modeled one-halo term varies with satellite halo mass, as

well as how the fitted offset group halo terms varies with the group halo mass Mgroup,

satellite concentration csat and threshold surface density Σt.

2.4.3 Underdensity signal

Galaxies in the LDE sample are selected to lie in S/N < 0 regions, which are underdense

(δ < 0) compared to a surrounding annulus with inner radius 1 Mpc and outer radius

3 Mpc. Similar to the way in which galaxies in groups have a positive contribution to

their lensing signal from the offset overdensity in which they reside, galaxies in under-

dense regions will have a negative contribution to their lensing signal on larger scales

due to the fact that their local environment is less dense than the surrounding environ-

ment. This effect has been observed in both the CFHTLenS dataset, as well as in the

simulations.

The expected form of this negative lensing signal has not been well-studied, so there is

no functional form which we expect it to take. We have attempted to fit this signal with

the same functional form as the group halo term, multiplied by a negative free term, but

this failed to provide a suitable fit to either the simulated or to the CFHTLenS data.

Note in the right panel of Fig. 2.8 below that the minimum value for the LDE signal is

at a higher projected radius than the peak of the offset group halo term.

To handle this effect for the LDE sample, we only fit the lensing signal for R < 400 kpc,

where the one-halo term dominates the signal.
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Figure 2.6: An illustration of how the one-halo term varies with satellite mass (top
left); and how the offset group halo term (Equation (2.15)) varies with group mass
(top right), satellite concentration (bottom left), and density threshold (bottom right).
Plotted values of the parameters, with italicized parameter corresponding to the value
used for other plots: Msat = 1010, 1011, 1012 M�; Mgroup = 10 13 , 1014, 1015 M�;
csat = 2 .5 , 5, 7.5, Σt = 0 , 10, 20 M�/ pc2. Increasing line weight corresponds to
increasing the varying parameter. The fraction of satellites which reside in groups is
not illustrated, as it is a simple scaling of the group halo term; it is fixed to 0.6 for

these plots.
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2.5 Fitting Procedure

For all fits, we use radial bins of 25 kpc< R < 2000 kpc. We tested constraining the fits

to a lower maximum radius, and this had no noticeable effect on the fitted satellite halo

masses. Fitting to a lower maximum radius only altered the fitted group mass, making

it less well-constrained.

We use a two-step procedure to fit the models to the lensing signals. Because our models

are relatively simple, they are not perfect fits to the data. So, we first attempt to deter-

mine the amount of error inherent in our modelling in order to assign more conservative

uncertainties to the fitted parameters. To do this, we first perform a steepest-descent

χ2 minimization to obtain best-fitting parameters for the model. At this point, if the

χ2
red value for the fit is greater than 1, we assume that this is due to some error in the

modeling, which we parametrize as σm. We uniformly add this value in quadrature to

the measured uncertainties in all radial bins, such that the adjusted χ2
red = 1 for the

best fit. We then repeat this process, finding new best-fit values and recalculating σm

until convergence is reached.

Since this procedure effectively increases the error in all radial bins, this process has the

result of increasing the measured errors on all fitted parameters. If the model is initially

a good fit (χ2
red ≈ 1) to the data, the increase is negligible, but if the model is a poor fit

to the data, the estimated errors for the fitted parameters will be significantly increased.

As such, this process allows us to place more conservative limits on our results, based

on the quality of the fit of the model to the data.

Additionally, since the model error is uniformly added to the errors in all radial bins, it

prevents the fitting algorithm from over-weighting the fit to the high-radius bins, which

otherwise have significantly lower errors, and thus typically contribute more to the χ2

value of the fit if the model is not a perfect fit to the data.

For the models we tested, we typically found for the HDE samples that σm ∼< 0.5M�/pc2,

which is ∼< 5% of the measured lensing signal, ∆Σ. For the LDE samples, most fits were

initially of χ2
red ≈ 1, and so no model error term was necessary.

Once the model error is determined, we run an MCMC algorithm to help determine the

errors of the fitted parameters. Since only the mass of satellite haloes is relevant to us,

we marginalize over all other parameters to obtain the mean value and errors for the

satellite mass.
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Table 2.4: Results of the fitting procedure when applied to simulated (top) and the
CFHTLenS (bottom) lensing data in various stellar mass bins. All masses are in units
of 1010 M�. logm is the stellar mass bin. fsat is the fraction of satellites we use for the
fitting, based on data from the Millennium Simulation. MHDE and MLDE are the fitted
one-halo masses for the HDE and LDE samples. Mgr is the fitted mass of the offset
group halo term. RM is the ratio of MHDE to MLDE. χ2

red is the reduced χ2 parameter
without the model error term (see Section 2.5) included (for 36 degrees of freedom; a

value close to 1 is ideal).
“No Stripping” Model “Stripping” Model

logm fsat MHDE Mgr MLDE RM MHDE Mgr MLDE RM

9–9.5 0.53 20 12000 21 0.95 14 9800 19 0.74
9.5–10 0.60 46 11000 41 1.12 32 9700 39 0.83
10–10.5 0.63 140 7300 110 1.27 110 7200 120 0.94

10.5–11 0.48 930 9600 650 1.43 950 5900 660 1.44
CFHTLenS Data

logm fsat MHDE χ2
red,HDE Mgr MLDE χ2

red,LDE RM

9–9.5 0.53 17.6 ± 4.8 2.31 20500 ± 2300 24.9 ± 4.0 0.83 0.71+0.25
−0.18

9.5–10 0.60 16.5 ± 6.5 1.05 15060 ± 900 35.6 ± 6.2 0.80 0.46+0.25
−0.15

10–10.5 0.63 67 ± 12 0.65 14550 ± 550 95 ± 11 0.90 0.70+0.17
−0.12

10.5–11 0.48 287 ± 34 1.45 23100 ± 4000 239 ± 38 1.41 1.20+0.30
−0.21

11–11.5 0.48 1090 ± 120 0.81 20300 ± 2000 530 ± 110 1.29 2.05+0.65
−0.31

2.6 Results of Photometric Redshift Investigation

In this section, we present the results of the fits and discuss their implications. In

Section 2.6.1, we discuss the predicted results from the simulations for both the “No

Stripping” and “Stripping” models. In Section 2.6.2, we present the main results of

our analysis of the CFHTLenS dataset and discuss their implications. In Section 2.6.3,

we discuss alternative interpretations of the data, and which of the one-halo mass, con-

centration, and truncation radius might plausibly contribute to the observed differences

between the HDE and LDE samples. In Section 2.6.4, we discuss potential systematic

effects, and in Section B.2 we present preliminary results from the SDSS DR8 data.

2.6.1 Predictions from Simulations

Fig. 2.7 shows plots of the best-fit models for the simulated catalogues from the Mil-

lennium Simulation, for both the “Stripping” and “No Stripping models” (described in

Section 2.2), for galaxies with 109M� < m < 1010.5M�. The plot illustrates that in the

“No Stripping” scenario, the measured lensing signals for the HDE and LDE samples

are nearly identical at very small radii. Our algorithm does not work perfectly for this

mass bin, and in the “No Stripping” scenario, it fits a one-halo mass to the HDE sample

that is somewhat larger than the one-halo mass fitted to the LDE sample, while for the

63



50 100 500 1000

0

10

20

30

40

50

50 100 500 1000

0

10

20

30

40

50

Figure 2.7: Lensing signals and fits for simulated lensing data for the “No Stripping”
(left) and “Stripping” (right) scenarios (see Section 2.2). The “No Stripping” scenario
shows similar one-halo fits for the HDE and LDE samples, while the “Stripping” sce-
nario shows a lower one-halo mass fit for the HDE sample than for the LDE sample.
Error bars are not shown, as shape noise is not simulated for these datasets, and so the

scatter is extremely small.

“Stripping” scenario, the fitted HDE one-halo mass is slightly lower than the fitted LDE

one-halo mass.

Further comparisons of fitted one-halo masses for different mass bins can be seen in

Table 2.4 and Fig. 2.10. As can be seen there, for all mass bins m < 1010.5M� with the

“Stripping” model, the fit (as expected) yields a relatively lower one-halo mass for the

HDE sample compared to the LDE sample than it does for the “No Stripping” model.

Above m = 1010.5M�, however, the fitted masses in the “Stripping” and “No Stripping”

scenarios are comparable. This is due to the fact that at high stellar masses, the fraction

of galaxies in the HDE sample that are centrals increases rapidly (see Table 2.3). Since

mass stripped from satellites is added to the masses of central galaxies, then if too many

central galaxies are included in the sample, stripping will have little or no net effect on

the lensing signal.

The fitted group masses for the simulated data in Table 2.4 are larger than the actual

group masses by a factor of ∼ 1.5–2. Our tests have shown that this can occur when

haloes from a very broad range of masses are averaged together, as is the case here. The

lensing signal of an average of haloes of varying mass is similar to the lensing signal of

a single halo with a mass somewhat greater than the average of the sample.

The fitted group masses for the CFHTLenS data are observed to be a factor of ∼ 2

larger than the group masses for simulated data. This is not surprising, as the halo

masses in the simulated data are extrapolated from the stellar masses of their constituent
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galaxies, and the distribution of stellar masses in the simulated data does not match the

distribution in the CFHTLenS dataset. As discussed in Section 2.2.2.1 and illustrated

in Fig. 2.1, the central galaxies of groups in the simulated data have significantly lower

stellar masses than are observed in the CFHTLenS, which results in our estimated halo

masses for groups being lower for the simulated data than the actual halo masses in the

CFHTLenS.

The results from the simulations imply that with the CFHTLenS data, a comparison of

the HDE and LDE fitted one-halo masses can be used as an indication of whether or not

tidal stripping is occurring, but we must use a stellar mass upper limit of ∼ 1010.5M�.

2.6.2 Results from CFHTLenS

Fig. 2.8 shows the lensing signals for the HDE and LDE samples taken from the CFHTLenS,

including all galaxies with 109M� < m < 1010.5 M�, with the best-fit models plotted on

top. For this broad mass bin, the fits show that the HDE one-halo term is lower than

the LDE term, at 2.5σ significance (p = 0.0113). However, this simple fit is not optimal.

In part, this is because we are combining galaxies with greatly varying masses. The re-

sultant lensing signal of this combination does not perfectly resemble the lensing signal

of a single halo possessing the average mass of the sample, and the code compensates

for this by fitting a higher σm, which results in larger errors for the best fit.

Fig. 2.9 shows the likelihood distributions for the fitted satellite masses, host group

mass, and surface density threshold for the HDE sample of galaxies with 109M� < m <

1010.5M�. The plot shows that there is only a weak degeneracy of Msat with the other

two parameters, but there is a stronger degeneracy between Mhost and Σt. Nevertheless,

when marginalized over the other parameters, Mhost is very tightly constrained, and

Msat is reasonably constrained.

We can more carefully analyse the data by splitting the galaxy sample into smaller

stellar mass bins. Fig. 2.10 shows the results of this analysis for both simulated and the

CFHTLenS data, with the ratio of the fitted one-halo mass for the HDE sample to that

of the LDE sample plotted against the galaxies’ stellar masses. Simulated data are not

available for all of the mass bins due to limitations of the Millenium catalogue.

Details of the fits to CFHTLenS data for different stellar mass bins are shown in Ta-

ble 2.4. The goodness-of-fit is comparable to previous galaxy-galaxy lensing studies.

Specifically, the χ2
red values for our fits (which are calculated before the inclusion of the

model error term, see Section 2.5) are similar to the full halo model fits of Velander et al.
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Figure 2.8: Measured lensing signal and model fits for data from the CHFTLenS,
including all galaxies with 109 < m < 1010.5M�. HDE (red) and LDE (blue) lensing
signals and fits are illustrated. The dashed line shows the one-halo model fit to the
HDE sample, and the dotted line shows the HDE offset-group-halo term. The one-halo
mass fit for the HDE sample is found to be significantly lower than for the LDE sample.

(2013): their χ2
red values varied from 0.5–2 for different stellar mass bins, whereas ours

vary from 0.6–2.3.

