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Abstract

Optimal control methods are applied to mechanical models in order to predict the control

strategies in human arm movements. Optimality criteria are used to determine unique controls

for a biomechanical model of the human upper-limb with redundant actuators. The motivation

for this thesis is to provide a non-task-speci�c method of motion prediction as a tool for movement

researchers and for controlling human models within virtual prototyping environments.

The current strategy is based on determining the muscle activation levels (control signals)

necessary to perform a task that optimizes several physical determinants of the model such as

muscular and joint stresses, as well as performance timing. Currently, the initial and �nal location,

orientation, and velocity of the hand de�ne the desired task. Several models of the human arm

were generated using a graph-theoretical method in order to take advantage of similar system

topology through the evolution of arm models. Within this framework, muscles were modelled as

non-linear actuator components acting between origin and insertion points on rigid body segments.

Activation levels of the muscle actuators are considered the control inputs to the arm model.

Optimization of the activation levels is performed via a hybrid genetic algorithm (GA) and a

sequential quadratic programming (SQP) technique, which provides a globally optimal solution

without sacri�cing numerical precision, unlike traditional genetic algorithms. Advantages of the

underlying genetic algorithm approach are that it does not require any prior knowledge of what

might be a `good' approximation in order for the method to converge, and it enables several

objectives to be included in the evaluation of the �tness function. Results indicate that this

approach can predict optimal strategies when compared to benchmark minimum-time maneuvers

of a robot manipulator.

The formulation and integration of the aforementioned components into a working model

and the simulation of reaching and lifting tasks represents the bulk of the thesis. Results are

compared to motion data collected in the laboratory from a test subject performing the same tasks.

Discrepancies in the results are primarily due to model �delity. However, more complex models

are not evaluated due to the additional computational time required. The theoretical approach

provides an excellent foundation, but further work is required to increase the computational

e�ciency of the numerical implementation before proceeding to more complex models.
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Chapter 1

Introduction

1.1 Motivation

As we enter a new millennium it is surprising how little we understand the basis by which animals

and especially how we, humans, move. Tremendous innovations have come about in replicat-

ing movement using arti�cial neural networks and fuzzy-logic controllers that can imitate hu-

man/animal motion and even perform complex dynamic tasks such as walking (Honda robot,

[81]), climbing, brachiation [23] and other movements [19], [18]. However, if we ask the question

how a robot's or a patient's performance can be enhanced, via training, reconstructive surgery,

etc., in order to perform better, these methods are unable to shed any light, because we fundamen-

tally do not know what is \better". These soft systems methods are sophisticated interpolators

that can handle highly nonlinear and multivariable relationships typical of biomechanical systems,

but they all require a teacher, an example, or large data sets to learn these relationships. To use

these methods to predict changes in behavior from alterations to the system model (e.g. from one

individual to another or a normal limb to an arti�cial limb) is to go beyond the con�nes of their

learned behavior and thus these methods would try to control the new system as if it were the

old. In other words, they would try to develop a control strategy for an individual based on a

norm and produce movement of an amputee based on a non-amputee. Although our goals may

be to have these patient's move as normal as possible it may prove futile unless we understand

what is \normal".

1



CHAPTER 1. INTRODUCTION 2

Is normal a repetitive kinematic pattern? Is it a set of foot plate reaction forces from a

normalized cycle time in gait analysis? Are these patterns really an indication of some more

fundamental behavior? If so, what is this fundamental nature of movement? It seems quite logical

to assume that movement along with the evolution of species has evolved to exhibit qualities that

are advantageous to the survival of the species. Perhaps we can think of our principal mode of

locomotion (walking) to be an energy e�cient and low stress method of transport [67], or running

as a method of escaping immediate danger or capturing our prey. In both tasks the high-level

goals are very di�erent: one is to get from point A to point B as easily as possible and the

other is to get from point A to B as quickly as possible. It is no wonder that both tasks exhibit

such di�erent dynamic behavior from the same biomechanical system. By understanding the

dominant objectives perhaps we can better prescribe treatments to enable patients to perform

more e�ectively rather than appearing to be more normal.

In the context of robotics, there is a comparable need to analyze and determine actuator

controls that meet multiple objectives such as minimizing performance time, power consumption

as well as wear and tear from repetitive stresses. By understanding how biomechanical systems

solve problems of reliability, these same principles can be applied to the design and control of

robots. For example robots can be made more robust by introducing redundancy [35].

1.2 Current Human Movement Analysis Tools

There are several tools available to the biomechanist today. Each provide a particular perspective

on the nature of movement that is simpli�ed and quite focused rather than providing a compre-

hensive description of the decisions of the control system [93]. As will be discussed in greater

detail within the speci�c chapters herein, there are many levels at which predictive models are

a�ected by modelling assumptions.

There is a methodological \tug-of-war" between biomechanical modellers, psycho-physicists,

and kinesiologists/physiologists. Most physiology-based kinesiologists with their greater under-

standing of joint tissue properties, bone articulations, etc., argue that no model can accurately

describe the real system and thus model-optimization based predictions are invalid. As a result

they rely heavily on empirical studies to deduce control decisions for a speci�c task and individual

and at most a speci�c group.
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Psycho-physicists ([7], [43], [29]) observing the kinematics of movement discover common pat-

terns that they can replicate with idealized models, and then infer rules about our neuro-control

system. They seldom concern themselves with the mechanical dynamics. They argue that the dy-

namics of more complex models would vary from case to case, and that each model would require

the derivation and solution of complex equations which in the end, would lose the commonality

that they seek.

Modellers are concerned with the dynamics of everything, from a single contractile element

([30], [36]) to the complete movements of highly articulated humanoids ([90], [58], [81], [41],

etc.) and generate various constitutive equations for muscles, tissue, and joints, with varying

complexity and argue that the type of model and the �delity required are dependent on the

system/task being studied. The question from a psycho-physicist or a neuro-physicist is what

is the appropriate model �delity necessary to replicate the performance of a given task? The

kinesiologist would respond by asking how one would measure the replication? Using kinematics,

electromyography, or system dynamics independently the degree of replication could vary widely.

To understand each perspective it is pertinent to discuss the tools employed in human movement

analysis today.

1.2.1 Kinematics and Inverse Kinematics

Human kinematics are generally obtained directly from markers placed on limb segments. These

provide a time history of point locations from which the velocity of each marker can be obtained

by di�erentiation and acceleration by double di�erentiation in time. From this data researchers

can plot the displacement, velocity and acceleration trajectories of selected anatomical locations.

An inverse kinematics analysis is simply a coordinate transformation operation which enables the

reinterpretation of an end e�ector location, for example, in terms of the coordinates of the system's

joints. Because of redundancy | there are more joint coordinates than end-e�ector coordinates |

inherent in biomechanical systems, solutions are seldom unique. A speci�c solution to the inverse

kinematics problem is obtained by adding constraints to the modelled system that account for

the articular limitations of joints; however, these are often still insu�cient to provide a unique

solution. Many researchers, especially those concerned with workspace ergonomics, go further

to make assumptions about the \comfort" range of various joints and thus solve the system to

maximize this quantity of comfort [43].
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Inverse kinematics enables the extrapolation of geometric rules that are interpreted as psycho-

motor relationships such as Fitt's Law [29] and Donders' Law [76], which govern the motion of a

complete kinematic chain to meet an observed (or desired) end e�ector (hand) trajectory. Once

heuristics are developed they are easily encoded for the purposes of animating computer models

[16] .

Unfortunately, we cannot e�ectively predict movement strategies without large repetitious

datasets that provide su�cient correlations from which these rules relating joint trajectories to

the end-e�ector path can be derived. In determining unique solutions when faced with redundancy,

the resulting measure of comfort remains quite arbitrary and is signi�cant only as an adjustment

factor enabling the replication of the observed kinematics.

Fundamentally, this method can only provide super�cial insight into underlying movement

objectives that are strictly path dependent, such as path \smoothness" and object avoidance.

The best possible conclusions are overly simplistic: the path being either smooth or not or the

path hits or does not hit an obstacle, for example. The basis for why the path is smooth and the

dynamics of avoidance remain elusive.

1.2.2 Inverse Dynamics

Inverse dynamics analysis begins to address the questions involving the generalized forces that

are required to produce motion. Given position data through video or infrared markers, this

data is converted to the segment accelerations via double di�erentiation or collected directly from

accelerometers. Making assumptions about the nature of the joints (revolute, universal, etc.), the

geometric and inertial properties of the segments, and �nally with measurements of external forces

(i.e. ground reactions) one can solve for the moments (forces) about (at) the joints necessary to

drive the observed motion [33], [52].

The inverse dynamics analysis provides information on the net generalized forces that pro-

duce the resulting movement of the system given some assumptions of the biomechanical system

parameters (i.e inertias, joint centres, etc.) and results are very sensitive to these model assump-

tions. Validating net joint torque and contact forces derived form link segment models and motion

data is currently resolved by performing the inverse dynamics analysis twice | beginning at dif-

ferent ends of the link segment chain, known as top-down and bottom-up mechanical analyses
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[39]. Beginning the analysis at the \free" end, i.e. the head or hand, where there are no external

forces and again from the feet, where the ground reactions are available, should provide the same

information about the necessary forces and moments.

Given the net moment about a joint, a decomposition method is then required to further deter-

mine the muscle contributions that produce those moments. Several decomposition assumptions

including the minimization of individual muscular e�ort or some measure of expended energy

([17], [60]) have been used with limited success. In these cases there have been poor correlations

with electromyography data [85] because the decomposition employed purely quadratic objective

functions such that they were easy to minimize, and used simpli�ed biomechanical models that

made implicit assumptions. In addition, the static optimization of muscle force distributions at

each instant is not equivalent to the same objective applied to the performance of the task over

a continuous length of time [93]. It is di�cult to assess which of these assumptions, either the

optimization or the model, or both, results in the poor correlations.

As an example of problems that arise from implicit assumptions, we can look at the use

of planar models. A planar model implicitly assumes no muscular e�ort by those synergistic

muscles that limit motion to the given plane (e.g. use of oblique muscles controlling medial-

lateral position of the torso during gait analysis in the sagittal) [28]. Furthermore, the explicit

use of ideal joints implicitly assumes in�nite joint reaction forces and thus eliminates the need

for muscle co-contraction that may have otherwise contributed to joint integrity and stability. A

more detailed analysis of modelling assumptions and their consequences is discussed in Chapter

2.

1.2.3 Electromyography

Electromyography (EMG) is the detectable electrical signal caused by a summation of individual

muscle �bre depolarizations at an electrode location on or within the muscle. It is the depo-

larization of individual muscle �bres that triggers the contractile elements within the �bres to

produce tension and it is their temporal and spatial summation which produces the resulting

muscle tension ([79]). By recording these electrical signals, coordination and movement strategies

are hypothesized and individual muscle forces are estimated by relating activation patterns to

observed kinematics and (inverse) dynamics ([54], [59]).
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Studies using electromyography are limited to surface muscles since needle electrodes are both

too localized and potentially harmful to the test subject which makes it di�cult to determine the

activation (tension production) occurring internally, especially in large muscles. In addition, there

is a highly nonlinear relationship between EMG activation and tension. For these reasons, surface

EMG alone cannot provide speci�c information about every muscle's tension contribution.

EMG along with other methods (Section 1.2.2) can o�er a means of physiological validation.

Hybrid muscle force decomposition methods where EMG data and optimization methods via

inverse dynamics are used in tandem have been proposed ([14]), however their promise have yet

to be realized.

1.2.4 Forward Dynamics

The forward dynamics analysis method of human movement is based on producing movement of

a suitable model with speci�c assumptions (i.e. optimal) made about the control signal such that

it will replicate human behavior as observed from collected kinematics and EMG, for example.

Rather than try to deduce the underlying control decisions, forward models enable the control

hypothesis to be tested directly by generating and applying hypothesized signals to the model

actuators (muscles) and observing the results.

A forward dynamics analysis provides more certainty about an underlying control strategy

([90], [58] and [93]) because the control hypothesis is explicit and all model output is clearly

deterministic. In inverse dynamics, the required decomposition methods are sensitive to a range

of objective function, sampling, and model assumptions which are often implicitly made in the

analysis by virtue of measurement devices and idealized simpli�cations.

Forward dynamics enables the direct testing of control decisions. There are many approaches

to generating control inputs, but most notable is the work of Gentaro Taga [81]. His work

includes control signal generators that are composed of a hierarchy of limit cycle attractors that

are modulated by modelled \sensory" feedback from joints, muscles and contact forces, as well

as \command" signals from an emulated central nervous system. The multi-layering permits the

transition from attractor to attractor and thus exhibits changes in dynamic behavior such as

transition from walking to running. The di�culty of using this approach in general is determining

the parameters of the signal generators and especially the attractor shape and signal gain which
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requires a lot of trial and error in order to produce motions that even resemble walking and

running.

It is apparent that this method in particular is excellent for implementing controllers for

walking or for complex multi-tasking robots. The concept of attractors themselves, once they have

been re�ned to produce gait on a human model, encapsulate many key activation relationships of

muscle actuators necessary to produce coordinated motion. This in turn enables psycho-physicists

and other scientists to hypothesize the control structure in the human central nervous system.

The question that leaps to mind is how could this method produce a walking robot if we knew

nothing about gait before hand? The many parameters for the attractors, sensory gains, etc.,

can only be tuned for a desired speci�ed behavior. If this is the way in which the human control

system operates, and we in fact learn by tuning our \parameters" then what is the guiding force

or the desired goal that results in gait?

1.2.5 Optimal Control

The application of optimal control methods to human biomechanics is an extension to the forward

dynamics approach and borrows the idea of optimization of motion from the resolution of muscle

forces. The novelty in the optimal control approach is that optimization is now used to determine

control signals or forces over the time continuum to optimally generate the net forces as moments

that e�ect movement rather than statically decompose the moments at discrete instances from an

inverse dynamics analysis.

Common to all optimal control methods is the hypothesis that the commands produced by the

CNS and sent to the muscles are in some way optimal [15] for performing a speci�c task such as

pointing, lifting or even jumping. Pandy et al produced a planar human model that produced the

human counter-weighting (from a squat position, �rst moving down and back before forward and

up) jump when trying to �nd the highest jump possible given �xed maximummuscular strengths

and geometric and inertial parameters of the model [58]. Similar results were obtained by Zhao

et al [94]. Recently Bobrow et al, have applied similar techniques to a biomechanical model of a

weight lifter to reproduce the \clean-and-jerk" motion used by elite weight lifters to lift weights

exceeding twice their body weight over their heads given the objective to maximize the weight

lifted.
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The results from this method are the control signals to actuators that optimally achieve the

desired objective and can be compared to human performance in terms of both kinematics and

EMG in order to determine if similar objectives applied to the model are applied by the human

CNS in governing motion.

This method has one signi�cant limitation which is the optimization of non-linear dynamic

systems with continuous (in�nite) design variable basis. The di�culties arise from the complexity

of the equations of motion and thus the subsequent complexity of the objective function. As a

result, models tend to be as simple as possible which makes comparisons with physical systems less

valid. Even for simplemodels, optimal controls can be di�cult to resolve and require sophisticated

optimization techniques. This involves some parameterization of the design variables in order

to create a �nite basis problem to make the problem tractable numerically. A major concern

are the initial approximations which are necessary for most optimization methods in order for

them to converge to the optimal solution and not just a solution that resembles human motion.

Finally, the computational costs are substantial and a signi�cant investment in e�cient numerical

methods is necessary. For these reasons optimal control methods are not very popular in human

biomechanics today although they can provide the most insight into the control decisions made

in human movement.

Based on the aforementioned discussion, undoubtedly no single technique can provide all the

information necessary to understand the basis for human motion and control. Although forward

dynamics using optimal control provides the best correlation of hypothesis to performance, these

results will still be limited to the assumptions of the particular model and require validation using

any or all of the remaining methods.

1.3 Research Objectives

Formally, the objective is to develop a method for determining the optimal controls of biomechan-

ical systems for varying system assumptions. These assumptions include control hypotheses that

optimize e�ciency, stress distributions, trajectory smoothness, etc., or any combinations thereof

as well as model assumptions such as joint and muscle models, and other tissue properties. The re-

sulting framework should be extensible and reusable to facilitate both changes in the performance

objective(s) as well as changes to model components.
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Robotic applications will be a direct by-product since the human locomotor system is a su-

perclass of robotic systems. In other words, a method that can deal with the nonlinearities and

complexities of human biomechanical models should perform well with idealized joints and joint

torque actuators.

It is not our purpose here to discuss control theory in the typical sense of feedback controllers,

which follow a particular behavioral pattern, but rather to determine and understand why a

particular behavior or motion is chosen by the human control system and to chose the optimal

movement when considering robotic systems design.

1.4 Control Prediction Methodology

This thesis embodies a culmination of the aforementioned techniques in order to develop a com-

prehensive modelling methodology for creating and validating predictive models. The high level

overview of the computational components and their interconnectivity (Figure 1.1) will act as

a road map for the discussions in future chapters. Briey, the work has been divided into four

computational blocks. The �rst block is the generation of the upper-limb model and the formu-

lation of the equations of motion necessary to simulate upper-limb motions 1. The control of

the model represents the second computational block. The controls are determined by applying

optimal control theory to a suitable model with user-de�ned objectives. The third block contains

the collection of human motion data and the necessary processing methods for comparison with

model predicted output. The comparison itself represents the last block. The individual sections

of the report correspond to major system blocks of the overview. The order in which they are

presented is as follows :

1. Upper-limb dynamic modelling via graph-theoretic methods, Chapter 2

2. Control strategy determination using optimal control theory and evolutionary methods,

Chapter 3

3. Integration of these components to produce optimal motion predictions, Chapter 4

1Note the bidirectional arrow bewteen the data collection and task database represents parameters derived from

the collection process that are necessary for the model and optimization methods
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Figure 1.1: Overview of the motion prediction methodology

4. Collection and processing of human motion data for comparison with model predictions,

Chapter 5

5. Conclusions are drawn from model predictions and comparisons with human performance

data, Chapter 6



Chapter 2

Human Upper Limb Mechanical

Model

Previous models of the upper limb have been developed and most notable is the recent work

of Maurel et al [47]. They develop a very accurate biomechanical model by reconstructing the

left upper limb segments, tissue, and joints from the Visible Human imaging data. This work

represents the bulk of the topological aspects necessary for the creation of an upper limb model

and includes joint articulations and the resulting degrees of freedom, inertial properties, most

upper limb muscles and their anatomical points of origin and insertion as well as their lines of

action. The actual dynamics of the problem and speci�cally the generation of the equations of

motion from such complex models remains the focus of current research. The work of Raikova

(1992) [65] using a systematic application of Newton-Euler formulations to derive the equations

of motion, by hand, for models not nearly as complex of that of Maurel et al, still represents the

state of the art in biomechanical modelling.

After a brief review of upper limb biomechanics, we present our approach for generating the

equations of motion for complex models.

11
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2.1 Review of Upper-Limb Biomechanics

The biomechanics of the upper-limb presents several fascinating problems in creating models of

su�cient �delity to capture both the dexterity and the physical limitations that human joints both

enable and impose. Furthermore, the driving forces of redundant musculo-tendinous actuators

adds yet another dimension of complexity especially in determining individual actuator control.

The systematic approach to modelling any system begins with making conceptual assumptions

and simpli�cations that enable the creation of a model. Speci�cally in biomechanical modelling,

these assumptions simplify the model such that mathematical relationships can be formulated

into solveable equations of motion.

2.1.1 Upper Limb Kinematics

The movement of the arm is the result of the relative motions of several segments of the upper

limb, Figure 2.1. From the sternum distally, these include the scapula, clavicle, humerus, radius,

ulna, and the hand. The segments of the hand are being lumped into a single body within this

study since, for the time being, we are more concerned with determining the gross motions of

the arm. If the sternum is taken as the ground-body then all the movement can be reasonably

described by the relative changes in orientation of each segment, described by a time-varying

relative rotation matrix Ri, except for the motion of the scapula. The scapula can be considered

to have three degrees of freedom due to the constraints of the scapulo-thoracic joint, which allows

the scapula to translate and rotate in contact with the thorax surface [57]. However, since the

segmental chain from the sternum to the hand is completed by the connection of the humerus to

the sternum via the clavicle, the movement of the scapula is fully constrained by the acromio-

clavicular and the aforementioned scapulo-thoracic joint. Thus, the movement of the scapula can

be ignored and approximated at a latter date by modelling the scapulo-thoracic surface constraint

and knowing the acromio-clavicular position. This is necessary since scapular movement, which

is primarily below the surface of the skin, is impossible to capture using markers (light emitting

diodes) that are placed on the surface of the skin.
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2.1.2 Bones and segment models

Bones and limb segments are not rigid bodies but then again nothing in reality is truly rigid. In

comparison to the forces applied to bones the deection (deformation) of bone is generally small

and considerably smaller than the errors incurred by skin-marker movement for normal tasks.

Thus assuming bones to be rigid bodies is reasonable in this context. For speci�c or extreme

loading situations, however, it is necessary to consider bones as being exible where the mechanical

properties such as Young's modulus for the bones must be attained by experimentation, [22].

Although the mass of a segment does not change, a muscle's mass distribution varies with its

length and tonicity. Inertial changes due to muscle deformation is considered negligible by most

researchers who study whole body movements [3], [33] and [52]. Once again for more speci�c

models, we can assign mass properties to the muscle model which is described in greater detail in

the discussion of muscle models, Section 2.1.4.

Inertial properties are generally estimated by the inertia of representative cylinders from the

length and other geometrical features of segments or by scaling according to total body mass and

height from normative data. Both methods contribute errors in inertia estimates and thus to the

resulting (inverse) dynamics analysis with no de�nitive advantage for either method [40]. Using

data from the Visible Human project (VHP) one can produce precise volumetric and approximate

density distributions to derive accurate estimates of segment inertias. However, the errors of using

any scaling method to then relate the VHP inertias to a particular test subject will still remain.

2.1.3 Joint models

In concerning ourselves with the relative rotations of the limb segments we have in fact assumed

that all segments are interconnected via joints that enable rotation only, and thus are either

spherical, universal, or revolute joints. In reality, joints can separate and deform tissue, which

results in translational degrees of freedom. Yet other joints, like the gleno-humeral joint, act very

much like cams where the head of the humerus rolls upon the glenoid surface thus resulting in

the translation of the joint centre. Unfortunately, in the case of the head of the humerus, it is not

a perfect cam either in that it rolls and slips simultaneously [57], which is a phenomenon which

adds signi�cant complexity to a model. For the purpose of replicating human kinematics from a

model one has to observe the degrees of freedom that a joint exhibits as well as the degrees of
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freedom necessary to perform the task that is to be modelled. This is common practice in human

biomechanics and thus the use of planar models are quite popular for capturing the observable

kinematics resulting in simpler system equations.

The problem of using over-simplistic models, particularly planar models, are that, often, they

implicitly assume all joints to be revolute joints. Revolute joint reaction forces maintain planar

equilibrium (no net forces acting out of the plane) however, in comparison to electromyography

(EMG) frommuscles which do no act in a single plane, there must be counter forces that maintain

planar motion which results in the synergy of muscles observed in the real system. For planar

models it is unnecessary for the control method to predict appropriate muscle synergy in order to

maintain planar motion.

The danger of using ideal joints is that they will not favor the prediction of co-contraction in

a dynamic model where minimization of energy or e�ort is the only objective. This is because

co-contraction is ine�cient from an energetic point of view and thus if the \pin" of the revolute

or the \socket" of a spherical joint can create in�nitely large reaction forces to maintain the joint

integrity, then there is an unrealistic advantage at selectively loading the largest and strongest

muscles to create the motion although it may require unrealistic reaction forces. Therefore, in

comparison with EMG data, model predicted controls are seldom similar although the kinematics

may be very similar to the observed motion [14], [62]. Glitsch et al [28], concluded that idealized

models, especially planar models, could not be used to predict muscular e�orts required for joint

stabilization unless subsequent compensation was made in the analysis or decomposition methods.

Thus, in using idealized joints in general, it is necessary to include some penalty measure of the

destabilizing forces in the joints in order to predict realistic muscle control.

In addition to the degrees of freedom of the joints, are the e�ects of passive structures such

as bone articulations, ligaments and cartilage that limit joint motion. Joint articulations and

speci�cally modelling the resulting contact results in discontinuous functions. Translating these

functions to the system dynamic equations results in many constraint forces that are state de-

pendant requiring another set of equations to describe the e�ects when the constraint is active.

In other words, when a joint reaches an \extreme" angle, another equation must describe this

\locking" state of the joint. The resulting numerical solution is not trivial and can signi�cantly

increases the complexity of numerical solutions. The alternate and the more popular method for

optimal control problems is to include hard constraints on the system kinematics such that joint
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angles are bounded within \realistic" ranges. A more detailed discussion of this method is given

in the discussion of optimal control methods, Chapter 3.

Connective tissue such as cartilage, tendons and ligaments have more continuous force curves

that can be modelled to a limited degree, by mechanical components such as springs and dampers,

which attempt emulate the elastic and viscous properties of tissue. The characteristic equations

for these components are generally non-linear with greater responses at extreme postures and

at ballistic speeds [83]. These structures typically contribute very little to the joint moments;

however, in circumstances of extreme loading they resist joint separation. Alternatively then,

knowing the loading thresholds, in terms of tensile and shear forces at which these passive tissues

will fail, these thresholds can be used to set limits on joint loads within an optimization method.

For more detailed analysis of tissue mechanics resulting in elastic and inelastic deformations,

�nite element methods are required. Speci�c tensile, compressive, shear, and torsional stress-

strain relationships are available for various tendons, ligaments [89] and articular cartilage [82]

are then necessary for �nite element methods.

2.1.4 Muscle Models

The literature on muscle models is extensive; however there are only two fundamental approaches

| constitutive and empirical models. Most famous of the empirical models is Hill's model [32].

Hill's model �ts a muscle force production curve, which is a function of its length, velocity, and

activation, to corresponding measured values for isometric and concentric contractions. Essen-

tially it models the relationship of muscle force (fm) to length (l) and force to velocity (v) as

hyperbolic relationships governed by two corresponding exponents, � and �. These act as \shap-

ing" parameters which change depending on the type of task and the muscle involved, but are

generally between 0.5 and 1 [86], with the maximum isometric contraction force (Fmax) being a

constant multiplier modulated by a normalized activation (0 � A � 1) signal:

fm(A; l; v) = Fmax �A �

�
1�

�
jl � l0j

l0

���
�

�
vmax � v

vmax

��
(2.1)

On the other side of the spectrum are the biophysical synthesis models of Huxley [36] and later

Hatze [30] that attempt to describe the muscle behavior based on the underlying biophysics of
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Figure 2.2: Typical systems model for a muscle

muscle �bres. Huxley described the fundamental contractile mechanics of muscles by the sliding

�lament theory of sarcomeres. Here, contractile dynamics are a�ected by concentrations of calcium

ions, which are modulated by \neural drive", availability of energetic ATP, the overlap of thick and

thin �bres of the contractile mechanismand the velocity at which they slide past each other, as well

as the number of �bres and their geometrical arrangement in the muscle. In Hatze's biocybernetic

model of muscles there are numerous parameters that govern the functional relationships of these

variables and describe tissue properties such as elasticity of �laments and tendons and the viscosity

of connective tissue which are all determined experimentally. To determine the behavior of the

whole muscle requires the summation of the contributions of each contractile element in a way

that is similar to a �nite element analysis which then results in the solution of partial di�erential

equations (PDEs). The consensus amongst researchers ([87], [93], [92]), is that the numerous

parameters and the computationally intensive solution of PDEs make these models impractical

and ultimately no more reliable since errors in parameter estimates are propagated to model

output.

Generally a compromise between these methods is used in large scale biomechanical models. A

systems model is developed using a Hill type contractile element (F ) while incorporating additional

physiological components such as serial (ks) and parallel (kp) elastic elements as well as viscous

(d) and inertial (m) components to model higher order e�ects [27], Figure 2.2. The parallel elastic

and viscous elements are the net elastic and viscous e�ects of the muscle �bres and tissue between

�bres and the series elastic element represents the elasticity of connective tissue especially the

contribution of the muscle tendon.

The origin and insertion points (A and B) of a muscle and its lines of action (pull) on multiple

limb segments can have a large impact on the muscle's contribution to the joint moments [92].
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These points are generally determined by normative ratios of segment lengths. Unfortunately,

applying scaling methods from normalized data always introduces error into the model.

2.1.5 Remarks on Biomechanical Modelling

It is fair to say that more complex joint models provide better model kinematics capable of match-

ing human kinematics and similarly complex constitutive models for muscle and connective tissues

can better emulate dynamic phenomenon. Unfortunately, even if the fundamental biophysics were

advanced enough to provide the constitutive equations for tissue deformation, nonlinear elasticity,

etc., that hold under varying loading conditions, the solution of the system di�erential and partial

di�erential equations with available numerical methods and computers would be prohibitively de-

manding on computational resources. However, given the rapid increases in computational speed

and the advancements in numerical methods this will not be the case in the near future. What

is required as a result, is a modelling environment that enables the evolution of biomechanical

models which parallel technological progress.

