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Abstract 

Vibration control is inevitable in many fields, including mechanical and civil engineering. This 

matter becomes more crucial for lightweight systems, like those made of magnesium. One of the 

most commonly practiced methods in vibration control is to apply constrained layer damping 

(CLD) patches to the surface of a structure. In order to consider the weight efficiency of the 

structure, the best shape and locations of the patches should be determined to achieve the 

optimum vibration suppression with the lowest amount of damping patch. In most research work 

done so far, the shape of patches are assumed to be known and only their optimum locations are 

found. However, the shape of the patches plays an important role in vibration suppression that 

should be included in the overall optimization procedure.  

In this research, a novel topology optimization approach is proposed. This approach is capable 

of finding the optimum shape and locations of the patches simultaneously for a given surface 

area. In other words, the damping optimization will be formulated in the context of the level set 

technique, which is a numerical method used to track shapes and locations concurrently.   

Although level set technique offers several key benefits, its application especially in time-

varying problems is somewhat cumbersome. To overcome this issue, a unique programming 

technique is suggested that utilizes MATLAB© and COMSOL© simultaneously.  

Different 2D structures will be considered and CLD patches will be optimally located on them 

to achieve the highest modal loss factor. Optimization will be performed while having different 

amount of damping patches to check the effectiveness of the technique. In all cases, certain 

constraints are imposed in order to make sure that the amount of damping material remains 
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constant and equal to the starting value. Furthermore, different natural frequencies will be 

targeted in the damping optimization, and their effects will also be explained.  

The level set optimization technique will then be expanded to 3D structures, and a novel 

approach will be presented for defining an efficient 4D level set function to initialize the 

optimization process. Vibrations of a satellite dish will be optimally suppressed using CLD 

patches. Dependency of the optimum shape and location of patches to different parameters of the 

models such as natural frequencies and initial starting point will be examined. In another 

practical example, excessive vibrations of an automotive dash panel will be minimized by adding 

damping materials and their optimal distribution will be found. 

Finally, the accuracy of the proposed method will be experimentally confirmed through lab 

tests on a rectangular plate with nonsymmetrical boundary conditions. Different damping 

configurations, including the optimum one, will be tested. It will be shown that the optimum 

damping configuration found via level set technique possesses the highest loss factor and reveals 

the best vibration attenuation. 

The proposed level set topology optimization method shows high capability of determining the 

optimum damping set in structures. The effective coding method presented in this research will 

make it possible to easily extend this method to other physical problems such as image 

processing, heat transfer, magnetic fields, etc. Being interconnected, the physical part will be 

modeled in a finite element package like COMSOL and the optimization advances by means of 

Hamilton-Jacobi partial differential equation. Thus, the application of the proposed method is not 

confined to damping optimization and can be expanded to many engineering problems. 

In summary, this research: 
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- offers general solution to 2D and 3D CLD applications and simultaneously finds the best 

shape and location of the patches for a given surface area (damping material); 

- extends the level set technique to concurrent shape and location optimization; 

- proposes a new numerical implementation to handle level set optimization problems in any 

complicated structure; 

- makes it possible to perform level set optimization in time dependent problems; 

- extends level set approach to higher order problems. 
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Noise vibration and harshness analysis is essential for such lightweight structures, as the 

vibrational properties of the structure changes and the lower mass makes it more prone to 

vibration.  

Passive vibration control via constrained layer damping (CLD) has demonstrated suitable 

efficiency in the vibration control of lightweight structures, and has been used in airplanes and 

some cars. Although CLD patches are used in lightweight structures, a comprehensive method to 

achieve optimal (and desired) control effort with minimum usage of CLD patches is needed. How 

much damping patches should be used? Where in the system should they be applied? What is the 

best shape of the patches? All these questions should be answered to achieve the optimal 

solution. Despite the fact that several researchers have worked on the optimal vibration 

suppression in dynamical systems, simultaneous optimization of shape and location of added 

damping material has not yet been addressed comprehensively. 

This research proposes a novel method that concurrently answers all the above questions. It 

can simultaneously optimize the shape and locations of CLD patches, while their area remains 

constant. In fact, a structural topology optimization approach is introduced to optimize damping 

materials applied to a structure. 

Level set technique offers several advantages, however its application is somewhat 

challenging, especially in time varying systems. The reason is that in level set approach the 

optimization advances according to a partial differential equation (PDE) which possesses a 

pseudo time. If the system condition is not static, the system time can mix up with the PDE time 

and can lead to wrong solutions. In order to perform level set optimization without this issue, a 

versatile computer code is developed in MATLAB© and COMSOL©. This new approach will 
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avoid time mix-up and will make it possible to perform structural optimization in time and/or 

frequency domain. The other key feature for this computer code is that the optimization 

technique will not be limited to damping optimization. Optimization problems with any form of 

objective functions (image processing, magnetic systems, thermal systems, etc.) can be solved 

with this code because it is supported by a powerful finite element package that is only 

responsible for evaluating the objective function and is not mixed with optimization portion. 

 Chapter 2 will perform a thorough literature review on the problem of optimal vibration 

control, with a special focus on vibration control via constrained layer damping. Different 

configurations of surface treatment will be discussed, and their application will be explained. 

Furthermore, the problem of optimal control in systems with surface treatment will be explained 

in full detail. This chapter will also examine and discuss key theories and methods such as the 

modal strain energy method, which are used in modeling constrained layer dampers. 

 Chapter 3 addresses the new level set method, which is a numerical technique to track shapes 

and interfaces. Following the explanation of this method and pointing out its advantages, the 

application of this method to different areas, especially in the field of topology optimization, will 

be studied. A structural topology optimization (compliance minimization) will be formulated in 

the context of the level set method with all the necessary details.  

 Chapter 4 the level set technique is reformulated and applied  to the damping optimization 

problem. The new formulations and objective function will be discussed and developed. This 

novel approach will address both the shape and location optimization simultaneously. In most 

research work available in literature, in order to reduce the complexities of dynamic systems, 

especially in level set context, they are modeled as static-equivalent. In contrast, to perform level 
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set topology optimization in frequency domain (without any need to consider a static-equivalent 

model), in this research an interactive computer code is developed in MATLAB© and 

COMSOL©. Objective function is evaluated using finite element technique and the optimization 

progresses according to Hamilton-Jacobi equations.  

A 2D structure with structural damping, undergoing flexural vibrations, will be considered. 

The best shape for damping patches as well as their optimum location of the structure will be 

determined to minimize the modal energy of the different vibrational modes of the system, and 

the highest energy dissipation will be eventually achieved. During optimization process, certain 

constraints are imposed to keep the total area of the patches constant. Another numerical example 

will include a nonsymmetrical plate. The damping configuration will be optimized in the system, 

and results will be compared with the literature. 

 Chapter 5 expands the level set damping optimization technique to 3D structures. A novel 

method will be presented to generate initial 4D level set function. This approach will also make it 

possible to model higher order systems and is not limited to 3D. Since satellite dishes are so 

sensitive to vibrations, in the first 3D numerical example, CLD patches will be optimally shaped 

and located on a satellite dish. Different natural frequencies and different amounts of damping 

will be considered to examine the effectiveness of the method. In the second example, the 

vibration of an automotive dash panel will be optimally suppressed via CLD patches.  

 Chapter 6 explains experimental tests, and considers a rectangular plate with non-symmetric 

boundary conditions. Optimal damping configurations will initially be found for the system, and 

then four different damping configurations, including those found via the level set technique, will 

be tested and their vibrational performance compared. It will be experimentally shown that the 
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CLD shape and location, found via the level set technique, delivers the largest vibration 

suppression.  

Finally, conclusions and suggestions for future work will be discussed in  Chapter 7.  
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Although manufacturing costs and material price for this type of treatment are the lowest 

among all available types,  it is not weight efficient, so it is not applicable for vibration control in 

lightweight structures. In  order to attain higher dampening behaviour with lower viscoelastic 

material (lighter weight), a more  complicated treatment is commonly utilized. This treatment is 

known as shear or constrained-layer damping (CLD)  treatment. CLD comprises of a viscoelastic 

layer that is capped by another metal layer, as shown in Figure  2-2.  

 

Figure  2-2: Constrained Layer Damping (CLD) configuration [7] 

When the structure vibrates, the CLD undergoes shear deformation as shown in Figure  2-3, 

resulting in energy dissipation through damping properties of the CLD layers.  

 

Figure  2-3: Damping layer under shear while system vibrates [7] 
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CLD layers have been utilized in several mechanical systems, including  component vibration 

isolation, acoustical damping of planar surfaces, aircraft fuselage panels, dash panel vibration 

control [8].  

Misiurek and Sniady [9] worked on the dynamic response of a finite, simply supported 

sandwich beam subjected to a moving force with a constant velocity. Their system included a 

classic sandwich beam with a rectangular cross-section consisting of two thin, stiff, elastic sheets 

and a thick core layer. They showed that from the two infinite series, whose sum reveals the 

classical solution for transverse displacement and the rotation of the cross-section, the one 

representing aperiodic vibrations of the beam could be presented in a closed form. Xin and Lu 

[10] theoretically formulated the wave propagation in an infinite sandwich panel reinforced by 

orthogonal rib-stiffeners during harmonic point force excitation. They determined the response of 

the sandwich using the Fourier transform and the periodical nature of the structure. Challamel et 

al. [11] worked on theoretical and numerical modeling of out-of-plane vibrations of composite 

beams with interlayer slip or three-layer sandwich beams. Hamilton’s principle was utilized to 

derive the governing differential equations. For the out-of-plane vibrations problems, they 

noticed a phenomenon of cut-on frequency associated with a change of the shape of the natural 

modes with respect to a critical frequency. 

Won et al. [12] used the virtual work principle to derive a 2-node damped beam element for 

three-layered symmetric straight damped sandwich structures. In the forced vibration, they add 

three pairs of boundary conditions to the three-constrained-layer damped beam, so the rotation of 

the mid-surface was added for the damped beam element to have three degrees of freedom per 

node. They also considered the frequency dependence of the viscoelastic material properties. 

Their proposed damped beam element showed more rapid convergences in resonance 
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frequencies. Chalak et al. [13] studied vibration of laminated sandwich beams with soft core. 

They developed a C0 finite element beam model to obtain the free vibration response of the 

laminated sandwich beams having a soft core. In their developed model the in-plane 

displacement variation was considered to be cubic for both the face sheets and the core. Their 

proposed model would satisfy the condition of transverse shear stress continuity at the layer 

interfaces and the zero transverse shear stress condition at the top and bottom of the beam. In the 

same line, Sudhakar et al. [14] developed a super convergent finite element for analysis of 

sandwich beams with soft core. Their element was a two-nodded, six degrees of freedom per 

node. They assumed that all the axial and flexural loads were taken by face sheets, while the core 

takes only the shear loads, however they considered exact representation of beam stiffness in the 

formulation. They validated the performance of the developed element under static loadings and 

for free vibration of the sandwich beams with metallic as well as composite face sheets. 

