
Algorithms for Characterizing

Peptides and Glycopeptides with

Mass Spectrometry

by

Lin He

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Lin He 2013





I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Lin He

iii





Abstract

The emergence of tandem mass spectrometry (MS/MS) technology has signifi-

cantly accelerated protein identification and quantification in proteomics. It enables

high-throughput analysis of proteins and their quantities in a complex protein mix-

ture. A mass spectrometer can easily and rapidly generate large volumes of mass

spectral data for a biological sample. This bulk of data makes manual interpretation

impossible and has also brought numerous challenges in automated data analysis. Al-

gorithmic solutions have been proposed and provide indispensable analytical support

in current proteomic experiments. However, new algorithms are still needed to ei-

ther improve result accuracy or provide additional data analysis capabilities for both

protein identification and quantification.

Accurate identification of proteins in a sample is the preliminary requirement

of a proteomic study. In many cases, a mass spectrum cannot provide complete

information to identify the peptide without ambiguity because of the inefficiency of

the peptide fragmentation technique and the prevalent existence of noise. We propose

ADEPTS to this problem using the complementary information provided in different

types of mass spectra. Meanwhile, the occurrence of posttranslational modifications

(PTMs) on proteins is another major issue that prevents the interpretation of a

large portion of spectra. Using current software tools, users have to specify possible

PTMs in advance. However, the number of possible PTMs has to be limited since

specifying more PTMs to the software leads to a longer running time and lower result

accuracy. Thus, we develop DeNovoPTM and PeaksPTM to provide efficient and

accurate solutions.

Glycosylation is one of the most frequently observed PTMs in proteomics. It plays

important roles in many disease processes and thus has attracted growing research in-

terest. However, lack of algorithms that can identify intact glycopeptides has become

the major obstacle that hinders glycoprotein studies. We propose a novel algorithm,

GlycoMaster DB, to fulfil this urgent requirement.

Additional research is presented on protein quantification, which studies the changes

of protein quantity by comparing two or more mass spectral datasets. A crucial prob-

lem in the quantification is to correct the retention time distortions between different

datasets. Heuristic solutions from previous research have been used in practice but

none of them has yet claimed a clear optimization goal. To address this issue, we

propose a combinatorial model and practical algorithms for this problem.
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Chapter 1

Introduction

1.1 Background

Proteomics refers to the comprehensive study of the entire protein content in a spe-

cific cell, tissue or organism, or body fluids, ie. blood and urine. Its goal is to obtain

a global and integrated view of disease processes, cellular processes and networks at

the protein level [18]. Qualitative and quantitative proteomic analysis can help in

discovering unique biomarkers, which play extremely important roles in the diagnos-

tic and therapeutic procedures of some diseases, such as cancer, in modern medical

research [119].

Currently, tandem mass spectrometry (MS/MS) is the standard analytical tech-

nology in proteomics. It enables high-throughput analysis on proteins and their quan-

tities in a complex protein mixture with high sensitivity, selectivity and accuracy [36].

A tandem mass spectrometer can easily and rapidly generate large volumes of spec-

tral data for a biological sample. It makes manual interpretation become unfeasible

and has also brought numerous challenges in automated data analysis. Elegant algo-

rithmic solutions have been proposed and provide indispensable analytical support in

current proteomic experiments.

Accurate identification of proteins is the preliminary requirement in proteomics.

Protein sequence databases have been constructed by gathering proteins either se-

quenced in previous experiments or predicted from genes. MS/MS data can then

be interpreted by searching these protein databases [163, 164]. In contrast, de novo

sequencing approaches have also been developed to study un-sequenced organisms or
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species, of which the proteins are directly identified from spectral data without the

assistance of protein databases [34].

Inaccurate identification is the major obstacle that hinders de novo sequencing

to be a reliable approach for protein identification [111]. Recently, instruments that

integrate multiple fragmentation modules have been developed. Two or more frag-

mentation methods are used to generate different types of spectra from the same

sample, such as collision-induced dissociation (CID), higher energy collisional dis-

sociation (HCD), and electron-transfer dissociation (ETD). It becomes possible to

improve the de novo sequencing by using multiple types of spectral data.

The occurrence of posttranslational modifications (PTMs) on proteins is of critical

importance to protein functions [159]. Most existing software tools, using either

database search or de novo sequencing approaches, have difficulties handling a large

number of PTMs specified by users. Either the accuracy of the result or the speed

of the algorithms, or both, can be seriously influenced when too many PTMs are

considered [27].

N -linked glycosylation is one of the most frequently observed PTMs in mam-

malian organisms. The identification of glycopeptides and glycans is crucial to studies

of cellular processes, particularly some disease processes [19]. Compared to peptides

with other types of PTMs, intact N -linked glycopeptides generate spectral data with

explicitly different patterns. The analysis of such data heavily depends on manual in-

terpretation and no automated solution is currently available for a large scale analysis.

This has become the major obstacle to the progress of glycoproteomics [33].

Protein quantification provides the information of protein quantity changes and

assists in discovering important biomarkers of particular diseases. The label-free

quantification method is one of the two commonly used approaches in protein quan-

tification [11]. It has attracted growing interest since no additional chemistry or sam-

ple preparation steps are required. However, the convenience in experiments leads

to more computational challenges, which demands efficient and accurate algorithmic

solutions.

1.2 Contributions

This dissertation is mainly to propose algorithmic solutions for protein identification

and PTM characterization. The following five components constitute the contribu-
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tions of the dissertation:

De novo sequencing using CID/ETD spectrum-pairs: The errors of de

novo sequencing mainly come from ambiguities introduced by missing peaks. In

a spectrum, incomplete information makes it difficult to discriminate amino acid

combinations that share the same mass. However, in a spectrum-pair consisting of

a CID spectrum and an ETD spectrum, the missing peaks in one spectrum may be

present in the other. This fact helps to determine the true amino acid combination and

thus improve the accuracy of de novo sequencing. We propose a de novo sequencing

approach using CID/ETD spectrum-pairs, named ADEPTS. The comparison with

other de novo sequencing software tools shows the better performance of ADEPTS.

De Novo sequencing with many PTMs: Since it is difficult for a researcher

to know all the PTM types in a sample, a natural practice is to consider as many

PTM types as possible and let the data analysis algorithm determine which PTMs

really exist. However, the accuracy of de novo sequencing is significantly degraded

due to the larger search space introduced by considering many PTM types. We

propose DeNovoPTM as a specialized application of de novo sequencing when many

PTM types are considered. Our observation shows that most peptides in a proteomic

study contain only a small number of PTMs per peptide, yet the types of PTMs can

come from a large number of choices. Therefore, it is desirable to include a large

number of PTM types in a de novo sequencing algorithm but limit the number of

PTM occurrences in each peptide to increase the accuracy. A dynamic programming

algorithm for solving this problem is proposed and implemented for practical use.

Searching modified peptides without specifying PTMs: Identification of

modified peptides using conventional database search software tools requires users to

provide a few PTM candidates in advance. However, the complete knowledge of pos-

sibly existing PTMs in a protein mixture cannot be obtained before the analysis. On

the other hand, the efficiency and accuracy reduces significantly when a large number

of PTMs are specified. We present an improved database search tool for modified

peptide identification without pre-specifying PTM candidates. The improvements in

the software include (1) a default setting whereby the software considers all PTMs

included in the Unimod database as variable PTMs, and (2) several search strategies

that significantly reduce the search space. Furthermore, our approach uses the co-

existence of modified and base forms of the same peptide and the rareness of PTMs

to provide powerful discrimination between spurious and real modified peptides. This
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software outperforms several state-of-the-art software packages evaluated in this re-

search.

Characterizing intact glycopeptides: Identification of glycopeptides and gly-

cans is essential to better understand the functions and bioactivities of glycoproteins.

The progress of this study is mainly hindered by the lack of algorithms for intact gly-

copeptide characterization. GlycoMaster DB is proposed to fulfil this urgent require-

ment on N -linked glycopeptides. It is able to analyze the MS/MS data obtained from

a biological sample with glycoproteins being either enriched or not, and from either

HCD/ETD or HCD-only fragmentation. It simultaneously identifies glycopeptide se-

quences and N -linked glycan composition from a user-specified protein database and

a pre-configured N -linked glycan database, respectively. Furthermore, the connec-

tions between glycopeptides and glycans are also reported by GlycoMaster DB. This

connection information makes it possible to determine the glycoprotein identity and

study different forms of a glycoprotein (glycoforms).

Matching peptide features: Protein quantification is to study the abundance

variance of interested proteins from two or more samples. For each of the proteins,

its abundance ratio can be obtained by calculating the ratios of its peptides. In many

cases peptides are not identified in advance and peptide features (signals that are

possibly caused by peptides) are usually used to represent peptides. Thus, pairing

two peptides from different samples means pairing two peptide features from different

feature sets. Mass and retention time are two most important pieces of information

of a peptide feature. The mass is fairly accurate, but the retention time is subject to

some systematic as well as random errors. Features with the same or similar mass are

matched and a matching weight according to the retention time shift is calculated.

The maximum peptide feature matching problem is to compute a match between two

feature sets with the maximum weight. The difficulty of this problem is finding an

“alignment” that maps the retention time from one peptide feature set to the other.

We formulate this problem into a combinatorial model and prove its NP-hardness.

Practical algorithms are provided and compared with other existing methods.

1.3 Overview of Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 introduces the fundamentals of MS/MS-based computational proteomics.
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Both experimental and computational strategies are introduced for better understand-

ing of the subsequent research topics.

Chapter 3 presents ADEPTS, a de novo sequencing approach that improves the

accuracy by using CID/ETD spectrum-pairs.

Chapter 4 presents DeNovoPTM, a de novo sequencing algorithm that improves

the accuracy when many PTMs are considered.

Chapter 5 proposes PeaksPTM, an improved database search approach for efficient

identification of modified peptides, with the consideration of all PTMs in the Unimod

database.

Chapter 6 presents GlycoMaster DB, a database search software tool for the

characterization of intact N -linked glycopeptides from spectral data obtained by

HCD/ETD or HCD-only fragmentation.

Chapter 7 studies the peptide feature matching problem encountered in label-free

protein quantification. The problem is formulated into a combinatorial model and

proven to be NP-hard. Two practical algorithms are provided.

Finally, the summary of this dissertation and future work are presented in Chapter

8.

1.4 Publication Notes

The studies presented in Chapter 3, 4, 5, and 7 have been published as four referred

research articles [64, 63, 60, 89]. The work in Chapter 6 has been submitted for

possible publication.
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Chapter 2

Fundamentals

2.1 Mass Spectrometry

Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge

ratios (m/z) of charged particles. It has been used for both qualitative and quantita-

tive analysis, which includes identifying the composition and structures of unknown

compounds and measuring the quantities of interested molecules. Currently, MS is

widely used in analytical laboratories where physical, chemical, or biological proper-

ties of a great variety of compounds are studied [168].

A mass spectrometer typically consists of three components: an ionizer, a mass

analyzer, and a detector. Molecules are first converted to ions in the ionizer, then

the ions are separated according to their different m/z in the mass analyzer. The

separated ions are then detected by the detector to form a mass spectrum, which

consists of a list of peaks. Each peak is represented by its m/z and intensity. Fig-

ure 2.1 illustrates an example of a mass spectrum. Ions with the same m/z form a

peak and the intensity of a peak indicates the number of such ions detected by the

detector. The isotopes of elements in a molecule also produce isotopic peaks, from

which the charge state of the ion can be determined. The intensity of a peak is related

to the abundance of the corresponding ion. However, the abundance ratio between

two molecules cannot be simply regarded as the intensity ratio of their corresponding

peaks [96]. This is due to the differences in ionization efficiency and detectability of

different molecules, as well as the imperfect reproducibility of MS experiments.

The ionizer and the mass analyzer of a mass spectrometer are implemented with
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Figure 2.1: An example of a visualized mass spectrum. The inset illustrates isotopic

peaks with monoisotopic m/z 1396.14. The charge state of the ion can be determined

as two from the m/z difference between two adjacent isotopic peaks.

multiple techniques, causing different properties of the resultant spectral data. Two

types of ionizers are commonly used in proteomics: matrix-assisted laser desorption/

ionization (MALDI) [66] and electrospray ionization (ESI) [102]. MALDI mostly pro-

duces singly charged ions, and ESI can produce multiply charged ions. The advantage

of ESI is that a large molecule can still be detected since its multiply charged ions can

fall into the m/z range of a mass spectrometer. However, the existence of multiply

charged ions increases the complexity of the spectrum and more computational efforts

are required for the spectrum interpretation.

Five types of mass analyzers are commonly used in proteomics: quadrupole, ion

trap (quadrupole ion trap, QIT; linear ion trap, LIT or LTQ), time-of-flight (TOF),

Fourier transform ion cyclotron resonance (FTICR), and Orbitrap. Each type has

different capabilities in terms of sensitivity, accuracy, resolution, m/z range, and other

characteristics [68]. Mass resolution and accuracy are two important parameters to

measure the performance of a mass analyzer. The mass resolution measures the

ability to distinguish two peaks of slightly different m/z. The mass accuracy is the

ratio between the m/z measurement error and the true m/z, and usually measured in

ppm (parts per million). The performance of each mass analyzer is listed in Table 2.1.
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Table 2.1: Comparison of typical performance characteristics of commonly used mass

analyzers in proteomics [12].

Mass analyzer Resolution Accuracy (ppm) m/z range Scan rate

Quadrapole 1,000 100-1,000 50-2,000; 200-4,000 Moderate

QIT 1,000 100-1,000 10-4,000 Moderate

LTQ 2,000 100-500 50-2,000; 200-4,000 Fast

TOF 10,000-20,000 10-100 No upper limit Fast

FTICR 100,000-750,000 <2 50-2000; 200-4,000 Slow

Orbitrap 30,000-100,000 2-5 50-2,000; 200-4,000 Moderate

2.2 Shotgun Proteomics

An explicit goal of proteomics is to characterize all the proteins expressed in a cell or

tissue [4]. The improvements in mass spectrometry instruments, protein and peptide

separation techniques, and the availability of protein sequence databases for many

species has facilitated the analysis of complex protein mixtures using shotgun pro-

teomics. The major steps of shotgun proteomics include the protein digestion by

single or multiple enzymes, the peptide separation by liquid chromatography (LC),

and the peptide analysis using tandem mass spectrometry technology. Peptides are

identified from the spectral data, and proteins can then be determined by matching

these identified peptides to known protein sequences or assembling them into novel

proteins [2, 105]. Shotgun proteomics is currently the dominant analytical approach

in proteomics research [168].

2.3 Tandem Mass Spectrometry

Tandem mass spectrometry (MS/MS) technology involves multiple mass spectrometer

stages and aims to precisely identify and characterize peptide sequences. A typical

MS/MS-based proteomic experiment contains the following steps, as illustrated in

Figure 2.2: (1) protein digestion to produce shorter peptides; (2) peptide separation

by LC or other separation approaches; (3) analysis and detection of peptide ions;

(4) peptide selection for further fragmentation; (5) analysis and detection of peptide
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Figure 2.2: A typical MS/MS experiment procedure. (1) protein digestion; (2) pep-

tide separation; (3) survey scan generation; (4) peptide fragmentation; (5) MS/MS

spectrum generation.

fragment ions [168]. Two types of mass spectra are generated in such an MS/MS

experiment: survey scans and MS/MS spectra. Each survey scan has a retention

time, indicating the time in the LC experiment when the survey scan is taken. Each

peak in a survey scan denotes a peptide ion. Its m/z value reflects the mass of the

whole peptide but can not provide more information of the peptide sequence. The

subsequent fragmentation breaks a selected peptide to generate a series of fragment

ions, of which the m/z values are recorded in an MS/MS spectrum. Analysis of

MS/MS spectra, sometimes with the assistance of corresponding survey scans, can

help to identify peptide sequences and then determine the proteins in a biological

sample.

2.4 Peptide Fragmentation

In an MS/MS experiment, peptides are further fragmented to identify the sequences.

Peaks in an MS/MS spectrum represent a set of fragment ions generated from the

dissociation of a selected peptide. Theoretically, the peptide backbone can be broken
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Figure 2.3: Six types of fragment ions, i.e., a-, b-, c-, x-, y-, and z-ions, generated

through breaking the backbone of a peptide.

at any of three sites per residue to generate six types of fragment ions, as shown in

Figure 2.3.

Different fragmentation approaches emphasize the generation of different ion types.

Three fragmentation methods are commonly used in current MS/MS-based pro-

teomics: In collision-induced dissociation (CID), also known as collisionally activated

dissociation (CAD) [25], the peptide ions are usually accelerated by some electrical po-

tential to high kinetic energy and then collided with neutral molecules (often helium,

nitrogen or argon). In the collision some of the kinetic energy is converted into inter-

nal energy which results in bond breakage. Two types of fragment ions, b- and y-ions,

are frequently observed in MS/MS spectra obtained by CID fragmentation. In higher

energy collisional dissociation (HCD) [114], peptide ions are injected into a collision

cell and fragment ions are then analyzed by an Orbitrap analyzer. The mechanism of

HCD is similar to CID but more accurate m/z for the fragment ions can be measured.

HCD also generates b- and y-ions dominantly. When the higher energy is deployed, b-

ions can be further fragmented into a-ions or smaller species. Lastly, electron-transfer

dissociation (ETD), or electron-capture dissociation (ECD) [143], transfers electrons

to a multiply protonated peptide/protein, or generates radical cations for a multiply

protonated peptide/protein, and leads to the cleavage of the N–Cα backbone bonds
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Figure 2.4: An illustration showing the fragmentation pattern of glycopeptides.

to generate c- and z-ions. Ions derived from these ions, such as (c-1)- and z′-ions, are

also observed frequently in ETD (or ECD) spectral data [106, 171].

2.5 Glycopeptide Fragmentation

Glycosylation can decrease the fragmentation efficiency of peptide backbones when

collision based dissociation methods are used. For instance, fragmentation patterns of

glycopeptides are different from non-glycosylated peptides when using CID or HCD.

The collision energy is mainly absorbed by glycans. This leads to the glycosidic

bond breakages, while the peptide bonds are seldom broken. Thus, the fragment

ions generated by such approaches are dominantly B-, Y - and oxonium ions, as well

as some cross-ring fragment ions (A- and X-ions). The notations of fragment ions

generated from glycosidic bonds are different from the ones from peptide bonds (using

lower cases, e.g., b- and y-ions). The introduction of these notations can be found

in Domon and Costello nomenclature [37]. The breakages of glycosidic bonds in CID

or HCD fragmentation are illustrated in Figure 2.4. In contrast, ETD and ECD

dominantly produce fragment ions by breaking a peptide backbone but retain the

attaching glycan. Thus, glycans can be readily treated as normal PTMs with large

mass deviations in such case. The dominant types of fragment ions generated by

ETD (or ECD) for glycopeptides are c-, z-ions and their derived ions.
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2.6 Peptide Identification

Peptides are identified through interpreting MS/MS spectra data based on the prior

knowledge of common amino acids and PTMs. The 20 common amino acid residues

are listed in Table 2.2. The interpretation of an MS/MS spectrum seeks the best

matching peptide for the given spectrum. For example, in Figure 2.5, the peptide

YGFIEGHVVIPR is the best interpretation of the spectrum and its theoretical y-

ions generated from this peptide match all the significant peaks in the spectrum with

small mass errors.

In general, a peptide-spectrum match (PSM) score is calculated to measure the

similarity between a peptide candidate and a spectrum. A fragmentation site refers

to all types of ions generated from a fragmentation between two adjacent amino

acid residues. The peaks matched by a fragmentation site in the spectrum are used

to calculate a score for this fragmentation site, and the PSM score of a peptide

candidate is calculated from the combination of the scores at all the fragmentation

sites. The peptide candidate with the highest PSM score is finally selected as the

identification of the spectrum. The approach to calculate a PSM score is called a

scoring function, or a scoring scheme, which is the core part of the whole procedure

of peptide identification from a spectrum.

Database search and de novo sequencing are the two mainly used computational

approaches for spectral data interpretation. The major difference of these two ap-

proaches is the requirement of protein databases.

A database search approach requires the assistance of protein databases. The

protein sequences in a protein database are digested in silico to generate peptides,

then an MS/MS spectrum is compared with each possible peptide to calculate a PSM

score. The identification of the MS/MS spectrum is reported as the peptide from the

database with the top PSM score. The popular database search software packages

include Mascot [118], PEAKS [166], Sequest [41], MS-GFDB [78], X!Tandem [28],

and OMSSA [52].

In contrast, de novo sequencing constructs the peptide sequence directly from an

MS/MS spectrum, thus it is often used for novel protein identification. Rather than

searching peptides from a protein database, it searches all amino acid combinations to

find the optimal peptide sequence. Such searching is usually carried out by an efficient

dynamic programming algorithm to avoid the exponential running time. PEAKS
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Table 2.2: The 20 standard amino acid residues.

Name
3-letter 1-letter Monoisotopic Residue Residue

Symbol Symbol Mass Composition Structure

Alanine Ala A 71.037114 C3H5NO

Arginine Arg R 156.101111 C6H12N4O

Asparagine Asn N 114.042927 C4H6N2O2

Aspartic Acid Asp D 115.026943 C4H5NO3

Cysteine Cys C 103.009185 C3H5NOS

Glutamic Acid Glu E 129.042593 C5H7NO3

Glutamine Gln Q 128.058578 C5H8N2O2

Glycine Gly G 57.021464 C2H3NO

Histidine His H 137.058912 C6H7N3O

Isoleucine Ile I 113.084064 C6H11NO

Leucine Leu L 113.084064 C6H11NO

Lysine Lys K 128.094963 C6H12N2O

Methionine Met M 131.040485 C5H9NOS

Phenylalanine Phe F 147.068414 C9H9NO

Proline Pro P 97.052764 C5H7NO

Serine Ser S 87.032028 C3H5NO2

Threonine Thr T 101.047679 C4H7NO2

Tryptophan Trp W 186.079313 C11H10N2O

Tyrosine Tyr Y 163.06332 C9H9NO2

Valine Val V 99.068414 C5H9NO
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Figure 2.5: An example showing an annotated mass spectrum of peptide YG-

FIEGHVVIPR.

and PepNovo [45] are two state-of-the-art de novo software tools. Accurate de novo

sequencing, accompanied by different enzymatic digestions, has been proven to be

able to calculate the whole sequence for a purified protein sample [90]. However, the

accuracy obtained from de novo sequencing approaches is often lower than the one

obtained from database search approaches, thus there still exists much space for the

improvement of de novo sequencing.

Spectral library search is another type of computational approach for peptide

identification [29, 48, 83]. It requires a library of spectra that have been identified

previously. A spectrum is then searched in the library to find the most similar coun-

terpart, of which the corresponding peptide is reported as the search result. The

discussion of this method is out of the scope of this dissertation.

A major challenge in protein identification using these computational approaches

is introduced by the ubiquitous incorporation of hundreds of PTMs [39]. Most eu-

karyotic proteins are posttranslationally modified [159] and biochemists believe that

PTMs of a protein can help determine its activity state, localization, turnover, and

interactions with other proteins [100]. Therefore, precisely identifying modified pro-

teins and their PTM types, as well as locating the modification sites, are essential to

thoroughly understand their biological functions [8, 39, 100, 158]. So far, two common

PTM databases, DeltaMass [1] and Unimod [31], have recorded more than 300 and

600 types of PTMs, respectively.
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False positives unavoidably exist in the identification results because of the imper-

fect data and scoring functions. Researchers often use a false discovery rate (FDR)

to measure the error rate in the result. The target-decoy approach has been widely

used to validate the result by estimating the FDR [40]. In such a method, a random

database (the decoy database) is generated with similar statistical properties as the

target database. A database search approach is performed on both the target and

decoy databases. The FDR at a given score threshold is then estimated by the num-

ber of matches in the decoy database with scores above the threshold. Generally, the

decoy database is constructed by reversing the protein sequences in a target database,

but there is still no consensus in this community on the optimal way of using decoy

database. The target-decoy approach is doubted because of the pitfalls and dangers in

its applications [23, 56]; however, it is still prevalently used by researchers cautiously

and a modified target-decoy approach has also been proposed for two-pass database

search strategies [15].

