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Abstract 

 

 Electronic Structure Theory has led to a variety of developments and applications. 

In the Nooijen group the focus is on the development and use of Coupled Cluster based 

approaches. Coupled Cluster is a very strong and accurate approach to the quantum 

mechanical problem. The research results presented in the thesis testify to the Similarity 

Transformed Equation of Motion Coupled Cluster (STEOM-CC) for being a very 

accurate and yet computationally inexpensive approach for excited states. This study 

reveals new features about STEOM and provides promise regarding future improvement 

in the methodology. STEOM can be used as the first step in the construction of the 

Vibronic model, which is a strong tool to move to paradigms beyond the Born-

Oppenheimer approximation. Spin-Orbit Coupling (SOC) is a very important ingredient 

required to study relativistic phenomena and its quantum mechanical implementation for 

many body systems is not straightforward. The most widely used SOC operator in 

Chemical Physics is the Breit-Pauli operator, which requires employing non-trivial 

approximations to the Dirac equation to adapt the theory to many body systems. The 

integration of electronic structure approaches, Vibronic Coupling, and SOC is essential to 

study the phenomenon of intersystem crossing (transition between spin states) in fine 

detail. In this thesis a computational benchmark of STEOM is discussed, while the 

frameworks of Vibronic Coupling and Spin-Orbit Coupling (SOC) are considered on a 

theoretical level. 
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Glossary 

Abbreviations 

CC-related abbreviations: 
CC   Coupled Cluster: Exponential ansatz solution to the Schrödinger 
equation: !!Φ!, associated with the transformed Hamiltonian ! = !!!!!!. 
CCSD   Coupled Cluster Singles and Doubles: CC approach including 
single and double excitations in the CC operator !. 
CCD   Coupled Cluster Doubles: CC approach including double 
excitations in the CC operator !. 
CCSDT   Coupled Cluster Singles Doubles and Triples: CC approach 
including single, double, and triple excitations in the CC operator !. 
CCSD(T)   A CC approach that includes single and double excitations with a 
perturbative triple correction in the CC operator !. 
CC-LRT  Coupled Cluster Linear Response Theory 
CC2   A second order CC response approach including !!! completely. 
CC3   An iterative triple correction to CCSD for both ground and excited 
states. 
CC(P;Q)  An approach that merges renormalized and active-space CC 
approaches to account for static and dynamic correlation. 
FSCC   Fock Space Coupled Cluster: An approach that is closely related to 
STEOM-CC. 
 
CI-related abbreviations: 
CI    Configuration Interaction: A scheme to diagonalize the 
Hamiltonian matrix over manifold of electronic states. 
CIS   Configuration Interaction Singles: refers to the inclusion of single 
excitations in the CI manifold. 
CID   Configuration Interaction Doubles: refers to the inclusion of 
double excitations in the CI manifold. 
CISD   Configuration Interaction Singles and Doubles: refers to the 
inclusion of single and double excitations in the CI manifold. 
Full CI  Full Configuration Interaction: CI approach over manifold of all 
possible electronic excitations. 
MRCI   MultiReference Configuration Interaction: The reference function 
in CI consists of multiple configurations. 
SAC-CI  Symmetry Adapted Cluster Configuration Interaction: similar to 
EOM-CC (refer to EOM-CC). 
 
EOM-CC-related abbreviations: 
EOM-CC  Equation of Motion Coupled Cluster: First one solves the CC 
equations (for !), then diagonalizes the transformed Hamiltonian ! = !!!!!! to get 
other eigenstates. 
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EOM-CCSD  Equation of Motion Coupled Cluster Singles and Doubles: The 
EOM-CC approach applied to the CCSD cluster operator (refer to CCSD). 
EOM-CCSDT  Equation of Motion Coupled Cluster Singles Doubles and Triples: 
The EOM-CC approach applied to the CCSDT cluster operator (refer to CCSDT). 
EOM-CCSDT-3 Equation of Motion Coupled Cluster Singles Doubles and Triples: 
An iterative inclusion of perturbative triples correction. 
IP-EOM-CC  Ionization Potential Equation of Motion Coupled Cluster: The 
final diagonalization of ! in EOM-CC is over states that have one less electron than the 
parent CC state. 
EA-EOM-CC  Electron Attached Equation of Motion Coupled Cluster: The final 
diagonalization of ! in EOM-CC is over states that have one more electron than the 
parent CC state. 
MR-EOM-CC  MultiReference Equation of Motion Coupled Cluster: The EOM-
CC approach to the electronic structure problem using a reference wave function 
composed of multiple determinants. 
 
STEOM-related abbreviations: 
STEOM-CC  Similarity Transformed Equation of Motion Coupled Cluster: An 
approach to calculate excited states based on a doubly transformed Hamiltonian. Final 
diagonalization space consists of single excitations only. 
DIP-STEOM-CC Double Ionization Potential Similarity Transformed Equation of 
Motion Coupled Cluster: Final diagonalization is over states having two less electrons 
than the reference state. 
DEA-STEOM-CC Double Electron Attachment Similarity Transformed Equation of 
Motion Coupled Cluster: Final diagonalization is over states having two more electrons 
than the reference state. 
STEOM-PT  The CCSD step in STEOM-CC is replaced by an MBPT(2) 
calculation (see MBPT(2)). 
STEOM-H (ω ) The final transformed Hamiltonian is symmetrized or hermitized. 
EXT-STEOM  Extended Similarity Transformed Equation of Motion Coupled 
Cluster: Diagonalize double-transformed STEOM Hamiltonian over singles and doubles; 
can describe doubly excited states. 
STEOM-D  A perturbative doubles correction on top of STEOM. 
STEOM-ORB  A STEOM approach to optimize the active orbitals such that they 
span a space that captures the majority of the excitation character. 
 
Miscellaneous abbreviations: 
AMFI   Atomic Mean-Field Integral method: An approximate mean-field 
atom-based treatment of spin-orbit operators. 
AO   Atomic Orbital: AOs are atom-centered orbitals employed as one-
electron basis functions. 
CAS-SCF   Complete Active Space Self-Consistent Field: Full CI in a small 
set of active orbitals followed by orbital optimization. 
CASPT2   Complete Active Space second order Perturbation Theory: A 
second order perturbation theory on top of CAS-SCF. 
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DFT   Density Functional Theory: A semi-empirical solution to the 
Schrödinger equation that typically includes optimizing an energy functional of 
molecular orbitals. 
TDDFT  Time Dependent Density Functional Theory: Time-dependent 
DFT response approach to calculate exited states using DFT.  
FMS   Full Multiple Spawning: Gaussian wave packet approach to non-
adiabatic nuclear dynamics. 
HF   Hartree-Fock: An approximation to the Schrödinger equation that 
yields a minimum energy single determinant wave function. 
ISC   InterSystem Crossing: A term that refers to population transfer 
between electronic states of different spin multiplicity, mediated by spin-orbit coupling 
and nuclear dynamics. 
MBPT   Many Body Perturbation Theory: A perturbative expansion based 
on linked cluster theorem. 
MBPT(2)  Many Body second order Perturbation Theory: MBPT to second 
order. 
NEVPT2  N-Electron Valence second order Perturbation Theory: A variant 
of the second order multireference perturbation theory (Compare CASPT2). 
OSV   Orbital-Specific Virtual approximation: Associates a compact set 
of correlating virtual orbitals with each occupied orbital; used in local correlation. 
PNO   Pair Natural Orbital:  Associates a compact set of correlating 
virtual orbitals with each pair of occupied orbital; used in local correlation. 
SCF   Self-Consistent Field 
SO   Spin-Orbit: Shorthand to Spin-Orbit, usually used in the context of 
the Spin-Orbit Breit-Pauli operator. 
SOC   Spin-Orbit Coupling: The relativistic effect that couples orbital 
angular momentum to spin angular momentum. 
TDH    Time-Dependent Hartree: An approach to nuclear dynamics 
employing a single product of one-dimensional functions (Hartree product). 
MCTDH  MultiConfigurational Time-Dependent Hartree: An approach to 
non-adiabatic nuclear dynamics employing multiple Hartree products (see TDH). 
 

Terms 

Adiabatic states: Electronic states that satisfy the electronic Schrödinger Equation at each 
nuclear geometry. 
Diabatic states: Linear combination of adiabatic states such that the diabatic states 
change little with nuclear geometry (not unique).  
Derivative coupling: Contributions to the nuclear kinetic energy operator, which couple 
different electronic states. It is small in the diabatic basis. 
Non-adiabatic dynamics: describes coupled electronic and nuclear motion. Population 
transfer occurs through kinetic energy elements in the adiabatic basis, through off-
diagonal potential energy elements in the diabatic basis. 
Configuration: Spin- and symmetry-adapted combination of Slater determinants, 
corresponding to single set of ‘spatial’ orbitals. 



! xii 

Orbital: One electron function, typically linear combination of atom-centered basis 
function (AOs). 
Slater determinant: An anti-symmetrical product of one-electron functions. 
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Chapter 1 

Introduction 

 

 One might arguably describe this era as being one of great scientific blossom. The 

fact is that we are witnessing scientific development in numerous fields, ranging from 

better understanding of physical reality to the implementation of advanced technology 

that makes what used to be intractable and even impossible possible. It is the discovery of 

Quantum Mechanics [1] almost a century ago that changed our world, in my opinion. 

Quantum Mechanics provided a very deep understanding of the physics of microscopic 

systems. As Quantum Mechanics matured, more applications became into fruition, from 

developments in Particle Physics and Cosmology to new discoveries in Condensed 

Matter Physics, Atomic and Molecular Physics and Chemical Physics. We witnessed 

major events like the discovery of laser [2] and transistors [3], we understood bizarre 

phenomena like superfluidity [4, 5] and superconductivity [6], and we managed not only 

to understand complex chemical reactions, but also manipulate them. This latter 

statement relating to chemistry is the subject of the field of Chemical Physics, which 

attempts to explain chemistry better and influence its evolution in unforeseen ways. 

Chemical Physics is a very rich field that encompasses both theory and experiment. It has 

many different theoretical applications ranging from modeling chemical reactions and 

dynamics of complex reactions to investigating the electronic structure of atoms and 

molecules and simulating spectroscopy of interesting systems. It also has numerous 

experimental applications, for example some experimentalists are concerned with the 

behavior of atoms in the cold and ultra cold regime. A famous experiment is to cool 
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atoms and allow them to fall under gravity acceleration and observe their behavior. It is 

also worth mentioning that, about twenty years ago, experimentalists were successful in 

attaining the first Bose-Einstein condensate. 

 

The collaboration of theorists with experimentalists is one of the reasons behind the 

development of science and in our case Chemical Physics. Experimentalists provide 

theorists with experimental data about physical systems and chemical reactions, while 

theorists aim to suggest possible interpretations pertaining to the meaning of the 

experimental data provided by experimentalists. Theorists go further and propose 

theoretical models that can provide qualitative rationalization to the phenomenon under 

study. The insight gained is picked up by experimentalists to design new experiments and 

approach similar problems in different ways.  

The contribution goes the other way as well, as in some cases theorists propose 

experiments that can provide insight and in other cases they go far attempting to provide 

theoretical and foundational reasons as to why some experiments do not make sense.  

Computational scientists represent another group, situated on the interface between 

theory and experiment. Computational science aims to apply theories to reproduce 

experimental results by means of numerical calculations. This way the circle is complete. 

 

In the Nooijen group, our interest in Chemical Physics relates more to Electronic 

Structure Theory and methodology as well as to the development of accurate models to 

incorporate nuclear dynamics to simulate spectroscopy. Our target is to develop very 

accurate models based on accurate Electronic Structure Theory including relativistic 
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effects, and treating nuclear dynamics beyond the Born-Oppenheimer approximation. Our 

ultimate goal is to reproduce experiment. 

The focus of my work is mainly on Electronic Structure Theory, in particular a research 

contribution regarding the Similarity Transformed Equation of Motion Coupled Cluster 

(STEOM-CC) is presented in this thesis. The beautiful STEOM-CC has the ability to 

provide an accurate and efficient description of excited states. It is this analysis of excited 

states that comprises the first step in the construction of models that go beyond the Born-

Oppenheimer approximation, one of which is the Vibronic model developed in the 

Nooijen group. Incorporating Spin-Orbit Coupling (SOC) effects allow for the accurate 

modeling of forbidden transitions and Intersystem Crossings (ISC) normally not 

described with the non-relativistic Born-Oppenheimer approximation. 

 

In this thesis, I survey the above topics that are of interest in the Nooijen group. I start in 

chapter 2 by an introduction to Coupled Cluster theory, which is the theory we use to 

study electronic structure. I then proceed to present my research contribution in the group 

in chapter 3, which is a study that testifies to the success of STEOM-CC for capturing 

excited states. In chapter 4 I review the theory behind the construction of the Vibronic 

model, which allows the study of nuclear dynamics beyond the Born-Oppenheimer 

approximation. Then, I review the theory underlying the implementation of SOC for 

chemical physics and quantum chemistry applications in chapter 5. Chapters 4 and 5 are 

concerned with ingredients that are needed to describe Intersystem Crossing (ISC) and 

include a concise summary of the relevant literature. I conclude by a section I name “The 
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Full Picture”, which connects the different chapters and provides a global picture to the 

research concerning simulating ISC and spin-forbidden transitions. 
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Chapter 2 

Introduction to Coupled Cluster Theory 

 

I. Introduction 

 The last 60 years have witnessed a vast development in the field of Electronic 

Structure Theory. Electronic structure theory provides a base for a wealth of applications 

in Chemistry and Physics, for example in spectroscopy. Two major theories represent the 

forefront in research in the field: Coupled Cluster (CC) theory [1-4] and Density 

Functional Theory (DFT) [5, 6]. CC theory has a reputation for being a physical theory. It 

is an ab initio method, rooted in Quantum Mechanics. From a reductionist’s point of 

view, this method is capable of providing physical insight. Unlike DFT methods [7], CC 

is a definite theory in the sense that it provides approximate yet systematically 

improvable solutions to the Schrödinger equation and does not include optimizing a semi-

empirical functional. 

 

Initially, the quantum chemistry community was slow to accept CC theory, probably 

because the earliest researchers in the field used elegant but unfamiliar mathematical 

tools such as Feynman-like diagrams and second quantization to derive working 

equations. It took around 10 years before Hurley [8] re-derived the equations in terms, 

which are more familiar to quantum chemists. By the end of 1970s, computer 

implementations of the theory for realistic systems began to appear in the groups of Pople 

[9] and Bartlett [10]. Since then, CC became very popular among quantum chemists. 

 



!
!
! 6 

In this chapter, we aim to introduce the basics of CC theory. We follow to a great extent 

the theoretical development as presented by Isaiah Shavitt and Rodney J. Bartlett in their 

book “Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster 

Theory” [2]. 

 

We start by explaining the foundations of the CC approach. We then proceed to discuss 

the Equation of Motion Coupled Cluster (EOM-CC) approach, which has the power to 

describe excited, ionized, and electron-attached states. 

 

 

II. The Physical Basis of CC Theory 

 In this section, we present an intuitive idea about CC theory without using elegant 

and detailed mathematics. Let us start by considering a two-electron system, for which 

the exact wave function can be written as a linear combination of a reference function !! 

and all double excitations relative to it [11]. The orbitals are obtained by transforming the 

orbitals in such a way to diagonalize the one particle density matrix of the correlated 

wave function (Configuration Interaction (CI) wave function). The unnormalized wave 

function can be written as 

 ! = !! + !" (2.1) 

where !! and ! are the orthonormal two-electron functions for each atom and ! is a 

coefficient. We suppress electronic coordinate in the above equation. More generally for 

a system with more than two electrons in Hartree-Fock (HF) orbitals, the contribution of 

single excitations tends to be very small [2]. 
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Let us consider a system of ! non-interacting He atoms, with Hamiltonian 

 
! = ℎ(!)

!

!!!
 (2.2) 

It follows that for the N non-interacting He atoms, one writes 

 Φ! = !!!(1)!!(2)…!!(!) (2.3) 

where the arguments 1,!2, …, ! label the atoms. Again the electronic coordinates are 

suppressed. ! is the antisymmetrizer, which acts by exchanging electrons between 

different two-electron factors !!. Due to lack of interaction, it can be ignored. The 

double-excitation functions are of the form 

 Φ! = !!! 1 !! 2 …!! ! − 1 !(!)!! ! + 1 …!!(!) (2.4) 

!(!) is the basis function for the !th double excitation relative to !!  There is no need to 

consider mixed double excitations, or single excitations, because of the lack of interaction 

among the atoms and between !! and any single excitation from it. The CI Doubles 

(CID) wave function reads 

 
Ψ!"# = Φ! + !!Φ!

!

!!!
 (2.5) 

 

Following Shavitt and Bartlett [2], we define a single-atom two-electron excitation 

operator !! for the !th atom in the space spanned by !! ! , !(!)!  by 

 !!!! ! = !!"(!),       !! !! ! = 0 (2.6) 

where ! is a constant to be determined. The !! operator has no effect on the basis 

functions for the other atoms: 

 !!!! ! = !! ! ,     !!! ! = ! !         ! ≠ ! (2.7) 
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In bra-ket notation, the operator can be represented as 

 !! = !(!) !! ! + 1!
!!!

 (2.8) 

Note that !! !  and !(!) are the orthonormal two-electron functions for each atom. Since 

atoms are non-interacting, the functions on one atom are orthogonal to those on any other 

atom. 

 

For the !-atom wave function we define the operator 

 !! = !!
!

 (2.9) 

The subscript 2 on !! indicates that it is a sum of operators that excite two electrons at a 

time. 

Let us compute the effect of different powers of !! on Φ! and Φ!: 

 !!Φ! != !!
!

Φ! = ! Φ!
!

 

!!Φ! != !!
!

Φ! = ! Φ!"
!!(!!!)

= ! Φ!" !!!!!!!!!(Φ!! = 0)
!"

!

!!!Φ! != ! !!Φ!
!

= !! Φ!"
!"

 

!!!Φ! != !! !!Φ!"
!"

= !! Φ!"#
!"#

,!!!!!!etc. 

(2.10) 

 

It turns out that the exact solution (full CI) for the ! non-interacting He atoms [2] is 

 Ψ = Φ! + !Φ!
!

+ 1
2! !!Φ!"

!"
+ 1
3! !!Φ!"#

!"#
+⋯ (2.11) 
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which is the same as  

 Ψ = Φ! + !!Φ! +
1
2!!!

!Φ! +
1
3!!!

!Φ! +⋯ = !!!Φ! (2.12) 

The !!! is to prevent over-counting. It can be shown that the CC solution is equivalent to 

the full-CI solution. The details of the full CI solution are left out for brevity and it 

suffices to layout the result for our purposes. For details refer to reference [2]. 

 

We note that the exponential Ansatz Ψ = !!!Φ!, which is the basis for the formulation of 

CC theory, automatically accounts for correct relationship between the coefficients !, !!, 

… of the various excitation levels. 

 

To obtain equations for ! and the corresponding energy ! we project the Schrödinger 

equation onto Φ! : 

 Φ! ! − ! !!! Φ! = 0 

Φ! ! − ! !!! Φ! = 0 
(2.13) 

and solve for ! and !. 

 

The above analysis shows that one double-excitation operator suffices to describe an 

arbitrary number of non-interacting two-electron systems. The exponential ansatz is 

crucial to the approach. 
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III. CC in Second Quantization 

 In this section, we aim to provide a rigorous mathematical description of CC 

theory. We start by reviewing the notions of second quantization, which is the tool to 

mathematically account for the theory. We associate a creation operator denoted with a 

dagger (†) with each orbital, for example !! with φ!, and also an annihilation operator 

with each orbital, for example ! with φ!. In our notation, ! and ! label virtual orbitals, 

while ! and ! label occupied orbitals. Let us demonstrate the action of creation and 

annihilation operators respectively on a reference wave function Φ!  

 !! Φ! = !! φ! …φ! = φ!φ! …φ! = Φ!  

! Φ! = ! φ! …φ! = φ! . .φ! = Φ!  
(2.14) 

The creation operator !! creates an electron in orbital φ!, while the annihilation operator 

! annihilates an electron from orbital φ!.  

