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Abstract 
 

All telecommunication systems, such as cellular mobile networks (cellphones), object-detection 

systems (radars), and navigation systems that include satellite positioning systems (GPS), base their 

functioning on radio wave radiation with pre-defined frequencies and thus require a microwave filter 

to select the most appropriate frequencies. Generally speaking, the more highly-selective a filter is, 

the less non-useful frequencies and interference it picks up. Recent advances in microwave 

instruments, semiconductors, fabrication technologies and microwave filters applications have 

ushered in a new era in performance but have also brought significant challenges, such as keeping 

fabrication costs low, miniaturizing, and making low-profile devices. These challenges must be met 

while at the same time maintaining the performance of conventional devices. The thesis proposes use 

of lossy filter concepts to maintain high quality filtering frequency response flatness and selectivity 

regardless of the filter’s physical size. The method is applied to lumped element filters. It introduces 

resistances to the physical structure of the filter and hence a certain amount of loss to the frequency 

response of the filter. The lossy filter synthesis is based on the coupling matrix mode. The thesis also 

proposes modifications to the traditional lossy filter design techniques, to improve the filter 

performance in the stopband.    
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Chapter 1 

 

1.1 Motivation  

 

Radio wave radiation is an integral part of the functioning of modern technology, including 

telecommunication systems (cell phones), navigation systems (GPS), object detection systems 

(radars), TV broadcasting, and so on. Wave radiation occurs in allocated ranges from low to high 

frequencies that are typically between hundreds of MHz to several tens of GHz. For this to occur, a 

device is needed to select the correct frequencies to carry the requisite information. Frequency 

selectivity is made possible by a device known as a “microwave filter”. 

The theory and design of microwave filters have been subjects of intense research and development 

over the past few decades. Employing highly selective filters helps to enhance the rejection of 

unwanted signals and leads to overall better communication quality. However, recent advances in 

microwave instruments, semi-conductor and micro-fabrication technologies, along with the 

applications of microwave filters, have ushered in several new challenges. The main ones can be 

categorized as lowering the cost of fabrication and miniaturizing and realizing low profile (small size) 

devices while maintaining optimal performance levels. 

Advances in technology have introduced several applications for microwave filters, and each 

application demands its own filtering specification. For instance, radar technology requires wide-band 

and tunable filters, which has led to high performance waveguide and coaxial resonator filters. 

Satellite communication and other space applications demand low-loss, small-size, narrow-band 

filters with highly selective amplitude response and linear phase response. These specifications have  

led to the development of dual-mode waveguide and dielectric resonator filters. Cellular 

communication also brought a demand for low-loss, low-cost, high-power, small-size and selective 

filters for base stations. This has led to improvements in coaxial, dielectric resonators and 

superconducting filters. For mobile handsets, there is a need for very small-size, low-cost, low-loss 

and selective filters for mass production, which has led to advances in integrated active filters, micro-

electromechanical system base filters (MEMS), and surface acoustic wave filters.  

In all types of the applications mentioned above, there is a common demand: high selectivity and 

flat response. In other words, having a sharp and highly selective filter with a flat frequency response 

in the passband is the main requirement of a microwave filter, regardless of its application.  
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 In circuit theory analysis and synthesis, this effect is dealt with using the “quality factor”, or “Q 

factor” for short. Loss seems to be inevitable in microwave filters due to the material properties used 

in the realization of the filter. Therefore, in order to have a high performance filter, the Q factor of the 

resonator should be maximized, which is achievable either by maximizing the amount of stored 

energy and/or minimizing the loss. The former approach usually results in filters that are large in size, 

which can be tolerated in some applications, but the latter approach can be achieved in different ways 

depending on the type of the filter. 

In some resonator filter structures, it is possible to make the filter physically large. As such, it can 

be tolerated as dielectric resonator filters and waveguide filters. Others can be made using low-loss 

superconductive filter materials and thus have a high Q in spite of their small size. However, in some 

structures like MMIC and on chip filters (which are mostly used for mobile communication handsets), 

it is not possible to have a small-size filter while retaining optimal filtering function in terms of 

passband flatness and selectivity.  

A recent area of research on “lossy filters” has been developed in order to obtain a highly selective 

filter using low Q resonators at the cost of a significant increase in the absolute insertion loss. In this 

type of filter, losses are intentionally added according to the design specifications, which introduce a 

certain insertion loss to the frequency response of the filter. In other words, it is possible to achieve a 

high Q filter shape using low Q resonators. The prescribed insertion loss can be potentially 

compensated by an amplifier right before the filter.  

1.2 Objectives 

 

1.2.1 Lumped element lossy filter synthesis and fabrication 

The first objective is to study lossy filter synthesis and to design and test lumped-element lossy 

filters with as low a Q as possible. Different types of lumped-element lossy filters would be 

synthesized (e.g., bandpass, band-stop and low-pass) with different bandwidths aimed at various 

applications.   

1.2.2 Improving the reflection loss in the stopband of lossy filters  

The introduced loss to the frequency response makes the filter less applicable for a number of 

applications. Therefore, the second objective of this thesis is to devise a technique to improve the 

stopband reflection loss of a lossy filter. One method is to cascade to ideal filters at the input and 
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output of the lossy filter. As such, the lossy filter would be sandwiched between two ideal filters to 

achieve the objective.  

  

1.3 Outline  

 

In Chapter 2, various techniques in the literature related to loss compensation are discussed. The 

survey covers predistortion techniques, the lossy filter concept and active compensation methods. In 

Chapter 3, the lossy filter synthesis technique based on coupling matrix and predistortion techniques 

is explained in detail and accompanied by several examples and simulation results. Chapter 4 

discusses two different lossy filter design and simulation results. Specifically, one 4-pole lumped-

element lossy filter with an actual quality factor of 100 and a six-pole cascade lossy filter with an 

actual quality factor of 30 are designed.  
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Chapter 2 

 

2.1 Introduction 

Having a sharp and highly selective filter with a flat frequency response in the passband is the main 

requirement of a microwave filter, and achieving these filtering properties has been an intensive 

subject of study over the past several decades. In microwave filter design, it is possible to achieve a 

reasonable frequency response in theory; however, in practice, obtaining these characteristics is 

limited by physical constraints such as dissipation of electromagnetic energy.  

Filter theory has been developed based on pure reactive elements, i.e., capacitors and inductors. In 

other words, microwave filters are usually designed using lossless prototype networks as a starting 

point. However, in practice, such networks retain a certain amount of loss due to the material 

properties used in their fabrication, and the filter’s performance is thereby detrimentally affected by 

the presence of loss. By definition, loss would degrade the quality factor of the reactive elements (the 

resonators) and a low Q factor would affect the band-edge sharpness, meaning it rounds the band-

edges in the passband and also degrades the insertion loss at the center frequency.  

Compensating for the loss effect has served as a research focus of late, and vast efforts have been 

expended to restore the selectivity and flatness of the filter response in the presence of the loss or 

even to compensate for the loss effect. In this chapter, three of these concepts are reviewed. 

 

2.2  Predistorted Filters: Concept and history  

 

The concept of the predistortion technique was first introduced by Darlington in 1939  [1] and later 

verified by Dishal in 1949  [2]. It was shown that the lossless insertion loss frequency response of a 

filter network can be recovered by shifting the poles of the transfer function of the filter towards the 

imaginary axis by a certain amount (based on the unloaded Q factor of the resonators) to compensate 

for network loss. In other words, a lossless prototype network is synthesized in such a way that, in the 

presence of the intrinsic loss of the reactive elements in a resonator, the original lossless flat insertion 

loss response is recovered but shifted downwards by a finite amount of loss. Predistortion techniques 

can improve system efficiency for applications such as a transponder input multiplexer in satellite 

communication, where insertion loss can be tolerated to obtain passband flatness. 
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The insertion loss response of a predistorted filter before the presence of loss has finite mid-band 

loss and peaks to zero loss at the band edges. Moreover, in the predistortion method, the loss 

introduced in the insertion loss response would cause a finite in-band return loss response.  

The predistortion technique was applied to an all-pole waveguide filter first by Livingston  [3] in 

1969 and then by Chen in 1975  [4]. The design characteristics of the waveguide filter are as follows. 

The filter function is chosen to be maximally flat, with a frequency of 6450 MHz and a 3-db 

Bandwidth of 44 MHz.  

 

 

Figure  2.1. The ideal response and predistorted response of the waveguide filter  [3]. 

 

One of the disadvantages of the predistorted technique reported in  [3] is the sensitivity of the element 

values to even small perturbations. As reported, “[t]he filter appears to be more sensitive to incorrect 

element values than conventional, maximally-flat filters.” 

In 1985, Williams used the predistortion technique to design a multi-coupled cavity resonator filter 

with finite transmission zeros  [5]. Three different cavity filters were designed and tested. A 20-MHz 

bandwidth, 4-pole, elliptic-function, predistorted filter with a center frequency of 12 GHz was 

designed with aluminum cavities and an unloaded Q factor of 8000. For a Q of 8000, the pole 

predistorted design factor was r = l/( QU x FBW) = 0.075, meaning that all of the poles of the transfer 

function were shifted towards the imaginary axis by 0.075.   

Two 6-pole elliptic filters were designed with the dual HE11 dielectric-loaded cavity mode. The 

initial filter was designed by using conventional lossy techniques  [6], and the second filter design was 

based on the predistortion technique. Both designs had a center frequency of 3.986 GHz, a bandwidth 

of 29 MHz, and an unloaded Q of 8000. Figure  2.4 and Figure  2.5 shows the frequency response of 
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the predistorted filter. The flattening effect of predistortion is obvious in the cost of in-band 4 dB 

insertion loss. 

 

Figure  2.2. Typical location of poles and zeros for a 6-pole elliptic-function bandpass filter  [5]. 

 

Figure  2.3. a)  3.986 GHz  6-pole C-band dual-mode dielectric-function filter and 3.986 GHz 6pole  
C-band air-filled dual-mode filter. b) 12-GHz 4-pole predistorted elliptic-function filter  [5]. 

