Loop Modeling in Proteins
Using a Database Approach
with Multi-Dimensional Scaling

by

Daniel Holtby

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2013

(© Daniel Holtby 2013

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

i

Abstract

Modeling loops is an often necessary step in protein structure and func-
tion determination, even with experimental X-ray and NMR data. It is well
known to be difficult. Database techniques have the advantage of producing
a higher proportion of predictions with sub-angstrom accuracy when com-
pared with ab initio techniques, but the disadvantage of often being able
to produce usable results as they depend entirely on the loop already be-
ing represented within the database. My contribution is the LoopWeaver
protocol, a database method that uses multidimensional scaling to rapidly
achieve better clash-free, low energy placement of loops obtained from a
database of protein structures. This maintains the above-mentioned advan-
tage while avoiding the disadvantage by permitting the use of lower quality
matches that would not otherwise fit. Test results show that this method
achieves significantly better results than all other methods, including Mod-
eler, Loopy, SuperLooper, and Rapper before refinement. With refinement,
the results (LoopWeaver and Loopy combined) are better than ROSETTAs,
with 0.53A RMSD on average for 206 loops of length 6, 0.75A local RMSD
for 168 loops of length 7, 0.93A RMSD for 117 loops of length 8, and 1.13A
RMSD loops of length 9, while ROSETTA scores 0.66A, 0.93A, 1.23A, 1.56A,
respectively, at the same average time limit (3 hours on a 2.2GHz Opteron).
When ROSETTA is allowed to run for over a week against LoopWeaver’s
and Loopy’s combined 3 hours, it approaches, but does not surpass, this
accuracy.

iii

Acknowledgments

I would like to thank my supervisor, Professor Ming Li, for his time, patience,
and encouragement. Without him none of this would have been possible.

I would also like to thank my fellow students (past and present) Shuai
Cheng Li, Guangyu Feng, and Xuefeng Cui, all of whom have provided valu-
able discussions and new ideas.

[would also like to acknowledge Sharcnet for the use of their high through-
put computing facilities. Without these clusters would have taken a great
deal longer to get all of the results back.

v

Dedication

This is dedicated to my wife, Diane, for her love and support.

Table of Contents

Table of Contents vi
List of Tables viii
List of Figures X
1 Introduction and Background 1
1.1 Proteins and Protein Structure 1
1.1.1 Protein Structure 3

1.1.2 Determining Protein Structure. 7

1.1.3 Predicting Protein Structure 8

1.2 Loop Modeling 11
1.2.1 Problem Definition 12

1.2.2 Motivation oL 13

1.3 Previous Work L 17
1.3.1 Statistical 17

1.3.2 Knowledge Based 22

1.3.3 Comparative Advantages Between Approaches 24

2 LoopWeaver 26
2.1 Method Overview, 26

vi

2.2 Method Details

2.2.1 Database Matches
2.2.2 Fitting the Loop
223 Clashes
2.2.4 LoopWeaver Pseudocode
2.2.5 Ranking and Selection
3 Results
3.1 Test Sets
3.2 Details of Other Methods Used
3.21 ModLoop
3.22 RAPPER
3.23 Loopy
3.24 ROSETTA
3.25 Other Tools
3.3 SCores ...
3.4 Combined Scores
3.5 Database Accuracy over Time

3.6 Example Loops
3.6.1 LoopWe
3.6.2 LoopWe

aver Compared with Other Tools

aver’s Performance over Time

3.7 Clash Avoidance

4 Summary and Outlook

Copyright Permissions

Bibliography

vil

44
44
45
45
46
46
47
49
o1
56
63
66
66
78
33

85

89

90

List of Tables

1.1

3.1

3.2

3.3

3.4
3.5

3.6

3.7

3.8
3.9

3.10

3.11

Sequence-Structure Gap Over Time 9

Average RMSD (local/global) scores for Loopy and LoopyMod
with remodeling of stem atoms. 50

Average RMSD (local/global) scores for LoopWeaver with rank-

ing by local RMSD, with and without WMDS fitting. 51
Average RMSD (local/global) scores for LoopWeaver with and

without WMDS fitting. 52
Average RMSD (local/global) scores for tested tools. 53
p-values obtained from two-tailed, paired t-tests for local and

global RMSD scores in Table 3.4 54
Average RMSD (local/global) scores for tested tools after ROSETTA
refinement. Lo 55

p-values obtained from two-tailed, paired t-tests for local and
global RMSD scores, after ROSETTA refinement (Table 3.6). 56

Average RMSD (local/global) scores for combined results. . . 58

p-values for two-tailed paired t-tests comparing all pairs of
combined tools by local and global RMSD scores. 59

p-values for two-tailed paired t-tests comparing combined tool
scores to the individual scores of each tool. 59

Average RMSD (local/global) for combined tools, after ROSETTA
refinement. L Lo 61

viii

3.12 p-values for two-tailed paired t-tests comparing all pairs of

combined tools by local and global RMSD scores, after ROSETTA

refinement.

3.13 p-values for two-tailed paired t-tests comparing combined tool
scores to the individual scores of each tool, after ROSETTA
refinement.

3.14 Paired t-tests testing LoopWeaver’s average local and global
RMSD scores when using a database from a given year against
the same scores when using a database from one or two years

3.15 LoopWeaver results for target T0393, loop at residues 62-67
vs database year.

3.16 LoopWeaver results for target T0431, loop from residue 453
to 463, over time.

62

83

3.17 Number of clashing candidates before and after clash avoidance. 84

1X

List of Figures

1.1
1.2
1.3
1.4

2.1

2.2

3.1
3.2
3.3

3.4

3.5

3.6

3.7

Amino acid 2D diagram[1] 1
Dihedral angles of protein backbone. Adapted from [1] 2
Protein Structure Levels[2] 0L 4

An example illustrating a successful FEATURE prediction
with the help of modeling methods. Reproduced from [3] (Fig-
ure 1), . . Lo 16

LoopWeaver Flowchart. The two-part clash avoidance step on

the right hand side is optional. 28
Matrix T used for short-distance weights. 34
Local RMSD scores from Table 3.1 plotted vs. loop length. . . 50
Local RMSD scores from Table 3.4 plotted vs. loop length. . . 53
Average Local RMSD scores from tested tools after ROSETTA
refinement, plotted vs. loop length. 55
Average Local RMSD scores for combined results, plotted vs.

loop length.o 58
Average Local RMSD scores for combined results after ROSETTA
refinement, plotted vs. loop length. 61

Plots of LoopWeaver’s average local (x) and global (e) RMSD
scores vs. database cutoff date. 000 65

Candidates and LoopWeaver Template used for target T0513,
length 10 loop at residues 139 through 148. 67

3.8 T0532 (blue) and loop from residue 303 to 311 (orange), super-
imposed with LoopWeaver Template protein 2C9Y-A (green)
residues 207-215 (magenta). Superposition was calculated us-
ing only loop and stem main chain atoms.

3.9 Candidates and LoopWeaver Template for target T0513, length
10 loop at residues 82 through 88.

3.10 T0533 length 11 loop from residue 189 to 199. Native in blue
(A), LoopWeaver in orange (B), LoopWeaver without fitting
in green (C), ModLoop in magenta (D).

3.11 Candidates and LoopWeaver template for target T0625, length
9 loop at residues 89 through 97.

3.12 Candidates and LoopWeaver template for target T0513, length
10 loop at residues 79 through 88.

3.13 Candidates and LoopWeaver template for target T0490, length
10 loop at residues 52 through 61.

3.14 LoopWeaver results for CASP8 target T0393, loop from residue
62 (left) to 67 (right)

3.15 LoopWeaver Results for CASP8 target T0431, loop from residue
453 (left) to 463 (right) L

x1

Chapter 1

Introduction and Background

1.1 Proteins and Protein Structure

A protein is a biomolecule made up of one or more polypeptide chains, which
are polymers made up of a sequence of amino acids.

Each amino acid is an amine group
(NH;) and a carboxyl group (COOH),
connected together by a central car-
bon atom (The alpha carbon or C,),

as shown in Figure 1.1. The amino H y
acids differ by the side group (more often

called the side chain) which is attached H

to the alpha carbon. This is shown as R

the R box in Figure 1.1.

A polypeptide chain is a chain of
these am.ino acids, connected together Figure 1.1: Amino acid 2D
by a peptide bond formed where the car-
boxyl group of one amino acid forms
a bond with the amino group of an-
other, with these groups losing an OH
and H respectively as water. (The peptide bond is marked in Figure 1.2).

diagram|[1]

Traditionally the N atom to C atom di-
rection is viewed as the forward direction in
the chain as this is the order that the pro-
tein chain is assembled. The backbone of a
protein refers to the common structure, the
amine group, alpha carbon, and carboxyl
group. The three atoms that bond together
to form the chain (Nitrogen, Alpha Carbon,
and Carbon) as well as the doubly bonded
oxygen in the carboxyl group are referred to
as the heavy backbone atoms. There are sev-
eral important pieces of geometry involved
in the backbone chain of a protein. Ev-
ery pair of atoms defines a bond distance,
and these distances are fairly tightly con-
strained. Every three adjacent atoms de-
fines a bond angle, and every four define a dihedral angle, which characterizes
the rotation about the bond between the middle two atoms. The three dihe-
dral angles are called ¢, which involves atoms C-N-C,-C, v, which involves
atoms N-C,-C-N, and w, which involves C,-C-N-C,. The peptide bond is
highly planar and so the w angle is restricted to be very close to 180° (the
trans case), or in rare cases, 0° (the cis case). Figure 1.2 shows the three
dihedral angles, as well as an example bond angle 7. The bond angles are
regular triangular bonds, or in the case of 7 (the N-C,-C bond angle), tetra-
hedral. So they have the idealized values of 120°, or 109.47° for 7. The exact
geometry depends on the other atoms bonded to the chain, so the averages
for each bond angle are not equal to the idealized triangular or tetrahedral
values. For example, Engh and Huber[4] report average 7 values of 109.1°
to 110.1° depending on the amino acid, with standard deviations of approx-
imately 2 degrees.

Peptide bond

Figure 1.2: Dihedral angles of
protein backbone. Adapted
from [1]

As with the bond angles, the mean bond lengths depend on the amino
acid involved, but the standard deviations for each amino acid type are all
0.02A or lower (for the backbone bonds). So, given an amino acid sequence,
one can assume that the bond angles and bond distances are equal to their
expected values without introducing too much error. As the w torsion angle
is also fairly restricted (with a standard deviation of only a few degrees),
one can characterize a protein chain as a series of torsion angle pairs (¢,1))

without much loss of accuracy.

1.1.1 Protein Structure

The structure of a protein is split into four levels, called the primary through
quaternary structures. Figure 1.3 shows these levels.

Primary Structure

The primary structure of a protein is the sequence of residues that make
up the chain(s). The amino acids are commonly abbreviated using either 3
letter or 1 letter abbreviations. The primary structure of a protein is thus a
sequence of characters drawn from an alphabet of 20.

Secondary Structure

Secondary structures are regular local structures (or the lack thereof) and
these structures are broadly grouped into three categories. The most common
sort of secondary structure is the a helix. An « helix is a right-handed helix
which involves the amine group of each residue donating a hydrogen bond
to the carbonyl group four residues back in the chain, forming the backbone
into a coil shape. Two less common forms of helix are the 3,y helix where the
hydrogen bonds form between residue i and 7+ 3, and the 7 helix, where the
hydrogen bonds form between residue ¢ and 7+ 5. In an « helix, there is one
complete turn of the helix per 3.6 residues, while in 3;5 and 7 helices there
are 3.0 and 4.4 residues per turn, respectively. Helix structures are the most
common structure involved in membrane spanning proteins|5, Chapter 10].
Helices can be made up of any amino acids, but proline and glycine are rare.
Proline has no amide hydrogen to contribute, so it cannot form the requisite
hydrogen bond. This combined with steric considerations due to its cyclic
sidechain means that any proline present in a helix will result in a break or
a kink. Glycine is rare for the opposite reason. Glycine’s flexibility due to
its lack of a side group means that it is expensive in terms of energy for it to
adopt the rigid helix structure.

The next most common sort of secondary structure is the § sheet. A
[sheet is made up of two or more [strands. A [strand is a length of

Primary structure
aming acid sequence

beta sheet

Secondary structure
regular sub-structures

hemaglobin

Tertiary structure
three-dimensional structure

Quaternary structure
complex of protein molecules

Figure 1.3: Protein Structure Levels[2]

chain that has taken on a conformation that is nearly fully extended. For
this reason such structures are also referred to as extended structures. Beta
sheets form when two strands are oriented side-by-side, and hydrogen bonds
form between the carbonyl group in a residue in one strand, and the amide
group in a residue in the other strand. A strand is often drawn as a ribbon
terminated with an arrowhead indicating the N-to-C direction of the chain.
A [sheet can form when two strands are oriented in opposite directions
(meaning that the lowest numbered residue in one strand is bonded with the
highest numbered residue in the neighboring strand), in which case it is an
anti-parallel [sheet, or when they are both oriented in the same direction
(meaning that the lowest numbered residue in one strand is bonded with the
lowest numbered residue in the other strand), in which case it is a parallel
[sheet. In an anti-parallel sheet the hydrogen bonds between the carbonyl
and amide groups are planar, which is their preferred orientation, so this
configuration is the strongest. The offset between these groups in a parallel
sheet makes this configuration slightly less stable. As only every second
residue is involved with the hydrogen bonds between two strands, additional
strands can be incorporated on the open sides. It is possible for a strand to
be parallel to one neighbor, and anti-parallel to the other.

Any region that is not either a helix or a strand is called a loop region,
though they are sometimes called by other names. Turns are a subcategory
of loop, where a small number of residues connect adjacent secondary struc-
tures. A turn connects two secondary structures with a C, to C, distance
of less than 7A, and involves 1 to 5 residues, called respectively d-,7-,5-,0-,
and 7-turns, with the 3 residue § turn being the most common. Under this
nomenclature anything longer which connects nearby structures is an w-loop,
named for the shape of the Greek letter 2. A turn that connects two bonded
anti-parallel f—strands is called a S-hairpin. In this name the [refers to the
sheet it is part of, not the turn type, and a hairpin turn does not need to be
a length 3 S-turn.

A region that connects more distant end-points is called a loop (without
a Greek letter). These are also sometimes called coil regions (such as in
the DSSP[6] classification of secondary structures). Confusion can arise as
in some cases helix regions are also called coils (such as in the “coiled coil”
motif, where two helices are wrapped around each other), so loop is the less
ambiguous term.

Although loops and turns are defined by their lack of regular hydrogen

bonding, they can be involved in some hydrogen bonds. Turns often have an
internal hydrogen bond, in which case they can be called hydrogen-bonded
turns. Loops can also form hydrogen bonds between one another, an occur-
rence called a §-bridge.

Tertiary and Quaternary Structure

The tertiary structure of a protein chain is the three dimensional configu-
ration of the atoms that make up the protein chain, while the quaternary
structure refers to the three dimensional configuration of multiple protein
chains making up a protein. The tertiary structure is sometimes called the
fold of the protein, although more often the fold of a protein refers to the
general architecture rather than to the specific atomic coordinates. The for-
mation of tertiary and quaternary structure is largely driven by hydrophobic
interactions inducing a state where the hydrophobic core of the protein is pro-
tected from water, and stabilized by non-covalent interactions and disulfide
bonds.

Super-secondary Structure

Proteins are sometimes viewed as having a less well-defined level of structure,
called super-secondary structure. These can also be called structural motifs,
or local folds (as opposed to the global fold referring to the tertiary structure).
Usually local fold is used to refer to the tertiary structure of such a sub-
unit, while super-secondary structure refers to the general architecture. For
example, when making such a distinction, helix-turn-helix and beta-hairpin-
beta would be motifs, while the specific atomic coordinates of these regions
would be local folds.

Ramachandran Basins

Although the ¢ and 1 torsion angles have a much wider range of values than
the other geometric parameters of a protein chain, they are still restricted
to certain ranges. In 1963, Ramachandran, Ramakrishnan, and Sasiskharan
introduced what is now called the Ramachandran Plot, a way of visualiz-
ing the ¢ and ¢ angles of a protein chain[7]. They also obtained feasible

ranges for the ¢, angle pairs based on hard-sphere calculations. Different
parameters to these calculations yielded different ranges, resulting in an ap-
proximate density map. These density maps are commonly referred to as
Ramachandran basins. Experimental data has validated the shape of these
density maps, which are generally the same shape for all amino acids other
than proline and glycine.

1.1.2 Determining Protein Structure

Protein structures are typically determined experimentally by using X-Ray
Crystallography. This involves crystallizing the protein so that the protein
crystal will diffract an X-Ray beam into many directions. Measuring the
angle and intensity of these diffractions allows a researcher to produce a
three dimensional picture of the electron density within the crystal. These
density maps can be used to produce the mean positions of atoms within
the structure, as well as to locate and measure various chemical bonds. The
electron density map yields only averaged atomic coordinates so it is not
possible to create a model that exactly fits the data. Each residue in an
X-Ray model has an R-Value, which measures the difference between the
observed electron density map, and the map that would result if the model
were the true structure.

An alternative method of determine protein structure is a Nuclear Mag-
netic Resonance (NMR) spectroscopy experiment [8]. NMR spectroscopy
uses the resonance frequencies of atomic nuclei when exposed to a strong
magnetic field in order to deduce several chemical and physical properties
of the molecules containing said nuclei. Each isotope has a characteristic
frequency at which its nucleus resonates. Each nucleus has a spin, either —i—%
or —%, and this spin generates a magnetic field. In the presence of a strong
magnetic field the nuclei will align with the direction of the field, either with
or against it depending on the nucleus’ spin. Because there is a difference
in energy for these two orientations, the two spin values will have a different
energy level. Once this orientation occurs a second, perpendicular, magnetic
field is used, allowing the researchers to measure the energy difference. The
electrons involved in different chemical bonds involving each atom provide
a shielding effect, and thus different chemical bonds shift the magnetic field

strength that will result in a given energy difference. This is referred to as

a chemical shift. In small molecules, each nucleus undergoes a unique chem-
ical shift. Proteins and other biomolecules are too large for this to be true.
This necessitates using multiple experiments to correlate chemical shifts and
uniquely identify each nucleus. These experiments also yield restraints on the
physical structure of the protein. For example, NOE (nuclear Overhauser ef-
fect) experiments result in maximum distance constraints between atoms.
With enough constraints on the geometry of the atoms, a structure can be
deduced.

1.1.3 Predicting Protein Structure

A protein’s sequence can be determined by sequencing the protein directly,
or by sequencing a genome and using gene finding to identify protein encod-
ings. While protein sequencing is not simple, it is a cheaper and faster ex-
periment to perform compared to the experiments used to determine tertiary
structure. Because of this disparity, there are hundreds of protein sequences
deposited into public repositories for every three dimensional structure de-
posited. For example, in 2008, the UniProtKB database [9] contained over
5 million protein sequences, while the Protein Databank (PDB) [10] con-
tained approximately 50,000 structures, representing 1% of known protein
sequences. As of May 2013 the UniProtKB database now contains roughly
36 million sequences, while the PDB has expanded to 90,000 entries. Ta-
ble 1.1 shows how the ratio of sequences to structures in these two public
databases has changed over time. We can see that the sequence-structure
gap is increasing as sequencing becomes faster and cheaper, while X-Ray ex-
periments remain difficult to set up and conduct. Additionally, while X-Ray
techniques continue to overcome previously formidable hurdles, the approach
still faces difficulty for some types of proteins, particularly membrane pro-
teins [11]. This creates substantial interest in accurate tertiary structure
predictions based on the sequence of a protein.

