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Abstract 

Cancer is an ongoing problem all over the world. To find a cure to this disease, both 

clinicians and scientists are looking for a reasonable treatment method. According to 

Hanahan and Weinberg, one of the hallmarks of cancer is evasion of programmed cell death, 

referred to as apoptosis. Apoptosis is an important cellular process, and is regulated by many 

different pathways. Proteins in these pathways contribute to either cell death or cell survival 

depending on the cell stresses. Much research in systems biology has been devoted to 

understanding these pathways at the molecular level.  

In this study a mathematical model is built to describe apoptosis, and the pathways 

involving the related proteins p53 and Akt. The primary purpose of the construction of the 

kinetic model is to verify that this network can exhibit bistability between cell survival and 

cell death. Sensitivity and bifurcation analysis are conducted to determine which parameters 

have the greatest effect on the system behavior.  
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Chapter 1 

Introduction 

1.1 Cancer 

Cancer is an ongoing worldwide problem for human health, despite intensive 

investigations by both clinicians and scientists who are trying to determine its underlying causes. 

As a disease, cancer is caused by accumulations of genetic mutations in the cell. The main 

characteristics of cancer were comprehensively described by Hanahan and Weinberg in “The 

Hallmarks of Cancer” [1]. According to their widely accepted classification, a cancer cell has the 

properties of: evading cell death, producing its own growth signals, disregarding antigrowth 

signals, replicating an unlimited number of times, promoting the formation of new blood cells, 

and invading through the surrounding tissues to induce secondary cancer.  

 In this study, the problem of cancer will be considered from a biomolecular basis by 

considering the means by which cancer cells are able to evade programmed cell death (called 

apoptosis). From this starting point, some important networks and their regulatory proteins 

introduced in Chapter 2 are examined in order to explore their relationship in the regulation of 

programmed cell death pathways. These proteins are involved in an intracellular signal 

transduction network that is responsible for regulating programmed cell death.  

 

1.2 Systems Biology 

Systems biology is a new biological field that focuses on a systems-level understanding 

of biological processes, including aspects of regulation. Building on the remarkable progress in 
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molecular biology, the systems biology approach can be used to develop predictive models based 

on an understanding of the structure and dynamics of molecular interactions within a network 

[2]. The goal of systems biology is to map complex biological pathways by considering the 

regulation of the components of the system, and to point out how these interactions affect the 

function and behavior of the system [3]. As a result, systems biology yields a holistic approach to 

biological research, which can be extended to cells, tissues and organisms [4].  

 

1.3 Cell Signaling Networks 

Our knowledge of cell signaling networks begins with interactions maps (sometimes 

called cartoon diagrams) that indicate protein-protein interactions and map their upstream and 

downstream reaction networks. These networks commonly have well-defined inputs and outputs, 

and are characterized by feedback loops, and multi-step regulatory controls. Due to the 

complexity of their structure and function, mathematical modeling has been needed to consider 

the system behavior of signaling networks [5].  

 

1.4 Mathematical Models 

Mathematical models complement experimental studies of real world problems in 

engineering, the life, social, and environmental sciences [6, 7]. Due to the complexity and 

nonlinearity of real world problem, it is often difficult to understand the role of each component 

in the behavior of a network. Mathematical modeling can be used to describe system dynamics, 

and better understand how network structure is related to system behavior [8]. Mathematical 
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models allow both the theoretical analysis of the system and the predictions of the results of 

experiments (see Figure 1.1).  

      

Figure 1.1: Representation of mathematical modeling  

 

1.5 Bistability 

A key feature of many cell signaling networks is bistability, which is the property of 

having two different stable steady states. In a cellular setting, bistability can arise from a strong 

positive feedback loop. For instance, if protein A activates protein B, and in turn protein B 

activates protein A (or likewise, if each inactivates the other) the system may show bistability 

[9]. In this study, bistability will correspond to two cell fates: cell survival or cell death. 

 

1.6 The Objective of the Presented Study 

Cancer develops from the molecular state of damaged cells, and one of the properties of 

the cancer is the evasion of cell death-signals. The aim of this research is to build a mathematical 

Real problem 

 Mathematical Model  Predictions 

formulate 

solve 

evaluate 

Real results 

validate 

hypothesize  

 Mathematical result  
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model that describes the network responsible for regulating programmed cell death, and to verify 

conditions under which this network exhibits bistability.   

To accomplish this goal, this thesis presents both biological and mathematical 

background on the mechanism and dynamics of cellular signaling pathways. For the biological 

background, related cell signaling pathways are examined in Chapter 2. Subsequently, 

mathematical background information is introduced in Chapter 3. This includes the techniques 

that are used to describe the pathways and the analysis that is used to investigate bistability. 

Chapter 4 describes a new model, which builds, in part, on previously published studies. 

Analysis of the model is presented in Chapter 4 with the discussion. Finally, concluding remarks 

and future directions are given in Chapter 5.  
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Chapter 2 

Biological Background 

2.1 Introduction 

In this chapter, three intertwined signalling networks will be described. In describing 

these pathways, only the key proteins will be introduced. This description follows the network 

models presented by Legewie et al. [10] and Aguda et al. [11].  

 

2.2 Apoptosis  

Cells are the basic structural and functional unit of all living things. Cell death can be 

caused by injury, but can also be the result of programmed molecular interactions (the absence of 

growth factors or the presence of death signals on the cell surface). Because these interactions 

are systematically regulated by the organism, this mode of cell death is called programmed cell 

death [12]. Apoptosis is the best-understood programmed cell death process (and indeed, these 

two terms are sometimes used interchangeably) [13]. Apoptosis is the Greek word for the falling 

of leaves from trees; the term was introduced to biology in 1972 by Kerr, Wylie, and Curries 

[14]. 

 

2.2.1 The Importance of Apoptosis 

Apoptosis is a homeostatic mechanism; it provides a means for organisms to eliminate 

abnormal or undesirable cells. For example, during the development of a human embryo, cells 

that link the fingers are killed via apoptosis to allow proper separation of the digits. Furthermore, 
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apoptosis functions as a quality control service or defense mechanism by eliminating damaged 

cells. For instance, when DNA damage occurs in the cell, the damaged cells normally undergo 

apoptosis to prevent their growth. Moreover, apoptosis occurs to maintain the cell population in 

developing tissues. Unlike the normal cells, cancer cells evade this cell death pathway by a 

number of mechanisms. From a clinical perspective, some chemotherapeutic drugs trigger the 

apoptotic pathway, allowing the targeting of neoplastic disorders such as cancer [15].   

 

2.2.2 The Biochemistry of Apoptosis 

2.2.2.1 Caspases 

Caspases, which are enzymes, are key components of the apoptotic signaling pathway; 

cell death starts with the activation of caspases. Caspases lead to apoptosis by cleaving proteins 

into small peptide molecules. The classification of cell death is defined in terms of caspase 

activity [16].  

Ten major caspases are classified as initiators (caspase-2, 8, 9, 10); which trigger 

caspase signaling cascade; inflammatory (caspase- 1, 4, 5); which trigger inflammation; and 

effectors or executioners (caspase-3, 6, 7); which are the agents of cell death, during apoptosis 

[16]. In this study, we will consider a network that includes two initiator caspases (8 and 9) and 

one effector caspase (3). 

 

2.2.3 Apoptotic Pathways 

Apoptosis is a highly regulated and controlled process. Apoptosis is fundamentally 

initiated through two distinct signaling networks: the extrinsic pathway and the intrinsic 
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pathway. Despite having an equivalent outcome (i.e., cell death), the initial points of these 

signaling pathways are different, as we next describe. 

2.2.3.1 Extrinsic Apoptotic Pathway 

The extrinsic pathway is induced from death receptors, which are placed on the cell 

surface. Death receptors are activated by extracellular death signals; when activated, they recruit 

and trigger initiator caspases 8 and 10. Subsequently, these activated initiator caspases activate 

the effector caspases 3 and 7 [15].  

2.2.3.2 Intrinsic Apoptotic Pathway 

The intrinsic pathway is triggered by cell stresses, such as DNA damage or loss of cell 

survival factors, such as oxygen or nutrients. The main characteristic of the intrinsic pathway is 

the deformation of the mitochondria, which causes release of the protein cytochrome-c from the 

mitochondria, triggering initiator and subsequently effector caspases [15].  

 

2.3 p53 and Akt/PKB Pathways 

Because of the importance of apoptosis in the regulation of cellular functions, scientists 

have been investigating other important cell signaling transduction network’s impact on the 

apoptotic pathways. In this study, we will consider two other important pathways: p53 and 

Akt/PKB.   

The p53 pathway involves a network of genes and their protein products. The activation 

of the p53 pathway is initiated by a variety of extrinsic and intrinsic stress signals, such as DNA 

damage, the lack of oxygen and nutrients. This pathway is regulated by positive and negative 
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autoregulatory feedback loops. The activity of the p53 pathways can lead to either cell cycle 

arrest or apoptosis [17].   

Another important signal transduction pathway for the regulation of cell functions is the 

Akt/PKB signaling pathway. This pathway is activated in response to growth signals. The main 

contributions of the Akt/PKB pathway to the cellular functions involve nutrient metabolism, cell 

growth, transcriptional regulation and cell survival [18]. In this study, the Akt/PKB signaling 

pathway will be considered in not only regulating cell survival but also in blocking apoptosis.  

