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Abstract

The possible benefits of employing inerters in automotive suspensions are explored for

passenger comfort and handling. Different suspension strut designs in terms of the relative

arrangement of springs, dampers and inerters have been considered and their performance

compared with that of a conventional system. An alternate method of electrically realizing

complex mechanical circuits by using a linear motor (or a rotary motor with an appropriate

mechanism) and a shunt circuit is then proposed and evaluated for performance. However,

the performance improvement is shown from simulations to be significant only for very

stiff suspensions, unlike those in passenger vehicles. Hence, the concept is not taken up for

prototyping.

Variable damping can be implemented in suspension systems in various ways, for exam-

ple, using magneto-rheological (MR) fluids, proportional valves, or variable shunt resistance

with a linear electromagnetic motor. Hence for a generic variable damping system, a control

algorithm is developed which can provide more comfort and better handling simultaneously

compared to a passive system. After establishing through simulations that the proposed

adaptive control algorithm can demonstrate a performance better than some controllers

in prior-art, it is implemented on an actual vehicle (Cadillac STS) which is equipped with

MR dampers and several sensors. In order to maintain the controller economical so that it

is practically viable, an estimator is developed for variables which require expensive sen-

sors to measure. The characteristic of the MR damper installed in the vehicle is obtained

through tests as a 3-dimensional map relating suspension speed, input current and damp-

ing force and then used as a look-up table in the controller. Experiments to compare the

performance of different controllers are carried out on smooth and rough roads and over

speed bumps.
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Chapter 1

Introduction

The job of the suspension system in an automobile is dual: to provide a comfortable ride

to the passengers by isolating them from the road irregularities, bumps and potholes, and

to improve the road holding capacity of the vehicle thereby providing safety. The use

of suspension systems in vehicles is not new. In fact, they have been in use since the

cars were actually horse drawn carriages [3]. But still, active research has been prevalent

for the development of new and better suspension systems. One major reason for this

can be attributed to the fact that the two requirements of ride comfort and handling

which the suspension is expected to fulfill are conflicting. Figure 1.1 shows this conflicting

nature for different suspension parameters in terms of the RMS acceleration of the chassis

(comfort) and RMS dynamic tire force (handling and safety) for some particular road and

driving conditions. It can be seen that for better ride comfort (as in a Limousine), a softer

suspension (low k and d) is required but it leads to higher tire forces, hence, less safety. On

the other hand, for better handling (as in a sports car), a stiffer suspension (high k and d) is

required but it makes the ride less comfortable. A conventional suspension with a passive

spring and damper is represented by a fixed point on this conflict diagram. Numerous

efforts have been made by researchers to design a suspension system which caters to a

wide range of performance requirements with as less compromise as possible by changing

its properties during run-time like active and semi-active suspensions to give near optimal

performance. Such suspensions with variable properties have led to the design of several

control algorithms like skyhook, groundhook, clipped optimal, etc. [23, 38, 37] which offer

better results in different aspects of suspension performance. Suspensions have also been

designed by using a completely different mechanical circuit employing springs, dampers

and inerters [35]. Some progress has also been made in developing regenerative suspension

systems [22, 26, 20] which harness a part of the vibrational energy which otherwise goes

waste as heat in conventional systems.

The possible benefits of using inerters in automotive suspension systems and different
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Figure 1.1: Conflict between safety and ride comfort (for some particular road and driving
conditions).

methods to realize the mechanical circuit is still worth investigating. There are two ele-

ments of this thesis. The first element explores the idea of electrical realization of a complex

mechanical circuit of inerters and dampers in the form of a mechatronic strut and evalu-

ates its performance in terms of ride comfort and handling. Since one significant benefit

of such a mechatronic strut is the potential for an adaptive suspension system, therefore,

the second element of this thesis is the design of an adaptive controller for semi-active

suspension systems. The controller is benchmarked against some well-accepted algorithms

in prior-art, first through simulations and then by implementation on a fully instrumented

Cadillac STS equipped with variable (MR) dampers.

The structure of this thesis is as follows: Chapter 2 is literature review and background.

It reviews some of the commercially available suspension systems and then goes through the

basic concepts of a quarter-car model and introduction to inerters in automotive suspen-

sions. Then a method to model different road profiles (both frequency and time domain)

is discussed. Finally, it goes over some popular control algorithms in literature for semi-

active suspensions. Chapter 3 explores in detail the performance benefits and drawbacks

of mechanical and electrical realization of inerters using a quarter-car model with a gen-

eral admittance so as to consider complex, unconventional circuits. Chapter 4 deals with

2



the development of an adaptive semi-active control algorithm, which includes an estimator

and a self-adjusting weighting parameter. Simulations are performed for smooth, rough,

and bump profiles as road input and results are compared with skyhook and groundhook

controller and passive suspension. Chapter 5 is validation of the simulation results by

performing tests on an actual vehicle (Cadillac STS). Finally, a brief conclusion and scope

of the future of this work is provided in Chapter 6.

3



Chapter 2

Literature Review and Background

This chapter will first review some commercially available suspension systems. Then, the

basic theory behind a quarter-car model, inerters and semi-active control algorithms will

be discussed.

2.1 Semi-active suspension system

A semi-active suspension system can change the damping characteristics during run-time

but cannot provide a force input. It is represented on the conflict diagram in Figure 1.1 by

a constant stiffness line. The level of damping can either be defined by the user through an

instrumental panel like the one shown in Figure 2.1 or can be automatically controlled for

that particular state of the vehicle by an on-board CPU that takes feedback from various

sensors mounted on it.

Figure 2.1: Instrumental panel of a vehicle showing suspension control. Image reproduced
from [6].

There are several ways through which the damping can be varied in a semi-active

system. One popular product is MagneRideTM by BWI Group which uses Magneto-

Rheological (MR) fluids [11]. An MR fluid has magnetically soft (easily, but temporarily

4



magnetized) iron particles suspended in a synthetic hydrocarbon base. Application of mag-

netic field by the electromagnetic coil contained in the piston causes the particles to align

into fibrous structures thereby increasing the viscosity. Hence, varying the magnetic flux

in effect controls the viscosity of the damper. The principle of operation is depicted in

Figure 2.2.

Another method of varying the damping is by changing the orifice size, as is done in

the CDC R©-Continuous Damping Control by ZF [43]. The CDC has a proportional valve

as shown in Figure 2.3, which offers soft damping when the opening for the oil flow is

expanded and firm damping when it is restricted.

Figure 2.2: Principle of operation of MR Damper from BWI. Image reproduced from [11].

2.2 Active suspension system

Active suspension systems have been an area of immense research for more than two

decades due to their far promising features. An active suspension system consists of an

actuator (electric or hydraulic) which can inject as well as dissipate power. Coupled with

an appropriate controller, such a system can provide a performance far better than a typical

semi-active system both in terms of comfort and handling. One system developed by Bose

Corporation [22] is quite famous as the company has been working on it since 1980. This

system uses linear electromagnetic motors which replace the passive dampers and torsion

bars to suspend the static load of the vehicle. A tuned mass damper attached to each

wheel reduces the peak at the resonant frequency of the unsprung mass and keeps the

5



Figure 2.3: CDC R© damper from ZF with proportional valve zoomed-in. Image reproduced
from [43].

tire from bouncing and losing contact with the road. Since each corner of the vehicle can

be independently controlled, the roll and pitch movements can be diminished to a great

extent without using any anti-roll bars. Although the performance of this system is quite

superior to that of a conventional suspension and Bose claims that the system can recover

energy by driving the motors in generator mode and that it requires “less than a third of

the power of a typical vehicle’s air conditioner system”, the system is yet to be integrated

in a production vehicle, possibly due to high costs and power requirements.

Figure 2.4: Bose suspension front corner module and comparison of performance with a
conventional system. Image reproduced from [8].

6



(a) Dynamic Drive system from BMW using a
hydraulic rotary actuator. Image reproduced
from [5].

(b) Active Body Control from Mercedes-Benz.
Image reproduced from [13].

Figure 2.5: Hydraulic active suspension systems.

Most of the commercially available active suspensions as of now use hydraulic systems.

For instance, the Dynamic Drive from BMW [36] is an active stabilizer bar system, which

significantly reduces roll angle during cornering. The system consists of a hydraulic pump

coupled to the power steering pump, a hydraulic valve block with integrated sensors and

two active stabilizer bars with rotating hydraulic actuators, one of which is shown in

Figure 2.5a. The control unit takes lateral acceleration and steering angle as the inputs.

Mercedes-Benz has also developed a hydraulically actuated active suspension named as

Active Body Control (ABC) [13]. The core of the technology is an active hydraulic cylinder

mounted in series with the spring as depicted in Figure 2.5b, which can rapidly move in

the vertical direction by getting energised by a high pressure hydraulic pump. As a result,

ABC can change the length of each strut independently in a hundredth of a second, which

generates a counter force to compensate for the forces acting on the car. The system also

allows adjustment of the vehicle height for better aerodynamics and handling, as well as

maintaining constant ride height in changing load conditions.

An active suspension based on a tubular permanent magnet actuator has been devel-

oped in [20]. The system is a strut for McPherson suspension system consisting of a direct

drive brushless linear actuator in parallel with a passive spring and damper. Similar to the

Bose suspension, their system can apply active forces by consuming power and regenerate

power when acting as energy absorber. An LQR controller calculates the required amount

of actuator force by either measuring or estimating the state of the system. A PWM cur-

rent controlled three-phase amplifier with a dc bus voltage level of 340V (± 170V) drives

the actuator. Clearly, the 12V battery of a typical passenger vehicle is not suitable for the

7



purpose; future hybrid and fully electric vehicles might have that level of voltage available.

To overcome the heavy weight and cost associated with a linear permanent magnet

actuator, a damper and energy harvester has been developed in [26] that exploits the

compact form factor and high energy density of an electromagnetic rotary motor. The

system uses rack and pinion to convert the linear motion of the suspension into rotary

motion of the motor with a speed reduction gearbox. An arrangement of bevel gears is used

in between to transmit motion in the perpendicular direction so that the whole assembly

can be made as a retrofittable shock absorber. However, due to the highly oscillatory

motion of the suspension, and the backlash inherent in a geared system, the durability of

such a system is worth investigating, especially at high speeds and rough roads.

2.3 Quarter-car model

The suspension system is responsible for mainly three degrees of freedom of a vehicle:

heave (linear in vertical direction), pitch (rotational about lateral axis) and roll (rotational

about longitudinal axis). Quarter-car is a simplified model focusing on one wheel and an

equivalent sprung mass to study only the vertical dynamics of a vehicle assuming that all

the four wheels are decoupled, as depicted in Figure 2.6. The sprung mass ms is usually

one-fourth of the vehicle’s chassis mass, unsprung mass mu includes the mass of the wheel

and parts of suspension not resting on the spring, kp is the passive stiffness in the suspension

(which is usually from a coil spring), dp is the passive damping in the suspension (which is

usually from hydraulic or pneumatic damper) and kt is the equivalent tire stiffness. The

damping due to tire is usually small and hence neglected in most cases. zs and zu are

the vertical displacements of the sprung mass and unsprung mass respectively from the

equilibrium position. zr represents the displacement due to road surface irregularities and

it is assumed that the tire never leaves contact with the road.