Energy Functions

Under the principle of minimal frustration, proteins are viewed as having
been selected by nature to be very stable. That is, to have very low free
energy. Further, they are believed to have a funneled energy landscape, in
which random three dimensional configurations for a given protein sequence

8

Table 1.1: Sequence-Structure Gap Over Time

Sequence Structure Gap, as the ratio between UniProtKB/TrEMBL
sequences and PDB structures. Values are taken from the annual
UniProtKB/TrEMBL[12] and PDB[13] release statistics.

Year Sequence-Structure Gap

2012 223
2011 165
2010 151
2009 104
2008 81
2007 68
2006 93
2005 o7
2004 38
2003 21
2002 14

are generally directed downward, in terms of their free energy, before con-
verging on the native state at a global minimum energy level [14]. It is
not practical find the protein model with minimum free energy, as it is dif-
ficult to compute the free energy, and the search space is extremely large.
Nevertheless, approximations of the free energy, called energy functions, are
useful for evaluating protein model candidates. Further, protein models can
be generated and refined by simulating the natural folding process whereby
a chain progresses through this funneled energy landscape toward the na-
tive conformation. Because the energy landscapes are only generally funnel
shaped, such an algorithm must be hill-climbing in order to escape local
minima (sometimes called energy basins).

Ab Initio Protein Folding

Ab initio, or de novo, protein folding is the attempt to build a tertiary protein
structure using only the primary structure and without referencing existing
protein models. In general the approach involves sampling from some form

of conformation space, and adjusting the sampled candidates (or decoys)
to reduce their free energy. One can, for example, sample torsion angles
from an angle space based on the Ramachandran basins for each residue in
the sequence. In ROSETTA[15] the angles are sampled from a constrained
angle space that is generated using fragment matches. That is, ROSETTA
locates many 3 and 9 residue long protein segments with very high sequence
identity to the query sequence, and uses these fragments to generate a more
constrained angle space from which to sample conformations. Although it
does rely on database fragments, ROSETTA follows the general ab initio
paradigm of sampling, ranking, and refining candidates.

While ab initio methods such as ROSETTA work with any protein se-
quence, and can eventually generate very native-like structures, this often
requires substantial amounts of computational power. In [16] Qian, Raman,
et al. generated predictions for several CASP7 targets with very high accu-
racy, but this required approximately 100,000 hours of CPU time on IBM’s
Blue Gene cluster.

Template Based Protein Folding

A template based protein folding technique is one where the predicted struc-
tures depend wholly or in part on one or more templates, or probably-similar
proteins with known tertiary structure.

In homology modeling, these templates come from homologous proteins
(or at least those suspected of being homologous due to sequence similar-
ity) and the predicted coordinates for the query protein come from the cor-
responding coordinates in the template(s), based on a (multiple) sequence
alignment.

In protein threading, or fold recognition, the templates are those believed
likely to have fold similar to the query protein, regardless of homology. The
approach is derived from the observation that of the tens of thousands of pro-
teins with experimentally determined structure, there are only a relatively
few number of unique folds. As of 2013 the Protein Databank[10] contains
1393 unique folds as defined by SCOP[17] or 1313 as defined by CATH][18].
There have been no proteins with unique folds deposited since either 2008 by
the SCOP definition, or 2009 by the CATH definition. So, while homology
modeling is searching for homologous protein templates, threading is search-

10

ing for smaller, fold-level templates. The regions matched by fold recognition
are then predicted based on these templates.

There is no hard line between the two approaches. Although the best
homology modeling is done when there is a full domain template available,
a protein domain can be predicted if there are several smaller homologous
templates that can be used. The problem of assembling multiple templates
into a single prediction is NP-complete[19], so it is much easier to work with a
small number of large templates than it is to work with many small templates.
Once a set of templates has been selected, a protein is modeled based on
assembling the pieces and connecting them together using loop modeling. In
two popular threading systems, HHPred[20] and RAPTORJ[21]/RaptorX[22],
this step is done by MODELLER/[23].

1.2 Loop Modeling

With template based modeling, there are typically gaps that must be filled
in. When threading, or when doing homology modeling with partial-domain
templates, there will be regions that no templates cover, and these regions
must then be filled in using an alternate method. Additionally, a sequence
alignment can contain insertion-or-deletion (indel) events where either the
query or the template sequence has more residues than the other. Atomic
coordinates for residues involved in an indel cannot be derived from the tem-
plate because there is not a one-to-one matching between the two sequences
for these residues.

Indel events occur most often in the loop regions of proteins, as loops’
flexibility and general lack of uniform structure allow them to accept such
changes without substantially altering the overall structure of the protein.
The divisions between templates also typically occur in the loop regions. For
this reason, the task of filling in such gaps is referred to as loop modeling,
although there is no strict requirement that these gaps are composed entirely
of loop region (or indeed that they contain any actual loop regions at all).

Gaps can also occur in experimental protein models. X-ray experiments
tend to have gaps corresponding to loop regions, for the same general reason.
The flexibility and disorder of these regions result in multiple possible crystal
conformations, yielding either no usable electron density map, or an electron

11

density map that results from averaging two very different conformations.
This can make it difficult or impossible to make a model consistent with the
density map, leading to a very poor R-Value for the loop.

In an NMR experiment, protein structure is modeled by examining the
way in which a protein interacts with strong magnetic fields. The more intrin-
sic disorder there is in a region, the more noise that results when examining
that particular region. Since loops tend to have more intrinsic disorder, loop
NMR data tends to be very noisy.

1.2.1 Problem Definition

In the loop modeling problem, one is given a query protein structure with a
gap. This gap is a region of consecutive residues where the protein structure
is missing atomic coordinates, or where coordinates are given but a new
model is desired (for example, an X-ray obtained loop with a poor R-Value).

The goal of loop modeling is to generate a loop in order to fill in the
gap and obtain a protein structure model with no break in the backbone.
One would prefer that this loop be realistic, meaning that it contains bond
distances, bond angles, and torsion angles that are within the range typically
seen in experimental data. For example, the majority of the models should
fall within two standard deviations of the mean experimental values for these
features, while very few should differ by more than four standard deviations.
The residues immediately before and immediately after the gap are called
the stems of the gap. The Euclidean distance between the exposed C atom
in the first stem and the exposed N atom in the second stem is called the
span of the gap, while the number of residues missing is the length of the

gap.

Loop regions are the regions of the protein that cannot be classified as a
well-defined secondary structure (helices and extended structures), and are
highly flexible due to the lack of regular hydrogen bonds. This freedom of
movement makes them hard to model compared to more rigid regions|24].
So, while the loop modeling problem is not strictly limited to the actual loop
regions of a protein structure, in practice these are the regions where gaps are
most likely to arise, and also where the corresponding loop is most difficult
to model.

12

There are a number of ways that predictive protein models are compared
to the native structure, each with strengths and weaknesses. However, not
all of these are suitable for comparing accuracy in loop modeling, as the loops
tend to be very short. A percentage similarity score, such as TM-score[25] or
GDT]26, 27], is not meaningful for loops. However, the root mean squared-
deviation (RMSD) score works well for comparing loops. For two sets of n
points X = {xy,29,...2,} and Y = {y1,92,...yn}, the RMSD of X and Y
is defined as

ransd(X,Y) = [(3 lles = il[2)/m (L1)

In the context of proteins, the points are usually the alpha carbon atoms,
the heavy backbone atoms, or all of the heavy atoms. Because protein mod-
els will not be in the same coordinate system, it is necessary to find the
superposition of the two sets of atoms that will minimize the RMSD value.
The minimized RMSD between two sets of points X and Y is defined as

rmsSdpin (X, Y) = r}r%ni,g rmsd(X, RYT) (1.2)

Where R is a rotation matrix and T is a translation matrix.

When evaluating loop models, the native loop and the loop candidates
will all be in the same coordinate system, so minimizing the RMSD is not
necessary. However, the unminimized RMSD score will be sensitive to hinge
action due to minor changes to the backbone. For this reason, both types
of RMSD score are used when scoring the accuracy of loop modelers. The
unminimized RMSD score is called the global RMSD, and the minimized
RMSD score is called the local RMSD. Both local and global RMSD measure
the similarity of shape between the two loops being compared, and global
RMSD also measures the similarity of orientation. For the purposes of loop
model evaluation, the RMSD is most often computed for the heavy backbone
atoms (N,C,,C,0). This is the atom set I used for my evaluations.

1.2.2 Motivation

Loop modeling is important to any kind of template based predictive mod-
eling, as there are many gaps to be filled, particularly for threading. It is

13

important that these loops be realistic, so that a reasonable attempt can be
made at selecting between potential models. When using template based
modeling, there are many potential alignments and templates to use, which
will result in different models. In RaptorX[22] the highest ranked alignments
generally yielded the best templates in terms of structural similarity, but
the correlation is not perfect. While the best candidate is often in the top
10, it is not always the highest scoring candidate according to the template
ranking. Selection between candidates is typically done using some form
of energy potential function. Energy potential function values have limited
physical meaning unless all of the requisite atoms (such as all heavy atoms,
all heavy backbone atoms, or all atoms including hydrogens) are present in
the model, so it is necessary to fill in any gaps with loop modeling. Accurate
loop modeling will result in more accurate energy potential values, leading
to more accurate candidate selection.

Loop modeling also has applications for protein function recognition.
Structural similarity is often better conserved between proteins with similar
function, so structural similarity is a good indicator of functional similar-
ity. Such examinations focus on the shape and chemical properties of the
molecular surface, or on 3D motifs associated with certain functions (such as
binding sites or active sites)[28]. Loop regions are often exposed as part of
the molecular surface, so they play an important role in a protein’s function.
When examining specific 3D structural motifs, loops also play several impor-
tant roles. For example, in an enzyme protein, the most important structural
feature is the active site, the location where molecules bind and undergo a
chemical reaction catalyzed by the enzyme [29]. There are many examples
of loops playing an important role in the active site. Loops can act as a
stereochemical gate[30] for the active site, and they can play a part in the
chemistry of the active site, either as part of the binding interaction (such as
with phosphate binding loops[31]) or as part the post-binding chemistry[32].
Loops also play similar roles in the binding sites of receptor and ligand pro-
teins. It is useful for comparative protein modeling to be able to reason about
any changes to the chemistry or specificity of such proteins, and this requires
accurate loop models[33]. In some cases, such as in a phosphorus binding
loop (P-loop)[34], the loop is functionally important but well conserved in
terms of sequence and 3D structure, and so likely to be identifiable by fold
recognition. This is not always the case, and loop modeling can be helpful
for identifying binding sites. In [3] Liu and Altman have used Wei’s and Alt-

14

man’s FEATURE[35] binding site recognition tool in combination with loop
modeling in order to identify potential calcium binding sites in disordered
regions. In Liu’s and Altman’s Figure 1, reproduced here in Figure 1.4, we
can see that, while not completely accurate, modeled loops are sufficient in
many cases to use FEATURE for identifying calcium binding sites.

Loop regions are often fairly disordered, meaning they take on multi-
ple conformations and/or undergo a large degree of thermal motion. NMR
models capture this disorder by having multiple loop models. X-Ray mod-
els sometimes also have multiple models, but more often capture this motion
through the B-value or temperature of an atom. This is a function of the elec-
tron density map. This measure captures both the disorder of an atom and
also the error in the model. It is difficult to separate the B-value into error
and disorder components, it is not possible (without an additional source of
data) to separate the B-value into components based on static disorder, where
there are several stable conformations, and dynamic disorder, or thermal mo-
tion. Because of this, the B-value only partially represents the movements
of loops.

One may question the validity of generating fixed loops that mimic the
crystal conformations of loops from x-ray models, as these x-ray loops are
averaged values. However, in the above examples (using an energy function to
rank protein decoys, and using FEATURE to identify binding sites) the loops
are given to functions or algorithms that have been trained on existing x-ray
data. Thus, one could conclude that generating averaged loop coordinates is
acceptable for the purposes loop modeling is currently used for.

15

“Parvalbumin-beta from cyprinus carpio is a calcium-binding pro-
tein and two structures 1B8C and 1B9A have been resolved exper-
imentally. 1B9A binds to two calcium ions via loop 90-97 (residue
90-97) and loop 51-62 (pink, residues 51-62: AQDKSGFIEEDE).
1B8C binds to one magnesium ion via loop 90-97. The loop 51-62
in 1B8C does not bind any metal ions, thereby considered as apo
form. The RMSD between 1B9A and 1B8C is 1.48 A. The RMSD
of loop 51-62 in 1B9A and 1BS8C is 2.68 A. By scanning loop 51-
62, FEATURE successfully identifies the sites in 1B9A, but not in
1B8C. In 1B8C, FEATURE can identify the site only when the loop
51-62 is rebuilt using modeling methods. The close-up view shows
(red for oxygen atoms) that the predicted site in 1B8C and the ex-
perimentally observed site in 1B9A are similar. Both sites are in
close associations with oxygen atoms from four residues 53D, 558S,
59E and 62E. This example demonstrates that FEATURE can suc-
cessfully identify calcium-binding sites in holo structures and in apo
structures with binding loops rebuilt by modeling methods.”

Figure 1.4: An example illustrating a successful FEATURE prediction with
the help of modeling methods. Reproduced from [3] (Figure 1).

16

1.3 Previous Work

Solutions to the loop modeling problem can be broadly grouped into two
classes. The first is the statistical technique, where loops are sampled using
a statistical model. The second category is the knowledge-based or database
technique, where loops are found by searching a database of known protein
structures.

1.3.1 Statistical

Statistical loop modeling techniques, also called de novo or ab initio tech-
niques, work by sampling loops from a statistical model and ensuring they fit
properly into the gap. The statistical model is usually in the form of proba-
bility distributions for ¢ /1) torsion angle pairs. Care must be taken to ensure
that the loops generated are closed loops, meaning that they have realistic
bond distances where the loop’s backbone connects with the backbone of the
two stems. There are many approaches to the sampling of loops, and the
way they are made to fit into the gap properly.

ModLoop

Perhaps the most commonly used statistical tool (at the very least the most
compared with) is ModLoop, the loop modeling tool that is part of the MOD-
ELLER package [23, 33]. ModLoop works by beginning with a trivial closed
loop, created by placing the backbone atoms of the loop in a uniform line
connecting the two stems. From this initial configuration, the loop is then
randomized by adding a value sampled uniformly from between -5 and +5
A to each coordinate. This randomized loop is then optimized and output.
Optimization is done against their energy function, which is a combination
of physics and statistical constraints and pseudo-energy terms. The opti-
mization of the loop takes place in six phases. In the first, the random loop
conformation is optimized by conjugate gradient minimization of the energy
function. This initial phase is intended to relax the system and allow the
randomly positioned atoms to pass close to each other without having to
overcome large energy barriers. The system then undergoes simulated an-
nealing, first being rapidly heated, then slowly cooled. The third step of the

17

optimization is another round of conjugate gradient minimization. In the
first three steps, the energy function is calculated excluding any non-bonded
atom pairs where one or both atoms are not part of the loop. That is, the
energy function in these steps does not take the environment into account.
The three steps are then repeated with non-loop atoms allowed in the energy
function, so that the molecular dynamics respond to the local environment.

ModLoop’s output is selected by energy function from several loop candi-
dates created by independent applications of this generation and optimization
procedure. The recommended number of independent candidates to generate
is between 50-500. Going below this threshold yields poor results, and going
above it results in diminishing marginal returns for the computational power
invested.

Loopy

Another statistical loop modeling tool is the Loopy program[36], which gen-
erates loops by sampling torsion angle pairs, regardless of whether this results
in loops that fit into the gap. The loops are adjusted to fit properly later in
the algorithm. This generation is very rapid, allowing thousands of loops to
be generated in a very short amount of time. From here the loops are closed
using the random tweak method as described in [37]. The random tweak
method takes randomly generated loop conformations and subjects their di-
hedral angles to an iterative linearized Lagrange multiplier procedure, which
adjusts the loop to fill the gap with minimal perturbations. Once the closed
candidates have been generated by random tweak, they are subject to energy
minimization using the softened the van der Waals energy (Equation. 10 in
[36]). This minimization is done using a fast torsional minimizer, which is
unpublished. The 1000 (out of 2000) lowest energy loops are retained, and
30% of these are retained using the colony energy function[36] introduced by
Xiang, Soto, and Honig. This function works by viewing the colony energy
of a conformation as the weighted energy of all nearby conformations (esti-
mated using the other conformations generated, which is why the plain energy
function must be used until enough conformations have been sampled). The
colony energy for a given conformation can be viewed as an estimate of the
overall depth of the energy basin that the conformation lies in. In this way
it represents the potential for a nearby low energy conformation, even if the
current conformation is not particularly low energy. After filtering by colony

18

energy, loops which are similar but not exact (meaning they have an RMSD
value of between L /10 and L, where L is the number of residues in the loop)
are joined together to create new loops. The loops being fused are connected
in the middle by using the random tweak method to satisfy the closure con-
straints with low perturbation to the angles involved. These new loops are
then pooled with the old loops and the best 30% (with an upper bound of 300
candidates) are retained using the colony energy function. This procedure is
repeated until the pool of conformations is reduced to the desired number of
candidates (default 1) or until 5 rounds of iteration have passed.

LoopBuilder

LoopBuilder [38] is a protocol that is partially built upon the Loopy tool.
LoopBuilder uses the Loopy tool to generate 1000 closed loops using the
random tweak algorithm. However, rather than continuing with the Loopy
algorithm, LoopBuilder adds sidechains using a modified version of the SCAP
[39] algorithm and ranks them by their DFIRE[40] energy function. The 50
loops ranked highest by DFIRE energy are then subjected to minimization
by PLOP[41]. This results in better loop predictions at the cost of taking
longer in order to do the PLOP energy minimization.

RAPPER

The RAPPER tool [42] builds a fragment starting at one stem and work-
ing toward the other. These fragments are built iteratively in a round-robin
queue, where in each round the fragments are extended in the N-to-C direc-
tion by sampling ¢ and v angles from residue-specific distributions. Frag-
ments with backbone atoms that clash with the local environment are imme-
diately discarded. To ensure closure, fragments are also discarded if the alpha
carbon to alpha carbon distance between the current edge of the fragment
and the C-stem is larger than the distance that can be spanned realistically
by the remaining residues. Additionally, fragments are discarded if they have
a global RMSD score of less than 0.2A, so that the conformations sampled
are diverse. Fragments are generated up to and including a dummy stem
residue for the fragment to connect to. After a fragment has been generated,
it is subjected to a final optimization step where randomly selected dihe-
dral angles are varied in order to improve the overlap between the dummy

19

stem residue and the actual stem residue in the target protein. In their
tests, de Bakker, DePristo, Burke, and Blundell generated 1000 such loop
candidates, and used the SCWRL [43] program to pack the sidechains. Can-
didates are then ranked by RAPPER’s RAPDF energy function. By using
this early-terminating fragment building approach they are able to generate
closed loops where all of the angles are close to their original sampled values.