 

If we act with two consecutive creation operators in different order: 

 !!!! Φ! = !!!! φ! …φ! = φ!φ!φ! …φ! = Φ!"  

!!!! Φ! = !!!! φ! …φ! = φ!φ!φ! …φ!

= − φ!φ!φ! …φ! = − Φ!" = Φ!" , 

(2.15) 

we derive the anticommutation relations for creation operators: !!, !! = 0. Note the 

minus sign satisfies the Pauli principle for fermions. 

Using similar procedures (omitted for briefness), one can derive the following 

anitcommution relations: !, ! = 0 and !,!! = !!". For more details the reader is 

referred to reference [11]. 

 



!
!
! 11 

In the context of CC we define single and double excitations respectively in the following 

way: 

 Φ!
! = !!! Φ!  

Φ!"
!" = !!!!!! Φ!  

(2.16) 

where the reference wave function Φ!  in this context is the HF wave function. 

Now one can consider the structure of the double excitation operator !! in second 

quantization: 

 !!! ≡ !!"!"!!!!!
!!!
!!!

! 
(2.17) 

Note that this !! operator is different from the one mentioned in section II. Up to this 

point we were considering operators of the type of !!, which excites two electrons at a 

time. To be complete the cluster operator should be written as 

 !! = !! + !! + !! +⋯ (2.18) 

with the coupled-cluster wave function in the form 

 Ψ = !!Φ! (2.19) 

Taking the Taylor series of !! and expanding ! in terms of one-body (!!), two-body (!!) 

cluster operators etc., one obtains! 

 Ψ! = !Φ! + !!Φ! + !!Φ! +⋯ 

+ 12!!
!Φ! + !!!!Φ! +

1
2!!

!Φ! +⋯ 

+ 1
3!!!

!Φ! +
1
2!!

!!!Φ! +
1
2!!!!

!Φ! +
1
3!!!

!Φ! +⋯ 

+⋯ 

(2.20) 



!
!
! 12 

If one chooses Φ! to be the Hartree-Fock wave function, the contribution of !!Φ! is quite 

small as a result of the fact that Φ!
! ! Φ! = 0. 

 

As a result and for other involved arguments [2], one can approximate the exponential 

cluster operator. The simplest CC approach is what is referred to as Coupled Cluster 

Doubles (CCD) [3]: !!!" = !!. An extension to this approach is Coupled Cluster Singles 

and Doubles (CCSD) [3]: !!!"# = !! + !!. An excellent approximation is the Coupled 

Cluster Singles Doubles and Triples (CCSDT) [3]: !!!"#$ = !! + !! + !!. A very good 

approach is the one developed by Ragavachari et al. [12] which is referred to as 

CCSD(T). CCSD(T) is a perturbative approximation to CCSDT, in which triples are 

obtained in a non-iterative fashion upon solving the CCSD equations. 

 

We would like to point out the specific feature of the CC approach that it avoids having 

an eigenvalue problem and instead one has a set of simultaneous algebraic equations, 

which need to be solved iteratively. 

CC also has a very important characteristic that makes it very interesting. Due to the 

nature of the (total) exponential operator, which can be written as the sum of cluster 

operators, one can write the CC wave function as a product of independent CC wave 

functions, each for a fragment of the molecule in study. As a result, the sum of the CC 

energies computed for each fragment is equal to the energy computed for the full 

molecule. This property is referred to as “size consistency” [4].  
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IV. Excited, Ionic and Electron-Attached States 

 The conventional CC approach is very effective for electronic states dominated by 

a single determinant, such as molecular ground states near their equilibrium geometry. 

Most excited, ionized and electron-attached states are open-shell states, which are not 

always dominated by single determinants. 

 

This requires resorting to multireference methods, which do not make use of single 

determinant wave functions. Another possibility is the Equation of Motion Coupled 

Cluster (EOM-CC) method [13-16], which is based on the conventional single reference 

CC approach. 

 

 

V. The EOM-CC Ansatz 

 In the EOM-CC method one considers the two Schrödinger-equation eigenstates 

simultaneously, an initial state Ψ! and a target state Ψ! 

 !Ψ! = !!Ψ!,!!!!!!!!Ψ! = !!Ψ! (2.21) 

The initial state is usually an appropriately chosen closed-shell state, most commonly the 

ground state. The target state is an excited or ionic state. The goal of the method is to 

compute the energy difference  

 ω! = !! − !! (2.22) 

and other properties of the target state. This is done by an efficient procedure that cancels 

common terms in the solutions for the two states before the actual calculation. 
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The initial-state coupled-cluster wave function and the target-state coupled-cluster wave 

function are defined as: 

 Ψ! = !! 0  

Ψ! = !! Ψ! = !!!! 0  
(2.23) 

where !! is the excitation operator. 

 

Now the Schrödinger equation for the target state reads 

 !!!!! 0 = !!!!!! 0 . (2.24) 

Multiplying on the left with !!! and using that !! and ! commute, we get 

 !!! 0 = !!!! 0  (2.25) 

with ! = !!!!!!. This is a right eigenfunction equation. 

Realizing that !! = 1, this right eigenfunction equation for the initial state reads 

 ! 0 = !! 0  (2.26) 

Multiplying this equation on the left by !! and subtracting from the preceding one, we 

get 

 !,!! 0 = !! − !! !! 0 = ω!!! 0  (2.27) 

 

One projects this equation on the subspace of singles and doubles to get the EOM-CC 

equation. Using the iterative Davidson algorithm [17] one can solve this eigenvalue 

equation for !! and ω!. This technique avoids the explicit evaluation of the matrix and 

requires instead direct calculation of the matrix-vector product, using the current estimate 

of the solution vector, in each iteration. 
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VI. IP-EOM-CC and EA-EOM-CC 

 The EOM-CC formalism involves operators in second quantization. Formally the 

operators span a Fock space and hence are not restricted to a specific number of 

electrons. This is the reason why the EOM-CC approach can be used for processes 

involving changes in the number of electrons. EOM-CC can be used to calculate ionized 

states and electron-attached states. These methods are referred to as Ionization Potential 

Equation of Motion Coupled Cluster (IP-EOM-CC) and Electron Attachment Equation of 

Motion Coupled Cluster (EA-EOM-CC) respectively. 

 

The ! operator takes the form of an operator that reduces the number of electrons by one 

for ionization processes. In second quantization, ! is 

 ! != !!!
!

+ !!"!!!!!
!,!!!!!!

+ !!"#!"!!!!!!!
!!!,!!!!!!!!

+⋯. (2.28) 

For electron attachment processes, the operator ! takes the form of an operator that 

increases the number of electrons by one: 

 ! != !!!!
!

+ !!!"!!!!!
!!!,!!!!

+ !!"!"#!!!!!!
!!!!!,!!!!!!

!!

+⋯. 
(2.29) 

 

The EOM-CC methodology is very powerful and is the basis for the Similarity 

Transformed Equation of Motion Coupled Cluster (STEOM-CC), which is described in 

the next chapter. 
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VII. The Essence 

 We conclude by emphasizing the strengths of the CC approach. The approach is a 

descendent of Quantum Mechanics and can give a very good description of the physics of 

the electronic structure for a specific system. For instance, one gains knowledge about the 

nature of the problem when studying whether a single reference or a multireference 

methodology can provide more accurate results. The other advantage is the computational 

power. The algorithms developed in the context of CC tend to make the problem 

computationally cheaper than employing the full CI or MultiReference CI (MRCI) 

approach. One might argue that CC approaches cannot compete with other methodologies 

when it comes to computational time. Namely, DFT tends to be much faster and widely 

applicable to larger systems. It suffices to state that in recent years, through the 

development of ideas (and computer implementations) in local correlation [18-24], 

explicit correlation approaches (for review see references [25-29]), and most recently the 

use of a compact set of virtual orbitals associated with each pair of (localized) occupied 

orbitals in the Pair Natural Orbital (PNO) approach [30-32] or the Orbital-Specific 

Virtual (OSV) approximation [33], CC calculations of much larger systems (100’s of 

atoms) are routinely feasible. At the current progress in the field, it is not unrealistic to 

expect to have very accurate and yet computationally efficient CC approaches that can be 

applied to very large systems in the near future.  
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Chapter 3 

Similarity Transformed Equation of Motion Coupled Cluster Theory Revisited: A 

Benchmark Study of Valence Excited States 

 

J. Sous, P. Goel, and M. Nooijen 

Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada 

N2L 3G1 

 

(This is an Author's Original Manuscript of an article submitted for consideration 

in Molecular Physics © Taylor & Francis; Molecular Physics is available online 

at http://www.tandfonline.com) 

 

The Similarity Transformed Equation of Motion Coupled Cluster (STEOM-CC) 

method is benchmarked against CC3 and EOM-CCSDT-3 for a large test set of 

valence excited states of organic molecules studied by Schreiber et al. [M. 

Schreiber, M.R. Silva-Junior, S.P. Sauer, and W. Thiel, J. Chem. Phys. 128, 

134110 (2008)]. STEOM-CC is found to behave quite satisfactorily and provides 

significant improvement over EOM-CCSD, CASPT2, and NEVPT2 for singlet 

excited states; lowering standard deviations of these methods by almost a factor of 

two. Triplet excited states are found to be described less accurately, however. 

Besides the parent version of STEOM-CC additional variations are considered. 

STEOM-D includes a perturbative correction from doubly excited determinants. 

The novel STEOM-H ( ) approach presents a sophisticated technique to render ω
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the STEOM-CC transformed Hamiltonian hermitian. In STEOM-PT the 

expensive CCSD step is replaced by MBPT(2), while Extended STEOM (EXT-

STEOM) provides access to doubly excited states. To study orbital invariance in 

STEOM, we investigate orbital rotation in the STEOM-ORB approach. 

Comparison of theses variations of STEOM for the large test set provides a 

comprehensive statistical basis to gauge the usefulness of these approaches. 
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I. Introduction 

 Coupled Cluster (CC) theory has been a very fruitful pursuit in electronic 

structure theory for many years now, see for example references [1-3]. It has long been 

recognized as a highly accurate, systematic and computationally attractive approach for 

accurate thermochemistry calculations of small molecules [4-6], using primarily the CC 

approach that includes single and double excitations with a connected perturbative 

correction for triples, known as CCSD(T) [7]. In recent years, through the development 

of ideas (and computer implementations) in local correlation [8-14], explicit correlation 

approaches (for review see references [15-19]), and most recently the use of a compact 

set of virtual orbitals associated with each pair of (localized) occupied orbitals in the Pair 

Natural Orbital (PNO) approach [20-22] or the Orbital-Specific Virtual (OSV) 

approximation [23], CC calculations of much larger systems (100’s of atoms) are 

routinely feasible. 

 

The coupled cluster treatment of excited states has also seen a systematic development 

using primarily the Equation of Motion Coupled Cluster (EOM-CC) [24-29], Coupled 

Cluster Linear Response Theory (CC-LRT) [30-32], and the Symmetry Adapted Cluster 

Configuration Interaction method (SAC-CI) [33, 34]. Also here, connected triple 

excitation effects, for example in CC3 [35] and EOM-CCSDT-3 [36] approaches, are 

important to gain sufficiently high accuracy [35-38]. The most commonly used methods 

include EOM-CCSD/ CCSD-LRT and SAC-CI. The most recent promising variation is 

the newly developed CC(P;Q) approach [39, 40], which is obtained by merging the 

renormalized [41] and active-space coupled cluster [42] methods. At present all 
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implementations of CC excited state methods (except CC2) are currently based on 

canonical orbitals, although much progress has been made in creating efficient parallel 

implementations for example in packages like NWCHEM [43] and ACES III [44]. Viable 

local versions of EOM-CC/ CCLRT are still under development. One of the issues that 

arise is that excited states (in particular of the charge-transfer type) are not readily 

localized, i.e. any singly excited state â†î 0  is in principle present, regardless of 

localization of the particle-hole pair. The use of excited state pair natural orbitals to limit 

the number of included excitations for a particular state is a possible entrance to the 

problem, even if one has to give up on the locality of such orbitals. Some work in the 

CC2 context [45, 46] has been pursued in this direction, but it is not obvious that such an 

approach will work as well as it does for ground states. Currently, canonical orbital based 

EOM-CC and CCLRT approaches are still the state of the art, and these methods are 

computationally demanding. 

 

One of the authors has long advocated a somewhat different approach to excited states: 

the Similarity Transformed Equation of Motion Coupled Cluster (STEOM-CC) method 

[47-50]. This method was developed in the late 1990’s and its design was strongly 

influenced by the work on Fock Space Coupled Cluster (FSCC) Theory [51-57], in 

particular by the beautiful paper by Leszek Stolarczyk and Henk Monkhorst on their 

version of Fock Space Coupled Cluster [58], which was based on the use of similarity 

transformations in second quantization (or Fock space). This idea is also referred to as the 

use of many-body similarity transformations. The idea behind the similarity transform is 

conceptually straightforward. In second quantization one can perform a sequence of 
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exponential similarity transformations, which we might somewhat schematically indicate 

as 

 Ĝ = ...e− Ŝe−T̂ ĤeT̂eŜ ... ! (3.1) 

One can then use the freedom in the choice of amplitudes in the operators Ŝ,T̂  to equate 

second quantized elements of the transformed Hamiltonian Ĝ  to zero, in particular those 

operators that promote electrons from occupied into virtual orbitals. A crucial concept 

that enters this construction is the concept of normal ordering which follows the rules of 

the generalized Wick theorem [59]: the definition / action of the second quantized 

operator depends on the ordering convention of the elementary creation and annihilation 

operators, or, on the precise definition of normal ordering.!In the STEOM approach, as in 

single reference CC or EOM-CC, the normal order is defined with respect to a single 

determinant vacuum state. This is the easiest possibility. More than a decade ago 

Mukherjee and Kutzelnigg [60, 61] defined a generalization of the concept of normal 

ordering to the multireference situation (see also references [62, 63]), and this has led to a 

very rich set of developments (canonical transformation theory [64-66], antihermitian 

contracted Schrödinger equation [67, 68], internally contracted multireference coupled 

cluster [69, 70]). This generalization has also allowed the development of a promising 

multireference equation of motion coupled cluster theory [71, 72], which uses both the 

many-body transformation concept, and the generalized normal ordering. For an early 

paper that forecasts some of these developments we refer to ref. [73]. The advantage of 

the many-body similarity transform strategy is that the vanishing matrix elements in the 

second quantized operator can enter many Hilbert-space matrix elements Φλ Ĝ Φµ  and 

this leads in general to an approximate block structure in the transformed Hamiltonian. 
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As a result the transformed Hamiltonian can be diagonalized over a compact subspace, 

while yielding accurate results. Another advantage is that the transformed Hamiltonian 

remains a connected operator under a broad range of conditions. Therefore any scaling or 

size-consistency issues are related to the final diagonalization procedure. In the context of 

local correlation these methods also have a clear built in localization criterion: all of the 

(connected) transformation operators are near-sighted: their amplitudes vanish (rapidly) 

when they involve distant localized orbitals. This locality is lacking in the final 

diagonalization, and this is the origin of non-locality in the EOM-CC approach. In the 

STEOM-CC approach the final diagonalization is over singly excited states only, and this 

can be pushed to quite large systems, even when lacking locality. 

 

STEOM has a number of virtues and some of them are listed below (see also ref. [74]): 

1) The main virtue is the computational efficiency. After the similarity transformation 

one can diagonalize over very compact subspaces. For the excitation energy variant of 

STEOM one needs to solve for T̂ , Ŝ IP , Ŝ EA  amplitudes (see section II), and one 

diagonalizes the transformed Hamiltonian over singly excited states only. Solving for 

the transformation amplitudes is about twice as expensive as a closed shell CCSD 

calculation. The remaining computational cost is minor, and one can get tens of 

excited states for the price of twice a CCSD calculation. 

2) The method has nice theoretical scaling properties, and it satisfies the notion of 

generalized extensivity [75]. This implies it is size-intensive, such that excitation 

energies on a chromophore are unaffected by a distant fragment. Moreover STEOM 

satisfies charge transfer separability, meaning that it follows the proper limit of 
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1IP EA
R

+ −  for a separated particle-hole pair excitation [49]. This property is 

violated by EOM-CCSD, and this likely affects the accuracy of the EOM-CC 

approach for valence excitations. 

3) While the final diagonalization manifold in STEOM is over singly excited states only, 

the approach implicitly includes the effects of ‘connected’ triple excitations (viewed 

from an EOM-CC perspective). These effects are responsible for charge-transfer 

separability, but they also are responsible for the fact that valence excited states (of 

singlet type) tend to be more accurate in STEOM-CC than in (the more expensive) 

EOM-CC [49, 50]. This will be demonstrated also in this chapter. 

 

Besides these advantages there are also some limitations to STEOM: 

1) One has to make a selection of so-called ‘active’ occupied and virtual orbitals, 

associated with the S-type operators that are included in the second transformation. 

This is a somewhat non-trivial choice and this makes the method not completely black 

box. In practice this choice is often not so hard or critical, and certainly it is very 

different (and much easier) than choosing active spaces in a Complete Active Space 

second order Perturbation Theory (CASPT2) [76-78] or second order N-Electron 

Valence Perturbation Theory (NEVPT2) [79-82] calculation. Moreover, STEOM is 

not fully invariant to rotations of the occupied and virtual orbitals in their respective 

subspaces. This non-invariance issue has never been assessed before, and it will be 

discussed in this chapter. 

2) The method can break down if a molecule has important ionized or attached states that 

acquire a large double excitation component. In comparison, any single reference CC 
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method breaks down if large double excitation amplitudes occur. STEOM is more 

sensitive as also the S-amplitudes should be small for the method to work well. This is 

very often the case for organic molecules at their equilibrium geometry, but not 

always. A redeeming feature is that this situation can be diagnosed quite readily, and 

only few excited states may be affected. One bad apple does not necessarily spoil the 

rest, but it is a bit of a delicate issue. 

3) Like in EOM-CC, the final transformed Hamiltonian in STEOM is not hermitian. 

Because one uses quite compact diagonalization spaces in STEOM, one finds on 

occasion that eigenvalues become complex. This happens primarily if two states have 

the same symmetry and are nearly degenerate. This can happen readily for example if 

one makes slight distortions of a molecule with a degenerate point group symmetry 

(e.g., benzene). This is mainly a computational inconvenience, as there is nothing 

inherently bad about small imaginary parts of approximate excitation energies.  

4) The method is only available in the ACES II program [83] and has been implemented 

only once as far as we know. There have not been many efficiency features in this 

implementation, e.g. as treating the 4-virtual terms in the Atomic Orbital (AO) basis 

set, or that parallelization have not been implemented. In some sense the 

implementation of the method has always remained in a pilot stage of development. 

This is a somewhat unusual situation in quantum chemistry, where promising 

methodologies are often briskly taken up by the community. As a result STEOM has 

never (or not yet) become a mainstream method. 
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The latter point is one of the reasons to pursue this study. We think STEOM is quite 

competitive with many approaches used widely in the community today. This includes 

both CC based approaches and also more efficient Time Dependent Density Functional 

Theory (TDDFT) like methods. For a review on TDDFT, we refer the reader to ref. [84, 

85]. It would be very worthwhile to combine STEOM with local correlation and in 

particular PNO like approaches, and to incorporate into a state of the art electronic 

structure program. Much of the work regarding STEOM in the past has been exploratory. 

The method has been used in the Double Ionization Potential (DIP) [86-88] and Double 

Electron Attachment (DEA) [89] variants to explore multireference situations. It has been 

extended to investigate doubly excited states [90, 91]. Analytical gradients for the method 

have been derived and implemented in the ACES II program [92, 74], but used little. 

Despite all of these developments, relatively few applications of the method have 

appeared, and the merits of the approach and general applicability have not been all that 

well established. Anticipating this may change in the near future, we wish to help this 

development along and provide more insight into the performance of the approach. 