2.7 Protein Quantification

Quantitative analysis of the proteins in a cell or tissue is another important application

in life science. After the identification of proteins in a sample, the expression level

of each protein can help to reveal more information about the protein’s participation

in a particular function or malfunction of the cell [65]. Protein quantification (also

known as quantitation) can provide a comprehensive description of the expression

level changes of the proteins under the influence of various perturbations, including

stress, infection, or disease. It can help identify biomarkers of particular diseases

and aid in an early diagnosis and intervention. Drug administration and therapeutic

effects could also be determined though protein quantification [116].

In an LC-MS experiment for peptide quantification, the peptides in a complex

sample are separated by LC according to their hydrophobicity and eluted at different

retention time. The m/z values of the co-eluting peptides are then measured by MS

and a mass spectrum (survey scan) at each scanned retention time is produced. Many

peptide features can be detected from a spectral dataset [165]. Each correctly detected

feature corresponds to a peptide in the sample and mainly consists of three pieces

of information: the mass, the retention time, and the signal intensity. For the same

peptide, the signal intensity is approximately proportional to the abundance of such
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peptide in the sample. Thus, if two features of the same peptide from two samples are

confidently matched, the quantity change of the peptide can be estimated from the

intensity ratio of the two matched features. The protein ratios can then be calculated

from corresponding peptide quantity changes.

Two major experimental approaches exist for peptide quantification: isotopic la-

beling and label-free [149]. In the isotopic labeling approach, two samples are labeled

with different isotopic reagents before being mixed together and then analyzed in a

single LC-MS experiment. Most commercially available labeling reagents do not in-

fluence the retention time of a peptide. The same peptide with different labels from

the two samples appear at almost the same retention time, making the match find-

ing computationally simple. Labeling quantification is not covered in this dissertation

and its detailed introduction is available in the literature [57, 115, 157]. The label-free

method does not label the samples and measures the two samples in separate LC-MS

runs. As the isotopic labeling step is not needed, the complexity of the experiment is

greatly reduced [113, 156]. Label-free quantification is becoming the most promising

method for the large-scale comparison of hundreds of samples that are required for

biomarker discovery [169].

Label-free quantification provides more computational challenges to bioinformati-

cians. The major problems encountered in a label-free quantification analysis include

peptide feature detection and matching, peptide ratio calculation, and protein ratio

calculation. In this dissertation, the peptide feature matching problem is addressed.
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Chapter 3

De Novo Sequencing with MS/MS

Spectrum Pairs

De novo sequencing is important for novel protein identification in MS/MS-based

proteome analysis. Nevertheless, current scientists admit that the peptides identified

by de novo sequencing are not as confident as those from database search approaches.

Higher quality MS/MS spectral data are generally required to obtain satisfactory

results in de novo sequencing. If some of the expected fragment ions are not produced

by the fragmentation, the corresponding peaks will be absent from the spectrum,

leading to ambiguity for the determination of some local segments of the peptide.

The ambiguity can often be eliminated in database searching, while it remains in de

novo sequencing and leads to a partially correct peptide. Thus, more information is

demanded to improve the identification accuracy, and it is essential to make de novo

sequencing more practical in proteomics research.

Development of various fragmentation approaches provides the possibility of us-

ing multiple fragmentation methods to reduce the ambiguity in de novo sequencing.

When a fragment ion is absent from one fragmentation method, a different type of

fragment ion corresponding to the same segment of residues may be produced in

another fragmentation, helping to retrieve the local peptide composition without am-

biguity. In addition, peaks from the multiple spectra can confirm each other, and

this can greatly increase the confidence in distinguishing a signal peak from noise.

Indeed, three de novo sequencing approaches have benefitted from the use of two

types of spectra acquired from different fragmentation methods [129, 35, 16].
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Savitski et al. [129] introduced the first de novo sequencing approach using two

complementary fragmentation techniques, CAD and ECD. In their method, a series

of simple criteria were used to determine the correct fragmentation sites from both

types of spectra. Datta et al. [35] computed the score of a fragmentation site by using

a TAN-structured Bayesian network which involved different fragment ions from two

types of spectra. This Bayesian network differs from the one used in PepNovo [45]

algorithm, in which the structure is hand-selected by a human expert. The advan-

tage of using a Bayesian network is that the correlation between different fragment

ion types is considered, but the intensity information has to be discarded since the

events in a Bayesian network are required to be discrete. Bertsch et al. [16] utilized

peak intensity in their scoring scheme: theoretical spectra were generated from pep-

tide candidates and then compared with the experimental spectrum. An accurate

predictor of the theoretical spectrum is required and the performance of such a scor-

ing scheme heavily depends on the accuracy of the spectrum predictor. However,

the implementation of such a spectrum predictor is extremely difficult because of the

complicated dissociation mechanism [96].

New de novo sequencing algorithms have been presented based on two types of

spectra in all these three approaches. Nevertheless, most existing de novo sequencing

algorithms [34, 45, 97] can also be easily applied on multiple types of spectra by

simply modifying their scoring functions. In this chapter, we propose a novel scoring

module, ADEPTS, to improve de novo sequencing performance by using CID/ETD

spectrum pairs. ADEPTS uses two models to incorporate peak intensity and ion type

information into the score, respectively. We show that ADEPTS increases the ability

to distinguish the true fragmentation sites from the false ones and finally improves

the result accuracy.

3.1 Methods

ADEPTS accepts a CID/ETD spectrum pair and a peptide candidate to calculate

their matching score. Different from traditional de novo sequencing approaches that

work only on spectra of a single type, ADEPTS uses both spectra when calculating

the score for a peptide candidate. ADEPTS is used in the following framework to

identify a spectrum pair:

1. Use the de novo sequencing module of PEAKS [97] to generate 1,000 peptide
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candidates for the CID and ETD spectrum, respectively;

2. Use ADEPTS to evaluate the match between each of the 2,000 peptide candi-

dates and the spectrum pair;

3. Report the peptide candidate with the top matching score.

The PEAKS de novo sequencing module in the first step can be replaced by

any other existing de novo sequencing software that can output multiple peptide

candidates from one spectrum, such as Lutefisk [148] or the algorithm proposed by Lu

and Chen [94]. The second step, in which the match between a peptide candidate and

a spectrum pair is evaluated, is the essential part of ADEPTS and briefly described

as follows:

1. Each peak in the two spectra is assigned a non-negative significance value;

2. For each peptide candidate:

(a) Calculate theoretical m/z values of each fragmentation site and match

them to peaks in the corresponding spectrum. The significance values of

matched peaks form a significance vector;

(b) Calculate a likelihood score vector from the significance vector, then use

a support vector regression (SVR) model to convert the score vector to a

score for the fragmentation site;

(c) Similar to 2(b), calculate an SVR score for each residue of the peptide

candidate;

(d) Add the scores for all fragmentation sites and all residues of a peptide

candidate to calculate the peptide score.

Each step is described in details in subsequent sections.

3.1.1 Peak Significance Value

To calculate the significance value of a peak in an MS/MS spectrum, four features

of the peak, the rank, the relative intensity, the local rank, and the local relative

intensity, are considered. This approach was proposed by Liu et al [91]. The rank
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Figure 3.1: Comparison of two approaches to incorporate peak intensities. The areas

under ROC curves represent the discriminative performance of using the significance

value and the relative intensity alone.

of a peak is the number of peaks in the spectrum with higher or the same intensity.

The relative intensity is the ratio between the average intensity of the top few peaks

in the spectrum and the intensity of the examined peak. The definition of the local

rank and the local relative intensity are the same as the rank and the relative intensity

respectively, except that only the peaks within ±56 Da from the examined peak are

considered rather than all the peaks in the spectrum. The peak significance value S

is defined as a linear combination of the logarithms of these four values:

S = c1 · lg(R) + c2 · lg(I) + c3 · lg(Rl) + c4 · lg(Il), (3.1)

where R, I, Rl, and Il denote the rank, the relative intensity, the local rank and the

local relative intensity, respectively. The coefficients (ci, 1 ≤ i ≤ 4) are trained from

an annotated training data set. According to this definition, a smaller significance

value indicates a stronger peak.

We preprocess the peaks in a spectrum, including centroiding, de-isotope and

de-convolute, using the data refine module of PEAKS and calculate the significance

value of each peak using Eq. 3.1. Receiver operating characteristic (ROC) analysis is

adopted to obtain the four coefficients c1, c2, c3, and c4. To generate the ROC curves,

the peaks matched by y- and b-ions (in CID spectra) or by c- and z′-ions (in ETD

spectra) are positives, and the peaks matched by randomly generated m/z values are

negatives. Changing the significance threshold with a minor step can generate a series

of true positive rate and false positive rate pairs, which are plotted as a ROC curve.
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Table 3.1: Frequencies of peaks matched by common fragment ion types in the train-

ing data.

CID

Ion Type y b y-H2O b-H2O b-NH3

Frequency (%) 52.4 47.3 31.9 31.7 27.6

Ion a y-NH3 a-NH3 z-H2O a-H2O

Frequency (%) 25.3 23.7 23.1 22.7 22.5

ETD

Ion Type c y z′ z′+1 c-NH3

Frequency (%) 56.6 50.4 42.6 32.4 31.6

Ion y-H2O z c-H2O x z′-NH3

Frequency (%) 20.9 20.8 19.5 18.7 18.5

A larger area under the ROC curve (AUC) denotes a better discriminative power.

The four coefficients are trained using our training data to maximize the AUC.

Relative intensity is commonly used in scoring functions proposed in previous

research. Figure 3.1 illustrates a comparison on the discriminative power between

using the significance value and the relative intensity. It shows that the significance

value, which includes the other three terms of Eq. 3.1, performs much better than

relative peak intensity.

3.1.2 Likelihood Scores of Frequent Ion Types

Frequencies of peaks matched by several common ion types in our training data are

listed in Table 3.1. The most frequently observed fragment ion types induced by CID

and ETD are considered in ADEPTS: y, b, y-H2O, b-H2O, and b-NH3 ions for CID

spectra; c, y, z′, z′+1 and c-NH3 ions for ETD spectra.

A likelihood score function ft(·) is defined for each selected ion type t, and ft(x)

represents the score of a match between a type-t ion and a peak with a significance

value x.

The significance values of the matched peaks by type-t ions in the training data are

divided into four intervals, each of which contains the same number of the matched

peaks. The likelihood score at the centroid of each interval Ii, denoted by xio, is then
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Figure 3.2: (a) The distributions of the peak significance for the true z′-ions and

random matches. (b) The z′-ion likelihood scoring function with respect to the sig-

nificance value.

calculated as

ft(x
i
o) = log

(
Pr(significance value falls in Ii | true site)

Pr(significance value falls in Ii | random site)

)
. (3.2)

The likelihood scores of significance values other than the centroid are computed by

linear interpolation. If a theoretical ion does not match any peak in the spectrum,

the likelihood score is calculated by

ft(null) = log

(
Pr(no peak matching | true site)

Pr(no peak matching | random site)

)
. (3.3)

For example, the distributions of the significance of z′-ion and random matches, as

well as the likelihood scoring function of the z′-ions, are illustrated in Figure 3.2.

3.1.3 Score for Each Fragmentation Site

A peptide candidate with n amino acid residues contains n − 1 fragmentation sites.

For each site i and ion type t, let the significance value of the matched peak be

xi,t. Then the likelihood score of this match is si,t = ft(xi,t), where ft is defined in

Section 3.1.2. The score of the fragmentation site i, denoted as si, is defined as the

linear combination of likelihood score of all ion types at this site,

si =
k∑
t=1

ct · si,t, (3.4)
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where k is the number of selected ion types, and c1, . . . , ck are constant coefficients

that are trained by an SVR model with the linear kernel.

The standard LIBSVM library [24] is used to train the SVR model. The training

of the coefficients maximizes the distinction between the fragmentation sites of true

peptide sequences and randomly generated peptide sequences using the training data.

3.1.4 Score for Each Residue

Each residue in the midst of a peptide sequence introduces two fragmentation sites at

both sides of the residue. In an MS/MS spectrum, there are often strong correlations

between the ions from two adjacent fragmentation sites. Figure 3.3 shows an example

of such a correlation. A residue score is thus used to incorporate this correlation into

the scoring function. For a specific ion type t, let xi and xi+1 be the significance

values of the two peaks at the two sites determined by a residue r, then the residue

significance value xr for this residue r and ion type t is defined as

xr,t =
√

(x2
i + x2

i+1)/2. (3.5)

Clearly, if xi + xi+1 is fixed, the smallest xr,t (smaller means more significant) is

achieved when xi = xi+1. Eq. 3.5 reflects that a residue in the midst of a peptide

candidate tends to be a correct one if it determines two same-type fragment ions that

match two peaks with similar significance values. This property results that a residue

having two adjacent ions with similar significance values obtains a higher likelihood

score. This score is used to represent the aforementioned correlation between ions.

Using the same procedure introduced to score a fragmentation site, the residue

significance values of different ion types form a likelihood score vector and then this

score vector is converted to a residue score sr using an SVR model.

3.1.5 Peptide Score

Given a peptide candidate P with n amino acid residues, let the scores calculated

for the n − 1 fragmentation sites be s1, . . ., sn−1, and the scores calculated for the

n− 2 non-boundary residues of the peptide be sr1, . . ., srn−2. The peptide score S(P )

is defined as

S(P ) =
n−1∑
i=1

si + λ ·
n−2∑
i=1

sri , (3.6)
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Figure 3.3: An annotated MS/MS spectrum that has stronger b-H2O ions for many

adjacent fragmentation sites, indicating strong correlation between the adjacent frag-

ment ions with the same ion type.

where λ is a positive coefficient that balances the weights of fragmentation site scores

and residue scores. In ADEPTS, the optimal λ is determined by performing a grid

search on the training data.

3.2 Experimental Results

ADEPTS was applied to two independent MS/MS data sets to evaluate its perfor-

mance. The first data set (LTQ-Orbitrap data set) was obtained from a Thermo

Fisher LTQ Orbitrap XL with ETD mass spectrometer (Thermo Fisher ScientificTM,

Bremen, Germany), and the second data set (Iontrap data set) was generated by an

ion trap mass spectrometer with implemented ETD module (Model HCTultra PTM

discovery system, Bruker Daltonik GmbH, Bremen, Germany). The second data

set was previously used by Bertsch et al. [16] to evaluate the performance of their

CompNovo software.
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3.2.1 LTQ-Orbitrap Data Set

In this data set, the CID and ETD data were generated from two separate runs,

respectively. Therefore, CID/ETD spectrum pairs needed to be found before using

ADEPTS for the de novo sequencing.

In our experiment, we used PEAKS to find true spectrum pairs. The database

search module of PEAKS was applied separately to two types of spectra for the

identification of real peptide sequences, searching in the UniProt database [9]. A pair

of spectra from the two runs are considered as from the same peptide if: (1) the

two peptide sequences identified for both the CID and ETD spectra are the same;

(2) the PEAKS database search confidence score (−10 lgP ) is at least 60% on both

spectra; and (3) the two spectra have the same charge state and similar retention

time (subject to a fluctuation of at most ±10 minutes). The fairly large LC retention

time fluctuation (±10 minutes) is chosen since the same peptide in two runs is often

eluted at different retention time. The first two conditions ensured that the selected

CID and ETD spectra in a spectrum pairs are indeed from the same peptide with

high confidence. These selected spectrum pairs were regarded as the true spectrum

pairs with correct peptide sequences and used for the performance comparison among

several software tools later.

317 CID/ETD spectrum pairs with unique peptide sequences were obtained ac-

cording to the above criteria from the LTQ-Orbitrap data set. 148 of them were

randomly chosen as training data, and the remaining 169 were used as testing data.

The uniqueness of the peptides guaranteed that no peptide was in both training and

testing data. There were 2,291 amino acid residues in the training data and 2,648

residues in the testing data.

A fatal issue prevented the processing of these spectrum pairs by CompNovo.

Thus, ADEPTS was only compared with two state-of-the-art software tools, PepNovo

and PEAKS, on this data set. The major shortcoming of these two software tools

is that only one type of MS/MS spectrum is used to identify the peptide sequence.

PEAKS was used to analyze CID and ETD data in two different runs. PepNovo

(release 20091029) was only applied to the CID data for its lack of parameters for

ETD data analysis.

The precursor mass error tolerance and fragment error tolerance were 0.1 Da and

0.5 Da, respectively. The large fragment error tolerance is due to the measurement
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Table 3.2: Comparison between identifications of spectra in the LTQ-Orbitrap testing

data set. The first four rows are the percentage of the peptide sequences with at most

0, 1, 2, and 3 incorrect residues in the de novo sequencing results. The last row is the

percentage of the total correct residues.

PEAKS PEAKS PepNovo ADEPTS
TOTAL

(CID) (ETD) (CID) (CID+ETD)

Correct 12 10 8 32
169

peptides (7.1%) (5.9%) (4.7%) (18.9%)

≤ 1 incorrect 12 13 11 33
169

residue (7.1%) (7.7%) (6.5%) (19.5%)

≤ 2 incorrect 25 25 27 66
169

residues (14.8%) (14.8%) (16.0%) (39.1%)

≤ 3 incorrect 28 34 33 74
169

residues (16.6%) (20.1%) (19.5%) (43.8%)

Total correct 945 1,157 972 1,580
2,648

residues (35.7%) (43.7%) (36.7%) (59.7%)

of fragment ions using ion trap, which provides MS/MS spectra with relatively low

resolution as shown in Table 2.1. Table 3.2 illustrates that ADEPTS outperforms

both PEAKS and PepNovo on the number of correctly identified peptide sequences

and amino acid residues.

3.2.2 Iontrap Data Set

The Iontrap data set was previously published with PRIDE [73, 72] by Bertsch et

al. to evaluate the performance of their CompNovo software [16]. It contained 156

CID/ETD spectrum pairs as training data and 2,405 pairs 1 as testing data. The

total number of amino acid residues in the training and testing peptides were 1,906

and 32,186, respectively. The fragmentation pattern in this data set was quite differ-

ent from the one in the LTQ-Orbitrap data set. This difference was expected since

different types of mass spectrometers from different manufactures were used to collect

the MS/MS data.

1The testing data set originally contained 2,406 spectrum pairs as described in the paper of

CompNovo. One pair was removed in our experiment due to the different precursor m/z values.
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Table 3.3: Comparison of identifications on the spectra in the Iontrap testing data.

The first four rows are the percentage of the peptides with at most 0, 1, 2, and 3

incorrect residues in the de novo sequencing results. The last row is the percentage

of the total correct residues.

PEAKS PEAKS PepNovo CompNovo ADEPTS
TOTAL

(CID) (ETD) (CID) (CID/ETD) (CID/ETD)

Correct 286 57 63 676 820
2,405

peptides (11.9%) (2.4%) (2.6%) (28.1%) (34.1%)

≤ 1 incorrect 301 74 99 697 844
2,405

residue (12.5%) (3.1%) (4.1%) (29.0%) (35.1%)

≤ 2 incorrect 779 216 404 1,243 1,350
2,405

residues (32.4%) (9.0%) (16.8%) (51.7%) (56.1%)

≤ 3 incorrect 971 362 664 1,445 1,528
2,405

residues (40.4%) (15.1%) (27.6%) (60.1%) (63.5%)

Total correct 20,069 13,767 19,175 23,721 24,378
32,186

residues (62.4%) (42.8%) (59.6%) (73.7%) (75.7%)

We applied ADEPTS and other de novo sequencing software tools on the Iontrap

data set. The precursor and fragment mass error tolerance were set as 1.5 Da and

0.4 Da, respectively. We used the same tolerance values with the ones set in the

paper of CompNovo because of another failure of CompNovo on its own data set. 2

The de novo sequencing results published by Bertsch et al. in their paper were used

in the subsequent comparison. Table 3.3 summarizes the results of the comparison.

ADEPTS not only significantly beats the de novo sequencing accuracy of PEAKS

and PepNovo, but also performs noticeably better than CompNovo, which is specially

designed to do de novo sequencing using CID/ETD spectrum pairs.

Figure 3.4(a) compares the identification rates of different software as the function

of the number of allowed incorrect residues in each peptide. Figure 3.4(b) compares

the identification rates of different software as the function of the length of the longest

consecutively correct subsequence. Given a number of allowed incorrect residues or

a number of correct consecutive residues, a higher identification rate indicates better

performance achieved by a software tool. Clearly, as shown in Figure 3.4, software

tools that combine CID/ETD spectra pair (ADEPTS and CompNovo) perform signif-

2The running issue of CompNovo on its own data set was confirmed by its author after the

consultation.
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(a) (b)

Figure 3.4: (a) Identification rates of different software as the function of the number

of allowed incorrect residues for the testing data. (b) Identification rates of different

software as the function of the number of allowed incorrect residues for the testing

data.

icantly better than the ones that use only one type of spectra (PEAKS and PepNovo).

Furthermore, it is also illustrated that the performance of ADEPTS is noticeably bet-

ter than CompNovo.

3.3 Discussion

It is possible that any de novo sequencing tool that generates multiple peptide can-

didates can be adapted for candidate generation. We used PEAKS because it is

regarded as the most superior general de novo sequencing software with respect to

accuracy and efficiency [120], and it also supports de novo sequencing for both CID

and ETD. In addition, it has the capability of generating as many as 1,000 candi-

dates for each spectrum. This large number of the peptide candidate increases the

probability that the correct peptide is included and finally reported by ADEPTS,

since ADEPTS itself does not revise any peptide candidate. As shown in Section 3.2,

ADEPTS significantly outperforms PEAKS on both CID and ETD data interpre-

tation. This indicates the importance of the scoring function specially designed for

CID/ETD spectrum pairs. In addition, the peptide candidates are currently gener-

ated using CID and ETD separately. The performance might be further improved if

the candidates were generated from the spectrum pair, rather than only one spectrum.
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There are correlations between different ion types at the same fragmentation sites

and between two adjacent fragment ions with the same type. To better take account of

these correlations in a scoring function, the Bayesian network model used by Datta et

al. or PepNovo is more appropriate. However, this requires to discretize peak intensity

(or significance value), resulting in information loss and thus an apparent decrease

of result accuracy. In ADEPTS, instead of constructing a model to count in these

correlations directly, an SVR model is used to balance the weight of each type of ions

at the same fragmentation site, and the residue score defined in Section 3.1.4 is used

to reflect the correlations between adjacent fragment ions. Designing a model that

has the power of a Bayesian network but lacks the weakness induced by discretization

is still an open problem.

According to the guidance of correctly using LIBSVM given by Hsu et al. [69], both

the radial basis function (RBF) kernel and the linear kernel were tried in ADEPTS.

The parameters were optimized for both kernels and they achieved very similar per-

formance. We selected the linear kernel in our scoring function for its simplicity and

efficiency, conforming to Occam’s razor.

Instead of using the likelihood scores to form the vector for SVR score calcula-

tion, we also tried to use the peak significance values directly, but the accuracy was

remarkably reduced. This also indicates that the conversion from significance values

to likelihood scores is necessary.