2.3.1 Frequency response transfer functions

Assuming linear elements for the quarter car model, the equations of motion can be solved

to obtain certain transfer functions relating the input (road displacement zr) with variables

of interest like sprung mass displacement zs, tire deflection zu−zr and suspension deflection

zs − zu. The equation of motion of the sprung mass is given by

msz̈s = −kp(zs − zu)− dp(żs − żu) (2.1)

8
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Figure 2.6: Quarter car model for vehicle suspension.

and that for the unsprung mass is given by

muz̈u = kp(zs − zu) + dp(żs − żu)− kt(zu − zr) (2.2)

To obtain the frequency response, Laplace transformation is taken of the equations assum-

ing zero initial conditions. If the Laplace transformed variables are ẑs, ẑu, ẑr, then Eq (2.1)

and Eq (2.2) become

mss
2ẑs = −kp(ẑs − ẑu)− dps(ẑs − ẑu) (2.3)

mus
2ẑu = kp(ẑs − ẑu) + dps(ẑs − ẑu)− kt(ẑu − ẑr) (2.4)

Transmissibility ratio ẑs/ẑr defines the vibration isolation property of the suspension as it

is the response of the sprung mass (output) to the excitation from the road (input), and

is given by

Hsprung(s) =
ẑs
ẑr

=
kt(dps+ kp)

msmus4 + dp(ms +mu)s3 + ((kp + kt)ms + kpmu)s2 + ktdps+ ktkp
(2.5)

The dynamic tire deflection ratio (ẑu − ẑr)/ẑr relates the road input to tire deflection,

which is proportional to the dynamic tire force (assuming linear tire model) responsible

for vehicle handling, and is given by

Htire(s) =
ẑu − ẑr
ẑr

=
−s2(msmus

2 + dp(ms +mu)s+ kp(ms +mu))

msmus4 + dp(ms +mu)s3 + ((kp + kt)ms + kpmu)s2 + ktdps+ ktkp
(2.6)

9



The suspension travel ratio (ẑs − ẑu)/ẑr defines the suspension deflection in response to

the road excitation input, and is given by

Hsusp(s) =
ẑs − ẑu
ẑr

=
−mskts

2

msmus4 + dp(ms +mu)s3 + ((kp + kt)ms + kpmu)s2 + ktdps+ ktkp
(2.7)

The frequency response plots for the above transfer functions can be plotted in the

frequency range of interest (0-15 Hz) using the exemplary parameter values mentioned in

Table 2.1. The three plots are shown in Figure 2.7.

Table 2.1: Parameters for the quarter car model

Parameter Description Value
ms Sprung mass 400 kg
mu Unsprung mass 40 kg
kp Spring stiffness 20 000 N/m
dp Damping 2000 Ns/m
kt Tire stiffness 180 000 N/m

Since the system has two degrees of freedom, it has two natural frequencies, which can

be obtained by solving the undamped (dp = 0) characteristic equation

msmus
4 + ((kp + kt)ms + kpmu)s

2 + ktkp = 0 (2.8)

Substituting Laplace variable s as jω,

msmuω
4 − ((kp + kt)ms + kpmu)ω

2 + ktkp = 0 (2.9)

However, in view of the fact that the sprung mass and the tire stiffness are an order of

magnitude higher than the unsprung mass and spring stiffness respectively, the complicated

solution to Eq (2.9) can be simplified as

fn,s =
1

2π

√
kpkt

(kp + kt)ms

(2.10a)

fn,u =
1

2π

√
(kp + kt)

mu

(2.10b)

Substituting numerical values, fn,s = 1.06 Hz and fn,u = 11.25 Hz. The peak due to

resonance of the sprung mass is clearly visible in all the three plots between 0-2 Hz, but

the peak at the natural frequency of the unsprung mass is prominent only in the dynamic
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ẑ r

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Frequency [Hz]

T
ra

n
sm

is
si

b
il
it

y
ra

ti
o
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(ẑ
s
−
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Figure 2.7: Frequency response functions for a typical quarter car model
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tire deflection plot.

2.3.2 Inherent trade-offs

One very interesting property of the quarter car model described above is that the three

transfer functions Hsprung(s), Htire(s) and Hsusp(s) are not independent. In other words,

they are related by a constraint and fixing any one determines the other two [21]. This

can be mathematically observed by adding Eq (2.1) and Eq (2.2):

msz̈s +muz̈u = −kt(zu − zr) (2.11)

This is the basic invariant equation of the quarter car model as it does not depend on

the active or passive forces applied by the suspension system. The Laplace transform of

Eq (2.11) assuming zero initial conditions is

mss
2ẑs + (mus

2 + kt)ẑu = ktẑr (2.12)

The invariant equation can be manipulated to obtain one transfer function in terms of the

other. For instance, dividing Eq (2.12) by ẑr gives

mss
2 ẑs
ẑr

+ (mus
2 + kt)

ẑu
ẑr

= kt (2.13)

which can be manipulated to express Hsprung in terms of Htire and other system parameters

as

Hsprung = −(mus
2 + kt)Htire +mus

2

mss2
(2.14)

From the basic definitions of the three transfer functions, it can be shown that the following

identity holds

Hsusp = Hsprung −Htire − 1 (2.15)

Therefore, from Eq (2.14) and Eq (2.15), Hsusp can be obtained in terms of Htire and other

system parameters as

Hsusp = −((mu +ms)s
2 + kt)Htire + (mu +ms)s

2

mss2
(2.16)

Hence, configuring one transfer function fixes the other two. This is why a suspension

system has inherent trade-offs in performance, whether it is an active or passive system.
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2.4 Inerter

2.4.1 Introduction to inerter

An inerter is a two-terminal mechanical device which applies force between its terminals

proportional to the relative acceleration between them [35], similar to a spring and a

damper which apply force proportional to respectively the relative displacement and ve-

locity between their terminals. Inerter was first introduced by Malcom C. Smith in his

paper [35] and patented [34]. The idea originated from the extension of force-current anal-

ogy [18] for mechanical and electrical circuits where an inductor is analogous to a spring, a

resistor is to a damper and a capacitor is to inertia as shown in Table 2.2. But if the inertia

is represented simply by a mass then the fundamental definition says that the acceleration

is with respect to the mechanical ground (inertial reference frame), or, in other words, v1

is always equal to zero. This implies that a mass is equivalent to a grounded capacitor, but

there is no mechanical analogue for a general capacitor whose one terminal is not neces-

sarily grounded. This poses a restriction if it is needed to derive an equivalent mechanical

circuit from a given electrical one. Various methods have been developed [10, 14, 9] for

the synthesis of an electrical network with a given admittance (or impedance), which could

then be directly applied for mechanical network synthesis if there was an exact equivalent

for a capacitor. This thought lead Smith to the invention of the inerter.

Although a mass is not an exact analogue for a capacitor, the crux is still the elementary

property inherent in a mass - its inertia, and hence the name inerter. The governing

equation is given by

F = b(ẍ2 − ẍ1) (2.17)

which represents that the force between two mechanical terminals is proportional to the

relative acceleration between them and this proportionality constant is called inertance.

Inertance has units of kilograms (i.e., dimensions of mass).

2.4.2 First use of Inerters in suspension systems

The principle of inerter was applied for the design of suspension systems of Formula One

racing cars and first used at the 2005 Spanish Grand Prix, where it was raced by Kimi

Raikkonen who achieved a victory for McLaren [12]. During that time, the inerter was

codenamed “J-damper” by McLaren to keep the technology confidential from its competi-

tors. As the “J-damper” was delivering significant performance gains in terms of handling

and grip, there were many speculations throughout the racing community over the purpose

and functioning of the device. Finally, two articles in the Autosport magazine of May 2008

revealed the truth that the J-damper was actually the inerter invented by Smith and used
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Table 2.2: Mechanical and electrical component analogy

Mechanical Electrical
Force (through variable) Current (through variable)

F F i i

Velocity (across variable) Voltage (across variable)

v1v2 V1V2

Ground (reference) Ground (reference)

gnd
gnd

Damping F = d(v2 − v1) Resistance i =
1

R
(V2 − V1)

d

v1v2

F F

R

V1V2

i i

Stiffness
dF

dt
= k(v2 − v1) Inductance

di

dt
= 1

L
(V2 − V1)

k

v1v2

F F

L

V1V2

i i

Inertia F = m
d

dt
(v2 − v1) Capacitance i = C

d

dt
(V2 − V1)

m

v1v2

F Fm

C

V1V2

i i

by McLaren under a confidentiality agreement.

Inerters can effectively work as tuned mass dampers (TMDs) which were used in F1

races during 2005-06, but were banned later on due to safety issues and rules against

aerodynamic effects of the suspended mass [16]. TMD (or inerter) can be tuned so as to

attenuate the oscillation of the wheel at its natural frequency, thereby improving handling.

The performance benefits of suspensions employing inerters have been discussed in [33].

It is observed that only using an inerter along with a damper (either in series or parallel)
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does not show much gains. A little more complex configuration using multiple springs, a

damper and an inerter has to be used to obtain practically useful gains. Therefore, the

possibility of using inerters for passenger vehicles, which have much softer suspensions and

are always under stringent cost constraints, is still open for investigation.

2.5 Quarter car model with a general admittance

Attempts have been made in literature to design suspensions with a complex mechanical

network consisting of springs, dampers and inerters, as well as mechatronic suspension

strut employing a rotary motor [40, 26]. In order to analyze such systems and obtain their

frequency response functions, it would be easier to consider a quarter car model with a

general admittance Y(s) as shown in Figure 2.8. The admittance of common components

is given in Table 2.3.

mu

ms

kt

zs

zu

zr

Y (s)

Figure 2.8: Quarter car model with a general
admittance

Table 2.3: Mechanical admittance of
common components

Component Admittance Y(s)

Spring kp
kp
s

Damper dp dp
Inerter b bs

Given any mechanical network, the equivalent admittance can be calculated similar to

an electric circuit, i.e, for components in parallel, the admittances are directly added and

for components in series, the reciprocals of admittances are added.

Yparallel = Y1 + Y2 (2.18a)

1

Yseries
=

1

Y1

+
1

Y2

(2.18b)

The equations of motion, thus, can be rewritten as

mss
2ẑs = −Y(s) (ẑs − ẑu) (2.19)
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mus
2ẑu = Y(s) (ẑs − ẑu)− kt(ẑu − ẑr) (2.20)

and the transfer functions become

Hsprung(s) =
ẑs
ẑr

=
ktY(s)

msmus3 + (ms +mu)s2Y(s) + ktmss+ ktY(s)
(2.21)

Htire(s) =
ẑu − ẑr
ẑr

=
−s2(msmus+ (ms +mu)Y(s))

msmus3 + (ms +mu)s2Y(s) + ktmss+ ktY(s)
(2.22)

Hsusp(s) =
ẑs − ẑu
ẑr

=
−mskts

msmus3 + (ms +mu)s2Y(s) + ktmss+ ktY(s)
(2.23)

2.6 Modeling road profiles

2.6.1 Frequency domain (ISO classification)

The disturbance arising due to road irregularities is completely random, but any random

function can be characterised by its power spectral density (PSD) function [42]. Various

organizations have attempted to classify roads on the basis of roughness. The International

Organization for Standardization (ISO) has proposed a road roughness classification based

on power spectral density, documented as ISO8608 [2]. As shown in Figure 2.9, the ISO

classification approximates the relationship between the power spectral density Sg(Ω) and

the spatial frequency Ω for different classes of roads by two straight lines with slopes -1.5

and -2.0 on a log-log scale. Mathematically, it can be represented as follows:

Sg(Ω) =


Sg(Ω0)

(
Ω

Ω0

)−2.0

for Ω ≤ Ω0 =
1

2π
cycles/m

Sg(Ω0)

(
Ω

Ω0

)−1.5

for Ω > Ω0 =
1

2π
cycles/m

(2.24)

where the range of values of Sg(Ω0) for different classes of road is given in Table 2.4.

Since the vibration of a vehicle is a temporal phenomenon (function of time), the power

spectral density of surface profiles are more conveniently expressed in terms of the temporal

frequency f [Hz] rather than the spatial frequency Ω [cycles/m]. The speed of the vehicle

V [m/s] relates the two frequencies and PSDs as:

f [Hz] = Ω[cycles/m] V [m/s] (2.25a)

Sg(f)[m2/cycles/m] =
Sg(Ω)

V
[m2/Hz] (2.25b)

Therefore, the power spectral density of a particular road profile while moving at a speed
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Table 2.4: Road roughness classification proposed by ISO

Degree of Roughness Sg(Ω0), 10−6m2/cycles/m
Road Class Range Geometric Mean
A (Very Good) < 8 4
B (Good) 8-32 16
C (Average) 32-128 64
D (Poor) 128-512 256
E (Very Poor) 512-2048 1024
F 2048-8192 4096
G 8192-32768 16384
H > 32768 65536
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Road Classification by ISO

Figure 2.9: Road roughness classification proposed by ISO.

of V [m/s] can be mathematically represented as a function of temporal frequency as

Sg(f) =


Sg(Ω0)

V

(
2πf

V

)−2.0

for f ≤ f0 =
V

2π
Hz

Sg(Ω0)

V

(
2πf

V

)−1.5

for f > f0 =
V

2π
Hz

(2.26)
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2.6.2 Time domain

For complicated systems, or switched controllers (Chapter 4) which might not have an easy

closed form solution in frequency domain, it would be useful to model different road profiles

(both stochastic and singular bumps) in time domain. This will later help in simulating

the response of a system with different controllers using a physical modeling software like

Simulink or MapleSim.

