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ABSTRACT 

Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) 

required for fetal neurodevelopment.  Increased DHA levels are associated with 17β-estradiol 

levels, as DHA is higher in women relative to men and in pregnant relative to non-pregnant 

women, suggesting a maternal adaptation to supply DHA to the fetus.  DHA can be synthesized 

in the body from shorter n-3 PUFA through sequential elongation-desaturation, with Δ6-

desaturase being the rate-limiting enzyme.  The goal of the present thesis was to characterize the 

mechanism underlying higher DHA in situations of altered 17β-estradiol status by examining the 

expression of DHA synthesis enzymes in rodent models.  Fatty acid composition of several lipid 

classes was measured by gas chromatography and enzyme expression was measured by RT-

qPCR and immunoblotting.  Hepatic Δ6-desaturase and phospholipid DHA was higher in female 

relative to male, and in pregnant relative to non-pregnant rats. Similarly, 17β-estradiol 

supplementation of ovariectomized rats resulted in increased hepatic Δ6-desaturase expression 

and DHA content, while ovariectomy itself had no effects on DHA levels despite controlling for 

hyperphagia.  Mice deficient in the DNA binding activity of estrogen receptor α (ERα) had no 

differences in hepatic Δ6-desaturase or DHA levels. These results suggest that 17β-estradiol 

mediates the higher DHA levels in females and during pregnancy through increasing hepatic Δ6-

desaturase expression, although the effects of removing 17β-estradiol signalling through 

ovariectomy or ERα disruption are less clear.  This work helps to explain findings of altered 

DHA status in response to changes in 17β-estradiol concentrations, possibly resulting in more 

appropriately tailored dietary DHA recommendations.  Also, increased understanding of the 

regulation of DHA synthesis may improve DHA yields in agri/aquaculture and enable increased 

content of DHA in the food supply.  
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CHAPTER 1 

GENERAL INTRODUCTION 

Intake and blood levels of the omega-3 highly unsaturated fatty acid (n-3 HUFA, ≥ 20 

carbons, ≥ 3 double bonds) docosahexaenoic acid (DHA, 22:6n-3) are associated with health 

benefits to the cardiovascular and neurological systems [reviewed in (Harris et al. 2009)].  

Several observational studies have shown that women of reproductive age have higher blood 

levels of DHA as compared with men, despite no differences in n-3 intake (Bakewell et al. 2006; 

Crowe et al. 2008; Geppert et al. 2010; Marangoni et al. 2007; Metherel et al. 2009; Sfar et al. 

2010).  These differences in DHA levels are likely clinically relevant due to the sensitive dose-

response effect of n-3 HUFA on sudden cardiac death prevention (Harris et al. 2008; Harris et al. 

2009; Mozaffarian et al. 2006), which may contribute to the lower cardiac mortality in 

reproductive age women as compared to men (Bui et al. 2011).  Cardiovascular health is also 

associated with small differences in blood n-3 HUFA concentration resulting from genetic 

variation in HUFA synthesis (Li et al. 2013), indicating that small differences in n-3 HUFA 

synthesis impact health.  The importance of DHA supply for fetal neurodevelopment is 

demonstrated by delayed visual development in pre-term infants not supplemented with DHA 

(Carlson et al. 1996b).  Maternal DHA levels increase significantly during pregnancy (Stark et 

al. 2005a; Stewart et al. 2007) as an adaptation to provide the fetus with DHA.  As DHA intakes 

during pregnancy are low (Denomme et al. 2005) and tend not to change from non-pregnant 

intakes (Stark et al. 2005a), the increased maternal blood DHA levels during pregnancy are 

likely the result of a metabolic adaptation.   

The cause of higher DHA in women relative to men and in pregnant relative to non-

pregnant women may be 17β-estradiol, which is much higher in women (Eldrup et al. 1987) and 
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during pregnancy (O'Leary et al. 1991).  17β-estradiol also appears to mediate the higher DHA 

levels observed in post-menopausal women receiving hormone replacement therapy (Giltay et al. 

2004a), in male-to-female transsexuals receiving 17β-estradiol treatment (Giltay et al. 2004b), 

and women taking oral contraceptives (Giltay et al. 2004b; Magnusardottir et al. 2009).  

However, the mechanism relating female sex, pregnancy, and 17β-estradiol to higher DHA 

levels is not known. 

DHA can either be obtained from the diet or produced from the essential fatty acid α-

linolenic acid (ALA, 18:3n-3) (Voss et al. 1991), with estimates of rates of conversion of ALA to 

DHA in humans ranging from 0% to 4% [reviewed in (Burdge et al. 2005)].  Women produce a 

greater proportion of DHA from ALA compared with men (Burdge et al. 2002a; Burdge et al. 

2002b) and ALA intake is negatively associated with cardiovascular disease in women (Albert et 

al. 2005) but not in men (Mozaffarian et al. 2005), suggesting an effect of the sex difference in 

DHA production on health.  This sex difference in DHA biosynthesis occurs only during low n-3 

HUFA intakes (Pawlosky et al. 2003a; Pawlosky et al. 2003b), which are typical of North 

Americans (Ervin et al. 2004).  Sex differences in the enzymes that produce DHA from ALA 

may mediate the increased biosynthesis of DHA observed in females, as well as the higher DHA 

levels in pregnancy and in response to estrogen.   

Studies investigating sex differences in expression of these enzymes have yielded mixed 

results, with some studies demonstrating increased hepatic expression in females relative to 

males (Burdge et al. 2008; Extier et al. 2010), while others show no effect (Childs et al. 2010).  

A small number of studies investigating the effect of pregnancy (Childs et al. 2012) and hormone 

manipulation (Alessandri et al. 2011) on the expression of these enzymes have been published 

but report only mRNA expression data of a limited number of enzymes.  However, ovariectomy 
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results in hyperphagia (Eckel 2011) and increased hepatic lipogenesis, which affects DHA 

metabolism independently of ovarian hormonal status and should be examined. In addition, 

while estrogen receptor α (ERα) is highly expressed in the liver (Pelletier 2000) and is involved 

in hepatic lipid metabolism (Matic et al. 2013), the effects of specific estrogen receptors on DHA 

metabolism are not known.   

Accordingly, the role of sex and pregnancy on DHA biosynthesis was assessed by 

measuring the expression of DHA biosynthesis enzymes and DHA content in male compared 

with female rats, and in pregnant compared with non-pregnant rats.  To explore the mechanism 

relating 17β-estradiol to DHA biosynthesis, DHA biosynthetic enzyme expression and DHA 

content was measured in ovariectomized rats supplemented with 17β-estradiol with/without 

progesterone.  To investigate the role of ovariectomy-induced hyperphagia on DHA metabolism, 

ovariectomized rats were either pair-fed to eugonadal rats or fed ad-libitum.  To determine the 

role of estrogen receptor α in DHA metabolism, DHA biosynthetic enzyme expression and DHA 

levels were assessed in estrogen receptor α-knockout mice compared with wild-type controls.  

The results of this research will expand knowledge of the role of sex, pregnancy, and 17β-

estradiol on fatty acid metabolism.  Changes in DHA levels resulting from altered DHA 

biosynthesis may have effects on disease risk, indicating the importance of characterizing factors 

affecting DHA biosynthesis such as sex and 17β-estradiol status.  Also, with the exception of 

pregnancy, current dietary recommendations for DHA do not take into account changes in DHA 

levels associated with altered DHA biosynthesis.  This research may help to inform future DHA 

intake recommendations tailored to specific populations with altered DHA biosynthetic 

capacities, such as pre- vs. post-menopausal women (Tworek et al. 2000).  An improved 

understanding of factors regulating DHA synthesis may also help to improve DHA yields in 
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agriculture or aquaculture, as there is some concern that fish stocks are not sufficient to meet 

current recommendations for DHA intakes at a population level (Jenkins et al. 2009).  
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CHAPTER 2 

BIOCHEMICAL FOUNDATIONS 

Fatty Acids and Lipids 

Fatty acids have polar carboxylic acid groups with hydrophobic hydrocarbon chains.  

Fatty acids are classified based on the number of double bonds in the acyl chain: saturated fatty 

acids (SFA) have no double bonds, monounsaturated fatty acids (MUFA) have a single double 

bond, and polyunsaturated fatty acids (PUFA) have greater than or equal to 2 carbon-carbon 

double bonds.  HUFA have greater than or equal to 20 carbons and greater than or equal to 3 

carbon-carbon double bonds.  Mammals are capable of producing SFAs and MUFAs de novo 

from acetyl-CoA. However, the n-3 and n-6 essential fatty acids ALA and linoleic acid (LA, 

18:2n-6) must be obtained from the diet (Widmer and Holman, 1950), as mammals do not 

possess the enzymology to synthesize these de novo or to interconvert between n-3 and n-6 

PUFA.  From these two 18-carbon PUFA, mammals can synthesize n-6 and n-3 HUFA. 

Within cells, fatty acids are typically esterified to either triacylglycerols (TAG) or 

phospholipids (PL), which are the main energy-storing and structural lipids, respectively, and are 

found in varying levels in different tissues (Table 2.1).  The de novo synthesis pathway is shared 

by both TAG and PL, and involves the addition of fatty acids to the sn-1 followed by the sn-2 

position of glycerol-3-phosphate.  The resulting phosphatidic acid is a substrate for the 

production of two PL: phosphatidyl inositol (PI) which is involved in cellular signaling, and 

phosphatidyl glycerol which is the precursor for cardiolipin, a major PL species in mitochondria 

(Osman et al. 2011).  The removal of the sn-3 phosphate from phosphatidic acid results in 

diacylglycerol, which can be esterified to a third fatty acid to form TAG, or can be esterified to 

phosphoethanolamine or phosphocholine to form phosphatidyl ethanolamine (PE), or 

phosphatidyl choline (PC), respectively (Gibellini et al. 2010).  A base-exchange reaction forms 
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phosphatidyl serine (PS) from either PE or PC (Kuge et al. 1997).  The relative proportions of 

each PL species differ by tissue type (Table 2.2), however in most tissues PE and PC represent 

approximately 60-80% of all PL, while in plasma PC represents approximately 85%, with almost 

no PE.  The fatty acid composition of PL is dependent on both the de novo incorporation as well 

as the remodeling process, called the Land’s cycle, involving the sequential release of fatty acids 

from the sn-2 position by phospholipase A2, followed by re-esterification by a number of 

different lysophospholipid acyltransferases helps to determine the fatty acid composition of sn-2 

fatty acids.  HUFA tend to be preferentially esterified in the sn-2 position of PL, with EPA and 

arachidonic acid (AA, 20:4n-6) enriched in PC, and DHA enriched in PE (Kim et al. 1997).  On 

the other hand, TAG HUFA content is very low (Christie 2003; Wood et al. 1969).   

 

Table 2.1: Lipid class composition of heart, liver, erythrocytes and heart* 

 Heart Liver Erythrocytes Plasma 

Lipid Class Weight % of total lipids 

Cholesteryl Esters trace 2 - 16 

Triacylglycerols 4 7 - 49 

Cholesterol 4 5 30 6 

Unesterified Fatty Acids - trace - 2 

Phospholipids** 90 86 68 27 

*adapted from (Christie 1985), **includes PC, PE, PS, PI, diphosphatidylglycerol, 

sphingomyelin, and lysophosphatidylcholine 

 

Fatty acids are transported through the bloodstream in lipoproteins, consisting of a 

PL/cholesterol/apolipoprotein exterior and TAG/cholesteryl-ester interior.  Fats derived from 

digestion are transported in chylomicrons, and lipoprotein lipase on the endothelium hydrolyzes 

the TAG and the fatty acids are taken up into cells.  The TAG-depleted chylomicron remnants 

are taken up by the liver through receptor-mediated endocytosis.  In the fasted state the liver 
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secretes very low-density lipoproteins, which are converted by lipoprotein lipase to TAG-

depleted and cholesterol-rich low-density lipoproteins that are taken up by cells in tissues 

through receptor-mediated endocytosis.  

 Non-esterified fatty acids enter cells either through passive diffusion or transporters such 

as FABPpm or FAT/CD36, or as components of lipoproteins following endocytosis (Chabowski 

et al. 2007).  Retention of fatty acids inside cells is accomplished by fatty acid transport proteins 

and acyl-CoA synthetases, which provide hydrophobic binding pockets and esterify fatty acids to 

CoA, respectively (Black et al. 2003; Coe et al. 1999; Watkins et al. 2007).  Intracellular fatty 

acids and fatty acyl-CoA are oxidized for energy and carbon recycling, incorporated into cellular 

lipids such as TAGs or PLs, or converted into other fatty acids or eicosanoids in the case of 

HUFA. 

 

Table 2.2: Phospholipid composition of various tissues and blood fractions in the rat 

 Brain Heart Liver Erythrocyte Plasma 

Phospholipid Class % of total phospholipids 

Phosphatidylethanolamine* 29.5 37 23.5 23 <0.5 

Phosphatidylcholine* 40 41 61.5 49 86 

Phosphatidylserine 10 1.5 1.7 9.5 0 

Phosphatidylinositol 1.5 2 5 4.5 3.4 

*includes ether-linked phospholipids and lysophospholipids.  Adapted from (Diagne et al. 1984) 

 

Fatty acid β-oxidation occurs in the mitochondria or peroxisomes, with mitochondria being 

active towards short-, medium-, and long-chain fatty acids, while the peroxisome shows activity 

towards very long-chain fatty acids.  Mitochondrial fatty acid oxidation involves the 

translocation of acyl-CoA past both mitochondrial membranes via the action of carnitine-

palmitoyl transferase (CPT) I and II, with CPTI being the rate-limiting step of mitochondrial 

fatty aid oxidation (Gropper et al. 2005).  Uptake of fatty acids by the peroxisome involves the 
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ATP-binding cassette transporters (ABC) D1 and ABCD2 (Morita et al. 2012) and peroxisomal 

β-oxidation involves the activity of both acyl-CoA oxidase (AOX) and multifunctional protein-2 

(MFP-2) (Keller et al. 1993).   

17β-estradiol 

The term “estrogen” generally refers to three steroid hormones, namely estriol, estrone, 

and 17β-estradiol, with 17β-estradiol being by far the most bioactive, eliciting 10-fold higher 

potency as compared with estriol, and 100-fold higher potency as compared with estrone in 

breast cancer cell proliferation and receptor binding assays (Gutendorf et al. 2001).  17β-

estradiol is produced by aromatization of testosterone by the enzyme aromatase in the 

endoplasmic reticulum, primarily in the thecal and granulosa cells of the ovary in the mid-

follicular phase in humans and the diestrous phase in rats (Sanders et al. 1997).  Aromatase 

activity is also present in extra-ovarian tissues such as skeletal muscle (Matsumine et al. 1986), 

adipose tissue (Miller 1991), and Leydig cells of the testes (Brodie et al. 1993), explaining the 

production of estrogen in males and post-menopausal females.  

Once secreted, the actions of 17β-estradiol are mediated by three receptors: estrogen 

receptor (ER) α, ERβ, or the G-protein coupled estrogen receptor (GPER) (Langer et al. 2010) 

and are mediated through either genomic or non-genomic actions (Figure 2.1).  In genomic 

estrogen signaling, the binding of estrogen to estrogen receptors results in dimerization with 

another estrogen receptor (ERα or ERβ), followed by binding to an estrogen response element in 

the promoter of a target gene, which causes altered transcription of that gene.  In “non-genomic” 

estrogen signaling, estrogen binds to GPER or estrogen receptors anchored to the plasma 

membrane (Acconcia et al. 2004).  Dimerization of ERα or ERβ to another estrogen receptor is 

another non-genomic mechanism (Razandi et al. 2004), and the signal transduction that results 
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involves a number of second-messenger protein kinases and calcium signaling mechanisms, such 

as mitogen-activated protein kinases (Migliaccio et al. 1996; Ronda et al. 2007), AMP-activated 

protein kinase (Rogers et al. 2009), and phosphoinositide-3 kinase – Akt (Marino et al. 2003), 

rather than direct genomic interaction [reviewed in (Bjornstrom et al. 2005)].   

In the  liver, ERα, rather than ERβ, appears to mediate the effects of 17β-estradiol on 

lipid metabolism.  In the human and rat liver, ERα is much more highly expressed than ERβ, and 

expression occurs primarily in the nuclear region (Pelletier 2000).  In HepG2 cells, ERα is 

localized in the nuclei, while ERβ is localized in perinuclear mitochondria (Solakidi et al. 2007).  

The importance of ERα in hepatic metabolism is demonstrated by increased hepatic expression 

of genes involved in lipid biosynthesis in whole-body knockout of ERα (Bryzgalova et al. 2006; 

Heine et al. 2000) which is not seen in a whole-body knockout of ERβ (Ohlsson et al. 2000).  

Recently, a liver-specific ERα knockout mouse has been produced (Matic et al. 2013) that has 

similar body weight, insulin sensitivity, and hepatic transcript profiles compared to wild-type 

controls, suggesting that the effects of whole-body ERα knockout on hepatic lipid metabolism 

may be mediated by extra-hepatic processes. 
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Figure 2.1: Genomic and non-genomic estrogen signalling mechanisms. Genomic 

mechanism shows both cytosolic and nuclear estrogen receptor activities. 

 

Docosahexaenoic acid (DHA) 

 DHA is found primarily in the sn-2 position of phospholipids and makes up varying 

proportions of total fatty acids in the different phospholipid classes, with the order being PE > PS 

> PC > PI in rodent liver (Holub et al. 2011).  However, because of the much higher abundance 

of PE and PC relative to PS and PI, the majority of DHA is found in PE and PC (Holub et al. 

2011; Kim et al. 1997).  Once incorporated into phospholipids, DHA assumes a variety of 

functions including increased membrane fluidity (Yang et al. 2011), second messenger signalling 

(Jump et al. 2008), and regulation of gene expression (Jump et al. 2008).  