Having mentioned the primary roles of these two pathways, we next consider proteins 

involved in the regulation of pathway behavior. In the p53 pathway, an autoregulatory feedback 

loop is provided via the interactions between p53 and the protein Mdm2, which inhibits p53 

activity [19]. 

p53 is known as “the guardian of the genome” because it prevents the growth of cells that 

suffer DNA damage [20]. When DNA damage occurs, p53 induce cell growth arrest or apoptosis 

depending on the cell type and the stress, and the action of p53 co- activators [20]. Thus, p53 

functions as a tumor suppressor gene, which functions to inhibit damaged cells from 

proliferation. As a result, p53 provides cell integrity; approximately 50% of human cancers 

involve a mutation in the p53 gene, and in particular 70% of colon cancers show p53 gene 

mutations [20].  

Mdm2 is the main regulator oncoprotein of p53. The regulation of these two proteins is 

maintained by a negative feedback loop. After the phosphorylation of Mdm2, phosphorylated 

Mdm2, which is denoted as Mdm2p in this study, migrates from the cytosol to the nucleus from 

where it inhibits p53’s activities. However, under cell stress, p53 activates either cell cycle repair 
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progression or a cell death signaling pathway. This cell cycle repair is initiated by mdm2 gene, 

which is activated by p53. Thus, the purpose of the negative feedback loops between Mdm2 and 

p53 is to keep p53 in the low concentration to prevent cell cycle arrest or apoptosis in the 

absence of cell stress. The direct regulation of p53 via Mdm2 suggests Mdm2 as a direct target of 

cancer treatment [21]. 

Unlike the p53-Mdm2 negative feedback loop, PTEN forms a positive feedback loop 

with p53 protein in the p53 pathway. PTEN is a tumor suppressor protein, and is activated via 

p53 protein after cell stresses. On the other hand, the role of PTEN on p53 activity is as follows. 

PTEN has a function to inhibit Akt/PKB signaling pathway. In normal conditions, Akt/PKB 

pathway provides the phosphorylation of Mdm2 via phosphorylated Akt (Aktp), and translocates 

it from cytoplasm to nucleus. Mdm2p in the nucleus keeps p53 concentration level low to inhibit 

unwanted cell death or cell cycle arrest. Thus, the inhibition of Akt/PKB signaling pathways via 

PTEN results in the blockage of the entrance of the phosphorylated Mdm2 into the nucleus. As a 

result, PTEN indirectly modulates p53 protein level in the nucleus upwards in order to activate 

programmed cell death [for review 22, 23, 24, 25].  

Thus, taking p53 and Akt/PKB signal transduction pathways together, we see that p53 

and PTEN are pro-apoptotic (or tumor suppressor) proteins because they trigger the cell to 

undergo apoptosis, while, Mdm2 and Akt are anti-apoptotic (oncoproteins) because they prevent 

programmed cell death by inhibiting the activity of pro-apoptotic proteins. 

In this study, we will address the interaction of p53-Akt/PKB network and apoptotic 

pathway.  
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The Akt/PKB signaling pathway affects the apoptotic pathways process in a number of 

ways. In this study, we will focus on the inhibitory effect of Akt/PKB on apoptosis via activation 

of phosphorylated XIAP (XIAPp), which inhibits cell death, and inhibition of activated caspase3 

(casp3a) [26]. The p53 signaling pathway plays an opposite role in terms of the activation of 

apoptotic pathway. The detailed regulation of these pathways with apoptosis will be discussed in 

Chapter 4. 
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Chapter 3 

Dynamical Networks 

3.1 Introduction 

The cell is the primary structural and functional unit of all living organisms. Cells use 

their structure to accomplish a range of functions, such as migration, and sending and receiving 

signals. The purpose of this chapter is to introduce a mathematical representation of biochemical 

reaction networks within the cell, based on descriptions of reaction rates. The law of mass action 

will be used as a starting point for describing enzyme kinetics, which will be used to describe 

protein degradation, phosphorylation, dephosphorylation, expression, activation, inactivation, 

complex formation and complex dissociation. A kinetic description of protein production will be 

provided as well.  

Dynamical analysis of chemical networks will be considered as a second part of this 

chapter.  

3.2 A Description of Chemical Reaction Networks 

Before moving into the mathematical descriptions of chemical reactions, it is worthwhile 

to discuss the structure of chemical networks.  

Chemical reaction networks consist of molecular species and reactions among them 

(specified in a figure as arrows). Molecular species could be ions, small molecules, or molecular 

complexes. Reactions among species include chemical production or degradation, reaction 

catalysis, and promotion or inhibition of activity. These processes cause production, 
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interconversion, and consumption in the network. Thus, the amount of each species changes over 

time [27].  

As an illustration, consider the set of reactions shown below. 

                                      

Figure 3.1: Chemical reaction networks 

 

In Figure 3.1, A, B, C, and D are the molecular species. As an example, A and B is called 

the reactant, while, C is referred as product of the irreversible reaction 

3.3  Dynamic Behavior of Chemical Reaction Networks 

To describe the dynamics of the network, the reaction rates must be known. To arrive at 

reaction rates, it is firstly assumed that the reaction volume is well-mixed (i.e. molecules are 

present everywhere homogeneously).  Secondly, it is assumed that there is a great many reactant 

molecules [27].  These assumptions were made to introduce the law of mass action in the 

following section:  

𝐴                         

        𝐴                                  

𝐴 + 𝐵   𝐶  

 𝐴 + 𝐴 𝐷    

Production Reaction    :  

Degradation Reaction  :   

Irreversible Reaction   : 

Reversible Reaction     : 
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3.3.1  Mass Action Kinetics 

The law of mass action is derived by considering rate of collisions of the reactants in the 

reaction network [27]. Under the above assumptions, the law of mass action states that the rate of 

a chemical reaction is proportional to the abundance of the reactants. The abundance of 

molecules is defined as the concentration of the species. Generally, concentration is denoted as 

[.] [27]. 

By considering the networks in Figure 3.1, the reaction rates are given by the law of mass 

action as 

 

where   ,   ,   ,    and    are called the rate constants which are a concentration-independent 

measures of the velocity of a reaction [28]. The units of these rate constants are as follows: -the 

units of    is (concentration) (time)
-1

, the units of   is (time)
-1

, the units of         are 

(concentration)
-1

(time)
-1

, and    is (time)
-1

.
 
     

Generally, the rate constants are depicted as 

𝑘  
A  𝑘  

A 
𝑘  

𝑘 [𝐴]  

A + B C 
𝑘  

𝑘 [𝐴][B]  

A + A 
𝑘  

D 
𝑘  

𝑘 [𝐴]
 , 𝑘 [𝐷] 
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                                                                     A                    B                                         (3.1) 

where k is a rate constant, A is reactant, and B is product. 

As an example of a mathematical model, consider the irreversible reaction in (3.1). Using 

mass action kinetics, we have the following. 

                                               

                                  ⁄⏟      
                  [ ]          

         ⏟  
                       [ ]          

                (3.2) 

                                   ⁄⏟      
                  [ ]          

        ⏟  
                      [ ]          

                (3.3) 

 

  where      and      denote the concentration of [A] and [B] at time t, respectively.   

3.4 Dynamic Behavior of Biochemical Reactions 

Individual chemical reactions as discussed above are referred to as elementary reactions. 

In contrast, some biochemical reactions, such as enzyme catalysis, are processes that involve 

small networks of individual elementary reactions. Unlike elementary reactions, mass action 

kinetics cannot be applied directly to biochemical reactions.   

We begin with a discussion of enzyme catalysis. In the following, enzyme kinetics will 

be described with particular assumptions. Michaelis-Menten kinetics, which describes the rate of 

enzyme-catalyzed reactions, will be derived as a result of these assumptions.  
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The general enzyme-catalyzed reaction was firstly proposed in 1902 by Adrian Brown [28] 

          

where [ ] [ ] [ ]  and [ ] denote the concentration of substrate, enzyme, complex, and product, 

respectively.   

When mass action kinetics is applied to the individual reactions in this network, a set of 

differential equations is obtained as follows: 

                  
 [ ]

  
       [ ][ ] +   [ ]                                                                    

                  
 [ ]

  
       [ ][ ] +    +    [ ]                                                      

                 
  [ ]

  
    [ ][ ]      +    [ ]                                                          

                         
 [ ]

  
    [ ]                                                                                                       

 

where the last equation gives the reaction rate (velocity) of the network, and generally it is 

denoted    Because the total enzyme concentration is conserved, the sum of [ ] + [ ] is constant 

and is denoted   . Thus, Equ (3.6) will be eliminated by taking into consideration [ ]  [  ]  

[ ]           

3.4.1.1 Quasi Steady State Approximation 

A separation of timescales can be applied to the network. The quasi-steady state 

assumption applies to species that reach equilibrium quickly compared to the rest of the network. 

