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Abstract

Inconsistency often arises in real-world databases and, as a result, critical queries over dirty
data may lead users to make ill-informed decisions. Functional dependencies (FDs) can be used
to specify intended semantics of the underlying data and aid with the cleaning task. Enumerat-
ing and evaluating all the possible repairs to FD violations is infeasible, while approaches that
produce a single repair or attempt to isolate the dirty portion of data are often too destructive or
constraining. In this thesis, we leverage a recent advance in data cleaning that allows sampling
from a well defined space of reasonable repairs, and provide the user with a data management
tool that gives uncertain query answers over this space. We propose a framework to compute
probabilistic query answers as though each repair sample were a possible world. We show ex-
perimentally that queries over many possible repairs produce results that are more useful than
other approaches and that our system can scale to large datasets.
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Chapter 1

Introduction

Inconsistencies in data often arise in practice and may cause serious and costly problems. Faced
with a dirty database, users still need to get query answers over their data. Manually repairing
large and evolving databases is infeasible, while leaving data unchanged may result in incorrect
answers to critical queries.

Functional dependencies (FDs) are integrity constraints that could be used to specify indented
semantics underlying the data. In scenarios such as data integration or information extraction
from the web, the FDs may no longer hold, and could be used to identify the resulting incon-
sistencies in data. There may be many other sources of error, as illustrated by a the following
simple example.

Example 1 Consider a customer database depicted in Figure 1.1. An FD that makes sense for
this schema is Area→ City, signifying that an area code should uniquely determine a city. The
current state of the database is dirty, since tuples t1, t2, t3 all contain the same area code, but
differ in city. One reason for this inconsistency may be that Patrick and Jane have previously
lived in Manhattan and both recently moved to Queens. They have updated their telephone
number with this business, but failed to update their address, a situation depicted as the ground
truth.

Suppose the business from Example 1 needs to assess the market potential in Queens by
performing an analytic query over their database that calculates total sales in that city, and a
join is required with the customer table to connect each customer with their city. If the query is
performed without modifying the dirty data, it may incorrectly suggest that there are not enough
customers in Queens, costing the business potential profit.
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Name City Area

t1 Patrick Manhattan 347

t2 Jane Manhattan 347

t3 Clare Queens 347

t4 Allen Queens 718

t5 Betty  Manhattan 212

Name City Area

t1 Patrick Queens 347

t2 Jane Queens 347

t3 Clare Queens 347

t4 Allen Queens 718

t5 Betty  Manhattan 212

Name City Area

t1 Patrick Manhattan 347

t2 Jane Manhattan 347

t3 Clare Queens 718

t4 Allen Queens 718

t5 Betty  Manhattan 212

Name City Area

t1 Patrick Manhattan 212

t2 Jane Queens 347

t3 Clare Queens 347

t4 Allen Queens 718

t5 Betty  Manhattan 212

Dirty Database Ground Truth

Repair 1 Repair 2

Figure 1.1: A database instance violating the FD Area→ City

Figure 1.1 shows two possible ways to repair the dirty database. Both ways rely on modifying
the values so that the resulting data satisfies the FD. In general, the number of possible repairs of
FD violations is intractable, which is caused by interaction of violations that span multiple FDs.

One way to tackle this challenge is to delete violating tuples. In Example 1, we would need
to delete either tuples t1, t2 or t3. Previous work have focused on finding the fewest number of
tuples that need to be removed to reach a consistent state [11, 12]. In either case, we would not
get closer to the ground truth. Worse, this will result in deletion of clean data that could still be
very useful, i.e., the customer names and their telephone numbers.

Alternatively, we could rely on value modification and try to reach a consistent state by
making the fewest number of changes or by using some information distance metric [9, 13, 19].
For example, in Figure 1.1, we may choose Repair 1 over Repair 2 because it made fewer
changes. However, it should be evident that choosing a single repair over other possibilities
creates a potential for making very bad mistakes, even if a strong minimality metric is used.

Finally, we could consider a number of possible repairs that satisfy some minimality con-
straint and return only the answers that appear in all of them, an approach called Consistent
Query Answering (CQA) [3, 12, 16, 20, 23]. In our example, the query for customers in Queens
would return Clare and Allen, since they appear in both repairs. This is no better than evaluating
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Quality Metric

Certain Answers
+ Uncertain Tuples

Only
Certain

Answers

Can make
bad mistakes

Figure 1.2: Data cleaning driven query evaluation

the query over the dirty database, and worse, if we consider additional repairs, e.g. a repair that
changes the value of City in t3, CQA would return even less information. In general, CQA is
often too constraining, especially in the case of FD violations where there is a very large number
of ways to repair the data.

On the other hand, suppose we generalize the notion of CQA and consider answers that do not
necessarily occur in all minimal repairs. If enough repairs are considered, some of them could
potentially be very close to the ground truth giving the right answers an opportunity to be part
of the result, instead of being completely discarded. In our example, considering both repairs 1
and 2 in Figure 1.1 will provide a more informative answer to the query for customers in Queens
and suggest the Jane could possibly be from Queens. With additional repairs, Patrick may also
be correctly considered. Thus, the business will be able to make a more informed decision using
such results.

The approach that allows answers that may not occur is some instances of an uncertain
database is called uncertain query answering and is an established way to manage data un-
certainty. Figure 1.2 provides a summary for various ways to answer queries in the presence of
FD violations. If we attempt to find a single good repair and execute queries over the resulting
database, some answers are prone to be far from ground truth. If queries over the dirty database
return only certain answers, the results will be limited and a lot of answers could be missed. On
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the other hand, if a set of possible repairs is generated, uncertain query answering will provide
many other possibilities in addition to the certain answers, giving it a better chance to be closer
to the ground truth.

Our aim in this thesis is to investigate a relaxation of CQA using state of the art in proba-
bilistic databases (PDBs). A number of previous works have proposed semantics for doing so
in the context of the deduplication data cleaning task [1, 8]. The example we presented above
motivates the application of this concept to FDs, which are able to encode business rules and
assist in cleaning data that has become dirty for many reasons other than duplication.

It is often the case that the user does not know how to repair the dirty DB, and there are no
legacy experts that can help, i.e., the user has little or no information about the ground truth.
There are a number of ways of obtaining approximate answers in this situation.

One way is to set a probability distribution on attributes. Then a generative model with
simple correlations can be used [18]. This only works in relatively simple scenarios, such as
a measurement error, where correlations are reasonable enough to be expressed as conditional
probabilities. Repairs to FD violations create complex correlations that cannot be efficiently
modeled at attribute level.

Another way is to treat each possible repair as a possible world and use an existing PDB that
is expressive enough to represent this space [2]. However, PDBs that can faithfully represent
the correlations that arise in FD repairs are inherently inefficient in computing even the simplest
probabilistic queries.

In both situations, we still face the problem of enumerating an intractable space of all the
possible repairs for probabilistic representation. In the context of deduplication, this problem
has been easier to solve because of the ability to cluster data into independent tuple blocks.

A number of previous works on FD cleaning have attempted to constrain this space by im-
posing minimality constrains, such as avoiding redundant repairs. However, even these subsets
of all possible repairs have proven to be difficult to enumerate.

A recent work has proposed a way to sample from a space of possible repairs [7]. In this the-
sis, we leverage this advance in data cleaning, and provide the user with a data management tool
that gives uncertain query answers over a set of possible FD repairs. We propose a framework to
compute probabilistic query answers as though each repair sample were a possible world. Thus,
the probability of a query answer is proportional to the number of repairs it appears in.

The way in which possible repairs are obtained and their probability distribution are indepen-
dent of our proposal. We show empirically that query answers over a set of possible repairs can
get closer to ground truth than other approaches.
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The system we propose deals with the challenge of representing the complex correlations
that occur within repairs of FD violations, while allowing efficient probabilistic query answering
directly over repair samples.

The conceptual contribution of this thesis is as follows.

• We propose a framework for uncertain query answering over dirty data that violates FD
constraints. This framework integrates and extends previous proposals in the areas of prob-
abilistic databases and data cleaning, by leveraging recent work in repair sampling.

Uncertain query answering over FD repairs has not been possible prior to the advent of
repair sampling. Generative systems require a distribution model to be defined over the
uncertain data, while probabilistic databases require materialization of the possible worlds
and are inefficient in computing probabilistic queries in the presence of complex correla-
tions.

The technical contributions are as follows.

• We propose a space efficient representation system for storing FD repair samples inside
a conventional RDBMS. Our storage model avoids explicit storage of each repair and is
specifically designed to be accessed by fast sample-based query evaluation.

Further, we propose an optimization to a naive implementation of this idea that exploits
the tuple-level commonalities that arise in FD repairs. This improvement allows for space
efficient caching and we empirically show several orders of magnitude faster computation
for certain queries.

• We show how to efficiently implement sample-based query semantics [18] over material-
ized samples stored in our representation system.

This approach is more efficient than generating samples on-the-fly for each query, for
several reasons. First, current state of the art generative systems do not efficiently support
the complex correlations that arise in FD repairs. Second, precomputing and materializing
samples enables traditional query optimization techniques such as indexing.

• We implement our proposed methods and build a prototype system.

• Using experimental results, we argue that probabilistic answers over a set of repairs pro-
vide intuitive semantics and can be computed efficiently. We show that uncertain query an-
swering provides better quality results than consistent query answering and state of the art
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single repair methods. Finally, we show that our approach scales well for large databases
and a large number of repair samples.
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Chapter 2

Problem Statement

In this section, we describe the general problem that our system attempts to solve.

Given a dirty database, we assume there is a black-box system that can produce a large
number of possibly distinct repairs to this database. We further assume that the whole space of
possible repairs produced by this system is either intractable or there is no known mechanism to
efficiently exhaust the possibilities. Thus, we are interested in a sample of repairs of arbitrary
size.

