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Abstract

We consider a single-part, two-echelon supply chain problem for spare parts. The

network consists of a single manufacturing plant, a set of service centers (SCs) and a set

of customers. Both echelons keep spare parts using the base-stock replenishment policy.

The plant behaves as an M/M/1 queueing system and has limited production and storage

capacity. Demand faced by each SC follows an independent Poisson process. The problem

is to determine optimal location-allocation and optimal base-stock levels at both echelons

while satisfying the target service levels and customer preferences of SCs. We develop a

mixed integer non-linear programming model and use cutting-plane method to optimize

the inventory-location decisions. We present an exact solution procedure for the inventory

stocking problem and demonstrate the limitations of using traditional inventory models like

METRIC-like and Approximate in case of high utilization rates. We show the effectiveness

of our proposed cutting-plane algorithm and provide important managerial insights for

spare parts management.
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Chapter 1

Introduction

In this thesis, we study a two-echelon supply chain design problem for spare parts with

customer preferences and response time requirements. The research is motivated by the

problem faced by Bombardier Inc. in designing its spare parts logistics system. The sys-

tem operated by the company consists of a central manufacturing plant having limited

production capacity in the first echelon, multiple service centers (SCs) in the second eche-

lon and spatially dispersed customers. The SCs keep stock to fulfill customer demand and

are replenished by the plant. Both the plant and SCs have limited storage capacity and

operate using continuous review (one-for-one) replenishment policy. Demand faced by each

SC follows an independent Poisson process. Customers are assigned to the SCs based on

their preferences. Each customer requires a mean target response time (the average time

between when the customer places an order and when the order is filled). The company

wants to decide on the SC to open, the assignment of customers to SCs, and the base-stock

levels at the plant and SCs. These decisions have to be made simultaneously since response

time depends on the assigned SCs and the base-stock levels at both echelons.
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The supply chain design problem we study is applicable to several other industries that

have a significant spare parts business with low demand and high inventory holding cost.

Spare parts inventories are different from raw materials, work-in process or finished goods

inventories because spare parts are used to maintain the operations of any manufactured

equipment. For example in industries like the aerospace, automotive, computer manu-

facturing, telecommunication networks and military, products are comprised of different

interdependent parts. In such high technology products, failure of even a single component

may lead to complete system failure. The difference between spare parts and other regular

products arises because of maintenance policies, reliability information, failure process of

parts, high costs, loss of production and obsolescence [33]. Thus special inventory manage-

ment solutions are required as compared to generic supply chain policies for spare parts

management.

Continuous review base-stock replenishment policy, referred to as (S-1,S) policy, is

appropriate for managing inventory for spare parts which are characterized by infrequent

and low demand, high inventory holding and shortage costs, and relatively low order setup

costs. This policy has been used extensively in the literature for multi-echelon inventory

systems [26, 30, 44, 45, 58, 62, 63, 66]. Moinzadeh and Lee [43] study the problem of

determining optimal batch order size and stocking policy at all stocking echelons in multi-

echelon inventory systems. Their results are in accordance with the practice of using

base-stock policy for items with low demand and high inventory holding cost compared to

ordering cost.

A service requirement between a manufacturer and customers is a key element in spare

parts management. These requirements vary depending on the nature of the industry

and products being manufactured. For spare parts, time-based service requirements are

considered because customers are highly sensitive to response times. When there is a
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breakdown of any component that may result in an interruption in production, customers

want to recover operations as quickly as possible. Therefore to ensure system reliability,

different industries where customers are sensitive to the response times now use multi-

echelon inventory control systems and keep supply of spare parts close to the customers so

that they can maintain the target service levels.

One way to satisfy customer demand within the target response time is to stock ample

supply of spare parts. Flint [23] points that the aviation industry stocks $45 billion worth

of spare parts including 4000 spare engines. The industry incurs almost $2 Billion every

year in maintenance cost for such a high valued inventory. Thus, maintaining ample supply

is not an economical option as most of the spare parts are expensive, have erratic and low

demand and require high maintenance. This has become a major challenge for supply chain

professionals to trade-off between high inventory holding costs and maintaining customer

service levels. Manufacturers can make significant savings using an efficient spare parts

supply chain network designs, which incorporate customer service requirements in the

design stage. Sherbrooke [64] finds that commercial airlines can achieve a 20% increase in

target service levels with a 40% reduction in inventory holding costs using efficient supply

chain designs.

Since supply chain networks are becoming more complex, competitive and integrated

than ever, the facility location and inventory stocking decisions need to be made simulta-

neously rather than sequentially. The facility location and inventory stocking decisions are

two main problems in supply chain network design [32]. Traditionally, the facility location

decisions are made separately from inventory stocking decisions which usually results in

sub-optimal supply chain designs [12, 14, 39, 61]. In the United States, inventories account

for one-third of all assets of a typical company [17]. The Canadian manufacturing sector

incurs 11% higher inventory holding costs as compared to the U.S.A whereas the retail
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sector suffers from 31% higher costs than in the U.S.A. [57]. Cohen et al. [13] show that

maintenance contracts yield 63% of the after-sales service revenue whereas part sales ac-

count for 5%, and time and material contracts and internal service add up to 21%. These

statistics suggest that inventory investments must be considered while designing any sup-

ply chain network. Therefore, there is a need to integrate both the facility location and

inventory stocking decisions in order to design efficient supply chain systems.

The rest of the thesis is organized as follows: Chapter 2 presents a review of litera-

ture related to the facility location, inventory stocking, and inventory-location problems.

Chapter 3 describes the formulation of the inventory-location problem. Chapter 4 presents

the formulation of the inventory stocking problem, discusses existing models to calculate

the distribution of the number of the outstanding orders at SCs, and gives an exact so-

lution procedure to solve the inventory stocking problem. Chapter 5 proposes an exact

cutting-plane algorithm for the inventory-location problem. We test our solution approach

and report results in Chapter 6, perform sensitivity analysis in Chapter 7 and conclude

the thesis in Chapter 8.

4



Chapter 2

Literature Review

This section reviews three different streams of research which are related to our work. This

review is not meant to be exhaustive but we review the key contributions in these research

areas. The first stream of research is on the facility location problem that focuses on

locating facilities and allocating customers to open facilities to fulfill demand. The second

stream is on the inventory stocking problem which determines base-stock levels and the

third stream is on the inventory-location problem which incorporates the facility location

and inventory stocking problems.

2.1 The Facility Location Problem

The facility location problem has been studied considerably in the Operations Research

literature. The classical facility location problem determines the location of facilities and

allocates customers to these locations to fulfill their demand. These models aim to minimize

facility location and transportation costs and ignore inventory holding and shortage costs.
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The P-median problem and the uncapacitated fixed-charge location problem (UFLP) are

two classical facility location problems. In P-median problem, P facilities are to be selected

on a network in order to minimize total demand-weighted distances whereas in UFLP, the

model locates facilities and assigns customers to these facilities while minimizing facility

location and transportation costs. Mirchandani and Francis [42], Daskin [15] and Drezner

[18] provide a detailed review on location models and extensions. Snyder [67] reviews

the location models under uncertainty, in which facilities may become unavailable due

to unforeseen circumstances. Recently, Klose and Drexl [34], ReVelle and Eiselt [55] and

ReVelle et al. [56] provide an extensive overview of facility location problems. For facility

location problems in the context of supply chain management, the reader is referred to

Owen and Daskin [50], and Melo et al. [38].

The location feature of our problem is a special case of a typical facility location problem

because we allocate customers to facilities based on their preferences and not on minimum

allocation cost.

2.2 The Inventory Stocking Problem

A rich literature exists on multi-echelon inventory stocking problems. These problems focus

on finding optimal base-stock levels at all echelons so that inventory holding and backorder

costs are minimized. Sherbrooke [62] presents the METRIC model, one of the most studied

models in the multi-echelon inventory literature. He develops an approximation technique

to minimize expected backorder level at each echelon in a two-echelon inventory system

for recoverable items. The METRIC model assumes a Compound Poisson failure process,

ample repair capacity and an (S-1,S) replenishment policy. Since then, many extensions of

the METRIC model have been studied. Muckstadt [44] develops the MOD-METRIC model
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considering multi-indenture levels i.e., hierarchical parts structures. Slay [66] suggests to

fit the negative binomial distribution to approximate the outstanding orders in the VARI-

METRIC model. In his seminal work, Graves [26] presents a model to find the exact

steady state distribution of the number of the outstanding orders at each SC assuming

Compound Poisson failure processes and deterministic shipment times. He also suggests

a two-moment approximation for the distribution of the number of outstanding orders

under the assumption of Poisson failure processes, (S,S-1) replenishment policy and ample

repair capacity. He shows that the two-moment approximation performs better than the

METRIC approximation in terms of accuracy.

A key restricting assumption of these multi-echelon inventory models is “ample repair

capacity”. This is an unrealistic assumption for most of the modern business frameworks.

It means there are no queueing effects and no item has to wait for repair as the repair

process is modeled by an M/G/8 queue. In order to relax this assumption, Gross et al.

[27; 28; 29], Albright [2], Albright and Gupta [3], Albright and Soni [4], Avsar and Zijm [5]

and recently Wong et al. [71] present different queueing models. Gross et al. [27] study a

multi-echelon repairable network with limited repair capacity for the first time. Their work

is an extension of Mirasol [41], who study a single-echelon capacitated repairable system.

Diaz and Fu [16] study the impact of limited repair capacity on inventory levels for different

types of repair processes. They find that the ample repair capacity assumption may yield

misleading results and underestimate the spare parts requirements for high utilization

rates. They suggest using a double negative binomial approximation and demonstrate

improvement over traditional models like the METRIC and Graves [26] in case of high

utilization rates.

An important aspect of our inventory stocking problem is the response time require-

ments imposed by customer agreements. Caglar et al. [11] propose a heuristic to minimize
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total inventory holding cost at both echelons subject to a mean response time require-

ment. They use Lagrangian decomposition and show that their approach works well for

relatively large scale problems. Their problem is a special case of Hopp et al. [31], who

assume a general (r,Q) replenishment policy for the central warehouse and a continuous

review (S-1,S) policy for the regional warehouses. Ettl et al. [22] develop a multi-echelon

inventory model to optimize inventory investments while satisfying time-based customer

service requirements. They use a queueing based approximation to incorporate actual lead

times and use a conjugate gradient method [54] to find optimal solutions.

Kutanoglu [35] considers time-based service levels in a two-echelon distribution system.

He allows emergency lateral shipments, a possibility of sharing inventory among local

stocking locations whenever another local stocking location stocks out. He suggests that

in service parts logistics, time-based fill rates are more appropriate than traditional fill rates

as customers are sensitive to the time-based target service levels. Recently, Wong et al.

[71] and Topan and Bayindir [69] develop greedy heuristic approaches in multi-product

two-echelon spare parts inventory systems in order to minimize the system-wide inventory

holding costs under aggregate mean response time service level. Caggiano et al. [10] suggest

an efficient procedure to compute channel fill rates for multi-product, multi-echelon service

parts inventory system. They define channel fill rate as the probability of fulfilling demand

for a specific part at a specific location within a target response time. Muckstadt [46]

provides an excellent review of multi-echelon inventory management.

The inventory feature of our problem is different from the papers mentioned so far

in this section. None of the papers consider both time-based response requirements and

limited repair capacity, whereas our problem assumes limited repair capacity and includes

target response time constraints.
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2.3 The Inventory-Location Problem

The inventory-location problem has attracted attention in the last decade and spawned a

lot of research. It integrates the inventory stocking and facility location problems. The

inventory-location problem aims to minimize the facility location, transportation and in-

ventory holding costs.

Erlebacher and Meller [21] incorporate inventory holding costs in addition to facility

location and transportation costs. They develop a heuristic approach to solve a two-echelon

distribution problem. Nozick and Turnquist [48] include inventory holding costs in the

fixed-charge facility location model by estimating a linear relationship between inventory

holding costs and the number of distribution centers. They assume a base-stock policy and

Poisson demand in a single-echelon inventory-distribution system. Nozick and Turnquist

[49] extend this analysis to a multi-product two-echelon system where inventory is held at

both echelons.

Daskin et al. [14] study three-echelon supply chain design which consists of a single

supplier, a set of distribution centers and a set of retailers. They explicitly include cycle

stock and safety-stock inventory holding costs in the UFLP. The costs include facility loca-

tion costs, local delivery costs, cycle stock and safety-stock inventory holding costs. They

develop a location model with risk pooling (LMRP) which aims to capture risk pooling

effects, grouping the retailers to get significant inventory holding cost savings [20]. LMRP

uses a (Q,r) inventory control strategy by assuming an economic order quantity (EOQ)

based ordering policy. They present a non-linear integer-program and use a Lagrangian

relaxation algorithm to solve the special case of their problem in which ratio of the mean

to the variance of the demand distribution is identical for all the retailers. Shen et al.

[61] study a model similar to Daskin et al. [14]. They use a set-covering formulation and
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develop a column generation based solution algorithm. Miranda and Garrido [39] analyze a

model identical to LMRP. They develop a Lagrangian relaxation based heuristic approach

and their results demonstrate the potential benefits of taking an integrated approach.

Different extensions and variations of LMRP have been studied and analyzed. Miranda

and Garrido [40] and Ozsen et al. [51] extend LMRP to the capacitated warehouse location

model with risk pooling (CLMRP) by including a stochastic capacity constraint. Balcik

[7], Shen [59] and Vidyarthi et al. [70] present a multi-product case of LMRP. Shen and

Daskin [60] include customer service consideration to the LRMP model of Shen et al. [61],

while Snyder et al. [68] study the stochastic version of LMRP, stochastic location model

with risk pooling (SLMRP). Gebennini et al. [24] introduce a dynamic version of LMRP

and Ozsen et al. [52] extend CLMRP to the multi-sourcing capacitated inventory-location

model with risk pooling (MCLMRP).

Candas and Kutanoglu [12] integrate location and inventory stocking decisions in a

multi-product two-echelon setting. They minimize facility location, transportation and

inventory holding costs while satisfying a system wide target service level. They demon-

strate the potential benefits of integrating facility location, inventory level and correspond-

ing variable fill rates. They linearize the non-linear integer programming model and solve

reasonable size problems. Their model assumes infinite plant capacity, deterministic lead

time, a base-stock replenishment policy, Poisson distribution for customer demand and first

come first serve (FCFS) service discipline. Benjaafar et al. [8] consider a single-echelon

joint demand allocation and inventory control problem in which inventory is only kept

at SCs. They assume Poisson demand, stochastic production and supply lead time, lim-

ited production capacity, base-stock replenishment policy, and a FCFS policy to fill the

orders. They develop a mixed integer linear program and present an exact solution pro-

cedure. Their goal is to optimize demand allocation and base-stock levels at each location
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while minimizing expected total costs. Abouee-Mehrizi et al. [1] study a two-echelon joint

production-inventory problem. They aim to determine optimal base-stock levels at both

echelons, optimal demand allocation to open facilities while minimizing inventory holding,

backorder and transportation costs. They present a formulation of their problem using

Flow-Unit approach by Axsater [6]. They assume queueing system at plant with limited

production capacity, base-stock policy at both echelons, Poisson demand and FCFS basis

to satisfy the orders.

All the papers mentioned so far in this section either consider deterministic replenish-

ment time or they do not incorporate service levels or they are single-echelon inventory-

location models. Nozick and Turnquist [49] is the only exception who study a model in

which inventory is stored at both echelons, consider stochastic replenishment lead time and

service considerations, whereas our problem also includes response time constraints.

The work most related to our problem is due to Mak and Shen [37]. They consider

a two-echelon integrated inventory-location system for spare part items. They assume

M/M/1 queueing system at the plant with limited production and storage capacity, base-

stock policy for both echelons, FCFS approach for filling the outstanding orders, Poisson

demand and deterministic shipment times between plant and SCs. They develop a nonlin-

ear mixed-integer program and use Lagrangian relaxation to determine optimal location

of SCs, optimal allocation of the customers to SCs, and optimal base-stock levels at both

echelons while satisfying time-based service levels. Our work differs from that of Mak and

Shen [37] in three main aspects. First, the allocation decisions are based on customer

preferences and not on minimum allocation cost. Second, we develop an exact algorithm

to solve the inventory stocking problem which is able to use any inventory model including

the METRIC, and Exact and Approximate models [26]. Third, we propose a novel exact

cutting-plane algorithm to solve the inventory-location problem.
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The contribution of this work is three-fold. First, we incorporate customer preferences

in our optimization model. Second, we present an iterative exact procedure to solve the

inventory stocking problem. Third, to the best of our knowledge, this is the first work to

propose an exact cutting-plane algorithm for inventory-location problem.
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Chapter 3

The Inventory-Location Problem

3.1 Problem Description

The problem that we address is to design a single-part, two-echelon supply chain system

for spare parts. It consists of a single manufacturing plant (the upper echelon), a number

of SCs (the lower echelon) and a number of customers. The plant manufactures and stocks

items to fill SC orders. The SCs, in turn, hold inventory to fulfill customer demand. Both

the plant and SCs have limited storage capacity. Parts fail at each customer site according

to a Poisson process independent of other sites. Customers have a preference ordering of

the SCs for the purpose of parts replacement and are assigned to a SC based on their

preferences.