ROSETTA CCD

ROSETTA’s loop modeling tool samples from a sample space that has been
reduced using fragment matches. These loops are closed using cyclic coor-
dinate descent (CCD) [44]. CCD, like the random tweak method used in
Loopy, is a method for taking a non-closed loop and ensuring it is closed.
This algorithm has applications in robotics, animation, and other kinematics
problems. In the robotics version, one has a robotic arm with multiple joints.
The goal is to move the end of this robotic arm from its current position to
a desired position in order to grab something. This can also be applied to
protein loops, where the protein backbone has two joints per residue, the ¢
and ¢ torsion angles (the w angle is highly planar so it is usually not altered).
The CCD algorithm is very simple. To start, the first joint is selected. Ro-
tating about this joint will result in rotating the end point of the loop, and
it is simple to calculate the rotation that will result in a minimum distance
between the end point and the desired end point. CCD is the repeated set-
ting of angles to minimize the end distance until this distance is below the
desired threshold (in the case of loop modeling, this would be when there is a
reasonable bond distance connecting the backbone between the loop and the
stem). The “cyclic” in CCD’s name comes from the fact that the default way
to perform this algorithm is by cycling through the joints one at a time, and
then starting over. This is a greedy algorithm so there is a tendency to make
the largest changes to the first angles adjusted. CCD can have its moves
filtered to avoid physically improbably angle assignments, but the algorithm
must sometimes accept improbably torsion angles in order to successfully
achieve closure.

Because of the potential for unrealistic conformations, ROSETTA’s loop
candidates are then optimized by simulated annealing. Angles are resam-
pled, and closure is maintained by using CCD to close any gap re-introduced
by this resampling. Moves are accepted and rejected based on the overall

20

change to the energy function by the resampling and requisite CCD closure
adjustments. This is called the “perturb” phase, as the resampled angles
result in large perturbations. After this is complete, the candidates are then
refined. The procedure is broadly the same, but instead of large changes,
the angles are changed only slightly toward reducing the candidates’ overall
energies.

ROSETTA KIC

The Kinematic Closure (KIC) algorithm, used as part of ROSETTA’s loop
modeling package [45], can be used to create closed loops from a set of sam-
pled ¢, angles by altering only six of the angles. This is, all but six an-
gles can be sampled statistically, while the other six must be set in order
to maintain closure and may not be consistent with the statistical model.
ROSETTA’s general process of perturbation and refinement remains the
same. The difference is that rather than perturbing or adjusting one an-
gle at a time, all 2L-6 (where L is the number of residues involved) torsion
angles can be adjusted simultaneously, and the KIC algorithm[46] is still able
to maintain closure by setting the other 6 angles appropriately. This algo-
rithm is inspired by similar problems in robotics, where there is interest in
enumerating possible configurations for a robotic arm subject to constraints
(such as that the shoulder is at a fixed position, and one wishes the robotic
hand to reach a given target). The KIC algorithm begins with a closed loop,
and selects 6 or 1 angles to be used as pivots. The loop closure constraints
are formulated as a series of polynomials in these pivot angles. By taking
the resultants of these polynomials, the KIC algorithm is able to sample all
other torsion angles (and the 7 bond angle) and determine all mechanically
possible assignments for the 6 pivot angles that maintain closure for a given
sampling.

As with CCD, the angles that results are not always realistic, but in this
case there are only six angles in the resulting closed loop that are not equal to
the statistically sampled values. Still, they are potentially unrealistic, and so
ROSETTA uses the KIC algorithm in a similar way to how it uses the CCD
algorithm. Pivots are selected at random, and the other angles are sampled.
Monte Carlo simulation is used to accept or reject these changes based on
the suitability of the pivot angles required to maintain closure. This can
be repeated with different choices for pivots. Perturbation refinement can

21

also be easily done by setting angles to be similar to their existing values,
rather than fully resampling, just as is done with ROSETTA’s CCD loop
perturbation step.

The ROSETTA KIC protocol shows much better average results for their
test set as compared with their previous CCD protocol, as well as compared
with molecular dynamics simulations. They also show a much tighter clus-
tering for the sampled loops, indicating a more complete exploration of the
conformation space around the local energy basins.

1.3.2 Knowledge Based

Another category of loop modeling techniques is the knowledge based or
database category. Methods in this category work by finding existing loops
that can be placed into the gap.

FREAD

An example of a knowledge-based loop modeler is FREAD [47], which re-
cently has been reevaluated with newer data and improved methodology[48],
giving improved accuracy at the cost of being less likely to locate a database
template that passes the new filters. FREAD finds matches based on high
sequence similarity, and filters these matches down to those that fit by re-
quiring a very similar C, to C, span. Although this span does not capture
information about the relative orientation of the two stems, the span and
sequence similarity filters used in FREAD are very strict, so if any matches
pass the filters, they will fit very well into the gap. For loops of 10 residues,
FREAD is able to find matches in about one in ten test loops (a rule of
thumb confirmed by my own use of FREAD) but if a prediction is made, it
is almost always very accurate (having a local RMSD of less then O.25A).

So, while this approach is useful as a supplement to statistical approaches,
it cannot be used as a stand-alone method for loop modeling.

LIP and SuperLooper

A second database for loop modeling is the LIP database[49], with which
Michalsky, Goede, and Presner demonstrated that there are many cases

22

where a very close match from the database can be used to obtain a very
accurate prediction. A more recent version of the LIP database is used by
the SuperLooper server [50]. LIP and SuperLooper work by finding matches
within a database of known protein structures. Matches are found by finding
database segments of the requisite number of residues, and selecting those
segments with a low RMSDygier, defined as the minimized RMSD between
the stem residues in the query protein, and the corresponding residues in the
template.

If the RMSDgenm is low enough, then not only must the database loop
have very similar span, but it also must have similar orientation. Matches
are ranked both by their RMSDg¢q,, and by sequence similarity.

Using this measure rather than the C, to C, span used by FREAD means
that there are many more matches that can be used, since measuring the rel-
ative orientation of the stems lets the algorithm be less exact about the span
while still guaranteeing the match will fit within the gap. However, comput-
ing RMSDg¢ e, for all potential template stems is very time consuming. LIP
avoids this by indexing the loop database using a rounded two dimensional
vector based on the stems of each loop. These indices are obtained by cre-
ating a coordinate system with an x-y plane defined by the C, and C atoms
from the starting stem, and the N atom from the ending stem. The distance
between the C atom and N atom is then represented as a two dimensional
vector in this plane. The x and y coordinates of this vector are rounded and
the pair (x,y) is used as an index into the loop database.

The authors used a “goodness” measure defined in terms of this vector
and two additional angles stored in the database, and show that this measure
of goodness bounds (RMSDgtepy)? from above. For the authors’ cutoff of
0.75A only four database index pairs need to be read, as no loops in any
other tables can have less than the desired RMSDgtep, cutoft value. Full
RMSD computations are only done after matches are found and filtered by
other measures. In this way the candidates can be ranked by their full stem
RMSD values, but very few of these RMSD calculations need to be done.

SuperLooper results are much more common than FREAD results, be-
cause of the less strict filters. Nevertheless, there are still situations where
there are either no matches in the database, or the matches that do exist do
not fit into the local environment. Unlike FREAD, where any predictions
that are made are almost always very good, LIP/SuperLooper often makes

23

poor predictions as well as good ones.

1.3.3 Comparative Advantages Between Approaches

Statistical methods have the advantage of always being able to produce a
usable loop candidate if possible, while database methods have the advan-
tage that if a very similar loop is represented somewhere in the PDB, it
can likely be found and used. For this reason the two are typically viewed
as complementary[48]. As Fiser et al. say in [33], statistical methods can
be improved whenever there is new understanding of the physics of protein
folding in general, or loop dynamics in particular, while database methods
are improved by virtue of the exponentially expanding PDB. However, since
typically database loops are optimized after selection, or at least ranked by
an energy function, advances in protein physics do apply to both, if less so
to a database approach.

One problem I have observed with database matches is that, even for
fairly good results based on finding very similar stems, there will often be
unrealistic torsion angles at the edges of the loop. Even a few bad angles
can cause serious problems with many energy potential functions. This can
be seen when comparing results from FREAD and SuperLooper. In the
FREAD papers, which are consistent with my experience using FREAD, the
tool typically produces a prediction for one out of every ten gaps. Although
these predictions are almost always very accurate, one must rely on other
techniques for most gaps. SuperLooper does not have FREAD’s strict filters
and so it can generate candidates for almost all cases. However, as the
medium quality loops do not fit perfectly, there are many cases for which
unrealistic torsion angles and peptide bond angles and distances result in
energy scores that are worse than they should be given the quality of the
loop prediction. The problem with database methods is then finding a good
way to fit the loops into the gap in a very rapid manner. Time consuming
refinement such as that available in the ROSETTA or MODELLER packages
can improve the positioning and shape of a database loop candidate, but as
there are thousands of potential matches, many of which may be poor, it is
not time effective to do so without first narrowing the selection down.

My contribution is a way of rapid fitting of the loop to correct some of the
angle issues. In this way, an energy function can be used to more accurately

24

rank the many database matches available, greatly reducing the number that
must be sent through the more computationally expensive refinement pro-
cess.

25

Chapter 2

LoopWeaver

2.1 Method Overview

[developed a new database based method, which I named LoopWeaver (Loop
modeling by the WEighted scaling of VERified proteins). As a database ap-
proach, this technique begins by finding loops with similar stems by RMSD,
and then places them into the gap. Initially it behaves much like Super-
Looper, although I have found that the cost of computing RMSDgtap, is not
so high as to necessitate precomputing large loop libraries. Instead, loops are
first filtered by the C, to C, stem distances, as in FREAD, and RMSDgtem
is only calculated for those loops that pass this initial filter. This allows
for rapid searches just as in LIP, but does not require large (multi-gigabyte)
precomputed index files.

My contribution to the general database approach is an alternate method
for placing the database loop into the gap. While a common approach is to
use the transformation matrix that yields the minimum RMSDgt e, to place
the loop into the query protein, I formulated the problem as an instance of
the Weighted Multi-Dimensional Scaling (WMDS) problem [51], and solved
it using an established heuristic (the SMACOF algorithm[51]). This im-
proved the orientation of the loop by reducing the unreasonable angles at
the edges, which means that energy functions were better able to rank the
results. Additionally, database methods can often introduce what is known
as a chain-break, where a backbone bond (typically the peptide bond) is
many standard deviations from the mean value for the bond’s type. While

26

differences of 4 or more standard deviations are sometimes observed experi-
mentally, they are outliers and should be quite rare, so it is not appropriate
for a loop modeler to create such situations except as a rare case.

On a 2.2 GHz Opteron, it took LoopWeaver roughly 5 minutes to find
and close 500 database matches for a length 10 loop. LoopWeaver uses the
DFIRE [40] energy potential function to rank the final loop candidates. As
this is an all-atom potential function, the results must have accurate side-
chains. Side-chains were built using the TreePack tool [52, 53]. This added
an average of 15 minutes to the running time. Side-chain packing requires
repacking all sidechains that are near the loop, not just those that are part of
the loop , so the time required for this step depends more on the environment
than it does on the length of the loop. In the test sets used, the minimum
energy candidate after sidechain packing was rarely below the top 150 prior to
sidechain packing so the time spent packing can likely be greatly improved by
filtering many of the candidates prior to sidechain packing without impacting
the accuracy except in a few extreme cases. The best candidate was then
refined using the KIC refinement protocol included in ROSETTA 3.3.

Figure 2.1 gives an overview of the LoopWeaver protocol in flowchart
form. Note that the second phase (clash avoidance) is optional and only
useful for cases where there are few or no non-clashing database matches.

27

Input
PDB + Gap Location&

'---------- --------------------------------'

500 Loops

] (]
0 with D,W '
' |Database Search | Yatiees>l Clash Avoidance | |
(]
: 500 DB Loops 500 Loops with '
: updated Matrices :
0 Y \i (]
[] (]
; WMDS WMDS :
0 Up to 500 | |Up to 500 :
Y \
TreePack
Loops with
Sidechains Y

DFIRE

Loops ordered
by DFIRE Energy

Output

Figure 2.1: LoopWeaver Flowchart. The two-part clash avoidance step on
the right hand side is optional.

28

2.2 Method Detalils

This section details the algorithms and tables used by the LoopWeaver pro-
gram. In the pseudocode, array access uses Python-like notation. For exam-
ple, L[1:-1] selects all but the first and last value, and L[-1] indexes the last
element.

2.2.1 Database Matches

The LoopWeaver tests used a database comprising roughly 14,400 protein
chains, selected using PISCES [54] with the cutoff values being 3.0A reso-
lution, 90 percent identity, and 1.0 R value. Because the test sets include
targets from CASPS8, PISCES was only allowed to select from proteins with
a release date prior to the start of CASP8 (May of 2008). This database
was used for all tests, even those involving targets from CASP9 rather than
CASPS.

Like any database approach, LoopWeaver begins by searching a database
of known protein structures, and locating appropriately spaced residues that
are similar to the stems of the target gap. The metric used for determining
the similarity between a match and the stems is RMSDgtepy,. This is defined
as the minimum RMSD between the N, C,, and C atoms in the stems,
and the N, C,, and C atoms in the corresponding residues of the database
match. This metric is the same as used in LIP/SuperLooper. Unlike LIP,
LoopWeaver does not index its individual protein files but instead compacts
these 14,400 individual PDB files into a single binary file, allowing each chain
to be loaded in only a few read operations. This allows the entire database to
be read and searched in under 10 seconds on a standard desktop computer
(2GHz Athlon64), as opposed to taking 10-15 minutes to load all 14,400
files individually. Loading many individual files has a high OS overhead, in
addition to the processing required to convert text formatted numbers to a
computer usable representation. This also means that the database can be
fit into a 200MB file rather than the 6GB required for LIP’s indexed tables.
To avoid excessive RMSDgtep, calculations, the RMSD is only computed if
the C, to C, distance of a database match is within 20% of the equivalent
distance in the target protein. This is a very loose filter, but its purpose
is only to decrease the number of RMSD calculations required to rank the

29

database matches. With this filter is takes only a few seconds to search the
entire database and rank the potential loop templates according to their stem
RMSD scores.

Algorithm 1 shows the pseudocode for scoring a database match.

Algorithm 1 Match Scoring

function MAKESCOREDMATCH(Atom P[],Atom CJ))
> P is the input protein, C is the template

GapStems = P[:4] + P[-4{]

DBStems = C[:4] + C[-4]

if C,DistDiff(GapStems,DBStems) < 0.20 then
Score, T = RMSD,,,;, (GapStems,DBStems)
L = new Loop
L.score = Score

L.dbAtoms =T x C > apply transformation T to the atoms.
return L
elsereturn FALSE
end if

end function

Once LoopWeaver has obtained this large list, it sorts the list according
to RMSDgtem, and takes the top 500 matches. Where SuperLooper takes
only matches that have a very low stem RMSD (otherwise the match will not
fit well enough to form bonds with the rest of the backbone) LoopWeaver
spends more time fitting the loop so as to resolve these placement issues, so
it does not require a strict filter.

2.2.2 Fitting the Loop

Once suitable loop candidates have been selected from the database, they
must be placed into the gap in order to connect to the protein backbone cor-
rectly. Because LoopWeaver selects matches based on the stem RMSD, this
can be done by taking the transformation matrix that yielded the smallest
stem RMSD, and applying this transformation to the database loop. For
matches with a very low stem RMSD, this transformation will always fill the
gap without having unreasonable bond lengths. LoopWeaver is able to use

30

matches with a higher stem RMSD by using a more complicated technique
to place the loop, rather than using a rigid transformation.

One can view the placement of the loop into the gap as an attempt
to satisfy two contradictory requirements. The first requirement is that the
stems remain the same. The second requirement is that the loop being placed
should be the same shape as the database match, including the stem region
of the database match. Unless the database stems are identical to the query
stems, both constraints cannot be simultaneously satisfied. The simple loop
placement approach does not alter the stem residues, and loop angles and
distances are not altered from their database values except where the loop
connects to the stems. Although the stems are similar to the corresponding
database residue, minor differences can have a large impact on the orientation
of the loop. So, the goal is to satisfy these two sets of requirements in a more
balanced way. This will hopefully not only improve the orientation of the
loop, but also resolve any unrealistic bond lengths caused by a less restrictive
RMSDgt e cutoff value.

I chose to solve these requirements by formulating them as an instance
of weighted multi-dimensional scaling (WMDS) as described in [51]. WMDS
is a problem often used in statistics, as its namesake purpose is to take high
dimensional data and transform it to 2 or 3 dimensional data while main-
taining the scale. This is convenient for taking high dimensional data and
rendering it visually without introducing too many inaccuracies. It has also
been used in MUFOLD [55] as a method for assembling protein fragments.

A WMDS problem involves a collection of n objects, for which a distance
function can be defined. Then one can create a matrix of desired distances

011 012 -+ O1p
= (2.1)
6n 1 6n,2 e 571 n

))

Where §; ; represents the distance between the i** point and the j* point.
One also creates a weight matrix

31

w11 Wiz - Wip

Wa1 W22 -+ Wan

W = . O B (2.2)
Wn,1 Wp2 - Wnpn

where w; ; is the weight, or confidence, for the desired distance 9; ;.

The objective is to find a set X = {xy,2,...,2,}, where 2; € R? for a
given dimension d. that will minimize the stress, defined as

o(X)= > wij(lle; — ;|| — 6:5)° (2.3)

0<i<j<n

Formulating the Problem

For the loop fitting problem, d = 3 and n is the total number of heavy
backbone atoms in the both the loop and the stems. So, for a loop of length
[, n = 4(l+2). The set of atomic coordinates from the protein being modeled
is P ={p1,p2,...pn}, where the atoms are given in the N-C,-C-O ordering.
That is, p; corresponds to the N atom in the first stem, and p,, corresponds to
the O atom of the last stem. The set of atomic coordinates from the database
loop is C' = {¢y, ¢, ... 2}, with the same numbering as the set P. The set
of stem atoms under this numbering is S = {1,2,3,4,n — 3,n —2,n — 1,n}.
Note that p; is undefined unless ¢ € S as these atoms are within the gap, are
not present in the input.

With these definitions, we can create the matrix D using distances from
the set P when available, and the set C' otherwise. That is, D is defined by
the equation

dz‘,jZ{ ||pi — s ieSandjesS (2.4)

i — ¢l otherwise

Algorithm 2 gives the pseudocode for generating the matrix D from the
database match C and the query protein P.

I used the weighted version of this problem because not all of the desired
distances are equally important. Primarily, I did not want to make any
changes to the stem atoms, so the pairwise weights between two stem atoms
should be very large. Beyond this, atoms that are closer together should be

32

Algorithm 2 Building the Matrix D

function BUILDDISTANCEMATRIX(Atom P[] ,Atom C[],int N,Set S)
D = Matrix(N,N)
fori=1— N-1do
for j=i+1 — N do
if i€ S AND j € S then
Dli,j] = distance(P[i],P]j]
else
Dli,j] = distance(C[i],C[j])
end if
end for
end for
return D
end function

given higher weights. If two atoms are within a few angstroms of each other
within the loop, then they should remain close to this distance regardless of
other changes made during loop placement. On the other hand, atoms that
are far apart are relatively free to be moved without changing the overall
shape of the loop (ignoring the effects of that movement on any other atoms).
The recommended weight for use with WMDS is either d~! or d~2, where d
is the corresponding distance. A value of 2 is recommended [56] if one wants
more emphasis on close points than on distant points, which is the case here.
I tested on a small number of length 8 loops, and tried exponents ranging
from —1 to —3 in increments of 0.1. The best results were achieved at —2.0.

