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Abstract

Vibration control is inevitable in many fields, including mechanical and civil engineering. This
matter becomes more crucial for lightweight systems, like those made of magnesium. One of the
most commonly practiced methods in vibration control is to apply constrained layer damping
(CLD) patches to the surface of a structure. In order to consider the weight efficiency of the
structure, the best shape and locations of the patches should be determined to achieve the
optimum vibration suppression with the lowest amount of damping patch. In most research work
done so far, the shape of patches are assumed to be known and only their optimum locations are
found. However, the shape of the patches plays an important role in vibration suppression that

should be included in the overall optimization procedure.

In this research, a novel topology optimization approach is proposed. This approach is capable
of finding the optimum shape and locations of the patches simultaneously for a given surface
area. In other words, the damping optimization will be formulated in the context of the level set

technique, which is a numerical method used to track shapes and locations concurrently.

Although level set technique offers several key benefits, its application especially in time-
varying problems is somewhat cumbersome. To overcome this issue, a unique programming

technique is suggested that utilizes MATLAB© and COMSOL®© simultaneously.

Different 2D structures will be considered and CLD patches will be optimally located on them
to achieve the highest modal loss factor. Optimization will be performed while having different
amount of damping patches to check the effectiveness of the technique. In all cases, certain

constraints are imposed in order to make sure that the amount of damping material remains
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constant and equal to the starting value. Furthermore, different natural frequencies will be

targeted in the damping optimization, and their effects will also be explained.

The level set optimization technique will then be expanded to 3D structures, and a novel
approach will be presented for defining an efficient 4D level set function to initialize the
optimization process. Vibrations of a satellite dish will be optimally suppressed using CLD
patches. Dependency of the optimum shape and location of patches to different parameters of the
models such as natural frequencies and initial starting point will be examined. In another
practical example, excessive vibrations of an automotive dash panel will be minimized by adding

damping materials and their optimal distribution will be found.

Finally, the accuracy of the proposed method will be experimentally confirmed through lab
tests on a rectangular plate with nonsymmetrical boundary conditions. Different damping
configurations, including the optimum one, will be tested. It will be shown that the optimum
damping configuration found via level set technique possesses the highest loss factor and reveals

the best vibration attenuation.

The proposed level set topology optimization method shows high capability of determining the
optimum damping set in structures. The effective coding method presented in this research will
make it possible to easily extend this method to other physical problems such as image
processing, heat transfer, magnetic fields, etc. Being interconnected, the physical part will be
modeled in a finite element package like COMSOL and the optimization advances by means of
Hamilton-Jacobi partial differential equation. Thus, the application of the proposed method is not

confined to damping optimization and can be expanded to many engineering problems.

In summary, this research:

v



offers general solution to 2D and 3D CLD applications and simultaneously finds the best

shape and location of the patches for a given surface area (damping material);

extends the level set technique to concurrent shape and location optimization;

proposes a new numerical implementation to handle level set optimization problems in any

complicated structure;

makes it possible to perform level set optimization in time dependent problems;

extends level set approach to higher order problems.
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Chapter 1

Introduction

Although vibrations are desirable in cases such as loudspeakers or the reed in woodwind
instruments, they are often undesirable because of their propensity to waste energy and create
unwanted noise. An example of an undesirable vibration is the oscillatory motions in automotive
engines or the vehicle body during operation. These unwanted vibrations can cause irritating
rattles and metal fatigue, which can cause parts to break, resulting in potentially lethal
consequences. Due to these undesired consequences of unwanted vibrations, the control of

vibration is important in many fields, including mechanical engineering.

Active [1,2], passive [3] and semi-active or hybrid [4] control methods can be used for
vibration suppression. In an active system, a force is applied in an equal and opposite direction to
the forces imposed by the external excitations, while in a passive control system, the energy of
vibration is dissipated by a damping element without any feedback capability. Hybrid methods
make use of both approaches and combine features of active and passive control systems. It is
often desirable to lower the control effort as much as possible to achieve the optimal control law.
While this may seem strange regarding passive vibration control (since no input force is involved
in the control process), minimizing the number of dissipative elements and finding their best
locations in the system will be targeted by the optimal control strategy. This fact becomes more
critical in energy efficient systems such as lightweight structures. In lightweight structures, the
energy consumption is reduced by lowering the weight of the system. An example of such
systems is the BMW Z4, which uses magnesium-aluminum alloy in its crankcase to lower its

weight by 24 percent [5].



Noise vibration and harshness analysis is essential for such lightweight structures, as the
vibrational properties of the structure changes and the lower mass makes it more prone to

vibration.

Passive vibration control via constrained layer damping (CLD) has demonstrated suitable
efficiency in the vibration control of lightweight structures, and has been used in airplanes and
some cars. Although CLD patches are used in lightweight structures, a comprehensive method to
achieve optimal (and desired) control effort with minimum usage of CLD patches is needed. How
much damping patches should be used? Where in the system should they be applied? What is the
best shape of the patches? All these questions should be answered to achieve the optimal
solution. Despite the fact that several researchers have worked on the optimal vibration
suppression in dynamical systems, simultaneous optimization of shape and location of added

damping material has not yet been addressed comprehensively.

This research proposes a novel method that concurrently answers all the above questions. It
can simultaneously optimize the shape and locations of CLD patches, while their area remains
constant. In fact, a structural topology optimization approach is introduced to optimize damping

materials applied to a structure.

Level set technique offers several advantages, however its application is somewhat
challenging, especially in time varying systems. The reason is that in level set approach the
optimization advances according to a partial differential equation (PDE) which possesses a
pseudo time. If the system condition is not static, the system time can mix up with the PDE time
and can lead to wrong solutions. In order to perform level set optimization without this issue, a

versatile computer code is developed in MATLAB© and COMSOL®©. This new approach will



avoid time mix-up and will make it possible to perform structural optimization in time and/or
frequency domain. The other key feature for this computer code is that the optimization
technique will not be limited to damping optimization. Optimization problems with any form of
objective functions (image processing, magnetic systems, thermal systems, etc.) can be solved
with this code because it is supported by a powerful finite element package that is only

responsible for evaluating the objective function and is not mixed with optimization portion.

Chapter 2 will perform a thorough literature review on the problem of optimal vibration
control, with a special focus on vibration control via constrained layer damping. Different
configurations of surface treatment will be discussed, and their application will be explained.
Furthermore, the problem of optimal control in systems with surface treatment will be explained
in full detail. This chapter will also examine and discuss key theories and methods such as the

modal strain energy method, which are used in modeling constrained layer dampers.

Chapter 3 addresses the new level set method, which is a numerical technique to track shapes
and interfaces. Following the explanation of this method and pointing out its advantages, the
application of this method to different areas, especially in the field of topology optimization, will
be studied. A structural topology optimization (compliance minimization) will be formulated in

the context of the level set method with all the necessary details.

Chapter 4 the level set technique is reformulated and applied to the damping optimization
problem. The new formulations and objective function will be discussed and developed. This
novel approach will address both the shape and location optimization simultaneously. In most
research work available in literature, in order to reduce the complexities of dynamic systems,

especially in level set context, they are modeled as static-equivalent. In contrast, to perform level



set topology optimization in frequency domain (without any need to consider a static-equivalent
model), in this research an interactive computer code is developed in MATLAB© and
COMSOLO. Objective function is evaluated using finite element technique and the optimization

progresses according to Hamilton-Jacobi equations.

A 2D structure with structural damping, undergoing flexural vibrations, will be considered.
The best shape for damping patches as well as their optimum location of the structure will be
determined to minimize the modal energy of the different vibrational modes of the system, and
the highest energy dissipation will be eventually achieved. During optimization process, certain
constraints are imposed to keep the total area of the patches constant. Another numerical example
will include a nonsymmetrical plate. The damping configuration will be optimized in the system,

and results will be compared with the literature.

Chapter 5 expands the level set damping optimization technique to 3D structures. A novel
method will be presented to generate initial 4D level set function. This approach will also make it
possible to model higher order systems and is not limited to 3D. Since satellite dishes are so
sensitive to vibrations, in the first 3D numerical example, CLD patches will be optimally shaped
and located on a satellite dish. Different natural frequencies and different amounts of damping
will be considered to examine the effectiveness of the method. In the second example, the

vibration of an automotive dash panel will be optimally suppressed via CLD patches.

Chapter 6 explains experimental tests, and considers a rectangular plate with non-symmetric
boundary conditions. Optimal damping configurations will initially be found for the system, and
then four different damping configurations, including those found via the level set technique, will

be tested and their vibrational performance compared. It will be experimentally shown that the



CLD shape and location, found via the level set technique, delivers the largest vibration

suppression.

Finally, conclusions and suggestions for future work will be discussed in Chapter 7.



Chapter 2

Literature Review and Background

Although different methods can be utilized in vibration control, choosing the right approach
largely depends on the level of vibrations. One of the best and most efficient methods of
vibration control in structures with low to mid-range vibration amplitude and frequency is the

application of viscoelastic materials.

In practice, viscoelastic materials, which are mostly polymers, cannot be used to build a
structure because they are not strong enough to tolerate loads. However, they can be efficiently
added on top of a structure. This vibration control approach (damping treatment) tries to add
viscoelastic materials to a structural system in such a way that maximum possible energy is
dissipated to achieve the highest vibration suppression. To do so, one needs to know the

dynamic behavior of the structure, as well as that of the viscoelastic materials [6].

As shown in Figure 2-1, viscoelastic materials can be added to a structure in different
configurations. Among these, the use of free layer viscoelastic materials is the simplest form of
treatment. However, in order to achieve a desired level of dampening characteristics, the

viscoelastic layer should have high levels of thickness, modulus, and loss factor.

i (c) EXTENSION/FLEXURE
Lo (d) SHEAR/FLEXURE
- l (b) SHEAR

(a) EXTENSION

Figure 2-1: Deformation of viscoelastic elements in different configurations [6]
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Although manufacturing costs and material price for this type of treatment are the lowest
among all available types, it is not weight efficient, so it is not applicable for vibration control in
lightweight structures. In order to attain higher dampening behaviour with lower viscoelastic
material (lighter weight), a more complicated treatment is commonly utilized. This treatment is
known as shear or constrained-layer damping (CLD) treatment. CLD comprises of a viscoelastic

layer that is capped by another metal layer, as shown in Figure 2-2.

| o Damping
/-‘»dheswe Constraining Layer Layer

L W |

Figure 2-2: Constrained Layer Damping (CLD) configuration [7]
When the structure vibrates, the CLD undergoes shear deformation as shown in Figure 2-3,

resulting in energy dissipation through damping properties of the CLD layers.

Adhesive - Damping
Constraining Layer Layer

Shear Base Layer (Substrate)

—»

lf——

Figure 2-3: Damping layer under shear while system vibrates [7]



CLD layers have been utilized in several mechanical systems, including component vibration
isolation, acoustical damping of planar surfaces, aircraft fuselage panels, dash panel vibration

control [8].

Misiurek and Sniady [9] worked on the dynamic response of a finite, simply supported
sandwich beam subjected to a moving force with a constant velocity. Their system included a
classic sandwich beam with a rectangular cross-section consisting of two thin, stiff, elastic sheets
and a thick core layer. They showed that from the two infinite series, whose sum reveals the
classical solution for transverse displacement and the rotation of the cross-section, the one
representing aperiodic vibrations of the beam could be presented in a closed form. Xin and Lu
[10] theoretically formulated the wave propagation in an infinite sandwich panel reinforced by
orthogonal rib-stiffeners during harmonic point force excitation. They determined the response of
the sandwich using the Fourier transform and the periodical nature of the structure. Challamel et
al. [11] worked on theoretical and numerical modeling of out-of-plane vibrations of composite
beams with interlayer slip or three-layer sandwich beams. Hamilton’s principle was utilized to
derive the governing differential equations. For the out-of-plane vibrations problems, they
noticed a phenomenon of cut-on frequency associated with a change of the shape of the natural

modes with respect to a critical frequency.

Won et al. [12] used the virtual work principle to derive a 2-node damped beam element for
three-layered symmetric straight damped sandwich structures. In the forced vibration, they add
three pairs of boundary conditions to the three-constrained-layer damped beam, so the rotation of
the mid-surface was added for the damped beam element to have three degrees of freedom per
node. They also considered the frequency dependence of the viscoelastic material properties.