The plant and SCs use a base-stock (S-1,S) replenishment policy: When a part fails at

a customer site, the customer places an order from its assigned SC. If there is inventory on

hand, the customer order is filled, and the SC orders a replacement part from the plant.

The plant, if it has inventory, will immediately send one part to the SC and at the same
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time will trigger an order to produce another item. There is a fixed shipment lead time

between the plant and the SC. If either the SC or the plant is out of stock, the item is

backordered until a replacement part becomes available. Backorders are filled on a FCFS

basis. The time between when the customer places an order and when the order is filled

is referred to as the customer response time. Customers require a mean target response

time. Figure 3.1 shows the replenishment process at the plant and SCs.

The manufacturing facility can produce items at a rate µ, and has processing times

that are independent and exponentially distributed. Since the arrival rate of orders at the

plant is the superposition of independent Poisson processes, the plant can be viewed as an

M/M/1 queueing system. We are interested in the long-run behavior of this system, so we

consider only its steady state behavior.

The problem is to locate the SCs, assign customers to the SCs, and determine base-

stock levels at the SCs and the plant so that customer response time requirements are

met and customer preferences are satisfied. The objective is to minimize total costs which

include inventory holding costs at the plant and SCs, facility location costs associated with

the SCs, and backorder costs at the SCs.

3.2 Problem Formulation

We formulate the problem using the following notation, some of which is also used in Mak

and Shen [37].

Parameters:

I “ Set of customers.
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Figure 3.1: Replenishment process at the plant and SCs

J “ Set of potential SC locations.

hj “ The unit inventory holding cost per unit time at SC j, j P J.

p “ The unit backorder cost per unit time.

fj “ The fixed cost of locating a SC j, j P J.

λi “ The demand rate of customer i, i P I.

λ “ The total demand rate at the plant p“
ÿ

iPI

λiq.

µ “ The production rate at the plant.

ρ “ The utilization rate of the plantp“ λ{µq.

τ “ The mean target response time.

dmax “ The upper limit on the distance between a customer and the assigned SC.
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Ji “ The ordered list of SC locations indicating the preference of customer i (only those

locations which are within dmax are considered).

αj “ The deterministic shipment lead time between the plant and SC j, j P J.

C0 “ The storage capacity at the plant.

Cj “ The storage capacity at SC j, j P J.

Decision Variables:

Xj “ 1 if SC j is opened, 0 otherwise, j P J.

Yij “ 1 if customer i is assigned to SC j, 0 otherwise, i P I, j P J.

Sj “ The base-stock level at SC j, j P J.

S0 “ The base-stock level at the plant.

Auxiliary Variables:

sI0 “ The steady state mean inventory level at the plant.

sB0 “ The steady state mean backorder level at the plant.

ĎW0 “ The steady state mean response time at the plant.

sIj “ The steady state mean inventory level at SC j, j P J.

sBj “ The steady state mean backorder level at SC j, j P J.

ĎWj “ The steady state mean response time to a customer at SC j, j P J.

sLj “ The steady state mean replenishment lead time at SC j, j P J.
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Let Z be the total inventory holding and backorder cost in the system, Z “
ř

jPJtphj
sIj`

p sBjq ` hosI0u. Using the notation described above, the inventory-location model is formu-

lated as:

[P]: min
ÿ

jPJ

fjXj ` Z (3.1)

s.t.
ÿ

jPJ

Yij “ 1 i P I (3.2)

Yij ď Xj i P I, j P Ji (3.3)

Yij ě Xj ´

j´1
ÿ

l“1

Xl i P I, j P Ji (3.4)

Sj ď CjXj j P t0u Y J (3.5)

ĎWj ď τ j P J (3.6)

Sj ě 0, integer j P t0u Y J (3.7)

Z ě 0 (3.8)

Xj P t0, 1u j P J (3.9)

Yij P t0, 1u i P I, j P J (3.10)

The objective function (3.1) minimizes the sum of the inventory-location costs namely

facility location costs, inventory holding and backorder costs at the SCs, and inventory

holding costs at the plant. Constraints (3.2) ensure that all customers are assigned to SCs.

Constraints (3.3) link Yij and Xj variables; they state that customers are only assigned to

open SCs. Constraints (3.4)1 ensure that the location preference with the smallest index

1These are closest assignment constraints, see Gerrard and Church [25].
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among the available location preferences is selected (when j=1, the summation term drops

and Yij = Xj by (3.3) and (3.4)). Constraints (3.5) require that the base-stock level at a

SC should be less than or equal to the storage capacity. Constraints (3.6) are the response

time constraints. They ensure that the mean response time should not exceed the target

response time. Constraints (3.8)–(3.10) are non-negativity and integer requirements.

The formulation [P] is different from Mak and Shen [37]. The primary difference lies

in the assignment of customers. In [P], customers are assigned on the basis of customer

preferences and not on the minimum transportation costs.

It is difficult to solve [P] directly using commercial software due to the complicating

response time constraints (3.6). The mean response time ĎWj is a function of mean backorder

level sBj and the demand faced by the SC j, whereas, sBj is a function of the base-stock level

at SC j and the plant. In order to calculate the mean response time, we first need to find

mean backorder and base-stock levels at the SCs and plant, which makes [P] a complex

problem to solve. One approach to address this problem is to split these complicating

response time requirements from other constraints using some decomposition technique.

Mak and Shen [37] use Lagrangian relaxation to decompose the problem, whereas we

propose an exact cutting-plane algorithm to handle the complicating constraints.

Before describing the solution algorithm, in the next chapter we derive the mean in-

ventory and backorder level expressions required to calculate the mean response time.
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Chapter 4

The Inventory Stocking Problem

The inventory stocking problem itself is of great significance for the spare parts industry.

It has a similar problem setting and assumptions as the inventory-location problem de-

scribed in Chapter 3. Given location and assignments of customers, the inventory stocking

problem aims to find base-stock levels so that the inventory holding and backorder costs

are minimized while satisfying storage capacity (3.5) and response time requirements (3.6).

4.1 Problem Formulation

Let pJ Ď J “ tj : pXj “ 1u be the set of open SCs and pYij Ď Yij “ tij : pYij “ 1u be the set

of customers allocated to pJ . For a given pJ and pYij, [ISP] is formulated as:

[ISP]: Zj “ min
ÿ

jP sJ

phjsIj ` p sBjq ` hosI0 (4.1)
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s.t. Sj ď Cj pXj j P t0u Y pJ (4.2)

ĎWj ď τ j P pJ (4.3)

Sj ě 0, integer j P t0u Y pJ (4.4)

The objective function (4.1) minimizes the sum of the inventory holding costs at the

plant and inventory holding and backorder costs at the open SCs. Constraints (4.2) enforce

the storage capacity, the base-stock level at an open SC should be less than or equal to the

storage capacity. Constraints (4.3) are the response time constraints. They ensure that

the mean response time at open SC should not exceed the target level. Constraints (4.4)

are sign and integrality requirements on Sj.

The complicating constraints (4.3) make [ISP] a difficult problem to solve. However,

considering each SC as a queueing system, we use Little’s law [36] to find the waiting time

expression as:

ĎWj “
sBj

λj
. (4.5)

Using (4.5), we replace constraints (4.3) by

sBj ď τλj. (4.6)

In order to solve [ISP], we need to find mean inventory and backorder level expressions.
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4.2 Inventory Level at the Plant and SCs

Considering the steady state behavior of the queueing system at the plant, we use standard

inventory and backorder level expressions1

sI0 “ S0 ´ ErN0s ` sB0 (4.7)

where N0 denotes the steady state number of outstanding orders in the queueing system

at the plant,

sB0 “ ErN0s ´

S0´1
ÿ

s“0

r1´ F0psqs (4.8)

and

F0psq “
s
ÿ

m“0

P pN0 “ mq.

Considering an M/M/1 queueing system at the plant and substituting the steady state

probabilities for M/M/1 in equations (4.7) and (4.8), we get the mean inventory and

backorder levels at the plant as given by Buzacott and Shanthikumar [9]:

sI0 “ rS0 ´
ρ

1´ ρ
p1´ ρS0qs, (4.9)

sB0 “
ρS0`1

p1´ ρq
. (4.10)

1See Caglar et al. [11] and Mak and Shen [37].
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Hence, the mean waiting time at the plant is calculated as:

ĎW0 “
sB0

λ
“

pS0`1

λp1´ pq
. (4.11)

Similarly, considering each SC as a queueing system, the mean inventory level, backo-

rder level and waiting time at SCs is:

sIj “ Sj ´ ErNjs ` sBj (4.12)

where Nj denotes the number of outstanding orders at SC j (that are either in transit from

the plant to SCs or backordered at the plant),

sBj “ ErNjs ´

Sj´1
ÿ

s“0

r1´ Fjpsqs (4.13)

and

Fjpsq “
s
ÿ

m“0

P pNj “ mq.

In order to solve equations (4.12-4.13), we need to find the probability distribution of

the number of outstanding orders Nj, j P J .
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4.3 Distribution of the Number of Outstanding Or-

ders at the SCs

In this section, we analyze different algorithms proposed in the multi-echelon inventory

management literature to find the distribution of the number of outstanding orders, Nj.

Exact Model

Graves [26] suggests an exact algorithm to obtain the steady state distribution of Nj. In

order to find the exact steady state distribution, we first find the distribution of the aggre-

gate outstanding orders and then we disaggregate this distribution into the distributions

of the number of outstanding orders at each SC.

The number of aggregate outstanding orders at all SCs is derived from Graves [26] as:

N “ BpS0q `D (4.14)

where N is the aggregate outstanding orders at all sites, BpS0q is the back-orders at the

plant for base-stock level S0 and D is the aggregate failures at all SCs. BpS0q and D are

independent random variables due to the fact the failure process is Poisson.

In order to get the distribution of N , we convolve the distribution of BpS0q and D

PrpN “ hq “
h
ÿ

i“0

PrpB “ iqPrpD “ h´ iq.

Assuming an M/M/1 repair system, the distribution of BpS0q is given by Buzacott and
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Shanthikumar [9]:

PrpB “ iq “ p1´ ρqρi`S0 where i “ 0, 1, 2, 3, ... (4.15)

As the shipment time from the plant to the SCs is deterministic, D has a Poisson

distribution. We assume that the shipment time from plant to SC is the same for all the

SCs, α1 “ α2 “ α3... “ α,

PrpD “ h´ iq “
e´pλαqpλαqh´i

ph´ iq!
where i “ 0, 1, 2, 3, ... h “ 0, 1, 2, 3, ... (4.16)

Using equations (4.15) and (4.16),

PrpN “ hq “
h
ÿ

i“0

p1´ ρqρi`S0
e´pλαqpλαqh´i

ph´ iq!

“ p1´ ρqρS0e´pλαq
h
ÿ

i“0

ρipλαqh´i

ph´ iq!

multiplying and dividing by ρh:

“ p1´ ρqρS0`je´pλαq
h
ÿ

i“0

pλα
ρ
qi

i!

“ p1´ ρqρS0`je´pλαq
h
ÿ

i“0

pµαqi

i!

multiplying and dividing by epµαq:

“ p1´ ρqρS0`j
h
ÿ

i“0

epµαqpµαqi

i!
pe´λα`µαq
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PrpN “ hq “
 

p1´ ρqρS0`jpeαpµ´λqq
(

h
ÿ

i“0

ep´µαqpµαqi

i!
. (4.17)

According to Graves [26], once we find the distribution of the number of aggregate

outstanding orders, we disaggregate this distribution into the distributions of outstanding

orders for each SC as:

PrpNj “ mq “
8
ÿ

h“m

rPrpN “ hqs rPrpNj “ m|N “ hqs for each j P J. (4.18)

Since the plant fills the backorder requests on a FCFS basis, we use the binomial

distribution for the conditional distribution PrpNj “ m|N “ hq.

Thus, the steady state distribution of the number of the outstanding orders at each SC

is

PrpNj “ mq “
8
ÿ

h“m

rPrpN “ hqs

ˆ

h

m

˙„

λj
λ

m „

λ´ λj
λ

h´m

for each j P J. (4.19)

METRIC-like Model

The METRIC-like model approximates the distribution of the number of the outstanding

orders Nj with a Poisson distribution which requires only the expression of the mean of

Nj given by Graves [26]:

ErNjs “
λj
λ

sB0 ` λjαj. (4.20)

Sherbrooke’s METRIC model [62] assumes Compound Poisson failure processes and

ample repair capacity, and thus the repair process behaves like an M/G/8 queue. The
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distribution of Nj is thus asymptotically Poisson [53]. Since the shipment time from the

plant to the SCs is deterministic, D has a Poisson distribution. This implies that BpS0q has

a Poisson distribution since N and D are assumed Poisson [26]. Thus, the METRIC-like

model approximates the backorder level at the plant (4.10) with a Poisson random variable

in case of deterministic shipment time to the SCs [26] and as a result we replace Fjpsq by

the Poisson CDF with mean λjsLj [11, 37].

The Poisson distribution is given by:

PrpNj “ mq “
e´pλj

sLjqpλjsLjq
m

m!
(4.21)

where

sLj “ ĎW0 ` αj “
pS0`1

λp1´ pq
` αj. (4.22)

Approximate Model

The Approximate Model suggested by Graves [26] approximates Nj by a negative binomial

distribution. It assumes that all failure processes are Poisson and the plant fills order

requests on a FCFS basis. It requires both the mean of Nj given in equation (4.20) and

the variance of Nj calculated in [26]:

V arpNjq “

ˆ

λj
λ

˙2

V artBpS0qu `

ˆ

λj
λ

˙ˆ

λ´ λj
λ

˙

sB0 ` λjαj. (4.23)

The variance of the backorder level at the plant for base-stock level S0 is calculated as

V artBpS0qu “
ρS0`1p2´ ρ´ ρS0`1q

p1´ ρq2
. (4.24)

26



The negative binomial distribution is given by

PrpNj “ mq “

ˆ

r `m´ 1

m

˙

qrp1´ qqj for m “ 0, 1, 2, ... (4.25)

where ( 0 ď q ď 1) and (r ě 0),

EpNj “ mq “ rp1´ qq{q, (4.26)

V arpNj “ mq “ rp1´ qq{q2. (4.27)

Graves [26] compares the results of the METRIC and Approximate models with the

Exact model. They find that both approximations are effective in approximating the dis-

tribution of the number of the outstanding orders Nj, however, “the negative binomial

approximation virtually dominates the METRIC approximation” in terms of accuracy.

Mak and Shen [37], use the METRIC-like approximation, claiming that finding the exact

distribution is computationally expensive and using the negative binomial distribution re-

quires rounding of the parameter r, which makes the optimization difficult. They use the

METRIC-like approximation without verifying whether it is appropriate. We on the other

hand experiment with all the three models; the Exact, METRIC-like and Approximate.

We present an exact solution of [ISP] in the next section.

4.4 Exact solution of [ISP]

In this section, we propose an exact procedure to solve inventory stocking problem [ISP] in-

troduced in section 4.1. Given location and allocation variables pXj and pYij, [ISP] calculates

the base-stock levels S0 and Sj that satisfy response time (4.6) and capacity constraints

27



(4.2) while minimizing inventory holding costs (4.1).

The iterative procedure is able to use any of the inventory models presented in section

4.3, and iteratively finds the minimum inventory holding cost solution for a given set of

facility locations and customer allocations.

The algorithm starts with S0 “ C0 and finds all the possible feasible base-stock levels

Sj that satisfy constraints (4.2) and (4.6). Once we find all possible feasible solutions we

pick the solution which has the lowest inventory holding cost, this is a local minimum cost

solution. However, if we are unable to find a feasible base-stock level Sj for given value of

S0 then [ISP] is infeasible.