DHA is highly concentrated in the retina and brain, particularly in the synaptic regions of 

neurons (Svennerholm 1968).  Supply of DHA to the fetus during pregnancy is essential for 

neurodevelopment, especially during the third trimester (Kuipers et al. 2012).  Dietary DHA 

deficiency during pregnancy and lactation results in decreased DHA concentrations in neonatal 

brain and significant deficits in visual and cognitive function in rats and rhesus monkeys 

[reviewed in (Brenna 2011)].  Similarly, significantly pre-term human infants supplemented with 
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DHA-rich formulas have transiently improved visual acuity compared to ALA-supplemented 

groups (Carlson et al. 1996a; Carlson et al. 1996b). In contrast, the evidence for benefits on 

cognition or for full-term infants is not as strong [reviewed in (Carlson 2009; Cheatham et al. 

2006; Gibson et al. 1999)].  Some evidence also indicates that brain DHA is negatively 

associated with neurological disorders such as clinical depression (Martins 2009) and 

Alzheimer’s disease (Barberger-Gateau et al. 2002; van Gelder et al. 2007).  

The cardioprotective effects of dietary DHA, along with eicosapentaenoic acid (EPA, 

20:5n-3), have been extensively reviewed (Harris et al. 2009; Kromhout 2012; Mozaffarian et al. 

2006), with the most significant effect of EPA and DHA being sudden cardiac death prevention.  

Meta-analyses of randomized controlled trials and prospective cohort studies of the general 

population (Harris et al. 2009; Mozaffarian et al. 2006) indicate that the prevention of sudden 

cardiac death by EPA and DHA is curvilinear with a maximal effect occurring between 250-750 

mg/day EPA+DHA intake, beyond which there is limited effect on sudden cardiac death.  

Several factors influence DHA levels.  The primary determinant of blood n-3 HUFA 

status is dietary n-3 HUFA intake (Harris et al. 2012).  Blood DHA status tends to be positively 

associated with age (Dewailly et al. 2001; Harris et al. 2012; Ogura et al. 2010) and female sex 

(Lohner et al. 2013), and negatively associated with smoking (Block et al. 2008; Harris et al. 

2012) and alcohol intake (Dewailly et al. 2001; Holub 2002).  Some polymorphisms of the n-3 

HUFA synthesis pathway have been shown to affect DHA in pregnant women, however the 

majority of these polymorphisms have been shown to affect levels of n-3 HUFA shorter than 

DHA [reviewed in (Glaser et al. 2011)].  Feeding of ALA tends to increase levels of EPA and n-

3 docosapentaenoic acid (22:5n-3), but typically not DHA (Barcelo-Coblijn et al. 2008; Barcelo-

Coblijn et al. 2009).  



12 
 

DHA biosynthesis 

The synthesis of DHA from ALA involves sequential desaturation and elongation in  the 

endiplasmic reticulum up to 24:6n-3, followed by perixisomal β-oxidation to DHA (Figure 2.2): 

(Sprecher 2000).  N-6 HUFA are derived from this pathway as well via the reaction sequence 

18:2n-6 → 18:3n-6 → 20:3n-6 → 20:4n-6 → 22:4n-6 → 24:4n-6 → 24:5n-6 → 22:5n-6. As all 

enzymes in the pathway are shared by n-3 and n-6 PUFA, substrate competition occurs.  This 

competition is particularly relevant for Δ6-desaurase, which desaturates 18- and 24-carbon 

PUFA of both the n-3 and n-6 class (D'Andrea et al. 2002; Stroud et al. 2009), and is considered 

the rate-limiting enzyme in HUFA biosynthesis (Marcel et al. 1968) and limits the accumulation 

of DHA in a number of experimental models (Hassam et al. 1975; Portolesi et al. 2007).  It has 

been shown that Δ6-desaturase is approximately 2-3 fold more active towards ALA than towards 

LA (Castuma et al. 1977; Rodriguez et al. 1998).  However, because rat and human liver and 

adipose tissue contains 10-50 times more LA as compared with ALA (Garaulet et al. 2011; Lin 

et al. 2011; Martinez 1992; Petridou et al. 2005; Stark et al. 2007; Yee et al. 2012) the 

desaturation/elongation of n-6 PUFA tends to dominate.  Δ6-desaturase mRNA is highest in liver 

(Stoffel et al. 2008), consistent with the highest rates of DHA biosynthesis in the liver relative to 

other organs (Rapoport et al. 2010). 

Several factors have been identified that alter the expression or activity of Δ6-desaturase.  

One is dietary protein, and it has been shown that substituting carbohydrate for protein 

isocalorically increases the activity of Δ6-desaturase in rats (Peluffo et al. 1974).  Also, ambient 

temperature is negatively associated with Δ6-desaturase activity (Peluffo et al. 1974).  Insulin 

increases Δ6-desaturase mRNA in primary rat hepatocytes (Wang et al. 2006), and the activity of 

Δ6-desaturase is decreased with streptozotocin treatment and is restored by insulin treatment 
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(Eck et al. 1979; Shin et al. 1995).  Surprisingly, induction of obesity and insulin resistance by 

high-fat diet feeding or leptin receptor knockout does not affect hepatic Δ6-desaturase mRNA 

(Wang et al. 2006).  Several single nucleotide polymorphisms in the human Δ6-desaturase gene 

have been identified that affect blood AA and EPA concentrations, but not DHA concentrations 

in phospholipids of plasma (Bokor et al. 2010), serum (Schaeffer et al. 2006), and erythrocytes 

(Rzehak et al. 2009), although analysis of  a particular haplotype (with 28 SNP) has shown 

increased levels of DHA and AA in plasma total lipids in the Northern Swedish Population 

Health Study (Ameur et al. 2012).  Also, certain Δ6-desaturase SNP associated with increased 

Δ6-desaturase product:precursor ratios have been shown to increase DHA levels in maternal 

erythrocytes during pregnancy (Koletzko et al. 2011) and colostrum postpartum (Morales et al. 

2011), and SNP with lower Δ6-desaturase activity are associated with lower levels of DHA in 

erythrocytes and breast milk (Xie et al. 2008).  
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Figure 2.2: The pathway of docosahexaenoic acid biosynthesis from α-linolenic acid.  

Adapted from (Kitson et al. 2010).  
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Studies investigating the biosynthesis of n-3 HUFA from ALA in humans have either used 

stable isotope-labeled fatty acids or increased the dietary intake of ALA.  ALA supplementation 

usually increases eicosapentaenoic acid (EPA, 20:5n-3) and DPAn-3; however no increases in 

DHA levels are seen [reviewed in (Burdge et al. 2005)].  Stable isotope studies investigating the 

metabolic fate of ALA suggest that the biosynthesis of n-3 HUFA from ALA is relatively 

inefficient, with estimates of fractional conversion of ALA to EPA ranging from 0.2% to 21%, 

and ALA to DHA from 0% to 4% in cohorts of men (Burdge et al. 2005).  Also, findings of 

increased hepatic Δ6-desaturase expression and DHA synthesis secretion in rats on a n-3 PUFA 

deficient diet for 15 weeks (Igarashi et al. 2007a; Igarashi et al. 2007b), and similar levels of 

DHA in erythrocytes from vegetarian women compared with omnivores despite negligible DHA 

consumption in vegetarians suggests that DHA synthesis may be increased to maintain DHA 

homeostasis when ALA is available (Lakin et al. 1998).  Also, evidence from radiotracer 

infusion studies in unanaesthetized rats shows that the liver synthesis-secretion rate of DHA is 

24-times higher than the brain DHA consumption rate (Gao et al. 2009b), suggesting that hepatic 

DHA synthesis-secretion may be sufficient to meet basic brain DHA requirements. 

Transcriptional control of DHA biosynthesis 

The expression of Δ5- and Δ6-desaturase is under the control of the transcription factors 

sterol response element binding factor 1-c (SREBP1-c) (Cho et al. 1999; Nara et al. 2002) and 

peroxisome proliferator activated receptor α (PPARα) (Song et al. 2002; Tang et al. 2003).   

PPARα is a ligand-induced transcription factor that belongs to the nuclear steroid receptor 

superfamily.  Ligands for PPARα include PUFA, monounsaturated fatty acids (MUFA), and 

several eicosanoids including leukotriene B4 and hydroxyeicosatetraenoic acids (Krey et al. 

1997).  Ligand binding induces conformational changes that result in dissociation of corepressor 
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proteins and formation of a dimer with the retinoid-x receptor.  The dimer binds to PPARα 

response elements in the promoter region of selected genes and modulates their transcription 

(Mandard et al. 2004).  The activity of PPARα is also controlled by phosphorylation of serine 

residues, and several kinase cascades such as ERK-MAPK, p38 MAPK, protein kinase A, and 

protein kinase C [reviewed in (Burns et al. 2007)].  PPARα increases the expression of genes 

involved in mitochondrial and peroxisomal β-oxidation, as well as both Δ5- and Δ6-desaturase 

(Mandard et al. 2004; Tang et al. 2003; Wang et al. 2006).  Liver PPARα expression is lower in 

females relative to males (Ciana et al. 2007; Extier et al. 2010), although estrogen administration 

increases the expression and activity of mitochondrial and peroxisomal oxidation enzymes 

[reviewed in (Kitson et al. 2010)], suggesting a complex regulation of PPARα activity by sex and 

sex hormones.   

SREBP1-c is a transcription factor belonging to the basic helix-loop-helix zipper class of 

transcription factors, and first exists as an immature full-length peptide in the membrane of the 

endoplasmic reticulum and must be cleaved following transfer to the golgi by SREBP cleavage 

activating protein (SCAP).  The mature form is then translocated to the nucleus by importin-β 

(Horton et al. 2002) where it interacts with sterol response elements characterized by E-box 

sequences in promoter regions and modulates gene expression (Amemiya-Kudo et al. 2002).  

SREBP1-c increases the expression of fatty acid synthesis genes such as fatty acid synthase and 

acetyl-CoA carboxylase (Amemiya-Kudo et al. 2002), and both Δ5- and Δ6-destaurases (Nara et 

al. 2002).  The activity of SREBP1-c is modulated via transcription (controlled by liver X 

receptor), by the cleavage of immature SREBP1-c [reviewed in (Jeon et al. 2012)], and by 

regulation of its mRNA stability by PUFA, especially n-3 PUFA (Xu et al. 1999).  This 
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represents a feedback mechanism whereby n-3 HUFA can regulate the expression of their 

synthesis enzymes (Jump et al. 2005).   

Sex differences in DHA content and metabolism 

 Several studies have observed sex differences in blood and tissue DHA contents in 

reproductive age humans and animals [Table 2.3, reviewed in (Burdge et al. 2005; Childs et al. 

2008; Decsi et al. 2011; Kitson et al. 2010; Lohner et al. 2013)].  Large cohort studies have 

found higher DHA in serum lipids of women in New Zealand (Crowe et al. 2008) and Tunisia 

(Sfar et al. 2010), and the Framingham Heart Study (Harris et al. 2012), while a higher 

DHA:DPAn-3 ratio was observed in whole blood of women in a study of Italians (Marangoni et 

al. 2007).  While following their habitual diets, women were observed to have higher DHA in 

plasma lipids (Bakewell et al. 2006) and platelet PE and PC (Geppert et al. 2010), and women 

had higher DHA in erythrocytes and whole blood at baseline in a fish-oil supplementation study 

(Metherel et al. 2009).  Similarly, female rats have higher DHA than males in plasma (Childs et 

al. 2008; Childs et al. 2010; Extier et al. 2010), liver (Alessandri et al. 2012; Burdge et al. 2008; 

Childs et al. 2010; Extier et al. 2010), heart (Slater-Jefferies et al. 2010), and erythrocytes 

(McNamara et al. 2009).  Higher DHA in women compared with men appears only to occur in 

countries in which n-3 HUFA intakes are low, such as in North America (Lohner et al. 2013), 

suggesting a possible adaptation in women to increase DHA levels when intakes are low. 

The increased blood DHA in women is likely mediated by increased synthesis from 

ALA.  In men who had ingested a bolus of [U-
13

C] ALA the net fractional conversion of ALA to 

EPA, DPAn-3, and DHA was 7.9%, 8.1%, and 0%, respectively (Burdge et al. 2002a), while 

women showed fractional conversion rates of 21%, 5.9%, and 9.2% (Burdge et al. 2002b).  

Another study utilizing stable-isotope ALA demonstrated that women had greater conversion of 
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DPAn-3 to DHA while consuming a beef-based diet low in n-3 HUFA (providing 59 mg/day 

EPA+DHA), but not while consuming a high n-3 HUFA fish-based diet (providing 560 mg/d 

EPA+DHA) (Pawlosky et al. 2003b).  The higher DHA biosynthesis from ALA in females also 

may result from decreased oxidation of ALA (Burdge et al. 2002a; Burdge et al. 2002b; Burdge 

et al. 2003), suggesting partitioning of this substrate towards n-3 HUFA synthesis. 

Increased DHA synthesis may be mediated by increased expression of DHA biosynthesis 

enzymes; however, studies investigating sex differences in the expression of these enzymes in 

rats have yielded mixed results.  Extier et al. (2010) found increased hepatic mRNA content both 

of Δ5- and Δ6-desaturase, as well as increased protein content of Δ5-desaturase (Δ6-desaturase 

protein content was not measured) in female rats as compared with males at 8 weeks of age, but 

not at 3 weeks or 5 weeks.  Burdge et al. (2008) also reported increased hepatic Δ5-desaturase 

mRNA (no difference in Δ6-desaturase) in livers of older female rats (15-weeks), but Childs et 

al. (2010) reported no sex differences in hepatic Δ5- or Δ6-desaturase mRNA while varying 

ALA and LA dietary intakes in rats aged 13 weeks.   
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Table 2.3: Summary of studies reporting sex differences in DHA content or biosynthesis in rats and humans [adapted from (Kitson et al. 2010)] 

Study Subjects (number) Dietary fatty acid treatment Results 

Rat Studies    

Burdge et al. 2008 Wistar rats, male and 

female (n = 24 each) 

Maternal = 5.9g ALA/kg diet 

Lactation/weaning = 0.7g ALA/kg diet 

Increased DHA in plasma PC and liver PC and PE (% total 

fatty acids) in females  

Higher hepatic D5D expression in females 

Extier et al. 2010 Wistar rats, male and 

female (n = 6 for each 

sex/time point) 

Maternal = 0.05g ALA/kg diet 

Weanling = 0.2 g ALA/kg diet 

Higher DHA in plasma PC and liver PC, PS, and PE in 

females 

Higher hepatic expression of D5D and D6D, and lower 

PPARα and FABP7 

Childs et al. 2010 Wistar rats, male and 

female (n = 6 for each 

sex/diet group) 

Low soybean = 1.6 g ALA/kg diet 

High fat soybean = 9.1 g ALA/kg diet 

High fat linseed = 50.2 g ALA/kg diet 

Increased DHA in plasma PC, liver PC and PE in females in 

all diets. 

No differences in gene expression 

Burdge et al. 2008 Wistar rats, male and 

female (n = 24 each) 

Pregnancy = 5.9 g ALA/kg diet 

Lactation/weaning= 0.7 g ALA/kg diet 

Higher DHA in PC and PE, not TAG, in female rats 

compared with males 

Human Studies    

Burdge et al. 2002b Women (n = 6) Habitual; 700mg of [U-
13

C]ALA 

administered 

Fractional appearance of 
13

C-labelled fatty acids in plasma 

was: ALA: 63.7%, EPA: 21.1%, DPAn-3: 5.9%, DHA: 9.2% 

Burdge et al. 2002a Men (n = 6) Habitual; 700mg of [U-
13

C]ALA 

administered 

Fractional appearance of 
13

C-labelled fatty acids in plasma 

was: ALA: 84%, EPA: 7.9%, DPAn-3: 8.1%, DHA: N.D. 

Pawlosky et al. 2003a Men (n = 6)  

Women (n = 6) 

Ad libitum 

Fish-based 

Beef-based 

Increased conversion of DPAn-3 to DHA in females within 

beef-based diet 

Giltay et al. 2004 Men (n = 72)  

Women (n = 103) 

Controlled diet, free from fish Increased DHA in serum CE in females 

Bakewell et al. 2006 Men (n = 13) 

Women (n = 23) 

Habitual intakes  Increased DHA in plasma TAG, NEFA, PC, and total lipids in 

females 

Crowe et al. 2008 Men (n = 1246) 

Women (n = 1547) 

Habitual intakes Increased DHA in serum PL and CE in females 

Marangoni et al. 2007 Men (n = 47) 

Women (n = 61) 

Habitual intakes Increased DPAn-3 in whole blood of males 

Metherel et al. 2009 Men (n = 10) 

Women (n = 10) 

Baseline habitual diet 

4-week supplementation of 4.8g/day 

EPA+DHA 

8-week washout on habitual diet 

Increased DHA and decreased DPAn-3 in while blood and 

erythrocytes of females at baseline 

Increased DHA:EPA ratio in women in various blood 

fractions disappeared with supplementation 

Geppert et al. 2010 Men (n = 40) 

Women (n = 34) 

Habitual intakes Higher DHA in platelet PE and PC in females 

EPA: eicosapentaenoic acid, DPAn-3: docosapentaenoic acid, DHA: docosahexaenoic acid, PE: phosphatidyl ethanolamine, LA: linoleic acid, ALA: α-linolenic 

acid, D5D: Δ5-desaturase, D6D: Δ6-desaturase, PPARα: peroxisome proliferator activated receptor α, FABP: fatty acid binding protein, PC: phosphatidyl 

choline, PS: phosphatidyl serine, PL: phospholipid, CE: cholesteryl esters   
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Influence of pregnancy on DHA levels and metabolism 

The majority of fetal brain and retinal DHA accretion occurs during the third trimester of 

pregnancy with 2.27 mg DHA /d accreted in the  whole body between gestational weeks 0-25, 

16.25 mg DHA/d for weeks 25-35, and 41.65mg DHA/d for weeks 35-40 (Kuipers et al. 2012).  