Grewal et al. [15] worked on the vibration analysis and design optimization of sandwich beams 

with constrained viscoelastic core layer. They used finite element method to analyze the dynamic 

properties of sandwich beam-type structures. A comparison was made between their results for 

linear and nonlinear models with those available in the literature. They showed that the natural 

frequency and loss factor at the first mode of clamped-free sandwich beam did not show 

considerable difference in linear and nonlinear models. The difference was more significant for 

the clamp-clamp boundary condition. Eventually, they performed systematic parametric studies 

to verify the effects of the location and length of both treated and untreated patches on both 

natural frequency and the modal loss factor of the sandwich structure. Lopatin and Morozov [16] 

modeled and analyzed symmetrical vibrations of composite sandwich panels. They solved the 

vibration problem for a sandwich plate with identical composite facings and orthotropic core. 
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They used Hamilton’s variational principle to derive differential equation of symmetric 

vibrations. They assumed that the tangential displacements of the core material were negligible 

and the normal displacements of the core material were nonlinearly varying from the value of the 

facing deflection to zero. With these assumptions, they also defined the effective modulus of 

elasticity of the core material in transverse direction. They finally compared the computational 

results with those obtained from the finite element analysis. Arikoglu and Ozkol [17] analyzed 

vibration and damping of a three-layered sandwich plate with composite face layers and a 

viscoelastic core. They used the principle of virtual work to derive the governing equations and 

related boundary conditions. They also took into account the frequency dependency of the core 

layer. The eigenvalue problem was solved using the generalized differential quadrature method to 

determine both the natural frequencies and loss factors. A comparison was made between their 

results and those reported in the literature. They found that the core material providing the 

highest damping would depend on the geometrical properties of the plate. Alijani and Amabili 

[18] investigated the geometrically nonlinear vibrations of completely free laminated and 

sandwich rectangular plates. They obtained the governing equations using multi-modal energy 

approach based on Lagrange equations. Their numerical analysis was based on the nonlinear 

classical and higher-order shear deformation theories. They found the solution based on highly 

accurate natural modes calculated by linear analysis.  

Hamidzadeh [19] investigated the effect of viscoelastic core thickness on the modal loss 

factors of a thick three-layer cylinder. He accomplished the constrained-layer damping by 

sandwiching a linear viscoelastic material between two isotropic elastic cylinders having the 

same properties. The governing equations were derived using Newton’s second law of motion, 

and employing the complex elastic moduli for the sandwiched layer. Then the natural frequencies 
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and modal loss factors for different circumferential wave numbers were determined. It was 

concluded that most frequency factors changed linearly when the middle-layer thickness varied, 

i.e. frequency factors were linear functions of the middle-layer thickness, and for circumferential 

wave number n = 0, all six modes of the modal loss factors increased linearly when the core 

thickness increased. Wu et al. [20] studied the initial decay rate of vibrating plates in relation to 

estimates of loss factor. They worked experimentally on the initial decay rate of the energy decay 

curves on single, coupled, undamped, and damped rectangular plates. They confirmed that the 

loss factors obtained when using the decay rate and the power input methods agree with each 

other for undamped, lightly damped, highly damped (up to a specific frequency) and coupled 

plates. Clarkson and Pope [21] carried out a study on experimental determination of modal 

densities and loss factors of flat plates and cylinders. In their experiments several accelerometers 

were required to determine the spatial average. The tests should be repeated several times with 

different driving positions to obtain the average force position. Mead and Markus [22] studied 

forced transverse vibration of a three-layer sandwich beam with a  viscoelastic core. They derived 

differential equations of motion for the system for different boundary  conditions, and discussed 

the orthogonality of the corresponding complex modes. Johnson and  Kienholz [23] offered an 

efficient method to predict damping in a structure with constrained viscoelastic  layers. They 

estimated the modal damping ratio from undamped normal modes via the modal strain 

energy  method (MSE). Maheri and Adams [24] used finite elements method based on laminated 

plate theories to  predict modal properties of a free-free Fibre Reinforced Polymer (FRP) plate 

and validated their work  with experimental results. More recently, Hambic et al. suggested a new 

approach to infer  viscoelastomer dynamic moduli with better accuracy [25]. Torvik and Runyon 

[26] modified the method of modal strain energy to improve loss factor estimations for damped 
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structures. It was found that the traditional application of MSE method would be appropriate for 

the damping element with a very low stiffness. However, they observed that the error, resulting 

from the use of MSE, would increase significantly for systems with higher damping element 

stiffness, unless the material loss factor of the damping element is small (i.e., << 1). Instead of 

analytical Ross-Kerwin-Ungar equations [27], they used the  finite element model of CLD-treated 

beams in their proposed inference method. They also performed  experimental studies on beams 

with CLD treatments.  

After choosing the amount of CLD to be used to control unwanted vibrations, one of the 

most  important aspects to be aware of is the locations of the damping patches. A great deal of 

research has been done on the optimal location of damping elements on a structure. 

Gurgoze and Muller investigated the optimal positioning of one viscous damper in a linear 

mechanical system with no structural damping [28]. They concluded that the positioning on the 

basis of an “energy” criterion is more reasonable than other criteria. Although they analytically 

formulated the positioning problem for one damper, for more general cases with two or more 

dampers, the calculations have to be performed numerically. Optimal placement of viscous 

elements on a structure, and the selection of their physical properties were addressed in [29] via 

optimization techniques. The authors investigated and solved both continuous and discrete 

optimization problems. Kincaid emphasised local search methods in solving the damper 

placement problem in flexible space truss structures [30]. It was found that the coupling of linear 

programming and Taboo search [31] would provide the highest quality solutions in the shortest 

amount of computing time.   
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Takewaki in [32-36] studied the location optimization of a passive damper location via 

minimum transfer function. The sum of amplitudes of the transfer functions for the undamped 

fundamental natural frequency of a structural system is minimized, subject to a constraint on the 

sum of damping coefficients of the added dampers. The advantage of this method is that the 

results are not affected by the characteristics of input motions because of the application of a 

general dynamical property (amplitude of a transfer function), independent of system inputs. 

Amini and Karagah addressed the optimal semi-active damper placement problem using the 

pole assignment method [37]. They studied the effects of the locations of the controllers on the 

control force and control performance, and concluded that the number of controllers can be 

reduced by means of optimization. In other words, an optimum system with lesser numbers of 

controllers will work more effectively than a non-optimum system with more semi-active 

dampers. Joshi [38] used the H∞-norm optimization to find the damper location for space-borne 

interferometers. He introduced a general methodology that included optical-structural modeling, 

damper modeling, H∞ cost functional formulation and combinatorial optimization. Since in space, 

interferometers offer several distinct disturbance sources, such as a reaction wheel, can act at 

once and two separate optical performance metrics are of interest, he defined a cost criterion 

based on a system H∞-norm that allows consideration of multiple dissimilar disturbance sources 

and multiple dissimilar performance metrics. He considered a discrete combinatorial optimization 

problem of a finite number of dampers and finite number of possible damper locations. Since the 

number of possible combinations grows N!/[(N!)(N-κ)!], where N is the number of possible 

damper locations and κ is the number of dampers to be placed, some heuristic optimization 

techniques needed to be applied. He investigated both Genetic Algorithm and Simulated 

Annealing methods, and observed more efficiency from Simulated Annealing. 
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Agrawal and Yang worked on combinatorial optimization of the location of passive dampers 

on seismic and wind-excited buildings [39]. They used three intelligent search algorithms, 

namely, sequential, Worst-Out-Best-In (WOBI) and Exhaustive Single Point Substitution 

(ESPS), to determine the best locations of dampers. They concluded that WOBI and ESPS could 

be implemented to effectively improve the optimal locations of the dampers, determined by a 

sequential search method. The optimal position of energy absorbing devices in high-rise 

buildings to suppress wind-induced vibrations were also studied in [40] by means of the Genetic 

algorithm. Other than the vibration control effect, both economic effects and damper 

performance were considered in the optimization. In this line, Mahendra [41], Guo [42], Bishop 

[43], Movaffaghi [44] and Roy [45] worked on the optimal vibration control of structures using 

Genetic algorithm.  

Park [46] addressed different approaches related to the mathematical modeling of viscoelastic 

dampers and compared their theoretical basis. He found that the standard mechanical model 

(SMM), which comprises of linear springs and dampers, accurately described the broadband 

rheological behaviour of common viscoelastic dampers. SMM was shown to be more 

advantageous than other models such as the fractional derivative model and the modified power 

law. Lam et al. discussed active and passive control by means of CLD treatment and piezoelectric 

actuating [47]. The Golla-Hughes-McTavish (GHM) method was utilized to model the damping 

of viscoelastic material. They also investigated the treatment of a beam with separate active and 

passive CLD elements, and introduced two new hybrid configurations, as shown in Figure  2-4. It 

was shown that the hybrid treatment, which is comprised of both the CLD layers and 

piezoelectric elements, was capable of lowering the control effort with more inherent damping. 
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Zheng and Tan applied a Genetic Algorithm-based penalty function method to optimize partial 

CLD treated beams [49]. The main goal was to minimize the vibrational energy of vibrating 

beams with passive CLD treatment. They further performed a parameter sensitivity analysis to 

determine the dominant parameters on the vibration response of the damped beam. It was shown 

that the vibration response of the CLD treated beam showed more sensitivity to the 

location/length of the covered passive CLD patches and the shear modulus of the viscoelastic 

layer than other parameters such as the thickness of the viscoelastic layer, and the constraining 

layer (CL) with its elastic modulus fixed. 

Many researchers have devised a modal strain energy (MSE) method to optimally locate CLD 

layers on the structures. This method makes use of finite elements to accurately predict the 

damping levels in structures comprising of layers with elastic and viscoelastic elements. 

Damping levels are found as modal loss factors or modal damping ratios.   

Moreira et al. used this method to optimally locate passive constrained viscoelastic damping 

layers on structures [50]. They also verified their work by comparing the results with 

experimental tests. In order to improve the MSE method, Kodian and Molnar introduced a new 

method to account for viscoelastic material property variation with changes in frequency [51]. 

This method was based on using the gradients of the strain energy ratio in the hybrid Taylor 

series linearization with respect to the frequencies. Similarly, Ro and Baz [52] used the MSE 

method to optimize the location of the active constrained layer damping (ACLD) patches on 

flexible structures. They used a finite element approach to determine the modal strain energies of 

plates treated with ACLD. Furthermore, their work aimed to minimize the total weight of ACLD 

treatments subjected to achieving a certain level of modal damping ratio. 



 

 17 

The MSE method will also be used in the present research; as such, it is appropriate to explain 

it in more detail here. Johnson [53] suggested the MSE method and Chang et al. [54] proved its 

accuracy (for low to moderate damping) by means of experimental tests.  