2.2 Current Mechanical Modelling Methods

We have introduced the fundamental components for the biomechanical modelling of the upper

limb but the problem remains how we can map these individual component models to mathemat-

ical equations necessary for simulation and optimization. There are many mechanical modelling

and simulation packages such as ADAMS, DADS and Working Model, just to name a few, that

internally determine and solve the system di�erential equations from user's assembly of compo-

nents via a graphical user interface. In these applications there is a segregation of the assemblage

(managed by the user) and mathematical formulation (performed by the application) which has

its advantages and disadvantages. The main advantage is that the user need not be an expert

in dynamics or numerical methods to create complex models and to produce simulations. The

primary disadvantage is that the user has no control over the methods used to formulate the

equations nor the numerical techniques used to solve the system equations. For simulation pur-

poses alone this is not a signi�cant problem; however for optimization and especially for optimal

control (Chapter 3) the numerical methods used are critical for convergence as well as for pro-

viding tractable solution times. Simulation times in commercial packages are slower due to their
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generality which requires more internal application communication, and the use of general and

robust methods rather than the most e�cient methods. Finally commercial packages are limited

to the set of components that have been implemented. For example if the user desires to convert

a gleno-humeral joint model from a universal joint to a spatial cam with slipping this would be

impossible with the typical palette of components consisting of ideal joints.

As a result, many researchers still derive equations of motion for their models by hand using

link segement models and Newton-Euler equations [33], [65] or classical analytical methods such

as the method of Lagrange [15]. Unfortunately, hand derivation of complex systems is both time

consuming and highly prone to errors especially for complex spatial models. Thus a signi�cant

motivation for using planar models is merely to simplify the formulation process. The following

graph theoretical approach to modelling o�ers several of the advantages of commercial packages

with the freedom of hand derivation.

2.3 Biomechanical Modelling using Graph Theory

The conceptual origins of the graph theory as a uni�ed systems modelling approach stemmed from

researchers [38] striving for a systematic method of describing physical systems mathematically

that was not limited to the physical laws of a particular discipline. They identi�ed that any discrete

(�nite number of components) physical system could be described mathematically given: 1) a

description of the interconnections of system components, and 2) the physical laws that governed

the behavior of a component that could be expressed mathematically. Thus, borrowing from

linear graph theory as strictly a tool to solve combinatorial problems since the time of Leonard

Euler (�1600, who used linear graphs to analyze paths on a network of bridges), they described

system interconnections by a linear graph where the lines or edges of the graph represented the

physical components and the nodes were reference points representing connection points and/or

other points of interest.

The linear graph representation (Figure 2.3) of the aforementioned muscle model (Figure 2.2)

illustrates the interconnectivity of mechanical components of a muscle; however it could easily

represent an electrical system composed of a current source, resistors, a capacitor, etc. In fact the

same topological equations would be derived regardless of the components. The interconnectivity

is described mathematically by an incidence matrix which is an n (number of nodes) bym (number
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Figure 2.3: Linear graph representation of a typical muscle model

of edges) matrix which describes the direction of incidence of edges at nodes by �1; otherwise

the entry is 0. From the incidence matrix topological equations resembling nodal balances and

loop closures are derived. The individual components relate system variables such as ow and

pressure, current and voltage, force and displacement, torque and orientation, etc., associated

with the edge. The general concept is that all system components relate \through" variables

with \across" variables de�ned by physical laws, which have been determined empirically. The

speci�c equations describing a component's behavior is known as its terminal equation. The two

sets of topological equations (reduced nodal or cutset equations and circuit equations) plus the

terminal equations provide a necessary and su�cient set of equations to describe the behavior

of any system given a linear graph representation. Details of the general systems theory are

described by Chandrashakar and Savage [68].

The graph-theoretic method (GTM) applied to mechanical systems has recently taken signi�-

cant strides in its evolution and McPhee presents a concise history of the method and a detailed

guide to its application to multibody dynamics [48]. From this standpoint, one can see the graph

as the mechanical model because of the one-to-one mapping of physical components to the system

graph (Figure 2.5) as well as its similarity in appearance to the physical system (Figure 2.4). This

example upper-limb model is the base biomechanical model which will be used in later sections to

derive the equations of motion used to investigate optimal control strategies. The model consists

of four bodies: the scapula as the ground body, the humerus, the forearm (not individual ulna
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Figure 2.4: Example biomechanical model of the upper-limb

and radius) as well as a lumped hand segment (Section 2.1.2). The type of joints and muscle

models are not speci�ed in either the model or graph. This demonstrates the topological nature

of the linear graph whereby the speci�c nature of components such as joints and muscles does

not a�ect the graph representation. In this way the graph is a powerful tool for managing com-

plex mechanisms so that the topology can be fully described without the concern of the behavior

of individual components. Especially for spatial systems, the graph can be a signi�cantly eas-

ier method of organizing the system topology than the spatial arrangement of components in a

computer aided design (CAD) or modelling environment.

For the GTM applied to multi-body systems, nodal equations can be understood as force

or torque balance equations. Speci�cally, the cutset equations represent force (torque) balance

equations from free body diagrams of subsystems that provide fewer dynamic equations than

performing an analysis at each node.

A signi�cant step in the evolution of the GTM has been its application to spatial systems.

Unlike particles or planar kinematics, where rotations are either non-existant or scalars, rotations

of spatial mechanisms do not satisfy classical \loop" closure equations. This is because spatial

rotations cannot be described as scalars or vectors and thus the sum of rotations (unlike trans-
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lational displacements) is meaningless. Thus, the idea of reference frame transformations was

introduced in re-thinking loop closure equations to be the products of rotation matrices, which

are transformations of orientation from frame to frame around a closed circuit that must bring us

back to the starting orientation. The translational and rotational loop closure equations, together,

result in the system's kinematic equations [88].

Finally the user has control over what form the system equations will take by the selection

of edges that compose the spanning tree. A spanning tree is any set of edges that interconnects

all nodes such that the path between any two nodes in the graph is unique (i.e. no closed loops).

Edges in the tree are known as branches and all non-tree edges are known as chords whose across

variables (displacement or orientation) can be resolved in terms of branch coordinates using the

branch transformation from the kinematic equations. By selecting mass elements into the tree the

resulting equations will have the absolute coordinates (position and orientation) of the bodies as

branch coordinates that appear in the �nal form of the equations (Example [55]). However if joint

coordinates are selected instead, then the �nal equations will contain just the joint coordinates

(only one angle for a revolute joint) and thus provides a reduced set of equations.

The �nal equations of motion are di�erential algebraic equations (DAEs) of the form :

f�(q)g = 0 (2.2)

[M ]f�qg+ f�gTq f�g = f=(q; _q; t)g (2.3)

where fqg is the vector of branch coordinates and [M ] is the symmetric and positive de�nite

system mass matrix. f�g is the vector of kinematic constraint equations where the q subscript is

the derivative of the constraints with respect to the branch coordinates which results in a matrix

also known as the system Jacobian matrix in robotics, [51] and [78]. The Lagrange multipliers f�g

are the joint reaction forces or moments that enforce the kinematic constraints. The right hand

side contains the generalized forces from system drivers, state dependant forces such as spring-

dampers, as well as centripetal and coriolis forces as the case may be. If absolute coordinates are

used, by having masses in the tree, then Lagrange multipliers will appear such that there is one

�i per mass degree of freedom that is eliminated by the joints. However if using joint coordinates,

Lagrange multipliers only appear if there are kinematic constraints such that joint coordinates
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are not independent and then they correspond to the joint forces or torques necessary to maintain

the dependency of the joint coordinates.

2.3.1 Component Paradigm

The individual description of a graph's edges by terminal equations lends itself nicely to a com-

ponent paradigm. In such a paradigm the analyst need only identify the topology of components

in the system and then \plug in" the appropriate component model, via their terminal equation,

from a database containing various templates of components. Borrowing from the GTM applied

to multibody dynamics, these include masses, rigid and or exible arm elements, joints, actua-

tors, springs and dampers. Within this framework bones are mass elements consisting of rigid or

exible arm elements, muscles are composite elements composed of nonlinear actuators, springs

and dampers (Figure 2.2), and joints can be any kinematic constraint.

In the upper-limb graph (Figure 2.5) we can see that the inertial aspects of the system dynamics

are captured by mass edges (m19::21) that act at the centre of mass of the segments and include

both translational (fFg = �[m]f�xg) and rotational (f�g = �[I]f _!g) inertial forces (torques).

Arm elements (r) identify connection points on the body including joint locations (r1::4) and origin

and insertion points of muscles (only numbered edges 9::18). Joints have only been classi�ed as

elements (j6::8) that impose kinematic constraints and thus could be revolute, universal, spherical

joints and cams or any user de�ned kinematic constraint. Muscles have been shown by single

edges and can be simple force drivers or thought to encapsulate their own subgraph as in the

muscle model graph (Figure 2.3). Note that the terminals A and B are connected to the origin and

insertion points of bone segments in the musculo-skeletal system which in turn are connected to the

inertial frame. For a composite edge the corresponding terminal equation is a composite equation

with contributing terms from each of its elements. The elements used in muscle models are

actuators governed by some function of the control input and muscle length and velocity, springs

for the elasticity and dampers for viscous properties. These three components are commonly used

and are often grouped together in parallel to form a single spring-damper-actuator (SDA) element

in the GT modelling of mechanical systems.

Although many component terminal equations are already available, one is not limited to

this selection and can certainly introduce any variety of new terminal equations. For example,
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a speci�c terminal equation modelling the scapulo-thoracic joint constraint could be introduced.

In this case the joint enables the concave surface of the scapula to slide on the matching convex

surface of the thorax while enforcing contact. Similarly compound components, such as muscle

models, can be lumped into a single edge with one terminal equation. A discussion on the inclusion

of additional terminal equations into the solution method is included with the discussion of the

computer automated formulation process, Section 2.3.2.

2.3.2 DynaFlex: 3D Mechanical System Modeller

The most signi�cant reason for using the systematic GTM is to automate the formulation process

and to eliminate the manual task of deriving system equations and the errors that come along

with it. As mentioned previously this method is fully described in [48] in which the formulation

can be broken into systematic procedures that can be implemented on a computer. DynaFlex,

developed by Shi and McPhee [75] at the University of Waterloo, is a Maple based application

that implements the GTM to produce the symbolic equations of motion from a graph de�nition

of the mechanical system via an input �le. Furthemore, this algorithm de�nes the terminal

equations in terms of the virtual work contribution of the component as a function of its virtual

displacement. The use of virtual work has the same advantages as its application in classical

analytical mechanics where the forces of all non-working joints and other components can be

eliminated from the dynamics equations. The �nal system of equations, therefore, are free of

Lagrange multipliers and there is a subsequent reduction in the number of equations | one per

system degree of freedom (DOF). The general form of the equations are DAEs free of Lagrange

multipliers .

[ ~M ]f�qg = f~=(q; _q; t)g (2.4)

f�(q; t)g = 0 (2.5)

The reduced number of equations (1 per DOF) means the subsequent mass matrix [ ~M ] must be

nonsymetric for dependant generalized coordinates fqg. The constraint equations f�g, generally

non-linear algebraic equations, provide the remaining equations to fully describe the system. For

open loop systems, however, this method provides the minimum number of independent ordinary
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di�erential equations, one per degree of freedom, instead of a system of DAEs which are generally

more di�cult to solve numerically [75].

Another signi�cant advantage of using energy methods is that it can resolve the dynamics of

exible bodies without resorting to �nite element methods. The details of this new method is

described in [74]. From this standpoint we will describe how to create the necessary input �le

such that DynaFlex can generate the symbolic equations of motion.

2.3.3 Generating Equations of Motion with DynaFlex

DynaFlex requires a representation of the graph via an input �le. This �le de�nes the number

of nodes and edges in the graph as well as the individual components in the graph and their inter-

connection. Components are identi�ed according to DynaFlex's component list which include a

variety of joints, drivers, the SDA, and arm elements.

The formulation of the equations of motion for a planar two-link manipulator, which will

be used in later chapters, are derived here using DynaFlex as an illustrative example. The

manipulator (Figure 2.6) in the horizontal plane has two motors (torque drivers), one per revolute

joint, and a payload (m3) at the distal end of the second link (l2).

The corresponding graph (Figure 2.7) of the planar manipulator looks very similar to the

mechanical system. The subscript of the elements in the graph correspond to the edge number.

The edge r1 identi�es the revolute joint h5 connecting the two links with respect to the centre of

rotation of link one (m7) and is the location of the revolute joint h4 �xing the link to the datum

(node 7). The inertial e�ects associated with the second link, edge m8, have to be associated with

its centre of mass since it is not pinned to the inertial frame. Edges r2 and r3 identify the joints h5

and the weld joint w7, respectively, with their sum equivalent to l2 of the mechanical model. The

weld joint w7 joins the centre of mass of the payload (m9) to the second link. The two motors,

are shown as edges T10 and T11 which are torque drivers acting on the the two revolute joints.

The selection of the tree is easily made. Considering that the two revolute joints contribute two

branch coordinates and the weld joint and rigid arm elements contribute none, we can get the

minimum number of equations, 1 per DOF, by selecting these elements into the tree and these

edges are shown in bold. Selecting the masses into the tree would result in 18 dynamic equations

(6 per body) and 16 constraint equations (5 per revolute joint plus 6 for the weld joint) in 3D
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Figure 2.6: Planar two-link manipulator
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Figure 2.7: Planar two-link manipulator graph
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space.

Once the graph is drawn and a tree selected, an input �le transcribing the topology and system

components must be generated. The following is the transcription of the planar two-link graph

into the DynaFlex input�le.

# DynaFlex input for a 2-link planar manipulator.

# ITEM ONE: number of nodes and edges in the system graph

NOofedges:=11;

NOofnodes:=7;

Datum:=7;

# Note that Datum stands for the ground node.

# Identify the edges

edge[1]:=table([(1)=Y, # identify if edge is in the tree

(2)=[1,2], # specify start and end node

(3)=AE R, # edge type, i.e. AE R is a rigid arm element

# DynaFlex documentation contains a complete

# set of available component types

(4)=table([coords=[r1,0,0] ])

# component specific data

]);

edge[2]:=table([(1)=Y, # edge is in the tree

(2)=[4,3],

(3)=AE R,

(4)=table([coords=[-r2,0,0] ])

# position in mass frame

]);

edge[3]:=table([(1)=Y,

(2)=[4,5],

(3)=AE R,

(4)=table([coords=[r3,0,0] ])

]);

edge[4]:=table([(1)=Y,

(2)=[7,1],

(3)=JE, # Joint element

(4)=RV # revolute, default rotation about local z-axis

]);

edge[5]:=table([(1)=Y,

(2)=[2,3],

(3)=JE,

(4)=RV
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]);

edge[6]:=table([(1)=Y,

(2)=[5,6],

(3)=JE,

(4)=WELD # weld, frames fixed relative to one another

]);

edge[7]:=table([(1)=N, # not in the tree

(2)=[7,1],

(3)=BE R, # rigid body (mass) element

(4)=table([inert=[[0,0,0],

[0,0,0],

[0,0,J1]], # planar rotation about z

mass=m1 # J1 is the inertia of body 1

# w.r.t to the pinned end

])

]);

edge[8]:=table([(1)=N,

(2)=[7,4],

(3)=BE R,

(4)=table([inert=[[0,0,0],

[0,0,0],

[0,0,J2]], # w.r.t to centre of mass

mass=m2

])

]);

edge[9]:=table([(1)=N,

(2)=[7,6],

(3)=BE R,

(4)=table([inert=[[0,0,0],

[0,0,0],

[0,0,J3]],

mass=m3

])

]);

edge[10]:=table([(1)=N,

(2)=[7,1],

(3)=FDE, # Force driver element

(4)=table([type=JD, # joint driver

theta=(0,0,T[1](t))

]) # theta specifies torque

]);
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edge[11]:=table([(1)=N,

(2)=[2,3],

(3)=FDE,

(4)=table([type=JD,

theta=(0,0,T[2](t))

]) # torque about local z-axis

]);

Iedge:=[]; # List of independant joint edges used if there

# are more constraints than joint coordinates

# Thus system VW is expressed in terms of Iedges

# Null for open loop systems

Reading the input�le into Maple, we can execute the DynaFlex procedures which provide the

following equations of motion in symbolic form.

[M ]f�qg = f=(q; _q; t)g (2.6)

where,

fqg =

8<: �1

�2

9=; (2.7)

with,

[M ] =

266664
(

(m2 +m3)l
2

1
+ (m2 + 2m3) cos(q2)l2l1 + ( 1

4
m2 +m3)l

2

2
+ J1 + J2 + J3

( 1
2
m2 +m3) cos(q2)l2l1 + ( 1

4
m2 +m3)l

2

2
+ J2 + J3

)T

(
( 1
2
m2 +m3) cos(q2)l2l1 + ( 1

4
m2 +m3)l

2

2
+ J2 + J3

( 1
4
m2 +m3)l

2

2
+ J2 + J3

)
T

377775 (2.8)

and

f=(q; _q; t)g =

8<: T1 + (1
2
m2 +m3)l2l1 sin(q2)( _q

2
2 + 2 _q1 _q2)

T2 � (1
2
m2 +m3)l2l1 sin(q2)( _q

2
1)

9=; (2.9)

These results are after the substitutions of r1 = l1 and r2 + r3 = l2 where made. Note there

are no Lagrange multipliers for the joint reaction forces and no constraint equations using this

formulation. The result are two second order ODEs that can readily be solved via numerical

integration methods.
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2.3.4 Scalable Framework

The previous exercise is an excellent example of the scaling capabilities of the graph represen-

tation, which is capable of describing varying system complexities. Speci�cally we began with

the biomechanical model of the upper-limb and its graph (Figure 2.5) but it is easy to recognize

that the planar 2-link manipulator graph (Figure 2.7) is in fact its subgraph. In other words, by

removing the muscle edges and their associated arm elements (identifying the origin and insertion

points of the muscles) and adding two torque drivers we obtain the identical graphs. Specifying

revolute joints further simpli�ed the model to a planar one with no change to the graph. This

is a powerful feature which can be exploited and used in reverse to quickly evolve biomechanical

models beginning with simpler models and moving towards more complex systems by using dif-

ferent terminal equations. For example, by de�ning the base shoulder joint in either graph to be a

spherical joint we now have a four degree of freedom spatial model from the planar model without

a single change to the graph. The di�culties in formulation are relegated to the computer, thus

freeing the researcher to focus on greater issues and virtually eliminating formulation errors for

very complex systems.

2.3.5 Adding Components by Introducing New Terminal Equations

Adding new components such as more anatomically accurate joints or muscles and other connective

tissue can be done by adding to DynaFlex's list of terminal equations. DynaFlex requires

terminal equations to be described in terms of the virtual work and virtual displacement of the

edge. DynaFlex automatically assigns dependant virtual work elements as necessary [70].

2.4 Numerical Solution of Biomechanical System Equations

Having derived the symbolic equations of motion using the GTM embodied in DynaFlex, the

�nal step in the modelling process is solving the equations and generating simulations of motion.

Here we have complete freedom over which ODE solver to use since the Maple equations can

be exported as optimized C or Fortran code to make use of available numerical methods. For

convenience and rapid prototyping we have exported the equations to Matlab for numerical

integration using ode45which is a 4th order (5th order error approximation) Runge-Kutta method
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[61]. Most numerical ODE solvers ([64], [46]) and all the solvers inMatlab can only solve a system

of �rst order ODEs. This is a small limitation since it is a simple transformation to convert the

second order equations of motion to �rst order equations. Given the dynamic equations (2.6) we

can rewrite them in �rst order state space form by

f _xg =

8<: f _qg

[M ]
�1
f=(q; _q; t)g

9=; (2.10)

where fxg =

8<: fqg

f _qg

9=; contains the generalized coordinates and their velocities. A more detailed

discussion of the numerical implementation is discussed in Chapter 4.



Chapter 3

Optimal Control Determination

3.1 Optimization of Dynamic Systems

In either the study of human biomechanics or robotics, the concept of optimality plays a major

role in performance. In robotics, the concept of optimal control, especially in manipulator task

and path planning [25], [37], [31], has resulted in more e�cient, time-saving and cost-saving use of

robot manipulators. In human biomechanics, muscle force decomposition methods from net joint

moments, determined by inverse dynamics (Section 1.2.2), have traditionally used optimization

techniques to determine the distribution of redundant muscle forces ([60], [17], [62], [28], etc...).

For this application, a static optimization is performed at each point in time to decompose the

net joint moment and thus are generally known as quasi-static optimization since the dynamics

of the problem are independently captured by the inverse dynamics model.

Yoshimura et al [91], apply a similar optimization procedure, except the problem is cast to

determine both the muscular forces and the speed along a desired path such that total muscle

energy is minimized in attempts to reproduce human-like behavior. The desired joint trajectory

is de�ned for the task. However, the angular velocity trajectory is assumed to be smooth and

bell-shaped such that it can be parameterized by a single value, q, the point of maximum angular

velocity of the trajectory where the time period is normalized (Figure 3.1). To solve for the

optimal muscle force distribution and velocity pro�le, the moment and the decomposition of the

muscle forces are computed for a �xed value of q, which is then varied as a single design variable of

33
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Figure 3.1: Example of a single paramter q; for velocity pro�le parametrization

another static optimization procedure. This approach is unique in that it introduces the concept

of trajectory parameterization. However, this simpli�ed representation cannot be applied for

predicting the behavior of large scale (many degrees of freedom) systems because it is precisely

the joint kinematics which we wish to predict and is defeated by prescribing joint displacements.

In addition, restricting the shape of the velocity pro�le also constrains the acceleration pro�le

and thus arti�cially constrains the dynamics of the problem such that the result is speci�c for

the assumed shape. The formulation of the control problem must include the system's dynamics

as explicit constraints along with a suitable objective for performance, and the optimization

must be performed dynamically across the the performance period and not by independent point

evaluations if the true optimum is to be discovered.

More recent applications of optimization in biomechanical systems have been used in a more

dynamic sense to answer questions ranging from, \how high we can jump?" (Pandy [58]), to \what

is the arrangement of neural feedback circuits in the central nervous system that enables optimal

stability?" (Loeb and Levine [45]), to \how to program functional neuromuscular stimulators

(FNS) to restore an individual's gait mobility?" (Yamaguchi [90]). Here, controls are sought to
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bring about a desired behavior that is optimal according the speci�c requirements of the task

(e.g. maximum height of the centre of mass for jumping). Many methods are used to perform

the optimizations, including linear-quadratic programming, grid search, sequential-quadratic pro-

gramming, penalty methods, etc. The selection of the method is dependent on the approach, the

objectives and structure of the optimization problem.

3.1.1 Static vs. Dynamic Optimization

Methods of optimization vary largely with the particular classi�cation of the optimization prob-

lem. Two classes of optimization problems are static or parameter optimization and dynamic

optimization. In the static case, the design variables are system parameters that are �xed during

the evaluation of the objective function. An example of static optimization would be �nding the

geometrical, sti�ness, and damping parameters of an automobile suspension that minimized a

performance index such as bounce or driver acceleration [12]. The static classi�cation relates to

the nature of the �nite parameters and not the dynamic or static nature of the problem. Dynamic

optimization for a similar problem would be to determine the forcing functions of system actua-

tors which would result in the minimization of oscillations in the suspension system. The design

variables in the dynamic case are functions of time and thus the basis for the space of design

variables is in�nite.

3.2 The Optimal Control Problem

In the dynamic optimization example, the actuator forcing functions can be thought of as the

active control of the system to perform optimally. Determining the control functions is known as

an optimal control problem. For predicting the motion of an upper limb biomechanical model it is

precisely the control of muscle forces that is required once a dynamic model has been formulated.

Having previously described how to generate the equations of motion (Chapter 2) with either

joint torques or muscular actuators as the controlling inputs, we formulate the optimal control

problem here before discussing the relevant optimizationmethods and the speci�c approach chosen

for our research.

Most optimal control problems begin with the description of the scalar objection function that
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maps a series of system performance criteria to a single performance value. Unfortunately the

speci�c form of the objective in our study is unknown and is dependent on the criteria we wish to

include, such as performance time, joint reaction forces, muscle stress, etc. As a result, a method

which takes advantage of the structure of the objective function cannot be applied directly and

more general solution methods are required. The general form of the optimal control problem as

described by Agrawal and Fabien [2] is presented below.

The objective function can be expressed as

J = �(t; fxg)jtf +

Z tf

t0

F (t; fxg; fug;fpg)dt (3.1)

where fxg is the vector of system state variables, fug is the vector of control inputs and fpg

is a vector of system parameters. J is the total performance value to be optimized and � is

a performance measure of the �nal system state which can be any scalar function of the �nal

state kinematics. F is a functional that yields an increment value in performance, such that the

integral from the start time to the �nal time yields some total measure for the criteria included

in the functional. We are avoiding using the word \cost" and terms like \cost functional " or

\running costs" to avoid the inference of minimizing the objective function. It is simply a matter

of convenience or by an analogy that a problem is cast as a maximization or minimization for a

particular optimization method, Section 3.6.

The objective function J is subject to equality constraints de�ned by the system state equations

ffg from the system equations of motion

f _xg = ff(t; fxg; fug; fpg)g (3.2)

and the prescribed initial state fx0g and/or �nal state fxfg

fx(t0)g = fx0g

fx(tf )g = fxfg
(3.3)

Although the objective functional F will vary in our study, the modelled tasks will be de�ned by

�xed starting and target states. As a result, any function of the �nal state, �, will only contribute

a constant to the objective and will not a�ect the optimal control problem. However, as will be

seen in the discussion of direct methods, we can use the �nal state performance to \free" the �nal

state constraint and to compute the solution to an approximate problem [37].
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From the state equations it is evident that the controls fug \lead" the system state and thus

the resulting optimization is to determine fug and the additional parameters fpg which optimize

the total performance measure J: Furthermore, the system is subject to inequality constraints

fC(t; fxg; fug)g � 0 (3.4)

where fCg can be any set of nonlinear functions of the state and control, and

fjujg � fU (t; fxg)g (3.5)

�(Ui � ui)(Ui + ui) � 0

where fUg is a general expression for the maximummagnitudes of the system controls, which can

be functions of the system state. Equation 3.5 is rewritten to eliminate taking the magnitude of

the elements in fug without doubling the number of constraints.

The precise optimal control problems will be described for a speci�c upper-limb model in our

discussion of the implementation and results, Chapter 4.

3.3 Solution Methods for Dynamic Optimization

General solution methods for dynamic optimization, as is the case for the optimal control problem,

fall into two categories. Of course the most elegant of solution methods would be analytical meth-

ods which apply the calculus of variations [42] to determine the closed-form functional expressions

for the control inputs. Realistically these cannot be applied directly to most problems since the

nonlinear di�erential- algebraic equations (DAEs) of motion have no closed form solution. Indi-

rect methods apply numerical approximations to satisfy the analytical conditions for optimality

which de�ne boundary value problems (BVP) involving DAEs (BVP-DAEs), in the general case.

The various methods used to solve the BVP-DAEs comprise the indirect solution methods to the

optimal control problem. The direct methods are the \brute" force methods that discretize the

control inputs which are then systematically propagated to fully parameterize the problem. From

this point a static optimization method can be applied to solve the problem numerically.
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The results from analytical methods are the foundations, to some degree, for the numerical

methods to follow. Here, we briey highlight the conditions and consequences of optimality, which

provide su�cient information to determine the optimal controls [2].

3.3.1 Necessary Extremum Conditions

First, we recognize for our class of problems that the objective is dependent on the functionalZ tf

t0

Fft; fxg; fug;fpg)dt (3.6)

Assuming F is twice di�erentiable with respect to its arguments, the state, controls and parame-

ters, fzg = ffxg; fug; fpggT, it is desired to �nd fzg that extremizes the objective (3.1). A change

in the objective is de�ned as �J = J [fzg+ fhg]� J [z] , where fhg = ffhgx; fhgu; fhgpg
T is any

admissible increment in fzg that satis�es the functional's boundary conditions. Expanding the ex-

pression �J in a Taylor series approximation and taking the �rst term, �J ,such that �J � �J and

integrating appropriately, it can be shown [26], for the �rst-order necessary optimality condition

�J = 0, that
@F

@fzg
�

d

dt

@F

@f _zg
= 0 (3.7)

must be satis�ed. This equation, known as Euler's equation, is the primary condition for an

extremum for the appropriate state and control variables. With additional end point conditions

being �
@L

@f _zg

�
jtf = 0 and

�
@L

@f _zg

�
jt0 = 0 (3.8)

which are trivial (0 = 0) if the end states are prescribed. Similar results can be derived for variable

end times where an additional variation is taken in time such that the integration limits of (3.6)

become t0+�t0 and tf +�tf and the above derivation is repeated resulting in additional boundary

conditions �
F � f _zgT

�
@F

@f _zg

��
tf

= 0 and

�
F � f _zgT

�
@F

@f _zg

��
t0

= 0 (3.9)

such that (3.7), (3.8) and (3.9) together provide the necessary conditions for an extremum.

