A Mode-Based Pattern for Feature
Requirements, and a Generic Feature
Interface

by

David Dietrich

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2013

(© David Dietrich 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Feature-oriented requirements decompose a system’s requirements into individual bun-
dles of functionality called features, where each feature’s behaviour can be expressed as a
state-machine model. However, state machines are difficult to write; determining how to
decompose behaviour into states is not obvious, different stakeholders will have different
opinions on how to structure the state machine, and the state machines can easily become
too complex.

This thesis proposes a pattern for decomposing and structuring the model of a feature’s
behavioural requirements, based on modes of operation (e.g., Active, Inactive, Failed) that
are common to features in multiple domains. Interestingly, the highest-level modes of the
pattern can serve as a generic behavioural interface for all features that adhere to the
pattern. The thesis proposes also several pattern extensions that provide guidance on how
to structure the Active and Inactive behaviour of the feature.

The pattern was applied to model the behavioural requirements of 21 automotive fea-
tures that were specified in 7 production-grade requirements documents. The pattern was
applicable to all 21 features, and the proposed generic feature interface was applicable to
50 out of 58 inter-feature references. A user study with 18 participants evaluated whether
use of the pattern made it easier than otherwise to write state machines for features and
whether feature state machines written with the help of the pattern are more readable
than those written without the help of the pattern. The results of the study indicate that
use of the pattern facilitates writing of feature state machines.

1ii

Acknowledgements

Joanne M. Atlee

Cecylia Bocovich

Mom

Dad

Yao

Joyce

iv

Table of Contents

List of Tables
List of Figures

1 Introduction

1.1 Thesis Description
1.2 Contributions
1.3 Thesis Organization

2 Background

2.1 Feature-Oriented Requirements
2.2 Related Work
2.3 Existing Requirements Documents

3 The Pattern

3.1 Pattern
3.1.1 The Inactive extension L.
3.1.2 The Active state extension

3.2 Interface L

3.3 Rational DOORS Templates,
3.3.1 Cruise Control Example

3.4 Pattern Summary

viii

ix

AW — e

(914

10
12

4 Case Study

4.1 Utility of the Pattern
4.1.1 Example — Adaptive Cruise Control
4.1.2 Example — Heating, Ventilation, and Air Conditioning

4.2 Generality of the Public Interface

4.3 Threats to Validity

4.4 Case Study Summary

5 User Study

5.3.2 State-Machine Comprehension

5.1 Performing the Study
5.2 Tutorial
5.3 Main Study
5.3.1 Participant Background
5.3.3 State-Machine Modelling
5.3.4 Participant Confidence .
5.3.5 Timing Results
5.4 Threats to Validity
5.5 User Study Summary

6 Conclusion
References
Appendices

A Catalogue of Case Study Models
A.1 Electronic Braking Features . .
A.1.1 Automatic Braking (AB)

vi

39
39
43
45
52
54
95

57
57
o8
29
60
63
71
7
78
79
80

83

85

91

A.1.2 Anti-lock Braking System (ABS) 93

A.1.3 Active Trailer Stability Assist (ATSA) 94
A.14 Brake Assist (BA) 95
A.1.5 Brake Cleaning (BC) 96
A.1.6 Electric Park Brake (EPB) 97
A.1.7 Enhanced Traction System (ETS) 98
A18 HillHold (HH) 99

A.1.9 Traction Control System with Electronic Stability Control (TCS_ESC)100
A.1.10 Competitive Traction Control System with Electronic

Stability Control (Competitive. TCS_ESC) 102
A.1.11 Manual Park Brake (MPB) 104

A.2 Freeway Limited Ability Autonomous Driving
Features 105
A.2.1 Forward Collision Alert (FCA) 106
A.2.2 Lane Centring Control (LCC) 107
A.2.3 Lane Keep Assist (LKA) oo o 108
A.24 Lane Change Control (LXC) 110
A.25 Road Change Alert (RCA) 112
A.3 Heating, Ventilation, and Air Conditioning Features 114
A.3.1 Air Recirculation Control (ARC) 114
A3.2 Air Quality System (AQS) 117
A.3.3 Recirculation Control Run (RUN) 118
B Cruise Control in DOORS 119
B.1 The Primary DOORS Template, 119
B.2 Templates for the Enabling Stages, 122

vii

C User Study Materials 125

C.1 User Study Tutorial 125
C.2 User Study - Control Group 140
C.3 User Study - Pattern Group 152
C.4 User Study - Pattern+Interface Group 164

viil

List of Tables

4.1
4.2
4.3
4.4

5.1

5.2
2.3

5.4

2.5

2.6

The 21 features that we modelled over the course of the case study.
The number of features that use the various pattern constructs.
The average number of states and transitions in each feature.

The number of features that are modelled using a pattern variant.

The six questions that we asked participants about the provided state-
machine model of the ACC feature. The criteria we used to evaluate par-
ticipant’s responses are given in italics.

The total number of participants who answered each question correctly. . .

The first three of seven requirements details that we used as evaluated cri-
teria to assess the correctness of a participant’s state-machine model. The
criteria we used to evaluate participant’s responses is given in italics.

The final four of seven requirements details that we used as evaluated criteria
to assess the correctness of a participant’s state-machine model. The criteria
we used to evaluate participant’s responses is given in italics.

The total number of participants who modelled each evaluation criterion
correctly. L L

The average confidence of each participant group in his or her solution to
the comprehension and modelling tasks.

X

72

List of Figures

2.1 An example domain model for an automotive product line.
2.2 State-machine notation. L

2.3 Two anonymized state-machine models from production-grade requirements
documents.

3.1 The Mode-Based Behaviour Pattern, where the modes are coloured with the

degree to which the feature’s interactions with its environment are restricted. 18

3.2 The Ordered Enabling variant of the Inactive state extension.
3.3 The Unordered Enabling variant of the Inactive state extension.

3.4 The Hybrid Enabling variant where some stages are ordered and other stages
are not ordered. L

3.5 The Hybrid Enabling variant where the overall enabling process is unordered
but substages are ordered.

3.6 The framework of the Active state extension showing the kinds of behaviour
that can occur in each state. L.

3.7 The Active state with multiple instances of the Primary Active Region. . .
3.8 The Cruise Control (CC) feature.
3.9 The Lane Centring Control (LCC) feature.
3.10 The primary pattern DOORS template.
3.11 A single enabling step in the pattern.
3.12 A template for describing the Unordered Enabling process.

3.13 A fragment of the CC requirements showing several user action descriptions.

X1

21

23

23

25
27
29
31
34
35
36
37

3.14 A fragment of the CC requirements showing several of the Active state’s

4.1
4.2
4.3
4.4

4.5

0.1

5.2

2.3

5.4

2.5

2.6

2.7

5.8

2.9

Al
A2

requirements. e e e

Adaptive Cruise Control (ACC) feature.
The Heating, Ventilation, and Air Conditioning (HVAC) feature.
The Heating, Ventilation, and Air Conditioning (HVAC) feature.

The Heating, Ventilation, and Air Conditioning (HVAC) feature modelled
without air quality control.

The Air Quality region of HVAC modelled as the Air Quality System (AQS)
feature.

The previous experience with state-machine modelling of all of the study
participants in each group.

The previous experience with automotive modelling of all of the study par-
ticipants in each group.o

A Venn diagram showing the relationships between each study participant’s
experience with state-machine modelling, automotive modelling, and indus-
trial modelling.

Each group’s participant’s comfort with state-machine models.

The Adaptive Cruise Control feature’s state-machine model provided to the
PI group’s participants.o

The Adaptive Cruise Control feature’s state-machine model provided to the
P group’s participants.

The Adaptive Cruise Control feature’s state-machine model provided to the
C group’s participants.

The average amount of time that the participants of each group spent on
the state-machine comprehension task.

The average amount of time that the participants of each group spent on
the state-machine modelling task.

The Automatic Braking (AB) feature..
The Anti-lock Braking (ABS) feature.

xii

65

66

A.3 The Active Trailer Stability Assist (ATSA) feature. 94

A4 The Brake Assist (BA) feature.o 0oL 95
A5 The Brake Cleaning (BC) feature. 96
A.6 The Electric Park Brake (EPB) feature. 97
A.7 The Enhanced Traction System (ETS) feature. 98
A.8 The Hill Hold (HH) feature. 99
A.9 The Traction Control System with Electronic Stability Control (TCS_ESC)
feature. 100
A.10 The Competitive Traction Control System with Electronic Stability Control
(Competitive TCS_ESC) feature. 102
A.11 The Manual Park Brake (MPB) feature. 104
A.12 The Forward Collision Alert (FCA) feature. 106
A.13 The Lane Centring Control (LCC) feature. 107
A.14 The Lane Keep Assist (LKA) feature. 108
A.15 The Lane Change Control (LXC) feature. 110
A.16 The Road Change Alert (RCA) feature.. 112
A.17 The Air Recirculation Control (ARC) feature. 114
A.18 The Air Quality System (AQS) feature. 116
A.19 The Recirculation Control Run (RUN) feature.. 118
B.1 The Rational DOORS requirements for the Cruise Control (CC) feature
(Main Template: part 1/3). o 120
B.2 The Rational DOORS requirements for the Cruise Control (CC) feature
(Main Template: part 2/3). 121
B.3 The Rational DOORS requirements for the Cruise Control (CC) feature
(Main Template: part 3/3). L 122
B.4 The Rational DOORS requirements for the Cruise Control (CC) feature
(Enabling State: Disabled). 122
B.5 The Rational DOORS requirements for the Cruise Control (CC) feature
(Enabling State: User Enabled 1). 123

B.6 The Rational DOORS requirements for the Cruise Control (CC) feature
(Enabling State: Environment Enabled 1). 123

B.7 The Rational DOORS requirements for the Cruise Control (CC) feature
(Enabling State: User Enabled 2). 123

Xiv

Chapter 1

Introduction

This thesis presents a pattern for expressing the requirements of a feature according to its
modes of behaviour, and a generic feature interface that separates a feature’s behaviour
into its public and private components. This chapter provides an overview of our research
method, lists our contributions, and describes the organization of this thesis.

1.1 Thesis Description

In software engineering, a pattern is a proven solution to a common problem. Patterns
provide several secondary benefits such as improved documentation and a standard vocab-
ulary that improves communication among developers [47]. Patterns are most commonly
used during the design and implementation phases of software development. However,
patterns can be used earlier, during the requirements elicitation and specification phases
of development.

A requirements pattern addresses a problem that arises when eliciting or specifying the
requirements of software. Two particular benefits of requirements patterns are efficiency
in eliciting or documenting the requirements problem, and predictability in knowing that
the resulting specification should be comparable to previous specifications derived from
the same patterns.

This work presents a requirements pattern for specifying the behavioural requirements
of individual features in a product line. A feature is defined as a “coherent and identifiable
bundle of system functionality” [48] that is specified in isolation, can be developed as
an independent increment to the system or product line, and may be optional in the final

product. A product line is a collection of features, and the dependencies between them, that
can be combined to form different software products [12]. Previous work on requirements
patterns has either been general [41, 45] or very domain specific [14, 29]. As far as we are
aware, this is the first requirements pattern that focuses on feature-oriented development.

The pattern has been designed for use with state-machine models (namely, UML State
Machines [35]) and this thesis uses state-machine models to illustrate the pattern concepts.
State machines are widely known among the requirements-engineering community and
state-machine models are accepted by most practitioners as an effective way to describe
the behaviour of a system. However, state machines are difficult to write; determining how
to decompose behaviour into states is not obvious, different stakeholders will have different
opinions on how to structure the state machine, and the state machines can easily become
too complex. Therefore, one of our motivations for creating the pattern was to improve
the writability of state-machine models.

The pattern is referred to as a Mode-Based Behaviour Pattern because it decomposes
the behaviours of a feature according to their operating modes. We have identified three dis-
tinct modes: Inactive, which describes a feature’s enabling process; Active, which describes
a feature’s essential requirements; and Fuailed, which describes the failure requirements of
a feature.

A key attribute of the pattern is that the states of the pattern can serve as a public
interface of a feature. The interface exposes only a feature’s high-level details — the
three states based on operational modes — that are common to all features that apply
the pattern. The interface is useful because the person specifying the requirements of a
referencing feature — a feature that references another feature in the system — needs to
have knowledge about the state of the other features being referenced. If the information
required is only whether a feature is Inactive, Active, or has Failed, then the interface
simplifies the specifier’s task because every feature that is modelled using the pattern
could reveal this information on its interface. The interface thus provides the most benefit
when many of the features in a product line apply the pattern.

Our research group is partnered with an automotive company that is seeking to improve
their requirements elicitation and specification processes. As part of this partnership, they
have given us access to requirements documents for several of their automotive features.
To validate the pattern’s applicability, we have performed a case study in which we mod-
elled the requirements of 21 production-grade features, based on the documented textual
requirements. The requirements of each feature was manually examined and used to cre-
ate a state-machine model of its behaviour employing the pattern. Our results seem to be
promising as we found that all of the 21 features could be modelled using the pattern.

The benefits of the pattern were explored by performing a user study involving under-
graduate and graduate students at the University of Waterloo. Most of the participants had
some level of knowledge of state-machine modelling. The study had 18 participants split
into three groups: a Control group, a Pattern group, and a Pattern+Interface group. The
participants of each group received a slightly different tutorial and questionnaire: members
of the Control group received no information about the pattern or interface, members of
the Pattern group received information about the pattern but no information about the in-
terface, and members of the Pattern+Interface group received information about both the
pattern and the interface. Those participants who received information about the pattern
produced the most correct and most complete models.

Lastly, several templates have been created within IBM’s Rational DOORS! that help
specifiers to employ the pattern when specifying a feature. Rational DOORS is a require-
ments management system that separates requirements into modules, where each module
describes a set of requirements. A DOORS template is a module that pre-defines the kind
of information to be provided for the requirements and how that information is presented.
Three DOORS templates have been created that provide a pre-defined structure for a fea-
ture’s requirements. We chose to embed support for our pattern within Rational DOORS
because it is the most widely-used requirements management system, and because DOORS
is used by our industrial partner to manage their requirements.

Our thesis statement is:

Automotive features have enough behavioural similarities that a single pat-
tern can be created for structuring feature behaviour. The high-level compo-
nents of the pattern can serve as an interface to features. When applied, the
pattern eases the task of specifying new requirements.

1.2 Contributions

This thesis presents four main contributions:

e A general pattern for structuring the behavioural requirements of a feature. The
pattern was developed from similarities that we observed among requirements of
automotive features, but there is nothing domain specific about the pattern. We
believe that the pattern is more widely applicable to embedded systems features

Thttp://www-03.ibm.com/software /products/us/en/ratidoor/

outside of the automotive domain but that is not shown in this thesis. We explore
the forces that drive adoption of the pattern and we list several variants of the pattern.

e A general interface by which a feature reveals to other features its current mode of
operation. We show that the vast majority of inter-feature references depend on only
information that is revealed by the public interface of a feature.

e A user study that shows that state-machine models that employ the pattern are
easier to write than models that are created without using the pattern. The study
was performed on 18 participants with varying degrees of experience writing state
machines.

e A catalogue of state-machine models that abstractly model the behavioural require-
ments of 21 production-grade automotive features. This kind of industry data is not
widely available, and so despite our models being abstract — we do this to avoid
revealing any proprietary details — they still provide a good model for examining
the requirements of features used in industry. Complete, detailed versions of the
models have been provided to our industrial partner.

1.3 Thesis Organization

Chapter 2 of this thesis provides an overview of the notation and vocabulary used through-
out the thesis and discusses related work. Chapter 3 introduces the Mode-Based Behaviour
Pattern as well as some variants and examples. Chapter 3 presents the generic feature in-
terface that is a natural consequence when the pattern is used extensively, and it presents
the DOORS template for documenting features that are structured according to the pat-
tern. The results of the case study are presented in Chapter 4 and the user-study results
are presented in Chapter 5. Our work is summarized in Chapter 6. Appendix A includes
abstract models for all of the features that we examined in the case study, and Appendix B
provides a complete example of an automotive feature documented using our DOORS tem-
plate. Appendix C contains the tutorial and study materials created for the user study.

Chapter 2

Background

This chapter provides the background needed to understand the rest of the thesis. First,
this chapter gives a brief overview of feature-oriented software development and product
lines, and then discusses the UML State Machine language used in the models provided
in the thesis. Next, this chapter presents various related work. Lastly, it discusses the
existing requirements documents from our industrial partner as some motivation for this
work.

2.1 Feature-Oriented Requirements

Software requirements describe what is needed to solve a problem or achieve some objective.
Typically, requirements describe a system’s functionality in the context of its environment
(i.e., the portion of the real world that is relevant to the software development project).
This work is interested only in a system’s behavioural requirements, and assumes that the
system has some environment that it reacts to and affects. The behaviour of a system
is assumed to be decomposed into features, where each feature is defined as a “coherent
and identifiable bundle of system functionality” [48] that is specified in isolation, can be
developed as an independent increment to the system or product line, and may be optional
in the final product. This is referred to as feature-oriented software development (FOSD).
Some of the benefits of using FOSD are:

e By decomposing behaviour into features, software systems can be assembled using
features as building blocks [3].

e Reuse of features is achieved by encouraging multiple different products to be cre-
ated from a single product line [3]. A product line is a collection of features, and
the dependencies between them, that can be combined to form different software
products [12]. Features in a product line can be combined in different ways to form
products that meet the needs of individual users and specific situations in which an
application will be used. The development effort when creating new products from
the product line is reduced because many of the existing features can be reused.

The requirements of each feature are specified separately, in a separate requirements
document. Thus, features are treated as first-class entities starting from their conception.
Our requirements modelling language is very similar to the Feature-Oriented Requirements
Modelling Language (FORML) in which requirements are specified in terms of their desired
effect on the environment of the to-be-developed product [44]. A FORML requirements
specification of a product line includes a single feature model, a single domain model, and
a state-machine model for each feature in the product line.

The FORML feature model describes the relationships between features in the product
line. The feature model is a tree where the root is the product line and every other node
is a feature. There are two types of relationships that are modelled in the feature model:
a requires relationship and an excludes relationship. The requires relationship is specified
by the tree structure, where a feature requires that its ancestors be present in any product
in which it is present. The ezcludes relationship is modelled by connecting two features
with a dashed line, indicating that those two features cannot exist in the same product.
In some cases, a requires relation can also be modelled using a cross-tree relation in the
same way as the excludes relation is modelled. More information on feature models can
be found in previous work by Kang [24].

A FORML requirements specification includes a model of a product’s environment,
called a domain model, that defines environmental phenomena that can be sensed or con-
trolled by the product. Figure 2.1 shows a simple domain model for an automotive product
line with two features: Adaptive Cruise Control (ACC) and Lane Centring Control (LCC).
The behaviour of these features is not important at this time. The environment includes a
Vehicle that has several attributes (e.g., speed). The Vehicle is on a RoadSegment, which
has one or more lanes, one of which is the current lane of the vehicle. The environment
also has a Driver (who may or may not be attentive), and a heads up display for presenting
information to the driver. The domain model uses UML Class Diagram syntax to express
classes of objects in the environment, object attributes, and relationships between objects.
Complex constraints over the domain can be modelled using OCL constraints.

Lane

1 1.%
currenfLane
LaneCentring *
laneCentring : real N RoadSegment
~
~ speedLimit : int
N curvature : real
on
1
Driver on
handsOnWheel : {true, false, 1 * *
unknown}
Vehicle
speed : int

turnSignal : bool
steering : real

Heads-up Display

confains
featpires

Adaptive Cruise Control

\ (ACC)

X cruiseSpeed := 30
headway := 2

| Input Signals:

| ACC_ON

| ACC_OFF

| ACC_SET

| HDWYCHG(value)

| SPDCHG(value)

| Lane Centring Control
| (LCC)
I Input Signals:

I I
1
I
I LCC_ON |
I
I

I LCC_OFF

Figure 2.1: An example domain model for an automotive product line.

The domain model also includes class declarations for the product line’s two features:
ACC and LCC. The domain model includes feature classes (which correspond to the fea-
tures in the feature model) because, in feature-oriented requirements where each feature is
modelled separately, the environment of a feature includes the other features in the prod-

7

!

1

s12 s2
entry / runDiagnostic()

when(speed > 30)

S11
S13 S21 S22

Figure 2.2: State-machine notation.

L in(s13)

Y

S.
l
1
[
1
!
i
[
1
[
1
l

uct line. Features are denoted as classes with dashed borders. Feature-specific data (e.g.,
the speed at which the cruise control feature will maintain the vehicle) are modelled as
attributes of the feature classes. Feature classes also list their input and output events.

In practice, the domain model for an entire product line could be very large. A require-
ments specifier who wishes to include a domain model with a feature’s requirements will
likely want to present a slice of the domain model that includes only the portions that are
relevant to the feature.

Every feature in a product line is modelled as a state-machine model. There is a
one-to-one mapping between features and state machines’. The state-machine modelling
language is similar to that of UML State Machines [35] or statecharts [20]. At its core,
a state-machine model is a collection of states and transitions between those states. The
UML State Machine notation adds several language features to support the modelling
of complex behaviours. Consider the state machine exhibited in Figure 2.2. A state
may contain sub-states; in this case, the former is called a superstate (e.g., S1, S2). A
superstate may be decomposed into one or more concurrent regions that are separated by
dashed lines (e.g., S1); regions model orthogonal behaviour that can occur in parallel. A
transition from a black circle to a state designates the initial state of a machine (e.g., S1).
If a transition’s destination is a superstate, then the next state is the initial state of the
superstate’s sub-machine (e.g., S21) or the initial states of the superstate’s regions (e.g.,
S11 and S12).

In FORML a feature can be modelled as a state-machine fragment, but without loss of generality we
assume that each feature is modelled as a full state machine

Transitions can be annotated with an event, which is a user action; a guard condition,
which is a boolean condition over environmental variables; and a set of actions on envi-
ronmental variables; all of these annotations are optional. Events initiated by the user are
denoted in upper-case and all other annotations are lower-case. Guard conditions are typ-
ically delimited by square brackets to distinguish them from events. Actions are prefaced
with a slash. The following are several examples of valid transition labels:

1. when(Vehicle.speed > 30) / Headlights.lightLevel := ON
2. LCC_ON
3. SPDCHG(value) / ACC.cruiseSpeed += value

Note how literals in the labels refer to events (i.e., user actions) and variables (i.e., envi-
ronmental conditions) from the domain model presented in Figure 2.1. More information

about the types of transition labels can be found in a recent paper by Shaker and Atlee on
FORML [44].

There are also several types of special transition annotations. Annotation when(c) refers
to the event of condition ¢ becoming true (e.g., when(Vehicle.speed > 30)). Annotation
[in(S)] is a condition that is satisfied when the product’s execution is in state S (e.g.,
in(S13)); state S might refer to a state in another feature.

A transition is enabled when the transition’s triggering event occurs. Assuming that the
state machine is deterministic, if the guard condition of the transition is also true then the
transition executes. When the transition executes, the transition’s actions are performed.
If a transition is unlabelled, it is enabled as soon as its source state is entered. The join
pseudo-state (modelled as a black bar) is used to aggregate multiple transitions (e.g., the
transitions from source states S11 and S13 to destination state S2). The join’s outgoing
transition executes only when all of its incoming transitions are enabled.

A state may be annotated with state actions (e.g., S2). A state action has the same
types of labels as a normal transition: a triggering event, guard condition, and actions, all
of which are optional. The primary reason to use a state action is that the transition does
not cause a change of state therefore, any currently executing actions are not interrupted.
Also, no state action triggered by the state entry or state exit is enabled. A secondary
benefit is that use of state actions reduces the number of visible transitions in the state
machine, thereby reducing the visual complexity of the model.

A feature’s requirements may refer to some complex data computation that would be
difficult and time consuming to model at the requirements phase. Data computations can

appear in expressions for events, guard conditions, or actions. Such a computation can
be represented abstractly as an undefined function that models the computation without
explicitly defining it. For example, in Figure 2.2, the Compute Value() function is an action
that is executed when state S2 is entered.

A product’s behaviour can therefore be thought of as the composition of the state
machines of all of the features in the product?.

2.2 Related Work

This section briefly summarizes related work on requirements patterns and on interfaces
for features.

Patterns for Easing Requirements Elicitation

Early work on requirements patterns includes domain abstractions or clichés [41] and do-
main models [4, 45], which record general domain knowledge. The Requirements Appren-
tice [41] employs a library of clichés that can be reused in the specification of multiple
systems, where a cliché is a set of roles — such as a repository, its contents, and its users —
and constraints between roles. Clichés are normally documented using semi-structured text
rather than graphical models. Sutcliffe and Maiden [45] extended these ideas to a catalogue
of generic reusable domain models that encode structural and behavioural requirements
of domain entities. More generally, Jackson introduced problem frames [22] as a way of
classifying problems and sub-problems according to desired changes to or constraints on
environment phenomena (e.g., a transformation problem, or a workpieces problem). A
problem frame depicts a context diagram that relates the system-to-be-developed, dis-
tinct domains of the environment (& la domain models [45]), and desired requirements
among domains (e.g., a transformation requirement relating an input domain and an out-
put domain). Clichés, domain models, and problem frames assist the engineer to elicit
requirements; and the use of domain terms improves the consistency of vocabulary in re-
quirements documentation. Our work on feature patterns is complementary in that it aids
in the structuring and documentation of behavioural requirements after they have been
elicited and decomposed into feature modules.

2Composition of FORML feature modules is defined to be a model of the product line comprising those
features [44]. However, in this thesis the composition of a set of features’ state machines is a model of the
product comprising these features

10

The use case unification method (UCUM) [46] specifies a predictable method for trans-
forming use-case descriptions and sequence diagrams into a unified behaviour model of a
system using statecharts. Because of the predictability of the UCUM transformation, all
those stakeholders who are involved in the transformation process should have a similar
mental model of the unified behaviour model of a system. Our pattern provides similar
predictability benefits to the UCUM because stakeholders who know the pattern know
what to expect when they view a model created using the pattern. However, the UCUM is
not specific to features. Because the UCUM has an effect on the structure of the resulting
behaviour model it is likely not complementary to our pattern.

The Software Cost Reduction (SCR) requirements model [21] decomposes a system’s
behaviour into mode classes and modes, and our use of the term mode comes from their
work. A mode class in an SCR model is comparable to a feature or a sub-system of
tightly coupled features in our work. However, SCR does not propose any reusable pattern
for decomposing behaviour into modes, does not employ hierarchy for organizing a mode
class’s modes, and does not have any concept like an interface for mode classes.

Domain-Specific Patterns

Domain experts have collected and codified patterns for modelling specific types of re-
quirements, such as business problems (e.g., accounts, transactions, plans, contracts) [16],
embedded-system requirements (e.g., controllers, fault handling, watchdogs) [14, 29], in-
formation systems (e.g., information, presentation, access control) [50], security require-
ments [9], and nonfunctional requirements [17]. Most of these patterns focus on how to
structure inter-related components, although Douglass [14] and Konrad et al. [29] include
behaviour models of interactions among components. Our concept of a feature could be
analogous to the behaviour of a single component in these other approaches, or could be
analogous to some system-level functionality that involves multiple components. In either
case, our pattern for modelling a feature’s behaviour would be complementary to these
domain-specific requirements patterns because our pattern advises on how to structure the
requirements of an individual feature, whereas these patterns focus on connections and
relations among multiple specialized components.

Feature Interfaces

Much has been written about modularity, interfaces, and information hiding [38]. We focus
our discussion on feature modularity. Within the feature-oriented software-development

11

community, the emphasis of feature modularity is on cohesion and locality of feature in-
formation [7, 25, 34]. There is no concept of feature interfaces or support for information
hiding, so features refer to and directly override the details of other features. At the other
extreme, the feature-interaction community often models features as distinct modules that
have no knowledge of each other [23, 31]. There is no need for feature interfaces because
each feature’s information is completely hidden. The downside of total information hiding
is that it is hard to specify and manage intended feature interactions (e.g., enhanced or
overriding behaviour). The aspect-oriented community has proposed aspect-aware inter-
faces that advertise a module’s pointcuts as well as its public data attributes and meth-
ods [1, 27], thereby providing limited means by which other modules can use, extend, or
override the module’s services. However, such interfaces are not stable, as a module’s set of
public pointcuts tends to change as new aspects are introduced or evolve [27]. In contrast,
we propose a feature interface that provides limited information about a feature’s current
execution state (information that is useful in the modelling of other features), such that
the interface is stable and generic for all features. There is also work on deriving feature
interfaces to support compositional verification [32], however such interfaces do not aid in
the specification or evolution of feature models.

2.3 Existing Requirements Documents

Our industrial partner’s engineers have indicated that their product line includes over 500
features. Each feature tends to be fairly isolated from all other features, and rarely will
a feature directly modify the behaviour of another feature. Instead, a feature will request
information from other features and use that knowledge to determine its own behaviour.

In our industrial partner’s requirements documents, a feature’s required behaviour is
primarily described in natural language accompanied by tables that provide information
about environmental variables and a context diagram that lists the feature’s input and
output signals. The signal names are, in most cases, not descriptive which makes it difficult
for someone unfamiliar with the system to understand what the signals represent. Overall,
we found that the context diagrams provided little assistance when trying to understand
a feature’s behavioural requirements. The description of a complex feature is sometimes
supplemented with a state-machine that sketches the feature’s high-level behaviour —
especially if the feature’s enabling process progresses through multiple stages, or if the
feature has multiple conditional behaviours once it is active. Such a state machine rarely
includes details about a feature’s active behaviour, and its transitions tend to specify only
a few of the feature’s enabling conditions and none of the feature’s actions.

12

(Disabled

Standby
Disabled

Standby
Enabled

Engaged

Dis-
engaging

Intermediate
0 \

Vs

2

~

(a) Feature A (a) Feature B

Figure 2.3: Two anonymized state-machine models from production-grade requirements
documents.

To illustrate the kinds of state-machine models in our industrial partner’s requirements
documents we have included two examples of features’ state machines as they exist in
the requirements documents. Figure 2.3 shows anonymized versions of these state-machine
models®. Although the state machines have been anonymized, the state names in the figure
reflect the state names in the industrial documents. Feature A, depicted in Figure 2.3a,
initializes in state Disabled and proceeds through its enabling process (states Standby
Disabled and Standby Enabled) to the Engaged state, which represents all of the feature’s
active behaviour. Details of how the feature behaves when it is Engaged were not included
in the industrial partner’s state-machine model of feature A. Lastly, the Disengaging state
is entered when feature A is becoming disabled, but is not yet fully disabled. Feature B,
depicted in Figure 2.3b, initializes in state 0 (On)?, indicating that the feature immediately
starts to affect the system’s behaviour. Again, the feature’s behaviour while On was
not included in the industrial partner’s state-machine model of feature B. The feature
transitions from 0 (On) to 1 (Partial On) if the user presses the disable button, at which
point part of the feature’s functionality is disabled. The feature transitions from 0 (On) to
2 (Off) if the user presses and holds the disable button, at which point all of the feature’s

3All feature-identifying names and all transition labels have been removed, while retaining the original
models’ structure and state names.

4Tn the following description we have introduced the terms On, Off, and Partial On to make the
description easier to read — in our industrial partner’s requirements the states are only labelled as 0, 1,
and 2.

13

behaviour is disabled. The feature transitions from 2 (Off) to 1 (Partial On) under certain
environmental conditions, and transitions from 2 (Off) to 0 (On) when the user enables
the feature. The Intermediate state provides the same behaviour as state 0 (On), and is
used as a temporary override that activates the feature in the event of an emergency.