 

In this chapter we will first summarize, in section II, the theoretical details of the 

STEOM-CC approach. In addition we will consider a few other variations. The CCSD 

calculation can be replaced by its Many Body second order Perturbation Theory 

(MBPT(2)) counterpart, to yield the STEOM-PT approach. We will consider the 

Extended STEOM (EXT-STEOM) approach [90, 91], in which the doubly transformed 

Hamiltonian is diagonalized over singles and double excitations. We will also consider a 

perturbative doubles correction to STEOM, denoted STEOM-D first reported in ref. [75]. 
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This approach is still computationally efficient and is expected to include the main effects 

from Extended STEOM. We will also consider the issue of orbital invariance in STEOM 

using the novel STEOM-ORB approach, and explore a new approach, STEOM-H (ω) to 

hermitize the Hamiltonian and in this way ensure the reality of eigenvalues and 

orthogonality of eigenvectors.  

To benchmark the results for STEOM-CC calculations and its cousins we will compare to 

Coupled Cluster response and EOM-CC approaches that include iterative triples 

corrections, notably the CC3 [35] and EOM-CCSDT-3 [36] approaches. We will also 

include comparisons to EOM-CCSD, CASPT2 [76-78] and NEVPT2 [79-82] results. All 

the molecules we consider are essentially single reference molecules, and the above 

methods are suitable in principle to accurately evaluate excitation energies, provided that 

they are dominated by single excitations. Somewhat to our surprise the two methods, 

CC3 and EOM-CCSDT-3, can easily deviate by up to about 0.1 eV for excitation 

energies. This is somewhat large for methodology that is used as a benchmark. 

Unfortunately this is the best that we can do at present. We will compare these 

benchmarks and hope to inspire work on a future more accurate benchmark calculation. 

The test set of molecules we use, has become popular in recent years [93-96]. It concerns 

a number of valence excited states for organic molecules of various character. The test set 

and computational details along with the results of the analysis and the discussion will be 

presented in section III. 
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II. Theory 

 Similarity Transformed Equation of Motion Coupled Cluster (STEOM-CC) 

theory dates back more than 15 years. The scheme is based on a two-fold many-body 

similarity transformation of the Hamiltonian and a subsequent diagonalization over a 

compact subspace. We will assume the ground state of the system is qualitatively well 

described by a closed-shell Hartree-Fock (HF) single determinant, which also serves as 

the vacuum state of the many-body theory. Orbitals occupied in the Hartree-Fock 

determinant are denoted with indices i, j,k, l , while virtual orbitals are denoted a,b,c,d . 

The STEOM-CC scheme proceeds in the following fashion. 

 

In the first step the CCSD equations    

       (3.2) 

are solved, with the Hamiltonian expressed in second quantization, and normal ordering 

with respect to the closed-shell Hartree-Fock state as 

       (3.3) 

in which h0 !is the Hartree-Fock energy, hp
r  are the elements of the Fock matrix and hpq

rs  

are non-antisymmetrized two-electron integrals. Êr
p, Êrs

pq  denote generators of the unitary 

group and braces are used to denote normal ordering with respect to the reference state.  

 

The cluster operator is expressed as 

         (3.4) 

i
a e−T̂ ĤeT̂ 0 = ij

ab e−T̂ ĤeT̂ 0 = 0

H = h0 + hp
r Er

p{ }+ 12 hpq
rs Ers

pq{ }

T̂ = ta
i Êi

a +
1
2
tab
ij Êij

ab
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Throughout the paper we will use the Einstein summation convention and a tensorial 

notation. Following the solution of the CCSD equations, second quantized matrix 

elements of the first similarity transformed Hamiltonian are constructed 

 ,  (3.5) 

again expressed in normal order with respect to the closed-shell Hartree-Fock state. Using 

the Ĥ  matrix elements the CCSD equations can be represented as  

        (3.6) 

 

In the next step of a STEOM-CC calculation one defines a second transformation 

operator  

        (3.7) 

The index m denotes a subset of the occupied orbitals, while the index e similarly labels a 

subset of virtual orbitals. We refer to these orbitals as active, but they play a very 

different role than in for example Complete Active Space Self-Consistent field (CAS-

SCF) calculations, and the selection of active spaces in STEOM is relatively 

straightforward, and usually not that critical. No optimization of active orbitals is 

involved beyond HF. The primed indices (both i’ and a’) refer to explicitly inactive 

labels. The operator Ŝ  is used to define a second similarity transformation 

         (3.8) 

Ĥ = e−T̂ ĤeT̂ = h0 + hp
r Er

p{ }+ 12 hpq
rs Ers

pq{ }+... T̂ = tai Êi
a +
1
2
tab
ij Êij

ab

ha
i = hab

ij = 0, E(CCSD) = h0

Ŝ = Ŝ IP + Ŝ EA

Ŝ IP = sm
i ' Êi '

m{ }+ 12 smb
ij Êij

mb{ }

Ŝ EA = sa '
e Êe

a '{ }+ 12 sab
ej Êej

ab{ }

Ĝ = eŜ{ }
−1
Ĥ eŜ{ }
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A normal ordered exponential is used to simplify the details of equations as the 

components of Ŝ  do not commute. The inverse of the normal ordered exponential is not 

known explicitly, and in practice one defines the transformed Hamiltonian in an iterative 

fashion 

        (3.9)  

This can be reduced to a connected form, and rather than iteration one can use backwards 

substitution [97, 73] to define the transformed Hamiltonian 

 ,      (3.10)  

where as usual the subscripts C (for connected) implies that the expression is written in 

normal order. The transformed Hamiltonian is represented as  

       (3.11)  

The amplitudes of the operator Ŝ !are defined such that second quantized matrix elements 

of the transformed Hamiltonian are equated to zero: 

        (3.12)  

In addition the pre-existing zeros in H !after solving the CCSD equations are preserved:
  

          (3.13)  

 

As a result of the transformations the structure of the doubly transformed Hamiltonian in 

the space of N-particle states is 

Ĝ = Ĥ eŜ{ }− eŜ −1{ }Ĝ

Ĝ = (Ĥ eŜ{ })C − ( eŜ −1{ }Ĝ)C

Ĝ = g0 + gp
r Êr

p{ }+ 12 gpq
rs Êrs

pq{ }+ ...

gm
i ' = gmb

ij = ga '
e = gab

ej = 0

ga
i = gab

ij = 0
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   (3.14)  

Here 0, S, D, T indicate the reference state and single, double, triple excited determinants 

respectively. The ~ elements indicate smallish matrix elements, due to remaining 2-body 

terms in Ĝ  that involve inactive orbitals, and 3-body and higher-body matrix elements 

that are introduced by the transformations. If the ~ elements are assumed to be rigorously 

zero it is seen that G attains a block form, and the eigenvalues of such a matrix can be 

found by diagonalizing each diagonal subblock individually. In practice this is only true 

to good approximation. In particular, in the original STEOM-CCSD approach the 

transformed Hamiltonian matrix is diagonalized over single excitations only. The 

computational cost of this final step is very minor in the context of the preceding CCSD 

calculation. The approach provides access to both singlet and triplet excited states that are 

dominated by singly excited configurations. 

 

In practice the S-amplitudes are not solved directly from the defining non-linear 

equations, which can sometimes be cumbersome to converge. Rather one solves for a 

large number of roots of the IP-EOM-CCSD and EA-EOM-CCSD equations 

corresponding to the active space in STEOM. Finding roots of IP-EOM-CCSD equations 

amounts to a diagonalization of (Ĥ − h0 )  over the ionized 1h, 2h1p determinants 

          (3.15)  î 0 , â†î ĵ 0
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and searching for eigenvectors corresponding to principal IP’s that are dominated by 1h 

configurations. We refer to the fraction of 1h configurations in each eigenvector as the 

%singles for the ionized state. Likewise in the EA-EOM-CCSD step (Ĥ − h0 )  is 

diagonalized over the 1p, 2p1h configurations 

         (3.16)  

Again one searches for eigenvectors corresponding to the principal EA’s that are 

dominated by the 1p configurations. From the right hand eigenvectors of the IP-EOM-

CCSD and EA-EOM-CCSD equations (denoted C) one can extract the S-amplitudes 

using a renormalization, i.e.  

               (3.17)  

The transformation coefficients U, W are chosen such that the active-active components 

of Ŝ !are signed unit matrices. This requires an inversion of the IP-EOM and EA-EOM 

eigenvectors within the occupied and virtual active spaces to obtain the U and W 

matrices. In our implementation of STEOM we equate the complete singles components 

of the Ŝ  operators to zero after renormalization. These amplitudes can only effect 

occupied-occupied or virtual-virtual orbital rotations. As the final doubly transformed 

Hamiltonian is diagonalized over the full singles space, the eigenvalues are invariant in 

regards to inclusion of the Ŝ1  operator in the transformation. The solution of the CCSD 

and IP- and / or EA-amplitudes are standard ingredients in the STEOM approach. In 

practice the number of active virtuals is typically between 20 and 30 orbitals, comparable 

to the total number of occupied orbitals for our typical molecule. Solution of all desired 

â† 0 , â†b̂† ĵ 0

sm
i =Cλ

iUm
λ ; smb

ij =Cλb
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S EA  amplitudes is comparable in expense therefore to solving the CCSD equations. 

Solution of the IP-EOM-CCSD equations has negligible expense in comparison. The 

final diagonalization step in STEOM-CCSD is comparable to a Configuration Interaction 

Singles (CIS) calculation with modified matrix elements, and also has a very modest 

expense for the molecules we consider. Therefore, solving for a large number of STEOM 

excitation energies in practice is about twice as expensive as a ground state CCSD 

calculation.  

 

Since the similarity transformations act at the level of second quantization, similar 

simplifications occur for other sectors of the Fock space. In particular, diagonalizing the 

single particle gi
j ; ga

b  matrices would yield IP-EOM-CCSD and EA-EOM-CCSD 

eigenvalues. This aspect is the reason one can solve the non-linear equations defining the 

S-amplitudes by using a stable diagonalization procedure instead [49]. In DIP-STEOM 

one diagonalizes over 2h configurations, while in DEA-STEOM one diagonalizes over 2p 

determinants. Both of these approaches can describe certain multireference problems. 

The STEOM approach is closely related to Fock Space Coupled Cluster (FSCC) Theory 

[58]. The basic steps of solving CCSD and IP/ EA sector amplitudes are identical. In 

STEOM these equations are derived using the strategy of many-body (second quantized) 

similarity transformations. In FSCC one invokes the so-called subsystem embedding 

conditions. The diagrammatic equations presented originally by Lindgren [51, 52] are 

very much in the spirit of the STEOM many-body philosophy. In STEOM the final step 

is a simple diagonalization procedure, and one can obtain as many states as desired 

(within the subspace of single excited states). In contrast, in the original Fock-Space 
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Coupled Cluster approach one had to solve a final non-linear equation and obtain all the 

roots in a predefined active space. This was often a very cumbersome step and the 

problem was often referred to as the intruder state problem. For the active orbital spaces 

used in this work (e.g. 20 occupied and 20 virtual orbitals) one would have to somehow 

avoid this intruder state problem for all 400 excited states in the active space. In practice 

this would lead to insurmountable convergence issues and typical active spaces in the 

original FSCC approach would have to be chosen carefully. These kinds of issues are 

absent in STEOM, and there are few limitations on the choice of active space. STEOM is 

robust in this respect. The issue has been solved in an alternative manner in the 

intermediate Hamiltonian formulation of Meissner [98], and this procedure is equally 

robust. In recent times the IP-EOM-CC and EA-EOM-CC amplitudes have been used in 

additional intermediate Hamiltonian approaches designed by Musial and Bartlett [99, 

100]. 

 

It is pertinent to indicate the limitations of the STEOM-CCSD approach itself. Most 

importantly, the reference state is assumed to be well described by the single reference 

CCSD approach. The reason is that otherwise one obtains large T-amplitudes and the 

three-body and higher-rank operators in H  and Ĝ  can be expected to become important. 

As a result the block-diagonal form of Ĝ  (indicated by the ~) is violated to a large extent, 

and a loss in accuracy results. The same is true for the IP-EOM-CCSD and EA-EOM-

CCSD eigenvectors. Three-body contributions to Ĝ !are again important if these 

eigenvectors have too much double excitation character (and consequently a low 

%singles). In principle one would prefer to include only ionized and attached states in the 
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transformation with a high %singles (e.g. higher than about 90%). On the other hand it is 

desirable that the character of the final STEOM excited states consists almost exclusively 

of active orbitals (e.g. %active > 98% or so). This is a conflicting condition as in practice 

high energy ionized or attached states tend to acquire significant double excitation 

character, and one should not choose too many orbitals in the active space therefore. This 

is usually not a serious issue, and hence it is not difficult to choose adequate active 

spaces. It may happen that low-lying ionized or attached states have a low %singles. If 

the corresponding principle orbital is important in the excited state one can expect such a 

state to be poorly described, whether the violating orbital is included in the active space 

or not. The STEOM-CC approach breaks down for such states. Fortunately the %active 

and %singles criteria combined provide a reasonable a posteriori guide as to the quality 

of results. All of the above considerations apply to all variants of STEOM-CCSD. 

 

In this work we will focus on excitation energies only. We will consider the following 

variations of STEOM-CCSD 

1. STEOM-CCSD itself as described above. We resort to the use of the short-hand 

notation: STEOM-CC. 

2. STEOM-PT in which the CCSD step is replaced by an MBPT(2) calculation. 

3. STEOM-H (ω) in which the final transformed Hamiltonian is symmetrized (or 

hermitized). In the section below we will discuss the details of the hermitization 

scheme we use, which depends on a continuous parameter ω . If this parameter tends 

to infinity one obtains the simplest version Gλµ =
1
2
(Gλµ +Gµλ ) . In all cases the 

hermitized version yields orthonormal eigenvectors, while the eigenvalues are 
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guaranteed to be real-valued. This is not always the case in non-hermitian variants of 

STEOM. The problem of complex eigenvalues can occur in particular if states having 

the same symmetry are close in energy, e.g. near a conical intersection. For this reason 

we are interested in a hermitized version of STEOM. 

4. Extended STEOM (EXT-STEOM): In this approach the matrix G is diagonalized over 

both singly and doubly excited configurations. In addition the operator Ĝ  is truncated 

to up to 3-body operators. This approach is suitable to describe states with significant 

double excitation character. In a previous work [90] it has been shown that EXT-

STEOM states that are dominated by single excitations usually change relatively little 

from the STEOM-CCSD values. The approach is only implemented for singlet states. 

This approach is more expensive than the EOM-CCSD approach. 

5. STEOM-D: rather than diagonalizing G over singles and doubles completely, as in 

EXT-STEOM, the doubles-doubles block is assumed to be diagonal (we use the bare 

Fock matrix elements on the diagonal), and one solves a Brillouin-Wigner type of 

perturbation expression. If the transformed Hamiltonian is presented in a block form 

            (3.18)  

 then the STEOM-D eigenvalues ω  are solved self-consistently from 

    (3.19)  

This approach can be viewed as an approximation to EXT-STEOM. One might 

anticipate slightly improved eigenvalues compared to STEOM-CCSD. Morever, the 

STEOM-D eigenvalues can serve as a diagnostic to indicate if a more extended 
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treatment is desired. This approach is only slightly more expensive than STEOM-

CCSD itself. 

6. STEOM-ORB: in this approach the active orbitals are optimized, such that they span a 

space that captures the majority of the excitation character. The purpose of the 

approach is to monitor how sensitive STEOM eigenvalues are to the precise nature of 

the active space. In this procedure one first performs a traditional STEOM calculation, 

and uses the (Schmidt orthogonalized) set of STEOM eigenvectors, denoted C below, 

to define an ensemble density matrix in both the occupied and virtual orbital 

subspaces:  

                (3.20)  

These density matrices are subsequently diagonalized, yielding occupation numbers. 

The corresponding eigenvectors or natural orbitals define an orbital space that is most 

suitable to expand the excited states. We select those orbitals above an occupation 

threshold (on the order of 0.05) to lie in the active space, and obtain the remaining 

active occupied and active virtual orbitals by diagonalizing the Fock matrix over the 

complementary (occupied or virtual) subspace. In our experience, well over 99.5% of 

the STEOM-CCSD eigenvectors lies within the thusly-constructed active space. 

Moreover the states tend to have a very pure excitation character only involving a 

single pair of orbitals, or a limited linear combination, each having large coefficients. 

These orbitals are hence quite suitable for interpreting the excitation character. Once 

the new active orbitals are obtained, a new reorthonormalization of the canonical IP-

EOM-CC and EA-EOM-CC eigenvectors is performed, i.e. new matrices U and W are 

obtained. It is this step that is responsible for subsequent changes in the excitation 

Dij = Ca
i (λ)

λ ,a
∑ Ca

j (λ); Dab = Ca
i (λ)

λ ,i
∑ Cb

i (λ);
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energies. The actual orbitals remain the canonical Hartree-Fock orbitals. It is not 

necessary to rotate all amplitudes and integrals. Only the active labels m and e are 

affected. The transformed Hamiltonian G is obtained using the new S-amplitudes and 

the final STEOM-ORB eigenvalues are obtained from the Configuration Interaction 

Singles (CIS) diagonalization procedure. In this approach only the final transformation 

and the final STEOM diagonalization are performed twice, and the approach is 

therefore computationally efficient. As will be demonstrated in the results section, 

none of this seems to matter much. Our chief goal is therefore to demonstrate that 

STEOM is rather insensitive to the precise definition of the orbitals. We consider this 

a desirable feature. 

 

Hermitization Schemes 

 The STEOM similarity transformed Hamiltonian is not hermitian. If this 

transformed Hamiltonian would be diagonalized over the complete Hilbert space, the 

eigenvalues are still guaranteed to be real (as they would be identical to the original 

eigenvalues). The virtue of the STEOM approach is of course that accurate results can be 

obtained by diagonalizing over a compact subspace. However, in that case the 

eigenvalues and eigenvectors can become complex. The issue of potential complex 

eigenvalues is most acute when states of the same symmetry are close in energy. 

Consider for example the 2×2 Hamiltonian  

                   (3.21)  

which leads to a secular equation 

D a+b
a−b D

"

#
$$

%

&
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                        (3.22)   

This gives rise to complex eigenvalues when (a2 −b2 ) < 0 . An easy way to define a 

symmetric (or hermitian) Hamiltonian is to simply average: H =
1
2
(H +H † ) . In the 

above 2×2 example this amounts to simply neglecting the asymmetry parameter b. 

Another possibility is to replace the off-diagonal elements by a multiplicative average 

value, Hij =
H ji = ± HijH ji . This leads to a sign ambiguity if the off-diagonal elements 

have different signs (precisely when complex eigenvalues occur in the 2x2 case). Our 

experience with this multiplicative hermitization scheme is not all that promising, and we 

will not consider it further.  

 

Here we will discuss a rather different procedure. Our goal is to define a hermitian 

Hamiltonian while changing the resulting eigenvalues only in a minor way. We think the 

scheme below may be of some general interest in related contexts. Let us assume H 

below is a non-hermitian matrix. In STEOM this matrix would be the matrix G defined 

over singly excited states, but the analysis applies to any matrix. We define a transformed 

(i.e. modified) Hamiltonian  

 H = eS /2HeS /2 = H + H ,S / 2{ }+1/ 2 H ,S / 2{ },S / 2{ }+ ... !(3.23) 

The braces indicate anticommutators. The matrix S is antihermitian (i.e. antisymmetric 

for the real matrices we discuss here), such that the transformation U = eS /2  is unitary. 

The coefficients in the transformation matrix Sij = −S ji  are to be solved such that the 

resulting transformed Hamiltonian is symmetric. The above transformation is not a 

(D− E)2 = (a2 −b2 )
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similarity transformation, however, and can be expected to change the eigenvalues. The 

above transformation has another peculiarity. It is not invariant if we shift the 

Hamiltonian by a constant on the diagonal, ω1  and then shift the resulting eigenvalues 

back by −ω1 . We will exploit this feature to define a family of transformed 

Hamiltonians, 

 H (ω) = eS /2(H +ω1)eS /2 −ω1, H (ω) = H (ω)†, S† = −S    (3.24) 

We will use the freedom in ω  by choosing ω  such that eigenvalues tend to change little. 