If only the three stellar mass bins with 109 < m < 1010.5M� are used, we obtain a

weighted mean ratio of HDE one-halo mass to LDE one-halo mass of 0.65± 0.12. If we

assume that this ratio is indicative of the retained mass after stripping, and assume the

sample contains ∼ 60% satellites, then we can extrapolate that for a sample of 100%

satellites, the mean retained mass fraction will be ∼ 0.41±0.19, which is consistent with

the mean retained mass fraction of 0.40 we measured from the simulated data.

Note that at face value, our result suggests less mass reduction in HDE environments
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Figure 2.9: Probability distribution functions and joint probability distribution func-
tions for satellite mass Msat (left column), host group mass Mhost (bottom row), and
surface density threshold Σt (middle row and middle column) for the fit of the lensing

signal of all HDE galaxies with 109M� < m < 1010.5M�.

than the factors of 2–5 found for the ∼ L∗ satellites of the rich cluster Cl 0024+16 found

by Natarajan et al. (2009). There are several key differences between these samples,

however; in particular, our satellites have lower stellar mass and our satellites inhabit

lower mass host haloes than the rich cluster studied by Natarajan et al. (2009).

These combined results reject the results of the simulated “No Stripping” model at 4.1σ

(p < 0.0001), reject MHDE = MLDE at 2.9σ (p = 0.0039), and are consistent with the

simulated “Stripping” model at 1.8σ (p = 0.0651). This near-rejection of the “Stripping”

model may indicate that this model underestimates the amount of tidal stripping which

occurs in reality, or it might indicate that some effect other than tidal stripping (such as

a difference in star formation histories dependent on environment) is contributing to the

observed signal. Additionally, while our results have high statistical significance, they

do not rule out the possibility of systematic errors resulting in a spurious detection. We

investigate the possibility of such a spurious detection in Section 2.6.4.
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Figure 2.10: A summary plot of the fitting results for various stellar mass bins. Shown
are the ratios of the best-fit one-halo mass for the HDE and LDE samples, for both the

Stripping and No Stripping simulations, and for the CFHTLenS data.

2.6.3 Alternative Fits

In the previous section, we made a number of assumptions relating one-halo mass, con-

centration, and tidal radius (see Equation (2.2)). This allowed us to compare only the

one-halo mass between the HDE and LDE samples, in order to determine if there was

a difference in their lensing signals. However, this does not tell us what variations in

mass, concentration, and tidal radius might be causing this difference. In this section

we investigate alternate means of fitting the lensing signals to determine which of these

parameters might differ between the HDE and LDE samples.
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2.6.3.1 Truncation Radius

An alternative fit with one free one-halo parameter is to fit the HDE model with the

same one-halo mass as the LDE sample, but with a lower tidal (truncation) radius for

its halo, as is predicted by typical models of tidal stripping (see Equation (2.1)). For

the single broad stellar mass bin 109 < m < 1010.5M�, and fixing the one-halo mass to

match that fitted to the LDE sample, we fit a tidal radius of rtidal/r200 = 0.26 ± 0.14

for the HDE galaxies. This corresponds to a typical tidal radius of 40 ± 21 kpc and a

retained mass fraction of 0.43± 0.18 for a satellite galaxy with M = 5.9× 1011M� and

c = 8.5. This model is only a marginally poorer fit compared to the default method of

fitting one-halo mass: χ2
red = 1.08 for fitting tidal radius, compared to χ2

red = 0.99 for

fitting mass. Our data are thus consistent with both interpretations, and we are unable

to discern between them.

2.6.3.2 One-halo Mass and Concentration

It is also possible that the observed difference in lensing signals between HDE and

LDE galaxies could be due to a difference in concentration, rather than a difference in

mass. Haloes with lower concentrations will have lower lensing signals at small radii,

and somewhat higher lensing signals at large radii. To test whether the observed results

could be due to a change in concentration, we reran the analysis, leaving concentration

as a free parameter. The resultant joint probability distribution function for this analysis

is shown in Fig. 2.11. As this plot shows, while there is a difference in the mass PDFs

for the HDE and LDE samples, there is no evidence for a difference in concentration

between the two samples. We therefore favour the interpretation that the measured

difference in lensing signals between the HDE and LDE samples is due to the HDE

haloes being less massive than LDE haloes, but we are unable to rule out the possibility

that the two samples have the same mass, but the HDE sample is less concentrated.

2.6.4 Analysis

Although the results are statistically significant, it is nevertheless possible that sys-

tematic errors have entered our analysis. In this section we discuss various possible

systematic errors that may affect the results.
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Figure 2.11: Lower left: Joint probability distribution function for one-halo mass
and concentration for the HDE (red solid lines) and LDE (blue dashed lines) galaxy
samples. The dotted line shows the relation between mass and concentration given
by Equation (2.2), which was used for previous analysis. Upper left: Probability dis-
tribution function for one-halo mass, marginalized over concentration. Lower right:
Probability distribution function for concentration, marginalized over one-halo mass.

2.6.4.1 Stellar Mass Biases

In principle, if there is a relative bias in the estimates of stellar mass between red and

blue galaxies, and if the HDE and LDE samples contain different fractions of red and

blue galaxies, we could obtain a spuriously positive detection of tidal stripping with our

method. It is difficult to completely rule out the possibility of a relative bias in stellar

mass, but it can be investigated by comparing the distributions of stellar mass to other

published distributions. Unlike the CFHTLenS data, the WIRDS (Bielby et al., 2012)

data are based on optical photometry supplemented by deep infrared images. We would

therefore expect the stellar masses in WIRDS to be more accurate. A comparison of

stellar mass estimates between CFHTLenS and WIRDS (Velander et al., 2013) shows

that, if we assume WIRDS stellar masses to be more accurate, then CFHTLenS stellar
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Table 2.5: Results of varying the fixed parameters (fsat and csat) in the fitting proce-
dure, using a sample of galaxies with 109 M� < m < 1010.5 M� from the CFHTLenS.

All masses are in units of 1010 M�.
fsat csat MHDE RM Mgroup χ2

red

0.4 2.5 44 ± 6 0.76 23000 1.17
0.6 2.5 38 ± 5 0.65 15000 0.99
0.8 2.5 33 ± 5 0.56 12000 1.22
0.4 5.0 35 ± 4 0.59 25000 1.08
0.6 5.0 25 ± 4 0.43 17000 1.93
0.8 5.0 20 ± 4 0.33 9100 12.09

masses may indeed be slightly biased, with CFHTLenS red galaxy stellar masses ∼ 0.05–

0.1 dex too low and the opposite for CFHTLenS blue galaxies. Since we are selecting

by CFHTLenS stellar mass, and because red galaxies are more common in high-density

environments, this implies that the true mean stellar mass in HDE regions is actually

slightly larger than that in the “matched” LDE regions. Correspondingly, in the absence

of stripping, we would expect the recovered subhalo masses to be larger. Since we find

them to be smaller, this effect is in the wrong sense to explain our stripping detection.

In any case, the effect is small. As can be seen in Table 2.2, the maximum difference

in the fraction of red galaxies between the HDE and LDE samples is in fact only 10%,

in the 109.5 M� < m < 1010 M� and 1010 M� < m < 1010.5 M� bins. This, combined

with the above estimates of the relative bias, allows us to put an upper limit on this

effect of ∼ 5%.

2.6.4.2 Modeling Inaccuracies

We have attempted to account for inaccuracies in the models through the inclusion of a

“model error” term, but this does not account for all possible errors in modelling that

might arise. Notably, for the HDE sample, there is a weak degeneracy between the fitted

one-halo term and the other fitted parameters, as well as with the fixed parameters: the

fraction of galaxies which are satellites (fsat) and the concentration of satellites (csat).

We marginalize over the other fitted parameters to estimate the mean one-halo mass

and its error, but errors in fsat and csat would persist through the analysis as systematic

errors.

To assess the potential impact of errors in the fraction of satellites and satellite concen-

tration, we reran the analysis and allowed these parameters to vary. The results plotted

here use a sample of all galaxies with m < 1010.5M�, weighted by estimated halo mass.

The results of this analysis are presented in Table 2.5, and sample plots of the fits can

be observed in Fig. 2.12. We allow the fraction of satellites to vary from 0.4 to 0.8,

71



50 100 500 1000

10

50 100 500 1000

0

10

20

30

40

Figure 2.12: As Fig. 2.8, except with the fraction of satellites fixed to 0.4 (left), and
the concentration of satellites fixed to 5.0 (right) for the fitting of the HDE signal.

Table 2.6: Fitted values of Σt for various stellar mass bins, in units of M�/pc2.
logm Σt

9–9.5 42 ± 2
9.5–10 34 ± 3
10–10.5 44 ± 3

10.5–11 39 ± 6
11–11.5 36 ± 7

and we test increasing the concentration of satellites to 5.0, which is comparable to the

concentration of the dark matter haloes of galaxy groups.

As compared with the default case (fsat = 0.6 and csat = 2.5), the only variation

of parameters that results in increasing the fitted HDE mass is when the fraction of

satellites is decreased. If the tested fraction of 0.4 were the case in reality, the significance

of the detection would decrease to ∼ 2.1σ. However, this particular satellite fraction

results in a marginally poorer fit, as evidenced by the increased χ2
red value.

Alternatively, if the actual concentration of satellites within groups is higher, the fitted

satellite mass will be lower. A fit with csat = 5.0 yields a marginally poorer χ2
red value,

but we cannot rule out this scenario. If this is the case in reality, it would strengthen

the significance of the detection to ∼ 4.4σ.

It is also important to look at the impact of the density threshold term, Σt. Although

this term was found to be necessary in the simulated data to provide a reasonable fit

when the fraction of satellites is known exactly, it is not certain that this is an accurate

description. We can investigate this matter by looking at how the fitted value of Σt

varies in the fits, as can be seen in Table 2.6. If we were modeling everything perfectly,
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we would expect to see Σt being roughly constant for all stellar mass bins, as the P3

algorithm is blind to galaxy mass, and so there is no reason the threshold Σt for S/N

> 2 regions should vary with the mass of satellites. In fact, we observe Σt to remain

roughly constant at ∼ 40M�/pc2, which is consistent with the hypothesis that we are

modeling it reasonably.

Other modeling inaccuracies may also affect the results. The model for the HDE sample

neglects the contribution of the two-halo term (the contribution of nearby groups and

field galaxies) to the lensing signal around satellites. We tested the implications of this

with a rough model of the two-halo term, and it resulted in decreasing the fitted HDE

satellite mass. Therefore, any possible systematic error in our results from this effect

would be in the wrong sense to contribute to a spurious detection.

Additionally, the model for the LDE sample neglects the contribution of the local under-

density (see Section 2.4.3) to the lensing signal. Proper handling of this term would likely

result in a slight increase in the fitted LDE mass, which would increase the significance

of the detection.
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Chapter 3

Methods Using Spectroscopic

Redshifts

If spectroscopic redshift data for a large sample of lens galaxies is available, as is the case

with the GAMA survey (Driver et al., 2011), we can determine to high accuracy– ∼ 80%

purity and completeness (Robotham et al., 2011)–which galaxies are in fact satellites.

We can then use information on satellites’ placement within groups to better estimate

the contributions of their host groups to the observed lensing signals. We can also use

group assignment information to bin our lens samples by the masses of their host groups,

which will potentially allow us to detect whether there is a change in the extent of tidal

stripping with host group mass.

In Section 3.1, we discuss the simulated catalogues we use for our analysis. In Section 3.2,

we present the methods we use for isolating the lensing signals of the dark matter haloes

of satellites. In Section 3.3, we analyse the performance of the methods tested, and we

discuss these results in Section 3.4. In Section 3.5, we discuss which method performs

best, and in Section 3.6, we discuss the projected S/N of tidal stripping detections for

various planned and proposed surveys.