 

(a) (b) 
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Figure  2.4. Transmission and return loss response of a predistorted, 12-GHz 20-MHz bandwidth 4-
pole elliptic-function filter  [5].  
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Figure  2.5. Transmission response of low Q and predistorted 6-pole C-band elliptic function 

filters  [5]. 
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In the conventional predistortion technique, the poles of the transfer function are shifted towards 

the imaginary axis in the S-plane by a fixed amount, which corresponds to the unloaded Q factor of 

the resonator. In  [5], we see that “the pole closest to the imaginary axis dominates the band-edge 

response” and that it is primarily “the movement of this pole in the lossy, non-predistorted design that 

leads to rounding of the band-edge”. Thus, unlike the conventional predistortion technique, the 

shifting value may not be fixed for all poles of the transfer function. This idea was studied in  [7], 

where the effects of adaptive predistortion techniques were compared with conventional ones. This 

adaptive predistortion technique results in much less insertion loss, despite using low-Q resonators. A 

tenth-order typical filter used in satellite communication was analyzed with an actual Q of 3000 and a 

target Q of 8000. Using the adaptive technique, an improvement of  1.9 dB in  insertion loss and 1.6 

dB in return loss was reported in comparison with the results in  [5] (Figure  2.7). A 10-4-4 coaxial 

resonator filter at C-band using resonators with an actual Q of 3000 and a 10-4-4 dielectric resonator 

filter at Ku-band using resonators with an actual Q of 8000 were designed and tested based on the 

proposed method, to an equivalent Q of 20000. Using adaptive predistortion reduced the volume and 

mass of the filter by 75% and 65%, respectively, compared to existing dielectric resonator technology 

in the cost of in-band insertion loss. 

 

Figure  2.6. Adaptive values used to shift the transfer function poles  [7]. 

 

Parameters (dB) Adaptive predistortion Predistortion 

Insertion loss -5 dB -6.9 dB 

Return loss -3.6 dB -2 dB 

Figure  2.7. Comparison between adaptive and conventional predistortion  [7]. 
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Figure  2.8. a) Predistorted dielectric-resonator filter at Ku-band; b) size comparison between coaxial 
resonator predistorted and conventional dielectric resonator filter  [7]. 

 

Figure  2.9. Measured insertion loss performance of 10-4-4 C-band filter (normalized to 5.9 dB)  [7]. 

 

Figure  2.10. Measured loss versus simulated with ideal Q of 10-4-4 C-band filter  [7]. 

 

(a) (b) 
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Figure  2.11. Measured insertion loss performance of 10-4-4 Ku-band filter  [7]. 

As mentioned previously, the predistorted transfer function can be calculated from the lossless 

transfer function by shifting the poles towards the imaginary axis of the s-plane. Thus, regardless of 

transmission zeros, the zeros of reflection function would no longer be located on the imaginary axis, 

as with the lossless case. For a realizable network, the reflection zeros, however, must be located in 

the form of a mirror-image about the imaginary axis. Depending on how the reflection zeros are 

selected, there would be three different syntheses for the filter elements values (Figure  2.12), as 

studied in  [5] and  [8]. Briefly, different choices of reflection zeros would result in a symmetry about 

the physical center of the network (symmetric coupling matrix about the cross-diagonal) and with a 

shift in center frequency (asynchronous tuned) or an asymmetry about the physical center of the 

network (asymmetric coupling matrix about the cross-diagonal) without any shift in the center 

frequency (synchronously tuned) filter. 

 

 

Figure  2.12. Possible arrangements for the reflection zeros for the symmetric 6-2 quasi-elliptic 
characteristic. Left is asymmetrical synchronous design; middle and right are symmetrical 

asynchronous designs  [8]. 

Another structure to which the predistortion technique has been applied is a planar SIW (Substrate 

Integrated Waveguide)  [9]. A 4-pole symmetric K-band SIW filter with an actual unloaded resonator 
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Q of 500, a target Q of 2500 and a FBW (Fractional Bandwidth) of 1% was designed, simulated, and 

tested. Based on the results reported in  [9], unlike the dielectric cavity resonator filter, predistortion 

does not have a substantial effect on size reduction in SIW (Figure  2.13). Nonetheless, it did improve 

the effective bandwidth by flattening the in-band insertion loss.  

 

Figure  2.13. SIW K-band filter: up, non-predistorted; down, predistorted  [9]. 

 

Figure  2.14. a) Synthesized predistorted prototype. b) Ideal circuit responses of non-predistorted and 
predistorted filters  [9]. 
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Figure  2.15. a) Simulated results of non-predistorted and predistorted filters. b) Measured results of 
non-predistorted and predistorted filters  [9]. 

In the same vein, another application of the predistortion technique in optical frequency bands was 

reported in  [10], where a 6-pole, multi-coupled, micro-ring resonator elliptic filter with a 30 GHz 

bandwidth, 0.1 dB in band ripple and 40 dB out-of-band rejection was designed and tested. One 

application of the predistorted filter in optical communication was reported on, as follows  [10]: “It 

may be desirable to optimize the through-port response (insertion loss response) of a micro-ring 

add/drop filter to achieve a maximum extinction and hence minimum channel crosstalk at the 

through-port in the presence of loss”. As suggested in [10], group delay can be restored exactly as a 

lossless case, in which circumstance insertion loss response would have exactly the same shape 

(selectivity and flatness) as the lossless case, other than for the 3.25 dB loss.  

Furthermore, in optical communication circuits, the amount of loss of each resonator consists of 

coupling and bending losses, surface roughness scattering and material absorption. These can be 

directly calculated using the formulation equivalent to the definition of the Q factor  [10].  

 

Figure  2.16. Schematic of a six-pole elliptic micro-ring filter with four transmission zeros (µs are 
coupling values) [10]. 
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Figure  2.17. Dashed and solid gray lines are the responses of the lossless non-predistorted filter 
design and when the Q factor is degraded, respectively. Dashed and solid black lines are the 

responses of the predistorted filter with no loss and when the Q factor is degraded, respectively [10].  

2.3 Lossy Filters: Concept and history 

As mentioned in section  2.1, the predistortion technique flattens the insertion loss response but 

deteriorates the return loss, which is why it is not reasonable to design ultra-low Q resonator filters. 

The lossy filter concept seems to be derived from Hunter’s  [11] investigations into predistortion in the 

late 1990s. The terminology (lossy filter) developed from the introduction of extra losses as 

resistances in the network in addition to intrinsic loss contained in circuit reactive elements, i.e., 

inductors and capacitors. These extra resistances impose prescribed insertion and return losses to the 

frequency response. Hunter continued his initial work on lossy filters in  [12] by introducing a 

reflection mode narrow band (0.12%) lossy filter synthesis with prescribed reflection coefficients 

based on low resonators. In this method, the effect of losses in the resonators is taken into account by 

multiplying the reflection function S11 by a constant value of K and then shifting the poles of the 

transfer function by a certain amount (the same as predistortion design). Here, the method and filter 

topology being used is effective only for all-pole Chebyshev low pass filters. The authors extended 
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their design to the asymmetrical transfer function realizable based on a ladder network in  [13]. The 

reflection mode filter networks mentioned above are synthesized based on the topology of the 

network, which are different from well-known multi-coupled filter networks. 

 

Figure  2.18. Measured performance  [12]. 

The first direct lossy filter synthesis method was proposed in  [14]. As we are dealing with lossy 

networks, the unitary condition does not apply, meaning that it is not possible to use the unitary 

condition to calculate the reflection function from the transfer function. In this method, assuming the 

reflection function coefficients are unknown, the authors used the concept of even and odd 

decomposition in order to calculate the unknown coefficients. Although no circuit topology is 

proposed in the reference, several examples of maximally flat filter function synthesis are presented 

in the paper.   

 

Figure  2.19. a) Effect of loss factor on S11 for lossy 5th degree Butterworth. b) 3rd Degree Butterworth 
networks  [14]. 

The research work on lossy filter realization and circuit topology encountered a breakthrough by 

introducing a new topology in  [15]. The first lossy bandpass filter synthesis with non-uniform Q was 

introduced using resistive cross coupling, whereas all previous circuit topologies were synthesized 

(a) (b) 
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using ladder networks with no cross coupling. The method of finding the reflection function is the 

same as that  in  [14], which introduced losses only in the first and last resonators. Employing resistive 

cross coupling (which comes from additional transmission zeros and/or poles) flattens the insertion 

loss response, multiplies the transfer function by a constant amount of attenuation, and lowers the 

reflection function.  

In dealing with loss, it is important to distribute it in between the resonators.  After synthesizing the 

multi-coupled network and calculating the coupling matrix, hyperbolic and trigonometric matrix 

rotation is applied to distribute the loss to the lossless resonator. The effect of proper loss distribution 

is verified and based on what is reported in [15] when loss is distributed appropriately; the dependence 

of insertion loss increment on group delay is effectively reduced. This allows for an increase in 

selectivity”. The authors extended the same design procedure of lossy filter synthesis to the multi-

path resonator filters in  [16]. The proposed example circuit designs along with  microstrip prototypes 

serve as a validation of the concept. 

Figure  2.20. a) Lossy third-order Butterworth with resonant resistive cross coupling. b) Non-resonant 

approximation of the resistive cross coupling  [15]. 

 

Figure  2.21. Responses of lossy third-order Butterworth filters with resonant and non-resonant 
resistive cross couplings: a)  before multiplying the reflection function by attenuation factor of K;  b) 

after attenuation K multiplication  [15]. 