In the control of multi-body systems there are alway equality constraints (3.2) which are the

equations that govern the motion of the system. Here the Lagrange multiplier method is used to

append the dynamic constraints to the objective such that

J
0 = �(t; fxg)jtf +

Z tf

t0

Fft; fxg; fug; fpg)+ f�gTff 0(t; fxg; fug; fpg)gdt (3.10)
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where the the Lagrange multipliers f�g are functions of time and the constraint

ff 0(t; fxg; fug; fpg)g= ff(t; fxg; fug; fpg)� f _xgg = 0 (3.11)

is identical to (3.2). Now we can replace the functional F , in the previous results for the necessary

conditions, with the augmented functional H = F + f�gTff 0g, which is also known as the Hamil-

tonian of the system. Generalizing further, auxiliary equality and/or inequality constraints may

be applied in a similar manner. For example with additional kinematic constraints fg(t; fxg)g = 0

and control bounds (3.5),

H = F + f�gTff 0g+ f�gTfgg+ f�gTffCg+ fs2gg (3.12)

is the resulting general Hamiltonian where f�gand f�g are Lagrange multipliers as functions

of time that correspond to the equality constraints fgg and inequality constraints fCg (from

(3.4)), respectively. Note that this represents the general form of the Hamiltonian for problems

addressed in this study. The inequality constraints are included in the augmented functionalH by

the addition of slack variables fsg which convert the inequality constraints (3.4) into equivalent

equality constraints by

fC(t; fxg; fug)g+ fs2g = 0 (3.13)

which can be included, once again, by the Lagrange multiplier method. The square of the

slack variables ensures fCg � 0. The new slack variables are considered as new control vari-

ables. Finally, using the general Hamiltonian (3.12) as the objective functional, with fzg =

ffxg; f�g; fug; fpg; f�g; fsg; f�ggT , then Euler's equation (3.7) yields

f _xg = H
T
f�g (3.14)

f _�g = �HT
fxg (3.15)

0 = H
T
fug (3.16)

0 = H
T
fpg (3.17)

0 = H
T
f�g (3.18)

0 = H
T
fsg (3.19)

0 = H
T
f�g (3.20)
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as extremum conditions. The boundary conditions for variable �nal time and �nal states from

(3.9) yields

f�gjtf = �T
fxgjtf (3.21)

0 =
�
�t + f�gTfggt + f�gTfCgt + f�gTffgt + F

�
tf

(3.22)

otherwise the state boundary values (fx(t0)g = fx0g and fx(tf )g = fxfg) provide the complete

set of necessary conditions for an extremum for the general optimal control problem in this study.

These conditions include 2n di�erential equations for the state (3.14) and co-state (3.15) condi-

tions, m ordinary equations of additional extremum control conditions (3.16), l equality (3.18) and

2r inequality (3.19-3.20) constraint conditions, plus one �nal time boundary equation (3.22). The

initial and �nal conditions provide the boundary values for the di�erential equations. It is inter-

esting to note that the optimal co-state (adjoint) constraints correspond to Pontryagin's minimum

(maximum) principle [56] for optimal control, which was derived using a similar procedure. The

principle is based on the fact that the velocity of the optimal trajectory f _xg in augmented state

space (including the \running" cost as the state x0) should be perpendicular (dot product is zero)

to the upward normal (towards increasing cost) of the surface formed by all feasible trajectories

in order to minimize the cost. In this sense the dynamic equations de�ne the surface of all feasible

trajectories while the co-states f�g from the adjoint (adjoined constraints) equations constrain

the augmented state space velocity to remain perpendicular to the surface upward normal [84].

3.3.2 Su�cient Optimality Conditions

The �rst order variation of the objective functional F (3.6) was used to �nd the necessary condi-

tions of the control that extremized J . To determine if the control is in fact optimal (maximum

or minimum) we look at the second term of the Taylor series expansion, �2J , which dominates

the change �J as an extremum is approached (�J ! 0). Thus the su�cient condition for a

minimum is that �2J is positive de�nite, or is negative de�nite for a maximum. For a system with

a Hamiltonian H = F + f�gTff 0g and state fxg and controls fug this has two consequences for

a minimum. First that the Legendre condition

@
2
H

@fug2
> 0 (3.23)

must be satis�ed. Secondly, the solution for S in

_S +Hxx + Sff 0gx + (ff 0gx)
T
S = [Hxu + Sff 0gu]H

�1
uu

�
H

T
xu + ff 0gTuS

�
(3.24)
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where S(tf ) = 0 for � = 0, must be �nite on the interval t0 � t � tf . Together they are su�cient

conditions for fu(t)g to be the optimal control that minimizes J . The necessary �nite solution to

this Riccati equation is known as the Jacobi condition and is a result of the fact that the state

and control in the evaluation of �2J are not independent and are governed by the di�erential

equations of motion. A detailed derivation of these two conditions is presented in [24] and [2].

These conditions are presented for completeness, however in practice the Jacobi condition

cannot be readily veri�ed without numerical resolution since it requires the solution of a set of

non-linear di�erential equations.

3.3.3 Link to Analytical Mechanics

We take the opportunity at this time to consider the functionalH, the Hamiltonian of the system,

which is commonly used in mechanics. The Hamiltonian in analytical mechanics represents the

generalized system momentum and thus the integration of the the functional in time is a scalar

measure of the system energy. In analytical mechanics this is used to determine the equations of

motion by considering that no work is done to or by the external world. Thus, the change in the

total system energy is zero and the same derivation that resulted in the Euler's equation produces

Lagrange's equation where the variation is with respect to the system generalized coordinates.

This provides the di�erential equations of motion such that no virtual work is done by the system

and thus the trajectories of the generalized coordinates are an extremized path in the con�guration

space of the mechanism. The resulting equations of motion are in fact the conditions on the

trajectories, in terms of the generalized coordinates, in the con�guration space of the mechanism

[42].

In the optimal control problem the analogy is that the objective function represents the system

energy and we desire the generalized coordinates, now the states and controls, that extremizes

the energy in the motion space of the system.

Pontryagin's minimum principle links both analytical mechanics with optimal control of a

mechanical system for special classes of problems, mainly the minimum time problems. For these

problems, time is considered as a generalized coordinate and an appropriate \momentum" term

for the time coordinate is assigned to the system Hamiltonian such that the path is extremized

for the con�guration through time which is the resulting motion space. The results are the
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di�erential co-state and optimality conditions derived above (Section 3.3.1) de�ning a boundary

value problem [84].

For the minimum time problem (�xed end points, � = 0, and F = 1 in (3.1)), it is generally

known a priori that the controls will be max/min or \bang-bang" ([25], [21]). In this case, the

co-state and state conditions of the two point boundary value problem (TPBVP) can be used

directly to determine the switching times for the controls. In the general case, however, the

structure of the control is not known a priori.

3.4 Indirect Numerical Solutions

The resulting conditions (3.14-3.22) for an extremum, in the general case form a set of BVP-

DAEs with nonlinear DAEs. These equations are only resolvable by numerical methods with the

exception of a few text book cases used to illustrate analytical methods. Indirect methods are

the resulting set of numerical methods used to �nd the state, co-state and control variables which

satisfy the boundary conditions.

For the optimal control problems under investigation in this study, the end point states are

known and the class of problems are known as two-point boundary value problems (TPBVPs)

which have several known solution techniques. These include �nite di�erence methods, collocation

methods, and initial value or shooting methods [2]. The most robust of these methods however,

is the multiple shooting method [80].

3.4.1 The Shooting Method

The simple shooting method begins with an initial guess of the state and controls that attempts

to satisfy both the state and co-state equations by integrating both the state and co-state con-

ditions from the initial conditions. At the end of the integration an error is computed by taking

the distance from the end point of the integrated trajectory to the desired �nal condition. An

adjustment to the guess is made based on the error. The adjusted guess is then used and this is

done iteratively until no more improvement can be made or the �nal condition is satis�ed.

This method is highly sensitive to the initial guess, especially if the guess results in unsta-

ble behavior, wherein the method simply cannot converge. Second, if the solution method �nds
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a suboptimal solution where the �nal conditions can be satis�ed, it has di�culties making fur-

ther improvements that require leaving the suboptimal solution. These methods have very poor

convergence for highly nonlinear dynamics, especially where the structure of the controls are

unknown.

3.4.2 Multiple Shooting Method

The multiple shooting method subdivides the TPBVP into a series of M initial value problems

where the initial points (nodes) of the intermediate problems are initially not the end points of

the previous integration but are intermediate guesses. The initial point for the �rst segment is

obviously the prescribed initial state. Integrating, from each starting point, an error state vector

is calculated taking the distance from the termination of the previous segment with the starting

point of the following, where the last segment's error is with respect to the �nal condition. The

integration is done numerically using, for example, a high-order implicit Runge-Kutta method

[71]. The resulting error thus measures both continuity as well as the the two point boundary

condition. The variation of the error state vector with respect to the initial and intermediate

guessed solutions (the state and controls) results in a Jacobian matrix which is then used to

compute a change in the initial guesses for the following iteration. This is done repeatedly until

continuity and boundary conditions are satis�ed within a desired tolerance or there is no more

change in the solution.

The multiple shooting method is de�nitely better suited for nonlinear problems with better

convergence characteristics than the simple shooting method. This is because the solution is

based on multiple approximations that have varying inuence according to the error contribution

of each node. The subsequent computation using the Jacobian causes nodes with smaller error to

change solutions more slowly compared to nodes with larger errors and thus the method is less

sensitive to the initial guesses when compared to just a single guess. With su�ciently good initial

guesses, solutions found with this method are very accurate.

In essence the multiple shooting method is the solution to the nonlinear state, co-state, opti-

mality and bounds from the �rst order optimality conditions at M discrete times within a domain

of interest. The fundamental problem is the solution of (2n +m + p)(M + 1) system of nonlin-

ear equations, from the state and co-state equations (2n), control (m) and auxiliary constraints
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(p). This requires a robust root-�nding technique using an iterative approach such as Newton's

method. For Newton's method, for example, an initial solution in a region close to the root is

required for convergence, thus the indirect method requires good starting guesses for the states

and co-states as well as the controls in order to converge.

Furthermore if we consider a biomechanical system with four degrees of freedom | that is at

least eight state variables | and the system is over-actuated (has redundant muscles) with ten

muscles and bounds on their maximum output, then the result is a set of 16 state plus co-state

equations, 10 control equations, and 20 constraint equations (introducing slack variables), for a

total of 46 equations. If we use any reasonable number of intermediate nodes, we need to solve

a system of about 500 or more nonlinear equations! With over-actuated systems there is also

an increased risk of the Jacobian matrix becoming singular because the state trajectories and

subsequent errors are not independent in terms of the controls (muscle forces).

3.4.3 Higher-Order Methods

Recently, Agrawal et al [1] have shown that for open-loop dynamical systems, the substitution

of the controls, from the equations of motion, in terms of the n generalized coordinates directly

into the objective functional eliminates the Lagrange multipliers (no dynamics constraints) as

well as the control variables (m controls), resulting in a BVP with n fourth-order ODEs. This

is a signi�cant simpli�cation with many computational advantages, except for solving the fourth-

order di�erential equations. Reducing the order of the system as in Section 2.4 to use the multiple

shooting approach, i.e. 4n �rst order-equations, is not straight forward nor is there a signi�cant

reduction in the number of equations in comparison to using the Lagrange multiplier method.

Simpler collocation methods [10] have been used successfully to solve this class of problems.

These methods approximate the trajectory of the (n) generalized coordinates by the sum of k

mode functions, which are polynomials that satisfy the boundary conditions. The weightings of

the mode functions are determined for k instances in time for the n generalized coordinates such

that they satisfy the fourth order ODEs. The result is a system of nk nonlinear equations that

are solved using an iterative technique. The number of modes k, can be increased via a recursive

method to generate solutions of desired precision.

Although the general form of the equations of motion in this study are second-order ODEs
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(2.4), we cannot explicitly eliminate the controls by direct substitution of the state variables in

order to reduce the problem to fewer higher-order BVP-DEs, because in the general case we

will have redundant muscles to control. Thus using, the aforementioned reduction technique

to eliminate the n Lagrange multipliers and the m control variables from the initial objective

functional is not always feasible.

3.5 Direct Numerical Methods

The direct methods are more straight forward methods of determining the optimal controls of

dynamic systems. The technique is similar to indirect methods in that an approximation to the

solution is made and that approximation is re�ned iteratively until it converges to a solution.

The big di�erence is that the entire control and state trajectories are parameterized via piecewise

polynomials or other discretizing approximations. This approximation is included in the objective

functional as well as the dynamic constraints and boundary conditions. The result is a large static

optimization problem with the control and, if desired, additional system parameters as the design

variables. The direct approach requires the solution to an approximate problem where the �nal

conditions are \free" with an objective measure �0 that penalizes results that do not meet the

actual problems' �nal state constraints.

3.5.1 Control Parameterization

First we consider a mapping between the continuous controls at discrete points by discretizing

the time span t 2 [t0; tf ] such that ti = i�t, where �t = tf=(N � 1) and i = 0; 1; :::; N �

1. Thus the approximation to fu(t)g is f�u(ti)g which is de�ned only at the discrete points in

time ti. To determine a continuous approximation suitable for integrating the state equations

and objective functional in order to evaluate the objective J
0, the discrete controls must be

interpolated. Many interpolation schemes can be employed such that f~u(t; ti; ti+1g � fu(t)g

provides approximate and continuous control values for intermediate time points ti � t < ti+1. A

simple linear interpolation is popular in the literature and appears to be e�ective, [84], [37], and

[2]. A simple linear approximation is

fu(t)g � f~u(t; ti; ti+1g = f�uig+
f�ui+1g � f�uig

�t
(t� ti) (3.25)
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Figure 3.2: Linear interpolation of a prametrized control signal

which generates an approximate control, as shown in Figure 3.2. Additional time-varying system

parameters can be appended to the set of controls in exactly the same manner.

3.5.2 Augmenting the Optimal Control Problem

In order to solve the problem using direct solution methods we must convert the original TBVP-

DAE problem to an initial value problem. This is done by eliminating the �nal state constraints

and including them via a penalty term in a new measure of the �nal state performance � such

that

�0 = �+ fSgT [~r]fSg (3.26)

where [~r] is a k dimensional diagonal matrix of weights and fSg is a k dimensional vector of the

�nal state violations so that when the constraints are met, �0 = �.

This now allows us to evaluate the objective functional by integrating the equations of motion

forward in time from the initial conditions for any given controls f�ug and parameters fpg.
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3.5.3 Determining Functional Gradients

A large part of static optimization methods (Section 3.6) is determining the gradient of the

objective function with respect to the design variables. This can be done numerically but, since

one evaluation of the objective function requires a simulation, it is computationally prohibitive to

compute the gradients for a series of objective function evaluations.

To determine the gradients with respect to the controls and parameters we consider the objec-

tive function J (3.1) which is dependent on a functional of the state trajectory fxg, control fug

and additional state parameters fpg. Given an initial guess of the control f~ug, we want to modify

the control as to get a better control f~u0g. Taking f~u0g = f~ug+ fhug, where fhug and fhpg are

increments in the controls and parameters guess and fhxg is the subsequent state increment, then

we can get an expression for the change in objective

�J � �J =

Z tf

t0

(Hx + f _�g)Tfhxg+H
T
u fhug+H

T
p fhpg)dt (3.27)

where H is the system Hamiltonian not including any auxiliary constraints. We can choose the

co-states f _�g = �Hx, from the optimality condition (3.15), and then integrate the remaining

terms using the trapezoidal rule for the discretized time span to �nd

�J �
PN�2

i=0
1
2
(HT

u (ti+1)fhu(ti+1)g+H
T
u (ti)fhu(ti)g)�t

+
PN�2

i=0
1
2
(HT

p (ti+1) +H
T
p (ti))fhpg�t

(3.28)

�J �

N�1X
i=0

�
@J

@f�u(ti)g

�T
fhu(ti)g +

�
@J

@fpg

�T
fhpg (3.29)

It is evident from (3.28) and (3.29) that the gradient of the objective with respect to the discrete

controls and additional parameters are

@J
@f�u(ti)g

= 1
2
Hu(ti)�t; i = 0; N � 1

@J
@f�u(ti)g

= Hu(ti)�t; i = 1; 2; ::: N � 2
(3.30)

@J

@fpg
=

N�2X
i=0

1

2
(HT

p (ti+1) +H
T
p (ti))�t (3.31)

We can rewrite both the controls and system parameters as one set of design variables fyg =�
f�u(t0)g

T
; f�u(t1)g

T
; :::; f�u(tN�1)g

T
; fpgT

	T
and the resulting objective function gradient

rJ =

(�
@J

@f�u(t0)g

�T
;

�
@J

@f�u(t1)g

�T
; :::;

�
@J

@f�u(tN�1)g

�T
;

�
@J

@fpg

�T)T

(3.32)
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can be used to determine the subsequent increment

fhg =
�
fhu(t0)g

T
; fhu(t1)

T
; :::fhu(tN�1)

T
; fhpg

T
	T

of the design variables towards the optimal solution. Thus the evaluation of the gradient with

respect to the controls requires the integration of the costate equations (3.15) backward in time

knowing (3.21) from �0
fxg
jtf .

Depending on the static optimization method used to solve for the discrete time controls and

system parameters, constraints can be appended using the Lagrange multiplier method and/or

penalty methods. However, in Section 3.6, we will see that some optimizationmethods can include

constraints implicitly.

Direct methods have come to the forefront of optimal control solution methods for several

reasons. First, closed-form analytical solutions for most practical problems are impossible. Next,

indirect methods are di�cult to solve requiring the application of many numerical techniques that

have to be speci�c to the structure of the objective functional and especially to how the controls

appear (i.e. linear, independant, etc.) in the dynamic equations. These methods also require good

initial guesses to converge, which for complex systems can be equally as di�cult to determine as

solving the optimal control problem itself. Finally, the increase in the average computational speed

in recent years have enabled more exhaustive parameter optimization methods to be exploited.

Direct methods are very robust at �nding solutions, and most methods guarantee at least a

feasible suboptimal solution. This is a result of the approximations to the control which can in

some instances make it impossible for the optimization to converge to the optimal solution. For

example, an optimal switch in the control may occur within the span of �t, but the approximation

to the closest point in time, ti, is insu�cient for an optimal time \bang-bang" control, so instead

a suboptimal performance with more gradual control transitions are produced. In these instances

only a �ne mesh can �nd the optimal control. Unfortunately, a �ner mesh means more design

variables and a larger search space which results in a greater probability of local minima. Thus

even though precision can be increased, it does not necessarily mean an increase in accuracy for

the higher computational cost.

For this reason researchers have suggested using direct methods to generate initial guesses for

indirect methods. For certain applications such as robotics this is a feasible strategy. Biomechan-

ical systems, however, are generally more non-linear and have redundant actuators which creates
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many instabilities for the indirect methods. As was mentioned earlier, the nonlinear solver for the

indirect method must be given an initial starting point that lies su�ciently close to the root of

the system; otherwise it may still not converge even though it is feasible and sub-optimal. In the

next section we discuss optimization methods in order to solve optimal control problems using

the direct method, and compare their abilities to �nd the global solution.

3.6 Numerical Optimization Methods

It should be apparent, from the aforementioned discussion of solution methods to optimal control

problems (Section 3.2), that we have cautiously arrived to the direct approach as the method

of choice. This is mainly because the direct approach provides the most general framework for

solving optimal control problems without having the requirements of assuming the structure of

the control or setting restrictions on how the system is actuated (i.e. over or proper-actuated).

The concerns are primarily with the accuracy of the solution method | will it converge to the

optimal solution? | and second is the tractability of the computation. If the method fails to

provide the optimal solution reliably or is unable to produce results in the order of hours the

utility of this work will be questionable.

Optimization methods di�er only by the means by which they traverse the objective surface

to �nd better solutions and then, hopefully, the optimal solution. The most common approaches

rely on the gradient of the objective function with respect to the design variables to approach

an extremum solution quickly and with high precision. However, variable performance criteria

with variable weightings and over-actuated dynamic models with many DOFs can dramatically

change the objective landscape and, furthermore, considering the large number of design variables

from the control parameterization, it soon becomes apparent that local optima are inevitable and

gradient information is insu�cient.1 Being able to �nd the the global optimum amongst many

1As an important aside, we might consider using the knowledge at hand, i.e. use the data collected from

test subjects to \coordinate" the initial trajectory and make assumptions about the controls based on an inverse

dynamics analysis. From our point of view this defeats the purpose of using optimal control methods. Could we

say that the human control system optimizes a particular objective function if we used a priori information to

initialize the results that recreated the desired motions? Even if they were possibly only representative of local

extrema? Of course not! Perhaps this is prescisely why muscle force decomposition strategies in inverse dynamics

are insensitive to the objective used. If our only desire is to recreate human-like motion then we need not go

through the rigors of modelling and constructing the optimal control problem.
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local extrema without a priori knowledge of the optimal solution is a signi�cant challenge.

First we consider the general optimization problem beginning with the scalar function J

J = f(fyg) (3.33)

where fyg = fy1; y2; :::; yng
T is a vector of dependent variables. The goal of any optimization is

to �nd fyg�that extremizes the scalar J . Given a starting point fygi, we want to incrementally

�nd fygi+1 where f(fygi+1) < f(fygi) for a minimum (reversed for a maximum) and continue

iteratively such that limk!1fygk = fyg�. We briey examine some classes of iterative methods

that lead to solutions to the general problem and then present a benchmark optimization problem

before discussing our method of choice and our results in solving optimal control problems, Chapter

4.

3.6.1 Gradient Based Methods

The following gradient based methods all use the fact that an extremum lies at a stationary point

(gradient is zero) on the objective surface in a valley or atop a hill by using the \steepness"

(gradient) to provide the search direction of greatest improvement. Using an analytical function

for the gradient or using a numerical approximation from di�erence equations, the gradient is

computed to determine both the direction in the n dimensional space as well as the magnitude

of the increment fhg for a given iteration. In the following approaches the incrementally better

solution is computed by fygi+1 = fygi + fhg beginning at a solution su�ciently close to the

extremum. The methods di�er only in their approach in computing fhg. At this point we

consider the optimization of (3.33) to be a minimization problem for consistency with literature

on gradient descent methods.

Unconstrained: Cauchy's (Steepest Descent) Method

Cauchy's method generates an approximation of the surface using a line approximation along the

gradient. This can be observed from

f(fygi + fhg) � f(fygi) +rf(fygi)
Tfhg (3.34)

where the second and higher order terms of the Taylor series approximation are ignored. For the

optimal control problem formulation it was shown how the gradients can be computed from the
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objective functional and dynamic constraints (3.29-3.32) and thus we assume the gradient to be

available or computed using a �nite di�erence technique [64]. Rewriting the equation,

�J = f(fygi + fhg)� f(fygi) � rf(fygi)
T fhg (3.35)

we have an expression for the change in the objective of function J in terms of the gradient at

some initial point. This method is also called the steepest descent method because the increment

fhg is now taken in the opposite direction of the greatest change

fhg = ��rf(fygi)
T (3.36)

such that �J < 0 which is necessary to minimize J . The constant � scales the magnitude

of the descent step and is determined such that � > 0 (to maintain a descent) and minimizes

f(fygi+�fhg). The techniques to �nding � are known as line search algorithms. These techniques

evaluate the objective at several values of � (along the search direction) and then use a quadratic

to interpolate three of these points and �nd the minimum to this approximation. Variations of

the basic algorithm exist using a similar technique iteratively for better accuracy ([64]). Having

determined �, and the subsequent increment fhg, Cauchy's method is complete.

This method shows rapid convergence characteristics far from the minimum (but within the

same \valley"); however in the near neighborhood of a stationary point (local extremum) the

gradient almost vanishes and so does the increment fhg. Therefore, the method takes subsequently

smaller steps close to the optimum and requires many more iterations to converge, especially for

high precision.

Unconstrained: Newton's Method

Newton's method di�ers from Cauchy's method only in its approximation of the objective surface.

Here (3.35) is expanded to the second-order term in the Taylor series

f(fygi + fhg) � f(fygi) +rf(fygi)
Tfhg+

1

2
fhgT

�
r2

f(fygi)
�
fhg (3.37)

for a quadratic approximation to the objective surface. The second derivative of a scalar function

with respect to its dependent variables,
�
r2

f(fyg)
�
, is known as its Hessian matrix. A necessary

condition for a minimum is
@f(fyg�)

@fyg�
= 0, thus for the next iteration fygi+1 to be the minimum of
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the quadratic approximation, we substitute fhg = fygi+1 � fyg1into (3.37) and di�erentiate

@f(fygi+1)

@fygi+1
� rf(fygi) +

�
r2

f(fygi)
�
fhg = 0 (3.38)

We can resolve (3.38) to determine the desired increment

fhg = �
�
r2

f(fygi)
�
�1
rf(fygi) (3.39)

which will �nd the minimum to the quadratic approximation. The magnitude, or step size, of the

increment vector fhg is again modulated by a parameter �. The same line search algorithms now

apply to Newton's method. With a suitable �, we substitute fhg = �fhg for the next approximate

solution fygi+1. This is performed iteratively until either the magnitude of the gradient or the

increment is smaller than a desired precision.

This method is very e�cient at �nding the nearest true minima quickly with the quadratic

approximation eliminating slow convergence due to small gradients near the optimum. Di�culties

arise in evaluating the Hessian matrix and inverting it. If they can be provided analytically than

this method can be used with excellent results. Otherwise the Hessian has to approximated

numerically; similar methods which compute an internal representation of the Hessian are called

Quasi-Newton methods. Generally these methods require signi�cantly more function evaluations

in order for the method to build up a representation of the Hessian matrix, especially if using �nite

di�erence approximations. More e�cient approximations use matrix updating methods based on

the past evaluations of the gradients from the Newton iterations, for example the BFGS matrix

updating formula ([11],[73]). These methods have been extended further to avoid matrix inversion

by maintaining and updating an inverse representation and are also known as conjugate gradient

(1storder) methods [24]. The advantages of the Quasi-Newton methods are that they do not

require a user supplied Hessian and they can still provide comparable performance .

Constrained: Penalty Methods

Static optimization problems with constraints can be transformed to unconstrained problems via

penalty functions. For example, the constrained problem

min J = f(fyg)

subject to

g(fyg) � 0
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is restated as

min J = f(fyg) + �(g(fyg); �)

The penalty function � is a scalar function that grows as the constraint is approached or violated

via an exponential or other growth function. The parameter � e�ects the severity of the penalty

such that the penalty becomes less gradual as � ! 0. There are two basic penalty methods:

interior and exterior penalty methods. Interior penalty methods append a continuous penalty to

the objective function such that the penalty function grows (within the feasible region) inversely

proportional to the distance to the constraint, i.e. � = �
�1

g(fyg)
. Here � ! 0 causes the penalty

to have less inuence within the feasible space but the penalty increases more sharply when

approaching the constraint. Thus when � is decreased iteratively, the solution can \slide" closer

to the constraint. The external penalty method applies no penalty while the solution is within

the feasible space but grows rapidly beyond the constraint boundary. In this case, � causes the

penalty to grow more severely beyond the constraint bound such that as � is decreased solutions

are \pushed" to the boundary, Figure 3.3.

The use of either method depends on the particular problem. If violations of the constraints

results in errors in a simulation, for example, then an interior penalty would be favored. On

the other hand if the constraints represent bounds from conservative limits on performance and

where a boundary solution is expected or an interior point initial guess is not guaranteed, then

an exterior penalty method would be superior. Of course in the lim�!0 they are equivalent

in�nite step functions. When the constraint is an equality constraint then a symmetric (about

the constraint) external penalty must be applied, such that the constraint curve has zero penalty.

Penalty methods require iterative solutions to the optimization problem with � ! 0. For the

interior penalty functions, this is necessary because it may unduly penalize solutions close to but

not violating the constraint. Exterior penalty methods must have su�ciently low values of � to

ensure solutions have been pushed back to the bound while ensuring there is not a superior internal

point solution. Beginning with � �= 0 could cause unde�ned gradients causing the optimization

method to fail. Beginning with � �= 1 will enable the gradient to be de�ned while creating an

increasingly \steep hill" to push points to the interior. The increasing nonlinearity as � ! 0

does make it di�cult to determine boundary solutions with a high degree of accuracy. Equality

constraints are dealt with much more e�ciently by the Lagrange-Newton method.
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Figure 3.3: Behaviour of penalty functions as �! 0 [2]

Constrained: Lagrange-Newton (SQP) Method

This method is based primarily on appending equality constraints by the Lagrange multiplier

method, similar to (3.10). Having the resulting scalar function of both the design variables and

Lagrange multipliers we under go the same procedure in developing Netwon's method.

For a scalar objective f(fyg subject to m equality constraints fg(fyg)g = 0 we �rst de�ne a

scalar Lagrangian

�(fyg; f�g) = f(fyg) + f�gTfg(fyg)g (3.40)

We assume that the Lagrangian at the next point is the optimal and must satisfy the necessary

condition r� = 0. Thus, we take the gradient of the Lagrangian (3.40) at the next point using a

second order approximation (excluding higher order terms) from the Taylor series expansion of

�(fygi+1; f�gi+1) = �

0@8<: fyg

f�g

9=;
i

+ f~hg

1A
where

f~hg =

8<: fhgy

fhg�

9=; =

8<: fygi+1 � fygi

f�gi+1 � f�gi

9=;
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which yields

r�

0@8<: fyg

f�g

9=;
i+1

1A � r�

0@8<: fyg

f�g

9=;
i

1A+

24r2�

0@8<: fyg

f�g

9=;
i

1A35f~hg = 0 (3.41)

similar to (3.38). Using

� =

8<: rf +rfggTf�g

fgg

9=;
and

�fygfyg =

24r2
f +

mX
j=1

[r2
gj ]�j

35
with the de�nition of fhg�, we can rewrite (3.41) in matrix form

24 �fygfygi rfggTi

rfggi 0

358<: fhgy

f�gi+1

9=; = �

8<: rfi

fggi

9=; (3.42)

which can be solved for the current increment in the design variables, fhgy, as long as the con-

straints fgg are linearly independent and �fygfyg is not singular.