I observed that this weight assignment was often making large changes
to the global RMSD of the loops, because the orientations were sometimes
very different after WMDS. I speculated that weights for very distant atoms
should be somewhat high, rather than very low, as the distances between the
most distant pairs of atoms characterize the shape and path of the loop. 1
determined a useful weighting for the distances empirically, by selecting 10
target loops from the database, and for each target loop, finding the matching
loops with RMSD less than 1.5A. That is, loops that are fairly similar in
shape, though not identical. Then I created bins with a width of 0.5A, and
for every pair of atoms within the loop, populated the corresponding bin with
the squared deviation of all corresponding pairs of atoms. For example, if a
pair of atoms was 9.4A apart in the target loop, and in a similar database

33

N 32 5 6 32
Ca 32 16 14 54
C 32 40 13 24
O 10 2 1 0.5

Figure 2.2: Matrix T used for short-distance weights.
Row corresponds to the type of the first atom. Column corresponds to how
many atoms ahead the second atom is, in the same ordering. So, row 2
column 3 corresponds to the distance between a C, atom and the N atom in
the next residue.

match the same two atoms were 10.1A apart, I would add (9.4 —10.1)? to the
bin for the 9.25A to 9.5A range. I then examined the standard deviations
of the values within each bin, and found that could be approximated by
the equation k(min{d; ;,r — 0.6d; ;})?, where r is the radius of the loop (the
largest pairwise distance within the loop) and k is a constant that changes
from loop to loop. I chose to use the reciprocal of this equation as the weights
for the WMDS formulation so that the weight for any distance will be equal
to the reciprocal of the anticipated standard deviation, and ¢ consequently a
difference of one standard deviation will result in a constant penalty to the
objective function.

To ensure that bond distances, bond angles, and torsion angles were being
maintained, I overrode these weights for atoms that are in the same residue,
or in adjacent residues in the backbone. The weights for these short distances
are also derived from the standard deviations observed in database loops.
The table of these weights is called T', and is shown in Figure 2.2. Each row
of this table corresponds to one of the four backbone atoms (N,C,,C,0) and
each column corresponds to a second atom further along in the backbone.
For example, row 2 corresponds to a C, atom, and column 3 corresponds to
atoms 3 ahead in the backbone. The cell at row 2, column 3 contains the
weight used for the distance between a C, atom and the N atom in the next
residue.

Following these rules, the defining function of the matrix W is

10,000 i,7€8
wi; =4 T((—1) (modd)+1,j—i) j—i<4 (2.5)
(min{d, j,r — 0.6d; ;})~* otherwise

34

Note that the value 9;; is always 0 for all ¢, and as such w;; does not need
to be defined.

Algorithm 3 shows the pseudocode for creating the matrix W from the
matrix D.

Algorithm 3 Building the W Matrix

function BUILDWEIGHTMATRIX(Matrix D,int N,Set S)
maxDist = max(D)
W = Matrix(N,N)
fori=1— N-1do
for j=i+1 — N do
if i€ SAND j € S then
WIi,j] = 10,000
else if j — ¢ < 4 then
WIi,j] = T((i-1) (mod 4)+1,j-1)
else
WIi,j] = pow(min(D[i,j],maxDist - 0.6x D[i,j]),-2)
end if
end for
end for
return W
end function

Solving the Problem

I used the SMACOF (Scaling by Majorizing a Convex Function) algorithm
[51] for solving the WMDS problem. The SMACOF algorithm works, as the
name suggests, by majorizing the stress function with a function that is easy
to minimize. The stress function is expanded as follows

o(X) =Y wi(|[e; — z;|| — 6i5)° (2.6)

=Y wyby + > wille —] F =2 wibille — x|l (2.7)
— K +tr X'VX - 2tr X'B(X)X (2.8)

35

With B(X) defined as

bij = —twdu/llz: =zl lfl 7] (2.9)
Zk¢i(wik5ik/||$i —xl]) fi=j
And V defined as
S (2.10)
D ki Wik if Q=

The first term K is a constant as it only involves D and W, and the second
term is quadratic in X as the matrix V does not depend on X. The third term
however is more difficult, so the stress function cannot be minimized easily.

The SMACOF algorithm works by majorizing this third term (and thus
majorizing the stress overall). Majorizing is a term from convex analysis
which refers to creating a function that bounds another function from above,
and touches it at exactly one point (called the support point). The stress
function can be majorized with support point Z by a pseudo-stress function
defined as

v X, Z)=K+tr X'VX —2tr X'B(Z)Z (2.11)

Y(X,X) = o(X), and for all X other than Z, y(X,Z) > o(X). As Z is a
constant matrix, the function v(X, Z) is a quadratic in X. Any quadratic of
the form f(z) = az? + bz + ¢ has a minima (or maxima) at = —Z, so the
~ function has a minima at

_ —2B(2)Z
R
=V 'B(2)Z (2.13)

As V is not always invertible, the pseudo-inverse is used instead. Because
the pseudo-stress function majorizes the stress function, then with a solution
X # Z that minimizes (X, Z), it must be the case that o(X) < 0(Z), since
o(X) <~(X,2) <y(Z,Z) = 0(Z). That is, if one starts with an initial set
of coordinates Z, minimizing v results in a new set of coordinates that must
have lower stress.

The SMACOF algorithm is then to start with X being an initial solution,
and to repeatedly set X; = minx (X, X;_1) until o(X;_1) — 0(X;) < € for

36

some desired cutoff point €. This deterministic algorithm has been shown
to decrease ¢ monotonically, and is very fast. This algorithm gives a good
trade-off between speed and accuracy [57], particularly if the initial solution
Xy is reasonable to begin with, as it is in this case. It has the added benefit
of being very simple and easy to program as opposed to genetic algorithms
or simulated annealing. As LoopWeaver begins with fairly good solutions
already (indeed solutions that are typically good enough to use “as-is” in
other database loop modelers) and speed is a major consideration due to the
sheer number of database matches to be dealt with, SMACOF is the best
choice.

The Pseudocode for SMACOF can be found in Algorithm 4.

Algorithm 4 SMACOF Algorithm

function SMACOF (Matrix D,Matrix W,Point X[])
V = CalcV(D,W)
V* = Pseudolnverse(V)
oldstress = oo
newstress = o(D,W,X)
while (oldstress - newstress) > € do
oldstress = newstress
X =Vt *BDWX)*X
newstress = o(D,W,X)
end while
return X
end function

Computing the pseudo-inverse is a cubic running time operation, and
the remainder of the algorithm is quadratic per iteration. For typical loop
lengths this is very fast.

2.2.3 Clashes

One issue is that the problem formulation does not address collisions. The
WMDS formulation is based around desired distances, rather than inequal-
ities, so it is not simple to add clash terms that ensure the solution avoids
the local environment.

37

The solution I adopted for resolving clashes was to keep track of all so-
lutions that clash with the rest of the protein. Here, clash is defined as an
being within 2.4A of one in another residue that is separated by at least
two residues in the backbone. After using SMACOF to close the database
matches, LoopWeaver has a list of residues that contain one or more atoms
that clashed with the database matches. For each of these residues, it evalu-
ates the pairwise DFIRE energy potential between the clashing residues and
the loop candidate residues, and keeps only those clashing residues whose
average contribution to the energy potential is positive over all of the loop
candidates. After discarding these residues, LoopWeaver is left with residues
that clash with, or at least are unfavourably close to, many of the candidates,
rather than residues that clashed with only a few database matches. The C,,
atoms from the central residue of each remaining clashing residue (if any)
are then included in the WMDS equations.

Algorithm 5 gives the pseudocode for obtaining the list of problematic
residues.

As these atoms are from the input structure, they are fixed just like the
stem atoms, and so treated in the same fashion. The desired distance d
between clash atom a and loop atom b is computed by taking the average
of d,y for all loop candidates where the total DFIRE potential between a
and the loop is negative (more favourable), as long as the candidate did not
clash with a. If the candidate clashed with another atom it is still included
in the average, so that these distances can be computed even if there were
no clash free candidates. The weights for the new distances are set to the
desired distance to the power of negative 2.

Algorithm 6 shows the pseudocode for adding the additional atoms into
the D and W matrices.

38

Algorithm 5 Finding Problematic Residues

function FINDPROBLEMRES(Protein P,int Start,int End,Loop Loops][])
Set ClashRes = ||
for all Residue R € P except indices Start-2 to End+2 do
for all Loop L. € Loops do
if Clash(R,L) then ClashRes.add(R)
end if
end for
end for
for all Residue R € ClashRes do
ScoreSum[R| = 0.0
for all Loop L € Loops do
for all Atom A € L.Solution do
ScoreSum|[R| += DFIRE(R,A)
end for
end for
end for
FinalClashRes = |]
for all Residue R € ClashRes do
if ScoreSum|[R] > 0 then FinalClashRes.add(R)
end if
end for
return FinalClashRes
end function

39

Algorithm 6 LoopWeaver Clash Avoidance Matrix Building

function AUGMENTWMDSW (int N,Residue ProblemRes[],Loop
Loops))
M = Size(ProblemRes)
NewD = Matrix(M,N)
NewW = Matrix(M,N)
for 1 =1to M do
Residue R = ProblemRes[I]
Atom A = R.C,
for J =1to N do
Counter = 0
for all Loop L. € Loops do
Atom B = L.FittedLoop|J]
if NoClash(R,B) and DFIRE(A,B) < 0 then
Counter++
NewDI[I,J] += Distance(A,B)
end if
end for
NewDIL,J] = NewD[I,J] / Counter
end for
end for
for all Loop L. € Loops do
L.D.Resize(N+M,N+M)
L.W.Resize(N+M,N+M)
for I = 1 to N+M do
for J =1to M do
if I is a stem atom or I > N then
L.D[I,N+J] = L.D[N+J,I] = NativeDist(I,J)
L.W[[[N+J] = L.W[N+J,I] = 10,000
else
L.D[I,N+J] = L.D[N+J,I] = NewD[I-N,J]
LW[IN+J] = LW[N+JI = 1.0 / (NewD[I-N,J])?
end if
end for
end for
end for
end function

40

2.2.4 LoopWeaver Pseudocode

Algorithm 7 shows the pseudocode for the LoopWeaver algorithm, which uses
the pseudocode functions defined previously.

Algorithm 7 LoopWeaver Main

function LOOPWEAVER(Protein Query,int Start,int End)
L = End-Start+1, N =2 * (L + 2)
S = {1,2,3,4,N-3,N-2.N-1,N}
Gap = BackboneAtoms(Query.Residues[Start-1:End+1])
loops = |]
for all Chains C € Database do
for all Length L+2 segments R € C do
dbLoop = MakeScoredMatch(Gap,R)
if dbLoop then loops.insert(dbLoop)
end if
end for
end for
loops.SortByStemRMSD()
for all Loop L € loops[:500] do
L.D = BuildDistanceMatrix(Gap,L.dbAtoms,N,S)
L.W = BuildWeightMatrix(L.D,N,S)
L.Solution = SMACOF(L.D,L.W,L.dbAtoms)
end for
if FixClashes then
ProblemAtoms = FindProblemAtoms(loops)
AugmentWMDSM (N, ProblemAtoms,newLoops)
for all Loop L € loops do
L.Solution2 = SMACOF (L.D,L.W,L.Solution)
end for
end if
OutputClashfreeLoops(loops)
end function

41

2.2.5 Ranking and Selection

After obtaining closed loops through solving the WMDS instances, Loop-
Weaver must determine the most likely loop to fill the target gap. I selected
the DFIRE (Distance-scale Finite Ideal-gas Reference)[40] energy function
for picking a candidate, as others have had good results using this function
to rank loop candidates [58, 47]. Specifically I used DFIRE with an updated
energy table, as used in the LoopBuilder protocol[38].

The DFIRE energy potential function is an empirical log-odds score. The
DFIRE energy table is populated by observing actual inter-atomic distances,
and the energy function is calculated by taking the log of the probability of
having two atoms at a given distance (based on the table) minus the log of
the probability of seeing two atoms at that distance in a finite ideal gas.

DFIRE is an all-heavy-atom energy function, so it achieves the best re-
sults when all sidechains are present in the model. It is reasonably effective
at making selections when the loop has only backbone and Cg atoms for the
loop, though it is better if all atoms are available. In part this is because
without sidechain atoms, the DFIRE cannot function “notice” that some
residues may have steric clashes other residues. For that reason it is neces-
sary to add sidechains. Database sidechains cannot be used as is, unless the
database loop has the same sequence, the sidechains cannot be transferred
between the two. For that reason only the Cz atom was retained (unless
either query or database loop has a glycine in which case there is no such
atom, or unless one or the other but not both is a proline in which case the
Cp was discarded.

Sidechains were added using the TreePack program [52, 53]. TreePack for-
mulates the sidechain packing problem as a residue interaction graph, where
each residue is a node in the graph, and an edge exists between two nodes
if there is any combination of rotamers for these two residues that results in
conflicting atoms. For each edge there is a pairwise interaction score, based
on the SCWRL 3.0 paper [43]. Any node ¢ with degree 1 and neighbor j
can be removed from the graph, as for all possible rotamers for j, one can
compute the optimal rotamer for node ¢. This allows the energies for these
combinations to be summed together and node ¢ to be merged into node
j without impacting the optimal energy computation. As with other ap-
proaches, TreePack works by decomposing the full graph into overlapping
connected components.

42

If a component A overlaps with only one other component B, then one
can generate a table of optimal rotamer assignments for all possible rotamer
assignments to A N B, and A can then be removed. This process can be
repeated until only only component Z remains. Z can then have its optimal
assignment determined exhaustively. All components that intersected Z will
then have their own optimal assignments determined according to the previ-
ously generated tables. This can be repeated until all components have their
optimal assignments.

TreePack generates the set of connected components by way of tree de-
composition. Generating a decomposition of minimal width is NP-Hard, but
because the graphs involved are geometric, it is possible to generate a rea-
sonable decomposition quickly. Thus, TreePack is able to generate optimal
assignment for the SCWRL 3.0 energy function in much less time. While
the running time for this algorithm is exponential in the size of the largest
component, these are typically small. TreePack is on average five times as
fast as SCWRL 3.0.

When I examined both tools I found this to remain true when dealing
with short loops rather than full proteins. TreePack is able to add sidechains
to 1000 loop candidates in under 5 minutes, while SCWRL takes an hour or
more. There were very few differences between the final results other than
the time required to obtain them.

43

Chapter 3

Results

In this Chapter I present LoopWeaver’s average RMSD scores, along with
the scores of several popular loop modeling tools. All RMSD scores were
calculated using the heavy backbone atoms (N, C,, C, and O).

3.1 Test Sets

As LoopWeaver is a database driven tool, it could not be benchmarked using
the same target proteins used in older loop modeling papers. Doing so would
either put the database tool at substantial advantage by using a current
database (because even if the exact matches are excluded, there still may
be many similar matches in the database), or substantial disadvantage by
using a database from the same date as the test set, which negates the
advantage of rapidly expanding coverage in the PDB. Therefore, I tested the
tool against others using more recent test sets. Specifically, I selected all loop
regions (identified by DSSP [6]) of length 6 through 11 from the x-ray targets
presented at the CASP8 and CASP9 experiments, while excluding NMR
models. The target proteins’ native structures were obtained from Zhang
Lab at the University of Michigan (http://zhanglab.ccmb.med.umich.edu/).
To ensure fairness, the database consisted of only protein structures released
to the PDB prior to the start of the CASP8 experiments. Section 2.2 (Method
Details) contains the specifics of the database composition and selection.

Although the CASP targets usually have full domain template matches
available (since the purpose of the CASP experiments is to test template

44

based protein modeling) they are selected by hand to be difficult. Here
difficult means that although there is a full domain template match, it is
not identical to the actual tertiary structure. Since most of these deviations
occur in the flexible loop regions, few of the test loops can be modeled using
the full domain template match.

Because short loops are the most commonly observed loops, there were
too few loops of length 12 or longer to justify inclusion. Loops of 5 or
fewer residues are not included as no tools have difficulty modeling such
loops. Length 1-5 loops have only a small number of possible conformation
types, which simplifies sampling and results in them being well represented
in databases of known structures, making their prediction simple for both
categories of loop modeling approaches. Loops of 3 or fewer residues have no
degrees of freedom left after fixing their endpoints (if the w torsion angle, the
bond distances, and the bond angles are assumed to be their average values)
and so have exactly one solution.

3.2 Details of Other Methods Used

I compared LoopWeaver’s results to those of several top loop modeling appli-
cations. The approaches used by these methods are described in Section 1.3
(Previous Work). Here I describe the specific parameters used in order to
test these methods.

3.2.1 ModLoop

ModLoop, the loop modeler from the MODELLER package (version 9v5),
was run with refinement set to “fast” and used to generate 50 loops. The
candidates returned from ModLoop were then re-ranked according to their
DFIRE [40] energy potential, which improves the accuracy when compared
to the default DOPE energy function. This is consistent with others’ results,
where the best MODELLER results have been obtained after re-ranking by
DFIRE.

45

3.2.2 RAPPER

When evaluating RAPPER version 0.5, I generated 1000 candidates as de-
scribed in the RAPPER paper[42]. As with MODELLER, the RAPPER
results were re-ranked by the DFIRE energy potential, since this substan-
tially improves their accuracy for all test sets when compared with the default
RAPDF energy function.

3.2.3 Loopy

I also compared with the Loopy program (no version number) with all settings
left to default, and with the number of initial models set to 2000 for loops
shorter than length 10, and 4000 otherwise. These are the recommended
number of candidates for loops of these lengths[36]. While RAPPER and
MODELLER take an average of 3 hours (on a 2.2 GHz Opteron) per length
9 loop modeled, Loopy takes around 20 minutes. Loops were removed from
the input file and their sequence passed using the -r parameter. This is
because Loopy will use the backbone atoms up to C, from the first and last
residue of the loop, if they are present, giving it essentially two half-residues
less to model. Or, alternately, it can be viewed as remodeling the gap-facing
backbone atoms of the stems, in which case it is solving a harder problem.

LoopyMod/LoopBuilder

Additionally, I compared LoopWeaver with the LoopyMod (no version num-
ber) variant of Loopy included in LoopBuilder package[38]. This version
generates loops and does quick torsional optimization but does not have the
iterative merging procedure used in the full version of Loopy. This allows
the user to use an alternate refinement approach while still using Loopy’s
fast loop sampling. I used the same parameters as described in the Loop-
Builder, 1000 candidates for loops shorter than 9 residues, 2000 for length
9 loops, and 5000 for lengths 10 and 11. LoopyMod has the same problem
as Loopy with regards to retaining some atomic coordinates from the loop
being remodeled, and unlike Loopy this cannot be avoided by removing them
as LoopyMod requires these atoms to be present. For this reason I passed
LoopyMod different start and end coordinates so that it remodeled the stems,

46

rather than keep part of the native loop structure (which should not be avail-
able). This puts it at a disadvantage, but I compared its results with those
of Loopy proper to show that Loopy and LoopyMod perform similarly after
being passed to ROSETTA’s loop refiner and so it is acceptable to only deal
with the Loopy results.

3.2.4 ROSETTA

Finally, I tested version 3.3 of ROSETTA [45]. This version uses the KIC
(KInematic Closure) algorithm to generate closed loops where all but 6 tor-
sion angles can be exactly equal to the statistically sampled angle. ROSETTA
is often excluded from benchmarks, as although it produces very accurate
predictions, the Monte Carlo simulation required to do so is very time con-
suming. For example, while it may take 20 minutes for Loopy to generate a
prediction for a given loop, ROSETTA may take 5 days to model the same
loop on the same CPU (if one uses the recommended settings). If the num-
ber of candidates generated is lowered drastically, ROSETTA can complete
in time comparable with other tools, but is no longer accurate, at least when
using the CCD algorithm for loop closure. However, while the new KIC
loop closing algorithm is slower than the CCD algorithm used previously,
the ROSETTA team’s publications show a much tighter clustering of results
around the native loop conformations. This suggests that the tool should be
able to generate an acceptably accurate prediction with much less total cov-
erage required, so I tested ROSETTA set to generate 10 candidates (so that
its running time remains on the order of 2-3 hours, comparable to the running
time of MODELLER and RAPPER). The ROSETTA KIC tests used the pa-
rameters as described in their online guide [59], and generated 10 candidate
structures rather than the recommended 1,000-10,000. Additionally, I used
the “-loops::fix_natsc” flag to prevent ROSETTA from refolding the native
sidechains. By default ROSETTA will refold any native sidechains that lie
within a certain distance (14 angstroms by default) of the loop candidate it
generates. This is a reasonable step for a predicted model as these sidechains
would have been packed without considering the loop, but other tools do not
do this so it would result in ROSETTA being at a disadvantage by solving a
harder problem. Not using this option resulted in less accurate predictions,
as expected.