Their proposed damped beam element showed more rapid convergences in resonance
8



frequencies. Chalak et al. [13] studied vibration of laminated sandwich beams with soft core.
They developed a C, finite element beam model to obtain the free vibration response of the
laminated sandwich beams having a soft core. In their developed model the in-plane
displacement variation was considered to be cubic for both the face sheets and the core. Their
proposed model would satisfy the condition of transverse shear stress continuity at the layer
interfaces and the zero transverse shear stress condition at the top and bottom of the beam. In the
same line, Sudhakar et al. [14] developed a super convergent finite element for analysis of
sandwich beams with soft core. Their element was a two-nodded, six degrees of freedom per
node. They assumed that all the axial and flexural loads were taken by face sheets, while the core
takes only the shear loads, however they considered exact representation of beam stiffness in the
formulation. They validated the performance of the developed element under static loadings and

for free vibration of the sandwich beams with metallic as well as composite face sheets.

Grewal et al. [15] worked on the vibration analysis and design optimization of sandwich beams
with constrained viscoelastic core layer. They used finite element method to analyze the dynamic
properties of sandwich beam-type structures. A comparison was made between their results for
linear and nonlinear models with those available in the literature. They showed that the natural
frequency and loss factor at the first mode of clamped-free sandwich beam did not show
considerable difference in linear and nonlinear models. The difference was more significant for
the clamp-clamp boundary condition. Eventually, they performed systematic parametric studies
to verify the effects of the location and length of both treated and untreated patches on both
natural frequency and the modal loss factor of the sandwich structure. Lopatin and Morozov [16]
modeled and analyzed symmetrical vibrations of composite sandwich panels. They solved the

vibration problem for a sandwich plate with identical composite facings and orthotropic core.
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They used Hamilton’s variational principle to derive differential equation of symmetric
vibrations. They assumed that the tangential displacements of the core material were negligible
and the normal displacements of the core material were nonlinearly varying from the value of the
facing deflection to zero. With these assumptions, they also defined the effective modulus of
elasticity of the core material in transverse direction. They finally compared the computational
results with those obtained from the finite element analysis. Arikoglu and Ozkol [17] analyzed
vibration and damping of a three-layered sandwich plate with composite face layers and a
viscoelastic core. They used the principle of virtual work to derive the governing equations and
related boundary conditions. They also took into account the frequency dependency of the core
layer. The eigenvalue problem was solved using the generalized differential quadrature method to
determine both the natural frequencies and loss factors. A comparison was made between their
results and those reported in the literature. They found that the core material providing the
highest damping would depend on the geometrical properties of the plate. Alijani and Amabili
[18] investigated the geometrically nonlinear vibrations of completely free laminated and
sandwich rectangular plates. They obtained the governing equations using multi-modal energy
approach based on Lagrange equations. Their numerical analysis was based on the nonlinear
classical and higher-order shear deformation theories. They found the solution based on highly

accurate natural modes calculated by linear analysis.

Hamidzadeh [19] investigated the effect of viscoelastic core thickness on the modal loss
factors of a thick three-layer cylinder. He accomplished the constrained-layer damping by
sandwiching a linear viscoelastic material between two isotropic elastic cylinders having the
same properties. The governing equations were derived using Newton’s second law of motion,

and employing the complex elastic moduli for the sandwiched layer. Then the natural frequencies
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and modal loss factors for different circumferential wave numbers were determined. It was
concluded that most frequency factors changed linearly when the middle-layer thickness varied,
i.e. frequency factors were linear functions of the middle-layer thickness, and for circumferential
wave number n = 0, all six modes of the modal loss factors increased linearly when the core
thickness increased. Wu et al. [20] studied the initial decay rate of vibrating plates in relation to
estimates of loss factor. They worked experimentally on the initial decay rate of the energy decay
curves on single, coupled, undamped, and damped rectangular plates. They confirmed that the
loss factors obtained when using the decay rate and the power input methods agree with each
other for undamped, lightly damped, highly damped (up to a specific frequency) and coupled
plates. Clarkson and Pope [21] carried out a study on experimental determination of modal
densities and loss factors of flat plates and cylinders. In their experiments several accelerometers
were required to determine the spatial average. The tests should be repeated several times with
different driving positions to obtain the average force position. Mead and Markus [22] studied
forced transverse vibration of a three-layer sandwich beam with a viscoelastic core. They derived
differential equations of motion for the system for different boundary conditions, and discussed
the orthogonality of the corresponding complex modes. Johnson and Kienholz [23] offered an
efficient method to predict damping in a structure with constrained viscoelastic layers. They
estimated the modal damping ratio from undamped normal modes via the modal strain
energy method (MSE). Maheri and Adams [24] used finite elements method based on laminated
plate theories to predict modal properties of a free-free Fibre Reinforced Polymer (FRP) plate
and validated their work with experimental results. More recently, Hambic et al. suggested a new
approach to infer viscoelastomer dynamic moduli with better accuracy [25]. Torvik and Runyon
[26] modified the method of modal strain energy to improve loss factor estimations for damped
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structures. It was found that the traditional application of MSE method would be appropriate for
the damping element with a very low stiffness. However, they observed that the error, resulting
from the use of MSE, would increase significantly for systems with higher damping element
stiffness, unless the material loss factor of the damping element is small (i.e., << 1). Instead of
analytical Ross-Kerwin-Ungar equations [27], they used the finite element model of CLD-treated
beams in their proposed inference method. They also performed experimental studies on beams

with CLD treatments.

After choosing the amount of CLD to be used to control unwanted vibrations, one of the
most important aspects to be aware of is the locations of the damping patches. A great deal of

research has been done on the optimal location of damping elements on a structure.

Gurgoze and Muller investigated the optimal positioning of one viscous damper in a linear
mechanical system with no structural damping [28]. They concluded that the positioning on the
basis of an “energy” criterion is more reasonable than other criteria. Although they analytically
formulated the positioning problem for one damper, for more general cases with two or more
dampers, the calculations have to be performed numerically. Optimal placement of viscous
elements on a structure, and the selection of their physical properties were addressed in [29] via
optimization techniques. The authors investigated and solved both continuous and discrete
optimization problems. Kincaid emphasised local search methods in solving the damper
placement problem in flexible space truss structures [30]. It was found that the coupling of linear
programming and Taboo search [31] would provide the highest quality solutions in the shortest

amount of computing time.
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Takewaki in [32-36] studied the location optimization of a passive damper location via
minimum transfer function. The sum of amplitudes of the transfer functions for the undamped
fundamental natural frequency of a structural system is minimized, subject to a constraint on the
sum of damping coefficients of the added dampers. The advantage of this method is that the
results are not affected by the characteristics of input motions because of the application of a

general dynamical property (amplitude of a transfer function), independent of system inputs.

Amini and Karagah addressed the optimal semi-active damper placement problem using the
pole assignment method [37]. They studied the effects of the locations of the controllers on the
control force and control performance, and concluded that the number of controllers can be
reduced by means of optimization. In other words, an optimum system with lesser numbers of
controllers will work more effectively than a non-optimum system with more semi-active
dampers. Joshi [38] used the H.-norm optimization to find the damper location for space-borne
interferometers. He introduced a general methodology that included optical-structural modeling,
damper modeling, H,, cost functional formulation and combinatorial optimization. Since in space,
interferometers offer several distinct disturbance sources, such as a reaction wheel, can act at
once and two separate optical performance metrics are of interest, he defined a cost criterion
based on a system Hoo-norm that allows consideration of multiple dissimilar disturbance sources
and multiple dissimilar performance metrics. He considered a discrete combinatorial optimization
problem of a finite number of dampers and finite number of possible damper locations. Since the
number of possible combinations grows N!/[(N!)(N-x)!], where N is the number of possible
damper locations and x is the number of dampers to be placed, some heuristic optimization
techniques needed to be applied. He investigated both Genetic Algorithm and Simulated

Annealing methods, and observed more efficiency from Simulated Annealing.
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Agrawal and Yang worked on combinatorial optimization of the location of passive dampers
on seismic and wind-excited buildings [39]. They used three intelligent search algorithms,
namely, sequential, Worst-Out-Best-In (WOBI) and Exhaustive Single Point Substitution
(ESPS), to determine the best locations of dampers. They concluded that WOBI and ESPS could
be implemented to effectively improve the optimal locations of the dampers, determined by a
sequential search method. The optimal position of energy absorbing devices in high-rise
buildings to suppress wind-induced vibrations were also studied in [40] by means of the Genetic
algorithm. Other than the vibration control effect, both economic effects and damper
performance were considered in the optimization. In this line, Mahendra [41], Guo [42], Bishop
[43], Movaffaghi [44] and Roy [45] worked on the optimal vibration control of structures using

Genetic algorithm.

Park [46] addressed different approaches related to the mathematical modeling of viscoelastic
dampers and compared their theoretical basis. He found that the standard mechanical model
(SMM), which comprises of linear springs and dampers, accurately described the broadband
rheological behaviour of common viscoelastic dampers. SMM was shown to be more
advantageous than other models such as the fractional derivative model and the modified power
law. Lam et al. discussed active and passive control by means of CLD treatment and piezoelectric
actuating [47]. The Golla-Hughes-McTavish (GHM) method was utilized to model the damping
of viscoelastic material. They also investigated the treatment of a beam with separate active and
passive CLD elements, and introduced two new hybrid configurations, as shown in Figure 2-4. It
was shown that the hybrid treatment, which is comprised of both the CLD layers and

piezoelectric elements, was capable of lowering the control effort with more inherent damping.
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Therefore, hybrid treatment is a better approach to suppress vibration than active treatment,

which only consists of a piezoelectric element.
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Figure 2-4: Two hybrid treatment configurations: (a) PZT and passive CLD on same side,

(b) PZT and passive CLD on opposite sides [47]

Avelid developed a design method for the optimal positioning of CLD layers [48]. The
objective was to minimize the frequency averaged transverse vibration levels of a plate with a
harmonic excitation. He implemented a modified gradient method using finite-elements method
to successively add pieces of CLD layers at the elemental positions, showing the steepest
gradient of the cost function as a result of the treatment. It was found that the optimal covering of
less than one third of a square plate with CLD layers, which requires a few iterations, can reduce

the average vibration level up to 18 dB.
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Zheng and Tan applied a Genetic Algorithm-based penalty function method to optimize partial
CLD treated beams [49]. The main goal was to minimize the vibrational energy of vibrating
beams with passive CLD treatment. They further performed a parameter sensitivity analysis to
determine the dominant parameters on the vibration response of the damped beam. It was shown
that the vibration response of the CLD treated beam showed more sensitivity to the
location/length of the covered passive CLD patches and the shear modulus of the viscoelastic
layer than other parameters such as the thickness of the viscoelastic layer, and the constraining

layer (CL) with its elastic modulus fixed.

Many researchers have devised a modal strain energy (MSE) method to optimally locate CLD
layers on the structures. This method makes use of finite elements to accurately predict the
damping levels in structures comprising of layers with elastic and viscoelastic elements.

Damping levels are found as modal loss factors or modal damping ratios.

Moreira et al. used this method to optimally locate passive constrained viscoelastic damping
layers on structures [50]. They also verified their work by comparing the results with
experimental tests. In order to improve the MSE method, Kodian and Molnar introduced a new
method to account for viscoelastic material property variation with changes in frequency [51].
This method was based on using the gradients of the strain energy ratio in the hybrid Taylor
series linearization with respect to the frequencies. Similarly, Ro and Baz [52] used the MSE
method to optimize the location of the active constrained layer damping (ACLD) patches on
flexible structures. They used a finite element approach to determine the modal strain energies of
plates treated with ACLD. Furthermore, their work aimed to minimize the total weight of ACLD

treatments subjected to achieving a certain level of modal damping ratio.
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The MSE method will also be used in the present research; as such, it is appropriate to explain
it in more detail here. Johnson [53] suggested the MSE method and Chang et al. [54] proved its

accuracy (for low to moderate damping) by means of experimental tests.