Since the road disturbance is a random process such that the relation between the

power spectral density and spatial frequency on a log-log scale has slope −2 for a major

part of it, it can be approximately modeled as constant K times integrated white noise.

The constant parameter is assigned such that the power spectral density of the modeled

signal closely resembles with that of the ISO8608 specification.

zr(s) =
K

s
w(s) (2.27)

where w(s) is white noise signal. If the PSD of the white noise signal is unity, then it can

be shown easily that K =
√
Sg(Ω0)V .
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(a) Power spectral density of two modeled road profiles with their ISO spec-
ified counterpart

Figure 2.10: Modeling different road profiles in time domain (cont.)

Figure 2.10a shows the PSDs of modeled type-A and type-C roads compared with their

ISO specification and Figure 2.10b shows how the profiles vary as a function of time (for

vehicle speed of 20 m/s).
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Figure 2.10: Modeling different road profiles in time domain
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Figure 2.11: Model of a road bump as a function of time (for V=10 m/s)

Apart from stochastic road excitation signals, singular disturbance event like a bump

is also generally used as a standard input for evaluating the performance of a suspension

system. As given in [17], a simple model for a bump can be

zr =

hb
(

1− cos

(
2πV (t− t0)

Lb

))
for t0 ≤ t ≤ Lb

V
+ t0

0 otherwise

(2.28)

where hb[m] is half the bump height, Lb[m] is the length of the bump and t0[s] is the time

instant when the bump starts. For a vehicle speed of 10 m/s, an exemplary bump model
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with height 6 cm is shown in Figure 2.11.

2.7 Semi-active and adaptive control algorithms

2.7.1 Control algorithms in prior-art

It was mentioned in Section 2.1 that semi-active active suspensions have been around

for quite a while. To get the maximum benefit out of a variable damping system, var-

ious control algorithms have also been proposed. A semi-active control algorithm varies

the damping in order to obtain either better comfort, or handling, or both (with weights

assigned to each). An adaptive control algorithm accounts for the variation in system

parameters (if it is significant, see Section 4.1) and the assignment of weights to the per-

formance criteria. Some of the widely popular control algorithms in literature are discussed

below.

Skyhook control : Introduced by Karnopp et al.[23], it is one of the most popular comfort

oriented control strategies. Originally developed for a single degree of freedom quarter-car

model (no unsprung mass), it tries to emulate a fictitious damper dsky attached between

the sprung mass and the stationary sky so that its movement is minimized thereby max-

imizing comfort. However, since it is practically realized by a damper mounted between

the sprung and the unsprung mass which can only apply force in the direction opposite

to the relative velocity between them, the damping force is assumed to be zero when the

passivity constraint is violated. Mathematically, it can be expressed as

Fd =

{
−dskyżs for żs(żs − żu) ≥ 0

0 for żs(żs − żu) < 0
(2.29)

Although it is a switched system, it is assumed that the damping force can take any

arbitrary value within some bounds. For systems which cannot vary the damping force in

a continuous manner, a simplified Skyhook strategy with on-off control is also sometimes

used.

d =

{
dmax for żs(żs − żu) ≥ 0

dmin for żs(żs − żu) < 0
(2.30)

The skyhook control strategy greatly attenuates the motion of the sprung mass. However,

when implemented to a little more realistic two degree of freedom model, this technique

leads to extreme vibrations of the unsprung mass (wheel hop) and high dynamic tire forces,

which deteriorates vehicle stability.

Groundhook control : Analogous to the skyhook algorithm, the groundhook control

algorithm [38] tries to attenuate the dynamic tire force by emulating a fictitious damper
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dgnd attached between the unsprung mass and a static frame on the ground.

Fd =

{
dgndżu for żu(żs − żu) ≤ 0

0 for żu(żs − żu) > 0
(2.31)

Rakheja-Sankar (R-S) control : This control strategy introduced by Rakheja and Sankar

[29] is quite simple and intuitively evident from the equation of motion of the sprung mass,

Eq (2.1). To reduce the acceleration of the sprung mass, which is the basic comfort

criterion, the damping force must be equal and opposite to the force applied by the spring.

Again, due to the passivity constraint, the damping force is assumed to be zero when the

relative velocity and displacement are in the same direction. Mathematically, the control

scheme can be expressed as

Fd =

{
kp(zs − zu) for (zs − zu)(żs − żu) ≤ 0

0 for (zs − zu)(żs − żu) > 0
(2.32)

Similar to skyhook control, a simplified version of R-S control strategy is sometimes used

for systems which can only have two discrete states

d =

{
dmax for (zs − zu)(żs − żu) ≤ 0

dmin for (zs − zu)(żs − żu) > 0
(2.33)

The R-S control scheme is easy to implement as only a relative displacement sensor is

required. This is also a comfort oriented strategy, and is susceptible to high dynamic tire

force.

Clipped optimal control : In this control scheme, first an optimal controller is designed

using techniques like LQR or LQG, to generate the optimal control force Fa which is

assumed to take any arbitrary value [37], i.e, can act as an actuator as well as an energy

dissipater. Then the passivity constraint is invoked to “clip” the force when it needs to

inject power. It can be expressed mathematically as

Fd =

{
0 if Fa(żs − żu) > 0 (Power needs to be supplied)

Fa if Fa(żs − żu) ≤ 0 (Power is dissipated)
(2.34)

where Fa is the actuator force that would be optimally required if the system was fully

active. It should be noted here that the term “optimal” is described in the performance

index sense, which is defined by the designer as per requirement. The performance index

might consist of cost on sprung mass movement, tire deflection, suspension deflection and

input force, with weights assigned to each. The numerical value of the performance index,
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as such, has no physical significance.

With this theoretical background at hand, the next chapter will evaluate the perfor-

mance of some unconventional suspension designs. After defining cost functions for comfort

and handling, the suspension parameters will be optimized to minimize those cost func-

tions.
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Chapter 3

Suspension Employing Inerters:

Design, Optimization and Results

In this chapter, different suspension designs have been considered from the perspective

of physical configuration of the elements like spring, damper and inerter for simple pas-

sive mechanical struts, and a motor with corresponding electronic elements for passive

mechatronic struts, and then the values of those elements (effectively the admittance)

have been optimized for comfort, handling and both (multi-objective optimization). But

before moving on to optimization, it should be seen how the cost functions to be optimized

can be defined for comfort and handling, considering a quarter car model with a general

admittance (which was described in Section 2.5). Since a passive system with a known

admittance Y (s) offers a closed form solution for frequency response transfer functions, the

cost functions will be defined using the road profile models in frequency domain (ISO8608

[2]).

3.1 Defining cost functions - Performance evaluation

of a suspension system

As discussed before, the performance of a suspension system is evaluated mainly in terms

of two criteria: ride comfort and handling. The third criteria, suspension travel, is more

like a constraint. In other words, the suspension travel is allowed to take any value as long

as it is confined within some bounds so that the hard stop bumps are not hit frequently.

The frequency response functions Hsprung and Htire, as mentioned in previous sections,

give a qualitative idea of the ride and handling. However, these performance criteria need

to be defined quantitatively by some cost functions so that the suspension can be optimally

designed to keep those costs minimum. Since the road excitation is a stochastic process, so
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are the quantities like acceleration of the sprung mass and the dynamic tire forces. Also,

the acceleration of the sprung mass needs to be related to the perception of comfort for a

human body. Hence, the cost (or objective function) for handling is generally defined as

the RMS tire force, and for the ride comfort is the frequency weighted RMS acceleration

of the sprung mass as recommended in ISO 2631.

Human body is more sensitive to a certain frequency band, and vibrations of different

frequencies produce different effects on human body. For instance, oscillations in the range

of 0.1-0.5 Hz are responsible for motion sickness. Taking all these factors into account,

ISO has recommended a filter which assigns weights to the RMS acceleration based on its

frequency content. The filter is shown in Figure 3.1 and the details are available in [1].
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Figure 3.1: Frequency weighting filter for human comfort proposed by ISO.

In random vibrations such as road conditions, the mean square value of the amplitude

is of more interest as it is associated with the average energy. If a random signal z(x) has

power spectral density S(Ω), then its mean square value is given by

z2 =

∫ ∞
0

S(Ω) dΩ (3.1)

and the mean square value of z(x) in a particular frequency band of interest Ω1 − Ω2 is

given by

z2
Ω1−Ω2

=

∫ Ω2

Ω1

S(Ω) dΩ (3.2)

It has been established before that the vehicle system is characterized by certain transfer

functions (Hsprung, Htire, etc) which relate the input representing road surface irregulari-

ties with the output representing quantities of interest in the vehicle. Given any general

frequency response transfer function H(s), the input zr(t) and output zv(t) which are
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functions of time, are related by the modulus of the transfer function

zv(t) = |H(f)|zr(t) (3.3)

On similar lines, the mean square values of the input and output are related as

z2
v(t) = |H(f)|2z2

r (t) (3.4)

From the definition of power spectral density and the relationship in Eq (3.4), the power

spectral density of input Sg(f) and of output Sv(f) are related as

Sv(f) = |H(f)|2Sg(f) (3.5)

Since the power spectral density of a road with a particular roughness has been defined

in ISO8608, the power spectral density of any quantity of interest can be calculated using

Eq (3.5), provided an appropriate transfer function H(f) is used, and then its mean square

value in a particular frequency range can be obtained using Eq (3.2).

Calculating mean square dynamic tire force

The transfer function from road displacement to dynamic tire force is given by kt(ẑu−ẑr)/ẑr
= ktHtire. Therefore, the power spectral density of dynamic tire force as a function of

temporal frequency is

Stire,F (f) = |ktHtire(f)|2Sg(f) (3.6)

If the speed of the vehicle is V , the mean square tire force in the frequency range (f1− f2)

(assuming f1 < V/(2π) and f2 > V/(2π)) is

F 2
tire =

∫ f2

f1

Stire,F (f) df

=

∫ f2

f1

∣∣∣ktHtire(f)
∣∣∣2Sg(f) df

F 2
tire =

∫ V/(2π)

f1

∣∣∣ktHtire(f)
∣∣∣2Sg(Ω0)

V

(
2πf

V

)−2.0

df

+

∫ f2

V/(2π)

∣∣∣ktHtire(f)
∣∣∣2Sg(Ω0)

V

(
2πf

V

)−1.5

df (3.7)

RMS tire force, Ftire,RMS =

√
F 2
tire (3.8)

where the values of Sg(Ω0) are available in Table 2.4 for different road conditions.
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Calculating comfort weighted mean square acceleration

In the transmissibility ratio Hsprung, both the input and output have the same dimensions

(displacement, speed or acceleration). However, generally the input from the road surface

is measured in terms of displacement (road profile elevation) and the acceleration of the

sprung mass is measured as output; a new transfer function from road displacement to the

acceleration of the sprung mass needs to be defined as

Hacc(s) = s2 ẑs
ẑr

⇒ Hacc(s) = s2Hsprung(s)

⇒ |Hacc(f)| = (2πf)2|Hsprung(f)| (3.9)

If the frequency weighting filter for human comfort proposed in ISO2631 is Q2631(f), the

transfer function from road zr to weighted acceleration of the sprung mass (or comfort

criterion) is given by

|Hcomf (f)| = |Q2631(f)Hacc(f)| (3.10)

⇒ |Hcomf (f)| = (2πf)2|Q2631(f)Hsprung(f)| (3.11)

Similar to the calculation of mean square dynamic tire force, the mean square weighted

acceleration can be calculated. The power spectral density of the weighted acceleration is

Scomf (f) = |Hcomf (f)|2Sg(f) (3.12)

So, the mean square weighted acceleration in the frequency range (f1 − f2)[Hz] (assuming

f1 < V/(2π) and f2 > V/(2π)) can be calculated as

a2
comf =

∫ f2

f1

Scomf (f) df

=

∫ f2

f1

∣∣∣Hcomf (f)
∣∣∣2Sg(f) df

=

∫ f2

f1

(2πf)4
∣∣∣Q2631(f)Hsprung(f)

∣∣∣2Sg(f) df

a2
comf =

∫ V/(2π)

f1

(2πf)4
∣∣∣Q2631(f)Hsprung(f)

∣∣∣2Sg(Ω0)

V

(
2πf

V

)−2.0

df

+

∫ f2

V/(2π)

(2πf)4
∣∣∣Q2631(f)Hsprung(f)

∣∣∣2Sg(Ω0)

V

(
2πf

V

)−1.5

df (3.13)
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Comfort weighted RMS chassis acceleration, acomf,RMS =
√
a2
comf (3.14)

Therefore, from Eq (3.7) and Eq (3.13), the two most important performance criteria for

the evaluation of suspension performance have been quantified which can now be used as

objective functions to optimize a given suspension design.