There are several interesting observations that can be made about our industrial part-
ner’s state-machine models for features A and B.

e It is common for documents to use slightly different terminology, or for the same
term to be used differently, across multiple documents (e.g., an activated feature is
in state 0 vs. On vs. Active vs. Engaged). This kind of inconsistent naming is
unlikely to be a serious problem, but can lead to minor ambiguities and confusion.
Domain knowledge gained from reading one feature’s requirements does not ease the
task of reading other features’ requirements.

e State-machine models tend to be simple and non-hierarchical. Of the 21 feature
requirements that we examined, 9 included state-machine models, and of these, 4
used hierarchy to describe some aspect of the active behaviour for the feature.

e The state machines often omit failures and recovery, although the textual require-
ments mention how (or at least that) the feature can fail. Of the 21 feature require-
ments, 11 requirements mention the possibility of the feature failing, 8 requirements
specify a feature’s failure and recovery conditions, and 4 of the 9 state-machine mod-
els include failure states. The feature-requirements documents are sometimes light
on failure requirements because many features (and all safety-critical features) have a
separate safety-requirements document that describes how the feature behaves in the
presence of failures. We did not have access to any safety-requirements documents.

e Despite their many differences, the features have the same basic modes of operation:
(1) active, in which the feature affects system behaviour; (2) becoming enabled; and
(3) failed. These similarities in the features’ behaviours prompted us to propose
a pattern for structuring a feature’s behaviour model in a way that explicates the
similarities. Further study of the features’ requirements suggested ways of decom-
posing and structuring the sub-behaviour of how a feature becomes enabled and how
a feature affects the environment of the product.

14

Chapter 3

The Pattern

This chapter describes the pattern that we have devised and the accompanying interface for
features. The pattern decomposes the model of a feature’s behavioural requirements, based
on the three modes of operation that we have observed in our industrial partner’s feature
requirements: Inactive, Active, and Failed. This chapter also describes several pattern
extensions that provide guidance on how to structure the Inactive and Active behaviours
of a feature.

The pattern is presented using the pattern template provided by the Third International
Workshop on Requirements Patterns [10] for presenting patterns published in the workshop.
We chose to use that template over more widely-known pattern templates because it is
specifically designed for describing software requirements patterns.

The template has been slightly altered to suit our pattern. The template does not
include a section on Known Uses because we are only now proposing the pattern and have
not yet seen it used in any existing works. The template also does not include a Cataloging
section because we are presenting only one pattern and so we do not need to place it
in context with other patterns. We have added a Resulting Context section to describe
consequences that result from applying the pattern.

The Solution section of the pattern uses state machines to illustrate the pattern con-
cepts. The example that we provide is based the requirements of a specific production-grade
automotive feature from our industrial partner. Details are removed or changed to avoid
revealing proprietary information.

Following the pattern description, we describe how the high-level states of the pattern
can serve as a general interface for referring to a feature’s high-level behaviour. At the end

15

of this chapter, we describe several Rational DOORS templates that we have created for
specifying the requirements of features modelled using the pattern.

3.1 Pattern

Name: Mode-Based Behaviour Pattern

Context: The Context lists the conditions under which the pattern is valid. The Re-
quirements Engineering Activity lists the phase(s) of the requirements process in which the
pattern should be used. The Stakeholders are those, from all of the product’s stakeholders,
who are involved in the use of the pattern.

e Requirements Engineering Activity: The pattern is used during the Requirements
Elicitation and Specification phases of development.

e Stakeholders: The stakeholders of models created using the pattern are the Require-
ments Engineers, Software Developers, and Product Managers. The Requirements
Engineers specify the feature’s requirements, the Software Developers implement the
requirements, and the Product Managers manage the feature throughout its lifetime.

Problem: The Problem describes an undesirable situation faced by the stakeholders who
are listed in the Context section.

Practitioners have difficulty writing state-machine models, for several possible reasons:

e [t is difficult to determine how behaviour should be decomposed into states. This is
especially true when a feature is first being specified. For example, modellers find it
hard to choose the level of granularity of states (i.e., whether to decompose a state
into two or more states), or to decide when to use states versus variables to record
information about the machine’s execution state.

e Different stakeholders are likely to make different decisions about how a state-machine
model should be structured, this complicates the task of reading a model if the
structure of the model does not match the reader’s mental model of feature behaviour.
In many cases, the different modelling decisions that stakeholders make will have no
effect on the overall quality of the model, but there are cases in which a particular
modelling decision may be more appropriate even though it correctly describes the
intended behaviour. For example, although the same behaviour can be modelled in
several ways it may be best to minimize the number of states used in the solution.

16

e A state machine that models very complex behaviour can be difficult to manage. If a
model is complex, a reviewer or reader of the model may not take the time needed to
understand all of the model’s details. On the other hand, if a state machine models
complex behaviour too abstractly, the model is of no use when one needs a detailed
understanding of the feature’s behaviour.

Although we do not have concrete evidence for these claims, we have observed these
problems when working with student modellers, and these are problems that the engineers
at our industrial partner mentioned to us during our discussions with them.

We believe that the Mode-Based Behaviour Pattern has the potential to mitigate many
of these problems because it gives practitioners a pre-defined framework for reading and
writing requirements.

Forces: The Forces section describes the concerns that need to be balanced by the require-
ments process or product.

e There is a trade-off between the usability of the modelling language and the percent-
age of a feature’s requirements that are modelled. A state-machine model might not
be detailed if it is easier and faster to describe details using natural language.

e The pattern introduces several states. If a feature’s model does not need all of the
pattern’s states and the modeller includes the unused states (e.g., for completeness),
the unused states will clutter the model and may make the model more difficult
to understand. In contrast, if the unused states are removed from the model then
a reviewer of the requirements document may be unsure if they were omitted on
purpose or as an oversight.

Solution: The Solution presents the requirements pattern that solves the Problem pre-
sented earlier.

The Mode-Based Behaviour Pattern decomposes and structures the feature’s state ma-
chine according to three high-level behaviour modes: Inactive, Active, and Failed. Fig-
ure 3.1 shows the high-level structure of the pattern. Each of the high-level states contains
one or more sub-machines that model the detailed behaviour for the state.

The Inactive state describes a feature’s behaviour when it is not affecting the environ-
ment. This comprises a sub-machine that models the behaviour of the feature as it becomes
enabled. As will be seen, we propose a sub-pattern for structuring the feature’s enabling

17

Behaviour:
| Restricted

Moderately restricted
+ Unrestricted

Figure 3.1: The Mode-Based Behaviour Pattern, where the modes are coloured with the
degree to which the feature’s interactions with its environment are restricted.

process. Normally, a feature initializes in Inactive. When the feature is completely enabled,
it transitions to the Active state, in which the feature performs its essential behaviour.

The Active state describes a feature’s behaviour when it is affecting the environment.
This comprises a sub-state machine that models all of the ways in which a feature actively
affects the behaviour of the system. The exact conditions that cause a feature to deactivate
(i.e., that trigger the transitions from Active to Inactive) are feature specific, and thus are
not part of the pattern. Transitions to Inactive can emanate from any sub-state within
Active. Their respective destination states are normally the boundary of the Inactive
superstate, meaning that the feature’s enabling process restarts from the initial state(s) of
Inactive’s sub-machine(s).

The Fuiled state captures all aspects of how a feature behaves when it has failed. The
exact conditions under which a feature transitions to or recovers from the Failed state are
feature specific and are not part of the pattern. On recovery, a feature normally transitions
to the boundary of the Inactive superstate. The pattern does not decompose the internal
structure of the Failed state because the features we have examined typically do nothing
more than monitor their environment while failed. Furthermore, the industrial feature-
requirements documents to which we have had access are light on failure requirements
because many features — and all safety-critical features — each have a separate safety-
requirements document that describes how the feature behaves in the presence of a failure.
We did not have access to any safety-requirements documents. As will be seen in future
subsections, the Failed state is used only when a feature has completely failed and can
no longer operate. If a feature provides some degraded service due to a failure, (i.e., the
feature provides reduced functionality), then that behaviour is modelled as part of the

18

Active state. In subsection 3.1.2, we discuss how exactly to model degraded service within
the Active state.

Consider the different ways in which a feature can interact with its environment:

e the feature monitors the environment (e.g., an Adaptive Headlights (AH) feature
monitors the ambient light level)

e the feature acts on the environment (e.g., the AH feature automatically turns on the
vehicle’s headlights)

e the environment monitors the feature (e.g., other features in the system monitoring
the AH feature’s current execution state)

e the environment acts on the feature (e.g., the vehicle operator changes the sensitivity
of the AH feature)

Each state reflects different types of interaction between the feature and its environment
(as depicted in Figure 3.1 using colour). In restricted (red) states, the only allowable
interaction is that the feature can monitor its environment, to determine if any of the
state’s outgoing transitions are enabled. For example, a feature that has Failed can monitor
its environment for signs that recovery conditions have been met. In moderately restricted
(vellow) states, the feature can monitor its environment and the environment can act on
the feature. For example, it may be possible for a user to manipulate feature settings when
the feature is still Inactive (e.g., a user can set the cruising speed before the cruise-control
feature becomes Active). In unrestricted (green) states, all four types of interactions are
allowed. In this manner, the pattern’s high-level states partition the features’ behaviours
into separate modes of operation.

3.1.1 The Inactive extension

In Section 2.3, we noted that most automotive features go through some enabling sequence
before they can activate. The Inactive state extension provides advice on how to model
a feature’s enabling process. A feature’s enabling process can range from simple (e.g.,
the user presses a button) to very complex (e.g., the user must perform multiple actions
and several environmental properties must hold). There are three variants of the Inactive
extension that provide guidance on how to model a feature’s enabling process based upon
the degree to which the process is ordered.

19

1. There is a sequential ordering on the enabling conditions.
2. There are no ordering constraints on the enabling conditions.

3. The enabling conditions are partially ordered.

The enabling process differentiates between two types of enabling conditions: user
actions and environmental conditions. A user action is an action that is performed directly
by the user or human operator (e.g., the user turning on the feature). An environmental
condition is a predicate over properties of the operating environment of the system (e.g.,
an automobile’s speed) or properties of the execution state of the system (e.g., the state
of another feature). We argue that the description of a feature’s enabling process should
prominently distinguish between user actions and environmental conditions because of
the types of constraints each places on the feature design: each user action must have
a corresponding user interface; whereas monitored properties must have corresponding
sensors, and controlled properties must have corresponding actuators. Also, environmental
conditions can often be aggregated on a single transition (i.e., a compound expression that
combines conditions through conjunction and disjunction) in order to simplify the enabling
process. In contrast, user actions are typically performed one at a time by a user and are
therefore not amenable to aggregation on transitions.

Ordered Enabling

The Ordered Enabling variant applies when a feature becomes enabled in stages. The
Inactive sub-machine is a sequence of user actions and environmental conditions that must
be satisfied in the specified order. Each transition is triggered by either a combination (i.e.,
conjunctions, disjunctions, negations) of user actions or a combination of environmental
conditions, but not both. If a transition is labelled with a user action, then the destination
state of the transition is named User Enabled. Otherwise, the transition is labelled with
an environmental condition and the destination state is named Environment Enabled.
The Ordered Enabling variant can be generalized to any number of enabling stages. This
handles cases where the enabling process is very long (i.e., when there are multiple user
enabled or environment enabled stages) or very short (i.e., only one stage). When the final
state in the sequence is reached, the feature transitions to the Active state.

The state-machine fragment in Figure 3.2 shows how the Ordered Enabling variant is
modelled to specify an ordered enabling process. The name of each state is the type of the
most recent combination of enabling conditions (user action or environmental conditions)

20

Inactive

!
o

Environment
Enabled (1)

v

)

User]g
Enabled (1) a Inactive)
|
Environment [User Disabledj [Erls\gaotr:lr:gntj
Enabled (m)

d/ [User Enabledj

[Environmentj
Enabled

User
Enabled (n) N J
N\g J
(Active) Active
Figure 3.2: The Ordered Enabling vari- Figure 3.3: The Unordered Enabling
ant of the Inactive state extension. variant of the Inactive state extension.

21

and the sequence number for that type of condition. The enabling sequence may include
back transitions from later states in the sequence to earlier states, if enabling conditions
became unsatisfied and cause the feature to revert to a less-enabled state. If the enabling
process only has one User Enabled state and one Environment Enabled state then the
states do not require a sequence number, the numbers are only needed for distinguishing
multiple User Enabled stages or Environment Enabled stages.

Unordered Enabling

It often does not matter in what order a feature’s enabling conditions become true: as
soon as they all hold, the feature activates. The Unordered Enabling variant (shown in
Figure 3.3) applies in these situations. The concurrent regions separate user actions (on
the left) from the environmental conditions (on the right). A transition is triggered by
either a combination of user actions or a combination of environmental conditions, but
not both. A region’s states are named according to whether the region is checking user
actions or environmental conditions. When all of the regions are simultaneously in their
most-enabled state, the feature transitions to the Active state. This behaviour is modelled
using a join pseudo-state whose source states are User Enabled and Environment Enabled
and whose destination state is Active.

The Unordered Enabling variant can be generalized to handle enabling processes com-
prising multiple sequences of user actions or environmental conditions, but where the order
among the sequences does not matter. For example, consider a feature whose enabling pro-
cess consists of two user actions but there is no specific order in which the actions must
occur. Such an enabling process could be modelled using the Unordered Enabling variant
with two concurrent regions, one for each user action.

Hybrid Enabling

In some cases, a feature’s enabling process is partially ordered. That is, some stages of
the enabling process cannot be satisfied until earlier stages have been completed; and in
other stages, the order in which user actions and environmental conditions are satisfied
does not matter. In the example in Figure 3.4, the enabling process is primarily ordered,
but at one point in the sequence, there are enabling conditions whose orderings are not
important. The transition from Environment Disabled to Environment Enabled can not
take place until after the first user action has occurred. As well, the transition from User
Enabled (2) to User Enabled (3) can not take place until the environmental conditions

22

Inactive

!

L

1

User Enabled (1)

L

1

%[Disabled
p

!

!

~

Environment
Disabled

1

$ 1

User
Enabled (2)

Environment
Enabled

T

I

}

I

[User j } e

Enabled (1 |

=1 }
I

I

I

I

I

I

I

1

)
]J

User Enabled (2) /
Environment Enabled

((
S

User Enabled (3)]

=
Active

Figure 3.4: The Hybrid Enabling variant
where some stages are ordered and other

stages are not ordered.

Inactive

! !

Environment
Disabled

User Disabled

User
Enabled (1)

Enabled (2)

User
Enabled (3)

()
()
(o)
()0 (e)

J

Active

Figure 3.5: The Hybrid Enabling vari-
ant where the overall enabling process is
unordered but substages are ordered.

23

are all valid. In a separate example shown in Figure 3.5, the user actions may be staged
or the environmental conditions may be staged, but the order in which these substages
complete is not important. The Hybrid Enabling variant of the Inactive state extension
uses a mixture of concurrent regions and state sequencing to model these kinds of partially
ordered behaviours.

The Hybrid Enabling variants is applicable to any enabling process that is not strictly
ordered or unordered. That said, we have observed only one feature that utilizes this
enabling variant.

3.1.2 The Active state extension

The Active state extension provides advice on how to structure the active behaviour of a
feature. There are several kinds of behaviour that a feature performs while active. For
example, consider a Cruise Control (CC) feature that maintains the vehicle’s speed at a
driver-specified value. When the CC feature is active, it alters the vehicle’s speed only when
the sensed speed is faster or slower than the driver-specified value. When the vehicle’s speed
matches the driver-specified value, CC maintains the vehicle’s current throttle position and
only monitors for changes to the vehicle’s speed. Sometimes when a feature is active, it
actively affects its environment; other times, the feature merely monitors its environment.
In some cases, a feature will perform clean-up tasks before deactivating or transitioning
to the Failed state. Figure 3.6 shows the Active state extension and how it relates to the
Inactive and Failed states.

The Active state extension is composed of the Primary Active Region (which contains
the Controlling, Monitoring, Deactivating, and Failing states), and any number of addi-
tional concurrent monitoring regions:

1. Controlling: This is the state in which a feature actively affects its environment. A
feature’s Controlling state typically contains one or more sub-machines that model
the controlling behaviour of the feature. The Controlling state has unrestricted
behaviour.

2. Monitoring: When in the monitoring state, the feature only monitors its environ-
ment; it does not actively affect its environment. In addition, the feature’s environ-
ment can act on it (e.g., the user can modify feature settings).

3. Deactivating: In this state, a feature is in the process of deactivating, but needs to
perform some actions before it becomes Inactive (e.g., the feature automates some

24

Active
(—
[=
e | Fall Aﬁer L1
m Delay/Cleanup
Immediately 11
[Fail ——
e |
" —
HH
@ —= Monitoring »
P
Indctive Immediately e
Deactivate LiLLLL]
Deactivate H |I I' ! ! I! "F:
After Delay/Cleanup I
Behaviour: Additional monitoring behaviour that
= Resfricted takes place while Active.
Moderately restricted
#4H+F Unrestricted

Figure 3.6: The framework of the Active state extension showing the kinds of behaviour
that can occur in each state.

user’s task and notifies the user when it is deactivating — remaining operational
for a period of time to allow the user to resume responsibility for that task). The
Deactivating state has unrestricted behaviour.

4. Failing: The purpose of this state is similar to the purpose of the Deactivating state
— when a feature is failing, it warns the user and attempts to remain operational
temporarily to allow the user to resume responsibility over the feature’s task. The
Failing state is also used in cases where a feature performs some degraded service
after a failure (i.e., the degraded behaviour is modelled as part of the Failing state).
The Failing state has unrestricted behaviour.

5. Concurrent monitoring regions: In addition to the Primary Active Region, there may
be additional concurrent regions within Active. The additional regions are useful
when the feature continuously monitors some environmental phenomena that is used
in many of the Active sub-states. This continuous monitoring is different from the
environmental monitoring that is performed only in the Monitoring state, for the
purpose of determining whether the feature should begin to control its environment.

25

For example, a braking feature may continually monitor the brake hydraulic fluid
levels to determine if it should deactivate (regardless of the current execution state).
In contrast, the Monitoring state cares only whether or not the brake pedal has been
pressed.

An activating feature normally initializes in the Monitoring sub-state and transitions
between the Monitoring and Controlling sub-states. Whether the feature is in one sub-
state or the other depends on whether the feature is currently performing some actions that
control its environment or not. An Active feature may transition to Deactivating as an
intermediate sub-state towards transitioning to Inactive, or to Failing as an intermediate
sub-state towards transitioning to Failed. Alternatively, an Active feature may transition
from the Monitoring or Controlling sub-states directly to Inactive or Failed (either because
no intermediate state is necessary, or because no intermediate state is possible). Such
transitions should originate from the border of the Active superstate and terminate at the
Inactive or Failed states. The events, conditions, and actions with which the transitions in
the Active state are labelled as feature specific and thus are not part of the pattern.

Variants:

There are several alternative implementations of the pattern:

1. The initial state of the feature may be Active. This is useful in cases where a feature
has no Inactive behaviour. It is also useful when a feature is Active by default,
but can be disabled after initialization, either by the user or by some environmental
condition.

2. A feature may deactivate but still be partially enabled. Such cases are most common
when the enabling process is Ordered. The Inactive sub-state after deactivation
depends on the user actions or environmental conditions that cause the deactivation.
In such a case, a transition from Active to Inactive crosses the Inactive superstate’s
border and terminates at some intermediate stage of the enabling process.

3. An enabling process can have transitions that skip one or more enabling stages. For
example, a feature may have some kind of emergency override that automatically
activates the feature. This is modelled as a transition that originates from the earlier
enabling stage and terminates at the final enabling stage (which is immediately fol-
lowed by the transition to Active). Likewise, an enabling process with many stages
can have transitions from later stages to earlier stages.

26

4. The initial sub-state of Active can be Monitoring or Controlling. Sometimes, a feature
needs only a Controlling sub-state, in which case, it should be the initial sub-state
of Active.

5. Features in the Failing state can transition back to Controlling if the failure is fixed
before the transition to Failed takes place. This addresses the case of partial or tran-
sient failures that recover quickly. We did not observe this variant in the industrial
requirements documents that we examined, but it was a case raised by the engineers
working at our industrial partner.

6. The Deactivating or Failing sub-states can be omitted if they are not useful. This
reduces clutter in a model that does not fully utilize all of the pattern’s constructs.
However, there is a trade-off between clutter and comprehension because omitting
pattern states from a model introduces ambiguity: the requirements reviewer may be
unsure as to whether the states are missing because they have not yet been included
(i.e., the model is incomplete) or because they are not being used.

7. There can be multiple instances of the Primary Active Region in the Active state.
Figure 3.7 shows an example of an Active state with two instances of the Primary
Active Region. This variant is used when a feature performs one more orthogonal
behaviours while Active. However, the use of this variant may be a sign that the
feature should be split into separate features, such that each feature’s Active state
contains only one instance of the Primary Active Region.

|
Failing Deactivating | (Failing) (Deactivating)
|
% 5 ! 1 1
|
Controlling : Monitoring] [Controlling)
|
|
1

- J

Figure 3.7: The Active state with multiple instances of the Primary Active Region.

Resulting Context: The Resulting Context describes the consequences of using the
pattern to model a feature’s state machine.

27

e The pattern simplifies the requirements engineer’s task when describing feature re-
quirements and modelling state machines. We have not proven this, but we expect it
to be true because of the way that the pattern pre-determines the high-level states of
the feature. Furthermore, the elicitation and specification tasks can be decomposed
by pattern mode, thus reducing them to smaller subtasks that can be tackled one by
one.

e The more prevalent the pattern is used in feature requirements, the easier it is to
read and review multiple requirements documents. This is for several reasons: (1) the
pattern introduces a standardized vocabulary for all features that apply the pattern,
and (2) the pattern structure organizes the behavioural requirements of a feature by
mode, thus making it easier to locate information in an unfamiliar document.

e Any of the pattern’s states that are not applicable to a particular feature can either
be (1) omitted from that feature’s model, or (2) included, but not used (e.g., have no
entering or exiting transitions or have unlabelled exiting transitions, such that the
feature spends no time in the state). The former may result in an ambiguous model:
a reviewer may not know whether the omitted states have been left out intentionally
or the model is incomplete. The latter may result in a cluttered model.

One possible resolution is to omit unused states from the feature’s model and use
special syntax to indicate if the model is complete or incomplete. Previous work by
Salay et al. [43] propose a special annotation in the top right corner of a model to
indicate if the model is complete (COMP) or incomplete (INC).

Example:

We provide two examples of features that are modelled using the pattern. The first is a
Cruise Control (CC) feature, and the second is a Lane Centring Control (LCC) feature. The
CC example is not based on any production or academic feature description. Our model of
the LCC feature is based on a requirements document that our industrial partner gave us.
In these models, user actions are expressed in upper-case text and all other conditions are
expressed in lower-case. To avoid revealing proprietary information, we have abstracted
away several details of the features: specifically, in several transitions, the label has been
omitted and replaced with the number of conditions that are checked on the transition.
We do not claim that our models are either complete or correct, but are merely presented
as pedagogical examples.

28

POW%ON

Inactive

in(EBC.Failed) OR
wheelSpeedSensorFailure()

> Disabled

Failed
~

in(EBC.Failed) OR

NOT(in(EBC.Failed)) AND
wheelSpeedSensorWorking()

wheelSpeedSensorFailure()

CRUISE_ON CRUISE_OFF
Active

INC_SPEED(x) / cruiseSpeed += x
<30) DEC_SPEED(x) / cruiseSpeed -= x

~ACCEL_PRESSED
w@}<

ACCEL_PRESSED

CRYISE_OFF w
User Enabled (1) when(
J

Controlling
Decelerating

do / decel()

when(vehicleSpeed <
uuuuuu Speed)

when(>= 30) yvhen(<30)

Environmen t
— Enabled (1)
CRUISE_SET/
cruiseSpeed :¥ vehicleSpeed

CRUISE_OFF

BRAKE_PRESSED

when(vehicleSpeed >
uuuuuu Speed)

e

)
User Enabled (2)

when(vehicleSpeed <
uuuuuu Speed)

Accelerating

do / accel()

H Maintaining

Speed

when(vehicleSpeed >
cruiseSpeed)

Figure 3.8: The Cruise Control (CC) feature.

Cruise Control

Consider a simplified version of the Cruise Control (CC) feature that, once activated, will
maintain the speed of the vehicle at a driver-specified value. Figure 3.8 presents a behaviour
model of the CC feature that uses the pattern.

The CC feature is modelled using the Ordered Enabling variant of the Inactive state
extension. When the vehicle is powered on, the feature enters the Inactive state. The
feature waits in sub-state Disabled until the user presses the CRUISE_ON button. The
feature then waits in sub-state User Enabled (1) until the vehicleSpeed is greater than or
equal to 30 km/h. The feature then waits in sub-state Environment Enabled (1) until the
user presses the CRUISE_SET button, setting the cruiseSpeed of the feature (i.e., the speed
that CC will maintain) to the current vehicleSpeed. At this point, the feature transitions
to User Enabled (2) and immediately activates.

The Active sub-machine initializes in the Monitoring sub-state. If the driver is not
pressing the accelerator pedal, the machine transitions to the Controlling sub-state. The
Controlling sub-state initializes in the Maintaining Speed sub-state. If the vehicle speed
exceeds or becomes less than the cruiseSpeed, the feature will transition to the Deceler-
ating or Accelerating sub-states, respectively. If the driver presses the accelerator pedal

29

when the machine is in any of the Controlling sub-states, the machine will transition to the
Monitoring sub-state. If the driver presses the brake or turns off the CC, or if the vehicle-
Speed drops below 30 km/h, then the feature deactivates. Depending on the deactivating
condition, the feature may transition back to a partially enabled state within the Inactive
state.

There are two reasons why CC may fail: (1) if the Electronic Brake Control (EBC) fea-
ture fails, and (2) if the sensors detecting the vehicle’s speed fail. The machine transitions
to Inactive on recovery from the failure.

Lane Centring Control

Consider a simplified version of a Lane Centring Control (LCC) feature which, once ac-
tivated, will maintain the vehicle’s position in the centre of its current lane without any
driver input. Figure 3.9 presents a model of LCC that employs the pattern.

The LCC feature is modelled using the Unordered Enabling variant of the Inactive
state extension and all four states of the Primary Active Region. The enabling process
checks that the user presses the LCC_ACTIVATE button for LCC and confirms that two
environmental conditions are true. Once activated, LCC initializes in the Monitoring sub-
state of Active and monitors eight conditions to determine if the feature should transition
to the Controlling sub-state and start controlling the vehicle’s steering. While inside the
Controlling sub-state, LCC maintains the vehicle’s position in the centre of the lane. There
is an additional concurrent region in the Active state that keeps track of whether the
vehicle is currently centred in the lane. The Controlling sub-machine checks whether the
state machine is currently in(Centred) or in(Not Centred) to determine whether the feature
should correct the vehicle’s position.

Determining the conditions to check during the enabling process and the conditions
to check in Monitoring is dependent on the feature’s requirements. In LCC, the two
environmental conditions that are checked during the enabling process are necessary in
order to activate LCC, and while LCC is Active if either of these conditions becomes
false then LCC deactivates. The eight conditions that are checked on the transitions
between Monitoring and Controlling determine whether the centring behaviour should be
temporarily overridden. For example, one of the overriding conditions checks if the vehicle
driver is currently steering the vehicle; if they are, the LCC sub-machine transitions to
Monitoring and does not attempt to control the vehicle until the driver is no longer steering.

When the LCC feature deactivates or starts to fail it goes through the Deactivating
or Failing states, respectively. While in the Deactivating and Failing states, LCC slowly

30

!

(Inactive N 5 Conditions Failed
T
!
I 5 Conditions
!
| when(DriverHasControl)
!
|
User Environment
Disabled } Disabled d Active)
!
LCC_ACQTIVATE } 2 Cdnditions Deactivating Failing
| when(DrivierHasControl) entry / InformUser() entry / InformUser()
! do / YieldControl() do / YieldControl()
! N
!
LCC_DEACTTIVATE : 2 Conditipns 3 Conditions 5 Conditions
|
User ! Environment
C Enabled) | C Enabled) (h
: (Controlling W
o 1 J 8 Conditions
Ll ., Correct Position
Monitoring
in(Not Centred] in(Centred)
8 Conditions’
do / Correct()
- J
hen(DistanceToLaneMarkings >= threshold)
Centred [\ l Not Centred
when(DistanceToLaneMarkings < threshold)

&

Figure 3.9: The Lane Centring Control (LCC) feature.

yields control of the vehicle to the driver (handled by the YieldControl() function) and
transitions to Inactive or Failed only when the driver has control of the vehicle.

3.2 Interface

The primary purpose of the proposed pattern is to ease the elicitation, documentation,
and review of behavioural requirements of individual features. However, an important side
effect is that the pattern can be used to define a generic behavioural interface to any feature
that applies the pattern.

There has been little research on interfaces for features. In feature-oriented software
development, work on feature modularity has focused on features as a criterion for system
decomposition and assembly, such as in product-line development [24]; and on the cohesion

31

of features [7, 25|, including language or modelling support for coalescing all information
related to a feature into a single module [34]. There is no information hiding among
features, and one feature can directly refer to or override the details of other features.
Alternatively, in the feature-interaction literature, feature modules are black boxes that
have inputs and outputs, but otherwise share no information with each other [23, 31]. Such
extreme information hiding facilitates parallel and third-party development of features,
but makes it very difficult to specify intended interactions, such as when a new feature
extends or overrides the behaviour of an existing feature, or when a feature ought to behave
differently in the presence of other features.

We propose a compromise, in which features share a limited amount of information with
each other by means of a feature interface. Our ideas are based on our initial analyses of
the requirements documents that our industrial partner provided to us: in most instances
where one feature’s requirements refer to another feature, the reference is an inquiry as
to whether the other feature is active, has failed, or is even present in the system (since
many features in a software product line are optional). Thus, we put forward our pattern’s
high-level modes as a generic behavioural interface for features, whereby a feature reveals
whether its current execution state lies within Inactive, Active, or Failed. The interface
exports information that can be viewed by observing features; it does not provide hooks
that modifying features can use to directly affect the feature’s behaviour. We hypothesize
that such an interface reveals useful information about features, and would be sufficient in
most cases where one feature needs to know the current state of another feature. Moreover,
because the modes are common to all features applying the pattern, the interface does not
reveal any details of a feature’s specification that is not already known to specifiers.

For example, consider again the behaviour model of our simple Cruise Control (CC)
feature in Figure 3.8. CC fails if the Electronic Brake Control (EBC) feature fails, and we
model this failure condition by labelling transitions to and from CC’s Failed mode with
in(EBC.Failed) guard conditions that monitor whether EBC is in its Failed mode.

Not all feature cross-references are references to interfaces. If two features are tightly
coupled, they may refer to one another’s internal details. For example, one feature’s
behaviour may depend on a related feature’s current detailed state (e.g., there are limited
autonomous driving features that depend on whether the driver is attentive). Alternatively,
a new feature might override some detailed behaviour of an existing feature. We would
expect such references to another feature’s detailed behaviour to be relatively rare, and
limited to tightly coupled features that are part of the same sub-system, developed by the
same team, and specified in the same requirements document. We would deem our generic
feature interface to be useful if references to information in features’ interfaces were the
norm.

32

3.3 Rational DOORS Templates

Our industrial partner uses the DOORS requirements management system to record and
manage the requirements for their vehicle software. To ease the process of creating feature
requirements that use the pattern, we have created three DOORS templates that provide
a base structure for describing features using the pattern into which the feature-specific
requirements can be inserted. One limitation of DOORS is that requirements need to be
described textually, so the template is a textual representation of the structure of a state-
machine model that follows the pattern. This does not appear to be a limitation, and only
changes the medium in which the pattern is communicated.

Our templates are modules within a DOORS system and are stored in a central area
where every requirements engineer has access. They can then be copied when needed.
DOORS includes the Rational Doors Extension Language (DXL), which is used to write
scripts for operating on requirements modules. However, DXL does not appear to be an
ideal choice for implementing templates (in fact, when we asked for suggestions on DXL
development forums, we were told that copying and pasting a base template was the best
solution). Hence, although our solution seems somewhat primitive, it appears to be the
best solution?.

Figure 3.10 shows the primary template that is used as the basis for a feature’s require-
ments. The template is divided into the following sections:

1. The feature’s Description provides a brief high-level textual overview of the feature.
The description does not correspond to anything in the pattern but we have included
it in the template to serve as an introduction to the feature. We have also observed
that the feature requirements documents provided by our industrial partner have a
short introduction section.