DHA is provided by the mother through selective placental transfer, as DHA is transferred more 

efficiently than other fatty acids (Tobin et al. 2009).  To meet the demands of the fetus, plasma 

phospholipid DHA concentration is increased as early as 6 weeks into pregnancy (Otto et al. 

2001) and continues to increase up to approximately 30 weeks of pregnancy and then plateaus 

until birth (Al et al. 1995) with a rapid decrease (< 3 months) after birth (Al et al. 1995; Stark et 

al. 2005a).  Dietary DHA intakes during pregnancy have been shown to be quite stable (Otto et 

al. 2001; Stark et al. 2005a), indicating a metabolic adaptation is occurring to increase plasma 

DHA concentration. 

Increases in plasma lipids including TAG and PL occur throughout pregnancy (Desoye et 

al. 1987), suggesting that increased DHA may simply be an effect of increased general hepatic 

lipid synthesis-secretion.  However, this is not the case, as the relative percentage increases in 

plasma DHA occur at the expense of the relative percentages of 20:4n-6 and EPA (Stark et al. 

2005a), indicating a specific enrichment of DHA.  Previous work has shown that the DHA 

content of hepatic de novo synthesized diacylglycerol is increased, which is the substrate for 

TAG, PC, and PE.  PC de novo synthesis is also increased due to higher activity of cytidine-

diphosphate: choline 1,2-diacylglycerol cholinephosphotransferase (Burdge et al. 1994).  

However, the source of increased DHA for these processes is not known, and may be increased 

de novo DHA synthesis. 
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Only one study has investigated the effect of pregnancy on hepatic Δ5- and Δ6-desaturase 

and elovl5 expression, finding increased mRNA of Δ6-desaturase, but not Δ5-desaturase or 

elovl5 (Childs et al. 2012).  The increase in Δ6-desaturase was correlated with the increased 

concentrations of progesterone, but not estradiol or testosterone, as all three hormones are 

increased during pregnancy (O'Leary et al. 1991) (Table 4).  

Table 2.4: Changes in sex hormone concentrations over the course of pregnancy (nmol/L) 
 Progesterone 17β-estradiol Testosterone 

Non-pregnant Controls
a
 12-90 0.37-0.77 0.7-3.5 

5-weeks pregnancy
b
 26-91 0.69-3.88 0.9-7.4 

40-weeks pregnancy
b
 314-1087 22.53-127 2.2-10.8 

a
from the luteal phase of menstrual cycle; 

b
ranges represent 95% confidence interval.  Adapted 

from (O'Leary et al. 1991) 

 

Influence of sex hormones on DHA content and metabolism 

Various hormonal manipulations are associated with differences in DHA content and 

metabolism in humans (Table 2.5) as well as in cell culture and animal models (Table 2.6).  In 

general, estradiol is associated with increased DHA in human, animal and cell culture models.  

Human studies - Blood DHA levels are reduced in post- compared with pre-menopausal 

women (Tworek et al. 2000), corresponding to decreased circulating levels of 17β-estradiol (Ahn 

et al. 2011; Witt et al. 2010), and hormone replacement therapy either increases (Giltay et al. 

2004a; Sumino et al. 2003) or decreases (Stark et al. 2003) circulating DHA.  Similarly, women 

≥ 60 years old have lower plasma DHA than women < 60 years old (Sfar et al. 2010), and no sex 

difference is observed in DHA content between older men and women [57-59 years old (Burdge 

et al. 2007)].  Sex hormones also appear to have effects on reproductive-aged individuals. Male-

to-female transsexuals receiving oral ethinyl estradiol had increased cholesteryl ester DHA 

proportions, while female-to-male transsexuals receiving intramuscular testosterone acetate 
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injections had decreased cholesteryl ester DHA (Giltay et al. 2004b).  Slight increases in DHA 

concentration have also been observed in women taking oral contraceptives relative to controls 

(Giltay et al. 2004b).  

Animal studies – Administration of testosterone via injection to eugonadal male and female 

rats results in significantly decreased activity of Δ6-desaturase (Marra et al. 1989).  Ovariectomy 

increased the hepatic mRNA content of Δ5- and Δ6-desaturase with no difference in liver PL 

DHA, while supplementation of ovariectomized rats with 17β-estradiol returned mRNA content 

to control values but increased the hepatic PC and PE DHA contents (Alessandri et al. 2011).  

Ovariectomy also decreases the DHA content of bone marrow (Poulsen et al. 2008a) and 

erythrocytes (Poulsen et al. 2008b), suggesting that the lower estradiol associated with 

ovariectomy reduces the synthesis and/or the accretion of DHA. 

Cell culture studies –Two studies have utilized the neuroblastoma cell line SH-SY5Y and 

have found that 17β-estradiol supplementation increases the mRNA of Δ5-desaturase (Extier et 

al. 2009) and the PE content of EPA and DPAn-3 (Alessandri et al. 2008).  Dihydrotestosterone 

decreased mRNA of Δ5-desaturase (Extier et al. 2009) and progesterone decreases the mRNA of 

Δ6-desaturase (Extier et al. 2009).  In HTC hepatocytes or isolated hepatocytes from female rats, 

the supplementation of culture medium with 17β-estradiol and testosterone decreased the 

desaturation of 20:3n-6 to 20:4n-6, while progesterone had no effect (Marra et al. 1988). 
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Table 2.5: Summary of studies investigating effect of altered hormonal status on highly unsaturated fatty acid metabolism in humans 

Study Cells/Subjects Treatment / Cohorts Effects on n-3 HUFA levels 

Tworek et al. 2000 Females Premenopausal (n = 433) 

Postmenopausal (n = 433) 

Higher DHA in erythrocytes in premenopausal women 

Stark et al. 2003 Females (43-69 years) Premenopausal (n = 19) 

Postmenopausal (n = 34) 

Postmenopausal receiving hormone therapy (n 

= 40) 

Increased DHA and DPAn-3 in plasma PL in 

postmenopausal women not receiving hormone 

therapy 

Sumino et al. 2003 Postmenopausal women 

(43-63 years) 

Taking conjugated equine estrogen and 

medroxyprogesterone acetate (n = 59) 

Not taking hormone therapy (n = 45) 

Increased plasma total lipid DHA and EPA in women 

taking hormones 

Giltay et al. 2004a Postmenopausal women 

(47-59 years) 

Males (60-70 years) 

Females 60 mg raloxifene/day (n = 23) 

Females 150 mg raloxifene/day (n = 20) 

Females conjugated equine estrogen with 

medroxyprogesterone acetate (n = 17) 

Females placebo (n = 23) 

Males 120 mg raloxifene/day (n = 15) 

Males placebo (n = 15) 

Increased DHA in plasma CE in post-menopausal 

women taking 150 mg/day raloxifene and in 

women taking conjugated equine estrogen with 

medroxyprogesterone acetate at 24 months 

compared to baseline 

Giltay et al. 2004b Male-to-female 

transsexuals 

(eugonadal) 

Cyproterone acetate alone (n = 16) 

Cyproterone acetate with oral ethinyl estradiol 

(n = 15) 

Transdermal 17β-estradion 

Increased DHA in serum CE following cyproterone 

acetate with oral ethinyl estradiol 

Giltay et al. 2004b Female-to-male 

transsexuals 

(ovariectomized) 

Testosterone esters plus anastrozole (n = 16) 

Placebo (n = 14) 

Testosterone esters alone (n = 17) 

Decreased DHA in serum CE with testosterone esters 

alone 

Giltay et al. 2004b Women Using oral contraceptives (n = 32) 

No oral contraceptive use (n = 71) 

Non-significant increase in DHA in serum CE with 

contraceptive use (p = 0.08) 

Stark et al. 2004 Postmenopausal women 

(45-70 years) 

Taking hormone replacement therapy (n = 18) 

Not taking hormone replacement therapy (n = 

14) 

2.8g algal DHA vs. placebo in crossover 

design 

Increased estimates of retroconversion of DHA to EPA 

in plasma phospholipids of women not taking 

hormone therapy 

Burdge et al. 2007 Men (50-65 years) 

Women (50-65 years) 

Men (50-65 years, n = 10) 

Women (50-65 years, n = 10) 

No sex difference in plasma total lipid DHA at this age 

Sfar et al. 2010 Women (40-82 years) Women < 60 years (n = 58) ,Women ≥ 60 

years ( n = 46) 

Higher DHA in plasma total lipids in women < 60 

years 

EPA: eicosapentaenoic acid, DPAn-3: docosapentaenoic acid, DHA: docosahexaenoic acid, PC: phosphatidyl choline, CE: cholesteryl 

esters. 
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Table 2.6: Summary of cell culture and animal studies investigating the effects of hormonal manipulations on highly unsaturated fatty 

acid metabolism 

Study Cells/Subjects Treatment / Cohorts Effects on HUFA 

Cell Culture 

Studies 

   

Marra et al. 1988 Isolated rat hepatocytes 

and HTC 

hepatocarcinoma cells 

0.1, 1, 10mM 17β-estradiol 

0.1, 1mM progesterone 

0.1M testosterone 

0.1M estriol 

 

Lower Δ5-desaturation of 20:4n-6 from 20:3n-6 in 

response to all doses of 17β-estradiol, estriol, and 

testosterone, but not progesterone 

Alessandri et al. 

2008 

SH-SY5Y neuroblastoma 

(n = 3 for each 

condition) 

10nM 17β estradiol 

30 µM ALA alone 

10nM 17β-estradiol with 30 µM ALA 

Increased EPA and DPAn-3 in PE with 17β-estradiol 

Extier et al. 2009 SH-SY5Y neuroblastoma 

(n = 4 for each 

condition) 

7µM ALA, LA, or ALA/LA, 

10nM 17β-estradiol, dihydrotestosterone, 

progesterone, or control 

Increased EPA, DPAn-3 content and decreased D5D 

mRNA with 17β-estradiol and ALA treatment 

Decreased EPA, DHA content and decreased PPARα 

and D5D expression with dihydrotestosterone and 

ALA 

Decreased D6D mRNA with progesterone treatment 

Rat Studies    

Marra et al. 1989 Male and female wistar 

rats 

Injection with 260 μg/kg testosterone or 

vehicle (n = 4 per group for each sex) 

Testosterone decreased hepatic D5D and D6D activity 

Poulsen et al. 

2008a 

Female Sprague-Dawley 

rats 

Ovariectomized or sham-operated (n = 10 

each) 

Lower bone marrow DHA in ovariectomized rats 

Poulsen et al. 

2008b 

Female Sprague-Dawley 

rats 

Ovariectomized (n = 10), ovariectomized with 

17β-estradiol n = 12), sham-operated (n = 

10) 

Lower erythrocyte DHA in ovariectomized group 

compared with sham-operated and ovariectomiuzed 

with 17β-estradiol supplementation 

Alessandri et al. 

2011 

Female wistar rat (n = 8 

per group) 

Ovariectomy 

Ovariectomy with 8µg/day 17β-estradiol 

Ovariectomy with 16 µg/day 17β-estradiol 

Sham operated, no 17β-estradiol 

Ovariectomy increased liver D5D and D6D mRNA and 

decreases cortex PE DHA 

17β-estradiol decreased hepatic D5D and D6D and 

increased liver PE, PC, and PS DHA 

EPA: eicosapentaenoic acid, DPAn-3: docosapentaenoic acid, DHA: docosahexaenoic acid, PE: phosphatidyl ethanolamine, LA: 

linoleic acid, ALA: α-linolenic acid, D5D: Δ5-desaturase, D6D: Δ6-desaturase, PC: phosphatidyl choline, PS: phosphatidyl serine
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CHAPTER 3 

RATIONALE AND OBJECTIVES 

Rationale 

 The associations between blood levels of DHA and cardiovascular health and 

neurological development illustrate the importance of understanding factors that regulate DHA 

levels.  Previous work indicates that female sex (Lohner et al. 2013), pregnancy (Stark et al. 

2005a), and estrogen (Giltay et al. 2004b) all increase DHA levels; however the underlying 

mechanism is not characterized.  

The higher DHA in women may contribute to increased cardioprotection relative to men 

(Zheng et al. 2001), as even small changes in DHA status can potentially have significant effects 

on sudden cardiac death prevention due to the sensitive dose-response of this effect (Mozaffarian 

et al. 2006).  The mechanism underlying higher DHA in women is not known, but may involve 

increased expression of DHA synthesizing enzymes.  Therefore, sex differences in the 

expression of DHA-synthesizing enzyme and DHA concentrations in liver and plasma should be 

investigated.  In addition, sex differences in organs in which DHA is known to have a protective 

role, such as in heart or brain, should also be investigated.  Measuring sex differences in the 

expression of transcription factors involved in the regulation of DHA synthesis enzymes will 

provide insight into differences in the regulation of these enzymes between males and females.  

Increased DHA biosynthetic enzyme expression may also underlie the increase in blood 

DHA in pregnant relative to non-pregnant women, and may reflect an evolutionary adaptation to 

provide sufficient DHA to a fetus for neurodevelopment.  The majority of fetal DHA accretion 

occurs in the third trimester of pregnancy, and maternal DHA increases steadily until delivery 

(Stewart et al. 2007), suggesting a time-specific increase in DHA levels and DHA biosynthetic 
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enzyme expression in pregnancy.  Therefore, an analysis of changes in the expression of hepatic 

DHA concentration, DHA biosynthesis enzymes and related transcription factors over the course 

of pregnancy is warranted. 

Higher levels of circulating 17β-estradiol and higher DHA levels are present in females 

relative to males and in pregnant relative to non-pregnant females, suggesting that 17β-estradiol 

may be a causative mechanism.  The effects of 17β-estradiol removal or supplementation on 

expression of DHA biosynthesis enzymes has not been directly investigated, and 

ovariectomization and hormone supplementation studies can provide insight.  However, 

decreases in 17β-estradiol are associated with hyperphagia (Blaustein et al. 1976; Varma et al. 

1999) that can stimulate lipogenesis, making it necessary to control for food intake to estimate 

the direct effect of 17β-estradiol on DHA metabolism.  In addition, although ERα is highly 

expressed in rat liver tissue (Pelletier 2000), the specific role of ERα in mediating the effect of 

17β-estradiol on DHA metabolism is unknown.  

Sex differences and the effect of pregnancy on expression of DHA biosynthetic enzymes 

and DHA levels in rats were examined. To further characterize these effects, the effects of 17β-

estradiol supplementation, ovariectomy, and disruption of the ERα gene on DHA biosynthesis 

were examined.  A greater understanding of the effects of these factors on DHA status and 

metabolism may provide insight of DHA requirements that could enable specific dietary DHA 

recommendations for men and women, and for women during pregnancy and menopause.  These 

findings will expand our understanding of the role of sex, pregnancy, and ovarian hormones in 

fatty acid metabolism in general, but also the regulation of DHA synthesis that could be used in 

efforts to synthesize DHA to increase the content of DHA in the food supply.   
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Objectives 

The primary objective of the current study is to characterize the effects of sex, pregnancy, 

ovarian hormones and ERα on DHA content and biosynthetic enzyme expression, particularly 

the rate-limiting enzyme Δ6-desaturase.  To investigate the role of sex, the hepatic expression of 

DHA biosynthesis enzymes and blood and tissue DHA content will be compared between male 

and female rats.  The effect of pregnancy will be investigated by examining virgin, day-15 and -

20 pregnant, and day-7 post-partum rats to measure changes in hepatic expression of DHA 

biosynthesis enzymes and hepatic DHA content.  The effects of ovarian hormones will be 

assessed by comparing the expression of DHA biosynthetic enzymes and hepatic and blood 

DHA concentrations in ovariectomized rats with/without supplementation with 17β-estradiol 

and/or progesterone to that of sham-operated rats.  To examine the potentially confounding effect 

of ovariectomy-induced hyperphagia on DHA biosynthesis, a group of ovariectomized rats will 

be pair-fed relative to sham-operated controls and hepatic and plasma DHA levels and hepatic 

DHA biosynthetic enzyme expression determined.  Finally, ERα-knockout mice and wild-type 

controls will be used to examine the role of ERα in tissue and blood DHA content and hepatic 

DHA biosynthetic enzyme expression. 
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Hypotheses 

1. Liver, plasma, heart, brain and erythrocytes of female rats will have higher 

concentrations of DHA as compared with the same tissues of male rats. 

2. Expression of enzymes involved in DHA biosynthesis will be higher in the liver, 

heart, and brain of female as compared with male rats. 

3. Hepatic expression of Δ6-desaturase will be increased at day 15 and 20 of pregnancy 

compared to virgin and post-partum rats, which will correspond with increases in 

hepatic DHA concentration. 

4. Hepatic expression of Δ6-desaturase and hepatic and plasma DHA content will be 

lower in ovariectomized rats, and supplementation with estradiol will restore Δ6-

desaturase expression and DHA levels to that of sham-operated rats. 

5. Controlling for hyperphagia in ovariectomized rats will further reduce hepatic Δ6-

desaturase and DHA levels as compared with ovariectomized rats fed ad libitum  

6. ERα-knockout mice will have lower expression of Δ6-desaturase  and lower tissue 

and blood DHA levels as compared with wild-type mice 
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CHAPTER 4 

MATERIALS AND COMMON METHODS 

Animals 

All animal procedures were approved by the University of Waterloo Animal Care 

Committee and were in accordance with the guidelines of the Canadian Council on Animal Care.  

Animals were housed with a temperature of 21 ± 1 °C and a 12:12-h light-dark cycle.  Rats were 

fed a standard laboratory chow diet with fatty acid composition determined by triplicate analysis 

and reported in Table 4.1.  Details on animal treatments and characteristics are described in 

individual studies. 