(a) (b) 
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The lossy technique is suitable for filter structures which have low Q intrinsically, such as coaxial 

filters, to get more selective response.  The application of the lossy synthesis technique which is 

proposed  in previous references, was verified on a coaxial resonator filter with non-uniform Q for the 

first time in  [16] [17]. The filter response is chosen to be 3rd order Chebyshev, and the filter topology 

is designed based on the even and mode technique, explained in  [16]. Q1 and Q2 have an equal value 

of 5.319 in the prototype network, and Q3 has a value of 2.558, after frequency transformation. The 

unloaded Q factors of each resonator are 1063 and 511 for Q1,2 and Q3, respectively. Also, there are 

two additional resistances with the value of G=0.333 mho at input and output to preserve the flat 

insertion loss and return loss response while shifting them with a certain amount, i.e. 6 dB 

corresponding to G=0.333 mho. 

 

 

Figure  2.22. a) fabricated filter. b) The proposed physical layout  [17]. 

A more straight-forward and systematic lossy filter synthesis technique is introduced in  [18], based 

on a conventional multi-coupled cavity model coupling matrix synthesis technique  [6]. The design 

procedure of the proposed method starts with the synthesis of a lossless network, where the scattering 

parameters are multiplied by a prescribed loss factor. Afterwards, the lossy filter coupling matrix can 

be obtained from the scattering parameters using an iterative technique regarding the algebraic 

properties of the coupling matrix, including matrix decomposition technique and orthogonalization 

process. Unlike the previous synthesis techniques, the presented method is applicable for both 

reciprocal and non-reciprocal microwave filters and has no limitation on higher order filters. The 

multi-coupled model contains complex cross-coupling values.  Also, due to the higher number of 

resonators in the main line from input to the output, this model improves the out-of-band 

performance.  For the experimental verification, a 4th order Chebyshev filter is designed at 12 GHz, 

with an additional loss value of 2.9 dB. 

(a) 

(b) 
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Figure  2.23. Generalized coupled cavity model  [18]. 

  
Figure  2.24.  a) HFSS model of lossy filter and its node diagram. b)  Fabricated filter  [18]. 

 

Figure  2.25. Measurement versus synthesis results at 11.18 GHz (tuned due to the fabrication 
tolerance)  [18]. 

(a) (b) 
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The iteration process explained in detail in  [18] is a time-consuming  routine. This issue has been 

addressed and the method modified in a recent publication  [19]. A more direct method to obtain the 

proper complex coupling matrix for lossy synthesis is proposed to avoid the long-winded iteration 

process. The rest of the procedure is the same as previous work, i.e., the coupling matrix 

decomposition process and orthogonalization. 

In 2003, Richard Cameron proposed an advanced analytical coupling matrix synthesis for 

microwave lossless filters, based on a network topology called a “transversal model”. In this 

technique, a lossless coupling matrix for a canonical filter response is synthesizable, a feat which was 

not possible in multi-coupled mode, as it requires a direct coupling between source and load. This 

systematic technique was sufficiently interesting to be considered in lossy filter synthesis, as 

discussed in detail in  [21]. Unlike the lossless case in the transversal model, there are two additional 

resistances at the source and the load. It also includes complex inverter values, since the network is 

lossy. The method proposed in  [21] is more general than previous techniques and almost any filter 

configuration is synthesizable using this method, e.g., filter responses with different combinations of 

transmission zeros, non-reciprocal and reciprocal networks (different loss levels for S11 and S22), and 

asymmetrical and symmetrical frequency responses. However, the initial coupling matrix obtained 

using this transversal is now realizable and must be reduced to a feasible coupling matrix. This is 

possible by applying the similarity rotation method or matrix reduction, which has been extensively 

used in the literature. The matrix can be reduced to any feasible form, depending on the physical 

design of the filter, e.g., reduced to the folded form  [22], right-hand justified  [23], etc. The reduction 

is followed by a hyperbolic rotation in order to appropriately (i.e., equally or unequally) distribute the 

loss among the resonators.  

 

Figure  2.26. a) Equivalent lossy circuit for the Kth resonator in the array. b) Equally distributed Q 

configuration after hyperbolic rotation  [21]. 

(a) (a) 
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Figure  2.27. N resonator transversal array including direct source-to-load complex coupling JSL  [21]. 

 

Figure  2.28. a) Lossy 10–4–4 pseudoelliptic bandpass filter function with equal return loss levels of -

30 dB. b) Lossy asymmetrical three-pole pseudoelliptic filter response with different return loss levels 

of -3dB and -9 dB, respectively  [21]. 

 

(a) (b) 
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Chapter 3 

 

3.1 Introduction 

In the theory of microwave resonator-based filters, high quality factor (Q) resonators play an 

important role in creating a high-performance and sharp frequency response.  However, in practice, 

designers are constrained with Q limitations.  In order to maintain good filter response performance, 

the size of the filter must be increased in some cases, while in other cases (e.g., planar filters), using 

low-loss materials would increase the cost. Nevertheless, using low Q resonators results in insertion 

loss in the passband, less selective filter response, and band-edge rounding of the response.  

In order to address Q limitation issues, the concept of lossy filters synthesis has been developed, as 

mentioned in Chapter 2.  By using the concept of lossy filters, one can design a very sharp response 

filter with high equivalent Q (even a Q equal to infinity) with low Q resonators which consequently, 

miniaturized the filter dimensions in the cost of having degraded insertion loss. By improving the 

selectivity and flatness of the passband, lossy filters impose a significant degraded insertion loss, and 

this extra loss imposed by the filter in the communication system will increase the noise figure (NF) 

of the whole system, e.g., a radio frequency receiver. It is thus of utmost importance for the lossy 

filter to be preceded by a further low noise amplifier which would have just enough gain to minimize 

the effect of the passband loss on the NF.   

3.2  Coupling matrix synthesis methods 

In the literature, there are three main techniques for synthesizing a filter coupling matrix based on 

the filter specifications. These are the direct method, the transversal network model, and the element 

extraction method. In the following section, the first two of these techniques are explained in detail. 

The third technique is not explained in detail because it has some limitations in terms of the type of 

filter configurations, such as:  

 it only applies for lossless network, and 

 it is not a general method for all filters network topologies, i.e., it applies only to a folded 
filter configuration. 

It should be pointed out that, for all methods mentioned above, a recursive procedure is used to obtain 

the filter polynomial, i.e., F(s), E(s) and P(s) (eq. ( 3.5)) of all types of Chebyshev filters.   
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3.2.1 Direct Method: Multi-coupled sequential network 

For a multi-coupled sequential resonator lossless filter (Figure  3.1), meaning that there is no cross 

coupling between resonators, the synthesis of the coupling matrix is as easy as calculating filter 

elements (the g-values) of the desired filter function, e.g., Chebyshev or maximally flat (Butterworth), 

etc.,  and then finding the elements of the coupling matrix, as follows: 

 

 

Figure  3.1. Sequential low-pass prototype multi-coupled filter. 

For maximally flat filter function, g-values can be derived from the following formulas: 
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( 3.1) 

For the Chebyshev filter function, g-values can be derived from the following formulas: 
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Lar is ripple level in the passband in dB (Insertion loss ripple), which can be calculated from the 

desired filter return loss, RL in dB.  In the next step, coupling matrix elements can be calculated as 

follows: 
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( 3.4) 

In dealing with multi-coupled resonator filters with cross-couplings, the first step is to filter 

polynomials F(s), E(s) and P(s) for the general class of Chebyshev filters (which may have some or 

all transmission zeros in the finite position). These can be calculated using a recursive technique  [24] 

and  [25] , after which the scattering parameter functions can be calculated as follows: 

 
Figure  3.2. A general 2-port composed of synchronously tuned coupled cavities  [26]. 
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   ( 3.5) 

in which ε and εR  are normalization factors to set |      |  and |      |    at any value of 

frequency variable s.  

Unknown coupling matrix elements can be obtained by first converting the scattering parameters to 

admittance parameters and then calculating the admittance parameters from the unknown coupling 

matrix itself, using Eigendecomposition and orthonormalization  [26].  

Regarding the eigenvector matrix T in Eigendecomposition theory, the orthogonality property is 

used to construct the entire matrix T from its first two rows. It exists only when the coupling matrix is 

symmetric with the complex conjugate elements over and below its diagonal. In lossy cases, the 

coupling matrix has complex entries and is symmetric, but not with complex conjugate entries 
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(Hermitian matrix), and therefore a modified orthogonalization process is  used, as in  [18] and  [28].  

It is also important to point out that, with this method, the maximum number of TZs (transmission 

zeros) of the filter is N-2, based on the Nfz rule of thumb (Nfzmax=N-Nmin , where N is filter degree, 

Nmin  is the number of resonators in the shortest path through the network between the source and the 

load). 

The main points to be considered in the direct method can be summarized as follows:  

 This technique is based on a multi-coupled array network model. 

 The eigendecomposition theory is applied to obtain coupling matrix.  

 It needs an orthonormalization process to obtain the initial coupling matrix. 

 For lossless cases, the Gram Schmitt orthonormalization process is usually used. 

 For lossy cases, because of the complex entries of the coupling matrix, a modified 
orthonormalization process is required.  

3.2.2 Transversal network model 

According to the Nfz rule, the maximum number of finite transmission zeros equals the total 

number of resonators minus the number of resonator nodes in the shortest signal path between source 

and load (Nfzmax = N - Nmin). In this method   [29], since there is a direct coupling between sources, then 

Nmin=0, and the fully canonical filter response is realizable. The polynomial calculation process and Y-

parameter calculation are the same as in the previous section. The only facilitating difference in this 

transversal model compared with the previous one is that because there is no direct coupling between 

resonators, formulating the Y-parameter to the two-port, short-circuit admittance parameter will result 

directly  in coupling N+2 matrix, with no need for any matrix algebra. 
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Figure  3.3. a) N-resonator transversal model, b) equivalent lossy circuit for the Nth resonator  [30]. 

 
Figure  3.4. N+2 fully canonical complex coupling matrix for the lossy transversal array  [30]. 