Since this sample is likely to contain repairs the differ from one another, this collection of
repairs represents a probability distribution on the possible instantiations of the database. At this
point, we should note that our proposed system is independent of the actual space of possible
repairs that the block-box system samples from. Instead, we focus on handling the general
characteristics that any set of possible repairs to FD violations would have.

The goal of our proposal is then to produce probabilistic answers to queries over this collec-
tion of possible repairs. This can be achieved with possible worlds semantics, which is tradition-
ally used in probabilistic query answering. Each repair sample represents a possible world and
the probability of the query answer is proportional to the number of repairs it appeared in.

Consider again the example in Figure 1.1. We were given a dirty database and a black-box
system produced two repairs. Each repair represents a possible world, i.e. a possible instantiation
of values to tuples of the original dirty database. The two repairs together represent a probability
distribution of possible instantiations. For example, the cell t3[City] is instantiated to the value
Queens in both repairs, so a query asking for the city where the name is Clare should return
Queens along with its probability of 1.0. A more interesting example would be a query that asks
for the city for Jane. The value for t2[City] differs in the two repairs, so the query should output
two results, Manhattan with probability 0.5 and Queens with probability 0.5.
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t2 Jane Manhattan 347

t3 Clare Queens 718

Repair 1
t2 Jane Queens 347

t3 Clare Queens 347

Repair 2

t2 Jane Manhattan 718

t3 Clare Queens 347

Repair 3
t2 Jane Manhattan 718

t3 Clare Queens 347

Repair 4

Figure 2.1: A set of possible repairs to t2 and t3

These general semantics of probabilistic query evaluations are further described in Sec-
tion 4.3 by defining a brute-force implementation. In this thesis, our proposal is a realization
of these semantics that is more efficient than state of the art systems used off-the-shelf, specif-
ically in the context of FD repairs. We next discuss the particular challenges that arise in this
context.

2.1 FD Repair Space Characteristics

The example in Figure 1.1 demonstrates a characteristic of the probability space that is funda-
mental to any set of ”reasonable” FD repairs, namely, the existence of cell-level correlations, i.e.
correlations that span both the tuple and attribute dimension. By reasonable repairs, we assume
some minimality constraint on the the value changes - a repair that sets all values in the database
to 0 would be considered unreasonable, while a repair that attempts to minimize the number of
redundant changes is reasonable. For example, in Figure 1.1, the probability of t3[Area] = 212
depends on the the value chosen for t2[City] and cannot be calculated independently.

The existence of cell-level correlations should be expected as the general case for FD repairs.
Any violation of an FD involves two tuples, in which the values for the left hand side (LHS)
attributes are equal while the values for the right hand side (RHS) attributes differ, as is the case
for t2 and t3 and the FD Area → City. In order to repair this violation, assuming we are not
allowed to delete tuples, we can do one of the following. We can choose one of the two tuples
and either change the RHS values such that they differ, or the LHS values such that they become
equal. Consider a set of possible repairs shown in Figure 2.1.

Repairs 1 and 3 represent a space where the choice of tuples is free, but the choice of attributes
is restricted to LHS, i.e. Area in our example. In this space, the choice of Area for t3 is
dependent on the choice of Area for t2. Thus, the uncertainty can be modeled on attribute level
with tuple correlations.
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Repairs 2 and 4 represent a space where the choice of attribute is free, but the choice of tuple
is restricted to t2. In this space, the choice of Area for t2 is dependent on the choice of its City.
Thus, the uncertainty can be modeled on tuple level with attribute correlations.

However, if we consider the space of all four repairs, the correlations span both dimensions.
One example is the probability of t3[Area] = 347, which is dependent among other things on
the value for t2[City]. In this case, the uncertainty must be modeled on cell level, with cell value
correlations.

Another characteristic of FD repairs is the presence of arbitrary certain cells, i.e. cells that
are assigned the same value across all repairs in the sample. In Figure 2.1, cells t2[Name],
t3[Name], t2[City] are certain. In general, cells are certain for attributes not part of any FDs and
tuples not part of any violations. So while t2[City] is not expected to be certain given enough
repair samples, cells for tuples t4 and t5 in Figure 1.1 are not part of any violation and thus do
not need to be modified. Thus, we should usually expect a large proportion of certain cells, as
the normal assumption in data cleaning is that the majority of the database is clean. Further, this
means that an attribute level uncertainty model is not suited to represent a space of FD repairs,
as attributes are likely to be only partially uncertain.

9



Chapter 3

Related Work

As discussed in Section 1, there are a number of ways to deal with FD violations. One way
is to produce a single repair with some minimality constraint [9, 13, 19]. Another approach
is to provide query answers that are consistent across a set of repairs. Since these approaches
essentially provide a single possibility, they cannot be used in conjunction with a probabilistic
database to support uncertain query answering over dirty data. A recent proposal allows an
arbitrarily large set of possible repairs to be sampled [7], which provides an opportunity to use a
PDB system in this context.

Traditional PDBs use a simple representation system where each tuple is an independent
probabilistic event [4, 6, 14, 15, 21], which allows a large class of queries to be evaluated effi-
ciently, but does not faithfully model correlations that arise in repairing functional dependency
violations. As shown in Section 2, FD repairs give rise to correlations that span both dimensions,
tuples and attributes. In the presence of many FDs whose attributes overlap, the dependencies
can form a large and complex network of correlations that is difficult to model.

A recently proposed system, called MayBMS [2], decomposes the possible worlds based
on the independence between sets of fields and allows complex correlations to be represented.
However, the flexibility of its representation system makes computation of most probabilistic
queries inefficient.

Another PDB system, called MCDB [18], focuses on incorporating statistical methods di-
rectly into the database and provides probabilistic query answering by generating samples on-
the-fly. However, while MCDB supports both tuple and attribute correlations, it is designed to
model uncertainty at the level of attributes. As shown in Figure 1.1, an FD repair may require
only a small portion of attribute values to change. In typical data cleaning scenarios where the

10



t2.Name Pr

Jane 1.0

t3.Name Pr

Clare 1.0

t3.City Pr

Queens 1.0

t2.City t2.Area t3.Area Pr

Manhattan 347 718 0.25

Queens 347 347 0.25

Manhattan 718 347 0.50

x x

x

Figure 3.1: Independent components in MayBMS

majority of the database is assumed to be clean, most attribute values remain unchanged across
possible repairs. In such cases, MCDB is ill-suited to efficiently compute probabilistic queries.

Previous work includes proposals on probabilistic query answering in the context of other
data cleaning tasks, such as deduplication [1, 8]. To the best of our knowledge, no such work
exists for FD repairs. In deduplication, the ability to cluster the dirty database into independent
blocks of mutually exclusive tuples makes it possible to apply existing PDB technology directly,
whereas FD violations give rise to a much more complex uncertainty model which makes direct
application challenging.

3.1 State of the Art in PDBs

In this section, we show how the MayBMS and MCDB systems can be used to solve our problem,
the inefficiencies that arise in each case individually, and provide intuition on how an integration
of these two approaches may result in an efficient solution.

3.1.1 MayBMS

The main focus of MayBMS is space-efficient materialization of an exponential number of pos-
sible worlds, based on the independence between arbitrary sets of cells. The reason we chose
MayBMS for case study is because it is the state of the art in PDBs with cell level uncertainty
model. As will be demonstrated below, the main reason against using MayBMS to solve our
problem is the fundamental inefficiency of its query evaluation.
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Figure 3.1 shows how MayBMS would split the possible worlds represented by four repairs
in Figure 2.1 into independent components. The values for certain cells are stored each in a
separate component, with probability 1.0. And since the values for the three uncertain cells are
correlated, they get stored in one component. Each row in this component represents a distinct
value combination that appeared in the possible worlds, and its probability as a proportion. For
example, the value combination in the third row of this component has appeared in Repairs 3 and
4, out of 4 repairs total, and thus is assigned a probability of 0.5.

This set of independent components represents a factorization of all the possible worlds.
Composing the components, i.e. taking their cartesian product, produces all the distinct possible
worlds along with their probabilities.

In query evaluation, MayBMS focuses on transforming the components, such that the result-
ing components represent the query answer. The major problem with query evaluation comes
when computing the probability values of the results. In order to compute the probability of a
tuple in the query answer, all the components that contain the cells from this tuple need to be
composed. Thus, returning all tuples in the query answer along with their probabilities requires
that we compose all of the components that resulted from running the query.

Suppose we produce N repair samples for each dirty relation in the database. Since FD
repairs to different relations are independent, each relation in the best case will consist of one
component. Further suppose that each repair is distinct, which will result in N rows for each
component. Thus, a join between M such relations could result in a query answer that represents
NM possible worlds, i.e. in general, computing query results is exponential in the number of
independent components.

3.1.2 MCDB

MCDB focuses on incorporating statistical methods into the database and on using sampling
to efficiently estimate probabilistic query answers. Efficient query processing over database
samples is precisely our goal and thus the techniques proposed MCDB are useful for our system.
However, since MCDB only supports attribute level uncertainty and generates samples on-the-fly
for each query, off-the-shelf, it cannot solve our problem efficiently.

A natural example of MCDB application is illustrated in Figure 3.2. The relation Patients
holds information on blood pressure of patients and the systolic blood pressure (SBP)
attribute is uncertain. The SBP attribute is distributed normally, with the mean and standard de-
viation parameters conditioned on the patient’s gender are stored in the SBP Params relation.

For each probabilistic query that involves Patients and SBP , MCDB generates N sam-
ples of SBP data for each patient from the normal distribution. This collection then represents
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Name Gender SBP

t1 Patrick Male ?

t2 Jane Female ?

t3 Clare Female ?

t4 Allen Male ?

t5 Betty  Female ?

Gender Mean StD

Male 118.3 5.2

Female 110.5 3.1

Patients SBP_Params

Figure 3.2: Uncertain Relation Example in MCDB

N possible worlds and the semantics for computing probabilities of answers are illustrated in
Section 4.3.