Consider a finite element model of a structure with an added viscoelastic layer. The equation of

motion for free vibrations of such a system can be written as
Mx+ Kx=0 2.1

where M is the mass matrix and K being the stiffness matrix, which is complex. Considering

K=K,+jK,, Equation (2.1) can be rewritten in the frequency domain as

MX (jw)+(K, + jK,) X (jw)=0 (2.2)

where X is the displacement vector in the frequency domain, j=+-1, K =K, +K,and

K, =n K, are the respective elastic and loss stiffness (damping) matrices of the system. Ky is

the storage stiffness of the CLD layer, #, is the CLD loss factor, and Kp is the elastic stiffness of
the primary system. It should be noted that K, is the damping achieved from the added CLD
layers alone, and K; is the combined stiffness composed of the storage stiffness of the CLD

layers and the elastic stiffness of the primary system (structure without CLD layer).

Equation (2.2) shows an eigenvalue problem, which can be expressed as

I:(KVR +KP)+j77vKVR:|l//: =/1i*2]\/['//;k (23)

h

where l//[* and /11 are the ™ complex eigenvector and eigenfrequency, respectively. For

. . .. 2
convenience, the modal index i is dropped. Hence, A~ can now be expressed as
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27 =22 (1+ jn) (2.4)

Approximating " by a real mode shape (i, ), which can be calculated from the undamped

system (without CLD treatment), and pre-multiplying both sides of Equation (2.2) by l/lg, one

can rewrite Equation (2.4) in the following form [55]

'//; (KVR +KP)‘/’R + -V/;anVRV/R

A1+ jm) =
VM, VM,

(2.5)

where A°and 2% can be found by equating the real and imaginary parts of Equation (2.5) as

' ‘//12 (KVR +KP)l//R
A= - (2.6)
WMy,
and
T
A= ‘//RZVKVRV’R .7)

WMy

Equation (2.6) reveals the undamped modal frequency based on the real part of the stiffness

matrix. Eliminating A° between (2.6) and (2.7), one can find the modal loss factor as

W;KVRWR (28)

n=n,
‘//; (KVR +KP)‘//R

In this equation K, i, would give the modal strain energy contributed by the CLD layer and

1//; (KVR +K, ) W 1s the total modal strain energy.

It should be noted that for materials with nonlinear behaviour, this approach can still be used,

provided that linearization should be performed around the working condition (frequency and
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temperature) or approximating the nonlinear material properties with the piecewise linearization

method. In this way 7, will be found for the desired mode (frequency).

Although all of the aforementioned papers have addressed the optimal vibration control
through constrained layer damping patches, and the proposed methods can somewhat find the
best locations of the patches on the structure, most of them are not capable of finding the best
shape of every individual patch. The present research proposes a novel integrated optimization
method that can simultaneously optimize the location and shape of the patches. To this end, a

fairly new structural optimization technique, called the level set method, will be used.
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Chapter 3

Level set technique and its applications

Level set method (LSM) is a technique used to numerically track shapes and interfaces. One of
the main advantages of this method is that its application in numerical computations involving
curves and surfaces eliminates the need for parameterizing these objects, and can be done on a
fixed Cartesian grid [56]. Moreover, following shape changes in a topology, such as shape split,
hole development, or holes integration, is much easier by means of LSM. Therefore, LSM is a
very convenient and powerful tool for modeling time-varying objects, such as the inflation of an

airbag, or a drop of oil floating in water.

3.1 Moving Boundary Tracking

Consider Figure 3-1, which depicts an interface that separates two different regions. Each point
on this interface can have a speed of v that shows how that point of the interface moves. For
example, the light blue part can be assumed to be a piece of ice inside of some water which is
freezing. Therefore, the boundary is growing, and the speed depends on the temperature drop

between the two regions.

In most numerical techniques, the moving boundary is tracked by breaking it up into buoys,
which are connected to each other by hypothetical ropes, as shown in Figure 3-2. Each buoy is
then moved by a speed of v, while the connecting ropes keep things connected. The more number

of buoys used to model the interface, the more accurate results will be achieved.

The main problem comes to the scene when the buoys want to cross over themselves or when
the shape wants to break into two shapes. In this case, organizing the connecting ropes becomes

very difficult (For more information, one may refer to [57]). So is there a better tool available?
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Figure 3-1: Two different regions with a moving interface

Figure 3-2: Moving interface with a speed of v
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3.2 Level set Method

Osher and Sethin [56] proposed an approach, called level set method, which does not follow
the interface itself. Now consider Figure 3-3. This method takes the red curve, i.e. the original
curve, and builds it into a surface, as shown in green. This green surface has a very nice property.
As shown in this figure, the green surface intersects the xy plane right where the original curve
sits. Since this surface (function) accepts any input point in the plane and gives back its height as
output, it is called the level set function. Furthermore, since all the points of the red wire have a

height of zero, it is called the zero level set.

O(x,y,1)

C O— |fy

X

(a) (b) ¢=0
Figure 3-3: Moving interface (a) original front (b) level set function
The underlying idea is that instead of moving the original front that causes the aforementioned
difficulties, the level set is being moved. In fact, the level set does everything, and the zero level
set shows all the changes in the original front. The green surface, i.e. the level set function, will
always remain well-behaved, while the original front (red line) can get wildly contoured.

Therefore, all the complexities, such as breaking and merging, can be easily solved.
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Figure 3-4 illustrates how one can describe the behavior of a moving front by means of a

moving level set function. The upper part shows the zero level set, or the original front.

In summary, the level set approach reveals the motion of a moving interface by embedding the
interface as the zero level set of the signed distance function. The interface’s motion is essentially
matched with the zero level set of the assigned level set function. Therefore, an initial value
problem can be formulated in such a way that its partial differential equation resembles a

Hamilton-Jacobi equation, and can describe the evolution of the level set function [58].

¢ » o

dsw

Figure 3-4: Illustration of the level set method [59]
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3.3 Topology Optimization using Level set Method

Considering the aforementioned features of the level set method, several researchers have
incorporated this technique into the problem of topology optimization. Malladi et al. [60]
introduced a level set based algorithm for topology-independent shape modeling. Their algorithm
was applicable to all models with arbitrarily complex shapes, including shapes with significant
protrusions. Sethian and Weigmann then presented a combined level set and finite difference
method, applicable to structural boundary design [61], to find the optimal possible design that

satisfies all the imposed constraints.

3.3.1 Level set Topology Optimization Formulation

In this section, the level set topology optimization formulation for a compliance minimization
problem will be explained from [62]. All other topology optimization problems can be

formulated in the same way as well.

In the first step, the design domain is defined by an explicit function. Consider the cantilever

beam with a hole shown in Figure 3-5.
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Figure 3-5: A cantilever beam under static load

Assume that there exists an explicit function @(x) for the design domain, such that:

$(x)>0 : xeQ’
$(x)=0 : xedQ (3.1)
¢(x)<0 Doxe)

where x is the domain vector, Q" shows the structure material, 0Q expresses the structure

boundaries, and Q" represents the hole in the structure, as shown in Figure 3-6.
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Figure 3-6: Categorization of the design domain

For a 2D compliance minimization problem, shown in Figure 3-6, the topology optimization

can be expressed as:

minimize : C(¢)= J‘%E(¢)8TD8dQ
subjected to : V.(E(¢)a) =f (3.2)
[H(g)aa=7

where Q represents the design domain, and strain and stress tensors are respectively denoted by ¢

and o, and D shows the elasticity matrix. 7" is the desired value of the volume in the optimally
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designed structure, f is the body force and V.(E (¢) O')Z f expresses the force equilibrium

equation with Vas the divergence operator. In fact, the objective function, C (¢), is the strain
energy of the system, which is a function of the shape of the structure and has to be minimized.
The displacement field, as well as stress and strain will all be calculated using linear elastic

equations. In this formulation, E(¢) is the modulus of elasticity and is defined in the following

form by the level set surface:
E(§)=EH (9)+(1-H(¢))Ey, (33)

where Ej is the elastic modulus of the material, E,,;, is the minimum relative elasticity modulus,

and H is the Heaviside function, defined as:

0 ¢<0

H(¢)={1 520 (G4

In order to make sure that the structure never splits while solving the problem, the second part of

is defined in this way. This is actually a numerical trick, and

min °

Equation (3.3), i.e. (l -H (¢))E
does not have any other role in the level set approach.

In order to consider the volume constraint in the optimization problem, a Lagrangian
formulation is applied. In fact, this will combine the objective and constraints, by means of a

Lagrangian multiplier, A, as expressed below:

J(&:¢,2) = IBE(gzﬁ)eTDgM(H((zs)——*HdQ (3.5)

Q

where the volume of the entire design domain is denoted by V*.
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Equation (3.5) is minimized when its derivative is set to zero. So the next step is to findJ".

Using variational calculus [63], the variation of the Heaviside function is:

d
5H(¢):%¢)5¢=5(¢)5¢=5¢‘¢_0 (3.6)

where & (¢) is the Dirac delta function and O¢ represents the variation of ¢ . The other important

fact to consider is that the change of shape is only influenced by the normal velocity on the
material boundary, and the tangential velocity will not affect the geometry deformation. By

calculating variation along normal direction, Equation (3.6) can be expressed as:

58 |,.0=|V 8|01 (3.7)

where O/ is an infinitesimal variation along the normal direction n=V¢g/ |V¢| Now, the

variation of J for Equation (3.5), i.e. 5¢J , can be calculated in the following form:

5.J laE—@gTngaH—W) 5¢\¢=0d9
2 0¢ op | ——

<
Il
Q0 —

- [véor (3.8)
= %( E,~E, )& De+ /1} 5(¢)|V¢|5ldQ

From the variational principles [64], the Euler-Lagrange equation corresponding to Equation

(3.8) at the extreme value point can be expressed as:

B(EO —E,.)e De+ ,1}5(¢)|v¢| =0 (3.9)
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which is impossible to solve directly for most cases. As such, one of the best approaches to tackle
this problem is to solve the level set equation numerically. The corresponding level set equation

is:

V.(E(¢)o)=f

99 |1ip r _ (3.10)
P [Z(E0 E. )¢ Dg+/1}5(¢)|v¢| 0

Vn

which can be solved numerically, with an initial condition of ¢,. In this equation, the parameter 7

does not represent time. It is usually referred to as gradient descent flow and is used as pseudo-

time. The solution of Equation (3.10) will converge to a local minimum (corresponding to the

chosen initial value ¢, ) for a well-posed optimization problem [62].

The final step in the formulation of the optimization problem is to find an explicit equation

related to the Lagrangian multiplier, A, based on the gradient projection method [65]. The initial
condition, @, , that is chosen in the beginning has to satisfy all the constraints of the optimization

problem. These constraints should be satisfied at all times with the movement of the material
boundary. For the problem at hand, there is an area constraint defined by the last part of Equation

(3.2). In order to satisfy the constraint at all times, its change with time should be zero, therefore:

d .
—|[H(g)da-V"|=0 (3.11)
dri\y
Since V" is constant and its derivative is zero, this can be written as:

I—aH(¢)%dQ:O (3.12)
) 0p or
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Using Equations (3.6) and (3.10), one can rewrite Equation (3.12) in the following form:

IB(EO—Emm)gTDg+/1}5(¢)|V¢|§(¢)dQ=0 (3.13)

Q

Solving Equation (3.13) for A results in:

] B(Eo ~Ei )6TD5}52 (9)|VolQ
A==t (3.14)
[ (9)Vau

What has been discussed so far demonstrates how a topology optimization problem can be
formulated in the level set context as a Hamilton-Jacobi-type equation, and how it can benefit
from all the features of the level set approach. Equation (3.10) should be solved numerically, and

in each time step, the value of the inside of the bracket should be updated.

Formulation by means of the level set method has several advantages over conventional
methods in the context of topology optimization. Firstly, level set models are topologically
flexible. In fact, level set functions represent complicated surface shapes to form holes. They can
also split to form multiple boundaries, and merge with other boundaries to form a single surface.
Secondly, a large number of degrees of freedom can be incorporated by the models [66]. Third,
shape fidelity and topology changes can simultaneously be addressed by the implicit level set
methods; as such, the design boundary will be kept smooth during the entire optimization
process. Fourth, since the normal component of a general velocity vector affects the shape
geometry, and the tangential influences the shape parameterization, based on the discussion

above Equation (3.7), the interface represented by the level set function is parametric free [67].
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Fifth, in order to get a physically meaningful result for Equation (3.10), such as the level set

model of the Hamilton—Jacobi equation, the theory of viscosity solutions [67,68] can be utilized.