 

The calculation of the elements of a coupling matrix is formulated as follows. Using nodal analysis 

(Figure  3.5), the N+2 matrix of the Y-parameter of a multi-coupled resonator filter can be written as 

 

Figure  3.5. Admittance inverter model of low-pass prototype filter. 
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( 3.6) 

 

where Is is current source, RS and RL are source and load impedances which are normalized to 

RS=RL=1, Jk are values of admittance invertors between resonator (couplings), Bk are frequency 

invariant elements (FIR) which are necessary for non-symmetrical frequency response, Gk  are 

resonators’ loss values, and S=jω is the frequency variable. 

This can be written as  

                  ( 3.7) 

where M is the coupling matrix, S is the frequency variable matrix and R is normalized source and 

load resistance matrix. 

In order to reduce the N+2 by N+2 matrix to 2-by-2 resultant Y-matrix (short-circuit admittance 

matrix), multi-port network analysis is applied. Here, we define Ip,  Ic, Vp, and Vc  vectors and the 

matrix-relation between these valuables, as follows: 
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( 3.9) 

According to these definitions, since Ic=0,  Ip is calculated as below:  
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( 3.10) 

As we know that, in a transversal model, there is no direct coupling between resonators (meaning, 

Jnm=0, n≠m and therefore Ycc is a diagonal matrix and its inverse is equal to Ycc with inverse 

elements), by simplifying the above matrix equations, one can rewrite the Y parameter of a 2-by-2 

overall network as follows: 
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( 3.11) 

Two important points about the transversal technique is that it results in the N+2 coupling matrix 
directly with no need for the orthonormalization process. Furthermore, a fully canonical filter is 
realizable using this method. 

3.3 Lossy Filter  

3.3.1 Lossy Coupling Matrix Synthesis  

The synthesis procedure of an Nth order lossy filter with different loss levels of S11 and S22  starts 

from a rational representation of the lossless scattering parameters of a low-pass prototype, simply by 

multiplying Eq. ( 3.5) with attenuation factor K,  
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in which L1 and L2 are loss values of S11 and S22 in dB, respectively.  Based the procedure presented 

in  [30], and using classic two-port S matrix to Y matrix transformation formulas, with normalized 

characteristic impedances, the -parameter functions can be derived as:  
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The rational function V can be simplified by applying reciprocity and matching properties of the 

two-port network on phase conditions, after which V can be calculated as  
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( 3.14) 

in which E* 
 is the complex conjugate of the denominator polynomial E and its poles are located at the 

mirror image of poles of polynomial E with respect to the imaginary axis, i.e., si conj= -si
*. 

Imposing loss into the network would make the coupling matrix have complex entries both in the 

resonators and in the coupling in addition to the reactive path. Complex values can be modeled as 

admittance or impedance inverters with complex values. One approach to finding a lossy coupling 

matrix is using the transversal array model  [29] [30]. Although the N+2 lossy coupling matrix can be 

synthesized from the transversal array circuit model in Figure  3.3, the circuit model is different from 

the lossless model. First of all, there is loss in all resonators representing the finite Q factor; secondly, 

there is loss in the coupling values; and finally, two additional resistors are present at source and load.  

Using nodal analysis in transversal array model, one can calculate the overall admittance matrix 

[YN] as: 
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( 3.15) 

Furthermore, because                  , the coupling matrix [M] can be expressed as 
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( 3.16) 

  The admittance matrix of the overall network can be written calculating the residues of the Y-

matrix polynomial, as follows:  

       
   

   
   

   
   

  ∑
 

    
[
        

        
]

 

   

 

 
( 3.17) 

      only in fully canonical case, which indicates that the number of transmission zeros is the 

same as the order of the filter (Nfz= N), g1 and g2  are scalars remaining from partial fraction 

expansion of Y11  and Y22,  λ are the Eigen values of Y parameter, and r11 , r21 , r12 , r22  are the residues 

of Y matrix polynomials. On the other hand, by simplifying the transversal array network in 

Figure  3.3, the overall admittance matrix can be written as:  
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( 3.18) 

By equating Eq.( 3.18) and Eq.( 3.17), elements of the transversal array model coupling matrix can 

be found, as follows:  
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3.3.2 Lossy Filter Synthesis Using an Attenuator 

Another approach to finding a lossy coupling matrix has been presented in [31].  In this approach, 

the lossless filter network is sandwiched between two attenuators, which represent the loss of the 

overall network. Since the attenuators are matched at both ends, the lossy scattering parameters of the 

overall network can be written as:  

 
where K  is the loss level.  The equivalent network of the attenuators illustrated in Figure  3.7 and its 

equivalent circuit after moving the resistors to the right-hand side of the admittance inverter and using 

appropriate scaling, the inverter can be scaled to unity and removed.  

 

Figure  3.6. Possible representation of a lossy filter [31] 

 

Figure  3.7. Attenuator network attached to the first (last) resonator  [31]. 

 

Figure  3.8. Equivalent model for attenuator attached to the first (last) resonator  [31]. 
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The relations between resistance, the inverter value and  loss level can be defined as follows:  
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( 3.21) 

For synthesis, the lossy coupling of this model and the initial lossless coupling matrix of the order 

N (non-transversal) should be synthesized at the first step, as in  [31]. Furthermore, as illustrated in the 

equivalent circuit model Figure  3.8, some elements must be modified to change the lossless coupling 

matrix to a lossy one.  Comparing Figure  3.7  and Figure  3.8 , we can see that a conductance of G  

would be added to the first and last resonators and that there would be a conductance G at the non-

resonating source and load nodes (and, being divided by the value of J, at the first and last admittance 

inverters as well).  The new entries’ values and the resultant lossy coupling matrix are shown below.  

 

Figure  3.9. Lossless N+2 coupling matrix  [31]. 

 

Figure  3.10. Lossy N+2 coupling matrix  [31]. 
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 The above formulation applies for the identical loss level of S11 and S22. However, it would be simple 
to modify the formulation for different loss level cases, as follows:  
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( 3.23) 

3.3.3 Coupling Matrix Rotation (reduction) 

Having N+2 couplings between source and resonators and the same amount between load and 

resonators, a transversal coupling matrix seems to be infeasible in practice. In order to obtain a 

practical coupling matrix, some unwanted couplings should be annihilated with a sequence of 

similarity transforms (rotations) until a more convenient form with a minimal number of couplings is 

obtained. Of course, using the similarity transforms ensures that the eigenvalues and eigenvectors of 

the coupling matrix are preserved in such a way that the transformed matrix will retain exactly the 

same transfer and reflection frequency response as that of the original matrix. In terms of practice, 

there are two well- known canonical forms of coupling matrix out of several ones. One is the “right-

column justified” (RCJ)  [32] and the more generally useful one is the  “folded” form  [33].  

 

Figure  3.11. N=7 degree folded representation of the coupling matrix. 
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s m 0 0 0 0 x 

. s m 0 0 x x 

. . s m x x 0 

. . . s m 0 0 

. . . . s m 0 

. . . . . s m 

. . . . . . s 

Figure  3.12. Folded coupling matrix representation of N=7: x, cross couplings; m, main-line 

couplings; and s, self-couplings. 

 

The procedure to reduce the coupling matrix to the folded form is as follows. The initial transversal 

coupling matrix must be pre- and post-multiplied by a rotation matrix R with the same order of 

coupling matrix, meaning             
  , in which Mr-1 is the coupling matrix before rotation, Mr  

is the coupling matrix after rotation, and Rr is rth rotation matrix. A 6-by-6 rotation matrix with pivot 

[3, 4] is shown below. Rotation matrix R with pivot [i,j] ,i≠j means that                    and 

                  and ij≠1 or N, and θr  is rth the rotation angle. All other elements are equal to 

zero. 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0        0 0 

0 0        0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

Figure  3.13. A 6-by-6 rotation matrix with pivot =[3, 4]. 
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The sequence of annihilation is as follows. Starting with elements right to left along rows and top 

to bottom down columns, as shown in Figure  3.14, it starts with the element in the first row and the 

(N-1)th column. 

s m 4 3 2 1 x 

. s m 9 8 x x 

. . s m x x 5 

. . . s m 10 6 

. . . . s m 7 

. . . . . s m 

. . . . . . s 

Figure  3.14. Elements of coupling matrix to be annihilated. 

Summary of the formulation used in similarity transforms is listed below, the general formulas of 

rotated entries with pivot [i,j] and angle θr  are: 

   
                                                  

   
                                               

   
                                                  

   
                                                  ( 3.24) 

 
The formulas for rotation angles for annihilation of elements with pivot [i,j] are summarized below.  
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35 

      (
     √   

        

   
)                                             

             (
     

       
)                                                 

 
 

There are three important properties of similarity transformation. First, only those elements in the 

rows and columns of the pivot may be affected by the rotation. Second, a pair of zero elements across 

the rows and columns of the pivot would remain zero after the transformation. And third, electrical 

properties (i.e., eigenvalues and eigenvectors) of the new the coupling matrix would remain exactly 

the same as that of the original coupling matrix.  

 

3.3.4 Loss Distribution Technique 

The resultant coupling matrix after rotation would be feasible in terms of practice and 

implementation. After rotation, the coupling matrix includes the resistive entries in the resonators and 

resistive/complex entries in the coupling. However, the loss in the resonators is not distributed evenly, 

indicating that each resonator has a different Q factor from the others. In some cases, it is desirable to 

have the loss distributed equally between all resonators in order to simplify the fabrication. In other 

cases, some resonators need to have equal Q values different from other resonators, e.g. a pair of 

resonators have the same Q value for a specific design.  A hyperbolic rotation makes it possible to 

distribute the loss among the resonators [34].  