Let us consider the iterative solution of the above hermitization equation, changing S by a 

small amount ΔS : 

 

H (ω)S+ΔS = e
(S+ΔS )/2 (H +ω1)e(S+ΔS )/2 −ω1

≈ H (ω)S +
1
2
H +ω1,ΔS{ }

≈ H (ω)S +
1
2
H0 +ω1,ΔS{ }

               (3.25) 

Here H0  denotes a diagonal approximation to H. If we consider the (ij) and (ji) 

components of H , denote the diagonal elements of H by D, and suppress the ω  

dependence, then 

                 (3.26) 

where we used the antisymmetry of S in the last line. Subtracting the two equations and 

equating the difference to zero yields for the correction:  

( Hij )S+ΔS ≈ ( Hij )S +
1
2
(Di +Dj +ω)ΔSij

( H ji )S+ΔS ≈ ( H ji )S +
1
2
(Di +Dj +ω)ΔS ji

= ( H ji )S −
1
2
(Di +Dj +ω)ΔSij ,



! 40 

                               (3.27)  

Let us note that in the case of STEOM in which H (i.e. G) represents a Hamiltonian over 

excited states all diagonal elements are positive. This simplifies the analysis, but is 

probably not all that crucial. The above iteration scheme in practice rapidly converges as 

long as the denominators are not too small. The scheme has an interesting limit. In the 

case that ω→∞ : 

            (3.28)  

Since the components of S tend to zero, only first order terms in S survive, and hence  

 

Hij (∞) = (Hij +ωδij )+ ω,S / 2{ }ij −ωδij

= Hij −ω
(Hij −H ji )
2ω

=
1
2
(Hij +H ji )

              (3.29) 

Hence in the limit of very large ω  the S-amplitudes become very small, and the Taylor 

series converges very rapidly. The transformed Hamiltonian reduces to the averaged sum. 

As one reduces the values of ω  the values of the S-amplitudes increase, and the Taylor 

series expansion has to be carried to higher order to achieve the same accuracy. As the 

value of ω  reaches the negative of the smallest value of an off-diagonal element 

(Di +Dj )  the iteration scheme starts to diverge. As we will demonstrate in the results 

section, the eigenvalues of the symmetrized H (ω)  are smooth functions of ω . Most 

importantly, they seem to deviate less and less from the original eigenvalues as ω  

starting from positive values, first approaches zero and then negative values. To preserve 

stability in the scheme, ω  shouldn’t become too negative. In our default scheme of this 

ΔSij = −
( Hij −

H ji )
(Di +Dj +ω)

Sij ∞( ) = limω→∞
−
(Hij −H ji )
(Di +Dj +ω)

= −
(Hij −H ji )

ω
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ω− hermitization scheme we selected the “close to” optimal value as 

ωopt = −
1
4
min[Di +Dj ]  after some trial and error. Our implementation of the scheme 

proceeds through a recursive calculation of an anticommutator A,S / 2{ }= 12 (AS + SA) . 

This allows us to calculate the transformed Hamiltonian to arbitrary high order. Typically 

6-10 recursions are needed to assemble the transformed Hamiltonian to sufficient 

accuracy. The size of the matrices in the STEOM approach ranges over the space of 

single excitations. For the current type of applications this type of matrix is easily held in 

the core memory of the computer. Our aim here is to explore how this ω− hermitization 

scheme works, and our measure is the closeness of the eigenvalues of the original and 

transformed Hamiltonian. 

 

 

III. Results and Discussion 

 

III.A. Test Set and Computational Details 

 Let us discuss the details of the test set we use to benchmark the electronic 

structure methodologies of interest. We investigate excitation spectra of a large set of 

organic molecules involving π→π* and n→π* excitations, first studied by Schreiber and 

co-workers [93]. The test set of 28 organic molecules includes unsaturated aliphatic 

hydrocarbons (including polyenes and cyclic compounds), aromatic hydrocarbons and 

heterocylces, carbonyl compounds and nucleobases. 

 



! 42 

!

Figure 3.1: Benchmark of test set considered in the study.                                        

Reprinted with permission from [M. Schreiber, M.R. Silva-Junior, S.P. Sauer, and W. 

Thiel, J. Chem. Phys. 128, 134110 (2008)]. Copyright [2008], AIP Publishing LLC 

 
We share Schreiber’s intention to cover the most important chromophores in organic 

photochemistry. The ground-state geometries of these molecules were optimized at the 

MP2 level (Møller-Plesset second-order perturbation theory) with 6-31G* basis [101] 

using the GAUSSIAN program package [102]. Our calculations as well as results taken 

from the Schreiber paper [93] and Schapiro paper [96] were performed in the TZVP basis 

set [103] and with dropped core.  
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As mentioned before in the introduction, a STEOM calculation requires an appropriate 

choice of active orbitals. In table 3.1 we document the number of active orbitals chosen 

for the STEOM calculations we performed, along with the threshold energies used to 

yield the respective choices. Let us explain the acronyms in Table 3.1: N_IP and N_EA 

refer to the number of ionized states and electron-attached states respectively; orbitals 

with canonical HF orbital energies above the IP_low threshold are included in the ŜIP !
active space, while orbitals with orbital energies below the EA_high threshold are 

included in the ŜEA !active space. 
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Table 3.1: Documentation of the choice of active orbitals in STEOM calculations performed 
for the test set. Number of ionized states is denoted N_IP, number of electron-attached states 
is denoted N_EA. IP_low and EA_high are threshold energies in eV used to obtain the 
respective choice of orbitals. 

Molecule N_IP N_EA IP_low EA_high

Ethene 4 8 -20.00 10.00

E-Butadiene 7 18 -20.00 14.00

E-Hexatriene 12 22 -22.00 13.00

E-Octatetreane 13 26 -20.00 11.97

Cyclopropene 5 14 -20.00 12.90

Cyclopentadiene 9 14 -20.00 10.00

Norbornadiene 12 23 -20.00 13.00

Benzene 12 21 -25.00 13.50

Naphthalene 16 25 -20.00 11.50

Furan 10 16 -25.00 14.05

Pyrrole 10 17 -23.00 14.00

Imidazole 7 16 -20.00 14.10

Pyridine 10 18 -20.00 13.00

Pyrazine 10 17 -20.00 12.90
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Pyrimidine 9 18 -20.00 13.70

Pyridazine 10 16 -20.00 12.20

Triazine 10 13 -23.00 11.50

Tetrazine 10 19 -22.00 15.00

Formaldehyde 5 7 -25.00 13.00

Acetone 8 13 -20.00 10.00

Benzoquinone 6 17 -16.00 10.62

Formamide 5 9 -20.00 14.00

Acetamide 8 14 -20.00 15.00

Propanamide 11 16 -23.00 12.00

Cytosine 12 17 -20.00 11.00

Thymine 14 25 -20.00 13.72

Uracil 12 23 -20.00 14.10

Adenine 6 16 -13.53 10.00
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III.B. Discussion of Benchmarks 

 We briefly outline the general approach here before we discuss in detail. We 

investigate six variations of STEOM methodologies in this study: STEOM-CC, STEOM-

D, STEOM-ORB, STEOM-PT, STEOM-H (ω) and EXT-STEOM methods. We 

benchmark these methods for the test set and compare to NEVPT2, CASPT2, CC3 and 

EOM- CCSDT-3 methods. The CASPT2 and CC3 results are obtained from the Schreiber 

benchmark paper [93]. We obtain the NEVPT2 results from the benchmark paper by 

Schapiro [96]. However, we perform EOM-CCSDT-3 calculations using the CFOUR 

program [104]. We exclude the DNA bases from the analysis involving CC3 and EOM-

CCSDT-3 as these calculations are computationally expensive. 

 

We present below Tables 3.2a and 3.2b, which include our benchmark results for the 

excitation energies in eV for singlet and triplets excitations, respectively. In these tables 

we focus on CC3, EOM-CCSDT-3, NEVPT2, CASPT2, STEOM-CC, STEOM-D, EXT-

STEOM, and EOM-CCSD methods. We note that STEOM-D and EXT-STEOM methods 

have not been implemented for triplets. We also point out that we did not benchmark 

EOM-CCSDT-3 for triplets for reasons discussed in subsection III.B.1. below. Therefore, 

Table 3.2b does not include STEOM-D, EXT-STEOM, and EOM-CCSDT-3 results. 

STEOM-ORB, STEOM-PT, and STEOM-H (ω) methods will be considered separately 

and are omitted from the Tables. 

 

We would like to make several remarks about the CC3 and CASPT2 results we obtain 

from the Schreiber paper. First, we note that the singlet state 3 1A1 (π→π*) of 
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Cyclopentadiene should have a CC3 excitation energy of 8.69 not 6.69 eV. We think this 

is probably a typographical error. Second, the singlet state 2 1A1 (π→π*) of 

Formaldehyde has a CASPT2 result with a very large deviation from the CC3 result, and 

which likely corresponds to a different state. We confirm this by comparing the 

Schreiber’s paper result for that state with our benchmarked STEOM results to find that 

the CC3 result is in good agreement to STEOM unlike the CASPT2. We have excluded 

this state from statistics involving CASPT2. Finally, we note that we performed CC3 

calculations for the singlet states 2 1A' (π→π*) and 3 1A' (π→π*) of both Acetamide and 

Propanamide. We find that our results deviate from the CC3 results in the Schreiber’s 

paper by a deviation that ranges between 0.02 eV and 0.04 eV. The source of error in the 

Schreiber paper is not clear. 

 

 

 



! 48 

 

 

Table 3.2a: Vertical singlet excitation energies in eV for all statistically evaluated molecules. 

Molecule State CC3 (%T1) NEVPT2 CASPT2 STEOM-CC STEOM-D EXT-STEOM EOM-CCSD

Ethene 1 1B1u (!"!*) 8.37 (96.9) 8.40 (96.26) 8.69 8.62 8.34 8.33 8.32 8.51

 

E-Butadiene 1 1Bu (!"!*) 6.58 (93.7) 6.61 (92.7) 6.31 6.47 6.66 6.59 6.55 6.73

        2 1Ag (!"!*) 6.77 (72.8) 6.89 (61.64) 6.82 6.83 7.38 7.44 6.71 7.42

 

E-Hexatriene 1 1Bu (!"!*) 5.58 (92.6) 5.61 (91.31) 4.96 5.31 5.66 5.59 5.54 5.73

        2 1Ag (!"!*) 5.72 (65.8) 5.88 (54.79) 5.59 5.42 6.60 6.57 5.73 6.61

 

E-Octatetraene 1 1Bu (!"!*) 4.94 (91.9) 4.97 (90.42) 4.17 4.70 5.00 4.93 4.86 5.08

        2 1Ag (!"!*) 4.97 (62.9) 5.17 (52.37) 4.74 4.64 5.90 5.89 4.93 5.98

 

Cyclopropene 1 1B1 (#"!*) 6.90 (93) 6.92 (91.94) 6.85 6.76 6.76 6.72 6.69 6.97

        1 1B2 (!"!*) 7.10 (95.5) 7.14 (94.27) 7.18 7.06 7.06 7.03 6.99 7.25

 

Cyclopentadiene 1 1B2 (!"!*) 5.73 (94.3) 5.75 (93.13) 5.30 5.51 5.71 5.66 5.65 5.87

        2 1A1 (!"!*) 6.61 (79.3) 6.71 (71.75) 6.74 6.31 6.96 6.93 6.63 7.05

        3 1A1 (!"!*) 8.69 (93.1) 8.76 (91.25) 8.51 8.52 8.64 8.68 8.69 8.96

 

Norbornadiene 1 1A2 (!"!*) 5.64 (93.4) 5.68 (91.65) 5.07 5.34 5.55 5.52 5.49 5.80

        1 1B2 (!"!*) 6.49 (91.9) 6.55 (89.62) 5.84 6.11 6.51 6.43 6.39 6.69

        2 1B2 (!"!*) 7.64 (93.8) 7.68 (92.12) 7.10 7.32 7.64 7.60 7.57 7.85

        2 1A2 (!"!*) 7.71 (93) 7.74 (91.16) 7.07 7.44 7.67 7.58 7.54 7.86

 

Benzene 1 1B2u (!"!*) 5.07 (85.8) 5.10 (85.38) 5.24 5.05 4.68 4.88 4.87 5.19

        1 1B1u (!"!*) 6.68 (93.6) 6.69 (92.98) 6.47 6.45 6.70 6.56 6.49 6.75

        1 1E1u (!"!*) 7.45 (92.2) 7.52 (90.84) 7.28 7.07 7.42 7.44 7.45 7.66

        2 1E2g (!"!*) 8.43 (65.6) 8.60 (66.26) 8.45 8.21 8.81 8.93 8.70 9.21

 

Naphthalene 1 1B3u (!"!*) 4.27 (85.2) 4.30 (84.23) 4.39 4.24 3.99 4.07 4.03 4.41

        1 1B2u (!"!*) 5.03 (90.6) 5.09 (89.05) 4.47 4.77 5.10 5.01 4.96 5.22

        2 1Ag (!"!*) 5.98 (82.2) 6.05 (80.23) 6.27 5.90 5.88 5.92 5.77 6.23

        2 1B3u (!"!*) 6.33 (90.7) 6.41 (88.79) 5.85 6.07 6.34 6.33 6.33 6.55

        1 1B1g (!"!*) 6.07 (79.6) 6.22 (78.84) 6.20 6.00 6.37 6.31 6.12 6.53

        2 1B2u (!"!*) 6.57 (90.5) 6.64 (88.76) 6.17 6.33 6.61 6.53 6.50 6.77

        2 1B1g (!"!*) 6.79 (91.3) 6.84 (89.98) 6.41 6.48 6.76 6.70 6.64 6.98

        3 1Ag (!"!*) 6.90 (70) 7.14 (65.54) 6.90 6.71 7.42 7.49 7.14 7.77

        3 1B2u (!"!*) 8.44 (87.9) 8.56 (86.41) 8.09 8.18 8.53 8.49 8.47 8.78

        3 1B3u (!"!*) 8.12 (53.7) 8.33 (59.83) 7.98 7.76 8.62 8.69 8.43 9.03

 

Furan 2 1A1 (!"!*) 6.62 (84.9) 6.69 (81.46) 6.79 6.52 6.48 6.64 6.56 6.89

        1 1B2 (!"!*) 6.60 (92.6) 6.64 (92.05) 6.59 6.43 6.66 6.63 6.58 6.80

        3 1A1 (!"!*) 8.53 (90.7) 8.61 (87.8) 8.62 8.22 8.53 8.57 8.51 8.83

 

Pyrrole 2 1A1 (!"!*) 6.40 (86) 6.46 (83.83) 6.60 6.31 6.26 6.35 6.29 6.61

        1 1B2 (!"!*) 6.71 (91.6) 6.75 (90.95) 6.90 6.33 6.73 6.68 6.63 6.88

        3 1A1 (!"!*) 8.17 (90.2) 8.24 (87.34) 8.44 8.17 8.19 8.21 8.15 8.44

   EOM-CCSDT-3 (%T1)
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Imidazole 2 1A' (!"!*) 6.58 (87.2) 6.64 (86.03) 6.85 6.19 6.49 6.59 6.51 6.80

        1 1A'' (n"!*) 6.82 (87.6) 6.89 (86.71) 7.00 6.81 6.74 6.66 6.62 7.01

        3 1A' (!"!*) 7.10 (89.8) 7.14 (88.41) 6.99 6.93 7.05 7.03 6.98 7.27

        2 1A'' (n"!*) 7.93 (89.4) 8.01 (87.76) 8.06 7.91 7.90 7.81 7.73 8.16

        4 1A' (!"!*) 8.45 (88.6) 8.51 (86.68) 8.68 8.15 8.46 8.46 8.40 8.69

 

Pyridine 1 1B2 (!"!*) 5.15 (85.9) 5.18 (85.44) 5.36 5.02 4.80 4.97 4.95 5.27

        1 1B1 (n"!*) 5.05 (88.1) 5.12 (86.65) 5.28 5.14 5.01 4.89 4.79 5.26

        1 1A2 (n"!*) 5.50 (87.7) 5.59 (85.77) 5.50 5.47 5.40 5.38 5.34 5.73

        2 1A1 (!"!*) 6.85 (92.8) 6.87 (91.93) 7.17 6.39 6.90 6.77 6.70 6.94

        2 1B2 (!"!*) 7.59 (89.7) 7.66 (88.56) 7.38 7.29 7.57 7.59 7.57 7.81

        3 1A1 (!"!*) 7.70 (91.5) 7.78 (89.94) 7.50 7.46 7.66 7.70 7.70 7.94

        4 1A1 (!"!*) 8.68 (74.1) 8.86 (67.59) 8.11 8.70 9.07 9.16 8.97 9.45

        3 1B2 (!"!*) 8.77 (65.2) 8.97 (65.61) 8.58 8.62 9.21 9.38 9.13 9.64

 

Pyrazine 1 1B3u (n"!*) 4.24 (89.9) 4.30 (88.42) 4.25 4.12 4.20 4.06 3.97 4.42

        1 1B2u (!"!*) 5.02 (86.2) 5.05 (85.77) 5.34 4.85 4.69 4.87 4.85 5.14

        1 1Au (n"!*) 5.05 (88.4) 5.13 (86.4) 4.99 4.70 4.99 4.96 4.92 5.29

        1 1B2g (n"!*) 5.74 (85) 5.83 (84.09) 5.91 5.68 5.75 5.60 5.46 6.03

        1 1B1g (n"!*) 6.75 (85.8) 6.89 (81.72) 6.83 6.41 6.81 6.79 6.71 7.14

        1 1B1u (!"!*) 7.07 (93.3) 7.09 (92.71) 6.85 6.89 7.17 7.03 6.96 7.18

        2 1B2u (!"!*) 8.05 (89.7) 8.12 (88.44) 7.69 7.65 8.00 8.03 8.02 8.29

        2 1B1u (!"!*) 8.06 (90.9) 8.15 (89.6) 8.01 7.79 8.04 8.06 8.08 8.35

        2 1Ag (!"!*) 8.69 (74.2) 8.90 (67.01) 8.92 8.61 9.07 9.22 8.25 9.54

        1 1B3g (!"!*) 8.77 (61.1) 9.00 (62.27) 8.76 8.47 9.16 9.51 9.36 9.74

 

Pyrimidine 1 1B1 (n"!*) 4.50 (88.4) 4.57 (86.68) 4.57 4.44 4.45 4.35 4.27 4.71

        1 1A2 (n"!*) 4.93 (88.2) 5.00 (86.44) 4.87 4.81 4.78 4.76 4.72 5.13

        1 1B2 (!"!*) 5.36 (85.7) 5.39 (85.23) 5.63 5.24 4.95 5.17 5.16 5.49

        2 1A1 (!"!*) 7.06 (92.2) 7.09 (90.44) 7.51 6.64 7.13 7.01 6.92 7.17

        3 1A1 (!"!*) 7.74 (89.7) 7.81 (87.44) 8.00 7.21 7.70 7.72 7.68 7.97

        2 1B2 (!"!*) 8.01 (90.7) 8.08 (88.98) 7.80 7.64 7.92 7.96 7.96 8.23

 

Pyridazine 1 1B1 (n"!*) 3.92 (89) 4.00 (87.42) 3.96 3.78 3.86 3.73 3.64 4.12

        1 1A2 (n"!*) 4.49 (86.6) 4.59 (84.94) 4.61 4.32 4.47 4.41 4.35 4.76

        2 1A1 (!"!*) 5.22 (85.2) 5.25 (84.54) 5.48 5.18 4.89 5.07 5.02 5.35

        2 1A2 (n"!*) 5.74 (86.6) 5.82 (84.37) 5.95 5.77 5.73 5.63 5.52 6.00

        2 1B1 (n"!*) 6.41 (86.6) 6.51 (84.75) 6.74 6.52 6.41 6.35 6.30 6.70

        1 1B2 (!"!*) 6.93 (90.7) 6.96 (90.6) 7.47 6.31 7.00 6.90 6.82 7.09

        2 1B2 (!"!*) 7.55 (90.2) 7.61 (87.9) 7.50 7.29 7.59 7.57 7.55 7.78

        3 1A1 (!"!*) 7.82 (90.5) 7.91 (88.34) 7.70 7.62 7.84 7.88 7.84 8.11

 