ROSETTA is also useful for refining the results of other tools. ROSETTA

47

can perform the same refinement steps it uses for its own candidates on loops
that have been generated by another program. This is still a substantial
amount of the total running time, since ROSETTA’s loop closure technique
is fairly fast. As in the LoopBuilder protocol, the results from one or more
tools are refined using Monte Carlo simulation. While LoopBuilder uses
PLOP[41], T elected to use ROSETTA’s KIC refinement protocol instead.
Refinement was done by refining the top candidate 10 times, rather gener-
ating one refined loop from each of the top 10 unrefined candidates. Many
times this refinement can make the candidate worse, so it is best to focus ones
efforts on the highest ranked candidate. The ROSETTA KIC paper claims
superior results to those of molecular mechanics refinement so I used this
for refinement instead. The refined LoopyMod results can then be viewed as
a new version of the LoopBuilder protocol, while keeping in mind that the
LoopyMod program is solving a harder problem by remodeling the stems.

Figure 3.1 shows the results of Loopy and LoopyMod, with and without
refinement using ROSETTA’s KIC refinement protocol. Loopy results were
ranked by Loopy itself, and LoopyMod results were ranked by their all-atom
DFIRE energy potential using DFIRE.x, part of the LoopBuilder package.
These figures should not be compared to those in the following sections, as
for these tests Loopy and LoopyMod were remodeling the stem residues, and
this makes the problem more difficult.

A two-tailed paired t-test that compared the two tools yielded p = 0.079
for local RMSD and p = 0.021 for global RMSD. It appears that Loopy
results had better global RMSD than LoopyMod results did, but worse lo-
cal RMSD. However, these differences are not statistically significant. The
Loopy results were similar to those in the LoopBuilder paper (their Table
V), indicating that the difficulty of the test set was comparable to that of the
LoopBuilder test set. However there was substantial improvement after re-
fining the results of Loopy, where in the LoopBuilder paper, Soto, Fasnacht,
et al. observed a decrease in accuracy after applying PLOP to Loopy results.
The improvement to the score by refining Loopy’s results (or LoopyMod’s)
is greater, when expressed as a percentage, than the improvement achieved
between Loopy and LoopBuilder, although it is approximately equal when
expressed as an absolute value. The Loopy and LoopyMod scores were also
close after alignment, with t-tests yielding p = 0.15 for local RMSD scores,
and p = 0.16 for global RMSD scores.

We can conclude that the Loopy results with KIC refinement were an

48

acceptable stand-in for the LoopBuilder protocol. It may be interesting to
examine in detail why PLOP refinement of Loopy’s results did not result
in improvement to average scores, while ROSETTA refinement did. This
may be because LoopBuilder creates only one refinement of each candidate,
and the Monte Carlo refinement is only improving the results on average.
Since Loopy uses clustering to ensure it does not return similar candidates,
the second candidate will not necessarily be a useful stand-in, even after
refinement. If the refinement process makes the first candidate worse, and
the first candidate was the most accurate one, refining the other candidates
will not yield accurate results so these steps are wasted.

3.2.5 Other Tools

I do not have tables comparing LoopWeaver results with those of Super-
Looper or FREAD, as neither tool returns results for all loops and it is
meaningless to compare averages for different sets. For example, out of the 60
length 10 loops, FREAD (using the same database as LoopWeaver) returned
matches for only 6 loops, and SuperLooper (using LIP from 2007) returned
45. For the six results returned by FREAD, the average score was 0.94A local
RMSD. Over the same six loops, LoopWeaver returned an average score of
0.44 A. With so few results there is no significance to this difference, which is
the result of one single error in FREAD’s selection of database matches. For
the other five loops, both tools made predictions based on the same database
matches and the WMDS fitting did not significantly alter the database loop.
Also for length 10 loops, SuperLooper’s DFIRE ranked results are essentially
the same as the LoopWeaver loops when the WMDS scaling is disabled. This
is to be expected, since there are only minor implementation differences prior
to this step. Thus, the unfitted LoopWeaver result table can be viewed as
essentially the same results one could expect from other database tools.

There are more recent loop modeling tools, but their results often have
difficulty surpassing the accuracy of existing tools. An example of this is the
FALC server[60], a recent fragment assembly loop modeling server. As with
the CCD closure protocol from ROSETTA, FALC is a statistical technique
that samples angles from a position-specific ¢/t distribution, built using
fragment matches. Their results are much better than those of RAPPER and
ModLoop, two tools I also tested against. I submitted the CASP8 portion
of the length 10 test set to the FALC server, and observed an average score

49

Table 3.1: Average RMSD (local/global) scores for Loopy and LoopyMod

with remodeling of stem atoms.

Length Loopy Loopy LoopyMod LoopyMod
Refined Refined
6 1.35/2.08 0.76/1.19 1.32/2.16 0.77/1.28
7 1.59/2.44 1.06/1.64 1.61/2.72 1.03/1.72
8 2.00/3.24 1.28/2.09 2.01/3.68 1.40/2.26
9 2.23/3.69 1.54/2.67 2.00/3.56 1.62/2.77
10 2.36/3.73 1.68/2.82 2.23/4.31 1.76/3.18
11 3.00/4.88 2.15/3.94 2.69/4.58 2.15/3.67
3 5
|
2.5 :
=
N— 2 |
)
w0
=
st
g ¢
(@]
= 1 o Loopy |
—o— Loopy Refined
—8— LoopyMod
051 —— LoopyMod Refined | |

8

9 10 11
Loop Length

Figure 3.1: Local RMSD scores from Table 3.1 plotted vs. loop length.

50

of 2.36 local RMSD, and 4.55 global RMSD. This is less accurate than all
other tools on this same subset. However, this is roughly the score that they
showed in their paper for loops of this length. It is because I have re-ranked
the ModLoop and RAPPER results using the DFIRE energy function that
these tools perform better than FALC, while in the FALC paper they did
not.

3.3 Scores

In Table 3.2 are the average local and global RMSD scores for LoopWeaver
with and without the WMDS fitting step. For each test loop, the candidate
with the lowest local RMSD was selected. When compared to the DFIRE
ranking, this table shows the amount of improvement that is possible. On
average, both local and global RMSD scores were improved by using DFIRE
fitting. A two-tailed paired t-test returned p = 4.4 x 10~° for the local RMSD
scores, and p = 3.7 x 10~ for the global RMSD scores, so this improvement
was statistically significant.

Table 3.2: Average RMSD (local/global) scores for LoopWeaver with ranking
by local RMSD, with and without WMDS fitting.

Length WMDS No WMDS

6 0.56/1.04 0.57/1.10
7 0.74/1.37 0.83/1.60
8 0.97/1.97 1.04/2.12
9 1.21/2.49 1.31/2.37
10 1.46/2.83 1.51/2.85
11 1.69/2.98 1.62/2.81

In Table 3.3 I compare the LoopWeaver results with fitting to those with-
out, using DFIRE ranking. In this table we can see that the difference made
by WMDS fitting was larger than the difference shown in Table 3.3. The
lowest local RMSD scores were approximately 0.05A lower after WMDS fit-
ting, while the top ranked candidates by DFIRE energy had local RMSD
scores approximately 0.15A lower after WMDS fitting. If the RMSD scores
are compared with those of the other tools, the database approach seems
to perform well even without fitting. However, the stem RMSD fit results

51

in less accurate energy potentials because of inaccurate geometry where the
loop joins the two stems. For example, the peptide bond that connects the
loop backbone to the backbone of the rest of the protein is often very unusual
as a result of RMSD fitting. For the LoopWeaver results without WMDS fit-
ting, the average peptide bond length differs from the typical bond length
(approximately 1.33A depending on the type of residue) by up to 1A, with
averages ranging from 0.2A to 0.4A. The average over all test sets was 0.20A,
or approximately 13 standard deviations. After WMDS fitting, the average
peptide bond length deviation was 0.03A, or approximately 2 standard devia-
tions, although in a small number of cases the deviation was still unusual (up
10 standard deviations). By obtaining more reasonable geometry, WMDS fit-
ting allowed DFIRE to make more accurate predictions. This explains why
WMDS fitting resulted in a larger average score improvement for the DFIRE
ranked scores than it did for the minimized scores.

Table 3.3: Average RMSD (local/global) scores for LoopWeaver with and
without WMDS fitting.

Length Loop- Loop- Average Peptide
Weaver Weaver, Bond Deviation
No Fitting

6 0.87/1.37 1.02/1.66 0.204

7 1.18/1.86 1.28/2.15 0.261

8 1.54/2.59 1.80/2.90 0.317

9 1.85/2.91 1.95/3.10 0.312

10 2.02/3.34 2.17/3.59 0.382

11 2.20/3.37 2.24/3.55 0.285

Table 3.4 (and accompanying plot) shows the results of running Loop-
Weaver, as well as Loopy, ModLoop, RAPPER, and ROSETTA on the vari-
ous test sets. LoopWeaver performed quite well when compared with Loopy,
ModLoop, and RAPPER. With the exception of the length 8 targets where
all tools scored approximately the same, LoopWeaver produced lower aver-
age RMSD scores, both local and global. Table 3.5 shows the p-values for
paired two-tailed t-tests comparing the scores for all pairs of tools shown in
Table 3.4. As shown in Table 3.4, the most similar tools by local RMSD score
were Loopy and ModLoop. Accordingly, this pair of tools had the highest p
value for both for local and global RMSD.

52

Table 3.4: Average RMSD (local/global) scores for tested tools.

Figure 3.2: Local RMSD scores from Table 3.4 plotted vs. loop length.

Loop Length

53

Length Loop- ModLoop Loopy Rapper ROSETTA
Weaver

6 0.87/1.37 0.97/1.48 1.17/1.71 1.24/2.01 0.66/1.05
7 1.18/1.86 1.36/2.12 1.39/2.10 1.47/2.35 0.93/1.53
8 1.54/2.59 1.57/2.63 1.61/2.27 1.83/2.92 1.23/1.99
9 1.85/2.91 1.97/3.32 2.02/3.03 2.12/3.46 1.56/2.71
10 2.02/3.34 2.39/3.99 2.10/3.29 2.14/3.33 1.65/3.09
11 2.20/3.37 2.41/3.90 2.59/3.76 2.59/4.17 2.04/3.38
2.6

2.4

2.2
2

=18

A

98]

= 1.6

o

T 14

3

—

1.2
1 -k~ Rapper
/

—- Loopy
0.8 —A— ModLoop | |
' -@- LoopWeaver
0.6T -+ ROSETTA | |
| | | |

6 7 8 9 10

11

Table 3.5:

p-values obtained from two-tailed, paired t-tests for local and
global RMSD scores in Table 3.4

RMSD Tool 2

Metric Tool 1 ModLoop Loopy Rapper Rosetta
LoopWeaver | 8.8 x 107° 4.1x107% 4.0x107Y 6.3 x 107!
ModLoop 0.038 7.7x107% 34x10728
Local L 5.0x 1074 2.4 x 1073

00py .0 x 4 x

Rapper 6.2 x 10720
LoopWeaver | 1.6 x 10=* 0.040 2.1x107% 3.6 x107°
ModLoop 0.081 1.6 x 107 3.1x 107"
Global =y oy 42 x107° 1.7 x 10°%
Rapper 2.4x107106

ROSETTA was the best stand-alone loop modeling tool, even though it
was only generating 10 instead of the recommended 1000 candidates. This
does not necessarily indicate that ROSETTA’s loop closure approach is supe-
rior, only that as a whole, including the extensive refinement step, it yielded
the best results. ROSETTA’s modular design allows this thought to be ex-
plored easily, as it is trivial to replace ROSETTA’s loop closure with the
results of an external tool, while still taking full advantage of ROSETTA’s
refinement and perturbation algorithms.

In Table 3.6 are the results of the same tools from Table 3.4, using
ROSETTA KIC refinement. Refinement was done by using ROSETTA to
generate 10 refined candidates from the top ranked candidate produced by
each tool. An alternative would have been to generate 1 refinement for each of
the top 10 candidates, similar to what is done with the LoopBuilder protocol
using PLOP refinement. However, the nature of the Monte Carlo simulations
used means that there is a real possibility of refining a loop into a much worse
candidate. Since the other tools tend to create reasonable rankings, the cost
of ruining the top 1 result with a bad refinement outweighs the additional
coverage of refining the other loop candidates. I speculate that this is the
reason that, in the LoopBuilder paper([38], Loopy’s results were worse after
PLOP refinement than they were before it.

All tools reported substantial improvement from ROSETTA’s refinement
computation. RAPPER, MODELLER, and Loopy scores were more im-
proved than LoopWeaver scores. Loopy, LoopWeaver, and ModLoop yielded

o4

Table 3.6: Average RMSD (local/global) scores for tested tools after
ROSETTA refinement.

Length Loop- ModLoop Loopy Rapper ROSETTA
Weaver

6 0.57/0.87 0.64/0.94 0.59/0.88 0.73/1.12 0.66/1.05

7 0.84/1.35 0.84/1.27 0.78/1.24 0.86/1.68 0.93/1.53

8

9

1.14/1.75 1.06/1.51 1.05/1.64 1.38/2.27 1.23/1.99
1.34/2.24 1.51/2.33 1.32/2.13 1.65/2.77 1.56/2.71
10 1.52/2.42 1.53/2.44 1.44/2.26 1.70/2.69 1.65/3.09
11 1.87/2.94 1.87/2.88 1.75/270 2.20/3.69 2.04/3.38

1.8

1.6

Local RMSD (A)
-

-@- LoopWeaver
-4~ ModLoop

0.8 —— Loopy |
-k RAPPER
0.6 = ROSETTA | |
| | |
6 7 8 9 10 11

Loop Length

Figure 3.3: Average Local RMSD scores from tested tools after ROSETTA
refinement, plotted vs. loop length.

95

Table 3.7: p-values obtained from two-tailed, paired t-tests for local and
global RMSD scores, after ROSETTA refinement (Table 3.6).

RMSD Tool 2
Metric Tool 1 ModLoop Loopy Rapper Rosetta
LoopWeaver | 0.31 0.23 50x 1079 4.7 x 1074
ModLoop 84x107% 26x107" 2.0x1078
Local L 1.0x10713 3.5 x 1073
0opy .0 x 5 X
Rapper 0.011
LoopWeaver | 0.65 0.17 52x 1078 1.7 x10~*
ModLoop 0.23 8.2x107" 3.1 x107°
Global =y oy 2.0%x107% 1.8 x 10~
Rapper 0.13

refined results superior to those from the default ROSETTA candidates.
While LoopWeaver was initially the most accurate tool other than ROSETTA,
after refinement it appeared to lie between Loopy and ModLoop. Paired t-
tests, shown in Table 3.7 did not give confidence in this ranking so we can
only say that all three tools appear approximately equal. However, all three
are significantly more accurate than the ROSETTA result alone.

One explanation for why LoopWeaver’s results were less improved by
refinement is that accurate predictions can only achieve a small amount of
improvement, and greatly inaccurate predictions can cannot be improved
substantially if the maximum change permitted is low. A database method
has more accurate predictions, but also has more inaccurate predictions so
this could explain why LoopWeaver did not gain as much accuracy from
refinement as the other tools did.

3.4 Combined Scores

Because database tools often have not been able to produce results for all
gaps, they have been used as a complement to statistical methods. FREAD
for example yields very good sub-angstrom results regardless of the length
of the loop[48] but is often not able to produce results at all. The FREAD
authors therefore use FREAD to supplement predictions obtained by other
means. LoopWeaver is able to make usable predictions in all attempted cases,

56

but this is no reason to abandon the idea of combining its results with those
from other approaches. Statistical and database approaches have different
strengths and weaknesses. A database approach is very accurate if there is a
very similar loop available in the database, and otherwise their performance
depends on how well they can manage with dissimilar database candidates.
A statistical approach is very accurate if the native loop comes from a dense
part of the angle search space, but if the true structure involves uncommon
angles it is unlikely to be sampled and so may not be found.

In Figure 3.8 we can see the results of combining the results of two tools.
All combinations were obtained by taking the top candidate from each tool
according to that tool’s ranking, and then using DFIRE to pick between
these two candidates. In general the combination approach did not seem to
work well. In some cases there was improvement, but for each combination
there were some lengths for which the combined score fell between the scores
for the two methods being combined. The only exception was the Loopy and
LoopWeaver combination, which consistently scored better than either tool
did alone. This is convenient as these are also the two fastest methods.

Table 3.9 shows the t-test results that compare all pairs of combined
scores. This shows that while most tool combinations were significantly dif-
ferent from each other, the Weaver plus ModLoop combination was not sig-
nificantly different than the Weaver plus Rapper combination. Table 3.10
shows p-values for t-tests between each combination of two tools, and its
constituent tools. Only the LoopWeaver plus Loopy scores differed signifi-
cantly from the scores of both of components methods.

These results seems to have been caused by idiosyncrasies within the
various methods. ModLoop, for example, appears to generate candidates
with better DFIRE energy, on average. That means that for loops with
approximately the same score, the ModLoop loop is more likely to be selected
according to its DFIRE energy. This lead to many cases where the competing
result had a lower RMSD, but was not selected due to the energy biases of
the two methods. For example, when ModLoop and Loopy were combined,
the ModLoop result was selected 94% of the time (657 of 697 loops) while
the ModLoop candidate only had a lower local RMSD score for 54% (367
of 697) loops. A similar pattern held when the LoopWeaver and ModLoop
results were combined. The ModLoop result was selected 75% of the time
(527 of 697), but only had a lower RMSD score for 44% of the test loops (306
of 697).

o7

Table 3.8: Average RMSD (local/global) scores for combined results. W for
Weaver, L for Loopy, M for ModLoop, R for RAPPER

Len W-+M

WL

W+R

M+L

M+R

L+R

6 0.91/1.43
1.18/1.84
8 1.51/2.53
9 1.72/2.90
10 2.18/3.59
11 2.19/3.53

~J

0.84/1.30
1.12/1.76
1.39/2.19
1.79/2.72
1.96/3.11

0.94/1.46
1.18/1.87
1.54/2.47
1.84/3.00
1.94/3.13

1.00/1.55
1.34/2.09
1.51/2.51
1.91/3.19
2.31/3.81

1.01/157 1.19/1.87
1.36/2.12 1.43/2.23
1.58/2.65 1.71/2.66
1.97/3.38 2.01/3.22
2.33/3.92 2.15/3.52

22

Local RMSD (A)
%

2.11/3.18
T

2.27/3.68
T

2.33/3.65
T

2.37/3.89 2.60/4.24
T

krdte

-H- LoopWeaver+ModLoop

LoopWeaver+Loopy

LoopWeaver+Rapper
ModLoopy+Loopy
ModLoop+Rapper

Loopy+Rapper

8

9

Loop Length

10

11

Figure 3.4: Average Local RMSD scores for combined results, plotted vs.

loop length.