2. The List of Environmental Conditions and User Actions section lists all of the user
actions and environmental conditions that the feature uses. We noticed that our in-
dustrial partner’s requirements always listed at the beginning of a feature’s require-
ments document the signals used the feature (to serve as a reference for reviewers),
so we have imitated that here by including in our template all of the user actions
and environmental conditions.

3. Section 1.3 of the DOORS template includes a graphical state-machine model of
the feature’s behaviour. This should be provided before the start of the feature’s

Tt is also the method that our industrial partner uses to implement their existing templates.

33

1 Feature Requirements

1.1 Description 1

This section should provide a high-level textual description of the feature.

1.2 List of Environmental Conditions and User Actions
List all of the user actions and environmental conditions that the feature uses in this section.
This may require information about signals and interfaces.
1.2.1 User Actions
User Action 1
User Action 2
etc... 2

1.2.2 Environmental Conditions
Environmental Condition 1

Environmental Condition 2
etc...

1.3 State-Machine Model of Feature

Place a diagram of the state-machine model here. It may be rather large, so you will prohahlya
want to describe the contents of the transitions on other pages.

1.4 Inactive

The inactive behaviour requirements.

1.4.1 Enabling Type
Ordered OR Unordered OR Hybrid 4

1.4.2 Link to several enabling steps here. These are found as separate
maodules in the same folder.

1.5 Active
The active behaviour reguirements.

1.5.1 General Requirements

Requirements that are supposed to be met when within any sub-state of the Active state.
1.5.2 Controlling

Controlling requirements of the feature. This will probably contain many links to functions at
lower levels of abstraction. 5

1.5.3 Monitoring

Monitoring requirements of the feature.

1.5.4 Deactivating

Deactivating requirements of the feature.

1.5.5 Failing

Failing requirements of the feature.

1.6 Failed
6

The failed behaviour reguirements.

Figure 3.10: The primary pattern DOORS template.

34

requirements so that the model can be used as a guide when reading the feature’s
detailed requirements. The transition labels may be too large to include in the
model so a macro can be created to abbreviate long transition labels and the macro
expansions can be listed at the bottom of the model.

. The Inactive section describes the inactive behaviour of the feature. The Enabling
Type of the feature is either Ordered, Unordered, or Hybrid. In section 1.4.2 of the
DOORS template, the requirements engineer creates a textual representation of the
enabling process using the two templates in Figures 3.11 and 3.12.

1 Step <X>: <Environment OR User Enabled>:
<FINAL?>

1.1 State Requirements
These are any requirements for behaviour that takes place while the feature is in this state in
the enabling process.

1.2 Proceed to NEXT STATE

The conditions that are checked, or user actions that are taken, to proceed to the next step.

1.3 Return to immediately PREVIOUS STATE

The conditions that are checked, or user actions that are taken, to proceed to the immediately
previous step.

1.4 Skip forwards or backwards to STATE <Y>

The conditions that are checked, or user actions that are taken, to proceed to state <Y= within
the enabling process. This is useful in cases where a backwards transition skips multiple
previosu stages of the enabling process, or where a forward transition skips several stages of
the enabling process.

Figure 3.11: A single enabling step in the pattern.

Each enabling step, as shown in Figure 3.11, contains several pieces of information.
An enabling step has an identifier, is an environment-enabled or user-enabled step,
and may be the final state in the enabling sequence. The State Requirements section
includes any requirements that are specific to that enabling stage (e.g., the user
may be able to change some settings of the feature). Sections 1.2, 1.3, and 1.4 of the
enabling step template list the conditions that are checked to determine if a transition
to the next enabling state, the previous enabling state, or some other enabling state,
respectively, should execute. Any actions that are performed when the transition
executes are listed with the conditions. Note that there can be multiple instances of
each section. The order of states in the enabling process is represented by the order
that the enabling steps are listed in section 1.4.2 of the primary DOORS template.

35

1 User Actions

These are user actions in the enabling process. Insert the Enabling Step template here for each
user action step.

2 Environmental Conditions

These are environmental conditions in the enabling process. Insert the Enabling Step template
here for each environmental condition step.

Figure 3.12: A template for describing the Unordered Enabling process.

We have also created a template for describing the Unordered Enabling process (see
Figure 3.12). The template merely separates the enabling process into user actions
and environmental conditions. Enabling steps are included as subsections of User
Actions and Environmental Conditions to describe the Unordered Enabling process.

. The Active section describes the active requirements of the feature. The General Re-
quirements section describes any requirements of the feature that must hold while the
feature is in the Active state. The remaining four subsections contain requirements
specific to each of the four pattern states. The Controlling state of the feature may
contain very complex behaviour so it may make sense to further split the Controlling
state as necessary. We do not provide any templates for the Controlling sub-machine
or the transitions within Active because that behaviour is feature specific and is
difficult to anticipate. We also do not include a subsection for concurrent monitor-
ing regions because they are unique to each feature. Additional subsections for the
monitoring regions can be included at the end of the Active section.

. The Failed section describes the requirements of the feature when it is in the Failed
state. This section will likely be quite small as the Failed state’s behaviour is very
basic.

Features may have some kind of global requirements (e.g., safety requirements). The

template does not include a section for these because we have not observed them in the
requirements documents we have been given. If a section like this is going to be included,
we believe it should be placed immediately after the state-machine model of the feature.

As with the pattern models, any sections that are unused can be removed from the
requirements document. Also note that the templates consider only the behavioural re-
quirements of features. Any non-behavioural requirements (e.g., quality or hardware re-
quirements) can be added as additional sections in the requirements document.

36

3.3.1 Cruise Control Example

We have used the DOORS templates to create a set of requirements for the CC feature
presented in this chapter. We describe parts of the example here, but the full set of
requirements is included in Appendix B. Note that the requirements describe only the
basic behaviour of the CC feature, in practice the requirements would likely be much more
complex.

1.2.1 User Actions
POWER_ON - Sent when the vehicle is first turned on.
CRUISE_ON - Sent when the vehicle driver presses the CC feature's On button.
CRUISE_OFF - Sent when the vehicle driver presses the CC feature's Off button. Note that the On and Off button will likely be the
same button, although the signals sent to this feature will still correspond to an On and Off action.

Figure 3.13: A fragment of the CC requirements showing several user action descriptions.

Figure 3.13 shows several examples of the various user actions to which the CC feature
reacts. The entry for each user action describes the action’s name and gives a short
description about what the driver does to perform the action. We do not provide any
hardware specific information (e.g., signal names) in our example, but in practice these
will likely be present.

1.5.1 General Requirements
At any time while the CC feature is Active the vehicle driver should be able to increment or decrement the cruising speed of the
vehicle (INC_SPEED and DEC_SPEED user actions).

If the vehicle's speed drops below 30 km/h the CC feature should deactivate immediately and transition to the User Enabled (1)
sub-state of Inactive.

»

Figure 3.14: A fragment of the CC requirements showing several of the Active state’s
requirements.

Figure 3.14 shows a example of the Active requirements of the CC feature. These
requirements discuss how the driver can increment and decrement the cruising speed, and
how CC behaves when the vehicle’s speed drops below 30 km/h. The red triangle on the
right side of the second requirement indicates a link, in this case, to the User Enabled
(1) enabling step requirement (making it easy to follow the link and view the related
requirements).

37

3.4 Pattern Summary

In this chapter we have described the Mode-Based Behaviour Pattern, which decomposes
the behaviour of a feature according to the three modes of operation that we have observed
in our industrial partner’s feature requirements: Inactive, Active, and Failed. The Inactive
state models the behaviour of the feature as it becomes enabled, the Active state models the
behaviour of the feature as it is affecting its environment, and the Failed state models the
failed behaviour of the feature. This chapter has also defined several pattern extensions for
the Inactive and Active states that provide guidance on how to model a features’ enabling
process and active behaviour, respectively.

This chapter discussed two examples of features that are modelled using the pattern:
the Cruise Control feature, which is modelled using the Ordered Enabling variant of the
Inactive state and the Monitoring and Controlling states of the Primary Active Region.
And the Lane Centring Control feature, which is modelled using the Unordered Enabling
variant of the Inactive state, all four states of the Primary Active Region, and a concurrent
monitoring region.

This chapter also described our notion of a behavioural interface for features that are
modelled using the pattern. The public portion of the interface reveals if the feature
is in the Inactive, Active, or Failed states and the private details of the feature is the
internal details of the three high-level states. When the pattern is used by most (or all)
of the features in a product line, the interface serves as a generic interface for referencing
features.

Lastly, this chapter described the Rational DOORS requirement’s templates that we
have created for documenting the requirements of features that are modelled using the pat-
tern and provided an example of the DOORS templates used to document the requirements
of the Cruise Control feature.

38

Chapter 4

Case Study

This chapter presents a case study that we have performed in which we analyzed the re-
quirements of 21 automotive features from 7 production-grade requirements documents.
We created state-machine models of these features’ behaviours using the pattern. In each
case, we created a new state-machine model based on a feature’s textual requirements
rather than refactor any existing state-machine model, either because the feature’s re-
quirements document included no state-machine model or because the existing machine
was missing many details. Five of the features were modelled while we refined the pattern,
and the other 16 features were modelled after the pattern had stabilized. The purpose of
the case study was to explore the impact of the pattern on two aspects of requirements
modelling;:

1. To what degree is the pattern applicable to real-world features in a product line?

2. Are the majority of inter-feature references simple queries that ask for information
revealed by the proposed public interface (i.e., whether a feature is Inactive, Active,
or Failed)?

4.1 Utility of the Pattern

We modelled a total of 21 features over the course of the case study and found that every
feature could be modelled using the pattern. These features pertain to the vehicle’s braking,
heating, ventilation, and autonomous driving abilities. The features’ behaviours range from
very basic (e.g., a feature that applies the vehicle’s brakes only when commanded) to very

39

complex (e.g., a feature that actively controls the position of the vehicle on the road). A
short summary of all 21 features is shown in Table 4.1. The features highlighted in grey
were modelled while refining the pattern. At the end of this section, we discuss in detail our
models of the Adaptive Cruise Control and the Heating, Ventilation, and Air Conditioning
features. The remainder of the features are discussed in Appendix A.

Table 4.2 lists the number of features that make use of the various pattern constructs.
Nineteen of the features’ models include an Inactive state, 21 features’ models include an
Active state, and 10 of the features’” models include a Failed state. In most cases, the
reason that a feature has only two high-level states is that the feature has no specified
failure requirements!. In two cases, only an Active state is included in the feature’s state-
machine model. Nine of the features’ enabling processes are modelled using the Ordered
Enabling variant of Inactive, another 9 features are modelled using the Unordered Enabling
variant, and 1 feature is modelled using the Hybrid Enabling variant. The remaining 2
features have no Inactive state. Most of the features that we examined have short enabling
processes (i.e., one or two stages), but 3 of the features have enabling processes that have
three or more stages. Our state-machine models for 19 of the features include a Controlling
sub-state within the Primary Active Region; our models of the other 2 features have empty
Active states because we did not have access to documents describing the features’ Active
behaviours. Twelve features include a Monitoring sub-state, 5 features include a Failing
sub-state, and 4 features include a Deactivating sub-state.

To give a sense of the sizes of the case-study models, we report the average numbers of
states and transitions in the models (see Table 4.3). The average number of states in the
case-study models is 12 and the average number of sub-states within the models’ Active
state is 7. This suggests that a little more than half of the features’ requirements focus
on the features’ Active behaviours. This correlates with our observations that most of the
textual requirements focus on the features’” Active behaviour. As mentioned above, our
state-machine models of two of the features have empty Active states because we did not
have access to the features’ active requirements.

We also report the average number of transitions in the case-study models. When
counting the number of transitions, we count each condition or conjunction of conditions as
a separate transition, such that each transition is assumed to check only a single condition
or conjunction of conditions. For example, a transition with five disjunctive clauses is
counted as five separate transitions. On average, there are 27 transitions in a state machine
with 17 of those being within the Active state. When counting the number of transitions

IMany features have a separate safety-requirements document that describes how the feature behaves
in the presence of failures. We did not have access to any safety-requirements documents.

40

Feature

Description

Adaptive Cruise Control

Maintains the vehicle’s speed at a driver-set value or maintains a
safe distance from a preceding vehicle

Lane Centring Control

Maintains the vehicle in the centre of its current lane

Lane Change Control

Automatically changes the vehicle’s lane as directed by the driver

Forward Collision Alert

Alerts the driver if the vehicle is approaching a preceding object
too quickly, such that a collision is imminent

Road Change Alert

Alerts the driver if any of the road’s lanes are forking or merging

Automatic Braking

Applies the vehicle’s brake when requested by other features (the
driver does not directly interact with this feature)

Anti-Lock Braking System

Prevents the vehicle’s tires from locking when the driver is braking

Active Trailer Stability Assist

Keeps the vehicle stable when towing a trailer

Air Quality System

Minimizes the pollution in the vehicle cabin by controlling the
amount of recirculated versus fresh air

Air Recirculation Control

Regulates the blending of recirculated air and fresh air in the vehi-
cle’s cabin — the requirement’s documents we have examined do not
discuss how the Air Recirculation Control and Air Quality System
features interact

Brake Assist

Applies the brakes with 100% force when the driver performs an
emergency stop

Brake Cleaning

Cleans buildup from the vehicle’s brakes by scraping the brake pads
along the brake disc while the vehicle is in motion

Electric Park Brake

Controls the vehicle’s parking brake using a dashboard button

Enhanced Traction System

Prevents the vehicle from losing traction with the road by modifying
the engine torque

Heating, Ventilation, and Air | Maintains the vehicle’s temperature at a driver-set value
Conditioning
Hill Hold Prevents the vehicle from rolling backwards while on a hill

Lane Keep Assist

Keeps the vehicle from leaving its current lane

Manual Park Brake

Controls the vehicle’s parking brake

Recirculation Control Run

Ensures that the vehicle’s windows do not fog

Traction Control System with
Electronic Stability Assist

Prevents the vehicle from losing traction with the road by control-
ling the engine torque and applying the vehicle’s brakes

Competitive Traction Control
System with Electronic Stability
Assist

Same basic behaviour as the Traction Control System with Elec-
tronic Stability Assist; provides several settings for how and when
to activate the traction control

Table 4.1: The 21 features that we modelled over the course of the case study.

41

Number of Features

Pattern construct using each construct /21

Inactive state 19
Active state 21
Failed state 10

Ordered Enabling process 9
Unordered Enabling process | 9

Hybrid Enabling process 1
No enabling process 2
Controlling state 19
Monitoring state 12
Failing state D
Deactivating state 4

Table 4.2: The number of features that use the various pattern constructs.

State or Transition count High | Average | Low
Number of states 40 12 5
Number of sub-states within Active | 37 7 0
Number of transitions 155 27 5
Number of transitions within Active | 134 17 0

Table 4.3: The average number of states and transitions in each feature.

in the Active state, we include transitions that originate within the Active state but whose
destination is outside of that state. These results also suggest that a majority of the
features’ requirements focus on the features’ Active behaviours. Two case-study models
have no Active behaviour, thus the lowest number of transitions within Active is zero.

Table 4.4 lists the number of features that are modelled using each pattern variant. Six
features initialize in the Active state rather than in the Inactive state. Two features, when
they deactivate, transition to a partially enabled sub-state within Inactive rather to the
initial sub-state in Inactive. Three features skip one or more enabling stages (1 feature has
an override that skips forward several stages and 2 features have disabling conditions that
cause the feature to skip backwards several stages in the enabling process). On entry to
the Active state, 9 features initialize in the Controlling sub-state of Active and 10 features
initialize in the Monitoring sub-state. No feature transitions from the Failing sub-state
back to the Controlling sub-state. One feature contains multiple instances of the Primary

42

Number of Features

Pattern variant using each variant /21

Initializes in the Active state

Deactivates to a partially enabled state

Skips one or more enabling stages

Initializes in the Controlling sub-state
Transition to Controlling from Failing

Multiple instances of the Primary Active Region

—_ O O WO

Table 4.4: The number of features that are modelled using a pattern variant.

Active Region.

We highlight two of the case-study features (the remainder of the features are discussed
in Appendix A). To avoid revealing proprietary information, we have abstracted away many
details of each feature. For example, many details of the Active state are omitted, and sets
of transitions between states are represented by singleton transitions whose labels document
the combined number of transition conditions. In the models, events are expressed in
upper-case text, the number of conditions are in bold font, and all other conditions are in
lower-case text (the models in Appendix A also follow this convention).

4.1.1 Example — Adaptive Cruise Control

The feature in the case study with the largest number of enabling conditions is Adaptive
Cruise Control (ACC). Once activated, the ACC feature will maintain the vehicle’s speed
at a driver-set value and will maintain a safe distance from the preceding vehicle. Enabling
the ACC feature is a multi-stage process: the user turns on the feature, after which several
environmental conditions are checked, and finally the user must perform one of two possible
actions to complete the enabling process.

The ACC feature’s enabling process is modelled using the Ordered Enabling variant of
the Inactive extension (see Figure 4.1). There are three transitions from the Active state
back to the Inactive state because, depending on the deactivation conditions, the ACC
feature will either deactivate completely and the enabling process will begin anew, or it
will transition to a partially enabled state.

The active behaviour of the ACC feature is modelled using all four of the Primary
Active Region’s sub-states. The primary region of the Active sub-machine initializes in
the Monitoring sub-state and transitions to the Controlling sub-state when the feature

43

POWER_ON

" Inactive h 4
Unknown
Failed
Unknown
Disabled N
Unkmnown
ACC|OFF ACQ_ON
" Active h
(User Enabled (1) A
User can change ACC speed 8 Conditions Failing
and headway settings
ACG_OFF / - Controlling
onditions i
19 Con|ditions 19 Con|ditions Intgtrtnazil details
Monitoring omitted.
7 Conditions.|
" Environment Enabled h
2 Conditions 41 Congitions
User can change ACC speed
and headway settings 2 Conditions ,.
Deactivating
- J
ACC_SgeTOR | e -
ACCR §SUME in(ABS.Active) ~N
w ABS Inactive |) ABS Active
User Enabled (2) J ~in(ABS.Active))
S) Additional monitoring regions have been omitted AN
- J

Figure 4.1: Adaptive Cruise Control (ACC) feature.

44

should actively control the vehicle’s speed (we have omitted the internal details of the
Controlling sub-state for confidentiality reasons). One of the conditions checked in the
Monitoring sub-state is the distance to the preceding vehicle. If the preceding vehicle is
too close, then the ACC feature reduces the vehicle’s speed.

Concurrent monitoring regions in the Active state are used to monitor information
that the entire Active state requires (e.g., whether the ABS feature is currently active: if
the ABS feature is active, then the ACC feature deactivates regardless of its current sub-
state within Active). Our case-study model of the ACC feature includes eight concurrent
monitoring regions within the Active state, most of which are not shown. The omitted
concurrent regions all have structures that are similar to the one monitoring region shown
in the model, but they check different conditions. Within the Deactivating sub-state, the
ACC feature has no ability to apply the throttle and instead controls the vehicle’s speed
using only the brakes. After a delay, or if the vehicle driver disables the ACC feature, the
state machine transitions to the Inactive state.

The feature’s requirements document mentions several possible failure conditions that
we have modelled as transitions to the Failing sub-state (e.g., the ACC feature should fail
if the brake system fails). The feature’s behaviour within the Failing sub-state is assumed
to be similar to its behaviour within the Deactivating sub-state, but these details are not
described in the feature’s requirements document. Also, the requirements document does
not specify the feature’s behaviour when it has Failed?, so we have not attempted to label
the transitions to and from the Failed state.

4.1.2 Example — Heating, Ventilation, and Air Conditioning

The case-study feature with the most complex Active behaviour is Heating, Ventilation,
and Air Conditioning (HVAC) (see Figures 4.2 and 4.3). The HVAC feature maintains the
vehicle’s cabin temperature at a user-set value, by using the heater (to increase the cabin
temperature) and the air-conditioning system (to decrease the cabin temperature). The
HVAC feature also minimizes the amount of pollution in the vehicle’s cabin by controlling
the blend of fresh air and recirculated air.

Our state-machine model of the HVAC feature contains 40 states (the highest number
of states of the features that we examined) and has 53 transition conditions. The HVAC
requirements documents do not describe the feature’s enabling process in any detail so

2Many features have a separate safety-requirements document that describes how the feature behaves
in the presence of failures. We did not have access to any safety-requirements documents.

45

Inactive

User Disabled

SensorBroken()
Failed
~SensorBroken()
ser Enabled
SensorBroken()
1 Condition
POWEHR_ON HVA(_OFF
Active
INC_TEMP { temperaturePreset++
DEC_TEMP / temperaturePreset-
AQS_LOW_SENSITIVITY / lowSensitivity := true, highSensitivity := false
AQS_HIGH_SENSITIVITY / lowSensitivity : = false, highSensitivity := true
exit / OpenVents()
TEMPERATURE CONTROL Contralling
Too Cold

Monitoring

StartupglearSlug

5 Conditi

5 Conditi

Not Enabled
Initializing

1 Condition

1 Condition

Perform Actions

Internal details omitted

nditions

SlugClear()

Clear AC Slug

do / clearSlug()

Too Hot
1 Condition Perform Actions
Not Enabled Internal details omitted
Initializing 1 Condition
e
DIAGNOSTICS
Diag()
\dle Performing
—~Diagl) Diagnostics

Figure 4.2: The Heating, Ventilation, and Air Conditioning (HVAC) feature.

46

AIR QUALITY

Monitaring
Lentry / numberRecircs 1= 0 J

7 Conditions 5 Conditions

Controlling

exit / openvents()

Recirculate Recirculate with AC

without AC

entry / recircTime := 0
entry / recircTime := 0 entry / numberRecircs ;= 0
exit / numberRecircs++ after{1s) / recircTime++
after(1s) / recircTime++
do / RecirculateAir()

1 Condition (High Speed \
2 Conditions Qjo {/ HighSpeedRecirculate() ‘)

2 Conditions

|

|

|

|

|

|

|

|

|

|

|

| .
| 3 Conditions
: Wait 3 Conditions
|

|

|

|

|

|

|

|

|

|

|

1

2 Conditions

Wait_Exit

= CONARON | entry / waitTime := 0
Low Speed after(1s) / waitTime++

{ 1 Condition

|
Qjo | LowSpeedRecirculate() JM

Figure 4.3: The Heating, Ventilation, and Air Conditioning (HVAC) feature.

47

we have modelled only a single user action that activates the feature (i.e., pressing the
HVAC_ON button). This simple enabling process is modelled using the Ordered Enabling
variant of the Inactive extension. Within the Active state, two conditions are checked to
determine if the HVAC feature should deactivate (one of these is the user action of pressing
the HVAC_OFF button). While the HVAC feature is active, the driver or a passenger can
set the desired cabin temperature and the sensitivity of the pollution sensors by pressing
buttons on the dashboard.

The state-machine model of the HVAC feature uses two instances of the Primary Active
Region: one that implements Temperature Control and one that controls Air Quality. The
Temperature Control sub-machine initializes in the Monitoring sub-state. If there exists
any buildup from previous executions (referred to as the AC Slug), the machine transitions
to the Controlling sub-state, removes the buildup, and returns to the Monitoring sub-
state. During normal operation, the Temperature Control sub-machine transitions from the
Monitoring sub-state to the Controlling sub-state if the cabin temperature becomes either
Too Cold or Too Hot. Depending on the sub-state of Controlling that the machine is in, it
will utilize the vehicle’s heater or air conditioner to raise or lower the vehicle temperature,
respectively. Both the Too Cold and Too Hot sub-machines initialize in a Not Enabled
sub-state in which the respective sub-machine initializes the relevant systems. Each sub-
machine transitions to its Perform Actions sub-state, which implements the heating or
cooling logic, when the initialization process has completed.

The Air Quality sub-machine initializes in the Monitoring sub-state and transitions
to the Controlling sub-state when the pollution level becomes too high. When in the
Controlling sub-state, the HVAC feature’s behaviour depends on whether the vehicle’s air
conditioner is active. The HVAC feature limits the amount of time that the cabin air
can be recirculated before the fresh air vents are opened; the Recirculate with AC and
Recirculate without AC sub-states increment a timer and the sub-machine transitions to
either the Wait or Monitoring sub-states when fresh air needs to be let into the vehicle.

Our state-machine model for the HVAC feature includes 17 additional concurrent mon-
itoring regions, but we have not included these because of confidentiality reasons and
because the size of the model would be very large. The HVAC requirements do not discuss
failures so our model does not include a Failed state.

The HVAC feature was the last set of requirements that we were given by our indus-
trial partner. The engineers gave us these requirements as somewhat of a stress test after
we presented our initial findings from the case study. The HVAC requirements are very
different from the other feature requirements that we examined. It was relatively simple to
model the other features’ behaviours using the pattern because each of those features had

48

some high-level description of the feature’s behaviour followed by detailed descriptions of
the functionality that the feature provides. In contrast, the HVAC feature’s requirements
did not include any kind of high-level descriptions of behaviour. This made it relatively
difficult to model the HVAC requirements because it was hard to determine how the func-
tions that the HVAC feature provides relate to one another. In addition, we expected the
HVAC feature’s requirements to comprise certain behaviours based on our own knowledge
of what functionality an HVAC feature typically provides (e.g., the user being able to
control fan speed or completely turn off the air conditioner). Because the HVAC feature
presented in the requirements document did not match our mental model of the feature,
it was harder to understand the requirements on first examination.

We believe that there may be three reasons that explain the difference between the
HVAC feature and the other case-study features:

e The requirements of the HVAC feature that we were given were a work-in-progress
and the high-level descriptions of the feature’s behaviour and enabling process may
not have been finished.

e The HVAC feature is owned by a team different from the other features that we
examined, so it may be the case that this team has a different method for structuring
and defining their requirements.

e The requirements for the HVAC feature are being documented in Rational DOORS.
Within DOORS, it is very easy to describe functional behaviour using text, which
may have influenced the way in which the HVAC’s requirements were specified.

Looking again at the use of two instances of the Primary Active Region to model
HVAC’s active behaviour (one instance for controlling the temperature and one instance
for controlling the cabin’s air quality), we see that there is very little overlap between the
behaviours modelled in each region. In fact, the only overlap is that the Air Quality region
checks if the air conditioner is currently being used, by checking whether the Temperature
Control region is in its Too Hot state. The benefit of modelling these orthogonal behaviours
as a single feature is that there is no need for an inter-feature reference. The downside is
that the state machine is performing two orthogonal tasks. Because of the minimal overlap,
we recommend modelling the HVAC feature as two distinct features: one (called HVAC)
that controls only the cabin temperature (see Figure 4.4) and one (called Air Quality
System (AQS)) that regulates the pollution in the cabin (see Figure 4.5). Note that in this
thesis, when we provide metrics regarding the case-study models (e.g., the average number

49

Inactive

User Disabled

HVAQ_OFF

ser Enabled

i

1 Condition
POWER_ON HVAQ_OFF

Active

INC_TEMP / temperaturePreset++
DEC_TEMP / temperaturePreset--

Controlling

Too Cold
1 Condition Perform Actions
. Not Enabled Internal details omitted
2oons et 1condiion -
5 Condi
Monitoring
nditions To0 Hot
nditions
1 Condition Perform Actions
Not Enabled Internal details omitted
Initializing 1 Condition
StartupSlearSlug() SlugCleary L _______
DIAGNOSTICS
Performing
ldle Diagnostics
Clear AC Slug

do / clearSlug()

Figure 4.4: The Heating, Ventilation, and Air Conditioning (HVAC) feature modelled
without air quality control.

20

-

AQS_LOW_SENSITIVITY / lowSensitivity := true, highSensitivity := false
AQS_HIGH_SENSITIVITY / lowSensitivity := false, highSensitivity := true
exit / OpenVents()

Inactive)

T
|
|
|
|
User ! Environment
Disabled : Disabled
.m !
HVAC_ON } 2 Conditions
HVAQ OFF 2 Conditions SensorBroken()
! Failed
| ~SensorBroken()
User | Environment
Enabled | Enabled \
|
& | J

Sensorfroken()
2 Conditions

Active)

b

AQS_LOW_SENSITIVITY / lowSer
AQS_HIGH_SENSITIVITY / lowSensitivi
exit / OpenVents()

entry / numberRecircs :

5 Conditions 3 Conditions

4 7

Controlling

exit / openVents()

~in(HVAC.Active.Con

Recirculate
without AC

entry / recircTime := 0

exit / numberRecircs++
after(1s) / recircTime++
do / RecirculateAir()

folling.TooHot)
in(HVAC.Active.Controlling.JooHot)
4
entry / recircTime := 0

entry / numberRecircs := 0
after(1s) / recircTime++

Recirculate with AC N

High Speed

do / HighSpeedRecirculate()

1 Condition
2 Congitions

N 2 Conditions

3 Congitions
Wait 3 Conditions
2 Conditions

Wait_Exit
~in(No Pollution Concentration) | entry / waitTime := 0

after(1s) / waitTime++
in(No Pollution Concentration S

Low Speed

do / LowSp culate()

(.)
& J
LowP MedP HighP
No Pollution Low Pollution Medium Pollution| High Pollution
Concentration ~LowP Concentration Concentration Concentration
~MedP ~HighP
-/ -/
(. J

Figure 4.5: The Air Quality region of HVAC modelled as the Air Quality System (AQS)
feature.

o1

of states in the features’ state-machine models), we count the HVAC and AQS features as
two separate features.

Our new state-machine model of the HVAC feature in Figure 4.4 models the same
requirements as the Temperature Control region of our original model of the HVAC feature.
The new HVAC state-machine has identical Inactive and Active states as the original HVAC
machine. The only difference is that the Failed state is not present in the new HVAC model
because the failure requirements are unique to AQS.

Our state-machine model of the AQS feature in Figure 4.5 captures the same require-
ments as the Air Quality region of our original model of the HVAC feature, but there
are several differences between the AQS machine and our original model: (1) Our original
model included an in-state reference that checks if the air conditioner is active; in our
model of the AQS feature, this check is modelled as an inter-feature reference to a state
in the new HVAC feature. (2) The enabling process of the AQS feature is modelled as an
unordered process that checks whether the HVAC_ON action has occurred and whether
two environmental conditions® are true. In the original model, those environmental condi-
tions were modelled on the transitions between the Monitoring and Controlling sub-states
of the Air Quality region because they are unique to the Air Quality requirements.

The benefit of modelling HVAC and AQS as separate features is that each feature has
only one essential responsibility (indicated by having only one instance of the Primary
Active Region). We believe that having a single Primary Active Region in a feature is
preferable because it simplifies the resulting state-machine model.

4.2 Generality of the Public Interface

We have examined our case-study models to evaluate whether the pattern is viable as a
public interface. Specifically, we examined: (1) how many features reference other features
and (2) how often the references are to elements of the public interface.

In our industrial partner’s requirements, every feature belongs to a sub-system which
categorizes a set of related features. For example, the ACC feature presented earlier is part
of the Freeway Limited Ability Autonomous Driving Features (FLAAD) sub-system. We
list the features according to their sub-systems in Appendix A. Two features are loosely
coupled if they reference one another’s public-interface information, and that they are

30ne condition checks whether the AQS feature has been calibrated to be available, and the other
condition checks whether the outside air temperature is above some lower limit.

52

tightly coupled if they reference one another’s internal details not revealed by their public
interfaces. We have a notion of preferred versus unpreferred references between features.
A preferred reference is one between loosely-coupled features or between tightly-coupled
features from the same sub-system. An unpreferred reference is one between tightly-coupled
features from different sub-systems. We say that certain references are unpreferred because
they indicate that features with little in common (e.g., features that interact with entirely
different parts of the system and are developed by different teams or organizations) are
closely related. If one of the features is changed without the team working on the other
feature being aware of the change, then the requirements of the unchanged feature could
become incorrect without any warning.

Each of the five features that were modelled while the pattern was being refined has
between 1 and 14 references to other features. These features are primarily interested in
whether other features are Inactive, Active or have Failed. However, three of the features
have a small number of references to other features’ detailed states (discussed in more
detail below).