3.3.2 Application of Level set Topology Optimization

Considering all the benefits of the level set approach, several researchers have applied this
method to optimization problems. Osher and Santosa [69] applied this method to optimize the
resonant frequency of a vibrating two-density inhomogeneous drum with geometrical constraints.
Following this work, Maitre and Santosa [70] discussed an optimization problem over a fixed
surface. They utilized the level set optimization method to find the smallest-arclength closed

curve while the area enclosed by the curve is fixed.

In a few different works [66,71-73], the level set method was applied to constraint structural
topology optimization problems. Ref. [72] combined the classical shape derivative and level set
method for front propagation, and applied it to 2D or 3D space models with linear or nonlinear
elasticity. As mentioned earlier, one of the cons against the level set method is that the final
optimal shape is strongly dependent on the initial guess. In other words, this method can easily

get stuck into local minima.

Wang [74] made use of a multi-phase level set method to tackle a topology optimization
problem of structures with multiple materials. In his approach, m level-set functions were
required in order to represent a structure with n=2" different material phases. This approach is
very similar to combining colors from the three primary colors, so it is referred to as a “color”
level-set. This method never faces the problem of overlap of a conventional boundary

representation scheme.
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Allaire and Jouve [75], as well as Haber [76], worked on the topology optimization of
structures with multiple loads or frequencies by means of a multi-level set approach. It should be
noted that instead of running a frequency domain analysis, static-equivalent analyses have been
performed, since rigidity maximization will increase the first eigenfrequency. They presented
several examples to prove that their method could be used in practical applications. One of these
examples is shown in Figure 3-7. In this example, they have performed topology optimization to

find the optimal design of a chair, subjected to two different loads.
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Figure 3-7: Optimal chair design: Two loading configurations [75]

Optimal design of the chair has been depicted in Figure 3-8:
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Figure 3-8: Optimal design of a chair for single (left) and multiple (right) load

configurations [75]

In 2006, Xia et al. [77] proposed a semi-Lagrange method to solve the Hamilton-Jacobi partial
differential equation of the level set topology optimization. The explicit upwind scheme [58] of
solving level set equations severely restricts the numerical stability to the time step and requires a
large number of time steps for a numerical solution. However, the proposed semi-Lagrange

method allows for a much larger time step, and also requires a smaller number of time steps.

In the same line for method modification, Liu and Korvink [78] proposed an adaptive moving
mesh level set method for topology optimization. Since level set surface is usually interpolated
on a fixed mesh, the accuracy of the boundary position is largely dependent on the mesh density.
In the proposed method, by combining the adaptive moving mesh method with a level set
topology optimization method, the finite element mesh will be automatically kept with high

nodal density around the structure boundaries of the material domain.
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Similarly, Park and Youn [79] offered an adaptive inner-front (AIF) level set method for
topology optimization of shell structures. The edge smoothing was carried out in order to
suppress the numerical oscillation of solutions due to the sharp edges in the level set function in

the utilization of the inner-front creation algorithm.

Recently, some attempts have been made to improve the efficiency of the level set method.
Gomes and Suleman [80] proposed an extension to the conventional level set topology
optimization of interfaces, and called it the spectral level set methodology. In their proposed
approach, the Fourier coefficients of that function are the design variables describing the
interface during the topology optimization. One of the advantages of this method is to admit an
upper bound error, which is asymptotically smaller than the one for the non-adaptive spacial
discretization of the level set function, in the case of a sufficiently regular interface. Furthermore,

it can nucleate holes in the interior of the interface and can avoid checkerboard-like designs.

Fulmanski et al. [81] combined topological derivatives with the level set method. By doing
this, they showed that utilizing topological derivatives in the framework of the level set method
significantly improves the method’s efficiency. Moreover, this modification makes the level set

method more robust, and consequently leads to a better final solution.

Rong and Liang extended the level set optimization method to structures with bounded design
domain [82]. They presented a set of new level set based optimization formulas to overcome the
limitations of current level set methods for the optimal design of continuum structures with
bounded design domain. Moreover, they introduced a new optimization strategy with the
possibility of random topology mutations and crossover, which can lead to overcoming

difficulties related to nucleating holes in the design domain using this method.
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Lue et al. [83] incorporated radial basis functions into the level set topology optimization of
continuum structures. In this method, the level set surface is parameterized by using radial basis
functions with compact support. Therefore, the sophisticated Hamilton—Jacobi partial differential
equation (PDE) is transformed into an easier size optimization of the expansion coefficients of
the basis functions. They also proposed a stable numerical volume integration scheme for
calculating the shape derivatives, which can effectively generate new holes in the design domain

during the optimization process.

Finally, Zhuang et al. [84] introduced the element-propagating method to structural shape and
topology optimization. Instead of solving the Hamilton—Jacobi partial differential equation
iteratively, their method inserts and deletes basic material elements around the geometric
boundary. Therefore, without solving the PDE, it realizes the dynamic updating of the material
region. Their criterion for generating new holes in the material region is the strain energy density.

These modifications are claimed to significantly improve the conventional level set method.

However, application of the level set method is not limited to structural topology optimization;
recently, it has been brought to other fields as well. For example, Wang et al. [85,86] and
XianMin and GaoFei [87] worked on the topology optimization of compliant mechanisms using
the level set method. Pingen et al. [88] proposed a parametric level-set approach for the
optimization of flow domains. By implementing a level set approach, they improved the
versatility of the topology optimization methods for fluidic systems. Non-trivial mapping
between the design variables and local material properties was achieved by means of the
proposed parametric level-set approach, since it applies a material distribution approach to

represent flow boundaries. They concluded that improvement would not be achieved in
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convergence by utilizing a parametric level set method for fluidic systems compared to

traditional methods.

In the same line, Challis and Guest [89] applied the level set method to the problem of
optimization of fluids in the Stokes flow. In 2009, the level set method was applied to the
topological optimization of nonlinear heat conduction problems [90]. Application of the level set
method relieves the convergence difficulty in nonlinear heat-conduction problems by means of
topological derivatives. Myslinski [91] utilized the level set method for optimization of contact
problems. The objective was to find the best shape of the boundary of the domain occupied by

the body such that the normal contact stress along the contact boundary of the body is minimized.

Finally, Park and Min [79,92] applied the level set topology optimization method in the design

of a magnetic actuator and maximized its force.

3.3.3 Level set method and Damping optimization

Although researchers in many fields have shown interest in incorporating the level set method
into different problems within their fields, there is a lack of research literature surrounding
damping optimization. Only few studies have been carried out on simple systems to find the
optimum damping set in a system. Munch et al. [93,94] tried to determine the optimal damping
set needed for the stabilization of the wave equation. A linear damped wave equation was
considered in two-dimensional domain €, with a dissipative term localized in a subset ®,

Vo —Ay,, +ax)y,, =0 in  Qx(0,7)

Yo =0 on 8Qx(0,T) (3.15)
ya),a (x’o):yo(o)’ y;),a(x’o):yl(o) in Q
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where the prime sign corresponds to the partial derivative with respect to time, and the damping

potential was considered to have the following form:

a(x)=ay,(x), VxeQ (3.16)

In this equation, y represents the characteristic function of any domain o, strictly included in Q.

In their work, the best shape of ® was found to minimize the energy of the system at a given

time, 7.

In the same line, Lassila [95] worked on the optimal damping set in a membrane. The objective
was to find the optimal damping set of a two-dimensional membrane in such a way that the total
energy of the membrane was minimized. The governing equations of this system are almost

identical to Equation (3.15).

The next two chapters will expand on the level set technique in regards to damping
optimization in structures. A comprehensive research that addresses damping optimization in
complicated structures is still missing in literature. Added damping materials can affect the
vibrational properties of a structure through their shapes and locations. For example in one
system a circular patch may create more damping than a square patch, or in one system a patch
close to the boundary may create more damping that the one located in the centre of the structure.
It is very important to address both of these aspects concurrently in order to make sure that
minimum amount of damping material is used while maximum vibration attenuation is achieved.
In the following chapters, level set technique will be utilized to simultaneously optimize the
shape and location of added damping patches while the amount of damping material remains

constant.
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Chapter 4
Extension of level set technique to damping optimization in plate

structures

As discussed earlier, one of the efficient ways to suppress vibrations in structures is to apply CLD
patches to the surface of the structure. In order to optimize the configuration of added damping
materials one possibility is to cut some pre-shaped CLD patches and then try to optimally locate them
on the structure. However, the shape of a patch itself plays an important role in the amount of
damping in a system. So it is very advantageous to devise a method that can optimize the shape and
location of CLD patches simultaneously while the amount of damping material does not change.

Level set topology optimization method can handle this matter effectively as discussed in this chapter.

4.1 Problem Definition

In this section, the level set method is expanded and applied to the problem of damping
optimization. Figure 4-1 illustrates a cantilever plate undergoing flexural vibrations. Vibrations
suppression will be performed on the system using CLD patches. As mentioned before, for a
given amount of damping material (CLD), it is desired to find their best shape and location on the

structure simultaneously.
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Figure 4-1: Plate undergoing flexural vibrations
Patches should be located on top of the structure so that maximum energy dissipation is
achieved. Instead of considering a few pre-configured CLD patches, like Figure 4-2(a), and

trying to optimally locate them on the structure, the surface of the structure will be covered with

CLD patches that have an initial shape ¢ and total surface area of A" (see Figure 4-2(b)). Next,

using the level set topology optimization technique, the best shape of the damping patches, ¢,

timum

, will be determined for maximum vibration suppression.

(a) (b)

Figure 4-2: CLD patches with a) Pre-configured b) initial shape of ¢,
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4.2 Mathematical modeling

In order to formulate the damping optimization problem using the level set optimization
technique, an objective function, which is a function of the shape of the damping coverage,
should be defined. Without loss of generality, the damping will be considered to be inside of the
structure as structural damping, as shown in Figure 4-3, so that equivalent 2D modeling can be

performed.

Zheng and Tan [49] observed that the vibration response of the CLD treated beam shows more
sensitivity to the location/length of the covered passive CLD patch and the shear modulus of the
viscoelastic layer than other parameters, such as the thickness of the viscoelastic layer (VL) and
constraining layer (CL) with its elastic modulus fixed. Therefore, the thickness of the CLD layer

can be eliminated from the optimization process.

|

Figure 4-3: Modeling of damping as structural damping in a 2D structure

For the assumption of having the damping inside the structure, the equivalent loss factor and

modal rigidity should be defined. This is done to simplify a complex problem into an equivalent
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system. Finding the equivalent system was first proposed by Ross, Kerwin and Ungar and the
method was named after them as RKU [27].

A fourth order differential equation is used in the RKU method for a uniform beam with the
sandwich construction. This three-layer laminate system is then represented as an equivalent
complex stiffness. This method assumes that the mode shapes of the structure are sinusoidal in
nature, which implies a simply-supported boundary condition. Therefore, when other boundary
conditions are used, the results are approximated depending on the mode shape in question [96-

103].

It should be noted that when the RKU method is applied to real world complex structures, it
does not precisely predict the value of damping, however it is a good damping indicator. The
paramount goal is to implement a simplified method to establish a design trend that can be used

in the level set optimization formulation.

In Figure 4-4, Macioce [103] compares the damping prediction of RKU and MSE methods with
experimental measurements. Limitations of simplified RKU method especially when dealing
with true boundary conditions (not just simply-supported) are shown. RKU over estimates the
predicted the value of damping however it offers a good approximation for the damping which is

sufficient for the level set optimization formulation.
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Figure 4-4: Comparison of Measured Damping vs. Predicted Damping using various modeling

techniques [103]
Consider the sandwich plate shown in Figure 4-5. The viscoelastic layer is constrained between
the main structure and the top constraining layer. The bending of the composite layers will

produce shear strain in the viscoelastic layer and bending (extensional) strain in all three layers.