The concept of hyperbolic rotation is the same as trigonometric rotation, which is used to rotate the 

matrix to the folded form. The exception here is that the rotation is not sine and cosine anymore, but 

rather hyperbolic sine and hyperbolic cosine, or a combination of both.  Furthermore, there is no 

formulation to find the proper rotation angle because it depends on the desired Q factor on each 

resonator; however, it can be done by programing a code with the objective quality factor. The 

rotation matrix is the same as in the previous section except for cr and sr. This means that the elements 

                    and                    and ij≠1 or N, and θr  is rth the rotation angle. An 

example in the results section below will illustrate this concept.  
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3.3.5 Simulation and Results 

To illustrate the procedures explained above, let us consider the following example. A 4-pole fully 

canonical pseudoelliptic filter with 25 dB return loss in passband and four transmission zeros at   

+j1.1   -j1.1    +j1.5  -j1.5 with different loss values of 5dB and 10dB for S11 and S22 respectably is 

presented. For the first step, we need to calculate the filter polynomials coefficients based on the 

recursive technique.  

Table  3.1. Roots of filter polynomials. 

roots of 
E(s) 

-1.0149 

+j0.86476i 

-0.22681 

-j1.2539 

0.22681 

+j1.2539 
-1.0149-

j0.86476i ε=7.0262 

roots of 
F(s) j0.9405 j0.9405 j0.42839 j0.42839 εr=1.0103 

Coefficients of the polynomials in descending order are,  

Table  3.2. Coefficients of filter polynomials. 

n 4 3 2 1 0 

E(s) coefficients 1 2.4834 4.3222 4.1021 2.8866 

F(s) coefficients 1 0 1.0681 0 0.16233 

P(s) coefficients 1 0 9.49 0 20.25 

To familiarize ourselves with the transversal array network model, the lossless transversal coupling 

matrix is synthesized  [29], after which the attenuation factor is taken into consideration.  

Table  3.3. Coefficients of Y-parameters. 

n 4 3 2 1 0 

Y(s) denominator 1 0 2.7034 0 1.5314 

Y11(s) matrix 
numerator 0 1.248 0 2.0615 0 

Y22(s) matrix 
numerator 0 1.248 0 2.0615 0 

Y21(s)/Y12(s) matrix 
numerator j0.071527 0 j0.67879 0 j1.4484 
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Coupling matrix elements i.e., FIR elements conductance, source to resonators’ and load to 

resonators’ coupling values can be calculated as below, based on Eq.( 3.19). 

Table  3.4. Coupling matrix elements. 

BK GK JSK JLK JSL k 

1.3768 0 0.3739 0.3739 0.0715 1 

0.8988 0 -0.6958 0.6958 - 2 

-0.8988 0 0.6958 0.6958 - 3 

-1.3768 0 -0.3739 0.3739 - 4 

Table  3.5. Transversal coupling matrix, lossless network. 

 S 1 2 3 4 L 

S 0 0.3739 -0.695 0.6958 -0.3739 0.0715 

1 0.3739 1.3767 0 0 0 0.3739 

2 -0.6958 0 0.8988 0 0 0.6958 

3 0.6958 0 0 -0.8988 0 0.6958 

4 -0.3739 0 0 0 -1.3767 0.3739 

L 0.07152 0.3739 0.6958 0.6958 0.3739 0 

 

The feasible folded form of the coupling matrix, after the rotation procedure has been carried out on 

the transversal matrix, is as follows: 
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Table  3.6. Feasible folded form of the coupling matrix after the rotation. 

 S 1 2 3 4 L 

S 0 1.1172 0 0 0 0.0715 

1 1.1172 0 0.9489 0 -0.3889 0 

2 0 0.9489 0 0.8669 0 0 

3 0 0 0.8669 0 0.9489 0 

4 0 -0.3889 0 0.9489 0 1.1172 

L 0.0715 0 0 0 1.1172 0 

 

 

 

Figure  3.15. Lossless canonical pseudoelliptic filter. 

Using the attenuator at the source and load, the lossy coupling matrix can be obtained by applying 

the method explained in section  3.3.2.  

Using the formulas in Eq.( 3.23), the lossy elements and modified admittance inverter values can be 

calculated as: 
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Table  3.7. Lossy elements and modified admittance inverter values. 

  
    

     
     

    
    

  

0.5195 0.2801 0.9546 1.0724 0.3496 0.6483 

 

Alternatively, using the method described in  3.3.1, the lossy coupling matrix might be constructed 

by applying  attenuation factors calculated as K1 = 0.5623, K2 = 0.3162 and α=1.3335, based on 

Eq.( 3.12). 

Admittance parameters coefficients are derived as below, using Eq. ( 3.13). 

Table  3.8. Coefficient of Y-parameters.  

n 4 3 2 1 0 

Y(s) 
denominator 1 0.99721 2.94 1.6472 1.7295 

Y11(s) matrix 
numerator 0.28258 1.4286 1.6085 2.3598 1.1398 

Y22(s) matrix 
numerator 0.52054 1.4286 1.8627 2.3598 1.1784 

Y21(s)/Y12(s) 
matrix numerator j0.058627 0 j0.55637 0 j1.1872 

 

Using the transversal array network, the elements of the initial coupling matrix Eq. ( 3.16) can now 

be derived based on Eq. ( 3.19), as follows: 
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Table  3.9. Elements of the initial coupling matrix 

BK GK JSK JLK JSL k 

1.3509 0.1025 
0.3993 

- j0.0143 

0.2598 

-j0.1112 
0.0586 

1 

0.8862 0.3961 
-0.6436 

- j0.0113 

0.6334 

-j0.0404 
- 

2 

-0.8862 0.3961 0.6436 - 
j0.0113 

0.6334 
+j0.0404 - 3 

-1.3509 0.1025 
-0.3993 

- j0.0143 
0.2598 

+j0.1112 - 
4 

 

The N+2 transversal coupling matrix would be: 

Table  3.10. N+2 transversal coupling matrix. 

 S 1 2 3 4 L 

S -j0.2826 0.3993-
j0.0143 

-0.6436-
j0.0113 

0.6436-
j0.0113 

-0.3993-
j0.0143 

0.0586 

1 0.3993-j0.0143 1.3509-
j0.1025 0 0 0 

0.2568-

j0.1112 

2 -0.6436-j0.0113 0 0.8862-
j0.3961 0 0 

0.6334-

j0.0404 

3 0.6436-j0.0113 0 0 -0.8862-
j0.3961 0 

0.6334+ 

j0.0404 

4 -0.3993-j0.0143 0 0 0 -1.3509-
j0.1025 

0.2568+ 

j0.1112 

L 0.0586 0.2568-
j0.1112 

0.6334-
j0.0404 

0.6334+ 

j0.0404 

0.2568+ 

j0.1112 
J0.5205 



 

41 

After reducing the coupling matrix to the feasible folded form using the rotation technique as 

described in section   3.3.3, the folded coupling matrix is presented as follows. 

Table  3.11. Folded coupling matrix. 

 S 1 2 3 4 L 

S -j0.2826 1.0709 0 0 0 0.0586 

1 1.0709 -j0.3119 0.9489 0 -0.4141 -j0.0546 

2 0 0.9489 -j0.0645 0.8693 0 0 

3 0 0 0.8693 j0.0645 0.9489 0 

4 0 -0.4141 0 0.9489 -j0.6782 0.9552 

L 0.0586 -j0.0546 0 0 0.9552 J0.5205 

 

The scattering parameter plot of the folded coupling matrix with different loss levels of S11 and S22 

is shown below. 

 

Figure  3.16. S-parameter of folded coupling matrix with different loss level 
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3.3.6 Actual Physical Q vs. Achievable Equivalent Q 

Although the reduced coupling matrix is feasible in terms of practice, as mentioned in the previous 

section, in some cases it is needed to have the loss distributed among the resonators for ease of 

fabrication. Depending on the physical structure and the filter type, for example, one might need to 

distribute the loss equally among the resonator to have an equal actual Q factor of all resonators or 

each pair of an equal actual Q factor. This would be achieved using the loss distribution technique 

based on hyperbolic rotation of the coupling matrix.  

Consider the 4-pole Chebyshev filter as an example, with a 22 return loss. The lossless coupling 

matrix can be calculated using the multi-coupled sequential network explained in section  3.2.1 or the 

transversal array model in section  3.2.2, followed by the similarity transform, as below. 

Table  3.12. Lossless coupling matrix of 4-pole Chebyshev filter with RL=22 dB. 

 S 1 2 3 4 L 

S 0 1.0822 0 0 0 0 

1 1.0822 0 0.95999 0 0 0 

2 0 0.95999 0 0.72676 0 0 

3 0 0 0.72676 0 0.95999 0 

4 0 0 0 0.95999 0 1.0822 

L 0 0 0 0 1.0822 0 
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Figure  3.17. Lossless 4-pole Chebyshev filter response. 

Simulating the circuit model in ADS software based on the coupling matrix will give the same 

results as the MATLAB results in Figure  3.17.  

 
Figure  3.18. Lossless circuit model of a 4-pole Chebyshev filter.  
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Figure  3.19. ADS simulation result of a lossless 4-pole Chebyshev filter. 

Based on the relation between the dissipation factor and the Q factor of a filter, which is discussed 

in detail in  [35], one can find the amount of loss to insert in an ideal infinity Q resonator of the 

lowpass prototype filter.   

  
  

    
 

 

     
 

  
 

  
              ( 3.26) 

where   is the dissipation factor of a lowpass prototype filter,    is the kth capacitive element of the 

prototype filter,    is the conductance value, and FBW is the fractional bandwidth. Since, in prototype 

filter,     , then    .  

The value of the loss ( ) calculated based on Eq.( 3.26), such that all the resonators will all have the 

same Q factor of 400 and FBW=1% as a typical example. Consequently, filter frequency response 

(i.e.,    ) would have band edge roundness and degraded insertion loss, as illustrated in Figure  3.21, 

and the insertion loss would degrade to -4.7 dB at the center frequency.  
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Figure  3.20. Q=400 Chebyshev prototype circuit model.  

 

 

Figure  3.21. S-par simulation results of 4-pole Chebyshev filter with Q=400 
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We will now investigate the effect of lossy design with the same actual Q factor of 400 on 

improving the frequency response (   ) shape of the filter. This improvement results in an increment 

in loss and shifting the     and     with a certain amount of loss, a typical value of 10 dB as 

designed. The N+2 lossy coupling matrix above, after rotation, is as follows:  

Table  3.13. The N+2 lossy coupling matrix. 