Expression Analysis 

Protein determination by western blot - Tissues or cells were homogenized by a polytron 

homogenizer in a buffer containing 0.25mol/L sucrose, 0.01mol/L tris-HCl, 0.01mol/L MgCl2, 

2.5mmol/L DTT, and complete protease inhibitor tablets (Roche Applied Science, Laval, QC, 

Canada).  Homogenate protein was measured using the bicinchoninic acid procedure, and 10-

20µg of protein were resolved on either a 7.5 or 12.5% polyacrylamide gel and subsequently 

transferred onto a polyvinylidene difluoride membrane (Bio-Rad Laboratories).  Membranes 

were blocked for 1 hour or overnight at 4°C with either 5% skim milk or 5% bovine serum 

albumin (BSA) in tris-buffered saline with 0.5% (v/v) tween (TBS-T).  Membranes were then 

incubated with primary antibodies for proteins of interest suspended in either BSA or milk for 1 

hour at room temperature or overnight at 4°C (specific antibodies used and concentrations are 

detailed in individual studies).  Unbound antibody was then washed off membranes with TBS-T 

and horseradish peroxidase-conjugated secondary antibody specific to the primary antibody was 

then incubated for 1 hour at room temperature (Santa Cruz Biotechnology, 1:8000 dilution).  
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Following TBS-T wash, Enhanced Chemiluminescence Western Blotting Detection Reagents 

(GE Healthcare, QC, Canada) were added and detection of luminescence was performed using 

Chemigenius2 Bioimaging System (Syngene inc., Frederick, MD) and analyzed using Genesnap 

software v 7.07 (Syngene).  Molecular weights of proteins were confirmed using Precision Plus 

Protein WesternC Standards along with Precision Protein Strep-Tactin Horseradish Peroxidase 

Conjugated secondary antibody (Bio-Rad Laboratories).  Equal loading of protein was confirmed 

using ponceau S stain (Bioshop, Burlington, ON, Canada) or re-probing membranes for β-actin 

(1:1000 in 5%BSA-TBST, Santa Cruz Biotechnology) following stripping of membranes using a 

stripping buffer containing 100mM 2-mercaptoethanol, 2% sodium dodecyl sulphate, and 

62.5mM tris-HCl.   

mRNA extraction and analysis by RT-PCR - Frozen tissue samples were homogenized 

with a polytron homogenizer in Trizol® Reagent (Invitrogen Co, Frederick, MD).  Separation of 

phases was accomplished by the addition of chloroform, followed by precipitation of RNA from 

the aqueous phase by the addition of isopropanol.  Quantity of extracted RNA was measured 

spectrophotometrically (Nanodrop 2000c spectrophotometer, Thermo Scientific, Wilmington, 

DE, USA) and the quality was determined by the appearance of 18s and 28s rRNA bands 

following agarose gel electrophoresis with ethidium bromide staining.  To ensure adequate purity 

of RNA relative to protein, only samples exhibiting 260nm/280nm absorbance ratios above 1.9 

were used.  Synthesis of complementary DNA (cDNA) was performed with a high capacity 

cDNA reverse transcription kit (Applied Biosystems, Streetsville, ON, Canada) with a thermal 

cycler (MJ mini personal thermal cycler, Biorad Laboratories, Mississauga, ON, Canada) 

program of 25 °C for 10 min, 37 °C for 120 min, 85 °C for 5 seconds, and 4°C until storage at -

80 °C. 



31 
 

 PCR primers were designed using the Primer-BLAST program on the NCBI webpage 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome).  The 

accession numbers as sequences for primers used are detailed in individual studies.  18s rRNA 

was the reference gene, and target gene expression was determined using the 2
-ΔΔct

 method 

(Livak et al. 2001). 

Fatty acid analysis 

Lipid extraction - Lipids were extracted from plasma and rat chow by a modified version 

of the method of Folch, Lees, and Sloane Stanley using 2:1 choloroform:methanol (v:v) (Folch et 

al. 1957; Metherel et al. 2009).  Lipids were extracted from tissues using either the method of 

Bligh and Dyer using 2:2:1.8 chloroform:methanol:water (v:v:v) (Bligh et al. 1959; Metherel et 

al. 2009; Reed et al. 1960) or Folch, Lees, and Sloane Stanley (Folch et al. 1957), as detailed in 

individual studies.  Internal standards for determination of fatty acid composition of total lipids 

(Docosatrienoic acid (22:3n-3) ethyl ester, Nu-Check Prep Inc, Elysian, MN), PL (1,2-

diheptadecanoyl-sn-glyercol-3-phosphocholine, Avanti Polar Lipids Inc, Alabaster, AL), TAG 

(triheptadecanoate, Nu-Chek Prep Inc), non-esterified fatty acids (heptadecanoic acid,  Avanti 

Polar Lipids Inc), cholesteryl esters (cholesteryl heptadecanoate, Avanti Polar Lipids Inc), PC 

(1,2-diheptadecanoyl-sn-glyercol-3-phosphocholine, Avanti Polar Lipids Inc) and PE (1,2-

diheptadecanoyl-sn-glyercol-3-phosphoethanolamine, Avanti Polar Lipids Inc) were added as 

appropriate.  Butylated hydroxytoluene (BHT) was present in all lipid extractions as an 

antioxidant. 

Neutral lipid and phospholipid class separation by thin layer chromatography (TLC) - 

Neutral lipids (cholesteryl esters, non-esterified fatty acids, TAGs, and total PLs) were isolated 

on 20 x 20 cm TLC plates with a 6nm silica gel layer (Whatman Internation LTD, Maidstone, 
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England) in a mobile phase of heptane:diethyl ether:glacial acetic acid (60:40:2 v/v/v) (Christie 

2003). Bands were identified by comparison with a reference standard containing PL, TAG, non-

esterified fatty acids and cholesteryl esters.  PL classes were isolated on TLC H-plates (Analtech, 

Newark, DE, USA) using a mobile phase of chloroform:methanol:2-propanol:0.25% 

KCl:triethylamine (30:9:25:6:18 by volume) (Chen et al. 2011).  Bands were visualized by 

ultraviolet light using 2,7-dichloroflouorescein (Sigma-Aldrich, Oakville, ON, Canada), 

identified by comparison with reference standards for PC, PE, and PS, and collected into tubes.  

Lipids were then extracted from silica gel shavings with 2:1 choloroform:methanol (Folch et al. 

1957). 

Fatty acid composition analysis by fast gas chromatography with flame ionization 

detection - All lipid extracts were transesterified to form fatty acid methyl esters (FAME) by 

heating at 85°C for one hour in the presence of 14% boron triflouride in methanol (Morrison et 

al. 1964).  Separation of FAME was accomplished by a Varian 3900 gas chromatograph (Varian 

Inc, Mississauga, ON, Canada) with settings similar to those described previously (Masood et al. 

2005).  Briefly, a DB-FFAP capillary column with a 15 m x 0.10 mm inner diameter X 0.10 mm 

film thickness (J & W Scientific, Agilent Technologies, Palo Alto, CA) was used with H2 as the 

carrier gas with a flow rate of 30 ml/min.  The injector temperature was 250°C and the flame 

ionization detector was set at 300°C.  Peaks corresponding to fatty acids were identified by 

comparison to a reference standard (GLC-462 or GLC-569, Nu-Chek Prep Inc) and quantified by 

comparison to peak area of internal standard. The n-6/n-3 ratio and the % of n-3 HUFA in total 

HUFA was also calculated. 
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Statistics 

Statistical analysis was performed using SPSS for windows version 15.0.  Significant 

differences were inferred when p < 0.05.  Specific statistical analyses are detailed in individual 

studies.   

 

 

 

Table 4.1 
Measured fatty acid composition of rodent chow 

Fatty Acid Diet content 

 

(µg fatty acid/g of chow) 

16:0 5783 ± 447 

18:0 1523 ± 166 

Total SFA 8058 ± 644 

16:1 315 ± 6 

18:1n-7 2938 ± 4 

18:1n-9 9237 ± 2 

20:1n-9 134 ± 9 

Total MUFA 9611 ± 1198 

18:2n-6 21211 ± 1576 

20:4n-6 48 ± 7 

Total n-6 PUFA 21364 ± 1547 

18:3n-3 2511 ± 143 

20:5n-3 126 ± 1 

22:5n-3 27 ± 1 

22:6n-3 106 ± 7 

Total n-3 PUFA 2769 ± 147 

Total PUFA 24133 ± 1694 

Total Fatty Acids 42759 ± 3233 

Values are mean ± SD from triplicate analysis. 
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CHAPTER 5 

TISSUE-SPECIFIC SEX DIFFERENCES IN Δ6-DESATURASE EXPRESSION AND 

DHA CONTENT IN RATS FED A STANDARD CHOW DIET
1
 

INTRODUCTION 

 Several studies have shown that women synthesize more DHA from ALA as compared 

with men when n-3 HUFA intakes are low (Burdge et al. 2002a; Burdge et al. 2002b; Pawlosky 

et al. 2003a), leading to higher blood levels of DHA in women (Bakewell et al. 2006; Crowe et 

al. 2008; Metherel et al. 2009; Sfar et al. 2010).  Higher DHA biosynthesis in women may be 

associated with higher expression of enzymes involved in the biosynthesis of DHA from ALA.  

This may be particularly important in the liver, the primary site of de novo DHA biosynthesis 

(Rapoport et al. 2010); however, sex differences in enzymes of DHA biosynthesis may occur in 

other tissues as well.  Previous studies investigating sex differences in enzyme expression in rats 

have presented mixed results and have only focused on the liver (Burdge et al. 2008; Childs et al. 

2010; Extier et al. 2010).  

 The purpose of this study was to examine sex differences in the tissue mRNA and protein 

levels of Δ6- and Δ5-desaturase, elovl2, elovl5, and acyl-CoA oxidase in liver, heart, and brain to 

determine the possible role of these enzymes in sex differences in DHA concentrations.  

Expression of the transcription factors PPARα and SREBP1c was also measured to determine the 

transcriptional control of these enzymes.  DHA concentration was measured in liver, heart, brain, 

plasma and erythrocytes to determine the tissue-specificity of sex differences in DHA.
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METHODS 

Male and female Sprague-Dawley rats (n = 6 for each sex) were ordered from Harlan 

(Mississauga, Ontario) and arrived at University of Waterloo at 10 weeks of age.  Animals were 

stored in the animal housing facilities in the department of Kinesiology.  After 14 weeks of age, 

rats were anaesthetized after an overnight fast by intraperitoneal sodium pentobarbital injection 

(65 mg/kg).  Blood was collected into an EDTA containing syringe by cardiocentesis, and 

plasma and erythrocytes were separated by centrifugation (1500g) and stored at -80°C.  Heart, 

liver, and brain were quickly excised, rinsed with 0.9% (w/v) aqueous NaCl, dried and 

immediately frozen in liquid nitrogen prior to storage at -80°C for RNA, protein, and fatty acid 

analysis. 

RT-PCR was performed using SYBR Green qPCR master-mix (Applied Biosystems) on 

an Applied Biosystems 7500 real time PCR system using 25 μl as the reaction volume.  Data was 

expressed relative to female samples. Primers used for RT-PCR were Δ6 desaturase (GenBank 

accession number NM_031344, 5’-3’ TCAAAACCAACCACCTGTTCTTC, 3’-5’ 

ACCAGGCGATGCTTTCCA), Δ5 desaturase (NM_053445, 5’-3’ 

CCTCTTGTAAAGCACGAGCC, 3’-5’ CAAGGGGTCACACTGTTCCT), elovl2 

(AB071986.1, 5’-3’ TGCTTGCCCGTGAGAGCCAC, 3’-5’ TGCCACAGGAAGGCGA 

CGAC), elovl5 (NM_134382.1, 5’-3’ CTCTCGGGTGGCTGTACTTC, 3’-5’ AGAGGCCCCTT 

TCTTGTTGT), acyl-CoA oxidase (NM_017340, 5’-3’ CTGCTCAGCAGGAGAAATGG, 3’-5’ 

CTCACAGCGCTGTATCGTAT), peroxisome proliferator activated receptor α (NM_013196.1, 

5’-3’ GCAGACCTCAAATCTCTGGC, 3’-5’ GGCCTTGACCTTGTTCATGT), sterol response 

element binding protein 1c (XM_001075680, 5’-3’ CCACCTGTGCAGCTCAGCCC, 3’-5’ 

GGCGTCTGCTGGGTGTTCCC), estrogen receptor α (NM_012689.1, 5’-3’ TCCGGCACATG 
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AGTAACAAA, 3’-5’ TGAAGACGATGAGCATCCAG), and 18s ribosomal RNA (M11188, 

5’-3’ GATCCATTGGAGGGCAAGTCT, 3’-5’ AACTGCAGCAACTTTAATATACGCTATT).   

Antibodies used for protein expression analysis were Δ6-desaturase (sc-98480, Santa 

Cruz Biotechnology, Santa Cruz, CA, 1:400 dilution in BSA), Δ5-desaturase (sc-101953, 1:100 

dilution, v/v), elovl2 (sc-54874, 1:250 dilution), elovl5 (sc-54888, 1:250 dilution), PPARα (sc-

9000, 1:250 dilution), SREBP1c (sc-8984, 1:500 dilution), or acyl-CoA oxidase (sc-98499, 1:100 

dilution).  Blocking was performed with BSA, and all antibodies were dissolved in 5% BSA in 

TBS-T. 

The fatty acid composition of plasma, liver, heart, and brain total lipids, PLs, and TAGs 

was measured.  For the liver, fatty acid concentration of PC, PE, PS, and PI was also determined. 

Quantitation of PL classes was accomplished by adding 22:3n-3 internal standard following 

TLC. Fatty acid composition of erythrocyte total lipids was also measured. 

Comparisons between female and male values were performed by independent samples 

T-test. 

RESULTS 

Sex differences in enzyme and transcription factor expression  

The mRNA for microsomal and peroxisomal enzymes involved in DHA biosynthesis as 

well as transcription factors involved in regulation of lipid metabolic enzymes was assessed in 

liver, brain, and heart (Figure 5.1).  In the liver, Δ5-desaturase, Δ6 desaturase, and elongase 2 

mRNA was 100%, 140%, and 110% higher, respectively, in female rats as compared with males.  

Conversely, elongase 5 mRNA was 60% lower in female liver.  Hepatic mRNA for SREBP1-c 

and estrogen receptor α (ERα) was 80% and 60% higher, while PPARα mRNA was 50% lower, 



 

. 
37 

 

in females compared to males.  No differences were observed in hepatic acyl-CoA oxidase 

mRNA.  No sex differences in mRNA for any measured genes were observed in heart or brain. 

Hepatic Δ6-desaturase protein expression was 60% higher in females compared with 

males.  PPARα was 30% lower (Figure 5.2).  No sex differences in any other measured protein 

were observed in liver.  In the heart, no sex differences in protein levels of measured enzymes or 

transcription factors were observed, and in the brain there was a 10% lower acyl-CoA oxidase 

protein level and no other sex differences in expression (Appendix 1 Table 1). 

Sex differences in tissue polyunsaturated fatty acid content 

The fatty acid content was also determined for liver, heart, and brain.  In liver total lipids 

(Table 5.1), females had higher DHA concentrations but lower DPAn-3 concentrations as 

compared with males.  In liver total lipid n-6 PUFA, females had higher concentrations of 18:3n-

6 and DPAn-6 as compared with males.  In liver PL (Table 5.2), concentrations of DHA and 

18:3n-6 were higher in females as compared with males. DHA and DPAn-6 were also higher in 

females relative to males in PC, PE, and PS, but not PI (Figure 5.3).  No sex differences were 

seen in DHA concentration of hepatic TAG (Appendix 1 Table 2).  

In heart total lipids (Table 5.1), female rats had higher DHA and lower DPAn-3 compared 

with males.  Concentrations of 20:4n-6 and DPAn-6 were higher in females compared with 

males.  In heart PL there were no sex differences in DHA levels; however female heart PL had 

lower concentrations of DPAn-3, and LA as compared with males (Table 5.2).  No sex 

differences in n-3 HUFA concentrations of heart TAG were observed (Appendix 1 Table 2). 

No statistically significant sex differences in any n-3 PUFA were observed in any lipid 

fractions in brain, however total n-6 PUFA was lower in females (Table 5.1).  No sex difference 



 

. 
38 

 

was observed in the concentrations of PUFA in brain PL (Table 5.2) or TAG (Appendix 1 

Table 2). 

In plasma total lipids, females had higher DHA, 18:3n-6, 22:5n-6, and lower 18:2n-6 and 

DPAn-3 as compared with males (Table 5.3).  In plasma PL, females exhibited higher 

concentrations of DHA as compared with males (Table 5.3).  No sex difference in plasma TAG 

n-3 HUFA concentration was observed.  In erythrocyte total lipids, females had higher DHA 

concentration as compared with males (Table 5.4).   

DISCUSSION 

This study demonstrates that female rats have higher hepatic Δ6-desaturase mRNA and 

protein, which corresponds to higher DHA concentration in liver, plasma, heart, and erythrocytes 

compared with males.  No difference in expression in heart or brain indicates that this sex 

difference is liver-specific, and suggests that the higher hepatic Δ6-desaturase expression results 

in higher synthesis of DHA in females relative to males.  The tissue-specific sex differences in 

DHA observed in the present study are in agreement with previous studies that have also 

reported female rats having higher DHA in PL of plasma (Childs et al. 2008; Childs et al. 2010; 

Extier et al. 2010), liver (Alessandri et al. 2012; Burdge et al. 2008; Childs et al. 2010; Extier et 

al. 2010), heart (Slater-Jefferies et al. 2010), and total lipids of erythrocytes (McNamara et al. 

2009) but with no differences in brain (Extier et al. 2010) relative to males. 