In this chapter, we use mmin and mmax to define the lower and upper limits, respectively,

for total (dark + stellar) satellite mass in our samples, and Mmin and Mmax to define

the lower and upper limits, respectively, for the total masses of the groups in which they

reside.
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3.1 Simulations

We use the same simulated catalogues and halo models as discussed in Section 2.1 and

Section 2.2, with modifications to the lens catalogues to approximate the originally-

planned completeness limit of the GAMA-II survey (Driver et al., 2011), applying a

magnitude cut of r < 19.8 to this catalogue. For our estimates of statistical errors in

this chapter, we assume that the survey will cover 50 deg2 of sky after masking, with

the same source density (effective 11 sources/arcmin2) and depth as the CFHTLenS.

For this analysis, we use an additional two datasets for comparisons and tests, compared

to our work with photometry alone:

• Pure Group: A test case in which all group mass is assigned to the central halo,

and the masses of all satellite haloes are set to zero.

• Particle Ray-Tracing (PRT): This dataset uses the ray-tracing simulation per-

formed by Hilbert et al. (2009), which uses the positions of dark matter particles

rather than our halo models. Groups are selected using the group masses in the

catalogue from De Lucia and Blaizot (2007), rather than our calculated Mtot.

3.2 Methodology

With each subset of lens galaxies, we calculate the average tangential shear within radial

bins. The subsets of satellites will typically show some contribution from their groups’

haloes to the lensing signals around them. Since the observed lensing signal around

satellites is the combination of the contributions from the satellites’ haloes and their

groups’ haloes,

∆Σobs = ∆Σgroup + ∆Σsat, (3.1)

we can isolate the portion of the signal contributed by the satellites’ haloes (∆Σsat) by

estimating the groups’ contribution to the lensing signal (∆Σgroup) and subtracting it

from the observed lensing signal (∆Σobs). We have applied the two methods detailed

below to do this, and we compare their results in Section 3.3.3.1 and Section 3.3.4.

3.2.1 Mirror Method

The first method for isolating the satellite’s contribution to the lensing signal involves

using a “mirror” point in the group to measure the group’s contribution to the satellite’s

lensing signal. This sample point is placed opposite the group centre from the satellite,
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Figure 3.1: An illustration of the Mirror Method. For each satellite used as a lens,
we also calculate the lensing signal around a point opposite the group centre from this
satellite. We subtract this signal from the signal around the satellite to correct for the
contribution of the group’s halo to the lensing signal. See also Figure 1 of Pastor Mira

et al. (2011) and related discussion.

at the same distance from it, as illustrated in Fig. 3.1. In an ideal scenario, the lensing

signal around this sample point will include exactly the same contribution from the

group’s halo as at the satellite’s location, while including little contribution from the

satellite itself.

One might consider alternative methods to sample the lensing signal of a galaxy groups,

such as using an annulus of sample points rather than a single sample point opposite

the group centre. However, the use of only a single sample point has two important

advantages:

1. This method assumes that some form of symmetry must be present within the

group in order for the lensing signal around the sample point to approximate that

around the satellite. Use of an annuli of points requires axial symmetry, but use

of a single sample point requires only mirror symmetry, which is satisfied in the

case of triaxial group haloes.

2. The lensing signal around any sample point will see some contribution from the

satellite’s halo, in addition to the group’s (see Equation (1.43)). The closer the

sample point is to the satellite, the greater this contribution will be, and thus the
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more lensing signal will be lost from the satellite. This effect is minimized by the

use of only a single sample point opposite the group centre from the satellite.

This method is in practice identical to the “Galaxy-Galaxy Lensing with Calibration”

method used by Pastor Mira et al. (2011). Figures 1 and 2 in that paper provide a useful

illustration of how this method functions, and discussion of it is found in Section 3.

3.2.2 Ensemble Method

The second method involves estimating the masses of groups and their contributions

to the lensing signals around their satellites. First, we create a sample of groups with

Mmin < M < Mmax and each with at least one satellite with mmin < m < mmax. We

use a weighted average of the groups’ masses to generate an “ensemble” halo, repre-

sentative of the sample. We then assign this ensemble halo a concentration based on

Equation (2.2). For each source in the sample, we then use our ensemble haloes and the

positions of group centres to calculate the group’s expected contribution to the source’s

ellipticity and subtract off this amount.

3.3 Analysis of Spectroscopic Redshift Methods

In this chapter we present the lensing signals that result from our simulations and discuss

the effects of various sources of error on these signals. In Section 3.3.1, we discuss the

dominant sources of error in this type of analysis. In Section 3.3.2, we present the lensing

signals that result when group centres are stacked together. In Section 3.3.3, we present

the lensing signals that result when satellite galaxies are stacked together, we show the

effects of our methods to reduce the contributions of group centres to these signals, and

we investigate the effects of centring and group mass errors on these signals.

3.3.1 Dominant Sources of Error

In order to properly assess whether our methods for measuring satellites’ lensing signals

are viable with observational data, it is necessary to account for the sources of error

present in such datasets. In this section, we explain the major sources of error we

expect in datasets and how we replicate them in our simulations.
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3.3.1.1 Shape Noise

There is significant variation in the orientation of galaxies in the sky, independent of the

effects of gravitational lensing. The distribution of the unlensed shapes of background

galaxies can be approximately modeled by a Gaussian distribution for both components

of ellipticity, with a mean of zero and a standard deviation of 0.28. This value was

calculated from the distribution of ellipticities measured in background galaxies in the

CFHTLenS, estimated with the lensfit method (Miller et al., 2007, Kitching et al., 2008,

Heymans et al., 2012).

We account for the impact of shape noise on our measurements by setting the size of the

error bars in our plots to account for its expected impact. This allows us to precisely

predict the mean expected measurements, unaffected by shape noise, and to estimate

the scatter that will be seen in observational data. Our error estimates assume data

from a survey similar to the overlap of the CFHTLenS survey and the GAMA-II survey.

This hypothetical survey covers 50 deg.2 of the sky, with an effective 15 sources per

arcmin.2 and galaxy spectra complete to r < 19.8.

3.3.1.2 Group Mass and Group Assignment Errors

With observational data, group masses must be estimated through one of various meth-

ods, such as using the velocity dispersion of constituent galaxies, the luminosity of the

group, X-ray emissions, or lensing signals. In the GAMA surveys, group masses are

estimated primarily through velocity dispersions, so this is the method that we simulate

here. To do this, we first determine which of the galaxies in a group are within the

detection limits of the survey. For each of these galaxies, we generate a random line-of-

sight velocity from a Gaussian distribution, where the dispersion is determined by the

total mass of the group, as given in the catalogue from De Lucia and Blaizot (2007).

For all calculations relating σ1 and M200, we assume a Singular Isothermal Sphere (SIS)

profile, which gives us the relation:

σ1 = (10GhM200)1/3 /
√

3. (3.2)

When groups are detected through a friends-of-friends algorithm, it is expected that

some portion of the galaxies believed to be within a group will in fact be “interlopers.”

This happens when field galaxies lie at a similar position in the sky as a group at a

different cosmological redshift, but with a peculiar velocity that makes their apparent

redshift lie within the redshift distribution of galaxies within the group. For a given
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FoF-detected group, typically 20% of the galaxies identified as belonging to it are in fact

interlopers (Robotham et al., 2011).

To simulate the effects of interlopers on group mass estimates, we first determine the

number of interlopers that a given group contains. Since the number of interlopers should

be proportional to the projected area of the group, we set the mean number of interlopers

in a given group proportional to N2/3
gal . We then use a Poisson distribution to generate

the number of interlopers for each group, normalized so that a group with 10 members

will have an expected 2.5 interlopers (resulting in a 20% interloper fraction). For each

of these interlopers, we then generate a velocity, drawn from a uniform distribution,

vmin − vtol < vrand < vmax + vtol, where vmin and vmax are the minimum and maximum

velocities of real members of this group, and vtol is the velocity tolerance used by the

FoF algorithm. In the algorithm used for the GAMA surveys, vtol is not fixed, and in

fact depends on the luminosities of the galaxies being linked, but for simplicity’s sake,

we use a constant value of 150 km/s here.

Once velocities for real members and interlopers are generated, we then calculate the

predicted group mass using these velocities. When this mass is used in our analysis, we

use the subscript “dyn.”

The presence of interlopers will also affect the lensing signal for the “Stripping” model,

as interlopers would typically be field galaxies, which will exhibit an unstripped mass

distribution. To simulate this effect, we recalculate the signal in the “Stripping” model

as:

∆ΣS,new = 0.8×∆ΣS,old + 0.2×∆ΣNS, (3.3)

where ∆ΣS is the lensing signal found with the “Stripping” model, and ∆ΣNS is the

lensing signal found with the “No Stripping” model.

We use both the modifications to group mass, which affects the binning by group mass,

and the simulation of the contamination caused by interlopers only for the plots shown

in Section 3.3.4, which attempt to predict the strength of the signal with a CFHTLenS

+ GAMA-II-like survey (see Section 3.3.1.1).

3.3.1.3 Centring Errors

It is not trivial to determine the location of a group’s centre. Since the majority of

the mass in a group is dark matter, and galaxies are an imperfect tracer of the dark

matter distribution, any method which uses galaxies’ positions to estimate the centre of

a group’s dark matter halo will have some degree of error. The amount of error can be

roughly estimated by analysis of the velocity dispersion about suspected centres, as done
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Figure 3.2: Figure 2 from George et al. (2012), showing a schematic illustration of
the result of centring errors on the lensing signals around group centres. The blue
squares represent the actual centres of the groups, and the magenta triangles represent
false centres. The top row shows the resultant stacked lensing signal when groups are
stacked on their actual centres, and the bottom row shows the result when groups are

stacked on false centres.

by Skibba et al. (2011); by comparing the results of multiple independent methods for

identifying the group’s centre, or by fitting the lensing signal around a stack of groups

with a profile convolved with error, as done by George et al. (2012); or through direct

analysis of N-body simulations, as done by Johnston et al. (2007). While Johnston et al.

(2007)’s analysis of simulations implies that rich groups are less likely to be miscentered

than poor groups, this does not seem to be the case with real groups. Recent work by

Skibba et al. (2011) and George et al. (2012) all show that this trend is in fact reversed

in real groups.

In Fig. 3.2 we show an illustration from George et al. (2012) on how centring errors

affect the lensing signals around group centres. When the lensing signals around group

centres are measured, the models presented in that paper can be used to fit proper

amount of centring error from the lensing signal around a sample of group centres. In

testing this on groups identified through X-ray detections, the authors found that for

the most massive groups, the centre is misidentified roughly 40% of the time, implying

that misidentifying the BCG is a significant problem. The typical magnitude of the error

when the group is mis-centred is found to be ∼ 0.7rs. The authors also demonstrated

that using either the most massive or brightest galaxy in a group as the centre is the

optimal method when X-ray observations are not available.

80



To simulate the effects of centring errors, we assume that all groups are miscentered

according to a 2D Gaussian with σ proportional to their scale radii rs. When groups are

stacked together, this leads to roughly the same net effect as observed previously, but

it allows us to adjust the magnitude of the effect by altering only the constant of pro-

portionality (rather than both the fraction of groups in which the centre is misidentified

and the dispersion of the false centres relative to the real centres), to easily compare

different amounts of error. This does not, however, perfectly match the best fit models

of George et al. (2012), so only qualitative conclusions should be made from our simu-

lations involving centring error. We compare models with centring errors σ = 0, rs, and

2rs, which covers the expected range of error. When real data are available, it will be

necessary to determine the proper amount of error through an analysis of the lensing

signals around suspected group centres, and then recalibrate our predictions for it, using

a method similar to the George et al. (2012) method of fitting the lensing signals with

an NFW profile convolved with centring error.

For the Mirror Method, centring errors will have an impact because if there is error in

the location of the group’s centre, there will also be error in the location of the mirror

point. On average, this error will cause the mirror point to lie farther away from the

group centre than it actually should, and so it underestimates the group’s contribution

to the lensing signal around its satellite.

For the Ensemble Method, centring errors will affect the calculated signal from the

ensemble halo. The reason for this is that errors in the positions of group centres will

suppress the group signal at low radii (R ∼< σcen), thus causing a lower mass to be fit.