Triazine 1 1A1'' (n"!*) 4.78 (88) 4.85 (86.28) 4.77 4.60 4.63 4.60 4.61 4.97

        1 1E'' (n"!*) 4.81 (88.1) 4.89 (86.39) 4.94 4.71 4.71 4.66 4.56 5.02

        1 1A2'' (n"!*) 4.76 (88) 4.84 (86.18) 4.94 4.68 4.77 4.65 4.61 4.99

        1 1A2' (!"!*) 5.71 (85.1) 5.74 (84.7) 5.94 5.79 5.24 5.50 5.48 5.84

        2 1A1' (!"!*) 7.41 (90.8) 7.44 (88.52) 7.36 7.25 7.45 7.34 7.23 7.51

        2 1E'' (n"!*) 7.80 (88.1) 7.95 (80.54) 8.06 7.72 7.85 7.81 7.66 8.21
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        1 1E' (!"!*) 8.04 (88.8) 8.13 (87.6) 8.25 7.49 7.99 8.02 8.00 8.28

        2 1E' (!"!*) 9.44 (74.3) 9.64 (69.23) 9.08 8.99 9.80 9.99 9.79 10.28

 

Tetrazine 1 1B3u (n"!*) 2.53 (89.6) 2.60 (88.05) 2.47 2.24 2.49 2.34 2.24 2.72

        1 1Au (!"!*) 3.79 (87.5) 3.90 (85.63) 3.82 3.48 3.80 3.74 3.68 4.08

        1 1B2u (!"!*) 5.12 (84.6) 5.16 (84.23) 5.50 4.91 4.75 4.97 4.93 5.27

        1 1B1g (n"!*) 4.97 (82.5) 5.11 (82.75) 5.22 4.73 5.03 4.90 4.76 5.34

        1 1B2g (n"!*) 5.34 (80.7) 5.44 (80.3) 5.57 5.18 5.41 5.28 5.08 5.71

        2 1Au (!"!*) 5.46 (87.4) 5.54 (86.08) 5.77 5.47 5.46 5.34 5.23 5.70

        2 1B2g (n"!*) 6.23 (79.2) 6.43 (77.75) 6.35 6.07 6.49 6.44 6.24 6.77

        2 1B3u (n"!*) 6.67 (86.7) 6.79 (84.87) 7.18 6.77 6.74 6.67 6.59 7.00

        2 1B1g (n"!*) 6.87 (84.7) 7.00 (82.74) 6.89 6.38 6.91 6.86 6.80 7.25

        1 1B1u (!"!*) 7.45 (91) 7.49 (90.93) 6.93 6.96 7.61 7.44 7.38 7.66

        2 1B1u (!"!*) 7.79 (90.2) 7.87 (88.8) 7.24 7.43 7.83 7.81 7.78 8.06

        3 1B1g (n"!*) 7.08 (63.2) 7.43 (62.55) 7.09 6.74 8.00 7.96 7.23 8.36

        1 1B3g (n"!*) 8.43 (83.63) 8.42 8.40 6.38 8.57

        2 1B2u (!"!*) 8.51 (87.7) 8.62 (87.27) 8.40 8.15 8.51 8.56 8.57 8.88

        2 1B3g (!"!*) 8.47 (63.6) 8.72 (63.06) 8.24 8.32 8.85 9.11 7.98 9.43

 

Formaldehyde 1 1A2 (n"!*) 3.95 (91.2) 3.96 (90.49) 4.22 3.98 3.82 3.72 3.65 3.97

        1 1B1 (#"!*) 9.18 (90.9) 9.20 (90.23) 9.40 9.14 9.03 8.95 8.89 9.26

        2 1A1 (!"!*) 10.45 (91.3) 10.49 (88.29) 10.33 10.40 10.42 10.54

 

Acetone 1 1A2 (n"!*) 4.40 (90.8) 4.41 (90.01) 4.49 4.42 4.27 4.12 4.04 4.44

        1 1B1 (#"!*) 9.17 (91.5) 9.19 (90.4) 9.59 9.27 9.07 8.94 8.87 9.26

        2 1A1 (!"!*) 9.65 (90.1) 9.73 (86.77) 9.58 9.31 9.70 9.68 9.63 9.88

 

Benzoquinone 1 1B1g (n"!*) 2.75 (84.1) 2.85 (83.34) 3.06 2.78 2.92 2.70 2.53 3.07

        1 1Au (n"!*) 2.85 (83) 2.95 (82.44) 3.04 2.8 3.03 2.81 2.61 3.19

        1 1B3g (!"!*) 4.59 (87.9) 4.68 (86.14) 4.43 4.25 4.70 4.68 4.56 4.93

        1 1B1u (!"!*) 5.62 (88.4) 5.69 (86.51) 5.02 5.29 5.70 5.60 5.54 5.90

        1 1B3u (n"!*) 5.82 (75.2) 6.05 (73.06) 5.96 5.6 6.31 6.25 5.74 6.55

        2 1B3g (!"!*) 7.27 (88.8) 7.37 (82.04) 6.82 6.98 7.41 7.37 7.18 7.63

        2 1B1u (!"!*) 7.82 (68.6) 7.98 (68.77) 7.78 7.91 8.38 8.34 7.52 8.47

 

Formamide 1 1A'' (n"!*) 5.65 (90.7) 5.66 (90.01) 5.93 5.63 5.48 5.37 5.32 5.66

        2 1A' (!"!*) 8.27 (87.9) 8.35 (85.2) 7.81 7.44 8.32 8.36 8.35 8.51

        3 1A' (!"!*) 10.93 (86.6) 11.09 (82.33) 10.97 10.54 11.05 11.13 11.11 11.40

 

Acetamide 1 1A'' (n"!*) 5.69 (90.6) 5.71 (89.78) 5.96 5.8 5.49 5.38 5.33 5.71

        2 1A' (!"!*) 7.69 (86.6) 7.76 (87.09) 7.69 7.27 7.61 7.65 7.66 7.88

        3 1A' (!"!*) 10.53 (84.9) 10.60 (85.88) 10.5 10.09 10.50 10.54 10.54 10.79

 

Propanamide 1 1A'' (n"!*) 5.72 (90.6) 5.73 (89.76) 5.99 5.72 5.50 5.40 5.35 5.74

        2 1A' (!"!*) 7.67 (86.2) 7.74 (86.75) 7.61 7.2 7.66 7.67 7.67 7.87

        3 1A' (!"!*) 10.08 (85.6) 10.15 (86.19) 10.37 9.94 10.02 10.07 10.04 10.35

 

Cytosine 1 1A' (!"!*) 4.46 4.61 4.60

        1 1A'' (n"!*) 5.12 5.07 5.02
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        2 1A' (!"!*) 5.54 5.64 5.58

        2 1A'' (n"!*) 5.66 5.59 5.53

        3 1A' (!"!*) 6.43 6.50 6.51

        4 1A' (!"!*) 6.86 6.91 6.85

        5 1A' (!"!*) 7.73 7.71 7.68

        6 1A' (!"!*) 8.18 8.16 8.12

 

Thymine 1 1A'' (n"!*) 4.87 4.75 4.67

        1 1A' (!"!*) 5.13 5.24 5.24

        2 1A'' (n"!*) 6.28 6.19 6.14

        2 1A' (!"!*) 6.37 6.44 6.36

        3 1A' (!"!*) 6.67 6.76 6.71

        3 1A'' (n"!*) 6.70 6.67 6.63

        4 1A'' (n"!*) 7.25 7.25 7.21

        4 1A' (!"!*) 7.40 7.51 7.50

        5 1A' (!"!*) 8.33 8.33 8.30

 

Uracil 1 1A'' (n"!*) 4.87 4.74 4.66

        1 1A' (!"!*) 5.18 5.33 5.34

        2 1A'' (n"!*) 6.19 6.11 6.08

        2 1A' (!"!*) 6.37 6.43 6.34

        3 1A' (!"!*) 6.82 6.91 6.86

        3 1A'' (n"!*) 6.87 6.84 6.80

        4 1A' (!"!*) 7.26 7.43 7.44

        4 1A'' (n"!*) 7.26 7.27 7.22

        5 1A' (!"!*) 8.29 8.28 8.26

 

Adenine 1 1A' (!"!*) 4.87 5.02 4.98

        1 1A'' (n"!*) 5.24 5.18 5.15

        2 1A' (!"!*) 5.39 5.36 5.29

        2 1A'' (n"!*) 5.86 5.78 5.73

        3 1A' (!"!*) 6.56 6.55 6.49

        4 1A' (!"!*) 6.68 6.77 6.68

        5 1A' (!"!*) 6.85 6.84 6.73

        6 1A' (!"!*) 7.42 7.40 7.31

        7 1A' (!"!*) 7.81 7.78 7.68
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Molecule State CC3 (%T1) NEVPT2 CASPT2 STEOM-CC

Ethene 1 3B1u (!"!*) 4.48 (99.30) 4.60 4.60 4.42 4.42 (99.4)

 

E-Butadiene 1 3Bu (!"!*) 3.32 (98.50) 3.39 3.44 3.13 3.25 (98.9)

        1 3Ag (!"!*) 5.17 (98.90) 5.28 5.16 4.99 5.15 (99.1)

 

E-Hexatriene 1 3Bu (!"!*) 2.69 (98.00) 2.74 2.71 2.46 2.62 (98.6)

        1 3Ag (!"!*) 4.32 (98.40) 4.40 4.31 4.18 4.28 (98.9)

 

E-Octatetraene 1 3Bu (!"!*) 2.30 (97.60) 2.33 2.33 2.06 2.23 (98.5)

        1 3Ag (!"!*) 3.67 (98.10) 3.73 3.69 3.51 3.62 (98.7)

 

Cyclopropene 1 3B2 (!"!*) 4.34 (99.10) 4.56 4.35 4.08 4.30 (99.2)

        1 3B1 (#"!*) 6.62 (98.10) 6.58 6.51 6.55 6.66 (98.5)

 

Cyclopentadiene 1 3B2 (!"!*) 3.25 (98.50) 3.33 3.28 3.07 3.18 (98.9)

        1 3A1 (!"!*) 5.09 (98.70) 5.23 5.10 5.02 5.07 (99)

 

Norbornadiene 1 3A2 (!"!*) 3.72 (98.70) 3.81 3.75 3.49 3.67 (99)

        1 3B2 (!"!*) 4.16 (99.00) 4.31 4.22 3.89 4.09 (99.2)

 

Benzene 1 3B1u (!"!*) 4.12 (98.70) 4.33 4.17 3.52 3.94 (99)

        1 3E1u (!"!*) 4.90 (97.00) 5.00 4.90 4.80 4.97 (97.9)

        1 3B2u (!"!*) 6.04 (98.20) 5.54 5.76 5.97 6.00 (98.6)

        1 3E2g (!"!*) 7.49 (94.90) 7.61 7.41 7.53 7.73 (97.6)

 

Naphthalene 1 3B2u (!"!*) 3.11 (97.30) 3.28 3.20 2.71 2.99 (98.2)

        1 3B3u (!"!*) 4.18 (93.20) 4.27 4.29 4.13 4.27 (97.9)

        1 3B1g (!"!*) 4.47 (96.90) 4.59 4.55 4.22 4.44 (97.4)

        2 3B2u (!"!*) 4.64 (97.80) 4.73 4.71 4.46 4.67 (98.6)

        2 3B3u (!"!*) 5.11 (96.80) 4.53 5.00 5.03 5.10 (97.8)

        1 3Ag (!"!*) 5.52 (96.50) 5.62 5.57 5.42 5.57 (97.7)

        2 3B1g (!"!*) 6.48 (97.60) 5.95 6.25 6.64 6.79 (98.3)

        2 3Ag (!"!*) 6.47 (97.90) 6.25 6.42 6.66 6.81 (98.5)

        3 3Ag (!"!*) 6.79 (95.00) 6.56 6.63 6.77 6.96 (97.3)

        3 3B1g (!"!*) 6.76 (94.00) 6.83 6.67 6.83 7.04 (97.3)

 

Furan 1 3B2 (!"!*) 4.17 (98.50) 4.36 4.17 3.84 4.10 (98.9)

        1 3A1 (!"!*) 5.48 (98.20) 5.67 5.49 5.28 5.48 (98.7)

 

Pyrrole 1 3B2 (!"!*) 4.48 (98.40) 4.74 4.52 4.18 4.41 (98.8)

        1 3A1 (!"!*) 5.51 (97.80) 5.70 5.53 5.46 5.54 (98.4)

 

Imidazole 1 3A' (!"!*) 4.69 (98.40) 4.80 4.65 4.40 4.62 (98.8)

        2 3A' (!"!*) 5.79 (97.90) 5.93 5.74 5.68 5.83 (98.5)

        1 3A'' (n"!*) 6.37 (97.40) 6.49 6.36 6.23 6.43 (98.3)

        3 3A' (!"!*) 6.55 (97.90) 6.67 6.44 6.40 6.56 (98.4)

    EOM-CCSD (%T1)

 

 
Table 3.2b: Vertical triplet excitation energies in eV for all statistically evaluated molecules. 
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        4 3A' (!"!*) 7.42 (97.10) 7.15 7.43 7.32 7.54 (98)

2 3A'' (n"!*) 7.51 (96.00) 7.61 7.51 7.56 7.76 (97.6)

 

Pyridine 1 3A1 (!"!*) 4.25 (98.60) 4.48 4.27 3.69 4.07 (99)

        1 3B1 (n"!*) 4.50 (97.10) 4.60 4.55 4.39 4.61 (98.1)

        1 3B2 (!"!*) 4.86 (97.20) 4.97 4.72 4.82 4.91 (98)

        2 3A1 (!"!*) 5.05 (97.00) 5.16 5.03 5.00 5.13 (97.9)

        1 3A2 (n"!*) 5.46 (95.80) 5.49 5.48 5.43 5.67 (97.5)

        2 3B2 (!"!*) 6.40 (97.80) 6.49 6.02 6.34 6.41 (98.3)

        3 3A1 (!"!*) 7.66 (95.30) 7.87 7.56 7.73 7.90 (97.7)

        3 3B2 (!"!*) 7.83 (94.40) 7.28 7.88 7.94 8.12 (97.4)

 

Tetrazine 1 3B3u (n"!*) 1.89 (97.20) 1.69 1.56 1.79 1.99 (98.1)

        1 3Au (n"!*) 3.52 (96.30) 3.46 3.26 3.55 3.74 (97.7)

        1 3B1u (!"!*) 4.33 (98.50) 4.56 4.36 3.67 4.05 (99)

        1 3B1g (n"!*) 4.21 (97.10) 4.37 4.14 4.04 4.31 (98.2)

        1 3B2u (!"!*) 4.54 (97.40) 4.76 4.56 4.53 4.57 (98.1)

        1 3B2g (n"!*) 4.93 (96.40) 5.22 4.93 4.87 5.09 (98)

        2 3Au (n"!*) 5.03 (96.60) 5.11 5.02 5.01 5.20 (97.8)

        2 3B1u (!"!*) 5.38 (96.50) 5.54 5.40 5.42 5.48 (97.5)

        2 3B2g (n"!*) 6.04 (93.00) 6.18 5.97 6.29 6.51 (96.8)

        2 3B3u (n"!*) 6.53 (95.80) 6.78 6.54 6.63 6.80 (97.5)

        2 3B1g (n"!*) 6.60 (92.30) 6.62 6.31 6.86 7.11 (96.9)

        2 3B2u (!"!*) 7.36 (96.80) 6.54 7.10 7.52 7.46 (97.7)

 

Formaldehyde 1 3A2 (n"!*) 3.55 (98.10) 3.75 3.58 3.50 3.52 (98.6)

        1 3A1 (!"!*) 5.83 (99.20) 6.05 5.84 5.65 5.78 (99.3)

 

Acetone 1 3A2 (n"!*) 4.05 (97.90) 4.13 4.08 3.95 4.03 (98.4)

        1 3A1 (!"!*) 6.03 (98.90) 6.04 6.03 5.81 5.94 (99.1)

 

Benzoquinone 1 3B1g (n"!*) 2.51 (95.90) 2.88 2.63 2.54 2.71 (97.9)

        1 3B1u (!"!*) 2.96 (97.80) 2.94 2.99 2.64 2.89 (98.5)

        1 3Au (n"!*) 2.62 (95.70) 2.89 2.68 2.65 2.83 (97.8)

        1 3B3g (!"!*) 3.41 (98.00) 3.43 3.31 3.20 3.42 (98.6)

 

Formamide 1 3A'' (n"!*) 5.36 (97.80) 5.65 5.40 5.23 5.32 (98.4)

        1 3A' (!"!*) 5.74 (98.40) 5.87 5.58 5.63 5.67 (98.7)

 

Acetamide 1 3A'' (n"!*) 5.42 (98.30) 5.54 5.53 5.26 5.39 (98.4)

        1 3A' (!"!*) 5.88 (98.30) 5.67 5.75 5.73 5.83 (98.7)

 

Propanamide 1 3A'' (n"!*) 5.45 (97.70) 5.60 5.44 5.27 5.41 (98.4)

        1 3A' (!"!*) 5.90 (98.30) 5.90 5.79 5.74 5.84 (98.7)
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In the following sections, we analyze our benchmark results and draw conclusions 

regarding STEOM methods. 

 

III.B.1.  CC3 against EOM-CCSDT-3 

 In this subsection we analyze the benchmark results for CC3 and EOM-CCSDT-3 

methods for the singlet excitations. For the triplet excitations, as reported by Schreiber et 

al., EOM-CCSD results are very close to CC3 results. This reflects that electron 

correlation effects are less pronounced for triplet excited states. For this reason one can 

expect also EOM-CCSDT-3 results to be very close for the triplet states, and no further 

analysis was attempted. A critical parameter that is used to gauge the reliability of CC3 

calculations is the %T1 diagnostic. If this parameter becomes too small, double 

excitations are important, and correspondingly the perturbative treatment of triples 

corrections in CC3 or EOM-CCSDT-3 becomes suspect. We use a %T1 threshold value 

87%, meaning that only states that have %T1 larger than or equal to this value are 

included in the statistical analysis. All excitation energies are reported in Tables 3.2a and 

3.2b regardless of %T1. Our %T1 threshold is somewhat conservative probably, and 85% 

has been used also in the literature [72]. 

 

We present our statistical data for the comparison between CC3 and EOM-CCSDT-3 in 

Table 3.3. 
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Statistics EOM-CCSDT-3 − CC3 

Minimum Error 0.006 

Maximum Error 0.113 

Mean Error 0.049 

Mean Absolute Error 0.049 

Root Mean Square Error 0.056 

Standard Deviation 0.027 
Table 3.3: Statistical analysis of the benchmark set excitation energy deviations in eV of 
EOM-CCSDT-3 from CC3 for singlet states with T1≥87%. 

!

We also perform a histogram bar chart analysis for our results (Figure 3.2a). In such a 

chart one counts the number of occurrences (errors or deviations here) in given equally 

spaced intervals. The bin size determines our distribution as the central interval is always 

centered around zero. This bin size is reported in the figure caption. To get a qualitative 

picture of the distribution, we also construct continuous plots. This is a more convenient 

representation if a number of distributions are examined in a single graph. We emphasize 

that continuous plots (using 3-point spline extrapolation) are not an entirely accurate 

representation of our results, as our results are constituted of discrete data points. In all 

following subsections, we use continuous plots to represent our data as they provide 

significant ease and insight of the distribution studied. We also note that the distribution 

is sensitive to the bin size chosen. We always attempt to choose a convenient bin size that 

will provide a suitable representation of the data. 
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Figure 3.2a: Histogram bar chart (bin size 0.01), showing distribution of the benchmark 
set excitation energy deviations of EOM-CCSDT-3 from CC3 for singlet states with 
%T1≥87%. 