Of the sixteen features that we modelled after the pattern stabilized, only eight of the
features have references to other features and all but one reference are to high-level states
in the other features’ public interface. The eight features each have one to six references to
other features. We hypothesize that the reason the latter features have fewer inter-feature
references is that they are low-level features, whereas the initial five features are high-level
features that build on the behaviour of low-level features. We need more data to confirm
this hypothesis.

We mentioned that three features in the case study make inter-feature references to
information not made available in other features’ interfaces. In total, there are eight such
references: five that read information and three that override some behaviour. Of the
references that read information, four are to features in the same sub-system as the refer-
encing feature. The remaining reference is to a feature outside of the referencing feature’s
sub-system, to obtain information that is required to perform an algorithmic calculation.
The references that override behaviour are all to features within the referencing feature’s
sub-system and occur in cases where the referencing feature is also reading information
from the referenced features.

In summary, there are 58 inter-feature references, of which 50 are references to features’
interface data. Seven references refer to private details of features in the same sub-system.
Only one reference violates our convention of how features ought to behave and accesses
private information from a feature outside of the referencing feature’s sub-system.

23

4.3 Threats to Validity

The major threat to the validity of the case studies’ conclusions is the narrow domain from
which we have gathered our feature requirements. As we are exploring features from only
one company in one domain, it is possible that there is some underlying reason, that we
are unaware of, for why the features can all be modelled using the pattern. However, there
are several differences between the various requirements we have examined that seem to
indicate that the pattern is generally applicable to automotive features:

e The requirements documents that we examined are from at least two different teams
within our industrial partner.

e All seven requirements documents that we have been provided are authored by dif-
ferent people.

e The features that we examined come from three different sub-systems.
e The pattern is applicable to both high-level and low-level features.

e The HVAC feature could be modelled using the pattern despite all of its differences
from other features that we examined.

We have also had discussions with researchers working with other automotive companies
and they have indicated that they believe that the pattern is applicable to the features
they have examined. Because we have examined only automotive features during the case
study, we do not claim that the pattern is applicable beyond the automotive domain, but
we believe there is nothing automotive specific about the pattern.

The other threat is that the pattern’s author was the one who performed the case study.
This introduces the possibility of bias because the pattern’s author may have ignored some
aspects of feature behaviour that did not nicely fit into the pattern. However, engineers at
our industrial partner have seen presentations of some of our case-study models and have
fully detailed versions of all of our models. They have not suggested that our models are
oversimplifications of their features’ requirements.

o4

4.4 Case Study Summary

This chapter’s introduction presented the two research questions to be addressed by the
case study:

1. Question: To what degree is the pattern applicable to real-world features in a product
line?

e The results of the case study with respect to this question are favourable. Al-
though we modelled only 21 features, the pattern was applicable to all 21. These
features come from at least two different teams within our industrial partner,
and the features belong to three different sub-systems within the vehicle.

2. Question: Are the majority of inter-feature references simple queries that ask for
information revealed by the proposed public interface (i.e., whether a feature is In-
active, Active, or Failed)?

e Fifty out of 58 references in the case study are only interested in whether a
feature is Inactive, Active, or has Failed. This indicates that the interface re-
veals useful information without revealing a feature’s detailed behaviour. Given
that the pattern’s wide applicability to features seems promising, the high-level
behaviour modes have the potential to serve as a generic interface for all of the
features that adhere to the pattern.

For future work, we would like to perform a case study involving features from a different
domain (e.g., embedded aerospace systems) to assess whether the pattern is applicable
beyond the automotive domain.

25

Chapter 5

User Study

This chapter presents a user study that was performed to evaluate the benefits that the
pattern provides to the reviewers and specifiers of feature requirements. The user study
was designed to answer three questions that we have about expected benefits:

1. Does the pattern and interface aid a requirements reviewer in interpreting state-
machine models?

2. Does the pattern and interface aid a modeller in writing correct and readable state-
machine models?

3. Does the pattern and interface improve the confidence of the requirements reviewer
and specifier?

Appendix C includes all of the user-study materials.

5.1 Performing the Study

The study was conducted in two phases. Each phase performed a nearly identical study
but was performed at two different times. In this thesis, we aggregate the data from both
study phases into one set of results and will discuss the minor differences between the two
studies when they arise.

The first phase’s participants were drawn from computer science graduate students at
the University of Waterloo. These participants were recruited through an e-mail campaign

57

targeting students who would likely be familiar with state-machine modelling. The second
phase’s participants were drawn from upper-year computer science undergraduate students
and graduate students at the University of Waterloo. As in the first phase of the study,
we used an email campaign to recruit participants who would likely be familiar with state-
machine modelling. The reason we recruited participants who had state-machine modelling
experience is that we did not want the study to be a participant’s first exposure to state-
machine modelling. We did not expect participants to have any experience with automotive
features but we did not disqualify those who did.

Participants were randomly placed into three groups: Control (C), Pattern (P), and
Pattern+Interface (PI). Members of the C group knew nothing about the pattern and
interface. Members of the P group knew about the pattern but not the interface. Members
of the PI group knew about both the pattern and the interface.

Eighteen participants took part in the user study, such that each group had six partic-
ipants. Fourteen of the participants were graduate students and four were undergraduate
students. Each participant was given a tutorial and after completing the tutorial, was
given the main study.

5.2 Tutorial

Each participant was given a one-hour tutorial to complete on his or her own time. The
tutorial introduced the automotive domain and the vehicle environment (using a domain
model), and provided participants a review of many of the advanced aspects of state-
machine modelling (nearly identical to what we presented in Section 2.1). The version of
the tutorial given to members of the P group also described the pattern, and the version of
the tutorial given to members of the PI group described both the pattern and the interface.
All three versions of the tutorial include an example model of the Road Change Alert (RCA)
feature (all three models are included in Appendix C). The C group’s state-machine model
of the RCA feature is adapted from a state-machine model provided by our industrial
partner. The state-machine models for the PI and P groups capture the same requirements
as the C group’s model and are modelled using the pattern. The enabling process of the
RCA feature is Unordered, and the Active state uses the Monitoring and Controlling sub-
states of the Primary Active Region. The RCA feature’s enabling process checks that
the MAP Information feature is active before it can activate; this reference is modelled
in the PI group’s state-machine model using the public interface of the MAP Information
feature. The last part of the tutorial asked participants to model the behaviour of an
Adaptive Headlights (AH) feature that turns the vehicle’s headlights on or off depending

o8

on the ambient light level. The exercise was exactly the same in all three tutorials. In
particular, the exercise did not ask the participant to apply the pattern or the interface.

The purpose of the tutorial exercise was to give participants practice with the modelling
notation, pattern, and interface. This way, the study would not be a participant’s first
working experience in applying these technologies. The tutorial exercise also gave partici-
pants an extra example to refer to during the main study. Before giving the participants
the main study, we confirmed that he or she completed the tutorial exercise but we did
not provide any feedback to avoid giving some participants more individual information
(about state-machine modelling, the pattern, or the interface) than we gave others.

The differences between each study were confined to the descriptions of the pattern and
the interface. Therefore, we argue that the difference in the tutorials given to each study
group are not a threat to the validity of the study because all of the tutorials provide the
same examples and exercises to the participant.

5.3 Main Study

The main study is a written exercise that consisted of three sections: Section 1 asked
the participant to provide background information about his or her experience with state-
machine modelling and automotive modelling, Section 2 asks the participant to review a
state-machine model and answer several questions about it, and Section 3 provides a textual
description of a feature’s behaviour and asks the participant to create a state machine that
models that behaviour. The study is identical for all three groups of participants, except
that the model that each participant was asked to review varied depending on his or
her participant group: the C group’s state-machine model was not structured using the
pattern, the P group’s model was structured using the pattern, and the PI group’s model
was structured using the pattern and there are two references to other features that refer to
that feature’s public interface. We asked participants to spend a maximum of 90 minutes
on the study (with a maximum of 60 minutes on Section 3).

Throughout this chapter, we show the correlation between study variables using Pearson
correlation [42]. In this work, we say that two variables are sufficiently correlated if their
Pearson correlation value is greater than 0.6.

29

5.3.1 Participant Background

The first section of the study asked the participants three questions to determine his or her
knowledge of state-machine modelling and automotive software. We gathered this infor-
mation because we wanted to determine whether use of the pattern and interface improves
readability and writability of state-machine models, and we wanted to rule out modelling
experience as the primary determinant of better performance. The three questions that
we asked of each user study participant were:

1. Do you have previous experience with requirements modelling or state-machine mod-
elling? If so, briefly state the types and levels of experience (include notations,
methods, and tools used, length of time used, and whether your experience is from
coursework or industrial experience).

2. What is your experience with modelling automotive features (if any)?

3. On a scale of 1 to 5, express your level of comfort with UML State Machines or
statecharts (1=never heard of them, 2=heard of them and have looked at some
models, 3=used the notation in the past but do not recall a lot of details, 4=can
probably sketch a model, and 5=have a good knowledge of them).

The first question asked each participant to describe his or her experience with state-
machine modelling. We asked this question so that we could preclude the possibility that
a group’s performance was due to the increased experience of that group’s participants.
Figure 5.1 shows the experience of the participants in each study group. In each group,
the majority of participants have some experience with state-machine modelling. The
PI and P groups each had one participant with no state-machine modelling experience,
and the C group had two participants with no experience. All of the participants who
had no experience with state machines did have experience with deterministic and non-
deterministic finite-state automata. One participant in the PI group and two participants in
the C group had industrial experience with state-machine modelling. One of the C group’s
participants stated that his or her industrial experience was with automotive software.

All of the participants who had experience with state-machine modelling stated that
they are familiar with the UML State Machine language. Other modelling notations that
participants mentioned experience with are: Simulink! and SysML [36].

http:/ /www.mathworks.com /products/stateflow/

60

n 0 — — — w6 — —
= 5
g, N g, [
S 4 ul 24 ul
5 5
2 20 — & 2p |
BIS BIS
PI P C PI P C
Study group Study group
[No Experience [No Experience
[Coursework Experience] Has Experience
[Industrial Experience [JIndustrial Experience
Figure 5.1: The previous experience with Figure 5.2: The previous experience with
state-machine modelling of all of the automotive modelling of all of the study
study participants in each group. participants in each group.

We found no correlation between a participant’s experience and any aspect of his or
her performance in the state-machine comprehension or state-machine modelling portions
of the study.

The second question asked each participant to describe his or her experiences with au-
tomotive modelling. Four of the 18 participants stated that they have experience modelling
automotive software (see Figure 5.2): one participant in the PI group, one participant in
the P group, and two participants in the C group. Figure 5.3 shows the relationships be-
tween each participant’s experience with state-machine modelling, automotive modelling,
and industrial modelling. The vast majority of participants only had experience with
state-machine modelling in an academic setting. One of the PI group participants and one
of the C group participants had industrial experience with state-machine modelling, and
experience with automotive modelling; the C group participant explicitly stated that his
or her automotive state-machine modelling experience was in an industrial setting. One
of the P group participants had experience with automotive state-machine modelling in
a coursework setting. Lastly, the C group participant with state-machine modelling ex-
perience and automotive modelling experience stated that his or her experience was with
an automotive-specific regular-expression parser and text editor (the participant did not
elaborate any further).

We found no correlation between a participant’s experience with automotive modelling
and any aspect of his or her performance in the remainder of the study.

61

State-Machine

Modelling Experience @ C group
° ® @ o O Pgroup
O o @) © PI group

@ o ® o OO0

Industrial Modelling
Experience

Automotiye Modelling
Experience

Figure 5.3: A Venn diagram showing the relationships between each study participant’s
experience with state-machine modelling, automotive modelling, and industrial modelling.

The final question asked participants to rank how comfortable he or she is with UML
State Machines or statecharts. We provided five rankings: (1) never heard of them, (2)
heard of them and have looked at some models, (3) used the notation in the past but do
not recall a lot of details, (4) can probably sketch a model, and (5) have a good knowledge
of them. The average comfort level for the PI group participants was 3.16, the average
comfort level for the P group participants was 2.83, and the average comfort level for the
C group participants was 3.16. The distribution in each group is shown in Figure 5.4. The
distribution of comfort is fairly even across all participant groups with the majority of the
participants in each group stating that he or she is familiar with state-machine modelling
but does not know many details.

We found no correlation between a participant’s level of comfort with state machines
and the correctness of his or her solution to the state-machine comprehension or state-
machine modelling portions of the study. However, we did find that those participants
who ranked themselves as having a high comfort tended to have greater confidence in their
solutions (Pearson correlation = 0.61, we will discuss this again in Section 5.3.4).

62

B Have a good knowledge

= 6 | O Never heard of them

,§ [Heard of them

2 4r | [JUsed the notation in the past
§ ol | H Can probably sketch a model
I3

PI P C
Study group

Figure 5.4: Each group’s participant’s comfort with state-machine models.

Overall, the participants with greater experience with state-machine modelling or au-
tomotive modelling and those participants with high levels of comfort with state-machine
modelling were evenly distributed among the three study groups. Therefore, we do not
believe that any of these factors affected the validity of the study results.

5.3.2 State-Machine Comprehension

The second study section tested a participant’s ability to read and understand the be-
haviour of a state-machine model. We tested this by providing participants with a state-
machine model of an Adaptive Cruise Control (ACC) feature and asking them to answer
several questions about its behaviour. The requirements for this feature come from a course
project used in a past offering of an undergraduate computer science course on software
requirements? and was not based on the requirements provided to us by our industrial
partner. The structure of the provided state-machine model was different for each partici-
pant group: the state-machine model provided to the PI group is shown in Figure 5.5, the
state-machine model provided to the P group is shown in Figure 5.6, and the state-machine
model provided to the C group is shown in Figure 5.7. The PI and P group’s models use
the Ordered Enabling variant of Inactive and use all four sub-states of the Primary Ac-
tive Region. The PI group model references the public interface of two other features (we
explain this in more detail below). The state-machine model provided to the C group’s
participants (see Figure 5.7) was created by the students as part of their course project,
so they had lots of time to work on the layout and presentation of their model. We used

2The course is CS445: Software Requirements and Specification, taught at the University of Waterloo
in the Winter 2012 semester.

63

the ACC state-machine from the highest-ranked group. The only changes that we made
were to the transition conditions to standardize them across all three models and we also
fixed any syntax errors.

Undefined Functions
SPDCHG(value) - allows driver to
increment or decrement the
targetSpeed variable
HDWYCHG(value) - allows driver to
POWER_ON

Other features

ABS - Anti-lock Braking System
ACC cannot modify the vehicle's
while this is controlling the
vehicle.

incrememnt or decrement the
headway variable.

Inactive AlertDrivert) - sends an alert to the ESC - Electrenic Stability Control
o driver of the vehide X ACC cannot modify the vehicle's
State Machine Variables WarnDriver() - warns the driver of the behavior while this feature is
Disabled unsafeDistance := 0.5 vehide of an impending collision controlling the vehicle.
ertry/cruisespeed := 0
entry/headway := 2 Active
ACC OFF SPDCHG(value)/cruiseSpeed += value
- ACC ON ACC OFH HDWYCHG(value)/headway += value

Vehicle brakePedalPressel

User Enabled 1 !
Vehicle.speed
< 30CR

Vehicle.brake delay(10s)
PedalPressed

Deactivating

entry/WarnDriver()

Vehicle.speed
>= 30 AND

~(Vehicle.brake
PedalPressed)

ACC_OFF CR
ehicle.speed < 30

ACC_OFF OR
Vehicle.speed < 30

Environment Enabled 1 Controlling

ACC_SET/

cruisespeed := Vehicle.spefd Monitoring Yenjcle gasPedalPresse

inftoo slow)

Accelerate

dofincSpeed()

User Enabled 2

(Vehicle.gasPedalPresded) 1”5??{;:&;;2:2?’“ QR& o
i " AND ABS and ESC are in(top close)
in(unsafe distance) not activated constant speed .
in(correct headway) OR
in(target speed)
IN(ABS Active) OR
iN(ESC Active) i
~Hardware failure ;zggg fca‘osg)egm Decelerate
do/DecSpeed()

Hardware
failure

entry/WarnDriver()

Falled Hardware

failure

delay(10s)

Objectsensor

Vehicle.preceding.distance < headwa;

correct headway too close]

Vehicle.preceding.distance >= headwa

do/AlertDriver()

Vehicle.speed < cruiseSpeed

Vehicle.speed <= cruiseSpeed

Figure 5.5: The Adaptive Cruise Control feature’s state-machine model provided to the PI
group’s participants.

t POWER_ON

Inactive

Undefined Functions
SPDCHG(value) - allows driver to
increment or decrement the
targetSpeed variable
HDWYCHG(value) - allows driver to
incrememnt or decrement the
headway variable,

AlertDriver() - sends an alert to the
driver of the vehicle

State Machine Variables

WarnDriver() - warnsthe driver of the

Other features

ABS - Anti-lock Braking System
ACC cannot modify the vehicle's
while this is controlling the
vehicle.

ESC - Electronic Stability Control
ACC cannot modify the vehicle's

behavior while this feature is

vehicle of an impending collision controlling the vehicle,

unsafeDistance := 0.5

Disabled

entry/cruiseSpeed 1= 0
ertry/headway :=

]

SPDCHG(value)/cruiseSpeed += value
HDWYCHG(value)/headway += value

Active

ACC_OFF

ACC_ON ACC_OFF

User Enabled 1 Vehicle.brakePedalPresse

Deactivating
ertry/warnDriver()

Vehicle.speed
< 30 OR

Vehicle.brake
PedalPressed

Vehicle.speed
== 30 AND
~(Vvehicle.brake
PedalPressed)

Environment Enabled 1

delay(10s) ACC_OFF OR

hicle.speed < 30

ACC_OFF OR
Vehicle.speed < 30

Controlling
ACC_SET/ PO
cruisespeed ;= Vehicle spefed Monitoring I'enicle.gasPedalPresse
— in(too slow)
User Enabled 2 dofincSpeed()
(vehicle.gasPedalPressed) mgg:ngtsgzgg:f P OR(t lose)
) ! AND ABS and ESC are inttep close
in{unsafe distance) net activated constant speed e
in(correct headway) OR
in(target speed)
ABS or ESC are
activated |
~Hardware failure :zgggg f:al‘je:‘,)e)OR Decelerate
do/DecSpeed()
Hardware Failing
fallure

ertry WarnDriver()

Failed ardware

delay(10s) fallure

ObjectSensor

Vehicle.preceding distance < headwa

correct headway too close|

Vehicle preceding.distance == headwa

unsafe distance Vehicle.preceding.distance

dofAlertDriver() <= unsafeDistance

speedometer

Vehicle.speed == cruiseSpeed Vehicle speed > cruiseSpeed

Vehicle.speed < cruiseSpeed Vehicle speed <= cruiseSpeed

too slow

Figure 5.6: The Adaptive Cruise Control feature’s state-machine model provided to the P
group’s participants.

Undefined Functions

SPDCHG(value) - allows driver to
increment or decrement the
targetSpeed variable
HDWYCHG(value) - allows driver to
incrememnt or decrement the
headway variable.

AlertDriver() - sends an alert to the
driver of the vehicle

warnDriver() - warns the driver of the
vehicle of animpending collision

Other features

ABS - Anti-lock Braking System
ACC cannot modify the vehicle's
while this is controlling the
vehicle.

ESC - Electronic Stability Control
ACC cannot modify the vehicle's
behavior while this feature is
controlling the vehicle.

State Machine Variables
unsafeDistance := 0.5

]

3 POWER_ON

ACCDisabled

entry/cruiseSpeed := 0
entry/headway =2

ACCMachine

~Hardware Failure
ACCFailed

entry/warnDriver()

ACC_ON

‘ACC_OFF OR Vehicle.speed < 30 ardware Failure

OR in(Collisicnwarning)/alertDriver() delay(10s
ACCEnabled
Vehicle.speed >= 30 AND
ACCNotReady ~(Vvehicle.brakePedalPressed) ACCNoLSet)
ACC SET/

Vehicle.brakePedalPressed Vehicle.brakePedalPressed cruiseSpeed = Vehicle.speed

ACCActive

SPDCHG(value)/cruiseSpeed += value
HOWYCHG(value)/headway += value

Vehicle.gasPedalPressed OR
.%[ACCRUPRing |

ABS or ESC activated/alertDriver()

[ACCOverriden)

~Vehicle.gasPedalPressed AND
ABS or ESC deactivated

ACCSpeedController

ControllerRunning |
do/incSpeed()

Decelerate

In(TooFast) OR
In(TooClose) do/becspeed()

Hin(ACCRuUnning)

in(TooSlow)

in{TargetSpeed) AND
In{CorrectDistance)

lin(TargetSpeed) OR
lin{CorrectDistance) SpeedControlSuspended

TooSlow

Vehicle.speed == Vehicle speed <
cruiseSpeed cruiseSpeed

I

In(ACCRuUNNing)

Vehicle.preceding distance
> unsafeDistance

Collisionwarning

CorrectDistance

Vehicle.preceding.distanc TargetSpeed)
< nesdway Vehicl d Vehicl d
. ‘ ‘ ehicle.speed >| ehicle.speed <=
vehicle|preceding.distance cruisespeed cruiseSpeed
== healdway

Vehicle preceding.distance
TooClose == unsafeDistance TooFast

Figure 5.7: The Adaptive Cruise Control feature’s state-machine model provided to the C
group’s participants.

66

Table 5.1 lists the six questions that the study asked each participant about the provided
model of the ACC feature.

The first question asks the participant to list all of the environmental conditions that
need to hold for the ACC feature to remain active. Table 5.1 lists the four conditions. In
order for the participant’s response to be correct, he or she must list all four conditions
and not list any extra conditions.

The second question asks the participant to list the user actions that need to be per-
formed to activate the ACC feature. There are two user actions: the driver pressing the
ACC_ON button and the driver pressing the ACC_SET button. Although the enabling
process is ordered, we did not consider the order in which participants listed user actions.
In order for the participant’s response to be deemed correct, it must include the two actions
mentioned above and must not list any additional actions.

The third question asks the participant to list all of the states in which the feature
can directly affect the vehicle’s behaviour. The number of states and their names depends
on the study group to which the participant belongs. The states in which the PI and P
group’s model affects the vehicle’s behaviour are: Accelerate, Decelerate, Deactivating,
Failing, and Unsafe Distance. The states in which the C group’s model affect the vehicle’s
behaviour are: Accelerate, Decelerate, and ACCFailed. In order for a participant’s response
to be deemed correct, it must include exactly the states appropriate to the participant’s
group. We also accepted any responses that listed also those states’ superstates because
the superstates contain sub-states that affect the vehicle’s behaviour.

The fourth question asks the participant to describe the behaviour of the ACC feature
the first time that it detects a failure. A correct response is one that mentions that the
driver is warned and then, after a 10 second delay, the ACC feature fails. This behaviour is
the same in all three groups’ state-machine models. We considered a participant’s response
to be correct as long as it listed the two behaviours described above and did not list any
additional.

The fifth question asks the participants to list the initial state(s) of the ACC feature’s
state machine. The name of the initial state depends on the study group to which the
participant belongs. In the PI and P groups’ models, the Inactive state is the initial state
(we also accepted Disabled as a correct response because it is the initial state of Inactive’s
sub-machine). In the C group’s model, the initial state is called ACCMachine.

The final question asks participants to indicate the features to which the ACC feature
refers and to describe the information that the ACC feature requires about those features.
There are two features to which the ACC feature refers: the Anti-Lock Braking System
(ABS) feature and the Electronic Stability Control (ESC) feature. These references check

67

Question

1. List all of the environmental conditions that must hold for the feature to remain active once the
feature is active and controlling the vehicle’s speed.

There are four environmental conditions that must hold: the vehicle’s speed must be greater than 30
km/h, the brake pedal must not be pressed, there must not be a hardware failure, and the vehicle must
be a safe distance from a preceding vehicle. A participants response must list all four conditions to
be correct. If the participant’s response does not list all four conditions or lists additional conditions,
then it is incorrect.

2. List all of the user actions that the user performs as part of the process to activate the feature.
There are two user actions that are performed in order to activate the feature: ACC_ON and
ACC.SET. A participant’s response must list these two actions to be correct. If the participant’s
response is missing either of these actions or lists additional actions, then it is incorrect.

3. List all of the states in which the feature can directly affect the behaviour of the vehicle.

The correct answer depends on which group the participant is in. All of the states that directly affect
the vehicle’s behaviour must be listed for the participant’s response to be correct. If a response is
massing any state that directly affects the vehicle’s behaviour or if the response includes additional
states, then it is incorrect.

4. Describe how the feature behaves when it first detects a failure.

In this question, we want the participant to give a short textual description of the feature’s behaviour
when it detects a failure and transitions to Failed. Specifically, we want the participant’s response
to state that the driver is warned that a failure has occurred and then the feature waits 10 seconds
before transitioning to Failed.

5. List the name(s) of the initial state(s) of the ACC feature (when the vehicle is first powered on)?
The correct answer depends on which group the participant is in. There is only one initial state in
each state-machine. Only that state should be listed for the participant’s response to be correct. If a
response includes additional states, then it is incorrect.

6. Circle the features that the ACC feature refers to, and list all of the information that ACC obtains
from these features.

This question provides a list of six features: ACC, Lane Centring Control (LCC), Adaptive Headlights
(AH), Road Change Alert (RCA), Electronic Stability Control (ESC), Anti-Lock Braking System
(ABS), and Map Information (MAP). The features that the ACC feature refers to are ABS and
ESC. The information that ACC obtains is whether ABS and ESC are Active. Both features should
be listed and the information should be correct for a participant’s response to be correct. If a response
1s missing either feature, if the response includes additional features, or if the response gives the
wrong information being referenced from ABS or ESC, then it is incorrect.

Table 5.1: The six questions that we asked participants about the provided state-machine
model of the ACC feature. The criteria we used to evaluate participant’s responses are
given in italics.

68

Number of participants who answered questions correctly

Question Control (C) | Pattern (P) | Pattern+Interface (PI)
List environmental cond. 0/6 2/6 0/6
List user actions 2/6 4/6 4/6
List behaviour states 3/6 5/6 5/6
Describe failure behaviour 3/6 5/6 6/6
Initial state name 5/6 5/6 6/6
Describe references 2/6 4/6 4/6
Average 2.5 4.2 4.2

Table 5.2: The total number of participants who answered each question correctly.

(1) whether the ABS feature is Active and (2) whether the ESC feature is Active. The
question includes a list of six automotive features that were previously explained to the
participant (Table 5.1 lists the six features), including the ABS and ESC features. The
participants were to mark the ABS and ESC features and list the information that the
ACC feature requires about them (in the first phase of the study, the question did not
provide the participants with a list of possible features from which to choose).

Our hypothesis is that a model that employs the pattern and interface is easier to
understand than a model that does not employ the pattern or interface. Questions 1, 2,
3, and 4 ask about aspects of the ACC feature’s model that are directly affected by the
pattern, so we would expect that these questions are more likely to be answered correctly
by the participants in the PI and P groups than by participants in the C group. Question
5 is relatively simple and we expected that it would be answered well by the participants
in all study groups. Question 6 should be answered well by the PI group’s participants
because they have been told how the interface can be used to reference information about
other features’ current execution state.

State Machine Comprehension Results

The number of correct responses to each question for each study group is shown in
Table 5.2. On average, the participants in the PI and P groups answered 4.2 questions
correctly, whereas the participants in the C group answered only 2.5 questions correctly
on average.

The question that asked participants to list all of the environmental conditions that
should hold for the ACC feature to remain active was particularly difficult for the partici-
pants to answer correctly. Most participants listed at least two of the four environmental
conditions, but very few managed to list all four conditions. It was also common for

69

participants to list six or seven conditions (some of which were not even present in the
state-machine model). These results refute our hypothesis that this question would be
answered well by the members of the PI and P groups.

The majority of participants in the PI and P groups correctly listed the user actions per-
formed during the feature’s enabling process, but only a third of the C group’s participants
correctly listed the actions. We believe that this is because the Inactive state extension
separates user actions and environmental conditions into distinct groups, making them
easier to locate in the model.

The states in which the ACC feature directly affects the vehicle’s behaviour were listed
correctly by a majority of the participants in the PI and P groups, but only half of the
C group’s participants listed the correct set of states. This is likely because the pattern
places constraints on the states in which the feature can directly alter its environment,
thus making it obvious where to look for that kind of behaviour. Those participants who
answered incorrectly usually listed the correct set of states but also included several other
states that do not directly affect the vehicle’s behaviour.

The participants in the PI and P groups had no trouble correctly describing the be-
haviour of the ACC feature when it first detects a failure, but many of the C group’s
participants were unable to correctly describe that behaviour. This may be explained
by the fact that the pattern makes the failure behaviour easier to locate than in the C
group’s model. The most common mistake that participants made was listing additional
behaviours (some of which were not even present in the ACC feature’s model).

The initial state of the ACC feature was correctly listed by most of the participants in
all three study groups. This behaviour was fairly obvious so we are unsurprised by this
result.

In the final question, two thirds of the participants in each of the PI and P groups
correctly stated that the ACC feature refers to the ABS and ESC features, but only a
third of the C group’s participants correctly stated these features. Those participants who
correctly listed the ABS and ESC features always correctly described the information that
the ACC feature requires. In the first phase of the study, most of the participants who
answered this question incorrectly seemed to misunderstand the question and listed several
additional feature references that are not present in the state-machine model. In the second
phase of the study, the question listed six possible features that the ACC feature may refer
to. Unfortunately, many of the participants still seemed to misunderstand the question
and tried to list all of the ways in which the ACC feature may refer to each of the six
features that we listed.

70

We performed a one-way ANOVA test with post-hoc TukeyHSD analysis [49] to de-
termine statistical significance of the study results. The ANOVA test evaluates statistical
significance by determining if the variation between the scores of participants from different
groups is large or small compared to the variation between scores of participants within the
same group. The post-hoc TukeyHSD analysis decomposes the ANOVA results to examine
the variation between pairs of study groups. For each pair of groups, if the variation (the
p value) is less than 0.05 then the results are considered statistically significant.

The independent variable is the participant’s group and the dependent variable is his or
her results to the questions. The participant’s results follow a normal distribution and the
standard deviation of each participant group’s results is within tolerance, thus the ANOVA
test can be used to determine statistical significance.

Unfortunately, the results of the state-machine comprehension portion of the study are
not statistically significant for any pair of groups. The p value for the P and C groups is
0.25 and the p value for the PI and C groups is 0.25. The p value for the PI and P groups
is 1 (indicating that there is no noticeable difference between the groups). If the PI and P
groups are combined into one group and that is compared to the C group’s results using the
ANOVA test then the resulting p-value is 0.053, which is still not statistically significant.
Therefore, although the average number of questions answered correctly is higher for the
PI and P groups, we can not prove our hypothesis that the pattern improves state-machine
comprehension.

5.3.3 State-Machine Modelling

In the last section of the study, we tested the participant’s ability to create a state-machine
model of a feature. The participants were provided with textual requirements for a Lane
Centring Control (LCC) feature and were asked to create a state-machine model of the
requirements. The requirements for this feature come from the same course project as the
ACC feature from the state-machine comprehension portion of the study. We asked the
participants to spend no more than one hour on the state-machine modelling portion of
the study.

The textual requirements for the LCC feature describe its enabling process, active
behaviour, and failure requirements. The LCC feature’s enabling process is a sequential,
multi-stage process that first determines if the ACC feature is active then waits for the
driver to press the LCC_ON button. The active behaviour of the LCC feature monitors
the lane markings on either side of the vehicle and keeps the vehicle centred in its lane.
The failure requirements of the LCC feature state that if a hardware failure occurs, then

71

Evaluation Criteria

1. Does the state machine include all of the enabling conditions.

There are two enabling conditions that must be satisfied before the LCC' feature can
activate: the vehicle determines if the ACC feature is Active and the driver must
press the LOCC_ON button. For a participant’s model to satisfy this criterion it must
model both conditions. If the participant’s model does not include both conditions,
or includes additional conditions, then it does not satisfy this criterion.