) _ Constraining layer
Viscoelastic layer H,

Main structure
Neutral plane

of composite

Figure 4-5: A panel with CLD layer (a) flat (b) deformed.
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In most practical cases, the extensional stiffness of the viscoelastic layer is small compared to
the stiffness of the other two layers; hence, the loss factor of the composite panel could be

approximated using the Ross-Ungar-Kerwin method [104]

B BYX
T QDX + (4 V)1 + )X

(4.1)

where f, is the loss factor of the viscoelastic layer, and Y is a stiffness parameter, defined by:

|  EH+EH’ [ 1 1 J 42)

—= +
Y 12(H2+H1+H3j EH, EH,

where E, E5, H; and H; are the moduli of elasticity and thicknesses of the two elastic layers,

respectively. X in Equation (4.1) is called the shear parameter and given as:

G 1 1
X = 5 2 [ + j (4.3)
pH,\ EH, EH,

where G, is the real part of the complex shear modulus, and p is the wave number, namely the n™
eigenvalue divided by the composite panel’s length.

In the same manner, the equivalent modal flexural rigidity is given by [105]

2
El = é(Ele B H + EH] - By 2 _QJJFEIHIQZ e, (#_QJ

l+g,
Esz(ngHz _QJ o (4.4)
+EH,(d—-Q) - : +EH,(d-Q) (E]

where Q is the distance from the neutral axis of the three layer system to the neutral axis of the

host system. O and d are defined as
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E,H, (WJ+X(E2H2M+E3HSCZJ
2 2

0= TN 4.5)
E.H, +%+X(E1H1 +E,H,+E,H,)
d-p, + (4.6)

2

It should be noted again that even if the estimated loss factor and the flexural rigidity contain
some errors, they will not affect the results of the original optimization problem. As an example,
consider a problem of optimal viscous damper placement under a beam, with both ends simply-
supported, as shown in Figure 4-6. If the viscous damping coefficient is set to either 5 NSm™ or
5.1 NSm™, the optimal location for the viscous damper will be at the middle of the beam.
Similarly, in the problem at hand, any minor error that occurs in finding the equivalent modal

loss factor and rigidity will not affect the optimization problem.

Figure 4-6: Viscous damper positioning under a beam.
Damping is defined in terms of loss factor. In order to capture the loss factor damping (or
structural damping) viscoelasticity will be modeled in the frequency domain. This can be

explained by means of the following equation:

K = K+ K, =1+ jn,)K,, 4.7)
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where K’ is the complex modulus, K, is the storage stiffness (modulus), K, is the loss modulus
and 17, = K, / K, is the loss factor. The amount of stored energy for the applied strain is defined
by the storage modulus, K,,, and the amount of energy dissipated is defined by the loss

modulus, K, . In the context of level set optimization, the loss factor becomes:

n,(¢)=mnH (¢) (4.8)

where 7, is the material loss factor.

The objective of this optimization problem is to maximize the modal loss factor of one mode of
vibration of the system, which is equivalent to the highest dissipated energy in that mode. Using
the modal strain energy method (MSE), the modal loss factor of the first mode can be defined by

Equation (2.8), which can be simplified as:

n=n,(¢)— (4.9)

where E, represents the modal strain energy contributed by the CLD layer while the total modal
strain energy is denoted by E,,;. Therefore, the topology optimization for this 2D problem can be

written as:

E, dQ

Etotal (4 1 0)

minimize: C(p)= j—ﬂv (¢)

Q
subjected to : IH(¢)dQ =A
Q
where Q represents the design domain, and 4" shows the desired area of the CLD layer to be used
to control excessive vibrations. The negative sign has been used to change the maximization

problem to one of minimization.
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It is noteworthy that higher mode shapes can also be included in the objective function. In fact the
modal loss factor of each mode can be found and combined with some weighting coefficients, and

then be used in the objective functions. In that case the objective function can be reformed as

(m)

C(¢)=J—Zﬂmﬂf’(¢)LdQ 4.11)

(m)
Q ET

where m refers to the mode number, N is the number of desired mode shapes and S is the weighting

factor of each mode. E" represents the modal strain energy contributed by the CLD layer in the m"
mode and the total modal strain energy in the m™ mode is denoted by E{™ while the frequency

dependent material loss factor corresponding to the m™ mode is represented by n’ (¢) As an

example, consider a system whose first and second natural frequencies are 200 Hz and 300 Hz
respectively. Suppose that the material loss factor of the added CLD at 200 Hz and 300 Hz are 0.19
and 0.25, respectively. In this case the objective function to address both the first and second natural

frequencies will be:

E(l) E(z)
c(9)=] —{ﬂl O19H(@) o5 + BO2SHG) i }dﬂ (4.12)

1 and S, can be chosen according to the design requirements and the frequency band.

Since in many engineering applications the fundamental mode shape is more significant in design
of the system, also for the sake of simplicity and better presentation of the work, in this section the

objective function has been formulated based of the first eigenfrequency.

Lagrangian formulation is applied in order to incorporate the volume constraint into the

optimization problem by means of the Lagrangian multiplier, A, as follows:
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J($.2)=] {—m(cfﬁ) EEV

+/1[H(¢)—j;;ﬂdg

where the area of the entire design domain is denoted by 4.

(4.13)

When the derivative of Equation (4.13) is zero, this equation reaches its minimum. As

mentioned in Chapter 3, the variation of the Heaviside function is:

SH(9)

_oH(9)

Py 9 =5(9)5p=5|,.,

(4.14)

where & (¢) is the Dirac delta function and ¢ represents the variation of ¢ . Along the normal

direction, this variational equation can be written as:

54,.0=|V 9|51

where 6/1is an infinitesimal variation along the normal direction n =V ¢/ |V ¢| .

The variation of J for Equation (4.13), i.e., 5¢J can be calculated in the following form

S, =

]

Q0 —
I

on,(¢) E,  0H(9)

——x—+l—}5¢‘¢=odﬂ

o4 E, o¢

[Vglot

~17, E, +/1}5(¢)|v¢| SldQ

total

(4.15)

(4.16)

The Euler-Lagrange equation corresponding to Equation (4.16) at the extreme value point can be

expressed as

{-770 f; +z}5(¢)|v¢| 0

The Hamilton-Jacobi equation for this optimization problem can be written as:
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%{_%im}g(gﬁ)Wﬂ ~0 (4.18)

which can be solved numerically, with an initial condition of ¢, .

Finally, an explicit expression is found for Lagrangian multiplier A according the gradient
projection method [62]. The second part of Equation (4.10) defines an area constraint that should be
satisfied at all time. Therefore its derivative with respect to pseudo-time should be zero, as stated

below:

d .
EQH(mdQ—A j:o (4.19)

Since A" is constant and its derivative is zero, Equation (4.19) can be rewritten as

jaH_w)%dQ -0 (4.20)
5 O0¢ Ot

Substituting Equations (4.14) and (4.18) into Equation (4.20) yields

[

Q T

+/1}5(¢)|v¢|5(¢)d§2:0 (4.21)

The solution of Equation (4.21) gives and explicit expression for 4, in the following form:

[ o @viao
/1 — Q total 422
[ (g)vaaer 2

It is noteworthy to mention that in order to ensure that Equation (4.18) converges, the step time

should satisty the Courant-Friedrichs-Lewy (CFL) condition [106], i.e.:
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A7 < LV (4.23)
max n

In this equation, / refers to the minimum distance between grid points and rnax|Vn|is the

maximum value of the points of the grid [58, 62]. If this condition is not satisfied, i.e. time steps
are not chosen properly, for relatively large V,, the damping patches will propagate quickly and
will cover the whole surface. This will lead to an incorrect solution and convergence will not be

achieved.
The following two sections will discuss the coding procedure needed to perform the level set

optimization.

4.3 General Level set Topology Optimization Algorithm

Consider the topology optimization problem described by Equation (4.10). The iterative

algorithm of the level set topology optimization can be written as:

1. initialize ¢ , which corresponds to an initial guess for Q;

2. run a structural analysis (FEA) to evaluate V in Equation (4.18), this includes finding

n

normal velocity and sensitivity analysis;
3. solve Equation (4.18) for one time step A7, to find a new ¢ ;
4. go to step 2;
5. iterate until convergence, i.e., J(&,,8,, 4, )—J (&> Bors At ) S 5
where o is a convergence factor, and k shows the iteration number.
This overall optimization procedure is summarized in the flowchart shown Figure 4-7.
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Initialize level set function ¢,

A 4

Run FE analysis and evaluate the
objective function and find ¥,

A 4

Solve Hamilton-Jacobi Equation for
one time step (A7) and find new ¢

Converged?

End

Figure 4-7: Flowchart of level set topology optimization
This algorithm and the flowchart demonstrate that an iterative process should be followed to
find the optimum topology. Furthermore, most of the numerical approaches offered to solve the
Hamilton-Jacobi equation are based on finite difference approaches with lots of stability

difficulties.

In practice, implementing this iterative process is cumbersome. Challis [107] developed a code
that combines both finite element analysis of the structure and the finite difference analysis of the
Hamilton-Jacobi equation in MALTAB. Although the code is very compact, the finite element
part can only handle very simple structures and is not capable of analysing complicated structures
or sophisticated analysis fields. Liu et al. [62] suggested solving the Hamilton-Jacobi equation

using the finite element method. This way, they formed a coupled modeling of the two different
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parts of the topology optimization, i.e. structural analysis and Hamilton-Jacobi partial differential
equation, in the commercial package FEMLAB. In other words, they solved both of these

problems as a coupled problem in FEMLAB using the finite element method.

Although this approach is fairly simple and can easily handle practical problems, it has a
significant downside that limits its practicality. In this approach, as time, 1, goes forward by a
certain time step, At, at each time a structural analysis is performed to evaluate V,. However,
since the structural part is just a static analysis in this paper, it is not affected by time and thus
can be performed in any time. Therefore, coupling does not influence the results, and allows to
follow the entire optimization process through a coupled analysis. But what if the structural
analysis is not static? What if it is dynamic, depending on time or if it is an analysis in frequency

domain? A more practical method is needed to handle the proposed optimization technique.

4.4 Numerical Implementation of Level set Method in the Proposed Damping

Optimization

For all the cases mentioned in the last part of Section 4.3, this method [62] cannot be applied
and coupling of the non-static problems (i.e. modal or transient problems), along with time

forwarding PDE, will affect the solution of the structural analysis. This will consequently lead to

failure in the level set optimization.

In most research works so far, dynamic problems have been modeled by static-equivalent
analysis, so that such simple coupling can be used to perform topology optimization.
Furthermore, systematic work has not been completed to find a practical approach for those

aforementioned cases. This is the primary reason that not much effort has been exerted to
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optimize damping in the context of level set optimization, because it is not possible to model

damping statically, and damping reveals its properties only in dynamic conditions.

In this work, an interactive numerical code will be developed that can handle the level set
optimization of all kinds of analyses, for any type of structures (model). Unlike the code
presented in [62], the structural analysis is not restricted to static analysis, and can deal with any
type of analysis. Unlike [107], any type of structure, no matter how sophisticated it is, can be

considered as well.

The idea is that instead of coupling the two problems (i.e. structural analysis and solving the
Hamilton-Jacobi equation), two different software packages (MATLAB and COMSOL) are
synchronized to interconnectedly solve the problem at hand in a desired iterative manner.
Although both parts (Structural and PDE) are being solved by COMSOL, the physics are not
coupled. The role of MATLAB is to manage the whole process (and check the convergence
criterion), and to transfer results to/from different physics. The algorithm of performing level set

topology optimization along with the corresponding physics can be expressed as
1. initialize 0, in MATLAB;

2. read [J from MATLAB in COMSOL (Number 1) and perform structural analysis to find

V,, and send V, to MATLAB;

3. read V, from MATLAB in COMSOL (Number 2) and solve Hamilton-Jacobi for one time

step (A1) to find new [1 and send it to MATLAB;
4. go to step 2;

5. iterate until convergence.
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This process is shown in Figure 4-8. It is clear that there is no coupling between the two
physics and each analysis is performed separately. Time forwarding (in terms of t) is happening
in physics 2, while physics 1 can independently handle any type of analysis (static, dynamic, time

domain, frequency domain).

p
Structural

Analysis
\ NE COMSOL

MATLAB

9

Hamilton-
Jacobi PDE

\_ B CONMSOL

Figure 4-8: MATLAB-COMSOL interaction for level set topology optimization

It should be noted that this method is not limited to this problem and could be extended to

other dynamic problems as well.