 S 1 2 3 4 L 

S - j0.5195 0.9247 0 0 0 0 

1 0.9247 - j0.6084 0.95999 0 0 0 

2 0 0.95999 0 0.72676 0 0 

3 0 0 0.72676 0 0.95999 0 

4 0 0 0 0.95999 - j0.6084 0.9247 

L 0 0 0 0 0.9247 - j0.5195 

Table  3.14 N+4 coupling matrix 

 
S 1 2 3 4 5 6 L 

S 0 0.31987 0 0 0 0 0 0 

1 0.31987 
-

j0.05315 
-0.30052 j0.053154 0 0 0 0 

2 0 -0.30052 -j0.37743 0.91092 j0.1327 -0.02347 0 0 

3 0 j0.05315 0.91092 - j0.43092 0.75023 j0.1327 0 0 

4 0 0 j0.1327 0.75023 - j0.4309 0.91092 j0.05315 0 

5 0 0 -0.02347 j0.1327 0.91092 - j0.37743 -0.30052 0 

6 0 0 0 0 j0.05315 -0.30052 - j0.05315 0.31987 

L 0 0 0 0 0 0 0.31987 0 
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The Q factor of the resonators after rotation would be Q1 =Q4= 164.3779  and  Q2 = Q3= Inf. The 

equivalent Q factor (or in other words, the target Q factor in this example) is chosen to be 1000. This 

means that the lossy filter response would be shifted by 10 dB, but the shape of the response (i.e., the 

selectivity and flatness in the passband) would be the same as a lossless filter with Q factor of 1000. 

After applying the loss distribution procedure on pivot [1, 2] with  the rotation angle of -0.17876 rad 

and on pivot [3, 4]  with rotation angle of 0.17876 rad and finally scaling the source and load node by 

the factor  of 0.31987, the new N+4 coupling matrix with the equivalent Q of 1000 is shown in 

Table  3.14. 

The scaling force is used to add two extra nodes to the coupling matrix and therefore would 

become N +4 coupling matrix. However, by using this technique, two shunt resistors are eliminated 

in the two non-resonating nodes.   

 

Figure  3.22. MATLAB plot of a 4-pole lossy Chebyshev filter.  
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Figure  3.23 ADS plot of a 4-pole lossy Chebyshev filter. 

To get a better sense of the relation between the actual (physical) Q factor and the equivalent Q 

factor, a study was carried out for the above example with the target Q of 1000 and different FBW 

values with respect to different values of loss level. The results are shown below. 

 

Figure  3.24. Actual Q vs. loss level, equivalent Q=1000, FBW =1%. 
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Figure  3.25. Actual Q vs. loss level, equivalent Q=1000, FBW =5%. 

 

Figure  3.26. Actual Q vs. loss level, equivalent Q=1000, FBW =10%. 
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3.4 Predistorted Filter 

3.4.1 Concept and Formulation   

As discussed previously, a low Q factor would affect the band-edge’s sharpness and degrade 

insertion loss. One method to compensate for band-edge roundness is to use a predistortion technique, 

which was first developed in 1939  [1] by Darlington and then further developed by others on all pole 

filters  [3]  [4] and multi-coupled cavity filters  [5]. The principle of operation is to design a low-pass 

prototype filter that has a peaky response near the passband edges. Since loss attenuates the passband 

edges more than the center of the passband, by adding the sufficient loss (low Q effect), a flattened 

bandpass response would be recovered. The design of a peaky edge response is obtained by shifting 

the poles of the transfer function polynomial E(s) of the low-pass prototype filter towards the right-

half plane of a complex s-plane. 

 

The technique is based on shifting the poles of the polynomial E(s) by             . It should 

be noted that the poles cannot be shifted out of the left-half of the s-plane in order to preserve the 

Hurwitz condition, because  
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   (‎3.27) 

 

The procedure of predistortion design can be summarized as follows  [35]: 

 Deriving the lossless prototype filter polynomials F(s), P(s), and F(s).  

 Obtaining the amount of loss factor   (shifting value) from  Eq. (‎3.27). 

 Shifting the position of the poles (roots of E(s)) by the amount of  , noting that the 

Hurwitz condition is not violated. 

 Calculating the new values for   and     using the original      polynomial such that 

|      |  and |      |    at any value of frequency variable s, thereby ensuring a 

feasible passive network. 

 Recalculating the        and      polynomials using the conservation of energy 

equation;       
        

    



 

51 

In step 5, a choice can be made in selecting the reflection zeros. If total left- or right-half plane 

zeros are chosen, an asymmetric, synchronously tuned (meaning there would be no non-zero 

imaginary parts in the admittances [no FIR elements]) coupling matrix will be realized. If a 

combination of left- and light-half plane zeros is chosen, the couplings and resistances will be 

symmetrical. However, in this latter instance, the FIR elements would make the filter asynchronous 

tuned. Hence, the resonators would have to be re-tuned to compensate for the frequency shift. 

Although the predistortion method improves the insertion loss response and recovers passband 

flatness, changes in reflection zero positions would drastically degrade the return loss. Therefore, pole 

predistortion is limited to those applications where minimum insertion and maximum return loss are 

not required and flatness of insertion loss is of the utmost importance. 

3.4.2 Illustrative Example 

Consider a 4-pole elliptic filter with return loss of 22dB and transmission zeros on -j2 and +j2. The 

lossless polynomials of the filter function would be as calculated below, based on a recursive 

technique, as follows: 

Table  3.15. Lossless polynomials coefficients and roots.  

roots of E(s) 
-0.87929 

-j0.61997 

-0.26177 

+j1.222 

-0.26177 

-j1.222 

-0.87929 

+j0.6199 
ε= 2.2197 

roots of F(s) -j0.9333 j0.9333 -j0.40602 j0.40602 εr=1 

Roots of P(s) j2 -j2 - -  

n= 4 3 2 1 0 

Coefficients of F(s) 1 0 1.0359 0 0.14359 

Coefficients of E(s) 1 2.2821 3.64 3.3525 1.8077 

Coefficients of P(s) - - 1 0 4 

 

The unloaded Q and its equivalent are chosen to be 1000 Q and 5000, respectively. Based on an 

FBW equal to 1%, the shifting value   can be calculated using Eq.  (‎3.27) as    
  

  
  (

 

  
 

 

    
)  
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      . Moreover, a new value of          . Shifted roots of E(s) along with the original roots of 

E(s) are shown in Figure  3.27. 

 

roots 
of E(s) 

-0.77929-
j0.61997 

-
0.16177+j1.222 

-0.16177-
j1.222 

-
0.77929+j0.6199 

ε= 
3.4899 

Figure  3.27. Original and shifted roots of polynomial E(s) towards the right-half s-plane. 

 

The new roots of      are calculated and illustrated in Figure  3.28, 

New 

roots 

of 

F(s) 

- j1.1477 
 

- j1.1476 

0.6386 - j0.5786 

-0.6386 - j0.5786 

-0.6386 + j0.5786 

0.6386 + j0.5786 

+ j1.1477 

+ j1.1476 

Figure  3.28. New roots of F(s) polynomial. 

 

The predistorted s-parameter plot is below. 
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Figure  3.29. Predistorted filter frequency response (MATLAB simulation). 

 

 

After adding the loss in the resonators with an equivalent Q of 1000,     would be flattend in the 

passband, as follows: 

 

Figure  3.30. Predistorted filter frequency response after adding Q=1000 (MATLAB simulation). 
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Figure  3.31. Predistorted filter frequency response after adding Q=1000 (MATLAB simulation). 

 

Figure  3.32 Predistorted filter frequency response after adding Q=1000 vs. before adding Q=1000  

(MATLAB simulation). 
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Chapter 4 

 

4.1 Introduction 

In this chapter, lossy filter design methods are applied to the design of different lumped element 

lossy filters. The goal is to obtain improved frequency response with respect to conventional lumped 

element filters in terms of selectivity and insertion loss.   

In the lossy lumped element filter design, Loss distribution among the resonators and circuit 

realization are two main challenging steps.  In other words, the design of higher filter order filters, the 

more complicated in terms of loss distribution and circuit realization. In the first section of the 

chapter, 4-pole lossy lumped element lossy filter is simulated to verify the circuit simulation results. 

In previous chapters it has been shown that the use of  lossy methods improves the filter frequency 

response in terms of insertion loss selectivity and passband flatness however it introduces certain 

amount of loss (based on the design) to the whole frequency response (passband and stopband). To 

address this issue, in the second section of this chapter, a six-pole lumped element filter is designed 

and compared with an alternative design which is cascading the lower order lossy filters. This is 

supposed to improve the imposed loss in frequency response while retaining the selectivity compared 

to the conventional lumped element filters which have low quality factor.  

4.2  Four-pole lossy filter  

A four-pole lumped element lossy filter with an equivalent Q of 1000 and an actual Q of 100 with 

4% bandwidth is targeted for design. The operating frequency is 2 GHz.  These values are chosen 

based on Figure 27 in chapter 3. The design characteristics introduce 18dB insertion loss in addition 

the 0.5dB loss associated with equivalent Q of 1000 based on α≈20/(Q*FBW).  The N+2 coupling 

matrix of the filter is calculated using the developed MATLAB code  in Table  4.1.  