Consider a finite element model of a structure with an added viscoelastic layer. The equation of 

motion for free vibrations of such a system can be written as 

 0Mx Kx   (2.1) 

where M is the mass matrix and K being the stiffness matrix, which is complex. Considering 

K=K1+jK2, Equation (2.1) can be rewritten in the frequency domain as 

 1 2( ) ( ) ( ) 0MX j K jK X j     (2.2) 

where X is the displacement vector in the frequency domain, 1j   , 1 VR PK K K  and 

2 v VRK K are the respective elastic and loss stiffness (damping) matrices of the system. KVR is 

the storage stiffness of the CLD layer, ηv is the CLD loss factor, and KP is the elastic stiffness of 

the primary system. It should be noted that K2 is the damping achieved from the added CLD 

layers alone, and K1 is the combined stiffness composed of the storage stiffness of the CLD 

layers and the elastic stiffness of the primary system (structure without CLD layer).  

Equation (2.2) shows an eigenvalue problem, which can be expressed as 

   2* * *
VR P v VR i i iK K j K M         (2.3) 

where *
i and *

i are the ith complex eigenvector and eigenfrequency, respectively. For 

convenience, the modal index i is dropped. Hence, 
2* can now be expressed as  
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  2* 2 1 j     (2.4) 

Approximating * by a real mode shape ( R ), which can be calculated from the undamped 

system (without CLD treatment), and pre-multiplying both sides of Equation (2.2) by T
R , one 

can rewrite Equation (2.4) in the following form [55] 

 
 2 (1 )

T T
R VR P R R v VR R

T T
R R R R

K K K
j j

M M

     
   


    (2.5) 

where 2 and 2  can be found by equating the real and imaginary parts of Equation (2.5) as 

 
 2

T
R VR P R

T
R R

K K

M

 


 


  (2.6) 

and 

 2
T
R v VR R

T
R R

K

M

   
 

  (2.7) 

Equation (2.6) reveals the undamped modal frequency based on the real part of the stiffness 

matrix. Eliminating 2 between (2.6) and (2.7), one can find the modal loss factor as 

 
 

T
R VR R

v T
R VR P R

K

K K

  
 




 (2.8) 

In this equation T
R VR RK  would give the modal strain energy contributed by the CLD layer and 

 T
R VR P RK K  is the total modal strain energy. 

It should be noted that for materials with nonlinear behaviour, this approach can still be used, 

provided that linearization should be performed around the working condition (frequency and 
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temperature) or approximating the nonlinear material properties with the piecewise linearization 

method.  In this way ηv will be found for the desired mode (frequency).  

Although all of the aforementioned papers have addressed the optimal vibration control 

through constrained layer damping patches, and the proposed methods can somewhat find the 

best locations of the patches on the structure, most of them are not capable of finding the best 

shape of every individual patch. The present research proposes a novel integrated optimization 

method that can simultaneously optimize the location and shape of the patches. To this end, a 

fairly new structural optimization technique, called the level set method, will be used. 
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3.2 Level set Method 

Osher and Sethin [56] proposed an approach, called level set method, which does not follow 

the interface itself. Now consider Figure  3-3. This method takes the red curve, i.e. the original 

curve, and builds it into a surface, as shown in green. This green surface has a very nice property. 

As shown in this figure, the green surface intersects the xy plane right where the original curve 

sits. Since this surface (function) accepts any input point in the plane and gives back its height as 

output, it is called the level set function. Furthermore, since all the points of the red wire have a 

height of zero, it is called the zero level set. 

 

Figure  3-3: Moving interface (a) original front (b) level set function 

The underlying idea is that instead of moving the original front that causes the aforementioned 

difficulties, the level set is being moved. In fact, the level set does everything, and the zero level 

set shows all the changes in the original front. The green surface, i.e. the level set function, will 

always remain well-behaved, while the original front (red line) can get wildly contoured. 

Therefore, all the complexities, such as breaking and merging, can be easily solved.  
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Figure  3-4 illustrates how one can describe the behavior of a moving front by means of a 

moving level set function. The upper part shows the zero level set, or the original front. 

In summary, the level set approach reveals the motion of a moving interface by embedding the 

interface as the zero level set of the signed distance function. The interface’s motion is essentially 

matched with the zero level set of the assigned level set function. Therefore, an initial value 

problem can be formulated in such a way that its partial differential equation resembles a 

Hamilton-Jacobi equation, and can describe the evolution of the level set function [58].  

 

Figure  3-4: Illustration of the level set method [59] 
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3.3 Topology Optimization using Level set Method 

Considering the aforementioned features of the level set method, several researchers have 

incorporated this technique into the problem of topology optimization. Malladi et al. [60] 

introduced a level set based algorithm for topology-independent shape modeling. Their algorithm 

was applicable to all models with arbitrarily complex shapes, including shapes with significant 

protrusions. Sethian and Weigmann then presented a combined level set and finite difference 

method, applicable to structural boundary design [61], to find the optimal possible design that 

satisfies all the imposed constraints.  

3.3.1 Level set Topology Optimization Formulation 

In this section, the level set topology optimization formulation for a compliance minimization 

problem will be explained from [62]. All other topology optimization problems can be 

formulated in the same way as well.  

In the first step, the design domain is defined by an explicit function. Consider the cantilever 

beam with a hole shown in Figure  3-5. 
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Figure  3-5: A cantilever beam under static load 

Assume that there exists an explicit function ( )x for the design domain, such that: 

 

 
 
 

0 :

0 :

0 :

x x

x x

x x











 

 

 

 (3.1) 

where x is the domain vector, Ω+ shows the structure material, ∂Ω expresses the structure 

boundaries, and Ω- represents the hole in the structure, as shown in Figure  3-6.  
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Figure  3-6: Categorization of the design domain 

For a 2D compliance minimization problem, shown in Figure  3-6, the topology optimization 

can be expressed as: 

 

   

  
  *

1
minimize : d

2

subjected to : .

d

TC E D

E f

H V

   

 







 

 

 




 (3.2) 

where Ω represents the design domain, and strain and stress tensors are respectively denoted by ε 

and σ, and D shows the elasticity matrix. V* is the desired value of the volume in the optimally 
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designed structure, f is the body force and   . E f   expresses the force equilibrium 

equation with as the divergence operator. In fact, the objective function,  C  , is the strain 

energy of the system, which is a function of the shape of the structure and has to be minimized. 

The displacement field, as well as stress and strain will all be calculated using linear elastic 

equations. In this formulation, ( )E   is the modulus of elasticity and is defined in the following 

form by the level set surface: 

       0 min1E E H H E      (3.3) 

where E0 is the elastic modulus of the material, Emin is the minimum relative elasticity modulus, 

and H is the Heaviside function, defined as:  

  
0 0

1 0
H







  
 (3.4) 

In order to make sure that the structure never splits while solving the problem, the second part of 

Equation (3.3), i.e.    min1 H E , is defined in this way. This is actually a numerical trick, and 

does not have any other role in the level set approach.   

In order to consider the volume constraint in the optimization problem, a Lagrangian 

formulation is applied. In fact, this will combine the objective and constraints, by means of a 

Lagrangian multiplier, λ, as expressed below: 

      
*1

, , d
2

T V
J E D H

V
        



  
     

  
  (3.5) 

where the volume of the entire design domain is denoted by VΩ.  
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Equation (3.5) is minimized when its derivative is set to zero. So the next step is to find J  . 

Using variational calculus [63], the variation of the Heaviside function is:  

       0

H
H 


      

 


  


 (3.6) 

where    is the Dirac delta function and  represents the variation of  . The other important 

fact to consider is that the change of shape is only influenced by the normal velocity on the 

material boundary, and the tangential velocity will not affect the geometry deformation. By 

calculating variation along normal direction, Equation (3.6) can be expressed as: 

 
0 l      (3.7) 

where l  is an infinitesimal variation along the normal direction /   n . Now, the 

variation of J for Equation (3.5), i.e. J , can be calculated in the following form: 

 

   
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J D

E E D l

 

 

 
    

 

      








  
     

       






 (3.8) 

From the variational principles [64], the Euler-Lagrange equation corresponding to Equation 

(3.8) at the extreme value point can be expressed as:  

    0 min

1
0

2
TE E D           

 (3.9) 
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which is impossible to solve directly for most cases. As such, one of the best approaches to tackle 

this problem is to solve the level set equation numerically. The corresponding level set equation 

is: 

 

  

   0 min

.

1
0

2
n

T

V

E f

E E D

 

      


  
          




 (3.10) 

which can be solved numerically, with an initial condition of 0 . In this equation, the parameter τ 

does not represent time. It is usually referred to as gradient descent flow and is used as pseudo-

time. The solution of Equation (3.10) will converge to a local minimum (corresponding to the 

chosen initial value ) for a well-posed optimization problem [62]. 

The final step in the formulation of the optimization problem is to find an explicit equation 

related to the Lagrangian multiplier, λ, based on the gradient projection method [65]. The initial 

condition, , that is chosen in the beginning has to satisfy all the constraints of the optimization 

problem. These constraints should be satisfied at all times with the movement of the material 

boundary. For the problem at hand, there is an area constraint defined by the last part of Equation 

(3.2). In order to satisfy the constraint at all times, its change with time should be zero, therefore:  

   *d
d 0

d
H V

 

 
  

 
  (3.11) 

 Since V* is constant and its derivative is zero, this can be written as: 

 
 

d 0
H  
 

 
 

   (3.12) 

0

0
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Using Equations (3.6) and (3.10), one can rewrite Equation (3.12) in the following form: 

      0 min

1
. d 0

2
TE E D       



         (3.13) 

Solving Equation (3.13) for λ results in: 

 

   

 

2
0 min

2

1
d

2

d

TE E D    


  




      
 




 (3.14) 

What has been discussed so far demonstrates how a topology optimization problem can be 

formulated in the level set context as a Hamilton-Jacobi-type equation, and how it can benefit 

from all the features of the level set approach. Equation (3.10) should be solved numerically, and 

in each time step, the value of the inside of the bracket should be updated. 

Formulation by means of the level set method has several advantages over conventional 

methods in the context of topology optimization.  Firstly, level set models are topologically 

flexible. In fact, level set functions represent complicated surface shapes to form holes. They can 

also split to form multiple boundaries, and merge with other boundaries to form a single surface. 

Secondly, a large number of degrees of freedom can be incorporated by the models [66]. Third, 

shape fidelity and topology changes can simultaneously be addressed by the implicit level set 

methods; as such, the design boundary will be kept smooth during the entire optimization 

process. Fourth, since the normal component of a general velocity vector affects the shape 

geometry, and the tangential influences the shape parameterization, based on the discussion 

above Equation (3.7), the interface represented by the level set function is parametric free [67]. 
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Fifth, in order to get a physically meaningful result for Equation (3.10), such as the level set 

model of the Hamilton–Jacobi equation, the theory of viscosity solutions [67,68] can be utilized. 

3.3.2 Application of Level set Topology Optimization 

Considering all the benefits of the level set approach, several researchers have applied this 

method to optimization problems. Osher and Santosa [69] applied this method to optimize the 

resonant frequency of a vibrating two-density inhomogeneous drum with geometrical constraints. 