[𝑆] + [𝐸]   [𝐶] [𝑃] + [𝐸] 

𝑘  

𝑘  

𝑘  

(3.4) 
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Following Briggs and Haldane [29], we assumed that the complex is in quasi-steady state. In 

quasi steady-state, the condition is [ ]  [    ], and      is an independent variable.  Thus;     

                                      [ ][ ]      +    [ 
   ]                                               

which is the quasi steady state assumption. Considering total enzyme concentration as a constant 

and this assumption together, we have                                                                  

                                                [    ]    
[  ][ ]

  +   

  
+ [ ]

                                                               

Finally, (3.10) substituting into (3.8), we obtain  

 

                                          
 [ ]

  
    

  [  ][ ]

  +   

  
+ [ ]

                                                          

writing        [  ] and     
     

  
  to rewrite (3.11), the reaction rate ( ) can be written 

as 

                                                  
    [ ]

  + [ ]
                                                             

 

This is called the Michaelis-Menten rate law.      is known as the maximal rate and    is 

referred to as the Michaelis constant, which is the substrate concentration at which the rate is 

half-maximal (see Figure 3.2). Also, this section could be review in Ref[30] and Ref[31].   
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Figure 3.2: Michaelis-Menten Kinetics for single-substrate enzyme catalyzed reaction. As the 

substrate concentration increases, the reaction rate approaches the maximal velocity. 

 

3.5 Cooperativity 

Some enzymes bind to more than one substrate molecule, and in some cases a bound 

substrate molecule affects the affinity of binding of others. This is referred to as cooperativity 

[32]. Cooperativity causes nonlinear behaviors.  

3.5.1 Hill function 

When an enzyme has   binding sites, the reaction rate can be described by a Hill 

function:   

𝑉𝑚𝑎𝑥 

𝑉𝑚𝑎𝑥
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     [ ] 

  
 + [ ] 

                                                                                

   and n are empirical parameters. 

Additionally,   is referred to as the Hill coefficient. This equation exactly reduces to 

Michaelis-Menten kinetics for        

Hill functions are commonly used to describe nonlinear and saturable behavior between 

species concentrations and their effects [32]. In this study, Hill functions are used to describe 

protein degradation. 

3.6 Gene Regulatory Networks 

Proteins are the essential ingredients for all cellular activities. Proteins are produced by 

gene expression, a process that occurs in two steps. Transcription, the first step, is copying of 

genetic information from one molecule (DNA) to the other (RNA). The resulting RNA molecule 

is called a messenger RNA (mRNA). The second step of gene expression is called translation. 

Through translation, the copied information is read along from the mRNA to synthesis a protein.    

Gene expression events involve a large number of elementary reactions, are not easily 

decomposable.  

Let us take a constitutive a gene expression model which is demonstrated in Figure 3.3. 
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Figure 3.3: Gene expression model 

 

                                             
     

  
                                                                      (3.14) 

                                             
     

  
                                                                    (3.15) 

 

where   is the concentration of mRNA molecules and   is the concentration of the gene’s 

protein product.    denotes the population-averaged transcription rate, and   is used to show the 

per-mRNA translation rate.    and    characterize the degradation rates of transcription and 

translation, respectively [27]. The degradation kinetics of the mRNA        and protein (    ) 

are assumed to follow the first order mass action kinetics with rates     and     respectively 

[27]. 
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3.6.1 Regulated Gene expression 

Let us take a regulated gene expression model which is demonstrated in Figure 3.4. 

 

Figure 3.4: A simple representative of a gene regulatory network 

 

A gene regulatory network consists of a group of genes’ products which are called as 

proteins, and they regulate other genes’ expression. If a gene protein product inhibits another 

gene’s expression, the gene product is called inhibitor; if the product enhances another gene 

expression, it is called activator [27]. In this study, when the rate of the reaction which is the 

activation of another gene expression by a gene protein product is given simply linear term. 

However, the inhibitory regulation reaction’s rate is described in the following: 

 
 

 +       
 

where  , the constant of the proportionality, is the maximal transcription rate. 
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3.7 Analysis of Dynamical Networks 

In this section, phase plane portrait analysis, sensitivity analysis, bifurcation analysis, and 

stability will be addressed. The main purpose of using these techniques is to examine the 

behavior of the nonlinear dynamical systems since usually there is no analytical solution for 

these systems to interpret their results.  

 

3.7.1 Stability Analysis 

A reaction network’s state is called stable when at long timescales the concentration of 

each of the chemicals in the reaction network remains constant. Alternatively, if the system 

settles into a pattern whereby the chemical levels oscillate predictably, it is called sustained 

oscillation. Stability analysis addresses, the long-time behavior of dynamical systems. This   

behavior could converge to either a stable state or a sustained oscillation [33]. Specifically, in 

this study, bistability will be considered.   

Bistability means having two different stable behaviors depending on the initial 

conditions. The most necessary components in the bistability system are positive feedback and 

nonlinearity. However, there is no guarantee that the system will exhibit bistability if it has these 

two components. As always, model structure and also model parameters should be taken into 

consideration for bistability [33].      

 

3.7.2 Phase Plane Portrait Analysis  

Phase plane portraits were introduced by Henri Poincare in the 19
th

 century [34]. These 

provide a graphical description of the behavior of nonlinear systems without requiring any 
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analytical solutions. By mapping trajectories starting at a range of initial conditions, the behavior 

of a system can be interpreted in terms of its stable and unstable steady states. Even though a 

phase plot does not emphasize the concentration change with respect to time, it points out the 

time-varying relationship between the variables [35]. Normally, this analysis can only be used 

for second-order systems.  

 

3.7.3 Bifurcation Analysis 

Bifurcation analysis describes changes in the position of steady states as the values of the 

model parameters are changed [27]. A parameter interval over which the system exhibits two 

stable steady states is known as a bistable range. The size of this interval indicates the robustness 

of the bistable behavior (to changes in parameter values). That is, if the size of this interval is 

small, then small perturbation will significantly affect the system behavior. On the other hand, if 

the interval’s size is large, system behavior will not be sensitive so much under the perturbations.  

 

3.7.4 Sensitivity Analysis 

An important method for the analysis of dynamical systems is sensitivity analysis. 

Sensitivity analysis describes how changes in the values of the parameters (which reflect the 

conditions of the system) affect the system behavior. Sensitivity analysis can be used to 

determine which parameters require additional research for strengthening the knowledge base, 

thereby reducing output uncertainty. Also, with the help of sensitivity analysis, insignificant 

parameters can be detected in order to eliminate them from the model. Moreover, sensitivity 

analysis can be used to identify which parameters have a significant impact on the output of a 
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model [36]. In this study, local sensitivity analysis will be used to address small variations 

around a nominal operating condition. 

3.7.4.1 Local Sensitivity Analysis  

In general, the dynamical system is described as: 

                                          
  

  
                                                                 

where   is dependent variables,   is the m-vector of system parameters (which can include the 

initial conditions   ), and   (time) is the independent variable [36]. In this thesis,   is considered 

to be a vector of parameter values. 

 

Bifurcation analysis represents one approach to investigating system steady state 

behavior under changes in the values of the model parameters. An alternative is local sensitivity 

analysis. Local sensitivity analysis allows an easily calculation of the effect on the steady state as 

the parameter values are varied from their nominal values. When we consider Equ.3.16, the 

absolute local sensitivity of a steady state    with respect to a variable   is given by the ratio of 

change of     with respect to k, i.e. 
    

  
  which is called the absolute sensitivity coefficient. 

Sensitivity coefficients are computed via finite difference methods by discretization of 

differential equations. Using this approach, we use (3.16) to define the sensitivity to the     

parameter    at the steady state of     as 

                                     
    

   
  

   (  +    )         
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with all other parameters held fixed [36].  This approach is using to predict the effect of small 

perturbations     at the parameter value       [27].  

 

To provide a measure of sensitivity that is independent of units and of the magnitudes of 

   and   , the absolute sensitivity coefficient can be scaled as follows: 

 

                                                                
   

  
 
    

   
                                                                                   

 

which is called the relative sensitivity coefficient; these provide a concise description of model 

behavior [27].  

 

The relative sensitivity coefficient describes how local changes in parameter values affect 

system behavior. If the sensitivity coefficient is small, then system behavior is robust with 

respect to perturbations to that parameter [27]. 
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Chapter 4 

Model 

4.1 Introduction  

In this chapter, first of all, a few previously published mathematical models will be 

discussed to highlight where the idea of building a new cell signaling network for the regulation 

of apoptosis comes from. Then, specific proteins in the network will be described, and the 

signaling pathway of interest will be presented. Next, a kinetic model of the reaction network 

will be developed. Finally, the analysis of the model will be presented.  

 

4.2 Bistability in the Apoptosis Pathway 

Apoptosis is a key process in cell regulation, and a number of mathematical models have 

been developed to address different aspects of the apoptotic mechanism. As we discussed in 

Chapter 2, apoptosis is regulated in a number of ways: extrinsic and intrinsic pathways are well-

known apoptotic regulatory pathways. Also, some proteins, such as p53 and Akt have important 

impacts on apoptotic pathways.  

4.2.1 Bistability in caspase3 activation 

Choi et al. [37] provided a mathematical model of caspase-3 activation describing 

regulation via three different pathways: activation via caspase8, inhibition via the protein XIAP, 

and activation via a complex of caspase3 and XIAP. The model was analyzed to assess the 

networks function in assuring the reliability and robustness of cell death. Moreover, Eissing et al. 