Our method requires a CID/ETD spectrum pair from the same peptide. This can

be obtained either by (1) two separate LC-MS/MS runs of the same protein digest, or

by (2) programming the mass spectrometer to fragment the same precursor ion in two

consecutive scans using CID and ETD, respectively. For the first setting, some treat-

ments on the data are needed to obtain spectrum pairs. In general, data-dependent

acquisition (DDA) mode used in an MS/MS spectrometer for data collection favors

not fragmenting one peptide repeatedly, thus spectrum pairs can be readily selected

by a trivial procedure: given two spectra from CID and ETD respectively, they are

regarded to form a spectrum pair if they have similar precursor m/z values (the dif-

ference is less than or equal to a given threshold, e.g., 10 ppm for Orbitrap data) and

similar retention time. Moreover, the pairing of peptide features from two LC-MS

experiments is well studied in the label-free quantification method [139] and can be

readily facilitate the spectrum pair finding. For un-paired spectra, we can still use

the traditional de novo sequencing methods for the analysis.
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Chapter 4

De Novo Sequencing with Many

PTMs

The identification of post-translational modifications (PTMs) is of critical importance

in a study of protein functions. Novel proteins can be identified using de novo se-

quencing approaches, but identifying PTMs on the proteins is a nontrivial challenge.

Most de novo sequencing software tools allow users to specify only a few PTMs.

This limitation makes the peptides with unspecified PTMs become unidentifiable.

As pointed out by Duncan et al. [39], peptides with unspecified PTMs may be espe-

cially interesting, but unfortunately they are discarded due to limitations of existing

software.

A natural solution is to specify all the PTMs that possibly exist in a sample.

This approach only linearly increases the time complexity of commonly used de novo

sequencing algorithms. However, the consideration of a large number of PTM types

typically has a significantly negative impact on the result accuracy. De novo sequenc-

ing algorithms, such as PEAKS and PepNovo, tend to output peptide sequences with

many PTMs in such case, though most peptides identified in a proteomic study have

very few, if any, PTM occurrences in each peptide.

It is different between the number of PTM occurrences per peptide and the number

of PTM types specified to a de novo sequencing algorithm. Researchers usually do not

know all the PTM types in a peptide and thus have to specify a large number of PTM

types. However, only a limited number of PTMs can occur in a peptide. Therefore,

we develop a specialized de novo sequencing algorithm, DeNovoPTM, which allows
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the consideration of many PTM types, while limiting the number of PTM occurrences

in each peptide.

4.1 Problem Formulation

Let S be a given MS/MS spectrum. The total residue mass, M , of the peptide can

be derived from the precursor m/z and the charge of the spectrum. The spectrum

is usually provided with a peak list. Each peak (mi, hi) potentially corresponds to a

fragment ion, where mi represents the m/z value of the peaks and hi is its abundance.

Let Σ = {r1, ..., r|Σ|} be the alphabet of amino acid residues. Besides 20 unmodified

residues, this alphabet also includes modified residues that represent residues with

PTMs. Each residue ri has mass value m(ri). A peptide P is an sequence of amino

acid residues over alphabet Σ and m(P ) denotes the total mass of residues in P .

A scoring function F (P, S) is required to evaluate the similarity between a peptide

sequence P and a given MS/MS spectrum S, where a higher score means a higher

probability that the given spectrum is generated from the peptide.

The de novo sequencing approach involves constructing a peptide sequence P from

a spectrum S over the alphabet Σ, such that (1) the total residue mass is M and (2)

the similarity score F (P, S) is maximized. It is further required that the number of

modified residues in the computed peptide sequence P is upper-bounded by a given

number k. Formally, the de novo sequencing problem with a limited number of PTMs

per peptide (DeNovo-LPTM), given a scoring function F , is defined as follows:

DeNovo-LPTM

Instance: An MS/MS spectrum S, the precursor mass M , a residue alphabet Σ,

and a maximum number of PTMs per peptide k.

Objective: A peptide sequence P , over alphabet Σ, that satisfies: (1) the total

residue mass m(P ) is equal to M (within a specified error tolerance), (2) the number

of modified residues in P is no more than k, and (3) the similarity score F (P, S) is

maximized.
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4.2 Methods

In this section, the scoring function F (P, S) is introduced, and the algorithm for the

DeNovo-LPTM problem is then proposed.

4.2.1 Scoring Function

The scoring function we use for de novo sequencing here is similar to the one used by

ADEPTS, discussed in previous chapter, where a CID/ETD spectrum pair is used to

identify the target peptide. Here, the scoring function is slightly modified and applied

to CID spectra only.

Peaks in a spectrum are first assigned non-negative significance values using Equa-

tion 3.1. A match between a peak and a theoretical fragment ion of a proposed peptide

sequence contributes to the correctness of the corresponding peptide candidate. This

contribution is measured by a likelihood score according to its significance value and

the type of the matched fragment ion. A likelihood score vector for a fragmentation

site is generated and fed to a pre-trained SVR model to calculate the final score for

the corresponding fragmentation site. Thus, for each mass value m, a score f(m) can

be computed to represent the likelihood that the peptide has a prefix with the total

residue mass m. The fragmentation score of the peptide P is the sum of all scores at

all prefix mass values of the peptide.

In addition, our scoring function includes a penalty for each modified residue in

a peptide. If an MS/MS spectrum can be explained by two peptides, one has a

PTM but the other does not, with the same scores, we prefer the one without the

PTM [60, 127]. The value of this penalty should vary according to the frequency of the

specific PTM type being observed in a proteomic experiment. While our algorithm

can work for any user-defined penalties, the following configuration performs well in

our experiment. All PTMs in the Unimod database [31] were empirically classified

into four classes: common, less common, rare and very rare, and were assigned with

penalties of -0.15, -0.3, -0.45 and -0.6, respectively.1 For the sake of presentation, we

denote the penalty for a residue r by g(r). If r is an unmodified residue, g(r) = 0;

otherwise, g(r) < 0. The score F (P, S) is defined as the sum of the fragmentation

score and the PTM penalties.

1The classification and the four penalty values are configurable in the software.
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4.2.2 DeNovoPTM Algorithm

For a deconvoluted and de-isotoped spectrum, the m/z value of each peak is converted

to its nominal mass by multiplying 0.9995 and rounding to the nearest integer. The

constant 0.9995 is the average ratio between the nominal and the accurate mass of

the 20 basic amino acid residues [14, 67]. If more than one peak exist in an integer

bin, those peaks are treated as one and their corresponding intensity values are added

together as the new intensity. The total residue mass M is rounded into an integer in

the same way. Such integralization is to facilitate the use of a dynamic programming

algorithm for the de novo sequencing.

The score F (P, S) can be similarly defined on a partial sequence p of which the

total residue mass is less than M . For each mass m ≤ M , there is an optimal

partial sequences p with mass m such that the score F (p, S) is maximized. If there

are multiple partial sequences with mass m that maximize the score, any of them

satisfies our purpose.

Our algorithm maintains a (k + 1) by M matrix DP , in which DP (i,m) denotes

the optimal score that can be achieved by a partial sequence with mass m and i PTMs.

The optimal partial sequence p for DP (i,m) must be of the form p′r, consisting of

a prefix sequence p′ and a residue r ∈ Σ. It is clear that F (p, S) = F (p′, S) +

f(m) + g(r). Furthermore, p′ must also be the optimal partial sequence with its mass

m′ = m−m(r); otherwise, we can replace p′ by a better partial sequence to improve

the score of p, and this is a contradiction to the optimality of p.

Let Σ0 ⊂ Σ denote the set of unmodified residues in the alphabet, and Σ1 ⊂ Σ be

the set of modified residues. The following recurrence relation is explicit because of

the above discussion:

DP (i,m) = f(m) + max

{
maxr∈Σ0 DP (i,m−m(r))

maxr∈Σ1 DP (i− 1,m−m(r)) + g(r)
(4.1)

The dynamic programming algorithm for the DeNovo-LPTM problem, DeNovoPTM,

is shown in Algorithm 1. The time complexity of the DeNovoPTM algorithm is

O(kM |Σ|).

It is known that a de novo sequencing algorithm has a tendency to output a peptide

that matches the high peaks in the spectrum with multiple fragment ions [98, 34]. To
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Algorithm 1 DeNovoPTM algorithm to solve the DeNovo-LPTM problem.

Require: An MS/MS spectrum S, the precursor mass M , an unmodified residue set

Σ0, a modified residue set Σ1, and a maximum number of PTMs per peptide k.

1: function DeNovoPTM(S,M,Σ0,Σ1, k)

2: DP [i,m]← 0 for 0 ≤ i ≤ k + 1, 0 ≤ m ≤M

3: for i← 0 to k + 1 do

4: for m← 1 to M do

5: DP (i,m) = f(m) + max

{
maxr∈Σ0 DP (i,m−m(r))

maxr∈Σ1 DP (i− 1,m−m(r)) + g(r)

avoid this problem, the peptide reported by our algorithm is checked. If there is one

peak in the spectrum matched by both an N-terminal fragment ion and a C-terminal

fragment ion, we run the dynamic programming twice, in one run forbidding the

peak from being matched by an N-terminal, and in the other forbidding a C-terminal

fragment ion. If there are t significant peaks found to be matched by different ion

types, the algorithm is run 2t more times. In practice t is often 0 or a very small

integer. A similar strategy was also previously proposed in Mo et al [107].

4.3 Experiments and Results

We implemented our DeNovoPTM algorithm for de novo sequencing with a limited

number of PTMs. The performance of DeNovoPTM was evaluated by comparing with

two state-of-the-art de novo sequencing software tools, PEAKS (de novo sequencing

module) [98] and PepNovo (Release 20120423) [45], on two data sets: the ISB data

set and the PepSplice data set.

4.3.1 Performance Evaluation on the ISB Data Set

The MS/MS spectra came from the ISB (Institute for System Biology) standard

protein mixture data set [82], which is a standard protein data set for testing peptide

identification software tools. In our experiment, data from two LC-MS/MS runs for

the analysis of mixture 3 and 7 were selected. Mixture 3 was analyzed by an Agilent
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1100 system, while mixture 7 was analyzed by a Thermo Scientific Orbitrap MS/MS

spectrometer.

To determine the control set, we used the database search module of PEAKS

6 [166] to identify the peptide-spectrum matches (PSMs) with high confidence. Four

PTMs were used in the database search: carbamidomethylation on Cys, oxidation on

Met, deamidation on Asn and Gln, and phosphorylation on Ser, Thr and Tyr. All the

spectra were searched against the 18 standard proteins and the possible contaminant

proteins given by ISB. The reported modified PSMs are filtered using the following

rules: (1) PEAKS −10 lgP score of a PSM must be greater than 35; (2) a PSM must

have at least one cysteine carbamidomethylation or one phosphorylated amino acid;

(3) the precursor charge of the spectrum is 2; (4) for the PSMs with same peptides, we

keep the one with the highest −10 lgP score. After this strict filtration, 85 modified

PSMs with high confidence were obtained. These PSMs contained 1,094 residues,

with 120 modified residues.

We selected 71 frequently observed PTMs, using as common PTMs in PEAKS,

as possible PTMs in our experiment. All these PTMs were set as variable PTMs.

The number of PTM sites per peptide was limited to two in both PEAKS and

DeNovoPTM. PepNovo does not support such a limitation of PTM number, so no

limitation was specified.

To study the effect of the number of PTM types on the performance, each software

tool was run three times by specifying the four real PTMs mentioned above, the 38

PTMs in Table 4.1, and all 71 frequently observed PTMs in PEAKS, respectively.

Table 4.2 listed the comparison of three de novo sequencing tools in terms of the

number of residues and modified residues correctly reported by each tool. As a de

novo sequencing algorithm cannot distinguish two residues (or modified residues) with

the same mass, a reported residue (or modified residue) is regarded correct if its mass

is equal or similar (with mass error up to 0.1 Da) to the real possibly modified residue

at the same position of the peptide. Table 4.2 shows that DeNovoPTM outperforms

PEAKS and PepNovo on the number of correct PTM sites identified in all three

experiments. In terms of the number of correctly identified amino acids, PEAKS

performs the best when only four PTM types are used, while DeNovoPTM gets the

first rank in the experiments with 38 and 71 PTMs being specified. This indicates

the advantage of our algorithm when many PTM types are specified. Moreover, we

notice that the performance of PEAKS and PepNovo degrades significantly when the
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Table 4.1: Thirty-eight PTMs used to evaluate the performance of three de novo

sequencing software tool.

Index Mass Residues PTM Name

1 57.02 C Iodoacetamide derivative (C)

2 42.01 K, X@N-term Acetylation (K, X@N-term)

3 0.98 NQ Deamidation (NQ)

4 79.97 STY Phosphorylation (STY)

5 14.02 DE, X@C-term Methylation (DE, X@C-term)

6 15.99 M Oxidation (M)

7 79.96 Y O-Sulfonation (YTS)

8 42.05 RK tri-Methylation

9 -0.98 X@C-term Amidation

10 43.01 K, X@N-term Carbamylation (K, X@N-term)

11 43.99 EDKW Carboxylation

12 14.02 RK Methylation (RK)

13 -29.99 M@C-term Homoserine

14 -48.00 M@C-term Homoserine lactone

15 99.07 C N-isopropylcarboxamidomethyl

16 -18.01 C@N-term Dehydration (C@N-term)

17 71.04 C Acrylamide adduct (C)

18 39.99 C@N-term S-carbamoylmethylcysteine cyclization

19 -18.01 E@N-term Pyro-glu from E

20 -17.03 Q@N-term Pyro-glu from Q

21 21.98 DE, X@C-term Sodium adduct

22 105.06 C S-pyridylethylation

23 15.99 WH Oxidation or Hydroxylation (WH)

24 45.99 C Beta-methylthiolation (C)

25 42.02 K Guanidination

26 27.99 X@N-term Formylation (X@N-term)

27 44.03 C Ethanolation (C)

28 -17.03 C@N-term Loss of ammonia (C@N-term)

29 31.99 M dihydroxy

30 162.05 T Hexose (T)

31 203.08 N N-Acetylhexosamine (N)

32 210.20 CK, G@N-term Myristoylation

33 226.08 K, X@N-term Biotinylation

34 42.01 TSCYH Acetylation

35 227.13 C Applied Biosystems cleavable ICAT(TM) light

36 236.16 C Applied Biosystems cleavable ICAT(TM) heavy

37 0.98 R Deamidation (R)

38 27.99 TKS Formylation (TKS)
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Table 4.2: Comparison between the performances of three de novo sequencing software

tools on the ISB data set. Each software tool was run three times with 4 PTMs, 38

PTMs, and 71 PTMs being specified, respectively. This table listed the numbers of

PTMs that were identified correctly on both PTM types and positions, as well as the

numbers of correctly identified residues.

Software PEAKS PepNovo DeNovoPTM Real

Number of

4 38 71 4 38 71 4 38 71specified

PTMs

Number

120
of 78 41 24 64 50 41 79 65 61

correct (65%) (34%) (20%) (53%) (42%) (34%) (66%) (54%) (51%)

PTMs

Number

1,094
of 725 569 486 675 595 562 691 641 653

correct (66%) (50%) (44%) (62%) (54%) (51%) (63%) (59%) (60%)

residues

number of PTM types increases, whereas the performance of DeNovoPTM degrades

slowly.

4.3.2 Performance Evaluation on the PepSplice Data Set

To further evaluate performance, we applied DeNovoPTM to another data set ob-

tained from an ion trap MS/MS spectrometer. This data set was previously used

by Roos et al. in their PepSplice paper [127]. We downloaded the PepSplice data

set after the development of the DeNovoPTM software and the selection of the pa-

rameters; therefore, the test on this data set can be regarded as a blind test. The

MS/MS data were searched against the UniProt database [9] using the PTM search

module of PEAKS [60]. We used 0.5 Da as the precursor and fragment error tol-

erance, considering the low precision of ion trap instruments. Among the 195,314

MS/MS spectra, PEAKS identified 2,020 unique modified peptides with high confi-

dence (−10 lgP ≥ 35), including 12 types of PTMs. We used these 2,020 modified

PSMs as the control set in the subsequent evaluation.

The previously mentioned 71 PTMs were used as variable PTMs for three de

novo sequencing software tools: PEAKS, PepNovo, and DeNovoPTM. Two variable
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Table 4.3: Comparison between the performances of three de novo sequencing software

tools on the PepSplice data set. Each software tool was run three times with 4 PTMs,

38 PTMs, and 71 PTMs being specified, respectively. This table listed the numbers

of PTMs that were identified correctly on both PTM types, as well as the numbers

of correctly identified residues.

Software PEAKS PepNovo DeNovoPTM Real

Number of

4 38 71 4 38 71 4 38 71specified

PTMs

Number

2,672
of 425 245 165 433 336 267 415 390 366

correct (16%) (9%) (6%) (16%) (13%) (10%) (16%) (15%) (14%)

PTMs

Number

31,310
of 13,652 9,479 7,544 12,821 10,601 9,835 12,167 11,796 11,785

correct (44%) (30%) (24%) (41%) (34%) (31%) (39%) (38%) (38%)

residues

PTMs were allowed per peptide in both PEAKS and DeNovoPTM. The precursor and

fragment error tolerance values of all three software tools were set as 0.5 Da. Table 4.3

lists the performance comparison of these three software tools on this ion trap data

set. This comparison, similar to the previous one, shows that the performance of our

algorithm is the best compared with other two tools when many variable PTMs are

involved. Furthermore, it also shows that the performance of DeNovoPTM degrades

more slowly when the number of involved PTMs is increased.

4.4 Discussion

In this chapter, an efficient dynamic programming algorithm, DeNovoPTM, was pro-

posed and implemented for de novo sequencing. DeNovoPTM can be regarded as

a specialized de novo sequencing algorithm for a particular application. The exper-

imental results show that our algorithm outperforms two state-of-the-art de novo

sequencing algorithms, PEAKS and PepNovo, when the number of possible PTM

types is large. Particularly, the better performance comes from the ability to limit

the number of PTM sites per peptide in our algorithm.

In our study, the PTM types are unknown in advance, and researchers have to
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turn on many possible PTM types. This increases the solution space of the de novo

sequencing problem and leads to a higher chance of false positives and worse perfor-

mance of general tools. However, most peptides only contain a limited number of

PTM sites per peptide. Therefore, by using a specifically designed algorithm to limit

the number of PTM sites per peptide, our algorithm efficiently reduces the solution

space. This contributes to an improvement of de novo sequencing accuracy as shown

in the experimental section.

In some other situations, the researchers actually know additional information and

then special algorithms can be designed to achieve better performance by utilizing

more information than the general tools. For example, Bahtia et al. [17] added previ-

ously known peptide patterns to help improving the accuracy of de novo sequencing.

However, in many cases, the performance improvement is mostly due to the utiliza-

tion of the additional information or the correct handling of the lack of information.

It does not necessarily mean that the special tools will, or need to outperform the

general tools for all situations, and such a phenomenon has been shown in the two

performance comparisons.

The software implementation of our algorithm rounded all the mass values to the

nominal (integer) mass values. This will lose some information when a high resolution

mass spectrometer is used. However, the algorithm can be easily adjusted to utilize

the high mass accuracy through multiplying each mass value by a large integer before

the rounding.

Although there are more than 600 PTMs in the Unimod database, only 71 PTMs

used in our experiments are listed in PEAKS as the most commonly observed ones. In

theory all the PTMs in the Unimod database can be specified to DeNovoPTM; how-

ever, this is not recommended because of the serious reduction of de novo sequencing

accuracy. For the identification of rarely observed PTMs, we cannot solely rely on a

single MS/MS spectrum obtained in a high-throughput proteomic experiment.

Besides the de novo sequencing application, another possible application of De-

NovoPTM algorithm is to provide a short list of the most likely PTMs from a large

number of PTMs provided by users. The MS/MS data can be reanalyzed using a

traditional software tool by only considering the short list of PTMs.
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Database Search for Modified

Peptides Without Specifying

PTMs

During the past decades, many database search software tools have been developed for

peptide identification from MS/MS data [28, 41, 52, 118, 166]. However, these soft-

ware tools provide limited support to modified peptide identification using a straight-

forward procedure proposed by Yates et al. [164]: users specify the PTMs that possibly

exist in the sample. These search tools are regarded as conventional (or traditional)

database search engines.

PTMs specified by users are often categorized into fixed and variable PTMs. If

a PTM is specified as fixed, every occurrence of the residue will be replaced with

the modified residue and the consideration of these fixed PTMs will not affect the

software’s running time. In contrast, the consideration of variable PTMs dramatically

increases the workload of computing. In particular, many variable PTMs can modify

multiple amino acid residues in a peptide, easily causing an exponential growth of

search space.

The search space growth increases not only the running time, but also the potential

false discoveries to an unacceptable level. Therefore, when a conventional database

search engine is used for peptide identification, only a few variable PTMs can be

practically specified, while peptides with unspecified PTMs will not be reported.

Some researchers regard such limitation on conventional database search engines as
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one of the major factors that contribute to the current low identification rate of

MS/MS spectra [146] and the low characterization rate of modified peptides [39].

There exist software tools that have been developed for the identification of

unspecified PTMs. Many sequence tag-based tools, including the first tag-based

database search algorithm by Mann et al. [101], GutenTag [144], OpenSea [133] and

SPIDER [61], can be used to identify modified or mutated peptides from a protein

database. In these approaches, peptide sequence tags are generated from a spectrum

using de novo sequencing and then searched for the approximate matches in a protein

database. The differences between the tag and a matched peptide from the database

can be explained by either mutations or PTMs. InsPecT [146], MODi [79] and By-

Onic [14] employ hybrid search approaches: InsPecT speeds up the database search

through using partial de novo sequencing tags to select peptide candidates, whereas

the actual comparison between the spectrum and the peptide sequence is achieved

by a dynamic programming algorithm. The algorithm automatically finds the op-

timal mass shifts (possible PTMs) of the amino acids to most accurately align the

spectrum with the peptide. MODi applies a straightforward algorithm to search for

modified peptides in a protein database with at most 20 proteins. The small number

of proteins is insufficient for the study of complex protein mixtures. ByOnic uses

“lookup peaks” to extract peptide candidates from a protein database. Commercial

software tools such as the Paragon algorithm [135] and Mascot (Error Tolerant Search

Mode) [30] take a large number of PTMs in consideration during the search. To avoid

the combinatorial explosion of the search space, Paragon uses de novo sequencing tags

to locate “hot” areas in the protein database, where PTMs are intensively checked,

while Mascot only allows one type of PTM per peptide.

Several software tools have recently benefited from the discovery that many mod-

ified peptides have their unmodified forms (base forms) co-existing in the data. For

example, MS-Alignment [151] uses a dynamic programming algorithm to compare a

pair of spectra that are possibly generated by the modified and the base forms of a

peptide respectively. ModifiComb [130] uses the same principle except that a pair

of spectra is compared with each other only if one spectrum is identified as an un-

modified peptide. The retention time difference between the base and the modified

forms is also considered in ModifiComb. Another study [10] has further extended

this principle to form a spectral network using differently modified forms of the same

peptide.
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In this chapter we present a novel software tool, PeaksPTM, for modified peptide

identification without specifying PTMs. The first improvement is a default setting by

which the software considers all PTMs included in the Unimod database as variable

PTMs. We then add several search strategies to reduce the search space. The scoring

function in PeaksPTM uses the co-existence of modified and base forms of the same

peptide in a more effective way than either MS-Alignment or ModifiComb. Our

experiments show that PeaksPTM performs better on modified peptide identification

than four other state-of-the-art software tools.