This method is also called the Sequential Quadratic Programming (SQP) method since fhgy

is also the solution to a quadratic programming (QP) problem which minimizes qi(fhgy) =

rfTi fhgy +
1
2
fhgTy �fygfygifhgy, subject to fggi + (rfggi)fhgy = 0. This problem is equivalent

to minimizing the current change (maximumdecrease) in the objective J (3.33) from a quadratic

surface approximation q (3.33) that is subject to a linear approximation of the constraint curve.

The resulting system of equations for the solution of fhgy from the QP problem are identical

to the Lagrange-Newton result (3.42). The sequence of solutions to QP approximations in an

iterative approach results in the SQP.

As presented above, there is no guarantee that fhgy will in fact result in a decrease in the

objective function. To avoid divergence, fhgy is scaled so that fyi+1g = fygi+�fhgy, where � is

chosen, once again, to ensure f(fygi+1) < f(fygi). Speci�cally we construct a penalty function

� from which we can determine � > 0 such that

�(fygi + �fhgy; frg) < �(fygi; frg) (3.43)

�(fyg; frg) = f(fyg) + frgTfjg(fyg)jg (3.44)
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The set of positive parameters frg ensure the constraints at the next point are not violated. The

formula

r(i+1)j = max(j�(i+1)j j;
1

2
(j�(i+1)j j+ rij )); i = 1; 2; :::;m (3.45)

was demonstrated by Powell [63] to provide good results. Note that f�gi+1 is determined at the

current SQP iteration via (3.42). Beginning with � = 1, if condition (3.43) is not satis�ed then

we decrement � until the condition is met.

The SQP method is far more e�cient than penalty methods since the constraints are used to

help \guide" the increment towards the feasible optimal rather than \blocking" infeasible regions.

The method also does not su�er from the numerical instabilities resulting from penalty functions.

Inequality constraints are not handled explicitly. However converting the inequality constraints

to equality constraints by the introduction of slack variables (3.13) or eliminating the constraints

via a penalty function (Section 3.6.1) are possible adaptations. The penalty methods have their

problems. Slack variables e�ectively add more design variables and further increase the dimension-

ality of the problem, which can introduce more complexity to already high dimensional problems.

An additional method can be applied with the SQP method. The method of active constraints

takes advantage of the fact that the optimization is iterative in order to determine from a set of

inequality constraints which constraints are active in the computation of the next SQP step. The

active subset is added to the equality constraints and the subsequent computation of the solution

increment includes their inuence, while the inactive constraints are ignored. This method re-

quires some additional \book-keeping", but does not a�ect the complexity of the solution method.

To begin, inequality constraints that are violated by the initial solution are considered active. In

subsequent iterations the same violation check is performed plus the inclusion of the inequality

constraints that have positive Lagrange multipliers f�gi+1 even if these constraints are currently

not violated. f�g can be loosely interpreted as a constraint \reaction force", which resists move-

ment normal to the constraint path and that f�gi+1 can be thought of the \anticipated reaction"

at the next point. For inequality constraints the concern with a \reaction" keeping the solution

inbounds is represented by a positive value, and thus should be included in the subsequent incre-

ment. For an inequality constraint we want to ignore reactions of movement towards an interior

point. Thus, we remove previously active inequalities with negative �i values.
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3.6.2 Global Search Methods

The previous methods are considered local optimizers since they descend quickly towards points

on the objective surface where the gradient is zero and where the Hessian is positive de�nite

(for a minimum). However, these conditions can be satis�ed at multiple points on the surface,

known as local minima. Which local minima is found depends solely on the initial point from

which the descent begins. For objective surfaces that are highly nonlinear with \dimples" and

\bumps"in the surface, gradient information can be misleading. In noisy or rough surfaces the

gradient methods can be trapped very close to the starting point.

Unfortunately, the only method that can guarantee the global optimum is complete enumer-

ation of the objective surface. Although exhaustive and robust the computational requirements

make it impractical for most applications. Following from that is the random or Monte-Carlo

optimization method, which randomly samples the space keeping the best point to date. After

a su�ciently desirable solution is found or the current best has not been surpassed after some

terminal number of iterations, the method is stopped. Very simple, but still extremely expensive

computationally.

The followingmethods are two general approaches which have been shown to be more e�ective

by borrowing from natural laws to generate heuristics for stochastic optimum seeking. They

are called stochastic methods because they both rely, to some degree, on random perturbations

which provide the explorative nature of the techniques. Thus, they take irreproducible (non-

deterministic) paths to the optimumwhile being consistent in �nding the optimum, unlike a pure

random search. Since these methods sample the solution space and do not require a continuous

surface for computing gradients, discontinuous objective functions with unde�ned or non-existent

derivatives do not create a problem.

Simulated Annealing

Simulated annealing is based on a thermodynamic model of the optimization problem such that

it is analogous to a liquid metal. In the cooling of hot liquid metal, loosely bound atoms come

to align themselves such that the material can obtain a lower energetic state which is a solid.

This process is called annealing. When cooled slowly the annealing process results in ordered

arrangements of atoms over distances tens of orders larger than the size of an atom which is
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a crystalline structure representing the lowest energy state attainable by the arrangement of

atoms. If cooled too rapidly the atoms do not align over such large distances thus resulting in the

polycrystalline structure. The analogy here is that the gradient methods are like the rapid cooling

process that does not enable the system to reach the lowest energetic state, i.e. the optimal state

[64]. Thus, in practice the design variables of our optimization problem are analogous to the

atomic con�gurations and the objective function is the scalar measure that is analogous to the

energy of the con�guration [64]. The temperature and the \annealing schedule" determine the

size of the random perturbations (high temperatures generally mean larger potential changes in

con�guration) and the rate or the increments at which the temperature is lowered. A probabilistic

function is used to determine when the system changes con�guration (i.e. a new solution) and is

1 if the resulting change will decrease the total energy, otherwise a probability of increasing the

total energy is assigned for the same temperature. This enables a \realignment" step to occur

even though it may require a transition to a higher energy state before further lowering.

Evolutionary methods

Evolutionary methods and simulated annealing share many similarities. First, evolutionary al-

gorithms are also stochastic, with randomness introduced via mutation of individual solutions.

Solutions take the analog of organisms instead of con�gurations and changes in con�guration are

performed via reproduction operators instead of a probability distribution. The analogy for the

objective function is di�erent in that it casts the general problem as a maximization of a scalar

�tness value. The most signi�cant di�erence is the concept of a population. All evolutionary

methods maintain a set of solutions which then compete to reproduce the next generation by a

\survival of the �ttest" heuristic [34]. This enables multiple branches of organisms (or species

perhaps) to evolve in parallel until the �ttest one dominates. In simulated annealing most of

the exploration occurs early on in the annealing process when the temperature (or randomness)

is high, but as the system is cooled a single annealing path is selected perhaps at the cost of

another. The evolutionary method, however, because of parallel evolution, can exhaust multiple

evolutionary branches [69].
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3.6.3 The Genetic Algorithm

The genetic algorithm (GA) is an evolutionary method that we have examined more closely for

determining the globally optimal controls with greater reliability [77]. The GA is based on the

method of transfer of genetic material in the natural or biological world and the performance and

survival of species. Biological systems do not maintain a mathematical model of their world in

which to determine the optimal performance, yet most creatures perform very well and perhaps

optimally for the environment they live in. A reason for this is the encoding of all features of

the organism from the function of a single cell to the complete skeletal structure. This encoding

through reproduction ensures that those features that enabled the current organism to survive are

passed to its o�spring. Through genetic recombination, surviving pairs have increased chances of

producing �tter o�spring. Life itself is the test if the new genes are worthy to be passed on by

surviving to maturity and being able to reproduce as well.

In an arti�cial systems context, survival is determined by the successful performance evaluated

by the designer. Based on the evaluation of performance, known as the �tness function, an \or-

ganism's" chances of reproduction are determined. Similarly, an arti�cial organism's parameters,

which de�ne its current performance, are encoded in strings known as chromosomes which are

analogous to the biological structures containing genes. After a chromosome is selected according

to its �tness, reproduction occurs via crossover. Crossover is a method of combining successful

individuals, which interchanges equivalent lengths of their chromosomes. Finally, variation is in-

troduced into the new population by random mutation. Mutation occurs only at a single base

(letter or digit) of the coded chromosome for a set of bases that are selected at random within

the entire population. The result of selection, crossover and mutation is a new population with

potentially more individuals of increased �tness. After several generations, the population will

converge on the chromosome that provides the highest �tness value attainable | that is the

optimal organism.

The genetic algorithm can be outlined as follows:

1. Design variable encoding and initial population generation

2. Fitness evaluation of each individual in the population

3. Select a surviving portion of the population based on the �tnesses



CHAPTER 3. OPTIMAL CONTROL DETERMINATION 60

4. Mate selected individuals using a cross-over technique

5. Apply random mutations to the o�spring and replace the old population

6. Repeat 2-5, until the population is dominated by a single chromosome

Encoding Design Variables

Design variables are encoded into string representations where each character is known as a

base. The most common method is binary encoding (0/1 bases) such that each design variable

has an equivalent binary representation. The binary representation according to the Schema

Theorem and the Building Block Hypothesis [44], can best leverage the recombination of �ttest

features represented as sub-strings. We present an anecdotal argument which supports the Schema

Theorem. First we consider any (optimal) value of say 10 (in decimal). The equivalent binary

encoding is [001010] and in base 4 representation (0->3) the equivalent encoding is [022]. If

we change (by mutation or cross-over) the least signi�cant bit we get [001011] and [023] as the

equivalent binary and base 4 representation for 11. If we consider the new chromosomes in

terms of a ratio of the bases appearing in the original chromosome, we �nd that the binary

maintains 5
6
of the original encoding, while the base 4 yields only 2

3
. It has been concluded

that the binary encoding can preserve more features through the evolutionary processes and thus

possesses stronger convergence characteristics [34].

In our implementation of the genetic algorithm the appropriate number of bits are allocated

based on the range of design variables and their desired precision. A chromosome is generated

by concatenating the appropriately sized strings for each design variable. An initial population

of chromosomes is generated by randomly populating the chromosome bits for a user de�ned

population size, Np. Population size is an important parameter in any genetic algorithm and

selecting the appropriate size is dependent on several factors. A large chromosome typically

requires a big population, since the chromosome length de�nes the size of the search space. If

many local optima are anticipated then to ensure that each \hill" is su�ciently explored, the

population size should facilitate multiple evolutionary paths.



CHAPTER 3. OPTIMAL CONTROL DETERMINATION 61

Fitness Functions

Fitness functions represent the mapping from the chromosome encoding of the design variables

to a scalar value of the chromosome's performance and is essentially the objective function. GA's

are essentially maximization operations and thus the �tness function should apply the necessary

transformation.

Constraints are included by penalizing the �tness of an individual for violating the constraints

and for the degree of violation. Thus for casting the general constrained minimization described

earlier, we rewrite the scalar objective J (Section 3.33) subject to constraints fg(fyg)g = 0 and

fc(fyg)g � 0 by the �tness function

Fit = Fmax � J �

mX
i=1

�ijgij
�i �

lX
j=1

�m+j(cj + jcjj)
�m+j (3.46)

Fmax is a large positive constant that enables all �tness values to be positive, although it is not

essential in our algorithm. The constant factors f�g and exponents f�g determine the severity of

the penalties for the m + l constraints. The values for penalty constants depend largely on the

problem. Consideration should be given to potential tradeo�s that may arise from individuals

that perform well but violate constraints, versus those that are feasible but perform poorly. If

feasibility is the primary characterization for performance then su�ciently large penalties must

be applied. The critical job of the �tness function is to accurately segregate the population such

that better solutions have higher �tness values.

Selection Process

There are several selection methods available and include the roulette wheel, ranking, stochastic

selection and elitismmethods, to name a few. The process we employ is a combination of multiple

techniques. Essentially the population is divided about the median �tness value for the current

population and those less than the median are discarded. From the remaining chromosomes, their

�tnesses are shifted such that all values are above zero, if necessary. An exponential scaling is

applied to further separate the �tnesses based on the dominance (homogeneity of the population)

and the number of iterations where the �tness has remained the same in order to drive the method

to converge.
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The total �tness is evaluated so we can express individual �tnesses as a ratio of the total �tness

which then de�nes the individuals' selection probabilities on a \roulette wheel". Np random \rolls"

are used to then select the current population. Elitism is also supported in two ways: �rst, the

selected population is forced to have at least one top performer; second, on the condition that the

maximum �tness of the new generation does not equal or exceed the past best it is reinserted in

place of the new worst performer.

Genetic Recombination

From the selected population, mating partners are randomly assigned. The method of genetic

recombination is via a multiple crossover technique. The mean number of crossover points is a

user speci�ed parameter that enables more genetic intermingling for larger chromosomes than

can be provided by single crossover [13]. The actual number of crossover points is achieved by

\blurring" the mean number of crossovers with a normal distribution centred on the mean value

so that for any generation it can be slightly greater or less than speci�ed.

Multiple crossover is achieved by randomly selecting crossover points for a particular couple

and then sorting them in ascending order. Our method, for an even number of crossover points,

uses sequential pairs of crossover points to de�ne the substrings that are interchanged. Similarly

for an odd number of crossover points, the �rst location of the chromosome is included in the

list of crossover points and we proceed as before. The recombined chromosomes then replace the

parents in the new population.

Multiple crossover is thought to be more e�ective, especially for long chromosomes, in order

to ensure that short and �t schemata (fundamental substrings) can form and recombine [50].

Mutation Technique

We have found that adjusting the mutation rate dynamically can be a powerful method of en-

suring the GA is explorative enough while providing the opportunity for �t schemata to form

and recombine so that the method does not degenerate into a random search. The technique is

quite simple and requires a measure of dominance, D, and the number of iterations at which the

maximum �tness has remained the same, Isame. Beginning at a user de�ned value the mutation

rate is scaled as Isame approaches the maximumnumber of iterations, Imax, with the same �tness
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and furthermore as the population is dominated. Thus, at the point of convergence the mutation

rate can reach up to twice the set value and a minimum of half the value if the �ttest shows

almost no dominance.

This helps to stabilize the algorithm such that when a new �ttest is found it can have the

opportunity to dominate instead of being lost by random mutations. The opposite is also true;

instead of premature convergence the algorithm adapts the mutation rate to increase its explo-

rative capabilities. We have found in our applications that the variable mutation rate has been a

key element to the robust performance of the GA.

Convergence Criteria

As mentioned previously, the two criteria which de�ne dominance in our implementation of the GA

are: 1) exceeding the maximumnumber of iterations for which the maximum�tness has remained

the same, Isame > Imax and 2) attaining a dominated population, D > Dmax. Dominance is a

normalized measure of every chromosome's Hamming distance to the �ttest chromosome, such

that a value of 1 means all chromosomes are identical to the �ttest and a value of 0 means they are

identically not equal to the �ttest. For a completely random distribution the dominance ranges

between 0.40 and 0.60 and values exceeding 0.9 mean near complete dominance of the population.

Due to random mutations the dominance is generally bounded by Dmax � 1� 2Mr, where Mr is

the mutation rate.

Lookup Table of Past Performances

Recent GA implementations ([6] and [50]) typically include some form of lookup table in order

to eliminate the computational burden of re-evaluating chromosomes that appear multiple times

in a generation or reappear in later generations. When computationally intensive simulations

are part of the �tness function, this provides marked time savings. However, for less intensive

evaluations trade-o�s are made with regards to the time to search a large table and time for

re-evaluation. In our work we have found that re-evaluations occur with the greatest frequency

within the current and the last generations, with chromosomes further than four generations past

having very few re-occurrences. Thus searching can be greatly reduced by checking the current

as well as the past three generations for possible re-evaluations. Searching of long binary strings
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de�ning the chromosomes also lead to time-consuming ine�ciencies. By keying the database by a

unique number such as the decimal representation of the binary strings, searching of moderately

sized databases becomes very inexpensive.

We implement a lookup table that maintains a database of ng to 2ng of the most recent

generations with pruning occurring only when the database reaches more than 2ngNp (Np is the

population size), where ng is a user speci�ed minimum number of generations to be maintained.

3.6.4 Hybrid Methods

Several authors [44],[69] propose hybrid methods combining some or all of the features of a global

method such as the genetic algorithmwith the speed and precision of gradient based methods such

as the Quasi-Newton method. Techniques for hybridization include a simple two step approach

using the GA to identify the optimal region and the gradient method to converge on the precise

optimum as well as more highly coupled methods. In the �rst case the GA provides a su�ciently

accurate initial guess to the gradient method.

A hybrid method proposed by Renders and Flasse [66] integrates the the two techniques more

intimately. In their approach, the application of the Quasi-Newton method for each chromosome

at each generation represents the \life" of the individual which is equivalent, for example, to

several Newton iterations. At the end of its life, the chromosome will have \grown" to be a

�tter individual and therefore it is the mature chromosome that now replaces the infant in the

population with its improved �tness value. The method then performs another iteration in the

GA using the mature chromosomes and their �tness values, resulting in no fundamental change

to the GA. In fact, all that is required is for the �tness function to perform a few Newton steps

of a Quasi-Newton optimization and then to return the �nal �tnesses as well as the mature

chromosomes to the genetic algorithm.

The resulting hybrid method o�ers much faster convergence in comparison to the GA alone if

the objective (�tness) function is locally smooth (i.e. continuous double di�erentiable). Otherwise,

the local search method can make little progress and the method defaults to a performance

equivalent to the GA. Computation times for locally smooth functions are typically less than Np

times longer than the Quasi-Newton method alone because as the method approaches convergence,

fewer and fewer new individuals arise requiring fewer computations thanks to the GA's look-up
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table.

With a local SQP optimization method we can also handle constraints more e�ciently via the

hybrid approach by applying the constraints explicitly in the SQP steps and thus assuring that

the resulting solutions are feasible.

The genetic algorithm and the additional functionality to compute SQP steps with constraints

was implemented as a Matlab function in genetic.m (Appendix B.1).

3.7 Comparison of Methods

Having briey discussed local gradient based, global heuristic-stochastic, and hybrid optimization

methods, we turn to a sample problem for evaluating the robustness, precision and computational

resources (time) required by these methods. As a representative of the gradient methods we chose

the Quasi-Newton method with the gradients and Hessian computed via a �nite di�erence method

and an updating scheme [11]. This method is available as a function, fmin, in MATLAB's opti-

mization toolbox. For the global methods we applied the genetic algorithm which was described

in Section 3.6.3 as well as a hybrid GA/SQP from Section 3.6.4.

We have selected a benchmark problem proposed by Scha�er [1989] and represented in the

text by Lin and Lee [44], that provides the following unconstrained optimization problem:

max f(fyg) = 0:5�
sin2

�p
fygT fyg

�
� 0:5

[1:0 + 0:001(fygTfyg)]
2

(3.47)

Where fyg = fy1:y2g
Tand the range for the two design variables is �100 � yi � 100 and the

solution is desired to a precision of two decimal points. This problem poses several di�culties:

�rst the surface has in�nite local optima (concentric rings) (Figure 3.4); local optima exist (�rst

concentric ring) which have a value very close (�= 0:995) to the global optima of 1; and �nally the

design variable range is large.

Although the surface is smooth and twice di�erentiable, the Quasi-Newton applied directly to

the minimization of �f(fyg)provides poor reliability in that only initial guesses within the �rst

concentric ring (jfyg � fy�gj � 1:253) converge to the global optimum. For the desired precision

the GA encoding required 22 bits per design variable, and for a population of 100 chromosomes
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Figure 3.4: Benchmark objective function with in�nite local optima
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it typically did not converge before 40 generations (less than 4000 function evaluations). Out of

15 trials, the GA found a solution on the global (central) peak only 4 times with a maximum

objective value of 0:997. The hybrid method enabling each chromosome to grow on each iteration

via �ve Newton iterations of the Quasi-Newton method provided the precise optimum (to within

10�5) 14 times of the 15 trials. Only 1 trial converged to the local optimum of the �rst concentric

ring with a population size of 20. The number of generations was always within 18 generations

for an average less than 1400 function evaluations. Doubling the population increased reliability

to 100% with convergence under 17 generations and less than 2400 function evaluations, Table

3.1. The mutation rate was initially de�ned to be 0.02 (which is varied within the algorithm) and

the number of crossover locations was set to 2 for the the GA in both approaches.

This test function has several features that we can assume hold true for optimal control

problems in general. First the objective surface is smooth and, second, it is highly non-linear and,

more importantly, non-convex (non-concave). For the optimal control problem we can expect the

objective to be at least piecewise di�erentiable [84] with respect to the controls since the equations

of motion from the system dynamics are generally nonlinear but continuous. The hybrid method

is able to capitalize on the smoothness of the function while using the genetic operators to avoid

being trapped in local optima.

The high dimensionality of the optimal control problem was also simulated by increasing the

dimension of the solution space by making fyg = fy1; y2; :::; y10g
T , i.e. ND = 10. Only the

hybrid-method was studied for this case and resulted in all of the 15 trials converging to the

optimal solution with a population size of 120 and holding all other parameters the same. Even

more impressive convergence was observed with convergence to the precise optimal solution being

found within 50 generations with less than 52,000 (and as low as 42,000), function evaluations

(Table 3.1). Although the search space increases by the power of the number of design variables,

the computational e�ort only increases in proportion to the number of design variables times the

factor increase in population size!

Based on these results we believe a GA-SQP optimization can provide the greatest reliability

for the optimal control problem using a direct solution method. Computing gradients internally

from Equations 3.30-3.31 will also reduce the computational requirements over the test case which

were computed by the Quasi-Newton method using �nite di�erence equations.

The speci�c implementation and results of this approach applied to robotic and biomechanical
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Table 3.1: Test function optimization results from the GA-SQP method

ND Np Relability (%) mean nfevals

2 20 93 1377

2 40 100 2370

4 80 100 10903

10 120 100 51913

models of the arm are presented in Chapter 4.



Chapter 4

Implementation and Prediction

Results

Using the optimal control methods developed in Chapter 3 we investigate the performance of arm

models with speci�ed performance objectives. First, we test our algorithm with a benchmark

minimum-time maneuver of a planar 2-link manipulator. Second we consider the biomechanical

model of the human upper-limb for similar pointing and lifting tasks with the some biologically-

inspired objectives. For each model the detailed implementation including the model parameter

values for segment inertias, joint locations and muscle attachment locations are included in Ap-

pendix A.

4.1 Performance of a Planar 2-link Manipulator

The benchmark minimum-time problem has been investigated by several researchers, [25] and

[31]. Its results are well known, which will enable us to validate our algorithm's performance.

The planar manipulator was described previously (Section 2.3.3) and the equations of motion

for the manipulator are presented in (2.6-2.9) with the speci�c model parameters included in

Appendix A.1.

69
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4.1.1 The Optimal Control Problem for the Planar Manipulator

The minimum time objective is given by

min J =

Z tf

0

dt (4.1)

subject to the dynamic equations in state space form, (2.10)

ff(fxg; fug; t)g � f _xg = 0 (4.2)

the initial and �nal kinematic conditions

f�gj0 � fX0g = 0 (4.3)

f�gjtf � fXfg = 0 (4.4)

and the bounds on the control torques fug = fT1; T2g
T

fjujg �

8<: 25

9

9=; (4.5)

The initial and �nal end-e�ector kinematic constraints are de�ned in state coordinates by

f�g =

8>>>>>><>>>>>>:

l1 cos(x1) + l2 cos(x1 + x2)

l1 sin(x1) + l2 sin(x1 + x2)

�l1 sin(x1)(x3) � l2 sin(x1 + x2)(x3 + x4)

l1 cos(x1)(x3) + l2 cos(x1 + x2)(x3 + x4)

9>>>>>>=>>>>>>;
(4.6)

which describes the end-e�ector position and velocities in Cartesian coordinates.

For comparison with known results we de�ne the the initial position such that the arm is fully

extended along the Cartesian X-axis and the �nal position as the point were the arm is fully

extended on the Y-axis. Combining this with the fact that both initial and �nal velocities are

zero,

fX0g =

8>>>>>><>>>>>>:

l1 + l2

0

0

0

9>>>>>>=>>>>>>;
and fXfg =

8>>>>>><>>>>>>:

0

l1 + l2

0

0

9>>>>>>=>>>>>>;
(4.7)



CHAPTER 4. IMPLEMENTATION AND PREDICTION RESULTS 71

In order to use a direct solution method we must rewrite the problem such that the �nal state is

free and penalize J accordingly. Thus the approximate objective becomes

min J
0 = �+

Z tf

0

dt (4.8)

� = �fSgT fSg (4.9)

where fSg = f�gjtf � fXfg and � is a penalty weighting. The new objective is subject to the

dynamic equations (4.2) and the bounds on the controls (4.5) only, which can be appended by

the method of Lagrange multipliers. Note that the only free variable is the �nal time of the

integration. We can parameterize the �nal time such tf = p and normalize the integration time

such that � = t
p
. The dynamic equations in normalized time, �; are dfxg

d�
= pff(fxg; fug; t)g.

Adding the �nal time parameter p to the �nal state cost � and appending the dynamic equations

we get the �nal form of the objective

min J
00 = �0 +

Z 1

0

�
f�gT

�
pff(fxg; fug; � )g�

dfxg

d�

��
d� (4.10)

where

�0 = rfSgTfSg + p
2 (4.11)

subject to

�p � 0 (4.12)

and the limits on the controls (4.5). These limits can be enforced directly by constraining the op-

timization method to vary the design variables within the prescribed range. We can now evaluate

the objective function by integrating the dynamic equations forward in � by linear interpolation

(3.25) of the discrete approximations of the controls f�ug and an estimate of the �nal time, p.

4.1.2 Planar 2-link Model Functional Variations

To compute the gradients with respect to the design variables | the discrete controls f�ug and

parameter p | we compute the variations in the Hamiltonian,

H = f�gT
�
pff(fxg; fug; t)g�

dfxg

d�

�
(4.13)

and get the optimality conditions

Hfxg : f�gTffgfxgp = �
df�g

d�
(4.14)
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Hfug : f�gTffgfugp = 0 (4.15)

Hp : f�gTffg = 0 (4.16)

The Jacobian of the state space equations ffg with respect to the state fxg and controls fug

were computed in Maple and are easily described analytically in terms of the original dynamic

equations (2.6).

ffgfxg =

24 [0] [1]

([M ]
�1
f=g)fxg

35
(4�4)

(4.17)

ffgfug =

24 [0]

[M ]
�1
f=gfxg

35
(4�2)

(4.18)

The �nal conditions on the co-states can be computed directly from the �nal state cost

f�gj1 = �0
fxg
j1 (4.19)

which provide the initial conditions for integrating the co-state equations backwards in time

to determine the co-state trajectories. From the co-state trajectories we can evaluate Hf�ugand

Hp over the performance time (for the set of design variables used to evaluate J
00) and use

(3.30) and (3.31) to compute rJ 00, (3.32). The computation is performed in Matlab via .m

�les: planarEqns, costateEqns, simplePlanar, and planarGrads. The state and co-state equations

are coded in planarEqns and costateEqns respectively. These functions are integrated by their

respective calling functions, namely simplePlanar and planarGrads via a NAG variable step 4th

order Runge-Kutta ODE solver [53]. The function simplePlanar evaluates the objective value and

planarGrads computes the gradients according to the most recent state and integrated co-state

equations. These �les are included in Appendix A.1.

The initial state is chosen such that it satis�es (4.3) which conveniently is fxg = f0g.

4.1.3 Minimum-Time Maneuver Results

The above objective and gradient functions were used in our implementation of the hybrid GA-

SQP technique outlined earlier (Section 3.6.4). The control limits were handled explicitly by the
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Figure 4.1: The \bang-bang" optimal controls of the planar 2-link manipulator

GA-SQP method and thus do not appear in the objective function. There are no auxiliary con-

straints. The control mesh was taken with 51 nodes (discrete instances). The hybrid optimization

method was con�gured with: a population size of 80; a baseline mutation rate of 0.02; a mean of

two cross-over points; and an upper bound of 10 Newton iterations per �tness function evalua-

tion. Compatibility of the �tness function values (GA maximization) with the objective function

values (SQP minimization) for the respective methods was maintained by taking the �tnesses to

be Fiti = 2000� Ji, where Ji is the value of the objective function after an individual has taken

up to 10 Newton iterations. The �nal dominant individual was then used to run the SQP to

completion. The precision on the design variables for the hybrid-method were coarsely set at 0.1

and the �nal time parameter at 0.01. The �nal SQP was given a convergence tolerance of 10�4

for both the design variables and the objective function.