They will also change the calculated satellite distances from group centres, increasing

them more often than decreasing them, and thus decreasing the ensemble halo’s typical

impact on source ellipticity. In practice, this effect is somewhat smaller than the effect

of centring errors on the Mirror Method (see Section 3.3.4 for details).

3.3.2 Lensing Signal around Group Centres

Since the expected form of the lensing signal around group centres is well-understood,

measuring this signal in our simulations provides a useful test to confirm that our models

behave as expected. Fig. 3.3 shows the average lensing signals around a sample of group

centres with 1013 M� < Mtot < 1014 M�, where Mtot is the total mass of the group, for

all of our mass models and the particle ray-tracing data (PRT), with no centring or group

mass errors applied. Our models show rough agreement with the PRT lensing signal

at large radii, although the PRT signal drops significantly below the models’ signals for

sources within ≈ 50 kpc. This effect was noticed by Hilbert et al. (2009), and is due
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Figure 3.3: Lensing signal, measured with ∆Σ, around a sample of galaxy groups
with 1013 M� < Mtot < 1014 M� drawn from the Millennium Simulation, with no
centring or group mass errors applied. All four mass models detailed in Section 2.2.2
are shown here, along with the lensing signal that results from using the particle ray-
tracing (PRT) shear data. The solid line shows the predicted shear for a group which
has the weighted average mass of the sample (Mtot = 4.00× 1013 M�) at the weighted
average redshift of the sample (z̄gr = 0.18). Error bars are shown for the No-Stripping
model which represent the projected errors for data from a hypothetical CFHTLenS +

GAMA-II-like survey (see Section 3.3.1.1).
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to force softening used within the Millennium Simulation, which flattens the cusps of

haloes, as well as the smoothing applied during the ray-tracing to suppress particle shot

noise.

All of our models appear similar in this regime, with a slight tendency for the “No

Stripping” and “Stripping” models to fall below the “Pure Group” model. This implies

that our contracted NFW profile is not a perfect model for the background halo of

a group with significant substructure in it. More work will be required to determine a

better model for this. This effect is minor, however, and all lensing signals are consistent

with an NFW profile. If centring errors (see Section 3.3.1.3) are present in observational

data, the lensing signal around group centres should be suppressed at low radii.

3.3.3 Lensing Signal around Satellites

Fig. 3.4 shows the average lensing signals around a sample of satellite galaxies with

1010 M� < mhalo, where mhalo is as used in Equation (2.3), and 1013 M� < Mtot <

1014 M�, for all of our mass models and the particle ray-tracing data. The differences

between our models are in principle detectable with the amount of data available in

our hypothetical CFHTLenS + GAMA-II-like survey (see Section 3.3.1.1). At radii

larger than ∼ 50 kpc, the PRT signal lies close to our No Stripping model, which is

an encouraging sign that our models are giving reasonable results. However, our “No

Stripping” model is noticeably different from the “Matched Field” dataset, due to the

contributions of the satellites’ host groups to the lensing signal, and this difference is

greater than the difference between it and the “Stripping” model. The “Pure Group”

model, as shown here, shows only the lensing signal that results from setting the satellite

masses to zero in our simulations, and so it can be used as an approximation of the group

haloes’ contribution to the lensing signal around satellites. In order to use the “Matched

Field” dataset as a standard for comparison, it will be necessary to eliminate the groups’

contributions to the lensing signals measured here. This may be possible through one

of the methods outlined in Section 3.2. Below we have presented the results of our tests

of these methods.

3.3.3.1 Idealized Group Signal Subtraction

As detailed in Section 3.2.1, the Mirror Method uses a sample “mirror” point opposite

the group centre from a satellite to estimate the contribution of the group to the lensing

signal around the satellite. Fig. 3.5 shows the result of applying this to a sample of

satellite galaxies with 1010 M� < mhalo and 1013 M� < Mtot < 1014 M�, in the idealized

scenario in which there are no errors in the positions of group centres or the estimated
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Figure 3.4: Lensing signal, measured with ∆Σ, around a sample of satellite galaxies
with 1010 M� < mhalo (as determined with the “No Stripping” mass model), and
1013 M� < Mtot < 1014 M�, drawn from the Millennium Simulation. All three mass
models detailed in Section 2.2.2 are shown here, along with the “Matched Field” dataset
and the lensing signal that results from using the particle ray-tracing shear data with a
similarly-cut sample of lenses. Error bars are shown for the No-Stripping model which
represent the projected errors for data from a hypothetical CFHTLenS + GAMA-II-like

survey (see Section 3.3.1.1).
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Figure 3.5: Same as Fig. 3.4, except with the Mirror Method (left panel) and Ensemble
Method (right panel) applied to reduce contribution to the lensing signal from groups’

haloes (except with the “Matched Field” dataset).

masses of groups. As can be seen in the figure, the curve for the “No Stripping” model

is very similar to that of the “Matched Field” dataset, and the “Pure Group” model

has disappeared off the bottom of the plot (it is consistent with zero). This implies that

the method does a satisfactory job of eliminating the contribution of the groups to the

lensing signal around their satellites. The signal-to-noise in the difference between the

“No Stripping” and “Stripping” models is quite strong.

The Ensemble method, explained more thoroughly in Section 3.2.2, uses the average

mass of the groups in the sample as an average “Ensemble” halo. For each group centre,

its predicted shear is then subtracted from the ellipticities of all nearby source galaxies.

After this, satellites are stacked together, and the lensing signal around them, using the

altered ellipticities, is measured. Fig. 3.5 shows the result of applying this method to a

sample of satellite galaxies with 1010 M� < mhalo and 1013 M� < Mtot < 1014 M�, also

in the idealized scenario of no centring or group mass errors. The signals from the “No

Stripping” model show good agreement with the “Matched Field” model. Notably, the

difference between the “Stripping” and “No Stripping” models here is greater than when

the Mirror Method is used. This is because the Mirror Method results in some of the

lensing signal around satellites being lost, particularly for satellites near the centres of

groups. Although the Ensemble Method requires more assumptions about the physical

properties of the groups, it does not face this problem, and so the resultant signal-to-

noise in the difference between the two models is larger.
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Figure 3.6: Same as Fig. 3.4, except with the Mirror Method (left panel) and Ensemble
Method (right panel) applied to reduce contribution to the lensing signal from groups’
haloes (except with the “Matched Field” dataset), assuming centring errors of σ = 2rs.

Table 3.1: Statistics for our galaxy samples and NFW profile fits, using the Ensemble
Method and assuming σcen = 0. All masses are in units of 1010 M�. S/NF−S is
the signal-to-noise ratio in the difference between the fitted masses for the “Field”
and “Stripping” models, and S/NNS−S is the same for the difference between the “No

Stripping” and “Stripping” models.
Matched Field No Stripping Stripping

logM z mhalo mfit mfit,err z mhalo mfit mfit,err mfit mfit,err S/NF−S S/NNS−S

12–13 .15 42 45 9.4 .14 47 34 13 18 11 1.43 2.11
13–14 .18 93 97 18 .16 93 77 19 43 15 1.88 2.33
14–15 .14 64 82 25 .12 70 90 27 47 21 1.61 1.38

3.3.4 Realistic Group Signal Subtraction

With observational data, the positions of group centres will not be precisely defined, so it

is necessary to assess the impact of centring errors on the utility of this method. Fig. 3.6

shows how the lensing signal appears if centring errors of σcen = 2rs are assumed. We

choose this form for centring errors as it has the general behaviour of increasing error

with increasing group mass. We simulated this by applying a 2-dimensional Gaussian

deviate to the positions of groups centres. This amount of centring error is significantly

higher than the errors found by George et al. (2012) in fitting lensing signals (with a

model for centring error) around groups, which were typically of order σcen ≈ 0.5rs−1rs,

and so this provides an upper bound to the amount of centring error that might be seen

in observational data. As can be seen through comparison with Fig. 3.5, centring errors

have a significant impact on the resultant lensing signal.

To determine whether or not we will be able to detect a difference between the “Strip-

ping” and “No Stripping” models when centring errors are present, we have plotted the
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Figure 3.7: Best-fit NFW masses for a sample of satellite galaxies with 1010 M� <
mhalo (as determined with the “No Stripping” mass model) drawn from the Millennium
Simulation, using only source galaxies within 10 to 400 kpc of the lens galaxies. Satel-
lites from three ranges of group mass are included, shown at the average mass for the
range, and the Mirror Method (left panel) and Ensemble Method (right panel) have
been applied with three different levels of centring error assumed. Centring errors used
were σcen = 0 (left), σcen = rs (centre), and σcen = 2rs (right). Error bars shown are
the projected errors for data from a hypothetical CFHTLenS + GAMA-II-like survey
(see Section 3.3.1.1). The “Matched Field” mass is observed to increase with group
mass as more massive groups typically contain more massive satellites, and these more

massive satellites are then matched to more massive field galaxies.

best-fit NFW mass (determined by minimizing the χ2 statistic for the group-subtracted

lensing signal around satellites in radial bins between 10 and 400 kpc) for our “Stripping”

and “No Stripping” models in both group mass bins in Fig. 3.7, for varying amounts of

centring error. As this figure shows, centring errors increase the best-fit masses in all

mass bins, but it is only a significant problem for the more massive groups. If we have

no knowledge of how large centring errors in observational data will be, the uncertainty

they cause will be too large for us to distinguish between stripped and unstripped mod-

els. This is unlikely to be the case, however, as we will be able to measure the lensing

signals around group centres to estimate the magnitude of centring errors through a fit

such as that performed by George et al. (2012) (see the discussion in Section 3.3.1.3),

and significant amounts of error will manifest as a much-poorer χ2 fit. Details for all

models, assuming no centring error, can be seen in Table 3.1.

Fig. 3.8 shows the projected best-fit NFW masses for different group mass bins if there

is significant error in our estimates of group masses. This causes bleeding between bins,

increasing the expected mass in all group mass bins. We have illustrated this effect by

using the dynamical mass for binning. Note that estimates of halo mass from stellar
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Figure 3.8: Same as Fig. 3.7, except satellites have been binned by their groups’
estimated dynamical masses instead of the actual masses.

mass will likely have much lower scatter, so this should be seen as an upper bound for

the effect of binning error.

3.4 Discussion

As our tests have shown, tidal stripping will have a significant effect on the lensing signals

of satellites within groups. However, various sources of error make the detection of this

effect more difficult in practice. As is the case with any weak lensing measurements

using shear, shape noise is the largest source of error and the most difficult to overcome

– it can only be reduced by gathering more data. By determining the expected signals

for stripped and unstripped satellites, we can estimate the amount of data that will be

necessary to discriminate between stripping models.

To measure tidal stripping, it is necessary to eliminate the contribution of the shared

group halo to the lensing signal around satellites. Any method to do this will introduce

its own sources of error, which can be comparable in magnitude to shape noise. In

the cluster regime, it is possible to obtain very accurate mass estimates for individual

clusters, and so these errors can be minimized even for individual clusters. In the group

regime, it is only possible to estimate group mass sufficiently well when multiple groups

are stacked together, but the far greater numbers of groups make this feasible.
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3.5 Optimal Methodology

Our tests of both the Mirror Method and Ensemble Method show that in ideal circum-

stances, they both successfully eliminate the groups’ contribution to the lensing signals

around satellites. In this scenario, the Mirror Method is less biased, but suffers from

a greater error due to shape noise - a result of the fact that it relies in the difference

in signal between two points, causing the error to be increased by a factor of
√

2. The

Ensemble Method causes errors to be contributed from the estimate of the average group

mass, but the total errors still tend to be less than the errors from the Mirror Method.

When comparing the “No Stripping” and “Stripping” models, we see that the difference

between the two models is larger when the Ensemble Method is used. This is due to the

fact that the Mirror Method, by subtracting out the signal from around sample points,

also subtracts out a portion of the lensing signal around satellites. In particular, for a

point-mass satellite a distance R from the centre of its group, the Mirror Method will

detect zero signal for it on average for sources at annuli of radius greater than 2R (the

distance from the satellite to the sample point). The satellites which are found closest

to group centres tend to be the ones which have undergone the most stripping, but these

are also the satellites which lose the largest amount of their own lensing signals when

the Mirror Method is used. This suppresses the difference between the “No Stripping”

and “Stripping” models.