 

 

Figure 3.2b: Continuous curves as a representation for the distribution of the benchmark 
set excitation energy deviations of EOM-CCSDT-3 from CC3 for singlet states with 
T1≥87%. 

 

The results presented here are somewhat surprising. From previous CC3 benchmark 

studies on small molecules it has been established that CC3 results can be expected to be 

quite close to the full Configuration Interaction (CI) solution, within a mean absolute 

error of only 0.016 eV for singles dominated singlet as well as triplet excitation energies 
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[105]. From a formal theoretical perspective the EOM-CCSDT-3 approach is slightly 

more complete than CC3, and is likewise expected to be close to the full CI. Nonetheless, 

for the present test set of larger molecules, we find somewhat significant deviations of 

around 0.08 eV, quite frequently. We note that all deviations greater than 0.07 eV are 

π→π* excitations with the exception of two deep lying states for pyridazine and tetrazine, 

which are n→π* excitations. Since these methods serve to benchmark our STEOM 

results, and other approaches in the literature, e.g. [93, 96], these deviations are larger 

than we would like. These results are indicative that a future more accurate benchmark is 

desired. A possible candidate for such a future benchmark might be the CC(P;Q) 

approach developed by Shen and Piecuch [39, 40] or the full EOM-CCSDT approach 

[106, 107]. 

 

III.B.2.  STEOM-H (ω) Methods 

 As discussed in section II., a hermitized version of STEOM is of interest, and we 

discussed a continuous family of approaches denoted STEOM-H (ω), with the ω→∞  

limit representing the simplest averaging of the transformed Hamiltonian and its 

transpose. Here we present the results of the statistical analysis of the benchmarks of 

different STEOM-H (ω) methods compared to STEOM-CC in Tables 3.4a and 3.4b for 

singlet excitations and triplet excitations respectively.  
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Statistics STEOM-H 
(ω*) 

STEOM-H 
(0) 

STEOM-H 
(0.5) 

STEOM-H 
(∞) 

Minimum 
Error -0.103 -0.073 -0.098 -0.124 

Maximum 
Error 0.000 -0.003 -0.004 -0.012 

Mean Error -0.016 -0.023 -0.033 -0.048 

Mean 
Absolute Error 0.016 0.023 0.033 0.048 

Root Mean 
Square Error 0.020 0.025 0.037 0.052 

Standard 
Deviation 0.012 0.012 0.016 0.020 

Table 3.4a: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-H (ω) methods from STEOM-CC for singlet states. 
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!

Statistics STEOM-H 
(ω*) 

STEOM-H 
(0) 

STEOM-H 
(0.5) 

STEOM-H 
(∞) 

Minimum 
Error -0.026 -0.036 -0.053 -0.071 

Maximum 
Error 0.004 -0.002 -0.005 -0.010 

Mean Error -0.006 -0.013 -0.023 -0.037 

Mean 
Absolute Error 0.007 0.013 0.023 0.037 

Root Mean 
Square Error 0.009 0.014 0.025 0.039 

Standard 
Deviation 0.006 0.006 0.010 0.014 

Table 3.4b: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-H (ω) methods from STEOM-CC for triplet states. 

 

As in the previous section, we perform a histogram analysis for the results and we 

represent the distributions as continuous curves (Figures 3.3a and 3.3b). 
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Figure 3.3a: Distribution of the benchmark set excitation energy deviations of STEOM-H 
(ω) methods from STEOM-CC for singlet states. Bin size: 0.01. 
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Figure 3.3b: Distribution of the benchmark set excitation energy deviations of STEOM-H 
(ω) methods from STEOM-CC for triplet states. Bin size: 0.01. 

!

The best STEOM-H method is unambiguously the STEOM-H (ω*) approach. Let us 

recall that in this approach the ω parameter is determined for each symmetry block of 

excitation energies separately from the diagonal elements of the sector of the transformed 

Hamiltonian. In practice the value of ω* is between -0.1 a.u. or -2.7 eV and -0.2 a.u. or -

5.4 eV. The deviation from STEOM-CC monotonically increases as ω increases with 

greatest deviation forω→∞ as is evident from Figures 3.3a and 3.3b. Since these results 

are quite close to STEOM-CC in general, no further analysis of the hermitized 

approaches is needed. Their trends will clearly follow the parent STEOM-CC approach. 
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III.B.3.  STEOM-ORB 

 Next we investigate another minor issue: the dependence of STEOM-CC results 

on the precise choice of active orbitals. In the STEOM-ORB approach a set of “natural 

orbitals” is introduced within the subspaces of occupied and virtual Hartree-Fock orbitals, 

as discussed in section II. We present the results of the statistical analysis of the 

benchmarks of STEOM-ORB compared to STEOM-CC in Table 3.5 for singlet 

excitations and triplet excitations. 

 

Statistics Singlets Triplets 

Minimum Error -0.055 -0.043 

Maximum Error 0.004 0.002 

Mean Error -0.008 -0.014 

Mean Absolute Error 0.008 0.014 

Root Mean Square Error 0.011 0.018 

Standard Deviation 0.008 0.011 
Table 3.5: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-ORB from STEOM-CC for singlet states and triplet states. 

!

The distributions are represented as continuous curves in Figures 3.4a and 3.4b below.  
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Figure 3.4a: Distribution of the benchmark set excitation energy deviations of STEOM-
ORB from STEOM-CC for singlet states. Bin size: 0.01. 
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Figure 3.4b: Distribution of the benchmark set excitation energy deviations of STEOM-
ORB from STEOM-CC for triplet states. Bin size: 0.01. 

!

These results clearly indicate that STEOM-CC results are quite insensitive to the precise 

definition of active orbitals. This is a redeeming feature of the approach. Results are 

clear-cut again, and there is no need to make additional analysis of the STEOM-ORB 

approach. They closely follow the parent STEOM-CC results. 

 

III.B.4.  STEOM-PT 

 We study the results of the statistical analysis of the benchmarks of STEOM-PT 

compared to STEOM-CC in Table 3.6 for singlet excitations and triplet excitations. 
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Statistics Singlets Triplets 

Minimum Error -0.265 -0.188 

Maximum Error 0.264 0.442 

Mean Error 0.056 0.064 

Mean Absolute Error 0.099 0.093 

Root Mean Square Error 0.121 0.120 

Standard Deviation 0.107 0.102 
Table 3.6: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-PT from STEOM-CC for singlet states and triplet states. 

!

We demonstrate the distributions as continuous curves (Figures 3.5a and 3.5b) to provide 

insight about the STEOM-PT methodology. 

 

 

Figure 3.5a: Distribution of the benchmark set excitation energy deviations of STEOM-
PT from STEOM-CC for singlet states. Bin size: 0.02. 
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Figure 3.5b: Distribution of the benchmark set excitation energy deviations of STEOM-
PT from STEOM-CC for triplet states. Bin size: 0.02. 

!

The deviations of STEOM-PT from STEOM-CC for singlet states are rather erratic and 

the distribution for deviations is quite spread out with some sizeable deviations. For 

triplet states, the distribution of deviations is likewise rather broad. Given these results, 

and the fact that STEOM-CC is only about twice as demanding as STEOM-PT, the 

STEOM-PT approach is not all that interesting. Only if the calculation of the EA 

amplitudes would be approximated with a cheaper method like for example with the 

partitioned EOM-CC approach [108], results that might have merits should prove 

interesting. 
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III.B.5.  STEOM-CC, STEOM-D and EOM-CCSD against 

    CC3 and EOM-CCSDT-3 

 In this section we discuss the accuracy of STEOM-CC, STEOM-D and EOM-

CCSD against CC3 and EOM-CCSDT-3. We commence by discussing results for singlet 

excitations and then we discuss results for triplet excitations. 

 

III.B.5.1 Singlet Excitations 

 We present the results of the statistical analysis of the benchmarks of STEOM-

CC, STEOM-D, EXT-STEOM and EOM-CCSD compared to CC3 and EOM-CCSDT-3 

(separated by a slash) in Table 3.7 and we plot continuous distributions in Figures 3.6a 

and 3.6b. Again, we only include CC3 and EOM-CCSDT-3 results with T1≥87% for the 

reasons mentioned in section III.B.1. 
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Statistics STEOM-CC STEOM-D EXT-STEOM EOM-CCSD 

Minimum 
Error -0.219 / -0.229 -0.323 / -0.334 -0.374 / -0.384 0.009 / -0.002 

Maximum 
Error 0.159 / 0.120 0.100 / -0.010 0.083 / -0.055 0.408 / 0.255 

Mean Error -0.019 / -0.073 -0.067 / -0.120 -0.118 / -0.161 0.198 /0.125  

Mean 
Absolute Error 0.065 / 0.091 0.085 / 0.120 0.123 / 0.161 0.198 / 0.125 

Root Mean 
Square Error 0.081 / 0.105 0.118 / 0.146 0.160 / 0.189 0.216 / 0.136 

Standard 
Deviation 0.079 / 0.076 0.097 / 0.084 0.109 / 0.100 0.086 / 0.056 

Table 3.7: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-CC, STEOM-D, EXT-STEOM and EOM-CCSD from CC3 and from EOM-
CCSDT-3 for singlet states. Only CC3 and EOM-CCSDT-3 states with T1≥87% are 
included in the analysis. A slash separates the values for the comparison against CC3 
from that against EOM-CCSDT-3. 
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Figure 3.6a: Distribution of the benchmark set excitation energy deviations of STEOM-
CC, STEOM-D, EXT-STEOM and EOM-CCSD from CC3 for singlet states. Only CC3 
states with T1≥87% are included in the analysis. Bin size: 0.05. 
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Figure 3.6b: Distribution of the benchmark set excitation energy deviations of STEOM-
CC, STEOM-D, EXT-STEOM and EOM-CCSD from EOM-CCSDT-3 for singlet states. 
Only EOM-CCSDT-3 states with T1≥87% are included in the analysis. Bin size: 0.05. 

!

The deviation of EOM-CCSD is very systematic in particular in comparison to EOM-

CCSDT-3. This is clear from the histogram, which exhibits a sharply peaked distribution 

(standard deviation of 0.056 eV), centered at 0.15 eV (0.125 eV mean absolute error). 

The comparison with CC3 is somewhat less systematic. 

For STEOM-CC the distribution is somewhat broader than for EOM-CCSD (standard 

deviation of 0.079 eV/ 0.076 eV). It is centered more closely to zero, in particular when 

compared to CC3. Overall the most relevant root mean square error is better for STEOM-

CC than for EOM-CCSD. 

The statistical analysis indicates that STEOM-CC is more accurate than STEOM-D. 
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information, specifically that STEOM-D is quite accurate in general with the exception of 

some outliers. It is interesting to see that the STEOM-D has a sharper peak than STEOM-

CC, in particular when compared to EOM-CCSDT-3. The distribution is shifted to about 

0.05 eV lower excitation energies compared to EOM-CCSDT-3 with a wing at a 

deviation of around -0.2 eV. This wing corresponds to outliers, which are mostly n→π* 

excitations involving ‘double bond O’ groups found in amides, ketones and aldehydes. 

The only exceptions to these outliers are two σ→π* excitations.  

EXT-STEOM has a broader distribution than STEOM-CC and STEOM-D. The 

distribution has a pronounced tail with a number of states exhibiting deviations up to 

about -0.4 eV. The fact that STEOM-CC and EXT-STEOM yield quite comparable 

results, while the size of the diagonalization manifold is greatly different, testifies to the 

effectiveness of the similarity transform approach. It is natural that EXT-STEOM yields 

lower excitation energies, as the ground state CCSD energy is the same in both 

approaches, while the diagonalization manifold is much larger in EXT-STEOM. 

Given the low computational cost of STEOM methods and the statistical results, we can 

say that the STEOM approach is behaving very satisfactorily when comparing to the 

computationally more expensive EOM-CCSD. 

 

III.B.5.2 Triplet Excitations 

 We present the results of the statistical analysis of the benchmarks of STEOM-

CC, and EOM-CCSD compared to CC3 in Table 3.8 for triplet excitations and we present 

the distributions in Figure 3.7. First, we note that STEOM-D and EXT-STEOM methods 

are not implemented for triplet states, hence their absence in this section. We remind the 
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reader that we do not benchmark EOM-CCSDT-3 for triplet states as we expect EOM-

CCSDT-3 to be very close to CC3. The reader is referred to the discussion in section 

III.B.1. We also note that the CC3 results for our benchmark set has a relatively high 

%T1 being in general above 92%. The excitation energy results are found in Table 3.2b. 

For this reason, we do not employ the %T1 diagnostic to filter our results and we simply 

include all the results in the statistical analysis. 

 

Statistics STEOM-CC EOM-CCSD 

Minimum 
Error -0.662 -0.280 

Maximum 
Error 0.256 0.510 

Mean Error -0.111 0.053 

Mean 
Absolute Error 0.156 0.114 

Root Mean 
Square Error 0.201 0.156 

Standard 
Deviation 0.169 0.148 

Table 3.8: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-CC and EOM-CCSD from CC3 for Triplet states. 
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Figure 3.7: Distribution of the benchmark set excitation energy deviations of STEOM-
CC and EOM-CCSD from EOM-CCSDT-3 for triplet states. Bin size: 0.05. 

!

For triplet states STEOM-CC results show larger errors than EOM-CCSD (the root mean 

square error is ~ 0.20 eV for STEOM-CC compared to ~ 0.16 eV for EOM-CCSD). The 

difference is also evident from the plots. The error or deviation for the triplet states in 

STEOM-CC is even greater than in the case of singlet states. The improved accuracy of 

EOM-CCSD for triplet states is expected. It correlates to the larger value of %T1 in the 

CC3 calculations. The difficulties of STEOM to describe triplet states on the other hand 

are unexpected. In particular some quite large deviations (~0.66 eV) occur for low-lying 

triplet states. It is possible that a STEOM-D treatment would correct these errors, but this 
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approach has not yet been implemented. At present we do not have a good explanation 

for the worse behavior of STEOM for triplet states. It is surprising we think. 

 

III.B.6.  STEOM-CC, STEOM-D, NEVPT2 and CASPT2 against 

    CC3 and EOM-CCSDT-3 

 In this section we compare STEOM-CC, STEOM-D to NEVPT2 and CASPT2 

taking CC3 and EOM-CCSDT-3 as references for the comparison.  

 

III.B.6.1 Singlet Excitations 

 We present the results of the statistical analysis of the benchmarks of STEOM-

CC, STEOM-D, NEVPT2 and CASPT2 compared to CC3 and EOM-CCSDT-3 in Table 

3.9. We only include states corresponding to T1≥87% in our analysis.  
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Statistics STEOM-CC STEOM-D NEVPT2 CASPT2 

Minimum 
Error -0.219/ -0.229 -0.323/-0.334  -0.770/ -0.803 -0.830/ -0.654 

Maximum 
Error 0.159/ 0.120 0.100/ -0.010 0.540/ 0.506 0.250/ 0.224 

Mean Error -0.019/ -0.073 -0.067/ -0.120 -0.066/ -0.142 -0.225/ -0.287 

Mean 
Absolute Error 0.065/ 0.091 0.085/ 0.120 0.258/ 0.296 0.241/ 0.303 

Root Mean 
Square Error 0.081/ 0.105 0.118/ 0.146 0.318/ 0.359 0.291/ 0.346 

Standard 
Deviation 0.079/ 0.076 0.097/ 0.084 0.313/ 0.333 0.186/ 0.196 

Table 3.9: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-CC, STEOM-D, NEVPT2 and CASPT2 from CC3 and from EOM-CCSDT-3 
for singlet states. Only CC3 and EOM-CCSDT-3 states with T1≥87% are included in the 
analysis. 

!

The distributions are shown below (Figures 3.8a and 3.8b). 

 



! 76 

 

Figure 3.8a: Distribution of the benchmark set excitation energy deviations of STEOM-
CC, STEOM-D, NEVPT2 and CASPT2 from CC3 for singlet states. Only CC3 states 
with T187% are included in the analysis. Bin size: 0.1. 
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Figure 3.8b: Distribution of the benchmark set excitation energy deviations of STEOM-
CC, STEOM-D, NEVPT2 and CASPT2 from EOM-CCSDT-3 for singlet states. Only 
EOM-CCSDT-3 states with T1≥87% are included in the analysis. Bin size: 0.1. 

!

The plots and statistics show that STEOM-CC and STEOM-D are clearly superior to the 

reputable NEVPT2 and CASPT2 approaches when compared against CC3 and EOM-

CCSDT-3. The statistical results show that STEOM-CC and STEOM-D are more 

accurate than NEVPT2 and CASPT2, while also the distributions show that there are 

generally less outliers for the STEOM methods compared to NEVPT2 and CASPT2.  

It is not clear whether STEOM-D is an improvement over STEOM-CC.  
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III.B.6.2 Triplet Excitations 

 We present the results of the statistical analysis of the benchmarks of STEOM-

CC, STEOM-D, NEVPT2 and CASPT2 compared to CC3 in Table 3.10 and plot curves 

for the distribution in Figure 3.9. 

 

Statistics STEOM-CC EOM-CCSD NEVPT2 CASPT2  

Minimum 
Error -0.662 -0.280 -0.820 -0.380 

Maximum 
Error 0.256 0.510 0.370 0.120 

Mean Error -0.111 0.053 0.054 -0.031 

Mean 
Absolute Error 0.156 0.114 0.170 0.075 

Root Mean 
Square Error 0.201 0.156 0.221 0.112 

Standard 
Deviation 0.169 0.148 0.216 0.108 

Table 3.10: Statistical analysis of the benchmark set excitation energy deviations in eV of 
STEOM-CC, STEOM-D, NEVPT2 and CASPT2 from CC3 for triplet states. 

!
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Figure 3.9: Distribution of the benchmark set excitation energy deviations of STEOM-
CC, STEOM-D, NEVPT2 and CASPT2 from CC3 for triplet states. Bin size: 0.1. 
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STEOM-D approach can provide more accurate results for triplets. However, this is 
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as doubly excited and hence include in the statistical analysis. We present the results of 

the statistical analysis in Table 3.11. 

 

Statistics CC3 EOM-CCSDT-3 EXT-STEOM NEVPT2 

Minimum 
Error -0.090 0.056 -0.392 -0.590 

Maximum 
Error 0.450 0.693 0.893 0.430 

Mean Error 0.206 0.403 0.299 0.136 

Mean 
Absolute Error 0.223 0.403 0.420 0.221 

Root Mean 
Square Error 0.255 0.439 0.476 0.261 

Standard 
Deviation 0.155 0.179 0.380 0.229 

Table 3.11: Statistical analysis of the benchmark set excitation energy deviations in eV of 
CC3, EOM-CCSDT-3, EXT-STEOM and NEVPT2 from CASPT2 for singlet states. 
Only states corresponding to T1<80% in CC3 are included in the analysis. 

!

Below is the histogram analysis for the results represented as continuous curves (Figure 

3.10).  
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Figure 3.10: Distribution of the benchmark set excitation energy deviations of CC3, 
EOM-CCSDT-3, EXT-STEOM and NEVPT2 from CASPT2 for singlet states. Only 
states corresponding to CC3 T1<80% are included in the analysis. Bin size: 0.1. 

!
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increasing erratic in the order mentioned above. We should note that the CASPT2 

approach itself is not a good reference for doubly excited states and therefore one of the 

few possible conclusions that can be drawn from the above results is that EXT-STEOM is 

not a much less accurate method than CC3, EOM-CCSDT-3 and NEVPT2 for doubly 
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suitable for doubly excited states to study the effectiveness of EXT-STEOM for such 

states. 

 

 

IV. Concluding Remarks 

 The STEOM-CC approach and several of its variations have been applied to a 

large set of singly excited valence excited states of organic molecules. The STEOM-CC 

results for this large set of molecules demonstrates the robustness of the approach: while 

the approach in principle can break down for reasons discussed in section II, it has not for 

any of the states considered in this test set. 

From the statistical analysis, it clearly transpires that STEOM-CC results are a significant 

improvement over EOM-CCSD, CASPT2, and NEVPT2 for singlet excited states. This 

conclusion does not hold for triplet excited states, however. The other approaches are 

clearly more accurate for triplets than for singlets, while STEOM can be more erratic for 

triplets and tends to be a bit less accurate for triplets than for singlets. 