The following results were generated without using any a priori knowledge that the counter

revolution of l2 is a superior strategy. Finding this solution can be attributed to the explorative

nature of the GA.

Our minimum time result of p = 0:9185 (Figure 4.1) results are virtually identical to the

results obtained by Geering [25] (p = 0:92) and by Heilig and McPhee [31] (p = 0:9164) who
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Figure 4.2: The optimal trajectory for the planar 2-link manipulator

were able to get extremely precise results by using a �ner mesh in a direct SQP method and

experimenting with various initial trajectories. In these previous cases, however, the �nal state

was prescribed such that x2 = �2�, whereas our implementation only imposed constraints, f�g,

on the end-e�ector position and velocity. The set of feasible solutions is signi�cantly larger in our

de�nition of the problem with at least one other local minima resulting in fx2 = 0g which has an

optimal time of only 1:2371. It is interesting to note that a very coarse encoding of only 10 nodes

with a GA optimization provided sub-optimal results but still demonstrated the optimal counter

revolution strategy [72].

Our results required 32487 function evaluations and only 10420 gradient evaluations in 143

generations. The integration of the state equations varied between 0.7 and 1.5 seconds to compute,

on a Silicon Graphics Indigo 2xZ workstation. Evaluating the gradients ranged from 1.0 to 4.0

seconds taking more time in the initial phases when the terminal constraints are grossly violated

and the initial conditions for the co-states are very large. The variation in time can be attributed

to the variable step size of the Runge-Kutta method which adapts to the \smoothness" of the

dynamic equations which can be very erratic in the initial phases due to purely random controls.

The total time for evaluation was just under 15 hours.
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Figure 4.3: Feasible paths in the motion space of the planar 2-link manipulator

4.1.4 An Alternate Path Parameterization Method

In striving to increase the e�ciency of our method, various parameterizations were considered.

Most signi�cant was the idea of parameterizing the end-e�ector path. This resulted in solving an

optimal control sub-problem in �nding the minimum time controls along a speci�ed trajectory.

Notably the work of Bobrow [8] was implemented using paths parameterized by points in Cartesian

space interpolated by a cubic spline. Bobrow's method resolves the controls by establishing a

pro�le for the maximum acceleration or deceleration along the path. The optimal control is a set

of optimal switches which toggles the controls between maximum acceleration or deceleration.

The GA was then used to move the nodes in the end-e�ector motion space, Figure 4.3. The

main advantage of this method is that all solutions are inherently feasible and always satisfy the
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terminal state conditions. Almost identical results were obtained using only four nodes (four

pairs of coordinates in the horizontal plane) and thus only eight design variables opposed to 103

variables in the above method. Surprisingly, this method was slower due to the time consuming

solution of the optimal sub-problem that is evaluated by the �tness function, even though only

982 �tness function evaluations were required.

The path parameterization method remains an attractive method for proper-actuated open-

loop systems. However an oversight on our part resulted in a failure to recognize that this method

is ine�ective for over-actuated systems. In order to resolve the optimal sub-problem a linear

combination of the controls must produce a unique acceleration vector on the path which is always

true for proper actuated systems. For redundant muscle actuators there are in�nite combinations

that can provide the same end-e�ector acceleration, and thus the individual controls must be

determined by yet another optimal decomposition method, a la the inverse dynamics method.

Although possible to resolve the problem this way, the additional complexity was abandoned for

the present direct method.

4.2 Upper-Limb Biomechanical Model Performances

The �ve muscle actuated upper-limb model (Figure 2.4) is used in this investigation with the

shoulder and elbow joints modelled as revolute joints and the wrist joint as a weld. Thus the

model has two degrees of freedom and �ve actuators and thus can be considered to be over-

actuated. In addition, the bicep (F2) is a two-joint muscle connection to the ground body (�xed

scapula) and the forearm segment. The motion of the arm is in the vertical plane and thus the

e�ects of gravity have been included in the dynamic equations. Hill's equation is used as the

muscle actuator model (Section 2.1.4) with the length and velocity of contraction determined

directly from the segment kinematics. The normalized (0 ! 1) activation levels to the muscle

models represent the �ve control variables fug = fu1; u2; : : : ; u5g
T . The graph representation

(Figure 2.5) was used to generate the input �le (Appendix A.2.1) to DynaFlex . The resulting

equations of motion have been implemented in bioArm (Appendix A.2.2).



CHAPTER 4. IMPLEMENTATION AND PREDICTION RESULTS 77

4.2.1 The Optimal Control Problem for the Biomechanical Arm

The objective for the biomechanical arm now includes minimizing time as well as a scalar measure

(�) of the joint reaction forces and can be described by

min J =

Z tf

0

(1 + �(fxg; f _xg; fug; t)dt (4.20)

subject to the dynamic equations in state space form,

ff(fxg; fug; t)g � f _xg = 0 (4.21)

auxiliary state constraints that account for the articular limitations of the elbow joint,

(x2 � �)x2 � 0 (4.22)

as well as initial and �nal state kinematic constraints

f�gj0 � fX0g = 0 (4.23)

f�gjtf � fXfg = 0 (4.24)

and bounds on the control inputs

f0g � fug � f1g (4.25)

The measure of the joint reactions (�) is fundamentally a projection of the joint reaction forces

onto the local frame of each joint's distal body. For example, the reaction force at the second joint

is expressed in terms of forces parallel to the long axis of the forearm body and perpendicular

to its long axis. The perpendicular force is used to represent the shear force on the joint and a

negative reaction force along the long axis represents the tensile (pulling) reaction force. We only

take into account the joint shear and tensile forces while ignoring compression when computing

�. The hypothesis is that shear and tensile forces contribute to joint separation and thus muscle

forces that work to maintain joint integrity can only be be duplicated if these measures increase

the performance cost. Mathematically,

�(fxg; f _xg; fug; t) = �1
1

2
(jA01j �A

0

1) + �2A2 + �1
1

2
(jB00

1 j � B
00

1 ) + �2B2 (4.26)

where fA0g and fB00g are the joint reaction forces in the respective distal body frame and the

constants f�g and f�g are weightings on both the tensile and shear components of the respective
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joint reactions. The �rst component of the reaction forces represents the longitudinal reaction

force and using its absolute value minus itself yields twice its magnitude if the component is

negative (i.e. tensile); otherwise it is zero. The integration of the dynamic equations (4.21)

yields the state trajectory which is used to determine the acceleration of the centre of masses of

each segment. The individual muscle forces and accelerations allow us to solve for the the joint

reactions at each time step and evaluate ��(ti) which is then integrated using the trapezoidal rule.

The result is the cumulative cost of the shear and tensile reaction forces. The projection of the

reaction forces is dependent on the joint angles fxg and the forces require the acceleration of the

segments which are dependent on the state velocities and accelerations f _xg as well as the muscle

forces which are dependent on fxg and the controls fug.

We include articular limitations of the joints as explicit joint constraints as in (4.22) which

limits the second joint angle between extreme extension (x2 = 0) and extreme exion (x2 = �).

These limits may not reect the precise joint limits but simply demonstrates how this method

includes joint limits.

The initial and �nal state constraints de�ne the particular task. In this case the kinematic

constraint equations, f�g are identical to those of the planar manipulator (4.6), but we have

rede�ned the terminal conditions such that

fX0g =

8>>>>>><>>>>>>:

P0x

P0y

0

0

9>>>>>>=>>>>>>;
and fXfg =

8>>>>>><>>>>>>:

Pfx

Pfy

0

0

9>>>>>>=>>>>>>;
(4.27)

These terminal states describe a lateral view of a task of raising one's hand from rest in the \at

ease" position, P0, (arm along side) and reaching (lifting) such that the hand (end-e�ector) comes

to rest at the highest vertical point, Pf , to which the individual can reach. We intend to determine

the start (P0) and end (Pf ) from kinematic data collected directly from a subject performing a

vertical reach task. Similarly, segment lengths, muscle origin and insertion points, and inertial

estimates are also to be determined from the test subject (Chapter 5).1

As in the previous benchmark example, using the direct method requires the freeing of the

�nal state terminal condition and the addition of an appropriate �nal state penalty, � (4.11).

1The initial and �nal points were approximated from the 3D kinematics before the kinematics were projected

on to the most signi�cant plane. See Section 5.8.1.
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Using the same de�nition of the �nal penalty and parameterizing the �nal-time as in the previous

example we can rewrite the objective.

min J
0 = �0+

Z 1

0

�
1 + �(fxg;

dfxg

d�
; fug; �; p) + f�gT

�
pff(fxg; fug; � )g�

dfxg

d�

��
d� (4.28)

subject to the �nal time parameter (4.12) and control bounds (4.25). The initial state constraints

are always satis�ed since they are used to initialize the forward integration of the equations of

motion using the discrete control approximation f�ug and a guess of the �nal time parameter, p.

4.2.2 Biomechanical Arm Model Functional Variations

Once again, to compute the gradients with respect to the design variables ff�ug; pg, we must

compute the variations of the system Hamiltonian

H = 1 + �(fxg;
dfxg

d�
; fug; �; p)+ f�gT

�
pff(fxg; fug; � )g�

dfxg

d�

�
(4.29)

The speci�c �rst-order optimality conditions for this system are,

Hfxg : �fxg + f�gTffgfxgp�
d

d�
(p�f _xg) = �

d

d�
f�gT (4.30)

Hfug : �fug + f�gTffgfugp = 0 (4.31)

Hp : �p + f�gTffg = 0 (4.32)

The Jacobian of the state space equations ffg with respect to the state fxg and controls fug can

be determined symbolically for relatively simple functions as in the previous example. However

for complex system dynamics, both the Jacobian of the state space equations and the gradient of

the cost functional cannot be resolved analytically. In the current example, the gradient of the

reaction force measure � is much more di�cult to determine analytically than for the �nal time

functional of the previous example.

For more complex problems, we can approximate the variations,Hfxg; Hfug andHp from �nite

di�erence approximations of the Jacobian of the state space equations, ffgfxgand ffgfug, as well

as the gradients of the scalar cost �fxg, �f _xg, �fug and �fpg. The situation is not so bleak. From
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the forward integration of the state space dynamic equations we can simultaneously compute the

derivatives of the dynamic equations as well as the cost functional with respect to the states at

each node of the integration.

We begin by eliminatinga set of �rst order derivatives, namely d
d�
(p�f _xg), by direct substitution

of the state equations, f _xg = ff(fxg; fug; t), into the scalar cost functional, such that �f _xg = 0.

Now,

Hfxg : �(fug; fxg; pffg))fxg+ f�gTffgfxgp = �
d

d�
f�gT (4.33)

We can approximate ffgfxgwith a �nite di�erence equation using some of the intermediate Runge-

Kutta (RK) evaluations used to determine the state, f�xg, at the following node [64]. These inter-

mediate evaluations as well as the nodal values are then used in a �nite di�erence approximation

of ffgfxg, such that

@fi

@xj
�

fi(fx1; : : : ; xj +�xj; : : :gi; fugi; �i) � fi(fx1; : : : ; xj; : : :gi; fugi; �i)

�xj
(4.34)

Similarly, we can evaluate �fxg, ffgfug, �fugand �p by the same procedure given su�cient evalua-

tions at adequate increments. By saving all the trajectory points (f�xgi, fxRKgi, f�ugig
2 from the

forward integration of the dynamic equations and the corresponding results for ffg and � we can

compute the gradients at each step of the backwards integration of the co-state equations (4.33)

as we solve for the co-state trajectories. Furthermore using an adaptive step size RK method we

can insure that the variations provide good derivative information since smaller steps are taken

through intervals of rapid change in the system dynamics. We obtain the starting conditions by

evaluating the �nite di�erence approximation of �fxg at the �nal state (4.19).

4.2.3 Increasing Computational E�ciency

The method of internal di�erentiation | internal because the computation of the gradients are

made within the simulation (or backward ODE solution) | saves a tremendous amount of com-

putational e�ort. The equivalent solution, performed taking the �nite di�erence of the objective

function with respect to the design variables (outside of the simulation), would require an ob-

jective function evaluation (a complete simulation) for each variation in a design variable which

translates to Nm+p+1 simulations per gradient evaluation, neglecting updating schemes, with N ,

2RK indicates the intermediate Runge-Kutta integration points.
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m, and p, being the number of nodes, controls, and parameters in the optimal control problem.

Instead, we essentially perform only two integrations (forward and backward in time), similar

to the analytical method used in the previous example. In general this procedure provides re-

sults on par with using analytical gradients for moderate to low precision with 60-80% savings in

computational e�ort in comparison to external di�erentiation methods [9].

The coupled RK integrator with an SQP optimization has been implemented by Professor

Fabien at the University of Washington [20], and was recently modi�ed for our application. The

C source �les and Perl scripts are listed in Appendix B.1. The package, Dynopt, is quite

straightforward to use. There are two C source �les, dyn sqp.c and math opt.c, included with

Dynopt that perform the SQP functions including the evaluation of the objective functional

and its derivatives, as detailed above. A user de�ned function which returns the cost functional,

dynamic equations, and constraints along with parameters de�ning the number of nodes, states,

controls, model parameters, constraints and terminal conditions is generated by the Perl script,

dynopt. The script parses a user input �le containing the system variables, parameters and

equations and generates a C �le, which includes the main function. It then compiles the user

de�ned function and links the object �les from dyn sqp.c and math opt.c to form a stand-alone

executable. The C executable is over an order of magnitude faster at executing a Newton iteration

than the same operation performed in Matlab. This is very fortunate since solving the optimal

control of the biomechanical arm, which is a signi�cantly more di�cult problem requires many

more iterations.

Dynopt was applied to solve the optimal control of the biomechanical arm with several

arbitrary initial guesses for the controls and �nal time. However, none of these trials were able to

converge even to a sub-optimal solution. It appears that there is an abundance of local minima

which violate the �nal state conditions resulting in all of our test trials to be trapped within

�ve to ten Newton iterations. This case exempli�es the di�culty of resolving the optimal control

problem for biomechanical systems. Providing an initial guess such that the SQP method can

progress to the optimal solution is not a trivial task.

Modi�cations were made to both dynopt and dyn sqp.c so the that we could integrate our

GA with Dynopt's existing capabilities. These included adding an input argument to the main

function to enable us to control the number of iterations and providing functions for exporting

the objective and constraint values for use by a �tness function. The GA, originally developed in
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Figure 4.4: Functional organization of Dynopt and GA integration

Matlab, was modi�ed to run in Octave on a Linux platform. Octave provides a platform for

rapid prototyping similar to Matlab and accepts most Matlab scripts and functions. Octave

does not have the overheads of supporting structures and variable sized arrays, thus is signi�cantly

faster but comparable to older versions of Matlab. The conversion was primarily made because

Octave is open source software available for free and could run the GA on a PC with a Linux

operating system.

The execution of the Dynopt generated executable, bioArm.exe, is performed by the �tness

function implemented in bioArmFit.m which is a Matlab/Octave script. This function acts

as a \wrapper" for the stand-alone executable and communicates with it via input and output

�les (Figure 4.4). The input �le includes the controls at the nodes and the �nal time parameter

(decoded from a chromosome in the population). The executable returns the objective function

and magnitude of the constraint violations and the new design variable values after attempting

NSQP steps set by the calling �tness function. The �tness function writes out the necessary �les

before executing bioArm.exe, then reads in the output �le to replace the old chromosome and

assign it a �tness value. We de�ne the �tness of an individual as

Fiti = 2000� J
2
i � 1000(jfggj2i) (4.35)

where Ji is the objective function value and jfggji is the magnitude of the vector of active con-

straints for the present solution. Both J and jfggj are returned in the objective output �le by

bioArm.exe. Further speed gains could be made by eliminating �le-system communication and
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will be addressed in future implementations.

4.2.4 Optimal Control Results for the Upper-Limb Model

Once again a 51 node mesh was used to discretize the problem. The inclusion of muscle models

should act to smoothen the dynamic response of the system to oscillating controls such that the

discrete controls are always good approximations. In other words, the muscle models act as �lters

such that \bang-bang" controls produce smoother force pro�les and therefore the discretization

and �nite di�erence gradients are good approximations3. With 51 nodes and and �ve muscles

we now have 256 design variables. To limit the chromosome lengths somewhat, the controls were

given a precision of 0.2, but we maintained a �nal time precision of 0.01. A population size of 120

was used and the remaining GA parameters were held constant from the previous example.

Many attempts were made at solving this optimal control problem with no success. It became

evident that the model with the controls bounded (0! 1) was incapable of performing the task

due to the de�nition of the muscles. The muscles in our model linearly connect two points which

at certain states causes the moment arm of the muscle to diminish, or even worse, to cause the

opposite function. For example, if we examine the moment generation capabilities of the triceps

(Figure 4.5) we can observe that the muscle is nearly incapable of producing an extensor moment

about the elbow at approximately 90�, and worse yet, at greater angles the triceps cause a exor

moment! In reality, the tendon connecting to the insertion point wraps around the joint such that

the triceps always provides an extensor moment. Furthermore, this phenomenon is not limited to

the triceps and therefore, this model is biomechanically invalid.

As an exercise for our optimal control method we have continued with this model by relaxing

the control bounds (�1 � fug � 2) such that the actuators can now push as well as pull. This

should also take into account the contribution of muscles that were not included such as the

posterior deltoid being a strong shoulder extensor.

In the �rst run we considered no load at the end-e�ector; thus m21 (Figure 2.5) is only the

mass of the hand. The results were generated after 285 generation of the GA-SQP with the

total number of SQP steps just falling short of 203,000 (including the integration of the co-state

3Although 51 nodes were used in the previous example, discretization error was less of a concern because

analytical gradients were computed analytically
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Figure 4.5: Triceps muscle with a linear two-point interconnection

equations). The computation time was approximately 30 hours on a Pentium PC running Linux.

The motion of the arm is traced in Figure 4.6. The height and mass of a test subject together

with experimental measures of link lengths were used to estimate the masses and moments of

inertia of the segments as well as the muscle origin and insertion locations on the bodies [39]. As

noted earlier, the start and end points of the task were approximated directly from the calculated

spatial rotations of the bodies and the derived link lengths (Section 5.3.4), prior to the projection

of the data to the most signi�cant plane.

The performance time is quick with a �nal time of 0.328s. The corresponding joint trajectories

are illustrated in Figure 4.7. The identical problem with the same objective function was run

with an end-e�ector load of 5kg. The following results were computed in 437 generations with

315,055 SQP iterations. The computation of the optimal solution required close to 62 hours.

The optimal motion of the upper-limb with a load (Figure 4.9) is surprisingly similar to the

performance without the load; however the performance time of 0.715s is almost twice as long as

without the load.

In both tasks, we can observe a counter-movement preceding the motion where the humerus
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Figure 4.6: Optimal motion of the biomechanical upper-limb model performing a vertical reach.
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Figure 4.7: Model predicted optimal angular trajectories of a vertical reach task.
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Figure 4.8: Optimal controls for the biomechanical arm performing a vertical reach



CHAPTER 4. IMPLEMENTATION AND PREDICTION RESULTS 87

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X (m)

Y
 (

m
)

Figure 4.9: Optimal motion of the biomechanical arm model performing a vertical lift (5kg).
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Figure 4.10: Model predicted optimal angular trajectories of a vertical lift (5kg)
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Figure 4.11: Optimal controls for the biomechanical arm performing a vertical lift (5kg)
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is pulled back before swinging the forearm forward. There are de�nitely two phases of the motion

where the elbow is �rst exed to reduce the moment of inertia about the shoulder and then the

extension of the elbow as the shoulder reaches maximum exion. With a load, we see that the

elbow becomes nearly fully extended well before reaching the target whereas without a load, the

triceps are used more aggressively to \snap" the forearm into the �nal position.

The controls to the muscles have less physical relevance due to the error in the modelling. In

spite of the modelling error there are a few features that should be noted about the results. In

the performance of both tasks there is an early \push" by the deltoid which partially explians the

initial extension of the shoulder (Figures 4.8and4.11). This indicates that the posterior deltoid,

responsible for extension of the humerus, should have been included in the model as well. We see

similar behaviour from the biceps.

Although the upper-limbmodel does not reect the true nature of humanupper-limb dynamics,

the results do present some strategies that could be used to understand and evaluate human

performances, especially in terms of the motion kinematics. This is veri�ed by the analysis of a

test subject's performance of similar tasks, which is presented in the following chapter.



Chapter 5

Data Collection and Comparison

Methods

In this chapter, we step back from the predictive control methods and acknowledge that our

predictions will have to be validated. Since the goal is to predict human behavior with our model,

it is appropriate to collect motion data from a test subject and to compare the results. Herein we

capture and analyze the movement of a single subject. The anthropometry of the subject was used

to scale our biomechanical model and to generate the movement predictions in Chapter 4. Data

collected from our test subject performing various tasks under went several levels of processing

to facilitate the comparison with model predictions.

5.1 Human Motion Collection Objectives

The objectives of the collection process were to obtain data that could be readily used to compare

the controls and kinematic output from our motion prediction scheme. Thus from pre-de�ned

tasks we wish to determine:

1. Right Upper Limb Kinematics

� position vs. time history of upper limb segments

90
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� relative orientation changes between segments

2. Muscle activation patterns

� muscle electromyography (EMG)

� determine periods of low, medium and high activation

The kinematics of the segments provide a direct comparison with the state trajectories of our

model. The EMG from the muscles provides us with both the timing and the relative level of

activation which is comparable to the controls in our biomechanical model.

5.2 Task/Movement De�nition

Capturing the movement of the arm performing various tasks was the objective of this collection

procedure. Tasks were de�ned by an initial and �nal location of the hand, while initial and �nal

velocities are implicitly taken to be zero. More tasks are collected here than was necessary for

comparison with the current results, because we anticipate making future comparisons as both

the model and optimization methods improve. In addition, once a subject and the data collection

equipment have been set up, it was much easier to collect a whole battery of trials rather than

perform the collection on separate occasions for every task.

5.2.1 Parameters

1. Initial and �nal location, orientation and velocity of a given segment (hand), within a

global reference system, are the parameters that de�ne the kinematic goals that must be

accomplished to successfully perform that task.

2. Selected anthropometry of the tested individual (model scaling):

The amount of anthropometry required is quite small since the marker data can be used to

give accurate estimates of the limb segment lengths.

(a) For the purposes of scaling a biomechanical model, the segment lengths along with

the height and total body mass, of the individual, can be used to estimate the inertial

properties of the individual segments [39].
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(b) The scapular dimensions are unknowns, thus the length of the spine of the scapula

(scapular breadth) is recorded to scale a future model of the scapula.

(c) In addition, the girth of the torso at the xiphoid is necessary to de�ne the thorax and

used to determine the scapulo-thoracic surface constraint.

3. Applied or carried loads for tasks requiring an external load to be moved, must be known.

4. Spatial location and volume of obstacles:

(a) The circumference of the head and height of the top of the head from the sternum is

necessary to construct the head volume that acts as an obstacle in some tasks.

(b) The height, width, and location of a square frame forming an obstacle on a table top

will de�ne an external obstacle to be avoided.

5.2.2 Constraints

1. The tasks cannot involve the motion of body segments other than the right upper limb,

otherwise they may confound results. Artifacts from the movement of the torso will confound

any results in future comparisons, thus it is necessary that the sternum be held still.

2. All necessary data for a particular task should be collected simultaneously while the task is

being performed to ensure the validity of the measured electromyography with the observed

kinematics for the speci�c individual.

5.2.3 Task Selection Guidelines

Tasks should enable both the veri�cation of the model formulation methods as well as test the

e�ects of speci�c optimization objectives. The following list categorizes the information we hope

to obtain; the general class of motions that fall into that category and other implications on the

collection process.

1. Simple tasks for validation of graph-theoretic methods and the derived equations of motion:

(a) Planar Motion: Planar (close to planar) motions can be easily analyzed (i.e. via La-

grange's equation) with simple planar models to validate the GTM model performance.
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i. Limit the subject to an upright sitting position

ii. Use supports/restraints to keep sternum and head stationary

2. Three-dimensional taks of motion constraints (Non-planar) :

(a) MaximumSpeed: Optimization should work within system constraints de�ned by max-

imal stress (muscular, joint, tissue, etc.) to limit maximum velocity capabilities of the

arm.

i. Task should provide observable synergy or some typical coordination pattern.

(b) Extreme Flexion/Extension: Similar to maximum speed, violation of possible ranges

of motion should not occur.

i. The assigned task should require extreme postures without prescribing a trajectory.

(c) Object Avoidance: Verify the object avoidance capabilities.

(d) Optimal Load Distribution: Moderate/High load at slow/moderate speed should result

in the stress criterion being minimized by adequate redistribution

i. Peak joint and actuator stresses should not be violated.

3. Task reconstruction assumptions:

(a) All segments behave as rigid bodies and rotate about a �xed point (joint centre) relative

to their local frame.

(b) The mechanical model does not simulate the motion of the �ngers, thus tasks should

be performed with �ngers held in a �st.

5.2.4 Task Descriptions

From the aforementioned guidelines, the following tasks were developed and prescribed to the

subject's right arm.

1. Vertical reach (planar):

Start from an \at ease" position (arm along side palm inwards) to a maximumvertical reach
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2. Horizontal reach to opposite shoulder (planar):

Start with arm abducted (90�), parallel to oor, to palm touch on opposite (left) acromion

3. Diagonal reach:

Start with the palm on the left hip and move to a target on a shelf directly ahead of, and

slightly above, the right shoulder

4. Diagonal reach in minimum time:

Same as 3) but now as fast as possible

5. Horizontal pass with an obstacle:

Start with the hand on a table to the right of a rectangular obstacle and move to a target

on the left hand side of the target

6. Body avoidance:

Start with the palm on the left hip (as in 3) to palm touch on a target on the back of the

head

7. Vertical lift :

Same as 1) but now with a load in hand

8. Load placement :

Raise a load from the table to a shelf just above shoulder height

9. Load removal :

As in 8) now lowering the load from a shelf to the table

� The load refererred to in tasks 7,8 and 9 is a 5kg mass.

5.2.5 Task Collection Protocol

1. Calibration trials:

(a) Arm relaxed alongside with all markers in view

i. Identify each marker for de�ning segment reference frames
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1. T6 2. T5 3. T8 4. T1 5. T5

6. T3 7. T7 8. T6 9. T9 10. T4

11. T3 12. T4 13. T2 14. T5 15. T2

16. T4 17. T5 18. T8 19. T9 20. T6

21. T2 22. T4 23. T9 24. T1 25. T8

26. T7 27. T5 28. T2 29. T9 30. T6

31. T7 32. T8 33. T2 34. T1 35. T3

36. T1 37. T7 38. T4 39. T3 40. T9

41. T6 42. T1 43. T8 44. T7 45. T3

Table 5.1: Collection trials and associated tasks

ii. Determine baseline levels of EMG signals

2. Subject preparation before collection with periodic reminders:

(a) Seated upright with back �rmly pressed against the cushioned back rest of the chair

(b) Keep head stationary throughout the performance of each task

3. Collect �ve trials for each task and randomize the performance sequence:

(a) Create a list of 45 trials (9 tasks�5 trials/task)

(b) Form a random trial collection list (Table 5.1) by randomly selecting tasks from list

(a) (without replacement). A random number generator was used to pick both a trial

number and task number.

(c) The purpose of randomizing the tasks is to eliminate the tendency to \consciously

control" the action through learning a desirable response. Randomizing will assure

that the envelope of movement variability reects the inherent variability between the

subject's performances.

4. End-calibration trials:

(a) Verify that data derived from initial calibration remain consistent
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Figure 5.1: Skeletal landmarks [47] for marker placement

5.3 De�ning Segment Kinematics

To capture the motions of the arm (minus the scapula), the position and orientation of the

segments must be recoverable from the point locations of infra red light emitting diodes (markers)

detected by an optoelectronic tracking system (OptotrakTM Northern Digital,Waterloo, Ontario).

In general, three non-collinear points are required to identify the location and orientation of any

rigid body. From the kinematics of the markers, the relative segment rotations can be determined

by assuming these underlying limb segments behave as rigid bodies with idealized rotational joints.

5.3.1 Optotrak MarkerTM Placements

Marker placements were selected to minimize contributions of skin and muscle movement, thus

majority of the markers are placed on accessible bony landmarks of each segment (Figure 5.1).

Eighteen locations were identi�ed for marker placement.
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Marker Anatomical Location

1 Distal end of the middle �nger proximal phalanx

2 Head of little �nger metacarpal

3 Head of index �nger metacarpal

4 Posterior of ulnar styloid process

5 Posterior of radial styloid process

6 Anterior of radial styloid process

7 Anterior of ulnar styloid process

8 Anterior ridge of the radius (�2/3 proximal to distal distance)

9 Posterior ridge of the ulna (�1/3 proximal to distal distance)

10 Olecranon (ulna)

11 Medial epicondyle (humerus)

12 Lateral epicondyle (humerus)

13 Greater tubercle (humerus)

14 Acromion (Acromioclavicular junction)

15 Anterior ridge of clavicle (�1/2 proximal to distal distance )

16 Sternoclavicular junction (on clavicle)

17 Angle of the 7th rib, left side of the thoracic cage

18 Sternum immediately above the xiphoid process

Table 5.2: Marker numbers and their corresponding placement
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5.3.2 Segment De�nitions

Each segment is de�ned by at least three points. These points de�ne the motion of a reference

frame on each body. The convention used herein is: the origin of the local frame is de�ned by the

�rst point; the z -axis of each segment frame is de�ned by an axis along the vector of the second

point minus the �rst, with the y-axis forming the plane in which the third point and the z -axis

lie, and �nally, the local x -axis being the normal to that plane.