Such uncertain relation is defined in MCDB using the following schema semantics:

CREATE TABLE Patients(Name, Gender, SBP) AS
FOR EACH p in PATIENTS

WITH SBP AS Normal (
SELECT s.Mean, s.StD
FROM SBP Params s
WHERE s.Gender = p.Gender)

SELECT p.Name, p.Gender, b.Value
FROM SBP b

In this case, Normal is a value generating function (VGF), which takes as parameters the
mean and standard deviation and returns a table with one row and one column V alue, which
contains a random sample from the normal distribution with the given parameters. When a
relation has several uncertain attributes, several VGFs can be used in the definition, values from
which are then joined with the certain attributes of the relation, as the SBP is joined with the
gender of the patient in the example above. These VGFs can also be user-defined, as long as they
follow the interface rules.

When there are correlations between attributes, a VGF can return a table with multiple
columns, one for each attribute, which represents a sample from the correlated space. For cor-
relations between tuples, a VGF returns a table with multiple rows, one for each tuple in the
correlated group. In this case, the outer foreach loop would have to iterate over groups of rows
from the original relation, instead of one row at a time as in the above example.
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It may then seem possible to use these mechanisms for representing correlations in the con-
text of FD repairs, which has both tuple and attribute correlations. However, the cell value cor-
relations that arise in from many overlapping FDs can form large and complex networks. Thus,
defining a space of FD repairs using such simple generative model would be extremely difficult,
especially with a primitive correlation model provided by MCDB.

It is still possible to use MCDB to solve our problem. This is achieved by defining, for each
dirty relation, a VGF that returns a random repair sample of the whole relation, i.e. there is
one correlated tuple group, which includes all tuples in the relation, and one correlated attribute
group, which include all attributes of the relation. This may seem like a naive approach, but it is
difficult to do better for our problem in MCDB. The problem comes from the fact that MCDB
fundamentally only supports attribute level uncertainty, meaning that if an attribute is uncertain,
the assumption is that all of cells under this attribute are uncertain. As discussed in Section 2.1,
FD repairs tend to have partially uncertain attributes, where the majority of values for cells are
the same across all repairs.

In general, the VGF may not need to return the whole table for each sample. The certain at-
tributes, i.e. those for which all values are the same across the repairs, do not need to be included,
as would be the case with the Name attribute in Figure 1.1. Further efforts, such as splitting the
table into independent tuple groups, would not improve efficiency. This is because, if an attribute
has at least one uncertain cell, values for all of its cells will need to be generated for each sample
during query evaluation, by definition of attribute level uncertainty. Thus, this method of using
MCDB would approach the naive query evaluation method described in Section 4.3.

It is still possible for MCDB to beat the naive method, if the repair process itself takes sig-
nificant time. This can be achieved by materialization. If we pre-sample the repairs and store
them in a MayBMS-like schema, it would be possible to define a VGF that samples from this
space, using the marginal probabilities in for each value combination. In this case, while the
redundancy of regenerating certain cell values remains, the repairs themselves don’t have to be
performed for each query.

In fact, in the presence of complex cell value correlations and partially uncertain attributes, it
is difficult to imagine efficiently using a purely generative query evaluation approach of MCDB,
instead of materialization. Our approach uses the sample-based query evaluation semantics de-
fined in MCDB, directly over materialized repair samples, removing the need to inefficiently
generate a second layer of samples for each query. Materialization brings a secondary bene-
fit, enabling traditional query optimization techniques such as indexing. Ideas from MayBMS
provide a way for space-efficient materialization, stemming from its cell level uncertainty model.
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3.1.3 Global Samples

In this section, we show how the query evaluation semantics of MCDB avoid the exponential
complexity of MayBMS, with the concept of global samples. This idea was not discussed in the
original proposal of MCDB [18], however the understanding of this concept is crucial for making
the distinction between query evaluation semantics of MCDB and MayBMS.

We illustrate the concept of global samples using an example. Figure 3.3 shows results of a
coin flip experiment simulation, where 10 coins were flipped, 10 times each, with independent
P (Heads) = 0.9.

A MayBMS-like approach would be to store the results in 10 independent components, one
for each coin, and compute the marginal probabilities for possible outcomes, as shown in the
Components relation. On the other hand, the GlobalSamples relation stores the set of sample
IDs (SIDs) for each possibility, for each coin. Note that the SIDs are global to all the coins. For
example, on the tenth coin flip (SID = 9), coin C5 produced Heads, and coin C6 produced Tails,
so 9 is added to the Heads set for C5 and to the Tails set of C6. So even though the coin flips
were independent, the global SIDs enforces dependence.

The advantage of enforcing dependence lies in its bounding of the number of possible worlds,
and thus making probabilistic query evaluation computationally efficient. Consider a general
case, with M independent components, N samples, and K possible values for each component.
The number of possible worlds under the independence assumption would then be KM , while in
the global sample approach, it would be M · N . In our experiments with FD repairs, we show
empirically that K often grows linearly with N .

Under the global sample semantics, the probability values for some query answers may differ
from the ones obtained under independence assumption. For example, computing P (AllHeads)
under global sample semantics would involve intersecting Heads sets of all ten coins. The re-
sulting set is {6} - also column 6 in the coin flips data of Figure 3.3 - leading to probability
1/10 = 0.1. On the other hand, using the components, we multiply out the P (Heads) for all
coins, leading to probability 0.108. Note that, in general, accuracy of the result using the correct
independence assumption is expected to be only marginally better than of results using global
sample semantics. Thus, it is always possible to simply take a linear number of extra samples to
achieve the same standard error as with the independence assumption. Since the difference in the
size of the possible worlds of the two methods is exponential, this trade-off makes sense. In Sec-
tion 10.5, we show empirically that the difference in quality results between the two approaches,
given a fixed number of samples, is negligible.

Observe that the presence of samples, in form of repairs, is what allows us to use this method
in our problem. In the scenarios where only marginal probabilities are given - what MayBMS is
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Sample IDs

0 1 2 3 4 5 6 7 8 9
Co

in
s

C0 H H H H H H H H H H
C1 H H H T H H H T H H
C2 T H T H H H H H H H
C3 H T H H H H H H H H
C4 T H H H T H H H T H
C5 H H H H H H H H H H
C6 H H T H H H H T T T
C7 H H H H T T H H H H
C8 T H H H H H H T H H
C9 H T H H H T H T H H

H T
C0 1.0 0.0
C1 0.8 0.2
C2 0.8 0.2
C3 0.9 0.1
C4 0.7 0.3
C5 1.0 0.0
C6 0.6 0.4
C7 0.8 0.2
C8 0.8 0.2
C9 0.7 0.3

Sample IDs
C0 H: (0,1,2,3,4,5,6,7,8,9) T:()
C1 H: (0,1,2,4,5,6,8,9) T:(3,7)
C2 H: (1,3,4,5,6,7,8,9) T:(0,2)
C3 H: (0,2,3,4,5,6,7,8,9) T:(1)
C4 H: (1,2,3,5,6,7,9) T:(0,4,8)
C5 H: (0,1,2,3,4,5,6,7,8,9) T:()
C6 H: (0,1,3,4,5,6) T:(2,7,8,9)
C7 H: (0,1,2,3,6,7,8,9) T:(4,5)
C8 H: (1,2,3,4,5,6,8,9) T:(0,7)
C9 H: (0,2,3,4,6,8,9) T:(1,5,7)

Components Global Samples

Figure 3.3: Coin flip experiment

designed for - the use of global samples is not possible, since the needed information is absent.

In other words, FD repair samples provide a unique scenario. The complex cell value corre-
lations and partially uncertain attributes can be materialized with space-efficiency of MayBMS,
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but using its query semantics is inefficient. The same characteristics of the FD repair space pre-
vent us from being able to use MCDB directly, because of its attribute level uncertainty, but the
presence of repair samples enables the use of its efficient query evaluation semantics. The focus
of our thesis is then on efficiently materializing the repair samples without the loss of information
required for the global sample semantics and on the implementation of these semantics over the
materialized repairs for efficient query processing.
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Chapter 4

System Architecture

In this section we overview our proposed probabilistic repair database system (PRepDB). Fig-
ure 4.1 shows the system architecture. Conceptually, the user runs a query over the schema of
the dirty database and gets probabilistic results based on the set of repairs of this dirty database.

4.1 Repair Sampling

The majority of work on repairing FD violations has focused on producing a single repair that
satisfies some minimality constraint. This approach cannot be used for uncertain query answer-
ing, which requires a set of possible worlds.

In [7], Beskales et. al. propose a space of cardinality-set-minimal (CSM) repairs, which

Figure 4.1: PRepDB Architecure
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Cardinality‐Set‐Minimal

Set‐Minimal
All Valid Repairs

Cardinality‐Minimal

Figure 4.2: Relationship Between Repair Spaces

aims to strike a balance between the fewest changes metric of cardinality-minimality and the
necessary changes criterion of set-minimality [7]. A repair is defined to be CSM if no subset of
changed cells can be reverted back to their original values without violating the set of FDs, even
if the values of the other changed cells are allowed to change.

In contrast, in a set-minimal repair, no subset of changed cells can be reverted back to orig-
inal values, while values for other changed cells are unchanged. All CSM repairs are also set-
minimal. Finally, a repair is cardinality-minimal if the number of changed cells is minimal with
respect to all valid repairs. All cardinality-minimal repairs are also CSM and set-minimal. Fig-
ure 4.2 shows the relationship between the repair spaces.

For example in Figure 1.1, Repair 2 has cells t1[Area] and t2[City] modified. If we revert
t1[Area] from 212 to the original value 347, it will cause a violation. In this case, there is no
value we can set for t2[City] that will resolve the violation now present between t1 and t3. Same
could be said for t2[City], as well as the case where values for both cells are reverted. Thus, this
repair is cardinality-set-minimal.