2. Does the state machine model the correct enabling sequence.

The requirements describe the LCC' feature as having an sequential, multi-stage en-
abling process. The enabling process should first determine if the ACC feature is
Active, then wait for the driver to press the LOCC_ON button before activating. For a
participant’s model to satisfy this criterion it must use an Ordered Enabling process
with the correct order of enabling stages.

3. Does the state machine model the correct deactivation conditions.

There are five deactivation conditions that need to considered: (1) the ACC feature
deactivates, (2) the driver removes his or her hands from the steering wheel for a
time greater than some threshold, (3) the vehicle’s speed drops below 60 km/h, (4)
the ACC feature detects a possible collision, and (5) the driver presses the LCC_OFF
button. For the participant’s model to satisfy this criterion it must include all five
conditions. If his or her model does not include all five conditions, or includes
additional conditions, then it does not satisfy this criterion.

Table 5.3: The first three of seven requirements details that we used as evaluated criteria
to assess the correctness of a participant’s state-machine model. The criteria we used to
evaluate participant’s responses is given in italics.

the driver should be warned to take control of the vehicle; and once the driver has control,
the feature ceases operation. The textual requirements list five environmental conditions
and one user action that the participant should use to model the LCC feature’s behaviour.

The study included a use-case description [11] to supplement the textual requirements.
The use-case description provides the same information as the textual requirements but
makes the ordering of actions explicit.

We evaluated correctness by checking that the model conformed to the textual require-
ments. Specifically, we checked whether the model captured seven representative details
from the LCC feature’s textual requirements (see Tables 5.3 and 5.4). We chose these seven
requirements details as evaluation criteria because they cover the range of the feature’s en-
abling process, active behaviour, and failure requirements. The first evaluated criterion is

72

Evaluation Criteria

4. Does the state machine have the correct deactivation behaviour.

There are five deactivation conditions. One of the deactivation conditions (the driver
pressing LCC_OFF) results in an immediate deactivation. If one of the other four
conditions occur, the driver is warned that the LCC feature is deactivating before
the feature deactivates. For the participant’s model to satisfy this criterion it must
correctly model the LCC_OFF button press resulting in an immediate deactivation
and the other four conditions resulting in a warning to the driver before deactiva-
tion. If his or her model does not include all of the deactivation conditions or does
not correctly model which conditions result in a delay, then it does not satisfy this
criterion.

5. Does the state machine model the correct controlling and monitoring behaviour.
The LCC feature should actively control the vehicle to keep it centred in its host
lane. If the driver turns the steering wheel past some threshold, then the LCC fea-
ture should transition to the Monitoring sub-state because the driver has assumed
responsibility for changing lanes. For a participant’s model to satisfy this criterion
both types of behaviours need to be correctly modelled in the LCC feature’s state ma-
chine. If the participant’s model does not correctly model both behaviours or models
additional behaviours, then it does not satisfy this criterion.

6. Does the state machine model the correct failure behaviour.

When the LCC feature fails, the driver should be warned that the feature is failing.
For a participant’s model to satisfy this criterion it needs to warn the driver about
the failure before the feature fails. If the failure conditions are not correctly modelled
or the driver is not warned about the failure, then the participant’s model does not
satisfy this criterion.

7. Does the LCC feature reference the ACC feature correctly.

The ACC feature must be active before the LCC feature can activate and if the ACC
feature deactivates while the LCC' feature is active then the LCC feature must deac-
tivate. For a participant’s model to satisfy this criterion it must correctly reference
the ACC feature to determine if it is Active or Inactive. If the participant’s model
does not correctly reference both activation and deactivation, or does so incorrectly,
then the participant’s model does not satisfy this criterion.

Table 5.4: The final four of seven requirements details that we used as evaluated criteria
to assess the correctness of a participant’s state-machine model. The criteria we used to
evaluate participant’s responses is given in italics.

73

coverage of all of the enabling conditions, and the second criterion is the correct sequence
of enabling conditions. The third criterion is coverage of all of the deactivation conditions,
and the fourth criterion covers the requirement that the driver should be warned before
the LCC feature completely deactivates. The fifth evaluation criterion covers the require-
ment that the LCC feature should actively keep the vehicle centred in its lane and the
driver should be able to temporarily override the centring behaviour in order to change
lanes. The sixth criterion covers the requirement that the driver be warned when the LCC
feature fails and the final criterion covers the LCC feature’s references to the ACC feature.

Note that Criterion 1 and Criterion 2 overlap. For example, if the participant’s model
does not include all of the enabling conditions (Criterion 1) then their sequence of enabling
conditions (Criterion 2) will also be incorrect. We did not take into account the fact that
these criteria have overlapping concerns while evaluating the participant’s models, so a
participant’s model may not satisfy multiple criteria due to the same omission. We found
this to be rare because if a participant’s model did not satisfy one criterion it usually had
multiple errors that caused it to not satisfy the overlapping criterion.

Our hypothesis is that the pattern and interface will improve a participant’s ability to
model the LCC feature’s requirements: the pattern provides advice on how to organize the
many behaviours of the LCC feature, and the interface provides a standard method for
referring to other features in the environment.

State-Machine Modelling Results

Table 5.5 reports how accurately the models created by participants from the three
study groups captured the requirements details that we established as evaluation criteria.
For all criteria, a model had to capture the corresponding requirements detail exactly to
be deemed correct. We did not consider any kind of partially correct criteria. Overall, our
findings indicate that the state-machine models created by participants in the PI and P
groups were more correct than the state-machine models created by participants in the C

group.

All of the participants in the PI and P groups correctly included the LCC feature’s
enabling conditions, whereas only half of the C group’s participants correctly included
them (each of the incorrect models omitted some enabling condition). Likewise, all of
the participants in the PI and P groups correctly modelled the LCC feature’s enabling
process, whereas only half of the C group’s participants did so correctly. We believe that
the reason the models created by the PI and P participants had more complete enabling
processes is due to the emphasis that the pattern places on how to model a feature’s
enabling process. The pattern specifies how to model different types of enabling conditions
(i.e., user actions vs. environmental conditions), and it specifies how to model a sequential,

74

Number of participants who modelled criteria correctly
Evaluation Criteria | Control (C) | Pattern (P) | Pattern+Interface (PI)
Includes all enabling
conditions 3/6 6/6 6/6
Correct enabling 3/6 6/6 6/6
sequence
Correct deactivation
conditions 1/6 2/6 5/6
Correct deactivation
behaviour 3/6 5/6 6/6
Correct controlling and
monitoring behaviour 3/6 4/6 5/6
Correct failure
behaviour 2/6 5/6 5/6
References ACC
correctly 1/6 1/6 5/6
Average 2.2 4.3 5.4

Table 5.5: The total number of participants who modelled each evaluation criterion cor-
rectly.

multi-stage enabling process (using the Ordered Enabling variant of the Inactive extension);
the C group’s participants did not have any such guidance.

Five of the PI group’s participants, two of the P group’s participants, and one of the
C group’s participants correctly modelled all of the LCC feature’s deactivation conditions.
That the members of the PI group performed better than the other study’s participants
with respect to this evaluation criterion makes sense because one of the LCC feature’s
deactivation conditions is that the ACC feature is no longer active. Many of the partic-
ipants in the P and C groups tried to model this condition as ACC_OFF, however that
is not correct because there are multiple ways that the ACC feature can deactivate. Be-
cause the PI group’s participants had received advice on how to reference another feature’s
state-machine model, they were better able to model this particular deactivation condition
correctly.

The majority of the participants in the PI and P groups correctly modelled the deac-
tivation behaviour of the LCC feature, but only half of the participants in the C group
correctly modelled that behaviour. We believe that the reason the models created by
participants in the PI and P groups modelled the feature’s deactivating behaviour more

75

accurately is due to the pattern’s Deactivating state; under four (of the five) deactivation
conditions, the driver should be warned before the LCC feature deactivates. The Deac-
tivating state in the pattern explicitly describes how to model an intermediate step in a
feature’s deactivating process. The participants who incorrectly modelled the feature’s
deactivation almost always omitted the warning to the driver.

Five of the PI group’s participants, four of the P group’s participants, and three of the
C group’s participants correctly modelled the monitoring and controlling behaviour of the
LCC feature. Although a higher percentage of the PI group’s participants modelled this
behaviour correctly, the differences between the groups’ performances are not very large.
The active behaviour of the LCC feature (as it is described in the study) is relatively
basic and so it is possible to model the monitoring and controlling behaviour using very
few states. All of the PI and P group’s participants separated the monitoring behaviour
from the controlling behaviour using the Monitoring and Controlling sub-states of Active.
Most of the models created by the C group’s participants did not separate the feature’s
monitoring and controlling behaviour into two states, but three of the C group’s models
still captured the correct behaviour.

The failure behaviour of the LCC feature was modelled correctly by five participants
in each of the PI and P groups, but was modelled correctly by only two of the C group
participants. Modelling the failure behaviour of the LCC feature is nearly identical to
modelling its deactivating behaviour. As with the deactivation behaviour, when the LCC
feature fails, it should warn the driver about the failure before it completely stops func-
tioning. The Failing state in the pattern explicitly describes how to model an intermediate
step in a feature’s failing process. As with the deactivation behaviour, the participants
who modelled the failing behaviour incorrectly usually omitted the warning to the driver.

The final behaviour that we check is if the LCC state machine correctly references
the ACC feature. Five of the PI group’s participants referenced ACC correctly, whereas
only one P group participant and one C group participant did so. This is understandable
because the interface explicitly states how to model one feature referring to another. All
three tutorials introduced how to use the in() transition condition to include references to
other features on a transition, but very few participants in the P and C groups attempted
to use in().

We performed a one-way ANOVA test with post-hoc TukeyHSD analysis to determine
the statistical significance of the state-machine modelling results. For each pair of groups,
if the p value is less than 0.05 then the results are considered statistically significant.
The independent variable is the participant’s group and the dependent variable is the
correctness of his or her model according to the evaluation criteria. The participant’s results

76

Confidence Control | Pattern | Pattern+Interface
State-Machine Comprehension | 64.2% 62.5% 72.5%
State-Machine Modelling 60% 55% 66%

Table 5.6: The average confidence of each participant group in his or her solution to the
comprehension and modelling tasks.

follow a normal distribution and the standard deviation of each participant group’s results
is within tolerance, thus the ANOVA test can be used to determine statistical significance.
We found that the difference between the Pl and C groups was statistically significant (p
value = 0.0006) and difference between the PI and P groups was statistically significant (p
value = 0.03). The difference between the PI and P groups was not statistically significant
(p value = 0.17). These results seem to confirm our hypothesis that the pattern improves
the ability of participants to create correct state machines, although because the difference
between the PI and P groups is not statistically significant we can not claim that the
interface alone improves the correctness of state machines.

5.3.4 Participant Confidence

We expected that one of the tertiary benefits of using the pattern and interface would
be that the modeller would have greater confidence in his or her understanding of state-
machine models and greater confidence in the quality and completeness of his or her own
models. To measure confidence, the study asked each participant to record his or her
confidence in their solutions to each question. Each question in the state-machine compre-
hension portion of the study and the one question in the state-machine modelling portion
of the study listed five confidence values: (1) Guessed, (2) At least 50% correct, (3) 50% -
75% correct, (4) 75% - 90% correct, and (5) 90% - 100% correct. For each question in the
state-machine comprehension portion of the study and for the model that the participant
created in the state-machine modelling portion of the study, the participant was asked to
select the confidence value that best matched the participant’s level of confidence in his or
her answer.

The average confidence level of each participant group in the state-machine comprehen-
sion and state-machine modelling tasks is shown in Table 5.6. The averages are calculated
for each group by using the higher value for the interval that was selected (e.g., if the
participant chose 50% to 75% confidence then the value that we used to calculate the
average was 75%). As can be seen, all of the groups’ confidence averages fall within the
range of being 50% - 75% correct. Participants from the PI group tend to have slightly

7

higher confidence in their solutions, but the difference is not significant enough for us to
be able to draw any conclusions. Therefore, we can not claim that the use of the pattern
leads reviewers to have greater confidence in their understanding of state-machine models
or gives modellers greater confidence in the quality and completeness of their own models.

We noticed a correlation between a participant’s confidence in his or her solutions and
the participant’s level of comfort with state-machine modelling (as reported in question 3
of the study’s background section). The Pearson correlation is 0.61. However, we found no
correlation between a participant’s confidence and the correctness of his or her solutions.

5.3.5 Timing Results

We also expected that one of the tertiary benefits of using the pattern would be a reduction
in the amount of time needed to perform the state-machine comprehension and modelling
tasks. Therefore, as part of the study, we asked the participants to record the amount of
time that he or she spent on the state-machine comprehension and state-machine modelling
tasks. In the state-machine comprehension portion of the study, the amount of time spent
includes the time spent reading the questions and the time spent reviewing the state-
machine model. In the state-machine modelling task, the amount of time spent does not
include the time to perform an initial reading of the requirements of the LCC feature; it
only measures the time spent creating the state-machine model and the time spent referring
back to the (already read) textual requirements.

We have summarized the timing results of the state-machine comprehension task in
Figure 5.8. The median time spent on the state-machine comprehension task by each
group is represented by the vertical bar. The grey box’s bounds represent the first and
third quartiles of the timing values, and the error bar’s model the shortest and longest time
spent on the task. On average, the participants in the PI and P groups spent slightly less
time answering the model-comprehension questions than the C group’s participants spent.
However, the timing variability of the C group was very large with one participant taking
only 10 minutes to answer all of the questions. Because of the large timing variability of
each group and the similar averages we do not feel that we can claim that the pattern
reduces the amount of time needed to understand a state-machine model.

The timing results of the state-machine modelling task are summarized in Figure 5.9.
Strangely, the results indicate that, on average, the C group’s participants took nearly 15
minutes less than the participants of the PI or P groups took to create a state-machine
model of the LCC feature’s requirements. Again, the variability in the timing results for the
modelling task are very large, so we can not draw any definitive conclusions. Still, the lower

78

Patterntinterface — —
Patterntinterface H ———

Pattern H —
Pattern

Control — —
Control H i

0 5 10 15 20 25 30 35 40 45 50 T T T T T T 1
0 20 40 60 80 100 120 140

Figure 5.8: The average amount of
time that the participants of each group
spent on the state-machine comprehen-
sion task.

Figure 5.9: The average amount of time
that the participants of each group spent
on the state-machine modelling task.

average of the C group’s participants was unexpected. After examining the solutions, we
have two possible explanations for why this occurred: (1) two of the C group’s participants
spent very little time crafting their solutions and, due to the small number of participants
per group, their timing results significantly pulled down the group’s average, and (2) the C
group’s models in general tended to model less behaviour than the PI and P group’s models,
which could explain why the C group’s participants spent less time on the modelling task.

Despite the 60 minute time limit for the state-machine modelling task, many of the
participants seemed to spend as much time as they needed to complete the modelling task.
We asked some of the participants who spent more than 60 minutes creating their models
why they took so long, and they said that a significant amount of time was spent making
their model visually appealing.

5.4 Threats to Validity

We have identified several threats to the validity of the user study. We do not feel that
any of these are severe enough to invalidate the study results but they are important to
list:

79

The study had only 18 participants which makes the results hard to generalize. De-
spite our advertising campaign, including email directed at students who had the
appropriate background, we did not receive many responses from the undergraduate
community. To make strong claims about the pattern’s effect on the readability and
writability of state-machine models, we need to perform the study on more partici-
pants. In the future, it may be better to make a shorter study that does not explore
as many aspects of the pattern and interface but can be completed in less time.

The study was created and the participants’ solutions were evaluated by people famil-
iar with the pattern and interface. Thus the study could have been unintentionally
favourable to the participants in the PI and P groups. This threat should be min-
imized because the study features’ requirements come from an external source and
the ACC model for the C group was the best model created by that pool. This means
that the C group participants were working with a well-designed state-machine model
for the state-machine comprehension portion of the study.

We determined the evaluation criteria for assessing the correctness of the partici-
pants’ models of the LCC feature hence we could have chosen evaluation criteria
that favoured the models created by the PI and P groups. This was mitigated by
the fact that we determined the correctness criteria before the participants’ models
were examined.

The ACC and LCC features exist in production vehicles and have fairly well-known
behaviours. Therefore, the participants may have had pre-conceived notions about a
feature’s behaviour that could have affected his or her solution to the study tasks. In
fact, one of the study participants stated that they had previous experience modelling
the requirements for an ACC or LCC feature. This could have resulted in some par-
ticipants having experience that resulted in better performance in the comprehension
and modelling portions independent of the use of the pattern and interface. How-
ever, this threat is likely mitigated because very few participants stated having any
knowledge of automotive features.

5.5 User Study Summary

We have shown that use of the pattern improves the writability of state-machine models.
We tried to show that use of the pattern improves the readability of the resulting state-
machine models, however the results of the state-machine comprehension portion of the

80

study are not statistically significant. We also tried to show that use of the pattern improves
the confidence of reviewers and specifiers of state-machine models but our results were
inconclusive. Likewise, we were unable to determine if the pattern reduces the amount of
time needed to review or specify state-machine models. Both of these aspects of the pattern
require further study before we can draw any definitive conclusions. In the introduction
of this chapter, we introduced three questions that we hope to answer with the user study
and we include our responses below.

1. Question: Does the pattern and interface aid a requirements reviewer in interpreting
state-machine models?

e The study results seem to indicate that the pattern slightly improves the read-
ability of state-machine models. Unfortunately, the results were not statistically
significant.

2. Question: Does the pattern and interface aid the modeller in writing correct and
readable state-machine models?

e The study results indicate that the pattern and interface improve the ability of
a modeller to create correct state-machine models of behaviour.

3. Question: Does the pattern and interface improve the confidence of the requirements
reviewer and specifier?

e The study results are inconclusive. There is no significant difference in the
reported confidences of the participants who used the pattern versus the par-
ticipants in the control group. As well, use of the pattern did not lead to a
significant reduction in the time needed to review or specify the state-machine
models of any one group. We believe that the pattern improves the require-
ments engineer’s experience because it improves the readability and writability
of state-machine models, but this point can not be proved.

A final conclusion from the user study is that the pattern can be taught to people
rather quickly. We were able to teach the pattern to participants in one hour. This is a
fairly short amount of time and may improve the chances that companies will adopt the
pattern to structure their requirements.

81

Chapter 6

Conclusion

This thesis presents the Mode-Based Behaviour Pattern for structuring a state-machine
model of a feature’s behaviour. The pattern provides several extensions for modelling a
feature’s enabling process and its active behaviour. We performed a case study on 21
automotive features to assess the applicability of the pattern and found that the pattern
is applicable to all 21 features. The thesis also presents a generic interface to features
that limits the information that a feature reveals to other features to be just the feature’s
current mode of operation (i.e., Inactive, Active, or Failed). The case study examines the
applicability of the interface and found that the vast majority of inter-feature references
(50 out of 58 references) are simply queries of public-interface data.

We performed a user study to evaluate the usability benefits of the pattern. The study
was performed on 18 participants and we found that the pattern improves the ability of
participants to create correct state-machine models that apply the pattern. We asked each
participant to record his or her confidence in the correctness of their solutions and record
the amount of time they spent answering the questions, but we were unable to draw any
conclusions from that data.

Overall, we believe that the pattern presents a useful pre-defined structure for a state-
machine model of a feature’s behavioural requirements.

As future work, the first step would be to evaluate the pattern on features from other
domains or on features from other automotive companies. We also plan to perform further
user studies to assess more definitively the usability benefits of the pattern. Finally, we
believe it would be beneficial to provide a graphical state-machine modelling tool that
supports the pattern’s constructs.

83

References

1]

J. Aldrich. Open modules: modular reasoning about advice. In Proceedings of the 19th
European Conference on Object-Oriented Programming (ECOOP’05), pages 144168,
2005.

S. Apel, F. Janda, S. Trujillo, and C. Kastner. Model superimposition in software
product lines. In Proceedings of the 2nd International Conference on Theory and
Practice of Model Transformations (ICMT’09), pages 4-19, 2009.

S. Apel and C. Kastner. An overview of feature-oriented software development. Jour-
nal of Object Technology, 8(5):49-84, 2009.

G. Arango and P. Freeman. Modeling knowledge for software development. In
Proceedings of the 3rd International Workshop on Software Specification and Design
(WSSD’85), pages 63-66, 1985.

S. Arora, P. Sampath, and S. Ramesh. Resolving uncertainty in automotive feature
interactions. In Proceedings of IEEE International Requirements Engineering Confer-
ence (RE), pages 21-30, 2012.

L. Bass and B. E. John. Linking usability to software architecture patterns through
general scenarios. Journal of Systems and Software, 66(3):187-197, 2003.

D. S. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. /[EEE
Transactions on Software Engineering, 30(6):355-371, 2004.

L. Cardelli. Program fragments, linking, and modularization. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’97), pages 266-277, 1997.

85

[9]

[10]

[11]

[12]

[13]

[15]

[16]
[17]

B. H. C. Cheng, S. Konrad, L. A. Campbell, and R. Wassermann. Using security pat-
terns to model and analyze security. In Proceedings of the Workshop on Requirements

for High Assurance Systems, at the IEEE International Requirements Engineering

Conference, pages 1322, 2003.

L. Chung, B. Paech, L. Zhao, L. Liu, and S. Supakkul. RePa requirements pattern
template. Technical report, 2013.

A. Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 2000.

K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the European
Software Engineering Conference held jointly with the ACM SIGSOFT International
Symposium on Foundations of Software Engineering ESEC/FSE’01), pages 109-120,
2001.

B. P. Douglass. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering ICSE’99, pages 411420, 1999.

M. Fowler. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

X. Franch, C. Palomares, C. Quer, S. Renault, and F. D. Lazzer. A metamodel for
software requirement patterns. In Proceedings of Requirements Engineering: Founda-
tion for Software Quality (REFSQ’10), pages 85-90. Springer, LNCS 6182, 2010.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: FElements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

A. Granlund, D. Lafrenire, and D. A. Carr. A pattern-supported approach to the user
interface design process. In Proceedings of HCI International 2001, 9th International
Conference on Human-Computer Interaction, New Orleans, 2001.

86

[20]

[21]

22]

23]

D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274, June 1987.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency check-
ing of requirements specifications. ACM Transactions on Software Engineering and
Methodology, 5(3):231-261, July 1996.

M. Jackson. Problem Frames: Analyzing and Structuring Software Development Prob-
lems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

M. Jackson and P. Zave. Distributed feature composition: A virtual architec-
ture for telecommunications services. IFEE Transactions on Software Engineering,
24(10):831-847, Oct. 1998.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
University Software Engineering Institute, November 1990.

C. Késtner, S. Apel, and K. Ostermann. The road to feature modularity? In Proceed-
ings of the 15th International Software Product Line Conference (SPLC), Volume 2,
pages 5:1-5:8, 2011.

R. K. Keller, J. Tessier, and G. von Bochmann. A pattern system for network man-
agement interfaces. Communications of the ACM, 41(9):86-93, Sept. 1998.

G. Kiczales and M. Mezini. Aspect-oriented programming and modular reasoning.
In Proceedings of the ACM/IEEE International Conference on Software Engineering
(ICSE’05), pages 49-58, 2005.

S. Konrad, L. A. Campbell, and B. H. C. Cheng. A requirements patterns-driven
approach to specify systems and check properties. In Model Checking Software, LNCS
2648, pages 18-33. Springer Verlag, 2003.

S. Konrad and B. H. C. Cheng. Requirements patterns for embedded systems. In
Proceedings of the IEEE Joint International Conference on Requirements Engineering
(RE’02), pages 127-136, 2002.

S. Konrad and B. H. C. Cheng. Real-time specification patterns. In Proceedings of
the 27th International Conference on Software Engineering (ICSE’05), pages 372-381,
2005.

87

[31]

32]

33]

[38]

[39]

R. C. Laney, T. T. Tun, M. Jackson, and B. Nuseibeh. Composing features by man-
aging inconsistent requirements. In International Conference on Feature Interactions
(ICFI), pages 129-144, 2007.

H. C. Li, S. Krishnamurthi, and K. Fisler. Interfaces for modular feature verifica-
tion. In Proceedings of the IEEE International Conference on Automated Software
Engineering (ASE’02), pages 195-204, 2002.

Y. Li, C. Pelties, M. Kaser, and N. Nararan. Requirements patterns for seismol-
ogy software applications. In Proceedings of the IEEE International Workshop on
Requirements Patterns (RePa), pages 12-16, 2012.

R. E. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating support for features in
advanced modularization technologies. In Proceedings of the 19th European Conference
on Object-Oriented Programming (ECOOP’05), pages 169194, 2005.

Object Management Group. UML Specification: Superstructure, version 2.2, 2009.
OMG. OMG Systems Modeling Language, 1.2 edition, 2010.

K. Ostermann, P. G. Giarrusso, C. Kastner, and T. Rendel. Revisiting information
hiding: reflections on classical and nonclassical modularity. In Proceedings of the 25th
European Conference on Object-Oriented Programming (ECOOP’11), pages 155178,
2011.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

C. Prehofer. Feature-oriented programming: A fresh look at objects. In M. Aksit
and S. Matsuoka, editors, FCOOP’97 Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 419-443, Berlin/Heidelberg, 1997. Springer-
Verlag.

S. Prochnow and R. V. Hanxleden. Statechart development beyond wysiwyg. In
In Proceedings of the ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MODELSO07), 2007.

H. Reubenstein and R. Waters. The requirements apprentice: automated assistance

for requirements acquisition. IEEE Transactions on Software Engineering, 17(3):226
—240, March 1991.

88

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]
[50]

[51]

J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation coeffi-
cient. The American Statistician, 42:59-66, 1988.

R. Salay, M. Chechik, and J. Horkoff. Managing requirements uncertainty with partial
models. In Proceedings of the 2012 IEEE 20th International Requirements Engineering
Conference (RE’12), pages 1-10, 2012.

P. Shaker, J. M. Atlee, and S. Wang. A feature-oriented requirements modelling
language. In Proceedings of the International Requirements Engineering Conference
(RE’12), pages 151-160, 2012.

A. Sutcliffe and N. Maiden. The domain theory for requirements engineering. IEEFE
Transactions on Software Engineering, 24(3):174 —196, March 1998.

D. Svetinovic, D. M. Berry, N. A. Day, and M. W. Godfrey. Unified use case state-
charts: Case studies. Requirements Engineering Journal, 12(4):245-264, 2007.

L. Tahvildari. Assessing the impact of using design-pattern-based systems. Master’s
thesis, David R. Cheriton School of Computer Science, 1999.

C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A conceptual basis for feature
engineering. Journal of Systems and Software, 49(1):3-15, 1999.

T. C. Urdan. Statistics in plain English; 3rd ed. Taylor & Francis, Hoboken, 2010.

S. Withall. Software Requirement Patterns. Microsoft Press, Redmond, WA, USA,
2007.

M. K. Zimmerman, K. Lundqvist, and N. Leveson. Investigating the readability of
state-based formal requirements specification languages. In Proceedings of the 24th
International Conference on Software Engineering, ICSE ’02, pages 33-43, New York,
NY, USA, 2002. ACM.

89

Appendix A

Catalogue of Case Study Models

In this section we include a complete catalogue of state-machine models created during the
case study. To avoid revealing proprietary information we have abstracted away several
details of the state machines; several transition labels have been omitted and replaced with
the number of conditions that are checked by the transition. We have also omitted many
feature-specific details within the Controlling state and removed many of the additional
concurrent regions within the Active state.

Each feature belongs to one of three sub-systems:

1. Electronic Braking Features - These are features that assist the driver while
braking the vehicle. For example, Brake Assist, which increases braking force during
an emergency stop.

2. Freeway Limited Ability Autonomous Driving Features - These are features
that perform some limited automatic driving while the vehicle is travelling on a
freeway. These features tend to expect the vehicle to be travelling above a certain
speed, and they expect the road to have certain characteristics. This set of features
includes things like Adaptive Cruise Control, which maintains the vehicle at a certain
speed.

3. Heating, Ventilating, and Air Conditioning Features - This set of features
are used to control the environment inside the vehicle’s cabin. For example, the Air
Quality System feature controls the pollution levels within the vehicle.

91

A.1 Electronic Braking Features

A.1.1 Automatic Braking (AB)

POWER_ON

(Inactive N %(
3 Unknown S Falled
-
C Environment Disabled)
Unknown

Condifion A Condifion B Condifion C
2 Condjtions / 2 Conditions / 2 Condjtions /

N N N = Braking Complete
1 Agtion 1 Agtion 1 Agtion
Controlling
- J

Figure A.1: The Automatic Braking (AB) feature.

AB does not interact with the vehicle’s driver but is sent requests by other features to
apply the vehicle’s brakes. It seems uncommon for a feature to perform this kind of a
“subservient” role and of the features we have examined, Adaptive Cruise Control is the
only feature that uses AB. In fact, the one behaviour modification that we discussed in
Chapter 4 was the case where the Adaptive Cruise Control feature applies the Automatic
Braking feature. Two other features use AB, but we do not have access to their require-
ments.

AB is modelled using the Ordered Enabling extension of Inactive. The three transitions
from Environment Disabled to Environment Enabled (labelled Condition A, Condition B,
and Condition C') correspond to the three different features that use AB. AB monitors for
the signals that correspond to each feature that utilizes it. The action on each transition
sets the braking force depending on the feature that requires braking. The requirements
for AB do not discuss the case where multiple features may try to use it at the same time.

AB is modelled using the Controlling sub-state of Active. While in Controlling, AB
listens for a signal from the calling feature to determine when it should stop braking and
transition back to Inactive. The failure requirements of AB were not discussed.

92

A.1.2 Anti-lock Braking System (ABS)

(Failed \

tmry / HUD ErrorLightType := ABS
€

xit / HUD.ErrorLightType := OFF

POWER_ON
after(0.5s)

4 Active h
(Failing \
entry / HUD.WarningLightType := ABS
exit/ HUD.WarningLightType := OFF
ajlure
2 Conditions Controlling
Monitoring
.’> 2 Conditions Not discussed
- J

Figure A.2: The Anti-lock Braking (ABS) feature.

ABS reduces the stopping distance of the vehicle by preventing the wheels from losing
traction with the road (our requirements documents do not describe how exactly this
occurs). One interesting aspect of ABS is that it can not be turned off by the user, hence
there is no Inactive state because there are no enabling or disabling requirements. This
also makes ABS one of the few features that initializes in the Active state.

ABS is modelled using the Monitoring, Controlling, and Failing sub-states of Active.
ABS transitions from the Monitoring to the Controlling sub-state when it determines that
the vehicle’s tires are losing traction. The requirements documents did not provide enough
information to model any behaviour within the Controlling sub-state. ABS states that it
can fail, but the requirements do not discuss the exact failure conditions.

93

A.1.3 Active Trailer Stability Assist (ATSA)

POW%_ON

(Inactive B . (A
in(ESC.Failed)
~in(ESC.Failed) Failed
Environment Disabled ~—
in(ESC|Failed)
when(Towing Tfailer) AND
Vehicle.speed 3 X AND
Vehicle.oscillatipn > Y (Active \
Vehicle.speed <= X
Not discussed
Environment Enabled \
. @ -~

Figure A.3: The Active Trailer Stability Assist (ATSA) feature.

Trailers that are being towed by a vehicle travelling at a high speed may oscillate from side
to side. The oscillation can affect the vehicle and cause the driver to lose control. ATSA
assists the driver maintain control of the vehicle when it is towing a trailer by minimizing
the oscillation when it is detected. The requirements documents indicate that ATSA uses
the Electronic Stability Control (ESC) feature to slow down and reduce the oscillation of
the vehicle (more detail is not provided in the documents to which we have access). We
have not omitted the transition conditions on ATSA because there are few of them and
they are relatively simple.

ATSA is modelled using the Ordered Enabling extension of Inactive, but only checks
environmental conditions during the enabling process. ATSA activates when the vehicle
is towing a trailer, and the vehicle speed and oscillation are greater than some calibrated
values. We did not have enough information about ATSA to model its active behaviour.