Although neither method works perfectly when centring errors are present, the Ensemble

Method shows somewhat less sensitivity to centring errors than does the Mirror Method.

This difference is most significant for centring errors of σ = rs. Note that we expect to

be able to quantify centring errors through the George et al. (2012) method of fitting

the lensing signal around group centres with an NFW profile convolved with centring

error (see the discussion in Section 3.3.1.3), but it is still useful to minimize the expected

offset due to centring errors.

Overall, the Ensemble Method is preferable to the Mirror Method. It presents a better

signal-to-noise in the difference between the expected signals for stripped and unstripped

satellites, and it is less vulnerable to centring errors than the Mirror Method.

Other methods, such as a maximum-likelihood analysis, which work similarly to the

Ensemble Method, will likely have a similar signal-to-noise to what we have calculated

here.
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3.6 Prospects for Stripping Detections

A detection of tidal stripping with either of the methods we have proposed will first re-

quire the issue of centring errors to be addressed. If they can be addressed and corrected

for (e.g., by using the method of George et al. (2012), discussed in Section 3.3.1.3), the

Ensemble Method then provides the better S/N. By using the Ensemble Method and

comparing the S/N in the difference between the Stripping and No Stripping models,

we can estimate how much data will be needed in different group mass regimes in or-

der to differentiate between the models. Table 3.1 lists our predicted S/N values for

a measurement using the overlapping region of the CFHTLenS and GAMA-II surveys,

as well as for other future surveys. We list S/N values for both the difference between

the “No Stripping” and “Stripping” models, and the difference between the “Matched

Field” dataset and the “Stripping” model. Of these two, the latter comparison is what

we will measure in observational data, but it may be influenced by systematic errors

in the application of the Ensemble Method. The former comparison is less likely to be

influenced by systematic errors, as we used the same fields and realization of noise for

both the “No Stripping” and “Stripping” models. As such, it provides a more realistic

prediction for what we might see with observational data.

Of the three mass regimes tested, we see the highest S/N, 1.88, in the group mass bin

of 1013 M� < Mtot < 1014 M�. Although this does not quite reach the 2σ threshold for

a detection, it is still worth making this measurement for various reasons:

• We do not apply any weighting scheme to our lenses or sources. An optimal

weighting scheme could serve to boost the S/N.

• When all three mass bins are combined together, the predicted S/N rises to 2.86.

This will allow us to detect the presence or absence of stripping, but not the group

mass regimes in which it is taking place.

• If stripping does occur and is stronger than predicted by our models (see Equa-

tion (2.5)), a detection will be more likely.

• Even if no 2σ detection can be made from the CFHTLens+GAMA-II dataset,

the results of this measurement can be combined with future measurements to

potentially add significance to those results.

Our predicted significance can be improved upon if data from other surveys is combined

with the CFHTLenS+GAMA-II dataset. Of note, KiDS (Verdoes Kleijn et al., 2011)

will overlap the GAMA-I survey in 150 deg.2 when it is complete, and we estimate that
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Table 3.2: Predicted detection S/N for measurements in various surveys, assuming
the Ensemble Method is used, and using the comparison of our “No Stripping” and
“Stripping” models. “C+G” is the combination of the CFHTLenS and GAMA-II sur-
veys; “K+G” is KiDS and GAMA-I; “C+K+G” is CFHTLenS; KiDS, GAMA-I, and
GAMA-II; “H+L*” is HSC and LOWZ; and “E+L*” is Euclid and LOWZ. *These
columns give estimates for proposed surveys, and may not represent the surveys in

their final forms.
Predicted S/NNS−S

logM C+G K+G C+K+G H+L* E+L*
12–13 1.43 1.63 2.17 ∼ 8 ∼13
13–14 1.88 2.14 2.85 ∼11 ∼16
14–15 1.61 1.84 2.44 ∼ 9 ∼14

it will contain an effective 8 sources per arcmin.2. Assuming that the overlap between

KiDS and GAMA-I will be 80% unmasked, this results in a dataset that is ∼ 1.3× larger

than CFHTLenS+GAMA-II. Table 3.2 shows the predicted significances for the three

mass regimes we have tested, assuming the KiDS+GAMA-I dataset is used alone, and

also combining it with the CFHTLenS+GAMA-II dataset. KiDS+GAMA-I alone is

somewhat better than CFHTLenS+GAMA-II, and the combination of the two datasets

has a > 50% chance of a 2σ detection in each mass bin, if stripping is occurring at the

strength we have modelled.

We also show in Table 3.2 the estimated S/N for these mass bins for potential future

large-scale surveys. To estimate this, we use the GAMA-II S/N estimates and a calcu-

lated scaling factor which depends on the survey size, source density, and the redshift

distributions of lenses and sources. We first consider a combined dataset of the antici-

pated Hyper-Suprime Cam (Takada, 2010, hereafter HSC) survey and the Next Gener-

ation Canada-France-Hawaii Telescope (Cote et al., 2012, hereafter ngCFHT) proposed

LOWZ survey. HSC is planned to cover ∼ 1, 400 deg2 (∼ 1, 000 deg2 after masking),

with 20 min exposures in the i -band for shape data, which we project will result in ∼ 29

shapes per arcmin2, or an effective ∼ 13 after weighting. The LOWZ survey is projected

to gather spectra for all galaxies in a 1,000 deg2 field, whose location is yet to be de-

termined, but may overlap HSC. This survey will aim for near-100% completeness to a

redshift of z < 0.15 and a depth of i ′ < 22, resulting in a conservative project surface

density of ∼ 700 galaxies per deg2. This would allow us a much higher significance

(8− 11σ) detection of tidal stripping.

We next consider a projected dataset for the Euclid (Laureijs et al., 2011) survey. Euclid

is planned to cover ∼ 15, 000 deg2 (∼ 11, 000 deg2 after masking), with a projected

effective ∼ 30 shapes per arcmin2. Euclid also plans to gather spectroscopic redshifts

for ∼ 3000 galaxies per deg2 in the redshift range 0.7 < z < 2.1. However, given the

high redshift of this sample and the fact that the source sample for Euclid is expected
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to peak at z ∼ 0.9, the combined dataset will present us with relatively few lens-source

pairs to work with. This is made worse by the fact that the survey is aimed at gathering

spectra for luminous red galaxies (LRGs), which are mostly central galaxies, and by the

fact that the low completeness of this survey will make identifying groups difficult. As

such, Euclid alone will not provide a good dataset for the type of analysis presented in

this chapter. However, if it ends up overlapping the LOWZ survey, the spectra from

that survey can be used for such an analysis, which would give even higher significance

results than if LOWZ were combined with HSC (∼ 13− 16σ).

In conclusion, we will soon be able to use weak gravitational lensing to measure tidal

stripping even within low-mass galaxy groups. Planned surveys over the next two

decades will provide us with a wealth of data to investigate even more subtle factors

involved in tidal stripping, but we will need to get a better handle on systematic errors

in order to take full advantage of these surveys. We will hopefully soon be able to gain

a better understanding of tidal stripping, which will allow us insight into its role in the

evolution of galaxies within group environments.
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Chapter 4

Conclusion

In this chapter we conclude. In Section 4.1, we discuss the results of our analysis, and we

further explore the possible implications of these results in Section 4.2. In Section 4.3,

we discuss prospects for future surveys and analysis, and we present concluding remarks

in Section 4.4.

4.1 Summary of Results

Previous lensing analyses of the environmental dependence of satellite halo masses (Man-

delbaum et al., 2006b, van Uitert et al., 2011) have revealed the difficulty of detecting

such an effect in samples where the satellites are predominantly expected to lie in groups.

The analysis here improves on previous work by using the much deeper data provided by

the CFHTLenS sample to better constrain the lensing signal around low-mass satellite

galaxies in high-density environments.

Using photometric redshifts we divide galaxies in high-density and low-density envi-

ronment subsamples that are matched in stellar mass. We have found a significant

difference in their halo masses. Our analysis shows a highly significant (4.1σ) rejection

of the simulated “No Stripping” model, and a significant (2.9σ) rejection of the simple

“null hypothesis” that there is no difference in the halo properties of HDE and LDE

galaxies, for galaxies in a broad range of group masses. This difference is most likely

due to tidal stripping of dark matter, and if so, this analysis represents the first detection

of tidal stripping in a selection of galaxies that do not all reside within galaxy clusters.

The mean ratio of fitted mass for the high-density environment sample to that of the

low-density environment sample is ∼ 0.65±0.12. Since the HDE galaxy sample consists

of only ∼ 60% satellites, the retained mass fraction for a pure satellite sample would
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be considerably lower: ∼ 0.41 ± 0.19. This compares favorably with the retained mass

fractions of ∼ 20− 40% found by Natarajan et al. (2009) in the cluster regime. We can

alternatively model this as the HDE satellites being tidally stripped at a typical radius

of rtidal/r200 = 0.26±0.14. This corresponds to a typical tidal radius of 40±21 kpc and

a retained mass fraction of 0.43±0.18 for a satellite galaxy with M = 5.9×1011M� and

c = 8.5.

We argue that these results are unlikely to be due to systematic errors in our method-

ology; there are various possible systematics which we analyse, but only one possibility

would bias us in the direction of a false positive detection. In principle a relative bias in

the stellar mass estimates between red and blue galaxies could result in a measure such

as what we observe, but this would require that the stellar masses of red galaxies are

overestimated relative to blue galaxies and that the relative fractions of red and blue

galaxies differ greatly between our HDE and LDE samples. As we show, neither of these

is the case - the stellar masses of blue galaxies are in fact more likely to be overestimated

relative to red galaxies, while the relative red and blue fractions differ by no more than

10% in our HDE and LDE samples. As such, this effect would be expected to only cause

a slight bias away from a false positive detection.

Additionally, it is possible that some of our assumptions regarding the fraction and dis-

tribution of satellites within groups could bias us toward or away from a false detection.

As we show though, most possible variations in these parameters would in fact increase

the significance of our detection, as would properly including the two-halo term in our

analysis. The only variation in parameters that would decrease the significance of our

detection is if the actual fraction of galaxies in the HDE sample which are satellites

were significantly lower than we predicted from simulations. While this is possible, we

have no evidence to indicate it might be the case. Even if this is the case, for a satellite

fraction of 0.4, the significance of our detection would only fall to ∼ 2.1σ. A lower satel-

lite fraction could further decrease the significance of our result, below the threshold of

2σ, but this is unlikely, particularly when one factors in that a proper treatment of the

two-halo term would likely raise the significance of our detection. As such, this detection

appears to be very robust.

Further work will be necessary to confirm these results, and to analyse the dependence

of stripping on both group mass and on the locations of satellites within groups. We

have begun preliminary analysis of the SDSS DR8 dataset, which we expect to have

similar statistical power to the CFHTLenS, to determine whether or not it supports our

conclusions, but more works needs to be done before firm conclusions can be made.

In our analyses of methods that will be usable if spectroscopic redshift data becomes

available, we have shown that for analysis of the lensing signals of satellite galaxies,
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the Ensemble Method (see Section 3.2.2) successfully subtracts out the contributions of

these satellites’ host groups to their lensing signal. This method performs better overall

than the Mirror Method (see Section 3.2.1).

We have shown here that errors in identifying the centres of group haloes have a signifi-

cant impact on the analysis of the lensing signals around satellites with these methods.

The contribution of these centring errors to the lensing signals around satellites is typ-

ically larger than the effect of tidal stripping on these signals. It is thus necessary to

properly estimate the amount of centring error present in a sample before an assessment

can be made of the presence or absence of tidal stripping.