Repair 1 in Figure 1.1 is cardinality-minimal, as it has one changed cell and at least one
change is needed to repair the database. Finally, if we disregard t1, a repair where the value of
City for t2 and t3 are changed to Bronx will be set-minimal. For this repair, reverting either cell
or them both to their original value will cause a violation. However, when the value of t2[City]
is reverted to Manhattan, changing t3[City] to Manhattan will resolve the violation. Thus,
this repair is not CSM.

Critically, the proposal in [7] provides a way to sample from the CSM repair space, which
in turn enables the application of uncertain query answering. PRepDB uses the CSM sampling
algorithm to generate a set of repairs for each dirty relation. As shown in Figure 4.1, the Repair
Sampler takes as input the dirty database, which includes the FDs defined over its schema, and
outputs a set of CSM repairs.
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4.2 Representation System

The ultimate goal of the system is to give the user an ability to query the repaired database.
PRepDB does not require generating repair samples for each query, this would be too inefficient
and often unnecessary. Instead, the repairs are sampled as a preprocessing step. This removes
the need to sample repairs on-the-fly and also allows traditional query optimization techniques
such as indexing to be used.

Once a set of repair samples of desired size is collected, the data can be encoded and stored
inside a traditional RDBMS. As shown in Figure 4.1, the repairs from the Repair Sampler get
stored in the Repairs Store.

We propose two representation systems that allow storing large sets of repair samples. First,
a baseline system is proposed in Section 5, which stores possible values at the level of individual
cells. In Section 6 we propose an improved representation system, which exploits commonal-
ities that occur at tuple level. The improved system enables caching and greatly speeds up the
relational join computation.

4.3 Query Evaluation Semantics

PRepDB uses the sample-based query evaluation semantics proposed in [18], which in turn fol-
lows the conventional possible worlds semantics. That is, we treat each repair sample as a possi-
ble world and the probability of a query answer is proportional to the number of worlds it appears
in.

In this section, we describe the naive algorithm for query evaluation over a sample of repairs.
The purpose is to illustrate the semantics of probabilistic queries, provide intuition for the design
of our proposed system and provide a baseline system to compare against.

Algorithm 1 defines the naive method to execute a query Q over a dirty relation D using
N repair samples. For each unique sample ID SID, the algorithm generates a random repair
sample of D and materializes it into a temporary table T . Then, query Q is executed using the
clean relation T . If Q involves more than one relation, a repair has to be produced for each one,
so that Q can run over this set of clean relations. The results of this query are inserted into the
answer relationA and each tuple is appended with the current sample ID SID. Note that relation
A has the schema representing the result of Q, with an additional SID column.

After N samples, the answer tuples in A are sorted and a linear scan is performed to identify
unique tuples. For each unique tuple, its probability is calculated as the proportion of samples it
has appeared in out of N and the result is written to output.
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Algorithm 1 Naive Query Algorithm Processing
1: procedure NAIVEQUERY(D,Q,N )
2: Load dirty table D into memory
3: for SID = 1 to N do
4: Generate a repair sample RSID for D
5: Insert RSID into a temp table TSID
6: Execute the query Q over table TSID
7: Insert results into answer table A and

append with sample ID SID

8: Sort A, and for every unique tuple, count the number of sample IDs and divide by N to
get its probability

9: Output each unique tuple in A along with its probability

This algorithm implements the possible worlds semantics over repair samples in a literal
way and has a number of drawbacks, which our proposed system addresses. First, the repairs
have to be generated on-the-fly for each query. Although repairs can be sampled efficiently,
a disproportionate amount of latency is incurred over query evaluation, where the majority of
time spent on regenerating repairs to the same relations. This may be unacceptable in data
warehousing scenario where the size of relations is very large and many different analytic queries
are run over the same relations. PRepDB generates all the repair samples as a preprocessing
step, so that the query is executed once over the relations involved. Materialization also allows
PRepDB to use optimizations techniques such as indexing to be used.

Second, when the size of dirty relations and the number of samples is large, the answer
relation (table A in Algorithm 1) can grow very large. This not only takes a lot of space, but
the query processing efficiency also suffers. The major problem is redundancy, as in typical
data cleaning scenarios the majority of data is expected to be clean, which will be unnecessarily
replicated over each sample. PRepDB exploits this commonality by storing each unique possible
only once, improving both the space efficiency and query processing speed.

4.4 Query Engine Operators

In this section, we describe the operators that are necessary to process probabilistic queries over
repair samples. In Figure 4.1, these operators are part of the Query Engine, which uses the repair
samples stored in the Repairs Store to produce probabilistic results to the user’s query.
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4.4.1 P-Tuples

In contrast to traditional query processing, the PRepDB query pipeline contains probabilistic
tuples. We introduce p-tuples, which extend the traditional tuples to allow probabilistic pro-
cessing over materialized repair samples. P-tuples may contain uncertain values for some of its
attributes, which we denote as u-cells. They also contain an additional SIDS field that stores a
set of sample IDs, representing the worlds in which the current value assignments to this p-tuple
are valid.

Conceptually, p-tuples are similar to tuple bundles in MCDB. However, tuple bundles are
designed for the on-the-fly sample-based query processing. The u-cells in tuple bundles are
represented as an array of possible values, with the value at index i representing the value that
was generated for sample ID i. In contrast, p-tuples are designed for processing over materialized
samples, where the possible values for u-cells are mapped to the set of sample IDs they have
appeared in. Thus, the u-cells in p-tuples can initially be represented with a ’?’ placeholder,
and the specific possible values along with their sets of sample IDs retrieved from storage when
necessary.

Figure 4.3 extends the example in Figure 1.1 with four additional repair samples, with their
respective sample IDs (SIDs). For brevity, only the first two tuples are considered. The tuple

t1 = [Patrick, ?, ?]

is a p-tuple that is valid in all possible worlds, since this particular value assignment appears in
all samples. That is, since the attributes City and Area are uncertain in t1, they are free to take
any value. Instead of storing the sample ID set {1, 2, 3, 4, 5, 6} under t1.SIDS, we simply set
the value to NULL, which will signify the validity in all the samples.

Now consider the same tuple after we fix a certain value for the City attribute:

t1 = [Patrick,Queens, ?]

This particular value combination only appears in samples 3, 4, 5, 6. Thus, t1.SIDS = {3, 4, 5, 6}.
Finally, we fix the value for the remaining Area attribute:

t1 = [Patrick,Queens, 347]

This value assignment is observed in samples 4 and 5. When this tuple is written to output, its
probability can be calculated as 2/6, since it appears in 2 out of 6 possible samples.
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t1 Patrick Manhattan 347

t2 Jane Manhattan 347

Name City Area

t1 Patrick ? ?

t2 Jane ? 347

TID AID VAL SIDS

t1 City Manhattan 1, 2

t1 City Queens 3, 4, 5, 6

t1 Area 347 1, 4, 5

t1 Area 212 2, 3, 6

t2 City Manhattan 1, 3, 6

t2 City Queens 2, 4, 5

SID = 1
t1 Patrick Manhattan 212

t2 Jane Queens 347

SID = 2

t1 Patrick Queens 212

t2 Jane Manhattan 347

SID = 3
t1 Patrick Queens 347

t2 Jane Queens 347

SID = 4

t1 Patrick Queens 347

t2 Jane Queens 347

SID = 5
t1 Patrick Queens 212

t2 Jane Manhattan 347

SID = 6

CustomersT CustomersVFigure 4.3: Example of generated repair samples

4.4.2 P-Tuple Expansion

In general, we call the process of assigning values to uncertain cells of a p-tuple tuple expansion.
The presence of u-cells in a p-tuple means that multiple combinations of value assignments exist,
each producing a different p-tuple with its corresponding probability.

This operation is conceptually similar to the split operator on tuple bundles in MCDB. How-
ever, the split operator acts on the generated array of possible values, while p-tuple expansion
uses the materialized mapping of values to sample IDs.

In the example above, the original p-tuple could be expanded to four p-tuples, which represent
the distinct value assignments in the sampled repairs to the uncertain attributes: [Manhattan, 347],
[Manhattan, 212], [Queens, 212] and [Queens, 347]. In Section 8 we show how to perform this
expansion and assign the corresponding SIDS to each valid value assignment in an efficient
way.

4.4.3 Relational Selection

The traditional selection operator takes as input one tuple t and filters it according to the predicate
condition c. In our case, if c refers only to constant attributes in t, classical selection is used.
Otherwise, the uncertain attributes in t that are required by c need to be expanded. Only p-tuples
with value assignments that satisfy c pass the filter.

For tuple bundles, the possible value arrays of u-cells required by c need to be scanned in
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order to find which SIDs, if any, satisfy c. In contrast to this top-down approach, materialized
repair samples enable much faster bottom-up filtering of p-tuples, as we describe in Section 7.3.

4.4.4 Projection

The projection operator is PRepDB is almost identical to its traditional counterpart. Both certain
and uncertain attributes can be simply removed, while the SIDS field is unaffected.

4.4.5 Cartesian Product and Join

The cartesian product between two relations R and S is performed as follows.

R× S = {t = r ∪ s, t.SIDS = r.SIDS ∩ s.SIDS|r ∈ R, s ∈ S}

Each pair of p-tuples results in a concatenated p-tuple and their sets of sample IDs are intersected.

The join operation with a predicate condition c is equivalent to applying the cartesian product,
followed by a relation selection with c.
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Chapter 5

Baseline Representation System

In this section we present a baseline representation system for PRepDB. The main goals of this
system are: the ability to store a large set of repair samples with cell level value correlations,
avoid redundantly storing possible values, and enable efficient relational query evaluation.