4.5 Numerical examples

In this section, to demonstrate the application of the proposed optimization technique a few examples

will be discussed.
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4.5.1 Case study 1: Damping Optimization in a Cantilever Plate

Consider the cantilever plate as the first example, shown in Figure 4-1. The system properties are

listed in Table 4-1.

Table 4-1: Plate structure properties

Property Value Unit
Length 160 mm
Width 120 mm
Thickness 2 mm
Modulus of elasticity 71 GPa
Poisson ratio 0.29 -
Density 2700 Kg/m®
CLD Material loss factor 0.79 ~0.99 -
CLD Specific gravity 0.53 Ib/ft?
CLD Thickness 1.5 mm

Figure 4-9 (a) and (b) illustrate the initial CLD configuration, / (¢0), and its corresponding
level set surface, ¢, , respectively. The gray parts represent the CLD patches. It should be noted

that similar to Ref. (Liu, Korvink et al. 2005) in this example ¢ has been defined using “min”

function available in COMSOL®©. A general approach for defining the initial level set function
will be proposed in Chapter 5. The proposed approach is capable of producing the level set

function corresponding to any initial configuration in 2D, 3D and higher dimensional domains.
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The rubber material is modeled in the same way as seen in Ref. [108]; therefore, its loss factor

varies from 0.79 to 0.99. In this case, in the room temperature and for the first natural frequency

the material loss factor has been chosen as 0.89.
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Figure 4-9: (a) Initial configuration of CLD layer (area of 0.0084 m?); (b) Corresponding

level set function

The evolution of the CLD patches is shown in Figure 4-10. From these figures, it can be seen

that the damping set has been pushed towards the clamped edge of the plate. The structural

damping force is proportional to the rate of change of strain. For a cantilever plate type, the

present case study, those regions close to the clamped edge demonstrate the highest changes of

strain rate. Therefore, the results obtained from the level set optimization are in close agreement

with the expected locations of the patches, since the highest level of damping force will be

achieved by accumulating the damping set into the clamped edge of the plate.

55



0%
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Figure 4-10: Evolution of CLD patches (System 1) (a) t=0.1; (b) t=0.3; (c) t=0.5; (d) =4

The variations of the modal loss factor under different iterations are shown in Figure 4-11. It

can be seen that the modal damping is increased with the passage of pseudo time.
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Figure 4-11: Modal loss factor in different iterations

It should be noted that the number of iterations needed for convergence, as well as the final
result, depends on the initial guess. Since the energy dissipation of viscoelastic materials is
proportional to the strain rate, it is desirable to locate the CLD at points of high modal curvature
[109]. In order to have an appropriate initial guess, a simple modal analysis should be performed
and the points with higher modal curvature will be determined. Then, the initial shape will be
chosen so that more CLDs are located close to the points found in the previous step.

This example was initiated with evenly distributed damping (as shown in Figure 4-9 a), so the
optimization required many iterations to converge. However, for a smarter initial guess, shown in
Figure 4-12, the optimization problem will converge after 43 iterations. It should be noted that
energy dissipation in CLD patches is related to the strain rate. So, if the initial configuration is
chosen close to areas with high modal strain energy, fewer number of iterations will be needed
and the chance of finding the global optimum will increase. For this plate in the first mode, the
area close to the clamped edge encounters highest modal strain energy, therefore configuration
shown in Figure 4-12 is a better choice compared to that presented in Figure 4-9.
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Figure 4-12: Alternative initial configuration for CLD layer (area of 0.0084 m?)
4.5.2 Case study 2: Damping optimization of square plates with nonsymmetric cut out
Ref. [48] presents an industrial and practical example of locating damping material on top of
structures. As illustrated in Figure 4-13, the structure includes square plates with a

nonsymmetrical cut out

Figure 4-13: Experimental set up [48]
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The test was carried out on a rectangular plate, shown in Figure 4-14(a). The plate is mounted
in a relatively stiff fixture. It has zero displacement on the boundaries and does not have rotations
in any direction except for the transversal direction. The material properties of different parts of
the system are presented in Table 4-2. For this problem in room temperature and in the first

natural frequency the loss factor has been considered to be 0.9.

Table 4-2: System properties for case study 2

Property Value Unit
Length 160 mm
Width 120 mm
Thickness 2 mm
Modulus of elasticity 71 GPa
Poisson ratio 0.29 -
Density 2700 Kg/m®
Material loss factor 0.79 ~0.99 -
CLD Specific gravity 0.53 b/t
CLD Thickness 1.5 mm

The excitation of the fixture was done using an electromagnetic shaker of the type ‘“Wilcoxon

F4/F7°’ with a built in force gage sn 9943. The response amplitude was measured by a laser
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equipment of the type ‘‘Polytec PSV 300 scanning laser vibrometer’” including software version

8.22.

In this section, the same system is studied and the best shape and location of the damping
patches will be determined using the level set method. The results will be compared with those
reported in Ref. [48]. The initial configuration of the CLD patches and the corresponding level
set function are shown in Figure 4-14(a) and (b), respectively. This configuration has been
chosen based on the fact that CLD patches exhibit more energy dissipations close to points of

high modal curvature.

oo P

(a) (b)

Figure 4-14: (a) Initial damping configuration (b) Level set function

Figure 4-15 illustrates the evolution of the damping patches; the variations of the modal loss

factor with pseudo time are shown in Figure 4-16.
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Figure 4-15: Evolution of the CLD patches (a) 7=0.02; (b) 7=0.04; (c) 7=0.12; (d) t=0.2
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Figure 4-16: Modal loss factor under different iterations

Comparing the final results obtained with those reported in Ref. [48], as illustrated in

Figure 4-17, reveals the following important observations:

(a)

(b)

(©)

although the optimization start with two separate CLD patches, at the end it was found
that a single patch being located in the optimum position, would work best for this
system;

the optimum location of the patch, found by using the level set technique is in good
agreement with the experimental results presented in Ref. [48];

since this method is not confined to the square shaped patches, and also is capable of
providing smooth boundaries, it finds better shape of patches. For the fundamental mode,
the optimum shape for the CLD patch in this system is a circle. The circular shape would

give 10 percent more fundamental loss factor when compared with the square shape.
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Figure 4-17: Optimum position of the CLD patch found from experimental tests [48]
It should be noted that the area of the CLD patches for both systems (i.e., the amount of

applied damping material) remained the same during the optimization process. This was achieved
via imposing proper constraints.
This chapter discussed the application of level set optimization technique to 2D structures. The

benefits of moving boundary approach were demonstrated for 2D systems. However, in most

practical cases, complex 3D structures need to be dealt with. Hence, it is required to extend the

level set formulation to more general 3D domain.
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Chapter 5

Extension of the proposed optimization method to 3D structures

Most engineering structures are three dimensional. For example, the vibration of an automotive
dash panel with nonsymmetric shape, as shown in Figure 5-1, has to be studied in a 3D domain.
In this chapter, the level set vibration control will be extended to a 3D domain and the generation
of corresponding 4D functions will be presented. Two 3D structures, an automotive dash panel

and a satellite dish, will be studied for optimization of added damping materials.

Figure 5-1: Automotive dash panel

5.1 Problem formulation and solution approach

Consider a 3D system like the dash panel shown in Figure 5-1. Vibration of such a system
needs to be minimized by the application of CLD patches. The objective is to find the best shape
and location for such patches. Obviously, the patches are not confined to a 2D region and can
form 3D shapes; therefore, the level set optimization discussed in Chapter 3 will be expanded to

the 3D domain.
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In order to perform 3D level set optimization, the first requirement is to define a 4D function
whose zero level set is the initial 3D configuration of the damping patches in the system. Like
before, optimization will be performed on this function, and in each step, the zero level set

function reveals the shape and location of the damping patches in that stage.

Infinite 4D functions can be defined to have such property, i.e. their zero level set resembles

initial configuration of damping patches. Among them, signed distance function is a worthy

choice. The distance from a point X to a set 6Q is defined as:

d(X)= min (\)?—)?C\) (5.1)

XoeoQ

The value of function ¢ at each point will be equal to its distance from the boundary with a sign

depending on whether the point is inside or outside the region, i.e.

-d(X) XeQ'
HX)={ 0 XedQ (5.2)
dX) XeQ

In Equation (5.2), Q" is outside the region, where there is no damping, while Q is inside the

region with damping material; 0Q represents the boundary of damping patches.

Figure 5-2 illustrates two examples for signed distance functions corresponding to two initial
shapes. In simple words, the signed distance function gives the distance to the level set with a

sign being positive inside, and negative outside.
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Figure 5-2: (a) Initial shape of damping patches (b) their corresponding ¢ (signed distance

function). The x-y plane is shown in blue [110]

The signed distance function has several effective features, including:
. Vg|=1 (5.3)

It is noteworthy that during propagation, the level set function will not keep this property.

That is why re-initialization methods are needed to bring the property back to ¢.

However, this is not a topic of interest in this work.

e ¢ is differentiable on Q. This property is very important for continuing the front
propagation because it ensures that at least the process can move forward one more step.
Now a new approach will be presented to generate such a signed distance function

corresponding to the initial damping configuration. For the sake of simplicity and ease of
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demonstration, suppose that the base structure is a plate. This procedure is valid for any

dimensions, such as 2D, 3D, etc.

1- Model the base structure and initial damping configuration in the finite element software. It
should be noted that this is only 3D modeling and does not consists of any elements or

nodes. In this work, COMSOLO is used, as illustrated in Figure 5-3.

Figure 5-3: Base structure and damping configuration, modeled in COMSOL
2- Mesh the structure and added damping material. An example is shown in Figure 5-4. Note
that the mesh does not have to be very fine in this stage and coarse mesh works too,
because interpolation can be done in future steps. Also, this approach is independent from
the element types because at this stage the locations of nodes are important rather than

element properties.

3- Now, there are two sets of points available, as shown in Figure 5-5. Red points correspond
to the boundary of damping patched, and blue points are located elsewhere on the structure.

The list of these points and their corresponding coordinates can be easily extracted from
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the software. Next, measure the distance of each point in the blue category to every point in

the red group.

Figure 5-4: Meshed structure and damping patches
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Figure 5-5: Mesh — red nodes on the border (6Q2) and blue nodes elsewhere

If the blue set has » members and the red set has m members, then the absolute value of ¢,
in each point will be given by Equation (5.4). Sign of ¢ is positive if the point is inside the
boundary (0Q) and is negative if it is outside the boundary. In this work, this calculation is

quickly performed using MATLAB®©:
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|¢,|= min(‘)?i —)?j

Jj=l.m

), X,e0Q , X eoQ (5.4)

In simple words, the value of ¢ at each point is the closest distance of that point from the
boundary. Figure 5-6 illustrates the resulted level set function corresponding to the initial
square and triangle damping configuration. In fact, if xy plane crosses this function at z=0
the initial damping shape shown in Figure 5-3 will be obtained. It should be noted that in

practice, finer mesh is used in order to obtain a more uniform function.

0z

Figure 5-6: Level set function corresponding to the initial damping configuration
After generating the initial level set function, the rest of the procedure is identical to those

explained in Chapter 4.
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5.2 Numerical Examples

In this section two numerical examples will be discussed in detail. Satellite dishes and
automotive dash panels are two of the systems in which CLD patches are commonly used to

control excessive vibrations.

5.2.1 Case study 1: Vibration control in a satellite dish

Weight saving in the satellite industry has always been an important mission. Hence vibration
control is inevitable. Vibrations, especially below 1 kHz, cause various problems for sensitive
equipment attached to satellites [111]. One of the most commonly used methods to suppress
vibrations in these structures is to apply anti-vibration mountings, or to coat the structure with
viscoelastic materials [112]. In order to reduce the weight and cost penalties, the structure could
be partially treated, and obviously the shape and location of such coverage will have to be

determined.

In this section, a satellite dish (Figure 5-7) will be considered with a computer model (shown

in Figure 5-8).