This indicates that there are capacitive couplings of 0.23997 at the input and output, resistances in 

each resonator as well as resistive couplings between non-resonating node and second resonator, first 

and third resonator and between second and fourth resonator.  
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Table  4.1. Coupling matrix of the 4-pole lossy filter with 18 dB insertion loss 

0 0.23997 0 0 0 0 0 0 

0.2399 -0.044707i -0.16967 +0.04470i 0 0 0 0 

0 -0.16967 -0.45834i 0.84581 +0.20579i -0.054224 0 0 

0 +0.04470i 0.84581 -0.50082i 0.78099 +0.20579i 0 0 

0 0 +0.20579i 0.78099 -0.50082i 0.84581 +0.04470i 0 

0 0 -0.054224 +0.20579i 0.84581 -0.45834i -0.16967 0 

0 0 0 0 +0.04470i -0.16967 -0.04470i 0.2399 

0 0 0 0 0 0 0.23997 0 

 

 

Figure  4.1. Frequency response (S-par) of lossy filter based on the coupling matrix 

The initial circuit is not feasible in practice for several reasons, First of all, the input and output 

couplings are capacitive couplings and they introduce negative capacitors which are not feasible in 

lumped element model. Second of all microwave resistors come with a phase shift, which would 

cause the response to deviate from the designed one. Finally, it is also usually preferred to have 50 

ohm transmission line at the input and output. Because of mentioned reasons, the initial circuit model 

based on coupling matrix must be manipulated. 

This manipulation introduces two transmission lines of 180 degree and 270 degree at the input and 

output to the circuit model which can be reduced to one 90 degree transmission line with some circuit 

simplification. The circuit is simulated on Advanced Design System (ADS) using ideal coupling 

elements (no frequency dependence) and the scattering parameters are shown in  
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Figure  4.2 and Figure 4.3 respectively. Some more steps carried out towards further simplification 

and feasibility using lumped element capacitive coupling instead of ideal coupling. These steps and 

scattering parameters are indicated in following figures respectively. 

  

Figure  4.2. ADS simulation of S-parameters using ideal coupling elements 
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Figure  4.3 Manipulated circuit model in ADS 
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The frequency dependence of filter response to the circuit elements is investigated in Figure  4.4 

and Figure  4.5. Figure  4.4.a shows the circuit model with actual lumped element couplings and 

ABCD model of transmission line, meaning there is no frequency dependence whereas Figure  4.5 

shows the filter response using ABCD model coupling and actual transmission line model. 

Figure  4.4.b shows the feasible lumped element filter response.  As it is shown, the filter response is 

highly affected by transmission lines rather than the frequency dependence of coupling elements. 

Further simulation shows that the effect of lumped element coupling is minimum compared to the 

transmission lines.   

 

Figure  4.4. a: Lumped element coupling and ABCD model of TL, b: lumped element coupling and 

TL  

 

Figure  4.5. a: ABCD model coupling and TL, b: ideal circuit based on ABCD model 

(a
) 

(b
) 

(a) (b
) 
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The effect of bandwidth is also investigated on the circuit in terms of fractional bandwidth (FBW) 

and it is shown in Figure  4.6. The greater the bandwidth, the higher effect on the frequency response. 

 

 

Figure  4.6. a: FBW=1%, b: FBW=2%, c: FBW=3%, d: FBW=4% 

In order to address the effect of transmission line on the frequency response of the filter, a lumped 

lowpass filter replaced the transmission line to achieve two goals as well as retaining the transmission 

line characteristics which is 90 degree phase shift: one is to eliminate frequency dependence of 

transmission lines and the second is to reduce the filter size which is the main goal in lumped element 

filter design approach.   

(a) (b) 

(c) (d) 
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Figure  4.7. ADS simulated S-par results for low pass filter, a: Circuit model, b: Amplitude and phase 

frequency response, c: zoomed-in Amplitude frequency response  

Two lumped element Chebyshev lowpass filters with cut off frequency of 3GHz designed and 

replaced the transmission line: a five-pole and three-pole lowpass filters. In order to minimize the 

number of elements the three-pole filter is chosen to replace the input and output transmission lines. 

The g-values of lowpass prototype Chebyshev filter is g1=6.506 and g2= 9.7326. Figure  4.7 shows the 

simulated results of the lowpass filters. 

Also to eliminates the negative capacitors at the input and output coupling, an alternative coupling 

circuit (impedance inverter) with shunt inductors is used instead of conventional three-capacitor pi 

network pi network. Since the filter is lumped element, it is feasible to implement shunt inductors. 

(a) 

(b) 

(c) 
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The scattering parameter simulation (Figure  4.9) shows that for 4% bandwidth the phase response of 

the impedance inverter has about 2% deviation form ideal 90 degree phase. 

 

 

 

 

(b) 

(a) 
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Figure  4.8. Circuit model and simulated S-par of  a: Proposed inductive-capacitive impedance 

inverter, b: ideal ABCD impedance inverter model, c: Conventional capacitive impedance inverter 

with negative capacitor 

 

Figure  4.9. The phase characteristic of proposed pi impedance inverter circuit at 2GHz. 

Using the proposed impedance inverter, the distortion for FBW of 4% is highly suppressed. 

Lumped element circuit model turns to be feasible with no negative element and the simulation 

results are as follow,  

 

(c) 
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Figure  4.10. Circuit model simulation of a: s-parameter of 4-pole lossy filter with FBW=4%, b: s-

parameter of 4-pole lossy filter with FBW=1% 

After tuning the inverter values, the optimized and scaled (respect to Z=50 ohm) values for circuit 

elements and the s-parameter of the filter are shown in Figure  4.11 respectively, 

 

 

Figure  4.11. a) Frequency response of 4-pole lossy filter, b) MATLAB simulation of 4-pole 

Chebyshev filter with Q=100 

 

 

 

 

 

 

(a) (b) 

(a) (a) 
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Table  4.2. Element values after impedance scaling to Z0=50 ohm 

J5L= 0.24 L14= 73.378 nH CR4= 39.7 pF 

J45= -0.1796 CS1= 1.1912  pF LR4= 0.16 nH 

JS0= 0.24 LS1= 5.3163 nH RS2= 64.4033 Ω 

J01= -0.1796 C12= 1.3382  pF R24= 242.9661 Ω 

J12= 0.8408 C23= 1.2430 pF R13= 242.9661 Ω 

J23= 0.7810 C34= 1.3382  pF R3L= 64.4033 Ω 

J34= 0.8408 C4L= 1.1912  pF R1= 197.9806 Ω 

J14= 0.0542 L4L= 5.3163 nH R2= 199.7419 Ω 

C3L= 0.38192 pF CR1= 39.7 pF R3= 199.7419 Ω 

CS2= 0.38192 pF LR1= 0.16 nH R4= 197.9806 Ω 

CLP(LP filter Cap) 1.3012 pF CR2= 39.7 pF   

CLP - CS2 0.91928 pF LR2= 0.16 nH   

LLP(LP filter Ind) 4.866 nH CR3= 39.7 pF   

C14= 0.0863 pF LR3= 0.16 nH   

Values of the inductors and capacitors of each resonator are out of the range to be realizable in 

lumped element design. To address this issue, scaling technique used to reduce the element values of 

resonators  while retaining the frequency response in an acceptable manner. This can be realized by 

adding an inductor (capacitor) in series with capacitor (inductor) of a LC resonator which is 

illustrated in Figure  4.12.  

 

Figure  4.12. a: initial resonator, b: modified Resonator using scaling factor a 
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In order to have the same resonant frequency for both circuits in Figure  4.12, the following 

equations can be derived consequently, 

    (     )  
 

 
 

           
(‎4.1) 

Assuming that         at center frequency, following formulation can be derived, 

     (  
 

√ 
) 

    √    (‎4.2) 

Using this technique with scaling factor a=10 and after some fine tuning, the modified values of the 

filter would be in a realizable range which is shown in Table  4.3 

Table  4.3. Modified values of the 4-pole lossy filter  

J5L= 0.2399 L14= 38.6  nH CR3= 4  pF 

J45= -0.1786 CS1= 1.1845  pF LSR3= 1  nH 

JS0= 0.2399 LS1= 5.346 nH LR3= 0.5  nH 

J01= -0.1786 C12= 1.3334  pF CR4= 4  pF 

J12= 0.8378 C23= 1.2430 pF LSR4= 1  nH 

J23= 0.7859 C34= 1.3382  pF LR4= 0.15915 nH 

J34= 0.8378 C4L= 1.1845  pF RS2= 64.4033 Ω 

J14= 0.103 L4L= 5.346 nH R24= 242.9661 Ω 

C3L= 0.38192 pF CR1= 4  pF R13= 242.9661 Ω 

CS2= 0.38192 pF LSR1= 1  nH R3L= 64.4033 Ω 

CLP(LP filter Cap) 1.3012 pF LR1= 0.5  nH R1= 197.9806 Ω 

CLP - CS2 0.91928 pF CR2= 4  pF R2= 199.7419 Ω 

LLP(LP filter Ind) 4.866 nH LSR21= 1  nH R3= 199.7419 Ω 

C14= 0.164 pF LR2= 0.5  nH R4= 197.9806 Ω 
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Figure  4.13. Frequency response of the tuned and reduced element circuit 
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Figure  4.14. Lumped element circuit schematic of 4-pole lossy filter  
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4.3 Two-pole cascade lossy filters vs. six-pole ideal filter 

 

As discussed in chapter 3, lossy filters have some advantages and disadvantages in comparison 

with conventional filters. In some applications that the flatness and selectivity is at the utmost 

importance, it is preferred to use lossy technique, however in the application that inversion loss in the 

stopband is important it is not reasonable to apply lossy method because it would introduce a 

significant amount of loss to the reflected signal. 

On the other hand, designing a higher order lossy filter has a main difficulty which is equal loss 

distribution among the resonators. Applying hyperbolic transformation does not necessarily result in a 

feasible circuit because of the negative resistive coupling elements. To address this issue, we 

proposed a cascade configuration of three 2-pole filters consisting of two ordinary filters at the input 

and output and a 2-pole lossy filter in the middle. This configuration is easy to design, feasible and 

supposed to have better performance in terms of selectivity and flatness. 