Our baseline is a decomposition representation system (DECOR), inspired by the storage
model of MayBMS [2]. MayBMS decomposes all possible worlds into sets of independent cells,
each assigned some probability value. In contrast, DECOR does not assume commonality for
arbitrary sets of cells and decomposes the possible worlds at the level of single cells. Further,
DECOR is designed to store repair samples in a way that enables sample-based query evaluation,
instead of the event model semantics used in MayBMS.

For each dirty relation D in the database, DECOR adds two additional relations with the
following schema. Template relation DT has the same schema as D, with additional metadata
to signify uncertain cells (u-cells). U-cells are those cells for which the possible values differ
across the sampled repairs. In contrast, the cells that contain the same value across all repairs
store this certain value in DT . Certain values could mean that either the cell is clean or it has a
unique repair across all samples. The idea of a template relation has been previously proposed
by MayBMS.

Values relation DV stores the possible values for u-cells of D. It has a fixed schema with
columns TID, AID, VAL, SIDS. TID and AID identify the cell using the tuple and attribute
IDs. VAL stores a possible value for the specified cell. SIDS stores the set of sample IDs that
the possible value stored in VAL appears in. For efficient access by the query engine operators, a
multicolumn index on the TID,AID,VAL attributes is created.

Figure 5.1 illustrates how the six repairs shown in Figure 4.3 get stored using the DECOR
system. Observe that the values for the Name column as well as the Area column for t2 remain
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t1 Patrick Manhattan 347

t2 Jane Manhattan 347

Name City Area

t1 Patrick ? ?

t2 Jane ? 347

TID AID VAL SIDS

t1 City Manhattan 1, 2

t1 City Queens 3, 4, 5, 6

t1 Area 347 1, 4, 5

t1 Area 212 2, 3, 6

t2 City Manhattan 1, 3, 6

t2 City Queens 2, 4, 5

SID = 1
t1 Patrick Manhattan 212

t2 Jane Queens 347

SID = 2

t1 Patrick Queens 212

t2 Jane Manhattan 347

SID = 3
t1 Patrick Queens 347

t2 Jane Queens 347

SID = 4

t1 Patrick Queens 347

t2 Jane Queens 347

SID = 5
t1 Patrick Queens 212

t2 Jane Manhattan 347

SID = 6

CustomersT CustomersV

Figure 5.1: Baseline Representation System for Repair Samples

the same across all the repairs. Thus, the CustomersT relation contains certain values for these
cells, while the u-cells are specified using a ’?’ placeholder. The possible values for each of
the u-cells are stored in the CustomersV relation. For example, the value of City for t1 is
Manhattan in repairs with sample IDs 1 and 2, so a tuple

[t1, City,Manhattan, {1, 2}]

is stored in the CustomersV relation.

Traditional RDBMS do not allow storing different data types under one column, so in practice
the values under VAL attribute can either be stored as text and then cast to the original data type
at application level, or a separate Values relation could be used for each data type. The set of
sample IDs for the SIDS column can be represented as a set of integers at the application level
and stored in a serialized form inside the relation.

The DECOR system stores each possible value for a cell exactly once. Since the repair
samples usually contain a high degree of commonality and overlap, this allows a large number of
possible repairs to be stored in a very efficient manner. Explicitly storing the sample IDs allows
DECOR to preserve the value correlations that may occur at the cell level.
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Chapter 6

Improved Representation System

In this section we present an improved representation system that builds on the ideas in DECOR.
The VA table representation (VATAR) system exploits the tuple level commonalities that occur
in the repairs of FD violations, as we demonstrate empirically in our experiments. This greatly
improves the efficiency of joins and enables space efficient in-memory caching.

For each dirty relation D in the database, VATAR uses four relations to represent the repair
samples. The Template relation DT is the same as in DECOR. A V A relation DVA stores the
value assignments on tuple level and has a schema with four attributes TID,VAID,VA,SIDS.
The TID column stores the tuple identifier, the VAID column stores the unique ID of the VA
stored in the VA column. The SIDS column stores the sample IDs the value assignment stored
in VA occurs in.

The V alues relationDV is similar to DECOR, with schema TID,AID,VAL,VAIDS, where
the VAIDS column stores the VA IDs in which the value stored in VAL occurs. The purpose of
this relation is to provide an index into V A table that could be used by the Filter operator which
could require values for specific uncertain attributes.

Finally, the V AAID relation DVAAID stores the attribute structure of the VAs for each
tuple stored in the V A relation. The schema has attributes TID,AIDMAP, where AIDMAP stores
the description of the attribute structure for its corresponding tuple. Each tuple in a Template
relation may have a different number of u-cells, for different attributes, so the V AAID allows
the VAs for these u-cells to be stored in a dynamic form inside the V A relation.

Figure 6.1 shows how the repair samples from Figure 5.1 are stored using the VATAR system.
Note that even though VATAR does not present space savings over DECOR, the query efficiency
is greatly improved. This comes from the fact the the root-to-leaf paths are essentially materi-
alized in the VA table and can be efficiently accessed with the index represented by the Values
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Name City Area

t1 Patrick ? ?

t2 Jane ? 347

TID VAID VA SIDS

t1 0 [Manhattan, 347] 1

t1 1 [Manhattan, 212] 2

t1 2 [Queens, 212] 3, 6

t1 3 [Queens, 347] 4, 5

t2 0 [Manhattan] 1, 3, 6

t2 1 [Queens] 2, 4, 5

CustomersT

CustomersVA

TID AID VAL VAIDS

t1 City Manhattan 0, 1

t1 City Queens 2, 3

t1 Area 347 0, 3

t1 Area 212 1, 2

t2 City Manhattan 0

t2 City Queens 1

CustomersV

TID AID

t1 [City, Area]

t2 [City]

CustomersVAAID

Figure 6.1: VA Table Representatoin System for Repair Samples

table. Since there is a high degree of commonality on tuple level for repairs of FD violations, the
number of root-to-leafs stays manageable.
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Chapter 7

Query Processing over DECOR

In this section we introduce new operators, as well as modifications to existing operators, that
are necessary for efficient query processing over the DECOR system.

7.1 Value Mapper

The Value Mapper module acts as an interface with the V alues relation and is used by a number
of other modules in the system to process p-tuples.

The module accepts as input a relation identified (RID), a tuple identifier (TID) and a set
of attribute identifiers (Attrs), and outputs a set of mapsM, withMA for each A ∈ Attrs. The
possible values are obtained from the RIDV values relation.

An output mapMA contains key-value pairs (ν, ψ), associating a possible value ν of attribute
A with its corresponding set of sample IDs ψ (stored as SIDS in V alues relation).

The Value Mapper also supports calls that additionally specify the value (V AL), in which
case only SIDS need to be returned.

7.2 Unfold Operator

As a p-tuple goes through the query pipeline, it makes sense to expand its u-cells lazily, i.e. only
when a value for a certain attribute is required by an operator. Expanding uncertain attributes
could be expensive, as they could represent a large number of possible combinations, and if
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PTuple

TID
Attrs [Val, SIDS]

VMapPTuple
U-Cells

PTuple
VMap [PTuple] [PTuple] [PTuple]

PTuple
U-Cells

VMap

PTuple PTuple
Output

Figure 7.1: PRepDB Query Engine diagram for Select with Condition Operation

the attribute ends up projected away or the tuple is filtered out, the expansion could have been
unnecessary. However, as the p-tuple reaches the end of the pipe, the remaining u-cells need to
be expanded before it is ready for output.

The Unfold operator accepts p-tuples as input and outputs tuples with complete value assign-
ments and their corresponding probabilities. For each input p-tuple, the possible values for the
remaining u-cells are obtained using the Value Mapper. We rely on the query executor to keep
track of linage of each cell, i.e., the attribute ID and relation it came from. The obtained value
maps are then used to expand all of the remaining uncertain attributes.

Finally, the operator performs duplicate removal by merging p-tuples with identical value
assignments and taking the union of their sets of sample IDs stored in the SIDS field. After
this step, the probability of each tuple is calculated by dividing the size of its SIDS by the total
number number of samples in the database, and the result is written to output.

7.3 Selection with Condition

For selection with conjunctive conditions, the following optimizations are enabled by DECOR
storage system. First, the filtering is performed over certain attributes. If the tuple passes the first
test, the u-cells are tested before proceeding with the expansion. That is, for each u-cell, we make
sure that the values required by the condition exist as a possible value. However, this test is not
enough to pass the filter, as it does not guarantee that the required combination of possible values
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ever occurs in one of the samples. For this, we need to fully expand the required u-cells and test
that the resulting SIDS is not empty. Nevertheless, this strategy allows multiple opportunities
for early termination before performing the expensive expansion operation.

Observe that the filter relies heavily on the fast indexed access to the V alues tables. These
tables can be much larger than the original dirty database, so performing a linear scan for each
input tuple would be unacceptable.

Figure 7.1 shows the diagram of the query engine executing a selection with condition query.
Conceptually, the user is running the query over the dirty relation D. However, invisible to the
user, PRepDB has generated a number of possible repairs for D and stored them into a template
and values relations of the DECOR system. This is done as a preprocessing step, before any
queries are actually executed. So when a query actually runs, it uses only the data stored in
DECOR.

First, a sequential scan is performed over the template relation. Each p-tuple is then filtered
according to the predicate condition, while accessing the Value Mapper when required for u-
cells. Then, the remaining u-cells are expanded in the Unfold operator. Finally, duplicates are
removed and the resulting tuple with its probability is written to the output.

We now show how a query based on Example 1 is evaluated over the database in Fig-
ure 5.1. Consider the query SELECT * FROM Customers WHERE City = ’Queens’.
We start with a sequential scan over the template relation of the Customers table, CustomersT .
The first p-tuple is:

[t1, Patrick, ?, ?] t1.SIDS = NULL

Attributes City and Area for t1 contain u-cells and the SIDS field is initially set to NULL.