Figure 5-7: A typical satellite dish
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The specifications of the satellite dish and the applied CLD patches are listed in Table 5-1. It is

made of aluminum and a circle from its back is fixed to represent the support.

Table 5-1: Satellite dish specifications

Property Value Unit
Width 520 mm
Height 100 mm
Thickness 2 mm
Modulus of elasticity 71 GPa
Density 2700 kg/m’

Poisson ratio 0.29 -

CLD Material loss factor 0.79 ~0.99 -
CLD Specific gravity 0.53 Ib/ft?

CLD Thickness 1.5 mm

Its boundary is shown in Figure 5-8(b) as a hatched circle. The satellite is welded to its support
in this circle area and the rest of edges are free. A certain amount of constrained layer damping
with a loss factor of 0.9 is applied to the satellite’s surface in order to minimize its vibrations.

The goal is to find the best shape and location of patches using the level set optimization

technique.
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(a) (b)

Figure 5-8: Solid model generated for the satellite, (a) isometric view, (b) bottom view

Since the CLD patches’ energy dissipation is related to the stain rate, it is very beneficial to
perform a modal analysis on the structure before starting level set optimization. By performing
the modal analysis, one can determine the locations that have highest modal strain energy at a
specific mode or modes. Then the patches can be located close to those locations in order to
increase the chance of finding the global minimum. Another benefit for this is reduction of

optimization time due to starting the process from regions close to optimum locations.

Tetrahedral Lagrange-quadratic elements have been used in the structure finite element model.
In contrast to the process mentioned for finding initial level set function, finer meshes will lead to
smoother shapes however having more elements will increase the computational cost. The first
four vibrational mode shapes of the satellite dish are shown in Figure 5-9. In these figures, the
contour spectrum ranges from blue colour to red where blue and red illustrate minimum and

maximum displacements, respectively.
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(©) (d)

Figure 5-9: First four mode shapes of the satellite dish (displacement contour), a) First
mode [9.49 rad/s], b) Second mode [9.50 rad/s], ¢)Third mode [19.55 rad/s], d) Fourth mode
[19.56 rad/s]

It can be seen that modes 1 and 2 are identical but about two different axes. This also holds
true for modes 3 and 4. As such, from now on, the focus will be on modes 1 and 3, since modes 2
and 4 are repeated version of modes 1 and 3, respectively. In order to have an initial estimate of
the optimum locations, areas with highest modal strain energy should be determined. Figure 5-10
shows strain contour for modes 1 and 3. In these figures, contour spectrum ranges from dark blue

to red colour. Maximum strain energy is illustrated by red and minimum by dark blue.
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(a) (b)

Figure 5-10: Strain energy density contour, a) First mode, b) Third mode

In can be seen that in mode 1, the highest modal stain energy is observed around the centre of
satellite dish where it is welded. However, in mode 3 the strain energy region is concentrated

closer to the edges of the dish.

5.2.1.1 Optimization based on fundamental natural frequency

In this section, the first mode is targeted to locate the patches. Figure 5-11(a) demonstrates the
initial configuration of damping patches. It should be noted that the four patches could have been
placed closer to the welding area, however they were located a bit farther in order to demonstrate

the evolution of boundaries towards optimum configuration.

Based on the strain contour shown in Figure 5-10(a), it is expected that damping patches move
towards the bottom of the satellite, close to the fixed part. Figure 5-11 illustrates the evolution of
damping patches towards optimum configuration. The optimum damping configuration matches
expectations and has accumulated around locations with the highest strain rate, resulting in

maximum energy dissipation.
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Figure 5-11: Evolution of CLD patches, a) T=0 b) 7=0.8 ¢) T=1
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Modal loss factor in different iterations is demonstrated in Figure 5-12. It is increasing until the
optimum damping configuration is achieved. Although the initial location of the patches were
chosen based on the primary modal analysis and the strain contour, level set optimization can
increase the modal loss factor by almost 6 times of that in initial configuration. In other words,
although modal analysis and strain energy contour reveal some initial guess for the optimum
location of damping patches, they do not provide any information regarding the optimum shape.
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Figure 5-12: Modal loss factor in different iterations.

In order to check that the final optimum shape is not dependant on the initial symmetric
locations of CLD patches, this process will be repeated using three patches. The new initial
configuration is shown in Figure 5-13(a). It can be seen in Figure 5-13 that again, the damping
set has moved toward the bottom of the satellite, close to the fixed part. Of course in comparison
with the results in Figure 5-11 the donut shape of optimum damping configuration has remained

the same but it is just smaller, because it has been formed from 3 patches not 4.
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Therefore, it can be concluded that symmetric location of patches had little to do with the final

optimum configuration.

77



(d)
Figure 5-13: Evolution of three CLD patches, a) T=0 b) 7=2.4 ¢) =3 d) =5

It can be seen that although the process was started with a few patches, the optimum
configuration consists of a single patch. This is one of the most important benefits of this method

that the number of pieces will be determined automatically.

5.2.1.2 Optimization based on third natural frequency

It is common to design systems based on their fundamental frequency. However, if the working
frequency or excitation frequency is far from the fundamental one, those higher frequencies
should be considered as well. In this section the vibrations of the same satellite system will be

minimized for the third natural frequency. In other words, the best shape and location of damping
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patches will be found so that the maximum energy dissipation happens around the third
frequency. Like before, four initial patches will be located on the satellite dish, as shown in
Figure 5-11(a). Based on Figure 5-10(b) the patches are better to be located closer to the edges
for faster convergence to the optimal location. However, for the sake of comparison, the initial
damping configuration is chosen identical to the one used in mode 1 analysis, and far from edges.
This time, after optimization, the patches are pushed towards the tip of the satellite dish, as

demonstrated in Figure 5-14.




(d)
Figure 5-14: Damping evolution based on third natural frequency, a) T=0 b) 7=0.4 ¢) =2 d)
=4

A comparison of Figure 5-14 and Figure 5-10(b) states the reasons behind the new location for
the patches. In this mode, since the highest strain change happens around the top edges of the
satellite, placing damping patches at those locations will result in highest modal loss factor, and

hence, maximum energy dissipation.
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5.2.1.3 Optimization based on combination of the first and third natural frequencies

In some practical applications, the system works in a range of frequencies and therefore more
than one mode shape have to be considered in the optimization process. In this case Equation
(4.11) is used to form the objective function for the optimization. In this case study, modes 1 and
3 of the satellite dish will be combined and the best damping configuration will be found to

maximize the combination of modal loss factors in both modes.

When two or more mode shapes are considered, selection of initial damping configuration is
harder than single mode case. According to Figure 5-10, highest strain energy in mode 1 is close
to the centre of the satellite where it is welded. However, this location provides minimum strain
energy in mode 3. In the same way, high strain energy region in mode 3 corresponds to low strain
energy area of mode 1. In such cases, splitting the patches and locating them in different areas
will help to cover high strain energy areas in different modes. In this case study, to be consistent
with previous studies, the initial configuration of CLD patches will be chosen according to

Figure 5-13(a).

Figure 5-15 illustrates the optimum damping configuration for the satellite dish with a
combined mode objective function. It can be seen that in contrast with the first or third mode
cases, patches are neither accumulated close to the weld area nor around the edge of the dish.
Instead, the patches are spread in a way that they cover high strain areas in both modes 1 and 3.
This shape does not increase the loss factor of the first mode as much as the shape shown in
Figure 5-11(c) and does not increase the loss factor of the third mode as much as the shape
shown Figure 5-14(d). However, it maximizes the combination of loss factors of the first and

third modes simultaneously.
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It should also be noted that if a smaller mesh size is used and the optimization is continued
with a few more iterations, smoother boundaries will be achieved for the optimum shape of the

patches.

Figure 5-15: Optimum damping configuration for satellite dish when both first and third mode

shapes are addressed simultaneously

5.2.2 Case study 2: Vibration control in automotive dash panel

The automotive industry has recently placed increased focus on the process of light-weighting
and using lighter materials, such as magnesium, in vehicle components. However, weight
reduction and the application of lightweight material can also increase unwanted noise and

vibration.

One of the automotive parts that can benefit from lighter material with lower manufacturing
costs is the dash panel. The dash panel is located between the engine and car interior, and thus
can be an important transmitter of noise and vibration to passengers. Kurosawa et al. [113]
worked on the vibration of panels with passive treatments. They focused on estimating the

damped vibration of automotive body panels. Bianchini [114] worked on active vibration control
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of automotive-like panels using a simple model, shown in Figure 5-16. Nagai et al. worked on
the application of vibration damping steel sheets (VDSS) in automotive panels, and through
experiment, confirmed that the noise reduction effect of VDSS is proportional to the logarithm of

their loss factor [115].

ir volume in back

Steel panel

Air volume in front

Figure 5-16: FEA model used in [114]
In this section, optimal vibration suppression will be performed on a dash panel, as shown in
Figure 5-17. The best shape and location of CLD patches have to be determined to get highest

modal loss factor.

83



Figure 5-17: Solid model of the automotive dash panel

As explained before, in order to get an idea of where to start, it is very beneficial to perform a
modal analysis first. The dash panel is made of magnesium and is fixed around its outer edges, as
shown in Figure 5-17. Detailed properties of the panel and the added CLD patches are given in

Table 5-2. In this case, the CLD loss factor of 0.9 is used in analysis.
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Table 5-2: Material properties of automotive dash panel

Property Value Unit
Modulus of elasticity 71 GPa
Poisson ratio 0.29 -
Density 2700 Kg/m®
CLD Material loss factor 0.79 ~0.99 -
CLD Specific gravity 0.53 Ib/ft?
CLD Thickness 1.5 mm

Tetrahedral Lagrange-quadratic elements have been used in finite element model. Figure 5-18
shows the fundamental mode shape of the dash panel, as well as its strain energy contour. In the
first figure, the contour spectrum ranges from blue colour to red where blue and red illustrate
minimum and maximum displacements, respectively. However, in the second figure, the contour
spectrum ranges from dark blue to red colour. Maximum strain energy is illustrated by red and

minimum by dark blue.
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(b)

Figure 5-18: Dash panel’s fundamental mode shape a) Displacement contour b) Strain

energy density contour
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Since the highest strain rate is happening almost around the top and bottom center of the panel,
two circular CLD patches will be located close to those locations as an initial guess (see
Figure 5-19(a)). The evolution of the patch toward the optimum configuration is shown in
Figure 5-19, and the variation of modal loss factor in different iterations is demonstrated in

Figure 5-20.




Figure 5-19: Evolution of CLD patches, a) =0 b) 7=0.2 ¢) t=1
The modal loss factor increase during the optimization process until the optimum shape and
location for the patches are achieved.
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Figure 5-20: Modal loss factor for automotive dash panel in different iterations
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As mentioned before, the level set optimization like other optimization methods is prone to
getting stuck in local minima, and there is no guarantee that the configurations found in these
case studies were the global minima. However, since the energy dissipation in CLD patches is
proportional to strain energy, if the damping patches are initially located close to areas with

highest modal strain energy, the chance of achieving a global optimum will increase.
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Chapter 6

Experimental Studies

It is always desired to confirm theoretical work by experimental results, and vibration control is
not an exception. In this chapter experimental test will be performed in order to confirm the

results obtained in the previous chapters.

Tests will be performed on the rectangular plate shown in Figure 6-1. Its dimensions and

material properties are listed in

Table 6-1: Dimensions and material properties of the test specimen and CLD patches

Property Value Unit
Length 500 mm
Width 250 mm
Thickness 0.8 mm
Modulus of elasticity 200 GPa
Poisson ratio 0.3 -
Density 7800 Kg/m®
CLD Material loss factor 0.09~0.3 -
CLD Specific gravity 0.53 Ib/ft?
CLD Thickness 1.5 mm
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The plate is fixed from top and partly on its right side. The fixed section on the right is 10 cm.
CLD patches will be located on it to suppress its flexural vibrations. The best shape and location
of the patches will be found theoretically and experimentally to achieve highest vibration

attenuation.