[38] developed a model of apoptosis exhibiting bistability. That model incorporated the extrinsic 
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apoptotic pathway: activation of caspase3, inhibition and degradation of caspase3 by XIAP, and 

activation of residual caspase8 by activated caspase3 in a feedback loop [10]. From these 

models, the current study draws its description of caspase3 activation, and XIAP inhibition of the 

caspase3.   

The model of Bagci et al. [39] focuses on the formation of the apoptosome (a pro-

apoptosis protein complex) and caspase3 activation. Bagci et al. [39] claimed that cooperativity 

provides robustness of bistability in comparison to the other regulatory mechanism. To prove the 

idea, Bagci et al. [39] developed a very large mathematical model with 32 ODEs. In our study, 

we did not examine specifically the regulation of the mitochondrial apoptotic pathway. Also, 

instead of using cooperativity for describing the formation of the apoptosome, we used 

cooperativity in the regulation of activated-caspase3 degradation via phosphorylated-XIAP.  

 

4.2.2  Bistability in Akt-p53 pathway 

Aguda and Wee studied the regulation of some proteins involve in the apoptotic signaling 

pathway [11]. The most important regulators of apoptosis are p53 and Akt, which mutually 

inhibit each other. Aguda and Wee assumed that the total Akt concentration was constant, and 

demonstrated bistability in a model that incorporates the proteins PTEN and Mdm2 into the p53-

Akt network [11]. 

In this study, we present a novel network model that builds on these previous efforts. In 

particular, the previous models have not addressed the combination of the three signaling 

networks including apoptosis, p53, and Akt. We aimed to build such a model and verify that it 

could exhibit bistable behavior.  We began the construction task by reviewing the signaling 
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pathways separately to understand their mechanisms on the regulation of cell metabolism. Then, 

we focused on the most important proteins on these networks: p53, Mdm2, PTEN, XIAP, 

caspase3, and Akt, which are heavily studied for cancer research. A detailed literature review 

was needed to build up a new signaling network model that describes the behavior of these 

proteins, and how they interact. These details will be given in the Model section.      

 

4.3  Model 

4.3.1 Experimental data for the pathways 

The numbers below correspond to the interaction labels in Figure 4.1. 

                 

 

Figure 4.1: Simplified biological network that includes and pro- and anti-apoptotic proteins. 
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In Figure 4.1, arrows show activation; while, hammerheads denote inhibition. 

 

 

p53 and Mdm2 (1, 2): Expression of the p53 protein is stimulated by cell damage, and p53 

activates cell death and cell cycle arrest in damaged cells. When cells are not stressed, i.e. in the 

normal cell environment, p53 is inhibited by Mdm2, which keeps p53 at a low concentration. 

Mdm2 achieves this inhibition by forming a complex with p53 in the nucleus [40].    

The Mdm2/p53 complex translocates from the nucleus into the cytoplasm, where Mdm2 

facilitates the degradation of p53 [41]. On the other hand, expression of the mdm2 gene is 

induced by p53 when cell stresses occur [42]. As a result, an autoregulatory feedback loop exists 

between p53 and Mdm2 [43]. 

In the model presented in this study, the formation of the p53-Mdm2 complex will not be 

included explicitly. Rather, a term is included that describes the Mdm2-dependent degradation of 

p53. 

 

PTEN and Aktp (3, 4): p53 and PTEN form a positive feedback loop. p53 induces expression of, 

PTEN [44]. Moreover, PTEN indirectly increases p53 protein level by protecting p53 from 

Mdm2-induced degradation, by negatively regulating the Akt/PKB growth signaling, which 

activates Mdm2 [45]. In the model, we will assume that PTEN directly inhibits Aktp (Figure 4.1). 

 

Mdm2 and Aktp (5): Phosphorylation of Mdm2 (Mdm2p) by activated phosphorylated Akt 

(Aktp) promotes the transport of Mdm2’s from the cytoplasm to the nucleus [23].  
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p53 and caspase3 (6): p53 can induce cell death by activating genes on both the extrinsic and 

intrinsic apoptotic pathways [46, 47]. Although the role of p53 in the extrinsic pathway is poorly 

understood, p53 activates death receptors (TNF-R family) and caspase 8 [20]. For this report, we 

will assume that p53 directly activates caspase3, which interacts with caspase8 and caspase9 and 

executes apoptosis (Figure 4.1).  

 

Aktp and caspase3 (7, 8): Phosphorylated Akt and activated caspase3 form a positive feedback 

loop. Apoptotic pathways are negatively regulated by Akt at the pre-mitochondrial level by 

phosphorylation and modulation of proteins [23]. Akt also promotes cell survival at the post-

mitochondrial level by directly phosphorylating and inactivating caspase9 [48]. Moreover, Akt 

inhibits caspase3’s activation by phosphorylating XIAP [23]. In contrast, active caspase3 inhibits 

Akt phosphorylation [26]. Consequently, in this report, we will assume that Aktp and caspase 3 

mutually inhibit one another (see Figure 4.1). 

 

XIAP and caspase3 (9, 10): Phosphorylated XIAP and activated caspase3 are involved in a 

mutual derepression positive feedback loop [49]. caspase3a decreases the XIAPp protein level, 

resulting in activation of caspase9 [50, 51]. In contrast, XIAPp is a direct inhibitor of caspase3 

activation [47, 48].  
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p53 and XIAP (11): p53 inhibits XIAP activity indirectly [52, 53]. In the model (Figure 4.1), we 

will suppose that p53 directly inhibits XIAP, although this interaction is known to involve other 

cellular components (e.g. the protein SMAC, and the mitochondria). 

 

Aktp, XIAPp, and PTEN (12, 13): Aktp phosphorylates XIAP both directly [54] and indirectly 

[55] to inhibit the activation of caspase3. On the other hand, XIAP overexpression induces Akt 

phosphorylation by enhancing degradation of PTEN [56]. 

   

This research was conducted by utilizing both quantitative and qualitative data collection 

tools. As described in the previous section, qualitative data was used to establish the model 

network.  

The second half of the study takes quantitative data into consideration to create a kinetic 

model. The kinetic model was developed by considering the regulation of each protein in the 

preceding figure in terms of production, degradation and regulatory reactions. With these 

additional details, we arrive at the network in Figure 4.2. The model was developed by 

assigning kinetic rates, taking into account enzyme and mass action kinetics introduced in 

Chapter 3. The ODEs are shown in Table1. For some kinetics, quasi steady state 

approximations and linearization of Michaelis-Menten kinetics were used. 

 

The numerical simulations of the ODEs were done using the MATLAB 7.10.0 (R2010a) 

computing environment. The values of most of the model parameters were collected from two 

different papers [10, 11]. Parameters for which the values were unavailable were chosen to 
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ensure bistability of the system. The initial concentrations are not significant, since our analysis 

focuses on long-time behavior.  

 

A schematic description of the above explanations is introduced in Figure 4.2. The model 

includes 7 species and 27 reactions. The total number of parameters in the model is 38, 

comprised of 6 production rates, 11 degradation rates, 2 Hill coefficients, 2 Michaelis-Menten 

constants, and 17 rate constants. The set of differential equations, their kinetic rates, and the 

kinetic rate constants are shown in Table 1, Table 2, and Table 3. 
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Figure 4.2: Kinetic scheme of the model 
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This kinetic scheme has four feedback loops (p53-Mdm2, p53-Akt, p53-apoptosis, and 

Akt-apoptosis) and three phosphorylation-dephosphorylation cycles that are Akt-Aktp, XIAP-

XIAPp and Mdm2-Mdm2p; Aktp, XIAPp, and Mdm2p illustrate biochemically active Akt, XIAP, 

and Mdm2 proteins upon phosphorylation. The kinetic rates on the arrows will be given in the 

appendix as Table 2. Blue arrows denote the production rate, while red arrows show the 

degradation rate. Regulatory networks are shown with the green arrows. Cycles are used to 

describe the phosphorylation, dephosphorylation or activation depending on the proteins and 

their direction. Each parameter’ units are given in Table 3 (in the last column, we have used  A, 

B, and C to explain the estimation of parameters; see Table 5). 

Table 1: Model equations 
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Table 2: Kinetic rates 

 

 

Kinetic Rate References  

                Mass action 

             [     ] +           [   ] Mass action 

                  +    [   ]  Mass action  

                  +    [     ]  [    ] Mass action 

                 +     [   ] Mass action 

                 [    ] Ref 11 

           [    ]  [    ]            Modify via 

linearization 

           [     ] Modify via 

linearization 

                  [      ] Ref 11 

               Mass action 

               [   ] Mass action 

             [(     [    ] +    (        [    ]  

       [    ] +         )
 

   )       [    ]    ]  

[   ]    + [   ]          

Modify from 

Ref 11 via 

QSSA 

explained in 

Appendix. 