94

A.1.4 Brake Assist (BA)

POW%EO N

(Inactive

7 e

Unknown

Failed

Unknown

Environment Disabled

3 Conditions

(Active N
\ entry / Brake_Hydraulic.pressure :=
Environment Enabled Brake_Hydraulic. MAX_PRESSURE
3

Monitoring

2 Conlitions 2 Conglitions

Controlling

do / applyMaximumBraking()
Additional behaviour omitted

. J

Figure A.4: The Brake Assist (BA) feature.

BA reduces the vehicle’s stopping distance by applying maximum braking force when a
panic stop is initiated by the user. A panic stop is defined as pressing down quickly on the
brake pedal with force greater than some threshold.

BA is modelled using the Ordered Enabling extension of Inactive and the Monitoring
and Controlling sub-states of Active. The enabling process checks only environmental con-
ditions to determine if ATSA can activate. The entry action of the Active state commands
the brake hydraulics to maintain maximum pressure so that emergency braking can be
performed. BA waits in the Monitoring sub-state until emergency braking is required, at
which point the brakes are applied with maximum pressure. The failure requirements of
BA are not discussed.

95

A.1.5 Brake Cleaning (BC)

(Inactive A (
Unknown
Failed
3 Unknown
-
Environment
Disabled Unkrown
POWER_ON

(Active N
in(WindshieldWipers.Active) AND exit / lastActivationTime := CurrentTime()
CurrentTime() - lastActivationTime > interval AND
2 Condlitions leaningComplete() AND
1 Condition
(Monitoring \
Environment
Enabled
Vehicle.speed > X
_ J -
Vehicle.sgeed <= X OR
2 Conditipns
(Controlling \
do / CleanBrakes()
. J

Figure A.5: The Brake Cleaning (BC) feature.

BC removes buildup on the vehicle’s brakes by scraping the brake pads along the brake discs
while the vehicle is moving at a high speed. BC is activated when the driver activates the
windshield wipers. There is a minimum amount of time that must elapse before subsequest
activations (the requirements do not explain why this is needed).

BC is modelled using the Ordered Enabling extension of Inactive. The environmental
conditions ensure that the windshield wipers are active and that the minimum activation
time interval has elapsed before BC can activate. BC is modelled using the Monitoring
and Controlling sub-states of Active. The active sub-machine initializes in the Monitoring
sub-state and transitions to the Controlling sub-state when the vehicle speed is above some
minimum value. If the vehicle speed drops below the minimum value and the brakes are
not clean then BC will wait in the Monitoring sub-state until the vehicle speed becomes
greater than the minimum value again. When the brake cleaning is complete, the feature
deactivates. When the state machine leaves the Active state the activation interval resets.

The requirements for BC state that it should clean the brakes as soon as the vehicle is
turned on and vehicle speed becomes greater than the minimum value. We have modelled
this by making Active the initial state. BC does not discuss any failure requirements.

96

A.1.6 Electric Park Brake (EPB)

’

4 Inactive N ElectricalFailure() /
\ HUD.warningLightType := EPB_FAILURE
| Failed
|
3 | 3 ~ElectricalFailure() /
| HUD.warningLightType := OFF
e o \
User Disabled ! E";!“";TZ"‘
! isable Electricalfailure() /
. 1 . HUD.warningLightType := EPB_FAILURE
| 1 Corjdition 1 Condition
L | StaticlMode Dynamic Mode - Active N
EPB_ACTIVATE 1 2 Conditions
ERB_DEACTIVATE | . . Static Mode Deactivation
| 1 Corjdition 1 Condition
1 Static|Mode Dynamic Mode -
| 4 Conditions
4 1 4 Static Mode Deactivation 4 Controlling N
User Enabled | Environment Enabled » entry / EnableParkBrake()
| 2 Conditions . o
- - Dynamic Mode Deactivation entry / BrakeLights.on := true
; Y! Additional actions omitted
- I J
ChimeOff
-)
1 Condition
1 Condition
Vs
ChimeOn
. J
- J

Figure A.6: The Electric Park Brake (EPB) feature.

The EPB feature controls the vehicle’s parking brake. The EPB is controlled using buttons
on the vehicle dashboard. The EPB has a static operating mode and a dynamic operating
mode that affect how the EPB responds to changing environmental conditions while active.
In static mode, the park brake is always on until it is deactivated. In dynamic mode, the
park brake considers the vehicle’s speed and modulates the amount of braking pressure
appropriately. The EPB can be activated or deactivated when the vehicle is turned off.
If the vehicle is turned on and the EPB is activated then it applies the parking brake.
If the vehicle is not turned on and the EPB is activated then the vehicle briefly enters a
low-power mode in order to enable the park brake and display an alert on the dashboard.

The EPB is modelled using the Unordered Enabling extension of Inactive and the
Controlling sub-state of Active. When the state machine enters the Controlling sub-state it
enables the parking brake and turns on the brake lights. The sub-states within Controlling
implement behaviour that warns the driver if he or she moves the vehicle while the EPB
is operating in static mode. The EPB does not discuss any failure requirements.

97

A.1.7 Enhanced Traction System (ETS)

e i N
Inactive
Unknown
3 Unknown Failed

—
User Disabled
Unknown
—

POWER_ON

ETS_ACTIVATE
ETS_DEACTIVATE Active

ETS DEACTIVATE | Perform corrective tasks
User Enabled w
-

Figure A.7: The Enhanced Traction System (ETS) feature.

The ETS feature assists the driver maintain control of the vehicle when it starts to lose
traction with the road surface. The ETS maintains traction by limiting engine torque but
how exactly it does this is not described in the feature requirements. By default, the ETS
is active when the vehicle is turned on.

The ETS feature is modelled using the Ordered Enabling extension of Inactive and only
checks that the driver presses the ET'S_Activate button before activating. The requirements
for the ETS did not provide enough detail to model any active behaviour. The ETS
initializes in the Active sub-state and can be disabled by the driver after the vehicle has
been turned on. The ETS requirements do not discuss any failure conditions.

98

A.1.8 Hill Hold (HH)

POW%_ON

-
-

User Enabled

)

CEnvironrnen(Enabled)

Active

2 2 Conditions

2 1 Condition

4 Inactive A e
2 Unknown
| Fail
| Unknown N
!
|
User Disabled | Environment Disabled
g | Unkrjown
|
BRAKE_RPRESSED | 1 Corjdition
~BRAKE_PRESSED | 1 Confdition 4

!
!
|
!
!
1

-

J

The HH feature delays the rate at which the vehicle rolls backwards down an incline if
the brake pedal is released. To determine if HH should be used, the incline of the hill is
checked using vehicle sensors. HH can not be permanently deactivated by the vehicle’s

driver.

HH is modelled using the Unordered Enabling extension of Inactive and the Controlling
sub-state of Active. It activates when the brake pedal has been released and the vehicle is
on an incline. When entering the Controlling sub-state, HH slows the vehicle from rolling
downhill. HH deactivates when the driver presses on the brake or the vehicle starts to

IC

Controlling
Apply Brake

entry / HoldVehicle()
exit / ReleaseVehicle()

Figure A.8: The Hill Hold (HH) feature.

move forward. The requirements for HH do not discuss failures.

99

A.1.9 Traction Control System with Electronic Stability Control
(TCS_ESC)

e Inactive N
Unknown
Failed
3 Unknown
-
e M
Unknown
POWHR_ON
(Active N
Environment User
Disabled Disabled

T
!
!
!
!
!
!
!
i TCS_DEACTIVATE $
!
!
!
!
!
!
!
!
1

1 Corjdition TCS_ACTIVATE . e
1 Con(dition TQS_DEACTIVATE 1 Condition

Environment User
Enabled (1) Enabled VDC_SWITCH_PRESS
TCSOM_On
J ECSM_On

2 Congitions
Environment
Enabled (2) TCSOM_Off
ECSM_On

VDC_SWITCH_PRESS

Controlling

3 Condlitions

-

. J

Figure A.9: The Traction Control System with Electronic Stability Control (TCS_ESC)
feature.

The TCS_ESC feature assists the driver maintain control of the vehicle when it starts to
lose traction with the road surface by reducing engine torque and applying the vehicle’s
brakes. This is a refinement of the ETS feature that was previously presented in this
section. Once active, the TCS_ESC feature has two operating modes that provide varying
levels of control over the vehicle. The operating mode is toggled by pressing a button
on the dashboard (modelled as the VDC_.SWITCH_PRESS user action). The details of
what each operating mode provides are not discussed in the requirements to which we have
access.

The TCS_ESC is the only feature that is modelled using the Hybrid Enabling extension
of Inactive. In the basic case, the enabling process for the TCS_ESC waits for the vehicle
driver to explicitly enable the feature and waits for an environmental condition to be true.
However, the TCS_ESC can be activated in emergency situations without any driver input
— we use the hybrid enabling extension to model this behaviour.

100

The active behaviour for TCS_ESC is modelled using the Controlling sub-state of Ac-
tive. Within the Controlling sub-state, the behaviour is separated into 2 states that depend
on the mode that the driver has chosen. We have not attempted to model any behaviour
within those two states.

The failure requirements for the TCS_ESC are not discussed.

101

A.1.10 Competitive Traction Control System with Electronic
Stability Control (Competitive TCS_ESC)

POW%_ON

(Active N
(Controlling N
$ (Internal2 A
(Internall A
VDC_SWITCH_PRESS AND
2 Conditions
TCSOM_On TCS_SWITCH_PRESS
ESCM_On . VDC_SWITCH_PRESS i e
TCS_SWITCH_PRESS AND Competitive
1 Conglition 2 Conditions
TCB_SWITCH_PRESS AND TCS_SWITEH_PRESS
1 Con(dition TCS_SWITCH_PRESS
TCSOM_Off Sport
ESCM_On
TCS_SWITCH_PRESS
- J - -
Winter
- J
- J
- J
1 Condition TCS_DEACTIVATE
1 r Unkrjown
e Inactive N
!
|
!
!
Environment
|
User Enabled | Enabled]
! e
} Unknown
TCS_ACTIVATE | 1 Cor|dition 1 Corldition Failed
TCS_DEACTIVATE | Unknown
!
|
| a
| Environment
User Disabled | Disabled
!
!
|
!
!
- | J

Figure A.10: The Competitive Traction Control System with Electronic Stability Control
(Competitive_TCS_ESC) feature.

102

The Competitive_ TCS_ESC feature is the most advanced refinement of the ETS. It offers
several operating modes that are useful for different road conditions and driver require-
ments. The requirements documents do not provide enough information to model any
mode-specific behaviour. Interestingly, Competitive_TCS_ESC’s active behaviour is a su-
perset of TCS_ESC’s but Competitive_ TCS_ESC does not offer an emergency override.

Competitive_ TCS_ESC is modelled using the Unordered Enabling extension of Inactive
and the Controlling sub-state of Active. There are two switches that the driver uses
to switch between the various behaviour modes for Competitive TCS_ESC. The failure
requirements of Competitive TCS_ESC are not discussed.

103

A.1.11 Manual Park Brake (MPB)

Inactive Unknown
Unknown Failed
—

Unkrjown

<@

User Disabled

(Active h
PARK_BRAKE_ACTIVATE
PARK _BRAKE_DEACTIVATE
User Enabled
(Controlling N
- entry / EnableParkBrake()
Additional actions omitted
Chime Off
-)
2 Conglitions 2 Conditions
e
Chime On
. J
. J

Figure A.11: The Manual Park Brake (MPB) feature.

The MPB feature implements behaviour for the vehicle’s parking brake. Unlike the EPB
feature presented earlier in this section, the MPB is activated by pushing or pulling on a
lever. If the vehicle is not turned on and the MPB is activated then the vehicle briefly
enters a low-power mode in order to enable the park brake and display an alert on the
dashboard. The driver is alerted if they try to move the vehicle the MPB is active.

The MPB is modelled using the Ordered Enabling extension of Inactive and the Con-
trolling sub-state of Active. The MPB requirements do not discuss failures.

104

A.2 Freeway Limited Ability Autonomous Driving
Features

The Freeway Limited Ability Autonomous Driving (FLAAD) feaures tend to have more
complex behaviour and greater interaction with the driver than the Electronic Braking
features. This is partially because of the completeness of the FLAAD feature require-
ments that we have been provided. The requirements for the six FLAAD features in this
sub-section are contained in 3 separate requirements documents, totaling over 500 pages.
Whereas every one of the Electronic Braking features is described in a single document
that has only 178 pages. However, the FLAAD features do tend to implement more varied
behaviour than the Electronic Braking features.

105

A.21

POW%O N

Forward Collision Alert (FCA)

4 Inactive A
+
| in(ACC.Fail) 5
| .
| 3 ~in(ACC.Fail) Failed
!
!
User Disabled | Environment Disabled

!

- !
|
!

FCA_ACTIVATE | 5 Conglitions

FCA_DEACTIVATE | 5 Conglitions e Active N

!
| User can change detector sensitivity
|

e User Enabled \ ! (Environment Enabled \

User can change detector } User can change detector
sensitivity | sensitivity 6 Conditions
<

!

- | Monitoring

- ! J
ObjectinPath(sensitivity)
~ObjectinPath(sensitivity)
Controlling
entry / WarnDriver()
exit / StopWarning()
- J

Figure A.12: The Forward Collision Alert (FCA) feature.

FCA detects if there is an object in the path of the vehicle and uses a visual, audible, and /or
haptic alert to inform the driver. For example, if a preceding vehicle severely decreases
their speed then FCA will detect that and inform the driver to slow down the vehicle. The
driver can adjust the sensitivity of FCA using buttons on the vehicle’s dashboard.

FCA is modelled using the Unordered Enabling extension of Inactive and the Moni-
toring and Controlling sub-states of Active. When FCA is at least partially enabled, the
driver can adjust the detection sensitivity. When FCA is active the state machine waits
in Monitoring until a preceding object is detected approaching too quickly, at which point
the machine transitions to Controlling and alerts the driver. When the object is no longer
in the vehicle’s path, the state machine transitions back to Monitoring. FCA is dependent
on ACC and will fail when ACC fails. Other failure requirements are not discussed.

106

A.2.2 Lane Centring Control (LCC)

b

Inactive
T

5 Conditions

’

User
Disabled

¢

v

Environment
Disabled

)

5 Conditions

Failed

.

when(DriverHasControl)

!
|
!
!
|
!
} 4 Active
LCC_ACTIVATE 1 2 Cqnditions
! . -
LCC_DEACITIVATE | 2 Conditipns Deactivating Failing
; when(DriverHasControl) entry / InformUser() entry / InformUser()
User | Environment do / YieldControl() do / YieldControl()
C Enabled) | C Enabled) \g
_ l 3 Conditions 5 Conditions
Eﬁi e M
(Controlling \
8 Conditions, -
Correct Position
.‘9 Monitoring
~ in(Not Centred) in(Centred)
8 Conditions
Incorrect Position
do / Correct()
. J
\/when(DistanceToLaneMarkmgs >= threshold) (
Centred [\ ‘ Not Centred
when(DistanceToLaneMarkings < threshold)
- J

Figure A.13: The Lane Centring Control (LCC) feature.

LCC uses the lane markings on either side of the vehicle to keep it centred in its current
lane. The driver can adjust the offset from the centre of the lane using buttons located
on the dashboard. If the lane markings are not visible then LCC can not activate (and
if active, will deactivate). Whenever LCC deactivates or a failure occurs, it informs the
driver to take control of the vehicle and maintains control as best as it can until the driver
has control.

LCC is modelled using the Unordered Enabling extension of Inactive, and all 4 sub-
states of Active. We have modelled an additional concurrent region within Active that
determines if the vehicle is centred in the lane (thus simplifying the transitions within
Controlling). Note that the lane centring should take the offset into account, but we have
omitted it in the model to simplify the transition label. Detailed failure requirements have
not been included with the requirements we have been given for LCC.

107

A.2.3 Lane Keep Assist (LKA)

POW%&O N

(Inactive A
Disabled
LKA_DERCTIVATH /
InformiUser()
LKA_ACTJVATE OR
Driver.isTgenager Unknown
Di ticFail .
iagnosticFailure() Failed
KA_DEACTIVATE / __Unknown
Inform{User() User Enabled ~DiagnosticFailure() \;
LKIA_DEACTIVATH/ Unknown
InformUser() after(X seconds) DiagnosticFailure()
—
w Active
Environment ~EnvConds
Enabled 1 J
8 Conflitions
8 Condlitions Monitoring
LKA DEACTIVATE /
InformUser()
Environment . .
Enabled 2 4 Conglitions 4 Congitions
after(2 spconds) Controlling
Behaviour omitted
Environment
Enabled 3
. J

Figure A.14: The Lane Keep Assist (LKA) feature.

LKA ensures the vehicle does not accidentally leave its current lane. This behaviour is
similar to LCC but instead of keeping the vehicle in the centre of the lane, LKA ensures
that the vehicle does not drift out of its current lane. LKA allows the driver to change
lanes when he or she has turned the steering wheel past a certain threshold.

LKA is modelled using the Ordered Enabling extension of Inactive. Of all the features
we have examined, LKA has the greatest number of stages in its enabling process. There
are multiple Environmental Enabling steps in succession because the requirements state

108

that certain conditions should hold for some period of time before the feature can activate.
LKA’s active behaviour is modelled using the Monitoring and Controlling states. The

details of the controlling behaviour for LKA has been omitted. The failure conditions for
LKA are not described.

109

A.2.4 Lane Change Control (LXC)

(Active h
(Controlling N
change! targetLane™syight /
changeComplete :=false
Change Left Change Right
entry / ChangeLane(left) entry / ChangeLane(right)
Behaviour omitted Behaviour omitted
when(Lape=left) / when(Lane=right) /
changeCompl mplete := true
O)
. J
9 Conflitions Unkrnjown
in(LCC|Failed)
Deactivating
WarnDriver()
-
. J
1 Condition
1 Condition

T T

2 Conditions

2 Conditions

Failed

4 Inactive N

!

|

!

- ! Environment
User Enabled | Enabled
- i
!
LXC_ACTIVATE(lane) / | B
POWER_ON targetLane := Jane | 4 Congitions »
. LXC_DEACTTIVATE OR | 4 Condlitions

after(x secqpds) |

!

Environment
!
User Disabled | Disabled

!

!

|

!

- | J

Figure A.15: The Lane Change Control (LXC) feature.

LXC automatically changes the vehicle’s current lane to one requested by the driver. The
driver indicates the destination lane and, when it is safe, LXC moves the vehicle to that

lane.

110

In the GM requirements documents LXC and LCC were modelled as one feature. We
have chosen to model them as two separate features in the case study because, in terms of
their behaviour, they are not very tightly coupled. If they were modelled as one feature
then the entire behaviour for LXC would be included in the Active state of LCC. By
treating LXC as a separate feature a dependency is added that requires LCC is active
before LXC can activate.

LXC is modelled using the Unordered Enabling extension of Inactive and the Control-
ling, Deactivating, and Failing states of Active. The enabling process checks that it is safe
to change lanes before transitioning to Active. LXC does not use the Monitoring state be-
cause it is always controlling the vehicle while Active. In the event that the driver cancels
an in-progress lane change or a failure occurs then LXC will transition to Deactivating or
Failing, respectively, and ensure the driver has control of the vehicle before relinquishing
control.

111

A.2.5 Road Change Alert (RCA)

POW%LON

IS R
Inactive
‘ © 4 Conditions S 4
| .4 Conditions Failed
$ ‘ 3
|
|
4 Condlitions
! Environment
[User Disabled J | [Disabled
|
; e Active A
RCA_ON in(MAR.Active) RCA OFF OR
| A v . MAIN_REGION
RCA|OFF | in(MAR.Active) ~in(MAP Active)
| 14 \
| Controlling
[User Enabled J : [Ené:gl;;:snt J

| in(My Lane Change) MyLane_Change

N |

J do / AlertDriver(myLane)
Monitoring in(Left Lane Change) LTLane_Change
do / AlertDriver(leftLane)

in(Right Lane Change; RTLane_Change

do / AlertDriver(rightLane)

in(No Lane Change)

CHECK_ROAD

Left_Lane.ch
No Lane Change eft._Lane.changin

Right_Tane.changing

Current Lane

Left Lane
Change

Right Lane
Change

~Right_Lane.changing
~Left_Lane.changing

~Current_Lane.changing

- J

Figure A.16: The Road Change Alert (RCA) feature.

RCA alerts the driver (using visual, audible, and /or haptic feedback) when the road ahead
of the vehicle is changing. A change to the road is defined as either multiple lanes merging
into one or one lane forking into multiple lanes.

RCA is modelled using the Unordered Enabling extension of Inactive. The enabling
process only waits for the driver to enable RCA and checks that the MAP feature (which
provides Global Positioning data) is active. The Active state has two concurrent regions:

112

a main region that includes the Monitoring and Controlling states, and a separate region
that continually checks for changes to the road. When the road is not changing, the RCA
state machine waits in Monitoring. When a road change is detected, the state machine
transitions to Controlling. By using the concurrent region, the transitions between the
Monitoring and the Controlling sub-states are simplified because they do not directly refer
to the domain model. The requirements for RCA do not discuss the case where multiple
lanes are changing at one time. We have therefore modelled the state machine so that the
first change detected has priority.

The requirements for RCA provide several reasons why it may fail. These involve sensor
errors, communication failures, or the MAP feature failing.

113

A.3 Heating, Ventilation, and Air Conditioning Fea-
tures

A.3.1 Air Recirculation Control (ARC)

POW%_ON

e Active N
entry / OpenVents()

when(powering off vehicle) / OpenVents()
Additional actions omitted

(Controlling N

actions omitted

b

1 Condition
Park Heat Park Heat }

Fresh Air o Recirculate
1 Condition

1 Corldition
1 Condition

Performance

7 Conditions Recirculate

6 Conditions

entry / recircTime := 0
after(1s) / recircTime++

Fresh Air

Selection
6 Conditions

7 Conflitions

7 Condlitions
Cool Down
Recirculate .
1 Condition

. J

Figure A.17: The Air Recirculation Control (ARC) feature.

The ARC feature regulates the blending of outside air with recirculated air in the vehicle
cabin. This is done by opening and closing the vehicle’s outside air vents to let in fresh
air. ARC takes into account things like current cabin temperature and the state of the
vehicle’s heater or air conditioning system when deciding if it should open or close the
vehicle’s outside air vents.

114

ARC does not have any inactive behaviour. However, we are not certain if we have the
complete set of requirements for ARC. ARC is modelled using the Controlling sub-state of
Active. If the vehicle’s heater is active then the state machine uses the Park Heat states to
control the amount of outside and recirculated air in the cabin. If not, then the remaining
four states in Controlling implement the controlling behaviour. ARC’s requirements do
not discuss failures.

115

-~

~

Inactive

AQS_LOW_SENSITIVITY / lowSensitivity :
AQS_HIGH_SENSITIVITY / lowSensitivity := false, highSensitivity := true
exit / OpenVents()

false

rue, highSensitivity :

T
!
|
!
!
User | Environment
Disabled ; Disabled
. POWER_ON }
HVAC_ON | 2 Conditions
HVAQ_OFF | 2 Conditions SensorBroken()
| Failed
1 ~SensorBroken()
User | Environment
Enabled | Enabled \
!
. I J
lf " SensorBroken()
2 Conditions
(Active h
AQS_LOW_SENSITIVITY / lowSensitivity := true, highSensitivity := false
AQS_HIGH_SENSITIVITY / lowSensitivity := false, highSensitivity := true
exit / OpenVents()
Monitoring
tmry / numberRecircs :
5 Conditions 3 Congditions
(" Controlling N
exit / openVents()
~in(HVAC.Active.Confrolling. TooHot)
in(HVAC.Active.Controlling.JooHot)
(Recirculate with AC h
entry / recircTime := 0
entry / recircTime := 0 entry / numberRecircs := 0
exit / numberRecircs++ after(1s) / recircTime++
after(1s) / recircTime++
do / RecirculateAir()
1 Conldition High Speed
2 Conditions Qo ! HighSpeedRecircuIa:e()J
2 2 Conditions .
3 Conditions
Wait 3 Congitions
2 Conditions Wait_Exit
(~in(No Pollution Concentration) |entry / waitTime := 0
Low Speed after(1s) / waitTime++
QD / LowSpeedRecirculate()] in(No Pollution Concentration)
. J
. J
LowP MedP HighP
No Pollution Low Pollution Medium Pollution| High Pollution
Concentration ~LowP Concentration Concentration Concentration
~HighP
. J

Figure A.18: The Air Quality System (AQS) feature.

116

A.3.2 Air Quality System (AQS)

The AQS feature (see Figure A.18) minimizes the level of pollution in the vehicle’s cabin
by controlling the mixing of outside air and recirculated air. The requirements do not
define the exact meaning of pollution. When the amount of pollution in the vehicle cabin
is low, the outside air vents are opened and fresh air is let into the vehicle. If the pollution
concentration is high, then the vents are closed and the air is recirculated (the air passes
through filters that clean it). If the air conditioner is active then the air is recirculated
differently (the difference is not explained).

The AQS is modelled using the Unordered Enabling extension of Inactive and the
Monitoring and Controlling sub-states of Active, as well as a separate concurrent region
that models the pollution concentration in the vehicle. When the pollution concentration
is low, the state machine waits in the Monitoring sub-state. If the pollution concentration
becomes too high, then the state machine transitions to the Controlling sub-state and
lowers the pollution concentration in the vehicle cabin. We have also included the separate
concurrent region for Active that keeps track of the amount of pollution in the vehicle. The
pollution is monitored using discrete steps and depending on the current pollution level
one of the 4 states is entered. Using the separate region simplifies the transitions within
the main concurrent region of Active.

The only failure requirement that AQS mentions is that if any of the pollution sensors

break, then AQS should fail.

117

A.3.3 Recirculation Control Run (RUN)

P@%ON

Inactive
Unknown
Failed
Unknown

Unknown

Disabled

Active

3 Conditions

3 Conditions

Controlling

do / RecirculateAir()

exit / OpenVents()
Environment

Enabled

- @@

Figure A.19: The Recirculation Control Run (RUN) feature.

The RUN feature monitors the vehicle’s internal cabin environment and ensures that the
windows do not become fogged. The RUN feature operates by opening and closing the
outside air vents to reduce any fogging of the windshield. The RUN feature can not be
disabled by the vehicle driver. The RUN feature is modelled using the Ordered Enabling
extension of Inactive, and the Controlling sub-state of Active. We did not have access to
any failure requirements for RUN.

One thing you may have noticed is that the ARC, AQS, and RUN features all use
the vehicle’s outside air vents. The requirements documents did not discuss any feature
interactions that may occur (these may be discussed in another document that we did not
have access to), so we have not modelled any interactions resolution queries between the
features.

118

Appendix B

Cruise Control in DOORS

This chapter contains the complete set of DOORS requirements for the Cruise Control
(CC) feature.

B.1 The Primary DOORS Template

This section contains several figures that present the requirements for the CC feature as
entered in the primary DOORS template.

119

1 Cruise Control Requirements

1.1 Description
The Cruise Control (CC) feature will maintain the speed of the vehicle at a driver-specified value.

1.2 List of Environmental Conditions and User Actions

1.2.1 User Actions
POWER_ON - Sent when the vehicle is first turned on.
CRUISE_OM - Sent when the vehicle driver presses the CC feature's On button.
CRUISE_OFF - Sent when the vehicle driver presses the CC feature's Off button. Note that the On and Off button will likely be the
same button, although the signals sent to this feature will still correspond to an On and Off action.
CRUISE_SET - Sets the cruising speed (i.e., the speed to maintain the vehicle at) to the current speed when this action is
performed.
BRAKE_PRESSED - This signal is sent to the CC feature when the driver presses on the vehicle's brake pedal.
ACCEL_PRESSED - This signal is sent to the CC feature when the driver presses on the vehicle's accelerator pedal.
INC_SPEED(x) - This signal is sent to the CC feature when the driver increments the cruising speed of the vehicle. The argument
x holds the exact value (in km/h or mph) by which to increase the cruising speed.
DEC_SPEED(y) - This signal is sent to the CC feature when the driver decrements the cruising speed of the vehicle. The
arguments y holds the exact value (in km/h or mph) by which to decrease the cruising speed.

1.2.2 Environmental Conditions
wehicleSpeed - This variable holds the current speed of the vehicle.
1.3 State-Machine Model of Feature

A state-machine model of the CC feature.

oo

Iractive IngESC. Fabud] OR
wwexF gilure)

Failed

NOTERC Faliaa]) AND \
) vhad Spead Sensorioddna
Dinabied inEBC Faied) OR
whoo SpecdBansoalumg)

CRUISE_GN CRUBEE OFF

ING_8F EEDEK] / erulseSpand += &
DEG_SFEED() { o saSpeed = x

CRYISE_OFF
[Usser Erssbled (1) }r whenjymshk Lt]

== =an) CALIBE OFF

e BRAKE PRESSED |

Enebisd {1} |

—ACCEL_PRESSED

CRUISE_SET .
crusalpesd = voh ek pood B’bud -
Umer Eratiod [2) ACCEL PRESSED
s Whemvenkkapesd <
ot) -)
Epaud) J

‘mdeeSped)

Figure B.1: The Rational DOORS requirements for the Cruise Control (CC) feature (Main
Template: part 1/3).

120

1.4 Inactive

The Inactive state is the initial state of the CC feature. It is entered when the vehicle is first powered on.
While the CC feature is inactive the vehicle driver cannot increase or decrease the vehicle's cruising speed.

1.4.1 Enabling Type
Ordered

1.4.2 Link to several enabling steps here. These are found as separate modules in the same folder.
1.4.2.1 Disabled

1.4.2.2 User Enabled (1)

1.4.2.3 Environment Enabled (1)

1.4.2.4 User Enabled (2)

1.5 Active

1.5.1 General Requirements
At any time while the CC feature is Active the vehicle driver should be able to increment or decrement the cruising speed of the
vehicle (INC_SPEED and DEC_SPEED user actions).

If the vehicle's speed drops below 30 km/h the CC feature should deactivate immediately and transition to the User Enabled (1)
sub-state of Inactive.

If the vehicle's brake pedal is pressed (BRAKE_PRESSED user action) then the CC feature should deactivate immediately and ¥
transition to the Environment Enabled (1) sub-state of Inactive.

If the vehicle's driver turns off the CC feature (CRUISE_OFF user action) then the feature should deactivate immediately and ¥
transition to the Disabled sub-state of Inactive.

If the Electronic Brake Control (EBC) feature fails then the CC feature should transition to the Failed state.

If there is a failure of any of the wheel speed sensors then the CC feature should transition to the Failed state.

1.5.2 Monitoring
The Active sub-machine initializes in Monitoring.
There is not specific behaviour that only eccurs in the Monitoring state.
If the vehicle's driver is not pressing on the accelerator pedal (ACCEL_PRESSED user action) then the machine transitions to the
Controlling state.
1.5.3 Controlling

The Controlling state's sub-machine models the speed maintaining behaviour of the CC feature. The Controlling sub-machine has
three states: Maintaining Speed, Decelerating, and Accelerating.

1.5.3-1.1 Maintaining Speed

Maintaining Speed is the initial state of the Controlling sub-machine.

If the vehicle's current speed becomes greater than the cruising speed (e.qg., if the vehicle is going down a hill) then the machine
should transition to the Decelerating state.

If the wvehicle's current speed becomes less than the cruising speed (e.q., if the vehicle is going up a hill} then the machine should
transition to the Accelerating state.

1.5.3-1.2 Decelerating

While in the Decelerating state the CC feature should be actively reducing the vehicle's speed (modelled in the state machine in
Section 1.3 using the decel functien).

If the vehicle's speed becomes less than or equal to the cruising speed then the machine should transition to the Maintaining
Speed state.

¥ ¥ yewy

Figure B.2: The Rational DOORS requirements for the Cruise Control (CC) feature (Main
Template: part 2/3).

121

1.5.3-1.3 Accelerating

While in the Accelerating state the CC feature should be actively increasing the vehicle's speed (modelled in the state machine in
Section 1.3 using the accel function).

If the vehicle's speed becomes greater than or equal to the cruising speed then the machine should transition to the Maintaining
Speed state.