IS IIIIIIII VNIV

50 cm

wd QT

LA L

25cm

Figure 6-1: Plate with nonsymmetrical boundary conditions

6.1 Computer simulation
In this section the system will be modeled in COMSOL®©. 3D tetrahedral Lagrange-quadratic

elements will be used and the top edge and 10 cm from the right edge will be fixed, as seen in

Figure 6-1.
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Figure 6-2: Finite element model of the plate
The first natural frequency of the system is found to be 13.62 Hz. Figure 6-3(a) illustrate the first
mode shape of the system and the strain energy contour is shown in Figure 6-3(b). In the first
figure the contour spectrum ranges from blue colour to red where blue and red illustrate
minimum and maximum displacements respectively. However, in the second figure, the contour
spectrum ranges from dark blue to red colour. Maximum strain energy is illustrated by red and
minimum by dark blue. The areas with high strain energy are located close to the clamp

boundaries.

(a) (b)

Figure 6-3: First mode shape: (a) displacement contour, (b) strain energy contour
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Now that the high strain energy locations are found, the optimal CLD positions can be found
using the developed method. Two different configurations, each consisting of two circular
patches, located on the structure with a total area of 0.25 m’ are considered. These initial
configurations are illustrated in Figure 6-4 (a) and (b). In these simulations, assuming room
temperature the material loss factor was set to 0.1. The optimization needed almost 140 iterations
to converge when configuration (a) was chosen as initial shape/location for CLD patches,
however configuration (b) for the initial shape/location for CLD patches led to a convergence
after 64. Both choices of the initial [1 will converge to the optimum configuration, shown in
Figure 6-4(c), and the patches are guided close to the boundaries. It could be seen that the
distribution is not symmetric and unlike the system shown in Figure 4-10(d) where CLD patches

were evenly accumulated around the constrained edge.

02

(a)

93



(b)

(c)
Figure 6-4: Configuration of CLD patches a) initial shape {choice 1} b) initial shape {choice
2} ¢) optimal shape

The change in loss factor in different iterations is shown in Figure 6-5.
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Figure 6-5: Variation of loss factor (77)

6.2 Experimental tests

Test setup shown in Figure 6-6 is used to perform experiments. It consists of the rigid frame,
two non-contact displacement sensors, a rectangular plate and two supports to create non-

symmetric clamp boundary condition.
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Figure 6-6: Experimental test setup

Different CLD configuration, including the optimum one found in previous section, will be
tested. CLD patches are from HushMat Company and their specifications are listed in Table 6-1.
A typical CLD sheet is shown in Figure 6-7. These self-adhesive patches can afford excellent
control of resonance-induced vibrations. Their composite loss factor does not vary too much with

temperature and frequency and it falls between 0.09 and 0.3 [116].
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Figure 6-7: Constrained Layer Damper used for test [117]
The data acquisition system (DAQ) consists of Sensory 626 data acquisition card and a
computer. This DAQ card is MATLAB-compatible, so the controller is programmed in Simulink
in MATLAB. The data are collected with a sampling frequency of 1 KHz. The laser based

displacement sensors are shown in Figure 6-8.

Figure 6-8: Non-contact displacement sensors

97



Keyence LK081 and LK031 non-contact laser sensors are utilized to read the displacements.
Each laser sensor comes with its own controller. The specifications of these sensors are listed in
Table 6-2. Although one sensor was sufficient, two of them were used to assure no data is lost if
one of them stops working during the test. LK-031 is the top sensor since the range of
displacements is smaller in this position. This sensor is located at a 30 mm horizontal distance

from the plate. The bottom sensor is LK081 and is located at 80 mm away from the Plate.

Table 6-2: Specifications of non-contact laser sensors

Top sensor Bottom sensor
Sensor Head LK-031 LK-081
Controller LK-2001 LK-2101
Reference Distance(mm) 30 80
Measuring Range(mm) +5 +15
Sampling Rate (us) 512 1024
Resolution (um) 1 3

The area of the CLD patches in all of the configurations is 0.25 m*. All damping configurations

are shown in Figure 6-9.
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Configuration (b)

Configuration (c) Configuration (d)
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Configuration (e)

Figure 6-9: Different CLD shapes used in the experimental test
In order to excite the first natural frequency of the system, an initial displacement is applied to
the bottom corner of the plate (according to Figure 6-10) and the free vibration is studied. This
displacement is applied by moving the bottom corner until it reaches a stopper which shows the

desired displacement. This way, the same initial displacement is applied in all the tests.
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Displacement

Figure 6-10: Initial displacement direction

In order to verify the finite element model, an experiment is carried out first. Before attaching
the CLD patches, an impulse is applied to the bottom left corner of the plate. After performing
Discrete Fourier Transform (DFT), the frequency response of the plate is found and illustrated in

Figure 6-11. The first two natural frequencies of the system are captured.
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Figure 6-11: Frequency response of the plate without CLD
This experiment is repeated again when two CLD patches are attached to the plate with the
configuration shown in Figure 6-9(a). The frequency response of plate with CLD is illustrated in

Figure 6-12.
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Figure 6-12: Frequency response of the plate without CLD
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Table 6-3 compares the first two natural frequencies found from finite element analysis with

those obtained from experiments for two different cases of the plate with and without the CLD

patches.
Table 6-3: First two natural frequencies of the plate
Natural Frequency (Hz) First Second
Experiment (Plate without CLD) 13.31 24.57
Experiment (Plate with CLD) 12.42 24.32
Finite Element Analysis 13.62 25.01

The data presented in this table show that the simulation results are in good agreement with the
experimental tests. Furthermore, it can be seen that since the weight of the added material is
much less than the original plate, the CLD patches have negligible effect on the natural

frequencies of the plate with CLD patches.

Displacement diagram related to each test is shown in Figure 6-13. It should be noted that the
displacement in all these figures have been normalized, through dividing data by initial value of

displacement) in order to have a fair comparison. Therefore each graph starts from 1.
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Figure 6-13: Displacement diagram for each damping configuration

In order to show the effects of damping location on the overall vibration suppression the

combination of the results of all tests is depicted in Figure 6-14.
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Figure 6-14: Comparative diagram of displacement tests for different damping configurations
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The exponential diagram for all of the configurations is illustrated in Figure 6-15. In this figure
the peak displacement of each cycle has been picked and it clearly demonstrates the decay of

oscillations.

— Optimum
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w
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Time (s)

Figure 6-15: Exponential diagram (labels are based on Figure 6-9)
It could be seen that vibration is suppressed faster when optimum CLD shapes and location
have been used. Quantitatively speaking, the vibrations are attenuated 73% faster when optimum
configuration is applied in comparison to the case that no CLD is attached. In the same manner,

configuration (d) leads to 28% quicker suppression than configuration (c).

In a time decaying diagram, like the one shown in Figure 6-16, the logarithmic decrement is

defined as
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The damping ratio is
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and finally the loss factor could be estimated by [118]
n=2¢ (6.3)

x(t)

vv\/‘“ Time

Figure 6-16: Typical decaying displacement diagram
Damping ratio related to each experiment is given in Table 6-4. It can be seen that the optimum
CLD shape and location (configuration e), found via level set optimization, reveals the highest

loss factor and suppresses vibrations faster.
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Comparison of configurations (a) and (b) reveals the effect of location of CLD patches on loss
factor. In these two configurations the shapes of CLD patches are identical while the locations of

patches are different. Configuration (b) offers 20% more loss factor.

The effect of the shapes of CLD patches on loss factor can be identified by comparing
configurations (c) and (d). Although in both cases patches are located close to the fixed
boundaries, their shapes are different. It could be seen in Table 6-4 that configuration (d) leads to
33% more loss factor. Looking at the modal strain energy contour shown in Figure 6-3(b), one
can notice that since in configuration (d) damping material are mostly accumulated around areas

with high strain energys, it offers higher loss factor compared to configuration (c).

More generally, comparison of configuration (c) and (e) will show the effect of simultaneous
shape and location optimization. Configuration (e) offers 60% more loss factor and 44% faster

vibration attenuation than configuration (c).

The experimental results obtained in this section clearly confirm those found from simulations.
The best suppression performance was coming from the optimum configuration found through

level set optimization.
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Table 6-4: Damping ratio

CLD configuration Loss factor
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Chapter 7

Conclusion and Future Work

Among different approaches to control vibration, use of constrained layer dampers is one of
the most popular ones. These polymer damping materials are light, and dissipate energy in form
of heat. Their installation is easy and they do not add much manufacturing cost. Although CLD
patches are relatively light, when dealing with lightweight structures it is necessary to add
damping material as less as possible. To this end, one should not cover the whole surface of a
structure and in turn the surface should be treated partially. Hence, the best shape and location of

the CLD patches have to be determined.

7.1 Conclusions

In this research, a new technique called, level set optimization, was introduced to the field of
damping optimization. Unlike most research that only focus on the optimum location of the
added damping material, not only will this novel approach find the optimum location of the CLD

patches it will also find their best shape simultaneously for a given surface area.

The optimization problem was first formulated for 2D structures. After choosing an initial
arbitrary shape and location for the CLD patches, the best shape and their locations were found
effectively using the solution of Hamilton-Jacobi partial differential equation. In another example
a nonsymmetrical system from Ref. [48] was optimized using the proposed level set approach
and its results were improved by more than 10%. It should be noted that in Ref. [48] the accuracy

of results were examined through experimental test.

The suggested optimization method was further extended to 3D domain. A novel approach was

developed to create a 4D level set function required for initiation of the optimization process. A
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thorough study was performed on control of vibration in a satellite dish. Different eigen
frequencies were targeted and CLD patches were optimally applied to the surface of the dish to

minimize its vibration.

In another complicated example, an automotive dash panel was under study and its excessive
vibration was minimized. The optimum shape and location of the patches were determined via

level set technique.

In order to confirm the results obtained in this work, an experiment was carried out. Flexural
vibration of a plate with nonsymmetrical boundary conditions was lower by means of CLD
material. First, using level set technique the optimum shape and location of patches were

determined in software.

Then experimental tests were performed on the plate. Five different damping configurations,
including the optimum one, were used. Expectedly, the vibration of plate was attenuated faster
when the optimum configuration was utilized for the CLD patches in comparison to all other
configurations. During the experiments, the highest loss factor was achieved when damping
patches were attached according to those found via level set technique. This experiment
reconfirmed the accuracy of the proposed approach in finding optimum shape and location of the

added material.

In general the proposed method showed a lot of capabilities in optimal vibration control in
lightweight structures. On the other hand the computer code generated in this research can easily
be adapted to other physical optimization problems and is not solely confined to vibration
control. It can handle different physical phenomenon using finite element technique in

conjunction with level set optimization approach followed by Hamilton-Jacobi PDE.
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The main contributions of this research are summarized below:

- The general solution to 2D and 3D CLD applications was studied.

- The proposed level set optimization was capable of finding the best shape and location of

the patches simultaneously for a given surface area (damping material).

- The level set technique was extended to concurrent shape and location optimization.

- A new numerical implementation to handle optimization problems in any complicated

structure was proposed and a computer code was developed accordingly.

- Application of the proposed numerical approach made it possible to perform level set

optimization in time/frequency dependent problem.

- Level set approach was extended to higher orders problems.

7.2 Future work

Like other research, there are avenues for further research in this area. When dealing with an
optimization problem, one of the critical aspects that always can be improved is to reduce the

possibility of getting stuck into a local minimum.

Incorporation of stochastic methods could be advantageous in escaping from local minima. A
few researchers have included stochastic terms in level set technique [119-124]. Kasaiezadeh and
Khajepour [125,126] have implemented active contours and stochastic fronts. By adding
stochastic term to the level set PDE they confirmed that the chance escaping from local solutions

would decrease compared to classical level set methods.

Another approach for moving towards the global optimum is application of multi agent

techniques. In these methods the optimization starts with a few initial guesses and continues.
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However, there is an interrelation between all agents. So if one of them gets stuck into a
minimum the others could reach a better optimum solution. In some advanced methods [127]
agents stuck in local minimums could release themselves and continue their way towards the
global optimum point. For both of these suggested paths, new formulation has to been derived in
the context of stochastic or multi-agent level set technique. A computer code has to be developed

accordingly.

Another area for future work is to consider other types of objective functions. For examples in

many cases it is important to bring the modal loss factor to a desired value for minimum amount

of CLD patches.
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