Speci�cally, each segment is de�ned by:

1. Sternum = markers f18, 16, 17g

2. Clavicle = markers: f16, 14, 15g

3. Humerus = markers: f13, 12, 11g

4. Radius = markers: f12, 5, 8, 6g

5. Ulna = markers: f10, 7, 9, 4g

6. Hand = markers: f5, 3, 4, 1, 2, 6, 7g

7. (Scapula) = marker f14g and three points on scapulothoracic surface

5.3.3 OptotrakTM System Setup

The Gait and Posture Laboratory was used for the movement collection. The OptotrakTM system

was used with three cameras to ensure that a su�cient number of markers were in view at each

instant (time frame), in order to de�ne the motion of each segment. For eighteen markers the

maximumsampling frequency obtainable was 80Hz which is su�cient for the majority of the tasks

that are of relatively low frequency.

5.3.4 Formulating Segment Kinematics

The nature of the collection is such that several markers disappear and reappear during movement

due to limb and workspace elements temporarily blocking the view of the cameras. For this

reason, redundant markers were used to identify segments prone to \losing" markers (like the
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hand). Leveraging the additional information to provide the best representation of the individual

segment kinematics is of primary concern.

Describing the kinematics of the segments by the individual marker movements does not encap-

sulate movement information in an e�cient manner and it does not directly compare to predictive

model results. For example, tracking a single marker on the hand does not e�ectively describe

the motion strategy, and when the marker is out of view it does not provide any information.

The obvious remedy of analyzing more markers requires more data to be maintained and does not

completely overcome the problem of hidden markers since more computational methods are nec-

essary to incorporate and/or switch to available markers. The ideal representation is the relative

rotation of each segment which requires only a single time varying matrix to describe a segment's

motion rather than N (�3) marker coordinates that have three components each. These relative

rotations can be resolved into the relative time varying angles (three angles describing a seg-

ment's orientation) which is considerably easier to analyze and compare than the 21 trajectories

(x,y,z components) of the hand segment's seven markers! Relative rotations are possible because

each segment is constrained by a joints or joints that only allow for relative rotation (or can be

approximated by rotations only) when the scapula is not included.

The method employed herein determines the segment's local frame, which is the set of segment

�xed local vectors that de�ne marker locations within the owning segment's reference frame. This

is done by using the calibration trials, which have all markers in view, to determine the location

and orientation of each segment's local reference frame and then determining the �xed position

vectors of each segment marker in that segment's frame. These frames thus represent a local

mapping of each segment which can now be used in conjunction with any set of markers in view

to determine the \best" rotation that satis�es both the pre-processed local de�nition and the

observed global marker positions.

Segment Reference Frames

The �rst step in determining the relative motion of each segment is determining the postion and

orientation (local rotation) of each segment from the calibration trials. The local rotation of

each segment is de�ned as the matrix (<) that can transform any vector from the global frame

to its equivalent representation in a local frame. Any three non-collinear points on a segment

can be used to de�ne a local frame and thus provide the resulting transformation matrix. Using
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the previously de�ned convention (Section 5.3.2), the local rotation is simply the matrix that

transforms the local frame unit vectors bi, bj, bk (columns, corresponding to the direction of the

segment's x, y, z axes) de�ned in global coordinates, to the local frame representation which, by

de�nition, is an identity matrix.

[<][bi bj bk ] = [ bi0 bj0 bk0 ] = [I] (5.1)

therefore,

[<] = [ bi bj bk ]T (5.2)

The unit vectors of the local frame in global coordinates are calculated based on the �rst

three marker locations of a given segment's de�nition. Thus, if the �rst three marker positions

correspond to p1, p2 and p3, the bi, bj, bk unit vectors are determined by:

1. p1, the origin of the segment's (local) frame

2.
�!
k = p2 � p1, the vector along the z -direction of the segment

3. �!v = p3 � p1, the vector locating the third point de�ning the segment plane

4.
�!
i = �!v �

�!
k , the normal vector to the segment plane and the segment's x -direction

5.
�!
j =

�!
k �

�!
i , the vector in the segment's y-direction

6. bi = �!
i�!i  , the normalized unit vector, similarly for bjand bk

The accuracy of this evaluation is dependent on the accuracy of the vectors used in the cross

products. Since for longer vectors, the marker position noise (such as skin movement) have less

e�ect in proportion to shorter vectors, using longer vectors in the cross products acts to preserve

segment movement information. Thus, the de�ned convention deliberately uses the points that

de�ne the longest vectors on the body. As well, normalization only occurs after evaluating the

cross products.
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Unfortunately, this method cannot be used to determine segment rotations for trials other than

the calibration trials, because they are the only trials that guarantee that the necessary markers

will remain in view for the entire trial period. In the task trials, any marker can be obscured at

any instant and therefore the evaluation of the rotation matrix by this method is not su�cient.

An alternate method is to describe marker data in both local and global representations and then

to determine the necessary rotation (transformation) matrix. However, to de�ne the local frame

the orientation of the segment must be known at a given instant. For this purpose, the above

method is used on the calibration trials to determine the local segment frames.

Local Segment Frames

The next step is resolving each marker into its owning segment's (or segments') �xed local frame.

The memberships of markers to segments are described in the segment de�nitions (Section 5.3.2).

Having established the origin and the local rotation for calibration trials, each member marker can

now be resolved into a local vector. The global marker positions are resolved into global vectors

originating at the origin of the local reference frame, and are then mapped into the local frame

by applying the local rotation, <. Obviously, the marker de�ning the segment's origin maps to

f0,0,0gT , and, according to the de�ning convention, the second de�ning point lies on the local

z -axis and the third point lies in the local yz-plane. Formally these are computed by:

1. �!vi = pi � os, global vector from the origin of segment s to its i th marker position

2.
�!
li = [<]�!vi , the local representation of the vector

3. computing the average local vector representation over all instances (N T time frames) col-

lected in the calibration trials,

�!
li =

1

NT

NTX
n=1

li;n (5.3)

4. yields, the local frame L for segment s with m markers is,

[Ls] = [
�!
l1
�!
l2 : : :

�!
lm ] (5.4)

where Ls is a matrix containing the �xed local coordinates of the segment's markers as

column vectors.
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\Best" Local Rotation

The local frame de�ned in (5.4) now enables any three or more markers in view to determine

the orientation of the segment. In particular, when more than three markers are in view, the

following method was developed to include the additional markers in order to determine the

\best" local rotation matrix, <B . Best is used tentatively, because it simply refers to the solution

that minimizes the sum of squared di�erences of local vectors transformed to global vectors and the

global vectors obtained directly from the Optotrak markers. In this framework, the more markers

available the more rigorous the �tting process and the more accurate the resulting rotation matrix

should be. Formally, at each instant the following procedure is followed:

1. For each segment, s, determine the set of global markers in view, M

2. If the number of markers in view, m � 3, then:

(a) Select these markers from Lsand form a local frame of visible markers, L

(b) Generate a set of interconnecting �xed segment vectors from M

i. MMi =Mj �Mk, for j 6= k

ii. results in p = (m � 1) + (m � 2) + : : :+ (m �m), column vectors

(c) Similarly, formulate the local frame vectors, LL

(d) Find <B such that the function,

J =

pX
i=1

n�
[MMi]� [<B]

T [LLi]
�
�
�
[MMi]� [<B]

T [LLi]
�To

(5.5)

is minimized. with the constraint [<B][<B]
T = [I]to ensure <B is an orthonormal

rotation matrix.

(e) < = <B, de�ne the local rotation of this segment as the matrix resulting from least

squares solution

3. Otherwise, identify the rotation matrix at this instant to be unde�ned

Centres of Rotation

Thus far we have have described how to obtain the local rotation matrix, <, of each segment's

frame with respect to a global frame, from Optotrak system marker positions. Although it is true
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that the rotational motion of a segment can be described by these matrices, we have not indicated

about what point in space the rotations are occurring. The local reference frames, thus far, do

not identify the point about which the rotation occurs. Using the origin of these local frames is

often a suitable approximation; however, for segments, such as the humerus, the distance of the

origin-marker (on the skin surface above the greater tubercle) to the actual point of rotation can

be several centimeters and this positioning error is often further ampli�ed, by a segment's length,

for greater errors at the distal end. To maintain the above de�nition of the segment-reference

frames and their resulting rotational information, a method was devised to identify the joint

centres rather than settling for the closest marker positions.

In idealized multibody dynamics, the rotational joint centre is a point belonging to both bodies

and thus does not move relative to each segment's local reference frame. Of course this is only

true if the joint only allows for pure rotation, which is a simplifying assumption that was made

earlier for all upper limb joints except for the scapulothoracic joint. Under this assumption, a

good approximation of the joint-centre can be found by determining two body-�xed vectors (one

a�xed to each segment coincident on the joint-centre) that minimize the di�erences in the global

joint-centre location transformed from each body's local de�nition, over all time.

Thus, given two adjacent local frames with their origins oi�1 and oi, with rotations <i�1 and

<i, the global joint-centre location
�!
C jc, can be determined by either of two local �xed vectors,

�!c i�1 and �!c i with respect to their local reference frames, such that:

�!
C jc = oi�1 + [<i�1]

T � �!c i�1 = oi + [<i]
T � �!c i (5.6)

thus the solution for �!c i�1and �!c i is that which minimizes the objective:

J =

@X
n=1

n�
(oi�1 + [<i�1]

T � �!c i�1)� (oi + [<i]
T � �!c i)

�2o
n

(5.7)

This result is the least squares approximation of the joint-centre locations. Here, @ is the total

number of frames over all trials, since this is the best approximation of the limb movements for all

time. This expression can be reduced into a simple linear regression equation of form y = X�+�,

by reordering the equation.

oi�1 � oi = �[<i�1]
T � �!c i�1 + [<i]

T � �!c i (5.8)
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then,

(oi�1 � oi)| {z }
y(3@�1)

=
�
�[<i�1]

T [<i]
T
�| {z }

X(3@�6)

�

8<: �!c i�1

�!c i

9=;| {z }
�(6�1)

+ �
(3@�1)

(5.9)

In this context the linear \�tting" parameters � contain the resulting local vectors �!c , for two

adjacent segments. This now provides the joint-centre locations to be used as �xed parameters

for a given subject and are added to the local segment de�nition which identi�es the joint-centre

\virtual" marker position. The residual, �, indicates the error in the �tting which is the distance

of the joint centre postion between the transformation of the two adjacent segments.

Relative Rotations, Ri

We de�ne the relative rotation Ri as the rotation from a proximal frame (ith � 1 segment) to

a desired adjacent and distal frame (the i
th segment). Knowing the local rotation, <, of each

segment, the relative rotation of each segment can be determined as follows:

From (5.1),

[<i�1] � �!a = �!a 0

[<i] � �!a = �!a 00

are both representations of the global vector �!a in two adjacent segment frames. Which can now

be written as:

[Ri][<i�1] � �!a = �!
a
00

; or

[Ri][<i�1] � �!a = [<i] � �!a (5.10)

Then by dotting each side by �!a and dividing by k�!a k
2
, yields

[Ri] = [<i][<i�1]
T (5.11)
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Thus, using the sternum as the most proximal segment (the beginning of the kinematic chain),

its relative rotation is equivalent to its local rotation, since <0 represents the local rotation of the

global reference which is simply the identity matrix. The subsequent relative rotations describing

the movement of each segment can now be similarly computed using equation (5.11).

With the local segment frames de�ned including the joint centre locations, the entire kinemat-

ics of the upper limb can be replayed using the relative rotations, Ri, to drive the motion of each

segment. Furthermore, the relative rotation matrices can be decomposed into an angular repre-

sentation, such as Euler angles, to produce the angular trajectories for analysis and comparison

purposes.

5.4 Electromyography (EMG) Acquisition

Due to complications encountered with the EMG electrode leads to a battery pack and its interface

with a sixteen channel bio-ampli�er, only eight channels could be collected using two portable

EMG bio-ampli�ers. Being limited to eight channels, the muscles selected were based on their

capacity to produce detectable signals representing unique motions. For example, the trapezius

was neglected because, although it provides considerable activity, the activity of the trapezius

does not vary signi�cantly with the variety of movements since it is a major stabilizer of the

scapula for most upper limb movements.

5.4.1 EMG Electrode Placement

The following is the list of muscles that were selected for EMG electrode placement:

1. Teres major

A specialized back muscle that adducts posteriorly and medially rotates the humerus and

assists to extend the exed arm1

2. Deltoideus

The functional �bres are easily accessible on the surface and highly specialized

(a) Anterior �bres

Strong exor and medial rotator of the humerus
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(b) Middle �bres

Principle abductor of the arm at the glenohumeral joint

(c) Posterior �bres

Strong extensor and lateral rotator of the humerus

3. Pectoralis Major

Powerful anterior adductor and medial rotator of the humerus at the shoulder

4. Biceps Brachii

Primary exor of the elbow joint and powerful supinator of the forearm (radius rotation

about the ulna)

5. Triceps Brachii

Primary extensor of the elbow joint

6. Brachioradialis

A exor of the elbow joint and chief elbow joint stabilizer

These muscles (Figure 5.2) are quite accessible and represent the larger actuators in the system

as indicated. As per the experimental objectives, the important features from the EMG data are

the �ring patterns and general level of activation. Thus, data will be recorded in raw A/D units or

microvolts as opposed to a percentage of maximum voluntary contraction (%MVC), which would

require establishing a protocol for measuring the MVC for all the aforementioned muscles.

5.4.2 EMG Setup

The bellies of the aforementioned muscles were found via palpation and two electrodes were placed

with each being perpendicular to the muscle �bres and directly adjacent to its partner along the

line of the muscle (as a di�erential pair). For each of the two bio-ampli�ers one lead also contained

a ground electrode which was placed at the top of the spine for the ampli�er containing the teres

1Teres major along with the latimus dorsi and pectoralis major muscles are major climbing muscles which lift

the trunk when the arms are �xed. These muscles in conjunction are also major stabilizers of the shoulder joint

[57].
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Figure 5.2: Musculature of the human upper limb [47]
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major and deltoideus muscles, and on the olecranon for the ampli�er containing the pectoralis

major, biceps brachii, triceps brachii and brachioradialis muscles. These grounding sites were

selected because they are are large and bony sites upon which an electrode can be placed whilst

minimizing the voltage contribution arising from surrounding muscles. The ground appears in

each di�erential pair and thus acts to subtract background noise. The gains of each channel were

adjusted such that most submaximal movements involving the particular muscle would occupy

about half of the available discretization range. The analog to digital sampling frequency was

set to 2400Hz, an integer multiple of the Optotrak sampling frequency, so that motion and EMG

data could be easily aligned.

5.4.3 Forming Muscle Activation Signals

In the comparative study, the biomechanical model has fewer actuators than the human upper

limb. Therefore, it is unlikely that model actuator forces would compare well with %MVC (there-

fore not measured) as an indicator of actuator output. However, the temporal features of the

selected muscle activation signals should provide a basis for comparison of actuators with similar

function. Thus, the temporal changes of relative levels of activation are of primary importance

for comparison with predictive control signals. In addition, the actual activation levels in %MVC

are considerably more di�cult to acquire since a protocol for evaluating the MVC of each muscle

would be required. Thus, for the time being, the processing of the collected EMG signals is quite

simple.

1. Rectify each signal by taking the absolute value of every point of the EMG waveform

2. Low pass �lter the signals with a second order bidirectional discrete Butterworth �lter with

a 10Hz cut-o� frequency.

The movements are anticipated to be between 0-5Hz (individual movements lasting atleast

0.2s) while backgound noise is anticipated to be from electrical devices operating at much

higher freqencies, e.g. 60Hz light bulbs. Thus, 10Hz ensures to capture all the movement

features but eliminating the high frequency content. The bidirectional �lter ensures the

phase shift introduced by the second order di�erence equation employed by the �lter does

not arti�cially introduce lag.
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The result is a set of signals that represent a smooth time varying activation. This allows several

muscles to be observed in parallel (over the same trial and time scale) to establish temporal

activation patterns that may shed light on coordinative strategies which may or may not be

predicted by the optimization driven model.

5.5 Collection

Collection was performed on Saturday November 7th, 1998 between 9:30 a.m. and 2:30 p.m. A

young male athlete with no history of neuromuscular disorders was selected as our subject with his

written consent obtained prior to collection. The experimental protocol was in accordance with,

and received the approval from, the O�ce of Human Research at the University of Waterloo.

5.5.1 Laboratory Setup

The Gait and Posture laboratory was arranged with three OptotrakTM cameras, a table, a chair

and an obstacle such that the subject could be seated comfortably and interact with the workspace

in order to perform the prescribed tasks (Section 5.2.4).

Figure 5.3 is the top view (from positive to negative Y -axis) of the experimental setup. The

corresponding heights of the table and obstacle are described herein. The global reference origin

is, in fact, elevated o� the oor (34cm). Thus, in global coordinates the table top lies at 40.2cm

in the positive Y -direction. The top of the obstacle stands 23.5cm above the table top (or 63.7cm

Y from the origin). The shelf used in the load placement was suspended during data collection.

However, its location was not recorded because it was designed speci�cally to act as a visual target

for the placement (the �nal or initial height) of the hand which can be determined directly from

hand-marker data (described in Figure 5.1). The suspended shelf was adjusted to provide the

subject with an appropriate target height within their reaching capacity without requiring the

movement of the sternum.

5.5.2 Subject Selection Criteria

The following criteria were used in the selection of our test subject.
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1. A �t volunteer with his/her consent

(a) Fit individuals generally have better muscle development

(b) Male was selected because of ease of palpation for EMG electrode placement

2. No known (or past history of a) neuromuscular disorder

3. Minimal subcutaneous fat and body hair

(a) Enables accurate detection of segmental landmarks and less skin marker distortion

(b) Capable of higher voltage detection of myoelectric signals by the EMG electrodes

(c) Subject must agree to shave his right arm prior to collection

5.6 Results and Statistics

The aforementioned speci�cations and collection methods were used to determine anthropometry,

three dimensional kinematics, and muscle activation patterns from the selected subject.

5.6.1 Subject Anthropometry

Direct Measurements

The following measurements were taken directly from the subject using a measuring tape and a

scale.

Derived Measurements

Segment de�nitions were constructed and used to compute the rotation of each segment. Figure

5.4 depicts the resulting generation of the segment (or local) reference frames from the calibration

data.

It is important to note that relative marker movement for some segments are quite high. In

particular, the humerus segment and especially the distance between its markers that are furthest
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Figure 5.4: Upper limb segment frames de�ned by Optotrak markers

The segment dimensions, depicted above, use the mean segment inter-marker distances for the markers that de�ne

the respective segments (Section 5.3.2). The vertices are numbered to correspond with the marker number.
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Anthropometric Measure Value

Height 177cm

Total Body Mass 73.1kg

Head circumference 53cm

Distance of top of head from sternum (marker 16) 37.5cm

Chest girth (at xiphoid elevation) 90cm

Length of the spine of the scapula (starting at the acromion) 14cm

Table 5.3: Anthropometric measurements from the test subject
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Figure 5.5: Movement of humerus segment markers over all trials of Task 6

This �gure depicts the relative movement between markers (11, 12, and 13) that de�ne the humerus segment

(Section 5.3.2). The traces �13�12 , �13�11, �12�11 are the deviations from mean distance of the identi�ed

markers at each frame over all �ve trials (and thus the periodic form).
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Segment Measure Length

Sternum (sternum origin, marker 18, to sternoclavicular joint centre) 15.07cm

Clavicle (sternoclavicular joint centre to glenohumeral joint centre) 17.00cm

Humerus (glenohumeral joint centre to elbow joint centre) 32.57cm

Forearm (elbow joint centre to wrist joint centre) 28.45cm

Hand (wrist joint centre to distal hand location, marker 1) 10.06.cm

Table 5.4: Derived segment lengths

apart, are greatly a�ected by the movement of the marker above the greater tubercle due to the

skin and muscle movement which cover the greater tubercle (Fig 5.5 ).

Quantitatively, the average distance between the greater tubercle (marker 13) and the lateral

epicondyle (marker 12) is 285.01mm while the standard deviation is 14.10mm with largest varia-

tion (max-min) being 38.68mm. Thus, in reconstructing the segment kinematics, these variations

will lead to errors in the computation of segmental rotations and joint centre locations which

assumes the markers are a�xed rigidly to the body segments. In light of the large amount of

marker movement and the potentially problematic collinearity of several of the markers on both

the ulna and radius segments, large errors are likely. Therefore the markers from the ulna and

radius were lumped into a single body, for the time being, to form the forearm segment.

The resulting segment lengths were determined by taking the magnitude of the vector joining

the joint centres (Section 5.3.4) of each segment or, in the case of the sternum and hand, between

a joint centre and the origin and the most distal marker, respectively. These parameters were

used to de�ne the link segment lengths for the predictive model (Section 4.2.4).

5.6.2 Segment Kinematics

The methods used to derive the relative rotations of all the segments (Section 5.3.4) were encoded

in Matlab (Appendix B.2.1) to determine the joint centres and generate the relative rotation

matrices for each segment for all task trials. Each trial was then reconstructed to produce an

animation to visually validate the numerical results. Figure 5.6 depicts the resulting animation

of trial 1, from task 6 (Section 5.2.4), with the \�" trajectory describing the Optotrak trajectory

obtained from marker1 .
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Figure 5.6: Reconstructed motion for Task 6

This animation graphically portrays the performance of the calculated relative rotations (Ri) in reconstructing the

movement of Task 6, with the right hand (triangular segment at the end of the kinematic chain) starting at the

left hip and ending behind the subject's head. The tip of the triangular hand segment represents the reconstructed

location of marker 1, located at the distal end of the middle �nger's proximal phalanx. The '*' trajectory represents

the actual trajectory of marker 1. The Y -axis is the vertical axis and the positive X -axis is the forward direction.
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For comparison purposes, the marker positions for trials of the same task were temporally

aligned by observing the start and end of motions from the marker trajectories of the hand. This

was performed by identifying the points in time at which the slope of the movement surpassed

a small threshold (start) and then fell below the threshold (end) for more than �ve continuous

time frames. These start and end times were then used to \clip" the relative rotation trajectories

which were then normalized in time and scaled to the mean performance time.

The derived segment models (segment frames) were driven by the derived relative rotation

matrices (Ri) and the trajectories of key marker positions (markers 1, 5, 12) averaged over the

task trials were compared to the actual averaged and standard deviation of the unprocessed marker

positions. Figure 5.7 illustrates the comparison for task 6 which had a mean performance time of

1.21s.

For the majority of the duration of the task, the average rotation driven markers follow the

average actual marker trajectory quite closely, but towards the end of the task, the reconstructed

marker trajectories are close to the standard deviation boundary for markers 5 and 12, and almost

3.5cm o� the mean for the motion of marker 1. The residual di�erences between between the

actual and reconstructed averages (Figure 5.8) provides a clearer indication of the magnitude of

their di�erences.

These errors can be explained by the aforementioned relative marker movement (Figure 5.5)

since the segment frame de�nitions assume that the marker locations are �xed with respect to the

segment's frame. In addition, larger errors result at the \end e�ector", because marker 1 and the

�ngers, incidentally, may not remain equidistant to the wrist (i.e. slight exion and extension of the

�ngers), thus the �xed locations de�ning the hand are violated. Thus, the least squares method

can do little to eliminate this error due to the assumption of �xed segment marker coordinates

within the segment frame.

The relative rotations for each trial were decomposed into three sequential angles of rotation

either by Euler angles or by an X and Y space �xed (�rst body's axes) rotations and a body

�xed (second body's axes) local z rotation, for the purposes of presenting angular information

rather than rotation matrices, which are di�cult to interpret. An alternative to the Euler angles

was sought in order to provide a better anatomical interpretation of the angular trajectories.

However, since the coordinate frames of each segment neither coincide with the joint location

nor align with the axes joining subsequent joint-frames, the angular information does not have
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Figure 5.7: Reconstructed and actual marker trajectories (markers 1, 5, 12)

The labels 1, 5, and 12 identify the positions of markers 1 (tip of hand) , 5 (posterior of radial styloid), and 12

(lateral epicondyle) in terms of their distance from the sternum origin while performing Task 6. The solid lines

depict the mean marker positions while the �ne dotted lines indicate a standard deviation boundary about the

mean determined over the �ve trials of Task 6. The bold dotted lines are the average of the reconstructed positions

from the derived relative rotations.
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Figure 5.8: Mean actual - mean reconstructed marker (1, 5, 12) trajectories

The curves numbered 1, 5, and 12 represent the residual values of the mean actual position minus the average

reconstructed position for the corresponding markers as described in Figure 5.8. Note, the largest errors occur at

the end of the task and coincide with the phase of the movement where the deviation of the humerus length from

its mean length is also the largest, Figure 5.5 (approaching the end of each trial).



CHAPTER 5. DATA COLLECTION AND COMPARISON METHODS 119

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−100

−80

−60

−40

−20

0

20

40

60

80

100

time (s)

jo
in

t a
ng

le
 (

de
gr

ee
s)

1

2

3

Figure 5.9: Sternum orientation relative to ground

The relative rotation, for Task 6, of the sternum relative to the ground (global coordinate) frame was decomposed

into the angles �1(about global X ), �2(global Y ) and �3 (sternum z). The solid line represents the mean angular

trajectory over all trials of Task 6, while the dotted line represents a standard deviation upper and lower bound.

obvious anatomical interpretations.

Across trials for the same task, these angular trajectories were averaged to form prototypical

angular trajectories in performing a particular task. The following�gures describe the prototypical

motion and their variability for each segment.

In Figure 5.9, �1 determines a rotation about the global X-axis, �2 about the global Y -axis,

and �3 is the spin angle about the local z-axis. The �rst rotation (�-80o) about X remains

relatively constant rotating the local z-axis such that it is almost coincident on the global Y and

resulting in the two subsequent rotations being about two very similar axes. Since the rotations

are almost equal in magnitude and opposite in direction, this suggests that they tend to cancel

out to form very small net rotation about z.

The relative rotation angles of the clavicle with respect to the sternum (Figure 5.10) was

determined by computing the Euler angles, which is the sequence of rotations about a space �xed
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Figure 5.10: Clavicle rotation relative to the sternum

The relative rotation, for Task 6, of the clavicle relative to the sternum frame was decomposed into Euler angles:

�1(sternum Z), �2(clavicle y) and �3 (clavicle z). The solid line represents the mean angular trajectory over all

trials of Task 6, while the dotted line represents a standard deviation upper and lower bound.
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Figure 5.11: Humerus rotation relative to the clavicle

The relative rotation, for Task 6, of the humerus relative to the clavicle frame was decomposed into Euler angles:

�1(clavicle Z), �2(humerus y) and �3 (humerus z). The solid line represents the mean angular trajectory over all

trials of Task 6, while the dotted line represents a standard deviation upper and lower bound.

Z-axis (the sternum's long axis) then about the new body �xed y-axis (on clavicle) and �nally

about the local z-axis. The �rst rotation aligns the respective y axes such that the larger the

angle the more protracted the clavicle and the smaller the more retracted, with 60o being about

midway between both extremes. The local y rotation now aligns the respective z-axes which is

now an indication of the elevation of the clavicle. The �nal angle is the axial rotation (about its

long z-axis) and does not in fact go through the range of motion indicated in Figure 5.10, and can

be explained by skin movement. Because the clavicle is a particularly thin long bone, any skin

movement at marker 15 is accounted for by a phantom axial rotation. The systematic increase of

the angle indicates that the skin movement is a function of the movement which is to be expected.

However, unlike the previous rotations, the dominant skin movement, which is a noisy process,

also produces larger variations (Figure 5.10, �3).

Euler angles were used for the rotation angles of the humerus relative to the clavicle (Figure

5.11). �1, which is the initial rotation about the clavicle's z-axis, determines to some degree the
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Figure 5.12: Forearm rotation relative to the humerus

The relative rotation, for Task 6, of the forearm relative to the humerus frame was decomposed into Euler angles:

�1(humerus Z), �2( forearm y) and �3 (forearm z). The solid line represents the mean angular trajectory over all

trials of Task 6, while the dotted line represents a standard deviation upper and lower bound.

abduction/adduction of the humerus. This angle is greatly a�ected by the noise and errors in

the clavicle axial orientation (since it follows the clavicle's axial rotation). None the less, the

subsequent rotation �2, a�ecting a hybrid of exion/extension and abduction/adduction, and �3,

which is partially responsible for the medial/lateral rotation, are much more consistent.

Again Euler angles were used to describe the rotation of the forearm relative to the humerus

(Figure 5.12). Here �1, almost a constant, 0, reveals that there are only two degrees of freedom

about the elbow joint (as expected). �2 can be clearly interpreted as the exion/extension of the

elbow, and �3 responsible for the pronation/supination of the forearm. Again due to the segment

frame axes there is some coupling between the anatomical angles and therefore �1 is not quite

zero and perhaps �3 does not reect the complete supination angle of the forearm.