In this study only valence excited states are considered. For gas phase molecules Rydberg 

states are of considerable interest also. STEOM-CC and EOM-CCSD have an essential 

black box character that allows a convenient treatment of valence and Rydberg excited 

states. They are more cumbersome for CASPT2 and NEVPT2 as they require special 

selection of active spaces. 

 

Regarding computational costs, STEOM-CC is clearly more cost-effective than EOM-

CCSD. Compared to CASPT2 and NEVPT2 the comparison is more ambiguous. For 
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small active spaces CASPT2 and NEVPT2 are more efficient than canonical-orbital 

EOM-CC and STEOM-CC approaches. Recent advances in local correlation and pair 

natural orbital CC approaches may affect the balance. In this context STEOM-CC may 

have a particular advantage as the parent state CC, IP-EOM-CC and EA-EOM-CC all 

naturally localize. Only at the level of the final (CIS) diagonalization step does one lose 

localization. 

 

In this chapter we reached some other clear conclusions. The STEOM-H (ω*) approach 

seems an interesting way to hermitize the transformed Hamiltonian, and is clearly 

superior over straightforward averaging of G  and G† . It is quite satisfactory that 

STEOM does not sensitively depend on the precise definition of occupied and virtual 

orbitals as seen in section III.B.3. Replacing the CCSD step by MBPT(2) leads to 

significant errors, although this approach may be still of interest in practice. 

The comparison between STEOM-D and STEOM-CC did not show a clear improvement 

due the perturbative doubles correction. This extension may not be worthwhile. The 

verdict is not unambiguous however. From the discussion in section III.B.5., it appears 

that a particular class of excitations involving ‘double bond O’ groups found in amides, 

ketones and aldehydes produce large errors (~ 0.2 eV in STEOM-D) and affects the 

statistics. Further investigations are desirable. Likewise the results from EXT-STEOM 

are disappointing. The approach provides a respectable description of doubly excited 

states, but is less accurate than STEOM-CC itself for states clearly dominated by singly 

excited states. 
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In the near future we plan to present a benchmarking study considering also Rydberg and 

charge-transfer excited states. The STEOM-CC approach is expected to describe all states 

about equally well, providing a balanced approach, while not being sensitive to 

complications due to valence-Rydberg mixing. Such a balanced description is more of a 

problem to EOM-CCSD, which is more accurate for Rydberg states. Likewise CASPT2 

and NEVPT2 are more problematic. Therefore, STEOM-CC might be a very attractive 

alternative to these fully realistic molecules in the gas phase, in particular if combined 

with efficient local correlation approaches. 
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Chapter 4 
!
The Vibronic Coupling Model: A Scheme Beyond the Born-Oppenheimer 
Approximation 
 

 

I. Beyond the Born-Oppenheimer Approximation 

 The Born-Oppenheimer approximation, which makes the assumption that the 

relative velocity of the nuclei compared to the electrons is negligible, is a fundamental 

approach to predicting spectroscopy. The power of the Born-Oppenheimer approximation 

is that it implies that electronic and nuclear movements can be decoupled. This means 

that one can first solve the electronic problem for every nuclear configuration, ! (! is a 

parameter), obtaining a point-wise single adiabatic potential energy surface for every 

electronic state and then solve for the nuclear problem. Molecular spectroscopy is often 

based on the Born-Oppenheimer approximation and the harmonic Franck-Condon 

approach, which is just using harmonic oscillators to fit excited state potential energy 

surfaces obtained after employing the Born-Oppenheimer approximation. 

 

The Born-Oppenheimer approximation is sometimes inaccurate for predicting 

spectroscopy of polyatomic systems. The problem of polyatomics is that degeneracy of 

electronic states is common. This would be reflected as crossings in excited state 

potential energy surfaces leading to what is known as conical intersections [1]. The 

presence of conical intersections allows for a possibility of interesting dynamics, i.e. the 

system could evolve from one potential energy surface to another, thus resulting in a 

different chemical picture. Refer to Figure 4.1 below. In other words, the system can 
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undergo a rapid change in electronic character [2]. This is a result of the fact that 

electronic states are strongly coupled. 

 

 

 

 

In the Nooijen group, spectroscopic simulations are mostly based on the vibronic 

(vibrational-electronic) model. This model goes beyond the Born-Oppenheimer 

approximation by including the coupling between different electronic states through the 

vibrational normal modes in the formalism of the Hamiltonian. The efficacy of the 

vibronic model is well established as shown by different research groups [3-5]. 

 

 

 

 

 

Figure 4.1: A diagrammatic representation of conical intersection and 
adiabatic energy surface 
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II. Construction of the Vibronic Model 

 The vibronic model Hamiltonian [6] in the adiabatic basis takes the form 

 H = T! + ! ! − Λ!, (4.1) 

where H is the full Hamiltonian, T! is the nuclear kinetic energy operator, ! !  is the 

diagonal matrix of electronic energies i.e. ! ! = V! ! δ!" and the nuclear 

displacement vector ! = !!,!!,… ,!!  in which n and m are label the adiabatic 

electronic states. Λ is the non-adiabatic coupling operator and its matrix elements 

 
Λ!" = F!"!

!

!!!

∂
∂!!

− G!"!, (4.2) 

where the matrix ! !  is anti-hermitian and the matrix ! is hermitian. The forms of ! !  

and ! will not be mentioned here for brevity. For a review of the formal derivation of the 

vibronic model Hamiltonian and its application in multimode molecular dynamics, an 

excellent review would be the one by Köppel, Domcke, and Cederbaum [6]. 

 

Without sinking in details of the forms of ! !  and !, it would suffice for our purpose to 

mention that Λ!" contains an integral of the form ϕ!∗ ∇!ϕ!!r where ϕ! and ϕ! are 

the electronic states m and n respectively, and r refers to electronic degrees of freedom 

[2]. In the adiabatic basis, for which T! and ! !  diagonal but Λ is not, it would be hard 

to evaluate Λ!" because the adiabatic states undergo drastic changes in character near the 

regions of conical intersections [7] making it mathematically difficult to evaluate the 

partial differential with respect to ! with accuracy. Not only is evaluating those integrals 

tedious, but the solution to the nuclear Schrödinger equation also becomes considerably 

more complicated [6].  
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This motivated the quest for an adequate basis for which the partial differential with 

respect to ! tends to go to zero, thus avoiding any complications or technical difficulties. 

Such a basis is called a diabatic basis, denoted ψ. The diabatic states are electronic states 

that change little, preserve character, as a function of nuclear geometry. That is why 

ψ!∗ ∇!ψ!!r is approximately zero and hence the non-adiabatic matrix elements, Λ!" 

nearly vanish in the diabatic basis. Note that ψ refers to a diabatic state while ϕ refers to 

an adiabatic one. For more reading, please refer to the review by Worth and Cederbaum 

in which they discuss going beyond the Born-Oppenheimer approximation to solve for 

molecular dynamics through a conical intersection [8]. 

 

Computational schemes have been developed to solve for the diabatic states with least 

effort. This process is the so-called diabatization scheme [9]. In practice, one always 

solves for the adiabatic states and adiabatic energies at a particular ! in the electronic 

structure part of a calculation. Then, the diabatic states are defined as a linear 

combination of the solved adiabatic states, i.e. 

 ψ! !,! ∶= ϕ!
!

!,! U!" !  (4.3) 

where the electronic displacement vector ! = !!,!!,… ,!! , while U!" !  defines a 

unitary matrix, !. Note that a and n run over diabatic and adiabatic states, respectively. 

We then search for a unitary transformation,!! such that the non-adiabatic coupling 

approaches zero as required. Note that we have some freedom in choosing ! and thus the 

diabatic states are not unique. 
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If we find a particular !, our problem reduces to the problem of solving a coupled set of 

differential equations for the vibrational wave functions, χ! ! . For example, for a 

system with two electronic states we have 

 T! + V!! ! V!" !
V!" ! T! + V!! !

χ!! !
χ!! !

= E!
χ!! !
χ!! !

 (4.4) 

 

Instead of a potential energy surface, we obtain a potential energy matrix V!" !  where a 

and b label the diabatic states, while λ in ! ! ! = χ!! !
χ!! !

 and E!, labels the final 

vibronic state of interest and its energy, respectively. Using !, we relate V!" !  with 

V! ! , the adiabatic potential energy surface as follows: 

 V!" ! = !!V! ! ! !" (4.5) 

 

In practice, a Taylor series expansion of V!" !  along a set of normal modes [9] is 

employed:  

 
V!" ! = V!" 0 + V!"!

!
!! +

V!"!"
2!

!,!
!!!! +⋯!!!!!!!!!!! 

∀a, b = 1,… ,N! 

(4.6) 

where V!"!  and V!"!"  are expansion coefficients and N! is the total number of electronic 

states. 

 



! 90 

In the ACES II program [10] used in the Nooijen group, solving the diabatization 

problem is fully automated. An outline of the parent algorithm employed in ACES II [9] 

is briefly discussed below: 

1) Optimize the geometry of a parent state to get !!, and then obtain vibrational 

frequencies and reference normal modes. 

2) Calculate excited states at !! ∶ ϕ! !! = 0 = ϕ!! . 

3) Make a small displacement along the normal mode !!. Calculate the adiabatic 

excited states at geometry ∆!! ∶ ϕ! ∆!! . Evaluate the overlap matrix 

 S!" ∆!! = ϕ!! !,!! ϕ! !,!! + ∆!!  (4.7) 

 at different geometries. 

4) Find a unitary transformation for which S!"! U!" → S!" i.e. such that S!" is 

diagonal. 

5) This defines diabatic states ψ! !,!! + ∆!! = ϕ!! !,!! + ∆!! U!", which 

have maximum overlap with adiabatic states at !!. 

6) Use U !! + ∆!!  to obtain !!V !! + ∆!! ! = V!" !! + ∆!! . Take 

numerical derivatives !!" !!!∆!! !!!" !!!∆!!
!∆!!

= V!"! , the first order Taylor 

coefficient. 

7) Do the same to get second and higher order coefficients.  

• Calculate: ϕ! ∆!! , S!" ∆!! . 

• Diabatize: U!", V!" ∆!! . 

• Calculate the finite difference numerical differential. 
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Once we calculate the Taylor series coefficients we can compute V!" !  at any !. We 

can then reconstruct the adiabatic potential energy surface through diagonalizing V!" ! . 

The Taylor series can be truncated and thus the diabatic potentials V!" !  are smooth. 

Upon diagonalization, the Born-Oppenheimer surfaces can be very complicated, showing 

multiple conical intersections or avoided crossings. While the number of Taylor series 

coefficients is limited, complicated full potential surfaces are defined in a large 

dimensional space (3N-6), where N is the number of atoms in the molecule (3N-5 for 

linear molecules). 

 

Based on the vibronic model Hamiltonian, we can calculate vibronic energy levels, 

absorption spectra and time-dependent wave functions. This is an aspect of the scheme 

that can be time-consuming. A number of approximations can be invoked. The most 

promising schemes to obtain spectra, or evolve the time-dependent Schrödinger 

equations, include the MultiConfiguration Time-Dependent Hartree (MCTDH) approach 

developed by Meyer et al. [11] and the Full Multiple Spawning (FMS) approach 

developed by Martinez et al. [12]. It is also interesting to use the numerically exact 

VIBRON approach developed in the Nooijen group for comparison with the MCTDH 

and FMS approaches, and to benchmark results. 
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Chapter 5 

Derivation and Treatment of Approximate Spin-Orbit Coupling from Many-Body 

Relativistic Quantum Mechanics 

 

 

I. Introduction 

 Spin–Orbit Coupling (SOC) is an effect that results from the interaction between 

the electron’s intrinsic magnetic moment and its orbital angular momentum. SOC arises 

naturally as a relativistic effect in the Dirac equation [1].  

 

SOC is a weak effect in light elements. Naively, one might therefore assume that SOC 

should be accounted for only if heavy elements are involved in a chemical reaction or in a 

spectral excitation. However, SOC turns out to be important in case of light elements too 

if two electronic states of different spin multiplicity are close in energy. In this case, 

although the coupling matrix element could be small, it serves to induce an efficient 

transition between the states. Such transitions are known as Intersystem Crossings (ISC) 

[2]. This is common in molecular processes involving electronically excited states. ISC is 

involved in biological processes such as photosynthesis [3]. Another effect due to SOC is 

observed in spectroscopy: the normally ‘spin-forbidden’ transitions become weakly 

allowed due to SOC [4]. An important example of spin-forbidden transitions due to SOC 

is phosphorescence [5]. 
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Recognizing the importance of SOC in molecular applications, efforts are made to 

implement this effect in quantum mechanical calculations. SOC for one-electron systems 

can be derived from the Dirac equation. However, for many-electron systems the problem 

is not trivial and needs careful treatment. In this chapter, I will sketch the path to 

obtaining an approximate many-body quantum mechanical theory including SOC suitable 

for computational molecular applications. This work draws largely on the beautiful 

textbook “Relativistic Quantum Chemistry” written by Reiher and Wolf [6].  

 

The structure of the chapter is as follows: first, the Dirac equation is presented and then 

the pathway to a many-body Dirac-like quantum mechanical theory suitable for practical 

calculations is drawn. Different approximation schemes like the no-pair approximation 

and the two-component approximation are discussed. SOC is presented in the essence of 

an approximate two-component many-body theory. A discussion of approximation 

techniques involving the use of mean-field theory to calculate SOC follows. The 

summary section refocuses the reader’s attention on the emphasis of the whole chapter. 

Note that advanced concepts are mentioned in the context of the topic. An elementary 

discussion of such concepts is indicated whenever needed. For a more detailed 

discussion, please refer to the corresponding reference(s).  

 

 

II. One-Electron Relativistic Quantum Mechanical Theory 

 As mentioned above, the most fundamental equation that accounts for SOC is the 

Dirac equation. The free electron Dirac equation [7] reads: 
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 !!.!+ !!!!!
!!

Ψ = !ℏ !!"Ψ (5.1) 

In the above equation, !! is the Dirac Hamiltonian, ! and ! are defined as follows: 

! = !! = !!,!!,!!  where !! =
0 !!
!! 0  and ! = ! 0

0 −! , while !! denote the 

2×2 Pauli matrices. The wave function Ψ is a four-component spinor and all other 

symbols have their usual meaning. 

  

Taking the non-relativistic limit of the Dirac equation and including higher order 

corrections (of order !! !!) yields a non-relativistic Hamiltonian [8], which reads: 

 ! = !!
2!!

+ ! ! − !!
8!!!!!

+ 1
2!!!!!

1
!
d!
d! !!!

+ !ℏ!
2!!!!!

!!!
4!!!

! !  

(5.2) 

All symbols have their usual meaning. The third term on the right hand side of Eqn. 5.2 is 

the SOC term. Using that equation, one could satisfactorily account for SOC for one-

electron systems. 

 

 

III.   Many-Electron Relativistic Quantum Mechanical Theory 

 The Dirac equation is a one-electron theory and hence is not directly useful to 

study molecular systems. There are few refinements required to the Dirac equation to 

make it suitable for molecular applications. 
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It is instructive to study two-electron systems to gain insight (see also the textbook by 

Bethe and Salpeter [9]). In a two-electron system, the exact total wave function 

Ψ !!!, !!, !!!, !!  can be expanded in terms of direct products !! !!!, !! ⊗ !! !!!, !! . 

Each term in the wave function consists of ‘4⊗4=16’ components. 

If there was no interaction between the two electrons, that problem would be very easy 

and the Dirac Hamiltonian would be just the sum of one-electron operators, i.e. 

!! = ℎ!! + ℎ!!, where ℎ!! is the one-electron Dirac operator (!! ∈ 1,2 ). Unfortunately, 

this is not the case as each electron generates an external electromagnetic field felt by the 

other electron. 

 

To see the effect of an external field, we view the one-electron Dirac equation in an 

external field [6]: 

 
!!.!+ !!!!! + !!! − !!!.!

≡!
Ψ = !ℏ !!"Ψ (5.3) 

An electron in an external magnetic field would give rise to the electromagnetic 

interaction energy operator !, which is defined as ! ≡ !!! − !!!.!, where ! is the 

scalar potential, ! is the vector potential, ! = !!,!!,!!  and ∇×! = !, where ! is the 

magnetic field, and !! is the electron’s charge.  

To solve the two-electron problem, we follow Reiher and Wolf [6] and use Eqn. 5.3 to 

make the following ansatz: 
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 −!ℏ !
!!!

+ !!!. !! −
!!
! !

! + !!!!!! + !!! !

+ !!"# !! ⊗ !! 

+!!!⊗ −!ℏ !
!!!

+ !!!. !! −
!!
! !

! + !!!!!! + !!! !

+ !!"# !! Ψ !!!, !!, !!!, !! = 0 

 

(5.4) 

The external potential energy, !!"# is added to the respective one-electron terms. In the 

above equation, vector and scalar potentials are felt by one electron and generated by the 

other, respectively. Note that we need not worry about relativistic effects due to nuclei as 

in molecular applications, we work in the clamped nuclei frame of reference and one does 

not need to worry about relativistic effects for slow-moving nuclei, thus the nuclear 

potential in that frame is simply the Coulomb potential [10]. 

 

Two problems arise and need to be addressed. First, how to deal with two time variables 

and, second, how are the scalar and vector potentials of the electrons to be chosen. To 

deal with the former problem, a single absolute time frame, !!, !! → ! of non-relativistic 

theory is adopted. This is not a well-founded approximation. It is more of an ad hoc 

approximation to solve the hindering problem of different time frames. The wave 

function now can be constructed from one-electron direct product states 

 Ψ !, !!, !! = !! !, !! ⊗ !! !, !!
!,!

c!" (5.5) 
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where c!" are expansion coefficients. If we now use Ψ !, !!, !!  instead of 

Ψ !!!, !!, !!!, !!  in Eqn. 5.4 and adopt the absolute time frame!! and rearrange, we get 

[6] 

 !!!.!! + !!!.!! + !!!!!! + !!!!!! − !!!!.! !

− !!!!.! ! + !!! ! + !!! ! + !!"# !!

+ !!"# !! Ψ !, !!, !! = !ℏ !!"Ψ !, !!, !!  

(5.6) 

 

The second problem was dealt with by Gaunt who derived (in an approximate fashion) an 

unretarded magnetic interaction operator known as the Gaunt operator [11]. He derived 

an operator which replaces −!!!!.! ! − !!!!.! ! + !!! ! + !!! !  in Eqn. 5.6 by 

!!" = !!!!
!!"

1− !!!! , in which the first term is easily identified as the Coulomb 

operator and the second term is the Gaunt operator, G! 1, 2 = −!!!! !!!!!!"
, Eqn. 5.6 

Now reads: 

 !!!.!! + !!!.!! + !!!!!! + !!!!!! + !!" + !!"# !!

+ !!"# !! Ψ !, !!, !! = !ℏ !!"Ψ !, !!, !!  
(5.7) 

Eqn. 5.7 includes relativistic effects due to unretarded instantaneous electromagnetic 

interactions. The interaction energy of two moving charges is, however, affected by the 

retarded electromagnetic fields due to finite speed of transmission. Breit derived a 

retardation term [12] that accounts for this problem. The retardation term is referred to as 

the retardation operator, !!"#. 1, 2 . It defines the Breit operator,!!! 1, 2 ≡ G! 1, 2 +

!!"#. 1, 2 , which is explicitly 



!
!
! 98 

 !! 1, 2 ≡ − !!!!2
!!!!
!!"

+ !!".!! !!".!!
!!"!

 (5.8) 

The interaction energy !!", after this approximation, becomes: !!" ≈ !!!!
!!"

− !! 1, 2 . 

Employing the Breit operator, the stationary quantum mechanical equation for two 

electrons in the central field of an atomic nucleus reads 

 

! !.! ! + !!!!!! + !!"# !!
≡!!!

+ ! !.! ! + !!!! + !!"# !!
≡!!!

+ !!!!!!"
− !!!!2

!!!!
!!"

+ !!".!! !!".!!
!!"!