One interesting property which can be observed in Eq (3.7) and Eq (3.13) is that the

only parameter defining road conditions is Sg(Ω0) which can be taken out of the integral

and the mean square value(s) would finally appear as a constant (Sg(Ω0)) multiple of a

function of other variables like suspension admittance Y (s) and speed V . This implies that

the optimum value of the suspension admittance is independent of the road surface; the

value of the objective function just gets scaled according to the road surface parameter.

Moreover, although the speed V appears as a variable in the integral, it will be shown by

numerical examples that the variation in optimum admittance for different speeds is negli-

gible. Consequently, any typical driving and road conditions can be selected for obtaining

the optimum admittance of a suspension system, without the need of considering different

cases for them.

3.2 Passive mechanical suspension struts

3.2.1 Realizing a passive mechanical inerter

Any device which satisfies this mathematical property of Eq (2.17) can be termed as an

inerter, but to be used in a suspension system, certain practical aspects need to fulfilled, viz.

should have small overall mass (preferably independent of the value of inertance required),

finite linear travel, no attachment with the physical ground and should be compact. One

simple method to accomplish that as in [34] is to convert the relative linear motion between

the two terminals into the rotary motion of a flywheel by using rack-pinion or a ball screw.

There may or may not be a gear assembly before the flywheel as required.

F F

Nut

Screw

Flywheel
Gear ratio 1 : r

x2 x1

Figure 3.2: Schematic of an inerter using Screw mechanism.

A mechanism is considered that has a flywheel with rotational inertia J [kg m2], a ball
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screw with lead l [m/rev] (gear ratio l [m/rev] for rack and pinion), a gear ratio of 1 : r

between the nut (or the pinion) and the flywheel and relative acceleration between the

two terminals is (ẍ2 − ẍ1) [m/s2] as depicted in Figure 3.2. Assuming that the rotational

inertia of the screw and other gears is negligible compared to that of the flywheel, angular

acceleration [rad/s2] and angular velocity [rad/s] of the flywheel is given by

α =
2π

l
r(ẍ2 − ẍ1) (3.15a)

ω =
2π

l
r(ẋ2 − ẋ1) (3.15b)

By conservation of energy, the power input through linear motion should be equal to the

power output through rotational motion, therefore,

F (ẋ2 − ẋ1) = Tω

⇒ F (ẋ2 − ẋ1) = J
2π

l
r(ẍ2 − ẍ1)

2π

l
r(ẋ2 − ẋ1)

⇒ F =

(
2π

l
r

)2

J(ẍ2 − ẍ1) (3.16)

and comparing it with Eq (2.17), inertance can be obtained as

b =

(
2π

l
r

)2

J (3.17)

Although there would be some inertial effects due to the linear motion of the masses of

the flywheel and gears, that can be neglected if the inertance b is quite higher than that

mass. This is also usually done in the case of spring and damper.

3.2.2 Suspension configurations used in optimization

For the purpose of evaluating the performance of a quarter car model with a complex

mechanical circuit consisting of springs, dampers and inerters, an inerter can be considered

as just a device with admittance bs, without going into the details of what mechanism is

actually used to realize it, and using general admittance Y (s) as in Section 2.5.

The stiffness of the major spring which holds the static mass of the vehicle, is varied

in fixed steps, and the objective function is optimized for each value of static stiffness,

the variables being rest of the components constituting the admittance. This way, a clear

picture is obtained as to how a particular strut design works for different suspension stiff-

nesses. The static stiffness can be considered as a characterization of the type of the car;

softer suspensions are found in comfortable sedans while the suspensions in sports cars are
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relatively stiffer. In this study, the stiffness has been varied from 10 kN/m to 100 kN/m

in steps of 10 kN/m and optimization is performed for each stiffness value. This range of

stiffness encompasses a major class of road vehicles [28]. The optimization has been carried

out individually for the two objective functions, viz. comfort weighted RMS acceleration of

the sprung mass and RMS tire force. Practically, however, a suspension is rarely designed

directed towards only one objective. To obtain an idea of the performance of the suspen-

sion over the whole span between the two extremes in the form of a pareto-front (also

known as carpet plot) and visualize the conflict between ride and comfort, multi-objective

optimization has been carried out. In order to avoid large number of redundant carpet

plots, for multi-objective optimization, only a couple of stiffness values are considered.

Other parameters are fixed to be constant as given in Table 3.1. For all the cases taken

up in the following sections, the driving condition has been selected as a constant speed of

V = 25 m/s on a type B road, unless mentioned otherwise. The frequency range (f1, f2) has

been chosen to be 0.001− 100 Hz. If there is no restriction on the number of components

Table 3.1: Constants defining properties of the quarter-car model used in optimization

Symbol Description Value
ms Sprung mass (quarter) 400 kg
mu Unsprung mass 40 kg
kt Tire stiffness 180 000 N/m
V Vehicle speed 25 m/s

Sg(Ω0) Road roughness parameter 16× 10−6 m2/cycle/m

used in a strut, infinitely many designs are possible. However, it is almost impractical to

use multiple dampers or inerters due to their complexity, weight and cost. Using a couple

of springs, on the other hand, is something which can be investigated. Therefore, to con-

sider designs that have potential for practical implementation, the number of components

in this research have been restricted to a maximum of two springs, one damper and one

inerter, and a minimum of one spring and one damper. If two springs are used, then out

of the two, one is responsible for providing static stiffness to the vehicle, and hence, is not

considered as a variable.

One spring and one damper

The simplest and most commonly used configuration of suspension strut used in passenger

cars is the parallel spring-damper, which has been discussed several times in previous
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chapters. The admittance is given by

Y1(s) =
kp
s

+ dp (3.18)

The only variable here is the damping dp, and an optimal value exists for each performance

mu

ms

kp dp

kt

zs

zu

zr

Figure 3.3: Suspension with a spring and a damper in parallel (Y1)

criterion for a particular static stiffness kp. The values of objective functions and the pareto-

front obtained from this design will be used as references for evaluating the performance

of other strut designs.

One spring, one damper and one inerter

If an inerter is also used along with a damper, then the two can either be in parallel, as

shown in Figure 3.4a, and with admittance

Y2(s) =
kp
s

+ dp + bps (3.19)

or in series, as shown in Figure 3.4b, and with admittance

Y3(s) =
kp
s

+
1

1

dp
+

1

bps

(3.20)

The variables here are damping dp and inertance bp, whose optimal values are found

for each value of kp to minimize a given cost function.
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bp

(a) Damper and inerter in
parallel (Y2)

mu

ms

kp

dp

kt

zs

zu

zr

bp

(b) Damper and inerter in
series (Y3)

Figure 3.4: Suspension with a spring, a damper and an inerter

Two springs, one damper and one inerter

Two layouts have been considered using multiple springs - one where the second spring is

in series with a parallel arrangement of a damper and an inerter as shown in Figure 3.5a,

thereby having admittance

Y4(s) =
kp
s

+
1

s

k2

+
1

bps+ dp

(3.21)

and other where the second spring, a damper and an inerter are all in series as shown in

Figure 3.5b, and thus having admittance

Y5(s) =
kp
s

+
1

s

k2

+
1

dp
+

1

bps

(3.22)

The variables here are damping dp, inertance bp and second spring stiffness k2, whose

optimal values are found for each value of kp to minimize a given cost function.

3.2.3 Optimization results

Single objective optimization was done individually for comfort and handling considering

weighted RMS acceleration of the spring mass and RMS dynamic tire force as the cost

functions respectively, for ten values of static stiffnesses (10 kN/m to 100 kN/m). Multi-
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(a) Another spring in series
with a damper and inerter
in parallel (Y4)

mu

ms

kp dp

kt

zs

zu

zr

bp

k2

(b) Another spring, a
damper and an inerter in
series (Y5)

Figure 3.5: Suspension with two springs, a damper and an inerter

objective optimization, which tries to optimize both the cost functions simultaneously and

eventually finds a pareto-front, was done to obtain the performance of the suspension over

the whole span between the two extreme criteria.

Some predefined functions available in the Optimization Toolbox of MATLAB were

utilized for optimization. The “interior point” algorithm with “fmincon” solver was used

for single objective, and the “gamultiobj” solver which is based on Genetic Algorithm was

used for multiple objectives.

Figure 3.6a shows the variation of optimal cost function with static stiffness when

the five suspension configurations are optimized for comfort, and Figure 3.6b shows their

performance in terms of the percentage improvement over the conventional spring-damper

system (admittance Y1(s)). It is observed that configurations Y2 and Y4 show around 9%

improvement for lower static stiffness which is characteristic of passenger cars, while all

four designs improve comfort by around 6% for higher static stiffness, which is property

of sports cars. Y3 and Y5 don’t have a significant effect on improving comfort in softer

suspensions.

The results for optimized dynamic tire loads are shown in Figure 3.7a and 3.7b. While

the design Y2 shows almost zero improvement in handling throughout the static stiffness

range, Y4 and Y5 improve it by about 5-6% if used with a softer static stiffness. In the

stiffer range, Y5 and Y3 respectively provide 8% and 6% better handling compared to the
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baseline of Y1. The performance of Y4 degrades with increase in static stiffness while Y3

has negligible improvement in comfort for softer suspensions

Figure 3.8a shows the optimal variable values for the five suspension designs that pro-

vide maximum comfort. Only damping and inertance has been shown as the value of

optimal k2 (for Y4 and Y5) is of the order of 107 [N/m] or higher, which is practically

meaningless (effectively a rigid body). It is seen that with the increase in static stiffness,

the damping required to provide maximum comfort also increases for all five designs. The

value of optimal inertance, also, increases with more stiffness in suspension. However, there

is a huge difference in the value optimal inertance between the four designs. While Y3 and

Y5 require inertance in the range of 250 kg to 450 kg (depending on the static stiffness),

the inertance required in designs Y2 and Y4 is close to zero for softer springs and has a low

value of less than 50 kg for stiffer ones.

The optimal variable values corresponding to minimum dynamic tire loads are shown

in Figure 3.8b. After a negligible drop in the optimal damping for low static stiffness,

it is generally required to increase the damping with stiffer suspensions to obtain better

handling. The effect of inertance on dynamic tire load is quite interesting. While it has

absolutely no effect in design Y2 and a very low value is required in Y4, an arbitrarily high

value of inertance is required in Y3 and Y5 to optimize handling for low static stiffness

systems. Realistically achievable values of inertance in Y3 and Y5 are obtained only for

medium to high static stiffness systems. The spring rate of k2 in Y4 and Y5 is of the order

of 105 [N/m], which seems to be practical.

The optimization results have also been tabulated in Table 3.2 for a particular case,

where static stiffness kp = 40 000 N/m.