If centring errors in the dataset can be measured, upcoming data from the GAMA-II

survey, when combined with the CFHTLenS dataset, may be able to detect tidal strip-

ping within groups of mass 1013 M� < Mtot < 1014 M� to 2σ significance, depending on

the strength of stripping in reality, as well as the scatter of the observational data. Data

from KiDS and GAMA-I can be used to improve the significance of this measurement,

and to also potentially detect stripping in lower-mass groups.

4.2 Implications of Results

While previous analyses of tidal stripping in galaxy groups failed to detect the presence

of tidal stripping (Mandelbaum et al., 2006b, van Uitert et al., 2011), they did not rule

it out either, and so this result is not, in fact, surprising. N-body simulations have

predicted that tidal stripping should occur in groups and clusters of all masses (Hayashi

et al., 2004, Kazantzidis et al., 2004, Springel et al., 2008), and the difficulty prior to this

has simply been in finding evidence for this effect on group scales. There are, however,

two surprising aspects to our results: First, the observed stripping is even stronger (at

the 1.8σ significance level) than the simulated “Stripping” model; and second, our HDE

and LDE samples contain very similar fractions of red and blue galaxies, and yet this

difference in their one-halo masses is nevertheless quite significant. We discuss these

implications in Section 4.2.1 and Section 4.2.2 respectively, and in Section 4.2.3 we

discuss the implications of our results on modified gravity theories.

4.2.1 Strength of Tidal Interactions

The fact that our detection is stronger than that predicted by the “Stripping” model,

which was based on N-body simulations performed by Gao et al. (2004), may indicate

that this model underestimates the amount of stripping that occurs in reality, particu-

larly on group scales. The evidence that this may be the case is not strong (1.8σ), and
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so it merits further investigation before any firm conclusions may be drawn, but the

possible explanations for this are intriguing. Notably, if dark matter haloes are more

easily disrupted in galaxy groups than is currently predicted in N-body simulations,

this could have bearing on the “missing substructure” problem, previously referred to

in Section 1.1.4.2.

Consider how structure formation might occur if dark matter more readily experienced

tidal stripping, whatever the physical reason for this. As a group-scale halo collapses, and

smaller dark matter haloes join to form a group, tidal stripping could disrupt or destroy

some fraction of the haloes. This effect would not be limited to the least-massive haloes;

as long as there are more massive haloes which could strip away dark matter, a halo

could be disrupted and prevented from forming a galaxy. Unlike considerations of warm

dark matter, tidal interactions readily explain why there might be missing substructure

at a large range of mass scales; some structures by chance would avoid close interactions

with more massive haloes (including the haloes at the centres of groups) and survive

to produce galaxies. In addition to the effects on dark matter haloes, tidal interactions

would also have the effect of stripping away gas from less-massive proto-galaxies, which

would also aid in preventing star formation. However, more massive haloes would still be

expected to be more tightly-bound than less-massive structure, and so one would expect

the reduction in substructure to be most extreme among the least massive structures,

which does not easily fit with comparisons of the Local Group to dark matter simulations.

This possibility also raises the question of what physical process might cause haloes to

be more readily stripped. Warm dark matter provides one possible answer, as supported

by the simulations of Coĺın et al. (2000), who found that in a warm dark matter model,

roughly twice as many satellites were destroyed by tidal interactions as in a cold dark

matter model, which they hypothesize is due to the lower concentrations of satellite

haloes in the warm dark matter model. This lower concentration would also result

in a shallower potential well for the subhaloes, making the particles more susceptible

to escape after tidal shocks. However, N-body simulations of warm dark matter are

not always better than cold-dark-matter simulations at predicting the abundance of

substructure in the Local Group. Mixed state dark matter, which contains multiple

species of particles, some of which are warm and some of which are cold (Davis et al.,

1992, Borgani et al., 1996, Boyarsky et al., 2009b,a), may provide a better solution, but

further analysis will be necessary to determine the full implications of this scenario, and

if it would better explain the amount of tidal stripping observed in our analysis here.
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4.2.2 Colour-Dependence of Stripping

One interesting aspect of our results here is the fact that, while the red and blue fractions

differ by no more than 10% between our HDE and LDE samples, we nevertheless show

a very strong difference in the one-halo mass between the two samples. Consider what

we would expect to observe if all red galaxies had experienced tidal stripping, and no

blue galaxies had. We would expect to see a difference between our HDE and LDE

samples roughly of magnitude fmassstripped (fred,HDE − fred,LDE), where fmassstripped is

the fraction of mass typically lost in tidal stripping, and fred,HDE and fred,LDE are the

fractions of red galaxies in the HDE and LDE samples respectively. If we assume that

fred,HDE − fred,LDE ≈ 0.1 and fmassstripped ≈ 0.6, then we would expect the difference

between one-halo masses measured in the HDE and LDE samples to be only ∼ 6%, a

possibility which we rule out at 2.4σ significance.

If we rule out the possibility that all red galaxies are stripped, but no blue galaxies are,

at least one of the following possibilities must be true:

1. Red galaxies in high-density environments are more likely to be stripped than red

galaxies in low-density environments

2. Blue galaxies in high-density environments are more likely to be stripped than

blue galaxies in low-density environments

3. Some factor other than tidal stripping, such as a difference in formation history,

causes an environment-dependent difference in stellar mass for galaxies in haloes

of similar total mass.

If possibility (1) is true, this would imply that some factor other than tidal stripping

causes galaxies to become red, such as mergers, ram pressure stripping, supernova feed-

back, or AGN feedback. Ram pressure stripping is strongest in clusters, but it may

still play a role in group scales. A history of mergers may be more likely, as the lower

relative velocities in low-density regions will allow mergers. However, any region that

experiences a significant frequency of galaxy mergers would also be expected to experi-

ence frequent close interactions between galaxies, and thus tidal stripping. Supernova

and AGN feedback are not likely to have more of an effect in a group environment, and

we observe very few red galaxies in the field, where these effects would dominate, so this

would imply that only a small fraction of red galaxies in groups and clusters are red due

to feedback.

If possibility (2) is true, then this would imply that tidal stripping does not immediately

or always lead to a transformation from blue galaxies into red. As dark matter haloes
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have a significantly larger spatial extent than hot gas, it is possible that some fraction

of stripping events affect dark matter haloes but not gas. This would result in a number

of blue galaxies in high-density environments which have stripped dark matter haloes,

which could explain our results. Additionally, it is possible that, even when gas is

stripped from blue galaxies, it takes a significant amount of time before they transform

into red galaxies. There is independent evidence, for instance from Taranu et al. (2012)

and Wetzel et al. (2013), that the transformation of blue galaxies into red galaxies does

not occur until ∼ 2–3 Gyr after a galaxy’s orbit passes pericentre. Our results thus

present indirect evidence that this may in fact be the case, but further analysis of the

environmental dependence of the dark masses of blue galaxies will be necessary before

a firm conclusion might be drawn.

Possibility (3) above implies that the difference we observe in one-halo masses is pri-

marily due to a difference in formation history. Structures within denser large-scale

environments would have an initially higher δ, and thus would collapse earlier. This

would not directly impact the fraction of baryons within a halo, but if galaxies form

earlier, they will have had more time to form stars, increasing their stellar masses while

their dark matter haloes slowly accrete mass. If the rate of dark matter accretion is

sufficiently slow, this could be seen to manifest as an apparent effect where galaxies

of similar stellar mass will have less-massive dark matter haloes if they reside within

a high-density large-scale region. The earlier collapse time, along with the increased

background density, will also result in the galaxies that have higher mean densities at

a fixed halo mass compared to galaxies which form in lower-density regions. Since the

star-formation rate does not scale linearly with density, the resultant stellar masses of

these galaxies could end up higher than galaxies which formed in less-dense regions.

Our data cannot rule this possibility out at present, but this explanation is currently

disfavoured by the data we do have. As can be seen in Fig. 2.10 and Table 2.4, the

halo masses are actually higher in the HDE sample than in the LDE sample for the

two most massive stellar mass bins. While this does not rise to the 2σ threshold for

significance, it is inconsistent with what would be expected if a difference in formation

history were the primary factor behind our results. If this were the only effect in play,

it would decrease mass-to-light ratios for galaxies of all stellar masses in high-density

regions. However, tidal stripping would be expected to decrease mass-to-light ratios for

less-massive galaxies in these regions, while increasing it for the most massive galaxies,

as the dark mass gets stripped away from less massive galaxies and transferred to more

massive galaxies. As such, tidal stripping better fits our results than does a difference

in formation history.
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Possibilities (1) and (2), that red and blue galaxies, respectively, are preferentially

stripped in high-density environments, remain possible. These possibilities can be read-

ily investigated once further data becomes available, through comparing samples of HDE

and LDE red and blue galaxies. This will allow us to conclude how much of a role tidal

stripping plays in the transformation of blue galaxies into red galaxies.

4.2.3 Modified Gravity Theories

Systems such as the Bullet Cluster (Clowe et al., 2004), in which weak lensing evidence

shows that a significant amount of dark matter has been separated from the baryonic

mass of the clusters, have provided strong evidence in favour of dissipationless dark

matter over the alternative hypotheses of modified gravity theories. Nevertheless, work

is ongoing to formulate modified gravity theories which might be able to account for the

lensing signals observed in these systems. As such, it merits analysis of how the results

presented in this thesis, which were based on the assumption that dark matter exists,

might be interpreted in the alternative paradigm of modified gravity.

There are two possible manners in which our results might be explained under a modified

gravity theory: First, since we match galaxies by stellar mass, and measure a difference in

lensing signal, which is related to the total mass of galaxies, the difference might be due

to an actual difference in the total masses of these galaxies. Since there is no dark matter

to explain the difference, and stellar mass is matched between our samples, this difference

must be in gas mass. Second, it is possible that the physics of lensing differs depending

on the environment, for instance if the strength of gravitational interactions depends on

the local gravitational “potential” in addition to its gradient1, as in “chameleon” models

of modified gravity (see Jain and Khoury, 2010), in which gravity is weaker in regions

of high-density.

We first consider whether or not a reduction in gas mass in HDE galaxies might be

sufficient to explain our measurements in a modified gravity paradigm. Tidal stripping

would be expected to remove gas from stripped galaxies, but the question is whether or

not a sufficient amount of gas would be removed to account for the observed reduction

in mass of our HDE sample. Typical gas mass fractions in young star-forming galaxies

are typically ∼ 0.6 − 0.8, and so to match our calculated retained mass fraction of

∼ 40%, nearly all the gas in all satellite galaxies in our sample would have had to be

stripped away. However, the error bars in our retained mass fraction are sufficiently

large that a retained mass fraction of ∼ 0.75 is within the bounds of our error bars. If

this were in fact the case, it would require only ∼ 35% of the gas mass in satellites to be
1Of course, if the strength of interactions behaves in this manner, it cannot be simply characterized

as a potential. We use this term only in analogy with classical gravity.

99



tidally stripped away. This is a reasonable value, and so we cannot rule out a modified

gravity explanation from our data at present. However, if future data narrows the error

bars on our data without significantly increasing the mean retained mass fraction, this

explanation may yet be ruled out.

Alternatively, our results could be explained if gravity were weaker in regions of high

density, and thus deep gravitational potential. This general behaviour is consistent with

the predictions of “chameleon” models, but the full details of lensing in this regime

require calculations and simulations which are beyond the scope of this thesis. Other

models of modified gravity may also be consistent with these results, but they will

similarly require significant amounts of analysis beyond the scope of this thesis.

4.3 Outlook

In this section we briefly discuss future surveys and techniques, as well as their impli-

cations on future measurements. In Section 4.3.1 we discuss upcoming and potential

surveys, and how they will aid analysis, and in Section 4.3.2 we discuss alternative lens-

ing techniques which may also provide avenues to analyse dark matter structure within

groups in the future.

4.3.1 Future Surveys

As we discussed in Section 4.2, our data implies two very interesting possibilities with

regards to tidal stripping: that it may be stronger than simulations have predicted,

and that a significant fraction of blue galaxies have likely been stripped. Both of these

prospects will require additional data before we might reach a statistically-significant

conclusion about either one, and fortunately such data will soon be available.