           [    ]    + [    ]  Ref 11 

            [      ] +             [    ] Mass action 

                  Mass action 

                 [     ]  Mass action 

            [     ]  [   ]       + [    ]⁄   Mass action 

            [     ]
  +              [      ] Mass action 

                Mass action 

                [    ] Mass action 

           [    ]  [    ]         + [   ]  Mass action 

                 +     [      ]    [     ] Ref 10 

           [     ]  [      ] Ref 10 

           [       ] Mass action 

                   [       ] Mass action 
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Table 3: Kinetic rate constants 

 
Parameter

s 
Description Units 

Value 
used 

Bistable 
Ranges 

References Notes 

1 ksynp53 production of p53 µM/min 0.02 
80%-140% 

(0.016-0.028) 
60  

2 kdegp53 degradation of p53 /min 0.02 
20%-110% 

(0.004-0.022) 
60  

3 k1 

degradation of p53 via 

      
/(min*µM) 0.25 

63.2%-

105.28% 

(0.158-0.2632) 

60 A 

4 ksynPTEN production of PTEN µM/min 0.0018 - 60 B 

5 
k2 

 

Increased production  

of PTEN via p53 
/min 0.0012 - 11 A 

6 kdegPTEN degradation of PTEN /min 0.0054 - 60  

7 k3 
degradation of PTEN 

via XIAPp 
/(µM*min) 0.03 - arbitrary  

8 ksynMdm2 production of Mdm2 µM/min 0.0018 

12%-120% 

(0.0002-

0.00216) 

60 B 

9 k4 
Increased production 

of Mdm2 via p53 
/min 0.01 

40%-120% 

(0.004-0.012) 
11 A 

10 k5 
Phosphorylation of 

Mdm2 via Aktp 
/(µM*min) 10 

40%-120% 

(4-12) 
11 A 

11 k6 
dephosphorylation of 

Mdm2p 
/min 0.8 

80%-180% 

(0.64-1.44) 

11 

 
A 

12 kdegMdm2 degradation of Mdm2 /min 0.005 
80%-180% 

(0.004-0.009) 
60 

 

13 
kdegMdm2

p 
degradation of Mdm2p /min 0.005 

80% 

(0.004-) 
60 

 

14 
ksynAkt 

 
production of Akt µM/min 0.09 

40%-120% 

(0.036-0.108) 
arbitrary 

 

15 kdegAkt Degradation of Akt /min 0.08 
80% 

(0.064-) 
arbitrary 

 

16 k8 

Inhibition of 

phosphorylated-Akt 

via PTEN 

µM/min 0.06 
80%-120% 

(0.048-0.072) 
arbitrary 

 

17 j8 
Michaelis-Menten 

kinetics 
µM 0.1 

80% 

(0.08-) 
-  

18 k9 
dephosphorylation of 

Aktp 
µM/min 0.2 

80%-120% 

(0.16-0.24) 
11  

19 j9 

Michaelis-Menten 

constant of 

dephosphorylation of 

Aktp 

µM 0.1 
80%-120% 

(0.08-0.12) 
11  

20 k10 
Increased degradation 

of Aktp via casp3a 
/(µM*min) 0.01 

80% 

(0.008-) 
arbitrary  
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21 kdegAktp degradation of Aktp /min 0.01 
80% 

(0.008-) 
arbitrary  

22 ksyncasp3 
Production of 

caspase3 
µM/min 0.012 

80%-140% 

(0.0096-

0.0168) 

10 C 

23 kdegcasp3 
Degradation of 

caspase3 
/min 0.06 

40%-120% 

(0.024-0.072) 
10 C 

24 k11 
Increased activation of 

caspase3 via p53 
/min 0.03 

80%-200% 

(0.024-0.06) 
arbitrary 

 

25 k12 
Inhibition of caspase3 

activation via Aktp 
/min 0.05 

80% 

(0.06) 
arbitrary 

 

26 k13 

Increased degradation 

of caspase3a via 

XIAPp 

/(µM*min) 0.01 
60%-120% 

(0.006-0.012) 
arbitrary C 

27 kdegcasp3a 
degradation of 

caspase3a 
/min 0.001 

120% 

(0.0012) 
10 C 

28 ksynXIAP production of XIAP µM/min 0.0024 - 10  

29 kdegXIAP degradation of XIAP /min 0.06 
80%-140% 

(0.048-0.084) 
10 C 

30 k14 
Phosphorylation of 

XIAP via Aktp 
/min 0.3 

60%-120% 

(0.18-0.36) 
arbitrary  

31 k15 

Inhibition of 

phosphorylated-XIAP 

via p53 

µM 0.1 
80%-200% 

(0.08-0.2) 
arbitrary  

32 k16 
Increased degradation 

of XIAP via caspase3a 
/(µM*min) 0.01 

80%-160% 

(0.008-0.016) 
arbitrary C 

33 kdegXIAPp degradation of XIAPp /min 0.0024 

80%-160% 

(0.00192-

0.00384) 

arbitrary  

34 k17 

caspase3a inhibits 

XIAPp through 

caspase3-XIAP 

complex(C3*X) 

/(µM*min) 0.01 
120% 

(0.012) 
10 C 

35 
kdegcompl

ex 

degradation of 

complex 
/min 0.06 

120% 

(0.072) 
10 C 

36 k18 

activation of caspase3 

by releasing caspase3 

from the C3*X 

/min 0.06 
80% 

(0.048) 
10 C 

37 n1 

Hill coefficient of 

XIAPp dependent 

degradation of 

caspase3a 

- 2 
90%-270% 

(1.8-5.4) 
arbitrary  

38 n2 

Hill coefficient of 

caspase3a degradation 

of XIAPp 

- 1 
60% 

(0.6) 
arbitrary  
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4.4 Results and Discussion 

In this section, the results of the model will be presented using the analysis techniques 

introduced in Chapter 3.  

    

                                 

Figure 4.3: Bistability between casp3a and XIAPp 

Figure 4.3 shows that the systems long-time behavior depends on the initial conditions: 

the model is bistable. We refer to the steady state with high levels of active caspase3 (casp3a) as 

the “death state”; low caspase3a corresponds to the “life state”.  
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Table 4: Two stable points depending on the initial concentrations (µM) of the variables 

 Cell death stable points Cell survival stable points 

p53 0.2235 0.2216 

PTEN 0.2964 0.0497 

Mdm2 0.5292 0.5220 

Mdm2p 0.2779 0.2811 

Akt 1.1103 1.1192 

Aktp 0.0423 0.0433 

caspase3 0.0904 0.0915 

caspase3a 1.7904 0.0693 

XIAP 0.2419 0.2390 

XIAPp 0.3242 2.8092 

caspase3-XIAP complex 

(C3*X) 

0.0484 0.0162 

 

Table 4 shows concentrations of the model species at the two stable steady states. The 

cell death state is reached by choosing pro-apoptotic proteins (p53, PTEN, caspase3, caspase3a) 

at a high initial concentration compared with the anti-apoptotic proteins (Mdm2, Mdm2p, Akt, 

Aktp, XIAP, XIAPp, C3*X). On the other hand, the life state is obtained from an initial condition 

in which the cell survival proteins have high concentrations. From the stability analysis, we can 

see that PTEN, caspase3a, and XIAPp are the most distinctive stable steady states depending on 

the initial concentrations. The rest of the proteins are almost the same stable steady states even 

though the initial concentrations are different. 
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Activated caspase3 is characterized the effector of cell death: phosphorylated XIAP is 

known as the main inhibitor of activated caspase3. Thus, having two very different steady state 

values for these two proteins as shown in Table 4 is expected.  The most interesting finding from 

the steady state concentrations is protein PTEN, which likewise exhibits two distinctive steady 

states. PTEN functions as an intermediary protein through a number of interactions in the 

signaling pathway. For instance, the formation of many cancers is associated with mutations in 

PTEN including breast, prostate, and brain cancers. Themsche et al. [56] pointed out that 

increased synthesis of XIAPp causes the increased PTEN degradation.  Numerically, we showed 

that while PTEN is high, XIAPp is low; on the other hand, if XIAPp steady state value is high 

which means XIAP synthesis level is high, the steady state of PTEN is decreasing, as in Table 4. 

We also showed this result by using bifurcation analysis of ksynXIAP (production of XIAP) with 

respect to PTEN steady state value; however, the result will not be shown in the text.  

 An alternative demonstration of bistability is provided by a phase plane portrait. Figure 

4.4 shows projections of the model’s 11-dimensional trajectories onto the caspase3a- and XIAPp-

plane.  
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Figure 4.4: Projected phase plane portrait. 

   

Next, we employed bifurcation analysis to explore the robustness of bistability. For each 

model parameter, we considered the range of parameter values over which bistability is 

maintained (while the other model parameters were fixed at their nominal values as given in 

Table 3).  
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Figure 4.5: Bifurcation diagram for the bistable system. 

 

 

Figure 4.6: Continuation diagram for the bistable system 
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Figure 4.5 and Figure 4.6 illustrate this analysis. These both show the steady state 

concentration of active caspase3 as a function of parameter values. In Figure 4.5, we see that at 

low and high k1 values- the system is monostable. However, in the mid-range of k1 (degradation 

of p53 via Mdm2p), two stable steady states appear. The size of this interval indicates the 

robustness of bistability with respect to this parameter.  That is, when the size of this interval is 

small, system behavior will be fragile to any perturbation. However, if the size is large, system 

behavior will not be affected significantly by perturbations. On the other hand, in Figure 4.6, 

caspase3a has two stable steady state values for every value of parameter k2 (increased 

production of PTEN via p53). That is, the system is bistable for any value of k2 (with the other 

values in Table 3) is infinite. The range of the each parameter in the model is added in Table 3. 

These ranges indicate how robust the system’s bistability is to changes in the values of the 

individual parameters. For example, parameter k3, which characterizes the rate of degradation of 

PTEN by XIAPp, has an infinite bistable range, indicating that bistability will not be lost 

regardless of the value of this parameter (for the other parameters at their nominal values). 