58

Table 3.9: p-values for two-tailed paired t-tests comparing all pairs of com-
bined tools by local and global RMSD scores.

Local RMSD
Pair 2 ¢
Pair 1¢ | W+L W+R M+L M+R L+R
W+M | 0.016 0.71 81x10% 1.9x10 11 32x10° ™
W+L 1.9x 107 84 x1077 62x10710 2.0x107%
W+R 0.011 5.3 x107° 4.1x10°1'6
M+L 2.1x107% 1.2x10°
M+R 3.9 x 1074
Global RMSD
Pair 2 ¢
Pair 1 ¢ | W+L W+R M+L M+R L+R
W+M [1.2x107* 0.92 49%x107* 1.7x10719 75x 1078
W+L 28%x107% 1.6x107% 14x1071B 1.5x10722
W+R 0.031 85x 1076 1.2x107'2
M+L 28 x 107 4.4 x 107
M+R 0.14

*W for LoopWeaver,M for ModLoop, L for Loopy, R for RAPPER

Table 3.10: p-values for two-tailed paired t-tests comparing combined tool
scores to the individual scores of each tool.

Tool Tool 1 Tool 2
Combination® Local Global Local Global

W4+M 0.85 0.61 1.8 x 10719 8.1 x 107"
W+L 6.7x107* 29x107% |65x1071" 3.8x 1078
W+R 0.46 0.61 78x107% 1.0x107%
M-+L 3.6 x107° 4.0x107* | 3.9x~* 0.72

M+R 0.97 0.36 78x107% 1.0x 1072
L+R 0.18 44x107° | 1.4x1077 2.1 x 1076

?As “Tooll + Tool2”, with tools abbreviated using W for LoopWeaver,M for ModLoop,
L for Loopy, R for RAPPER

59

Just as ROSETTA refinement improved the stand-alone scores for each
tool, it also improved the combined scores for all of the tools I tested. In
Figure 3.11 I show the results of applying KIC refinement to the combined
results. In this case I used ROSETTA to produce 5 candidates from one
tool’s top result, and 5 from the other’s. This was ROSETTA was still gen-
erating a total of 10 refined loops, and the total running time would remain
approximately the same. Unlike the unrefined combinations, all refined com-
binations reported scores superior to either tool alone. This may be because
all of the candidates were refined under the ROSETTA energy function, and
the same function is being used to pick the best refined candidate.

Table 3.9 shows the p-values obtained by performing paired t-tests be-
tween all pairs of tool combinations. From these numbers we see that al-
though the LoopWeaver plus ModLoop, and LoopWeaver plus Loopy com-
binations had the lowest average scores, they was not enough difference to
claim with confidence that the LoopWeaver plus Loopy combination was
more accurate than the LoopWeaver plus ModLoop combination was.

Table 3.13 shows the results of paired t-tests comparing the combined
refined scores with the refined scores for each of the two individual methods
involved. For example, the “M+L" line shows the p-values for t-tests between
the ModLoop and Loopy combined result and both ModLoop and Loopy
alone. Here we can see that other than the ModLoop and Rapper and the
Loopy and Rapper pairs, all tool combinations show significant improvement
over either of their constituent tools alone.

ROSETTA’s KIC refinement made substantial improvements to the av-
erage scores for all of the test sets, resulting in much lower scores than
ROSETTA alone achieved with the same approximate execution time. These
results held even when I allowed the ROSETTA ab initio execution substan-
tially more time. I obtained numbers for length 9 only, due to the large
amount of CPU time required. For this set I generated the recommended
1000 candidates, and the average ROSETTA score was 1.15A for the local
RMSD, and 1.82A for the global RMSD. The refined Loopy and LoopWeaver
combined score for the same test set was 1.13A local and 1.74A global RMSD.
So, the Loopy plus LoopWeaver protocol was able to obtain results compa-
rable to ROSETTA was able to use 100 times as much CPU time (approxi-
mately 30,000 hours compared to approximately 300 hours).

60

Table 3.11: Average RMSD (local/global) for combined tools', after
ROSETTA refinement.

Len W+M W+L W+R M+L M+R LR

6 0.54/081 053/0.79 054/0.84 0.57/0.83 0.61/0.92 0.58/0.86
0.70/1.05 0.75/1.13 0.76/1.19 0.75/1.14 0.81/1.22 0.80/1.27
8 1.00/1.44 0.93/1.36 1.08/1.60 0.90/1.31 1.06/1.59 1.03/1.57
9 1.26/1.98 1.13/1.74 1.31/2.09 1.35/2.13 1.40/2.15 1.34/2.12
10 1.29/2.11 1.22/1.91 1.33/2.33 1.37/2.20 1.51/2.43 1.47/2.43
11 1.64/2.65 1.53/2.42 1.64/2.63 1.82/2.79 2.00/3.14 1.90/2.98

T T T T

~J

2 [
1.8
1.6
=
A 1.4}
)
=
— 12
<
(&)
Qo
3
L -H- LoopWeaver+ModLoop
-@ LoopWeaver+Loopy
-~ LoopWeaver+Rapper | |
-©- ModLoopy-+Loopy
-k~ ModLoop+Rapper
—%— Loopy+Rapper :
6 7 8 9 10 11

Loop Length

Figure 3.5: Average Local RMSD scores for combined results after
ROSETTA refinement, plotted vs. loop length.

61

Table 3.12: p-values for two-tailed paired t-tests comparing all pairs of com-
bined tools by local and global RMSD scores, after ROSETTA refinement.

Local RMSD

Pair 2 ¢

Pair 1* | W+L W+R M+L M+R L+R
W+M | 0.090 0.084 0.194 1.8 x 107" 5.3 x 1073
W+L 85x107* 24x10% 78x107% 3.1x107"
W+R 0.82 5.0 x 1072 0.12
M+L 3.5 x 107 0.015
M+R 0.18

Global RMSD
Pair 2 @

Pair 1 ¢ | W+L W+R M+L M+R L+R
W+M | 0.088 0.011 0.30 2.1x107% 45x107°
W+L 24x107° 52x107% 52x1077 24x 107"
W+R 0.24 0.12 0.31
M+L 3.3x107* 43 %1073
M+R 0.64

*W for LoopWeaver,M for ModLoop, L for Loopy, R for RAPPER

Table 3.13: p-values for two-tailed paired t-tests comparing combined tool

scores to the individual scores of each tool, after ROSETTA refinement.

Tool Tool 1 Tool 2
Combination® Local Global Local Global

W+M 31x10% 23x10% [78x10710 9.6x 1077
WL 1.2x107% 82x1071[82x107% 55x107°
W+R 40%x107™* 56x107 |55 x 1072 3.9x 107"
M+L 1.3x 1077 9.6 x 107° | 0.065 0.028
M+R 0.10 0.53 46 x 10712 25 x%x 10714
L+R 0.55 0.55 8.9 x 1071 4.1 x 10716

?As “Tooll + Tool2”, with tools abbreviated using W for LoopWeaver,M for ModLoop,
L for Loopy, R for RAPPER

62

3.5 Database Accuracy over Time

One major advantage of database techniques is that the Protein Databank
(PDB) is constantly expanding as scientists around the world determine new
protein structures. As time passes, database based loop modeling techniques
will have more and more loops available to use as templates. When designing
LoopWeaver 1 saw large improvement in accuracy when I changed from a
non-redundant database to a more complete snapshot of the PDB. While
homologous proteins may be very similar in overall structure, it does not
take a very large RMSDgien, before a loop template will not fit into the
corresponding gap in a very similar homologous protein. The CASP targets
used for testing LoopWeaver typically have one or more full domain template
matches, and yet very few of the loops have native-like loops available in the
database.

To demonstrate the accuracy improvements over time, I ran LoopWeaver
(without ROSETTA KIC refinement) using yearly snapshots of the PDB
from 2000 through 2008. In Figure 3.6 we can see the effect of an older (and
thus smaller) loop set on the quality of all of the loop test sets. In all cases
there is a noticeable downward trend (though, especially in the global RMSD
scores, this is not a monotonic trend), and depending on test set the final
2008 score is between 10 and 20 percent lower than the 2000 score. These
trends all appear approximately linear. Table 3.14 shows the p-values for
t-tests comparing the LoopWeaver results for a given database year to those
for later database years. We can see that although the difference from one
year to the next is generally not significant (meaning p < 0.05), the difference
from one year to two years later is statistically significant (other than for the
2003 to 2005 comparison).

Much of the noise in these graphs appears to be caused by the difficulty
of ranking poor results relative to each other. That is, loops that are not par-
ticularly good (say 1.5A local RMSD or higher) are usually ranked as worse
than a native-like loop, but are not consistently ranked among themselves,
leading to many cases where a 1.5A loop might be replaced by a 1.9A loop
when it becomes available.

Very little of LoopWeaver’s total running time is a due to the database
search. It takes approximately 10 seconds to load the database and perform
a complete search. The WMDS solver, sidechain packing, and DFIRE en-
ergy evaluation make up the majority of the running time requirement, at

63

Table 3.14: Paired t-tests testing LoopWeaver’s average local and global
RMSD scores when using a database from a given year against the same
scores when using a database from one or two years later.

Year Year + 1° Year + 2°

Local Global Local Global
2000 0.03 0.329 0.0073 0.0045
2001 0.24 0.010 1.6 x107* 1.0x 107
2002 82x107* 35x107* | 75x107* 80x 1073
2003 0.75 0.60 0.12 0.19
2004 0.39 0.15 0.0059 0.0079
2005 0.023 0.14 0.0084 0.046
2006 0.27 0.33 0.0093 0.0030
2007 0.037 0.0053

“For example, in the 2005 row this column represents t-tests between the 2005 tests
and the 2006 tests

bFor example, in the 2005 row this column represents t-tests between the 2005 tests
and the 2007 tests

approximately 10-15 minutes, depending on the size of the loop involved and
the complexity of its local environment. For a database with 100 times as
many proteins as my current database, the running time due to the database
search should still be less than half of the total running time required by
LoopWeaver. If one is also using ROSETTA to refine the LoopWeaver re-
sults, the database search is an even smaller portion of the total running
time.

The runtime difference between the 2200 chain database from 2000 and
the 14,400 chain database from 2008 was indistinguishable during these tests.
As an example, all 9 trials for the set of length 6 loops took approximately
50 hours of CPU time on the Sharcnet Saw cluster, or about 15 minutes per
individual loop. This value includes TreePack and DFIRE time but does not
include ROSETTA refinement.

64

®eceqe
021.5000...... 2| ©%ee0,
E; I X X X x x) TX X x X Xy
% X X X 10 X
0.5 1

| | | | | | | | | |
2000 2002 2004 2006 2008 0 2000 2002 2004 2006 2008

(a) Length 6 (b) Length 7
T T T T \.\ T T T
300 g | 3 9%%e0g00,
R 0900 g9
o
A 2 Xy 1 2] XXX XXy
n X X X X X x
=
AR 11
O | | | | | 0 | | | | |
2000 2002 2004 2006 2008 2000 2002 2004 2006 2008
(c) Length 8 (d) Length 9
T T T T —.7.\ T T
4 1 4 00
®e0 [®e0
— ®e ®og0 ..
= X
X X X
r%gfxxxxxxxxx, ol X X Xy
=
ale

2000 2002 2004 2006 2008 0 2000 2002 2004 2006 2008
Database Year Database Year

(e) Length 10 (f) Length 11

Figure 3.6: Plots of LoopWeaver’s average local (x) and global (e) RMSD
scores vs. database cutoff date.

65

3.6 Example Loops

3.6.1 LoopWeaver Compared with Other Tools

While LoopWeaver demonstrates good results on average, there are cases
where it does well and cases where it does poorly, as with any other tool.

T0513 residues 139-148

An example situation where LoopWeaver does well can be seen in the loop
in target T0513 from residue 139 to 148, as shown in Figure 3.7a. For this
loop, Loopy had a global RMSD of 3.01A and ModLoop had a global RMSD
of 4.44A. LoopWeaver’s candidate had a local RMSD of 0.27A and a global
RMSD of 0.67A, which is a very accurate prediction. This is because a
homolog exists in the database (see Figure 3.7b), and LoopWeaver was able
to find and select this loop. This is a situation where any database method
should yield good results, as LoopWeaver’s fitting algorithm is not needed
for loops that already fit well. Before WMDS fitting this loop had local and
global RMSDs of 0.27A and 0.55A, so the scaling in this case negatively
impacted the orientation of the loop though not substantially. However, the
WMDS fitting improved the DFIRE energy very slightly from -608.851 to
-612.196. Without WMDS fitting, this candidate was ranked second and the
first candidate had a very poor score (6.29A global RMSD).

As mentioned previously, homolog matches are not common in this test
set, even though full domain homologs are available for almost all of the
target proteins. Generally the homologs available at the time of the CASP
experiments were not similar enough for homologous loops to fit, even if the
loop itself remained the same length. Fitting a loop requires similarity on a
much finer scale. If we look at Figure 3.7b once more, we can see that while
the two proteins are structurally similar, the majority of the loops differ
significantly.

T0532 residues 303-331

Database methods such as LoopWeaver are able to make predictions with
sub-angstrom accuracy even if a homologous template is not available , as

66

(a) Native Chain (Blue) and Loop (A) compared with LoopWeaver (B,Orange),
Loopy (C,Pale Green), and ModLoop (D,Magenta). Loop starts at the upper
strand, residue 139.

(b) Target T0513 (blue, loop in orange) and template 2KFB chain A (green, loop
in magenta) with superposition of homologous structures. Loop starts at the upper
strand, residue 139 in target, 57 in template.

Figure 3.7: Candidates and LoopWeaver Template used for target T0513,
length 10 loop at residues 139 through 148.

67

there are often similar loops available in the database. For example, for the
length 9 loop in target T0532, residues 303 through 311, the prediction made
by LoopWeaver has a local RMSD of 0.80A, and a global RMSD of 1.84A.
Figure 3.8 shows the template used (PDB ID 2C9Y, chain A). Although the
helix at one end of the loop (indicated by an arrow in Figure 3.8) aligns
with a similar helix in the template protein, overall the query and template
proteins are not similar. The majority of the loop region is a g-strand in the
template protein. The template itself has 0.90A local RMSD with the native
loop. LoopWeaver required unusually large changes during the WMDS step
because of a 0.7A stem RMSD. Normally matches with large stem RMSDs
are not used, but this loop is unusually extended and there were few database
loops with a lower stem RMSD. Prior to fitting, the peptide bond lengths
used to connect this template loop to the stems were 0.74A (or 50 standard
deviations) greater than the average bond length. After WMDS fitting, all
bond lengths were within 2 standard deviations of the mean values for the
appropriate bond types. As the gap has a large span, the conformation space
is quite limited by the closure requirements. Statistical methods work well
when dealing with a constrained search space, so this is an ideal situation
for them. ModLoop, Loopy, and Rapper all achieved excellent results, with
local RMSDs of 0.44A,0.76A, and 0.62A respectively. While LoopWeaver did
not do as well as these tools, all four predictions were quite accurate. This is
especially promising for LoopWeaver considering the lack of similar database
matches. For this target no database loops would fit without WMDS fitting.

TO0508, residues 82-88

For the length 7 loop in target T0508, residues 82 through 88, shown in Fig-
ure 3.9, the LoopWeaver prediction has a local RMSD of 0.67A and a global
RMSD of 1.23A. Sub-Figure 3.9b shows the native loop and the template
loop, superimposed using the loop and stems regions of the native and tem-
plate structures only. Although the template loop is very similar to the native
loop(0.14A local RMSD) the template is not otherwise similar to the query
protein. Both end (residue 88 and 172 for query and template respectively)
with a helix, labeled with arrow 1 in Sub-Figure 3.9b, but these two helices
do not line up well if the loops are aligned. The template loop starts at an-
other helix (labeled with arrow 2), while the query loop starts at a -strand
(labeled with arrow 3). In this particular case the prediction before WMDS

68

Figure 3.8: T0532 (blue) and loop from residue 303 to 311 (orange), superim-
posed with LoopWeaver Template protein 2C9Y-A (green) residues 207-215
(magenta). Superposition was calculated using only loop and stem main
chain atoms.

fitting had RMSD scores of 0.71A and 1.93A so again the WMDS fitting bent
the loop slightly, increasing the local RMSD, while achieving a better orien-
tation thereby lowering the global RMSD. Additionally, the DFIRE energy
function did not select this loop without WMDS fitting. Instead, it selected
a different loop with 0.65A local RMSD and 1.69A global RMSD. So, both
scores were improved by WMDS fitting due to improved candidate selection.
Sub-Figure 3.9a shows the LoopWeaver loop (B, orange) compared to the na-
tive loop (A, blue), the Loopy (C, green) and ModLoop (D,magenta) loops.
The Loopy loop has scores of 2.94A local and 7.79A global because it was
bent in the wrong direction. The ModLoop loop followed the correct general
path but bulged outward toward the stem at residue 82, which resulted in
RMSD scores of 1.65A local and 2.37A global.

T0533 residue 189-199

Another example that specifically highlights LoopWeaver’s advantage over
other database techniques can be seen in the length 11 loop from target

69

(a) Native loop (A, Blue), compared with LoopWeaver (B, Orange) Loopy (C,
Pale Green) and ModLoop (D,Magenta) candidates. Loop is from residue 82-88,
with 82 connected to the strand and 88 to the helix.

(b) Template loop 1LQ1, chain A (green), loop at residues 166 through 172
(magenta). Superimposed with native structure of T0508 (blue) with loop at
residues 82-88 (orange).

Figure 3.9: Candidates and LoopWeaver Template for target T0513, length
10 loop at residues 82 through 88.

70

T0533 (see Figure 3.10). LoopWeaver did not find any similar loops in its
database. The lowest energy candidate prior to WMDS fitting had a local
RMSD of 2.27A and global RMSD score of 4.06A, which is an inaccurate
prediction. The lowest energy candidate after WMDS fitting had a local
RMSD score of 1.46 and a global RMSD score of 1.66A, which is a medium
quality prediction. This difference was due to an improvement to the posi-
tioning of all of the loops allowing for more accurate discernment based on
their DFIRE energy. For reference, the best Loopy candidate for this loop
has local and global RMSDs of 1.77A and 2.10A respectively, and ModLoop’s
prediction has scores of 1.63A local and 2.12A global. These numbers are all
lower than the respective tools” averages for the length 11 test set. Although
no tool achieved sub-angstrom accuracy for the local RMSD, LoopWeaver
came close, while a database approach without WMDS fitting made a poor
prediction.

Figure 3.10: T0533 length 11 loop from residue 189 to 199. Native in blue
(A), LoopWeaver in orange (B), LoopWeaver without fitting in green (C),
ModLoop in magenta (D).

T0625 residue 89-97

It was not always the case that LoopWeaver performed well when compared
to existing tools. In target T0625, length 9 loop from residue 89 to 97, as

71

seen in Figure 3.11a we can see that the native loop connecting the helix to
the beta strand is tucked inward, running roughly parallel to other loops but
not close enough to form hydrogen bonds. Loopy’s prediction was close at
the strand end, and followed the same general path, although its connection
at the helix end differed. LoopWeaver’s result however was not similar at all,
and had a local RMSD of 3.75A and a global RMSD of 9.04A. LoopWeaver
placed the loop on the wrong side, where it extended out from the core of
the protein. Additionally, it included a small helix in the middle. This was
because the template used came from the helix region of protein 2H12 chain A
(See Figure 3.11b for an image of the loop template used). LoopWeaver does
not assume all gaps occur in loop regions and so it does not filter according
to secondary structure (this is the case with the FREAD and SuperLooper
database methods as well). In general the DFIRE energy function should
filter inappropriate secondary structures due to steric clashes. However, in
this case the helix was energetically favourable in terms of its dihedral angles.
It is nevertheless quite unusual as there are two proline residues placed into
the helix from the template. While the proline residues placed in this helix
take on very favourable angles, proline is unique in that it has two groups
bound to the amine nitrogen, making it unable to donate the hydrogen bond
required to form a helix structure. While proline residues can occur in a helix
they result in a less stable structure due to this missing bond, making these
occurrences quite rare. Typically, knowledge-based tools use a proline filter
because of proline’s more limited geometry. Such a filter would not have
helped with this case, as the small angle basins for proline fit well within the
norm for a—helix structures.