Once we find a local minimum cost solution for S0, we decrease S0 by one and repeat

the above procedure. This process is continued till S0 reaches zero or we are unable to find

local minimum cost solution for some given value of S0. After finding all the local minimum

cost solutions, we pick the minimum, this becomes the global minimum inventory holding

cost solution pZj for given p pX, pY q.

The [ISP] Algorithm is summarized as:
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Inventory Stocking Problem Algorithm [ISPA]

Initialize: S0 “ C0

while S0 ě 0 do

Initialize Sj “ 0

for each open SC do

sBj “ ErNjs ´ p1´ Fjpsqq

while sBj ě τλj do

if Sj ă Cj then

set Sj Ð Sj ` 1

set sBj Ð sBj ´ p1´ Fjpsqq

end if

end while

for each feasible Sj do

set Sj Ð Sj ` 1

set sBj Ð sBj ´ p1´ Fjpsqq

end for

end for

set S0 Ð S0 ´ 1

end while

The [ISPA] calculates the steady state state parameters and may use the METRIC-like,

Approximate or Exact model to do so.

We present the solution approach based on the cutting-plane algorithm in the following

chapter.
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Chapter 5

Exact Solution of the

Inventory-Location Problem by

Cutting-Planes

The formulation [P] is a mixed integer non-linear program. It is difficult to solve because

of complicating constraints (3.6). In this chapter, we propose a cutting-plane method

that solves a relaxation of [P] where constraints (3.5) and (3.6) are dropped. We calculate

minimum cost inventory solution by solving [ISP] and based on [ISP] solution we propose

a family of valid cuts to strengthen the relaxation.

In general, a cutting-plane algorithm would first solve a relaxed master problem where

complicating constraints are dropped. The relaxed master problem solution gives a lower

bound to the original problem. Then based on the relaxation solution, a subproblem is

solved to get an upper bound to the original problem and valid cutting-planes, or cuts, are

derived. These cuts are added to the relaxed master problem to tighten the relaxation.
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If the relaxation solution is feasible then an optimality cut is added to improve the lower

bound, and if the relaxation solution is infeasible then a feasibility cut is added. This

process keeps on repeating to refine the relaxation until an optimal solution (when lower

bound becomes equal to upper bound) is obtained.

Consider the relaxed location-allocation master problem [RLAMP] defined by (3.1)-

(3.4), (3.8)-(3.10). Let p pX, pY , pZq be a minimum cost solution to [RLAMP], pJ “ tj : pXj “

1u be the set of open SCs, and pλj “
ř

iPI λi
pYij be the demand rate at open SC j. For

solution p pX, pY , pZq to be feasible to [P], it has to satisfy the relaxed constraints (3.5) and

(3.6). To verify this, we solve the inventory stocking problem [ISP]. The [ISP] solves for

the minimum cost solution p pZq given p pX, pY q by finding the base-stock levels that satisfy

the relaxed constraints (3.5) and (3.6). If [ISPA] finds a feasible solution an optimality

cut is added to [RLAMP] to improve the lower bound, and if [ISPA] is unable to find a

feasible solution then a feasibility cut is added to [RLAMP] to remove the current relaxed

solution.

5.1 Valid Cuts and Cutting-Plane Algorithm

In case we get a feasible [ISP] solution, it gives us the minimum inventory holding cost,

pZj. Then an optimality cut for [RLAMP] is formally stated as:

Z ě pZj ´ pZj
ÿ

jP pJ

p1´Xjq (5.1)

where pJ is the set of open facilities and pZj is the minimum inventory holding cost incurred

at location j in order to satisfy customer demand. If the same SCs are open again by

[RLAMP], then the summation term in cut (5.1) is dropped and the optimality cut is

31



reduced to the form

Z ě pZj (5.2)

which forces Z to be greater than or equal to the minimum inventory holding cost.

If the [ISPA] is unable to find the feasible solution then we add feasibility cut to

[RLAMP] as:
ÿ

jR pJ

Xj `
ÿ

jP pJ

p1´Xjq ě 1 (5.3)

If the same customers are assigned to the same SC by [RLAMP], then
ř

jP pJp1 ´Xjq “ 0

and cut (5.3) becomes
ÿ

jR pJ

Xj ě 1 (5.4)

which forces [RLAMP] to remove the current infeasible solution and to find a new solution.

Constraints (5.1) and (5.3) are valid cuts since they do not cut any feasible solution

and they do remove the current infeasible solution from [RLAMP] and lead to optimality

by narrowing down the solution space and closing the gap between bounds.

We decompose [P] into relaxed location-allocation master problem [RLAMP] and inven-

tory stocking problem [ISP]. The cutting-plane algorithm iteratively solves the [RLAMP]

by locating facilities, and allocating customers to the open facilities. Since, [RLAMP] is

a relaxation of the original minimization problem [P], it gives a lower bound to [P]. Then

given p pX, pY q, we solve [ISP] to generate a feasible solution and an upper bound to [P].

If the [ISPA] finds a feasible solution, we generate valid optimality cut to tighten the re-

laxation and to improve the lower bound. However, if the [ISP] solution is infeasible, we

add a feasibility cut to [RLAMP]. This procedure is repeated until an optimal solution is

obtained.
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The formal description of the cutting-plane algorithm is given as:

Cutting-Plane Algorithm [CPA]

Initialize: UB “ inf, LB “ 0.

While LB ‰ UB

Step 1. Solve [RLAMP], obtain solution p pX, pY , pZq, update LB.

Step 2. Test: if solution p pX, pY , pZq is feasible with respect to (3.5) and (3.6),

UB = LB, Stop.

Step 3. Solve [ISP], to construct a feasible solution

- If [ISP] is feasible:

- Construct feasible solution p pX, pY , pZjq, update UB.

- Add optimality cut (5.1) to [RLAMP].

- If [ISP] is not feasible:

- Add feasibility cut (5.3) to [RLAMP].
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Chapter 6

Numerical Testing

In this chapter, we analyze the effectiveness of cutting-plane algorithm [CPA]. The [CPA]

is implemented in Matlab 7.14 on VAIO computer with Intel (R) Core i5-2540M CPU @

2.60 GHz, 8.00 GB RAM, and Windows 7. The relaxed mixed-integer problem [RLAMP]

is solved using GUROBI 4.6, a mixed-integer programming solver.

6.1 Performance of CPA

In this section, we run a set of experiments to test the performance of [CPA] using industrial

data obtained from Bombardier Inc. and Daskin datasets [15].

6.1.1 Daskin Instances

We have used three data sets from Daskin [15] ; a 49-node, 88-node and a 150-node data

set. The 49-node dataset contains capitals of the 48 states of the United States along with
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Washington, D.C. in the 1990 U.S. census. The 88-node data set is defined on the 50 most

populous cities in the 1990 U.S. census along with the 48 capitals of the continental U.S.

The 150-node data set represents the 150 largest cities in the 1990 U.S. census. Every node

is considered a potential SC location and a customer. These datasets are modified from

Daskin [1995] in the following way: we have used the same facility location costs fj. The

demand rates λi are obtained by dividing the 1990 population figure (First Demand) by

106. The per unit inventory holding costs (ho, hj) and backorder costs p are 50 and 150,

respectively.

We have used two different versions of each data set. In version 1 (v1) of the Daskin

instances, shipment lead time αj is obtained by dividing the distance between the cor-

responding demand node and and Springfield (node 6), IL, in the 49-node dataset and

Chicago (node 3) in the 88-node and 150-node datasets by 100. The Plant and SC capaci-

ties (Co, Cj), utilization rate ρ, response time requirement τ , and the distance requirement

dmax are set to 10, 0.9, 5.5 and 2000, respectively. For version 2 (v2), the shipment lead

time αj is obtained by dividing the distance between the corresponding demand node and

and Springfield (node 6), IL, in the 49-node dataset and Chicago (node 3) in the 88-node

and 150-node datasets by 1000. The Plant and SC capacities (Co, Cj), utilization rate ρ,

response time requirement τ , and the distance requirement dmax are set to 5, 0.5, 1.5 and

500, respectively.

Version 2 of all the datasets contains relatively tougher instances because of smaller

target time, smaller value of dmax and low storage capacity. Therefore, we expect to see

more than one facility required to open to fulfill customer demand for version 2 datasets

and less number of facilities for version 1. However, high utilization rate for version 1 will

make a congested system and as a result we expect high inventory holding costs for version

1 datasets as compared to version 2 datasets.
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In the Tables 6.1-6.2: Iter denotes the number of iterations; #SC stands for number

of open SCs; UB denotes upper bound; Z refers to optimal inventory holding costs as

percentage of UB; Gap is an optimality gap and calculated as UB´LB
LB

ˆ 100; Time is the

total clock time used in seconds; ISPS is the [ISP] solution time as percentage of total

time; Solver is the solver time as percentage of total time; Fgap stands for Gap in the first

solution; - stands for infeasible solution; M stands for METRIC-like model; A stands for

Approximate model and E stands for Exact model

Table 6.1: Performance of CPA for Daskin instances

Instance Iter Model #SC Z UB Gap Solver ISPS Time Fgap

49 v1 30 M 1 48.7 119919 0 98 1.9 168.27 1.47

49 v1 30 A 1 48.7 119919 0 99.8 0.1 179.28 1.47

88 v1 12 M 1 8.5 58457 0 97.9 2.1 90.52 62.1

88 v1 12 A 1 8.5 58457 0 99.8 0.1 93.65 62.1

150 v1 44 M 1 5.5 105880 0 99.1 0.8 1889.84 -

150 v1 44 A 1 5.5 105880 0 99.7 0.2 1768.38 -

49 v2 8 M 5 7.52 313161 0 80.2 17.7 2.77 -

49 v2 8 A 5 7.52 313161 0 94.7 5.1 2.63 -

88 v2 1 M 7 0.61 419600 0 96.9 2.9 2.74 -

88 v2 1 A 7 0.61 419601 0 97.6 2.2 2.61 -

150 v2 1073 M 6 0.62 603751 0 94.4 5.5 5203.06 0.77

150 v2 1073 A 6 0.62 603751 0 99.2 0.7 3782.29 0.77

Table 6.1 shows the performance of [CPA] for Daskin instances in terms of speed and

optimality gap. For all the instances tested, optimality gap is 0% and they are solved from

3 seconds up to 85 mins. For 49-node and 88-node dataset, version 1 optimal solution is
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found within 3 seconds, whereas, version 2 takes 3 mins. The 150-node dataset is solved

from 32 mins up to 85 mins.

6.1.2 Bombardier Instances

We have also used industrial dataset, which is obtained from Bombardier Inc. This dataset

consists of 20 potential SC locations and 121 customers. We have used a spare part which

has the highest demand.

The distance from customer i to facility j is given in hours and the demand is given

monthly. Shipment lead time αj is 0.23 months for every j. Two different version of

Bombardier instances (BBD) are used to test the algorithm. In version 1, the Plant and

SC capacities (Co, Cj), utilization rate ρ, response time requirement τ , and the distance

requirement dmax are set to 10 units, 0.9, 0.025 months and 40 hours, respectively whereas

in version 2, these values are set to 5 units, 0.5, 0.01 months and 25 hours, respectively.

Similar to the Daskin instances, Version 2 of (BBD) instances are considered to be

difficult relative to version 1.

Table 6.2: Performance of CPA for Bombardier instances

Instance Iter Model #SC Z UB Gap Solver ISPS Time Fgap

20 v1 15 M 1 57.23 116,911 0 96.9 3.0 5.68 133.8

20 v1 15 A 1 59.88 124,626 0 87.9 11.9 6.04 149.2

20 v2 43 M 2 35.42 190,998 0 99.9 0.04 863.06 -

20 v2 43 A 2 24.23 190,259 0 99.9 0.05 562.07 -

Table 6.2 shows the performance of [CPA] for Bombardier instances. For the METRIC-

like model, the solution times range from 6 seconds to 14 min and for Approximate Model,
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the solution times range from 6 seconds to 9.5 mins. Optimality gap is 0% for all the tested

instances.

Results in Tables 6.1 and 6.2 show that [CPA] solves the inventory-location problem ef-

fectively for industry size instances. All instances are solved to optimality within reasonable

computational time. We observe that as expected, version 2 datasets of the Bombardier

and Daskin instances are difficult to solve and require more than one SC to fulfill customer

demand and incur low inventory holding costs as compared to corresponding version 1

datasets. We also observe that solver takes most of the time for all the instances tested

and [ISPS] is almost negligible.

Moreover, we find that 50% of time first solution is infeasible for both Bombardier and

Daskin instances. For the first solutions which are feasible we see that the gap is improved

from 149.2 % to 0% for Bombardier instances, whereas maximum improvement for Daskin

instances is from 62.1% to 0%. The Fgap shows the benefits of using an integrated approach.

Furthermore, the results for Daskin instances show that both the METRIC-like and

Approximate models give the same solutions all the time, whereas the Bombardier instances

show that using the METRIC-like versus the Approximate model does not lead to the same

solution all the time. Moreover, for Bombardier instances version 1, solution is different

due to different base-stock levels, whereas for version 2, solution differs in base-stock levels

as well as in SC locations.

It is important to understand when these models differ and if possible find out which is

a better approximation. We carry out further testing in the following section to investigate

these issues.
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6.2 Comparison of the METRIC-like and Approxi-

mate Models

In this section, we run a set of experiments to verify the results of the METRIC-like and

Approximate models with the Exact model described in chapter 4. For these tests we solve

inventory-location problem [P] using the METRIC-like model [M], and based on location

decision pXj, we solve [ISP] with the Approximate model [A] and Exact model [E].

In computing the exact distribution, we find that the aggregation and disaggregation

procedures are very time consuming especially for high demand and large values of So even

for small scale problems, which makes the [ISPA] computationally expensive. Thus, we

perform the following set of experiments only on version 1 profiles of all datasets, with

low value of demand and So “ 0, because for such setting we are able to compute the

distribution in reasonable time.

In the rest of the chapter, we use the following notation in addition to that introduced

in Sections 3.2 and 6.1.1. pXj denotes the open SC location obtained by solving [P] using

[M], pZj refers to optimal inventory holding costs at open SC as percentage of total cost,

pSj refers to the base-stock level at open SC, pBj refers to the mean backorder level at open

SC, pIj refers to the mean inventory level at open SC, xWj refers to the mean response time

to a customer at open SC, and %dev refers to percentage deviation calculated as (exact

cost-approximation cost)/exact cost)ˆ100.
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Table 6.3: Comparison of approximations with the Exact model for BBD 20 v1
J “ 20, I “ 121, λ “ 17.44, dmax “ 40, τ “ 0.025, α “ 0.2308

Model pXj
pZj So sIo sBo ĎWo

pSj pBj pIj xWj UB %dev

ρ “ 0.1

E 12 36.10 0 0 0.1111 0.0064 6 0.2271 2.0913 0.013 78250 -

M 12 36.07 0 0 0.1111 0.0064 6 0.2261 2.0903 0.013 78209 -0.14

A 12 36.32 0 0 0.1111 0.0064 6 0.2337 2.098 0.0134 78522 +0.96

ρ “ 0.3

E 12 36.72 0 0 0.4286 0.0246 6 0.3251 1.8719 0.0186 79011 -

M 12 36.20 0 0 0.4286 0.0246 6 0.3094 1.8562 0.0177 78372 -2.20

A 12 35.77 0 0 0.4286 0.0246 6 0.2966 1.8434 0.017 77850 -4

ρ “ 0.5

E 12 40.33 0 0 1 0.0573 7 0.3352 2.3105 0.0192 83788 -

M 12 38.10 0 0 1 0.0573 7 0.2614 2.2368 0.015 80781 -8.89

A 12 36.94 0 0 1 0.0573 7 0.2247 2.2001 0.0129 79288 -13.31

ρ “ 0.7

E 12 51.05 0 0 2.3333 0.1338 10 0.3689 4.0109 0.0212 102146 -

M 12 40.21 0 0 2.3333 0.1338 8 0.4146 2.0567 0.0238 83632 -35.5

A 12 40.17 0 0 2.3333 0.1338 8 0.413 2.0551 0.0237 83566 -35.6
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Table 6.4: Comparison of approximations with the Exact model for Daskin 49 v1
J “ 49, I “ 49, λ “ 40, dmax “ 2000, Cj “ 10, τ “ 5.5, α “ 1.5986