Table 3.2: Optimization results for kp=40 000 N/m

Objective Strut Optimal % improv. Optimal variables
function admittance value in obj. fn. [N s/m] [kg] [N/m]
acomf,RMS Y1 0.539 - dp=1080

[m/s2] Y2 0.497 7.8% dp=866 bp=10
Y3 0.527 2.2% dp=1143 bp=329
Y4 0.497 7.8% dp=866 bp=10 k2 →∞
Y5 0.528 2.1% dp=1139 bp=327 k2=2× 107

Ftire,RMS Y1 423 - dp=2923
[N] Y2 423 0% dp=2923 bp=0

Y3 417 1.2% dp=3018 bp=767
Y4 407 3.7% dp=2850 bp=20 k2=2.8× 105

Y5 398 5.8% dp=3410 bp=524 k2=3.9× 105

Figure 3.9 shows the performance of the different suspension designs for a particular
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static stiffness of kp = 40 000 N/m in the form of pareto-fronts obtained from multi-objective

optimization. Going towards left on the x-axis implies more comfort, while moving down

on the y-axis means better handling. Each point on the pareto-front corresponds to a

particular set of values for the variables at hand (dp, bp and k2, depending on the strut

design) which demonstrate a performance defined by the position of that point. It is

observed that Y4 can provide a wide operation range, but with improvement in comfort

and handling only in the extreme cases. For a practical situation of a passenger vehicle

where both the criteria are given equal weight, corresponding to the middle portion of

the curve, Y4 has similar performance as the conventional Y1. Likewise, Y2 is beneficial if

comfort is the only criterion. Although Y3 and Y5 show improvement over Y1 throughout

the range of the pareto front, it is less than 5%.
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Figure 3.6: Optimization of comfort for different mechanical suspension struts and static
stiffness
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Figure 3.7: Optimization of dynamic tire loads (handling) for different mechanical suspen-
sion struts and static stiffness
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Figure 3.8: Variable values for optimal performance criteria for different mechanical sus-
pension struts and static stiffness
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Figure 3.9: Pareto-fronts from multi-objective optimization for kp=40 000 N/m

3.3 Mechatronic suspension struts

It is evident from the previous section that better performance can be achieved from a

passive suspension system by using a mechanical circuit consisting of springs, dampers

and inerters. Although circuits not more complex than that with two springs, one damper

and one inerter were evaluated, it has been shown in [33] that even better performance

can be obtained by using more components, for instance four springs, one damper and one

inerter. Hence, it is worth exploring suspension struts with more complicated admittances

for possible benefits. However, it is something quite understandable that using those struts

might not be practical due to increased cost and weight.

A plausible solution to realize complex mechanical admittances for suspension struts

without actually using the real bulky components is to invoke the electrical-mechanical

analogy (Table 2.2) again. A mechanical component can be realized by using its electrical

analogue connected to a linear electromagnetic motor. This might seem bulkier for a

single component, but its true potential is exploited when a complex mechanical system is

replaced by an equivalent electrical circuit, which is definitely easy to construct and light

weight.

For instance, a case is considered where a resistance R is connected to an ideal linear

electromagnetic motor with force constant Ki [N/A] and back-emf constant Ke [V s/m].

If the relative speed between the stator and the shaft is Vz(t) [m/s], then a voltage is
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generated across the terminals of the motor, equal to

e(t) = KeVz(t) (3.23)

The current through the resistor is

i(t) =
KeVz(t)

R
(3.24)

The motor then applies a force equal to

F (t) = Kii(t) =
KiKe

R
Vz(t) (3.25)

Hence, comparing it with the equation of an ideal viscous damper, it can be said that the

system acts like a damper with d = KiKe/R. Similar relations can be established for other

components as well, and the force applied by the motor with a general impedance Z(s)

shunted across it terminals can be given in Laplace domain by

F (s) =
KiKe

Z(s)
V̂z(s) (3.26)

or, in other words, the equivalent mechanical admittance obtained is

Y (s) =
KiKe

Z(s)
(3.27)

This approach offers multiple advantages, such as

• Simpler construction compared to a system of actual mechanical components.

• Due to complexity of damper and inerter, the available literature work limits the me-

chanical circuits to one damper and inerter, whereas using electromagnetic actuator,

any number if dampers (R) and inerters (C) can be added.

• By using variable impedance, the properties of the suspension can be easily varied

online to realise an adaptive system.

• Power is regenerated

• Active force can be applied for high-end cars.

All these potential benefits seem to be quite promising. Now the crux of practical im-

plementing the idea is realization of a linear electromagnetic motor. One solution is to

simply use a commercially available linear motor. However, it has issues like high cost,
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heavy weight and low energy density [26, 31]. Since rotary motor can provide more energy

in a smaller form factor and is comparatively cheaper, another solution is to use a rotary

motor with a mechanism like ball screw to convert the linear motion of the suspension to

the motor’s rotary motion as depicted in Figure 3.10. This idea will be explored in detail

in the subsequent sections.

Coupler Motor

x1x2

Nut Screw

Z(s)

Figure 3.10: Schematic of a suspension strut using a ball screw mechanism and a rotary
motor with shunt impedance Z(s)

M

Re

Ki

Le

Z(s)
Jm dm

Ke

Figure 3.11: Schematic of the motor with shunt impedance Z(s)

Any motor has an inherent electrical resistance Re [Ω], inductance Le [H], viscous

damping dm [N m s/rad] and rotor inertia Jm [kg m2] (including screw). Considering the

effect of these, along with that of the the ball screw mechanism of lead l [m/rev] will modify

the effective mechanical admittance from that in Eq (3.27) to

Y (s) =
kp
s

+

(
2π

l

)2(
Jms+ dm +

KiKe

Re + Les+ Z(s)

)
(3.28)

Figure 3.11 models a simple rotary motor with shunt impedance Z(s). A motor with

constant parameters as in Table 3.3 has been selected for the design. Different electri-

cal circuits with equivalent impedances Z(s) as shown in Figure 3.12a and 3.12b will

be evaluated for performance by optimizing the values of the electrical components and

benchmarked against the simple spring-damper system (Y1(s)).
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R C

Z(s)
(b) Resistor and capacitor
in series (YS2)

Figure 3.12: Shunt circuits

For simplicity, only two shunts circuits consisting of a resistor and a capacitor were

considered just as a proof of concept. For the two in parallel, the impedance Z(s) in

Eq (3.28) is given by

Z(s) =
R

RCs+ 1
(3.29)

and for them in series,

Z(s) = R +
1

Cs
(3.30)

Table 3.3: Parameters (constants) of the motor and screw used

Symbol Description Value
Jm Inertia 1.515× 10−4 kg m2

Ki Torque constant 0.214 N m/A
Ke Back-emf constant 0.214 V s/rad
Pm Rated power 250 W
Le Armature inductance 4.58× 10−4 H
Re Armature resistance 1.06 Ω
dm Viscous damping 1.012× 10−4 N m s/rad
l Screw lead 0.02 m/rev

3.3.1 Optimization results

With Eq 3.28, the admittance Y (s) of this mechatronic suspension strut can be calculated

for a given impedance Z(s). Obtaining cost functions for comfort and handling for any

given admittance has already been described in Section 3.1. Using the same procedure

and MATLAB functions as in Section 3.2.3, single objective optimization is performed for

different static stiffness values (10 kN/m to 100 kN/m), with the variables being the electric

components R and C in this case.
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The results for optimized comfort are shown in Figure 3.13a. It is seen that the per-

formance of both YS1 and YS2 is actually degraded compared to Y1 if the static stiffness is

less than 30 kN/m. For medium to stiffnesses, YS1 can provide 6-8% improvement while

YS2 can show around 9% improvement in comfort. Figure 3.14a shows the results for op-

timized handling. It is observed that compared to Y1, both YS1 and YS2 show a degraded

performance for static stiffness ranging from low to as high as 60 kN/m. Even for very

high stiffnesses, the improvement is nominal at 4%, and both the circuits have almost

similar performance. Hence for both the circuits, a decent improvement is obtained only

in the high static stiffness region; for lower static stiffnesses similar to that found in most

passenger cars, the performance can actually degrade. It is also observed that the series

configuration is slightly better than the parallel one

Each point on the pareto-front for YS1 and YS2 in Figure 3.15 and 3.16 obtained from

multi-objective optimization corresponds to a particular set of values for R and C which

lead to that specific acomf,RMS and Ftire,RMS defined by that point’s position. The pareto-

fronts provide a clear comparison of the performance of the shunted system with the

conventional spring-damper one. For static stiffness of kp = 40 kN/m, although the shunted

mechatronic struts show better comfort, but that is at the cost of very high dynamic tire

force. For a major portion of the curve, their performance is worse. However, if the static

stiffness is very high (for example, kp = 100 kN/m), then the performance improvement of

YS1 and YS2 over Y1 is quite substantial.

The drastic change in the performance of this mechatronic strut compared to the ideal

mechanical circuits in last section can be attributed to the inertia of the rotor and resistance

of the motor coils. These values are so dominant that changing the shunt impedance circuit

to a more complex one has almost negligible effect on the performance, and the optimized

cost function hovers around the values obtained for simple designs YS1 and YS2. The results

for those complex circuits are omitted to avoid redundancy.

For stiffer suspensions, the shunted mechatronic strut provides better performance

throughout the range of the pareto-front. This means that an adaptive system which

maintains the operating point on the pareto-front will deliver an improved ride and han-

dling simultaneously. However, since the results are good only for very stiff systems, a

prototype was not constructed as it would not be applicable to passenger vehicles. There-

fore, a generalized adaptive controller will be developed in the next chapter which can be

implemented on any system with an energy dissipating device, with or without inertance.
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Figure 3.13: Optimization of comfort for different mechatronic suspension struts and static
stiffness

43



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105
400

420

440

460

480

500

520

kp [N/m]

F
ti
r
e,
R
M

S
[N

]

Y1

YS1

YS2

(a) Optimal cost function for dynamic tire loads

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105
−8

−6

−4

−2

0

2

4

6

kp [N/m]

%
im

p
ro
ve
m
en
t
in

F
ti
r
e,
R
M

S
[N

] YS1

YS2

(b) Percentage improvement in dynamic tire loads

Figure 3.14: Optimization of dynamic tire loads (handling) for different mechatronic sus-
pension struts and static stiffness
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Figure 3.15: Pareto-fronts from multi-objective optimization for kp=40 000 N/m
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Figure 3.16: Pareto-fronts from multi-objective optimization for kp=100 000 N/m
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Chapter 4

Adaptive Semi-Active Suspension:

Modeling, Control and Simulation

Results

As mentioned in the last chapter, the variation of damper properties by variation of the

shunt impedance offers the scope of an adaptive semi-active suspension system by incorpo-

rating an appropriate control algorithm. However, since the mechatronic suspension strut

is beneficial only for very stiff suspensions, constructing a prototype would not be econom-

ically fruitful as it cannot be installed on a passenger vehicle. Therefore, in this chapter, a

control algorithm is developed which considers a generic passive force Fd applied between

the sprung and unsprung masses. This passive force will be addressed as the damping force

throughout the rest of this document, and the controller is validated through experiments

on a vehicle equipped with variable dampers in Chapter 5. However, the same controller

can be used for any source of passive force, including a mechatronic suspension strut with

variable shunt impedance.

Before looking into the control algorithms for semi-active and adaptive suspensions, it

would be worthwhile to investigate the effect of varying different parameters in a suspen-

sion.