Next, t1 is passed to the filter. The predicate requires a value for the u-cell under City, so
the filter calls V alueMapper(t1, City,Queens), which returns the SIDS {3, 4, 5, 6}. Since the
return was not empty, this p-tuple passes the filtering, and is updated to:

[t1, Patrick,Queens, ?] t1.SIDS = {3, 4, 5, 6}

The Unfold operator then identifies the remaining u-cells, in this case just the Area attribute.
It calls V alueMapper(t1, Area), which returns a value map with key-value pairs (347, {1, 4, 5})
and (212, {2, 3, 6}. The tuple is expanded using this value map into two p-tuples:

[t1, Patrick,Queens, 347] t1.SIDS = {4, 5}

[t1, Patrick,Queens, 212] t1.SIDS = {3, 6}
These tuples can then be written to output, both assigned with probability of 2/6.
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7.4 Equijoin

The equijoin operator concatenates two tuples r and s, from two relations R and S respectively,
only if their values match on a given set of attributes Attrs. We implement this operator as
a hash join. First, each tuple r ∈ R is hashed w.r.t. its values in Attrs into a map H, s.t.
H[r[Attrs]]∪ = r. If r[Attrs] /∈ H, we first insert an empty list intoH[r[Attrs]]. Once all of R
is processed, each tuple in s ∈ S is concatenated with each tuple stored inH[s[Attrs]].

When we encounter a tuple t with at least one u-cell in t[Attrs], in either R or S, t is first
expanded w.r.t. its u-cells in t[Attrs]. Then, each tuple that resulted from the expansion is
processed normally.

For example, suppose we are processing tuples r0, r1, ..., r|R| inR. For each ri with no u-cells
in ri[Attrs], we append ri to the list stored at H[ri[Attrs]]. If ′?′ ∈ ri[Attrs], we first expand
ri w.r.t. u-cells in Attrs. Suppose the expansion of ri produces p-tuples r1i , r

2
i , ..., r

n
i . Then for

each rji , we setH[rji [Attrs]]∪ = rji .
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Chapter 8

P-Tuple Expansion

Expanding a set of attributes for a p-tuple is a critical operation in PRepDB query processing. In
this section, we show how to efficiently perform expansion of DECOR p-tuples. In Section 9,
we extend the concepts introduced here to the VATAR system.

Expanding a single uncertain attribute of a p-tuple is easy. Consider a p-tuple t with a u-cell
at t[A] that has k possible values. This means that the call V alueMapper(t, A) would return
the value map M with k key-value pairs(ν, ψ) ∈ MA) Thus, t would expand into k new p-
tuples. The value t′.SIDS for each resulting tuple with t′[A] = ν is obtained by intersecting the
corresponding ψ with t.SIDS.

On the other hand, expanding multiple attributes for one p-tuple results in exponential number
of possibilities. A p-tuple withm uncertain attributes, each having k possible values, corresponds
to mk possible value combinations.

8.1 Naive Expansion

A naive algorithm would enumerate each one of these possibilities, intersecting the sample sets
along the way. Algorithm 2 illustrates this method.

The runtime complexity of main loop is mk. However, we also need to account for the
intersection operation on line 8. At each level of recursion (representing an attribute), there can
be at most k non-empty sets of sample IDs (SIDS), of average size N/k, where N is the total
number of repair samples. The rest will contain empty SID sets.
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Algorithm 2 Naive P-Tuple Expansion
1: procedure EXPANDTUPLE(t, Attrs,M)
2: return RecurseExpand(t, Attrs,M, 0, {})

3: procedure RECURSEEXPAND(t, Attrs,M, i, T ))
4: if i = |Attrs| then

return {t}
5: else
6: for each (ν, ψ) ∈MAttrs[i] do
7: t[Attrs[i]] = ν
8: t.SIDS ← t.SIDS ∩ ψ
9: T∪ = RecurseExpand(t, Attrs,M, i+ 1, T )

10: return T

Each of these sets will need to intersect with every SID set of the attribute at the next level,
which also has at most k non-empty SID sets of size N/k each. Thus, the intersection will take
N · k operations at each attribute level in the worst case. The total runtime complexity is then
O(mk +N · k ·m).

It is clear from this analysis that if k is of the same order as N , most of the SIDS at deeper
levels will be empty. A p-tuple with an empty SIDS represents a value assignment that never
occurred in any of the repair samples, and thus must be discarded.

An obvious optimization to the naive algorithm is then to avoid propagating a p-tuple with
empty SIDS. This can be done easily by incorporating a check that executes line 9 only when
|t.SS| > 0. This optimization prunes the recursion tree, such that each level will have at most k
sets of SIDS of size N/k, all of them non-empty. Following the preceding analysis, the overall
complexity becomes O(N · k ·m).

In practice, the average cardinality (k) of u-cells grows linearly with the number of repair
samples (N ), for reasonables size of N . Thus, even with the pruning optimization, the naive
algorithm will be roughly quadratic in N .

8.2 Cardinality-Invariant Expansion

In the sections that follow, we propose a cardinality-invariant expansion algorithm that runs linear
inN , with an overall complexityO(N ·m). This new approach uses the idea of partition products
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to intersect the SID sets in a bottom-up fashion.

An important observation is that the SID sets of a u-cell with cardinality k represent a par-
tition of the set {1, 2, ..., N}, which we denote as S, into k non-empty parts. This is because
each repair sample produces exactly one value for each u-cell, assigning its sample ID to one of
k possible values.

Consider the p-tuple t1 in Figure 5.1. The SID sets of each of the uncertain attributes partition
S into two parts:

πCity = {{1, 2}, {3, 4, 5, 6}} πArea = {{1, 4, 5}, {2, 3, 6}}

The product of these two partitions is calculated by taking the union of the intersections in
the cartesian product of the parts between the two partitions:

πCity,Area = {{1}, {2}, {3, 6}, {4, 5}}

When we expand the u-cells of a p-tuple, we are logically performing the same operation,
i.e., taking the cartesian product of possible values and intersecting the corresponding SID sets.
Thus, the parts of πCity,Area represent the SID sets of the expanded p-tuples w.r.t. City and
Area. In our example, we can easily verify that these SID set correspond to the following value
assignments to t1: [Manhattan, 347], [Manhattan, 212], [Queens, 212] and [Queens, 347].

It is possible to compute the product of two partitions of the set {1, 2, ..., N} in O(N) time,
regardless of the number of parts within each of these partitions. Thus, the cumulative product
of m such partitions will take O(N ·m) time and produce the SID sets of the expanded p-tuples
with respect to m attributes.

However, as we show in the next section, it not trivial to use the linear time partition product
algorithm to also keep track of the value assignment to each of the expanded p-tuples without
incurring a non-constant overhead.

8.3 Naive Value Assignment Tracking

One way to track the value assignments (VA for brevity) is to keep a separate list in which each
entry corresponds to the VA for a part in the current cumulative partition.

In our running example, we start with partition πCity represented as a list: [{1, 2}, {3, 4, 5, 6}],
and the VA list νCity = [[Manhattan], [Queens]].
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Manhattan Queens

0 1L:

{1,2} {3, 4, 5, 6}π:

(a) City initialized

Manhattan Queens

0 1L’:

{1} {4, 5}π':

347 347

(b) Area = 347 processed

Manhattan Queens

0 1 2 3L’:

{1} {4, 5} {2} {3, 6}π':

347 212 347 212

(c) Area = 212 processed

Figure 8.1: Example of constructing a VA Tree for p-tuple expansion

When performing the partition product with πArea, as we add each new part to πCity,Area, we
also add the corresponding VA to νCity,Area. Thus, we get two resulting lists: [{1}, {2}, {3, 6}, {4, 5}]
and [[Manhattan, 347], [Manhattan, 212], [Queens, 212], [Queens, 347]].

The problem with this approach comes from the overhead of maintaining the VA list. For
each resulting part in the product of two partitions, it is necessary to copy over the corresponding
entry in the initial VA list and append it with the overlapping value in the second partition.

Suppose that in our example, t1 has an additional uncertain attribute Gender, with value-
map {Male : {1, 2, 3, 4, 5}, Female : {6}}. One of the resulting parts in πCity,Area,Gender is
{3}, for which the corresponding entry [Queens, 212,Male] is added to νCity,Area,Gender. The
[Queens, 212] prefix needs to be copied and not simply appended to, because the SID set for
Female also intersects with that part, i.e. one-to-many relationships are possible.

In the worst case, when there are N distinct repairs and we expand a tuple with m uncertain
attributes, O(N ·m2) copy operations are performed. This can cause serious performance issues
in cases involving joins of many uncertain relations, which could result in a large number of
uncertain attributes.

8.4 Value Assignment Trees

In this section, we propose a way to track VAs with only a constant time overhead. We dy-
namically build a VA Tree as we perform partition products, adding a level for each consecutive
attribute, while maintaining an index to all the leaves (bottom level of the tree).
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The VA Tree is an empty-rooted ordered tree, where each node stores a possible attribute
value, and all valid VAs to the uncertain attributes are represented by root-to-leaf paths in the
tree. The index to the bottom level links each SID set in the cumulative partition product to its
corresponding VA.