5.1 Methods

PeaksPTM is designed for modified peptide identification from spectral data gener-

ated by typical LC-MS/MS experiments. It makes use of the high mass accuracy of

precursor ions from survey scans, generated from a high-resolution mass spectrometer.

The MS/MS data can be measured with a low-resolution mass analyzer.

PeaksPTM adopts a two-pass database search strategy. In the first pass, a tra-

ditional database search module identifies a list of possible proteins, with only a few

commonly observed PTMs specified. In the second pass, modified peptides from this

short list of proteins are checked for each spectrum with the consideration of all the

PTMs in the Unimod database. The computational analysis consists of four major

steps:

1. Protein identification. The MS/MS spectra are searched against a protein

database by PEAKS database search module for the identification of a short

list of protein candidates. This will filter out most impossible proteins to sig-

nificantly decrease the search space for the next step.

2. Single-PTM peptide candidate search. Protein candidates are digested in silico

into a set of peptide candidates. For each spectrum, an exhaustive search is

performed to find all corresponding peptide candidates with a limitation of

at most one variable PTM per peptide. This one-PTM-per-peptide limitation

avoids the exponential growth of the search space.

3. Peptide candidate rescoring. The peptide candidates for a spectrum are re-

scored by combining three features: the LDF score calculated by PEAKS, the

peptide pair and PTM rareness.
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• PEAKS LDF score. This score uses a linear discriminant function (LDF)

that involves three features: the PEAKS PSM score [97], the peptide length

and the average score of the 512 best PSM scores for the spectrum.

• Peptide pair. This feature examines a modified peptide candidate to de-

termine if its base form can be independently identified from another spec-

trum. The co-identification of both modified and base forms of the same

peptide increases the identification confidence.

• PTM rareness. A modified peptide with a rare PTM has to obtain a higher

PEAKS LDF score to receive the same level of confidence as a peptide

modified by a common PTM. This feature adjusts the score of a modified

peptide candidate according to the commonality of the PTM.

4. Multi-PTM peptide search. Common PTMs identified in single-PTM peptide

search are used to search for modified peptides with two or more PTMs.

PeaksPTM also controls result quality by a modified target-decoy approach, fol-

lowing the proposal designed for two-pass database search approaches by Bern et

al. [15]. Moreover, we also propose a straightforward and effective strategy to com-

bine the results from multiple search engines to further improve the identification

rate.

The details of the analytical steps, the features for rescoring, the quality control

of the result, and the consensus strategy are discussed in the following sections.

5.1.1 Protein Identification

A protein sequence is digested into a set of peptides. Only a partial set of the

peptides is fragmented and even less are identified by database search in an MS/MS

experiment. However, a protein from a database can still be identified even if only

a few peptides of the protein are identified. A short list of protein candidates can

thus be obtained by the base peptides and the modified peptides with specified PTMs

using PEAKS.

The database search is performed on a pre-constructed target-decoy database

to estimate the false discovery rate (FDR) of the identification result. The decoy

protein database is generated by shuffling each protein sequence in the target protein
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database. To shuffle a protein sequence, the amino acid residues between every two

adjacent digestion sites are randomly permutated, while the residue at the digestion

site is unchanged. If a shuffled peptide occurred in a target protein, it is removed from

the decoy database. The first-round database search on the target-decoy database

identifies a short list of protein candidates, including both target and decoy proteins.

A reduced protein database is constructed using these proteins for the subsequent

modified peptide search.

5.1.2 Single-PTM Peptide Candidate Search

Each protein in the reduced protein database is digested in silico to peptides, which

are regarded as base-form peptides. Single-PTM peptides are then generated by

replacing amino acid residues with modified ones. Suppose each amino acid residue

has m different PTMs on average in the Unimod database, then for a peptide with

length k, mk single-PTM peptides will be generated. This is only a linear growth on

the number of peptide candidates. Thus, a brute-force algorithm is used instead of

the sophisticated dynamic programming algorithm of InsPecT.

For each spectrum, a peptide candidate, either in base form or modified, is selected

for PEAKS PSM score calculation if the difference between the precursor mass of the

spectrum and that of the peptide candidate is within a specified mass error tolerance.

The top 512 peptide candidates according to the PEAKS PSM scores are selected

and each of them is further evaluated by the PEAKS LDF scoring function. The

peptide with the top LDF score is kept for each spectrum as its peptide candidate.

This peptide candidate for a spectrum can be either a base-form or a single-PTM

peptide.

5.1.3 Modified Peptide Rescoring

The peptide candidate of each spectrum is rescored since LDF score is originally

optimized for the identification of base-form peptides. To measure the match between

a modified peptide and a spectrum, the influence of the PTM in the candidate needs

to be considered. LDF scores help to determine peptide candidates for the spectra,

and other two features, peptide pair and PTM rareness, are used to take account of

PTMs in the peptide candidate.
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Figure 5.1: The LDF score distributions of single-PTM peptides identified from target

and decoy databases, respectively. (a) The distribution with peptide pairs, and (b)

without peptide pairs. Modified peptides from the target database tend to have more

peptide pairs than those from the decoy database.

Peptide Pairs

Similar to the observations in MS-Alignment [151] and ModifiComb [130], many pep-

tides have spectra in the data set for both their modified and base forms. It is natural

to conclude that if both forms of the same peptide are independently identified from

different spectra, the identification tends to be correct. This property is illustrated

in Figure 5.1 where the peptide pairs found in the target database are significantly

more than those found in the decoy database. This discovery is particularly relevant

to the modified peptide candidates identified with higher LDF scores and strongly

suggests the correctness of the above conclusion.

PeaksPTM uses this peptide pair feature by adding a reward to a modified peptide

identification if its base form is independently identified from another spectrum. The

reward addition occurs only after the peptide identification. This score adjustment

does not change the peptide result but only affects the decision to regard the result

as true or false when preparing the final report. This method is different from MS-

Alignment and ModifiComb, which use the base form in the identification of the

modified peptide. Compared to previous software, PeaksPTM appears to be less

sensitive since some modified peptides may not be identifiable by their spectrum

alone. However, the specificity of our method is much improved because it is very

rare that two independent identifications constitute both the base and modified forms
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Figure 5.2: The LDF score distributions of the peptide candidates identified with no

PTM, a common PTM, and a rare PTM, from (a) the target database and (b) the

decoy database.

of the same peptide unless both identifications are correct.

PTM Rareness

A rare PTM in a peptide typically demands a higher LDF score of the peptide to

justify its correctness, whereas common PTMs, such as oxidation on Met, are so

ubiquitous that their occurrence does not require a higher LDF score than the an

unmodified peptide. By summarizing the common PTMs reported in previous pub-

lications [100, 55], we regard the 29 PTMs in Table 5.1 as common PTMs, and all

other PTMs as rare ones.

Figure 5.2 shows the different LDF score distributions of the single-PTM peptide

candidates with different PTM types from the target and decoy proteins, respectively.

A great distinction is shown on this feature in the target peptides but not in the decoy

ones. It suggests a strong correlation between the PTM rareness and the identification

correctness.

Since there is no quantitative measurement for the frequency of each PTM type,

we use Ncommon ptm and Nrare ptm to denote the number of common and rare PTMs in

a peptide and penalties for both common and rare PTMs are obtained from training.

The penalty for a modified peptide, either with single PTM or multiple PTMs, is

actually the sum of the PTM penalties.
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Table 5.1: The summary of 29 PTMs which are frequently reported in previous

research.

Index Mass Residue Modification name

1 -48.003372 M@C-term Homoserine lactone

2 -29.992805 M@C-term Homoserine

3 -18.010565 C@N-term Dehydration

4 -18.010565 E@N-term Pyro-glu from E

5 -17.026548 C@N-term Loss of ammonia

6 -17.026548 Q@N-term Pyro-glu from Q

7 -0.984016 X@C-term Amidation

8 0.984016 N, Q Deamidation

9 14.01565 E, D, X@C-term Methylation

10 15.994915 W, H, M Oxidation or Hydroxylation

11 21.981943 D, E, X@C-term Sodium adduct

12 27.994915 X@N-term Formylation

13 31.989828 M Dihydroxy (Di-oxidation)

14 39.994915 C@N-term
S-carbamoylmethylcysteine cyclization

(N-terminus)

15 42.010567 K, X@N-term Acetylation

16 43.005814 K, X@N-term Carbamylation

17 44.026215 C Ethanolation

18 45.98772 C Beta-methylthiolation

19 57.021465 C Iodoacetamide derivative

20 58.005478 C Iodoacetic acid derivative

21 71.03712 C Acrylamide adduct

22 79.95682 Y, T, S O-Sulfonation

23 79.96633 Y, T, S Phosphorylation

24 99.06841 C N-isopropylcarboxamidomethyl

25 105.057846 C S-pyridylethylation

26 162.0528 S, T Hexose

27 203.0794 N N-Acetylhexosamine

28 210.19837 K, C, G@N-term Myristoylation

29 226.07759 K, X@N-term Biotinylation
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Weighted Sum Score

Our final score for a modified peptide candidate is a linear combination of four fea-

tures: the PEAKS LDF score (Sldf ), the existence of a peptide pair (Epeptide pair), the

number of common PTMs (Ncommon ptm), and the number of rare PTMs (Nrare ptm).

More specifically, the scoring function f(·) for calculating the score of a modified

peptide candidate P is defined as

f(P ) = Sldf + c1 · Epeptide pair − c2 ·Ncommon ptm − c3 ·Nrare ptm (5.1)

where Epeptide pair = 1 if there is a peptide pair; otherwise, Epeptide pair = 0. The

coefficients c1, c2, and c3 are obtained by training. This scoring function is also used

for rescoring modified peptides with multiple PTMs.

The obstacle to determine the coefficients ci is to find a training data set consisting

of a large number of spectra annotated by modified peptides. Manually annotating a

large-scale data set is impractical, while simulated data sets used in previous research

introduce difficulties to evaluate false negatives [146]. Alternatively, the coefficients

can be trained by maximizing the number of identifications at 1% FDR, which is

estimated with a target-decoy approach.

5.1.4 Estimation of the False Discovery Rate

The first-round database search on the target-decoy database identifies a short list of

protein candidates, including both target and decoy proteins. In general, the decoy

proteins in this short list are fewer than the target proteins, and this can result in an

underestimation of FDR after the second-round search.

A modified target-decoy strategy, which is specifically designed for two-pass database

search approaches, is adopted to avoid the underestimation of FDR [15]. In the first-

round search, a target-decoy protein database is searched to determine the possible

proteins. The reduced protein database is then constructed using the identified pro-

teins in the first-round search. It contains the target proteins (Pt), the decoy proteins

(Pd), and the shuffled proteins generated from Pt. The second-round database search

is performed on this reduced protein database to identify modified peptides. This

method is only slightly biased against target peptides and the estimated FDR will

not be lower than its actual value.
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The following method is used to calculate the FDR: suppose there are Nd identi-

fications from the decoy proteins and Nt identifications from the target proteins, the

FDR after removing the decoy hits from the results is then calculated as Nd/Nt.

5.2 Experiments and Results

We compared PeaksPTM with Mascot (Mascot 2.3, Error Tolerant Search Mode) [30],

Paragon (ProteinPilot software 4.0.8085, Paragon Algorithm: 4.0.0.0, 148083, trial

version) [135], and InsPecT (release 20101012) [146] on an MS/MS data set obtained

from human heart tissue. PEAKS was applied to generate the short lists of proteins

for PeaksPTM and InsPecT. In our experiments, we also compared PeaksPTM with

MODi [79].

5.2.1 Data Sets

Two data sets were involved in our experiments:

Human-heart: Heart tissue was homogenized with a Dounce homogenizer. The

proteins were reduced with DTT and alkylated by iodoacetamide, then digested by

trypsin overnight. The peptide mixture was separated via SurveyorT LC equipped

with MicroAST autosampler (Thermo Fisher ScientificTM, Bremen, Germany) using

a reversed phase analytical column. The data was collected with an LTQ Orbitrap

Velos mass spectrometer (Thermo Fisher ScientificTM, Bremen, Germany), consisting

of 11,207 survey scans and 15,117 MS/MS spectra.

Yeast: The yeast data set was generated from a fraction of Lys-C digest of a

yeast lysate by an LTQ Orbitrap XL mass spectrometer (Thermo Fisher ScientificTM,

Bremen, Germany). It contains 5,136 survey scans and 12,366 MS/MS spectra.

5.2.2 Coefficient Determination

The independent yeast data set was used to train the coefficients in Eq. 5.1 for the final

score calculation. This was to eliminate the overfitting problem caused by training

on the data sets from the same or similar species.
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Table 5.2: The numbers of identified peptides with FDR≤1% under different settings

of training and testing data sets.

Yeast (training) Human-heart (training)

Yeast (testing) 4,286 4,219

Human-heart (testing) 2,410 2,447

The performance by such training strategy was verified as shown in Table 5.2. The

parameters trained on one data set were used to identify the modified peptides from

the other. When the parameters trained on the Yeast data set were tested on the

Human-heart data set, the number of identifications at 1% FDR decreased from 4,286

to 4,219. Conversely, when the parameters trained from the Human-heart data set

were tested on the Yeast data set, the number of identifications decreased from 2,447

to 2,410. Using the training and testing data from the same species only produces

slightly better results than from different species. This indicates that the overfitting

problem in our method is negligible.

5.2.3 Comparison between Multiple Search Engines

PeaksPTM was compared with Mascot, Paragon and InsPecT to evaluate its per-

formance. As Mascot and Paragon have their own first-round search functions, the

IPI Human (v3.75) database, concatenated with its shuffled protein sequences, was

used as the target-decoy database. The corresponding FDRs were calculated using

the standard target-decoy approach [77, 75]. PeaksPTM used the same target-decoy

database and found 1,349 target and 773 decoy proteins. A reduced protein database

consisting of 3,471 entries was constructed as described above. InsPecT could not

finish the whole IPI human database in its blind search mode; therefore, it was ap-

plied on a list of 2,030 proteins identified by PEAKS from the target database. This

pre-selected protein list was believed to be a superset of the high abundance proteins

in the sample. Meanwhile, the decoy protein sequences generated from these 2,030

proteins were also searched to determine the FDR.

For PeaksPTM and Mascot, the precursor and fragment ion error tolerance values

were set to 10 ppm and 0.5 Da, respectively. The maximum variable PTM number

per peptide was set to 1 in PeaksPTM. For Paragon, we chose trypsin, Orbi/FT MS

(1 ∼ 3 ppm) LTQ MS/MS, biological modifications, and the thorough search mode
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Figure 5.3: The comparison of reported modified PSMs by InsPecT, Mascot, Paragon

and PeaksPTM. The curves show the relation between the estimated FDR and the

number of modified PSMs.

as the search engine configuration. For InsPecT, trypsin was designated, blind search

was turned on and the variable modification number was set to 1. The 15,117 MS/MS

spectra were split in two approximately equal batches for InsPecT to run in parallel

on two computing cores of an Intelr CoreTM i7 CPU with 2.80GHz. InsPecT used

21 CPU hours in total. Using the same computer, PeaksPTM, Paragon and Mascot

finished the analysis in approximately an hour, respectively.

With FDR below 1%, PeaksPTM reported 2,410 PSMs, 1,412 of which were mod-

ified PSMs; Mascot reported 1,331 PSMs and 729 modified PSMs, Paragon reported

1,972 PSMs and 1,029 modified PSMs, and InsPecT reported 1,133 PSMs and 521

modified PSMs. Figure 5.3 shows the performance comparison of these four soft-

ware tools on modified PSM identification. Even using a more strict FDR estimation

than the other three engines, PeaksPTM still performs significantly better than its

competitors.

We further investigated the composition of the reported modified PSMs by PeaksPTM

in Figure 5.4. Among the 1,412 modified PSMs, 761 (53.9%) were supported by at
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Figure 5.4: A large portion of modified PSMs reported by PeaksPTM with high

confidence (FDR≤1%) are also identified by at least one other engine, either with

high or low confidence.

least one other search engine with high confidence (with FDR≤1%). 449 (31.8%)

additional PSMs were supported by at least one other search engine regardless of the

confidence. As it is rare for two engines to falsely identify the same modified PSMs,

these consensus identifications are of high confidence.

5.2.4 Comparison with MODi

MODi identifies peptide sequences from a small database containing only at most

twenty proteins; therefore, ten top-scoring non-homologous proteins (out of the 1,349

target proteins from the first round search using PEAKS) and their shuffled sequences

were combined as the reduced protein database for MODi. All the PTMs provided

by the MODi web server were chosen as variable modifications and its default setting

for modified mass range (−150 ∼ 250 Da) was used. The InsPecT blind search can

also be used as a second-round PTM search tool, which accepts a reduced protein list

generated by any standard database search. Thus, InsPecT was also added to the

comparison with MODi. For a fair comparison InsPecT and PeaksPTM were both

used to search the same reduced protein database as MODi.

Figure 5.5 shows the comparison of these three software tools. PeaksPTM still

performs best in terms of modified PSM identification. It is noticeable that the FDR
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curves can only be used for the purpose of comparing these three tools, but may not

accurately reflect the real FDR values of the identifications because of the small size

of the target and decoy protein lists.

5.2.5 Consensus Strategy and Analysis

A consensus strategy can be applied to combine the identifications from multiple

search engines. A PSM is identified by either more than one search engine with

FDR≤ 1% or only one search engine with FDR≤ 0.8% is considered as a confident

identification.

Using this consensus strategy, 3,220 PSMs, including 1,965 modified PSMs, were

reported in total by these four search engines. The composition of these 1,965 modified

PSMs contributed by four search engines is illustrated in Figure 5.6. Two modified

peptides identified by different engines from the same spectrum are regarded as the

same if they have the same base form peptides, number of PTMs, and PTM mass

shifts. The determination of PTM sites was not considered in this consensus study.

The Venn diagram indicates that a large number (871) of modified PSMs were iden-

tified by two or more engines confidently and independently. This means that over

36% of all PSMs identified by any single search engine are modified PSMs. The large

portion of modified PSMs confirms the belief that the inefficiency in modified peptide

identification is one of the major factors for the low identification rate of the MS/MS

spectra [146] and the low characterization rate of the modified peptides [39].

5.2.6 Summary of Identified PTMs

Table 5.3 summarizes the frequent PTMs identified by PeaksPTM with 1% FDR

from the Human-heart data set. The same modified peptide identified from multiple

spectra is only counted once. There are 906 unique modified peptides identified by

PeaksPTM. Oxidation is the most frequent PTM, occurring on 200 peptides. The

utilization of the high resolution mass spectrometer enables PeaksPTM to identify

PTMs with small ∆m, such as deamidation (∆m = 0.98 Da), but it is still possible

that a PTM is mistakenly regarded as another one with the same or very similar ∆m.
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Figure 5.5: The comparison of PeaksPTM, MODi and InsPecT on the reduced

database with twenty proteins (ten target and ten decoy proteins). The curves show

the relation between the estimated FDR and the number of modified PSMs reported.

Figure 5.6: The Venn diagram shows the modified PSMs reported by applying the

consensus strategy on the results of four search engines.
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Table 5.3: The number of unique modified peptides containing the most common

PTMs in the Human-heart data set.

Mass (Da) Residues Modification PeaksPTM

-18.01 S, T, D Dehydration 10, 6, 8

-18.01 E@N-term Pyro-glu from E 12

-17.03 N Loss of ammonia 8

-17.03 Q@N-term Pyro-glu from Q 18

-2.02 S, T, Y 2-amino-3-oxo-butanoic acid 6, 4, 3

0.98 N, Q, R Deamidation 61, 39, 3

13.98 P Proline oxidation to pyroglutamic acid 4

14.02 E, D, S Methylation 84, 11, 5

15.00 N, Q Deamidation followed by a methylation 6, 7

15.99
M, Y, F, W,

Oxidation or Hydroxylation
99, 28, 25, 17,

H, P, N, K 11, 9, 6, 5

27.99
S, K, T,

Formylation
24, 6, 8,

X@N-term 15

28.03 E, D Ethylation 41, 7

31.99 M, W, P Dioxidation 23, 13, 10

42.01
S,

Acetylation
3

X@N-term 4

43.99 W, D Carboxylation 9, 1

47.98 C Cysteine oxidation to cysteic acid 15

57.02 C, K, H Carbamidomethylation 21, 3, 2

79.97 S Phosphorylation 4
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5.3 Discussion

This chapter proposes our improved database search tool, PeaksPTM, used for mod-

ified peptide identification without specifying PTMs. PeaksPTM uses three features,

the PEAKS LDF score, the peptide pair, and the PTM rareness, to evaluate modified

PSMs. The peptide pair feature is more important according to our statistical anal-

ysis: 86.6% of the modified PSMs confidently identified by PeaksPTM have peptide

pairs. Compared to using the PEAKS LDF score alone, adding the peptide pair fea-

ture and the PTM rareness feature could identify 608 (35.9%) and 156 (9.2%) more

PSMs with FDR ≤ 1%, respectively, and adding both features improved 717 (42.4%)

identified PSMs.

The maximum allowed PTM number was set as 2 to search for the multi-PTM

peptides, with consideration of the PTMs summarized in Table 5.3. Only 32 new

modified PSMs were identified with high confidence (FDR ≤ 1%), while the running

time increased up to 3 hours. This experiment demonstrates that (1) the Human-heart

data set contains few heavily modified peptides, and (2) the time spent on database

searching with multiple PTMs is not negligible, even if only several variable PTMs

are considered. Only the single-PTM peptides were compared with the identifications

of other search engines in the experimental section.

PeaksPTM is not a blind-search engine that also attempts to find novel PTM

types, such as InsPecT. Using all PTM types in the Unimod database is sufficient

for most current proteomics research. In our experiment, InsPecT is able to identify

only one PTM with mass shift that does not match any existing PTM in the Unimod

database. Such identification definitely deserves a careful examination before it is

confirmed as a novel PTM. We recommend researchers choose different tools according

to their specific applications.

The target-decoy approach widely used today (and also used in PeaksPTM) can

only control the false positives a the peptide level, but not at the PTM level, which

includes the PTM identity and its location. Consequently, all the FDRs reported

in this study measure the correctness of the modified peptide sequence and the ∆m

of the PTM, but cannot ensure the correctness of the PTM sites reported by those

software tools. Accurately locating the PTM site is another nontrivial open problem.

It is commonly reckoned that the combination of different types of MS/MS data or

the significant improvement of instrument performance will facilitate the progress on

this research topic.
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Chapter 6

Identification of N-linked

Glycopeptides by Tandem Mass

Spectrometry

Glycosylation is an enzymatic process that attaches glycans to proteins, lipids, or

other organic molecules. It is one of the most frequently observed PTMs and more

than 50% eukaryotic proteins are predicted to be glycosylated [6]. Glycosylation of

proteins provides either specific structural function induced by conformation changes,

or specific recognition sites which are vital to cell-cell interactions [154, 161]. Addi-

tionally, increasing evidence suggests that some abnormal glycosylation is strongly

correlated with many diseases, such as cancer [80] and congenital disorders [47]. It

is commonly believed that these glycan-involved biological processes are closely re-

lated to specific glycan structures [32, 112, 153]. Thus, the accurate characterization

of glycoproteins, including the amino acid sequences, glycan structures (or compo-

sition), and glycosylation sites, is of great interest in the emerging glycoproteomics

field [117, 140].

Glycoproteome analysis is more challenging compared with conventional proteome

analysis, due to the variety of glycan structures and the complex linkages to proteins.