The next four templates for this target all involved extending the helix by
one or two residues before transitioning to a loop region. It was not until the
sixth model that LoopWeaver produced a more realistic loop prediction. This
candidate came from a loop region, and was correctly oriented relative to a
nearby loop (indicated by the arrow in Sub-Figure a). This prediction scores
1.99A local, and 2.38A global, compared 1.40A and 1.50A for Loopy, and
2.84A local and 4.24A global for ModLoop. The LoopWeaver result shown
has RMSD scores of 3.46A local and 9.12A global. ROSETTA refinement
improves the energy of the loop and unwinds the helix, but the LoopWeaver
candidate was too far from the correct path to result in an accurate refined
candidate. The local RMSD was improved by ROSETTA to 2.55A but the
global RMSD degraded to 10.84A. For comparison the Loopy loop was greatly

72

improved by ROSETTA, with RMSD scores of 0.40A local and 0.47A global,
and the ModLoop candidate was also improved, with RMSD scores of 1.12A
local and 1.42A global.

While this case could be improved by filtering based on secondary struc-
tures, I have not done this for two reasons. First, the other tools do not
assume a purely loop region being modeled, so there would be some risk to
giving LoopWeaver an unfair advantage when working with test sets that
only contain gaps that correspond to loop regions. Secondly, a strict filter
causes poor performance as there are many cases where a good loop candi-
date has one or two residues of secondary structure at one or both edges,
because the division between structures is not always clear cut. DSSP as-
signs secondary structure type according to specific hydrogen bond energy
thresholds. Different cutoffs result in different assignments. Even if one as-
sumes that the gap should only be filled with loop residues, it is not clear
how many residues on either end should be allowed to be non-loop to avoid
issues with assignment ambiguity.

T0513 residues 79-88

Another example of poor performance can be seen in the length 10 loop from
target T0513. Figure 3.12a shows the LoopWeaver and Loopy candidates
compared with the native loop. The template that LoopWeaver used (Fig-
ure 3.12b) was between a helix and a strand, just as the gap was in the
query protein. However, the template involves one additional residue in the
helix, and 3 additional residues in the strand. This resulted in a more ex-
tended loop, and high RMSD scores of 2.70A local and 4.54A global. For
reference, the Loopy loop had 0.80A local RMSD and 1.32A global RMSD.
This may have been resolved by the use of secondary structure filters, but in
this case there were no secondary structures occurring in the middle of the
template loop, but only as a short continuation of the secondary structures
in the stems (although technically the strand was not continued by using
this template because there was not a second strand with which to form
hydrogen bonds). Because there is no single accepted method of classifying
secondary structures it is unreasonable to have a hard cutoff when determin-
ing transition points, so it’s not certain that any reasonable filters would have
worked in this case. Fortunately ROSETTA refinement in this case correctly
pulls the extra residue back out of the helix, and the refined loop was very

73

(a) Native loop (A, Blue), compared with Loopy (B, Pale Green), ModLoop (C,
Magenta), and LoopWeaver (D, Orange) candidates. Loop starts with residue 89,
the helix and ends with residue 97, at the strand.

(b) Template loop 2H12, chain A, residues 357 through 365 (Orange). Template
starts at the helix.

Figure 3.11: Candidates and LoopWeaver template for target T0625, length
9 loop at residues 89 through 97.

74

accurate, with a local RMSD of 0.36A and a global RMSD of 0.44A. The
refined Loopy candidate had local and global RMSDs of 0.36A and 0.47A
respectively. So while Loopy’s unrefined prediction was much more accurate
than LoopWeaver’s, after refinement both candidates were approximately the
same structure.

T0490 residues 52-61

A major problem with database methods, including LoopWeaver, is dealing
with a constraining environment. Many of the test loops where LoopWeaver
made bad predictions involved a dense environment near the loop. This often
occurred where one or both stems were part of a [-sheet, where the other
strands, and the loops connecting them, were very close to the loop being
modeled. Even if a very similar loop existed in the database, it could be
used if the small differences cause a clash with the rest of the protein. This
means that placement and orientation is very important. LoopWeaver results
clashed less often than the same database loops did without WMDS fitting,
but for constrained environments many of the candidates still clashed. The
second pass WMDS, which attempts to resolve clashes, was able to resolve
many such clashes, but at the cost of more changes to the template loop
and a worse DFIRE potential energy. In many cases where there were other
loops or secondary structures near to the native loop, LoopWeaver did poorly
while Loopy did very well. An example of this can be seen in Figure 3.13
In Sub-Figure 3.13a the Loopy loop in green was very close to the native
loop in blue. The magenta ModLoop candidate was not as accurate, and the
orange LoopWeaver loop was the least accurate. In this example the loop
must avoid being too close to the helix on the left (arrow 1) and to the sheet
connected to it (arrow 2), as well as to the sheet to the right (arrow 3) and
to the loops that connect these structures together (arrows 4 and 5). Many
of the database loops were too close to one or more of these features, and
were not used. Sub-Figure 3.13b shows the template that LoopWeaver used.
Although the template ended at a helix just as in the query, at the other end
it ended with another helix rather than a strand, and the template included
several turns of this helix. This is not a very probable template, but it is the
best scoring candidate that fits properly.

Loopy appears to do very well with a constraining environment, while
ModLoop and RAPPER do not appear to get nearly as much benefit from

75

(a) Native loop (A, Blue), compared with Loopy (B, Pale Green) and LoopWeaver
(C, Orange) candidates.

(b) Template loop 2F06, chain A, residues 26 through 35 (Orange). The template
loop starts with residue 26 at the helix on the left, and ends with residue 35 most
of the way up the rightmost strand.

Figure 3.12: Candidates and LoopWeaver template for target T0513, length
10 loop at residues 79 through 88.

76

(a) Native loop (A, Blue), compared with Loopy (B, Pale Green) and LoopWeaver
(C, Orange) candidates.

(b) Template loop 2GA9, chain D, residues 82 through 91 (Orange). The loop
starts at residue 52, two turns back from the end of the rear helix, and ends at
residue 61, the first residue of the front and center helix.

Figure 3.13: Candidates and LoopWeaver template for target T0490, length
10 loop at residues 52 through 61.

77

this situation. The Loopy algorithm involves creating a number of clash free
closed loops, and iteratively splicing these loops together to create variants. It
appears that in cases where there were fewer possible closed paths, there was
a more thorough coverage of the conformation space, and thus the splicing
stage achieved a much more complete exploration of the conformation space,
and the colony energy function can use this coverage to make a good selection.

This helps explain why Loopy and LoopWeaver formed the most com-
plementary combination of tools. While a restrictive environment makes it
difficult to place a suitable database loop, it makes it easier for Loopy to
explore the conformation space, and because of these cases there is some
correlation between low LoopWeaver accuracy and high Loopy accuracy.

3.6.2 LoopWeaver’s Performance over Time

In general there were small improvements to LoopWeaver over time as the
result of higher quality matches being available. Additionally, if a close
loop homolog was present in the database, it was easily found by its stem
RMSD, and selected by its very low energy potential. However, there were
cases where the larger database resulted in a worse prediction. This often
occurred when a medium or poor quality prediction was replaced by another.
This was usually only a small decrease in quality as measured by RMSD, but
in a few instances the degradation was substantial.

T0393 residues 62-67

An example of the worst case of LoopWeaver doing poorly with a larger
database can be seen in length 6 loop in target T0393, from residue 62 to
residue 67. This loop connects a short helix to a beta strand, and runs par-
allel to two other loops involved in this beta sheet. Using the 2000 database,
LoopWeaver selected a loop from protein 1CJC, chain A, starting at residue
number 141. Because of the restrictive environment around this loop, few
candidates were clash free so LoopWeaver selected a pass 2 candidate. After
clash avoidance this database loop had a local and global RMSD of 0.62A and
0.90A respectively.. However, when given the 2002, 2003, or 2004 database,
LoopWeaver instead selected protein 1JJ2 chain Y at residue number 47.
After clash avoidance this loop has local and global RMSDs of 1.36A and

78

1.57A respectively. Using a 2005 or newer database, LoopWeaver again made
a worse selection by picking 1LEH chain A, residue number 350. After clash
avoidance this loop scored approximately 1.72A and 2.12A. These loops can
be seen in Figure 3.14. The 2000 loop (orange) follows the native loop closely
(blue). The 2002-4 and 2005-2008 loops (pale green, magenta) were not as
precise. However, they still follow the path quite closely. Table 3.15 shows the
local and global RMSD scores for each year. The clash avoidance algorithm
derives the second iteration WMDS instance from the set of non-clashing
loop candidates from the first iteration, which is why the same template
had different RMSD scores depending on the database date. This also par-
tially explains the inconsistency in selecting candidates, as these changes also
altered the DFIRE energy of the candidates.

Another source of noise is that energy functions are only an approximate
way of selecting the best loop, and loops do not always have the actual
lowest energy conformation[61]. Additionally, local and global RMSD values
are only an approximate measure of similarity, so it is not a certainty that
selecting a loop with a lower energy score but higher RMSD score is a mistake.
As shown in Figure 3.14 the different LoopWeaver solutions follow almost
the same path. In any event ROSETTA KIC refinement refined the ILEHA
loop to 0.49A local and 0.83A global RMSD, supporting the idea that the
most important thing is following a reasonable path. The older matches are
likewise refined to a near native conformation.

T0431 residues 453-463

A second example of worsening performance over time can be seen in target
T0431, loop from residue 453 to 463 (length 11). For 2000-2006 LoopWeaver
selected database protein 1IDML chain A, starting at residue 259. After
fitting, this loop had local and global RMSD values of 1.62A and 2.38A
respectively. This is shown as the orange loop in Figure 3.15, where it can be
seen following the same general path as the native (blue) loop. When using
the 2006 database (and again when using the 2007 database), LoopWeaver
instead selected 2GB3 chain A, at residue 35, as its database loop. This loop
scored 2.51A and 4.50A, and is shown in pale green, where it can be seen
extending much further out into solvent. This is a case where the performance
of LoopWeaver dropped substantially as a direct result of a larger database.
Unlike the first example, this was not caused by a loop with better energy but

79

Figure 3.14: LoopWeaver results for CASP8 target T0393, loop from residue
62 (left) to 67 (right)

Native structure, including native loop (A). In orange is the LoopWeaver
2000 loop (B). In pale green is the LoopWeaver 2002 loop (C). In magenta
is the LoopWeaver 2005 loop (D).

80

Table 3.15: LoopWeaver results for target T0393, loop at residues 62-67 vs
database year.

Year Local RMSD Global RMSD Template ¢

2000 0.63 0.90 1CJC A 141-146
2001 1.14 1.48 2TNF A 142-147
2002 1.36 1.57 1JJ2 Y 47-52
2003 1.35 1.54 1JJ2 Y 47-52
2004 1.36 1.57 1JJ2 Y 47-52
2005 1.72 2.12 ILEH A 350-355
2006 1.72 2.16 1ILEH A 350-355
2007 1.72 2.15 ILEH A 350-355
2008 1.72 2.14 ILEH A 350-355

*PDB ID, Chain ID, Residue IDs

worse RMSD being introduced. The 1DML loop after fitting has a DFIRE
energy potential of -1002.4, while the 2GBA loop had a worse score of -909.4.
The reason the higher scoring loop was no longer used is that it was not in the
top 500 by RMSDgtep,- That is, a larger database eventually resulted in too
many medium and poor results to identify this particular medium candidate.
This does not appear to occur often in shorter loops. It may be necessary
to increase the number of matches selected when dealing with longer loops,
just as it is in other approaches. However, the 2008 loop used is from protein
3B6H chain A, and it has loop scores of 0.64A local and 1.24A global RMSD.
The DFIRE energy of this new loop is -930.232, higher than the -1002.4 of
the 1DML loop. In this case, for the full (2008) database, increasing to the
number of matches used would have resulted in selecting the less accurate
1DML database loop.

81

Figure 3.15: LoopWeaver Results for CASPS8 target T0431, loop from residue
453 (left) to 463 (right)

Native structure in dark blue, including native loop, labeled (A). The 2000-
2003 database loop in orange and labeled (B). The 2006-2007 loop in pale
green and labeled (C).

82

Table 3.16: LoopWeaver results for target T0431, loop from residue 453 to
463, over time.

Year Local RMSD Global RMSD Template ¢

2000 1.62 2.38 IDML A 259-269
2001 1.62 2.38 IDML A 259-269
2002 1.62 2.38 IDML A 259-269
2003 1.62 2.38 IDML A 259-269
2004 2.01 2.95 1EGJ H 131-141
2005 2.15 3.55 1FP5 A 532-532
2006 2.51 4.50 2GB3 A 35-45

2007 2.51 4.61° 2GB3 A 35-45

2008 0.66 1.23 3B6H A 467-477

“PDB ID, Chain ID, Residue IDs
bthis is different from the above value due to the clash avoidance step

3.7 Clash Avoidance

Although database matches were only selected if the initial placement did not
clash with the surrounding environment, sometimes many of them clashed
after the WMDS fitting. LoopWeaver performed a second round of WMDS
fitting in an to attempt to avoid these clashes (Section 2.2 details this step)
and although it did eliminate clashes, it was always possible to do so for
all candidates. Table 3.17 details the clash statistics for the different test
sets. We can see that on average at least 400 of the 500 matches were clash
free, and the median was even higher, suggesting that there were only a few
very difficult cases. This is reflected by the minimum values being very low.
However, a large number of clashes was not always a sign of poor predictions.
A database loop that is very similar and comes from a similar environment
will not clash, so difficulty fitting loops in a clash-free manner does not always
imply that the few loops that do fit will be of low quality. For the set of length
7 loops, the most difficult loop had only had only 90 matches (out of 500)
that LoopWeaver fitted without clashes. However, the protein that contains
this loop has a close homolog in the database, and because of this, one of the
90 matches was almost identical to the native loop (0.14A local RMSD, 0.19A
global RMSD). Although this one result was the most dramatic, overall there
was no correlation between the number of clashes and the accuracy of the

83

Table 3.17: Number of clashing candidates before and after clash avoidance.

Before After
Length [Min Mean Median | Min Mean Median
6 90 413.31 445.0 | 123 475.02 498.0
7 90 407.08 442.5 | 114 462.70 494.5
8 39 367.99 424.0 | 102 459.77 495.0
9 27 384.56 421.0 84 467.65 494.0
10 42 342.22 362.5 | 179 452.48 490.5
11 9 286.00 289.0 40 407.52 480.5

prediction. The most difficult loop was from CASP9 target T0585 between
residues 83 to 93 (length 11), which had only 9 matches. Clash avoidance
improved this to 230, so almost half of the clashes were resolved. However,
none of second group of loop candidates had lower energy than the candidate
that was selected. This match had RMSD scores of 2.18A local and 2.18A
global, close to the average local RMSD score and better than the average
global RMSD score.

The second pass WMDS to avoid clashes consistently increased the num-
ber of usable matches. When we look at the median value, the number of
clash-free matches was almost 500, so in most situations the clash avoidance
step was able to resolve almost all clashes. However, there was no significant
change to the testing scores if this step was skipped, as the pass two candi-
dates were worse as often as they were better. It is possible that with further
modifications this step could avoid clashes with less negative impact on the
quality of the loop, by my current method does not appear useful outside of
cases where there are few usable matches without it.

84

Chapter 4

Summary and Outlook

I have demonstrated a new way of generating closed loop candidates us-
ing a database of proteins with known structure. By the application of
the weighted multi-dimensional scaling problem, LoopWeaver is able to fit
database loops into the target protein in a way that is much more energeti-
cally favourable than previous approaches. This means that energy functions
are much more able to accurately rank the resulting loop candidates. These
small changes have little effect on the shape of the loop itself, only the bond
and dihedral angles where it is placed into the gap, so it remains as effec-
tive as other database techniques for selecting high quality candidates when
they are available. While the angles and bond distances are still not en-
tirely realistic, and so in any event refinement is required for truly realistic
predictions, LoopWeaver’s rapid refinement process allows for a superior ini-
tial selection, so that only one candidate must be refined through more time
intensive approaches such as ROSETTA’s KIC refinement.

I have also demonstrated that while database loops are best used as a
complement to statistical results instead of a replacement, with proper fit-
ting and refinement by LoopWeaver these loops are an adequate sampling
of the conformational space. LoopWeaver’s predictions are superior to most
methods of loop modeling, and are approximately ten times as fast as all tools
but Loopy. When using ROSETTA to do final refinement of loop candidates
LoopWeaver’s results are no longer the best, but are still comparable. How-
ever, these database loops remain highly complementary to the statistical
results and so the combined LoopWeaver and statistical results are superior
to either method alone, both before and after refinement.

85

Although LoopWeaver’s current implementation is producing acceptable
results, these results are not as accurate as they could be. In all of the cases
where LoopWeaver produces medium or worse quality predictions, there are
a number of loop candidates generated with better scores, but which were not
selected by DFIRE. It is not clear if other energy functions would improve
this situation. I have examined several energy functions besides DFIRE, and
found that they all perform the same or worse. For example, although the
RWP paper[62] shows large improvements over the DFIRE function for full
protein structure prediction, I do not observe the same improvement when
comparing loops. The Dipolar DFIRE (DDFIRE)[63] also showed improved
accuracy for proteins in general, but did not work as well for loop selection.
It is often the case that loops do not always take on the most energetically
favourable conformation[33], so it is not entirely unexpected that the most
effective energy function for whole proteins may not be the most effective for
loops.

This ranking problem may also be the result of the sidechain predictions
used. DFIRE is sensitive to the accuracy of the sidechain predictions made.
RWP also is quite dependent on sidechain accuracy. Although TreePack
is the best tool that I have tried in terms of both speed and the accuracy
of the final loop candidate ranking, it is not in general regarded as the best
method of sidechain prediction. So all combinations of sidechain packing and
energy functions must be tested in order to obtain a complete analysis. We
saw earlier that there is substantial difference between the minimum average
RMSD scores, and the average RMSD scores obtained by DFIRE selection.
Thus there is room for improvement with respect to the energy function used.

As LoopWeaver’s database used x-ray models from the PDB, it may be
possible to improve its matching by incorporating the B-Value from these
models. The B-Value measures both the disorder of the region and the
error in the model. As such, it may be useful to rank matches based on a
combination of stem RMSD and B-Value, rather than on stem RMSD alone.
However, it is difficult to separate the model error and disorder components
from the B-Value, and one would not want to discard matches with low error
but high disorder as one may be modeling a loop that has a similarly high
disorder. This makes the approach less than straightforward.