Conversely, the parameter kdegMdm2, which characterizes the rate of degradation of Mdm2, has 

a narrow bistability range of only 0.004-0.009 /min, with a nominal value of 0.005 /min. Thus a 

change of as little as 20% in the value of this parameter can cause the system to become 

monostable, so that only one cell fate can be reached.  

  

Finally, sensitivity analysis was employed to explore the parameters’ effect on the model. 

We applied a local sensitivity analysis (as described in Chapter 3) at both the life and death states 

(Figure 4.7-4.17).  
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Figure 4.7: Sensitivity analysis at life state for pro-apoptotic proteins_1 

 

ksynp53 (production of p53) has a positive impact on p53; while, k1 (degradation of p53 

via Mdm2p) has a negative impact. On the other hand, these two proteins cannot cause the 

change of bistable range of the protein p53 in the bifurcation analysis. ksynPTEN (production 

of PTEN) affects PTEN positively; ksynMdm2 (production of Mdm2) negatively affects the 

protein PTEN.  However, from the bifurcation analysis, this effect cannot significantly cause the 

change of the range of the bistability. 
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Figure 4.8: Sensitivity analysis at life state for pro-apoptotic proteins_2 

 

kdegcasp3 (degradation of caspase3) affects protein caspase3. The bistable range of this 

protein via obtained kdegcasp3 has changed very little. The protein caspase3a has negatively 

affected by k13 (increased degradation of caspase3a via XIAPp), kdegcomplex (degradation of 

C3*X), while, k18 (the activation of caspase3 by releasing caspase3 from C3*X) has a positive 

impact on activated caspase3. From the bifurcation anaylsis, only k13 has caused a big change of 

the range of bistability of caspase3a.  

Also, the hill coefficient n1(Hill coefficient of XIAPp dependent degradation of 

caspase3a) affects the range of protein caspase3a significantly. This means this high sensitivity 

corresponds to the change of the bistable range of caspase3a depending on n1.  
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Figure 4.9: Sensitivity analysis at the death state for pro-apoptotic proteins_3 

 

This graphs shows that k1(degradation of p53 via Mdm2p), k5 (phosphorylation of 

Mdm2 via Aktp), k8 (inhibiton of phosphorylated Akt via PTEN), and j9 (Michaelis-Menten 

constant of dephosphorylation of Aktp) have negative impact on p53; while, k6 

(dephosphorylation of Mdm2p) and k9 (dephosphorylation of Aktp) affect positively the protein 

p53.  Also, k1, k4 (increased prodcution of Mdm2 via p53), k5, k8, and j9 have a positive effect 

on caspase3; while, k9 has impact on caspase3 negatively.  

Moreover, k3 (degradation of PTEN via XIAPp) seems effect PTEN value significantly. 

This result also match with the bifurcation analysis since k3 affects the range of PTEN 

bistability infinitely.  
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Figure 4.10: Sensitivity analysis at the death state for pro-apoptotic proteins_4 

 

k10 (increased degradation Aktp via caspase3a), kdegcasp3, and k11 (increased activation 

of caspase3 via p53) have a significant negative impact on caspase3; whereas, k12 (inhibition of 

caspase3 activation via Aktp) affects caspase3 positively. However, this high sensitivity of k12 

on caspase3 is not a significant impact on the range of the bistable of caspase3.  

In addition, k10 affects p53 positively. Also, while n2 (Hill coefficient of caspase3a 

degradation of XIAPp) have most influential effect on the proteins PTEN and caspase3a 

positively, k18 (activation of caspase3 by releasing caspase3 from the C3*X) affects PTEN 

protein negatively. 
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Figure 4.11: Sensitivity analysis at the life state for anti-apoptotic proteins_1 

 

While k5 (phosphorylation of Mdm2 via Aktp) has a negative effect on the protein 

Mdm2, k6 (dephosphorylation of Mdm2p) affects positively. The high sensitivities of these two 

parameters on Mdm2 cannot cause the big change of the Mdm2 bistable range.  

Another important parameter in this graph is kdegAkt (degradation of Akt). kdegAkt 

affects Akt negatively. However, this effect does not influence on the bistable range of Akt.  
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Figure 4.12: Sensitivity analysis at the life state for anti-apoptotic proteins_2 

 

kdegAktp (degaradation of Aktp), ksynXIAP (production of XIAP), and k15 (inhibition of 

phosphorylated XIAP via p53) have a positive impact on the protein XIAP; while, k14 

(phosphorylation of XIAP via Aktp) has a negative impact on it. Also, the parameter kdegAktp 

(degradation of phosphorylated Akt) affects the protein Mdm2 and Aktp positively. Moreover,  

the protein C3*X (caspase3-XIAP complex) is negatively affected by kdegcomplex (C3*X 

degradation), k18 (activation of caspase3 by releasing caspase3 from the C3*X) and n1 (Hill 

coefficient of XIAPp dependent degradation of caspase3a); whereas, k17 (caspase3a inhibits 

XIAPp through caspase3-XIAP complex (C3*X)) affects the complex positively.   
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Figure 4.13: Sensitivity analysis at the death state for anti-apoptotic proteins_3 

 

Most influential parameters on Mdm2p are k5 (Phosphorylation of Mdm2 via Aktp), k6 

(dephosphorylation of Mdm2p), k8 (Inhibition of phosphorylated-Akt via PTEN), k9 

(dephosphorylation of Aktp), and j9 (Michaelis-Menten constant of dephosphorylation of Aktp). 

Also, XIAPp is significantly affected the changes of k1 (degradation of p53 via      ), k8, and 

k9. 
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Figure 4.14: Sensitivity analysis at the death state for anti-apoptotic proteins_4 

 

The most important outcome from this analysis is that k10 (increased degradation of Aktp 

via caspase3a), kdegcasp3a (degradation of activated caspase3), k11 (increased activation of 

caspase3 via p53), k13 (increased degradation of caspase3a via XIAPp), k16 (increased 

degradation of XIAP via caspase3a), k17 (caspase3a inhibits XIAPp through caspase3-XIAP 

complex (C3*X)), kdegcomplex (degradation of C3*X), k18 (activation of caspase3 by releasing 

caspase3 from the C3*X), n1 (Hill coefficient of XIAPp dependent degradation of caspase3a), 

and n2 (Hill coefficient of caspase3a dependent degradation of XIAPp) have an important effect 

on XIAPp.   
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on system behavior. Conversely, the most influential parameter on the model is k1(degradation 

of p53 via Mdm2p). This has a negative impact on p53, and a positive effect on phosphorylated 

XIAP which triggers a cell to avoid apoptosis.  The results of the sensitivity analysis are attached 

in the Appendix. 

From the sensitivity analysis, it is shown that k13, which characterizes increased 

degradation of caspase3a via XIAPp, has a significant impact on the protein concentration, and 

thus on the system behavior.  

From the sensitivity analysis, k1 (the rate of degradation of p53 via Mdm2P) is found to 

be another influential parameter. Biologically, this parameter is important in determining cell 

fate. Depending on the parameter value, the cell fate will change as follows: If the parameter 

value is high, cell goes to the cell survival; otherwise, cell undergoes the cell death since p53 

protein has a positively significant effect on activated caspase3 [65].  

Moreover, another important parameter from the sensitivity analysis is the Hill 

coefficient n1 (Hill coefficient of XIAPp dependent degradation of caspase3a). Basically, our 

model is built on the cooperativity of XIAPp and caspase3a. Thus, the change of the n1 value 

affects the system behavior very significantly since n1 represents the nonlinearity of the system 

and provides positive feedback loop with another parameter n2 (Hill coefficient of caspase3a 

dependent degradation of XIAPp) between activated casapse3 and phosphorylated XIAP.  

From the biological perspective, ksyncasp3 (production of caspase3) and kdegcasp3a 

(degradation of caspase3a) parameters should have an influential effect on the system behavior 

since their values affect the activated caspase3 concentration, and implicitly the cell fate. 

Numerically, from the sensitivity analysis, their effects were found really to be very low. 
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Nevertheless, from the bifurcation analysis, their impacts on the system behavior were obtained 

differently. It is shown that the bistable range of ksyncasp3 is small; it influentially affects the 

system behavior with the any small perturbation. On the other hand, kdegcasp3a has wide 

bistability range since there is no lower bound for the bistable range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 53 

Chapter 5 

Conclusion and Future Directions 

5.1 Conclusion 

The development of cancer begins with the misregulation of normal cells at the molecular 

level. By considering this bio-molecular starting point of cancer, we investigated an important 

cell signaling network. In previous studies, Legewie et al. [10] discovered bistability in the 

intrinsic apoptotic pathway. On the other hand, Wee and Aguda [11] proposed bistability by 

considering the p53-Akt networks. Also, Bagci et al. [39] claimed that the most important 

feature for bistability of the system is to have a cooperative effect among the species. By taking 

into consideration these important findings, we developed a kinetic model consisting of three 

important cell signaling networks: apoptotic, p53 and Akt pathways. The purpose of building this 

kinetic model was to show bistability of the system since bistability is crucial for cell fate in 

terms of either cell death or survival.   