4.1 Effect of varying driving conditions: sprung mass

ms and vehicle speed V

For a suspension system with variable damping and some fixed parameters defining the

system, an optimal damping value exists for each performance criterion. However, many

of the parameters vary during practical driving conditions. For example, the vehicle speed
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and road type vary on the run and the vehicle sprung mass can vary from time to time

depending on the number of passengers and amount of cargo. Hence, the effect of variation

of these parameters on the optimal damping needs to be investigated.
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Figure 4.1: Effect of varying sprung mass on comfort and handling as a function of damping
in a quarter car model (The plots are overlapping for dynamic tire force)

It was already shown analytically in Section 3.1 that the variation of road type does

not affect the optimal damping values, and would therefore be omitted here. To study the

effect of varying ms and V , a numerical example is taken. Figure 4.1 and 4.2 show the

effect of varying sprung mass and vehicle speed respectively on the weighted RMS sprung

mass acceleration (comfort) and RMS dynamic tire force (handling). A few interesting

observations can be made from these plots. First, the optimal damping values for comfort

and handling do not change much with the parameters. In other words, although the

optimal value for a given parameter set might not be exactly the same as that for another
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parameter set, the actual change in the cost function for the ‘sub-optimal’ parameter set is

not significant. Secondly, the variation of dynamic tire forces is negligible in a wide range of

damping (around 2000 N s/m to 4000 N s/m). Mathematically, although, the optimal value

lies around 3500 N s/m. The variation of weighted acceleration is significant enough in this

region. Therefore, reducing the damping from the mathematical optimum to around 1500-

2500 N s/m would improve the comfort a lot without practically affecting the handling.
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Figure 4.2: Effect of varying vehicle speed on comfort and handling as a function of damping
in a quarter car model

These observations drive home the fact that the classical adaptive control techniques

which are typically concerned with varying plant parameters might not be much applicable

in the case of automotive suspensions. On the other hand, a control technique which is

adaptive in the sense of online varying the weights assigned to the two objectives of comfort

and handling is rather required.
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Figure 4.3: Effect of varying damping in a quarter car model
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4.2 Effect of varying damping dp

The variation of damping has an interesting effect on the frequency response functions.

Keeping all other parameters same as in Table 2.1 and zero inertance, the damping is

varied from 1000 N s/m to 4000 N s/m as shown in Figure 4.3. From the suspension travel

ratio plot, it can be seen that more damping always leads to less suspension travel, which

is also intuitive as a stiffer system would be more resistant to motion. But for the analysis

of transmissibility and tire deflection, the plots can easily be divided into three frequency

ranges:

1. Low frequency range (< 1.5 Hz): Both transmissibility ratio (comfort) and dynamic

tire deflection ratio (handling) are low for high damping.

2. Mid frequency range (1.5−8.5 Hz): Low damping is favourable for both comfort and

handling.

3. High frequency range (> 8.5 Hz): The effect of varying damping is negligible on the

transmissibility ratio; dynamic tire deflection is lowered by higher damping.

This observation seems quite promising at first. If the damping in a suspension system

can somehow be switched between two extreme values, one being very high and the other

being very low (keeping the suspension deflection bounded), then by knowing the prominent

frequency component in the input excitation, the suspension system can be made soft (for

mid frequency range) or stiff (for low and high frequency range) to provide both comfort

and handling simultaneously. Such a technique using MR damper has also been mentioned

in [15]. Unfortunately, road excitation signal is never confined to a particular frequency

range, and hence, it is almost impossible to tune the suspension damping through that

method. This technique would, however, prove to be quite useful for systems which are

excited within a certain frequency band at a time, for example, suspensions in electrical

appliances, architectural suspensions, or any structure vibrating due to a rotating eccentric

mass.

Tuning the damping for automotive suspensions would therefore, need more details

about the system at each time step. This can be done either by measuring directly using

sensors, or estimating from other measurements and a known system model.

4.3 Estimation

It was discussed that comfort and handling are two conflicting criteria for suspension de-

sign, and hence, when designing a control algorithm for a semi-active suspension (or active
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suspension for that matter), it would be worthwhile to keep track of the two performance

costs on-line and tune the weights assigned to the two criteria accordingly to obtain a bal-

anced performance. Moreover, other variables like unsprung mass acceleration, suspension

rattle velocity, etc. are also of interest for implementing the controller. The development of

a control structure will be discussed in a later section; however, it is important to mention

here that all these quantities of interest must be attainable using commonly available and

economical sensors in a vehicle. Since an accelerometer on the vehicle body (sprung mass)

has become almost standard equipment on all modern cars due to its use in other systems

as well (like ABS and ESC), measurement of comfort objective is relatively easy. Similarly,

measurement of the suspension travel (relative displacement between sprung and unsprung

mass) is also possible using sensors like a potentiometer or an LVDT. On the contrary, di-

rect measurement of tire forces requires quite expensive sensors, which are impractical for

a passenger vehicle. Hence, in this chapter, a very simple filter based estimator has been

designed for a quarter-car model to estimate the dynamic tire force by directly measuring

two values: sprung mass acceleration z̈s and relative displacement between sprung and un-

sprung mass (zs − zu) (suspension travel), the sensors for which are relatively economical

and practical to mount.

mu

ms

kp Fd

kt

zs

zu

zr

Figure 4.4: Quarter car model with a variable damping force

Ideally, the estimation of normal tire force should be quite straightforward, as can be

shown by the following equation manipulations. Considering a quarter-car model with a

general damping force Fd as shown in Figure 4.4, the equations of motion can be written

as follows

msz̈s = −kp(zs − zu) + Fd (4.1)

muz̈u = kp(zs − zu)− Fd − kt(zu − zr) (4.2)
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Adding the above two equations,

msz̈s +muz̈u = −kt(zu − zr) = Ftire (4.3)

As mentioned earlier, the two outputs available are sprung mass acceleration and sus-

pension travel. Knowing ms and mu, the dynamic tire force can be be calculated from

Eq (4.3) as

|Ftire| =
∣∣∣(ms +mu)z̈s −mu

d2

dt2
(zs − zu)

∣∣∣ (4.4)

The velocity of the sprung mass żs (required for Skyhook control) can be directly

calculated by integrating the acceleration signal z̈s.

The suspension rattle velocity (żs− żu) can be calculated by differentiating the relative

suspension displacement (zs − zu) and the velocity of the unsprung mass żu (required for

Groundhook control) can then by obtained as żs − (żs − żu).

ωc2
s+ ωc2

z̈s

zs − zu d

dt

d

dt

s

s+ ωc1

∫
dt

ms

-

Ftire

mu

z̈u

żs

żs − żu
-

żu

Figure 4.5: Estimator structure for various states of the system

However, these methods assume perfect measurement by the sensors. In practice, sensor

values are full of noise. Differentiating those noisy signals would generate spikes and

integrating it would result in drifts. Therefore, some filters need to be applied to obtain

usable data. Since that noise is generally high-frequency Gaussian, a first order low-pass

filter with cut-off frequency around 30 Hz before a derivative operator and a high-pass

filter with cut-off frequency around 0.5 Hz before an integrator should give practically

useful results. It has been mentioned before that the signal from road excitation has

major content well within this frequency band. The structure of the estimator is given in

Figure 4.5.

This is a very simple approach for estimation. Although more complex estimators

like Extended Kalman Filter (EKF) can provide more accurate results, it gives practically

useful data for the proof of concept of the controller, as shown in Section 5.2 where the
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results from this estimator are compared with actual measured tire force using a wheel

load sensor on a test vehicle.

4.4 Adaptive semi-active suspension control

In this section, a control algorithm for semi-active suspensions will be developed. First,

a handling oriented control scheme analogous to the R-S control is proposed. Then, it is

integrated with the R-S control algorithm for comfort by introducing a modification of the

adaptive control structure presented in [25] to finally obtain a controller which is simple,

economical to implement, and automatically distributes its priority between comfort and

handling on-the-run as per the requirement.

Considering a quarter-car model with a general damping force Fd as shown in Figure 4.4,

the equations of motion can be written in a modified form as follows

msz̈s = −kp(zs − zu) + Fd (4.5)

− kt(zu − zr) = muz̈u − kp(zs − zu) + Fd (4.6)

From Eq (4.6), it can be derived that the tire force would approach to zero (thereby

providing better handling) for a damping force of

Fd = −muz̈u + kp(zs − zu) (4.7)

However, since Fd is a passive force, this rule has to be modified to accommodate the

passivity constraint.

Fd =

{
−muz̈u + kp(zs − zu) for (−muz̈u + kp(zs − zu))(żs − żu) ≤ 0

0 for (−muz̈u + kp(zs − zu))(żs − żu) > 0
(4.8)

Similarly, from Eq (4.5) the acceleration of the sprung mass would approach to zero

(thereby providing better comfort) for a damping force of

Fd = kp(zs − zu) (4.9)

which basically becomes the R-S controller after satisfying the passivity constraint (as in

Eq (2.32)).

The two control schemes mentioned above cater to their own specific performance

objective only. Hence, if there exists a weighting parameter α ∈ [0, 1], such that it defines

the weights given to the two performance indices, and its value adapts itself online as
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per the requirement from driving conditions, then a very simple yet elegant controller for

semi-active suspension systems is obtained.

Fadpt = α(−muz̈u + kp(zs − zu)) + (1− α)(kp(zs − zu))
⇒ Fadpt = kp(zs − zu)− αmuz̈u (4.10)

The damping force is

Fd =

{
Fadpt for Fadpt(żs − żu) ≤ 0

0 for Fadpt(żs − żu) > 0
(4.11)

One interesting point to be noted here is that without the passivity constraint, Eq (4.10)

gives a controller which can be applied to a fully active suspension system (like those in

Section 2.2).

Hence, for one extreme value of the weighting parameter (α = 0), the controller is

purely comfort oriented, while for the other extreme value (α = 1), the controller only

focuses on handling. Now the problem has been reduced to appropriately adjusting the

value of α for maximum performance improvement. An adaptive controller introduced

in [39] had the basic idea that comfort is the objective, as long as the dynamic tire forces

are within certain limits. The weighting parameter α varying between zero and one defines

the level of this constraint violation. On similar lines but with some modifications to suit

the requirements of this research, an adaptation scheme for α will be developed in the next

section.

4.4.1 Calculation of weighting parameter α

From the method described in Section 4.3, the dynamic tire forces can be estimated from

commonly available sensors, and thus, it can be constantly monitored for constraint viola-

tion. As discussed earlier, the RMS value is generally used to quantify a stochastic variable

like tire force over time. However, during actual driving conditions, singular events like

bumps and potholes suddenly change the tire forces, which might not appear in the RMS

value that immediately. Hence, the absolute value also needs to be kept tracked of. The

weighting parameter α, therefore, is derived from two components: slow adaptation (from

RMS value Ftire,RMS) and fast adaptation (from instantaneous absolute value |Ftire|).
Assuming stochastic road input and Gaussian probability density of the dynamic tire

force, its standard deviation over a time period T will be given by

σFtire
=

√
1

T

∫ T

0

F 2
tire(τ)dτ (4.12)
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Since the dynamic tire force has zero mean, its standard deviation is the same as its RMS

value, i.e, Ftire,RMS = σFtire
. For a normally distributed zero mean stochastic signal, the

6-σ rule states that nearly all1 of its values lie within the bounds of 6 standard deviations.

Applying the 6-σ rule to dynamic tire force would mean that Ftire should remain within the

bounds of the static tire force Fstat for most of the time T . In other words, the wheel almost

never leaves contact with the ground. Mathematically, the constraint can be formulated

as

Ftire,RMS ≤
Fstat

6
(4.13)

where the static wheel load Fstat = (ms +mu)g.
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Figure 4.6: An example of probability density of Ftire for stochastic road profile with
bounds for Fstat and 6σFtire

To also take into account the variation of Ftire due to singular events which might not

reflect in its RMS value immediately, another constraint can be defined which takes into

consideration its instantaneous value. It completely depends on the controller designer

that what value of the ratio Ftire/Fstat is deemed permissible. Clearly, Ftire/Fstat ≥ −1,

with the extreme value of -1 indicating that the tire has just left contact with the ground.

However, it would be too late if the controller waits for the ratio to become -1 before it

changes the weighting parameter. Some buffer region is needed during which the controller

can act and bring down the dynamic tire force. As an intelligent guess, a threshold of -80%

is selected for the ratio of dynamic to static tire force. Mathematically,

Ftire + 0.8Fstat ≥ 0⇒ Ftire ≥ −0.8Fstat (4.14)

199.9999998027% of the time, to be precise
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It should be noted here that only negative value of Ftire is responsible for leaving contact

with the ground. However, since a tire has very low damping, a high positive value of

Ftire would soon be followed by a high negative value. To avoid unnecessary chatter in the

controller, the absolute value |Ftire| can be used.

|Ftire| ≤ 0.8Fstat (4.15)

With the two constraint equations defined for slow and fast adaptation, a way can be

developed to quantify the level of constraint violation. The adaptation structure is shown

in Figure 4.7, where the input is the dynamic tire force Ftire (which will be the estimated

tire force F̂tire in practice) and output is the weighting parameter α.