Using a Y , Z, X (forearm axes) rotation sequence provides some anatomical information about

the rotation of the hand relative to the forearm. The angle �1 about Y is the exion (positive)

/extension (negative) which tends to move from extended to exed during the task. �2 is almost
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Figure 5.13: Hand rotation relative to the forearm

The relative rotation, for Task 6, of the hand relative to the forearm frame was decomposed into the angles

�1(forearm Y ), �2(forearm Z ) and �3 (forearm X). The solid line represents the mean angular trajectory over all

trials of Task 6, while the dotted line represents a standard deviation upper and lower bound.



CHAPTER 5. DATA COLLECTION AND COMPARISON METHODS 124

0 0.2 0.4 0.6 0.8 1 1.2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

time (s)

ra
w

E
M

G
 (

A
/D

 u
ni

ts
)

Figure 5.14: Mean and (�) one standard deviation of Teres major EMG

180o because the two frames are de�ned such that their respective X and Y -axes are almost

anti-parallel to one another. This angle should remain constant since there is no \spin" of the

hand relative to the forearm. Finally, �3 is the abduction (positive)/adduction (negative) angle,

and appears to be minimal throughout the performance of the task.

5.6.3 Muscle Activation Patterning

The methods to condition the collected EMG waveforms (Section 5.4.3) from the individual mus-

cles were also encoded in Matlab. The time \clips", used in Section 5.6.2, were again used to

clip the corresponding EMG signals. EMG signals from all the trials of the same task and muscle

were scaled to the average performance period and then sampled and averaged at a 1000 discrete

intervals to produce a mean activation signal. Similarly the standard deviation at each interval

was determined to form the boundaries (range) of the observed activation levels.

The mean and standard deviation signals, for each of the eight muscles recorded are presented

in Figures 5.14-5.21 for Task 6, to illustrate the output of this process. The vertical lines indicate

the start and end times of the task. Additional regions before and after were included for the

purpose of observing any transitions from inactive to active and vice-versa.

For task 6, these activation patterns are sensible. The rapid rise in bicep activation, which
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Figure 5.15: Mean and (�) one standard deviation of Anterior Deltoid EMG
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Figure 5.16: Mean and (�) one standard deviation of Medial Deltoid EMG
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Figure 5.17: Mean and (�) one standard deviation of Posterior Deltoid EMG
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Figure 5.18: Mean and (�) one standard deviation of Pectoralis Major EMG
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Figure 5.19: Mean and (�) one standard deviation of Biceps Brachii EMG
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Figure 5.20: Mean and (�) one standard deviation of Triceps Brachii EMG
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Figure 5.21: Mean and (�) one standard deviation of Brachioradialis EMG

works to ex the elbow joint, corresponds well with the detection of movement initiation. This

followed by the larger output of the anterior and medial deltoid account for the exion and then

abduction necessary to lift the entire arm against gravity. Finally, the activity of the triceps,

increasing to match that of the biceps, seems necessary to stabilize the forearm relative to the

humerus.

The large variability over the �ve trials is perhaps an indication of both the variability in EMG

detection (i.e. electrode pick-up) as well as the possible sensitivity of the dynamics (or driving

forces) necessary to produce very similar kinematics (i.e. variuos muscle deployments generating

simlilar kinematics). Speci�cally, the temporal scaling assumes that the activation sequence scales

linearly with performance time such that slow and fast movements di�er only in execution speed.

Although the �ve trials varied by less than 6% in performance time, there is no accounting for

the possibility that the nervous system employed some form of nonlinear scaling which was more

concerned with the dynamics of individual phases (or features) of the movement.
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5.7 Limitations of the Collection

Formulating the relative rotations of limb segments has proven far more di�cult than the com-

putational methods themselves describe. Primarily, the markers do not represent the location of

�xed positions on a segment and thus their relative movement contributes signi�cantly to the error

in calculating the limb segment frames. Thus, even a least squares evaluation of each segment

rotation, which attempts to minimize any error, cannot account for translations between markers

that occur over the time to perform a task. A potential improvement may be to recompute the

rotations based on frames originating on the previously computed centres of rotation. In fact a

\dual" least squares optimization between the �xed segment lengths over all time and the best

rotation at each instant can be performed in a cyclical fashion, each improving the evaluation of

the other. As well, originating each frame at a joint centre will result in angular decomposition

via Euler angles, etc., which have more signi�cance in terms of the functional anatomy of the

upper limb.2

In analyzing the EMG signals, the simple linear scaling of activation levels, based on start and

end times, may in fact contribute to the observation of greater variability than truly exists, by

incurring higher variability across regions of transition (i.e. rising edge in activation) due to small

temporal shifts. However, for the most part, the data does not reect this (regions of transition do

not have larger deviations, e.g. Figure 5.19) and therefore suggests the resulting variability may

be a result of varying signal gain (i.e. changes in EMG electrode \pick-up" during the collection

period). Alignment of EMG trials based on outstanding signal features such as peaks and slopes

of characteristic edges may provide a more representative composite of the EMG signals. These

methods, however, would require signi�cantly more sophisticated pattern recognition and signal

processing techniques and would further increase the processing time.

For the time being, the current methods are su�cient to produce prototypical kinematic

and muscle activation patterns for the purposes of comparison with predictive model results.

Naturally, limiting the variability of the prototypical data would serve to strengthen the legitimacy

of predicted results that were to fall within the boundaries of variability.

2As it stands now, the joint angular rotations are with respect to the segment frame as initially de�ned by three

non-colinear markers (Section 5.3.2) with the �rst being the origin of the frame.
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5.8 Comparison with Predicted Results

The biomechanical model results were generated for vertical reach task with and without a load

(Section 4.2.4). These results correspond to tasks 1 and 7. In order to compare the performance

of these tasks with the planar biomechanical model results, the captured kinematics must be

presented in terms of planar motion. In addition, the biomechanical model essentially models

the movement of two segments: the humerus and the forearm, since the hand is welded to the

forearm in our simple biomechanical model. Therefore, we will concern ourselves with acquiring

the planar rotation of these bodies.

5.8.1 Spatial to Planar Projections of Observed Kinematics

In order to leverage the spatial data we have collected, rather than select an arbitrary plane, such

as the sagittal plane, to project the kinematics we determine the most signi�cant plane of motion.

In other words we are striving to obtain the best planar representation by �nding the plane that

minimizes the segment kinematics that are out of the plane. Since we have obtained the global

rotations for each body in 3D space this task is greatly simpli�ed. Given the individual rotation

matrices we wish to �nd the single matrix P that can transform all the rotations to equivalent

planar rotations. This means all rotation matrices must have one row and column (the same

across the matrices) that are identical to zero except for the diagonal entry which should be one.

Given only the two bodies of interest, we need only �nd P such that

[P ][A]�

26664
cos(�1) � sin(�1) 0

sin(�1) cos(�1) 0

0 0 1

37775 and [P ][B] �

26664
cos(�1 + �2) � sin(�1 + �2) 0

sin(�1 + �2) cos(�1 + �2) 0

0 0 1

37775
which yields:

fP1���gfA...3
g = 0

fP2���gfA...3
g = 0

fP3���gfA...1
g = 0

fP3���gfA...2
g = 0

fP3���gfA...3
g � 1 = 0
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where � � � and
... represent the remaining row and column entries respectively. Similarly for rotation

matrix B we get �ve additional equations. We assemble these 10 equations for each instant in

time and solve for the best P , in a least squares sense, which satis�es the above system. P is in

fact a rotation matrix that is being applied to the global frame and we are in essence rotating

the frame such that the new X
0
Y
0 plane minimizes the movement out of the plane. Given that

P is a rotation matrix we assemble the matrix from three Euler angles which ensures that P

is orthonormal. With this constraint, we can use the equations from either the last row or the

last column of the product resulting in three equations per segment per instant. Assembling

three equations per segment through all instances in time yields a 3@� 2 error matrix, which the

nonlinear least squares method, in this case Matlab's lsqnonlin, utilizes to determine the best

�t Eulerian angle parameters.

We then apply the rotation P to all the rotations in time and ignore the last row and column to

get planar rotation matrices and the corresponding joint angles �1 and �2. Applying the resulting

joint angle trajectory to the derived measurements of the humerus and forearm lengths (assuming

the mass of the hand and load is located at the distal end) we can recreate the planar animation.

5.8.2 Planar Trajectories for Tasks 1 and 7

The planar motion of our subject performing the vertical reach without a load (Figure 5.22) ap-

pears to be very similar to that of the predictive model result (Figure 4.6). The mean performance

time of our subject of 1.13 seconds, however, is close to three times slower than the predictive

results.

The kinematic performance of the lifting task with a load of 5kg by our test subject (Figure

5.24) does not di�er greatly with his no-load performance, task 1. Even the mean performance

time of 1.318s represents an increase of only 16.6% whereas the predictive model time of 0.715s

is closer to being twice as slow than without the load. Still, the predictive model is considerably

faster than our test subject. The major reason for this discrepancy can be attributed to the

relaxation of the control bounds used in the model prediction, Section 4.2.4. Although this was

necessary simply to get the model to perform the task, it also has the e�ect of making the model

potentially \stronger" since muscles that would normally be antagonistic might be perfoming in

concert by virtue of both moment-arm inversion and by allowing the actuators to push. Because
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Figure 5.22: Planar motion of the test subject performing task 1
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Figure 5.23: Planarized angular trajectories of test subject performing task 1

The �nal times have been normalized to enable comparison with model predicted angular trajectories (dotted).
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Figure 5.24: Planar motion of the test subject performing task 7
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Figure 5.25: Planarized angular trajectories of test subject performing task 7

The �nal times have been normalized to enable comparison with model predicted angular trajectories (dotted).
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of our modelling error, it is impossible to ascertain if inertial parameters were under estimated or

that maximal force limits were over estimated.

An interesting point to note, however, is the small counter movement of the humerus prior

to shoulder exion | more so in the loaded case | which was also observed in the predictive

model results. This counter movement exploits the e�ects of gravity by providing additional

kinetic energy (from the initial increase in potential) through the up swing of the humerus while

the elbow exion reduces the system moment of inertia about the shoulder. Surprisingly, even

though our model actuation had little anatomical relevance, the joint trajectories when compared

in normalized in time (Figures 5.23 and 5.25) are quite similar to one another. We believe this

is principally due to our optimization criteria. Although both models di�er greatly in how net

joint moments (and thus inherently di�erent capabilities) the general strategies remain the same.

Regardless of how the system is actuated, it is always an e�ective strategy to reduce the inertia

about the shoulder and to exploit conservative forces when trying to minimize time.

5.8.3 Muscle Activations for Tasks 1 and 7

Due to the invalidity of our biomechanical model, resulting from the two-point muscle intercon-

nections (Section 4.2.4), the activations of the predictive model are not anticipated to be similar

to the muscle activations collected from the test subject. We include the muscle activation levels

from our test subject for the sake of completeness.

In both tasks, the activity of the biceps and brachioradialis lead the motion by both exing

the elbow and slightly extending the shoulder (counter-movement), interestingly enough, by pure

momentum conservation. The deltoids (mostly the anterior and medial) then activate as the

elbow reaches its maximum exion and they reach maximum activation as the hand approaches

shoulder elevation. This corresponds well with the larger moment generated by the weight of

the arm and the external load about the shoulder at that position. The temporal features of

the muscle activations for both tasks are very similar, with the loaded task stretched out over a

slightly longer period. As expected, the raw activation levels are also higher for the loaded task.

Also interesting is the activity of the bicep well before movement initiation, which is the necessary

muscle activation required to hold the load still and perhaps to counteract joint separation.

As expected the actuator control signals from the �ve modelled actuators in our predictions



CHAPTER 5. DATA COLLECTION AND COMPARISON METHODS 135

0 0.2 0.4 0.6 0.8 1 1.2
0

5000

10000

aD
el

t

0 0.2 0.4 0.6 0.8 1 1.2
0

5000

10000

m
D

el
t

0 0.2 0.4 0.6 0.8 1 1.2
0

5000

10000

pD
el

t

0 0.2 0.4 0.6 0.8 1 1.2
0

5000

10000

B
ic

ep

time (s)

Figure 5.26: Test subject deltoid and biceps activation levels from task 1
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Figure 5.27: Test subject brachioradialis, triceps and teres major activations from task 1
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Figure 5.28: Test subject deltoid and biceps activation levels from task 7
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Figure 5.29: Test subject brachioradialis, triceps and teres major activations from task 7
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(Figures 4.8and4.11) and our subject's activation signals for the anterior deltoid, biceps, brachio-

radialis, triceps and teres major muscles, bear no resemblance.



Chapter 6

Conclusions

6.1 Summary of Model Predictive Results

The model predicted results, at this stage, are similar to the subject's performance in terms of

segmental kinematics. Several key features of performing the reaching and lifting tasks e�ectively

are produced by both the model prediction and our subject. These include: an immediate elbow

exion coupled with a small counter-movement via an extension of the shoulder and then fairly

rapid exion of the shoulder. This strategy was determined by the hybrid GA-SQP method

without any guiding initial approximation.

Unfortunately, our results do not match in terms of task dynamics considering the predicted

controls in comparison with the muscle activations captured by EMG. This was expected for

several reasons: �rst, the present geometric model of muscle attachment, with a single line inter-

connection of the origin and insertion points, is anatomically unrealistic. It causes the model to

be unduly sensitive to the degree of exion/extension, which can cause the moment arm to be

non-existent or such that the moment generated contradicts the function of the muscle (Section

4.2.4).

Second, the human upper limb has dozens of muscles with multiple functions and is not

limited to only �ve actuators. The �ve muscles were modelled as an attempt to capture the most

signi�cant actuators for the given task and to hopefully provide encouraging similarities when
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compared to the same actuators in the human system. Further, dissimilarity arises from the fact

that the upper-limb also has many more degrees of freedom. Even though the simple vertical

reach is kinematically close to planar motion, this is achieved by muscle synergy that cannot be

captured by the current biomechanical model (Chapter 2). Another signi�cant consequence is

that some muscle (i.e. Teres Major) lengths become unrealistically small in two dimensions which

renders the muscle ine�ective and further confounding results.

Finally, the e�ect of the objective function is not known. For example, if the importance of

minimizing stress was increased relative to performance time would we have predicted slower and

more similar performances. Of course these are the types of questions we hoped to answer with

our model but this cannot be determined until the previous issues are resolved.

6.2 Assessment of Research

In hindsight, the human data collection should have been held o� until the biomechanical model

and optimization methods had advanced well beyond the prototype stage. This time could have

been invested in more rigorous testing of the biomechanical model as well as encoding the ODE

solver and SQP methods in a compiled language such as C or Fortran.

Fortunately, the methods implemented by Dynopt [20] have given us a head start in that

direction. The biomechanical model of the upper-limb used in our investigation of optimal con-

trols provided several important features that conventional solvers (such as Dynopt) alone could

not resolve. Primarily, the increased number of actuators and their non-linear appearance, via

muscle models in the dynamic equations, creates many local minima which gradient-based meth-

ods cannot overcome. In addition, the over-actuated system tends to create long \valleys" in the

objective space causing di�culties in computing a new search direction in an SQP method. This

raises the issue of \designing" a better objective function in order to minimize these regions on

the objective surface while maintaining biomechanical relevance.

Even the hybrid GA-SQP method has its di�culties with this phenomenon which causes

many unique chromosomes (along the long valley bottom) to have identical �tnesses thus making

dominance low which keeps the mutation low in our adaptive mutation implementation. This

may result in a great deal of computational time spent exploring these valleys until, by chance

mutation, a signi�cantly �tter individual appears. Although the hybrid GA-SQP method is more
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e�ective than the SQP, it cannot be concluded that the hybrid method is the most e�cient method.

The use of coarser (shorter) chromosomes (less encoded precision) can avoid this altogether, but

at the risk at �nding a solution which is optimal only for that encoding.

6.3 Contributions of Research

The main contributions of this research include the application of graph-theory and genetic algo-

rithm methods to biomechanical simulation as well as the development of data processing tools

for comparing human performance with simulation results.

Although the graph-theoretical approach to multi-body dynamics has undergone rapid devel-

opment since the 1970's [4], the application of this research to biomechanical modelling has yet

to be recognized. Applying these methods via automated tools such as DynaFlex goes beyond

the state of the art in terms of formulation methods used by biomechanists today.

By far the most signi�cant contribution of this research is the introduction of the genetic

algorithm into the realm of dynamic optimization. Genetic algorithms have found their way into

solving many static optimization problems including complex con�guration and pattern recogni-

tion problems. Newton's method (or its variants), however, remains the dominant method for

the direct optimization approach to the optimal control problem. For the most part, the use

of genetic algorithms has been limited to determining signal parameters for problems where the

general form of the control is known and can be exploited. In these instances, the controls can be

encapsulated by either function parameters or neural network weightings (when there is inherent

uncertainty about the inputs to the control system). In either case, the genetic algorithm is used

to \tune" the model parameters or train the network so that di�erences in model performance

with measured human performance is minimized [5].

For optimal control problems, gradient methods are often sought because the objective func-

tions are usually smooth, at least piecewise continuous, and doubly- di�erentiable due to the

(non-linear) dynamic equations which are appended using Lagrange multipliers. In addition, op-

timality conditions (speci�cally, the co-state equations) can be exploited to compute the variation

of the objective function with respect to discretized control inputs, and thus gradient-based meth-

ods appear to be the most e�cient solution method. The fundamental assumption that the initial

point lies on a surface that monotonically approaches the optimal solution is usually overlooked.
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Alternatively, the initial guess is set to a solution that is already a good representative of the

desired performance. Few researchers would consider abandoning the e�ciency of gradient ap-

proaches for time consuming explorative methods such as the GA. Those concerned with �nding

the globally optimal solution often �nd themselves trying many initial points in hopes that they

all converge to the same optimum. Often, getting these methods to converge is di�cult because

of the abundance of local optima where the current solution can be trapped far from satisfying

terminal constraints. In spite of this, given that an initial guess from experimentation or manual

calculation of a simpli�ed case does converge, this is taken as evidence that the solution is the

global optimum since the handful of other attempts did not converge. At the very least then, the

hybrid GA-SQP we have developed frees the designer from having to �nd suitable initial guesses

and presents an automated and systematic method of trying numerous \initial guesses".

Finally, we have developed a suite of data processing tools that facilitate the analysis of three-

dimensional marker kinematics. These include �nding both the most representative rotations

and joint centre locations such that they minimize discrepancies with marker positions in a least

squares sense. Furthermore, we address planar motions not by simply selecting arbitrary planes,

but by mathematically identifying the plane which is most representative of the motion.

6.4 Future Research

6.4.1 Biomechanical Model

It is apparent that accurate muscle geometry is critical to reproducing human-like behavior. The

present linear interconnection of muscles from origin to insertion points is insu�cient. Intermedi-

ate points must be introduced such that the muscles provide the appropriate function regardless of

the degree of exion or extension (Figure 6.1). This evolution in the biomechanical model should

eliminate muscles that had to \push" in the current model due to the erroneous moment-arm

lengths.

The most signi�cant advancement in the model has to be the transition to a spatial model.

From the modelling perspective, it is no more complex to do thanks to the GT methods and

DynaFlex. The di�culty lies in acquiring the appropriate model parameters such as the origin

and insertion coordinates given the sensitivity of the joint moments to these parameters.
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Figure 6.1: A 3pt. muscle geometry vs. the current 2pt. muscle geometry

6.4.2 Optimization Methods

Spatial mechanisms typically have more degrees of freedom and therefore have more state and

control variables. Moving to spatial models thus increases both simulation time (more di�erential

equations to integrate) as well as the search space of the optimal control problem (more control

variables). Thus for practical solution of large scale optimal control problems e�cient implemen-

tation is critical. For example, the Dynopt implementation of the Runge-Kutta integration and

SQP optimization is on the order of 24 times faster than the identical implementation inMatlab.

Matlab and other scienti�c computing environments (Octave, Scilab, etc.) provide superior

prototyping environments, but for pure execution speed they cannot match compiled C or Fortran

code.

The implementation as it stands now, is an ad hoc assembly of Matlab/Octave functions,

Perl scripts, and the Dynopt C executable, whereby communication is performed primarily by

at �les which are continually written and read to/from the �le-system. Eliminating communica-

tion via at �les should alleviate at least a tenth (and up to a third) of the time costs per call to

Dynopt, which occurs approximately Np (a population size) times per generation.

Following suit, the GA should be translated into C to reduce the GA cycle time as well as

homogenize the implementation and provide some degree of portability.
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Portability may be a signi�cant issue when considering the potential speed gains that can be

achieved via computational parallelization. The underlying GA is easily distributed such that

several processors can each be given a portion of the population for evaluating the �tness func-

tion. There is an almost linear reduction in computational time with an increase in the number

of processors [49] as long as the number of processors is less than the population size. Dis-

tributed systems, such as the Beowulf system, are rivaling and in many cases out-performing

the computational capabilities of mainframes at the fraction of the cost. They are quickly be-

coming accessible to research scientists and there is no doubt that the solution of optimal control

problems will bene�t from this as well.

6.4.3 Collection Data Processing

The reconstruction of limb segment kinematics from collected marker kinematics was performed

with a signi�cant amount of mathematical rigor in order to get better estimates of limb segment

geometries as well as their rotations. We should continue in this way by coupling the least squares

operations in a dual strategy which runs the joint centre location optimization and then the best

�t rotations one after the other in a cyclical approach to �nd even better sets of rotations and

segment geometries.

6.4.4 Human Motion Prediction

After making improvements to the model and the optimizationmethods we can consider �nding an

objective function with appropriate weightings that can reproduce the performances for the broad

variety of tasks we have already collected. We should devise a recursive method of determining the

weightings of the individual objective function criteria such that the resulting model movements

best match the human movement observations. This would require cycling through many optimal

control problems and therefore the computational costs would increase several fold. At the current

rate of increase in computational speed it will not be very long before such a process would be

feasible.
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6.5 Concluding Remarks

In conclusion, we have demonstrated a feasible methodology for determining control strategies for

the movement of complex mechanical systems and how they can be applied to the performance of

the human upper-limb. We have demonstrated the advantages of biomechanical modelling via a

graph-theoretic approach in order to generate reliable formulations. This method also lends itself

to a component paradigm that enables us to reuse the topology of previous models and easily

interchange components.

The most signi�cant development has been employing a genetic algorithm within the direct

optimization method. Employing the more exhaustive GA with the faster SQP techniques elim-

inates the requirement for an initial guess while providing accurate results within the desired

precision. This is a signi�cant improvement since the alternative requires manual trials with

varying guesses. Otherwise, we risk obtaining only a local optima in the near neighborhood of

the initial guess. Furthermore, the hybrid GA-SQP enables the solution of over-actuated systems

which are generally plagued with regions where the Hessian is near singular, which would normally

cause an SQP method to fail.

Finally, we are now in the position to provide a test bed for human movement researchers to

experiment with various model and optimality assumptions and provide the tools for comparing

model results with data collected frommotion capture systems. We hope this will lead to a greater

understanding of humanmotion control strategies and help to identify methods of restoring and/or

improving human performance. Future method developments will seek to increase the ease of

transition between the modelling, optimization and comparison methods as well as the overall

e�ciency of the computations.
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Appendix A

Detailed Implementation of

Mechanical Models

A.1 Matlab Implementation of the Planar 2-Link Manipu-

lator

A.1.1 planarEqns

function Qdot = planarEqns(tau, Q, U, p)

% Integrate the state fQg equations for the

% planar 2-link manipulator with controls U = [U1; U2] in

% normalized time, tau, and p as the final time parameter

% Q = [Q1; Q2; Q1dot; Q2dot]

% USAGE: Qdot = planarEqns(t, Q, U, p)

% Ajay Seth

% Manipulator Parameters

l = [0.4, 0.25];

J = [1.6, 0.195625, 0.01];

m = [NaN, 15, 6];

c2 = cos(Q(2));

s2 = sin(Q(2));

155
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% Mass Matrix of the planar manipulator

M(1,1) = (m(2)+m(3))*l(1)*l(1)+(m(2)+2*m(3))*c2*l(2)*l(1)+(m(3)+m(2)/4)*l(2)*l(2)+...

J(2)+J(3)+J(1);

M(1,2) = (m(3)+m(2)/2)*c2*l(2)*l(1)+(m(3)+m(2)/4)*l(2)*l(2)+J(2)+J(3);

M(2,1) = M(1,2);

M(2,2) = (m(3)+m(2)/4)*l(2)*l(2)+J(2)+J(3);

dtM = M(1,1)*M(2,2)-M(1,2)*M(1,2);

% Inverse of Mass matrix M = W;

W = [M(2,2) -M(1,2); -M(1,2) M(1,1)]/dtM;

% Generalized force in Dynamic EQuation

F(1,1) = -((-m(2)/2-m(3))*Q(4)*Q(4)+(-m(2)-2*m(3))*Q(4)*Q(3))*l(2)*l(1)*s2+U(1);

F(2,1) = -(m(3)+m(2)/2)*Q(3)*Q(3)*l(2)*l(1)*s2+U(2);

Qdot(1:2,1)=Q(3:4)*p;

Qdot(3:4,1) = W*F*p;

A.1.2 costateEqns

function Cdot = costateEqns(tau, C, Q, U, p)

% Integrate the costate fcg equations from final condition of

% the planar 2-link manipulator with controls U = [U1; U2] in

% normalized time, tau, and p as the final time parameter

% Q = [Q1; Q2; Q3; Q4]]; C= C1; C2; C3; C4;

% USAGE: Cdot = planarEqns(tau, C, Q, U, p)

% Ajay Seth

% Manipulator Parameters

l = [0.4, 0.25];

J = [1.6, 0.195625, 0.01];

m = [NaN, 15, 6];

% Compute trig funs only once

c2 = cos(Q(2));

s2 = sin(Q(2));

% Mass Matrix of the planar manipulator
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M(1,1) = (m(2)+m(3))*l(1)*l(1)+(m(2)+2*m(3))*c2*l(2)*l(1)+(m(3)+m(2)/4)*l(2)*l(2)+...