Three types of glycans have been reported: N -linked, O-linked and C-linked. Among

the three types, N -linked and O-linked are the most commonly observed ones. N -

linked glycans are dominantly found on the Asn residue within a consensus peptide

sequence, -Asn-Xxx-Ser/Thr-, where Xxx is any amino acid residue except Pro [51].

Furthermore, N -linked glycans share a single core structure, GlcNAc2Man3, derived

61



CHAPTER 6. N-LINKED GLYCOPEPTIDE IDENTIFICATION

from the same precursor GlcNAc2Man9Glc3 [70]. In contrast, O-linked glycans have

more varied core structures. This study focuses on the analysis of N -linked glycopep-

tides, including the identification of glycan composition as well as peptide sequences.

Tandem mass spectrometry (MS/MS) is the most powerful tool for the analysis

of the glycoproteome because of its high sensitivity and selectivity. In one approach,

glycopeptides are deglycosylated partially or totally using a specific glycosidase, such

as peptide N-endoglycosidase F (PNGase-F), and the resultant peptides and glycan

moieties are then analyzed separately by mass spectrometry [58, 59, 147, 167]. Al-

though this method simplifies the data interpretation, it is nontrivial to locate the

glycosylation sites for the identified glycans. Several strategies were proposed to

characterize intact glycopeptides by MS/MS experiments [103, 117, 162]. In ear-

lier experiments only one type of fragmentation method was used, typically CID, to

produce MS/MS spectra. Shortly afterwards, strategies of using a combination of

different fragmentation methods for intact glycopeptide analysis emerged. As men-

tioned in Chapter 2, CID and HCD mainly result in fragment ions through breaking

the glycosidic bonds, while ETD and ECD dominantly produce fragment ions by

breaking the peptide backbone but leaving the attached glycan intact. Combining

two complementary fragmentation techniques in MS/MS analysis enables the identi-

fication of peptide sequences, glycan composition, as well as the glycosylation sites

[3, 128, 132, 137].

Development of algorithms for automatically interpreting spectra acquired from

intact glycopeptides remains in its infancy [5, 126]. GlycoMod [26] is a web-based

tool to calculate all possible glycan compositions for a given mass. It does not use

the MS/MS data in the analysis. Glyco-Peakfinder [99] and GlycoFragments [92, 93]

can calculate the theoretical fragment ions of a given glycan structure, and use them

to annotate an MS/MS spectrum. However, these tools cannot identify glycopeptides

automatically and require a human expert to deduce the glycan structure. Glyco-

sidIQ [74], GlycoSearchMS [93] and GlycoWorkBench [22] accept a spectrum, search

glycan databases, and annotate the spectrum using glycan fragments. A peptide se-

quence has to be provided to these software tools in advance. This severely limits

the capacity for large-scale data analysis. Peptoonist [53], which is an extension of

Cartoonist [54], and GlypID 2.0 [104] search theoretical glycan structure databases

instead of a real database that comprises experimentally validated N -linked glycans.

Biologically validated rules are used for the generation of the theoretical glycan struc-

tures, but not all glycan structures reported in existing glycan databases are covered.

62



GlycoPep Grader [160] and GlycoPep Detector [170] are web-based tools for assigning

the compositions of N -linked glycopeptides. However, only one MS/MS spectrum can

be processed at a time and users have to input the possible candidate compositions

for glycopeptides and glycans. Other software tools, such as STAT [50], Oscar [87],

StrOligo [42], GlycoMaster [134], and GLYCH [145], attempt to deduce the glycan

structures directly from MS/MS spectra using de novo sequencing approaches. These

tools typically require spectra with much higher quality for a reliable analysis. This

may potentially leave many spectra with medium quality un-interpreted in a high-

throughput experiment. A recent review by Dallas et al. discussed the current state

of glycopeptide assignment software in details and also pointed out the lack of soft-

ware that could analyze spectral data in batch for the unambiguous characterization

of N -linked glycopeptides [33].

The protein sequence databases commonly used in proteomics research seldom

record the glycan structure information for glycosylated proteins. For example, only

4,375 (21.6%) out of the 20,258 human proteins in the UniProt database contain

glycosylation site information. The percentage of glycoproteins is much lower than

expected. Thus it is nearly impossible to identify glycopeptides by searching a protein

database alone. On the other hand, databases for isolated glycan structures have re-

cently become available, such as CCSD/CarbBank [38, 131], CFG database [124], EU-

ROCarbDB [155], GLYCOSCIENCES.de [95], KEGG [76, 62] and GlycomeDB [125].

Therefore, it is theoretically possible to search a protein sequence database and a

glycan structure database simultaneously to characterize the glycopeptides from the

spectral data.

In this study, we implement a new software tool, GlycoMaster DB, for the auto-

mated and high-throughput characterization of intact N -linked glycopeptides from

MS/MS data generated by HCD/ETD or HCD-only fragmentation. The software

takes MS/MS spectra as input, searches in a given protein sequence database and an

integrated glycan structure database simultaneously, and reports the optimal peptide-

glycan pair that best matches each spectrum. Performance evaluations on four data

sets demonstrate the promising utility of the software.
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6.1 Methods

GlycoMaster DB processes MS/MS data from intact glycopeptides. Glycopeptides

can be fragmented by either HCD/ETD or HCD-only fragmentation. The HCD/ETD

protocol is preferred since the ETD spectra can be used to precisely identify glycopep-

tide sequences.

A short list of protein sequences needs to be specified by users in a FASTA file.

If the glycoproteins are not enriched or enriched at the protein level, a large number

of non-glycosylated peptides will be fragmented. Conventional database search tools,

such as PEAKS [166], Mascot [118] or Sequest [41], can identify the possible proteins

from these non-glycosylated peptides. If the enrichment is performed at the peptide

level, the proteins can be identified through separate experiments. The list of proteins

provided to GlycoMaster DB can be a mixture of glycosylated and non-glycosylated

proteins.

GlycoMaster DB integrates an N -linked glycan database extracted from the Gly-

comeDB database. If required, users can also easily append their own glycans data

into this database.

The GlycoMaster DB software analyzes the data in following three steps: (1)

filtration of glycopeptide spectra, (2) glycan assignment, and (3) peptide identifica-

tion. HCD spectra are used in the first two steps for glycan identification. The third

step determines the peptide sequences using either ETD data (if available) or the

calculated mass values of the peptides bearing the glycan.

6.1.1 Filtration of Glycopeptide Spectra

The input MS/MS data contains a mixture of spectra from both glycosylated and non-

glycosylated peptides if the sample is enriched on the protein level or not enriched.

GlycoMaster DB first selects out the spectra of glycosylated peptides since this can

help to improve the search speed and reduce false positives in later steps.

HCD spectra generated from N -linked glycopeptides have two types of character-

istics that are not frequently observed in the spectra of non-glycosylated peptides.

First, most spectra ofN -linked glycopeptides have two diagnostic peaks atm/z 204.09

and 366.14, corresponding to oxonium ions formed by a HexNAc and a disaccharide

Hex-HexNAc, respectively. Secondly, peaks of a glycopeptide form ion ladders in the
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high m/z region. The m/z values of two adjacent singly charged peaks in a ladder

differ by the mass of a monosaccharide residue, rather than the mass of an amino

acid. Both types of characteristics are used in the algorithm to select the probable

glycopeptide spectra. For each spectrum, the diagnostic peaks are first checked. The

presence of these two peaks triggers the subsequent examination on the existence

of peak ladders. By default, the spectrum is regarded as a glycopeptide spectrum

only if it has both the diagnostic peaks and a peaks ladder of length at least four

(corresponding to a sequence of three monosaccharide residues) in GlycoMaster DB.

Users can also specify the m/z values of diagnostic peaks and the minimum length

of monosaccharide ladders. Some glycopeptides only carry one HexNAc modification

and our filter will prevent the further analysis on such species. We argue that such

single glycosylation can be easily identified by setting HexNAc as a variable PTM in

conventional database search software packages.

We design a dynamic programming algorithm to compute the longest sequence of

monosaccharide residues that matches a series of high-intensity peaks in the spectrum.

In the algorithm, all the mass values are converted to the equivalent nominal mass by

multiplying a factor 0.9995 and then rounding to the nearest integers [14, 67]. After

the conversion, we select the highest 50 peaks of the spectrum to calculate the longest

sequence.

In a preprocessed spectrum, a sequence of monosaccharide residues is represented

by a series of peaks at m/z values m1, · · · ,mk+1, where (mi+1−mi), i ∈ [1, · · · , k], is

equal to the mass of a monosaccharide residue. The length of such a sequence is k. The

longest sequence of monosaccharide residues (LSMR) problem is to find the maximum

value of k in a given spectrum. Three most frequently observed monosaccharide

residues, Hex, HexNAc, and Fuc, are considered in this algorithm as the residue set.

Let L[m] be the length of the longest sequence that ends at mass m, and L[m] = −1

if there is no peak at mass m. If a peak is present at mass m, the algorithm needs

to check the existence of a shorter sequence ends at mass m0 such that (m − m0)

is equal to a monosaccharide residue mass. Such checking needs to be carried out

for each of the three given residues. Therefore, L[m] = maxi∈[1,3]L[m−m(ri)] + 1,

where m(ri) is the mass of the i-th monosaccharide residue ri. To summarize, the

algorithm MaxSeqLen shown in Algorithm 2 can compute L[m] for every mass value

m. The running time is linear to the precursor mass of the spectrum.
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Algorithm 2 The MaxTagLength algorithm for solving the longest sequence of

monosaccharide residues (LSMR) problem.

Require: An MS/MS spectrum S.

1: function MaxTagLength(S)

2: Let T [0]← −1

3: Let M ← the precursor mass of the spectrum S

4: for m← 1 to M do

5: if there is no peak at m then

6: T [m] = −1

7: else

8: T [m] = maxi∈[1,3] T [m−m(ri)] + 1

9: return maxm∈[1,M ] T [m]

6.1.2 Glycan Assignment

If a spectrum is regarded as a possible glycopeptide spectrum, the N -linked glycan

database is searched for its best matching glycan. Glycans that have smaller mass

than the precursor mass of the spectrum are matched to the spectrum. Each glycan-

spectrum match (GSM) is evaluated and the glycan with the highest score is reported.

The GSM scoring scheme is designed similarly to the ones commonly used for peptide

identification: (1) the theoretical m/z values of the possible fragment ions are calcu-

lated, (2) for each fragment ion, a reward or a penalty is added to the score depending

on whether its m/z value matches a peak in the spectrum. These two components

are described in the following two subsections, respectively.

Glycan Structure Fragmentation

As shown in Figure 2.4, HCD favors the fragmentation of glycosidic bonds rather

than the peptide bonds and produces B-, Y -, C-, and Z-ions [37]. In theory, a

breakage can also occur across the ring of a monosaccharide to produce A- and X-ions.

However, in practice, Y -ions are the most commonly observed ions in HCD spectral

data. Furthermore, peaks representing oxonium ions and B-ions can be observed in

the low m/z region, and in most cases, only those product ions with at most three

monosaccharide residues generate significant peaks. Therefore, B- and oxonium ions

with at most three monosaccharide residues, as well as Y -ions, are considered in our
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scoring scheme. GlycoMaster DB takes a condensed GlycoCT file in the GlycomeDB

database as input, parses it into a tree structure, and enumerates all the expected

B-, Y - and oxonium ions as discussed above.

The theoretical m/z values of the ions are calculated during the ion enumeration.

For example, for singly charged ions, the m/z value of a B- or oxonium ion is equal

to the total mass of the monosaccharide residues plus an additional proton, and the

m/z value of a Y -ion is equal to the singly charged precursor m/z value subtracting

the mass of the removed monosaccharide residues. The list of theoretical m/z values

and their corresponding fragment ion types are provided to our scoring scheme for

GSM evaluation.

Glycan-Spectrum Matching Score

In contrast with the development of PSM score in proteomics, the main challenge

for developing the scoring scheme for GSM is the lack of large-scale training data.

The proper values of the reward and penalty for a fragment ion matching and mis-

matching may depend on many factors such as the fragment ion type, the intensity

of the matching peak, and the mass error. In proteomics, these values are usually

statistically learned from a large number of training spectra annotated with known

results. Unfortunately, in the glycoproteomics field, such a large-scale training data

set is not yet available. Therefore, an empirical scoring function is used.

The scoring scheme in GlycoMaster DB calculates raw scores of GSMs first. Given

a glycan structure and a spectrum, the theoretical m/z values of the glycan fragment

ions are searched in the spectrum. The score S for a fragment ion matched by a peak

with relative intensity I is calculated using the following equation:

S =

{
lg (100× I), If a peak with relative intensity I ≥ 0.5% is matched

lg 0.5, Otherwise
(6.1)

The GSM raw score is the sum of all fragment ion scores. The glycan structure with

the highest GSM raw score is reported as the best match for the given spectrum.

The GSM raw score serves the purpose of selecting the best matching glycan

structure since a correct structure often produces more high-intensity matches and

generates a higher score than false structures. However, an incorrect GSM of a

spectrum with numerous peaks can easily get a higher raw score than a correct GSM
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of a spectrum with few peaks. Therefore, to compare the GSMs of different spectra,

the raw score is further normalized to a −10 lgP score, where P denotes the p-value.

A −10 lgP score represents the confidence of a GSM. Given a spectrum, the raw

scores of all glycans in the database are used to fit a normal distribution N (µ, σ2),

where µ and σ are the mean and the standard deviation of the GSM raw scores,

respectively. Each raw score x is used to compute a p-value P that denotes the prob-

ability in which a random variable under N (µ, σ2) exceeds x. The final GSM score is

−10 lgP and displayed in the result reported by GlycoMaster DB. The identification

results are sorted according to GSM scores. In our study, the reported glycan of which

the GSM score is no less than 15 (corresponding to a p-value of 3.2%) is regarded as

the plausible identification of a spectrum.

6.1.3 Glycopeptide Identification

GlycoMaster DB accepts two types of MS/MS data as input: HCD/ETD spectrum-

pairs and HCD-only spectra. Therefore, two different approaches for glycopeptide

identification were implemented separately.

Peptides cannot be identified from HCD spectra since few fragment ions from

the backbones are generated. In contrast, the ETD method dominantly produces

fragment ions by breaking a peptide backbone but leaving the attached glycan intact.

Thus, peptides are identified from ETD spectra in GlycoMaster DB when HCD/ETD

spectrum-pairs are available. The peptides containing the N -linked glycopeptide

motifs are generated first using the user-specified enzyme. For an ETD spectrum, a

peptide containing an N -linked glycopeptide motif and with mass smaller than the

spectrum’s precursor mass is considered as a candidate, and the mass difference is

regarded as the mass of the glycan. The peptide backbone fragment ions of each

glycopeptide candidate are then matched to the ETD spectrum to calculate a PSM

raw score. The Eq. 6.1 is used in the PSM raw score calculation with consideration of

c-, c-H, z-, z′- and z′′-ions. This raw score is then converted into a −10 lgP score as

the final PSM score, using the same procedure of the GSM score calculation. Then,

for each HCD/ETD spectrum-pair, the glycans obtained from the HCD spectrum and

the peptides from the ETD spectrum are combined together to build glycopeptides. A

glycopeptide is regarded as a probable identification to a spectrum if (1) the precursor

mass error is within the allowed mass error tolerance and (2) either the GSM score or
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the PSM score is greater than or equal to 15. If multiple glycopeptides satisfy these

two criteria, the one with the highest GSM score is kept in the main report, and the

others are stored in a secondary table that can be further examined by users. If no

peptide sequence is found for a spectrum-pair, the glycan with the top GSM score

from the HCD spectrum and a calculated peptide mass are reported.

If only HCD spectra are available, the peptide sequences are identified from two

sources of information: the calculated mass of the peptide and the existence of an

N -linked glycopeptide motif. The peptides containing such motifs are generated first

using the user-specified enzyme and stored in a sorted list in ascending order of

mass. GlycoMaster DB identifies glycans from an HCD spectrum and the glycan

with top GSM score (at least 15, which corresponds to a p-value of 3.2%) is kept

for later peptide determination. The difference between the precursor mass of the

spectrum and the mass of the top-scored glycan is the peptide mass. A binary search

is then applied to find peptides with this mass from the peptide list. The resultant

glycopeptides matching the spectrum precursor mass within the mass error tolerance

are reported as a list of possible peptides for the spectrum. If no peptide is found,

only the calculated peptide mass is reported.

6.2 Results

Four previously published data sets (Ribonuclease B, Human Immunoglobin G, Lectin-

Enriched Human Urinary Proteome, and Human Urinary Proteome) by Singh et

al. [137] and Marimuthu et al. [103] were used to evaluate the performance of Glyco-

Master DB. The first two data sets were obtained with HCD/ETD fragmentation and

thus glycopeptides could be characterized both on glycan composition and peptide

sequences. For the human urinary proteome data sets obtained with HCD fragmenta-

tion, GlycoMaster DB identified the glycan composition, while the peptide sequences

were reported only according to the calculated masses. Clearly, several peptides may

share the same mass value, resulting in peptide identification ambiguities if HCD-only

data is used. To study the severity of this ambiguity, statistical analysis by compu-

tational simulation was conducted and its results are illustrated at the end of this

section.

Experimental procedures for the sample preparation, glycoprotein enrichment and

LC-MS/MS analysis were described in details in Singh et al. [137] and Marimuthu et
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al [103]. Here, we briefly introduce the four data sets as follows:

Ribonuclease B (RNase-B) Data Set: This data set was from the study

of HCD product ion-triggered ETD (HCD PI ETD) analysis for characterization of

glycoproteins proposed by Singh et al [137]. Ribonuclease B (RNase B) from bovine

pancreas was digested using Lys-C. The digested peptides were separated using a

zwitterionic hydrophilic interaction liquid chromatography nano-column, and then

analyzed using LTQ-Orbitrap Velos (Thermo Fisher Scientific, Bremen, Germany).

The mass spectrometer performed a full survey scan with Orbitrap and subsequent

HCD MS/MS scans of the 40 most abundant ions. If peaks at m/z 204.09 (HexNAc

oxonium ions) or 366.14 (Hex-HexNAc oxonium ions) (±m/z 0.05) were within the

top 20 most abundant peaks, a supplemental activation ETD MS/MS scan of the

precursor ion in the linear ion trap was triggered. This data set contained 3,111 MS

spectra and 774 MS/MS spectra (632 HCD and 142 ETD spectra).

Human Immunoglobin G (Human-IgG) Data Set: This data set was from

HCD PI ETD analysis for characterization of glycopeptides in human IgG pro-

teins [137]. Human IgG is an antibody isotype and its fragment crystallizable region

bears a highly conserved N -linked glycosylation site. Four subclasses of human IgG,

IgG1, IgG2, IgG3, and IgG4, were present in this analysis. These proteins were di-

gested by trypsin and analyzed with the same HCD PI ETD strategy used for the

acquirement of the RNase-B data set. This data set comprised 952 MS spectra and

5,710 MS/MS spectra (5,436 HCD and 274 ETD spectra).

Lectin-Enriched Human Urinary Proteome (Enriched-HUP) Data Set:

This data set was from a comprehensive analysis of human urine proteome by Marimuthu

et al. [103] and contained 24 raw data files. The sample was incubated with a mix-

ture of three agarose conjugated lectins – concanavalin A, wheat germ agglutinin and

jacalin (Amersham BioSciences) – for glycoprotein enrichment. The concentrated

protein was then resolved by SDS-PAGE and visualized using colloidal Coomassie

staining. Twenty-four bands were excised and subjected to in-gel trypsin digestion

procedure and then analyzed using LTQ-Orbitrap Velos (Thermo Fisher Scientific,

Bremen, Germany) interfaced with an Agilent’s 1200 Series nanoflow LC system. The

mass spectrometry analysis was carried out in a data dependent mode with survey

scans acquired using Orbitrap mass analyzer, and 20 most abundant precursor ions

from a survey scan were selected for HCD MS/MS scans. This data set contained

22,886 MS spectra and 199,890 MS/MS spectra in total.
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Human Urinary Proteome (HUP) Data Set: This data set was also from

the comprehensive analysis of human urinary proteome and included 30 raw data files.

The sample was separated by SDS-PAGE without lectin-enrichment of glycoproteins.

Thirty gel bands were excised and subjected to in-gel trypsin digestion. The sample

analysis was carried out as described in the Enriched-HUP data set. This data set

included 35,788 MS spectra and 170,215 MS/MS spectra in total.

All four data sets were analyzed using PEAKS to identify the lists of proteins with

FDR ≤ 1%. The resultant proteins were exported as FASTA files for GlycoMaster DB

analyses. The RNase-B data set was searched against the UniProt bovine database

(5,973 entries), and the Human-IgG data set was searched against the UniProt hu-

man database (20,258 entries). Oxidation of Met was set as a variable PTM and

carbamidomethylation of Cys as a fixed PTM. The maximum allowed number of

missed-cleavages was set to two. The precursor and fragment error tolerances were

10 ppm and 0.1 Da, respectively. The two human urinary proteome data sets were

searched against UniProt human database (20,258 entries). Oxidation of Met, deami-

dation at Asn and Gln, and protein N-terminal acetylation were selected as variable

PTMs and carbamidomethylation of Cys as a fixed PTM. One missed-cleavage was

allowed for tryptic peptides. The precursor and fragment error tolerances were 20

ppm and 0.1 Da, respectively.

In subsequent GlycoMaster DB analyses, these four data sets were searched against

our integrated N -linked glycan database containing 2,925 unique N -linked glycans.

These glycans were extracted from the GlycomeDB database and two glycans were re-

garded as the same if they had the same tree structure but different linkages between

the monosaccharide residues. For each data set, the PTMs, the mass error tolerances

of precursor and fragment ions, and the maximum number of missed-cleavage were

set the same to the ones used in PEAKS analysis. Sodium and potassium adducts

were also considered in the search.

6.2.1 RNase-B Data Set

This data set was obtained using the HCD PI ETD strategy. HCD spectra were

preprocessed by the Data Refine module in PEAKS and thereafter used to identify

the short list of proteins. Among the 774 MS/MS spectra, 31 were identified as

non-glycosylated peptides with high confidence (−10 lgP ≥ 34.4 and FDR ≤ 1%)
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Figure 6.1: An example of the GlycoMaster DB result page generated in an

HCD/ETD spectral data analysis. The results are listed in a HTML table in descend-

ing order of glycan scores. Each row represents an identification of an HCD/ETD

spectrum pair. The first column includes a hyperlink that redirects to the top-ten

interpretations of the same HCD/ETD spectrum-pair. The second to the fifth col-

umn list the spectrum information. The sixth and the seventh column list the glycan

information obtained from the GlycomeDB database, and the hyperlinks redirect to

the GlycomeDB website. The eighth column gives scores of GSMs and each hyperlink

redirects to the annotated HCD spectrum and its mass error chart. The ninth and

tenth column list the peptide sequences and the PSM scores obtained from ETD spec-

tra. The hyperlink at the PSM score column links to the annotated ETD spectrum

and the mass error chart. The mass error between the theoretical and experimental

mass values of an identified glycopeptide is provided in the eleventh column. The last

column gives the accession numbers of corresponding proteins.
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Table 6.1: The grouped results identified by GlycoMaster DB from the RNase-B data

set. The spectra with the same precursor m/z and charge are grouped in a row if

they have the same identification. The GSM score, PSM score and mass error in a

row are from the HCD/ETD spectrum-pair with the highest GSM score.