Following this work, Maitre and Santosa [70] discussed an optimization problem over a fixed 

surface. They utilized the level set optimization method to find the smallest-arclength closed 

curve while the area enclosed by the curve is fixed.  

In a few different works [66,71-73], the level set method was applied to constraint structural 

topology optimization problems. Ref. [72] combined the classical shape derivative and level set 

method for front propagation, and applied it to 2D or 3D space models with linear or nonlinear 

elasticity. As mentioned earlier, one of the cons against the level set method is that the final 

optimal shape is strongly dependent on the initial guess. In other words, this method can easily 

get stuck into local minima.  

Wang [74] made use of a multi-phase level set method to tackle a topology optimization 

problem of structures with multiple materials. In his approach, m level-set functions were 

required in order to represent a structure with n=2m different material phases. This approach is 

very similar to combining colors from the three primary colors, so it is referred to as a “color” 

level-set. This method never faces the problem of overlap of a conventional boundary 

representation scheme. 
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Similarly, Park and Youn [79] offered an adaptive inner-front (AIF) level set method for 

topology optimization of shell structures. The edge smoothing was carried out in order to 

suppress the numerical oscillation of solutions due to the sharp edges in the level set function in 

the utilization of the inner-front creation algorithm.  

Recently, some attempts have been made to improve the efficiency of the level set method. 

Gomes and Suleman [80] proposed an extension to the conventional level set topology 

optimization of interfaces, and called it the spectral level set methodology. In their proposed 

approach, the Fourier coefficients of that function are the design variables describing the 

interface during the topology optimization. One of the advantages of this method is to admit an 

upper bound error, which is asymptotically smaller than the one for the non-adaptive spacial 

discretization of the level set function, in the case of a sufficiently regular interface. Furthermore, 

it can nucleate holes in the interior of the interface and can avoid checkerboard-like designs.  

Fulmanski et al. [81] combined topological derivatives with the level set method. By doing 

this, they showed that utilizing topological derivatives in the framework of the level set method 

significantly improves the method’s efficiency. Moreover, this modification makes the level set 

method more robust, and consequently leads to a better final solution.  

Rong and Liang extended the level set optimization method to structures with bounded design 

domain [82]. They presented a set of new level set based optimization formulas to overcome the 

limitations of current level set methods for the optimal design of continuum structures with 

bounded design domain. Moreover, they introduced a new optimization strategy with the 

possibility of random topology mutations and crossover, which can lead to overcoming 

difficulties related to nucleating holes in the design domain using this method.  
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Lue et al. [83] incorporated radial basis functions into the level set topology optimization of 

continuum structures. In this method, the level set surface is parameterized by using radial basis 

functions with compact support. Therefore, the sophisticated Hamilton–Jacobi partial differential 

equation (PDE) is transformed into an easier size optimization of the expansion coefficients of 

the basis functions. They also proposed a stable numerical volume integration scheme for 

calculating the shape derivatives, which can effectively generate new holes in the design domain 

during the optimization process.  

Finally, Zhuang et al. [84] introduced the element-propagating method to structural shape and 

topology optimization. Instead of solving the Hamilton–Jacobi partial differential equation 

iteratively, their method inserts and deletes basic material elements around the geometric 

boundary. Therefore, without solving the PDE, it realizes the dynamic updating of the material 

region. Their criterion for generating new holes in the material region is the strain energy density. 

These modifications are claimed to significantly improve the conventional level set method.  

However, application of the level set method is not limited to structural topology optimization; 

recently, it has been brought to other fields as well. For example, Wang et al. [85,86] and 

XianMin and GaoFei [87] worked on the topology optimization of compliant mechanisms using 

the level set method. Pingen et al. [88] proposed a parametric level-set approach for the 

optimization of flow domains. By implementing a level set approach, they improved the 

versatility of the topology optimization methods for fluidic systems. Non-trivial mapping 

between the design variables and local material properties was achieved by means of the 

proposed parametric level-set approach, since it applies a material distribution approach to 

represent flow boundaries. They concluded that improvement would not be achieved in 
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convergence by utilizing a parametric level set method for fluidic systems compared to 

traditional methods.  

In the same line, Challis and Guest [89] applied the level set method to the problem of 

optimization of fluids in the Stokes flow. In 2009, the level set method was applied to the 

topological optimization of nonlinear heat conduction problems [90]. Application of the level set 

method relieves the convergence difficulty in nonlinear heat-conduction problems by means of 

topological derivatives. Myslinski [91] utilized the level set method for optimization of contact 

problems. The objective was to find the best shape of the boundary of the domain occupied by 

the body such that the normal contact stress along the contact boundary of the body is minimized.  

Finally, Park and Min [79,92] applied the level set topology optimization method in the design 

of a magnetic actuator and maximized its force.  

3.3.3 Level set method and Damping optimization 

Although researchers in many fields have shown interest in incorporating the level set method 

into different problems within their fields, there is a lack of research literature surrounding 

damping optimization. Only few studies have been carried out on simple systems to find the 

optimum damping set in a system. Munch et al. [93,94] tried to determine the optimal damping 

set needed for the stabilization of the wave equation. A linear damped wave equation was 

considered in two-dimensional domain Ω, with a dissipative term localized in a subset ω,  
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where the prime sign corresponds to the partial derivative with respect to time, and the damping 

potential was considered to have the following form: 

 ( ) ( ),a x a x x    (3.16) 

In this equation,  represents the characteristic function of any domain ω, strictly included in Ω. 

In their work, the best shape of ω was found to minimize the energy of the system at a given 

time, T.  

In the same line, Lassila [95] worked on the optimal damping set in a membrane. The objective 

was to find the optimal damping set of a two-dimensional membrane in such a way that the total 

energy of the membrane was minimized. The governing equations of this system are almost 

identical to Equation (3.15).  

The next two chapters will expand on the level set technique in regards to damping 

optimization in structures. A comprehensive research that addresses damping optimization in 

complicated structures is still missing in literature. Added damping materials can affect the 

vibrational properties of a structure through their shapes and locations. For example in one 

system a circular patch may create more damping than a square patch, or in one system a patch 

close to the boundary may create more damping that the one located in the centre of the structure. 

It is very important to address both of these aspects concurrently in order to make sure that 

minimum amount of damping material is used while maximum vibration attenuation is achieved. 

In the following chapters, level set technique will be utilized to simultaneously optimize the 

shape and location of added damping patches while the amount of damping material remains 

constant. 
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Figure  4-1: Plate undergoing flexural vibrations 

Patches should be located on top of the structure so that maximum energy dissipation is 

achieved. Instead of considering a few pre-configured CLD patches, like Figure  4-2(a), and 

trying to optimally locate them on the structure, the surface of the structure will be covered with 

CLD patches that have an initial shape 0 and total surface area of A* (see Figure  4-2(b)). Next, 

using the level set topology optimization technique, the best shape of the damping patches, optimum

, will be determined for maximum vibration suppression. 

(a) (b) 

Figure  4-2: CLD patches with a) Pre-configured b) initial shape of 0  
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4.2 Mathematical modeling 

In order to formulate the damping optimization problem using the level set optimization 

technique, an objective function, which is a function of the shape of the damping coverage, 

should be defined. Without loss of generality, the damping will be considered to be inside of the 

structure as structural damping, as shown in Figure  4-3, so that equivalent 2D modeling can be 

performed.  

Zheng and Tan [49] observed that the vibration response of the CLD treated beam shows more 

sensitivity to the location/length of the covered passive CLD patch and the shear modulus of the 

viscoelastic layer than other parameters, such as the thickness of the viscoelastic layer (VL) and 

constraining layer (CL) with its elastic modulus fixed. Therefore, the thickness of the CLD layer 

can be eliminated from the optimization process. 

 

Figure  4-3: Modeling of damping as structural damping in a 2D structure 

 

For the assumption of having the damping inside the structure, the equivalent loss factor and 

modal rigidity should be defined. This is done to simplify a complex problem into an equivalent 
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system. Finding the equivalent system was first proposed by Ross, Kerwin and Ungar and the 

method was named after them as RKU [27].  

A fourth order differential equation is used in the RKU method for a uniform beam with the 

sandwich construction. This three-layer laminate system is then represented as an equivalent 

complex stiffness. This method assumes that the mode shapes of the structure are sinusoidal in 

nature, which implies a simply-supported boundary condition. Therefore, when other boundary 

conditions are used, the results are approximated depending on the mode shape in question [96-

103].  

It should be noted that when the RKU method is applied to real world complex structures, it 

does not precisely predict the value of damping, however it is a good damping indicator. The 

paramount goal is to implement a simplified method to establish a design trend that can be used 

in the level set optimization formulation.  

In Figure  4-4, Macioce [103] compares the damping prediction of RKU and MSE methods with 

experimental measurements. Limitations of simplified RKU method especially when dealing 

with true boundary conditions (not just simply-supported) are shown. RKU over estimates the 

predicted the value of damping however it offers a good approximation for the damping which is 

sufficient for the level set optimization formulation. 
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In most practical cases, the extensional stiffness of the viscoelastic layer is small compared to 

the stiffness of the other two layers; hence, the loss factor of the composite panel could be 

approximated using the Ross-Ungar-Kerwin method [104] 
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 (4.1) 

where 2 is the loss factor of the viscoelastic layer, and Y is a stiffness parameter, defined by: 
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 (4.2) 

where E1, E3, H1 and H3 are the moduli of elasticity and thicknesses of the two elastic layers, 

respectively.  X in Equation (4.1) is called the shear parameter and given as:  
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 
 (4.3) 

where G2 is the real part of the complex shear modulus, and p is the wave number, namely the nth 

eigenvalue divided by the composite panel’s length. 

In the same manner, the equivalent modal flexural rigidity is given by [105] 
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 (4.4) 

where Q is the distance from the neutral axis of the three layer system to the neutral axis of the 

host system. Q and d are defined as  
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   (4.6) 

It should be noted again that even if the estimated loss factor and the flexural rigidity contain 

some errors, they will not affect the results of the original optimization problem. As an example, 

consider a problem of optimal viscous damper placement under a beam, with both ends simply-

supported, as shown in Figure  4-6. If the viscous damping coefficient is set to either 5 NSm-1 or 

5.1 NSm-1, the optimal location for the viscous damper will be at the middle of the beam. 

Similarly, in the problem at hand, any minor error that occurs in finding the equivalent modal 

loss factor and rigidity will not affect the optimization problem. 

 

Figure  4-6: Viscous damper positioning under a beam. 

Damping is defined in terms of loss factor. In order to capture the loss factor damping (or 

structural damping) viscoelasticity will be modeled in the frequency domain. This can be 

explained by means of the following equation: 

 *
2 (1 )VR v VRK K jK j K     (4.7) 
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where *K is the complex modulus, VRK is the storage stiffness (modulus), 2K is the loss modulus 

and 2 /v VRK K  is the loss factor. The amount of stored energy for the applied strain is defined 

by the storage modulus, VRK , and the amount of energy dissipated is defined by the loss 

modulus, 2K . In the context of level set optimization, the loss factor becomes: 

    0v H     (4.8) 

 where η0 is the material loss factor. 