Higher activity of Δ6-desaturase is strongly suggested by the increased hepatic DHA.  In 

addition, higher Δ6-desaturase activity is suggested by higher concentrations of 18:3n-6 and 

DPAn-6 (the direct n-6 product of Δ6-desaturase and the corresponding n-6 HUFA to DHA, 

respectively) that were observed in females.  Additionally, lower DPAn-3 in females suggests 
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increased Δ6-desaturase activity, as Pawlosky et al (2003a) report that the primary sex difference 

is the conversion of 22:5n-3 to DHA, indicating a “bottleneck” in DHA biosynthesis that is 

somewhat relieved in females via increased Δ6-desaturase.  Higher Δ6-desaturase activity 

appears to be the enzymatic step in DHA synthesis that is mediating higher DHA in females, as 

there were no differences observed in the hepatic expression of Δ5-desaturase, elovl2, elovl5, 

and acyl-CoA oxidase, although factors involved in fatty acid transport or glycerolipid synthesis 

or remodeling were not measured in the present study. 

Previous reports regarding sex differences in hepatic Δ5- and Δ6-desaturase expression in 

rats have been mixed.  Extier et al. (2010) reported increased hepatic Δ5- and Δ6-desaturase 

mRNA as well as Δ5-desaturase protein content (Δ6-desaturase protein was not reported) in 

female rats compared with males on an ALA replenishment diet (0.2g ALA/kg diet up from 

0.05g ALA/kg diet provided to the mother during pregnancy and lactation).  Similarly, Burdge et 

al. (2008) reported increased hepatic Δ5-desaturase mRNA (no difference in Δ6-desaturase) in 

female rat liver after manipulation of protein and folic acid supply during pregnancy.  Childs et 

al. (2010) report no sex differences in hepatic Δ5- or Δ6-desaturase mRNA while varying dietary 

fat, ALA and LA levels.  These discrepancies may involve differences in diet, as increased 

PUFA content of the diet has been shown to decrease Δ6-desaturase expression (Tang et al. 

2003) and may limit the ability to detect a sex difference.  Differences in the age of rats may alter 

sex differences in Δ6-desaturase and DHA, if the animals have not fully reached sexual maturity 

[typically 6.5 weeks (Lau et al. 1996)].  Older age (>9 months) is also associated with significant 

decreases in Δ6-desaturase activity in mice (Bourre et al. 1992) and rats (Bourre et al. 1990).  It 

is also possible that differences in methodology of mRNA measurements such as different 

housekeeping genes or quantification techniques may contribute to inconsistent results. 
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The mechanism underlying the increased Δ6-desaturase expression in the present study 

may involve the higher expression of SREBP1c observed in this study and others (Ameen et al. 

2004).  The overexpression of SREBP1c in isolated rat primary hepatocytes has been shown to 

increase the mRNA for elongase 2 and Δ5- and Δ6-desaturase, with no difference in elongase 5, 

similar to the expression pattern observed in females relative to males in the present study (Wang 

et al. 2006).  No differences in SREBP1c protein were observed, possibly because only the 

endoplasmic reticular peptide was measured.  Higher nuclear SREBP1c resulting from higher 

SCAP expression and/or activity may increase Δ6-desaturase expression.  Hepatic SCAP mRNA 

is elevated in lactating relative to virgin rats (Athippozhy et al. 2011), suggesting that ovarian 

hormones may influence SCAP expression.  Conversely, the lower PPARα in female liver 

observed in this study and others (Ciana et al. 2007; Extier et al. 2010) suggests that this 

transcription factor does not contribute to the higher Δ6-desaturase expression in female rats.  

We also observed no sex differences in TAG DHA composition in any tissue or blood 

fraction investigated, despite higher total lipid DHA in liver, heart, and plasma in females 

compared with males, similar to previous studies (Burdge et al. 2008; Slater-Jefferies et al. 

2010).  DHA is a minor component of TAG (Christie 2003; Wood et al. 1969) due to poor 

incorporation (Lemaitre-Delaunay et al. 1999), suggesting that the increased DHA in female 

tissues is not sufficient to elicit an increase in TAG DHA content.   

The higher DHA content observed in female hearts as compared with male hearts is likely 

due to higher uptake and incorporation rather than increased cardiac synthesis, as no significant 

differences were found in the cardiac expression of DHA producing enzymes.  The sex 

differences in most heart total lipid HUFA are similar to those in plasma (higher DHA, lower 
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22:5n-3, higher 22:5n-6), suggesting that these sex differences are influenced by plasma fatty 

acid composition.   

The sex difference in Δ6-desaturase was found in liver, but not in heart or brain, suggesting 

a mechanism present only in liver that mediates sex differences in DHA biosynthesis.  Higher 

expression of ERα found in female relative to male liver may mediate this liver-specific effect, 

as ERα expression was the same between sexes in heart and brain.  This would likely result in 

the total estrogen “signal” to be significantly higher in female as compared to male liver, as both 

plasma 17β-estradiol and liver ERα were higher.  

No significant difference in DHA levels were observed in the brain.  This finding is 

consistent with previous work showing a lack of sex difference in cerebral cortex PL DHA levels 

(Extier et al. 2010).  One study showed higher prefrontal cortex total lipid DHA levels in males 

(McNamara et al. 2009), suggesting that sex differences in brain DHA content are specific to the 

brain area investigated.  Brain DHA levels are quite stable throughout the lifetime of rats, as 

DHA-free artificial rearing (Lim et al. 2005a; Ward et al. 1996), and gestational (Greiner et al. 

2003) or multi-generational dietary DHA deficiency (Bourre et al. 1984) is required to reduce rat 

brain DHA stores due to maternal-pup DHA transfer through lactation.  Increases in DHA levels 

in female rat plasma PC relative to males develops after only 8 weeks of age (Extier et al. 2010), 

suggesting that the sex difference in plasma DHA may be insufficient and/or occurs too late in 

the animal’s development to elicit a significant difference in brain DHA.   

CONCLUSION 

A greater capacity for hepatic biosynthesis of DHA from ALA is suggested by the higher 

Δ6-desaturase expression observed in female livers relative to males.  The mechanism 
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underlying this increased expression is not clear, but may involve differences in transcription 

factor expression that are isolated to the liver.  Identification of the effects of endocrine factors 

such as sex hormones and cellular signaling mechanisms and transcription factors involved in the 

sex difference in Δ6-desaturase expression is required. 
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Figure 5.1: mRNA content of enzymes and 

transcription factors involved in DHA 

biosynthesis in (A) liver, (B) heart, and (C) 

brain of male and female rats (n = 6 for 

each sex). Significance sex differences are 

denoted by *: p < 0.05, †: p < 0.01, ‡: p < 

0.005. D6D: Δ6-desaturase, D5D: Δ5-

desaturase, Elovl2: elongase 2, Elovl5: 

elongase 5, AOX: acyl-CoA oxidase, 

PPARα: peroxisome proliferator activated 

receptor α, SREBP1: sterol response 

element binding protein 1, ERα: estrogen 

receptor α.  
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Figure 5.2: (A) densitometric 

analysis of protein content and 

(B) representative 

immunoblots of enzymes and 

transcription factors involved 

in DHA synthesis in liver of 

male and female rats (n = 6 for 

each sex). Data is 

representative of three separate 

blots. Significance sex 

differences are denoted by *: p 

< 0.05, ‡: p < 0.005. PPARα: 

peroxisome proliferator 

activated receptor α, SREBP1: 

sterol response element binding 

protein 1.  
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Figure 5.3: Concentrations of docosahexaenoic acid and n-6 docosapentaenoic acid in hepatic 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. *: 

significantly different from males by independent samples T-test. DHA: docosahexaenoic acid, 

DPAn-6: n-6 docosapentaenoic acid, PC: phosphatidylcholine, PE: phosphatidylethanolamine, 

PS: phosphatidylserine, PI: phosphatidylinositol. 
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Table 5.1: Fatty acid concentration of total lipid extract from liver, heart, and brain of male and female rats 

Data is mean ± SD from three determinations of fatty acid concentrations (n = 6 for each sex). *: significantly different from females 

(p < 0.05). SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids.  
1
Concentration of 

individual SFA and MUFA can be found in (Marks et al. 2013b). 

  

 

Liver Heart Brain 

 

µg fatty acid/g organ 

Fatty Acid Females Males Females Males Females Males 

SFA
1
 11230 ± 1195 10816 ± 681 8157 ± 224 7495 ± 270* 18111 ± 622 18553 ± 736 

MUFA
1
 4546 ± 650 5204 ± 423 5354 ± 905 4771 ± 844 13914 ± 826 14269 ± 2065 

18:2n-6 3947 ± 853 4800 ± 637 3088 ± 458 3304 ± 370 774 ± 66 862 ± 78 

18:3n-6 91 ± 27 57 ± 19* 30 ± 5 34 ± 2 18 ± 2 18 ± 4 

20:2n-6 64 ± 8 143 ± 30* 47 ± 3 61 ± 5* 58 ± 14 68 ± 21 

20:3n-6 84 ± 16 87 ± 18 49 ± 5 46 ± 4 135 ± 4 129 ± 19 

20:4n-6 6013 ± 747 6699 ± 274 3955 ± 106 3726 ± 112* 3868 ± 160 3949 ± 164 

22:4n-6 103 ± 12 93 ± 11 184 ± 12 151 ± 7* 1204 ± 48 1208 ± 77 

22:5n-6 51 ± 13 20 ± 8* 162 ± 18 102 ± 16* 170 ± 15 188 ± 24 

N-6 PUFA 10356 ± 1370 11902 ± 822* 7515 ± 560 7424 ± 369 6183 ± 138 6425 ± 212* 

18:3n-3 160 ± 57 151 ± 26 104 ± 34 82 ± 13 67 ± 5 71 ± 6 

20:5n-3 115 ± 34 107 ± 30 22 ± 4 25 ± 4 7 ± 1 7 ± 3 

22:5n-3 263 ± 32 316 ± 20* 478 ± 51 560 ± 46* 55 ± 3 58 ± 3 

22:6n-3 2221 ± 357 1455 ± 246* 2678 ± 210 2151 ± 399* 4949 ± 150 4723 ± 220 

N-3 PUFA 2763 ± 398 2043 ± 257* 3451 ± 351 3085 ± 520 5079 ± 148 4859 ± 217 

Total PUFA 13119 ± 1718 13944 ± 851 10966 ± 620 10509 ± 525 11588 ± 792 11284 ± 326 

Total Fatty Acids 30121 ± 3400 29807 ± 3306 25892 ± 1425 24250 ± 1557 46267 ± 1263 46663 ± 3311 
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Table 5.2: Fatty acid composition of phospholipids from liver, heart, and brain of male and female rats 

 

Liver Heart Brain 

 

µg fatty acid/g organ 

Fatty Acid Females Males Females Males Females Males 

Total SFA
1
 8934 ± 2038 7710 ± 533 4903 ± 440 4389 ± 346* 14587 ± 1497 14324 ± 1354 

Total MUFA
1
 766 ± 159 1177 ± 100* 598 ± 82 636 ± 61 7661 ± 1328 7700 ± 1601 

18:2n-6 1950 ± 511 2501 ± 349 1126 ± 215 1419 ± 177* 198 ± 26 230 ± 31 

18:3n-6 43 ± 13 24 ± 6* 21 ± 4 21 ± 3 1 ± 1 1 ± 1 

20:2n-6 40 ± 10 100 ± 20* 20 ± 3 28 ± 5* 37 ± 8 51 ± 13 

20:3n-6 62 ± 22 56 ± 10 24 ± 3 22 ± 3 95 ± 18 88 ± 15 

20:4n-6 5094 ± 1126 5086 ± 323 2276 ± 316 2200 ± 280 3001 ± 478 2974 ± 440 

22:4n-6 69 ± 13 51 ± 5* 106 ± 4 89 ± 14* 1012 ± 150 979 ± 116 

22:5n-6 2 ± 1 2 ± 1 2 ± 1 1 ± 1 4 ± 3 4 ± 3 

Total n-6 PUFA 7262 ± 1664 7823 ± 643 3574 ± 536 3781 ± 441 4353 ± 652 4333 ± 528 

18:3n-3 24 ± 9 22 ± 3 14 ± 3 17 ± 3 1 ± 1 1 ± 1 

20:5n-3 50 ± 22 35 ± 7 10 ± 1 11 ± 2 3 ± 1 1 ± 1 

22:5n-3 194 ± 35 212 ± 18 282 ± 19 334 ± 44* 38 ± 8 46 ± 10 

22:6n-3 1825 ± 293 1011 ± 125* 1625 ± 268 1342 ± 242 3786 ± 412 3543 ± 428 

Total n-3 PUFA 2096 ± 346 1284 ± 133* 1932 ± 270 1483 ± 610 3831 ± 422 3592 ± 437 

Total PUFA 9358 ± 1991 9106 ± 617 5506 ± 782 5264 ± 854 8184 ± 1012 7926 ± 937 

Total Fatty 

Acids 19391 ± 4242 18405 ± 1183 11331 ± 1336 10884 ± 1211 31523 ± 3882 31078 ± 2928 

Data is mean ± SD from three determinations of fatty acid concentration (n = 6 for each sex). *: significantly different from females (p 

< 0.05). SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids.  
1
Concentration of 

individual SFA and MUFA can be found in (Marks et al. 2013b). 
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Table 5.3: Fatty acid concentration of total lipids, phospholipids, and triacylglycerol from plasma of male and female rats 

 

Total Lipids Phospholipids Triacylglycerols 

 

µg fatty acid/ml plasma 

Fatty Acid Females Males Females Males Females Males 

Total SFA
1
 507 ± 46 462 ± 25 211 ± 72 184 ± 11 194 ± 63 198 ± 89 

Total MUFA
1
 85 ± 14 112 ± 7* 13 ± 3 18 ± 3* 56 ± 22 59 ± 17 

18:2n-6 202 ± 26 284 ± 27* 30 ± 6 45 ± 4* 79 ± 39 106 ± 39 

18:3n-6 6 ± 2 3 ± 1* 0.2 ± 0.1 0.2 ± 0.1 5 ± 2 4 ± 1 

20:2n-6 2 ± 0.4 4 ± 1* 0.4 ± 0.1 1 ± 0.2* 2 ± 1 2 ± 1 

20:3n-6 5 ± 1 4 ± 1 1 ± 0.3 1 ± 0.1 4 ± 0.5 4 ± 1 

20:4n-6 536 ± 82 492 ± 35 65 ± 14 72 ± 7 36 ± 11 32 ± 11 

22:4n-6 4 ± 1 4 ± 1 1 ± 0.3 1 ± 0.1 3 ± 1 3 ± 1 

22:5n-6 3 ± 0.3 2 ± 0.2* 0.2 ± 0.1 0.2 ± 0.1 1 ± 0.4 1 ± 0.4 

Total n-6 PUFA 757 ± 106 795 ± 24 98 ± 21 120 ± 10* 131 ± 53 154 ± 47 

18:3n-3 4 ± 2 7 ± 2* 0.3 ± 0.1 0.5 ± 0.5 5 ± 1 6 ± 2 

20:5n-3 9 ± 2 8 ± 1 0.4 ± 0.1 0.4 ± 0.1 5 ± 2 6 ± 2 

22:5n-3 7 ± 1 9 ± 1* 2 ± 0.5 2 ± 0.3 4 ± 2 3 ± 1 

22:6n-3 58 ± 11 33 ± 6* 11 ± 4 8 ± 1* 6 ± 2 6 ± 2 

Total n-3 PUFA 80 ± 13 58 ± 4* 14 ± 4 11 ± 2 20 ± 6 21 ± 4 

Total PUFA 837 ± 118 852 ± 25 112 ± 25 130 ± 11 151 ± 57 175 ± 49 

Total Fatty Acids 1429 ± 173 1427 ± 53 335 ± 95 332 ± 18 401 ± 133 432 ± 133 

Data is mean ± SD from three determinations of fatty acid concentration (n = 6 for each sex). *: significantly different from females (p 

< 0.05). SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids.  
1
Concentration of 

individual SFA and MUFA can be found in (Marks et al. 2013b). 
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Table 5.4: Fatty acid concentration of erythrocyte total lipids in male and female rats 

Fatty Acid Females Males 

Total SFA
1
 1323 ± 141 1231 ± 148 

Total MUFA
1
 221 ± 24 251 ± 17 

18:2n-6 277 ± 36 405 ± 86* 

18:3n-6 4 ± 3 3 ± 1 

20:2n-6 9 ± 2 12 ± 2 

20:3n-6 10 ± 1 9 ± 1 

20:4n-6 785 ± 109 790 ± 118 

22:4n-6 40 ± 9 36 ± 8 

22:5n-6 15 ± 3 12 ± 2 

Total n-6 PUFA 1141 ± 132 1269 ± 182 

18:3n-3 3 ± 1 7 ± 4 

20:5n-3 11 ± 3 11 ± 2 

22:5n-3 40 ± 10 41 ± 6 

22:6n-3 87 ± 14 63 ± 11* 

Total n-3 PUFA 141 ± 8 122 ± 10* 

Total PUFA 1283 ± 139 1391 ± 189 

Total Fatty Acids 2978 ± 166 3001 ± 159 

Data is mean ± SD from three determinations of fatty acid concentration (n = 6 for each sex). *: 

significantly different from females (p < 0.05). SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids.  
1
Concentration of individual 

SFA and MUFA can be found in (Marks et al. 2013b). 
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CHAPTER 6 

HEPATIC Δ6-DESATURASE AND DHA IS INCREASED LATE IN PREGNANCY IN 

RATS 

INTRODUCTION 

Maternal plasma and erythrocyte DHA is increased during pregnancy (Al et al. 1995; 

Stark et al. 2005a; Stewart et al. 2007), likely as an adaptation to provide the fetus with the DHA 

for neurodevelopment.  However, the mechanism of this increase in maternal DHA has not been 

investigated.  It is likely that increased synthesis-mobilization of DHA is involved, and 

pregnancy may increase the expression of DHA biosynthesis enzymes.  Also, pregnancy is 

associated with significantly increased plasma concentrations of 17β-estradiol, which is 

associated with increased blood DHA levels [reviewed in (Kitson et al. 2010)].   