In the present, there are two notable datasets of shape data and photometry which may

be useful useful in our analysis: The SDSS, and the CFHT Stripe 82 survey (Leauthaud

et al., 2012b, hereafter CS82). The SDSS has previously been discussed in this thesis,

and the data from it is already being analysed. The CS82 is a survey of an equatorial

region of the SDSS which has been well-sampled by many surveys. The imaging data

provided by this survey gives an effective source density of ∼ 10 sources/arcmin2, and

the survey covers 170 deg2, comparable to the CFHTLenS. As such, data from this

survey could readily be analysed and added to our analysis. The addition of this survey

would provide sufficient data to limit our analysis to only blue galaxies, for instance,

allowing us to determine if tidal stripping can be detected among this subsample. While
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the CS82 data are not yet publicly available, a collaboration with an interested party

would allow for analysis of the data.

There are additionally many notable lensing surveys which are expected to provide data

in the coming years. In the short term, the most notable is KiDS (de Jong et al., 2012),

which will provide 1500 deg2 of 9-band photometry 2 magnitudes deeper than the SDSS

when complete, with an estimated 8 sources/arcmin2. It will also overlap with the spec-

troscopy of the GAMA-I survey (Driver et al., 2011) in 150 deg2, allowing analysis using

the methods we proposed for measuring tidal stripping in spectroscopically-identified

galaxy groups. This analysis will be aided by the data available from the partially-

completed GAMA-II survey, which overlaps with the W1 field of the CFHTLenS and

will give us a second sample of shape and spectroscopy comparable to the overlap be-

tween KiDS and GAMA-I. We project that these combined datasets will allow us to

investigate in which group masses tidal stripping occurs, which will hopefully provide

insight into how much of a role tidal stripping plays in the changing mass-to-light ratios

of galaxies in groups and clusters.

As we have shown in this thesis, both spectroscopic and photometric redshift data can be

used to provide information on the local environments of galaxies. Photometric redshift

data has the advantage that it is much easier to acquire than spectroscopic redshift

data, and for many lensing purposes, its larger errors are an acceptable trade-off for

the greater amount of data, particularly as weak lensing errors are typically dominated

by shape noise. However, if we wish to analyse how lensing signals vary with group

mass, the errors that photometric redshifts introduce into assigning group membership

preclude accurate group mass estimates. As such, spectroscopic surveys are necessary

for detailed analysis of the effects of tidal stripping within galaxy groups. Although

these surveys are expensive in terms of telescope time, they can provide key insights

into the behaviour of dark matter in structures more comparable to the Local Group.

This will allow us to use weak lensing to test the predictions of the LCDM paradigm on

relatively small scales and determine whether or not it needs to be modified to properly

account for the distribution of dark matter within galaxy groups.

Further in the future, planned surveys will provide us with an abundance of new lensing

data to analyse. The Dark Energy Survey (DES), currently running, plans to image a

total of 5,000 deg2 of the sky to i ∼ 24, and is planned to be completed some time in

2018. After this, the Euclid telescope is planned to be launched in 2020 for a six-year

mission to image 15,000 deg2 of the sky to r ∼ 24.5. Finally, the Large Synoptic Survey

Telescope (LSST) plans to image 20,000 deg2 of the sky to r ∼ 24.5 over a ten-year

period, starting in 2019-2020 if funding is secured. The amount of data available in

101



these surveys will greatly surpass the needs of the science goals discussed here, allowing

us to probe even more subtle aspects of dark matter haloes than discussed in this thesis.

4.3.2 Other Lensing Techniques

In addition to shear measurements from weak gravitational lensing, there are two other

avenues of analysis that are currently being researched. Shear can be considered the

first-order distortion of background images due to galaxies, but it is also possible to use

magnification (the zeroth-moment) and flexion (the second-order moment) to investigate

dark matter distributions. We will briefly discuss both of these prospects in this section.

Gravitational lensing is predicted to magnify the images of all sources in the background

of a lens. Measuring this effect has traditionally been more difficult than shear, as the

expectation value for luminosity is non-zero. It is, however, possible to estimate mag-

nification through a couple of methods. One method, as recently used by Hildebrandt

et al. (2013) to estimate the masses of submillimetre galaxies, involves measuring the

cross-correlation of lens and source positions, and using the shape of this function to

estimate magnification, and thus lens mass. This technique is particularly useful at high

redshifts (z ∼> 1), where galaxies are too faint for shear to be accurately measured.

Alternatively, magnification can be directly measured if the intrinsic luminosity of a

galaxy can be predicted. For instance, Huff and Graves (2011) propose the method of

a “photometric fundamental plane.” Using a galaxy’s light concentration as a proxy for

its velocity dispersion, and combining this with surface brightness allows for an estimate

of its intrinsic effective radius. This can then be compared with its measured effective

radius to estimate the magnification of a galaxy. This technique is limited to elliptical

galaxies, which are the only galaxies observed to lie on this fundamental plane relation,

but it is nevertheless projected to attain S/N ∼ 50% as large as shear measurements.

As it is an independent measurement from shear, it could be used to increase the S/N

of weak lensing measurements by a factor of ∼ 25%.

Additionally, flexion, the second-order component to distortion from weak gravitational

lensing, seen as a curvature of source images, can provide additional data on dark matter

halo distributions (Goldberg and Bacon, 2005, Bacon et al., 2006). Flexion is only

apparent in higher-mass regions, and most galaxies have little intrinsic flexion, whatever

their orientation of the sky. As such, noise in flexion measurements is dominated by

pixel and read noise, and typically only high-significance measurements of flexion can

be used for analysis. However, when these instances of flexion are detected, they in turn

provide high-significance information about the mass distributions of lens systems.
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While techniques for analysing magnification and flexion are less-refined than analysis of

shear, they both provide potential to provide additional information to the mass profiles

of dark matter haloes. In principle, a combination of these with shear will allow for the

most accurate measurements of dark mass distributions, but this will require significant

amounts of further work to test and implement.

4.4 Concluding Remarks

In this thesis we have presented evidence to support the hypothesis that tidal stripping

occurs in galaxy groups. Further investigation will be needed to determine the typical

extent of stripping, which will be possible in current and upcoming surveys. The methods

we have proposed for measuring tidal stripping when spectroscopic redshifts are available

will potentially allow us to determine the group mass regimes in which tidal stripping

occurs.

These results will help us put together a full picture of group and cluster formation.

We will soon be able to answer the question of what role tidal stripping plays in group

formation, and if it can be responsible for the rising mass-to-light ratios and fraction

of red galaxies within galaxy groups. We may even gain insight into the nature of

dark matter through comparisons with N-body simulations, or provide further tests of

modified gravity theories.
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Appendix A

Approximations Used

A.1 Deriving Halo Mass from Stellar Mass

In Section 2.2.2.1, we found it necessary to estimate the mass of a galaxy’s dark matter

halo, given its stellar mass. While Equation (2.3) can be easily used to estimate a

galaxy’s stellar mass if its halo mass is known, the equation is not invertible. We

accomplish our task of estimating Mhalo through an iterative process:

1. Begin with an estimate of the galaxy’s halo mass, Minit. For this, we use the M200

value for the galaxy given in De Lucia and Blaizot (2007)’s database.

2. Set M−1, M−2, M−3, and M−4 all equal to Minit.

3. Set Mtest equal to (M−1 +M−2 +M−3 +M−4) /4.

4. Determine Mnew through:

Mnew =
Mstellar

0.129

((
Mtest

1011.4 M�

)−0.926

+
(

Mtest

1011.4 M�

)0.261
)2.44

. (A.1)

5. If Mnew, M−1, M−2, M−3, and M−4 all differ by no more than 0.1%, return Mnew

as Mhalo.

6. Set M−4 = M−3, M−3 = M−2, M−2 = M−1, and M−1 = Mnew

7. Repeat steps 3 to 6 until M has converged, for a maximum of 1,000 loops

8. If M has not converged, return Minit as Mhalo
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The use of multiple past estimates of Mhalo in our code was found to be necessary in

order to ensure convergence, as when fewer past estimates were averaged and used, the

algorithm would often end up alternating between two vastly different estimates for

Mhalo. With the algorithm as written, Mhalo was found to converge in every case tested

in a sample 4×4 deg.2 field.

A.2 Altering Concentration of NFW Profiles to Preserve

Cusp Distribution

In Section 2.2.2.1, we mentioned an alteration we made to the NFW mass profile which

leaves the density profile unchanged near the centre, but is lower than the initial profile

at large radii. To illustrate how this works, examine the formula for the NFW density

profile, with δc, rs, and x expanded:

ρ(x) =
M200 ∗ (ln(1 + c)− c/(1 + c))−1

4π
(
r200
c

)3 ∗

1(
rc
r200

)(
1 +

(
rc
r200

))2 . (A.2)

In the limit r � r200/c, this becomes:

ρ(x) =
M200

4πr2
200

1
r

c2

ln(1 + c)− c/(1 + c)
. (A.3)

Since we modify the NFW profile by introducing a scale factor fr to the profile and

modifying c, Equation (2.8) must be satisfied for the density in the core region to remain

unchanged. As this equation is not solvable for c′, we use the following approximation:

c′ = 0.117lc4 − 1.70lc3 + 11.10lc2 − 30.7lc+ 32.8, (A.4)

where:

lc = ln
(
c2/ ((ln(1 + c)− c/(1 + c)) ∗ fr)

)
. (A.5)

This approximation has less than 2% error for 3 < lc < 7, as can be seen in Fig. A.1,

which covers the range of lc possible for 4 < c < 15 and 0.1 < fr < 1.
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Figure A.1: Percentage error in our estimates of c′, as calculated from Equation (A.4),
as a function of lc (defined in Equation (A.5)). The error is less than 2% for all reason-
able values for the group’s initial concentration c and the fraction of mass fr retained by
the group’s halo. Significant error is only seen for extremely low concentration haloes,

which are not modeled in our simulations.
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Appendix B

Preliminary SDSS DR8 Analysis

In this appendix we present a preliminary analysis of data from the Sloan Digital Sky Sur-

vey, Data Release 8 (Aihara et al., 2011, hereafter SDSS DR8) using the same methodol-

ogy as outlined in Chapter 2. In Section B.1, we discuss the data used for this analysis,

and in Section B.2, we present preliminary results from this analysis.

B.1 Data

B.1.1 Observations

The SDSS (Aihara et al., 2011) is the widest survey with full photometric (ugriz ) imaging

to date, with over 8,000 deg.2 imaged to a depth of r ∼< 21.8, giving an effective ∼ 3.6

sources per arcmin2, for a total of ∼ 1.1 × 108 sources at a mean redshift of ∼ 0.36.

Photometric redshifts have been prepared for most galaxies detected to this depth by

Sheldon et al. (2012) and made publicly available. The SDSS also includes spectroscopic

redshift measurements for approximately one million objects. This spectroscopic sample

is not large enough for the lensing analysis we wish to perform, but it does allow us to

calibrate our photometric redshift and stellar mass estimates.

In Section B.1.1.1, we discuss how we prepare our lens sample from the SDSS, and in

Section B.1.1.2, we discuss how we prepare our source sample.

B.1.1.1 Lens Sample

For our lens sample, we use all galaxies included in Sheldon et al. (2012)’s publicly-

available photometric redshift catalogue, which comprises all galaxies with r < 21.8
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which pass quality cuts. This results in approximately ∼ 1.8 lenses per square arcmin,

and ∼ 5.4 × 107 lenses total, at a mean redshift of 0.36, with typical photo-z error of

σ(z) ≈ 0.12.