J(2)+J(3)+J(1);

M(1,2) = (m(3)+m(2)/2)*c2*l(2)*l(1)+(m(3)+m(2)/4)*l(2)*l(2)+J(2)+J(3);

M(2,1) = M(1,2);

M(2,2) = (m(3)+m(2)/4)*l(2)*l(2)+J(2)+J(3);

dtM = M(1,1)*M(2,2)-M(1,2)*M(1,2);

dtM Q2 = (m(2)*m(2)/2+2*m(3)*m(3)+2*m(3)*m(2))*s2*c2*l(2)*l(2)*l(1)*l(1);

M11 Q2 = -(m(2)+2*m(3))*s2*l(2)*l(1);

% Inverse of Mass matrix M = W;

W = [M(2,2) -M(1,2); -M(1,2) M(1,1)]/dtM;

% Partial of W w.r.t Q2

W Q2(1,1) = -1/dtM^2*M(2,2)*dtM Q2;

W Q2(1,2) = 1/dtM^2*M(1,2)*dtM Q2-1/dtM*M11 Q2/2;

W Q2(2,1) = 1/dtM^2*M(1,2)*dtM Q2-1/dtM*M11 Q2/2;

W Q2(2,2) = -1/dtM^2*M(1,1)*dtM Q2+1/dtM*M11 Q2;

% Generalized force in Dynamic EQuation

F(1,1) = -((-m(2)/2-m(3))*Q(4)*Q(4)+(-m(2)-2*m(3))*Q(4)*Q(3))*l(2)*l(1)*s2+U(1);

F(2,1) = -(m(3)+m(2)/2)*Q(3)*Q(3)*l(2)*l(1)*s2+U(2);

% Gradient of fFg w.r.t fQg

FQ(1,1) = 0;

FQ(1,2) = -((-m(2)/2-m(3))*Q(4)*Q(4)+(-m(2)-2*m(3))*Q(4)*Q(3))*l(2)*l(1)*c2;

FQ(1,3) = -(-m(2)-2*m(3))*Q(4)*l(2)*l(1)*s2;

FQ(1,4) = -(2*(-m(2)/2-m(3))*Q(4)+(-m(2)-2*m(3))*Q(3))*l(2)*l(1)*s2;

FQ(2,1) = 0;

FQ(2,2) = -(m(3)+m(2)/2)*Q(3)*Q(3)*l(2)*l(1)*c2;

FQ(2,3) = -2*(m(3)+m(2)/2)*Q(3)*l(2)*l(1)*s2;

FQ(2,4) = 0;

% Gradient of First order function of the dynamic (equation) constraints

FF Q = [zeros(2,2), eye(2,2); [[zeros(2,1), W Q2*F, zeros(2,2)]+W*FQ]];

Cdot(1:4,1) = -[C'*FF Q*p]';
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A.1.3 simplePlanar

function [Phi, const] = simplePlanar(U, nodes, A, B)

% Function for solving the dynamics of the

% planar 2-link manipulator for an optimization routine

% Uses a Runge-Kutta integrator from the NAG library

% USAGE: [Final time, Contraints] = simplePlanar(Y, nodes)

% Where Y is m*nodes+1 vector of m controls concatenated and

% The final time parameter is the last entry

% nodes are the number of nodes in control mesh

% Ajay Seth

% Fist Identify global variables required by ODE solver

global ODE x end ODE step size ODE steps ODE out ODE aux fun

% ODE aux fun is an auxilliar function that ODEoutput calls if it exists

% Parameters required by State, Costate and gradient equations

global Tau time Q states Controls Final time N nodes Q states

output ='ODEoutput';

fcn ='planarNAG';

ODE aux fun = [];

N nodes = nodes;

% Integration tolerance

tol = 1e-5;

%Penalty paramter

Rho = 1000;

% Nomalized Control scalings and inetgration time scaling

Umax = [25; 9];

l = [0.4; 0.25];

%Final State of end-effector

Xf = 0; Yf = l(1)+l(2);

% Number of controls

m = 2;
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Controls = [Umax(1)*U(1:nodes),Umax(2)*U(nodes+1:2*nodes)];

Final time = U(m*nodes+1);

% Normalized time, Tau

tau end = 1;

dTau = tau end/(nodes-1);

Tau time = 0:dTau:tau end;

% Starting time and initial state

tau = 0.0;

Q = zeros(4,1);

%tic;

% Set globals for ODE solver

ODE x end = tau end;

ODE steps = nodes-2;

ODE step size = dTau;

% Global matrix for trajectory output

ODE out = [];

% Use the NAG RK integrator

[tau,Q,tol,ifail] = d02bbf(tau,tau end,Q,tol,fcn,output);

%toc;

% Take global output and return to local variables

tau = ODE out(:,1); Q = ODE out(:,2:5);

%animateAngles(Q(:,1:2),1);

% Compute trig functions at final state

c1 = cos(Q(nodes,1)); c12 = cos(Q(nodes,1)+Q(nodes,2));

s1 = sin(Q(nodes,1)); s12 = sin(Q(nodes,1)+Q(nodes,2));

% Evaluate the final state violations in order to evaluate Phi

pen = [l(1)*c1+l(2)*c12-Xf; l(1)*s1+l(2)*s12-Yf; Q(nodes,3); Q(nodes,4)];

Phi = (Rho*pen'*pen+Final time^2); % Rho is a scalar penalty value 2000-

const= []; % Do uncostrained problem for now

Q states = Q;



APPENDIX A. DETAILED IMPLEMENTATION OF MECHANICAL MODELS 160

A.1.4 planarGrads

function [gJ, gC] = planarGrads(Y,A,B,nodes)

% Gradient of the objective J for a planar 2-link manipulator

% with controls and final time paramater

% Y = fU1o, ..., U1n, U2o,...,U2n, Pg

% USAGE: [gJ, gC] = planarGrads(Y, nodes)

% Ajay Seth

% Fist Identify global variables required by ODE solver

global ODE x end ODE step size ODE steps ODE out ODE aux fun

% ODE aux fun is an auxilliar function that ODEoutput calls if it exists

% Parameters required by State, Costate and gradient equations

global Tau time Q states Controls Final time N nodes

global ControlVariational ParameterVariational PlanarGradient

Rho = 1000;

l = [0.4; 0.25];

%Final State of end-effector

Xf = 0; Yf = l(1)+l(2);

output ='ODEoutput';

fcn = 'costatesNAG';

% Integration tolerance

tol = 1e-5;

Q = Q states;

tbk end = 0; tbk =1;

% Compute trig functions at final state

c1 = cos(Q(nodes,1)); c12 = cos(Q(nodes,1)+Q(nodes,2));

s1 = sin(Q(nodes,1)); s12 = sin(Q(nodes,1)+Q(nodes,2));

% Evaluate the final time costates for integration from Phi Q at Tf

C=2*Rho*[(l(1)*c1+l(2)*c12-Xf)*(-l(1)*s1-l(2)*s12)+(l(1)*s1+l(2)*s12-Yf)*(l(1)*c1+l(2)*c12

(l(1)*c1+l(2)*c12-Xf)*(-l(2)*s12)+(l(1)*s1+l(2)*s12-Yf)*l(2)*c12;

Q(nodes,3);

Q(nodes,4)];
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% Costate equations are dependant on the states

Q states = Q;

dTau = ODE step size;

% Set globals for ODE solver

ODE x end = tbk end;

ODE steps = nodes-2;

ODE step size = -dTau;

% Compute variational functionals simultaneosly with integration

ODE aux fun = 'planarHuHp';

% Reset Global matrix for costate trajectory output

ODE out = []; ControlVariational = []; ParameterVariational =[];

PlanarGradient =[];

[tbk,C,tol,ifail] = d02bbf(tbk,tbk end,C,tol,fcn,output);

% Compute Gradient dCost/dU

dCost dU = ControlVariational*dTau;

dCost dU([1,nodes],:) = 0.5*dCost dU([1,nodes],:); %Half end points

% Compute Gradient dCost/dp

Hp = ParameterVariational;

dCost dp = 2*Final time+dTau*(sum(Hp)-(Hp(1)+Hp(nodes))/2);

% Overal design variable gradient

gJ = [dCost dU(1:nodes,1)',dCost dU(1:nodes,2)', dCost dp];

gC = [];

A.2 Upper-Limb Biomechanical Model

A.2.1 DynaFlex Input File: BioArm.graph

# bioArm.graph

# Input file for a biomechanical arm with redundant actuators. This arm

# is driven by 5 SDA elements accross two joints.

# ITEM ONE: number of nodes and edges in the system graph
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NOofedges:=28;

NOofnodes:=18;

Datum:=1;

# Note that Datum stands for the ground node.

edge[1]:=table([(1)=Y,

(2)=[1,16],

(3)=AE R,

(4)=table([coords=[r1[x],r1[y],0] ])

]);

edge[2]:=table([(1)=Y,

(2)=[3,2],

(3)=AE R,

(4)=table([coords=[r2,0,0] ])

]);

edge[3]:=table([(1)=Y,

(2)=[3,4],

(3)=AE R,

(4)=table([coords=[r3,0,0] ])

]);

edge[4]:=table([(1)=Y,

(2)=[6,5],

(3)=AE R,

(4)=table([coords=[r4,0,0] ])

]);

edge[5]:=table([(1)=Y,

(2)=[6,7],

(3)=AE R,

(4)=table([coords=[r5,0,0] ])

]);

edge[6]:=table([(1)=Y,

(2)=[3,12],

(3)=AE R,

(4)=table([coords=[r6[x],r6[y],0] ])

]);
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edge[7]:=table([(1)=Y,

(2)=[3,13],

(3)=AE R,

(4)=table([coords=[r7[x],r7[y],0] ])

]);

edge[8]:=table([(1)=Y,

(2)=[1,17],

(3)=AE R,

(4)=table([coords=[r8[x],r8[y],0] ])

]);

edge[9]:=table([(1)=Y,

(2)=[6,10],

(3)=AE R,

(4)=table([coords=[r9[x],r9[y],0] ])

]);

edge[10]:=table([(1)=Y,

(2)=[6,18],

(3)=AE R,

(4)=table([coords=[r10[x],r10[y],0] ])

]);

edge[11]:=table([(1)=Y,

(2)=[3,11],

(3)=AE R,

(4)=table([coords=[r11[x],r11[y],0] ])

]);

edge[12]:=table([(1)=Y,

(2)=[3,14],

(3)=AE R,

(4)=table([coords=[r12[x],r12[y],0] ])

]);

edge[13]:=table([(1)=Y,

(2)=[6,9],

(3)=AE R,
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(4)=table([coords=[r13[x],r13[y],0] ])

]);

edge[28]:=table([(1)=Y,

(2)=[1,15],

(3)=AE R,

(4)=table([coords=[r28[x],r28[y],0] ])

]);

edge[14]:=table([(1)=Y,

(2)=[1,2],

(3)=JE,

(4)=RV

]);

edge[15]:=table([(1)=Y,

(2)=[4,5],

(3)=JE,

(4)=RV

]);

edge[16]:=table([(1)=Y,

(2)=[7,8],

(3)=JE,

(4)=WELD

]);

edge[17]:=table([(1)=N,

(2)=[1,3],

(3)=BE R,

(4)=table([inert=[[0,0,0],

[0,0,0],

[0,0,J1]],

mass=m1 ])

]);

edge[18]:=table([(1)=N,

(2)=[1,6],

(3)=BE R,

(4)=table([inert=[[0,0,0],
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[0,0,0],

[0,0,J2]],

mass=m2 ])

]);

edge[19]:=table([(1)=N,

(2)=[1,8],

(3)=BE R,

(4)=table([inert=[[0,0,0],

[0,0,0],

[0,0,J3]],

mass=m3 ])

]);

edge[20]:=table([(1)=N,

(2)=[16,12],

(3)=FDE,

(4)=table([type=LSD,

character=(k20,d20,f20(t)) ])

]);

edge[21]:=table([(1)=N,

(2)=[17,10],

(3)=FDE,

(4)=table([type=LSD,

character=(k21,d21,f21(t)) ])

]);

edge[22]:=table([(1)=N,

(2)=[11,18],

(3)=FDE,

(4)=table([type=LSD,

character=(k22,d22,f22(t)) ])

]);

edge[23]:=table([(1)=N,

(2)=[14,9],

(3)=FDE,

(4)=table([type=LSD,

character=(k23,d23,f23(t)) ])
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]);

edge[24]:=table([(1)=N,

(2)=[15,13],

(3)=FDE,

(4)=table([type=LSD,

character=(k24,d24,f24(t)) ])

]);

edge[25]:=table([(1)=N,

(2)=[1,3],

(3)=FDE,

(4)=table([type=PD,

fy=W1,

force=gl ])

]);

edge[26]:=table([(1)=N,

(2)=[1,6],

(3)=FDE,

(4)=table([type=PD,

fy=W2,

force=gl ])

]);

edge[27]:=table([(1)=N,

(2)=[1,8],

(3)=FDE,

(4)=table([type=PD,

fy=W3,

force=gl ])

]);

Iedge:=[];

A.2.2 bioArm Input for Dynopt

The equations of motion produced by DynaFlex were �rst simpli�ed in Maple. To further

simplify the problem the parallel elastic and viscous elements were assigned 0 valued coe�cients.
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The resulting equations were implemented in bioArm. The minimumstress objective is also encoded

herein. Dynopt converts the �le into C and compiles and links with dyn sqp.c and math opt.c to

produce the standalone executable bioArm.exe.

# bioArm input file for Dynopt

# Planar Biomechanical Model of a 2DOF Arm with 5 muscle actuators

# Now including the joint stress objective

# Equations generated in Maple from the following files:

# 1. bioArm gen.mws + bioArm.graph => bioArm.raw funsimplifiedg

# 2. bioArm simp.mws + bioArm.par => (M)ass, (G)amma, (F)orces fw/ symb subsg

# The final symbolic equations are implemented herein

# [M]fdotdotfqgg+fFg = 0; => fx3,x4g^T= inv[M]*f-Fg!

# Ajay Seth

state x1 x2 x3 x4

control u1 u2 u3 u4 u5

method = dyn sqp

input file = bioArm2Guess

output file = bioArm2

nodes = 21

epsilon = 1.0e-5

# Optimization parameters, i.e. p is time parameterization

parameter p

# Initial and terminal variables

real X1 0 X2 0 X1 f X2 f

# Maximum muscle forces

real FM1 FM2 FM3 FM4 FM5

# Constants

real pi g alpha beta

# Trig functions

real c1 s1 c2 s2 c12 s12

# Masses and inertias, Mass matrix, and generalized forces

real eff load m1 m2 m3 m23 J1 J2 J3 detM M 11 M 12 M 21 M 22 F1 F2

# General expresssions substitued into F including muscle forces
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real G1 G2 G4 G5 G6 f1 f2 f3 f4 f5

# Rigid arm elements

real r1x r1y r2x r2y r3x r3y r4x r4y r5x r5y r6x r6y r7x r7y r8x r8y

real r9x r9y r10x r10y r11x r11y r12x r12y r13x r13y r28x r28y

real rc1o1 rc2o2 l1 l2 lo1 lo2 lo3 lo4 lo5

real vmax v1 v2 v3 v4 v5 v1x v1y v2x v2y v3x v3y v4x v4y v5x v5y

# Connection vectors from proximal to distal and their unit vectors

real R1x R1y R2x R2y R3x R3y R4x R4y R5x R5y R1 R2 R3 R4 R5

real d1x d1y d2x d2y d3x d3y d4x d4y d5x d5y

# Variables for computing Cost functional, L

real a1x a1y ajx ajy a2x a2y a3x a3y dx1 dx2 dx3 dx4

real A X A Y B X B Y Ax Ay Bx By

eff load = 0.0

# or 5.0

pi = 3.14159265358975

g = -9.81

X1 0 = -pi/1.8

X2 0 = pi/10

X1 f = -pi/2.1

X2 f = 0.9*pi

# Muscle parameters: rest lengths and maximu velocity and shaping parms

lo1 = 0.15; lo2 = 0.2845; lo3 = 0.3257; lo4 = 0.31; lo5 = 0.065; vmax = 20

alpha = 0.5; beta = 0.5

# Write arm parameter values here

r1x = 0.005; r1y = 0.03; r2x = -0.155; r2y = 0.0; r3x = 0.175; r3y = 0.0

r4x = -0.11; r4y = 0.0; r5x = 0.17; r5y = 0; r6x = -0.02; r6y = 0.015

r7x = r2x+0.01; r7y = -0.0567; r8x = 0.005; r8y = 0.02; r9x = -0.085; r9y = 0.007

r10x = r5x; r10y = 0.01; r11x = 0.12; r11y = 0.015; r12x = -0.135; r12y= -0.015

r13x = -0.135; r13y = -0.019; r28x = -0.065; r28y = 0.0

rc1o1 = 0.15; rc2o2 = 0.11; l1 = 0.33; l2 = 0.28

m1 = 2.7; m2 = 1.8; m3 = 0.4+eff load; m23 = m2+m3

J1 = (1/12)*m1*(3*pow(2*r11y,2)+pow(r3x-r2x,2))

J2 = (1/12)*m2*(3*pow(1.5*r10y,2)+pow(r5x-r4x,2))
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J3 = (1/2)*m3*pow(0.004,2)

# Maximum isometric force

FM1 = 1800; FM2 = 1500; FM3 = 600; FM4 = 2600; FM5 = 4400

initial condition:

x1 = X1 0

x2 = X2 0

x3 = 0.0

x4 = 0.0

dynamic equation:

#Evaluate trig functions

c1 = cos(x1); c2 = cos(x2); c12 = cos(x1+x2)

s1 = sin(x1); s2 = sin(x2); s12 = sin(x1+x2)

# Get global vector connecting origin to insertion points

R1x = c1*(-r2x+r6x)-s1*(-r2y+r6y)-r1x

R1y = s1*(-r2x+r6x)+c1*(-r2y+r6y)-r1y

R2x = c1*(-r2x+r3x)-s1*(-r2y+r3y)+c12*(-r4x+r9x)-s12*(-r4y+r9y)-r8x

R2y = s1*(-r2x+r3x)+c1*(-r2y+r3y)+s12*(-r4x+r9x)+c12*(-r4y+r9y)-r8y

R3x = c1*(-r2x+r3x)-s1*(-r2y+r3y)+c12*(-r4x+r10x)-s12*(-r4y+r10y)-(c1*(-r2x+r11x)-s1*(-r2y+r11y))

R3y = s1*(-r2x+r3x)+c1*(-r2y+r3y)+s12*(-r4x+r10x)+c12*(-r4y+r10y)-(s1*(-r2x+r11x)+c1*(-r2y+r11y))

R4x = c1*(-r2x+r3x)-s1*(-r2y+r3y)+c12*(-r4x+r13x)-s12*(-r4y+r13y)-(c1*(-r2x+r12x)-s1*(-r2y+r12y))

R4y = s1*(-r2x+r3x)+c1*(-r2y+r3y)+s12*(-r4x+r13x)+c12*(-r4y+r13y)-(s1*(-r2x+r12x)+c1*(-r2y+r12y))

R5x = c1*(-r2x+r7x)-s1*(-r2y+r7y)-r28x

R5y = s1*(-r2x+r7x)+c1*(-r2y+r7y)-r28y

# Their magnitudes (lengths)

R1 = sqrt(R1x*R1x+R1y*R1y); R2 = sqrt(R2x*R2x+R2y*R2y); R3 = sqrt(R3x*R3x+R3y*R3y)

R4 = sqrt(R4x*R4x+R4y*R4y); R5 = sqrt(R5x*R5x+R5y*R5y)

# Corresponding unit (direction) vectors

d1x = R1x/R1; d1y = R1y/R1; d2x = R2x/R2; d2y = R2y/R2; d3x = R3x/R3; d3y = R3y/R3

d4x = R4x/R4; d4y = R4y/R4; d5x = R5x/R5; d5y = R5y/R5

# Compute the velocity of insertion points relative to origin points

v1x = (-s1*(-r2x+r6x)-c1*(-r2y+r6y))*x3
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v1y = (c1*(-r2x+r6x)-s1*(-r2y+r6y))*x3

v2x = (-s1*(-r2x+r3x)-c1*(-r2y+r3y))*x3+(-s12*(-r4x+r9x)-c12*(-r4y+r9y))*(x3+x4)

v2y = c1*x3*(-r2x+r3x)-s1*x3*(-r2y+r3y)+c12*(x3+x4)*(-r4x+r9x)-s12*(x3+x4)*(-r4y+r9y)

v3x = -s1*x3*(-r2x+r3x)-c1*x3*(-r2y+r3y)-s12*(x3+x4)*(-r4x+r10x)-c12*(x3+x4)*(-r4y+r10y)+ @

s1*x3*(-r2x+r11x)+c1*x3*(-r2y+r11y)

v3y = c1*x3*(-r2x+r3x)-s1*x3*(-r2y+r3y)+c12*(x3+x4)*(-r4x+r10x)-s12*(x3+x4)*(-r4y+r10y)- @

c1*x3*(-r2x+r11x)+s1*x3*(-r2y+r11y)

v4x = -s1*x3*(-r2x+r3x)-c1*x3*(-r2y+r3y)-s12*(x3+x4)*(-r4x+r13x)-c12*(x3+x4)*(-r4y+r13y)+ @

s1*x3*(-r2x+r12x)+c1*x3*(-r2y+r12y)

v4y = c1*x3*(-r2x+r3x)-s1*x3*(-r2y+r3y)+c12*(x3+x4)*(-r4x+r13x)-s12*(x3+x4)*(-r4y+r13y)- @

c1*x3*(-r2x+r12x)+s1*x3*(-r2y+r12y)

v5x = -s1*x3*(-r2x+r7x)-c1*x3*(-r2y+r7y)

v5y = c1*x3*(-r2x+r7x)-s1*x3*(-r2y+r7y)

# Project velcities on to connecting lines to get contraction velocity +ve = lengthening

v1 = v1x*d1x+v1y*d1y

v2 = v2x*d2x+v2y*d2y

v3 = v3x*d3x+v3y*d3y

v4 = v4x*d4x+v4y*d4y

v5 = v5x*d5x+v5y*d5y

# Determine individual control forces

f1 = (FM1*u1)*(1-pow(abs(R1-lo1)/lo1,alpha))*pow(abs(vmax+v1)/vmax, beta);

f2 = (FM2*u2)*(1-pow(abs(R2-lo2)/lo2,alpha))*pow(abs(vmax+v2)/vmax, beta);

f3 = (FM3*u3)*(1-pow(abs(R3-lo3)/lo3,alpha))*pow(abs(vmax+v3)/vmax, beta);

f4 = (FM4*u4)*(1-pow(abs(R3-lo4)/lo4,alpha))*pow(abs(vmax+v4)/vmax, beta);

f5 = (FM5*u5)*(1-pow(abs(R4-lo5)/lo5,alpha))*pow(abs(vmax+v5)/vmax, beta);

# Define the Mass Matrix

M 11 = m2*(l1*l1+r4x*r4x+2.0*r4x*l1*c2)+m3*(l2*l2+l1*l1+2.0*l1*l2*c2)+m1*r2x*r2x+J1+J2+J3

M 12 = m3*(l1*l2*c2+l2*l2)+m2*(r4x*l1*c2+r4x*r4x)+J2+J3

M 21 = M 12

M 22 = m2*r4x*r4x+m3*l2*l2+J2+J3

detM = M 11*M 22-M 12*M 21

# First solve for the sub-expressions used to simplify the Force equations

G1 = sqrt((2*s1*r2x-2*s1*r6x-2*c1*r6y)*r1y+(2*c1*r2x+2*s1*r6y-2*c1*r6x)*r1x+ @

(r6x*r6x+r6y*r6y)-2*r2x*r6x+(r1x*r1x+r1y*r1y)+r2x*r2x)

G2 = sqrt((-2*r2x-2*c1*r28x-2*s1*r28y)*r7x+(-2*c1*r28y+2*s1*r28x)*r7y+(r28x*r28x+r28y*r28y)+ @

2*c1*r2x*r28x+2*s1*r2x*r28y+(r7x*r7x+r7y*r7y)+r2x*r2x)
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G4 = sqrt((-2*r4x-2*r11y*s2+2*r3x*c2-2*r11x*c2)*r10x+(-2*r11y*c2-2*r3x*s2+2*r11x*s2)*r10y+ @

(r11x*r11x+r11y*r11y)+2*r4x*r11y*s2+(2*r4x*c2-2*r3x)*r11x+(r10x*r10x+r10y*r10y)+ @

r4x*r4x+r3x*r3x-2*r3x*r4x*c2)

G5 = sqrt((2*r4x*s2-2*r13y*c2-2*r13x*s2)*r12y+(2*r4x*c2+2*r13y*s2-2*r3x-2*r13x*c2)*r12x+ @

(r13x*r13x+r13y*r13y)+(-2*r4x+2*r3x*c2)*r13x-2*r3x*r13y*s2+(r12x*r12x+r12y*r12y)+ @

r4x*r4x+r3x*r3x-2*r3x*r4x*c2)

G6 = sqrt((2*s12*r4x+2*s1*r2x-2*s12*r9x-2*c12*r9y-2*s1*r3x)*r8y+ @

(2*c1*r2x+2*s12*r9y+2*c12*r4x-2*c12*r9x-2*c1*r3x)*r8x+(r9x*r9x+r9y*r9y)+ @

(-2*r2x*c2-2*r4x+2*r3x*c2)*r9x+(2*r2x*s2-2*r3x*s2)*r9y+(r8x*r8x+r8y*r8y)+ @

2*r2x*r4x*c2-2*r2x*r3x+r2x*r2x+r4x*r4x-2*r3x*r4x*c2+r3x*r3x)

F1 = ((-r7x+r2x)*(r28y*c1-r28x*s1)+(r28x*c1+r28y*s1)*r7y)*f5/G2- @

x4*s2*(2.0*x3+x4)*(r2x-r3x)*(r4x*m23-m3*r5x)+ @

g*((c12*r4x+c1*(r2x-r3x))*m23+c1*m1*r2x-m3*c12*r5x)+ @

(((-r9x+r4x)*r8y+r8x*r9y)*c12+((r9x-r4x)*r8x+r8y*r9y)*s12- @

(-r8y*c1+r8x*s1)*(r2x-r3x))*f2/G6+ @

((r1x*r6y+r1y*(r2x-r6x))*c1+(-r1x*(r2x-r6x)+r1y*r6y)*s1)*f1/G1

F2 = f4*((r12x*r13x-r3x*r13x+r12y*r13y+r4x*r3x-r12x*r4x)*s2+ @

c2*(r12y*r4x-r3x*r13y+r12x*r13y-r12y*r13x))/G5+ @

x3*x3*s2*(r2x-r3x)*(r4x*m23-m3*r5x)+g*c12*(r4x*m23-m3*r5x)+ @

((r11y*(r4x-r10x)+r10y*(-r3x+r11x))*c2+(r11y*r10y-(-r3x+r11x)*(r4x-r10x))*s2)*f3/G4+ @

(((-r9x+r4x)*r8y+r8x*r9y)*c12+((r9x-r4x)*r8x+r8y*r9y)*s12- @

(r2x-r3x)*((-r9x+r4x)*s2-r9y*c2))*f2/G6

# Remember Dynaflex: [M]fqdotdotg+fF colg=0 thus, fqdotdotg=inv([M])*f-F colg

F1 = -F1

F2 = -F2

dx1 = x3*p

dx2 = x4*p

dx3 = (1/detM)*( M 22*F1-M 12*F2)*p

dx4 = (1/detM)*(-M 21*F1+M 11*F2)*p

ddt x1 = dx1

ddt x2 = dx2

ddt x3 = dx3

ddt x4 = dx4

cost functional:
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# Get the accelerations of the centre of masses in global coords

a1x = (c1*(-dx1*dx1)-s1*dx3)*rc1o1

a1y = (s1*(-dx1*dx1)+c1*dx3)*rc1o1

ajx = (c1*(-dx1*dx1)-s1*dx3)*l1

ajy = (s1*(-dx1*dx1)+c1*dx3)*l1

a2x = ajx+(c12*(-dx2*dx2)-s12*dx4)*rc2o2

a2y = ajy+(s12*(-dx2*dx2)+c12*dx4)*rc2o2

a3x = ajx+(c12*(-dx2*dx2)-s12*dx4)*l2

a3y = ajy+(s12*(-dx2*dx2)+c12*dx4)*l2

# Compute joint reaction forces in global coords

# Muscle force is is in the opposite direction of connection vector

B X = m2*a2x+m3*a3x-f2*(-d2x)-f3*(-d3x)-f4*(-d4x)

B Y = m2*(a2y-g)+m3*(a3y-g)-f2*(-d2y)-f3*(-d3y)-f4*(-d4y)

# Muscles that act on both segments act in the positive direction on their origin body

A X = m1*a1x-(-B X)-f1*(-d1x)-f5*(-d5x)-f3*d3x-f4*d4x

A Y = m1*(a1x-g)-(-B Y)-f1*(-d1y)-f5*(-d5y)-f3*d3y-f4*d4y

# Rotate back into local body coordinates

Ax = c1*A X+s1*A Y

Ay = -s1*A X+c1*A Y

Bx = c12*B X+s12*B Y

By = -s12*B X+c12*B Y

initial time = 0.0

final time = 1.0

L = 1.0e-5*pow(abs(Ax)-Ax,2)+4.0e-5*pow(Ay,2)+1.5e-5*pow(abs(Bx)-Bx,2)+1.0e-4*pow(By,2)

terminal condition:

phi = p

psi = x1-X1 f

psi = x2-X2 f

psi = x3

psi = x4

inequality constraint:

d = -p

d = (x2-pi)*x2
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d = -(1-u1)*u1

d = -(1-u2)*u2

d = -(1-u3)*u3

d = -(1-u4)*u4

d = -(1-u4)*u5



Appendix B

Project Files: Descriptions and

Locations

B.1 Optimization Methods

All �les for performing the optimization are available on the Silicon Graphics 2xZ workstation,

\real", in the Motion Research Group laboratory. The locations presented in Table B.1 extend

from my home directroy `/u/aseth/'.

Filename Description Location

genetic.m genetic algorithm matlab Arm/GeneticAlgorithm/

GA Dynopt Perl script for parsing model �le Numerical/Dynopt/GA Dynopt/dynopt-script

GA printC code Perl script to generate C code Numerical/Dynopt/GA Dynopt/dynopt-script

dyn sqp.c C source for Dynopt routines Numerical/Dynopt/GA Dynopt/dynopt-source

math opt.c Dynopt C utility functions Numerical/Dynopt/GA Dynopt/dynopt-source

Table B.1: Files implementing the optimzation methods

174
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Filename Description

makeSegs.m Form local segment de�nitions from calibration data

pos2Rot.m Calculate rotations for each segment from marker coordinates

getJointCentres.m Calculate the joint centre locations on respective bodies

reconTrial.m Compute the relative rotations to generate an animation of a trial

reconTaskStats.m Generate normalized kinematics with mean and s.d. angular trajectories

planarAnimation.m Planarize rotations and compute the joint trajectories

emgStats.m Process EMG and generate mean and s.d. activations for a task

Table B.2: Collection data processing Matlab functions

B.2 Collection Data Processing

All data and processing utilities are available on the Motion Research Group's laboratory PC.

B.2.1 Processing Methods

TheMatlab function �les described in Table B.2 can be found in `e:/ajay/ArmModel/Reconstruct/'.

B.2.2 Collection Data

The various marker and EMG data as well as post-processed data are described in Table B.3.

These �les are mainatined in sub directories of `e:/ajay/ArmModel/Reconstruct/'.
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File names Sub-directory Description

c#*.tsk Trials Raw marker data for tasks

c#*.cal Trials Calibration marker data

c#*.end Trials End calibration markers

o#*.tsk Trials Raw emg data for tasks

o#*.cal Trials EMG during calibration

o#*.end Trials EMG during end calibration

o#*.0mg Trials Background EMG

trial*.mat CleanData Filtered and interpolated marker data

T* segments.mat L frames Segment de�nitions for each task

rot*.mat RotData Global rotation matrices for each trial

reconT* *.mat Results Relative rotations and key marker traces

T* start end.mat Results Start and end times of trials of a task

Table B.3: Data �les generated by collection and processing