Previous work investigating the effect of pregnancy on hepatic expression of DHA-

synthesis enzymes has examined mRNA only in virgin rats and rats at day-12 and -20 of 

pregnancy (Childs et al. 2012).  Adaptations occurring in late-stage pregnancy and elovl5 or 

peroxisomal oxidation capacity have not been assessed previously.  Additionally, hepatic DHA 

content and biosynthetic enzyme expression have not been measured in post-partum, lactating 

rats.  The present study examines effects of pregnancy at 15- and 20-days post conception and 7-

days post-partum on DHA concentrations and DHA biosynthetic enzyme expression relative to 

virgin controls in rats. 

METHODS 

Female Sprague Dawley rats were ordered from Harlan (Mississauga, Ontario)  and 

arrived at the University of Waterloo at 6 weeks of age and at 7 weeks of age virgin rats were 

sacrificed after an overnight fast (n = 6) by removal of the heart following isoflurane anaesthesia.  
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Eighteen others were mated with proven breeders and pregnancy was confirmed by appearance 

of a vaginal plug.  Pregnant rats were sacrificed after an overnight fast at 15- (n = 6), 20- (n = 5), 

and 28-days post-conception (n = 6, 7 days post-partum).  Livers were removed, washed in 

saline, and snap frozen in liquid nitrogen.  

Livers were pulverized under liquid nitrogen and lipids were extracted (Folch et al. 1957) 

and total lipid fatty acid composition was determined and the expression of enzymes involved in 

DHA biosynthesis was also determined.  Antibodies used for protein expression analysis were 

Δ6-desaturase (1:1000 in 5% milk-TBST; from Abcam, Cambridge, Massachusetts), Δ5-

desaturase (1:100 in 5% BSA-TBST; from Santa Cruz Biotechnology, Santa Cruz, California), 

elovl2 (1:250 in 5% BSA-TBST; Santa Cruz Biotechnology), elovl5 (1:250 in 5% BSA-TBST; 

Santa Cruz Biotechnology), multifunctional protein-2 (MFP2, 1:200 in 5% milk-TBST; Santa 

Cruz Biotechnology), PPARα, (1:250 in 5% milk-TBST, Santa Cruz Biotechnology), SREBP1c, 

(1:500 in 5% milk-TBST, Santa Cruz Biotechnology) and ERα (1:1000 in 5% milk-TBST, 

abcam). 

Statistical analysis was by one-way ANOVA with Tukey’s post hoc test completed after 

a significant F value, P < 0.05.  

RESULTS 

The expression of Δ6-desaturase was 27% higher after 15 days of pregnancy and 45% 

higher after 20 days as compared with virgin rats. Expression returned to baseline levels on day 

28 post-conception (Figure 6.1). Elovl5 expression was decreased by 30% between post 

conception days 15 and 20, and returned to baseline levels on day 28. No effects of pregnancy 

were observed in protein levels of elovl2, MFP2, or Δ5-desaturase.  No changes in the protein 
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expression were seen in ERα, PPARα, or either nuclear or endoplasmic reticulum SREBP1c 

(Figure 6.2). 

The concentration of DHA and DPAn-6 in liver increased over the course of pregnancy 

and reached a peak at 20 days of pregnancy, despite significant decreases in liver total fatty acid 

concentration at 20 days of pregnancy (Table 6.1).  The lower liver fatty acid concentration was 

due to a decrease in MUFA, SFA, and n-6 PUFA concentrations, but n-3 PUFA concentrations 

increased at 20 days of pregnancy.  At 7 days post-partum, DHA levels and total fatty acid 

concentration returned to baseline, but DPAn-6 remained significantly increased.  The higher 

DHA and DPAn-6 corresponded to a decrease in AA.  The concentrations and relative 

percentages of both LA and ALA were lower at 20 days of pregnancy and at post-partum relative 

to virgin rats. DPAn-3 and 22:4n-6 were increased at 20 days of pregnancy, and DPAn-3 

remained elevated in post-partum.  The n-6/n-3 ratio was significantly lower, and the % of 

HUFA as n-3 HUFA was significantly higher at 20 days of pregnancy relative to virgin controls. 

DISCUSSION 

This study demonstrates that hepatic Δ6-desaturase expression is increased late in 

pregnancy, and that this increased expression corresponds to higher levels of DHA in hepatic 

total lipids.  This result suggests that DHA synthesis is increased in pregnancy as a result of 

increased Δ6-desaturase expression, which may partly underlie the increased plasma DHA 

concentration observed in pregnancy in humans (Otto et al. 2001; Stark et al. 2005a) and rats 

(Childs et al. 2012).  

The increase in hepatic DHA at 20 but not 15 days of pregnancy is consistent with 

previous findings showing increased hepatic DHA at 20 days, but not 12 days in rats (Childs et 

al. 2012).  This has been shown to correspond with increases in plasma DHA at 20 days but not 
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12 days (Childs et al. 2012), which is contrary to findings in humans of increased DHA at 6 

weeks or approximately only 15% of the total gestation, indicating a difference between rats and 

humans in plasma DHA response to pregnancy.  Our finding of a gradual increase in Δ6-

desaturase protein over the course of pregnancy that peaks at 20 days is contrary to previous 

work showing a plateau of Δ6-desaturase mRNA maintained between 12- and 20-days gestation 

(Childs et al. 2012), however the magnitude of the increase in Δ6-desaturase expression is 

comparable.  The discrepancy between a plateau and a continual increase of Δ6-desaturase 

expression during pregnancy may reflect a possible latency between mRNA expression and the 

protein response as measured in the present study. 

In addition to DHA, the levels of other 22-carbon HUFA such as DPAn-3, DPAn-6 and 

22:4n-6 were also increased in liver lipids during pregnancy.  This increase in 22-carbon HUFA 

occurred at the expense of AA, which is consistent with previous findings in humans (Stark et al. 

2005a) and rats (Burdge et al. 1994; Childs et al. 2012).  The increase in 22-carbon HUFA may 

reflect increased activity of Δ6-desaturase, as the time-course of the accretion of these fatty acids 

in liver lipids roughly corresponds to the time-course of increasing hepatic Δ6-desaturase 

expression.  It is also possible that there is selective incorporation of longer-chain HUFA over 

AA through the selective action of phospholipases or acyltransferases involved in lipid synthesis 

or remodelling.  Increased percentage of total HUFA as n-3 HUFA supports selective 

incorporation of n-3 HUFA. 

Increases in circulating sex hormones may underlie the increase in Δ6-desaturase and 

DHA in pregnancy.  17β-estradiol, progesterone, and testosterone all increase during pregnancy, 

and an approximate 10-fold increase in plasma 17β-estradiol concentration was observed in the 

present study at 20 days which returned to baseline after birth (Chalil 2013).  Testosterone 
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treatment of female-to-male transsexuals decreases serum cholesteryl ester DHA levels, 

suggesting that testosterone does not mediate the increased DHA seen in pregnancy (Giltay et al. 

2004b).  On the other hand, 17β-estradiol is associated with increased DHA [reviewed in (Kitson 

et al. 2010)], and progesterone has been shown to correlate with plasma PC DHA in female rats 

(Childs et al. 2008).  In pregnant rats, significant positive correlations were seen between serum 

progesterone and both hepatic Δ6-desaturase mRNA and DPAn-6, but not DHA (Childs et al. 

2012), suggesting a role of progesterone in HUFA metabolism in pregnancy. 

The increase in hepatic DHA and DPAn-6 at day 20 of pregnancy occurred despite 

significant decreases in the concentration of their 18-carbon precursors, ALA and LA. Previous 

work suggests that extra-hepatic sources of ALA and LA are utilized to provide substrates for 

HUFA synthesis.  For example, ALA and LA levels in subcutaneous adipose tissue are lowest 

and HUFA concentration highest at 20-days of pregnancy, suggesting selective mobilization of 

18-carbon PUFA (Childs et al. 2012).  Accordingly, plasma non-esterified fatty acid 

concentration doubles during the last half of pregnancy in the rat (Gilbert et al. 1981) and 

humans (Meneses et al. 2009), corresponding to an increase in the proportion of both LA and 

ALA relative to SFA and MUFA (Meneses et al. 2009).  

Maternal hepatic DHA levels and Δ6-desaturase returned to baseline following birth, 

which also occurs in erythrocytes and plasma in humans (Al et al. 1995; Stark et al. 2005a), 

suggesting that no alterations in DHA biosynthesis occur to provide DHA for lactation.  

However, alternative adaptations occur to provide pups with adequate milk DHA for 

development.  These include increased adipose tissue lipolysis (Naismith et al. 1982) resulting in 

higher plasma concentration of non-esterified fatty acids (Torres et al. 2004), and a 70-fold 

increase in mammary Δ6-desaturase expression (Rodriguez-Cruz et al. 2011).  Also, 
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approximately 35% of dietary 18-carbon PUFA are taken up by mammary gland tissue in the 

lactating rat to provide substrates for HUFA synthesis and to provide the pups with 18-carbon 

PUFA (Rodriguez-Cruz et al. 2006).  It is not clear why mammary Δ6-desaturase is increased 

while hepatic Δ6-desaturase returns to baseline during lactation, but it is possible that selective 

DHA transfer is not as effective in mammary tissue as compared with placenta, necessitating 

increased in situ DHA synthesis in mammary tissue.  

The decrease in hepatic fatty acids that occurred at 20 days of pregnancy is likely due to a 

17β-estradiol mediated increase in the mobilization of hepatic fatty acids and lipids for fetal 

delivery, rather than increased hepatic fat oxidation.  17β-estradiol supplementation increases 

hepatic secretion of very low density lipoprotein via increased hepatic expression of microsomal 

transfer protein in rats (Barsalani et al. 2010).  Estradiol treatment of chicken hepatoma cells 

(Hermann et al. 1997) and primary chicken hepatocytes (Tarlow et al. 1977) increase 

apolipoprotein CII expression and secretion, and VLDL secretion and synthesis, respectively.  

There are several factors that could affect DHA synthesis in pregnancy in addition to 

changes in sex hormone concentration.  Food intake increases 60% during pregnancy, and up to 

250% during lactation (Cripps et al. 1975; Rodriguez-Cruz et al. 2006), due to leptin resistance 

[reviewed in (Ladyman 2008)], which likely provides more substrates for DHA synthesis.  

Insulin resistance, which occurs during late pregnancy in humans (Endo et al. 2006) and rats 

(Cacho et al. 2008), may reduce the induction of Δ6-desaturase expression by insulin (Wang et 

al. 2006), but increases plasma lipid concentrations by increasing hepatic lipid production and 

secretion and decreasing the uptake of fatty acids by peripheral tissues [reviewed in (Bell 1995; 

Kuipers et al. 2011)].  However, the selective accretion of 22-carbon PUFA in blood lipids in 
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pregnancy (Stark et al. 2005a) suggests that synthesis of these fatty acids is specifically 

increased.  

CONCLUSION 

The hepatic expression of Δ6-desaturase is increased late in pregnancy in the rat.  This 

may explain the increased hepatic DHA content observed in this study and others,  as well as the 

increased blood DHA observed previously.  The underlying mechanism mediating the effect of 

pregnancy on Δ6-desaturase expression is unclear, but previous findings of increased DHA 

associated with 17β-estradiol (Kitson et al. 2010) and progesterone (Childs et al. 2008) suggests 

that the increase in these hormones during pregnancy may be involved. 
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Figure 6.1: Protein expression of DHA biosynthesis enzymes in liver of virgin, pregnant, and 

post-partum rats.  Bars with a different letter are significantly different by Tukey’s post-hoc test 

following significant F-value by one-way ANOVA.  
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Figure 6.2: Expression of transcription factors and estrogen receptor α in livers of virgin, 

pregnant, and post-partum rats.  Columns with different letter are significantly different by 

Tukey’s post-hoc test following significant F value by one-way ANOVA.  SREBP: sterol-

response element binding protein, ERα: estrogen receptor α, PPARα: peroxisome proliferator 

activated receptor α.  
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Table 6.1: Fatty acid concentration of hepatic total lipids in virgin, pregnant, and post-partum 

rats 

  Pregnant Post-partum 

 
Virgin 15 days 20 days 7 days 

 μg fatty acid / g liver 

C 16:0 16077 ± 2679 15120 ± 1535 15555 ± 2952 13215 ± 1258 

C 18:0 19422 ± 2627
a
 20921 ± 1674

a
 13535 ± 2817

b
 18806 ± 1202

a
 

SFA 37210 ± 5902 37457 ± 3072 30076 ± 5904 33248 ± 2430 

C 16:1 524 ± 143 454 ± 226 310 ± 128 448 ± 91 

C 18:1n-7 1560 ± 256
a
 1369 ± 103

a
 996 ± 226

b
 1415 ± 134

a
 

C 18:1n-9 6475 ± 1560 5826 ± 1644 3836 ± 1249 6137 ± 1234 

MUFA 8907 ± 1889
a
 7920 ± 1912

ab
 5339 ± 1610

b
 8252 ± 1386

ab
 

C 18:2n-6 18555 ± 3953
a
 14616 ± 3489

ab
 9402 ± 2289

b
 12580 ± 1215

b
 

C 18:3n-6 316 ± 58
ab

 336 ± 111
ab

 160 ± 98
a
 445 ± 134

b
 

C 20:2n-6 217 ± 39 205 ± 16 198 ± 50 236 ± 12 

C 20:3n-6 324 ± 53
a
 314 ± 40

a
 157 ± 38

b
 563 ± 107

c
 

C 20:4n-6 19343 ± 2543
a
 18893 ± 1670

a
 12530 ± 2686

b
 16036 ± 855

ab
 

C 22:4n-6 385 ± 76
a
 350 ± 17

a
 671 ± 116

b
 363 ± 56

a
 

C 22:5n-6 235 ± 56
a
 280 ± 125

a
 2020 ± 550

b
 845 ± 225

c
 

N-6 PUFA 36172 ± 11246 34949 ± 4936 25149 ± 5284 31085 ± 2049 

C 18:3n-3 641 ± 199
a
 415 ± 205

ab
 279 ± 87

b
 213 ± 42

b
 

C 20:5n-3 355 ± 111 347 ± 171 161 ± 67 291 ± 65 

C 22:5n-3 734 ± 104
a
 734 ± 58

a
 881 ± 210

ab
 1114 ± 153

b
 

C 22:6n-3 5650 ± 739
a
 7140 ± 955

ab
 8591 ± 1570

b
 5777 ± 484

a
 

N-3 PUFA 7400 ± 1118
a
 8656 ± 993

ab
 9931 ± 1826

b
 7412 ± 639

a
 

PUFA 43572 ± 12106 43605 ± 5389 35080 ± 6864 38496 ± 2508 

HUFA 23823 ± 8836 28008 ± 2415 25031 ± 4961 25006 ± 1581 

N-6/N-3 4.8 ± 1.2
a
 4.1 ± 0.6

a
 2.5 ± 0.3

b
 4.2 ± 0.3

a
 

HUFA Score 25.2 ± 0.3
a
 29.4 ± 2.1

b
 38.7 ± 2.5

c
 28.8 ± 1.1

b
 

Total 95804 ± 15991
a
 92385 ± 9553

ab
 72337 ± 14456

b
 82141 ± 5870

ab
 

Values are mean ± SD.  SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: 

polyunsaturated fatty acids, HUFA: highly unsaturated fatty acids, HUFA Score: percentage of 

total HUFA as n-3 HUFA. Values with a different letter are significantly different by Tukey’s 

post-hoc test following significant F-value by one-way ANOVA. 
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CHAPTER 7 

HEPATIC Δ6-DESAURASE EXPRESSION AND DHA ARE INCREASED BY 

SUPPLEMENTATION OF OVARIECTOMIZED RATS WITH 17β-ESTRADIOL BUT 

NOT PROGESTERONE
1
 

INTRODUCTION 

Observations in transsexuals, postmenopausal women receiving hormone replacement 

therapy, and women taking oral contraceptive pills indicate a positive association between 17β-

estradiol and blood DHA levels [reviewed in (Kitson et al. 2010)] suggesting hormonal 

regulation of the expression of DHA biosynthesis enzymes.  In addition to 17β-estradiol, the 

natural changes in progesterone, such as a 6-10 fold increase during pregnancy in rats (Childs et 

al. 2012) and humans (O'Leary et al. 1991), and a 2-fold decrease that occurs during menopause 

(Burger et al. 2002; Eldrup et al. 1987; National Institutes of Health 2011), are also concurrent 

with changes in blood DHA levels (Stark et al. 2005a; Tworek et al. 2000).  The higher DHA 

levels in females relative to males, and in pregnant relative to virgin rats (Childs et al. 2012) or 

post-partum women (Stark et al. 2005a) could also be related to circulating17β-estradiol and 

progesterone.  Previous work examining the effect of ovarian hormone supplementation in 

ovariectomized rats is limited.  Characterization of enzyme expression was done at the mRNA 

level only and did not include elovl enzymes, SREBP1c, or ERα, rats were supplemented with 

only  17β-estradiol, and fatty acids levels were determined qualitatively (relative fatty acid 

percentages), but not quantitatively (concentrations in tissues) in only hepatic phospholipids 
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(Alessandri et al. 2011). The mRNA expression of DHA biosynthesis enzymes in neuroblastoma 

cells treated with 17β-estradiol and progesterone has been examined (Extier et al. 2009), 

however the results of that study are limited because neuronal cells produce very little DHA 

[reviewed in (Rapoport et al. 2009)] and do not significantly affect circulating DHA levels.  

Therefore, the purpose of the present study was to examine the effects of 17β-estradiol and 

progesterone supplementation on hepatic expression of DHA biosynthesis enzymes at the mRNA 

and protein level, and hepatic and plasma DHA levels in ovariectomized rats in contrast with 

sham-operated controls 

METHODS 

Sprague-Dawley rats were ovariectomized or sham-operated at 8 weeks of age by Harlan 

technicians.  Animals were shipped to and housed in the Animal housing facility in the 

Department of Kinesiology, and ovariectomized rats were implanted with 21-day constant-

release hormone pellets at 10 weeks of age (Innovative Research of America, Sarasota, FL).  