Algorithm 3 Cardinality-Invariant P-Tuple Expansion
1: procedure EXPANDTUPLE(t, Attrs,M)
2: Initialize cumulative partition π, leaf index L, VA Tree T with an empty root
3: i← 0
4: for each (ν, ψ) ∈MAttrs[0] do
5: η ← New tree node with value ν
6: Add η as child at T
7: L[i]← pointer to η
8: π[i]← ψ ∩ t.SIDS
9: i← i+ 1

10: for m = 1 to |Attrs| − 1 do
11: Initialize/reset inverted index array S
12: for i = 0 to |π| do
13: for each j ∈ π[i] do
14: S[j]← i

15: i← 0, π′ ← ∅, L′ ← ∅
16: for each (ν, ψ) ∈MAttrs[m] do
17: Initialize/reset intersection index hashmapR
18: for each j ∈ ψ do
19: R[S[j]]← R[S[j]] ∪ j
20: for each (j, ρ) ∈ R do
21: η ← New tree node with value ν
22: Add η as child to node at L[j]
23: if m = |Attrs| then
24: Store ρ at η
25: else
26: L′[i]← pointer to η
27: π′[i]← ρ
28: i← i+ 1

29: π ← π′, L ← L′

30: Traverse T and return the resulting expanded tuples and their SID sets
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Algorithm 3 shows how to expand a p-tuples by constructing a VA tree. The input is a p-
tuple t, a set of uncertain attributes Attrs and a set M containing a value map MA for each
A ∈ Attrs. Figure 8.1 follows the example of expanding the tuple t1 from Figure 5.1 w.r.t
attributes City and Area.

Lines 4-9 initialize the first attribute. A new tree node is added for each possible value ν
of attribute Attrs[0], while the cumulative partition π and the leaf index L are initialized to the
SID set ψ of the current value being processed. Thus, π gets initialized to the SID set of the first
attribute and the leaf index connects tree leaf containing the value ν with its corresponding SID
set in π. Figure 8.1a shows the resulting tree, leaf index L and partition π after initializing the
City attribute.

The loop in lines 10-29 processes the rest of the uncertain attributes. In lines 12-14, we build
the inverted index array for the current partition π, which maps each sample ID to the part in π
it belongs to. The for loop in lines 16-28 intersects the SID sets of the current attribute Attrs
with the partition π. Partition π′ and leaf index L′ represent the next level of the tree. We iterate
over each sample ID in the current SID set ψ and intersect it with the part in π with the same
SID, accessed by the inverted index we have built. In our example, suppose we process the
(347, {1, 4, 5}) pair for the Area first. SID 1 intersects with part {1, 2} in π, which is at index
S[1] = 0, so we setR[0] = {1}. Both SIDs 4 and 5 intersect with π[1], soR[1] = {4, 5}.

Each intersection results in a tree node for the current attribute, processed in lines 20-28. The
leaf index of the previous level L is used to determine the parent node of the current intersection.
If the Attrs[m] is the last attribute to be processed, we store the resulting SID set in the leaf
node, so that it can be easily accessed when the root-to-leaf paths are enumerated. Figure 8.1b
shows the resulting VA tree after processing Area = 347. For illustration purposes, we assume
that Area is not the last attribute, so L′ and π′ still get updated. Figure 8.1c shows the final tree
for the attributes City and Area.

To expand tuple t1, we traverse all root-to-leaf paths, each one resulting in a new p-tuple with
its SIDS stored at the leaf of the path. In our example, expansion of t1 results in the following
four p-tuples:

Name City Area SIDS
Patrick Manhattan 347 {1}
Patrick Manhattan 212 {2}
Patrick Queens 347 {4, 5}
Patrick Queens 212 {3, 6}

If there were more uncertain attributes, we could continue the process, computing partition
products and adding further levels to T and updating π.
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8.5 Complexity Analysis of Algorithm 3

Computing the inverted index S (lines 12-14) takesO(N) per attribute, since there are exactlyN
sample IDs for each uncertain cell. Computing the intersection index R (lines 18-19) also takes
O(N) per attribute. In the worst case, R will contain N intersections, but processing each one
(lines 20-28) takes constant time, so the overall runtime is O(N) per attribute. Thus, processing
all attributes (the full loop at lines 10-29) takes O(N ·m).

In the worst case, the number of VAs is at most N , when each repair is distinct, and for
each distinct VA, the root-to-leaf path visits exactly m nodes (height of T ). Thus, iterating T to
produce all valid VAs and their sample sets (line 30) takes O(N ·m).
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Chapter 9

Query Processing over VATAR

In this section, we show how the VATAR system can enable more efficient processing of certain
queries.

9.1 VATAR P-Tuples

In contrast to DECOR, there is no longer needs to explicitly store the sample IDs (SIDS) for each
p-tuple as it moves through the query plan. Instead, each p-tuple t stores a Relation→ V AIDS
map in the t.V AIDS field, which defines which value assignments are valid for t at the relation
level.

Suppose that tuple t1 from Figure 6.1 is conditioned on City = Queens. The t1.V AIDS
would then contain Customers : {2, 3}, since those are the value assignment IDs that match the
condition. If this tuple is conditioned further to Area = 212, the corresponding VAIDS would
be updated to {2}. This is obtained by interesting the previous VAID set {2, 3} with the VAID
set where t1[Area] = 212, namely {1, 2}.

The sample IDs (SIDS) stored in the VA table are only accessed when p-tuple probability is
calculated before output and when expanding across multiple uncertain relations.

9.2 Joins, Expansion and Relation-level VA Trees

When performing a join between two relations R and S in DECOR, a p-tuple r from R can join
with a large number of tuples s1, s2, ..., sn from S. During the Unfold operation, the VA tree
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Name Item Price

s1 Patrick ? ?

TID VAID VA SIDS

s1 0 [iPhone 5, $900] 1, 3, 4, 5

s1 1 [Galaxy S4, $700] 2, 6

OrdersT

OrdersVA

TID AID

s1 [Item, Price]

OrdersVAAID

TID VAID VA SIDS

t1 0 [Manhattan, 347] 1

t1 1 [Manhattan, 212] 2

t1 2 [Queens, 212] 3, 6

t1 3 [Queens, 347] 4, 5

t2 0 [Manhattan] 1, 3, 6

t2 1 [Queens] 2, 4, 5

CustomersVA

Figure 9.1: An Orders relation stored using VATAR

for u-cells in r have to be rebuilt for each intermediate tuple r · si. Caching the whole VA tree
for each p-tuple is too expensive, and it is not obvious how to dynamically update the tree in
the presence of differences in intermediate tuples of r that stem from different u-cells from S or
conditions on their values.

In contrast, the VA tree for the intermediate tuples can be built at relation level in VATAR,
using a relation-level VA tree (RVAT). Each level in RVAT represents a relation and each node
stores unique value assignments for that relations that are attached to the p-tuple being expanded.
The SIDS attached to each VA still represent a partition of the complete sample ID set, so taking
the partition product correctly computes the SIDS that result from expanding across multiple
relations. The paths of RVAT are greatly compressed versions of the paths of the equivalent VA
trees, so the expansion can be computed much faster. This also allows the VAs to be cached for
each p-tuple, so that the VA tree does not have to be rebuilt for each intermediate tuple.

We illustrate this concept using an example of a join between two relations. Consider an ad-
ditional uncertain relation Orders that stores the customer orders. Figure 9.1 shows an instance
of such relation, with some VATAR tables omitted for brevity.

Now suppose we run the query described in Example 1 that joins the customers with their
orders in order to get the total amount of orders in Queens. The resulting RVAT when expanding
the intermediate tuple t1 · s1, from Customers and Orders respectively, is shown in Figure 9.2.

The first level of the tree represents the VAs for attributes from the Customers relation.
Since we conditioned the city on Queens, only the corresponding VAs are considered for this
p-tuple. The partition for this level is as follows (using Figure 5.1):

πCustomers = {{3, 6}, {4, 5}}
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[Queens, 212] [Queens, 347]

0 1 2L’:

{3} {6} {4, 5}π':

[iPhone 5, 
$900]

[Galaxy S4, 
$700]

[iPhone 5, 
$900]

Figure 9.2: Example of a Relation-level VA Tree

The second level represents the VAs for attributes from the Orders relation, with partition

πOrders = {{1, 3, 4, 5}, {2, 6}}

The sample IDs that resulted from the partition product πCustomers,Orders are stored in π′.
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Chapter 10

Experimental Study

In this section, we evaluate our system. First, we show that the system is able to efficiently scale
to large datasets. Second, we perform a qualitative study that compares quality results obtained
from our system to those of competing approaches.

10.1 Setup

All experiments were performed using a system with an Intel Core i5 3.3GHz processor and
8GB of RAM. The system was implemented in Python 3.2, and PostgreSQL 9.2 was used
for the underlying storage. We use the UIS Database Generator to generate synthetic data
that imitates a real personal contact relation with the following schema: SSN, FirstName,
MiddleInit, LastName, StNum, StAddr, Apt, City, State, ZIP. The fol-
lowing FDs are defined over this schema:

• SSN → FirstName, MiddleInit, LastName, StNum, StAddr, Apt,
City, State, ZIP

• FirstName, MiddleInit, LastName → SSN, StNum, StAddr, Apt,
City, State, ZIP

• ZIP → City, State

For the performance experiment involving an equijoin query, we normalize the relation into
two tables using the FD ZIP → City, State and make repairs to the two relations sepa-
rately.
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Figure 10.1: Dataset Characteristics

We add inconsistency to the database as follows. First, we generate a clean dataset using UIS.
After that, we make value modifications to random cells until we reach the target perturbation
rate, expressed as a percentage of all the cells. Our perturbation model makes sure that each cell
modification causes an FD violation. For each cell change, first an FD is chosen at random, then
we randomly choose to modify either the LHS or the RHS. For LHS perturbations, we select
two random tuples that differ in the chosen FD’s LHS and RHS attributes, and make modify the
values such that the LHS values become equal. For RHS perturbations, we select two tuples with
equal LHS values and make the RHS attribute different.

10.2 Performance Evaluation

We evaluate the performance of our system on a 5000 tuple UIS dataset with a 5% perturbation
rate. We choose to vary the number of repair samples parameter, as it gives direct control over
the size of the uncertain database, i.e. the number of distinct repairs, which ultimately impacts
the system performance.