Model pXj
pZj So sI0 sB0

ĎW0
pSj pBj pIj xWj UB %dev

ρ “ 0.1

E 15 11.65 0 0 0.1111 0.0028 10 54.0562 0 1.3514 69608 -

M 15 11.65 0 0 0.1111 0.0028 10 54.0562 0 1.3514 69608 0

A 15 11.65 0 0 0.1111 0.0028 10 54.0562 0 1.3514 69608 0

ρ “ 0.3

E 15 11.71 0 0 0.4286 0.0107 10 54.3736 0 1.3593 69656 -

M 15 11.71 0 0 0.4286 0.0107 10 54.3736 0 1.3593 69656 0

A 15 11.71 0 0 0.4286 0.0107 10 54.3736 0 1.3593 69656 0

ρ “ 0.5

E 15 11.82 0 0 1 0.025 10 54.945 0 1.3736 69742 -

M 15 11.82 0 0 1 0.025 10 54.945 0 1.3736 69742 0

A 15 11.82 0 0 1 0.025 10 54.945 0 1.3736 69742 0

ρ “ 0.7

E 15 12.07 0 0 2.3333 0.0583 10 56.2784 0 1.407 69942 -

M 15 12.07 0 0 2.3333 0.0583 10 56.2784 0 1.407 69942 0

A 15 12.07 0 0 2.3333 0.0583 10 56.2784 0 1.407 69942 0

Cj “ 70, ρ “ 0.9

E 15 1.75 0 0 9 0.225 70 6.2173 3.2722 0.1554 62596 -

M 15 1.38 0 0 9 0.225 70 5.0548 2.1098 0.1264 62364 -21.21

A 15 1.43 0 0 9 0.225 70 5.2094 2.2643 0.1302 62395 -18.39
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Table 6.5: Comparison of approximations with the Exact model for Daskin 88 v1
J “ 88, I “ 88, λ “ 44.8400, ho “ 50, hj “ 50 for every j
dmax “ 2000, Cj “ 10, τ “ 5.5, α “ 0.8592

Model pXj
pZj So sI0 sB0

ĎW0
pSj pBj pIj xWj UB %dev

ρ “ 0.1

E 17 7.43 0 0 0.1111 0.0025 10 28.6375 0 0.6387 57795.6 -

M 17 7.43 0 0 0.1111 0.0025 10 28.6375 0 0.6387 57795.6 0

A 17 7.43 0 0 0.1111 0.0025 10 28.6375 0 0.6387 57795.6 0

ρ “ 0.2

E 17 7.47 0 0 0.25 0.0056 10 28.7764 0 0.6418 57816.5 -

M 17 7.47 0 0 0.25 0.0056 10 28.7764 0 0.6418 57816.5 0

A 17 7.47 0 0 0.25 0.0056 10 28.7764 0 0.6418 57816.5 0

ρ “ 0.3

E 17 7.51 0 0 0.4286 0.0096 10 28.9549 0 0.6457 57843.2 -

M 17 7.51 0 0 0.4286 0.0096 10 28.9549 0 0.6457 57843.2 0

A 17 7.51 0 0 0.4286 0.0096 10 28.9549 0 0.6457 57843.2 0

ρ “ 0.4

E 17 7.57 0 0 0.6667 0.0149 10 29.193 0 0.651 57879 -

M 17 7.57 0 0 0.6667 0.0149 10 29.193 0 0.651 57879 0

A 17 7.57 0 0 0.6667 0.0149 10 29.193 0 0.651 57879 0

Cj “ 70, ρ “ 0.9

E 17 1.4 0 0 9 0.2007 53 2.4368 7.9105 0.0543 54261 -

M 17 0.82 0 0 9 0.2007 52 1.1036 5.5772 0.0246 53944 -41.61

A 17 0.9 0 0 9 0.2007 52 1.3153 5.789 0.0293 53987 -36.04
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Table 6.6: Comparison of approximations with the Exact model for Daskin 150 v1
J “ 150, I “ 150, λ “ 58.1970, dmax “ 2000, Cj “ 10, τ “ 5.5, α “ 0.7678

Model pXj
pZj So sI0 sB0

ĎW0
pSj pBj pIj xWj UB %dev

ρ “ 0.1

E 126 4.96 0 0 0.1111 0.0019 10 34.7944 0 0.5979 105219 -

M 126 4.96 0 0 0.1111 0.0019 10 34.7944 0 0.5979 105219 0

A 126 4.96 0 0 0.1111 0.0019 10 34.7944 0 0.5979 105219 0

ρ “ 0.2

E 126 4.98 0 0 0.25 0.0043 10 34.9333 0 0.6003 105240 -

M 126 4.98 0 0 0.25 0.0043 10 34.9333 0 0.6003 105240 0

A 126 4.98 0 0 0.25 0.0043 10 34.9333 0 0.6003 105240 0

ρ “ 0.3

E 126 5 0 0 0.4286 0.0074 10 35.1118 0 0.6033 105267 -

M 126 5 0 0 0.4286 0.0074 10 35.1118 0 0.6033 105267 0

A 126 5 0 0 0.4286 0.0074 10 35.1118 0 0.6033 105267 0

ρ “ 0.4

E 126 5.04 0 0 0.6667 0.0115 10 35.3499 0 0.6074 105303 -

M 126 5.04 0 0 0.6667 0.0115 10 35.3499 0 0.6074 105303 0

A 126 5.04 0 0 0.6667 0.0115 10 35.3499 0 0.6074 105303 0

Cj “ 70, ρ “ 0.9

E 126 0.77 0 0 9 0.1546 60 2.3074 8.6241 0.0396 100777 -

M 126 0.47 0 0 9 0.1546 59 1.0351 6.3519 0.0178 100473 -39.17

A 126 0.49 0 0 9 0.1546 59 1.1332 6.45 0.0195 100492 -36.64

Tables 6.3-6.6 compare the results of approximations with the Exact model. We ob-

serve that the METRIC-like model outperforms the Approximate model for Bombardier
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instances in terms of % deviation whereas the Approximate model dominates the METRIC-

like model for Daskin instances. We also observe that, for Daskin instances, both approxi-

mations predict the same base-stock, backorder and inventory levels as the Exact model for

low and medium utilization rates, and differ for high utilization rates and high capacity.

For Bombardier instances, the approximations differ for all of the cases tested and the

differences are more significant for high utilization rates.

These results suggest that the Approximate and METRIC-like models produce solutions

that differ from the Exact model solutions at high utilization rates. Since the inventory

and backorder levels depend on the probability distribution of the number of outstanding

orders, we further explore and plot the distributions of the number of outstanding orders

for the three models for different values of utilization rates to verify the differences.
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Figure 6.1: Probability distribution of Nj for Daskin 49 v1
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Figure 6.2: Probability distribution of Nj for Daskin 88 v1

46



Figure 6.3: Probability distribution of Nj for Daskin 150 v1
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Figure 6.4: Probability distribution of Nj for BBD 20 v1

Figures 6.1-6.4 show the probability distribution plots of the number of the outstanding

orders for the METRIC-like, Approximate and Exact models for Bombardier and Daskin

instances. It is observed that in case of deviation, the Approximate model overestimates the

exact distribution whereas the METRIC-like model underestimates the exact distribution.

Graves [26] has made similar observations as well. We observe that the METRIC-like and

Approximate models provide accurate approximation for low (ρ=0.1, 0.3) and medium

(ρ=0.5) utilization rates, however they deviate from the exact distributions in case of high
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(ρ=0.7, 0.9) utilization rates.

Our results are in agreement with those shown by Diaz and Fu [16]. They have demon-

strated that the METRIC and Approximate models do not work well in case of the high

utilization rates because these models ignore the queueing effects in the repair process.
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Chapter 7

Sensitivity Analysis

In this chapter, we perform a set of experiments to investigate the impact of capacity,

backorder cost and the utilization rate on the solution in terms of total cost, base-stock

level and backorder level. In the following experiments, we solve inventory-location problem

[P] using the METRIC-like model [M]. In this chapter, we use the notation introduced in

Sections 3.2 and 6.1.1.

7.1 Effects of Capacity

In this section we vary the capacity level for Daskin and Bombardier instances so we can

get a better understanding of the effect of capacity on the problem solution.
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Table 7.1: Effects of capacity on Daskin 49 v1
J “ 49, I “ 49, λ “ 247.05, ρ “ 0.9, τ “ 5.5, α “ 1.5986

#SC Z So sI0 sB0
ĎW0 Sj sBj sIj ĎWj Cost Time

C0, Cj “ 10 1 48.7 10 4.14 3.14 0.01 10 388.08 0 1.57 119919 168.27

C0, Cj “ 30 1 47.4 13 6.29 2.29 0.01 30 367.23 0 1.49 116899 191.27

C0, Cj “ 50 1 46 13 6.29 2.29 0.01 50 347.23 0 1.41 113899 187.98

C0, Cj “ 70 1 44.5 13 6.29 2.29 0.01 70 327.23 0 1.32 110899 248.68

C0, Cj “ 90 1 43 13 6.29 2.29 0.01 90 307.23 0 1.24 107899 322.57

Table 7.2: Effects of capacity on Daskin 88 v1
J “ 88, I “ 88, λ “ 44.8400, ρ “ 0.9, τ “ 5.5, α “ 0.8592

#SC Z So sI0 sB0
ĎW0 Sj sBj sIj ĎWj Cost Time

C0, Cj “ 10 1 8.5 10 4.14 3.14 0.07 10 31.66 0 0.71 58457 95.98

C0, Cj “ 30 1 3.5 12 5.54 2.54 0.06 30 11.15 0.08 0.25 55454 56.33

C0, Cj “ 50 1 0.8 1 0.1 8.1 0.18 50 1.39 4.76 0.03 53951 62.04

C0, Cj “ 70 1 0.8 0 0 9 0.2 52 1.1 5.58 0.02 53944 89.42

C0, Cj “ 90 1 0.8 0 0 9 0.2 52 1.1 5.58 0.02 53944 133.59
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Table 7.3: Effects of capacity on Daskin 150 v1
J “ 150, I “ 150, λ “ 58.1970, ρ “ 0.9, τ “ 5.5, α “ 0.7678

#SC Z So sI0 sB0
ĎW0 Sj sBj sIj ĎWj Cost Time

C0, Cj “ 10 1 5.5 10 4.14 3.14 0.05 10 37.82 0 0.65 105880 1889.84

C0, Cj “ 30 1 2.8 13 6.29 2.29 0.04 30 16.98 0.01 0.29 102862 1941.99

C0, Cj “ 50 1 0.6 6 1.78 4.78 0.08 50 2.55 3.08 0.04 100625 2601.48

C0, Cj “ 70 1 0.5 0 0 9 0.15 59 1.04 6.35 0.02 100473 2817.76

C0, Cj “ 90 1 0.5 0 0 9 0.15 59 1.04 6.35 0.02 100473 3850.55

Tables 7.1-7.3 show the change in problem solution due to an increase in capacity for

Daskin instances.

As capacity at SC and the plant increases, base-stock levels at the SC increase which

results in a decrease in backorder levels and increase in inventory levels. On the other hand,

base-stock levels decrease at the plant which results in an increase in backorder levels and

decrease in inventory levels at the plant. The trade-off between backorder and inventory

holding costs leads to a decrease in total cost. Increasing capacity means that capacity

constraints are less tight so either the previous solution is still optimal or the new solution

has a better (lower) cost. It is worth noting that holding more stock at the SCs does not

necessarily lead to smaller base-stock levels at the plant as is the case for Daskin 49 v1.

One possible explanation is that the high utilization rate at the plant may push stock to

be held at the plant rather than at SCs.
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Figure 7.1: Effect on total cost by increasing capacity at the plant and SCs for Daskin
instances

Figure 7.1 shows the impact of capacity on total cost for Daskin instances. For version 1,

when capacity increases, total cost decreases for 49-node dataset. The total cost decreases

because the decrease in backorder costs outweighs the increase in inventory holding costs as

the capacity increases. However, the inventory level remains zero at the SC and increases

at the plant. The reason for such behavior is high utilization rate ρ. Since ρ is high, it’s

better to keep inventory at the plant as compared to SCs. For 88-node dataset, the total

cost decreases as the capacity is increased but it remains the same for Cj greater than

50. The reason for the initial decrease in the total cost is the same as for the 49-node

dataset, however, for Cj greater than 50, the optimal base-base-stock policystock level and

backorder level at SCs remain the same. This is because at optimality, S0 “ 0 and there

is no room for improvement. The 150-node dataset exhibits similar trend as the 88-node

dataset. The total cost decreases as the capacity is increased but it remains the same for

Cj greater than 70.

Similarly, for version 2, as capacity increases the total cost decreases for the 49-node

dataset. However for 88 and 150-node dataset, the total cost initially decreases but it
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remains the same for Cj greater than 25.

Table 7.4: Effects of capacity on BBD 20 v1
J “ 20, I “ 121, λ “ 17.44, ρ “ 0.9, τ “ 0.025, α “ 0.2308

#SC Z So sI0 sB0
ĎW0 Sj sBj sIj ĎWj Cost Time

C0, Cj “ 8 21 43.2 5 1.31 5.31 0.30 7 0.18 2.5 0.02 175,938 2353

C0, Cj “ 9 22 42.7 4 0.9 5.9 0.34 7.5 0.17 2.7 0.02 174,647 2286

C0, Cj “ 10 1 57.2 8 2.87 3.87 0.22 10 0.4 2.5 0.02 116,911 5.68

C0, Cj “ 11 1 53.6 6 1.78 4.78 0.27 11 0.42 2.62 0.02 107,821 5.57

C0, Cj “ 12 1 52.4 5 1.31 5.31 0.3 12 0.35 3.02 0.02 104,964 5.93

C0, Cj “ 13 1 51.5 4 0.9 5.9 0.34 13 0.31 3.38 0.02 103,061 6.31

Figure 7.2: Effect on total cost by increasing capacity at the plant and SCs for Bombardier
instances

Figure 7.2 shows the impact of capacity on total cost for Bombardier instances. For

1Since there are two open SCs, Sj , B̄j , Īj and W̄j refer to average levels of the two open SCs
2See footnote 1
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version 1, as capacity increases, total cost decreases as expected. With the increase in

the capacity at the SCs and plant, base-stock levels at the SCs increase which results in a

decrease in backorder levels and increase in inventory levels at the SCs. On the other hand,

base-stock levels decrease at the plant which results in an increase in backorder levels and

decrease in inventory levels at the plant. However, we see a drastic change in this trend

both at the plant and SC when capacity reaches 10. This is because of the change in the

number of open SCs and it leads to an increase in the base-stock level at the only open

SC. Since the open SC reaches capacity, it also pushes the plant to hold more stock which

results in a decrease in backorder levels and increase in inventory levels. The increase

in inventory levels is offset by the decrease in backorder levels and as a result total cost

decreases. It is worth noting that total cost changes significantly because of decrease in

facility location cost as now it requires only one SC to open.

Version 2 exhibits similar behavior as the version 1 dataset. The total cost decreases

drastically when capacity increases from 4 to 5 because of the decrease in the facility

location cost as well as inventory holding cost.

7.2 Effects of Backorder Cost

In this section we study the effect of backorder cost for Daskin instances on the problem

solution.
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Table 7.5: Effects of backorder cost on Daskin 49 v1
J “ 49, I “ 49, λ “ 247.05, ρ “ 0.9, τ “ 5.5, α “ 1.5986

#SC Z So sI0 sB0
ĎW0

pSj pBj pIj xWj Cost Time

p “ 50 1 37.5 6 1.78 4.78 0.02 10 593.32 0 2.4 79255 27.24

p “ 100 1 38.8 10 4.14 3.14 0.01 10 388.08 0 1.57 100515 86.12

p “ 150 1 48.7 10 4.14 3.14 0.01 10 388.08 0 1.57 119919 168.27

Table 7.6: Effects of backorder cost on Daskin 88 v1
J “ 88, I “ 88, λ “ 44.8400, ρ “ 0.9, τ “ 5.5, α “ 0.8592

#SC Z So sI0 sB0
ĎW0

pSj pBj pIj xWj Cost Time

p “ 50 1 3.1 6 1.78 4.78 0.11 10 33.31 0 0.74 55255 56.05

p “ 100 1 5.9 10 4.14 3.14 0.07 10 31.66 0 0 56873 103.03

p “ 150 1 8.5 10 4.14 3.14 0.07 10 31.66 0 0.71 58457 95.98

Table 7.7: Effects of backorder cost on Daskin 150 v1
J “ 150, I “ 150, λ “ 58.1970, ρ “ 0.9, τ “ 5.5, α “ 0.7678

#SC Z So sI0 sB0
ĎW0

pSj pBj pIj xWj Cost Time

p “ 50 1 2 6 1.78 4.78 0.08 10 39.47 0 0.68 102062 2063.17

p “ 100 1 3.8 10 4.14 3.14 0.05 10 37.82 0 0.65 103989 1852.04

p “ 150 1 5.5 10 4.14 3.14 0.05 10 37.82 0 0.65 105880 1889.84

Tables 7.5-7.7 show the change in problem solution due to an increase in backorder cost

for Daskin Instances. As backorder cost p increases, backorder levels decrease both at the

plant and SCs. This results in an increase in base-stock levels and as a result inventory

levels increase at the plant, whereas inventory levels remain the same at SCs as base-stock
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levels at SCs are at capacity. The inventory holding costs outweigh the backorder costs

and as a result total cost increases. There is no change in backorder levels from p “ 100

to p “ 150 because base-stock levels are at capacity both at the plant and at the SCs.