Precursor Precursor
RT Range

Glycan GSM Glycan PSM Error

m/z Charge Composition Score Mass Score (ppm)

886.8996 2 27.06-28.21 HexNAc2Hex4 33.2 1054.37 55.2 -0.89

967.9255 2 20.13-29.67 HexNAc2Hex5 41.34 1216.43 73.44 -0.44

645.6194 3 19.79-28.54 HexNAc2Hex5 39.72 1216.43 45.04 -0.09

699.63715 3 24.74-29.21 HexNAc2Hex6 46.06 1378.49 52.65 -0.61

1048.9491 2 27.33-29.35 HexNAc2Hex6 36.62 1378.49 52.69 1.98

753.65375 3 27.56-29.59 HexNAc2Hex7 42.83 1540.54 40.01 0.65

1129.9783 2 29.27 HexNAc2Hex7 36.59 1540.54 82.64 -0.76

767.33167 3 28.31 HexNAc3Hex6 32.18 1581.57 34.22 -2.31

807.672 3 26.86-30.52 HexNAc2Hex8 50.72 1702.59 72 -0.38

861.6832 3 28.02-28.95 HexNAc2Hex9 50.48 1864.64 73.19 -0.57

and nine proteins were reported. HCD/ETD spectrum-pairs were then extracted for

glycopeptide analysis using GlycoMaster DB.

142 HCD/ETD spectrum-pairs were collected and 31 of these pairs were identified

by GlycoMaster DB. Figure 6.1 illustrates the result page of GlycoMaster DB on the

RNase-B data set (only the first four entries of the result are shown). The identified

glycans and peptide sequences are listed in a HTML table in descending order of the

glycan score. Users can easily check the annotated HCD or ETD spectrum and the

glycan information in the GlycomeDB database through the hyperlinks in the result

page. The 31 HCD/ETD spectrum-pairs identified by GlycoMaster DB have only

10 unique precursor m/z and charge combinations. Thus their results are grouped

and listed in Table 6.1. All these identifications share the single peptide sequence

SRNLTK.

Figure 6.2 illustrates an example of a glycopeptide identified from an HCD/ETD

spectrum-pair by GlycoMaster DB. Both the HCD spectrum and the triggered ETD

spectrum have a same precursor m/z value and similar retention time. Clearly, in the

HCD spectrum (Figure 6.2(a)), the peak ladder started from m/z 921.5 is definitely
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(a) HCD

(b) ETD

Figure 6.2: An example of a glycopeptide identified from the RNase-B data set gen-

erated by the HCD PI ETD strategy. (a) The annotated HCD spectrum of precursor

ions with m/z 807.672. GlycoMaster DB identified the best matched glycan with

the composition HexNAc2Hex8. SRNLTK is the only potential glycopeptide having

the similar mass to the calculated mass 699.404. (b) The annotated ETD spectrum

triggered by product ions in the HCD spectrum shown in (a). It provides positive

support for the identification of the peptide SRNLTK and the glycosylation site.
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from the Y -ions of the glycopeptide. A glycan with the composition HexNAc2Hex8

was reported by GlycoMaster DB as the best matching glycan with the highest GSM

score. The calculated mass of the peptide has only one peptide SRNLTK matched

within the given mass error tolerance in the nine proteins identified by PEAKS. For

the ETD spectrum as shown in Figure 6.2(b), GlycoMaster DB separately identified

the same peptide with the PSM score 72. Therefore, GlycoMaster DB reported

the glycopeptide SRN(HexNAc2Hex8)LTK as the identification of this HCD/ETD

spectrum-pair. The theoretical triply charged precursor m/z is 807.6717 and it differs

from the experimental precursor m/z with only 0.38 ppm.

As an optional step to further validate the peptide sequence, the PEAKS database

search software can be used to analyze the ETD spectra. A glycan of which the mass

has been determined by GlycoMaster DB is provided to PEAKS as a user-defined

variable PTM. PEAKS can check all the in silico digested peptides, rather than only

the peptides with N -linked glycopeptide motifs. Therefore, if the best matching

peptide for the ETD spectrum has an N -linked glycopeptide motif and its PSM score

is high, it is regarded as the identification of this ETD spectrum with high confidence.

We set all the glycans reported by GlycoMaster DB as variable PTMs for PEAKS

database search. Among 142 ETD mass spectra, PEAKS identified 31 spectra with

−10 lgP ≥ 15 and all of them were identified as the same peptide SRNLTK.

6.2.2 Human-IgG Data Set

Similarly to the analysis of the RNase-B data set, HCD spectra in the Human-IgG

data set were used to identify a short list of proteins. Among the 5,710 MS/MS spec-

tra, 306 were identified as non-glycosylated peptides and 36 proteins were reported.

HCD/ETD spectrum-pairs were then extracted for glycopeptide analysis using Gly-

coMaster DB. Out of the 274 HCD/ETD spectrum-pairs, 10 spectrum-pairs were

reported with either the GSM score or the PSM score higher than 15. The reported

glycopeptides are listed in Table 6.2.

Figure 6.3 illustrates a glycopeptide identified from an HCD/ETD spectrum-pair

by GlycoMaster DB. Figure 6.3(a) shows the HCD spectrum recorded at RT 18.49

min. The glycan reported by GlycoMaster DB has the composition HexNAc4Hex3Fuc1,

which forms a clear Y -ion ladder in the high m/z region. From the calculated mass of

the peptide, TKPREEQFNSTFR is selected as the possible peptide sequence. This
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(a) HCD

(b) ETD

Figure 6.3: An example of a glycopeptide identified from the Human-IgG data set

generated by the HCD PI ETD strategy. (a) The annotated HCD spectrum of precur-

sor ions with m/z 1028.7906. The best matched glycan reported by GlycoMaster DB

has the composition HexNAc4Hex3Fuc1. (b) The annotated ETD spectrum triggered

by product ions in the HCD spectrum shown in (a). It provides positive support for

the identification of peptide TKPREEQFNSTFR and the glycosylation site.
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peptide is also identified separately by GlycoMaster DB from the ETD spectrum

shown in Figure 6.3(b) with the highest PSM score. The difference between the

theoretical and the experimental m/z of this glycopeptide is 1.42 ppm.

PEAKS database search on the ETD mass spectra was further carried on to

validate the peptide identification reported by GlycoMaster DB. We set all the glycans

reported by GlycoMaster DB as variable PTMs for PEAKS database search. Among

274 ETD mass spectra, PEAKS reported 20 PSMs with FDR ≤ 1% and all the

peptides identified by GlycoMaster DB with GSM scores of higher than 15 were

included. PEAKS also identified nine non-glycosylated peptides, which matched to

both HCD and ETD mass spectra with high PSM scores. Manual checking revealed

that their HCD spectra had low peaks at m/z 204.09, which falsely triggered the

generation of the corresponding ETD spectra. However, these spectrum-pairs for

the non-glycosylated peptides did not result in false positives in GlycoMaster DB’s

results.

6.2.3 Enriched-HUP Data Set

This data set contains a large amount of spectra with duplicated precursor m/z and

similar retention time, indicating that many peptides were selected and fragmented

multiple times. Therefore, two MS/MS scans in this data set were merged with

the PEAKS software if their precursor m/z difference was within 20 ppm and the

retention time difference is within 0.2 minutes. The 24 spectral data files were then

searched separately in UniProt human protein database for the short lists of proteins

through identifying the non-glycosylated peptides and 503 proteins were reported. A

spectrum was filtered out if it was identified either by PEAKS DB with FDR ≤ 1%

or by PEAKS de novo sequencing with ALC ≥ 50% since it was believed to be from

a non-glycosylated peptide. The remaining MS/MS spectra were then analyzed by

GlycoMaster DB. The results from the 24 spectral data files are listed in Table 6.3.

In total, 14,840 spectra were not interpreted by either the database searching or

the de novo sequencing modules in PEAKS. These spectra were analyzed by Glyco-

Master DB. 2,283 spectra passed the first filtration according to the existence of diag-

nostic peaks at m/z 204.09 or 366.14, and 451 spectra had sequences of at least three

monosaccharide residues. These 451 spectra were searched against the N -linked gly-

can database. 240 spectra had matched glycans with high confidence (−10 lgP ≥ 15),
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Table 6.3: This table lists the analysis result of each spectral data in enriched-HUP

data set. The spectra data named “gpe12” is not listed since it has no glycan re-

ported by GlycoMaster DB. The first column lists the names of the spectral files.

The second column denotes the numbers of MS/MS spectra in each file after pre-

processing. The third and fourth column lists the numbers of proteins reported

by PEAKS DB and the numbers of un-interpreted spectra. The subsequent two

columns give the number of spectra that passed the two filters, respectively. The

number of identified glycans (−10 lgP ≥ 15) and peptides are listed in the last

columns. The last row shows the total number of each column.

Data MS/MS Protein Un-Interpreted Pass Pass Glycan Peptide

Name Number Number MS/MS Number Filter-1 Filter-2 Number Number

gpe01 1,635 53 604 109 12 10 10

gpe02 1,977 63 890 106 15 7 7

gpe03 1,821 65 798 99 17 6 6

gpe04 1,854 53 844 123 37 7 4

gpe05 1,920 59 832 107 31 20 18

gpe06 1,683 68 626 128 36 17 12

gpe07 1,866 100 835 108 14 6 6

gpe08 1,712 83 683 116 14 9 9

gpe09 1,777 77 788 112 10 8 8

gpe10 1,798 87 677 95 15 6 5

gpe11 1,999 86 906 210 12 4 4

gpe13 927 71 250 65 30 21 21

gpe14 929 65 301 84 38 17 13

gpe15 1,101 68 466 101 38 18 15

gpe16 1,290 91 559 68 21 14 14

gpe17 1,227 94 554 81 13 12 12

gpe18 1,282 88 597 93 26 16 16

gpe19 1,333 84 620 104 18 12 10

gpe20 1,234 81 619 106 23 6 5

gpe21 955 44 491 61 16 13 13

gpe22 977 79 482 68 8 6 4

gpe23 770 59 346 31 1 1 1

gpe24 1,117 65 711 90 6 4 3

Total 33,954 503a 14,840 2,283 451 240 216

aThis is the total number of unique proteins, rather than the sum of protein numbers reported

in each spectral data. 79
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and 216 of them had matched peptides by masses. Possible reasons for not reporting

peptide sequences for the 25 remaining spectra include (1) the peptides are not in

the 503 proteins identified by PEAKS and (2) the peptides may be the result of non-

specific trypsin digestion, have more missed-cleavages, or have variable PTMs other

than those considered. 95 proteins were reported as glycoproteins with at least one

glycopeptide identified by GlycoMaster DB in each protein.

Figure 6.4 shows three example glycopeptides identified by GlycoMaster DB. Fig-

ure 6.4(a) shows an MS/MS spectrum recorded at RT 30.03 min. The precursor m/z

1328.0316 corresponds to a doubly charged glycopeptide N(HexNAc2Hex9)WTITR

(m/zcalc = 1328.0299 and ∆m/z= −1.29 ppm). The peak at m/z 993.5 corresponds

to the singly charged [peptide+HexNAc] ion, which is the Y1 fragment according to

the Domon and Costello nomenclature [37]. Figure 6.4(b) and Figure 6.4(c) show

other two HCD spectra identified as having the same peptide sequence but slightly

different glycans. The differences between their precursor masses are the masses of

monosaccharide residues. As the retention time is mainly determined by the hy-

drophobicity of amino acids instead of the glycans attached on the glycopeptides, the

precursor ions of these spectra have similar retention time.

Figure 6.5 illustrates another example of two similar glycans on the same peptide.

The retention time of these two spectra differs by 2.7 min. The identified glycans

are very similar and SLHVPGLNK is the only glycopeptide that has the calculated

peptide mass. Consequently, the two spectra are very similar to each other, except

that Figure 6.5(b) contains two intense peaks at 292.10 and 274.09, which are missing

from Figure 6.5(a). These peaks demonstrate the existence of sialic acid residues. It is

commonly believed that sialic acids can influence the retention time of glycopeptides.

This is consistent with the 2.7 min retention time difference between the two spectra.

6.2.4 HUP Data Set

This data set was obtained from the same human urine sample as the Enriched-HUP

data set. The only difference was the glycoproteins were not enriched. GlycoMaster

DB was used to process this data set since many spectra contained high-intensity

diagnostic peaks of N -linked glycopeptides.

Similarly to the analysis of Enriched-HUP data set, the 30 spectral data files were

searched separately in UniProt human protein database for the short lists of proteins.
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(a)

(b)

(c)

Figure 6.4: An example of glycans identified from three HCD spectra by GlycoMas-

ter DB in the Enriched-HUP data set. Three HCD spectra have similar retention

time but different precursor mass values. GlycoMaster DB identified three glycans.

The calculated peptide mass is approximate 771.41. NWTITR is the only tryptic

glycopeptide matching this mass value from the protein short list provided to Gly-

coMaster DB. The mass errors of the identifications of these three spectra are -1.29

ppm, -1.08 ppm, and -0.84 ppm, respectively.
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(a) SLHVPGLN(HexNAc4Hex5Fuc1)K, RT = 34.19 min

(b) SLHVPGLN(HexNAc4Hex5Fuc1NeuAc1)K, RT = 36.89 min

Figure 6.5: Illustration of two HCD mass spectra that are interpreted as the same

peptide but two slightly different glycans in the Enriched-HUP data set. (a) The

oxonium ions from sialic acids are not present, and this indicates the absence of sialic

acids in the glycan; (b) The peaks at m/z 292.10 and 274.09 indicate the existence of

oxonium ions of sialic acid residues.
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The number of identified proteins from each spectral file ranges between 61 and 362.

A spectrum was analyzed using GlycoMaster DB if it was not identified either by

PEAKS DB with FDR ≤ 1% or by PEAKS de novo sequencing with ALC ≥ 50%.

The results of those 30 spectral data were listed in Table 6.4. 337 spectra have

matched glycans with high confidence (−10 lgP ≥ 15), and 298 of them have found

corresponding peptide sequences from 229 proteins.

Figure 6.6 illustrates three example glycans identified by GlycoMaster DB from

this data set.

6.2.5 Comparison of Identified Glycans between Enriched-

HUP and HUP Data Sets

GlycoMaster DB identified 240 and 337 GSMs from Enriched-HUP and HUP data

sets, respectively. Since the peptide sequences were searched only according to the

calculated mass values, there might be ambiguities in the sequence identification.

Moreover, the best matching structure from GlycoMaster DB might not be the real

one because a spectrum could be matched equally well by several glycan structures

sharing the same composition. Thus, the identified glycopeptides were grouped ac-

cording to the combination of glycan composition and the peptide mass for each

human urinary proteome data set. These groups, instead of individual glycopeptides,

were compared to analyze the relationship of identified glycans between the two data

sets. 141 and 201 such glycopeptide groups were discovered from the Enriched-HUP

and HUP data set, respectively. Figure 6.7 is the Venn diagram that illustrates the

overlaps between these two sets of glycopeptide groups.

The comparison reveals that GlycoMaster DB can identify more glycopeptides

from the non-enriched data sets. The exact reason for this is unclear. But one prob-

able reason is the possible different instrument settings in the generation of the HUP

and Enriched-HUP data sets. In Enriched-HUP data set, a large number of MS/MS

spectra are from the repeated fragmentation of the same precursor ion. Consequently,

the total number of MS/MS scans is reduced from 199,890 to 33,954 after spectral

merging, or a 6-fold reduction. While in the HUP data set, the phenomenon of re-

peated fragmentation of the same precursor is less severe. After the spectral merging,

the reduction is from 170,215 to 72,152, or 2.4-fold.
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Table 6.4: This table lists the analysis result of each spectral data in HUP data

set. Only the 23 spectral data having identified glycans by GlycoMaster DB are

listed. The first column lists the names of the spectral files. The second column

denotes the numbers of MS/MS spectra in each file after preprocessing. The third

and fourth column lists the numbers of proteins reported by PEAKS DB and the

numbers of un-interpreted spectra. The subsequent two columns give the number

of spectra that passed the two filters, respectively. The number of identified glycans

−10 lgP ≥ 15) and peptides are listed in the last columns. The last row shows the

total number of each column.

Data MS/MS Protein Un-Interpreted Pass Pass Glycan Peptide

Name Number Number MS/MS Number Filter-1 Filter-2 Number Number

ig06 891 71 241 35 6 2 2

ig07 928 61 348 69 18 6 3

ig08 878 70 235 43 3 2 2

ig09 811 87 306 49 5 4 4

ig12 892 78 209 35 12 8 8

ig13 868 79 182 52 15 11 6

ig14 4,222 274 931 339 80 32 28

ig15 4,553 340 1,093 447 108 47 42

ig16 4,146 289 1,017 335 56 32 31

ig17 3,924 312 953 321 47 23 22

ig18 3,822 325 1,123 390 45 24 21

ig19 3,717 309 1,087 335 38 16 15

ig20 4,152 325 1,172 429 46 23 23

ig21 4,106 278 1,259 502 54 25 22

ig22 3,847 287 1,251 401 37 17 13

ig23 4,094 303 1,332 500 63 13 11

ig24 4,884 308 1,512 432 29 8 8

ig25 4,205 326 1,495 395 33 6 6

ig26 4,107 310 1,536 422 35 9 8

ig27 3,960 300 1,677 428 26 7 5

ig28 3,828 292 1,740 317 19 8 5

ig29 4,139 362 1,751 509 44 10 9

iga3 1,178 87 257 37 5 4 4

Total 72,152 1,534a 22,707 6,822 824 337 298

aThis is the total number of unique proteins, rather than the sum of protein numbers reported

in each spectral data. 84
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(a)

(b)

(c)

Figure 6.6: An example of glycans identified from three HCD spectra by GlycoMaster

DB in the HUP data set. Three HCD spectra have similar retention time but different

precursor mass values. GlycoMaster DB identified three glycans from them and these

glycans differ from each other slightly. The calculated peptide mass is approximate

1449.74. VYKPSAGNNSLYR is one of the two peptides matching this mass value in

the proteins provided to GlycoMaster DB but the other one has potassium adduct

and much larger mass error at around 10 ppm. Therefore, VYKPSAGNNSLYR is

selected as the glycopeptide and the precursor mass errors are 0.71 ppm, 0.08 ppm,

and -0.51 ppm, respectively.
85



CHAPTER 6. N-LINKED GLYCOPEPTIDE IDENTIFICATION

6.2.6 Glycopeptides with Same Mass

If only HCD data is available, the peptide is only reported according to the accurate

mass and the presence of N -linked glycopeptide motif. This may result in ambiguous

identification of the actual peptide when the size of the protein list is large or the

mass accuracy is low. Computer simulation was carried out to study the severity of

such ambiguity.

For each combination of mass accuracy (δ) and number (n) of proteins, n proteins

were randomly selected from the UniProt human database (20,258 entries). The tryp-

tic peptides containing the N -linked glycopeptide motif were generated in silico. The

percentage of such peptides with unique mass (mass error ≤ δ ppm) was calculated.

The random selection was repeated 1,000 times for each δ and n, and the average

percentage was plotted in Figure 6.8. It is noticeable that when the protein list con-

tains no more than 100 entries, and the mass accuracy is better than 5 ppm, 99%

of the tryptic peptides with the N -linked glycopeptide motif can be unambiguously

identified from the mass.

6.3 Discussion

The experiments demonstrate the feasibility of using GlycoMaster DB to identify

N -linked glycopeptides as well as the glycan structures (composition) from high-

throughput HCD/ETD and HCD-only MS/MS data. The software is designed for

the analysis of MS/MS data acquired from intact glycopeptides, rather than deglyco-

sylated glycopeptides. Therefore, it can simultaneously identify glycans and peptide

sequences. Such an application is important for large-scale glycoproteome analysis

since the connection between glycans and their peptides can be readily determined.

Figures 6.4, 6.5, and 6.6 illustrate multiple glycan forms on the same glycosylation

sites. This is useful information to facilitate the study of the glycan synthesis and

degradation process. In Figure 6.5, the different glycopeptides with the same peptide

sequence have slightly different retention time. It excludes the possibility that the

different forms are due to the post-source fragmentation in the mass spectrometer.

Most peaks in the HCD spectrum of a glycopeptide are from the fragmentation

of the glycan but not the peptide. This makes it difficult to confidently identify the

peptide sequence. Thus, a list of peptide sequences matching the calculated peptide
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Figure 6.7: The Venn diagram showing the overlaps between the two sets of glycopep-

tide groups identified from Enriched-HUP and HUP data sets, respectively.

Figure 6.8: The average percentage of tryptic peptides containing the N -linked gly-

copeptide motif that have unique mass.
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mass and containing the N -linked glycopeptide motif are reported. However, such

identification may be ambiguous when there are a large number of proteins, especially

when missed-cleavages and non-specific digestions were considered. The high mass

accuracy of the LTQ-Orbitrap instrument can greatly help to determine the accurate

precursor mass. In addition, the retention time of the glycopeptides is another piece

of potentially useful information. However, the lack of a reliable retention time pre-

diction algorithm for glycopeptides hinders the utilization of this information in our

software. Future versions of GlycoMaster DB will consider including the retention

time information when a glycopeptide retention time predictor becomes available. If

the glycopeptides are fragmented with both HCD and ETD, GlycoMaster DB can

use the spectrum-pairs simultaneously to identify both the glycans and the peptide

sequences with high confidence.
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Chapter 7

Maximum Peptide Feature

Matching in Label-Free

Quantification

The main difficulty of matching peptide features in a label-free quantification experi-

ment is the inadequate reproducibility of the LC retention time. Due to factors such

as aging, packing and contamination of an LC column, together with additional vari-

ability during experiment such as temperature, gradient shape and mixing physics,

the retention time from different runs often shows large shifts and distortions. To

match peptide features by using their mass and retention time information, the shifts

and distortions need to be corrected. This is usually carried out by finding a monoton-

ically increasing function f(·) that maps the retention time of a peptide in a sample

to the retention time of the same peptide in the other sample. This process is often

called the retention time alignment, or simply, time alignment [21, 86, 152].

It is noticeable that if the feature matching is available, the time alignment can be

solved by fitting the times of the matched features with a smooth function. On the

other hand, if the time alignment is known, the feature matching can be carried out

by comparing the mass and the corrected time differences between features in the two

samples. Although this is still not a trivial problem due to the existence of noise and

false feature pairs, its solution is not dauntingly difficult. The real challenge of the

feature matching problem lies in the mutual dependence between the time alignment

function and the feature matching.
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In the literature, the time alignment and the feature matching are usually dealt

with in two separate steps. Some research in the literature uses heuristic algorithms

to find an initial set of matched feature pairs, and then use these pairs to find a time

alignment function. Conversely, some research find a time alignment first and then

determine the matched feature pairs. Naturally, such procedures can be repeated

iteratively to hopefully get a more and more accurate result.

This approach was typified by Li et al. [88], which matched features with similar

m/z values as the initial feature matching. Kirchner et al. [81] used a robust point

matching method to find an initial feature matching, and then carried out smooth

monotone regression to find a time alignment. When there are significant time shifts

and distortions, as well as the present of noisy false features, the finding of the initial

set of feature matching in the above approaches can become challenging. However,

this problem can be solved if the peptides of all the features are known since the fea-

tures can be matched confidently by checking their peptide identities [44, 150]. This

approach requires MS/MS spectra for the identification of the peptides. MS/MS

analysis takes more duty cycles of the instrument. It reduces the number of MS scans

so that many of the low-abundance peptides from the limited amount of biological

samples become undetectable. Therefore, it is advantageous to perform quantification

without MS/MS if a time alignment can be achieved without peptide identification.