≈!!"

Ψ !!, !!  

= !Ψ !!, !!  

(5.9) 

 

It is important to highlight that the operator pair, !!!! represents a sum over tensor 

products: 

 
!!!! = !!,! ⊗ !!,!

!

!!!
 (5.10) 

where the 4×4 matrices !!,! and !!,! must not be multiplied according to the rules of 

matrix multiplication, which is the reason why the central dot of the scalar product has 

been omitted.  Instead, these operators act on the corresponding one-electron spinor 

functions (to see an example, refer to section 9.3.3 of reference [6]).  
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Despite these efforts, we still don’t have a complete relativistically covariant theory as 

both the Coulomb and the Coulomb–Breit terms are not strictly Lorentz invariant. This 

problem is solved by a time-dependent perturbation theory approach in quantum 

electrodynamics to obtain a Lorentz invariant expression for the electron-electron 

interaction [13]. The resulting expression contains terms that depend on the frequency of 

the virtual photon or likewise on the one-particle energies of the electrons. Every two-

electron integral has a different photon frequency. This makes the calculation of 

molecular integrals computationally expensive scaling with !8 where ! is the number of 

basis functions [10]. Thus, one can abandon the requirement for strict Lorentz invariance 

for the sake of computational efficiency and seek instead the use of approximate many-

particle Hamiltonians like the one employed in Eqn. 5.9. Generalizing Eqn. 5.9, we get a 

Dirac-like equation for many-electron systems. Of course, quantum field theory seems to 

be the most rigorous approach to the many-body problem. However, there are problems 

associated with the use of quantum field theory for molecular systems. A brief discussion 

comes later in the context of the next section. 

 

 

IV.  No-Pair Approximation 

 A principle difficulty of using a Dirac-like equation for many-electron systems is 

the presence of negative energy one-particle spinors in the basis. Solving the problem 

numerically for atoms, for which relativistic effects are more prominent for example, 

238U2+, yields continuum solutions. The full solution never converges and we do not get 

bound states. This is referred to as the Brown-Ravenhall disease [14, 15]. This means that 
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there is a solution to each energy value and we don’t get discrete excitations. The 

problem here is that the negative energy solutions mix in with the positive energy 

solutions giving a continuum. This implies that Eqn. 5.9 is not a correct physical equation 

because it does not give rise to physical solutions. 

 

The reason for the failure of Eqn. 5.9 might be the ad hoc approximation of assuming a 

single absolute time frame, ! of non-relativistic theory. The rigorous solution to this 

problem would be quantum field theory. However, this proves to be not very practical for 

computational purposes [16]. Another problem that arises when using quantum field 

theory is that the number of particles is not fixed which makes it cumbersome for 

studying molecular systems. We will thus refrain from working in two different time 

frames and will proceed in the single absolute time frame aiming to find other solutions 

to the Brown-Ravenhall disease. 

 

A practical solution to this problem turns out to be the no-pair approximation [17], which 

is projecting the many-electron Dirac-like equation onto the positive energy states. To 

arrive at this approximation, we use a wave function ansatz: 

 Ψ !!, !!,… , !! = !! !! !! !! …!! !!  (5.11) 

Note that !! !! !! !! …!! !!  is shorthand notation for a single Slater determinant, 

which in the case of Eqn. 5.11, is a Slater determinant of spinors. 

Our aim is to find a solution that satisfies our ansatz. To do so, we variationally optimize 

the energy expression 
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Ψ !!, !!,… , !! ℎ!!

!
+ !!"

!!!
Ψ !!, !!,… , !!  (5.12) 

In the above expression, ℎ!!! + !!"!!!  comprises the many-electron Hamiltonian 

obtained by generalizing Eqn. 5.9 to many-electron systems, where ℎ!! is the one-electron 

operator given by ℎ!! = ! !.! ! + !!!!!!
!!

+ !!"# !! , in which !! is the Dirac kinetic 

energy operator, and !!" is the two-electron operator given by !!" =
!!!!
!!"

− !!!!
!

!!!!
!!"

+

!!".!! !!".!!
!!"!

. The Roman indices !, ! are electron labels which run from 1 to !, i.e. 

!, !! ∈ 1,2,… ,! ; ! > !. 

 

This energy optimization problem could be dealt with using the Hartree-Fock self-

consistent field approach, in which one introduces the so-called Fock operator that 

defines one-electron spinors [18], which at convergence satisfies 

 !!! !! = !!!! !!  (5.13) 

where ! is the one-electron Fock operator, which has eigenfunctions !! !! , the one-

electron spinors and eigenvalues !! with ! ∈ 1,2,… ,! . Solving for the Dirac-like many-

electron equation at the Hartree-Fock level of theory is referred to as the Dirac-Hartree-

Fock procedure [6]. The goal of the Dirac-Hartree-Fock procedure is to produce a 

suitable set of one-electron spinors, which define a unique wave function, 

Ψ !!, !!,… , !! . 

The Hartree-Fock method is a powerful approximation method used to solve for the 

ground state energy and the ground state wave function of many-electron systems. 
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Realize however that the ansatz used in expression 5.11 is an approximation. The exact 

wave function is an expansion of direct products of spinors not a single Slater 

determinant. This is why we need to go beyond Hartree-Fock by including the so-called 

electron correlation effects [18], which are further corrections to the Hartree-Fock 

solutions. 

 

In the electron correlation treatment to the Dirac-Hartree-Fock procedure, only spinors 

corresponding to positive energy solutions are retained and a second quantized 

Hamiltonian [18] is defined as follows: 

 !no-pair = ! ℎ! 1 !
!!"! !

!!!!!
!,!

+ 14 !" ! 2 !"
!!!"#$ !!,!,!,!

!!!!!!!!!! 
(5.14) 

This Hamiltonian !no-pair is the no-pair Hamiltonian. It is the sum of one-electron terms, 

ℎ!"! 1!,!  and two-electron terms, !!"#$ 2!,!,!,! . Note that !!!, !!! are creation 

operators and !!, !! are annihilation operators;!!, !, ! and ! run over the one-particle 

spinors corresponding to positive energy solutions, produced from the Dirac-Hartree-

Fock procedure. For our purposes it suffices to introduce Eqn. 5.14 without going 

through its derivation (for a complete derivation, in the non-relativistic case, please refer 

to reference [18]). We point out the fact that spin-orbit interaction effects are implicit in 

the no-pair formalism. 
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If instead of the no-pair Hamiltonian, one would retain a summation in Eqn. 5.14 over all 

spinors corresponding to positive and negative energy solutions, one would obtain the 

second quantized version of the many-body Hamiltonian analogue of Eqn. 5.9. This 

would give rise to the Brown-Ravenhall disease. The restriction to positive energy 

solutions resolves this problem. This is the no-pair approximation. It is a practical 

observation that the no-pair Hamiltonian yields excellent results in the context of 

molecular physics [17]. 

 

Note that the restriction to positive energy solutions is in principle a projection of the 

Fock space on the subspace corresponding to positive energy solutions. The subspace 

corresponding to negative energy solutions is orthogonal to the subspace corresponding 

to positive energy solutions and such projection will only retain the subspace 

corresponding to positive energy solutions. Note also that the inclusion of creation and 

annihilation operators in the formalism automatically ensures the antisymmetry of the 

wave function, as this is evident from the anti-commutation relations of annihilation 

operators. 

 

The relativistic treatment of many-body systems using the mean-field approach simplifies 

the problem as the mean-field equation (Eqn. 5.14) turns out to be analogous to the mean-

field equation for the non-relativistic many-body problem [6]. In conventional quantum 

mechanical programs, various approximations based on the no-pair Hamiltonian can be 

employed. It is also possible, for small systems, to employ exact diagonalization 

techniques. Solving using the mean-field approach (Eqn. 5.14) is computationally 
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expensive (not prohibitive), yet yields very good results [19]. A more computationally 

attractive approximation technique for solving the many-body problem is the two-

component approximation. 

 

 

V. Two-Component Approximation 

 One of the most computationally efficient techniques to solve for the relativistic 

many-body problem is employing a two-component formalism. This is usually done by 

applying the Foldy-Wouthuysen transformation [20] on the Breit equation (Eqn. 5.9). The 

derivation is quite tedious and is left out for brevity. 

 

The Foldy-Wouthuysen transformation truncated at order !!! leads to the following Breit-

Pauli Hamiltonian, !!" [21]: 

 

!!" =
!!!
2!!

+ !!"# !
!

+ !!
!!"!!
− !!!

8!!!!!!

+ 1
2!!!!

!!!!
!!"!!!

l!" . !!

− !!
!!"!!!!!
!!" . !! + 2!!  

(5.15) 

In the above formula, ! and ! are spatial and spin angular momentum operators; 

!!" ≡ !! − !! ×!! and !!" ≡ !! − !! ×!!, Roman and Greek subscripts refer to 

electrons and nuclei respectively and the other symbols have their usual meanings.  
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Recognize that SOC is explicit in the Breit-Pauli Hamiltonian, !!". The third term in 

Eqn. 5.15 is known as the Breit-Pauli spin-orbit Hamiltonian, !!"!": 

 
!!"!" =

1
2!!!!

!!!!
!!"!!!

l!" . !!

− !!
!!"!!!!!
!!" . !! + 2!!

≡ !!" !
!

+ !!" !, !
!!!

 

(5.16) 

where, !!" !  and !!" !, !  refer to one- and two-electron operators respectively. 

 

Comparing the two-component many-electron equation (Eqn. 5.15) with the two-

component one-electron equation (Eqn. 5.2) is very instructive. We highlight one special 

issue: !!
!!
!! in the SOC term of Eqn. 5.2 would give rise to a !!! term for a Coulomb 

potential. This gives some intuition of the !!!"!
 and !!!"!

 present in the Breit-Pauli spin-orbit 

Hamiltonian, !!"!" (Eqn. 5.16). 

 

The advantage of adopting the two-component Breit-Pauli Hamiltonian, !!", is that it is 

easier to incorporate in existing electronic structure codes. Typically, the Breit-Pauli spin-

orbit Hamiltonian, !!"!", is treated as a perturbation and first-order degenerate 

perturbation theory is employed. 
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Note that in Eqn. 5.16, unlike the two-electron operator, !!" !, ! , the one-electron 

operator, !!" ! , has an explicit dependence on the nuclear charges,!!!. This means that 

!!" !  grows faster with nuclear charges than !!" !, ! , which only grows as a result of 

the increase in the electron density in the region close to the nuclei. Accordingly, one can 

approximate the two-electron terms. This is more convenient especially since evaluating 

them exactly is computationally expensive. An effective one-electron approach is often 

employed. 

 

 

VI.  Atomic Mean-Field Integral (AMFI) Method 

 Heß et al. [22] developed an approximation method for calculating the spin-orbit 

contribution. They define an effective one-electron approach by means of a mean-field 

approximation to the Breit-Pauli spin-orbit operator, !!"!". 

 

We follow the order in the paper by Heß et al. [22] by introducing the matrix element of 

the spin-orbit operator, ℋ!"
!", between a pair of Slater determinants differing by a single 

valence spin orbital excitation ! → ! 

 ℋ!"
!" = ! !!" 1 ! + 12 !!

!
!" !!" 1, 2 !"  

                                   − !" !!" 1, 2 !" − !" !!" 1, 2 !"  

(5.17) 

where, !!" 1  and !!" 1, 2  are taken in the Breit-Pauli form, i.e. !!" !  and !!" !, ! . 

The occupation numbers !! denote the occupancy of orbitals common to the 
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determinants in the bra and the ket. The derivation of Eqn. 5.17 involves the use of Slater 

rules (for a review on Slater rules, please refer to reference [18]). 

 

More generally, suppose we have a determinant optimized in a mean-field calculation, 

and characterized by a one-particle density matrix !!", given by 

 !!" = c!"∗ c!"
!!!""

 (5.18) 

Where, c!" is the expansion coefficient of orbital !! in the basis ! , i.e. !! =

! c!"! . The density matrix is an ingredient in the Hartree-Fock equations (for details 

of the derivation of the density matrix in the Hartree-Fock equations, please refer to 

reference [18]). 

 

The mean-field spin-orbit contribution then reads  

 ℋ!"
mean!field = ! !!" 1 ! + 12 !" !!" 1, 2 !"

!!
 

− !" !!" 1, 2 !" − !" !!" 1, 2 !" !!" 

(5.19) 

This expression is reminiscent of the usual expression for the mean-field Hamiltonian (or 

Fock matrix) in the Hartree-Fock theory: 

 

!!"mean!field = ! ! 1 !

+ !" ! 1, 2 !"
!!

− !" ! 1, 2 !" !!" 
(5.20) 

 

Note that the two-electron term in Eqn. 5.19 has one more term in the summation than the 

corresponding one in Eqn. 5.20. This stems from the fact that !!" 1, 2  taken in the 
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Breit-Pauli form is not symmetric under the permutation of electron labels as follows 

from Eqn. 5.16. 

An important feature of the mean-field approach is that the matrix elements of the two-

electron term, along with the density matrix, are more or less the same for different 

excited states. Thus, the two-electron contribution can be considered to be a constant 

perturbation (which needs to be evaluated once), hence defining an effective one-electron 

operator. 

 

Eliminating the two-electron contribution simplifies the exact diagonalization calculation 

significantly. However, to evaluate the mean-field contribution, one still has to evaluate 

all multi-center spin-orbit integrals. Owing to the presence of !!! terms in !!"!", one can-to 

a good approximation-set the multi-center integrals to zero and retain only one-center 

integrals centered on one atom. The exclusion of multi-center integrals in the calculation 

of the mean-field contribution is referred to as the Atomic Mean-Field Integral (AMFI) 

Method. 

 

In the AMFI code, used in the computational framework, one replaces the density matrix 

!!" by approximate atomic occupation numbers  

 !!" = !!!!" (5.21) 

reflecting spherical density around each atom and thus restricting the calculation to one-

center integrals centered on one atom. Note that !!" is the Kronecker delta. This 

expression is more or less correct for the inner shell electrons in a molecule, which 

provide the largest contribution to the spin-orbit operator. At first sight, the 
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approximation appears to be severe. However, extensive testing of these methods for 

many molecular systems springs confidence that they serve as an adequate treatment of 

spin-orbit effects [23, 24]. 

 

 

VII. Summary 

   The Dirac equation (Eqn. 5.1) is a fundamental equation of nature describing the 

relativistic quantum mechanics of a one-particle system. Spin-orbit coupling is implicit in 

that equation and can be easily recognized by taking the non-relativistic limit of the Dirac 

equation (Eqn. 5.2). 

 

For many-body systems, the fundamental theory of nature is quantum field theory. 

However, for molecular physics application, quantum field theory proves to be 

troublesome. A generalization of the one-particle Dirac equation to many-body systems is 

the alternative. For many-body systems, the presence of interaction energy between 

particle pairs makes the problem non-trivial. Gaunt and Breit contributed to this problem 

by deriving interaction energy terms that approximate relativistic electromagnetic effects, 

including retardation. 

 

The use of the many-body relativistic Breit Hamiltonian (Eqn. 5.9), in which spin-orbit 

interaction effects are implicit, turns out to be problematic as it gives rise to the Brown-

Ravenhall disease. Overcoming that difficulty is achieved by another approximation, the 
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no-pair approximation, which is accomplished by adopting second quantization after the 

Dirac-Hartree-Fock treatment and projecting onto the positive energy states. 

 

Although successful, the no-pair approximation turns out to be computationally 

demanding and other computationally cost-effective approaches are pursued. A two-

component approach is adopted and the Breit-Pauli Hamiltonian obtained by the Foldy-

Wouthuysen transformation of the Breit Hamiltonian (Eqn. 5.9) is exploited. Spin-orbit 

coupling is explicit in the Breit-Pauli Hamiltonian and is referred to as the Breit-Pauli 

spin-orbit Hamiltonian (Eqn. 5.16), which can be treated as a perturbation. The two-

component formalism is more convenient for electronic structure calculations as it is 

easier to incorporate in existing electronic structure codes. 

 

The Breit-Pauli spin-orbit Hamiltonian contains one- and two-electron terms. The two-

electron terms can be approximated by effective one-electron operators, which are 

defined by means of a mean-field approach (Eqn. 5.19). An additional approximation of 

computational effectiveness is the AMFI method (see Eqn. 5.21). The AMFI method 

relieves the burden of evaluating multi-centre two-electron spin-orbit integrals and one 

has to worry only about one-centre integrals, which can be easily evaluated. This 

technique proves to be successful for many molecular systems. 

Developing methodologies to evaluate relativistic spin-orbit coupling effects is an active 

area of research in chemical physics. It will be fascinating to see what physical, 

mathematical and computational insights this may lead to. 
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Chapter 6 

The Full Picture: Combining Electronic Structure with Vibronic 

Coupling and Spin-Orbit Coupling 

!
 In this chapter, the connection between electronic structure, vibronic coupling, 

and spin-orbit coupling is outlined. The intention is to motivate the reader to appreciate 

the usefulness of the three theoretical approaches in combining together a computational 

scheme that can investigate dynamics and spectroscopy of interesting molecular systems. 

 

By calculating excited states in a set of displaced geometries and a suitable diabatization 

scheme, we can develop vibronic coupling models. This is “routinely” done in the 

Nooijen group. In this work one uses the various versions of EOM-CC and the interesting 

STEOM-CC to develop vibronic models for singlet and triplet (and maybe doublet) 

manifolds. In the near future, members of the group will include spin-orbit perturbation 

into the Hamiltonian, such that one can diagonalize 

 ν H+ e!!H!"e! χ , (6.1) 

where ν and χ run over both singlet and triplet states and H!" is the Breit-Pauli SO 

operator (discussed in the chapter 5). The above matrix is for example of the size 

10!×10!. 

 

We can envision two versions of a vibronic Hamiltonian including, spin-orbit interaction: 

a) ! ! = T!!+ ! ! + !!"(! = 0) 

b) ! ! = T!!+ ! !!!" !  
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In the above equations: ! !  is the Hamiltonian evaluated within the diabatic states and 

!!"(! = 0) is the Breit-Pauli SO operator evaluated within the EOM-CC framework at 

the equilibrium geometry ! = 0. The !!"(! = 0) matrix is expected to be a good 

approximation for the !!"(!) at different geometries, because the diabatic states change 

little. In contrast, ! !!!" !  is the matrix evaluated explicitly at all displacements !. 

Fine details of these models are yet to be worked out and tested. 

 

Having obtained vibronic models at the EOM-CC level, and including spin-orbit 

coupling, we need to interface these models to VIBRON, MCTDH and FMS programs. 

This is to be followed by the final time-dependent simulations, which will describe the 

quantities of interest: for example the transition probability to move from the first singlet 

excited state, S1, to the first triplet excited state, T1. Such a transition is an example of 

Intersystem Crossing (ISC). For an illustration of ISC we refer the reader to Figure 6.1 

below. Also using this scheme, one can simulate spin-forbidden transitions. 
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defense mechanism of plants against microorganisms.11,12 The photophysics of phenalenone is 

related to ISC, and can be examined by quantum chemical methods. 

 

Phenalenone (1H-phenalen-1-one) (Figure 1.1) is an aromatic ketone with triplet quantum yield 

close to 100% in a variety of solvents. The choice of solvent is redundant, as it has been shown 

that the triplet quantum yield of phenalenone is insensitive to solvent polarity.13 A triplet 

quantum yield close to 100% means that there is almost a 100 % transition from the singlet of the 

first excited state, S1 to the triplet of the first excited state, T1. This is illustrated in Figure 1.2 

below. 

 

                                                          

 

 

 

 

 

 

 

 

 

 

 

S0 

S1 

T1 

Nuclear coordinate 

Figure 1.2: An excitation from S0 to S1, followed by transition from S1 
to T1.  

S0 refers to the singlet of the ground state. 
Dotted lines refer to intersystem crossings between S1 and T1. 

ISC 
100% 

Energy 

Figure 6.1: An excitation from S0 to S1, followed by transition from S1 
to T1.  

S0 refers to the singlet ground state. 
Dotted lines refer to intersystem crossings between S1 and T1. 
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