The objective of this optimization problem is to maximize the modal loss factor of one mode of 

vibration of the system, which is equivalent to the highest dissipated energy in that mode. Using 

the modal strain energy method (MSE), the modal loss factor of the first mode can be defined by 

Equation (2.8), which can be simplified as: 

   v
v

total

E

E
    (4.9) 

where Ev represents the modal strain energy contributed by the CLD layer while the total modal 

strain energy is denoted by Etotal. Therefore, the topology optimization for this 2D problem can be 

written as: 

 

   

  *

minimize: d

subjected to : d

v
v

total

E
C

E

H A

  






  

 




 (4.10) 

where Ω represents the design domain, and A* shows the desired area of the CLD layer to be used 

to control excessive vibrations. The negative sign has been used to change the maximization 

problem to one of minimization. 
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It is noteworthy that higher mode shapes can also be included in the objective function. In fact the 

modal loss factor of each mode can be found and combined with some weighting coefficients, and 

then be used in the objective functions.  In that case the objective function can be reformed as  

    
( )

( )
1

d
mN

m v
m v m

m T

E
C

E
   



    (4.11) 

where m refers to the mode number, N is the number of desired mode shapes and β is the weighting 

factor of each mode. ( )m
vE represents the modal strain energy contributed by the CLD layer in the mth 

mode and the total modal strain energy in the mth mode is denoted by ( )m
TE while the frequency 

dependent material loss factor corresponding to the mth mode is represented by  m
v  . As an 

example, consider a system whose first and second natural frequencies are 200 Hz and 300 Hz 

respectively. Suppose that the material loss factor of the added CLD at 200 Hz and 300 Hz are 0.19 

and 0.25, respectively. In this case the objective function to address both the first and second natural 

frequencies will be: 

  
(1) (2)

1 2(1) (2)
(0.19 ( ) (0.25 ( ) dv v

T T

E E
C H H

E E
    



 
    

 
   (4.12) 

β1 and β2 can be chosen according to the design requirements and the frequency band. 

Since in many engineering applications the fundamental mode shape is more significant in design 

of the system, also for the sake of simplicity and better presentation of the work, in this section the 

objective function has been formulated based of the first eigenfrequency. 

Lagrangian formulation is applied in order to incorporate the volume constraint into the 

optimization problem by means of the Lagrangian multiplier, λ, as follows: 
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      
*

, dv
v

total

E A
J H

E A
      



  
      

  
  (4.13) 

where the area of the entire design domain is denoted by AΩ. 

When the derivative of Equation (4.13) is zero, this equation reaches its minimum. As 

mentioned in  Chapter 3, the variation of the Heaviside function is: 

       0

H
H 


      

 


  


 (4.14) 

where    is the Dirac delta function and  represents the variation of  . Along the normal 

direction, this variational equation can be written as: 

 0 l      (4.15) 

where l is an infinitesimal variation along the normal direction /   n . 

The variation of J for Equation (4.13), i.e., J  can be calculated in the following form 

 

   
0

0

d

( ) d

v v

T
l

v

total

HE
J

E

E
l

E

 

 

  
  

 

     








  
       

 
     

 






 (4.16) 

The Euler-Lagrange equation corresponding to Equation (4.16) at the extreme value point can be 

expressed as 

  0 0v

T

E

E
    

 
    
 

 (4.17) 

The Hamilton-Jacobi equation for this optimization problem can be written as: 
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  0 0

n

v

total

V

E

E

     


 
       

 (4.18) 

which can be solved numerically, with an initial condition of 0 .  

Finally, an explicit expression is found for Lagrangian multiplier λ according the gradient 

projection method [62]. The second part of Equation (4.10) defines an area constraint that should be 

satisfied at all time. Therefore its derivative with respect to pseudo-time should be zero, as stated 

below: 

   *d
d 0

d
H A

 

 
  

 
  (4.19) 

Since A* is constant and its derivative is zero, Equation (4.19) can be rewritten as 

 
 

d 0
H  
 

 
 

   (4.20) 

Substituting Equations (4.14) and (4.18) into Equation (4.20) yields 

    0 . d 0v

T

E

E
      



 
     
 
  (4.21) 

The solution of Equation (4.21) gives and explicit expression for λ, in the following form: 

 

 

 

2
0

2

d

d

v

total

E

E
   


  





 
  

 
 




 (4.22) 

It is noteworthy to mention that in order to ensure that Equation (4.18) converges, the step time 

should satisfy the Courant-Friedrichs-Lewy (CFL) condition [106], i.e.: 
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max n

h

V
   (4.23) 

In this equation, h refers to the minimum distance between grid points and max nV is the 

maximum value of the points of the grid [58, 62]. If this condition is not satisfied, i.e. time steps 

are not chosen properly, for relatively large Vn, the damping patches will propagate quickly and 

will cover the whole surface. This will lead to an incorrect solution and convergence will not be 

achieved.    

The following two sections will discuss the coding procedure needed to perform the level set 

optimization. 

4.3 General Level set Topology Optimization Algorithm 

Consider the topology optimization problem described by Equation (4.10). The iterative 

algorithm of the level set topology optimization can be written as: 

1. initialize 0 , which corresponds to an initial guess for Ω; 

2. run a structural analysis (FEA) to evaluate nV  in Equation (4.18), this includes finding 

normal velocity and sensitivity analysis; 

3. solve Equation (4.18) for one time step  , to find a new  ; 

4. go to step 2; 

5. iterate until convergence, i.e.,    1 1 1, , , ,k k k k k kJ J          ; 

where α is a convergence factor, and k shows the iteration number. 

This overall optimization procedure is summarized in the flowchart shown Figure  4-7.  
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Figure  4-7: Flowchart of level set topology optimization 

This algorithm and the flowchart demonstrate that an iterative process should be followed to 

find the optimum topology. Furthermore, most of the numerical approaches offered to solve the 

Hamilton-Jacobi equation are based on finite difference approaches with lots of stability 

difficulties.  

In practice, implementing this iterative process is cumbersome. Challis [107] developed a code 

that combines both finite element analysis of the structure and the finite difference analysis of the 

Hamilton-Jacobi equation in MALTAB. Although the code is very compact, the finite element 

part can only handle very simple structures and is not capable of analysing complicated structures 

or sophisticated analysis fields. Liu et al. [62] suggested solving the Hamilton-Jacobi equation 

using the finite element method. This way, they formed a coupled modeling of the two different 
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parts of the topology optimization, i.e. structural analysis and Hamilton-Jacobi partial differential 

equation, in the commercial package FEMLAB. In other words, they solved both of these 

problems as a coupled problem in FEMLAB using the finite element method.  

Although this approach is fairly simple and can easily handle practical problems, it has a 

significant downside that limits its practicality. In this approach, as time, τ, goes forward by a 

certain time step, Δτ, at each time a structural analysis is performed to evaluate Vn. However, 

since the structural part is just a static analysis in this paper, it is not affected by time and thus 

can be performed in any time. Therefore, coupling does not influence the results, and allows to 

follow the entire optimization process through a coupled analysis. But what if the structural 

analysis is not static? What if it is dynamic, depending on time or if it is an analysis in frequency 

domain? A more practical method is needed to handle the proposed optimization technique. 

4.4 Numerical Implementation of Level set Method in the Proposed Damping 

Optimization 

For all the cases mentioned in the last part of Section  4.3, this method [62] cannot be applied 

and coupling of the non-static problems (i.e. modal or transient problems), along with time 

forwarding PDE, will affect the solution of the structural analysis. This will consequently lead to 

failure in the level set optimization.  

In most research works so far, dynamic problems have been modeled by static-equivalent 

analysis, so that such simple coupling can be used to perform topology optimization. 

Furthermore, systematic work has not been completed to find a practical approach for those 

aforementioned cases. This is the primary reason that not much effort has been exerted to 
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optimize damping in the context of level set optimization, because it is not possible to model 

damping statically, and damping reveals its properties only in dynamic conditions.  

In this work, an interactive numerical code will be developed that can handle the level set 

optimization of all kinds of analyses, for any type of structures (model). Unlike the code 

presented in [62], the structural analysis is not restricted to static analysis, and can deal with any 

type of analysis. Unlike [107], any type of structure, no matter how sophisticated it is, can be 

considered as well.  

The idea is that instead of coupling the two problems (i.e. structural analysis and solving the 

Hamilton-Jacobi equation), two different software packages (MATLAB and COMSOL) are 

synchronized to interconnectedly solve the problem at hand in a desired iterative manner. 

Although both parts (Structural and PDE) are being solved by COMSOL, the physics are not 

coupled. The role of MATLAB is to manage the whole process (and check the convergence 

criterion), and to transfer results to/from different physics. The algorithm of performing level set 

topology optimization along with the corresponding physics can be expressed as 

1. initialize �0 in MATLAB; 

2. read � from MATLAB in COMSOL (Number 1) and perform structural analysis to find 

Vn, and send Vn to MATLAB;  

3. read Vn from MATLAB in COMSOL (Number 2) and solve Hamilton-Jacobi for one time 

step (Δτ) to find new � and send it to MATLAB; 

4. go to step 2; 

5. iterate until convergence. 
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4.5.1 Case study 1: Damping Optimization in a Cantilever Plate 

Consider the cantilever plate as the first example, shown in Figure  4-1. The system properties are 

listed in Table  4-1.  

Table  4-1: Plate structure properties 

Property Value Unit 

Length 160 mm 

Width 120 mm 

Thickness 2 mm 

Modulus of elasticity 71 GPa 

Poisson ratio 0.29 - 

Density 2700 Kg/m3 

CLD Material loss factor 0.79 ~ 0.99 - 

CLD Specific gravity 0.53 lb/ft2 

CLD Thickness 1.5 mm 

 

Figure  4-9 (a) and (b) illustrate the initial CLD configuration,  0H  , and its corresponding 

level set surface, 0 , respectively. The gray parts represent the CLD patches. It should be noted 

that similar to Ref. (Liu, Korvink et al. 2005) in this example 0   has been defined using “min” 

function available in COMSOL©. A general approach for defining the initial level set function 

will be proposed in  Chapter 5. The proposed approach is capable of producing the level set 

function corresponding to any initial configuration in 2D, 3D and higher dimensional domains. 
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The rubber material is modeled in the same way as seen in Ref. [108]; therefore, its loss factor 

varies from 0.79 to 0.99. In this case, in the room temperature and for the first natural frequency 

the material loss factor has been chosen as 0.89. 