However, the increase in backorder cost drives the backorder costs up and hence the total

cost increases.

Figure 7.3: Effect on total cost by increasing backorder cost at the SCs for Daskin instances

From Figure 7.3, we see that when backorder cost increases, total cost increases for all

three Daskin datasets for both versions as expected.
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7.3 Effects of Utilization Rate

In this section we vary the utilization rate for Daskin and Bombardier instances so we can

analyze the impact of utilization rate on the problem solution.

Table 7.8: Effects of utilization rate on Daskin 49 v1
J “ 49, I “ 49, λ “ 247.05, ρ “ 0.9, τ “ 5.5, α “ 1.5986

#SC Z So sI0 sB0
ĎW0

pSj pBj pIj xWj Cost Time

ρ “ 0.1 1 48.4 0 0 0.11 0.0005 10 385.05 0 1.56 119258 161.87

ρ “ 0.5 1 48.5 2 1.25 0.25 0.001 10 385.19 0 1.56 119341 163.49

ρ “ 0.9 1 48.7 10 4.14 3.14 0.01 10 388.08 0 1.57 119919 168.27

Table 7.9: Effects of utilization rate on Daskin 88 v1
J “ 88, I “ 88, λ “ 44.84, ρ “ 0.9, τ “ 5.5, α “ 0.8592

#SC Z So sI0 sB0
ĎW0

pSj pBj pIj xWj Cost Time

ρ “ 0.1 1 7.4 0 0 0.11 0.002 10 28.64 0 0.64 57796 81.26

ρ “ 0.5 1 7.6 1 0.5 0.5 0.01 10 29.03 0 0.65 57879 83.14

ρ “ 0.9 1 8.5 10 4.14 3.14 0.07 10 31.66 0 0.71 58457 95.98

Table 7.10: Effects of utilization rate on Daskin 150 v1
J “ 150, I “ 150, λ “ 58.1970, ρ “ 0.9, τ “ 5.5, α “ 0.7678

#SC Z So sI0 sB0
ĎW0

pSj pBj pIj xWj Cost Time

ρ “ 0.1 1 4.9 0 0 0.11 0.002 10 34.79 0 0.6 105219 1916.25

ρ “ 0.5 1 5 1 0.5 0.5 0.01 10 35.18 0 0.6 105302 1912.31

ρ “ 0.9 1 5.5 10 4.14 3.14 0.05 10 37.82 0 0.65 105880 1889.84
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Tables 7.8-7.10 show the change in problem solution due to the increase in utilization

rate for Daskin instances. As utilization rate ρ increases at the plant, base-stock, backorder

and inventory levels increase at the plant. On the other hand, inventory levels remain the

same at SCs as base-stock levels at SCs are at capacity, whereas backorder levels increase

as utilization rate increases. The increase in the base-stock, backorder and inventory levels

in the system leads to an increase in the total cost.

Figure 7.4: Effect on total cost by increasing utilization rate at the plant for Daskin
instances

Figure 7.4 shows the impact of utilization rate on total cost for Daskin instances. We

observe that as utilization rate increases, total cost increases for all the instances. For

ρ “ 0.1, optimal base-stock level at the plant is zero because there is no need to hold stock

at the plant when it’s almost idle, and base-stock level at SCs are at capacity. However, for

ρ “ 0.5, the plant holds stock since it becomes slightly busy but base-stock levels at SCs

remain at capacity, whereas backorder levels increase both at the plant and at the SCs.

For ρ “ 0.9, the optimal base-stock level at the plant reaches to capacity as the plant is

now really busy so there is a need to stock more at the plant to satisfy the response times,
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whereas base-stock levels at SCs remain at capacity, and backorder levels increase both at

the plant and the SCs.

Table 7.11: Effects of utilization rate on BBD 20 v1
J “ 20, I “ 121, λ “ 17.44, ρ “ 0.9, τ “ 0.025, α “ 0.2308

#SC Z So sI0 sB0
ĎW0

pSj pBj pIj xWj Cost Time

ρ “ 0.1 1 36.1 0 0 0.11 0.01 6 0.23 2.09 0.01 78,209 2.59

ρ “ 0.3 1 36.2 0 0 0.43 0.02 6 0.31 1.86 0.02 78,372 2.61

ρ “ 0.5 1 38.1 0 0 1 0.06 7 0.26 2.24 0.01 80,781 2.62

ρ “ 0.7 1 40.2 0 0 2.33 0.13 8 0.41 2.06 0.02 83,632 2.75

ρ “ 0.9 1 57.2 8 2.87 3.87 0.22 10 0.4 2.5 0.02 116,911 5.68

Figure 7.5: Effect on total cost by increasing utilization rate at the plant for Bombardier
instances

Figure 7.5 shows the impact of utilization rate on total cost for Bombardier instances.

We observe that as ρ increases total cost increases for Bombardier instances. For low values

of utilization rate, ρ “ 0.1, 0.3, the plant is idle and hence optimal base-stock level at the
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plant is zero whereas SCs hold stock. For relatively high utilization rates, ρ “ 0.5, 0.7, the

optimal base-stock level at the plant is still zero although now the plant is relatively busy

as compared to ρ “ 0.1. The reason could be the increase in the base-stock levels at the

SCs. However, for ρ “ 0.9, the optimal base-stock, backorder and inventory levels increase

at the plant. The reason for the sudden increase is the high utilization rate.

The results of the above experiments show us that, in general, we see an increase in

total cost with the increase in backorder cost or utilization rate. However, the total cost

either decreases or remain the same with the increase in capacity.
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Chapter 8

Conclusion

In this thesis, we have considered a supply chain design problem for spare parts that

incorporates customer service requirements and customer preferences of SCs. It is a two-

echelon inventory-location system consisting of a central manufacturing plant, a set of SCs

and multiple customers with stochastic demand. The demand rates at the SCs follow

an independent Poisson process. The plant manufactures at a rate µ with independent

and exponential production times. Both the plant and SCs hold stock in anticipation of

demand and use base-stock replenishment policy. We assume deterministic shipment times

between plant and SCs and FCFS service discipline to fill the outstanding orders.

We present a mixed integer non-linear model that determines the optimal location-

allocation and optimal base-stock levels at both echelons by minimizing the facility location

costs of SCs, inventory holding costs at the plant and SCs and backorder costs at the SCs

subject to a response time requirements and customer preferences.

To the best of our knowledge, our problem is the first to propose an exact cutting-

plane algorithm for inventory-location problem. We consider time-based service require-
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ments, customer preferences for SCs and stochastic replenishment process in an integrated

inventory-location problem. Customers are allocated to the SCs based on their preferences

and not on minimum allocation cost, which makes it a unique problem. The inclusion of

time-based service requirement makes it difficult to solve. In order to handle this complex-

ity, we propose a novel cutting-plane algorithm that exploits the structure of inventory-

location problem by separating the location decisions from the inventory stocking decisions.

We present an exact solution procedure that iteratively solves a relaxation of inventory-

location problem in the master problem and the inventory stocking problem to generate

valid cuts. We have demonstrated that the traditional inventory models like METRIC-like

and Approximate model [26] do not perform well in approximating the distribution of the

number of the outstanding orders in case of high utilization rates.

We have tested the cutting-plane algorithm on two different types of datasets; Bom-

bardier datasets and Daskin datasets. Our results show the efficiency of the cutting-plane

algorithm in terms of speed and optimality gap. We have achieved optimal solutions

with zero optimality gap in reasonable times. We have also performed post optimality

experiments to present important managerial insights. These experiments demonstrate a

significant decrease in total cost due to increase in capacity and use of medium utilization

rate especially in case of Bombardier datasets.

Finally, we suggest potential extensions for this problem setting. One possible exten-

sion is to allow for lateral shipments since it is becoming more relevant in modern supply

chain networks. Another extension could be to implement the double negative binomial

approximation suggested by Diaz and Fu [16] to this framework as most of the manufac-

turing facilities operate at high utilization rate. One possible future direction is to consider

more than one manufacturing facility. Finally, we suggest studying multi-echelon (more

than two levels) inventory systems.

63



References

[1] H. Abouee-Mehrizi, O. Berman, H. Shavandi, and A. G. Zare. An exact analysis of a

joint production-inventory problem in two-echelon inventory systems. Naval Research

Logistics, 58(8):713–730, 2011.

[2] S. C. Albright. An approximation to the stationary distribution of a multiechelon

repairable-item inventory system with finite sources and repair channels. Naval Re-

search Logistics, 36(2):179–195, 1989.

[3] S. C. Albright and A. Gupta. Steady-state approximation of a multiechelon multi-

indentured repairable-item inventory system with a single repair facility. Naval Re-

search Logistics, 40(4):479–493, 1993.

[4] S. C. Albright and A. Soni. Markovian multiechelon repairable inventory system.

Naval Research Logistics, 35(1):49–61, 1988.

[5] Z. M. Avsar and W. H. M. Zijm. Capacitated two-echelon inventory models for

repairable item systems. In S. B. Gershwin, Y. Dallery, C. Papadopoulos, and J. M.

Smith, editors, Analysis and Modeling of Manufacturing Systems, volume 60, pages

1–36. Kluwer Academic Publishers, Boston, 2002.

[6] S. Axsater. Simple solution procedures for a class of two-echelon inventory problems.

Operations Research, 38(1):64–69, 1990.

64



[7] B. Balcik. Multi-item integrated location/inventory problem. Master’s thesis, Depart-

ment of Industrial Engineering, Middle East Technical University, 2003.

[8] S. Benjaafar, Y. Li, D. Xu, and S. Elhedhli. Demand allocation in systems with

multiple inventory locations and multiple demand sources. Manufacturing & Service

Operations Management, 10(1):43–60, 2008.

[9] J. A. Buzacott and J. G. Shanthikumar. Stochastic Models of Manufacturing Systems.

Prentice Hall, New Jersey, 1993.

[10] K. E. Caggiano, P. L. Jackson, J. A. Muckstadt, and J. A. Rappold. Efficient computa-

tion of time-based customer service levels in a multi-item, multi-echelon supply chain:

A practical approach for inventory optimization. European Journal of Operational

Research, 199(3):744–749, 2009.

[11] D. Caglar, C. Li, and D. Simchi-Levi. Two-echelon spare parts inventory system

subject to a service constraint. IIE Transactions, 36(7):655–666, 2004.

[12] M. Candas and E. Kutanoglu. Benefits of considering inventory in service parts logis-

tics network design problems with time-based service constraints. IIE Transactions,

39(2):159–176, 2007.

[13] M. Cohen, Y. Zheng, and V. Agrawal. Service parts logistics: A benchmark analysis.

IIE Transanctions, 29(8):627–639, 1997.

[14] M. Daskin, C. Coullard, and Z.-J. M. Shen. An inventory-location model: Formula-

tion, solution algorithm and computational results. Annals of Operations Research,

10(1–4):83–106, 2002.

65



[15] M. S. Daskin. Network and discrete location : models, algorithms, and applications.

Wiley, New York, 1995.

[16] A. Diaz and M. C. Fu. Models for multi-echelon repairable item inventory systems

with limited repair capacity. European Journal of Operational Research, 97(3):480–

492, 1997.

[17] A. Diaz and M. C. Fu. Multi-echelon models for repairable items: A review. Document

in Decision, Operations and Information Technologies Research Works Collection,

University of Maryland, 2005.

[18] Z. Drezner. Facility location : a survey of applications and methods. Springer-Verlag,

New York, 1995.

[19] Z. Drezner and H. Hamacher. Facility location : applications and theory. Springer,

New York, 2002.

[20] G. D. Eppen. Effects of centralization on expected costs in a multi-location newsboy

problem. Management Science, 25(5):498–501, 1979.

[21] S. J. Erlebacher and R. D. Meller. The interaction of location and inventory in de-

signing distribution systems. IIE Transactions, 32(2):155–166, 2000.

[22] M. Ettl, G. Feigin, G. Lin, and D. Yao. A supply network model with base-stock

control and service requirements. Operations Research, 48(2):216–232, 2000.

[23] P. Flint. Too much of a good thing: Better inventory management could save the

industry millions while improving reliability. Air Transport World, 32(9):103–106,

1995.

66



[24] E. Gebennini, R. Gamberini, and R. Manzini. An integrated production-distribution

model for the dynamic location and allocation problem with safety stock optimization.

International Journal of Production Economics, 122(1):286–304, 2009.

[25] R. A. Gerrard and R. L. Church. Closest assignment constraints and location models:

Properties and structure. Location Science, 4(4):251–270, 1996.

[26] S. C. Graves. A multi-echelon inventory model for a repairable item with one-for-one

replenishment. Management Science, 31(10):1247–1256, 1985.

[27] D. Gross, D. R. Miller, and R. M. Soland. A closed queueing network model for

multi-echelon repairable item provisioning. IIE Transanctions, 15(4):344–352, 1983.

[28] D. Gross, L. C. Kioussis, and D. R. Miller. A network decomposition approach for

approximating the steady-state behavior of markovian multi-echelon reparable item

inventory systems. Management Science, 30(11):1453–1468, 1987.

[29] D. Gross, B. Gu, and R. M. Soland. Iterative solution methods for obtaining steady

state probability distributions of markovian multi-echelon repairable items inventory

systems. Computer & Operations Research, 20(8):817–828, 1993.

[30] W. Hausman and G. Scudder. Priority scheduling rules for repairable inventory sys-

tems. Management Science, 28(11):1215–1232, 1982.

[31] W. J. Hopp, R. Q. Zhang, and M. L. Spearman. An easily implementable hierarchical

heuristic for a two-echelon spare parts distribution system. IIE Transactions, 31(10):

977–988, 1999.

[32] A. A. Javid and N. Azad. Incorporating location, routing and inventory decisions in

supply chain network design. Transportation Research Part E, 46(5):582–597, 2010.

67



[33] W. Kennedy, J. W. Patterson, and L. D. Fredendall. An overview of recent literature

on spare parts inventories. International Journal Production Economics, 76(2):201–

215, 2002.

[34] A. Klose and A. Drexl. Facility location models for distribution system design. Euro-

pean Journal of Operational Research, 162(1):4–29, 2005.

[35] E. Kutanoglu. Insights into inventory sharing in service parts logistics systems with

time-based service levels. Computers & Industrial Engineering, 54(3):341–358, 2008.

[36] J. D. C. Little. A proof for the queuing formula: L = w. Operations Research, 9(3):

383–387, 1961.

[37] H.-Y. Mak and Z.-J. M. Shen. A two-echelon inventory-location problem with service

considerations. Naval Research Logistics, 56(8):730–744, 2009.

[38] M. Melo, S. Nickel, and F. S. da Gama. Facility location and supply chain management

a review. European Journal of Operational Research, 196(2):401–412, 2009.

[39] P. A. Miranda and R. A. Garrido. Incorporating inventory control decisions into a

strategic distribution network design model with stochastic demand. Transportation

Research Part E, 40(3):183–207, 2004.

[40] P. A. Miranda and R. A. Garrido. A simultaneous inventory control and facility

location model with stochastic capacity constraints. Networks & Spatial Economics,

6(1):39–53, 2006.

[41] N. M. Mirasol. A queueing approach to logistics systems. Operations Research, 12(5):

707–724, 1964.

68



[42] P. B. Mirchandani and R. L. Francis. Discrete location theory. Wiley, New York, 1990.

[43] K. Moinzadeh and H. L. Lee. Batch size and stocking levels in multi-echelon repairable

systems. Management Science, 32(12):1567–1581, 1986.

[44] J. A. Muckstadt. A model for a multi-item, multi-echelon, multi-indenture inventory

system. Management Science, 20(4):472–481, 1973.