To achieve this goal, first of all, we reviewed the literature to understand the mechanism 

of proteins in these pathways. Then, based on the biological data, we built up a kinetic model to 

analyze the behavior of the system. From stability and phase plane portrait analysis, we 

demonstrated that our kinetic network is bistable by considering pro- and anti-apoptotic proteins. 

From bifurcation and sensitivity analyses, we found that k1 (increased p53 degradation via 

Mdm2p) is a key parameter for the control of the system; while, k2 (increased production of p53 

via PTEN), k3 (degradation of PTEN via XIAPp), kdegPTEN (constitutive degradation of PTEN) 

have little impact on system behavior. 
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 The most challenging part of the research is to find appropriate values of the parameters.  

The weakness of this study is that we didn’t compare our result with the previously published results 

because of not having enough time. And also, 15 parameters were chosen arbitrarily, but some of 

them were obtained by applying quasi steady state approximation to existence value in the previous 

study. The rest of them were chosen by considering maintaining the bistability. Even though these 

parameters do not show significant effect on the model from the sensitivity analysis, they make it 

difficult to have confidence in the model predictions. More numerical calculations are required to 

validate our results. 

5.2 Future Works 

Based on the present study, two other projects are being considered for the future. The first 

project is to extend the presented kinetic model by adding other proteins studied by Legewie et al. 

[10]. The pathways for his project are illustrated in Figure 5.1. 
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Figure 5.1: Proposed model to study apoptotic-p53-Akt pathways 
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Akt-p53-apoptotic pathways combine with specific proteins. In the Figure, apoptotic 

pathways are shown with the extrinsic and intrinsic pathways. The pink bubble shows the 

regulation of p53 via Mdm2, and also their negative feedback loop starting from the cytoplasm 

ending in the nucleus. The blue bubble illustrates the mitochondria. Cell stresses, growth factor, 

and death receptors are the external stimuli for these three important pathways. p53’s effect on 

the apoptotic pathway is demonstrated with three different pathways including PTEN activation 

to inhibit Akt function, inducing TNF-R family in the extrinsic pathway, and initiating the 

activation of Bax in the mitochondria for the intrinsic pathway. On the other hand, the inhibition 

of the apoptotic pathway via Akt is demonstrated in three different ways. The inhibition of 

protein Bax via Akt causes the block of apoptosis. Also, Akt inhibits apoptosis via the activation 

of XIAP. In addition, Akt prevents the formation of the apoptosome consisting of APAF1 and 

caspase9 protein. It results in the inhibition of caspase3 activation. 

 

The second project is to introduce a cancer drug to the present study. Cisplatin, a well-

known and crucial chemotherapeutic drug, is widely used as a cancer treatment tool in breast, 

testicular, head and neck, bladder, lung, ovarian, cervical, prostate, and refractory non-Hodgkin’s 

lymphomas. The usage of cisplatin in cancer treatment is generally associated with DNA 

damage, resulting in apoptosis, even though cisplatin can interact with the other cellular 

components. Thus, by considering cisplatin-induced DNA damage, our first objective would be 

to incorporate cisplatin into the mathematical model (Figure 5.2) [57]. When we are dealing with 

the cisplatin effect on the present model, we will consider the mechanism of cisplatin resistance, 
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which can cause secondary cancer formation [58] by switching the desirable effect of cisplatin 

during the treatment of malignancy [59]. 

 

  

Figure 5.2: Cisplatin Resistance Pathways 

 

In summary, the present study represents a step toward understanding the mechanisms of 

cancer signaling pathways. This knowledge will be useful in developing treatment for this 

condition, which is one of the most significant problems with human health worldwide. The 

proposed future work will extend this initial analysis to a more complete description of 
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intracellular behavior, and will address the ability of the drug Cisplatin to interfere with these 

pathways and thus improve health outcomes.  
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Appendix  

 

Table 5: Modified Kinetics 

 Explanation  

A Linearized Michaelis-Menten kinetics. 

B QSSA was applied to pten gene in Ref 60. 

C The same value used in Ref 10, but we only changed the units. 

 

Table 6: Sensitivity analysis results for Cell Survival Initial values 

 
p53 PTEN Mdm2 Mdm2p Akt Aktp casp3 casp3a XIAP XIAPp C3*X 

ksynp53 0.999964 0.015248 4.71E-05 2.04E-05 2.64E-05 -2.48E-05 -0.00013 0.000571 0.040364 -2.02E-05 3.03E-05 

k1 -0.90468 0.018167 -0.00056 -0.000105 -8.09E-05 0.000453 0.000593 -0.00718 -0.03691 0.002005 -0.0026284 

kdegp53 -0.00421 -0.00015 -2.40E-06 -4.78E-07 -3.78E-07 1.94E-06 2.68E-06 -3.11E-05 -0.00017 8.80E-06 -1.18E-05 

ksynPTEN 5.32E-06 0.528039 0.00067 -6.91E-06 0.000835 -0.00069 -9.66E-09 -3.91E-07 0.000652 -3.67E-08 -1.14E-08 

k2 1.89E-07 0.01597 2.33E-05 -2.40E-07 2.89E-05 -2.39E-05 -3.60E-10 -6.33E-09 2.27E-05 -1.29E-09 -2.72E-10 

kdegPTEN -3.81E-08 -0.0295 -6.43E-05 6.63E-07 -7.75E-05 6.57E-05 1.74E-09 1.42E-06 -6.35E-05 3.41E-09 2.30E-08 

k3 -0.00024 -2.5148 -0.00984 0.0001014 -0.01191 0.010044 3.40E-07 4.07E-07 -0.00964 4.93E-07 7.08E-06 

ksynMdm2 -0.0009 -1.13E-05 0.001039 0.0009207 -1.78E-08 1.76E-08 7.01E-08 -5.13E-07 -3.60E-05 2.17E-08 -2.81E-08 

k4 -0.00012 -2.50E-06 0.000126 0.0001235 -5.14E-09 1.62E-08 4.04E-08 -3.01E-07 -4.95E-06 7.40E-08 -9.28E-08 

k5 -0.00923 0.00196 -0.90039 0.0092815 3.68E-06 1.52E-05 1.54E-05 -0.00041 -0.00033 8.25E-05 -0.0001243 

k6 0.010004 0.005387 0.988652 -0.010194 -2.38E-05 1.65E-05 -5.01E-06 2.14E-06 0.000451 -1.82E-05 2.91E-05 

kdegMdm2 0.000461 6.24E-06 -0.00054 -0.000474 1.04E-08 -1.82E-08 -4.78E-08 4.11E-07 1.85E-05 -5.58E-08 7.36E-08 

kdegMdm2p 0.04832 0.000617 -0.04931 -0.049379 9.75E-07 -9.83E-07 -3.83E-06 2.79E-05 0.001942 -1.26E-06 1.66E-06 

ksynAkt -5.55E-07 -7.64E-09 -5.76E-05 5.94E-07 0.102914 5.84E-05 2.42E-09 -3.51E-08 -5.75E-05 3.62E-09 -2.58E-10 

kdegAkt 4.16E-06 7.06E-08 0.00043 -4.44E-06 -0.65989 -0.00044 -1.88E-08 2.63E-07 0.00043 -2.72E-08 2.07E-09 

k8 -0.00079 -4.49E-05 -0.07947 0.0008195 -0.07592 0.081095 5.95E-06 -6.36E-05 -0.07971 9.22E-06 -5.48E-06 

j8 1.03E-05 4.87E-07 0.001048 -1.08E-05 0.001022 -0.00106 -7.07E-08 7.90E-07 0.00105 -1.08E-07 5.55E-08 

k9 0.002435 0.000138 0.244931 -0.002526 0.225698 -0.242 -1.83E-05 0.000196 0.245722 -2.82E-05 1.66E-05 

j9 -2.67E-05 -1.40E-06 -0.00269 2.77E-05 -0.00258 0.002724 1.93E-07 -2.10E-06 -0.0027 2.96E-07 -1.66E-07 

k10 5.21E-05 4.48E-05 0.005145 -5.30E-05 -1.16E-05 -0.0052 -1.35E-06 1.97E-05 0.005177 -5.31E-06 6.53E-06 

kdegAktp 0.00107 6.66E-05 0.107308 -0.001107 -0.00016 -0.10745 -8.46E-06 8.86E-05 0.107701 -1.32E-05 8.30E-06 

ksyncasp3 1.27E-10 6.09E-08 2.21E-08 -1.31E-10 1.05E-10 -2.23E-08 0.141289 7.11E-05 2.20E-08 -3.69E-08 7.87E-07 

kdegcasp3 -1.02E-09 -2.73E-07 -9.60E-08 1.09E-09 -4.64E-10 9.72E-08 -0.53753 -0.00027 -9.62E-08 1.59E-07 -3.31E-06 

k11 2.75E-08 9.49E-06 2.41E-06 -2.47E-08 1.93E-08 -2.43E-06 -0.00066 0.000559 2.42E-06 -3.13E-06 4.13E-05 

k12 -2.10E-10 -4.80E-08 -1.22E-08 2.22E-10 -9.73E-11 1.23E-08 3.39E-06 -3.50E-06 -1.23E-08 1.59E-08 -2.14E-07 
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Table 7: Sensitivity analysis for Cell Death Initial values 