(a) (b) 

Figure  4-9: (a) Initial configuration of CLD layer (area of 0.0084 m2); (b) Corresponding 

level set function 

The evolution of the CLD patches is shown in Figure  4-10. From these figures, it can be seen 

that the damping set has been pushed towards the clamped edge of the plate. The structural 

damping force is proportional to the rate of change of strain. For a cantilever plate type, the 

present case study, those regions close to the clamped edge demonstrate the highest changes of 

strain rate. Therefore, the results obtained from the level set optimization are in close agreement 

with the expected locations of the patches, since the highest level of damping force will be 

achieved by accumulating the damping set into the clamped edge of the plate. 
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Figure  4-11: Modal loss factor in different iterations 

It should be noted that the number of iterations needed for convergence, as well as the final 

result, depends on the initial guess. Since the energy dissipation of viscoelastic materials is 

proportional to the strain rate, it is desirable to locate the CLD at points of high modal curvature 

[109]. In order to have an appropriate initial guess, a simple modal analysis should be performed 

and the points with higher modal curvature will be determined. Then, the initial shape will be 

chosen so that more CLDs are located close to the points found in the previous step.  

This example was initiated with evenly distributed damping (as shown in Figure  4-9 a), so the 

optimization required many iterations to converge. However, for a smarter initial guess, shown in 

Figure  4-12, the optimization problem will converge after 43 iterations. It should be noted that 

energy dissipation in CLD patches is related to the strain rate. So, if the initial configuration is 

chosen close to areas with high modal strain energy, fewer number of iterations will be needed 

and the chance of finding the global optimum will increase. For this plate in the first mode, the 

area close to the clamped edge encounters highest modal strain energy, therefore configuration 

shown in Figure  4-12 is a better choice compared to that presented in Figure  4-9. 
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The test was carried out on a rectangular plate, shown in Figure  4-14(a). The plate is mounted 

in a relatively stiff fixture. It has zero displacement on the boundaries and does not have rotations 

in any direction except for the transversal direction. The material properties of different parts of 

the system are presented in Table  4-2. For this problem in room temperature and in the first 

natural frequency the loss factor has been considered to be 0.9. 

Table  4-2: System properties for case study 2 

Property Value Unit 

Length 160 mm 

Width 120 mm 

Thickness 2 mm 

Modulus of elasticity 71 GPa 

Poisson ratio 0.29 - 

Density 2700 Kg/m3 

Material loss factor 0.79 ~ 0.99 - 

CLD Specific gravity 0.53 lb/ft2 

CLD Thickness 1.5 mm 

 

The excitation of the fixture was done using an electromagnetic shaker of the type ‘‘Wilcoxon 

F4/F7’’ with a built in force gage sn 9943. The response amplitude was measured by a laser 
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equipment of the type ‘‘Polytec PSV 300 scanning laser vibrometer’’ including software version 

8.22.  

In this section, the same system is studied and the best shape and location of the damping 

patches will be determined using the level set method. The results will be compared with those 

reported in Ref. [48]. The initial configuration of the CLD patches and the corresponding level 

set function are shown in Figure  4-14(a) and (b), respectively. This configuration has been 

chosen based on the fact that CLD patches exhibit more energy dissipations close to points of 

high modal curvature. 

(a) (b) 

Figure  4-14: (a) Initial damping configuration (b) Level set function 

 

Figure  4-15 illustrates the evolution of the damping patches; the variations of the modal loss 

factor with pseudo time are shown in Figure  4-16. 
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(a) (b) 

(c) (d) 

Figure  4-15: Evolution of the CLD patches (a) τ=0.02; (b) τ=0.04; (c) τ=0.12; (d) τ=0.2 
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Figure  4-16: Modal loss factor under different iterations 

 

Comparing the final results obtained with those reported in Ref. [48], as illustrated in 

Figure  4-17, reveals the following important observations: 

(a) although the optimization start with two separate CLD patches, at the end it was found 

that a single patch being located in the optimum position, would work best for this 

system;  

(b) the optimum location of the patch, found by using the level set technique is in good 

agreement with the experimental results presented in Ref. [48]; 

(c) since this method is not confined to the square shaped patches, and also is capable of 

providing smooth boundaries, it finds better shape of patches. For the fundamental mode, 

the optimum shape for the CLD patch in this system is a circle. The circular shape would 

give 10 percent more fundamental loss factor when compared with the square shape.  
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Figure  4-17: Optimum position of the CLD patch found from experimental tests [48] 

It should be noted that the area of the CLD patches for both systems (i.e., the amount of 

applied damping material) remained the same during the optimization process. This was achieved 

via imposing proper constraints. 

This chapter discussed the application of level set optimization technique to 2D structures. The 

benefits of moving boundary approach were demonstrated for 2D systems. However, in most 

practical cases, complex 3D structures need to be dealt with. Hence, it is required to extend the 

level set formulation to more general 3D domain.    
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In order to perform 3D level set optimization, the first requirement is to define a 4D function 

whose zero level set is the initial 3D configuration of the damping patches in the system. Like 

before, optimization will be performed on this function, and in each step, the zero level set 

function reveals the shape and location of the damping patches in that stage.  

Infinite 4D functions can be defined to have such property, i.e. their zero level set resembles 

initial configuration of damping patches. Among them, signed distance function is a worthy 

choice. The distance from a point X


to a set  is defined as: 

  ( ) min
C

C
X

d X X X


 

 
 (5.1) 

The value of function   at each point will be equal to its distance from the boundary with a sign 

depending on whether the point is inside or outside the region, i.e. 

 

( )

( ) 0

( )

d X X

X X

d X X







 


 
 

 

 

 
 (5.2) 

In Equation (5.2),  is outside the region, where there is no damping, while  is inside the 

region with damping material;  represents the boundary of damping patches.  

Figure  5-2 illustrates two examples for signed distance functions corresponding to two initial 

shapes. In simple words, the signed distance function gives the distance to the level set with a 

sign being positive inside, and negative outside. 
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(a) 

 

 

(b) 

 

Figure  5-2: (a) Initial shape of damping patches (b) their corresponding   (signed distance 

function). The x-y plane is shown in blue [110] 

The signed distance function has several effective features, including: 

  1   (5.3) 

It is noteworthy that during propagation, the level set function will not keep this property. 

That is why re-initialization methods are needed to bring the property back to  . 

However, this is not a topic of interest in this work. 

   is differentiable on  . This property is very important for continuing the front 

propagation because it ensures that at least the process can move forward one more step. 

Now a new approach will be presented to generate such a signed distance function 

corresponding to the initial damping configuration. For the sake of simplicity and ease of 
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demonstration, suppose that the base structure is a plate. This procedure is valid for any 

dimensions, such as 2D, 3D, etc. 

1- Model the base structure and initial damping configuration in the finite element software. It 

should be noted that this is only 3D modeling and does not consists of any elements or 

nodes. In this work, COMSOL© is used, as illustrated in Figure  5-3. 

 

Figure  5-3: Base structure and damping configuration, modeled in COMSOL 

2- Mesh the structure and added damping material. An example is shown in Figure  5-4. Note 

that the mesh does not have to be very fine in this stage and coarse mesh works too, 

because interpolation can be done in future steps. Also, this approach is independent from 

the element types because at this stage the locations of nodes are important rather than 

element properties.  

3- Now, there are two sets of points available, as shown in Figure  5-5. Red points correspond 

to the boundary of damping patched, and blue points are located elsewhere on the structure. 

The list of these points and their corresponding coordinates can be easily extracted from 
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the software. Next, measure the distance of each point in the blue category to every point in 

the red group.  

 

Figure  5-4: Meshed structure and damping patches 

 

Figure  5-5: Mesh – red nodes on the border ( ) and blue nodes elsewhere 

If the blue set has n members and the red set has m members, then the absolute value of i

in each point will be given by Equation (5.4). Sign of i is positive if the point is inside the 

boundary ( ) and is negative if it is outside the boundary. In this work, this calculation is 

quickly performed using MATLAB©: 
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  
1..

min , ,i i j i jj m
X X X X


   

   
 (5.4) 

In simple words, the value of   at each point is the closest distance of that point from the 

boundary. Figure  5-6 illustrates the resulted level set function corresponding to the initial 

square and triangle damping configuration. In fact, if xy plane crosses this function at z=0 

the initial damping shape shown in Figure  5-3 will be obtained. It should be noted that in 

practice, finer mesh is used in order to obtain a more uniform function. 

 

Figure  5-6: Level set function corresponding to the initial damping configuration 

After generating the initial level set function, the rest of the procedure is identical to those 

explained in  Chapter 4. 
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5.2 Numerical Examples 

In this section two numerical examples will be discussed in detail. Satellite dishes and 

automotive dash panels are two of the systems in which CLD patches are commonly used to 

control excessive vibrations.    

5.2.1 Case study 1: Vibration control in a satellite dish 

Weight saving in the satellite industry has always been an important mission. Hence vibration 

control is inevitable. Vibrations, especially below 1 kHz, cause various problems for sensitive 

equipment attached to satellites [111]. One of the most commonly used methods to suppress 

vibrations in these structures is to apply anti-vibration mountings, or to coat the structure with 

viscoelastic materials [112]. In order to reduce the weight and cost penalties, the structure could 

be partially treated, and obviously the shape and location of such coverage will have to be 

determined. 

In this section, a satellite dish (Figure  5-7) will be considered with a computer model (shown 

in Figure  5-8). 

 

Figure  5-7: A typical satellite dish 
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The specifications of the satellite dish and the applied CLD patches are listed in Table  5-1. It is 

made of aluminum and a circle from its back is fixed to represent the support.    

Table  5-1: Satellite dish specifications 

Property Value Unit 

Width 520 mm 

Height 100 mm 

Thickness 2 mm 

Modulus of elasticity 71 GPa 

Density 2700 kg/m3 

Poisson ratio 0.29 - 

CLD Material loss factor 0.79 ~ 0.99 - 

CLD Specific gravity 0.53 lb/ft2 

CLD Thickness 1.5 mm 

 

Its boundary is shown in Figure  5-8(b) as a hatched circle. The satellite is welded to its support 

in this circle area and the rest of edges are free. A certain amount of constrained layer damping 

with a loss factor of 0.9 is applied to the satellite’s surface in order to minimize its vibrations. 

The goal is to find the best shape and location of patches using the level set optimization 

technique. 
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(a) (b) 

Figure  5-8: Solid model generated for the satellite, (a) isometric view, (b) bottom view 

Since the CLD patches’ energy dissipation is related to the stain rate, it is very beneficial to 

perform a modal analysis on the structure before starting level set optimization. By performing 

the modal analysis, one can determine the locations that have highest modal strain energy at a 

specific mode or modes. Then the patches can be located close to those locations in order to 

increase the chance of finding the global minimum. Another benefit for this is reduction of 

optimization time due to starting the process from regions close to optimum locations. 

Tetrahedral Lagrange-quadratic elements have been used in the structure finite element model. 