The LoopWeaver technique, as a database approach, is limited by the
accuracy of the rest of the protein, especially the stems. Because LoopWeaver
adjusts the atomic coordinates of the database match, it is less likely to

86

encounter situations where it cannot place a loop into the gap as a result
of incorrect stems, but cannot always do so if the stems are very unusual.
If the stems of the gap are either too close together or too far apart, it is
difficult or impossible to connect them together. This is true for statistical
approaches as well, but statistical tools can sample unusual conformations
and database tools can only use conformations in the database. A standard
approach, used both in the database based tool FREAD, and the statistical
tool ROSETTA, is to extend the gap outward until realistic loop candidates
can be generated. This approach works better for database tools than it
does for statistical tools; as searching the database is very fast, the tool can
quickly tell if an extension of the gap results in sufficient database matches.
A statistical tool would rely on heuristics for deciding how much extension
is required for realistic loop modeling. FREAD has no trouble with this
situation as typically all matches found are highly accurate because of the
strong filters used. LoopWeaver will require a more careful examination of
the database matches in order to determine whether a given gap extension
is usable.

Further, although multi-dimensional scaling works well in these exper-
iments, it is not the only way to solve sets of distance constraints. For
example, semidefinite programming has been used successfully for protein
docking prediction [64], although by using database matches, LoopWeaver
has a full set of constraints so this approach may not yield many advantages
over multi-dimensional scaling. The random and direct tweak algorithms
used in Loopy to close and refine statistically generated loops also are based
on satisfying sets of distance constraints, so it may also be possible to adapt
these algorithms to place adjusted database loops into the gap.

The parameters used for the multi-dimensional scaling step were derived
empirically, based on the desire for weights to be inversely proportional to
the expected amount of deviation observed between similar loops. Currently
no work has been done on confirming that these values yield the best results
possible. Indeed, minor changes to the parameters can have a large impact
on the final scores. Changes to the parameters have almost no effect on the
loops themselves, so their effect on the final score is almost entirely due to
the sidechain packings and energy potentials. If these parameters are trained
in order to produce the best scores before ranking, it may not translate to
improved scores after ranking because of the sidechain and energy function
issues.

87

The method of clash avoidance is also quite ad hoc and only marginally
effective. For atoms that are often interfering with loop placement, desired
distances are estimated by examining the high scoring non-clashing candi-
dates using a backbone-only DFIRE score and taking the average pairwise
distances to loop atoms. While this is effective at preventing clashes with
these atoms, it results in large changes to the shape and orientation of the
loop. Currently the same estimated distance is used for all matches when
doing clash avoidance. Some improvement may be had by instead cluster-
ing similar non-clashing loops. The pairwise distances for new atoms in the
second formulation could then be based on the average distances from the
cluster each candidate belongs to, instead of the average over all non-clashing
candidates. Although clashes are uncommon for most of the loop regions
tested, cases where loops pass close to each other are the most difficult for
LoopWeaver to predict because any accurate prediction has a good chance
of clashing with the nearby loop. Presently the clash avoidance algorithm is
interesting in that it largely avoids clashes, but it is not practical as these
loops are not useful unless no alternatives are present. In the test sets I
used, there were always alternatives present so the clash avoidance step did
not improve the average scores.

88

Copyright Permissions

Figure 1.1 is authored by Yassine Mrabet[1] who has granted all people the
unconditional right to use this image for any purpose. Figure 1.2 is based on
this work.

Figure 1.3 is authored by LadyOfHats[2] who has granted all people the
unconditional right to use this image for any purpose.

Figure 1.4 is reproduced from Liu and Altman 2009[3| figure 1, in compliance

with the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/2.0)

89

http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0

Bibliography

1]

8]

YassineMrabet, “Structure gnrale dun acide amin..” http:
//upload.wikimedia.org/wikipedia/commons/archive/c/ce/
20070812164301 ! AminoAcidball.svg, Aug 2007.

LadyOfHats, “Main protein structure levels.” http://en.wikipedia.
org/wiki/File:Main_protein_structure_levels_en.svg, Oct 2008.

T. Liu and R. B. Altman, “Prediction of calcium-binding sites by com-
bining loop-modeling with machine learning,” BMC' Struct. Biol., vol. 9,
p- 72, 2009.

R. A. Engh and R. Huber, “Accurate bond and angle parameters for
X-ray protein structure refinement,” Acta Crystallographica Section A,
vol. 47, pp. 392-400, Jul 1991.

C. Brandén and J. Tooze, Introduction to Protein Structure. Garland
Publishing, Incorporated, 1999.

W. Kabsch and C. Sander, “Dictionary of protein secondary struc-
ture: Pattern recognition of hydrogen-bonded and geometrical features,”
Biopolymers, vol. 22, no. 12, pp. 2577-2637, 1983.

G. N. RAMACHANDRAN, C. RAMAKRISHNAN, and
V. SASISEKHARAN, “Stereochemistry of polypeptide chain con-
figurations,” J. Mol. Biol., vol. 7, pp. 95-99, Jul 1963.

K. Wuthrich, “The way to nmr structures of proteins,” Nat Struct Mol
Biol, vol. 8, pp. 923-925, Nov 2001.

90

http://upload.wikimedia.org/wikipedia/commons/archive/c/ce/20070812164301!AminoAcidball.svg
http://upload.wikimedia.org/wikipedia/commons/archive/c/ce/20070812164301!AminoAcidball.svg
http://upload.wikimedia.org/wikipedia/commons/archive/c/ce/20070812164301!AminoAcidball.svg
http://en.wikipedia.org/wiki/File:Main_protein_structure_levels_en.svg
http://en.wikipedia.org/wiki/File:Main_protein_structure_levels_en.svg

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

T. U. Consortium, “Reorganizing the protein space at the universal
protein resource (uniprot),” Nucleic Acids Research, vol. 40, no. D1,
pp- D71-D75, 2012.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weis-
sig, I. N. Shindyalov, and P. E. Bourne, “The protein data bank,” Nu-
cleic Acids Research, vol. 28, no. 1, pp. 235-242, 2000.

A. Yonath, “X-ray crystallography at the heart of life science,” Current
Opinion in Structural Biology, vol. 21, no. 5, pp. 622 — 626, 2011.

“Current release statistics < uniprotkb < embl-ebi.” Available at: http:
//www.ebi.ac.uk/uniprot/TrEMBLstats Accesed Jun. 7, 2013.

“Resb pdb - content growth report.” Available at: http:
//www.pdb.org/pdb/statistics/contentGrowthChart.do?content=
total&seqid=100 Accessed Jun. 7, 2013.

P. E. Leopold, M. Montal, and J. N. Onuchic, “Protein folding funnels:
a kinetic approach to the sequence-structure relationship.,” Proceedings
of the National Academy of Sciences, vol. 89, no. 18, pp. 8721-8725,
1992.

P. Bradley, K. M. S. Misura, and D. Baker, “Toward high-resolution de
novo structure prediction for small proteins,” Science, vol. 309, no. 5742,
pp- 18681871, 2005.

B. Qian, S. Raman, R. Das, P. Bradley, A. J. McCoy, R. J. Read, and
D. Baker, “High-resolution structure prediction and the crystallographic
phase problem,” Nature, vol. 450, pp. 259 — 264, Nov 2007.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “Scop: A
structural classification of proteins database for the investigation of se-

quences and structures,” Journal of Molecular Biology, vol. 247, no. 4,
pp- 536 — 540, 1995.

I. Sillitoe, A. L. Cuff, B. H. Dessailly, N. L. Dawson, N. Furnham,
D. Lee, J. G. Lees, T. E. Lewis, R. A. Studer, R. Rentzsch, C. Yeats,
J. M. Thornton, and C. A. Orengo, “New functional families (FunFams)
in CATH to improve the mapping of conserved functional sites to 3D
structures,” Nucleic Acids Res., vol. 41, pp. D490-498, Jan 2013.

91

http://www.ebi.ac.uk/uniprot/TrEMBLstats
http://www.ebi.ac.uk/uniprot/TrEMBLstats
http://www.pdb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100
http://www.pdb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100
http://www.pdb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100

[19]

[20]

[21]

[22]

[23]

R. H. Lathrop, “The protein threading problem with sequence amino
acid interaction preferences is NP-complete,” Protein FEng., vol. 7,
pp. 1059-1068, Sep 1994.

J. Soding, A. Biegert, and A. N. Lupas, “The HHpred interactive server
for protein homology detection and structure prediction,” Nucleic Acids
Res., vol. 33, pp. W244-248, Jul 2005.

J. Xu, M. Li, D. Kim, and Y. Xu, “RAPTOR: optimal protein threading
by linear programming,” J Bioinform Comput Biol, vol. 1, pp. 95-117,
Apr 2003.

M. Kallberg, H. Wang, S. Wang, J. Peng, Z. Wang, H. Lu, and J. Xu,
“Template-based protein structure modeling using the RaptorX web
server,” Nat Protoc, vol. 7, pp. 1511-1522, Aug 2012.

A. Fiser and A. Sali, “Modeller: Generation and refinement of homology-
based protein structure models,” in Macromolecular Crystallography,
Part D (J. Charles W. Carter and R. M. Sweet, eds.), vol. 374 of Methods
in Enzymology, pp. 461 — 491, Academic Press, 2003.

A. Kryshtafovych, C. Venclovas, K. Fidelis, and J. Moult, “Progress
over the first decade of casp experiments.,” Proteins, vol. 61 Suppl 7,
no. S7, pp. 225-236, 2005.

Y. Zhang and J. Skolnick, “Scoring function for automated assessment
of protein structure template quality,” Proteins: Structure, Function,
and Bioinformatics, vol. 57, no. 4, pp. 702-710, 2004.

A. Zemla, C. Venclovas, J. Moult, and K. Fidelis, “Processing and evalu-
ation of predictions in casp4,” Proteins: Structure, Function, and Bioin-
formatics, vol. 45, no. S5, pp. 13-21, 2001.

A. Zemla, “Lga: a method for finding 3d similarities in protein struc-
tures,” Nucleic Acids Research, vol. 31, no. 13, pp. 3370-3374, 2003.

J. C. Whisstock and A. M. Lesk, “Prediction of protein function
from protein sequence and structure,” Quarterly Reviews of Biophysics,
vol. 36, pp. 307-340, 7 2003.

92

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

E. T. Kool, “Active site tightness and substrate fit in dna replication.,”
Annual review of biochemistry, vol. 71, pp. 191 — 219, Nov 200.

Z. Szeltner, T. Juhasz, 1. Szamosi, D. Rea, V. Fulop, K. Modos,
L. Juliano, and L. Polgar, “The loops facing the active site of prolyl
oligopeptidase are crucial components in substrate gating and speci-
ficity.,” Biochimica et biophysica acta, vol. 1834, pp. 98 — 111, Jan 2000.

C. Smith and I. Rayment, “Active site comparisons highlight struc-
tural similarities between myosin and other p-loop proteins,” Biophysical
Journal, vol. 70, no. 4, pp. 1590 — 1602, 1996.

J. Greenwald, V. Le, S. L. Butler, F. D. Bushman, and S. Choe, “The
mobility of an hiv-1 integrase active site loop is correlated with catalytic
activity,” Biochemistry, vol. 38, no. 28, pp. 8892-8898, 1999.

A. Fiser, R. Do, and A. Sali, “Modeling of loops in protein structures,”
Protein Science, vol. 9, pp. 1753-1773, September 2000.

J. E. Walker, M. Saraste, M. J. Runswick, and N. J. Gay, “Distantly
related sequences in the alpha- and beta-subunits of ATP synthase,

myosin, kinases and other ATP-requiring enzymes and a common nu-
cleotide binding fold,” EMBO J., vol. 1, no. 8, pp. 945-951, 1982.

L. Wei and R. B. Altman, “Recognizing complex, asymmetric functional
sites in protein structures using a Bayesian scoring function,” J Bioin-
form Comput Biol, vol. 1, pp. 119138, Apr 2003.

Z. Xiang, C. S. Soto, and B. Honig, “Evaluating conformational free en-
ergies: The colony energy and its application to the problem of loop pre-
diction,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 99, no. 11, pp. 7432-7437, 2002.

P. S. Shenkin, D. L. Yarmush, R. M. Fine, H. Wang, and C. Levinthal,
“Predicting antibody hypervariable loop conformation. i. ensembles of
random conformations for ringlike structures,” Biopolymers, vol. 26,
no. 12, pp. 2053-2085, 1987.

C. S. S. Soto, M. Fasnacht, J. Zhu, L. Forrest, and B. Honig, “Loop
modeling: sampling, filtering, and scoring.,” Proteins, August 2007.

93

[39]

[40]

[41]

[42]

[44]

[45]

[46]

[47]

Z. Xiang and B. Honig, “Extending the accuracy limits of prediction for
side-chain conformations,” Journal of Molecular Biology, vol. 311, no. 2,
pp- 421 — 430, 2001.

H. Zhou and Y. Zhou, “Distance-scaled, finite ideal-gas reference state
improves structure-derived potentials of mean force for structure selec-
tion and stability prediction,” Protein Science, vol. 11, pp. 2714-2726,
November 2002.

K. Zhu, D. L. Pincus, S. Zhao, and R. A. Friesner, “Long loop predic-
tion using the protein local optimization program,” Proteins: Structure,
Function, and Bioinformatics, vol. 65, pp. 438452, November 2006.

P. 1. W. de Bakker, M. A. DePristo, D. F. Burke, and T. L. Blundell, “Ab
initio construction of polypeptide fragments: Accuracy of loop decoy
discrimination by an all-atom statistical potential and the amber force
field with the generalized born solvation model,” Proteins: Structure,
Function, and Bioinformatics, vol. 51, no. 1, pp. 21-40, 2003.

A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack, “A graph-
theory algorithm for rapid protein side-chain prediction,” Protein Sci-
ence, vol. 12, no. 9, pp. 2001-2014, 2003.

A. A. Canutescu and R. L. Dunbrack, “Cyclic coordinate descent: A
robotics algorithm for protein loop closure,” Protein Science, vol. 12,
no. 5, pp. 963-972, 2003.

D. J. Mandell, E. A. Coutsias, and T. Kortemme, “Sub-angstrom accu-
racy in protein loop reconstruction by robotics-inspired conformational
sampling,” Nat. Methods, vol. 6, no. 8, pp. 551-552, 2009.

E. A. Coutsias, C. Seok, M. J. Wester, and K. A. Dill, “Resultants and
loop closure,” International Journal of Quantum Chemistry, vol. 106,
no. 1, pp. 176-189, 2006.

C. M. Deane and T. L. Blundell, “Coda: A combined algorithm for
predicting the structurally variable regions of protein models,” Protein
Science, vol. 10, pp. 599-612, March 2001.

94

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Y. Choi and C. M. Deane, “Fread revisited: Accurate loop structure pre-
diction using a database search algorithm,” Proteins: Structure, Func-
tion, and Bioinformatics, vol. 78, pp. 1431-1440, May 2010.

E. Michalsky, A. Goede, and R. Preissner, “Loops In Proteins (LIP)-a
comprehensive loop database for homology modelling,” Protein Engi-
neering, vol. 16, no. 12, pp. 979-985, 2003.

P. W. Hildebrand, A. Goede, R. A. Bauer, B. Gruening, J. Ismer,
E. Michalsky, and R. Preissner, “SuperLoopera prediction server for the

modeling of loops in globular and membrane proteins,” Nucleic Acids
Research, vol. 37, no. suppl 2, pp. W571-W574, 2009.

J. de Leeuw, “Applications of Convex Analysis to Multidimensional
Scaling,” in Recent Developments in Statistics (J. Barra, F. Brodeau,
G. Romier, and B. van Cutsem, eds.), pp. 133-146, North Holland Pub-
lishing Compant, 1977.

J. Xu, “Rapid protein side-chain packing via tree decomposition,” in
Research in Computational Molecular Biology (S. Miyano, J. Mesirov,
S. Kasif, S. Istrail, P. Pevzner, and M. Waterman, eds.), vol. 3500 of
Lecture Notes in Computer Science, pp. 423-439, Springer Berlin / Hei-
delberg, 2005.

J. Xu and B. Berger, “Fast and accurate algorithms for protein side-
chain packing,” J. ACM, vol. 53, pp. 533-557, July 2006.

G. Wang and R. L. Dunbrack, “PISCES: a protein sequence culling
server,” Bioinformatics, vol. 19, no. 12, pp. 1589-1591, 2003.

J. Zhang, Q. Wang, B. Barz, Z. He, 1. Kosztin, Y. Shang, and D. Xu,
“Mufold: A new solution for protein 3d structure prediction,” Proteins:
Structure, Function, and Bioinformatics, vol. 78, pp. 1137-1152, April
2010.

J. D. Cohen, “Drawing graphs to convey proximity: an incremental
arrangement method,” ACM Trans. Comput.-Hum. Interact., vol. 4,
pp. 197-229, September 1997.

W. Basalaj, “Proximity visualization of abstract data,” tech. rep., Uni-
versity of Cambridge Computer Laboratory, 2001.

95

[58]

[59]

[60]

C. Zhang, S. Liu, and Y. Zhou, “Accurate and efficient loop selections by
the dfire-based all-atom statistical potential,” Protein Science, vol. 13,
no. 2, pp. 391-399, 2004.

D. J. Mandell and R. A. Pache, “Rosetta projects: Docu-
mentation for kinematic loop modeling.” Available at: http:
//rosettacommons.org/manuals/archive/rosetta3.3_user_guide/
app_kinematic_loopmodel.html Accessed Dec. 1, 2011, October 2011.

J. Lee, D. Lee, H. Park, E. A. Coutsias, and C. Seok, “Protein loop mod-
eling by using fragment assembly and analytical loop closure,” Proteins:
Structure, Function, and Bioinformatics, vol. 78, no. 16, pp. 3428-3436,
2010.

K. C. Smith and B. Honig, “Evaluation of the conformational free ener-
gies of loops in proteins,” Proteins: Structure, Function, and Bioinfor-
matics, vol. 18, no. 2, pp. 119-132, 1994.

J. Zhang and Y. Zhang, “A novel side-chain orientation dependent po-
tential derived from random-walk reference state for protein fold selec-
tion and structure prediction,” PLoS ONE, vol. 5, p. €15386, 10 2010.

Y. Yang and Y. Zhou, “Specific interactions for ab initio folding of
protein terminal regions with secondary structures,” Proteins, vol. 72,
pp- 793-803, Aug 2008.

Y. Shen, I. C. Paschalidis, P. Vakili, and S. Vajda, “Protein docking
by the underestimation of free energy funnels in the space of encounter
complexes,” PLoS Comput Biol, vol. 4, p. e1000191, 10 2008.

96

http://rosettacommons.org/manuals/archive/rosetta3.3_user_guide/app_kinematic_loopmodel.html
http://rosettacommons.org/manuals/archive/rosetta3.3_user_guide/app_kinematic_loopmodel.html
http://rosettacommons.org/manuals/archive/rosetta3.3_user_guide/app_kinematic_loopmodel.html

	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Proteins and Protein Structure
	Protein Structure
	Determining Protein Structure
	Predicting Protein Structure

	Loop Modeling
	Problem Definition
	Motivation

	Previous Work
	Statistical
	Knowledge Based
	Comparative Advantages Between Approaches

	LoopWeaver
	Method Overview
	Method Details
	Database Matches
	Fitting the Loop
	Clashes
	LoopWeaver Pseudocode
	Ranking and Selection

	Results
	Test Sets
	Details of Other Methods Used
	ModLoop
	RAPPER
	Loopy
	ROSETTA
	Other Tools

	Scores
	Combined Scores
	Database Accuracy over Time
	Example Loops
	LoopWeaver Compared with Other Tools
	LoopWeaver's Performance over Time

	Clash Avoidance

	Summary and Outlook
	Copyright Permissions
	Bibliography