[45] J. A. Muckstadt. A three-echelon, multi-item model for recoverable items. Naval

Research Logistics, 26(2):199–221, 1979.

[46] J. A. Muckstadt. Analysis and Algorithms for Service Parts Supply Chains. Springer,

New York, 2005.

[47] J. A. Muckstadt and L. Thomas. Are multi-echelon inventory methods worth im-

plementing in systems with low-demand rate items? Management Science, 26(5):

483–494, 1980.

[48] L. K. Nozick and M. A. Turnquist. Integrating inventory impacts into a fixed-charge

model for locating distribution centers. Transportation Research Part E, 34(3):173–

186, 1998.

[49] L. K. Nozick and M. A. Turnquist. A two-echelon inventory allocation and distribution

center location analysis. Transportation Research Part E, 37(6):425–441, 2001.

[50] S. Owen and M. Daskin. Strategic facility location: A review. European Journal of

Operational Research, 111(3):423–447, 1998.

[51] L. Ozsen, C. R. Coullard, and M. S. Daskin. Capacitated warehouse location model

with risk pooling. Naval Research Logistics, 55(4):295–312, 2008.

69



[52] L. Ozsen, C. R. Coullard, and M. S. Daskin. Facility location modeling and inventory

management with multisourcing. Transportation Science, 43(4):455–472, 2009.

[53] C. Palm. Analysis of the Erlang traffic formula for busy-signal arrangements. Ericsson

Technics, 5(9):39–58, 1938.

[54] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The

Art of Scientific Computing. Cambridge University Press, New York, second edition,

1992.

[55] C. ReVelle and H. Eiselt. Location analysis: A synthesis and survey. European Journal

of Operational Research, 165(1):1–19, 2005.

[56] C. ReVelle, H. Eiselt, and M. Daskin. A bibliography for some fundamental problem

categories in discrete location science. European Journal of Operational Research, 184

(3):817–848, 2008.

[57] SCL. Logistics and supply chain management (scm) key performance indicators (kpi)

analysis: A canada/united states perspective. Technical report, Industry Canada,

2006.

[58] K. Shanker. Exact analysis of a two-echelon inventory system for recoverable items

under batch inspection policy. Naval Research Logistics, 28(4):579–601, 1981.

[59] Z.-J. M. Shen. A multi-commodity supply chain design problem. IIE Transactions,

37(8):753–762, 2005.

[60] Z.-J. M. Shen and M. Daskin. Trade-offs between customer service and cost in inte-

grated supply chain design. Manufacturing & Service Operations Management, 7(3):

188–207, 2005.

70



[61] Z.-J. M. Shen, C. Coullard, and M. Daskin. A joint location-inventory model. Trans-

portation Science, 37(1):40–55, 2003.

[62] C. C. Sherbrooke. Metric: A multi-echelon technique for recoverable item control.

Operations Research, 16(1):122–141, 1968.

[63] C. C. Sherbrooke. Vari-metric: Improved approximation for multi-indenture, multi-

echelon availability models. Operations Research, 34(2):311–319, 1986.

[64] C. C. Sherbrooke. Optimal Inventory Modeling of Systems: Multi-Echelon Techniques.

Kluwer Academic Publishers, Boston, second edition, 2004.

[65] R. M. Simon. Stationary properties of a two-echelon inventory model for low demand

items. Operations Research, 19(3):761–773, 1971.

[66] F. M. Slay. Vari-metric: An approach to modeling multi-echelon resupply when the

demand process is poisson with a gamma prior. Technical Report AF301–3, Logistics

Management Institute, Washington, D.C., 1984.

[67] L. V. Snyder. Facility location under uncertainty: a review. IIE Transactions, 38(7):

547–564, 2006.

[68] L. V. Snyder, M. S. Daskin, and C.-P. Teo. The stochastic location model with risk

pooling. European Journal of Operational Research, 179(3):1221–1238, 2007.

[69] E. Topan and Z. P. Bayindir. Multi-item two-echelon spare parts inventory control

problem with batch ordering in the central warehouse under compound poisson de-

mand. Journal of the Operational Research Society, 63(8):1143–1152, 2012.

71



[70] N. Vidyarthi, E. Celebi, S. Elhedhli, and E. Jewkes. Integrated production-inventory-

distribution system design with risk pooling: Model formulation and heuristic solution.

Transportation Science, 41(3):392–408, 2007.

[71] H. Wong, B. Kranenburg, G.-J. V. Houtum, and D. Cattrysse. Efficient heuristics

for two-echelon spare parts inventory systems with an aggregate mean waiting time

constraint per local warehouse. OR Spectrum, 29(4):699–722, 2007.

72



APPENDICES

The results presented in Chapter 6 are summary of the following results.
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Appendix A

Daskin Results
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Table A.1: Results for Daskin Metric 49 v1
J “ 49, I “ 49, λ “ 247.05, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 2000, ρ “ 0.9, τ “ 5.5, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 8, 71.69 10 4.14 3.14 0.01 10 815.52 0 3.3 48400 170934 0.88
1 32, 73.45 10 4.14 3.14 0.01 10 835.66 0 3.38 48800 170934 1.54
2 30, 64.25 10 4.14 3.14 0.01 10 591.68 0 2.39 49500 138458 2.2
3 31, 137.61 10 4.14 3.14 0.01 10 1268.88 0 5.14 54600 138458 2.81
4 28, 139.47 10 4.14 3.14 0.01 10 1286.05 0 5.21 54900 138458 3.39
5 44, - - - - - - - - - 59500 138458 3.8
6 14, 77.54 10 4.14 3.14 0.01 10 714.4 0 2.89 60800 138458 4.39
7 15, 48.72 10 4.14 3.14 0.01 10 388.08 0 1.57 61500 119919 5
8 36, 116.08 10 4.14 3.14 0.01 10 926.63 0 3.75 61700 119919 5.64
9 33, 116.72 10 4.14 3.14 0.01 10 931.72 0 3.77 64200 119919 6.62
10 46, - - - - - - - - - 67900 119919 7.11
11 49, - - - - - - - - - 68700 119919 7.62
12 20, 122.36 10 4.14 3.14 0.01 10 976.87 0 3.95 70900 119919 8.9
13 3, - - - - - - - - - 72600 119919 9.89
14 17, 90.16 10 4.14 3.14 0.01 10 719.39 0 2.91 74400 119919 13.22
15 16, 69.87 10 4.14 3.14 0.01 10 557.22 0 2.26 75200 119919 16.19
16 26, - - - - - - - - - 79000 119919 20.74
17 5,44 - - - - - - - - - 97900 119919 30.85
18 5,29 - - - - - - - - - 98700 119919 41.16
19 37, - - - - - - - - - 99000 119919 53.31
20 5,43 - - - - - - - - - 101600 119919 70.49
21 5,35 - - - - - - - - - 105600 119919 79.46
22 5,41 - - - - - - - - - 106100 119919 86.02
23 5,46 - - - - - - - - - 106300 119919 96.47
24 5,49 - - - - - - - - - 107100 119919 104.65
25 3,5 - - - - - - - - - 111000 119919 114.01
26 5,24 - - - - - - - - - 115500 119919 126.28
27 5,18 - - - - - - - - - 116200 119919 137
28 5,26 - - - - - - - - - 117400 119919 149.04
29 29,44 - - - - - - - - - 119800 119919 159.63
30 15 48.72 10 4.14 3.14 0.01 10 388.08 0 1.57 119919 119919 168.27
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Table A.2: Results for Daskin Approximate 49 v1
J “ 49, I “ 49, λ “ 247.05, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 2000, ρ “ 0.9, τ “ 5.5, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 8, 71.69 10 4.14 3.14 0.01 10 815.52 0 3.3 48400 170934 0.66
1 32, 73.45 10 4.14 3.14 0.01 10 835.66 0 3.38 48800 170934 1.31
2 30, 64.25 10 4.14 3.14 0.01 10 591.68 0 2.39 49500 138458 1.96
3 31, 137.61 10 4.14 3.14 0.01 10 1268.88 0 5.14 54600 138458 2.45
4 28, 139.47 10 4.14 3.14 0.01 10 1286.05 0 5.21 54900 138458 2.81
5 44, - - - - - - - - - 59500 138458 3.17
6 14, 77.54 10 4.14 3.14 0.01 10 714.4 0 2.89 60800 138458 3.54
7 15, 48.72 10 4.14 3.14 0.01 10 388.08 0 1.57 61500 119919 3.91
8 36, 116.08 10 4.14 3.14 0.01 10 926.63 0 3.75 61700 119919 4.29
9 33, 116.72 10 4.14 3.14 0.01 10 931.72 0 3.77 64200 119919 4.77
10 46, - - - - - - - - - 67900 119919 5.22
11 49, - - - - - - - - - 68700 119919 5.67
12 20, 122.36 10 4.14 3.14 0.01 10 976.87 0 3.95 70900 119919 6.7
13 3, - - - - - - - - - 72600 119919 7.63
14 17, 90.16 10 4.14 3.14 0.01 10 719.39 0 2.91 74400 119919 10.65
15 16, 69.87 10 4.14 3.14 0.01 10 557.22 0 2.26 75200 119919 14.28
16 26, - - - - - - - - - 79000 119919 18.9
17 5,44 - - - - - - - - - 97900 119919 29.22
18 5,29 - - - - - - - - - 98700 119919 45.41
19 37, - - - - - - - - - 99000 119919 57.38
20 5,43 - - - - - - - - - 101600 119919 73.77
21 5,35 - - - - - - - - - 105600 119919 82.28
22 5,41 - - - - - - - - - 106100 119919 88.86
23 5,46 - - - - - - - - - 106300 119919 100.18
24 5,49 - - - - - - - - - 107100 119919 108.74
25 3,5 - - - - - - - - - 111000 119919 118.84
26 5,24 - - - - - - - - - 115500 119919 132.67
27 5,18 - - - - - - - - - 116200 119919 145.4
28 5,26 - - - - - - - - - 117400 119919 157.6
29 29,44 - - - - - - - - - 119800 119919 169.64
30 15 48.72 10 4.14 3.14 0.01 10 388.08 0 1.57 119919 119919 179.28
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Table A.3: Results for Daskin Metric 88 v1
J “ 88, I “ 88, λ “ 44.8400, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 2000, ρ “ 0.9, τ “ 5.5, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 67 38.33 10 4.14 3.14 0.07 10 200.8 0 4.48 48800 79126 3.22
1 56 28.56 10 4.14 3.14 0.07 10 130.55 0 2.91 49500 69289 4.46
2 10 - - - - - - - - - 49700 69289 5.65
3 34 24.67 10 4.14 3.14 0.07 10 109.3 0 2.44 50700 67303 8.96
4 17 8.48 10 4.14 3.14 0.07 10 31.66 0 0.71 53500 58457 12.39
5 55 - - - - - - - - - 54600 58457 15.82
6 47 48.32 10 4.14 3.14 0.07 10 186.94 0 4.17 54600 58457 21.08
7 29 - - - - - - - - - 54900 58457 32.3
8 18 54.01 10 4.14 3.14 0.07 10 209.12 0 4.66 55700 58457 43.77
9 31 45.39 10 4.14 3.14 0.07 10 175.5 0 3.91 56100 58457 55.78
10 50 - - - - - - - - - 56700 58457 67.15
11 4 - - - - - - - - - 58000 58457 79
12 17 8.48 10 4.14 3.14 0.07 10 31.66 0 0.71 58457 58457 90.52

Table A.4: Results for Daskin Approximate 88 v1
J “ 88, I “ 88, λ “ 44.8400, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 2000, ρ “ 0.9, τ “ 5.5, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 67 38.33 10 4.14 3.14 0.07 10 200.8 0 4.48 48800 79126 3.07
1 56 28.56 10 4.14 3.14 0.07 10 130.55 0 2.91 49500 69289 4.2
2 10 - - - - - - - - - 49700 69289 5.41
3 34 24.67 10 4.14 3.14 0.07 10 109.3 0 2.44 50700 67303 8.81
4 17 8.48 10 4.14 3.14 0.07 10 31.66 0 0.71 53500 58457 12.12
5 55 - - - - - - - - - 54600 58457 15.66
6 47 48.32 10 4.14 3.14 0.07 10 186.94 0 4.17 54600 58457 20.93
7 29 - - - - - - - - - 54900 58457 32.67
8 18 54.01 10 4.14 3.14 0.07 10 209.12 0 4.66 55700 58457 45.68
9 31 45.39 10 4.14 3.14 0.07 10 175.5 0 3.91 56100 58457 57.84
10 50 - - - - - - - - - 56700 58457 69.47
11 4 - - - - - - - - - 58000 58457 80.99
12 17 8.48 10 4.14 3.14 0.07 10 31.66 0 0.71 58457 58457 93.65
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Table A.5: Results for Daskin Metric 150 v1
J “ 150, I “ 150, λ “ 58.1970, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 2000, ρ “ 0.9, τ “ 5.5, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 150 - - - - - - - - - 100000 1000000 607.59
1 88 - - - - - - - - - 100000 1000000 614.16
2 126 5.55 10 4.14 3.14 0.05 10 37.82 0 0.65 100000 105880 623.18
3 95 10.93 10 4.14 3.14 0.05 10 75.77 0 1.3 100000 105880 648.81
4 112 33.43 10 4.14 3.14 0.05 10 234.57 0 4.03 100000 105880 659.29
5 84 - - - - - - - - - 100000 105880 669.21
6 55 27.8 10 4.14 3.14 0.05 10 194.84 0 3.35 100000 105880 679.92
7 149 37.41 10 4.14 3.14 0.05 10 262.66 0 4.51 100000 105880 690.75
8 147 - - - - - - - - - 100000 105880 701.38
9 62 - - - - - - - - - 100000 105880 711.85
10 77 24.49 10 4.14 3.14 0.05 10 171.5 0 2.95 100000 105880 738.98
11 143 21.18 10 4.14 3.14 0.05 10 148.13 0 2.55 100000 105880 750.43
12 75 - - - - - - - - - 100000 105880 778.56
13 56 21.48 10 4.14 3.14 0.05 10 150.22 0 2.58 100000 105880 804.63
14 80 9.89 10 4.14 3.14 0.05 10 68.46 0 1.18 100000 105880 830.75
15 74 - - - - - - - - - 100000 105880 858.28
16 141 - - - - - - - - - 100000 105880 870.76
17 4 - - - - - - - - - 100000 105880 885.57
18 8 - - - - - - - - - 100000 105880 899.7
19 10 - - - - - - - - - 100000 105880 914
20 92 44.8 10 4.14 3.14 0.05 10 314.82 0 5.41 100000 105880 927.42
21 13 12.71 10 4.14 3.14 0.05 10 88.31 0 1.52 100000 105880 942.35
22 79 9.29 10 4.14 3.14 0.05 10 64.19 0 1.1 100000 105880 981.16
23 78 38.16 10 4.14 3.14 0.05 10 267.95 0 4.6 100000 105880 1020.06
24 59 - - - - - - - - - 100000 105880 1050.98
25 49 - - - - - - - - - 100000 105880 1092.7
26 52 - - - - - - - - - 100000 105880 1125.24
27 42 - - - - - - - - - 100000 105880 1159.04
28 41 28.38 10 4.14 3.14 0.05 10 198.93 0 3.42 100000 105880 1192.68
29 33 20.58 10 4.14 3.14 0.05 10 143.91 0 2.47 100000 105880 1226.92
30 46 34.86 10 4.14 3.14 0.05 10 244.67 0 4.2 100000 105880 1261.23
31 109 - - - - - - - - - 100000 105880 1293.43
32 69 - - - - - - - - - 100000 105880 1327.53
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Table A.5 – Continued

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

33 17 6.31 10 4.14 3.14 0.05 10 43.16 0 0.74 100000 105880 1361.68
34 25 31.74 10 4.14 3.14 0.05 10 222.67 0 3.83 100000 105880 1399.15
35 28 - - - - - - - - - 100000 105880 1431.89
36 27 - - - - - - - - - 100000 105880 1472.27
37 107 - - - - - - - - - 100000 105880 1511.64
38 138 - - - - - - - - - 100000 105880 1555.22
39 37 - - - - - - - - - 100000 105880 1595.51
40 30 32.75 10 4.14 3.14 0.05 10 229.81 0 3.95 100000 105880 1630.85
41 124 35.33 10 4.14 3.14 0.05 10 247.99 0 4.26 100000 105880 1664.78
42 18 38.94 10 4.14 3.14 0.05 10 273.48 0 4.7 100000 105880 1701.21
43 26 - - - - - - - - - 100000 105880 1741.36
44 126 5.55 10 4.14 3.14 0.05 10 37.82 0 0.65 105880 105880 1889.84