1.6 Failed

The failed behaviour requirements.
1.7 Undefined Functions
1.7.1 Accel()

This function will accelerate the vehicle. In our simple CC feature we assume that the acceleration is linear, but in reality the
requirements for an accel() function would likely be much more complex.

1.7.2 Decel()

This function will decelerate the vehicle. In our simple CC feature we assume that the deceleration is linear, but in reality the
requirements for a decel()) function would likely be much more complex.

Figure B.3: The Rational DOORS requirements for the Cruise Control (CC) feature (Main
Template: part 3/3).

B.2 Templates for the Enabling Stages

This section presents the requirements of the four enabling stages as structured with the
DOORS enabling template. These four stages link to the four stage placeholders in the
primary DOORS template in Figure B.2.

1 Step Disabled
1.1 State Requirements

No behavioural requirements.
1.2 Proceed to User Enabled (1)

In order to proceed to the next state (User Enabled (1)) the driver must perform the CRUISE_ON
action.

Figure B.4: The Rational DOORS requirements for the Cruise Control (CC) feature (En-
abling State: Disabled).

122

1 Step User Enabled (1): User Enabled
1.1 State Requirements

No behavioural requirements.

1.2 Proceed to Environment Enabled (1)
To proceed to the next state (Environment Enabled (1)) the vehicle speed must be greater than
or equal to 30 km/h.

1.3 Return to Disabled

To return to the previous state (Disabled) the vehile driver must perform the CRUISE_OFF
action.

Figure B.5: The Rational DOORS requirements for the Cruise Control (CC) feature (En-
abling State: User Enabled 1).

1 Step Environment Enabled (1): Environment Enabled
1.1 State Requirements
Mo specific behaviour.
1.2 Proceed to User Enabled (2)
To proceed to the next state (User Enabled (2)) the vehicle driver must perform the
CRUISE_SET action. When the driver performs this action, the cruising speed of the vehicle is
set to the current speed of the vehicle (i.e., cruiseSpeed := vehicleSpeed).
1.3 Return to immediately User Enabled (1)
Return to the previous state (User Enabled (1)) if the vehicle speed becomes less than 30 km/h.
1.4 Skip backwards to Disabled

If the vehicle driver performs the CRUISE_OFF action then the CC feature returns to the Disabled
state.

Figure B.6: The Rational DOORS requirements for the Cruise Control (CC) feature (En-
abling State: Environment Enabled 1).

1 Step User Enabled (2): User Enabled: FINAL

1.1 State Requirements
Immediately upon entry to this state the CC feature should transition to Active.

Figure B.7: The Rational DOORS requirements for the Cruise Control (CC) feature (En-
abling State: User Enabled 2).

123

Appendix C

User Study Materials

This chapter contains the tutorial for the Pattern+Interface group of the user study and
all three versions of the study questionnaire. We have only included one version of the
tutorial but point out where the differences between the three tutorials arise.

C.1 User Study Tutorial

The user study tutorial that we include here is for the Pattern+Interface group. The
tutorials for the Control and Pattern groups did not present some of the information present
in the Pattern+Interface tutorial (we point out these differences using blue annotations).
We have included all three versions of the Road Change Alert state-machine model (one
for each participant group) in this version of the tutorial.

125

Tutorial

Introduction

Model-driven engineering is a relatively new development methodology in which models, in-
stead of code, are the primary development artifacts. One particular area where model-driven
engineering is being used is in automotive software. A type of model used in model-driven
engineering are behaviour models, which specify the behaviour of a system (i.e., how it reacts
to different inputs). A popular type of behaviour model is state-machine models.

The purpose of this tutorial is three-fold: (1) to familiarize you with some of the complex
syntactic structures of state machines that are commonly used to model automotive software,
(2) to describe a pattern for designing state-machine models of automotive features, and (3) to
describe a generic state-machine interface that arises by using the pattern.

During the study, we will ask you to read a state machine that is modelled using the pattern and
to write a state-machine model using the pattern. You are allowed to keep the tutorial materials
and use them during the study. However, we ask that you do not share the tutorial materials,
or your experiences during the tutorial, with others until after the study is finished.

The Vehicle

The software in a vehicle is decomposed into distinct software features. We define a feature as
a coherent and identifiable unit of system functionality. For example, Cruise Control (which
controls the vehicle at a driver-set speed) is a single feature in a vehicle, as is Anti-Lock Brakes
(which aids braking), and Automatic Headlights (which turns on the vehicle’s headlights when
the environmental illumination becomes too low). There is a one-to-one correspondence between
state machines and features (i.e., Cruise Control has a single state machine that describes its
behavioural requirements).

You may find the domain model presented in this section useful when reading and writing state-
machine models. The domain model contains concepts in the environment (e.g., Vehicle) and
their attributes (e.g., Vehicle.speed), and associations between concepts (e.g., Vehicle.oncoming)
which can also have attributes (e.g., Vehicle.oncoming.distance). The domain model also de-
scribes the various features that are in the vehicle (e.g., Adaptive Cruise Control (ACC)),
their public data (e.g., ACC.cruiseSpeed), and their input signals (e.g., ACC.ACC_ON).

The domain model is the source of inputs to a state-machine model. A user action is an
action performed directly by the user or human operator (e.g., the user turning on the feature)
modelled as a feature’s input signals (e.g., ACC.ACC_ON). An environmental condition is
a predicate over domain-model variables (e.g., Vehicle.speed > 30) or over the current state
of another feature. The domain model is also the destination of actions performed by the
state-machine model.

The “dot” notation is used to reference objects and attributes in the domain model (similar
to referencing an object’s data fields in OOP languages). For example, a state-machine model

126

could determine the current speed of the vehicle by checking the domain model’s Vehicle.speed
attribute. The same notation is used to navigate over associations to write expressions about
related objects. For example, a state-machine model can determine if the current lane that the
vehicle is in is changing by using the expression Vehicle.currentLane.changing.

Lane
changing : {true, false,
unknown}
X
1 0.1 0.1
—————————— currentljane leftLane rightL.ane
LaneCentreing
laneCentreing : real <
~
~
*
RoadSegment
on P
speedLimit : int
curvature : real
Environment 1
ambientLightLevel : real
1
in On
Driver * * *)3
handsOnWheel : {true, false, Vehicle Distance
. L Distance |
unknown} L speed : int distance
turnSignal : bool 0.1 ===~ -— .
brakePedalPressed : bool preceding |
Headlights gasPedalPressed : bool |
lightLevel : {OFF, ON, HIGH} e steering : real |
! P S S J
oncoming
contgins
featfires

Lane Centering Control
(Lco)

I cruiseSpeed := 30 Input Signals:

! headway := | LCC_ON

| Input Signals: | LCC_OFF

| ACC_ON

| ACC_OFF

I ACC_SET

| HDWYCHG(value)

! SPDCHG(value)

| Road Change Alert
! (RCA)

‘r Input Signals:

| RCA_ON

| RCA_OFF
L e e e e e e — — 1

‘! Adaptive Cruise Control \ Adaptive Headlights
L |

|

|

‘[‘[Input Signals:
| AH_ON

| AH_AUTO

Electronic Stability Control
(ESC)

Map Information

(ABS) (MAP)

Figure 1: A simple domain model for several features.

127

State Machines

We assume that you have some familiarity with state machines created using a Statecharts-like
notation and semantics (e.g., UML State Machines). This section explains some of the more
complex features of state machines that may be useful when reading and writing state-machine
models of real-world software.

f

AN}

[s1 M
]
I
I
| 3 e N
I
I s12 S2
| entry / ComputeValue()
| when(spe¢d > 30) | event [cond] / action
I
s11 I
} s13 s21 s22
I
in(S13) |
S I / - /

Figure 2: State-machine notation.

Consider the state machine exhibited in Figure 2. A state may contain sub-states; in this case,
the former is called a superstate (e.g., S1, S2). A superstate may be decomposed into one or
more concurrent regions that are separated by dashed lines (e.g., S1); regions model orthogonal
behaviour that can occur in parallel. A transition from a black circle to a state designates the
initial state of a machine (e.g., S1). If a transition’s destination is a superstate, then the next
state is the initial state of the superstate’s sub-machine (e.g., S21) or the initial states of the
superstate’s regions (e.g., S11 and S12).

Transitions can be annotated with an event, which is a user action or predicate over the environ-
mental variables; a guard condition, which is a boolean condition over environmental variables;
and a set of actions on environmental variables — all of which are optional. Events initiated by
the user are denoted in upper-case and all other conditions are lower-case. Actions are prefaced
with a slash. The following are several examples of valid transition labels:

1. Vehicle.speed > 30 / Headlights.lightLevel := ON
2. LCC_.ON
3. SPDCHG(value) / ACC.cruiseSpeed += value

Note how literals in the labels refer to events and variables from the domain model. When a
transition is unlabelled it is executed as soon as its source state is entered.

Transition annotation when(c) refers to the event of condition ¢ becoming true (e.g., when(Vehic-
le.speed > 30)). Transition annotation [in(S)] is a condition that is satisfied when the system’s
execution is in state S (e.g., in(S13)); state S might refer to a state in another feature. The join
pseudo-state (modelled as a black bar) is used to aggregate multiple transitions (e.g., the tran-

128

sitions from source states S11 and S13 to destination state S2). The join’s outgoing transition
executes only when all of its incoming transitions are enabled.

A state may be annotated with actions that are enabled by events and guard conditions (e.g.,
S2). Such a state action is performed whenever its triggering event occurs while the system’s
execution is in the state and the guard condition is true.

A feature’s requirements may specify some complex data computation that would be difficult
and time consuming to model. This computation can be abstracted as an undefined function
that models the computation being performed without explicitly defining it. Undefined func-
tions can be events, guard conditions, or actions. For example, in Figure 2 the Compute Value()
function is an action that is executed when state S2 is entered.

Included with Pattern and Pat-

A pattern for modelling state-machines tern+Interface groups

In this section we describe a pattern for decomposing and structuring the behaviour model
of a software feature, expressed as a state machine, according to modes of operation that are
common to all features. High-level modes are Active (which captures a feature’s essential
requirements), Inactive (which captures a feature’s enabling and disabling requirements), and
Failed (which captures a feature’s failure and recovery requirements).

The following model shows how the Inactive, Active, and Fuailed states relate to one an-
other:

Behaviour:

I Restricted

Moderately restricted

-f-f-f- Unrestricted

Inactive

The important thing to note is that features normally start in the Inactive state, and when a
feature recovers from a failure it always transitions to Inactive.

The pattern’s high-level states correspond to distinct major modes of operation. Consider the
different ways in which a feature can interact with its environment:

e the feature monitors the environment
e the feature acts on the environment
e the environment monitors the feature

e the environment acts on the feature

129

Each state reflects different types of interaction. In restricted (red) states, the only allowable
interaction is that the feature can monitor the environment — to determine if any of the state’s
outgoing transitions are enabled. For example, a feature that has Failed can monitor the
environment for signs that recovery conditions have been met. In moderately restricted (yellow)
states, the feature can monitor the environment and the environment can act on the feature.
For example, it may be possible for a user to manipulate feature settings when the feature is
still Inactive (e.g., a driver can set the cruising speed before the cruise-control feature becomes
Active). In unrestricted (green) states, all four types of interactions are allowed. In this
manner, the pattern’s high-level states partition the features’ behaviours into separate modes
of operation.

Inactive Sub-Patterns

Sub-patterns for the Inactive mode provide advice on how to decompose and structure the
enabling process of a feature, according to the type and order of enabling conditions (user
actions or environmental conditions).

1. Ordered Enabling Sub-Pattern of Inactive

Inactive

Y

Disabled

Environment
Enabled (1.

Environment

Enabled (2
User

Enabled (1

Inactive

Disabled

User Enabled

User
Enabled (n

Environment Enabled

Active

(@) (b)
Figure 3: The Ordered Enabling sub-pattern.

The Ordered Enabling sub-pattern applies when a feature becomes enabled in stages. The
Inactive sub-machine is a sequence of user actions and environmental conditions that must
be satisfied in the specified order. Figure 3a shows the default sub-pattern where user
actions precede environmental-condition checks. There is a second default sub-pattern
(not shown) where environmental conditions must hold before user actions are recognized.
In the sub-patterns, each transition can be triggered by a combination (i.e., conjunctions,

130

disjunctions, negations) of user actions or a combination of environmental conditions.
When the final state in the sequence is reached, the feature transitions automatically to
the Active state.

The Inactive state in Figure 3b uses the Ordered Enabling sub-pattern to specify a multi-
stage enabling process. The enabling sequence may include back transitions from later
states in the sequence to earlier states, if enabling conditions become unsatisfied and cause
the feature to revert to a less-enabled state. As in the default sub-pattern, when the final
state in the sequence is reached, the feature transitions automatically to the Active state.

. Unordered Enabling Sub-Pattern of Inactive

Inactive |

!

User DlsabledJ

Environment
Disabled

Environment
User Enabledj Enabled

Active

Figure 4: The Unordered Enabling sub-pattern.

It often does not matter in what order a feature’s enabling conditions become true; as soon
as they all hold, the feature becomes Active. The Unordered Enabling sub-pattern applies
in these situations (shown in Figure 4). The concurrent regions separate user actions (on
the left) from the environmental conditions (on the right). A transition can be triggered
by a combination of user actions or a combination of environmental conditions. When
all of the regions are simultaneously in their most-enabled state, the feature transitions
automatically to the Active state. We model this behaviour using a join pseudo-state
whose source states are User Enabled and Environment Enabled and whose destination
state is Active.

We recommend using the Unordered Enabling sub-pattern when a feature’s enabling
process includes only user actions or only environmental conditions, and not both. In
such a case, the region that has no enabling conditions simply initiates in its enabled
sub-state. This makes it explicit that the user actions or environmental conditions have
been considered, but that none exist.

131

The Active Sub-Pattern

Active
I ENEEN|
Liiirl
Fail After 1
Delay/Cleanu 1]
4 P LILLl
Immediately | EEEENI
Fail
Monitoring Controlling /|
~
Immediately
Inactive Deactivate
L1
L1l
Deactivate After Neac
Delay/Cleanup 1
1 |
Additional monitoring behaviour that takes place while Active.
Behaviour:
I Restricted
[] Moderately restricted
FH4 unrestricted

Figure 5: The Active sub-pattern.

The Active sub-pattern provides advice on how to model the active behaviour of a feature.
Figure 5 shows the Active sub-pattern and how it relates to the two other high-level states
(i.e., Inactive and Failed).

The Active sub-pattern is composed of four states:

(a) Monitoring: When in the monitoring state, the feature is only monitoring the
behaviour of the vehicle; it is not actively controlling the vehicle’s behaviour.

(b) Controlling: This is the state in which a feature actively affects the vehicle’s be-
haviour. A feature’s Controlling state typically contains one or more sub-machines
that model the controlling behaviour of the feature.

(c) Deactivating: In this state, a feature is in the process of deactivating, but needs
to perform some actions before it becomes Inactive (e.g., a feature that automates

132

some driver’s task will notify the driver that it is deactivating and will attempt to
remain operational for some time to allow the driver to resume responsibility for
that task).

(d) Failing: The purpose of this state is similar to the purpose of the Deactivating state
— when a feature is failing, it warns the driver and attempts to remain operational
temporarily to allow the driver to resume responsibility over the feature’s task.

An activating feature normally initializes in the Monitoring sub-state and transitions be-
tween the Monitoring and Controlling sub-states, depending on whether the feature is
currently performing some actions that control some aspect of the vehicle or not. An
Active feature will transition to Deactivating as an intermediate sub-state towards tran-
sitioning to Inactive, or to Failing as an intermediate sub-state towards transitioning to
Failed. The events, conditions, or actions with which these transitions are labelled are
feature specific and thus are not part of the pattern.

Some features will transition from the Monitoring or Controlling sub-states directly to
Inactive or Failed (either because no intermediate state is necessary, or because no in-
termediate state is possible). Such transitions should be from the border of the Active
superstate to the Inactive or Failed states.

The colours of the Active sub-states in Figure 5 depict the ways in which the feature can
interact with its environment: In moderately restricted (yellow) states, the feature can
monitor the environment and the environment can act on the feature (e.g., the driver
can modify feature settings). In unrestricted (green) states, all types of interactions are
allowed.

In addition to the four states within the pattern, there may be additional concurrent
regions within Active. Those additional regions are useful when the feature continuously
monitors multiple environmental phenomena when in the Active state.

Referencing Other Features

In a typical vehicle, there may be hundreds of features that control the vehicle, log information,
interface with the driver, etc. Sometimes a feature will rely on another feature being in a
specific behaviour mode. For example, a feature A may be able to activate only when another
feature B is active.

When features are modelled according to the pattern, all features have the same high-level
behaviour model. This means that the high-level states can serve as a generic feature interface
of a feature. As a modeller, this simplifies your task because you know that all of the features
in the vehicle have an Inactive, Active, and a Failed superstate. You also know what kind of
behaviour is occurring (i.e., restricted, moderately restricted, or unrestricted) when a feature is
in each of those states. Consider the example in the previous paragraph. The model of feature
A could incorporate condition in(B.Active) which evaluates to true whenever feature B is in its
Active state. When features are modelled according to the proposed pattern, the engineer who

133

models feature A can confidently include such a condition in his model without even consulting
the model of feature B.

Example: Road Change Alert The RCA model varies depend-
ing on group

The automotive feature Road Change Alert (RCA) alerts the driver if the lane in front of the

vehicle is about to change (e.g., if the lane is about to merge into another lane, or fork into

multiple lanes).

When the road ahead of the vehicle is changing, the driver will be alerted by a flashing light
on the vehicle dashboard and by an audible warning (the warning does not distinguish between
the ways in which the lane is changing). The alert will continue until the vehicle has passed

the changing portion of the road. The Control group’s model

State Machine Macro:
FailureConditions:
ForwardLookingSensorError() OR
SideLookingSensorError() OR
MAP feature fails OR

CommunicationSystemFailure()
POW%R_ON
I ~FailureConditions
RCA_Disabled }\ FailureConditions \ RCA_Failed
-
RCA_QK'AND RCA_OQFF OR FailureCpnditions

Map feature’turned on MAP feature turned off

(RCA_Engaged h

RCA_Idle
~fightLane.changing

~Vehicle.rightLaNe.changing

Left Lane Changing My Lane Changing Right Lane Changing

do / AlertDriver(leftLane) do / AlertDriver(myLane) do / AlertDriver(rightLane)

- /

Figure 6: The Road Change Alert feature.

134

el

BuiBueysauey
Buiby

reyo-aue s aIYaA~

EIEEREN

Buibueys sueyBL sy A~

abueyD aueT by

Buibueys auen

abuey) aue ya

Dm:mr_o aue oN < .

[VIEVEENERNEEIRTEIN

TIUBLND BDIYIA

abuey) aue AW

avoy »03HO

(suemybu)ianuqualy / op

abueyp aueTLy

(abueyd atre] oN)ul

J (abueyd aueT ybrg)ur

(aueTya)1anuQUalY / Op

abueypeueL]

(ebueyd sueq ya)ur

(sueAw)iaAugua)y / op

abueyn sueTAN

< aBueyd aueT AW)ur

Buijonuod
" _ JJ0 pauny aintes) 4y
NOIO3H NIVA Y0 440 vou
BAY
()ainjreqwaisAsuonesiunwiwio)
HO sirey ainesy dvin
¥O ()J1011310sUaSBUB00TOPIS suonpugoain|es
¥O (Jouz10suashujoopremio
:suonipuodaines
10198} BUILYJEN B1eIS
ST T e T ——
suonIpuoDaIn|ies~

paltes
< ievnioaeiies

pajqeus
oAUz

110 pauIm dinjea) dvi

pajgesia
pUETHIIAE]

|
|
|
|
|
|
|
|
|
i
|
uo pauin} ajnjes) dvn | NO y¥ou
|
|
|
|
|
|
|
|
|
|
|
|

h pajqeus Jasn

440 [vod

pajqesia Jasn

suonipuodainjres

annoeu|

NO ¥HMOd

135

T I ENIETRIVEy

Buibyeyo-suefjaIdoIyaA~

abuey) sue Yo

abuey aue A

obuey) aue Jybiy

Buibueyo-aueTIYBI BI0IYBA~

abueyp aue oN

QavoH %03HO

abueyd st oN)ul

(suemybu)senugualy / ob

abueyy auely

J (ebueyd aue Jubig)ur

(oueTellIonIGHOLY / QL

abueyp euel]

Buuoyuowy

\m Babuey) aueT ya)ul

(sueAw)iaAuqgualy / ab

AT T T

abueyn eueApy

J (ebuey) aueT A)ur

Buonuon

- —
NOID3H NIV

The Pattern+Interface group’s

model

(aAnoy dyN)ul~

anjoy

()aunjreqwaejsAguonesiunwiwo)
HO (e dyin)u

HO ()1ou3i0susgbunjooepis suonipuonain|ie4
HO ()1o11310suagbu00TPIEMIO
suonpuoDaInjie

10408\ BUIYOR dlelS

poires

H0 440 Yod

SuonpUODSIN|iE~

(

pajqeus
JuBWUOIIAUT

)

[CS

HYIN) UL~

(eAnoy"dviN)ut

(

paigesia
juswuosiaug

.

)

ﬁ pageu3 Jesn w

440(vod

NO yOd

h pajqesiq 1esn w

.

SUOpUCDBINIES

amoey|

NO HIMOd

The Road Change Alert feature.

Figure 8

136

RCA applies the Unordered Enabling sub-pattern of Inactive and a subset of the Active sub-
pattern. To activate RCA, the driver must manually press an RCA-on button (resulting in input
event RCA_ON). RCA also checks to ensure that the MAP feature is active (note how even
though the MAP feature is not provided, we know that it has an Active state that implements
its behaviour).

Once activated, RCA will be in state Monitoring until it notices that the road is changing in
front of the vehicle. These road changes are modelled using several events and conditions from
the domain model (e.g., RoadSegment.leftLane.changing) that reflect threshold readings from
vehicle sensors or positioning data from the MAP feature. When one of the lanes near the
vehicle is changing, the lane-changing condition of the appropriate lane (current lane, left lane,
right lane) becomes true, which causes the sub-machine MAIN_REGION to transition to the
sub-state of Controlling that corresponds to the lane that is changing. When the vehicle has
passed the changing portion of the road, RCA transitions back to the Monitoring state.

RCA deactivates when the driver deactivates RCA (by sending the RCA_OFF event) or the
feature MAP becomes Inactive. RCA fails due to sensor failure, MAP failure, or if there is a
failure within the vehicle’s communication network.

137

Modelling an example feature

Your task is to write a state-machine model for an automobile feature called the Automatic
Headlight feature (AH). When active, AH turns the vehicle headlights off and on automatically
depending on the level of illumination outside the car. It will also turn on high beams if the
distance to the next vehicle or any oncoming vehicles is sufficiently far to avoid blinding the
other drivers with high-beam headlights. Thus, the appropriate headlight brightness level is
calculated using the presence of a preceding or oncoming vehicle and the luminosity level of the
environment.

The driver interacts with the AH feature via buttons near the steering wheel. The driver can
turn the headlight knob to ON, OFF, or AUTO (in which automatic headlights are engaged).
The AH feature will activate only when the Adaptive Cruise Control (ACC) feature is already
active.

In addition to the AH knob, the other inputs to the feature are:

e Vehicle.preceding # 0 - This condition is true when there is another vehicle ahead of
this one within a threshold distance. If the value of this condition is Unknown, then the
object-detecting sensor has failed and AH fails. When the value becomes known again,
AH recovers from the failure.

e Vehicle.oncoming # () - This condition is true when there is another vehicle approaching
this one within a threshold distance. If the value of this condition is Unknown, then the
object-detecting sensor has failed and AH fails. When the value becomes known again,
AH recovers from the failure.

e Environment.ambientLightLevel : real - The valid range for the variable is 0 to 1. If the
value lies outside of the accepted range then the light-detecting sensor has failed and AH
also fails. When the value returns to the valid range, AH recovers from the failure.

For safety reasons, when a failure occurs the driver is warned about the failure and the headlights
are set to their normal intensity (by setting the Headlights.lightLevel variable to ON).

The feature’s actions are commands to the headlights to change their lighting levels. To model
the actions, you can use the following assignments and undefined functions:

e Headlights.lightLevel := ON
o setHeadlightIntensity (targetIntensity)
e Headlights.lightLevel := OFF

To calculate the desired intensity of the vehicle’s headlights the undefined function calculateln-
tensity(preceding or oncoming vehicle, Environment.ambientLightLevel) can be used.

The following use case description may be of assistance in modelling this feature:

138

Driver

AH

Road

Environment

1. Driver sets the AH
knob to AUTO.

2. Confirm that ACC
is Active.

3. Poll sensors.

4. Check Vehicle.preceding
and Vehicle.oncoming
values.

4. Check Environment.
ambientLightLevel.
value.

5. Adjust headlight
luminosity. Goto step 3.

Alternative 1: ACC not Active

2. If ACC is not Active,
Use case ends.

Alternative 2: Driver turns headlights off

n(3 - 5). Driver sets the AH knob
to OFF.

n+1. Deactivate AH.
Turn off headlights.
Use case ends.

Alternative 3: Driver turns headlights on

n(3 - 5). Driver sets the AH knob
to ON.

n+1. Deactivate AH.
Turn on headlights.
Use case ends.

Exception 1: Light-detecting sensor fails

4. Environment.
ambientLightLevel
value outside
range.

5. Warn driver.

6. Deactivate AH.
Turn on headlights.
Use case ends.

Exception 2: Object-detecting

sensor fails

4. Vehicle.preceding or
Vehicle.oncoming is
Unknown.

5. Warn driver.

6. Deactivate AH.
Turn on headlights.
Use case ends.

139

C.2 User Study - Control Group

This is the version of the study that was provided to the Control group of the user study.

140

Control Study

Feature Specification Study

Thank you for participating in our study. To help protect the integrity of our results, we ask
that you do not share this questionnaire with other students or collaborate on the tasks provided
below. We also ask that you do not talk to anyone about the questionnaire or the tutorial during
or after your completion of it - until all participants have completed the study. You are free to refer
to tutorial materials while completing the study. The domain model provided on the next page is
identical to the one in the tutorial.

You are free to omit answers to any of the following questions or tasks. If you have any questions
or concerns, please contact us at cbocovicQuwaterloo.ca or d4dietriQuwaterloo.ca.

1 Background Questions

Please answer the following questions to the best of your ability. The questions in this section
concern your previous experience in modelling software requirements.

1. Do you have previous experience with requirements modelling or state-machine modelling?
If so, briefly state the types and levels of experience (include notations/methods/tools used,
length of time used, and whether your experience is from coursework or industrial experience.)

2. On a scale of 1 to 5, express your level of comfort with UML State Machines or statecharts
(1 = never heard of them, 2 = heard of them and have looked at some models, 3 = used the
notation in the past but do not recall a lot of details, 4 = can probably sketch a model, 5 =
have good knowledge of them).

3. What is your experience with modelling automotive features (if any)?

141

Lane

changing : {true, false,

unknown}
1 0.1 0.1
——————————— currentljane leftLane rightLane
LaneCentreing
laneCentreing : real <
~ ~
RoadSegment
on
speedLimit : int
curvature : real
Environment
ambientLightLevel : real t 1
n On
Driver * * * 3
handsOnWheel : {true, false, . Vehicle Distance
unknown} B speed : int distance
turnSignal : bool 01 fF==77=—- .
brakePedalPressed : bool preceding |
Headlights gasPedalPressed : bool |
lightLevel : {OFF, ON, HIGH} e steering : real |
1 P S J
oncoming
contgins
featyres
r Adaptive Cruise Control } | Lane Centering Control | | Adaptive Headlights “ I Road Change Alert !
| (ACC)) | (LcC) | ! (AH)]) (RCA) !
I cruiseSpeed := 30 | ‘! Input Signals: ! ‘[Input Signals: ! " Input Signals: "
" headway : ! | LCC_ON ! | AH_ON ! | RCA_ON |
| Input Signals: | | LCC_OFF | | AH_AUTO | |
| ACC_ON | b — = | AH_OFF | !
I ACC_OFF I S I
I ACC_SET |
| HDWYCHG(value) !
| SPDCHG(value) |
|

Electronic Stability Control

Map Information
(MAP)

142

2 Reading Assignment

We want to collect information on how long it takes to comprehend a model that was created by
someone else. This includes the time devoted to examining and understanding the model as well
as the time spent answering questions about it. Please review the model below and answer the
following questions. Record the time at which you start the task and the time you complete it. If
you take breaks or do the section in several stages, please record each start and stop time.

Below is a model of an Adaptive Cruise Control (ACC) feature for automobiles. ACC is a
more advanced version of a basic Cruise Control feature. In addition to maintaining the vehicle’s
speed at a constant driver-set cruising speed, it also maintains a safe distance to the vehicle ahead.
Additionally, ACC will react to traffic conditions by deactivating if an upcoming object gets too
close. The driver activates ACC by pressing a button located near the steering wheel of the vehicle.
ACC will deactivate automatically in the event that the vehicle’s speed drops below 30 km/h or
gets too close to an upcoming object. The driver can deactivate ACC manually by pressing the
same switch that used to activate the feature. While activated, ACC can be overriden by pressing
the gas pedal or the brake pedal. This temporarily suspends its controlling behaviour. In the event
that hardware related to the operation of this feature fails, the feature itself will fail.

143

Start Time:
Stop Time:

After each question, please indicate your level of confidence in your answer.

1. List all of the user actions that the user performs as part of the process to activate the feature.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

2. List all of the environmental conditions that must hold for the feature to remain active, once
the feature is active and controlling the vehicle’s speed.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

3. Circle the features that the ACC feature refers to, and list all of the information that ACC
obtains from these features.

ACC
LCC
AH
RCA
ESC
ABS
MAP

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

144

4. List all of the states in which the feature can directly affect the behaviour of the automobile.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

5. Describe how ACC behaves on the first detection of a failure.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

6. What is the name of the initial state(s) of the ACC feature (when the car is first powered
on)?

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

145

Undefined Functions

SPDCHG(value) - allows driver to
increment or decrement the
targetSpeed variable
HDWYCHG(value) - allows driver to
incrememnt or decrement the
headway variable.

AlertDriver() - sends an alert to the
driver of the vehicle

WarnDriver() - warns the driver of the
vehicle of an impending collision

Other features

ABS - Anti-lock Braking System
ACC cannot modify the vehicle's
while this is controlling the
vehicle.

ESC - Electronic Stability Control
ACC cannot modify the vehicle's
behavior while this feature is
controlling the vehicle.

State Machine Variables
unsafeDistance := 0.5

3 POWER_ON

e ACCMachine N
; 7
(ACCDisabled ~Hardware Failure
entry/cruiseSpeed := 0 ACCFailed
entry/headway :=2 ACC ON entry/warnDriver()
ACC_OFF OR Vehicle.speed < 30
OR in(CollisionWarning)/alertDriver() delay(10s) Hardware Failure
(ACCEnabled N
Vehicle.speed >= 30 AND
ACCNotReady ~(Vehicle.brakePedalPressed) ACCNotSet
, , ACC_SET/
Vehicle.brakePedalPressed Vehicle.brakePedalPressed crui j = Vehicle.speed
(ACCActive h
SPDCHG(value)/cruiseSpeed += value
HDWYCHG(value)/headway += value
Vehicle.gasPedalPressed OR
ABS or ESC activated/alertDriver()
.%C ACCRunning | ACCOverriden)
~Vehicle.gasPedalPressed AND
I\ ABS or ESC deactivated Yy,
. J
(ACCSpeedController N
e ControllerRunning \
lin(ACCRunning)
in(TargetSpeed) AND in(TooSlow) Accelerate
in(CorrectDistance) do/IncSpeed()
Decelerate
Idle in(TooFast) OR do/DecSpeed()
lin(TargetSpeed) OR in(TooClose) g in(ACCRunning)
lin(CorrectDistance) g SpeedControlSuspended
. /
R
|
!
Vehicle.preceding.distance |
> unsafeDistance | TooSlow
!
| Vehicle.speed >= Vehicle.speed <
| cruiseSpeed cruiseSpeed
CorrectDistance . |
CollisionWarning 1
Vehicle.preceding.distance } ‘%C TargetSpeed)
< headway |
) . ! Vehicle.speed > Vehicle.speed <=
Vehicle.preceding.distance | cruiseSpeed cruiseSpeed
>= headwpy |
!
Vehicle.preceding.distance 1
TooClose <= unsafeDistance I TooFast
!
|
- I

3 Writing Assignment

This section involves writing a state-machine model of an automotive feature. After reading the
description, please record the time at which you start the modelling task and please record the
time when you complete the task. If you take breaks or work on this section of the study in several
stages, please record each start and stop time. Spend no more than one hour on the modelling part
of the task (Set an alarm for yourself).