0
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Slow Adaptation

Fast Adaptation
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h(u)
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Figure 4.7: Structure of the adaptation logic to obtain scheduling parameter
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Figure 4.8: Heuristic function h(u) for calculation of fast adaptation error ef

The upper branch of the structure is responsible for fast adaptation. The ratio of

dynamic to static tire force is input to a heuristic function h(u) (Figure 4.8) which increases

steeply from zero to one for input greater than 0.8. Just like the threshold value of 0.8,
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the selection of heuristic function h(u) is also based on intuitive guess. The only basic

requirement for h(u) is that it should increase sharply to one for input greater than 0.8.

Although it can be considered as a parameter which can alter the performance of the

controller, sufficiently good results are obtained in simulations and experiments (shown in

later sections) for the shown linear curve, and hence, not changed. Since the absolute value

of Ftire is considered, h(u) is symmetric about y-axis. The output from h(u) is error ef

which is then passed through a low pass filter with time constant τf to reduce the chatter

and rapid variations in fast adaptation parameter αf . The lower branch of the structure

outputs the slow adaptation parameter αs. The amount by which the RMS of the ratio of

static to dynamic tire force deviates from the predefined threshold of 1/6, designated as

slow adaptation error es, is integrated with output limited between zero and one. Finally,

the two parameters from slow and fast adaptation are added, and the minimum of the sum

αf + αs and unity gives the final value of the weighting parameter α.

It should be noted here that since the final weighting parameter α appears in the

expression for the controller in Eq (4.11), and it does not matter what are the individual

contributions of the slow and fast adaptations. In other words, a positive value of α ensures

that the tire does not leave contact with the ground, whether it is due to a bump (fast)

or a rough road (slow). This might let one think that the controller performs the same in

all conditions for a given value of the final weighting parameter α. However, it is not the

case, as can be explained by this numerical example. Two scenarios are considered with

same α values: αf = 0.5, αs = 0 (α = 0.5) and αf = 0, αs = 0.5 (α = 0.5). Clearly, the first

scenario involves a bump on an otherwise smooth road, while the other is a rough road

profile, like gravel. Although the controller will perform the same for the two scenarios,

but it is true only for that particular time instant. Since αf changes quite fast compared

to αs, at the next time step, the value of the two α’s will be completely different. Hence,

the controller, on the whole, will perform completely different on a bump and on gravel.

4.5 Simulation results

A two degree-of-freedom (dof) quarter car model was modeled in MapleSim and simulated

with different road profiles (rough, smooth, bump) as input (modeled in time domain as

described in Section 2.6.2) and with different controllers. Assuming that the damping force

can be varied to any arbitrary value within some bounds and all the required variables are

either measured or estimated (Section 4.3), the proposed adaptive controller was then

benchmarked against passive damping, skyhook and groundhook controllers. A passive

damping of 1500 N s/m has been selected which provides a really good compromise between

comfort and handling for quarter car parameters shown in Table 4.1, which are very close
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to that of the front-left suspension of a Cadillac STS (used for experimental verification in

the next chapter).

Table 4.1: Quarter-car parameters used in simulation of different controllers

Parameter Description Value
ms Sprung mass 493 kg
mu Unsprung mass 62 kg
kp Spring stiffness 35 600 N/m
kt Tire stiffness 277 000 N/m

Figure 4.9 shows the simulation results for a transitional road input, where initially,

the road profile is smooth (type-A), but switches to rough (type-C) at t = 20 s, the total

simulation time being 40 s. The power spectral density of the acceleration of the sprung

mass in the frequency band of maximum human sensitivity is shown in Figure 4.9a as an

index of comfort. It is seen that over the expected result of skyhook controller being better

and groundhook controller being worse than a passive system in improving comfort, the

proposed adaptive algorithm shows a performance ranging from close to slightly better

than the skyhook. A peak is discernible in the 1-2 Hz region which is clearly the resonant

frequency of the sprung mass. The new controller seems to do a quite good job in reducing

this peak as well. To quantitatively visualize the effect on comfort over time, the running

RMS of comfort weighted acceleration is plotted in Figure 4.9b. It can be clearly observed

here the adaptive controller offers a comfortable ride in both the road conditions.

It might occur to the reader that the difference in the performance of skyhook and

proposed controller is not significant enough. However, the actual strength of adaptive

controller can be seen in Figure 4.9c, which compares the running RMS of the tire force with

different controllers. While the skyhook controller leads to exceedingly high dynamic tire

force, the adaptive controller shows handling as good as that of the groundhook controller,

which, however, is not good in providing comfort. Hence, the true efficacy of the proposed

adaptive controller is providing a better compromise between comfort and handling than a

passive system. The core of this controller are the adaptation parameters and Figure 4.9d

shows how these parameters vary for the given case of smooth to rough road conditions.

The fast adaptation parameter αf is almost zero throughout, except for a small peak at

t = 20 s where the road type changes abruptly. The slow adaptation parameter αs, on the

other hand, is zero on smooth road as the RMS of dynamic tire force is quite low and does

not violate the 6σ condition described in Section 4.4. It is when the road becomes rough

that the tire force starts hitting bounds resulting in slow adaption error es and thereby a

positive slow adaptation parameter αs. Since the running RMS of the dynamic tire force

keeps increasing from t = 20 s to t = 40 s, so does αs. The final weighting parameter α
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Figure 4.9: Simulation results for a transition from type-A road to type-C road at 15 m/s
(cont.)
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Figure 4.9: Simulation results for a transition from type-A road to type-C road at 15 m/s
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being the sum of the slow and fast adaptation parameters is almost the same as αs in this

case.

As mentioned before, the modeled quarter car system was also simulated with a bump

as the road input. Figure 4.10 shows the results for a bump of height 6 cm, width 1.5 m

and vehicle speed 10 m/s; quite similar to that shown in Figure 2.11. The bump starts at

t = 0.5 s. Since a bump is a transient event, the instantaneous values for chassis acceleration

and tire force are generally of interest (and significance) than their RMS values. The

variation of the acceleration of the sprung mass with time is plotted in Figure 4.10a for

the same four controllers in action as described before. Again, with the proposed adaptive

controller, the comfort is seen to be better than the passive system and very close to the

skyhook controller in terms of peak in sprung mass’ acceleration. The adaptive controller

also manages to reduce the oscillations in z̈s a few moments after crossing the bump, unlike

other controllers. This is due to its ability to change the weighting parameter online.

Even after providing a comfortable pass over the bump, the proposed adaptive controller

does not lead to high fluctuations in dynamic tire force like those with skyhook controller.

This is quite crucial during normal driving conditions. When a vehicle passes over a bump

at medium to high speeds, the tire might leave contact with the ground as observed in the

results in Figure 4.10b. If a driver tends to apply brakes or a steering input in this time

duration, the normal force between the ground and tire would not be sufficient enough to

produce a braking or cornering effect. Hence, for a controlled handling and ride safety, Ftire

should be within bounds as is successfully done with the adaptive controller. It should be

noted that a phase difference between the different plots has been intentionally added for

distinctive clarity.

In the case of a bump, the fast adaptation parameter αf plays the major role (Fig-

ure 4.10c). As the absolute value of Ftire crosses the threshold of 0.8 times the static tire

force, the fast adaptation error ef rises sharply as output from the heuristic function h(u),

which effectively generates high value of αf . As soon as Ftire is brought under control,

there is no critical requirement of adaptation parameters and they approach back to zero.

Now that it has been established from theoretical simulations that an efficient adaptive

controller has been designed, it must be validated through actual practical implementation.

However, as this is a generic controller applicable to any suspension system with an active

or passive force source, and a prototype consisting of a mechatronic suspension strut with

variable shunt impedance was not constructed due to impracticability on passenger vehicles,

the controller can be very well be tested on a passenger vehicle with MR dampers. This

will be done in the next chapter.
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Figure 4.10: Simulation results for over a bump at speed 10 m/s (cont.)
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Figure 4.10: Simulation results for over a bump at speed 10 m/s
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Chapter 5

Experimental Validation

Before discussing the performance of the controller in experiments, this chapter first de-

scribes in detail the experimental setup and implementation of theory in practice. Then

the normal tire force estimator is validated and the MR damper installed in the vehicle is

characterized. Finally, the proposed controller’s performance is evaluated performing road

tests with different controllers.

5.1 Description of the experimental setup

All the experiments in this research are performed on a fully instrumented Cadillac STS at

the Mechatronic Vehicle Systems Lab., University of Waterloo. This vehicle was factory-

equipped with MR dampers at all the four suspension corners, and for the purpose of this

research, the front-left damper was hacked into by disconnecting the original connector

and mounting a custom connector using which the current supplied to the damper can be

varied as required. Since the vehicle is extensively used at the aforementioned laboratory

for various research purposes, it is installed with several sensors, data acquisition boards,

processor, etc. However, in this document, the hardware relevant to this research only will

be described.

A six-axis inertial navigation system (Datron technology) can measure the linear ac-

celeration and velocity of the vehicle along all three axes, i.e., longitudinal, lateral and

vertical; and the three rotational movements, i.e., roll, pitch and yaw. Out of these six

degree of freedoms, only heave (vertical), roll and pitch are affected by the suspension

system, and hence were recorded. The vehicle is also equipped with load sensors at the

wheels which can measure forces and moments along all three axes at the contact patch,

and for the purpose of studying the suspension system, only the vertical tire force was

recorded. To measure the suspension travel, a string potentiometer was mounted between

the chassis and the suspension control-arm. A dSpace AutoBox mounted with an I/O and
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Figure 5.1: Structure of the experimental setup

a processor board is installed in the trunk of the car through which sensor data can be

recorded, as well as a required PWM signal can be generated. A servo drive with current

operation mode (AZ20A8DDC from Advanced Motion Controls) takes a PWM signal as

input and supplies amplified current proportional to the signal’s duty-cycle to the coils of

MR damper. The structure of this experimental setup has been depicted in Figure 5.1.

The signal from the wheel load sensor is shown with a dashed line as it is supposed to be

used only for verification; the controller actually works on estimated value of tire force.

Since most of the formulations till now were performed on a quarter car model which

required the acceleration of the (quarter) sprung mass, but in the experimental setup only a

single IMU is mounted on the vehicle, the acceleration of the front-left corner’s sprung mass

can be approximated from the vertical acceleration of the total vehicle’s sprung mass and

roll and pitch acceleration about its center of gravity assuming small angular movements.

In an slightly modified SAE coordinate system [30] where the origin is at the CoG of the

sprung mass (or chassis), the corner acceleration can be given by

z̈sLF
= z̈sCoG

−XF β̈ − YLα̈ (5.1)

where YL and XL are respectively the distances along the Y-axis and X-axis from the CoG

of the chassis to the front-left tire contact patch as shown in Figure 5.2.
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Figure 5.2: SAE Coordinate system for vehicle dynamics. Image adapted from [30] and
then modified

5.2 Validation of the estimator

The first test to be performed on the setup was to verify that the estimator for dynamic tire

force mentioned in Section 4.3 gives practically useful results. Since the vehicle is equipped

with highly sophisticated wheel load sensors, the exact normal force at the contact patch

can be measured. By obtaining the static tire force when the vehicle is stationary, the

dynamic tire force can easily be calculated by subtracting the former from every future

measurement and then compared with the estimated values.

To obtain large but slow variations in Ftire for easy comparison, two types of vehicle

runs were done. One was harsh pitching maneuvers in a straight line (periodic accelerating

and braking) and second was driving over a speed bump at 40 km/h. The results from the

two runs are shown in Figure 5.3, where it can be seen that the estimated Ftire follows

the measured one. The difference in the two values can be attributed to factors like over-

simplified model (quarter-car) and interaction of the other three wheels. A better method

would be to use a sophisticated estimator which takes into account a complex model for

the vehicle and inherent non-linearities, like Extended Kalman Filter (EKF). Nonetheless,

the estimated value is good enough for the proof of concept of the adaptive controller in

the following sections.