Table A.6: Results for Daskin Approximate 150 v1
J “ 150, I “ 150, λ “ 58.1970, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 2000, ρ “ 0.9, τ “ 5.5, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 150 - - - - - - - - - 100000 1000000 611.83
1 88 - - - - - - - - - 100000 1000000 617.9
2 126 5.55 10 4.14 3.14 0.05 10 37.82 0 0.65 100000 105880 625.94
3 95 10.93 10 4.14 3.14 0.05 10 75.77 0 1.3 100000 105880 650.17
4 112 33.43 10 4.14 3.14 0.05 10 234.57 0 4.03 100000 105880 659.73
5 84 - - - - - - - - - 100000 105880 669.14
6 55 27.8 10 4.14 3.14 0.05 10 194.84 0 3.35 100000 105880 678.74
7 149 37.41 10 4.14 3.14 0.05 10 262.66 0 4.51 100000 105880 688.39
8 147 - - - - - - - - - 100000 105880 697.78
9 62 - - - - - - - - - 100000 105880 707.67
10 77 24.49 10 4.14 3.14 0.05 10 171.5 0 2.95 100000 105880 733.11
11 143 21.18 10 4.14 3.14 0.05 10 148.13 0 2.55 100000 105880 743.97
12 75 - - - - - - - - - 100000 105880 773.64
13 56 21.48 10 4.14 3.14 0.05 10 150.22 0 2.58 100000 105880 798.47
14 80 9.89 10 4.14 3.14 0.05 10 68.46 0 1.18 100000 105880 822.9
15 74 - - - - - - - - - 100000 105880 849.97
16 141 - - - - - - - - - 100000 105880 862.36
17 4 - - - - - - - - - 100000 105880 876.93
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Table A.6 – Continued

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

18 8 - - - - - - - - - 100000 105880 890.26
19 10 - - - - - - - - - 100000 105880 903.84
20 92 44.8 10 4.14 3.14 0.05 10 314.82 0 5.41 100000 105880 915.98
21 13 12.71 10 4.14 3.14 0.05 10 88.31 0 1.52 100000 105880 928.94
22 79 9.29 10 4.14 3.14 0.05 10 64.19 0 1.1 100000 105880 965.48
23 78 38.16 10 4.14 3.14 0.05 10 267.95 0 4.6 100000 105880 999.44
24 59 - - - - - - - - - 100000 105880 1027.74
25 49 - - - - - - - - - 100000 105880 1066.83
26 52 - - - - - - - - - 100000 105880 1097.22
27 42 - - - - - - - - - 100000 105880 1128.39
28 41 28.38 10 4.14 3.14 0.05 10 198.93 0 3.42 100000 105880 1158.96
29 33 20.58 10 4.14 3.14 0.05 10 143.91 0 2.47 100000 105880 1190.26
30 46 34.86 10 4.14 3.14 0.05 10 244.67 0 4.2 100000 105880 1220.85
31 109 - - - - - - - - - 100000 105880 1250.79
32 69 - - - - - - - - - 100000 105880 1282.68
33 17 6.31 10 4.14 3.14 0.05 10 43.16 0 0.74 100000 105880 1313.34
34 25 31.74 10 4.14 3.14 0.05 10 222.67 0 3.83 100000 105880 1346.82
35 28 - - - - - - - - - 100000 105880 1376.75
36 27 - - - - - - - - - 100000 105880 1416.47
37 107 - - - - - - - - - 100000 105880 1452.59
38 138 - - - - - - - - - 100000 105880 1491.13
39 37 - - - - - - - - - 100000 105880 1527.6
40 30 32.75 10 4.14 3.14 0.05 10 229.81 0 3.95 100000 105880 1558.44
41 124 35.33 10 4.14 3.14 0.05 10 247.99 0 4.26 100000 105880 1587.4
42 18 38.94 10 4.14 3.14 0.05 10 273.48 0 4.7 100000 105880 1618.93
43 26 - - - - - - - - - 100000 105880 1654.2
44 126 5.55 10 4.14 3.14 0.05 10 37.82 0 0.65 105880 105880 1768.38
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Table A.7: Results for Daskin Metric 49 v2
J “ 49, I “ 49, λ “ 247.05, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 500, ρ “ 0.5, τ “ 1.5, Cj “ 5 for every j

Iter Xj Zj LB UB Time

0 5,29,31,35,36 - 282200 10000000 0.4
1 5,31,35,36,41 7.52 289600 313161 0.63
2 5,20,29,31,35 - 291400 313161 0.81
3 5,21,29,35,36 - 295500 313161 1
4 5,20,31,35,41 7.58 298800 313161 1.28
5 5,24,31,36,41 7.45 299500 313161 1.59
6 5,21,35,36,41 7.87 302900 313161 2.04
7 5,21,24,36,41 7.8 312800 313161 2.51
8 5,31,35,36,41 7.52 313161 313161 2.77

Table A.8: Results for Daskin Approximate 49 v2
J “ 49, I “ 49, λ “ 247.05, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 500, ρ “ 0.5, τ “ 1.5, Cj “ 5 for every j

Iter Xj Zj LB UB Time

0 5,29,31,35,36 - 282200 10000000 0.4
1 5,31,35,36,41 7.52 289600 313161 0.69
2 5,20,29,31,35 - 291400 313161 0.98
3 5,21,29,35,36 - 295500 313161 1.15
4 5,20,31,35,41 7.58 298800 313161 1.35
5 5,24,31,36,41 7.45 299500 313161 1.55
6 5,21,35,36,41 7.87 302900 313161 1.88
7 5,21,24,36,41 7.8 312800 313161 2.38
8 5,31,35,36,41 7.52 313161 313161 2.63
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Table A.9: Results for Daskin Metric 88 v2
J “ 88, I “ 88, λ “ 44.8400, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 500, ρ “ 0.5, τ “ 1.5, Cj “ 5 for every j

Iter Xj Zj LB UB Time

0 15,22,46,47,55,65,75 - 417000 419600 2.3
1 15,22,46,47,55,65,75 0.61 419600 419600 2.74

Table A.10: Results for Daskin Approximate 88 v2
J “ 88, I “ 88, λ “ 44.8400, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 500, ρ “ 0.5, τ “ 1.5, Cj “ 5 for every j

Iter Xj Zj LB UB Time

0 15,22,46,47,55,65,75 - 417000 419601 2.28
1 15,22,46,47,55,65,75 0.61 419601 419601 2.61

Table A.11: Results for Daskin Metric 150 v2
J “ 150, I “ 150, λ “ 58.1970, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 500, ρ “ 0.5, τ “ 1.5, Cj “ 5 for every j

Iter Xj Zj LB UB Time

0 33,84,102,121,144,145 0.77 600000 604652 608.95
1 33,84,96,102,144,145 0.75 600000 604506 610.2
2 77,84,96,102,144,145 0.77 600000 604506 611.46
3 33,73,84,102,144,145 0.75 600000 604506 613.21
4 39,77,84,102,144,145 0.7 600000 604203 615.21
5 33,73,84,139,144,145 0.76 600000 604203 617.06
6 33,39,84,102,144,145 0.68 600000 604086 618.87
7 77,84,96,144,145,146 0.72 600000 604086 620.93
8 29,33,39,61,84,145 0.63 600000 603821 624.28
9 77,84,90,96,145,146 0.73 600000 603821 625.64
10 21,33,39,61,84,145 0.63 600000 603820 628.97
11 33,39,84,133,144,145 0.7 600000 603820 632.23
12 48,84,129,144,145,149 0.73 600000 603820 635.88
13 10,29,39,61,78,145 0.67 600000 603820 639.06
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Table A.11 – Continued

Iter Xj Zj LB UB Time

14 10,29,39,78,145,146 0.67 600000 603820 642.02
15 33,84,102,125,144,145 0.78 600000 603820 643.31
16 29,61,77,84,96,145 0.73 600000 603820 644.93
17 33,64,84,102,144,145 0.71 600000 603820 647.26
18 33,84,102,104,144,145 0.79 600000 603820 649.25
19 33,84,97,102,144,145 0.75 600000 603820 651.45
20 33,84,102,103,144,145 0.73 600000 603820 653.5
21 5,33,84,102,144,145 0.76 600000 603820 655.63
22 33,84,102,108,144,145 0.78 600000 603820 657.9
23 33,54,84,102,144,145 0.75 600000 603820 660.17
24 33,84,102,111,144,145 0.76 600000 603820 662.16
25 61,77,84,90,96,145 0.73 600000 603820 663.91
26 33,84,98,102,144,145 0.78 600000 603820 665.98
27 33,65,84,102,144,145 0.76 600000 603820 668.02
28 1,33,84,102,144,145 0.76 600000 603820 670.07
29 33,48,84,102,144,145 0.68 600000 603820 672.04
30 33,60,84,102,144,145 0.76 600000 603820 673.73
31 61,77,84,91,96,145 0.73 600000 603820 675.39
32 33,84,96,139,144,145 0.76 600000 603820 677.15
33 33,84,102,131,144,145 0.76 600000 603820 678.5
34 33,84,102,136,144,145 0.78 600000 603820 680.47
35 19,33,84,102,144,145 0.75 600000 603820 682.65
36 33,84,102,122,144,145 0.75 600000 603820 684.65
37 12,33,84,102,144,145 0.75 600000 603820 687.28
38 48,84,91,145,146,149 0.69 600000 603820 691.2
39 20,33,84,102,144,145 0.79 600000 603820 692.66
40 33,81,84,102,144,145 0.76 600000 603820 694.22
41 6,33,39,84,144,145 0.67 600000 603820 698.58
42 33,39,61,84,91,145 0.63 600000 603820 702.81
43 33,39,84,129,144,145 0.67 600000 603820 706.92
44 33,36,84,102,144,145 0.77 600000 603820 709.52
45 5,21,33,84,145,146 0.71 600000 603820 713.56
46 21,33,84,104,145,146 0.74 600000 603820 717.61
47 33,39,61,84,144,145 0.62 600000 603753 721.6
48 33,39,50,84,144,145 0.69 600000 603753 725.64
49 1,33,61,84,90,145 0.71 600000 603753 729.27
50 6,30,48,84,144,145 0.7 600000 603753 733.39
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Table A.11 – Continued

Iter Xj Zj LB UB Time

501 19,29,61,77,84,145 0.73 600000 603751 2668.26
502 33,84,98,135,144,145 0.79 600000 603751 2674.43
503 29,30,48,84,145,146 0.66 600000 603751 2680.74
504 6,33,84,136,144,145 0.77 600000 603751 2687.24
505 39,46,61,84,144,145 0.66 600000 603751 2693.48
506 33,54,84,129,144,145 0.75 600000 603751 2699.76
507 39,46,84,144,145,146 0.66 600000 603751 2707.6
508 48,61,77,84,144,145 0.65 600000 603751 2712.98
509 39,61,84,91,145,149 0.66 600000 603751 2719.06
510 39,46,84,135,144,145 0.73 600000 603751 2725.22
511 39,84,102,112,144,145 0.71 600000 603751 2726.9
512 2,39,84,112,144,145 0.73 600000 603751 2733.25
513 29,48,61,84,112,145 0.66 600000 603751 2739.32
514 30,39,66,84,144,145 0.69 600000 603751 2745.9
515 33,61,84,104,144,145 0.73 600000 603751 2749.4
516 19,33,84,132,144,145 0.75 600000 603751 2755.77
517 33,81,84,90,145,146 0.71 600000 603751 2758.75
518 33,50,84,96,144,145 0.76 600000 603751 2762.53
519 21,30,48,84,145,146 0.66 600000 603751 2768.93
520 6,39,77,84,144,145 0.69 600000 603751 2775.73
521 1,33,84,91,145,146 0.72 600000 603751 2780.27
522 33,36,84,91,145,146 0.72 600000 603751 2784.99
523 33,84,90,136,145,146 0.73 600000 603751 2790.55
524 6,33,84,104,144,145 0.78 600000 603751 2796.49
525 2,33,84,104,144,145 0.8 600000 603751 2802.05
526 5,33,84,91,145,146 0.71 600000 603751 2806.81
527 33,73,84,91,145,146 0.71 600000 603751 2811.65
528 33,84,108,129,144,145 0.77 600000 603751 2816.03
529 33,84,91,103,145,146 0.68 600000 603751 2820.07
530 33,66,84,136,144,145 0.78 600000 603751 2825.25
531 12,33,84,90,145,146 0.71 600000 603751 2828.97
532 29,33,73,84,145,146 0.71 600000 603751 2833.16
533 6,33,73,84,144,145 0.75 600000 603751 2837.35
534 21,33,73,84,145,146 0.71 600000 603751 2843.01
535 1,6,33,84,144,145 0.76 600000 603751 2847.27
536 19,33,61,84,144,145 0.69 600000 603751 2852.19
537 1,33,84,144,145,146 0.7 600000 603751 2856.61
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Table A.11 – Continued

Iter Xj Zj LB UB Time

1041 21,33,36,61,84,145 0.72 600000 603751 5046.53
1042 33,84,87,122,144,145 0.77 600000 603751 5051.01
1043 33,84,131,134,144,145 0.76 600000 603751 5055.2
1044 33,84,89,97,144,145 0.77 600000 603751 5060.24
1045 33,84,108,133,144,145 0.8 600000 603751 5065.73
1046 1,29,33,61,84,145 0.72 600000 603751 5071.4
1047 31,33,84,122,144,145 0.77 600000 603751 5076.52
1048 33,84,122,133,144,145 0.77 600000 603751 5080.98
1049 33,60,66,84,144,145 0.76 600000 603751 5086.33
1050 33,50,84,131,144,145 0.77 600000 603751 5091.67
1051 33,54,84,142,144,145 0.77 600000 603751 5096.02
1052 33,65,84,134,144,145 0.77 600000 603751 5100
1053 1,33,84,118,144,145 0.77 600000 603751 5104.81
1054 33,84,131,135,144,145 0.77 600000 603751 5109.83
1055 33,84,89,131,144,145 0.77 600000 603751 5114.12
1056 33,60,84,133,144,145 0.78 600000 603751 5118.95
1057 33,54,84,132,144,145 0.76 600000 603751 5122.96
1058 33,54,57,84,144,145 0.77 600000 603751 5127.2
1059 33,84,131,133,144,145 0.78 600000 603751 5132.71
1060 33,50,84,122,144,145 0.77 600000 603751 5137.18
1061 33,57,84,121,144,145 0.78 600000 603751 5142.03
1062 33,84,111,134,144,145 0.77 600000 603751 5147.09
1063 31,33,60,84,144,145 0.78 600000 603751 5151.22
1064 33,60,84,89,144,145 0.77 600000 603751 5155.73
1065 33,57,84,131,144,145 0.77 600000 603751 5160.79
1066 33,84,122,132,144,145 0.76 600000 603751 5166.75
1067 33,57,84,122,144,145 0.77 600000 603751 5171.7
1068 33,60,84,132,144,145 0.76 600000 603751 5176.68
1069 33,84,111,133,144,145 0.78 600000 603751 5182.09
1070 33,50,65,84,144,145 0.77 600000 603751 5187.54
1071 33,65,84,135,144,145 0.77 600000 603751 5192.71
1072 33,65,84,89,144,145 0.77 600000 603751 5198.66
1073 33,39,84,144,145,146 0.62 603751 603751 5203.06
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Table A.12: Results for Daskin Approximate 150 v2
J “ 150, I “ 150, λ “ 58.1970, ho “ 50, hj “ 50 for every j, p “ 150
dmax “ 500, ρ “ 0.5, τ “ 1.5, Cj “ 5 for every j