The task is to write a state-machine model for an automotive feature called Lane Centring
Control (LCC). When active, LCC attempts to automatically steer the vehicle to stay in the
current lane. LCC can be activated only if the Adaptive Cruise Control (ACC) feature is already
active. If ACC is active, then the driver can turn the LCC feature ON and OFF by pressing a
button on the steering wheel.

LCC is automatically deactivated if ACC is no longer active, the driver removes his or her hands
from the steering wheel for too long, the vehicle’s speed becomes less than 60km/h, or if the ACC
feature detects an anticipated collision. Additional inputs to the system are:

e RoadSegment.curvature: real - This environmental reflects the upcoming curve in the road,
if any. The condition is sensed by the GPS feature. If GPS fails, then the LCC feature also
fails. If the GPS feature and sensor recover from a failure, LCC will also recover.

e Vehicle.currentLane.laneCentring: [-1..1] - This environmental condition indicates the degree
to which the vehicle is centred in the lane. It is sensed by the CameraSensor feature. The
target value for this environmental condition is 0, meaning the vehicle is centred between the
left and right markings on the road. A positive value indicates that the vehicle is diverging to
the right, and a value of 1 or greater indicates that the car is crossing the right lane marker.
Negative values similarly indicate that the vehicle is diverging to the left. Values out of range
indicate that the vehicle has diverged too far out of the lane to be automatically recentred or
that the CameraSensor has failed. In both of these cases, LCC fails. When the value reenters
the range -1..1, the LCC feature recovers from failure.

e Vehicle.turnSignal: boolean - This environmental condition is true when the driver activates
the turn signal and false otherwise. When the turn signal is activated, LCC should remain
enabled but not have control of the vehicle.

e Driver.handsOnWheel: boolean - This environmental condition is true when the driver’s
hands are currently on the steering wheel and false when the driver has taken his or her
hands off the steering wheel.

e Vehicle.speed: [0..300] - The vehicle’s speed is sensed by the speedometer. If the speedometer
is not able to determine the speed, the value will be -1 and LCC fails. When the speedometer
recovers from a failure, the LCC feature also recovers.

For safety reasons, LCC is deactivated whenever a failure occurs. The feature must then wait for
any failure conditions to be removed before recovering from a failed state.

LCC’s outputs are commands that attempt to keep the vehicle in the lane and warnings to the
driver if the feature fails or deactivates. You can use the following undefined functions in your
model:

147

e calculateSteeringValue(Vehicle.currentLane.laneMarking, RoadSegment.curvature) - calculates
the exact value for how much the vehicle should veer to be recentred in the lane.

e warnDriver() alerts the driver of a change in the feature’s state (e.g. deactivation)

The following use case description may be helpful.

148

Driver LCC SteeringWheel GPS CameraSensor Speedometer
1. Driver ac-
tivates LCC by
pressing button
2. Confirms
that ACC is ac-
tive
3. Poll sensors
4. Determine | 4. Determine | 4. Determine | 4. Determine
whether driver’s | road curvature | vehicle’s dis- | current speed
hands are off tance to lane
steering wheel. markings

5. If hands
are off wheel,

5. If road is
straight, go to

5. If centered in
lane, go to step

5. If speed is
above 60 km/h,

increment time | step 3. 3. go to step 3.
counter, else
reset time
counter. Go to
step 3.
Alternative 1: Driver uses turn signal
n:(3-5). Driver
uses the turn
signal
n+1.Suspends
LCC control.
n+2. Driver
turns off turn
signal
n+3. LCC con-
trol regained.

Go to step 3.

Alternative 2: Driver’s hands are off the steering wheel for too long

4. Counter ex-
ceeds threshold

5. Warn driver.

6. Deactivate
LCC. Use case
ends

Alternative 3:AC

C is not active

2. Confirms
ACC inactive

3. Deactivate
LCC. Use case
ends.

149

Alternative 4: Driver deactivates LCC

n:(3-5).
deactives

Driver

LCC
by pressing but-
ton

n+1. Deacti-
vate LCC Use
case ends

Alternative 5: Lane Markings suggest necessary steering

4. Vehicle is not
in center of lane

5. Steer to the
right or left ac-
cordingly

6. Go to step 3.

Alternative 6: GPS reports sharp bend

4. Detects a
sharp bend
ahead

5. Warns
driver.

6. Deactivate
LCC. Use case
ends

Alternative 7: ACC is deactivated

n. Detects ACC

deactivation

n+1. Warn
driver.

n+2. Deacti-
vate LCC. Use
case ends

Alternative 8: Ve

hicle speed less than 60km/h.

4. Detects ve-
hicle speed less
than 60 km/h

5. Warns driver

6. Deactivate
LCC. Use case
ends

Exception 1: Har

dware failure.

4. Reports no G
lane marking OR

Reports no speed

PS data OR Reports no

data

5. Warn driver.

6. LCC fails.

150

Start Time:
Stop Time:

Please write your model on the page provided and state how confident you are in your model.
It may be difficult to create an elegant model in such a short time and without the aid of modelling
tools. We are interested in the functionality of the model and not so much in how neat it is or how
efficient it is. Remember, this exercise should take at most an hour to complete.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90% correct,
90%-100% correct)

151

C.3 User Study - Pattern Group

This is the version of the study that was provided to the Pattern group of the user
study.

152

Pattern Study

Feature Specification Study

Thank you for participating in our study. To help protect the integrity of our results, we ask
that you do not share this questionnaire with other students or collaborate on the tasks provided
below. We also ask that you do not talk to anyone about the questionnaire or the tutorial during
or after your completion of it - until all participants have completed the study. You are free to refer
to tutorial materials while completing the study. The domain model provided on the next page is
identical to the one in the tutorial.

You are free to omit answers to any of the following questions or tasks. If you have any questions
or concerns, please contact us at cbocovicQuwaterloo.ca or d4dietriQuwaterloo.ca.

1 Background Questions

Please answer the following questions to the best of your ability. The questions in this section
concern your previous experience in modelling software requirements.

1. Do you have previous experience with requirements modelling or state-machine modelling?
If so, briefly state the types and levels of experience (include notations/methods/tools used,
length of time used, and whether your experience is from coursework or industrial experience.)

2. On a scale of 1 to 5, express your level of comfort with UML State Machines or statecharts
(1 = never heard of them, 2 = heard of them and have looked at some models, 3 = used the
notation in the past but do not recall a lot of details, 4 = can probably sketch a model, 5 =
have good knowledge of them).

3. What is your experience with modelling automotive features (if any)?

153

Lane

changing : {true, false,

unknown}
1 0.1 0.1
——————————— currentljane leftLane rightLane
LaneCentreing
laneCentreing : real <
~ ~
RoadSegment
on
speedLimit : int
curvature : real
Environment
ambientLightLevel : real t 1
n On
Driver * * * 3
handsOnWheel : {true, false, . Vehicle Distance
unknown} B speed : int distance
turnSignal : bool 01 fF==77=—- .
brakePedalPressed : bool preceding |
Headlights gasPedalPressed : bool |
lightLevel : {OFF, ON, HIGH} e steering : real |
1 P S J
oncoming
contgins
featyres
r Adaptive Cruise Control } | Lane Centering Control | | Adaptive Headlights “ I Road Change Alert !
| (ACC)) | (LcC) | ! (AH)]) (RCA) !
I cruiseSpeed := 30 | ‘! Input Signals: ! ‘[Input Signals: ! " Input Signals: "
" headway : ! | LCC_ON ! | AH_ON ! | RCA_ON |
| Input Signals: | | LCC_OFF | | AH_AUTO | |
| ACC_ON | b — = | AH_OFF | !
I ACC_OFF I S I
I ACC_SET |
| HDWYCHG(value) !
| SPDCHG(value) |
|

Electronic Stability Control

Map Information
(MAP)

154

2 Reading Assignment

We want to collect information on how long it takes to comprehend a model that was created by
someone else. This includes the time devoted to examining and understanding the model as well
as the time spent answering questions about it. Please review the model below and answer the
following questions. Record the time at which you start the task and the time you complete it. If
you take breaks or do the section in several stages, please record each start and stop time.

Below is a model of an Adaptive Cruise Control (ACC) feature for automobiles. ACC is a
more advanced version of a basic Cruise Control feature. In addition to maintaining the vehicle’s
speed at a constant driver-set cruising speed, it also maintains a safe distance to the vehicle ahead.
Additionally, ACC will react to traffic conditions by deactivating if an upcoming object gets too
close. The driver activates ACC by pressing a button located near the steering wheel of the vehicle.
ACC will deactivate automatically in the event that the vehicle’s speed drops below 30 km/h or
gets too close to an upcoming object. The driver can deactivate ACC manually by pressing the
same switch that used to activate the feature. While activated, ACC can be overriden by pressing
the gas pedal or the brake pedal. This temporarily suspends its controlling behaviour. In the event
that hardware related to the operation of this feature fails, the feature itself will fail.

155

Start Time:
Stop Time:

After each question, please indicate your level of confidence in your answer.

1. List all of the user actions that the user performs as part of the process to activate the feature.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

2. List all of the environmental conditions that must hold for the feature to remain active, once
the feature is active and controlling the vehicle’s speed.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

3. Circle the features that the ACC feature refers to, and list all of the information that ACC
obtains from these features.

ACC
LCC
AH
RCA
ESC
ABS
MAP

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

156

4. List all of the states in which the feature can directly affect the behaviour of the automobile.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

5. Describe how ACC behaves on the first detection of a failure.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

6. What is the name of the initial state(s) of the ACC feature (when the car is first powered
on)?

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

157

Undefined Functions N

Other features AN
SPDCHG(value) - allows driver to
increment or decrement the ABS - Anti-lock Braking System
targetSpeed variable ACC cannot modify the vehicle's
HDWYCHG(value) - allows driver to while this is controliing the
incrememnt or decrement the vehicle.
headway variable.
POWER_ON AIerlDri\E’er() - sends an alert to the ESC - Electronic Stability CO““'OI
e Inactive N driver of the vehicle ;\Chc canno';n Imf::'fyfmf vehicle's
State Machine Variables WarnDriver() - warns the driver of the ehavior while this feature is
vehicle of an impending collision controlling the vehicle.
unsafeDistance := 0.5
(Disabled \
entry/cruiseSpeed :=
Cmry/headway =2 4 Active N
ACC OFF SPDCHG(value)/cruiseSpeed += value
- HDWYCHG(value)/headway += value
ACC_ON ACC_OFF
\ Vehicle.brakePedalPressed
User Enabled 1 r
J Deactivating
Vehicle.speed i
Vehicle.speed Z300R P entry/WarnDriver()
>= 30 AND Vehicle.brake delay(10s) ACC_OFF OR
~(Vehicle.brake PedalPressed Vehicle.speed < 30
PedalPressed)
ACC_OFF OR
Environment Enabled 1 Vehicle.speed < 30 4 Controlling N
ACC_SET/
cruiseSpeed := Vehicle.speed Monitoring Vehicle.gasPedalPressed
~ in(too slow) Accelerate
User Enabled 2 do/IncSpeed()
- J vehicl PedalP 9 in(correct headway) OR
~(Vehicle.gasPedalPresse i
- AND ABS and £5C are (target speed) in(too close)
in(unsafe distance) not activated constant speed
in(correct headway) QR
in(target speed)
ABS or ESC are
: activated in(too fast) OR Decelerate
~Hardware failure Tn(too close)
do/DecSpeed()
Hardware Failing J
failure -
Failed N entry/WarnDriver() Hardware
delay(10s) failure
ObjectSensor T oo oTToTToTTmTmmmmmm T

correct headway

Vehicle.preceding.distance < headway
too close
Vehicle.preceding.distance >= headway
-

do/AlertDriver()

Vehicle.preceding.distance
<= unsafeDistance

speedometer
Vehicle.speed >= cruiseSpeed Vehicle.speed > cruiseSpeed
too slow target speed too fast
Vehicle.speed < cruiseSpeed Vehicle.speed <= cruiseSpeed
. J

158

3 Writing Assignment

This section involves writing a state-machine model of an automotive feature. After reading the
description, please record the time at which you start the modelling task and please record the
time when you complete the task. If you take breaks or work on this section of the study in several
stages, please record each start and stop time. Spend no more than one hour on the modelling part
of the task (Set an alarm for yourself).

The task is to write a state-machine model for an automotive feature called Lane Centring
Control (LCC). When active, LCC attempts to automatically steer the vehicle to stay in the
current lane. LCC can be activated only if the Adaptive Cruise Control (ACC) feature is already
active. If ACC is active, then the driver can turn the LCC feature ON and OFF by pressing a
button on the steering wheel.

LCC is automatically deactivated if ACC is no longer active, the driver removes his or her hands
from the steering wheel for too long, the vehicle’s speed becomes less than 60km/h, or if the ACC
feature detects an anticipated collision. Additional inputs to the system are:

e RoadSegment.curvature: real - This environmental reflects the upcoming curve in the road,
if any. The condition is sensed by the GPS feature. If GPS fails, then the LCC feature also
fails. If the GPS feature and sensor recover from a failure, LCC will also recover.

e Vehicle.currentLane.laneCentring: [-1..1] - This environmental condition indicates the degree
to which the vehicle is centred in the lane. It is sensed by the CameraSensor feature. The
target value for this environmental condition is 0, meaning the vehicle is centred between the
left and right markings on the road. A positive value indicates that the vehicle is diverging to
the right, and a value of 1 or greater indicates that the car is crossing the right lane marker.
Negative values similarly indicate that the vehicle is diverging to the left. Values out of range
indicate that the vehicle has diverged too far out of the lane to be automatically recentred or
that the CameraSensor has failed. In both of these cases, LCC fails. When the value reenters
the range -1..1, the LCC feature recovers from failure.

e Vehicle.turnSignal: boolean - This environmental condition is true when the driver activates
the turn signal and false otherwise. When the turn signal is activated, LCC should remain
enabled but not have control of the vehicle.

e Driver.handsOnWheel: boolean - This environmental condition is true when the driver’s
hands are currently on the steering wheel and false when the driver has taken his or her
hands off the steering wheel.

e Vehicle.speed: [0..300] - The vehicle’s speed is sensed by the speedometer. If the speedometer
is not able to determine the speed, the value will be -1 and LCC fails. When the speedometer
recovers from a failure, the LCC feature also recovers.

For safety reasons, LCC is deactivated whenever a failure occurs. The feature must then wait for
any failure conditions to be removed before recovering from a failed state.

LCC’s outputs are commands that attempt to keep the vehicle in the lane and warnings to the
driver if the feature fails or deactivates. You can use the following undefined functions in your
model:

159

e calculateSteeringValue(Vehicle.currentLane.laneMarking, RoadSegment.curvature) - calculates
the exact value for how much the vehicle should veer to be recentred in the lane.

e warnDriver() alerts the driver of a change in the feature’s state (e.g. deactivation)

The following use case description may be helpful.

160

Driver LCC SteeringWheel GPS CameraSensor Speedometer
1. Driver ac-
tivates LCC by
pressing button
2. Confirms
that ACC is ac-
tive
3. Poll sensors
4. Determine | 4. Determine | 4. Determine | 4. Determine
whether driver’s | road curvature | vehicle’s dis- | current speed
hands are off tance to lane
steering wheel. markings

5. If hands
are off wheel,

5. If road is
straight, go to

5. If centered in
lane, go to step

5. If speed is
above 60 km/h,

increment time | step 3. 3. go to step 3.
counter, else
reset time
counter. Go to
step 3.
Alternative 1: Driver uses turn signal
n:(3-5). Driver
uses the turn
signal
n+1.Suspends
LCC control.
n+2. Driver
turns off turn
signal
n+3. LCC con-
trol regained.

Go to step 3.

Alternative 2: Driver’s hands are off the steering wheel for too long

4. Counter ex-
ceeds threshold

5. Warn driver.

6. Deactivate
LCC. Use case
ends

Alternative 3:AC

C is not active

2. Confirms
ACC inactive

3. Deactivate
LCC. Use case
ends.

161

Alternative 4: Driver deactivates LCC

n:(3-5).
deactives

Driver

LCC
by pressing but-
ton

n+1. Deacti-
vate LCC Use
case ends

Alternative 5: Lane Markings suggest necessary steering

4. Vehicle is not
in center of lane

5. Steer to the
right or left ac-
cordingly

6. Go to step 3.

Alternative 6: GPS reports sharp bend

4. Detects a
sharp bend
ahead

5. Warns
driver.

6. Deactivate
LCC. Use case
ends

Alternative 7: ACC is deactivated

n. Detects ACC

deactivation

n+1. Warn
driver.

n+2. Deacti-
vate LCC. Use
case ends

Alternative 8: Ve

hicle speed less than 60km/h.

4. Detects ve-
hicle speed less
than 60 km/h

5. Warns driver

6. Deactivate
LCC. Use case
ends

Exception 1: Har

dware failure.

4. Reports no G
lane marking OR

Reports no speed

PS data OR Reports no

data

5. Warn driver.

6. LCC fails.

162

Start Time:
Stop Time:

Please write your model on the page provided and state how confident you are in your model.
It may be difficult to create an elegant model in such a short time and without the aid of modelling
tools. We are interested in the functionality of the model and not so much in how neat it is or how
efficient it is. Remember, this exercise should take at most an hour to complete.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90% correct,
90%-100% correct)

163

C.4 User Study - Pattern+Interface Group

This is the version of the study that was provided to the Pattern+Interface group of the
user study.

164

Pattern+Interface Study

Feature Specification Study

Thank you for participating in our study. To help protect the integrity of our results, we ask
that you do not share this questionnaire with other students or collaborate on the tasks provided
below. We also ask that you do not talk to anyone about the questionnaire or the tutorial during
or after your completion of it - until all participants have completed the study. You are free to refer
to tutorial materials while completing the study. The domain model provided on the next page is
identical to the one in the tutorial.

You are free to omit answers to any of the following questions or tasks. If you have any questions
or concerns, please contact us at cbocovicQuwaterloo.ca or d4dietriQuwaterloo.ca.

1 Background Questions

Please answer the following questions to the best of your ability. The questions in this section
concern your previous experience in modelling software requirements.

1. Do you have previous experience with requirements modelling or state-machine modelling?
If so, briefly state the types and levels of experience (include notations/methods/tools used,
length of time used, and whether your experience is from coursework or industrial experience.)

2. On a scale of 1 to 5, express your level of comfort with UML State Machines or statecharts
(1 = never heard of them, 2 = heard of them and have looked at some models, 3 = used the
notation in the past but do not recall a lot of details, 4 = can probably sketch a model, 5 =
have good knowledge of them).

3. What is your experience with modelling automotive features (if any)?

165

Lane

changing : {true, false,

unknown}
1 0.1 0.1
——————————— currentljane leftLane rightLane
LaneCentreing
laneCentreing : real <
~ ~
RoadSegment
on
speedLimit : int
curvature : real
Environment
ambientLightLevel : real t 1
n On
Driver * * * 3
handsOnWheel : {true, false, . Vehicle Distance
unknown} B speed : int distance
turnSignal : bool 01 fF==77=—- .
brakePedalPressed : bool preceding |
Headlights gasPedalPressed : bool |
lightLevel : {OFF, ON, HIGH} e steering : real |
1 P S J
oncoming
contgins
featyres
r Adaptive Cruise Control } | Lane Centering Control | | Adaptive Headlights “ I Road Change Alert !
| (ACC)) | (LcC) | ! (AH)]) (RCA) !
I cruiseSpeed := 30 | ‘! Input Signals: ! ‘[Input Signals: ! " Input Signals: "
" headway : ! | LCC_ON ! | AH_ON ! | RCA_ON |
| Input Signals: | | LCC_OFF | | AH_AUTO | |
| ACC_ON | b — = | AH_OFF | !
I ACC_OFF I S I
I ACC_SET |
| HDWYCHG(value) !
| SPDCHG(value) |
|

Electronic Stability Control

Map Information
(MAP)

166

2 Reading Assignment

We want to collect information on how long it takes to comprehend a model that was created by
someone else. This includes the time devoted to examining and understanding the model as well
as the time spent answering questions about it. Please review the model below and answer the
following questions. Record the time at which you start the task and the time you complete it. If
you take breaks or do the section in several stages, please record each start and stop time.

Below is a model of an Adaptive Cruise Control (ACC) feature for automobiles. ACC is a
more advanced version of a basic Cruise Control feature. In addition to maintaining the vehicle’s
speed at a constant driver-set cruising speed, it also maintains a safe distance to the vehicle ahead.
Additionally, ACC will react to traffic conditions by deactivating if an upcoming object gets too
close. The driver activates ACC by pressing a button located near the steering wheel of the vehicle.
ACC will deactivate automatically in the event that the vehicle’s speed drops below 30 km/h or
gets too close to an upcoming object. The driver can deactivate ACC manually by pressing the
same switch that used to activate the feature. While activated, ACC can be overriden by pressing
the gas pedal or the brake pedal. This temporarily suspends its controlling behaviour. In the event
that hardware related to the operation of this feature fails, the feature itself will fail.

167

Start Time:
Stop Time:

After each question, please indicate your level of confidence in your answer.

1. List all of the user actions that the user performs as part of the process to activate the feature.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

2. List all of the environmental conditions that must hold for the feature to remain active, once
the feature is active and controlling the vehicle’s speed.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

3. Circle the features that the ACC feature refers to, and list all of the information that ACC
obtains from these features.

ACC
LCC
AH
RCA
ESC
ABS
MAP

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

168

4. List all of the states in which the feature can directly affect the behaviour of the automobile.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

5. Describe how ACC behaves on the first detection of a failure.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

6. What is the name of the initial state(s) of the ACC feature (when the car is first powered
on)?

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90%
correct, 90%-100% correct)

169

Undefined Functions N

Other features AN
SPDCHG(value) - allows driver to
increment or decrement the ABS - Anti-lock Braking System
targetSpeed variable ACC cannot modify the vehicle's
HDWYCHG(value) - allows driver to while this is controliing the
incrememnt or decrement the vehicle.
headway variable.
POWER_ON AIerlDri\E’er() - sends an alert to the ESC - Electronic Stability CO““'OI
e Inactive N driver of the vehicle ;\Chc canno';n Imf::'fyfmf vehicle's
State Machine Variables WarnDriver() - warns the driver of the ehavior while this feature is
vehicle of an impending collision controlling the vehicle.
unsafeDistance := 0.5
(Disabled \
entry/cruiseSpeed :=
Cmry/headway =2 4 Active N
ACC OFF SPDCHG(value)/cruiseSpeed += value
- HDWYCHG(value)/headway += value
ACC_ON ACC_OFF
\ Vehicle.brakePedalPressed
User Enabled 1 r
J Deactivating
Vehicle.speed i
Vehicle.speed Z300R P entry/WarnDriver()
>= 30 AND Vehicle.brake delay(10s) ACC_OFF OR
~(Vehicle.brake PedalPressed Vehicle.speed < 30
PedalPressed)
ACC_OFF OR
Environment Enabled 1 Vehicle.speed < 30 4 Controlling N
ACC_SET/
cruiseSpeed := Vehicle.speed Monitoring Vehicle.gasPedalPressed
~ in(too slow) Accelerate
User Enabled 2 do/IncSpeed()
- J in(correct headway) OR

_/ ~(Vehicle.gasPedalPressed)
AND ABS and ESC are
in(unsafe distance) not activated

in(target speed) in(too flose)

constant speed

in(correct headway) QR
in(target speed)

in(ABS.Active) OR
in(ESC.Active)

in(too fast) OR
in(too close)

~Hardware failure

Decelerate

do/DecSpeed()
J

Hardware Failing
failure
Failed N entry/WarnDriver() Hardware
delay(10s) failure
ObjectSensor T T oToTTmmmmmm e

correct headway

Vehicle.preceding.distance < headway
too close
Vehicle.preceding.distance >= headway
-

Vehicle.preceding.distance
do/AlertDriver()

<= unsafeDistance

speedometer
Vehicle.speed >= cruiseSpeed Vehicle.speed > cruiseSpeed
oo slow
Vehicle.speed < cruiseSpeed Vehicle.speed <= cruiseSpeed
. J

3 Writing Assignment

This section involves writing a state-machine model of an automotive feature. After reading the
description, please record the time at which you start the modelling task and please record the
time when you complete the task. If you take breaks or work on this section of the study in several
stages, please record each start and stop time. Spend no more than one hour on the modelling part
of the task (Set an alarm for yourself).

The task is to write a state-machine model for an automotive feature called Lane Centring
Control (LCC). When active, LCC attempts to automatically steer the vehicle to stay in the
current lane. LCC can be activated only if the Adaptive Cruise Control (ACC) feature is already
active. If ACC is active, then the driver can turn the LCC feature ON and OFF by pressing a
button on the steering wheel.

LCC is automatically deactivated if ACC is no longer active, the driver removes his or her hands
from the steering wheel for too long, the vehicle’s speed becomes less than 60km/h, or if the ACC
feature detects an anticipated collision. Additional inputs to the system are:

e RoadSegment.curvature: real - This environmental reflects the upcoming curve in the road,
if any. The condition is sensed by the GPS feature. If GPS fails, then the LCC feature also
fails. If the GPS feature and sensor recover from a failure, LCC will also recover.

e Vehicle.currentLane.laneCentring: [-1..1] - This environmental condition indicates the degree
to which the vehicle is centred in the lane. It is sensed by the CameraSensor feature. The
target value for this environmental condition is 0, meaning the vehicle is centred between the
left and right markings on the road. A positive value indicates that the vehicle is diverging to
the right, and a value of 1 or greater indicates that the car is crossing the right lane marker.
Negative values similarly indicate that the vehicle is diverging to the left. Values out of range
indicate that the vehicle has diverged too far out of the lane to be automatically recentred or
that the CameraSensor has failed. In both of these cases, LCC fails. When the value reenters
the range -1..1, the LCC feature recovers from failure.

e Vehicle.turnSignal: boolean - This environmental condition is true when the driver activates
the turn signal and false otherwise. When the turn signal is activated, LCC should remain
enabled but not have control of the vehicle.

e Driver.handsOnWheel: boolean - This environmental condition is true when the driver’s
hands are currently on the steering wheel and false when the driver has taken his or her
hands off the steering wheel.

e Vehicle.speed: [0..300] - The vehicle’s speed is sensed by the speedometer. If the speedometer
is not able to determine the speed, the value will be -1 and LCC fails. When the speedometer
recovers from a failure, the LCC feature also recovers.

For safety reasons, LCC is deactivated whenever a failure occurs. The feature must then wait for
any failure conditions to be removed before recovering from a failed state.

LCC’s outputs are commands that attempt to keep the vehicle in the lane and warnings to the
driver if the feature fails or deactivates. You can use the following undefined functions in your
model:

171

e calculateSteeringValue(Vehicle.currentLane.laneMarking, RoadSegment.curvature) - calculates
the exact value for how much the vehicle should veer to be recentred in the lane.

e warnDriver() alerts the driver of a change in the feature’s state (e.g. deactivation)

The following use case description may be helpful.

172

Driver LCC SteeringWheel GPS CameraSensor Speedometer
1. Driver ac-
tivates LCC by
pressing button
2. Confirms
that ACC is ac-
tive
3. Poll sensors
4. Determine | 4. Determine | 4. Determine | 4. Determine
whether driver’s | road curvature | vehicle’s dis- | current speed
hands are off tance to lane
steering wheel. markings

5. If hands
are off wheel,

5. If road is
straight, go to

5. If centered in
lane, go to step

5. If speed is
above 60 km/h,

increment time | step 3. 3. go to step 3.
counter, else
reset time
counter. Go to
step 3.
Alternative 1: Driver uses turn signal
n:(3-5). Driver
uses the turn
signal
n+1.Suspends
LCC control.
n+2. Driver
turns off turn
signal
n+3. LCC con-
trol regained.

Go to step 3.

Alternative 2: Driver’s hands are off the steering wheel for too long

4. Counter ex-
ceeds threshold

5. Warn driver.

6. Deactivate
LCC. Use case
ends

Alternative 3:AC

C is not active

2. Confirms
ACC inactive

3. Deactivate
LCC. Use case
ends.

173

Alternative 4: Driver deactivates LCC

n:(3-5).
deactives

Driver

LCC
by pressing but-
ton

n+1. Deacti-
vate LCC Use
case ends

Alternative 5: Lane Markings suggest necessary steering

4. Vehicle is not
in center of lane

5. Steer to the
right or left ac-
cordingly

6. Go to step 3.

Alternative 6: GPS reports sharp bend

4. Detects a
sharp bend
ahead

5. Warns
driver.

6. Deactivate
LCC. Use case
ends

Alternative 7: ACC is deactivated

n. Detects ACC

deactivation

n+1. Warn
driver.

n+2. Deacti-
vate LCC. Use
case ends

Alternative 8: Ve

hicle speed less than 60km/h.

4. Detects ve-
hicle speed less
than 60 km/h

5. Warns driver

6. Deactivate
LCC. Use case
ends

Exception 1: Har

dware failure.

4. Reports no G
lane marking OR

Reports no speed

PS data OR Reports no

data

5. Warn driver.

6. LCC fails.

174

Start Time:
Stop Time:

Please write your model on the page provided and state how confident you are in your model.
It may be difficult to create an elegant model in such a short time and without the aid of modelling
tools. We are interested in the functionality of the model and not so much in how neat it is or how
efficient it is. Remember, this exercise should take at most an hour to complete.

Confidence level (circle one): (Guessed, at least 50% correct, 50%-75% correct, 75%-90% correct,
90%-100% correct)

175

	List of Tables
	List of Figures
	Introduction
	Thesis Description
	Contributions
	Thesis Organization

	Background
	Feature-Oriented Requirements
	Related Work
	Existing Requirements Documents

	The Pattern
	Pattern
	The Inactive extension
	The Active state extension

	Interface
	Rational DOORS Templates
	Cruise Control Example

	Pattern Summary

	Case Study
	Utility of the Pattern
	Example — Adaptive Cruise Control
	Example — Heating, Ventilation, and Air Conditioning

	Generality of the Public Interface
	Threats to Validity
	Case Study Summary

	User Study
	Performing the Study
	Tutorial
	Main Study
	Participant Background
	State-Machine Comprehension
	State-Machine Modelling
	Participant Confidence
	Timing Results

	Threats to Validity
	User Study Summary

	Conclusion
	References
	Appendices
	Catalogue of Case Study Models
	Electronic Braking Features
	Automatic Braking (AB)
	Anti-lock Braking System (ABS)
	Active Trailer Stability Assist (ATSA)
	Brake Assist (BA)
	Brake Cleaning (BC)
	Electric Park Brake (EPB)
	Enhanced Traction System (ETS)
	Hill Hold (HH)
	Traction Control System with Electronic Stability Control (TCS_ESC)
	Competitive Traction Control System with Electronic Stability Control (Competitive_TCS_ESC)
	Manual Park Brake (MPB)

	Freeway Limited Ability Autonomous Driving Features
	Forward Collision Alert (FCA)
	Lane Centring Control (LCC)
	Lane Keep Assist (LKA)
	Lane Change Control (LXC)
	Road Change Alert (RCA)

	Heating, Ventilation, and Air Conditioning Features
	Air Recirculation Control (ARC)
	Air Quality System (AQS)
	Recirculation Control Run (RUN)

	Cruise Control in DOORS
	The Primary DOORS Template
	Templates for the Enabling Stages

	User Study Materials
	User Study Tutorial
	User Study - Control Group
	User Study - Pattern Group
	User Study - Pattern+Interface Group