Pellets were placed in the nape of the neck following isoflurane anaesthesia and provided 0.5 mg 

17β-estradiol (E-121 pellet, OVX+E, n = 6), 25 mg progesterone (P-131 pellet, OVX+P, n = 6), 

0.5 mg 17β-estradiol plus 15 mg progesterone (HH-115 pellet, OVX+PE, n = 7) or neither 

(OVX, n = 6).  Animals were weighed at baseline and every 7 days during treatment.  After 14 

days of supplementation, rats were anaesthetized after overnight fast by intraperitoneal sodium 

pentobarbital injection (65 mg/kg) and sacrificed by removal of the heart following 

cardiocentesis with a syringe containing EDTA.  Liver was collected and quickly washed in 

saline (0.9% w/v), weighed, and snap-frozen in liquid nitrogen.  Liver was pulverized using a 

mortar and pestle under liquid nitrogen.  Plasma was isolated from collected blood by 

centrifugation at 1500g. All samples were stored at -80°C until analysis. 
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 Antibodies used for protein expression analysis were Δ6-desaturase (1:1000 in 5% milk-

TBST; from Abcam), Δ5-desaturase (1:100 in 5% BSA-TBST; from Santa Cruz Biotechnology), 

elovl2 (1:250 in 5% BSA-TBST; Santa Cruz Biotechnology), elovl5 (1:250 in 5% BSA-TBST; 

Santa Cruz Biotechnology), MFP-2 (1:200 in 5% milk-TBST; Santa Cruz Biotechnology), 

PPARα, (1:250 in 5% milk-TBST, Santa Cruz Biotechnology), SREBP1c, (1:500 in 5% milk-

TBST, Santa Cruz Biotechnology) and ERα (1:1000 in 5% milk-TBST, abcam).  The expression 

levels of proteins of interest were then quantified relative to sham-operated rats. 

Δ6-desaturase mRNA was determined using primers 5’-3’ 

TCAAAACCAACCACCTGTTCTTC, 3’-5’ ACCAGGCGATGCTTTCCA on a BioRad CFX 

Real-Time PCR detection system (Biorad) with PerfeCta SYBR Green FastMix (Quanta 

Biosciences, Gaithersberg, Maryland), with 18s as housekeeping gene (5’-3’ 

GATCCATTGGAGGGCAAGTCT, 3’-5’ AACTGCAGCAACTTTAATATACGCTATT). 

 Plasma concentrations of 17β-estradiol and progesterone were determined by enzyme-

linked immunosorbent assay following manufacturer’s instructions (Cayman Chemical, Ann 

Arbor, MI).  Briefly, hormones were extracted from plasma using methylene chloride to reduce 

background noise, and were analyzed in duplicate on 96-well plates and quantified relative to a 

standard curve.  

 A high-density microarray was performed on liver RNA samples from sham-operated 

controls and ovariectomized (unsupplemented) rats (n = 4 each).  RNA was extracted as 

described in Chapter 4, except that the integrity of the RNA extract was examined with an 

Agilent BioAnalyzer (Agilent, Mississauga, ON), and sense cDNA was synthesized from RNA 

using the Ambion WT expression kit (Life Sciences, Burlington, Ontario).  cDNA was 

fragmented and end-labeled with biotin using GeneChip WT Terminal Labeling and Controls Kit 
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(Life Sciences), and cDNA was hybridized to the Affymetrix Rat Gene 1.1 ST Array Strip, 

which comprises > 27,000 unique 25-mer rat sequences and transcripts, and strips were washed, 

stained and imaged on an Affymetrix Gene Atlas platform (Affymetrix, Fremont, CA).  

Microarray data was corrected for background noise, quantile normalized using Robust Multi-

array Averaging, and summarized by median polish (JMP Genomics Version 5,SAS, Cary, NC, 

USA).  A false discovery rate of 5% (corresponding to a p-value of 0.00027) was used to account 

for the high type-1 error rate associated with multiple testing.  If genes of interest were not 

significantly affected by treatment at FDR < 0.05, they were interpreted with p < 0.05 suggesting 

a significant effect of treatment.  

 Fatty acid concentrations of hepatic total lipids and PL and TAG and PC, PE, PS, and PI 

were determined following TLC separation (Chen et al. 2011) of isolated lipid extracts (Folch et 

al (1957).  Quantitation of PI and PS fatty acid composition was done by adding 22:3n-3 internal 

standard after TLC.  Neutral lipid TLC separation of plasma lipid extracts (Christie 2003) was 

performed in order to quantitate the fatty acid compositions of PL, TAG, NEFA, and CE 

fractions. 

RESULTS 

Enzyme and transcription factor expression 

 Δ6-desaturase was 31% higher in OVX relative to SHAM rats, and was further increased 

by 40% and 43% in OVX rats with 17β-estradiol and 17β-estradiol+progesterone treatment, 

respectively (Figure 7.1).  Progesterone treatment alone had no effect on Δ6-desaturase 

expression, which remained higher than SHAM rats and similar to untreated OVX rats.  

Significantly lower enzyme content of elovl5 was observed in OVX+P rats relative to SHAM, 

and the enzyme content of MFP-2 was lower in OVX+E compared with OVX+PE rats.  No 
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significant effects of treatments were observed in the enzyme expression of Δ-5 desaturase or 

elovl2.  The mRNA for Δ6-desaturase was higher in OVX+PE relative to SHAM and OVX+P, 

while OVX+E and OVX were intermediate (Figure 7.2).  Ovariectomy and hormone treatment 

did not affect protein expression of PPARα, ERα, and endoplasmic reticulum and nuclear 

SREBP1c (Figure 7.3). 

Transcriptome following ovariectomy  

 No genes of interest were significantly affected by ovariectomy by FDR < 0.05.  A priori 

analysis of genes of interest revealed that Δ6-desaturase mRNA was 12% higher in OVX vs. 

SHAM animals (p = 0.056). No significant differences in gene expression of D5D, elovl2, 

elovl5, or MFP-2 were observed between SHAM and OVX animals (Table 7.1). 

Polyunsaturated fatty acid concentrations  

 In liver phospholipids, the concentrations of DHA, DPAn-3, and EPA were significantly 

higher in OVX+E and OVX+PE compared with OVX, and OVX+P (Table 7.2).  The relative 

percentages of these n-3 HUFA were also higher in OVX+E and OVX+PE (Appendix 2 table 

2), despite OVX+PE having slightly higher total phospholipid fatty acids compared to OVX 

(Fig. 2).  In SHAM animals, the concentration of EPA and DHA was lower than OVX+PE but 

not OVX+E, while the concentration of DPAn-3 was lower than both groups receiving 17β-

estradiol supplementation.  Ovariectomy did not result in significant changes in the concentration 

of any n-3 HUFA in hepatic phospholipids relative to SHAM.  With regard to n-6 HUFA in liver 

phospholipids, concentrations of DPAn-6 were significantly increased in OVX+E and OVX+PE 

relative to OVX OVX+P and SHAM (Table 7.2).  No significant effects of hormonal treatment 

on hepatic phospholipid 20:4n-6 were observed among OVX, OVX+E, OVX+P, and OVX+PE 

rats, however SHAM rats had significantly higher 20:4n-6  relative to OVX+E.  The percentage 
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of total HUFA as n-3 HUFA in hepatic phospholipids was significantly higher in OVX+E and 

OVX+PE relative to all other groups (Table 7.2).  The higher levels of DHA in hepatic 

phospholipids of the OVX+E and OVX+PE were reflected across the major phospholipid 

classes, although there were no significant differences across groups in PE DHA (Figure 7.4, 

full fatty acid composition in Appendix 2, Tables 2-5). The increased DHA was most 

pronounced in PC and was significantly higher in OVX+E and OVX+PE as compared with all 

other groups.  In PS and PI, DHA concentration was the highest in OVX+E and OVX+PE but 

there were statistical similarities with some of the other groups, particularly with the OVX+PE 

group.  The OVX rats had significantly higher concentrations of fatty acids in liver TAG that 

was relatively consistent across subclasses of fatty acids (Table 7.3).  

In plasma phospholipids, concentrations of DHA and DPAn-3 were higher in OVX+E 

and OVX+PE relative to OVX, OVX+P, and SHAM, while no treatment effect was observed in 

EPA (Table 7.4).  In n-6 HUFA, concentrations of 20:4n-6 and DPAn-6 were significantly 

increased in OVX+E and OVX+PE relative to OVX, OVX+P, and SHAM (Table 7.4).  Despite 

increases in both n-6 and n-3 HUFA, the percentage of n-3 HUFA in total HUFA was 

significantly higher in OVX+E and OVX+PE compared with SHAM, OVX, and OVX+P (Table 

7.4).  

In plasma non-esterified fatty acids, no effect of treatment was observed in n-3 or n-6 

HUFA concentrations, however ALA was higher in OVX compared to SHAM, OVX+E, and 

OVX+P with no difference compared to OVX+PE (Appendix 2 Table 6).  No effect of 

treatment on plasma TAG was observed (Appendix 2 Table 7).  No effect of treatment on 

HUFA content of plasma cholesteryl esters was observed, although total cholesteryl ester fatty 

acid concentration was higher in OVX+P compared with SHAM due to higher concentrations of 
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saturated and monounsaturated fatty acids (Appendix 2 Table 8).  In adipose tissue TLE, EPA 

was higher in OVX+P compared with SHAM, and DPAn-3 was higher in OVX+E relative to 

SHAM (Appendix 2 Table 9).  

Body weight and hormone concentration  

 No differences in body weight on day of pellet implantation were observed, however 

significant differences in body mass occurred over the course of the study (Figure 7.5).  Body 

mass of sham rats increased approximately 5%, and no difference in body mass gain was seen 

between SHAM and OVX+P rats.  OVX rats gained 13% of their baseline mass over the course 

of the study, and OVX+E and OVX+PE both lost approximately 7% of their body mass.  

 Plasma concentrations of 17β-estradiol and progesterone were lower following 

ovariectomy, but only the decrease in progesterone was found to be statistically significant 

(Figure 7.6).  Treatment with progesterone resulted in significantly higher plasma progesterone 

in OVX+P and OVX+PE rats relative to OVX rats, but not OVX+E rats, and was lower 

compared to SHAM rats.  Estradiol concentrations were much higher in OVX+E and OVX+PE 

rats compared with both OVX and OVX+P, but only OVX+E rats had 17β-estradiol 

concentrations significantly higher than SHAM rats. 

DISCUSSION 

This study demonstrates a significant increase in the expression of Δ6-desaturase in 

ovariectomized rats when they are treated with 17β-estradiol or a combination of 17β-estradiol 

and progesterone, but not progesterone alone.  This finding suggests that 17β-estradiol increases 

the capacity for DHA biosynthesis, which appears to result in increased hepatic synthesis-

secretion of DHA.  Progesterone, at the dose used in the present study, appears to have no effect 

on DHA metabolism.  The higher hepatic Δ6-desaturase expression following treatment with 
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17β-estradiol likely mediates the increased expression observed in females relative to males and 

in pregnant rats relative to virgin and post-partum rats and humans [reviewed in (Kitson et al. 

2010)].  

 Previous work examining the effect of supplementing ovariectomized rats with 17β-

estradiol on DHA metabolism demonstrated similar increases in DHA in hepatic PL following 

treatment of rats with 8 or 16 μg of 17β-estradiol /day (Alessandri et al. 2011).  However, in the 

study by Alessandri et al. (2011) the hepatic mRNA for Δ6-desaturase was lower in 

ovariectomized rats with 17β-estradiol treatment relative to untreated rats, which is contrary to 

the findings of the present study at both the protein (increased with 17β-estradiol) and mRNA 

(increased with combination of 17β-estradiol and progesterone) levels, and does not agree with 

the fatty acid compositional data.  The reason for discordant results may be a slightly higher 17β-

estradiol dose used in the present study (20μg/day in OVX+E and OVX+PE), shorter duration of 

the present study (2 weeks vs. 5 weeks), approximately 12-fold higher dietary n-3 PUFA (mainly 

ALA) content in the present study, and older rats at ovariectomy and sacrifice.  It is also possible 

that 17β-estradiol increases the mRNA stability of Δ6-desaturase, requiring less of the gene to be 

transcribed to elicit the desired biological effect.  This would explain the lack of agreement 

between the mRNA data and fatty acid data in Alessandri et al (2011), and mRNA and protein 

data in the present study.  The effects of 17β-estradiol on the stability of Δ6-desaturase mRNA 

should be assessed in the future. 

 The results of this study suggest that 17β-estradiol is increasing the synthesis of DHA; 

however it is only one of several likely factors mediating the increased hepatic and plasma 

phospholipid DHA levels.  For instance, the different relative effect of the treatment on DHA 

concentration in the individual phospholipid classes suggests a factor influencing DHA acylation 
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to these phospholipids is also modulated by 17β-estradiol.  This might include enzymes involved 

in phospholipid synthesis or remodelling, as a selective increase in the expression or activity in 

lysophospholipid acyltransferases or phospholipases can increase the relative accretion of one 

fatty acid over another.  For example, there is some evidence that 17β-estradiol increases the 

activity of cytosolic phospholipase A2 in MCF-7 cells (Thomas et al. 2006), which may decrease 

the half-life of 20:4n-6 relative to DHA and may therefore increase the accretion of DHA at the 

expense of 20:4n-6. Research on the effects of hormones on phospholipid remodelling enzymes 

is required. 

 The significantly increased expression of Δ6-desaturase in OVX as compared with 

SHAM rats has been observed previously (Alessandri et al. 2011), and did not affect 

phospholipid DHA concentrations.  The lack of effect of higher Δ6-desaturase on DHA levels is 

likely related to the significant accumulation of hepatic TAG in these animals, as it has been 

shown that hepatic TAG accumulation in hereditary hypertriglyceridemic rats results in 

significant reduction in Δ6-desaturase activity, with no changes in expression level (Demcakova 

et al. 2001).  Also, non-alcoholic steatohepatitis resulting from high-fat diet feeding increases the 

mRNA concentrations of Δ6- and Δ5-desaturase but decreases indexes of desaturase activity 

(Lopez-Vicario et al. 2013), suggesting the TAG accumulation in the present study may have a 

similar effect on Δ6-desaturase expression.  The reason that the increase in Δ6-desaturase 

expression in untreated OVX rats did not result in increased phospholipid concentrations of 

DHA, as was the case with 17β-estradiol treatment is unclear, but may involve substrate 

inhibition of Δ6-desaturase activity resulting from increased hepatic ALA and LA.  This type of 

inhibition has been observed in liver homogenates and isolated microsomes (Blond et al. 1984; 

Garg et al. 1988). 
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 The mechanism underlying the effect of ovariectomy and 17β-estradiol on hepatic Δ6-

desaturase expression and DHA concentration does not appear to involve changes in the 

expression of PPARα, ERα, or SREBP1c in the present study.  This is contrary to previous work 

demonstrating decreased (Paquette et al. 2008) or increased (Alessandri et al. 2011) mRNA of 

PPARα and increased mRNA of SREBP1c (Domingos et al. 2012; Paquette et al. 2008) in 

ovariectomy, which is prevented by supplementation with 17β-estradiol (Alessandri et al. 2011; 

Paquette et al. 2008).  The lack of an effect of treatment on these transcription factors in the 

present study may be due to the 2 week duration of the present study compared with previous 

studies of 5 weeks (Alessandri et al. 2011), 8 weeks (Paquette et al. 2008), and 10 weeks 

(Domingos et al. 2012).  Other studies examining hepatic ERα expression show either no effect 

on mRNA expression following 5 weeks (Alessandri et al. 2011) or an increased protein 

expression following 12 weeks of ovariectomy (Hao et al. 2010), with no previous findings of an 

effect of 17β-estradiol supplementation on hepatic ERα expression in ovariectomized rats 

(Alessandri et al. 2011).  The reason for disparate results of hepatic ERα expression may involve 

differences in the age of the rats at surgery and sacrifice, and the length of time of exposure of 

rats to ovariectomy.  In the present study, increases in Δ6-desaturase do not appear to depend on 

changes in transcription factor expression, however the time-course of transcription factor 

response to ovariectomy and 17β-estradiol supplementation should be assessed in the future. 

 Ovariectomy did not significantly lower 17β-estradiol concentrations compared with 

SHAM rats in the present study.  Increased weight gain and adipose tissue accumulation in 

ovariectomized rats may have resulted in increased extragonadal 17β-estradiol synthesis, as 

aromatase activity is present in adipose tissue (Miller 1991).  Strategies to prevent the 

accumulation of adipose tissue with ovariectomy, such as food restriction or exercise, may result 
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in a greater reduction in circulating 17β-estradiol than observed here, and may provide a better 

model for studying its effects on DHA metabolism. 

 The findings of this study suggest a potential mechanism for the increased circulating 

DHA and DPAn-6 observed in pregnancy relative to pre-pregnancy or post-partum, as 

concentrations of plasma 17β-estradiol are increased during pregnancy (O'Leary et al. 1991).  

The results of the present study do not support a role of progesterone in increasing DHA 

concentrations in pregnancy; however, progesterone treatment did not restore progesterone 

concentrations to control levels.  Future studies that provide greater concentrations of 

progesterone are required to form conclusions about the role of this hormone in DHA 

metabolism. Interestingly, hepatic Δ6-desaturase mRNA has been shown to be positively 

correlated with plasma progesterone in pregnancy (Childs et al. 2012), indicating a potential role 

of progesterone in DHA synthesis in pregnancy that was not detectable in the present study.   