Iter Xj Zj LB UB Time

0 33,84,102,121,144,145 0.77 600000 604652 597.12
1 33,84,96,102,144,145 0.75 600000 604506 598.17
2 77,84,96,102,144,145 0.77 600000 604506 601.04
3 33,73,84,102,144,145 0.75 600000 604506 604.99
4 29,39,61,77,84,145 0.65 600000 603938 607.52
5 33,39,84,102,144,145 0.68 600000 603938 609.09
6 39,77,84,102,144,145 0.7 600000 603938 610.57
7 77,84,96,144,145,146 0.72 600000 603938 611.89
8 33,39,84,133,144,145 0.7 600000 603938 614.93
9 77,84,96,132,144,145 0.78 600000 603938 616.04
10 30,39,84,129,144,145 0.68 600000 603938 618.79
11 10,29,39,61,78,145 0.67 600000 603938 621.32
12 33,61,73,84,144,145 0.7 600000 603938 623.32
13 30,39,61,84,144,145 0.63 600000 603802 625.58
14 29,48,61,84,145,149 0.69 600000 603802 627.99
15 33,48,84,102,144,145 0.68 600000 603802 629.52
16 33,84,102,104,144,145 0.79 600000 603802 631.04
17 33,36,84,102,144,145 0.77 600000 603802 632.95
18 33,84,102,125,144,145 0.78 600000 603802 633.97
19 29,61,77,84,96,145 0.73 600000 603802 635.34
20 61,77,84,96,144,145 0.72 600000 603802 636.59
21 33,84,102,111,144,145 0.76 600000 603802 638.11
22 12,77,84,102,144,145 0.78 600000 603802 639.45
23 33,84,102,108,144,145 0.78 600000 603802 640.97
24 61,77,84,91,96,145 0.73 600000 603802 642.53
25 33,84,102,131,144,145 0.76 600000 603802 644.06
26 33,54,84,102,144,145 0.75 600000 603802 645.58
27 77,84,90,96,145,146 0.73 600000 603802 647
28 21,77,84,96,145,146 0.73 600000 603802 648.39
29 29,77,84,96,145,146 0.73 600000 603802 649.89
30 1,33,84,102,144,145 0.76 600000 603802 651.53
31 77,84,91,96,145,146 0.73 600000 603802 653.09
32 33,39,61,84,90,145 0.63 600000 603802 655.78
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Table A.12 – Continued

Iter Xj Zj LB UB Time

501 33,61,84,103,144,145 0.67 600000 603751 1964.02
502 21,33,61,81,84,145 0.72 600000 603751 1965.78
503 39,57,78,84,144,145 0.72 600000 603751 1968.65
504 12,33,61,84,144,145 0.7 600000 603751 1972.4
505 29,33,61,81,84,145 0.72 600000 603751 1973.83
506 33,84,91,131,145,146 0.71 600000 603751 1975.6
507 30,48,84,144,145,146 0.65 600000 603751 1978.48
508 21,30,48,84,145,146 0.66 600000 603751 1981.2
509 33,84,90,103,145,146 0.68 600000 603751 1983.71
510 33,84,90,98,145,146 0.73 600000 603751 1986.23
511 33,84,87,104,144,145 0.8 600000 603751 1988.69
512 33,61,81,84,90,145 0.71 600000 603751 1989.9
513 2,33,84,136,144,145 0.79 600000 603751 1992.42
514 2,33,84,121,144,145 0.79 600000 603751 1995.32
515 2,33,84,111,144,145 0.78 600000 603751 1997.76
516 33,84,91,104,145,146 0.74 600000 603751 2000.24
517 33,84,87,98,144,145 0.79 600000 603751 2002.65
518 1,33,84,144,145,146 0.7 600000 603751 2005.3
519 33,84,90,125,145,146 0.73 600000 603751 2006.95
520 33,84,91,121,145,146 0.73 600000 603751 2009.87
521 33,50,84,136,144,145 0.79 600000 603751 2012.8
522 33,84,89,96,144,145 0.76 600000 603751 2015.27
523 33,73,84,91,145,146 0.71 600000 603751 2018.52
524 33,84,103,133,144,145 0.75 600000 603751 2020.79
525 33,84,103,144,145,146 0.67 600000 603751 2023.94
526 33,84,103,135,144,145 0.74 600000 603751 2026.23
527 6,33,73,84,144,145 0.75 600000 603751 2028.69
528 33,84,103,129,144,145 0.73 600000 603751 2031.52
529 33,73,84,90,145,146 0.71 600000 603751 2034.18
530 39,84,112,133,144,145 0.73 600000 603751 2037.08
531 33,84,98,129,144,145 0.77 600000 603751 2039.93
532 33,65,84,144,145,146 0.7 600000 603751 2043.24
533 33,84,97,129,144,145 0.75 600000 603751 2046.11
534 6,33,84,131,144,145 0.75 600000 603751 2048.89
531 33,84,98,129,144,145 0.77 600000 603751 2039.93
532 33,65,84,144,145,146 0.7 600000 603751 2043.24
533 33,84,97,129,144,145 0.75 600000 603751 2046.11

Continued on Next Page. . .

87



Table A.12 – Continued

Iter Xj Zj LB UB Time

1041 33,65,84,134,144,145 0.77 600000 603751 3672.98
1042 5,29,33,61,84,145 0.71 600000 603751 3676.33
1043 33,84,125,134,144,145 0.78 600000 603751 3679.47
1044 33,84,121,135,144,145 0.78 600000 603751 3682.55
1045 33,84,122,134,144,145 0.76 600000 603751 3686.23
1046 33,50,84,122,144,145 0.77 600000 603751 3689.37
1047 33,54,61,84,91,145 0.71 600000 603751 3693.03
1048 33,36,84,142,144,145 0.78 600000 603751 3696.98
1049 33,65,84,133,144,145 0.78 600000 603751 3700.65
1050 33,84,122,142,144,145 0.77 600000 603751 3704.71
1051 33,66,84,111,144,145 0.77 600000 603751 3708.41
1052 33,36,84,118,144,145 0.78 600000 603751 3711.38
1053 31,33,65,84,144,145 0.78 600000 603751 3715.05
1054 33,84,118,131,144,145 0.77 600000 603751 3718.01
1055 33,50,84,97,144,145 0.77 600000 603751 3721.13
1056 33,84,97,135,144,145 0.77 600000 603751 3724.86
1057 33,60,84,142,144,145 0.77 600000 603751 3728.24
1058 33,84,122,132,144,145 0.76 600000 603751 3731.85
1059 31,33,84,97,144,145 0.77 600000 603751 3735.22
1060 33,84,131,134,144,145 0.76 600000 603751 3738.23
1061 33,84,111,118,144,145 0.78 600000 603751 3741.26
1062 31,33,54,84,144,145 0.77 600000 603751 3744.74
1063 33,54,84,142,144,145 0.77 600000 603751 3747.59
1064 33,66,84,125,144,145 0.78 600000 603751 3750.85
1065 1,33,61,84,91,145 0.72 600000 603751 3754.36
1066 1,29,33,61,84,145 0.72 600000 603751 3757.83
1067 33,84,111,134,144,145 0.77 600000 603751 3761.09
1068 33,84,118,121,144,145 0.79 600000 603751 3764.36
1069 29,33,36,61,84,145 0.72 600000 603751 3767.83
1070 31,33,60,84,144,145 0.78 600000 603751 3770.95
1071 33,66,84,97,144,145 0.75 600000 603751 3774.78
1072 33,84,121,132,144,145 0.78 600000 603751 3778.28
1073 33,39,84,144,145,146 0.62 603751 603751 3782.29
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Appendix B

Bombardier Results

Table B.1: Results for BBD Metric 20 v1
J “ 20, I “ 121, λ “ 17.44
dmax “ 40, ρ “ 0.9, τ “ 0.025, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 12 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 50000 116911 0.64
1 10 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 50000 116911 0.98
2 3 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 50000 116911 1.35
3 7 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 50000 116911 1.67
4 11 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 73346 116911 2
5 4 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 85012 116911 2.35
6 14 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 94168 116911 2.7
7 16 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 94168 116911 3.06
8 15 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 94168 116911 3.42
9 13 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 94168 116911 3.78
10 18 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 94168 116911 4.13
11 17 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 94168 116911 4.47
12 19 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 94168 116911 4.78
13 20 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 100000 116911 5.07
14 9 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 113206 116911 5.38
15 12 57.23 8 2.87 3.87 0.22 10 0.4 2.5 0.02 116911 116911 5.68
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Table B.2: Results for BBD Approximate 20 v1
J “ 20, I “ 121, λ “ 17.44
dmax “ 40, ρ “ 0.9, τ “ 0.025, Cj “ 10 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 12 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 50000 124626 0.68
1 10 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 50000 124626 1.05
2 3 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 50000 124626 1.46
3 7 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 50000 124626 1.81
4 11 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 73346 124626 2.14
5 4 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 85012 124626 2.49
6 14 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 94168 124626 2.84
7 16 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 94168 124626 3.19
8 15 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 94168 124626 3.55
9 13 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 94168 124626 3.96
10 18 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 94168 124626 4.33
11 17 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 94168 124626 4.72
12 19 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 94168 124626 5.08
13 20 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 100000 124626 5.4
14 9 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 113206 124626 5.74
15 12 59.88 10 4.14 3.14 0.18 10 0.09 2.92 0.005 124626 124626 6.04

Table B.3: Results for BBD Metric 20 v2
J “ 20, I “ 121, λ “ 17.44
dmax “ 25, ρ “ 0.5, τ “ 0.01, Cj “ 5 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 10,12, - - - - - - - - - 100000 900000 0.65
1 7,12, - - - - - - - - - 100000 900000 1.12
2 3,12, - - - - - - - - - 100000 900000 1.54
3 10,11, 35.42 3 2.13 0.13 0.01 8 0.17 4.02 0.02 123346 190998 3.19
4 4,12, - - - - - - - - - 135012 190998 4.71
5 12,19, 29.52 1 0.5 0.5 0.03 9 0.14 4.61 0.02 144168 190998 5.41
6 12,14, - - - - - - - - - 144168 190998 6.75
7 12,17, - - - - - - - - - 144168 190998 8.09
8 12,18 - - - - - - - - - 144168 190998 9.26
9 10,16, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 144168 190998 14.41
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Table B.3 – Continued

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

10 3,13, - - - - - - - - - 144168 190998 18.72
11 10,13, - - - - - - - - - 144168 190998 22.79
12 7,13, - - - - - - - - - 144168 190998 27.94
13 3,16, - - - - - - - - - 144168 190998 37.5
14 10,15, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 144168 190998 38.07
15 7,10,12 - - - - - - - - - 150000 190998 46.09
16 3,10,12 - - - - - - - - - 150000 190998 57.99
17 3,7,12 - - - - - - - - - 150000 190998 67.65
18 4,11, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 158358 190998 81.11
19 7,9, - - - - - - - - - 163206 190998 116.05
20 3,9, - - - - - - - - - 163206 190998 176.3
21 9,10, - - - - - - - - - 163206 190998 221.64
22 11,14, 34.54 2 1.25 0.25 0.01 9 0.12 4.85 0.01 167514 190998 233.41
23 2,3, - - - - - - - - - 168663 190998 274.42
24 2,10, - - - - - - - - - 168663 190998 282.34
25 2,7, - - - - - - - - - 168663 190998 310.97
26 3,11,12 35.35 0 0 1 0.06 11 0.16 6.14 0.02 173346 190998 341.43
27 7,11,12 35.24 0 0 1 0.06 11 0.16 6.13 0.03 173346 190998 369.68
28 3,7,11 45.56 3 2.13 0.13 0.01 10 0.14 5.99 0.02 173346 190998 415.23
29 1,10, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 175653 190998 460.14
30 6,12, - - - - - - - - - 177611 190998 490.73
31 4,16, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 179180 190998 521.02
32 4,13, - - - - - - - - - 179180 190998 561.56
33 4,15, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 179180 190998 569.62
34 4,7,12 - - - - - - - - - 185012 190998 578.44
35 3,4,12 - - - - - - - - - 185012 190998 615.39
36 4,10,12 - - - - - - - - - 185012 190998 659.26
37 14,16, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 188336 190998 676.49
38 13,19, 29.52 1 0.5 0.5 0.03 9 0.14 4.61 0.02 188336 190998 687.57
39 13,18, - - - - - - - - - 188336 190998 698.56
40 13,17, - - - - - - - - - 188336 190998 738.21
41 14,15, 35.44 3 2.13 0.13 0.01 8 0.17 4.02 0.02 188336 190998 802.98
42 13,14, - - - - - - - - - 188336 190998 831.47
43 10,11 35.42 3 2.13 0.13 0.01 8 0.17 4.02 0.02 190998 190998 863.06
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Table B.4: Results for BBD Approximate 20 v2
J “ 20, I “ 121, λ “ 17.44
dmax “ 25, ρ “ 0.5, τ “ 0.01, Cj “ 5 for every j

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

0 10,12, 0 0 0 0 0 0 0 0 0 100000 900000 0.87
1 7,12, 0 0 0 0 0 0 0 0 0 100000 900000 1.34
2 3,12, 0 0 0 0 0 0 0 0 0 100000 900000 1.73
3 10,11, 35.23 3 2.13 0.13 0.01 8 0.15 4 0.02 123346 190447 3.29
4 4,12, 0 0 0 0 0 0 0 0 0 135012 190447 4.68
5 12,19, 24.23 0 0 1 0.06 9 0.14 4.11 0.02 144168 190259 5.54
6 12,14, 0 0 0 0 0 0 0 0 0 144168 190259 6.81
7 10,16, 35.3 3 2.13 0.13 0.01 8 0.15 4 0.02 144168 190259 10.08
8 12,18, 0 0 0 0 0 0 0 0 0 144168 190259 11.33
9 12,17, 0 0 0 0 0 0 0 0 0 144168 190259 12.43
10 10,13, 0 0 0 0 0 0 0 0 0 144168 190259 17.44
11 7,13, 0 0 0 0 0 0 0 0 0 144168 190259 19.72
12 3,16, 0 0 0 0 0 0 0 0 0 144168 190259 26.38
13 10,15, 35.3 3 2.13 0.13 0.01 8 0.15 4 0.02 144168 190259 27.69
14 3,13, 0 0 0 0 0 0 0 0 0 144168 190259 31.25
15 7,10,12 0 0 0 0 0 0 0 0 0 150000 190259 40.37
16 3,10,12 0 0 0 0 0 0 0 0 0 150000 190259 46.69
17 3,7,12 0 0 0 0 0 0 0 0 0 150000 190259 49.49
18 4,11, 35.29 3 2.13 0.13 0.01 8 0.15 4 0.02 158358 190259 60.99
19 3,9, 0 0 0 0 0 0 0 0 0 163206 190259 70.25
20 7,9, 0 0 0 0 0 0 0 0 0 163206 190259 83.97
21 9,10, 0 0 0 0 0 0 0 0 0 163206 190259 109
22 11,14, 34.61 2 1.25 0.25 0.01 9 0.12 4.85 0.01 167514 190259 117.03
23 2,10, 0 0 0 0 0 0 0 0 0 168663 190259 139.09
24 2,3, 0 0 0 0 0 0 0 0 0 168663 190259 155.39
25 2,7, 0 0 0 0 0 0 0 0 0 168663 190259 169.11
26 7,11,12 33.37 0 0 1 0.06 11 0.06 6.04 0.01 173346 190259 193.61
27 3,11,12 44.31 2 1.25 0.25 0.01 11 0.07 6.8 0.01 173346 190259 227.89
28 3,7,11 45.42 3 2.13 0.13 0.01 10 0.13 5.98 0.01 173346 190259 260.38
29 1,10, 35.3 3 2.13 0.13 0.01 8 0.15 4 0.02 175653 190259 278.1
30 6,12, 0 0 0 0 0 0 0 0 0 177611 190259 291.32
31 4,13, 0 0 0 0 0 0 0 0 0 179180 190259 315.9
32 4,15, 35.3 3 2.13 0.13 0.01 8 0.15 4 0.02 179180 190259 327.7
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Table B.4 – Continued

Iter Xj Zj So sI0 sB0
ĎW0 Sj sBj sIj ĎWj LB UB Time

33 4,16, 35.3 3 2.13 0.13 0.01 8 0.15 4 0.02 179180 190259 336.12
34 3,4,12 0 0 0 0 0 0 0 0 0 185012 190259 349.41
35 4,7,12 0 0 0 0 0 0 0 0 0 185012 190259 372.96
36 4,10,12 0 0 0 0 0 0 0 0 0 185012 190259 392.33
37 13,19, 24.23 0 0 1 0.06 9 0.14 4.11 0.02 188336 190259 416.32
38 13,14, 0 0 0 0 0 0 0 0 0 188336 190259 461.38
39 14,16, 35.3 3 2.13 0.13 0.01 8 0.15 4 0.02 188336 190259 469.5
40 13,18, 0 0 0 0 0 0 0 0 0 188336 190259 498.5
41 13,17, 0 0 0 0 0 0 0 0 0 188336 190259 543.39
42 14,15, 35.3 3 2.13 0.13 0.01 8 0.15 4 0.02 188336 190259 551.29
43 12,19 24.23 0 0 1 0.06 9 0.14 4.11 0.02 190259 190259 562.77
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