 
p53 PTEN Mdm2 Mdm2p Akt Aktp casp3 casp3a XIAP XIAPp C3*X 

ksynp53 0.210548 0.001603 0.002278 0.000973 -0.00015 -0.00095 -0.08733 0.007529 0.013014 -0.00871 6.56E-05 

k1 -2.36577 -0.09335 -0.10866 -0.044318 0.013264 0.051123 2.838232 -0.29512 -0.46969 0.363695 -0.0023087 

kdegp53 -0.16447 -0.00436 -0.00531 -0.002555 0.00061 0.002081 0.137896 -0.01405 -0.02194 0.016973 -0.0001295 

ksynPTEN 2.98E-08 0.002235 3.14E-08 -6.17E-08 4.15E-09 -1.11E-07 -3.44E-08 3.03E-09 9.93E-09 -5.01E-09 -9.54E-11 

k2 6.39E-07 0.028861 4.93E-07 -9.64E-07 6.77E-08 -1.56E-06 -7.96E-07 7.37E-08 2.13E-07 -1.12E-07 -1.99E-09 

kdegPTEN -7.81E-07 -0.05339 -7.83E-07 1.54E-06 -1.03E-07 2.71E-06 9.11E-07 -8.08E-08 -2.60E-07 1.32E-07 2.48E-09 

k3 -6.25E-06 -0.40004 -6.22E-06 1.22E-05 -8.15E-07 2.13E-05 7.24E-06 -6.40E-07 -2.07E-06 1.04E-06 1.99E-08 

ksynMdm2 -0.00919 -0.00014 0.00842 0.0074167 1.41E-05 7.09E-05 0.006044 -0.00056 -0.00093 0.000657 -4.91E-06 

k4 -0.16473 -0.00432 0.093288 0.0991679 0.000408 0.005737 0.143134 -0.01423 -0.02279 0.016541 -1.08E-05 

k5 -0.65196 -0.01273 -0.32894 0.6118493 0.001665 0.008567 0.45498 -0.04429 -0.07107 0.052308 -0.0002744 

k6 0.921951 0.012791 0.350715 -0.652807 -0.00143 -0.00642 -0.55176 0.050945 0.083233 -0.06017 0.00059585 

kdegMdm2 0.01075 0.000114 -0.01853 -0.014436 -1.12E-05 -6.62E-05 -0.00552 0.000492 0.000837 -0.00058 4.27E-06 

kdegMdm2p 0.048544 0.00077 -0.02884 -0.0337 -7.99E-05 -0.00041 -0.03295 0.003052 0.005072 -0.0036 2.69E-05 

ksynAkt -0.01342 -0.0003 -0.01107 0.0216872 0.448696 0.036551 0.016681 -0.00154 -0.00452 0.00238 4.20E-05 

kdegAkt 0.015946 0.00033 0.013955 -0.027359 -0.52741 -0.04658 -0.01941 0.001774 0.005327 -0.00278 -4.99E-05 

k8 -0.75059 -0.02621 -0.47472 0.9217082 -0.07677 1.448465 1.136326 -0.11339 -0.29884 0.166064 0.00294553 

j8 0.057625 0.001929 0.031404 -0.060784 0.005075 -0.09179 -0.08196 0.008262 0.02027 -0.01173 -0.0001652 

k9 1.70487 0.062882 0.483227 -0.908216 0.102337 -1.16485 -2.34651 0.248646 0.517223 -0.32906 -0.0028938 

j9 -0.45262 -0.01309 -0.31094 0.6058618 -0.04571 0.920347 0.638034 -0.06133 -0.17081 0.090981 0.00184372 

k10 0.535923 0.02628 0.095796 -0.171623 -0.11716 -0.18547 -0.87156 0.096389 0.19127 -0.12665 -0.0010109 

kdegAktp 0.037323 0.002084 0.00695 -0.012403 -0.00886 -0.01293 -0.06648 0.007443 0.014848 -0.00981 -9.26E-05 

ksyncasp3 0.000287 0.000265 0.000139 -0.000269 -7.61E-05 -0.00041 0.047798 0.003108 9.82E-05 -0.00217 0.00020042 

kdegcasp3 -0.00938 -0.00795 -0.00367 0.0070437 0.002413 0.00983 -0.55096 -0.06983 -0.00327 0.055655 -0.0048103 

k11 0.087077 0.05284 0.017985 -0.032774 -0.02081 -0.03545 -1.643 0.200742 0.032956 -0.21957 0.01306423 

k12 -0.00695 -0.00523 -0.0023 0.0043509 0.001747 0.005794 0.433241 -0.03933 -0.00253 0.033079 -0.0027189 

k13 -0.02405 -0.02043 -0.00938 0.0179757 0.006186 0.025037 0.034678 -0.17779 -0.00838 0.142645 -0.0123118 

kdegcasp3a -0.00122 -0.001 -0.00047 0.0008897 0.000312 0.001266 0.001796 -0.0093 -0.00043 0.006983 -0.0006041 

k13 -7.87E-05 -0.01181 -0.00356 3.67E-05 -2.92E-05 0.003599 5.84E-07 -0.96333 -0.00364 0.004952 -0.0690686 

kdegcasp3a -1.74E-08 -5.73E-06 -1.45E-06 1.50E-08 -1.16E-08 1.46E-06 2.71E-10 -0.00028 -1.46E-06 1.94E-06 -2.60E-05 

ksynXIAP -0.00014 0.005149 -9.47E-05 9.76E-07 -9.65E-05 9.38E-05 2.04E-07 -0.02333 0.999977 0.011857 -0.0001659 

kdegXIAP 3.17E-07 0.018047 6.87E-05 -7.08E-07 4.67E-05 -6.99E-05 -4.86E-09 0.01159 -0.0026 -0.00561 0.00031701 

k14 -9.31E-05 -0.02602 -0.00081 8.34E-06 -9.46E-05 0.000822 1.79E-07 -0.01219 -0.90662 0.003656 -0.0049175 

k15 -8.30E-05 0.010693 0.000133 -1.37E-06 6.50E-06 -0.00014 2.82E-08 0.002435 0.955636 -0.00079 0.00093302 

k16 2.40E-07 0.010928 3.91E-05 -4.03E-07 2.77E-05 -3.98E-05 -2.67E-09 0.007617 3.89E-05 -0.00372 0.00017285 

kdegXIAPp 8.59E-07 0.042638 9.76E-05 -1.01E-06 9.30E-05 -9.96E-05 -2.87E-09 0.046449 9.62E-05 -0.02346 0.00034921 

k17 -2.17E-06 0.007861 -0.00014 1.40E-06 2.10E-05 0.000137 3.18E-08 0.035295 -0.00014 -0.0023 0.0808143 

kdegcomplex -1.69E-06 0.006143 -0.00021 2.12E-06 1.29E-05 0.000208 1.16E-08 -0.55915 -0.00021 -0.00402 -0.5808464 

k18 4.68E-06 -0.0288 0.000667 -6.88E-06 -6.96E-05 -0.00067 -6.66E-08 0.379156 0.000672 0.012557 -0.5539025 

n1 -0.00021 -0.05958 -0.0174 0.0001794 -0.00022 0.017622 2.97E-06 -4.66009 -0.01753 0.023891 -0.33188 

n2 -2.24E-07 -0.01255 -3.50E-05 3.61E-07 -3.04E-05 3.56E-05 1.51E-09 -0.01038 -3.46E-05 0.005158 -0.0001338 
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ksynXIAP -0.00011 -0.00188 -7.72E-05 0.0001509 3.15E-05 0.000247 0.000136 -0.00199 0.288494 0.01132 0.00140334 

kdegXIAP 0.000246 0.003908 0.000165 -0.000322 -6.95E-05 -0.00052 -0.00031 0.004127 -0.48606 -0.02144 -0.0028412 

k14 -0.00215 -0.0197 -0.001 0.0019244 0.000568 0.002781 0.002926 -0.02026 -0.27465 0.063772 0.01169509 

k15 6.22E-05 0.001114 4.40E-05 -8.61E-05 -1.78E-05 -0.00014 -7.76E-05 0.001178 0.025461 -0.00739 -0.0008515 

k16 0.012353 0.15237 0.006765 -0.013141 -0.00335 -0.02024 -0.01626 0.156195 0.00411 -0.69047 -0.1037453 

kdegXIAPp 0.000229 0.00261 0.00012 -0.000233 -6.16E-05 -0.00036 -0.0003 0.002711 7.65E-05 -0.01149 -0.0017314 

k17 -0.00383 0.11568 0.000477 -0.001099 0.000803 -0.00321 0.00731 0.032143 -0.00156 -0.43803 0.18265254 

kdegcomplex -0.00135 0.054552 -6.34E-05 8.28E-05 0.000306 -0.0004 0.002217 0.006122 -0.0005 -0.33122 -0.5332121 

k18 0.008719 -0.23905 -0.00209 0.0045801 -0.00173 0.010211 -0.01904 -0.09195 0.003961 0.717198 -0.3184647 

n1 -0.01772 -0.01566 -0.00704 0.013529 0.00457 0.018344 0.024751 -0.12544 -0.00602 0.107914 -0.0092506 

n2 0.034798 0.445439 0.019083 -0.037072 -0.00943 -0.05704 -0.04569 0.441692 0.011536 -1.96764 -0.3065346 
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