The log-log plot in Figure 10.1 shows the characteristics of the dataset with varying number
of samples. The average number of possible values (cardinality) of uncertain cells (u-cells) grows
exponentially for low number of samples, as each repair likely to be distinct. Between 40 and
1000 samples, the grows is sublinear, after which the space begins to saturate and each new
sample is less likely to be distinct. On the other hand, the average cardinality of u-tuples, i.e. the
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average number of possible value assignments to the u-cells of the u-tuple, grows slower, with the
factor against u-cells growing from 2 to 4 as the number of samples increase. This supports the
motivation behind VATAR, which attempts to exploit the tuple level commonality for efficiency.

We compare the performance of the following approaches:

• Naive: This approach executes the query over each repair sample explicitly and then
aggregates the results.

• DECOR: This approach uses the baseline representation system described in Section 5.

• VATAR: This approach uses the improved representation system that utilizes tuple com-
pression, as described in Section 6.

• VATAR+C: This approach enables in-memory caching of the V A and V AAID tables.

• VATAR+C(2nd): This is the second run with caching enabled, i.e. minimal DB IO
required.

Only the runtime for Naive method includes repair generation time, since for other methods
repairs are generated as a preprocessing step.

We use the following queries:

• Q1: SELECT * FROM UIS

• Q2: SELECT * FROM UIS WHERE FirstName=’Demby’ AND
LastName=’Rowsso’

• Q3: SELECT * FROM UIS NATURAL JOIN ZIPCODES

The log-log plots in Figures 10.2-10.4 show the runtime performance for the three queries.
ForQ1, shown in Figure 10.2, even the baseline representation system (DECOR) is several orders
more efficient than the naive method. Moreover, the caching enabled VATAR system runs another
order of magnitude faster than DECOR.

Query Q2 is much more selective and takes advantage of indexing. As a result, the gap with
the Naive method is even wider in this case. Since the result set is already very small for this
query, tuple compression in VATAR does not bring as much advantage over DECOR. However,
the ability to cache on tuple level does improve performance by an order of magnitude.

The join evaluation in query Q3 brings out the redundancy in DECOR discussed in Sec-
tion 9.2, as shown in Figure 10.4 Thus, the tuple-level compression in VATAR provides up to
two orders of magnitude improvement over DECOR.
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Figure 10.2: PRepDB Runtime Performance for Q1
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Figure 10.3: PRepDB Runtime Performance for Q2

46



y = 1.69x1.03

0.1

1

10

100

1000

10000

10 80 640 5120

Number of Samples (N)

Naïve DECOR VATAR
VATAR+Repair VATAR+C VATAR+C(2nd)

Figure 10.4: PRepDB Runtime Performance for Q3

10.3 PDB Performance Comparison

In this section, we compare the performance of PRepDB to state of the art in Probabilistic
Databases (PDBs) when used in context of FD repairs. For this purpose, we choose two sys-
tems to implement, MayBMS [2] and MCDB [18], both of which were discussed in Section 3.1.
In order to make a fair comparison to our PRepDB prototype, both of the competing systems
are implemented using Python, and PostgreSQL is used for the relational store component. For
PRepDB, the VATAR configuration described in Section 10.2 is used, with no caching enabled.

We use the same UIS 5000 tuple dataset described in Section 10.2, with a sample of 1024
repairs. The runtime performance is measured of each system for a self-join query with an in-
creasing number of joins. The UIS table is self-joined on the tuple ID TID, which is a certain
attribute with an unique value for each row. We choose not to use a non-unique attribute in-
stead, as it would cause an exponential growth in output size, overshadowing the performance
difference between the three systems.

Figure 10.5 shows a log-plot of runtime performance for the three systems. MCDB starts off
with a high initial overhead, but scales linearly with the number of relations. As expected, the
overhead comes from the the need to generate Monte-Carlo samples, each with a large number
of certain attributes. This redundancy causes MCDB to be over two orders of magnitude slower
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Figure 10.5: Runtime Performance Comparison

than PRepDB for this query.

On the other hand, MayBMS does not have this redundancy, as it stores and processes each
certain cell only once. However, its probability computation requires taking the cartesian product
of all relations involved, which results in exponential complexity. At two relations, MayBMS is
about an order of magnitude slower than PRepDB, as its possible world size is already twice as
large. When the number of relations grows to seven, MayBMS is almost four orders of magnitude
slower than PRepDB.

10.4 Quality Evaluation

For quality evaluation, we generated a 10000 tuples UIS dataset and applied perturbation at 2%,
6% and 10% rates. We use the following query for each possible city in the database: SELECT
FirstName, LastName FROM UIS WHERE CITY = ?. We compare the query result
of each approach to the query result over the clean relation and analyze the distribution of pre-
cision and recall. When measuring precision and recall for the probabilistic results returned by
PRepDB, each true positive and false negative is weighted according to its assigned probability.

We use two state of the art single repair algorithms and simulate consistent query answering
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Figure 10.6: Distribution of Quality Results for 2% Perturbation Rate
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Figure 10.7: Distribution of Quality Results for 6% Perturbation Rate
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Figure 10.8: Distribution of Quality Results for 10% Perturbation Rate

(CQA) by considering only those results obtained from PRepDB that have probability 1.0, i.e.
which occur in all the sampled repairs. The following approaches were used in our evaluation:

• Dirty: Query result over the dirty relation.

• PRepDB: Query result over a sample of 80 CSM repairs.
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• CQA: Simulation of CQA, that uses results from PRepDB with probability 1.0.

• Vertex Cover: This approach models the FD violations as hyper-edges, such that an
approximate vertex cover produces a repair with a small number of changes [19].

• Greedy: This is a cost-based approach that makes a greedy decision for each subsequent
value modification [13].

Figures 10.6, 10.7 and 10.8 are histogram plots that show the number of queries (one for each
city) on the y-axis.

When the perturbation rate is low, all approaches do well, as illustrated in Figure 10.6. CQA
is able to isolate the clean data and achieve higher precision than other methods. On the other
hand, PrepDB provides more consistent recall than CQA and other methods, as it is able to
explore a number of possibilities for repairs.

At a higher 6% perturbation rate, the quality distribution shifts to the left for most approaches,
as shown in Figure 10.7. However, at this level, the precision results for PrepDB are comparable
to other methods, while recall is noticeably better than most other methods.

At 10% perturbation rate the gap widens even more, as shown in Figure 10.8. The preci-
sion results get very inconsistent for single-repair methods, as they are prone to make bad mis-
takes. PrepDB is able to maintain consistently high precision rates, with results often higher than
queries over the dirty database. The main drawback of competing approaches becomes apparent
with recall results at this perturbation rate. In contrast, PrepDB is noticeably better at providing
the user with enough repair possibilities to cover a high proportion of clean answers.

10.5 Quality Comparison of Query Semantics

In this section, we compare the quality results between the explicit query evaluation semantics
of MayBMS and the global samples semantics used in PRepDB. We use the same 10000 tuple
dataset described in Section 10.4, with 6% perturbation rate. Precision and recall is evaluated
using the equijoin query (Q3) described in Section 10.2.

Figure 10.9 shows the quality results for the two systems. As the number of samples in-
creases, the recall also increases, logarithmically. The additional repair samples increase the
probability that correct answers are included in the query result. The explicit query semantics of
MayBMS give a slight advantage in the recall result for low number of samples, but this advan-
tage decreases with more repair samples, as the sampling error plays a less significant role in the
quality result.
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Figure 10.9: Quality Comparison of Query Semantics

On the other hand, precision slowly decreases with more repair samples, as the additional
samples provide more possibilities for each truly correct answer. Similarly to the recall results,
MayBMS has a slight advantage for small sample sizes, which decreases as the sample size
grows.

In both cases, the difference in quality results is negligible (less that 5%) and the difference
effectively disappears with larger sample sizes.

10.6 Result Probability Threshold

In some situations PRepDB may return a very large number of results, many of which may
have very low probability. In practice, the user could choose to only consider the results with
probability above a set threshold τ . For example, setting the τ = 1.0 will imitate CQA, while at
τ = 0.0 all results are considered.

In general, the user can expect τ to control the tradeoff between precision and recall. If
obtaining all the potentially clean answers is of higher priority than the false positive rate, then
τ should be set relatively low. On the other hand, if the goal is to obtain a small result set with
the least number of false positives, then τ should be set higher. Although we operate under
the assumption that nothing is known about the ground truth, in cases where a training set is
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Figure 10.10: Threshold Parameter Quality Results

available, the user is encouraged to experiment with different values for τ in order to find the
best parameter value for the desired tradeoff.

Depending on the chosen value for τ , PRepDB may still return results with varying proba-
bility values. In this case, the user may choose to rank the results according to their probability
and, in critical cases, manually choose results that make the most sense. Another possibility is
to feed the results into an analytical business procedure for which the probabilities may provide
useful statistical information.

We evaluate the quality results as we vary this threshold parameter. We run the same query
from Section 10.4 for each city, for perturbations 2%,6%,10% and average the precision and
recall results across all queries. As expected, the recall drops with higher threshold values and
approaches CQA level at 1.0, shown in Figure 10.10b. This is because more clean results get
discarded. On the other hand, as shown in Figure 10.10a, the precision rises with probability
threshold. This is because as more results are discarded, wrong results have a higher chance to
get discarded as well. However, after probability threshold of 0.8, the precision drops steeply,
as the total number of results that are considered shrinks substantially and so any errors are
amplified in the measurement.
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Chapter 11

Conclusion and Future Work

In this thesis, we proposed a framework for probabilistic queries over a set of possible repairs
to a dirty database. We described a realization of this framework as a system, with methods of
representing and storing large samples of FD repairs, as well as efficient query processing that
produces probabilistic results over the materialized repair samples. We showed empirically how
this approach can produce better quality results than alternative methods for certain queries.

An important direction for future work is to discover and define new spaces of FD repairs
that allow direct sampling and thus can be used by our proposed system. Further, it is also
important to study more deeply the probabilistic aspects of the FD repair spaces, in order to
better understand how the probabilities may relate to the ground truth.
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