In contrast to the process mentioned for finding initial level set function, finer meshes will lead to 

smoother shapes however having more elements will increase the computational cost. The first 

four vibrational mode shapes of the satellite dish are shown in Figure  5-9. In these figures, the 

contour spectrum ranges from blue colour to red where blue and red illustrate minimum and 

maximum displacements, respectively. 
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(a) (b) 

  

(c) (d) 

Figure  5-9: First four mode shapes of the satellite dish (displacement contour), a) First 
mode [9.49 rad/s], b) Second mode [9.50 rad/s], c)Third mode [19.55 rad/s], d) Fourth mode 

[19.56 rad/s] 

 

It can be seen that modes 1 and 2 are identical but about two different axes. This also holds 

true for modes 3 and 4. As such, from now on, the focus will be on modes 1 and 3, since modes 2 

and 4 are repeated version of modes 1 and 3, respectively. In order to have an initial estimate of 

the optimum locations, areas with highest modal strain energy should be determined. Figure  5-10 

shows strain contour for modes 1 and 3. In these figures, contour spectrum ranges from dark blue 

to red colour. Maximum strain energy is illustrated by red and minimum by dark blue. 
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(a) (b) 

Figure  5-10: Strain energy density contour, a) First mode, b) Third mode 

In can be seen that in mode 1, the highest modal stain energy is observed around the centre of 

satellite dish where it is welded. However, in mode 3 the strain energy region is concentrated 

closer to the edges of the dish. 

5.2.1.1 Optimization based on fundamental natural frequency 

In this section, the first mode is targeted to locate the patches. Figure  5-11(a) demonstrates the 

initial configuration of damping patches. It should be noted that the four patches could have been 

placed closer to the welding area, however they were located a bit farther in order to demonstrate 

the evolution of boundaries towards optimum configuration. 

Based on the strain contour shown in Figure  5-10(a), it is expected that damping patches move 

towards the bottom of the satellite, close to the fixed part. Figure  5-11 illustrates the evolution of 

damping patches towards optimum configuration. The optimum damping configuration matches 

expectations and has accumulated around locations with the highest strain rate, resulting in 

maximum energy dissipation. 



 

 75 

 
(a) 

 
(b) 

 
(c) 

Figure  5-11: Evolution of CLD patches, a) τ=0 b) τ=0.8 c) τ=1 
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Modal loss factor in different iterations is demonstrated in Figure  5-12. It is increasing until the 

optimum damping configuration is achieved. Although the initial location of the patches were 

chosen based on the primary modal analysis and the strain contour, level set optimization can 

increase the modal loss factor by almost 6 times of that in initial configuration. In other words, 

although modal analysis and strain energy contour reveal some initial guess for the optimum 

location of damping patches, they do not provide any information regarding the optimum shape.  

 

Figure  5-12: Modal loss factor in different iterations. 

In order to check that the final optimum shape is not dependant on the initial symmetric 

locations of CLD patches, this process will be repeated using three patches. The new initial 

configuration is shown in Figure  5-13(a). It can be seen in Figure  5-13 that again, the damping 

set has moved toward the bottom of the satellite, close to the fixed part. Of course in comparison 

with the results in Figure  5-11 the donut shape of optimum damping configuration has remained 

the same but it is just smaller, because it has been formed from 3 patches not 4. 
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Therefore, it can be concluded that symmetric location of patches had little to do with the final 

optimum configuration. 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

Figure  5-13: Evolution of three CLD patches, a) τ=0 b) τ=2.4 c) τ=3 d) τ=5 

It can be seen that although the process was started with a few patches, the optimum 

configuration consists of a single patch. This is one of the most important benefits of this method 

that the number of pieces will be determined automatically.  

5.2.1.2 Optimization based on third natural frequency 

It is common to design systems based on their fundamental frequency. However, if the working 

frequency or excitation frequency is far from the fundamental one, those higher frequencies 

should be considered as well. In this section the vibrations of the same satellite system will be 

minimized for the third natural frequency. In other words, the best shape and location of damping 
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patches will be found so that the maximum energy dissipation happens around the third 

frequency. Like before, four initial patches will be located on the satellite dish, as shown in 

Figure  5-11(a). Based on Figure  5-10(b) the patches are better to be located closer to the edges 

for faster convergence to the optimal location. However, for the sake of comparison, the initial 

damping configuration is chosen identical to the one used in mode 1 analysis, and far from edges.  

This time, after optimization, the patches are pushed towards the tip of the satellite dish, as 

demonstrated in Figure  5-14. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure  5-14: Damping evolution based on third natural frequency, a) τ=0 b) τ=0.4 c) τ=2 d) 

τ=4 

A comparison of Figure  5-14 and Figure  5-10(b) states the reasons behind the new location for 

the patches. In this mode, since the highest strain change happens around the top edges of the 

satellite, placing damping patches at those locations will result in highest modal loss factor, and 

hence, maximum energy dissipation. 
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5.2.1.3 Optimization based on combination of the first and third natural frequencies 

In some practical applications, the system works in a range of frequencies and therefore more 

than one mode shape have to be considered in the optimization process. In this case Equation 

(4.11) is used to form the objective function for the optimization. In this case study, modes 1 and 

3 of the satellite dish will be combined and the best damping configuration will be found to 

maximize the combination of modal loss factors in both modes. 

When two or more mode shapes are considered, selection of initial damping configuration is 

harder than single mode case. According to Figure  5-10, highest strain energy in mode 1 is close 

to the centre of the satellite where it is welded. However, this location provides minimum strain 

energy in mode 3. In the same way, high strain energy region in mode 3 corresponds to low strain 

energy area of mode 1. In such cases, splitting the patches and locating them in different areas 

will help to cover high strain energy areas in different modes. In this case study, to be consistent 

with previous studies, the initial configuration of CLD patches will be chosen according to 

Figure  5-13(a).  

Figure  5-15 illustrates the optimum damping configuration for the satellite dish with a 

combined mode objective function. It can be seen that in contrast with the first or third mode 

cases, patches are neither accumulated close to the weld area nor around the edge of the dish. 

Instead, the patches are spread  in a way that they cover high strain areas in both modes 1 and 3. 

This shape does not increase the loss factor of the first mode as much as the shape shown in 

Figure  5-11(c) and does not increase the loss factor of the third mode as much as the shape 

shown Figure  5-14(d). However, it maximizes the combination of loss factors of the first and 

third modes simultaneously.  
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It should also be noted that if a smaller mesh size is used and the optimization is continued 

with a few more iterations, smoother boundaries will be achieved for the optimum shape of the 

patches. 

 

Figure  5-15: Optimum damping configuration for satellite dish when both first and third mode 

shapes are addressed simultaneously  

 

5.2.2 Case study 2: Vibration control in automotive dash panel 

The automotive industry has recently placed increased focus on the process of light-weighting 

and using lighter materials, such as magnesium, in vehicle components. However, weight 

reduction and the application of lightweight material can also increase unwanted noise and 

vibration.  

One of the automotive parts that can benefit from lighter material with lower manufacturing 

costs is the dash panel. The dash panel is located between the engine and car interior, and thus 

can be an important transmitter of noise and vibration to passengers. Kurosawa et al. [113] 

worked on the vibration of panels with passive treatments. They focused on estimating the 

damped vibration of automotive body panels. Bianchini [114] worked on active vibration control 
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of automotive-like panels using a simple model, shown in Figure  5-16. Nagai et al. worked on 

the application of vibration damping steel sheets (VDSS) in automotive panels, and through 

experiment, confirmed that the noise reduction effect of VDSS is proportional to the logarithm of 

their loss factor [115]. 

 

Figure  5-16: FEA model used in [114] 

In this section, optimal vibration suppression will be performed on a dash panel, as shown in 

Figure  5-17. The best shape and location of CLD patches have to be determined to get highest 

modal loss factor.  



 

 84 

 

Figure  5-17: Solid model of the automotive dash panel 

As explained before, in order to get an idea of where to start, it is very beneficial to perform a 

modal analysis first. The dash panel is made of magnesium and is fixed around its outer edges, as 

shown in Figure  5-17. Detailed properties of the panel and the added CLD patches are given in 

Table  5-2. In this case, the CLD loss factor of 0.9 is used in analysis. 
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Table  5-2: Material properties of automotive dash panel 

Property Value Unit 

Modulus of elasticity 71 GPa 

Poisson ratio 0.29 - 

Density 2700 Kg/m3 

CLD Material loss factor 0.79 ~ 0.99 - 

CLD Specific gravity 0.53 lb/ft2 

CLD Thickness 1.5 mm 

 

Tetrahedral Lagrange-quadratic elements have been used in finite element model. Figure  5-18 

shows the fundamental mode shape of the dash panel, as well as its strain energy contour. In the 

first figure, the contour spectrum ranges from blue colour to red where blue and red illustrate 

minimum and maximum displacements, respectively. However, in the second figure, the contour 

spectrum ranges from dark blue to red colour. Maximum strain energy is illustrated by red and 

minimum by dark blue. 
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(a) 

 
(b) 

Figure  5-18: Dash panel’s fundamental mode shape a) Displacement contour b) Strain 

energy density contour 
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Since the highest strain rate is happening almost around the top and bottom center of the panel, 

two circular CLD patches will be located close to those locations as an initial guess (see 

Figure  5-19(a)). The evolution of the patch toward the optimum configuration is shown in 

Figure  5-19, and the variation of modal loss factor in different iterations is demonstrated in 

Figure  5-20. 

 
(a) 

 
(b) 



 

 88 

 
(c) 

Figure  5-19: Evolution of CLD patches, a) τ=0 b) τ=0.2 c) τ=1 

The modal loss factor increase during the optimization process until the optimum shape and 

location for the patches are achieved. 

 

Figure  5-20: Modal loss factor for automotive dash panel in different iterations 



 

 89 

As mentioned before, the level set optimization like other optimization methods is prone to 

getting stuck in local minima, and there is no guarantee that the configurations found in these 

case studies were the global minima. However, since the energy dissipation in CLD patches is 

proportional to strain energy, if the damping patches are initially located close to areas with 

highest modal strain energy, the chance of achieving a global optimum will increase.  
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The plate is fixed from top and partly on its right side. The fixed section on the right is 10 cm. 

CLD patches will be located on it to suppress its flexural vibrations. The best shape and location 

of the patches will be found theoretically and experimentally to achieve highest vibration 

attenuation.  

 

Figure  6-1: Plate with nonsymmetrical boundary conditions  

6.1 Computer simulation 

In this section the system will be modeled in COMSOL©. 3D tetrahedral Lagrange-quadratic 

elements will be used and the top edge and 10 cm from the right edge will be fixed, as seen in 

Figure  6-1.  
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Figure  6-2: Finite element model of the plate 

The first natural frequency of the system is found to be 13.62 Hz. Figure  6-3(a) illustrate the first 

mode shape of the system and the strain energy contour is shown in Figure  6-3(b). In the first 

figure the contour spectrum ranges from blue colour to red where blue and red illustrate 

minimum and maximum displacements respectively. However, in the second figure, the contour 

spectrum ranges from dark blue to red colour. Maximum strain energy is illustrated by red and 

minimum by dark blue. The areas with high strain energy are located close to the clamp 

boundaries. 