The peptides can be identified in a separate LC-MS/MS run after the quantification,

possibly with an inclusion list that targets the quantified peptide features. In fact,

there are even proposals in the literature to identify peptides purely based on the pre-

cursor m/z and the aligned retention time of a peptide feature [84]. This application

definitely requires the time alignment without MS/MS. For these reasons, we assume

the peptide identities are unknown to the alignment algorithm.

Other researchers focused on finding an initial time alignment function. Lange

et al. [85] assumed that the time alignment is a linear function: f(t) = a · t + b. A

pair of coefficients (ai, bi) was calculated from every two pairs of possibly matched

features. The correct coefficients (a, b) was estimated by finding a dense cluster of

all the calculated (ai, bi). However, the time alignment is actually nonlinear, so a

number of publications [13, 20, 71, 109, 122, 121, 123, 136] only assume local linearity

of the time alignment, and apply linear regression in small retention time intervals.

These studies mostly differ at the methods used for (1) local linear regression, and (2)

connecting the local linear regression results into a global time alignment function.
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Although many of these methods have been used in practice, none of them defined

a clear optimization goal for the peptide feature matching problem. There usually

exist biological justifications for each step of these methods, but the property of the

final output of a method is unclear. It is very different from the common practice

in traditional algorithmic research, where the optimization goal is usually specified

mathematically before the algorithm is being developed. Still, it is not uncommon in

many emerging bioinformatics areas (including peptide quantification) that biologists

often need a quick solution once an experimental method is invented. In such case

an ad hoc solution is always useful. Moreover, the complexity of biology determines

that the formulation of a tidy mathematical model is often difficult.

Disadvantages certainly exist in such ad hoc solutions. An immediate disadvan-

tage is that the final outcome is unpredictable without running such an algorithm.

The performance of the algorithm heavily depends on its implementation, such as the

choice of parameters and the handling of some special cases. Therefore, a method

developed in one lab has the tendency to get overfitting on its own data and may

not work on the data from another lab or a new instrument. This recommended

that a combinatorial problem should be clearly defined whenever it is possible. The

separation of the problem formulation, the algorithm development, and the program

implementation can help reduce the aforementioned overfitting tendency. The bio-

logical knowledge should be used exclusively during the problem formulation stage

to specify the desired property of the solution. The algorithm development should

strive to compute a solution that meets the specified property, instead of fitting the

data that happen to be available for a researcher.

In this chapter, a clearly-defined combinatorial model for the feature matching

problem is proposed in Section 7.1. The problem is proven to be NP -hard in Sec-

tion 7.2. In Section 7.3, a slightly modified optimization goal is proposed, under

which a polynomial time algorithm is presented. We show that the solution of the

modified problem helps to determine an upper-bound and a lower-bound of the opti-

mal solution. This results in a practical algorithm for the feature matching problem

with a performance guarantee for each given instance. In Section 7.4, the optimiza-

tion goal is amended to control the smoothness of the time alignment function for

feature matching and a polynomial time algorithm is presented. Finally, Section 7.5

examined the performance of the algorithms on real LC-MS data. Not only is the

proposed model tidy, but the performance of the algorithms also compares favorably

with other existing methods.
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7.1 The Maximum Feature Matching Problem

The peptide feature matching problem is formulated as a combinatorial optimization

problem in this section. A peptide feature p is a 2-tuple (m(p), t(p)), where m(p)

indicates the mass and t(p) indicates the retention time. We assume both m(p) and

t(p) are integers since real numbers can be discretized by allowing a small rounding

error. A sample consists of a set of features {p1, p2, . . . , pn}. Let S and S ′ be two

samples and their retention time ranges from 1 to T . A time alignment function

that maps the time of S to the time of S ′ is a monotonically non-decreasing function

f : [1, T ] 7→ [1, T ] such that f(1) = 1 and f(T ) = T .

As aforementioned, the retention time of a peptide cannot be measured accu-

rately. First, the unavoidable variations of LC conditions in the two MS runs can

cause systematic drifts of the retention time for all peptides. This systematic error

is modeled by the time alignment function f . Secondly, the retention time of an

individual peptide may change independently from other peptides, causing a random

error. Suppose two features p ∈ S and p′ ∈ S ′ are from the same peptide, the random

error is then modeled as |t(p′)−f (t(p)) |. After a proper time alignment, the random

error is usually small. For example, if two LC runs are conducted on the same LC

instrument under the same experimental condition and each lasts for an hour, the

random error is often less than 1 minute after the time alignment.

For every two features p ∈ S and p′ ∈ S ′, the matching quality of p and p′ is

measured by nonnegative function w(δm, δt), where δm = |m(p′) − m(p)| and δt =

|t(p′) − f(t(p))|. The function w is also called a weight function. The unit weight

function, denoted by wI , is a straightforward definition of the weight function. Let

∆m ≥ 0 and ∆t ≥ 0 be the mass and time error tolerances, respectively. The unit

weight function is then defined as

wI(δm, δt) =

{
1, if δm ≤ ∆m and δt ≤ ∆t,

0, otherwise.
(7.1)

The unit weight function treats a pair of features as a match if and only if their mass

and time differences are within the error tolerances.

A peptide feature matching, or simply, a feature matching, is a bijective mapping

between two subsets P ⊂ S and P ′ ⊂ S ′. More specifically, a feature matching

provides a set of feature pairs, M ⊂ {(p, p′)|p ∈ S, p′ ∈ S ′}, such that each feature
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appears in at most one pair in M . Given a time alignment function f and a weight

function w, the total weight of the matching M , is defined as

w(M) =
∑

(p,p′)∈M

w (|m(p′)−m(p)|, |t(p′)− f(t(p))|) . (7.2)

For label-free quantification, the two studied samples share most of their peptides

and the biological experiments are optimized to minimize the noise and the mass

and retention time errors. When the peptide identities for the peptide features are

unknown, the most natural combinatorial goal for peptide feature matching is to

maximize the total weight of the matching.

The maximum feature matching problem (MFM) is therefore defined as follows:

Given two samples S and S ′ and a weight function w, find a time alignment function

f and a feature matching M , such that w(M) is maximized.

It can be noted that if f is given, MFM can be easily reduced to the maximum

matching problem in a bipartite graph. In the reduction, each feature corresponds

to a vertex and the two feature sets S and S ′ can be regarded as the two vertex sets

of the graph. The weight of the edge between each feature pair is defined by the

weight function w. In particular, when w is the unit weight function, the reduction

results in the unweighted version of the maximum matching problem. It is well known

that polynomial time algorithms exist for both weighted and unweighted maximum

matching [46, 108]. However, for MFM, the time alignment function f needs to be

computed simultaneously with the feature matching, and this makes MFM a much

harder problem.

7.2 Maximum Feature Matching Is NP-Hard

Theorem 7.2.1 The MFM problem is NP -hard under the unit weight function.

Proof. The reduction is from the max-cut problem. Given an undirected graph

G = 〈V,E〉, the max-cut problem splits the vertices into two disjoint sets V1 and V2,

such that |{(u, v) ∈ E |u ∈ V1, v ∈ V2}| is maximized. It is well known that the

max-cut problem is NP-complete [49].

Let G = 〈V,E〉 be an instance of the max-cut problem. Let n = |V | and m = |E|.
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For presentation clarity, a feature is visually shown as a data point on a mass-time

grid (Figure 7.1). Each horizontal line on the plane corresponds to one time unit in

the LC-MS experiment, and each vertical line corresponds to a mass unit. As MFM

involves two samples S and S ′, two colors, black and white, are used to distinguish

the features in S and S ′, respectively. A black feature is represented by a solid dot

and a white feature is represented by a circle. It is possible that two features from S

and S ′ have the same mass and time, and in such case the grid point is labeled with

both a circle and a solid dot. Intuitively, MFM needs to match the black features onto

the white features, allowing a small mass and time error after the time alignment.

The time alignment can move all the black features on the same horizontal line up

and down simultaneously, but it cannot change the relative time order of the black

features.

The constructed instance of MFM consists of T = 6n+ 3 time units and 6m mass

units. Each edge ek ∈ E corresponds to a mass window of length 6, and each vertex vi

corresponds to a time window of length 6. The first and last time units are specially

added and do not belong to any vertex time window. Figure 7.2 illustrates the

construction that highlights edge ek and vertex vi. In the construction, many pairs of

black and white features are added to certain grid points as shown in Figure 7.2. More

precisely, a pair of black and white features are put at the grid point (6k − 3, 6i− 4)

for each 1 ≤ k ≤ m+ 1 and 1 ≤ i ≤ n+ 1. Additionally, for each edge ek, two white

features are put at (6k − 4, 1) and (6k − 4, T ), respectively. The construction of the

shaded areas in Figure 7.2 will depend on whether vi is adjacent to ek. Three cases

arise: (1) ek = (vi, vj) and i < j; (2) ek = (vj, vi) and i > j; and (3) vi is not adjacent

to ek. For each of the three cases, the construction of the shaded area is shown in

Figure 7.3. Finally, we set the mass and time error tolerance as ∆m = 1 and ∆t = 2,

and let the weight function be the unit weight function wI . Thus, an instance of the

MFM is constructed.

Within the mass window of an edge ek = (vi, vj), there are exactly two time

windows (corresponding to vi and vj) that have the construction of Figure 7.3(a) and

Figure 7.3(b), respectively. All other (n− 2) time windows have the construction of

Figure 7.3(c). Therefore, there are exactly 6n white features and 6n black features

in the mass window. Consequently, the number of matches within a mass window is

upper-bounded by 6n.

If an identity time alignment function, f(t) = t, is used, the isolated black features
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Figure 7.1: An Illustration of features plotting on a mass-time grid. Each horizontal

line on the plane corresponds to one time unit in the LC-MS experiment, and each

vertical line corresponds to a mass unit.

Figure 7.2: An illustration of the construction that highlights edge ek and vertex vi.
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for vi and vj will not be matched. To match the isolated black feature of vi in

Figure 7.3(a), one can set either set f(6i− 1) = 6i or f(6i− 1) = 6i− 2. Suppose the

function f(6i − 1) = 6i is selected. Then the black feature at time (6i − 1) can be

matched to the white feature at time (6i+ 2), because |6i+ 2− f(6i− 1)| = 2 ≤ ∆t.

Meanwhile, this will force the black feature at time (6i+2) to match the white feature

at (6i+ 4), since the white feature at (6i+ 2) has already been matched by f(6i− 1).

This shifted matching propagates upward, as shown in Figure 7.4, until the isolated

white feature at time T is matched. Similarly, if we let f(6i − 1) = 6i − 2 and

match the isolated black feature of vertex i downward, then the shifted matching will

propagate downward to use the white feature at time 1.

For each mass window for an edge e = (vi, vj), there are only two isolated white

features at time 1 and T , respectively. Therefore, the two isolated black features for

vi and vj have to be matched to the opposite directions in order to be both matched,

in which case the number of matches is exactly 6n for this mass window. However, if

the two isolated black features are not matched to the opposite directions, only one

of the two isolated white features can be used and the maximum number of matches

is at most 6n− 1.

Thus, if the max-cut has a solution V = V1 ∪ V2 that cuts K edges, we can

construct a time alignment function f , such that

f(t) =


t+ 1, if t = 6i− 1 and vi ∈ V1,

t− 1, if t = 6i− 1 and vi ∈ V2,

t, otherwise.

(7.3)

From the above discussion one can easily verify that each time window for a cut edge

provides 6n matches and each of other time windows provides 6n − 1 matches. The

MFM instance has a total weight of (6n− 1)m+K.

On the other hand, suppose the MFM instance has (6n− 1)m+K matches, and

f is the time alignment function. Let V1 = {vi|f(6i− 1) ≥ 6i} and V2 = V \ V1. We

get a solution for the max-cut instance. Because the number of matches in each mass

window is upper bounded by 6n, and there are 6(n− 1)m + K matches in total, we

know that at least K mass windows provide 6n matches in each. For each of these K

mass windows that corresponds to ek = (vi, vj), from the above discussion we know

that the two isolated black features for vi and vj have to be matched to two opposite

directions. In another word, the edge ek is cut by separating its two vertices into V1

and V2. Consequently, the constructed solution will cut at least K edges.
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(a) (b) (c)

Figure 7.3: Illustrations of three cases to construct the grayed-out region: (a) ek =

(vi, vj) and i < j; (b) ek = (vj, vi) and i > j; and (c) vi is not adjacent to ek.

Figure 7.4: A shifted matching propagates upward when f(6i− 1) = 6i.
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Thus, we have shown that max-cut ≤P MFM, which proves the MFM problem is

NP -hard. �

7.3 A Practical Algorithm for Maximum Feature

Matching

In this section we develop a practical algorithm for MFM. This is achieved by studying

a slightly modified MFM problem. Instead of requiring the matching to be a bijective

mapping, the modified problem only requires the matching to be a surjective mapping.

More specifically, a surjective matchingM∗ is a subset of {(p, p′)|p ∈ S, p′ ∈ S ′}, where

p ∈ S appears at most once and p′ ∈ S ′ can appear multiple times. Given a time

alignment function f and a weight function w, the weight of the surjective matching

M∗ can be defined in the same way as in the MFM problem:

w(M∗) =
∑

(p,p′)∈M∗
w (|m(p′)−m(p)|, |t(p′)− f(t(p))|) . (7.4)

Given two samples and a weight function w, the maximum surjective feature

matching problem (SFM) is to compute a time alignment function and a surjective

matching M∗, such that w(M∗) is maximized. We next present a polynomial time

algorithm for the SFM problem.

For a sample S and a time i, let Si = {p ∈ S|t(p) = i} be the subset of features

at time i. Let S≤i = {p ∈ S|t(p) ≤ i} be the subset of features with time at most i.

Let di,j be the maximum weight of a surjective matching between Si and S ′ that

can be achieved by a time alignment function satisfying f(i) = j. Since the time of

all features in Si is equal to i and f(i) = j, di,j can be easily computed by finding the

best matching of each p ∈ Si separately.

Let Di,j be the maximum weight of a surjective matching between S≤i and S ′

that can be achieved by a time alignment function satisfying f(i) ≤ j. If f(i) < j,

it is clear that Di,j = Di,j−1. If f(i) = j, the maximum surjective matching includes

the maximum surjective matching from S≤i−1 to S ′, and the maximum surjective

matching from Si to S ′. Therefore, Di,j = Di−1,j + di,j. Combining the two cases,

we know that Di,j = max{Di,j−1, Di−1,j + di,j}. With this recurrence relation, the

SFM problem can be solved using a dynamic programming algorithm (Algorithm 3).
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The optimal time alignment function f , as well as the surjective matching, can be

computed by a standard backtracking.

Algorithm 3 Algorithm to solve the SFM problem.

1: for i← 0 to T do

2: for j ← 1 to T do

3: Compute di,j

4: for i← 0 to T do

5: Di,0 ← 0, D0,i ← 0

6: for i← 1 to T do

7: for j ← 1 to T do

8: Di,j = max{Di,j−1, Di−1,j + di,j}

9: Output DT,T as the maximum weight of the surjective matching.

Tracing back from DT,T , all (i, j) pairs on the optimal path form the optimal time

alignment function f .

Theorem 7.3.1 The SFM problem can be solved in O(T 2 + T × |S| × |S ′|) time by

Algorithm 3.

Proof. The correctness of the algorithm is shown by the above discussion and the

proof of the time complexity is as following. The computation of each di,j in line 3

takes at most O (|Si| × |S ′|) time. Therefore, the whole loop at lines 1 to 3 takes time

O
(∑

1≤i,j≤T |Si| × |S ′|
)

= O (T × |S| × |S ′|). After di,j is computed and stored in

memory, each execution of line 6 takes constant time. Thus, the loops from line 6 to

line 8 take O(|T |2) time. �

The computation of all di,j is the most time-consuming part of Algorithm 3 and

takes O(T × |S| × |S ′|). However, it is possible to speed up this part if the weight

function w satisfies some properties.

Corollary 7.3.2 If the unit weight function wI is used, SFM can be solved in time

O
(
T 2 + T × |S|+ |S| × |S ′|

)
.

Proof. We only need to show that di,j can be computed with time O(T × |S| +
|S| × |S ′|) for all 1 ≤ i ≤ T and 1 ≤ j ≤ T . For each p ∈ S, let Jp = {j|∃p′ ∈
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Algorithm 4 Algorithm to compute Jp.
1: Jp ← ∅
2: for p′ ∈ S ′ do

3: if |m(p′)−m(p)| ≤ ∆m then

4: Jp = Jp ∪ [t(p′)−∆t, t(p
′) + ∆t]

S ′ such that |m(p′) − m(p)| ≤ ∆m and |t(p′) − j| ≤ ∆t}. Jp can be computed by

Algorithm 4.

In Algorithm 4 we need a data structure to store Jp ⊂ [1, T ], which is the union

of retention time intervals with the same length 2∆t + 1. Let A be a boolean array

of length T that is used to store if A[j] is the start position of one of the intervals.

This structure can help to make the adding of a new interval take only O(1) time.

To enumerate all j ∈ Jp takes at most O(T ) time, we propose Algorithm 5:

Algorithm 5 Algorithm to enumerate Jp.
1: counter ← 0

2: for j ← 1 to T do

3: if A[j] is true then

4: counter ← 2∆t + 1

5: if counter > 0 then

6: Output j

7: counter ← counter − 1

Thus, the complexity of the Algorithm 4 is O(|S ′|). After Jp is obtained, di,j can

be calculated by di,j = |{p ∈ Si|j ∈ Jp}|. The calculation of di,j for all 1 ≤ i ≤ T and

1 ≤ j ≤ T can be carried out more efficiently with Algorithm 6. Since Algorithm 4

takes O(|S ′|) time for each p ∈ S, the accumulated time cost for line 2 is O (|S| × |S ′|).
Since |Jp| ≤ T , line 7 is repeated at most O(

∑T
i=1 |Si| × T ) = O (|S| × T ) times.

Therefore, the total time complexity for Algorithm 6 is O (T × |S|+ |S| × |S ′|). �

Additionally, in Algorithm 4, if S ′ is sorted by mass values, we can retrieve all p′

such that |m(p′)−m(p)| ≤ ∆m by a binary search, without enumerating all p′ ∈ S ′.
Because usually ∆m � T and |S ′| > T , this trick can significantly speed up in

practice.
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Algorithm 6 Algorithm to calculate di,j.

1: for i← 1 to T do

2: Calculate Jp for each p ∈ Si with Algorithm 4;

3: for j ← 1 to T do

4: di,j ← 0

5: for p ∈ Si do

6: for j ∈ Jp do

7: di,j = di,j + 1

Lemma 7.3.3 Suppose two instances of SFM and MFM share the same input, the

weight of the maximum feature matching (MFM) is less than or equal to the weight

of the maximum surjective feature matching (SFM).

Proof. A bijective mapping is also surjective. This indicates that a solution to MFM

is also a solution to SFM. �

There exists a straightforward way to convert the optimal solution for SFM to

a suboptimal solution for MFM. Let M∗ ⊂ {(p, p′)|p ∈ S, p′ ∈ S ′} be a solution to

SFM, such a conversion can be done by selecting only one pair of features from M∗ for

every p′ ∈ S ′. Furthermore, Algorithm 7 can generate a better suboptimal solution

for MFM based on the optimal solution to SFM.

Algorithm 7 Algorithm SMFM to provide a suboptimal solution for the MFM prob-

lem.
1: Compute an optimal solution for SFM using Algorithm 3;

2: Let f be the optimal time alignment function;

3: Let wu be the optimal weight of SFM;

4: for p ∈ S do

5: for p′ ∈ S ′ do

6: w̃(p, p′) = w (|m(p′)−m(p)|, |t(p′)− f(t(p))|)
7: Treat w̃(p, p′) as the edge weight in a complete bipartite graph S×S ′, and compute

a maximum bipartite matching;

8: Let wl be the weight of the maximum bipartite matching;

9: Output the maximum bipartite matching as the suboptimal solution to MFM, wu

as the upper bound of the optimal weight of MFM, and wl as the lower bound.
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Theorem 7.3.4 Algorithm SMFM computes a suboptimal solution for the MFM

problem, and determines an upper-bound and a lower-bound of the optimal weight.

Proof. The theorem is an immediate consequence of Lemma 7.3.3. �

Since MFM is NP -hard, there is no polynomial time algorithm for finding the

optimal solution unless P=NP. Therefore, Algorithm SMFM can be used in practice

to find a suboptimal solution.

7.4 Variations of the Maximum Feature Matching

Problem

In this section we examine two variations of the MFM problem. A more accurate

weight function is introduced in the first variation, and a gap penalty for the time

alignment is added in the second variation. The gap penalty can help make the time

alignment function smoother.

7.4.1 Weight Function

The unit weight function wI is conceptually simple and the mass and time error

thresholds ∆m and ∆t can be easily determined by the technician who operates the

instrument according to experience. However, it is sometimes desirable to use a

continuous weight function to give different weights to different time errors.

It has been shown that in real data the random retention time error after the

time alignment satisfies a normal distribution [43]. Let εi = t(p′i) − f(t(pi)) be the

random time error of a pair of matched features (pi, p
′
i) after the time alignment and

Pr(εi) = 1
σ
√

2π
e−

1
2( εiσ )

2

be the probability distribution of εi. Assume the random error

of different features are independent to each other, then the probability of all the

errors in the matching is
∏n

i=1
1

σ
√

2π
e−

1
2( εiσ )

2

. By taking the logarithm, it is easy to see

that maximizing the above probability is equivalent to minimizing
∑n

i=1 εi
2. Because

the weight function needs to be nonnegative, we define the following weight function

w2:

w2 (δm, δt) =

{
∆2
t − δ2

t , if δm ≤ ∆m and δt ≤ ∆t,

0, otherwise.
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7.4.2 Gap Penalty

In the definition of the MFM and SFM problems, the time alignment function f is

only restricted to be a monotonically increasing function. However, it is sometimes

beneficial to require some smoothness of f since fewer data points are required to fit

a smooth function.

Let [li, ri] (i = 1, . . . , k) be the maximal time intervals such that ri − li > 1 and

f(t) remains a constant in each interval. These are called the type-I gaps. The gap

length for [li, ri] is ri− li. Let [l′i, r
′
i] (i = 1, . . . , k′) be the maximal time intervals such

that there is no t satisfying f(t) ∈ [l′i, r
′
i]. These are called the type-II gaps. The gap

length for [l′i, r
′
i] is l′i − r′i + 1. By requiring f to be smooth, we essentially want to

penalize these two types of gaps with a gap penalty function g(k) > 0 for a length-k

gap.

This is analogous to the gaps in the pair-wise sequence alignment. The major

difference is that here we prefer many smaller gaps over a few large gaps. Therefore,

in contrast to using a concave gap penalty function in a sequence alignment, a convex

gap penalty function, such as g(k) = k2, is chosen, and the total gap penalty of the

time alignment function f is defined as

g(f) =
k∑
i=1

g(ri − li) +
k′∑
i=1

g(r′i − l′i + 1). (7.5)

The gapped-MFM problem is to find a bijective feature matching M and a time

alignment f to maximize score(M, f) = w(M) − g(f). Similarly, the gapped-SFM

problem is to find a surjective feature matching M∗ and a time alignment f to max-

imize score(M∗, f) = w(M∗)− g(f).

We design a dynamic programming algorithm for the gapped-SFM problem. Let

K > 0 be the maximum allowed gap length. Let Si, S≤i and di,j be as defined in

Section 7.3. Let Ni,j be the maximum score achieved by features in S≤i and a time

alignment function satisfying f(i) = j and f(i − 1) < j. Let Mi,j be the maximum

score achieved by features in S≤i and a time alignment function satisfying f(i) = j.