66



4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
−6000

−4000

−2000

0

2000

4000

6000

Time [s]

F
ti
r
e

Estimated
Measured

(a) Harsh pitching maneuvers

9 9.5 10 10.5 11 11.5 12
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

Time [s]

F
ti
r
e

Estimated
Measured

(b) Speed bump
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5.3 Modeling the characteristics of an MR damper

Before implementing any controller on the Cadillac STS, it is first necessary to have a

characterization of the MR damper installed in it, which would comprise of a relation

between the input current, the suspension rattle speed and the produced damping force.

This would modify the controller such that it outputs a current i [A] instead of a damping

force Fd [N], which is actually how it can be implemented on the vehicle.

The characterization of the MR damper was done on the vehicle itself without separately

testing it. For different currents through the damper ranging from 0 A to 4.2 A, harsh

pitching maneuvers in a straight line were performed for each current to obtain large

variations in suspension speed. The damping force was estimated from the equation of

motion of the unsprung mass (which makes it somewhat independent from the dynamics

of the other three corners).

Fd = −muz̈u + kp(zs − zu)− kt(zu − zr) (5.2)

Some exemplary results from the tests are shown in Figure 5.4 for current value of

1.26 A and 3.36 A where both suspension velocity and damping force are plotted together

using two y-axes for easy comparison. The two have opposite signs as expected from the

fact that damping force always opposes relative velocity. Another feature to be noted is

that the magnitude of the ratio of damping force to suspension velocity is higher for lower

velocities. This implies that the damping coefficient is not constant at a given current.

In other words, the damper is not a linear device. It can also be clearly observed that

for the same suspension velocity, higher current produces more damping force, which is

again expected from an MR damper. To obtain the final characteristic of the damper, the

local extremum (peak) values of suspension velocity and damping force were considered

for each current value and a smooth, shape-preserving curve was fit through the data

points. Figure 5.4a and 5.4b show the obtained relation as a two and three dimensional

map respectively.

However, for implementing in a controller, an inverse mapping is required which gives

a current value for a given damping force and suspension speed. The inverse mapping

obtained from the damper characteristic is depicted in Figure 5.7. If the required damping

force is in the same direction as the suspension velocity, or if the required damping force is

less than what is achievable by the minimum current (zero) at a given suspension velocity,

the mapping outputs zero current. The maximum current has been limited at 4.2 A, so if

an arbitrarily high damping force is required at a very low suspension velocity, the current

output is 4.2 A.
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Figure 5.4: Suspension velocity and estimated damping force for a given current and harsh
pitching maneuvers
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5.4 Implementation of controllers and comparison of

results

With the damper characteristics at hand and the estimator validated, the controllers could

actually be implemented on the vehicle. Similar to the simulations, tests were performed

on a track with smooth to rough (gravel) profile transition at a forward speed of 45 km/h,

and over a speed bump at 40 km/h. The test conditions are shown in Figure 5.8, in the

form of photographs of the roads and forward velocity of the vehicle (obtained from the

IMU) for the four runs. Figure 5.10a is a satellite image of the the test track (obtained

from Google Maps), which actually is Region of Waterloo Emergency Services Training

Area [19]. The smooth road and gravel area are distinguishable due to color contrast. It

was tried to keep the vehicle speed as constant as possible around 45 km/h, but slight

variations (Figure 5.8c) could not be avoided in that rough ride. Due to limited length of

this patch of road, the test results have been cropped to span t=1 s to t=17 s, duration

during which the controllers were actually in action. Figure 5.8b shows the bump on ring

road, UW, which was used for testing purposes. It was easier to keep the speed almost
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constant at 40 km/h as shown in Figure 5.8d while driving over it, as the test duration

was quite short and the road was otherwise smooth. The same criteria of PSD of the

acceleration of the sprung mass (front-left corner in this case) and running RMS of the

dynamic tire force is used for comparing the performance of different controllers, just as in

simulations. To emulate a passive damper, a constant current of 2 A was supplied to the

MR damper.

(a) Satellite image of the test track showing
smooth and rough profiles [19]

(b) Image of the bump over which vehicle was
tested
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Figure 5.8: Experimental conditions

Figures 5.9a, 5.9b and 5.9c show the results for the smooth to gravel transitional track.

The PSD of the sprung mass acceleration with the proposed adaptive controller was ob-

tained to be lower than the passive and skyhook for most of the frequencies between 2-8 Hz,

implying greater comfort. Groundhook controller is the worst in providing comfort. The
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Figure 5.9: Test results for a transition from smooth to rough (gravel) road at 45 km/h
(cont.)
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Figure 5.9: Test results for a transition from smooth to rough (gravel) road at 45 km/h

adaptive controller also shows better handling compared with passive and groundhook con-

troller in terms of the running RMS of the tire force, while skyhook controller is worst in

controlling dynamic tire force. Similar to the trend seen in the simulation results, the final

weighting parameter α constitutes mostly of slow adaptation parameter αs which increases

gradually to account for the rough road and hence higher tire force. A peak seen in the

fast adaptation parameter αf was probably due to a rock in the gravel area.

Results from a test by running the vehicle over a bump at 40 km/h are presented in

Figures 5.10a, 5.10b, 5.10c and 5.10d. A slight phase delay has been added in the first two

plots for distinctive clarity. The peak value of corner’s vertical acceleration with adaptive

controller is almost equal to that obtained from skyhook controller, which is more comfort-

able than the passive suspension. The proposed controller also shows slightly less peak in

the dynamic tire force compared with the groundhook controller, and substantially better

than the passive suspension. Hence, overall, the adaptive controller gives a performance

with less compromise between comfort and handling. Since the bump was on a relatively

smooth road, there is no variation in the slow adaptation parameter αs. The fast adap-

tation parameter αf , however, has huge peaks during the time span of the bump. It is

clipped at its highest value of one to obtain the final weighting parameter α. The variation

of current with time can be seen in Figure 5.10d. Although there is no direct relation

between α and the supplied current because the current depends on the required damping
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Figure 5.10: Test results for over a bump at speed 40 km/h (cont.)
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Figure 5.10: Test results for over a bump at speed 40 km/h

76



force as well as the suspension speed, however, it is somewhat intuitive that reducing the

dynamic tire force would require more damping, and hence, more current. Therefore, some

saturated current peaks can be seen concurrent with the peaks in α.

Table 5.1: Summary of test results comparing different controllers

Passive Skyhook Groundhook Adaptive

Smooth to rough road

z̈sRMS (t=1 s to t=17 s) [m/s2] 1.76 1.67 1.860 1.65

% change in z̈sRMS - -5.00% 5.74% -6.14%

Ftire,RMS (t=1 s to t=17 s) [N] 1806 1871 1686 1543

% change in Ftire,RMS - 3.6% -6.64% -14.56%

Bump profile

z̈sRMS (t=6 s to t=9.5 s) [m/s2] 3.6319 3.4246 3.9171 3.1534

% change in z̈sRMS - -5.71% 7.85% -7.75%

Ftire,RMS (t=6 s to t=9.5 s) [N] 2034 2169 1902 1825

% change in Ftire,RMS - 6.66% -6.49% -10.27%

A summary of the test results has been presented in Table 5.1. RMS values are cal-

culated over the time duration of interest, i.e., the time during which the controllers were

actively involved and the test conditions (basically vehicle’s forward speed) were consis-

tent throughout the four runs. For the first scenario of smooth/rough road patch, this

time is 16 s while for the bump, it is much shorter at 3.5 s. Assuming the performance with

passive system as the baseline, percentage changes in RMS values are calculated for the

three controllers. It can be seen that the adaptive controller improves comfort by 6-7%

and handling by 10-15%. Although the improvement in comfort by skyhook controller is

also of the same order, it worsens the handling by almost the same amount. Similar is the

case with groundhook controller, where it degrades comfort by almost the same amount

by which it improves handling, which is around 6%.

This concludes the crux of this work. The next chapter will summarize the conclusions

which can be derived from this research and recommendations for future work.
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Chapter 6

Conclusions and Future Work

An ideal inerter offers some improvement in suspension performance, but depends on the

configuration in which it is connected to spring(s) and a damper. Different designs of

mechanical circuits demonstrate different amount of improvement. Apart from the circuit

design, the static stiffness of the suspension system plays a major role in deciding the

end result. For softer stiffnesses like those in passenger cars, there exists a configuration

consisting of an extra spring in series with a parallel arrangement of a damper and an

inerter where the values of these components can be optimized so as to obtain simultaneous

decrement in the acceleration of the sprung mass (better comfort) and the dynamic tire

force (better handling and safety). For stiffer systems which are characteristic of sports

cars, a series combination of a second spring, damper and an inerter in parallel with the

main spring should be able to provide better handling as well as comfort. The exact

amount by which the suspension performance improves depends on the parameters of the

quarter car model like the sprung mass, the unsprung mass and the tire stiffness. but the

numbers generally lie in the range of 5-10% (compared to a system with a single damper

optimized for the same criterion).

Since a passive suspension with multiple springs, inerters and dampers becomes quite

complex and bulky for practical and economic implementation, one potential solution is

to use a linear motor with a shunt impedance consisting of multiple inductors, capacitors

and resistors; the mechanical-electrical analogy promises the exact same results. This

offers many potential advantages like low weight for complex circuits, scope of adaptive

suspension system by using variable impedance and an appropriate control algorithm, and

power regeneration. However, obtaining an ideal linear motor with no internal resistance

and inductance is certainly impossible. Even if a real linear motor is used, it is impractical

because of its huge cost and weight and low energy density. Alternately, a cheaper rotary

motor with higher energy density can be used with a mechanism like a ball-screw and nut

to convert the linear motion of the suspension to the motor’s rotary motion. However, the
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inertia of the rotor and impedance of its coils have a huge effect on the optimization results

previously obtained for an ideal, mechanical case. It was observed that the design was not

practically beneficial anymore for low static stiffness suspensions of passenger cars but for

suspensions with higher stiffness, this design showed quite good results.

An adaptive control algorithm which makes the best compromise between comfort and

handling on-the-run was worth development, whether to be used on a mechatronic strut

with variable impedance or a suspension with simple MR damper. Hence, a controller

was designed for active/semi-active suspension systems which had a weighting parameter

α ∈ [0, 1] such that at one end (α = 0), the controller outputs a force which provides

maximum comfort while at the other end (α = 1), it is purely handling oriented. For semi-

active systems, the force is set to be zero whenever it violates the passivity constraint, i.e.,

power needs to be injected. The weighting parameter α is adjusted online depending on

the value of the dynamic tire force, both RMS and absolute. The controller is practically

economical to implement as it only uses sensors to measure the acceleration of the sprung

mass and the suspension travel. All other variables of interest are estimated from these

two measurements. Simulations were performed for a smooth to rough transitional road

profile and a bump as input from the ground. While the skyhook controller led to very high

dynamic tire force and the groundhook controller was not good in providing comfort, the

proposed adaptive controller demonstrated a performance better than the passive system

for both the criteria and both driving scenarios.

Experimental validation was done on one corner (front-left) of a fully instrumented

Cadillac STS equipped with MR dampers. First the estimator for the dynamic tire force

was tested and was found to provide values practically comparable with the actual force

measured by a sophisticated wheel load sensor. Then, the MR damper was characterized

as a 3-dimensional map relating suspension speed, input current and damping force, which

was also estimated. Finally, the proposed adaptive controller was implemented, along

with skyhook, groundhook and emulated passive (constant current), and tested on road

conditions quite similar to those in simulations: at 45 km/h on a road with smooth to

rough transition and over a road bump at 40 km/h. For both the cases, the controller

could adapt itself to the driving conditions and provided ride comfort and handling better

or similar to the skyhook and groundhook controller respectively.

After the proof of concept on a single corner of the vehicle, it would be worthwhile

to implement the controller on all four corners of the vehicle. For better results, the

controller structure would need to be modified for a 7-dof full-car model (like the one

shown in Figure 6.1) from a 2-dof quarter-car one. As the sprung mass in this model will

have three degrees of freedom, i.e., roll, pitch and vertical heave, the controller can also be

modified to take into account roll and pitch stability of the vehicle during harsh cornering
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and accelerating (or decelerating) maneuvers respectively. More sophisticated estimator

like EKF can also be incorporated in the controller for better results.

Figure 6.1: Seven degree of freedom full car model
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