  

(a) (b) 

Figure  6-3: First mode shape: (a) displacement contour, (b) strain energy contour 
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Now that the high strain energy locations are found, the optimal CLD positions can be found 

using the developed method. Two different configurations, each consisting of two circular 

patches, located on the structure with a total area of 0.25 m2, are considered. These initial 

configurations are illustrated in Figure  6-4 (a) and (b). In these simulations, assuming room 

temperature the material loss factor was set to 0.1. The optimization needed almost 140 iterations 

to converge when configuration (a) was chosen as initial shape/location for CLD patches, 

however configuration (b) for the initial shape/location for CLD patches led to a convergence 

after 64. Both choices of the initial � will converge to the optimum configuration, shown in 

Figure  6-4(c), and the patches are guided close to the boundaries. It could be seen that the 

distribution is not symmetric and unlike the system shown in Figure  4-10(d) where CLD patches 

were evenly accumulated around the constrained edge.  

 

(a) 
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(b) 

 

(c) 

Figure  6-4: Configuration of CLD patches a) initial shape {choice 1} b) initial shape {choice 

2} c) optimal shape 

The change in loss factor in different iterations is shown in Figure  6-5. 
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Figure  6-5: Variation of loss factor ( ) 

6.2 Experimental tests  

Test setup shown in Figure  6-6 is used to perform experiments. It consists of the rigid frame, 

two non-contact displacement sensors, a rectangular plate and two supports to create non-

symmetric clamp boundary condition.  
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Figure  6-6: Experimental test setup 

 

Different CLD configuration, including the optimum one found in previous section, will be 

tested. CLD patches are from HushMat Company and their specifications are listed in Table  6-1. 

A typical CLD sheet is shown in Figure  6-7. These self-adhesive patches can afford excellent 

control of resonance-induced vibrations. Their composite loss factor does not vary too much with 

temperature and frequency and it falls between 0.09 and 0.3 [116]. 



 

 97 

 

Figure  6-7: Constrained Layer Damper used for test [117] 

The data acquisition system (DAQ) consists of Sensory 626 data acquisition card and a 

computer. This DAQ card is MATLAB-compatible, so the controller is programmed in Simulink 

in MATLAB. The data are collected with a sampling frequency of 1 KHz. The laser based 

displacement sensors are shown in Figure  6-8.  

  

Figure  6-8: Non-contact displacement sensors 
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Keyence LK081 and LK031 non-contact laser sensors are utilized to read the displacements. 

Each laser sensor comes with its own controller.  The specifications of these sensors are listed in 

Table  6-2. Although one sensor was sufficient, two of them were used to assure no data is lost if 

one of them stops working during the test. LK-031 is the top sensor since the range of 

displacements is smaller in this position. This sensor is located at a 30 mm horizontal distance 

from the plate. The bottom sensor is LK081 and is located at 80 mm away from the Plate. 

Table  6-2: Specifications of non-contact laser sensors 

 Top sensor Bottom sensor 

Sensor Head LK-031 LK-081 

Controller LK-2001 LK-2101 

Reference Distance(mm) 30 80 

Measuring Range(mm) ±5 ±15 

Sampling Rate (μs) 512 1024 

Resolution (μm) 1 3 

 

The area of the CLD patches in all of the configurations is 0.25 m2. All damping configurations 

are shown in Figure  6-9.  
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Configuration (a) Configuration (b) 

Configuration (c) Configuration (d) 



 

 100 

Configuration (e) 

Figure  6-9: Different CLD shapes used in the experimental test 

In order to excite the first natural frequency of the system, an initial displacement is applied to 

the bottom corner of the plate (according to Figure  6-10) and the free vibration is studied. This 

displacement is applied by moving the bottom corner until it reaches a stopper which shows the 

desired displacement. This way, the same initial displacement is applied in all the tests.   
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Figure  6-10: Initial displacement direction 

In order to verify the finite element model, an experiment is carried out first. Before attaching 

the CLD patches, an impulse is applied to the bottom left corner of the plate. After performing 

Discrete Fourier Transform (DFT), the frequency response of the plate is found and illustrated in 

Figure  6-11. The first two natural frequencies of the system are captured. 
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Figure  6-11: Frequency response of the plate without CLD 

This experiment is repeated again when two CLD patches are attached to the plate with the 

configuration shown in Figure  6-9(a). The frequency response of plate with CLD is illustrated in 

Figure  6-12.  

 

Figure  6-12: Frequency response of the plate without CLD 
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Table  6-3 compares the first two natural frequencies found from finite element analysis with 

those obtained from experiments for two different cases of the plate with and without the CLD 

patches. 

Table  6-3: First two natural frequencies of the plate 

Natural Frequency (Hz) First Second 

Experiment (Plate without CLD) 13.31 24.57 

Experiment (Plate with CLD) 12.42 24.32 

Finite Element Analysis 13.62 25.01 

 

The data presented in this table show that the simulation results are in good agreement with the 

experimental tests. Furthermore, it can be seen that since the weight of the added material is 

much less than the original plate, the CLD patches have negligible effect on the natural 

frequencies of the plate with CLD patches. 

Displacement diagram related to each test is shown in Figure  6-13. It should be noted that the 

displacement in all these figures have been normalized, through dividing data by initial value of 

displacement) in order to have a fair comparison. Therefore each graph starts from 1.  
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No CLD 

Configuration (a) 
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Configuration (b) 

Configuration (c) 

Configuration (d) 
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Optimum configuration 

Figure  6-13: Displacement diagram for each damping configuration  

In order to show the effects of damping location on the overall vibration suppression the 

combination of the results of all tests is depicted in Figure  6-14. 

 

 

Figure  6-14: Comparative diagram of displacement tests for different damping configurations 
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The exponential diagram for all of the configurations is illustrated in Figure  6-15. In this figure 

the peak displacement of each cycle has been picked and it clearly demonstrates the decay of 

oscillations. 

 

 

Figure  6-15: Exponential diagram (labels are based on Figure  6-9) 

It could be seen that vibration is suppressed faster when optimum CLD shapes and location 

have been used. Quantitatively speaking, the vibrations are attenuated 73% faster when optimum 

configuration is applied in comparison to the case that no CLD is attached. In the same manner, 

configuration (d) leads to 28% quicker suppression than configuration (c). 

In a time decaying diagram, like the one shown in Figure  6-16, the logarithmic decrement is 

defined as  
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and finally the loss factor could be estimated by [118] 

 2   (6.3) 

 

Figure  6-16: Typical decaying displacement diagram 

Damping ratio related to each experiment is given in Table  6-4. It can be seen that the optimum 

CLD shape and location (configuration e), found via level set optimization, reveals the highest 

loss factor and suppresses vibrations faster. 



 

 109 

Comparison of configurations (a) and (b) reveals the effect of location of CLD patches on loss 

factor. In these two configurations the shapes of CLD patches are identical while the locations of 

patches are different. Configuration (b) offers 20% more loss factor.  

The effect of the shapes of CLD patches on loss factor can be identified by comparing 

configurations (c) and (d). Although in both cases patches are located close to the fixed 

boundaries, their shapes are different. It could be seen in Table  6-4 that configuration (d) leads to 

33% more loss factor. Looking at the modal strain energy contour shown in Figure  6-3(b), one 

can notice that since in configuration (d) damping material are mostly accumulated around areas 

with high strain energy, it offers higher loss factor compared to configuration (c).  

More generally, comparison of configuration (c) and (e) will show the effect of simultaneous 

shape and location optimization. Configuration (e) offers 60% more loss factor and 44% faster 

vibration attenuation than configuration (c). 

The experimental results obtained in this section clearly confirm those found from simulations. 

The best suppression performance was coming from the optimum configuration found through 

level set optimization.  
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Table  6-4: Damping ratio 

CLD configuration Loss factor 

a 

 

0.02 

b 

 

0.024 

c 

 

0.03 

d 

 

0.04 

e 

 

0.048 
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thorough study was performed on control of vibration in a satellite dish.  Different eigen 

frequencies were targeted and CLD patches were optimally applied to the surface of the dish to 

minimize its vibration.  

In another complicated example, an automotive dash panel was under study and its excessive 

vibration was minimized. The optimum shape and location of the patches were determined via 

level set technique. 

In order to confirm the results obtained in this work, an experiment was carried out. Flexural 

vibration of a plate with nonsymmetrical boundary conditions was lower by means of CLD 

material. First, using level set technique the optimum shape and location of patches were 

determined in software.  

Then experimental tests were performed on the plate. Five different damping configurations, 

including the optimum one, were used. Expectedly, the vibration of plate was attenuated faster 

when the optimum configuration was utilized for the CLD patches in comparison to all other 

configurations. During the experiments, the highest loss factor was achieved when damping 

patches were attached according to those found via level set technique. This experiment 

reconfirmed the accuracy of the proposed approach in finding optimum shape and location of the 

added material. 

In general the proposed method showed a lot of capabilities in optimal vibration control in 

lightweight structures. On the other hand the computer code generated in this research can easily 

be adapted to other physical optimization problems and is not solely confined to vibration 

control. It can handle different physical phenomenon using finite element technique in 

conjunction with level set optimization approach followed by Hamilton-Jacobi PDE. 
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The main contributions of this research are summarized below: 

- The general solution to 2D and 3D CLD applications was studied. 

- The proposed level set optimization was capable of finding the best shape and location of 

the patches simultaneously for a given surface area (damping material). 

- The level set technique was extended to concurrent shape and location optimization. 

- A new numerical implementation to handle optimization problems in any complicated 

structure was proposed and a computer code was developed accordingly. 

- Application of the proposed numerical approach made it possible to perform level set 

optimization in time/frequency dependent problem. 

- Level set approach was extended to higher orders problems. 

7.2 Future work 

Like other research, there are avenues for further research in this area. When dealing with an 

optimization problem, one of the critical aspects that always can be improved is to reduce the 

possibility of getting stuck into a local minimum.  

Incorporation of stochastic methods could be advantageous in escaping from local minima. A 

few researchers have included stochastic terms in level set technique [119-124]. Kasaiezadeh and 

Khajepour [125,126] have implemented active contours and stochastic fronts. By adding 

stochastic term to the level set PDE they confirmed that the chance escaping from local solutions 

would decrease compared to classical level set methods. 

Another approach for moving towards the global optimum is application of multi agent 

techniques. In these methods the optimization starts with a few initial guesses and continues. 
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However, there is an interrelation between all agents. So if one of them gets stuck into a 

minimum the others could reach a better optimum solution. In some advanced methods [127] 

agents stuck in local minimums could release themselves and continue their way towards the 

global optimum point. For both of these suggested paths, new formulation has to been derived in 

the context of stochastic or multi-agent level set technique. A computer code has to be developed 

accordingly. 

Another area for future work is to consider other types of objective functions. For examples in 

many cases it is important to bring the modal loss factor to a desired value for minimum amount 

of CLD patches.   
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