From the definition of Ni,j, we know that [f(i−1)+1, f(i)−1] is a probable type-II

gap. Let k = f(i)− f(i− 1)− 1 be the gap length. Then, f(i− 1) = f(i)− k − 1 =

j − k − 1, and therefore

Ni,j = max
0≤k≤K

{Mi−1,j−k−1 + di,j − g(k)} (7.6)
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To compute Mi,j, assume that i − k is the least number such that f(i − k) = j.

Then [i− k, i] is a probable type-I gap, and therefore,

Mi,j = max
0≤k≤K

{Ni−k,j +
i∑

l=i−k+1

dl,j − g(k)} (7.7)

From Eq. (7.6) and Eq. (7.7), it is straightforward to develop a dynamic program-

ming algorithm (Algorithm 8) to compute Ni,j and Mi,j simultaneously. The time

complexity will be O(T 2K) plus the time needed by computing di,j. Therefore, for a

general weight function w, the time complexity is O(T 2K + T × |S| × |S ′|).

Algorithm 8 Algorithm SFM-g to solve the gapped-SFM problem.

1: for i← 0 to T do

2: for j ← 1 to T do

3: Compute di,j

4: for k ← 0 to T do

5: N0,k ← −g(k)

6: Mk,0 ← −g(k)

7: for i← 0 to T do

8: for j ← 1 to T do

9: Ni,j = max0≤k≤K{Mi−1,j−k−1 + di,j − g(k)}
10: Mi,j = max0≤k≤K{Ni−k,j +

∑i
l=i−k+1 di,j − g(k)}

11: Output NT,T as the maximum weight of the surjective matching.

Since MFM isNP -hard, gapped-MFM with a general gap penalty is alsoNP -hard.

Algorithm SMFM in Section 7.3 can be slightly modified to Algorithm SMFM-g to

provide a suboptimal solution for gapped-MFM and an upper bound to the optimal

score. The only required modification is to use Algorithm SFM-g in line 1 of the

algorithm, instead of using the algorithm for SFM (Algorithm 3).

7.5 Experimental Results

The performance of our algorithms was compared with three other state-of-the-art

software tools, msInspect [13], MZmine2 [121], and MultiAlign [84] by using real LC-

MS data sets. Our algorithms include: (1) Algorithm SMFM with the weight function
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w2, and (2) the algorithm with weight function w2 and a gap penalty g(k) = 10k2,

as described in Section 7.4. For the rest of the section, the first algorithm will be

denoted by SMFM, and the second algorithm will be denoted by SMFM-g.

Five LC-MS data sets, which were produced from the yeast proteome by three

different labs, were chosen for the performance evaluation. All of these data sets were

published in previous research [7, 142, 110]:

iPRG2011: The data was from the “Proteome Informatics Research Group

study” in 2011 [7]. Saccharomyces cerevisiae lysate is digested by Lys-C followed by

strong cation exchange chromatography (SCX) fraction. 10 fractions were selected

from 15 fractions. Each fraction is was analyzed by LC-MS/MS with a Thermo LTQ-

Orbitrap XL. The LC separation is done in a flow rate of 200nl/min using a 75µm

× 10 cm column packed with 3um particle size Reprosil C18AQ (Solvent A: 0.1%

formic acid, Solvent B: 90% acetonitrile/0.1% formic acid, Gradient: load at 3%B,

elute with 5-35%B in 90 min, elute with 35-90%B in 10 min; wash at 90%B for 9 min.

10-20 sec chromatographic peak widths). Orbitrap was used to collect high resolution

MS spectra. 8 most abundant precursor were fragmented in data dependent mode to

produce MS/MS. There are 22,087 MS scan and 103,185 MS/MS scan for all these

10 fractions. In our experiment the LC-MS data of fraction 1 was picked from the 10

published fractions for software performance evaluation.

Coon: This data was produced from two biological replicates in the Coon research

group [142]. A whole cell yeast lysate was digested using the protease endo-LysC and

was separated into 12 fractions by SCX fraction. Each fraction is loaded in online

nanoflow reversed-phase liquid chromatography coupled to MS/MS (nLC-MS/MS),

using a forty minute linear gradient of 1.4% to 49% acetonitrile in 0.2% formic acid

with data-dependent precursor selection. Eluting peptide cation populations were

analyzed using the Orbitrap for MS and QLT for MS/MS product ion spectra. We

chose two LC-MS data sets from fraction 3 of biological replicate 1 (Coon1.F3) and

fraction 4 of biological replicate 2 (Coon2.F4) in our experiment. Coon2.F4 shared

the most number of peptides with the iPRG data set, and Coon1.F3 was the fraction

in replicate 1 that shared the most number of peptides with Coon2.F4.

Mann: The data was from the single-shot LC-MS/MS system in Mann Lab [110]

measured six yeast cell lysate separately. Each is digested by LysC digestion using the

FASP method. Peptides were loaded on a 50 cm column with 75-µm inner diameter,

packed in-house with 1.8-µm C18 particles (Dr. Maisch GmbH, Germany). Reversed
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Table 7.1: The number of features in different samples.

iPRG Coon1.F3 Coon2.F4 Mann.1 Mann.2

Feature
11,430 5,879 5,320 66,479 68,128

Number

phase chromatography was performed using the Thermo EASY-nLC 1000 with a

binary buffer system consisting of 0.5% acetic acid (buffer A) and 80% acetonitrile

in 0.5% acetic acid (buffer B). The peptides were separated by a linear gradient

of buffer B up to 40% in 240 min for a 4h gradient run with a flow rate of 250

nl/min in the EASY-nLC 1000 system. Eluting peptides were analyzed on the bench-

top quadrupole Orbitrap mass spectrometer(Q Exactive) and the top 10 abundant

peptide ions in a survey scan were fragmented using HCD. We chose the first two

biological replicates (Mann.1 and Mann.2) for the software performance evaluation

in our experiment.

The names of the data sets and the number of features detected by msInspect

in each of them are listed in Table 7.1. These five data sets are aligned with one

another under different settings. More specifically, the alignments Coon1.F3 vs.

Coon2.F4 and Mann.1 vs. Mann.2 are data sets from the same lab on the same

instrument in the same experiment. These reflect the easiest test cases since the

LC conditions do not vary too much. The alignments iPRG vs. Coon2.F4 and

Coon2.F4 vs. Mann.1 reflect the most challenging test cases, since the aligned

data sets were from different labs and the LC conditions across different labs present

the largest possible variations. However, since they were all produced from the yeast

proteome, there should be a significant number of peptides shared by the data sets.

Therefore a robust feature matching algorithm should still be able to match these

common peptides’ features, despite the existence of large retention time distortion

and noises.

For each data set, the MS/MS spectra were used to identify peptides with the

PEAKS [166]. The yeast protein database was searched with following search param-

eters:

• parent mass error tolerance = 20 ppm (part-per-million);

• fragment mass error tolerance = 0.5 Da;
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• fixed PTM: carbamidomethylation on Cys (+57.02);

• variable PTMs: deamidation on Asn and Gln (+0.98), methyl ester on Lys

(+14.02), and oxidation on Met (+15.99).

The peptides identified with FDR ≤ 1% and matched by only one feature in the

LC-MS data were selected as a control set. This control set was a subset of “true”

peptide feature matches between different data sets and used to evaluate different

software’s performance.

Each of the compared software tools, SMFM, SMFM-g, msInspect, MZmine2, and

MultiAlign, was used to produce the pairwise time alignment for iPRG vs. Coon2.F4,

Coon2.F4 vs. Mann.1, Coon1.F3 vs. Coon2.F4, and Mann.1 vs. Mann.2, respectively.

The m/z and retention time error tolerance of each software were set to be the same

whenever possible. More specifically, ∆t was set to be five minutes for the samples

from different labs (iPRG vs. Coon2.F4 and Coon2.F4 vs. Mann.1) and two minutes

for the ones from the same lab (Coon1.F3 vs. Coo2.F4 and Mann.1 vs. Mann.2).

Other unique parameters of a software tool were set separately to achieve its own

best performance:

1. SMFM: ∆m = 15 ppm (part-per-million).

2. SMFM-g: ∆m = 15 ppm, gap penalty g(k) = 10k2.

3. msInspect: spline mode, mass error tolerance = 15ppm.

4. MZmine2: RANSAC algorithm mode, m/z tolerance = 10 ppm 1, retention time

tolerance (before correction) = 50 minutes, number of RANSAN iterations =

auto, minimal number of points = 20%, threshold value = 3, and same charge

state was required.

5. MultiAlign: mass tolerance = 15 ppm, and hybrid recalibration was selected.

The peptide features detected by msInspect from the LC-MS raw data were ex-

ported as the input of SMFM, SMFM-g, and msInspect. MultiAlign and MZmine2 do

not accept features detected by msInspect. Therefore, MultiAlign used the features

detected by DeconTools [138] which was the preferred feature detection method of

MultiAlign. MZmine2 used its own feature detection result.

1Error tolerance 15ppm crashed the software
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Table 7.2: The comparison of average aligned time errors (in seconds) and the per-

centages of correctly aligned feature pairs on true peptide features.

SMFM SMFM-g msInspect MZmine2 MultiAlign Polynomial-4

iPRG- 36.6 35.2 114.8 55.0 126.0 30.3

Coon2.F4 (100%) (100%) (87%) (99%) (92%) (100%)

Coon2.F4- 63.9 62.1 97.1 65.7 78.7 66.2

Mann.1 (82%) (82%) (71%) (80%) (73%) (79%)

Coon1.F3- 8.4 7.4 11.3 21.8 27.8 8.2

Coon2.F4 (100%) (100%) (96%) (94%) (89%) (100%)

Mann.1- 14.5 13.0
- -

16.4 15.7

Mann.2 (90%) (87%) (81%) (86%)

The performance of each method was measured quantitatively with the average

aligned time error of the true feature pairs. More specifically, for each pair of features

p = (m(p), t(p)) and p′ = (m(p′), t(p′)) that were from the two compared samples and

shared the same peptide, the aligned time error was calculated as |f(t(p)) − t(p′)|,
where f(·) was the retention time alignment function calculated by each software tool.

The average aligned time error and the percentage of correctly aligned “true” feature

pairs of each software applying on each pair of data sets are provided in Table 7.2. A

feature pair is considered as correctly aligned if their aligned retention time difference

is below the specified threshold in each experiment.

Although the five above mentioned software tools did not use the peptide iden-

tification deliberately, just for curiosity, the average aligned time errors obtained by

a simple method (Polynomial-4) that used the peptide identification were also added

in Table 7.2. By using the true feature pairs derived from the peptide identification,

the Polynomial-4 method fitted a fourth degree polynomial as the time alignment

function.2 This was an unfair comparison because Polynomial-4 used additional infor-

mation. Nevertheless, Table 7.2 showed that our new methods SMFM and SMFM-g

also compared well to this polynomial fitting. This indicated that the time alignment

function could not be fit accurately by a low degree polynomial, and further justified

the use of a monotonically increasing function instead of any specific simple function

in our SMFM model. For the alignment of Mann.1 vs. Mann.2, both msInspect and

2The second and third degree were also tried but the results were not as good as the fourth

degree.
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MZmine2 failed (msInspect crashed and MZmine2 returned no result). We suspected

that it was due to the large data size of Mann’s data sets (see Table 7.1). Our new

algorithms (SMFM and SMFM-g) finished successfully in less than one minute with

560 MB of memory usage.

Figure 7.5 illustrates the relative performance of the six compared methods vi-

sually. The resulting time alignment from each software was plotted together with

the “true” peptide feature pairs (represented by blue circles). Retention time of both

samples were scaled to 3,600 seconds in the figure. All the possible feature pairs that

had a mass difference less than 15 ppm were also plotted as gray crosses. Thus, intu-

itively, the software tools were using these gray crosses to compute a time alignment

function. A better software tool can generate an alignment function that fits the

trend of blue circles.

Similar figures for the alignments between biological replicates, Coon1.F3 vs.

Coon2.F4 and Mann.1 vs. Mann.2, were plotted in Figure 7.6. The time alignment

functions on these data sets were almost linear functions.

7.6 Discussion

The maximum feature matching problem (MFM) is formulated to match the peptide

features in label-free peptide quantification. To our knowledge this is the first combi-

natorial model for the problem. We show that the problem is NP -hard and provide

practical algorithms that guarantee the performance for each instance. Experiments

on real data demonstrate that our algorithms have better performances comparing to

other software in the literature.

While recognizing the requirement and contribution of ad hoc software tools in

bioinformatics research, we advocate that, whenever possible, a bioinformatics prob-

lem should have a clear combinatorial definition. This traditional practice in algorith-

mic research can help reduce the risk of overfitting the training data in the process of

seeking for a better algorithm. It also helps predict the performance of an algorithm

before implementing and running the software.

A feature p is defined by a pair (m(p), t(p)) in our study. However, more informa-

tion about a peptide feature retrieved from the LC-MS data can be added by replac-

ing m(p) with an information vector. Meanwhile, in the wight function w(δm, δt), δm
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(a) iPRG vs. Coon2.F4

(b) Coon1.F3 vs. Mann.1

Figure 7.5: Comparison of the feature matching software tools on data sets from

different labs: iPRG vs. Coon2.F4 (a) and Coon1.F3 vs. Mann.1 (b). The x-axis

denotes the retention time in the first sample and the y-axis denotes the retention

time in the second sample. A blue circle, which stands for a feature pair matched

according to peptide identification, is considered as the ground truth. A gray cross

represents a possible feature pair matched purely by the precursor mass. The curves

are produced by the compared algorithms without knowing the blue circles.

110



7.6. DISCUSSION

(a) Coon1.F3 vs. Coon2.F4

(b) Mann.1 vs. Mann.2

Figure 7.6: Comparison of the feature matching software tools on data sets from the

same lab: Coon1.F3 vs. Coon2.F4 (a) and Mann.1 vs. Mann.2 (b). As msInspect

and MZmine2 failed to align the data set Mann.1 and Mann.2, only results of SMFM,

SMFM-g, MultiAlign, and Polynomial-4 are shown in (b).
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needs to be replaced by the distance of the two vectors of the compared features. For

example, the intensity distribution over the isotopic peaks and over the retention time

can be used to measure the similarity (or matching quality) of two matched features.

The NP -hardness and algorithms remain the same in such case.

Researchers develop bioinformatics software to help find “real” biological solutions

from their experimental data. However, as the real solution is unknown before using

the software, the optimization goal is at most an approximation to the properties

of the real solution, instead of the real solution itself. We have demonstrated that

a clear definition of such an optimization goal has converted a biological problem

to a pure combinatorial problem that is readily for algorithmic research. Meanwhile,

performances of the algorithms that proposed for this combinatorial problem compare

favorably to the state-of-the-art ad hoc software packages.

In fact, a clear definition of the optimization goal is helpful even in ad hoc solutions.

For example, previous research has suggested alternately finding a time alignment and

a set of matching features by using each other as the input. It is not guaranteed that

such iteration can converge or improve the result. However, if the optimization goal is

definite, the iteration can be evaluated after each loop and terminated when a certain

requirement is achieved.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, MS/MS-based computational proteomics is explored on both

protein identification and quantification. The major content focuses on peptide iden-

tification, especially the modified peptide identification.

Protein identification is to interpret the spectral data and thus retrieve the protein

and PTM information. A large number of software packages, using database search or

de novo sequencing approaches, have been developed and undoubtedly accelerated the

progress of proteomics studies. However, with the rapid development in experimental

strategies and the mass spectrometry instruments, people are not satisfied by current

status in computational proteomics. On one hand, the accuracy and the resolution

of the instruments are kept getting better, and it is more flexible to choose different

techniques in an experiment. Thus, it is theoretically possible to improve the accuracy

of de novo sequencing and make it become a more practical approach. On the other

hand, only identifying proteins in a given sample is still far away from the goals of

proteomics. A thorough study on proteins and their PTMs demands sophisticated,

and specifically designed computational approaches. Thus, this dissertation provides

algorithmic solutions to fulfil these urgent requirements.

MS/MS instruments that implement multiple fragmentation modules can generate

different types of mass spectral data for the same sample. This inspired us to design

a novel scoring scheme, ADEPTS, to improve the performance of de novo sequencing

in Chapter 3. Features from two types of spectra are considered simultaneously in
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this scoring scheme. The comparison between ADEPTS and other software tools,

including PEAKS on CID and ETD data separately, PepNovo on CID data, and

CompNovo on CID/ETD spectrum-pairs, shows that ADEPTS performs better on

both correctly identified peptides and residues.

Novel proteins can be sequenced using de novo sequencing approaches, but identi-

fying PTMs of these proteins is a nontrivial challenge. Conventionally, users need to

specify many PTMs that possibly exist in a sample to a de novo sequencing software

tool. It increases the running time and degrades the result accuracy significantly.

Our novel dynamic programming algorithm, DeNovoPTM, is proposed in Chapter 4

to solve this problem by limiting the number of PTM occurrences per peptide. Ex-

periments show that DeNovoPTM outperforms other two state-of-the-art de novo

sequencing software, PEAKS and PepNovo, on modified peptide identification when

many PTMs types are considered.

Database search has been regarded as a reliable protein identification approach.

However, conventional database search tools cannot provide a PTM search efficiently

and accurately when a large number of PTMs are specified. We propose PeaksPTM

in Chapter 5 as an improved database search approach to enable the unrestricted

PTM identification. Different from conventional database search tools, PeaksPTM

does not require users to specify PTMs in advance; instead, all the PTMs recorded

in the Unimod database are considered in the search by default. A modified target-

decoy strategy is also applied to control false positives. PeaksPTM makes it possible

to unrestrictedly and confidently identify the general PTMs existing in a complex

biological sample. Experiments show that PeaksPTM achieves a stronger performance

than competitive tools for unrestricted identification of PTMs.

Glycosylation is one of the most frequently observed PTMs and plays important

roles in many disease processes, such as cancer. Identification of glycopeptides and

glycans is essential to better understand the functions and bioactivities of glycopro-

teins. The progress of this study is mainly hindered by the lack of algorithms for

intact glycopeptide characterization. We propose GlycoMaster DB in Chapter 6 to

fulfil this urgent requirement onN -linked glycopeptides. GlycoMaster DB can analyze

on a large-scale MS/MS dataset obtained from a biological sample with glycoproteins

being either enriched or not, and from either HCD/ETD or HCD-only fragmentation.

It enables the simultaneous identification of glycopeptide sequences and N -linked gly-

can composition from a user-specified protein database and a pre-configured N -linked
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glycan database, respectively. Testing on four datasets demonstrates the promising

performance of the software.

Protein quantification provides the information of protein quantity changes and

assists in discoveries of important biomarkers in disease studies. Matching the pep-

tide features extracted from different datasets is a crucial step to calculate the protein

abundance ratios. Heuristic approaches have been proposed in previous research but

none of them has yet claimed a clear optimization goal. In Chapter 7, a combina-

torial problem, maximum peptide feature matching, is formulated and proven to be

NP -hard. Practical algorithms are presented to solve the problem approximately in

polynomial time and can help determine an upper-bound and a lower-bound of the

optimal solution. The performances of our algorithms also compare favorably to other

existing methods.

8.2 Future Work

Our future work will focus on providing algorithmic solutions for computational

challenges encountered in mass spectrometry-based proteomics, especially glycopro-

teomics.

In the dissertation we introduce two approaches to improve the performance of

de novo sequencing, and a new approach can be proposed for better identification of

PTMs. When the number of PTM types increases, the accuracy of DeNovoPTM’s

result does not degrade too much in contrast to the conventional algorithms, but it

is still not confident enough for practical use. More information is required to pre-

cisely identify the PTMs, which inspires the possible application of the DeNovoPTM

algorithm on spectral data obtained from multiple fragmentation methods. Different

fragmentation patterns can confirm each other on the discrimination between true

and spurious fragmentation sites. It can be foreseeable that this combination can

increase the confidence of PTMs identified from de novo sequencing.

Glycoprotein characterization is an urgent task in the emerging computational gly-

coproteomics. Several open problems need to be addressed in the near future. The

first challenge is to refine the scoring scheme for the combination of spectra obtained

from two types of fragmentation methods. It has been proven that two commonly

used fragmentation methods (HCD and ETD) can fragment a glycopeptide with sig-

nificantly different mechanisms. Therefore, utilization of both types of spectra can
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simultaneously identify glycopeptides and glycan composition with higher confidence.

Our preliminary experiments have shown that a straightforward scoring scheme can

improve the identification from HCD/ETD spectral data. However, a sophisticated

scoring model considering multiple types of spectra, as well as an improved experi-

mental strategy, is strongly required for more confident characterization.

The second challenge is to construct and maintain a spectrum library of glycopep-

tides for MS/MS data analysis. This concept is similar to spectral library search:

searching a given spectrum in a spectral library constituted by previously identified

spectra, and using the best matched one to interpret the given spectrum. Such a

spectral library is currently not available because of the lack of automated glycopep-

tide identification tools, and our GlycoMaster DB can fulfill the requirement. This

research area is in its infancy and the library has the significant potential to accelerate

the progress of the emerging glycoproteomics research.

The third challenge is to interpret the spectral data generated by O-linked gly-

coproteins. MS/MS spectra produced by O-linked glycopeptides are different from

the ones by N -linked glycopeptides, and thus algorithms designed for N -linked gly-

copeptide characterization need to be cautiously revised. A large-scale analysis of

glycoproteome in a biological sample demands a universal framework that character-

izes both N -linked and O-linked glycopeptides, instead of using separated approaches.

Furthermore, an effective statistical model is also required to control false positives.

In addition, the determination of glycan structures, rather than glycan compo-

sition, is another non-trivial extension of the glycopeptide characterization problem

and demands experimental and computational solutions.
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[72] Philip Jones, Richard G. Côté, Sang Yun Cho, Sebastian Klie, Lennart Martens,

Antony F. Quinn, David Thorneycroft, and Henning Hermjakob. PRIDE: new

developments and new datasets. Nucleic Acids Research, 36(suppl 1):D878–

D883, 2008.
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MZmine 2: modular framework for processing, visualizing, and analyzing mass

spectrometry-based molecular profile data. BMC Bioinformatics, 11(1):395,

2010.

[122] Katharina Podwojski, Arno Fritsch, Daniel C. Chamrad, Wolfgang Paul, Bar-

bara Sitek, Kai Stühler, Petra Mutzel, Christian Stephan, Helmut E. Meyer,

Wolfgang Urfer, Katja Ickstadt, and Jörg Rahnenfhrer. Retention time align-

ment algorithms for LC/MS data must consider non-linear shifts. Bioinformat-

ics, 25(6):758–764, 2009.

[123] Dragan Radulovic, Salomeh Jelveh, Soyoung Ryu, T. Guy Hamilton, Eric Foss,

Yongyi Mao, and Andrew Emili. Informatics platform for global proteomic

profiling and biomarker discovery using liquid chromatography-tandem mass

spectrometry. Molecular & cellular proteomics, 3(10):984–997, 2004.

[124] Rahul Raman, Maha Venkataraman, Subu Ramakrishnan, Wei Lang, S. Ragu-

ram, and Ram Sasisekharan. Advancing glycomics: implementation strategies

at the consortium for functional glycomics. Glycobiology, 16(5):82R–90R, 2006.

[125] René Ranzinger, Stephan Herget, Thomas Wetter, and Claus-Wilhelm Von

Der Lieth. GlycomeDB – integration of open-access carbohydrate structure

databases. BMC Bioinformatics, 9(1):384, 2008.

130



REFERENCES
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