Table  4.4. Impedance Scaled values 

Element value Element Value 

Rs= 155.279 Ohm C12= 4.00892 pF 

C11t= 32.99 pF C23= 5.13464 pF 

L11= 0.97025 nH C34= 8.211636 pF 

C22t= 27.8562 pF C45= 5.13464 pF 

L22= 0.97025 nH C56= 4.00892 pF 

C33t= 62.4417 pF R(Q) 71.4250 Ohm 

L33= 0.473675 nH L66= 0.97025 nH 

C44t= 62.4417 pF C66t= 32.99 pF 

L44= 0.473675 nH L55= 0.97025 nH 

C55t= 27.8562 pF   
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3x2-pole Chebyshev filter is designed based on recursive method and the coupling matrix is 

extracted using transversal method. The filter is designed for center frequency of 840 MHz, FBW of 

40 MHZ bandwidth (FBW=4.7%) and Q-factor of 30. The impedance scaled values of elements and 

circuit layout are shown in Table  4.4 and Figure  4.16 respectively. 

 

Figure  4.15. Cascaded circuit model  
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Figure  4.16. Frequency response of three 2-pole filters (ADS simulation) 

The inductor and capacitor values which are shown in Table  4.4 are not in an appropriate range to 

implement on pcb. Meaning that capacitor values are too high and make the circuit big in size and 

inductor values are not high enough to be realizable by spiral model.  This has been investigated by 

SONET EM simulation software. As an example, Figure  4.17 shows minimal achievable the spiral 

inductor design of Q =30 using high permittivity material which is about 1.2 nH with one round. As a 

matter of fact, one round spiral inductor is highly susceptible to the length of connections and 

loadings in the actual pcb circuit. 

 

Figure  4.17. Inductance EM simulation in SONNET   
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Using the same technique mentioned in previous section, the Ls and Lp are multiplied by a scaling 

factor a and value of C is divided by the scaling factor of a. After applying the technique to the 2-pole 

filter, a transmission zero is introduced to the s-parameter. Figure  4.18 shows the modified circuit 

using scaling value of a=10. 

 

 

Figure  4.18. Circuit model and frequency response of the modified filter  

Using actual capacitive lumped element impedance inverter instead of ideal ABCD model, a 

unwanted resonance around 1.5 GHz which can be eliminated using inductive impedance inverter. 
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Figure  4.19. Lumped element ccircuit model (capacitive coupling) and frequency response of the 

modified filter 

 

 

Figure  4.20. Lumped element ccircuit model (inductive coupling) and frequency response of the 

modified filter 
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Table  4.5. Modified values of elements of 2-pole filter  

Element a R Cs1 Cs2 (√a*Lp1 || L12) (√a*Lp2 || L12) Ls1 Ls2 L12 

value 10 146.30 Ω 3.7 pF 3.7 pF 4.7 nH 4.7 nH 6.6 nH 6.6 nH 8.95 nH 

 

Shows the comparison between the scattering parameter of 2-pole filter with Q=30 before 

manipulation and after manipulation with different factors of a. 

 

 

Figure  4.21. a) a=1, b) a=5, c) a=10, d) a=20 

The middle stage if this cascade design is a 2-pole lumped element lossy filter with Q=30 and 

consequently passband insertion loss of 6 dB. The same as previous designs, the recursive technique 

is used to synthesize the filter and two resistors account for the lossy part at the input and output of 

the 2-pole filter. Figure  4.22 Shows the ideal circuit and scattering parameter using ADS. 

(a) (b) 

(c) (d) 
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Figure  4.22. Frequency response of 2-pole lossy filter (ADS simulation) 

Exact same procedure mentioned in pervious section is carried out with scaling factor a=10 to 

reduce the elements value to be realizable on PCB board. The circuit with ideal impedance inverters 

(ABCD model) and modified resonators is shown below along with the scattering parameters.  

 

  

Figure  4.23. Frequency response of 2-pole lossy filter (ADS simulation) 
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The feasible circuit model is represented after replacing the ideal inverters with actual inductive 

inverters and the value of circuit elements are realizable. 

 

 

Figure  4.24. Two-pole lossy filter, top: circuit model, bottom: s-par 

Table  4.6. Modified elements of 2-pole lossy filter 

Element a R Rs Cs1 Cs2 (√a*Lp1 
||L12||L23) 

(√a*Lp2 
||L23||L34) 

Ls1 Ls2 L12 L23 L34 

value 10 71.42  Ω 155.2 Ω 7.58 pF 7.58 
pF 

3.38 nH 3.38 nH 3.24 
nH 

3.24 
nH 

7 nH 4.37 
nH 

7 nH 

Cascaded 3x2-pole filter with inductive coupling ADS simulation results is shown in Figure  4.25. 

 

Figure  4.25. Frequency response of cascaded 2-pole filters (ADS simulation) 
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4.3.1 EM Design and simulation results 

SONNET software V.13 is used to simulate the planar structure based on dielectric layer Rogers 

6202 with the effective permittivity of 2.95 and thickness of 0.127 mm. In the first step, each element 

(capacitors and inductors) are simulated to obtain the correct dimensions based on Table  4.6. The 

geometry and EM simulation results of input and output 2-pole filters are shown in Figure  4.26 

respectively. 

 

 

Figure  4.26. Physical layout of 2-pole filter (SONNET) 

 

Figure  4.27. Frequency response of 2-pole filter (SONNET simulation)  
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A slightly frequency shift is observed in the EM simulation s-par due to the dimension of the 

elements connecting together which is removed by optimizing the geometry (Figure  4.28). 

 

Figure  4.28. Optimized frequency response of 2-pole filter (SONNET simulation)  

 

The input and output inductors in 2-pole lossy filter (Lp1 and Lp2) are negative and in the circuit 

model, they are absorbed in the input and output inductors of ideal 2-pole filters. Therefore, it is not 

possible to simulate the 2-pole lossy filter in EM simulator separately. However, the EM simulation 

of the 2-pole lossy filter (Figure  4.29) carried out without Lp1 and Lp2 has a good agreement with the 

circuit simulation in ADS  

 

Figure  4.29. Physical layout of 2-pole lossy filters (SONNET) 
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Finally the cascaded 3x2-pole filter has been simulated in SONNET 13 EM simulation and the results 

are shown Figure  4.31. 

 

2-pole ideal filter 2-pole lossy filter  2-pole ideal filter 

 

Figure  4.30. Physical layout of the cascaded 2-pole lossy filters (SONNET) 

 

Figure  4.31. EM simulation results for 3x2-pole cascade filter (Q=30) 
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Figure  4.32. Circuit model simulation of 6-pole ideal filter with Q=30 

Figure  4.32 shows the circuit simulation of a 6-pole ideal filter with Q=30 at the same center 

frequency of 840 MHz and same BW of 4.7%. Although manipulating the circuit introduced a 

transmission zero of frequency response and effected the selectivity, the insertion loss of 3x2-pole 

lossy filter is higher than ideal 6-pole filter about 2 dB.  
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Chapter 5 

 

5.1 Summary   

 

In the first section of this thesis, direct and transversal coupling matrix synthesis methods were 

discussed and the lossy coupling matrix was derived using the transversal method. However, the 

coupling matrix, derived based on the transversal method, was not feasible in terms of practice. Thus, 

in order to obtain a practical coupling matrix, some unwanted couplings were annihilated with a 

sequence of similarity transforms (rotations) until a more convenient form with a minimal number of 

couplings was obtained. A loss distribution technique (hyperbolic and trigonometric rotations) was 

applied to the coupling matrix to distribute the loss evenly among the resonators and to obtain equal 

Q factor resonators; the technique was illustrated with an example. 

In the next section, a study was carried out to obtain the relation between the value of the actual 

quality factor and the achievable equivalent quality factor for certain amounts of fractional 

bandwidths of the filter. The results showed that the relation between the actual Q factor and the 

introduced amount of loss is not linear and varies for different FBWs. In the next part, the 

predistortion technique was discussed in detail, followed by an illustrative example. The results also 

indicated that the predistortion technique is an effective method for maintaining the selectivity and 

passband flatness of the filter frequency response for small loss and narrow bandwidth (e.g., 

FBW=1% results in Q factor around 1000). Regarding the lumped element filters, since the Q factor 

is about 30 to 40, the predistorted technique can be applied only to wideband filter with FBW more 

that 20%.   

In the second part of this thesis, the lossy technique was used to design two lumped element filters. 

The first filter was a 4-pole Chebyshev filter with an equivalent Q of 1,000, an actual Q of 100, a 4% 

bandwidth, and an operating frequency of 2 GHz. The design characteristics introduced a 18dB 

insertion loss in addition to the 0.5dB loss associated with the equivalent Q of 1,000. The second 

filter formed by cascading three 2-pole filters where one of them is a lossy filter. Cascading was 

chosen in order to achieve close to zero dB reflection in the rejection band. The filter was designed 

for a center frequency of 840 MHz, an FBW of 40 MHZ bandwidth (FBW=4.7%), and a Q-factor of 

30. 
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5.2 Future work 

 

Since highly selective resonator filters are needed in all communication systems, future work could 

aim for Q factor enhancement by compensating for the effect of loss in a lossy filter design. The 

novelty is to combine the idea of lossy filters with active elements to increase the Q factor of some 

resonators in a filter while significantly reducing the Q factor in other resonators. 

In loss distribution, it is possible to drastically reduce the actual Q factor of resonators at the cost of 

having some of them be negative.  For instance, while it is possible to achieve an actual Q factor of 

30 for a 3-pole Chebyshev filter with  an equivalent Q of more than 1,000, the middle resonator 

would have a Q factor of -30. Therefore, an extension of this work could involve designing a suitable 

negative resistor or negative impedance convertor (NIC) to be employed in some resonators to reduce 

the Q factor more than conventional lossy filters. The challenges in NIC designs include noise, 

linearity, and dynamic range analysis in terms of input and output power. Dealing with the NIC 

circuit individually, the topology and realization process of NIC circuitry is an important focus of 

study since it is related to all of the parameters mentioned above. Moreover, the type of active 

element that would be employed to realize the NIC would be substantial for the same reasons.  
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