We additionally require stellar mass estimates for our lens sample, which we estimate

using the r -band magnitude (k-corrected to redshift 0), redshift, and colour of each

galaxy. For each galaxy, we first calculate k-corrections using the publicly-available

kcorrect v4.2 package (Blanton and Roweis, 2007). We then calculate a quantity l,

proportional to the luminosity of the galaxy, defined as:

l = R [z(1 + z)]2 , (B.1)

where R is the k-corrected r -band magnitude of the galaxy converted to nanomaggies,

and z is the redshift of the galaxy (spectroscopic if available, otherwise photometric). We

divide the galaxies into samples of “red” (k-corrected g−r > 0.8) and “blue” (k-corrected

g − r ≤ 0.8) galaxies. This division between “red” and “blue” galaxies was based on an

analysis of mass-to-light ratios from the subsample of galaxies for which stellar masses

were available from the MPA/JHU group (Kauffmann et al., 2003, Tremonti et al., 2004,

Brinchmann et al., 2004), in which it was found that the mass-to-light ratio showed a

prominent change in relationship at g − r ∼ 0.8. Using this information, we then apply

the following formulae to estimate the galaxies’ stellar masses:

Red : log(m) = 8.90 + 0.761 log(l) + 2.265(g − r)

Blue : log(m) = 7.69 + 0.799 log(l) + 3.839(g − r), (B.2)

where g−r is the k-corrected g−r colour of the galaxy and m is its stellar mass in units

of M�. We determined these formulae through linear regressions, comparing our l and

colours with the stellar mass estimates of the MPA/JHU group for the subset of galaxies

in our sample with spectroscopic redshifts. The g − r colour was found to give the best

correlation (R2 = 0.7850(Red),0.9001(Blue)) when used in combination with l, so it is

used in our formulae. For the sample of spectroscopic galaxies, these formulae have

negligible bias (< 10−6 in log-space) and scatter of σ (log(m)) ∼ 0.11(Red),0.19Blue.

B.1.1.2 Source Sample

We select our source sample from the SDSS DR8 in the same manner as detailed in

Appendix A of Reyes et al. (2012). In summary, we select galaxies which:

• Are not likely to be misidentified stars or cosmic rays.
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• Have a 5σ detection in either the i - or r -band

• Do not have significant problems that would prohibit accurate shear measurement

(eg. saturated or masked pixels)

In order to calculate ellipticities for sources, we apply the following procedure, based on

the algorithms outlined by Bernstein and Jarvis (2002). All variable names in square

brackets refer to columns in the “Galaxies” context of the SDSS DR8, and their mean-

ings are explained in detail at http://www.sdss3.org/dr8/algorithms/classify.

php#photo_adaptive:

1. For the r -band, calculate resolution Rr from the sum of second-order moments and

the fourth-order moment for the measurement and point-spread function (PSF) of

the observation as:

Rr = 1− [mRrCcPSF r] ∗ (4− [mCr4PSF r])/[mCr4PSF r]
[mRrCc r] ∗ (4− [mCr4 r])/[mCr4 r]

. (B.3)

2. Correct e′1,r and e′2,r for the PSF by:

e′1,r = ([mE1 r]−Rr ∗ [mE1PSF r]) / (1−R r)

e′2,r = ([mE2 r]−Rr ∗ [mE2PSF r]) / (1−R r) (B.4)

3. Calculated the weight for the r -band measurement as its inverse-square variance:

Wr =
(1−Rr)2

[mE1E1Err r]2 + [mE2E2Err r]2
(B.5)

4. Repeat the above steps for the i -band.

5. Combine the r - and i -band measurements as:

e′1 =
e′1,rWr + e′1,iWi

Wr +Wi

e′2 =
e′2,rWr + e′2,iWi

Wr +Wi
(B.6)

The above procedure gives (e′1, e
′
2) in the coordinates of the CCD it was detected with. In

order to rotate to the RA-Dec frame of reference, we use the astrometry for the galaxy’s

position and a position shifted by one pixel in the “x” direction of the CCD with the

equations detailed at http://www.sdss3.org/dr8/algorithms/astrometry.php#eqn

to determine the proper rotation angle φ. We then rotate (e′1, e
′
2) by 2φ to determine
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(e1, e2) in the RA-Dec frame of reference. These rotations were tested and confirmed by

visual inspection of a sample of galaxies.

We then supplement our source catalogue with redshift information, using the following

priority:

1. If spectroscopic redshifts are available, those are preferentially used (< 1% of

sources)

2. Otherwise, if the galaxy is in Sheldon et al. (2012)’s photo-z catalogue, we use that

estimate (∼ 80% of sources)

3. Otherwise, we estimate the galaxy’s redshift using the publicly-available code BPZ

(Beńıtez, 2000) for photo-z estimation (Remaining ∼ 20% of sources).

Through comparing redshift estimates from BPZ to spectroscopic redshifts for the subset

of galaxies where spectro-zs are available, we found that the estimates from BPZ had a

notable bias relative to the spectro-zs. We therefore apply an empirical correction to all

redshifts estimated with BPZ:

znew = −0.0211 + 0.8356 ∗ zBPZ. (B.7)

This correction results in negligible bias between the photo-z estimate and typical error

of σz ≈ 0.07 for the subset of galaxies with spectroscopic redshifts. The mean photo-z

error for all sources is ∼ 0.12.

B.1.2 Catalogue Analysis

Fig. B.1 shows the distributions of stellar mass and redshift for the HDE and LDE

samples of lens galaxies in the SDSS DR8. As is the case with the CFHTLenS dataset,

the matching scheme results in a nearly identical distribution of stellar masses for HDE

and LDE galaxies, and a very similar distribution of redshifts.

Table B.1 shows statistics for lens galaxies in the HDE and LDE samples in the SDSS

DR8. While we use a different method to determine whether galaxies are red or blue

here compared to with the CFHTLenS (Here, galaxies with g− r > 0.8 are red, and the

rest are blue), the overall trend is the same: The red fraction increases with increasing

stellar mass, and the HDE sample has a higher fraction of red galaxies than does the

LDE sample.

Fig. B.2 shows the distributions of galaxy types for the mock HDE and LDE samples

drawn from the Millennium Simulation, simulating the SDSS DR8 photometry and
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Figure B.1: The distributions of stellar mass (left) and redshift (right) for the samples
of HDE (solid line) and LDE (dashed line) galaxies in the SDSS DR8 catalogues, which,
because of our matching algorithm, are virtually identical. The redshift distributions
differ slightly between HDE and LDE galaxies, but there is no apparent trend to the

deviation.

SDSS DR8
HDE LDE

logm z fred fblue fred fblue

9–9.5 0.17 0.01 0.99 0.01 0.99
9.5–10 0.21 0.06 0.94 0.05 0.95
10–10.5 0.23 0.54 0.46 0.50 0.50

10.5–11 0.24 0.95 0.05 0.94 0.06
11–11.5 0.27 1.00 0.00 1.00 0.00
9–10.5 0.22 0.40 0.60 0.38 0.62

Table B.1: Statistics of galaxies in various stellar mass bins in the SDSS DR8, as
a function of environment. z is the mean redshift of the bin. fred is the fraction of
galaxies that are red (g− r > 0.8), and fblue is the fraction that are blue (g− r ≤ 0.8).
All average values and fractions assume galaxies are weighted by their stellar masses.

spectra, and, for the satellite galaxies within each sample, the distribution of the masses

of the groups in which they reside. Table B.2 shows the distributions of galaxy types

for the HDE and LDE samples for various stellar mass bins. As was the case with

the simulated CFHTLenS dataset, the fraction of satellites in the HDE sample remains

roughly constant with stellar mass and decreases slightly with stellar mass in the LDE

sample. For both samples, the fraction of centrals rises with stellar mass, while the

fraction of field galaxies falls. No sample shows any significant change with stellar mass

in the mean mass of the host groups for satellites. HDE satellites are observed to reside

in groups of ∼ 9.3 × 1013 M�. In contrast, for the small fraction of LDE galaxies that

are satellites, the characteristic host halo mass is ∼ 3.3 × 1013 M�. These host-group

masses are a factor of ∼ 2 greater than the host-group masses found for satellites in
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Figure B.2: The distributions of the types of galaxies classified as HDE and LDE
in the simulations (left), and, of those classified as satellites, the distributions of the
masses of the groups in which they reside (right). Plots assume detection limits and

photo-z quality similar to the SDSS DR8.

Simulated SDSS DR8
HDE LDE

logm M z fsat ffield fcen Mhost fsat ffield fcen Mhost

9–9.5 17 0.17 0.49 0.46 0.05 13000 0.23 0.70 0.07 4800
9.5–10 32 0.26 0.52 0.32 0.16 11000 0.23 0.52 0.25 3100
10–10.5 81 0.34 0.56 0.14 0.30 8500 0.21 0.26 0.53 3100

10.5–11 400 0.37 0.46 0.03 0.51 10000 0.17 0.08 0.76 4400
9–10.5 65 0.31 0.55 0.20 0.25 9300 0.22 0.35 0.43 3300

Table B.2: Statistics of galaxies in the Millennium simulation for various stellar mass
bins, using our models for estimating halo mass and environment, and assuming similar
detection limits and photo-z quality to the SDSS DR8. logm is the stellar mass bin.
M is the mean halo mass of the galaxies in this bin in units of 1010M�, and z is their
mean redshift. fsat, ffield, and fcen are the fractions of galaxies that are satellites, field
galaxies, and group centrals, respectively. Mhost is the mean mass of the host group for
satellite galaxies in units of 1010M�. All values assume galaxies are weighted by their

stellar masses.

the CFHTLenS catalogue. This is likely a result of the poorer photometry in the SDSS

DR8 as compared to the CFHTLenS; satellites within poorer groups are less likely to

be in our HDE sample than they would if the photometry were better, resulting in an

increased mean host-group mass.
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Figure B.3: Measured lensing signal and model fits for data from the SDSS DR8,
including all galaxies with 109 < m < 1010.5M�. HDE (red) and LDE (blue) lensing
signals and fits are illustrated, as well as the HDE data with the fitted offset-group-halo
term subtracted off (green). The dashed line shows the one-halo model fit to the HDE
sample, and the dotted line shows the HDE offset-group-halo term. The one-halo mass

fit for the HDE sample is found to be lower than for the LDE sample.

B.2 Preliminary Results

Fig. B.3 shows the lensing signals for the HDE and LDE samples taken from the SDSS

DR8, including all galaxies with 109M� < m < 1010.5 M�, with the best-fit models

plotted on top. For this broad mass bin, the fits show that the HDE one-halo term

is lower than the LDE term, at 1.65σ significance (p = 0.0979). However, while the

LDE model is a decent fit to the data (χ2
red = 1.60), the HDE model is a very poor fit

(χ2
red = 15.4459, due primarily to a poor fit of the offset group halo). More work will be

required to determine the reason for this. Some possible explanations include:
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• Our model does not include the two-halo component, which is more important for

this sample, as the offset group halo term does not dominate it to the same extent

that it does in the CFHTLenS.

• Our model for the offset group halo term may not be appropriate for this sam-

ple. In particular, the term PHDE(Rs) used in Equation (2.16), representing the

probability that a satellite will be included in our HDE sample, may need to be

modeled in a different manner for this sample. We previously assumed a relatively

sharp cut-off in the probability, but with the poorer photo-zs of the SDSS DR8, a

much shallower cut-off may be more appropriate.

• Our estimated fraction of galaxies in the HDE sample which are satellites (0.55

for the stellar mass range illustrated here) may be an overestimate. A test fit

with a fraction of 0.2 had a much better χ2
red = 2.19, which may indicate that our

simulated data overestimates the fraction of galaxies which are satellites.

Further investigation will be necessary to determine which, if any, of these scenarios is

the case.

In addition, there are various other tasks that need to be performed in order to optimize

and properly analyse our results, including:

• Applying an appropriate weighting scheme to our source sample.

• Applying a weighting scheme to all lens-source pairs based on the probability that

the source in fact lies at a higher redshift than the lens.

• Investigating the predicted lensing signals for the HDE and LDE samples with

simulated galaxy catalogues.

• Testing fits to the HDE sample using alternative satellite fractions and concentra-

tions.

• Testing alternative fits to the HDE sample, to see if it is better fit by a change in

one-halo concentration or truncation radius.

Once these tasks have been completed, the SDSS dataset will provide a useful test of the

results presented in the thesis. The significance of a result from it may not be as strong

as with the CFHTLenS, but when used in combination with the CFHTLenS data, it can

still potentially improve the significance of the detection presented here.
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