CONCLUSION 

 17β-estradiol treatment of ovariectomized rats increased hepatic Δ6-desaturase 

expression and synthesis-mobilization of DHA.  This mechanism may explain the higher Δ6-

desaturase expression and hepatic DHA concentration observed in females as compared with 

males and in pregnant relative to virgin and post-partum rats.  The mechanism underlying this 

effect of 17β-estradiol is not clear, but does not appear to involve altered hepatic expression of 

PPARα, SREBP1c, or ERα.
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Figure 7.1. Effects of ovariectomy and hormone supplementation on enzyme expression of 

docosahexaenoic acid biosynthesis enzymes. SHAM: sham-operated rats, OVX: ovariectomized 

rats, OVX+E: OVX supplemented with 17β-estradiol, OVX+P: OVX supplemented with 

progesterone, OVX+PE: OVX rats supplemented with 17β-estradiol and progesterone. Bars with 

different letter are significantly different by Tukey’s post-hoc test following significant F Value 

by one-way ANOVA.   
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Figure 7.2: Effects of ovariectomy and hormone supplementation on mRNA expression of Δ6-

desaturase. SHAM: sham-operated rats, OVX: ovariectomized rats, OVX+E: OVX 

supplemented with 17β-estradiol, OVX+P: OVX supplemented with progesterone, OVX+PE: 

OVX rats supplemented with 17β-estradiol and progesterone. Bars with different letter are 

significantly different by Tukey’s post-hoc test following significant F Value by one-way 

ANOVA. 
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Figure 7.3: Effects of ovariectomy and hormone supplementation on expression of transcription 

factors. SHAM: sham-operated rats, OVX: ovariectomized rats, OVX+E: OVX supplemented 

with 17β-estradiol, OVX+P: OVX supplemented with progesterone, OVX+PE: OVX rats 

supplemented with 17β-estradiol and progesterone. Bars with different letter are significantly 

different by Tukey’s post-hoc test following significant F Value by one-way ANOVA. 



74 
 

 
Figure 7.4: Effects of ovariectomy and hormone supplementation on docosahexaenoic acid and 

n-6 docosapentaenoic acid concentration of hepatic phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. SHAM: sham-operated 

rats, OVX: ovariectomized rats, OVX+E: OVX supplemented with 17β-estradiol, OVX+P: OVX 

supplemented with progesterone, OVX+PE: OVX rats supplemented with 17β-estradiol and 

progesterone. Bars with different letter are significantly different by Tukey’s post-hoc test 

following significant F Value by one-way ANOVA.  
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Figure 7.5: Effects of ovariectomy and hormone supplementation on changes in body weight 

observed at 7- and 14-days. SHAM: sham-operated rats, OVX: ovariectomized rats, OVX+E: 

OVX supplemented with 17β-estradiol, OVX+P: OVX supplemented with progesterone, 

OVX+PE: OVX rats supplemented with 17β-estradiol and progesterone. Bars with different 

letter are significantly different by Tukey’s post-hoc test following significant F Value by one-

way ANOVA. 
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Figure 7.6. Effects of ovariectomy and hormone supplementation on plasma 17β-estradiol and 

progesterone concentrations. SHAM: sham-operated rats, OVX: ovariectomized rats, OVX+E: 

OVX supplemented with 17β-estradiol, OVX+P: OVX supplemented with progesterone, 

OVX+PE: OVX rats supplemented with 17β-estradiol and progesterone. Bars with different 

letter are significantly different by Tukey’s post-hoc test following significant F Value by one-

way ANOVA.  



77 
 

Table 7.1: Changes in genes involved in DHA production following ovariectomy as determined 

by high-density microarray. (n = 4 for OVX and SHAM) 

Gene Symbol Enzyme Name Fold Change (OVX / SHAM) p-Value  

Fads1 Delta-5 desaturase 0.98  0.7754 

Fads2 Delta-6 desaturase 1.12  0.0560 

Elovl2 Elongase 2 1.06 0.5669 

Elovl5 Elongase 5 1.05 0.4467 
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Table 7.2: Effects of ovariectomy and hormone supplementation on fatty acid concentration of hepatic phospholipids 

 

SHAM OVX OVX+E OVX+P OVX+PE 

Fatty Acid μg/g liver 

SFA
1
 4845 ± 141

a
 4168 ± 380

bc
 4143 ± 442

b
 4430 ± 464

ab
 4843 ± 355

a
 

MUFA
1
 590 ± 164 519 ± 188 594 ± 76 555 ± 166 582 ± 52 

C 18:2n-6 1236 ± 64
a
 1081 ± 83

ab
 941 ± 112

b
 1168 ± 120

a
 954 ± 112

b
 

C 18:3n-6 38 ± 3 33 ± 3 33 ± 2 31 ± 9 32 ± 6 

C 20:2n-6 22 ± 2
ab

 20 ± 2
ab

 24 ± 3
a
 18 ± 3

b
 22 ± 4

ab
 

C 20:3n-6 34 ± 4
ab

 30 ± 2
a
 28 ± 7

a
 30 ± 5

a
 39 ± 4

b
 

C 20:4n-6 2574 ± 111
a
 2234 ± 223

ab
 2151 ± 275

b
 2299 ± 210

ab
 2486 ± 214

ab
 

C 22:4n-6 25 ± 4 20 ± 3 23 ± 4 21 ± 5 24 ± 4 

C 22:5n-6 20 ± 5
a
 14 ± 5

a
 50 ± 25

b
 16 ± 4

a
 59 ± 19

b
 

N-6 PUFA 3949 ± 154
a
 3432 ± 290

b
 3250 ± 354

b
 3584 ± 294

ab
 3617 ± 266

ab
 

C 18:3n-3 12 ± 4
ab

 8 ± 3
a
 12 ± 2

ab
 13 ± 3

ab
 14 ± 3

b
 

C 20:5n-3 19 ± 5
ab

 13 ± 3
a
 22 ± 5

bc
 18 ± 8

ab
 29 ± 3

c
 

C 22:5n-3 83 ± 13
a
 69 ± 14

a
 123 ± 29

b
 79 ± 15

a
 128 ± 31

b
 

C 22:6n-3 907 ± 96
ab

 740 ± 116
a
 1013 ± 149

bc
 749 ± 91

a
 1206 ± 132

c
 

N-3 PUFA 1021 ± 105
ab

 830 ± 126
a
 1169 ± 153

bc
 857 ± 109

a
 1376 ± 136

c
 

PUFA 4969 ± 249
a
 4262 ± 409

b
 4419 ± 448

ab
 4441 ± 395

ab
 4993 ± 377

a
 

HUFA 3662 ± 206
ab

 3120 ± 354
a
 3410 ± 398

a
 3211 ± 319

a
 3970 ± 338

b
 

EPA+DHA 925 ± 93
ab

 753 ± 116
a
 1035 ± 149

bc
 766 ± 95

a
 1235 ± 133

c
 

n-6/n-3 3.9 ± 0.3
a
 4.2 ± 0.3

a
 2.8 ± 0.3

b
 4.2 ± 0.3

a
 2.6 ± 0.2

b
 

HUFA SCORE 27 ± 1
a
 26 ± 1

a
 34 ± 2

b
 26 ± 1

a
 34 ± 2

b
 

Total 10633 ± 374
a
 9102 ± 899

b
 9303 ± 910

ab
 9611 ± 981

ab
 10566 ± 730

a
 

Values are mean ± SD. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA. SHAM: sham-operated rats, OVX: 

ovariectomized rats, OVX+E: OVX supplemented with 17β-estradiol, OVX+P: OVX supplemented with progesterone, OVX+PE: 

OVX rats supplemented with 17β-estradiol and progesterone. Values with different letter are significantly different by Tukey’s post-

hoc test following significant F Value by one-way ANOVA.  
1
Concentrations of individual SFA and MUFA can be found in (Marks et 

al. 2013a).  
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Table 7.3: Effects of ovariectomy and hormone supplementation on fatty acid concentration of hepatic triacylglycerol 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 μg/g liver 

SFA
1
 2745 ± 846 

a
 4360 ± 533 

b
 2067 ± 315 

a
 2525 ± 926 

a
 2083 ± 298 

a
 

MUFA
1
 2265 ± 981 

ab
 3335 ± 700 

a
 1395 ± 521 

b
 1715 ± 831 

bc
 1146 ± 244 

b
 

C 18:2n-6 3349 ± 1372 
a
 6691 ± 1144 

b
 1844 ± 946 

ac
 3139 ± 1394 

ac
 1455 ± 412 

c
 

C 18:3n-6 109 ± 38 
a
 220 ± 44 

b
 52 ± 39 

ac
 111 ± 53

 a
 39 ± 15 

c
 

C 20:2n-6 18 ± 9 
a
 52 ± 14 

b
 14 ± 9 

a
 20 ± 11 

a
 14 ± 6 

a
 

C 20:3n-6 27 ± 11
 a
 58 ± 15 

b
 21 ± 10 

a
 27 ± 13 

a
 17 ± 4

 a
 

C 20:4n-6 721 ± 237  1342 ± 276  427 ± 185  681 ± 317  427 ± 98  

C 22:4n-6 4.3 ± 4.1  3.2 ± 2.4  9.2 ± 9.5  3.7 ± 3.2  2.8 ± 1.9  

C 22:5n-6 24 ± 10 
ab

 41 ± 14 
a
 24 ± 11 

ab
 20 ± 9 

b
 17 ± 5 

b
 

N-6 PUFA 4258 ± 1659 
a
 8413 ± 1460 

b
 2396 ± 1171 

ac
 4004 ± 1780 

ac
 1977 ± 487 

c
 

C 18:3n-3 198 ± 87 
a
 405 ± 90 

b
 104 ± 49 

a
 197 ± 98 

a
 89 ± 26 

a
 

C 20:5n-3 114 ± 49 
a
 210 ± 30 

b
 62 ± 28 

a
 111 ± 48 

a
 64 ± 23 

a
 

C 22:5n-3 64 ± 24 
a
 143 ± 31 

b
 54 ± 18

 a
 69 ± 34

 a
 55 ± 17 

a
 

C 22:6n-3 176 ± 52 
a
 409 ± 78 

b
 110 ± 79 

a
 195 ± 80 

a
 103 ± 21 

a
 

N-3 PUFA 559 ± 208 
a
 1174 ± 210 

b
 335 ± 168 

a
 578 ± 257 

a
 317 ± 70 

a
 

PUFA 4818 ± 1862 
a
 9588 ± 1663 

b
 2731 ± 1336 

a
 4582 ± 2037 

a
 2294 ± 550 

a
 

HUFA 1138 ± 369 
a
 2213 ± 421 

b
 711 ± 314 

a
 1112 ± 495 

a
 692 ± 151 

a
 

EPA+DHA 289 ± 101 
a
 619 ± 106 

b
 172 ± 106 

a
 306 ± 126 

a
 167 ± 34 

a
 

N-6/N-3 7.6 ± 0.7 
a
 7.2 ± 0.4 

ab
 7.2 ± 0.8 

ab
 7.0 ± 0.3 

ab
 6.3 ± 0.7 

b
 

HUFA Score 31.6 ± 1.9  34.9 ± 1.7  31.9 ± 3.0 34.3 ± 2.2  32.9 ± 1.6  

Total 9828 ± 3597 
a
 17282 ± 2860 

b
 6192 ± 1953 

a
 8823 ± 3738 

a
 5523 ± 1012 

a
 

Values are mean ± SD. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA, SHAM: sham-operated rats, OVX: 

ovariectomized rats, OVX+E: OVX supplemented with 17β-estradiol, OVX+P: OVX supplemented with progesterone, OVX+PE: 

OVX rats supplemented with 17β-estradiol and progesterone. Values with different letter are significantly different by Tukey’s post-

hoc test following significant F Value by one-way ANOVA.  
1
Concentration of individual SFA and MUFA can be found in (Marks 

2012).  
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Table 7.4: Effects of ovariectomy and hormone supplementation on fatty acid concentration of plasma phospholipids 

 

SHAM OVX OVX + E OVX+ P OVX+PE 

 

μg/ml plasma 

SFA
1
 497 ± 39 

a
 505 ± 140 

ab
 638 ± 78 

b
 541 ± 31 

ab
 660 ± 60 

b
 

MUFA
1
 353 ± 100  357 ± 199  379 ± 89  391 ± 73  353 ± 103  

C 18:2n-6 96 ± 12 
a
 101 ± 20 

a
 140 ± 31 

b
 115 ± 10 

ab
 112 ± 9 

ab
 

C 18:3n-6 3.2 ± 0.4 
ab

 2.5 ± 0.6 
a
 4.0 ± 0.6 

b
 3.3 ± 0.6 

ab
 3.9 ± 0.7 

b
 

C 20:2n-6 1.5 ± 0.3 
a
 1.5 ± 0.6 

ab
 3.0 ± 0.4 

c
 1.7 ± 0.3 

ab
 2.8 ± 1.1 

bc
 

C 20:3n-6 2.6 ± 0.3 
a
 2.0 ± 0.7 

a
 4.5 ± 0.8 

b
 2.1 ± 0.5 

a
 4.4 ± 0.7 

b
 

C 20:4n-6 183 ± 4 
a
 165 ± 37 

a
 271 ± 40 b 202 ± 29 

a
 284 ± 46 

b
 

C 22:2n-6 0.9 ± 0.9  0.7 ± 0.5  0.4 ± 0.3  0.7 ± 0.5  0.8 ± 0.6  

C 22:4n-6 3.6 ± 0.9  3.4 ± 1 .0 2.8 ± 0.8  4.4 ± 1.4  3.8 ± 0.3  

C 22:5n-6 1.2 ± 0.6 
a
 0.6 ± 0.4 

a
 4.6 ± 2.6 

b
 0.8 ± 0.8 

a
 4.5 ± 1.2 

b
 

N-6 PUFA 292 ± 14 
a
 277 ± 56 

a
 430 ± 55 

b
 329 ± 32 

a
 417 ± 49 

b
 

C 18:3n-3 2 ± 1  2 ± 1  2 ± 1  4 ± 5  2 ± 1  

C 20:5n-3 2 ± 1  2 ± 2  3 ± 1  2 ± 1  3 ± 1  

C 22:5n-3 3.7 ± 0.1 
a
 4.4 ± 1.3 

a
 10.5 ± 2.9 

b
 4.9 ± 0.6 

a
 10.5 ± 2.9 

b
 

C 22:6n-3 36.3 ± 0.5 
a
 33.0 ± 8.1 

a
 74.4 ± 15.4 

b
 36.8 ± 4.4 

a
 75.3 ± 15.6 

b
 

N-3 PUFA 45 ± 1 
a
 43 ± 10 

a
 91 ± 16 

b
 48 ± 9 

a
 92 ± 16 

b
 

PUFA 337 ± 14 
a
 319 ± 65 

a
 521 ± 70 

b
 377 ± 38 

a
 508 ± 64 

b
 

HUFA 233 ± 4 
a
 212 ± 47 

a
 372 ± 58 

b
 253 ± 35 

a
 387 ± 63 

b
 

EPA+DHA 39 ± 1 
a
 35 ± 9 

a
 78 ± 16 

b
 39 ± 5 

a
 79 ± 16 

b
 

N-6/N-3 6.5 ± 0.3 
a
 6.5 ± 0.4 

a
 4.8 ± 0.3 

b
 7.0 ± 1.0 

a
 4.6 ± 0.3 

b
 

HUFA Score 18.5 ± 0.4 
a
 19.1 ± 1.2 

a
 23.8 ± 1.5 

b
 17.5 ± 1.5 

a
 23.1 ± 0.7 

b
 

Total 1186 ± 142  1182 ± 380  1538 ± 184  1309 ± 52  1522 ± 170  

Values are mean ± SD. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA, SHAM: sham-operated rats, OVX: 

ovariectomized rats, OVX+E: OVX supplemented with 17β-estradiol, OVX+P: OVX supplemented with progesterone, OVX+PE: 

OVX rats supplemented with 17β-estradiol and progesterone. Values with different letter are significantly different by Tukey’s post-

hoc test following significant F Value by one-way ANOVA.  
1
Concentration of individual SFA and MUFA can be found in (Marks et 

al. 2013a).
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CHAPTER 8 

OVARIECTOMY WITH OR WITHOUT FOOD RESTRICTION ELICITS NO EFFECT 

ON HEPATIC AND PLASMA DHA CONCENTRATION OR HEPATIC Δ6-

DESATURASE EXPRESSION 

INTRODUCTION 

 Ovariectomy results in increased food intake and hepatic lipid storage (Blaustein et al. 

1976; Varma et al. 1999) which can increase the expression of Δ6-desaturase independently of 

alterations in ovarian hormone status (Demcakova et al. 2001).  In addition, the increased storage 

of LA and ALA in hepatic TAG resulting from ovareictomy-induced hyperphagia can decrease 

the activity of Δ6-desaturase (Blond et al. 1984; Garg et al. 1988).  The increased adipose tissue 

in ovariectomized rats may also increase 17β-estradiol through extragonadal synthesis.  

Hyperphagia in ovariectomized rats is therefore a potential confounder when attempting to 

examine the direct hormonal effects of ovariectomy on Δ6-desaturase expression.  Preventing 

increased adipose depots by limiting the hyperphagia associated with ovariectomy may be a 

mechanism to achieve low 17β-estradiol levels and control intake stimulated lipogenesis in 

ovariectomized rats.   

 Pair-feeding is a method to normalize the intake of food by one group to that of another.  

In the case of ovariectomized rats, food intake can be normalized to sham-operated controls in an 

attempt to control for ovariectomy associated hyperphagia.  Previous work using food restriction 

of ovariectomized animals has shown that body weight is comparable to eugonadal rats and is 

significantly lower compared to ovariectomized rats that have ad libitum access to food after 4 

weeks (Davidge et al. 2001) and 5 weeks (Shimomura et al. 1989).  
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 The goal of the present study was to investigate the effect of food restriction in 

ovariectomized rats on hepatic and plasma DHA concentrations and expression of DHA 

biosynthetic enzymes in rats.  Additionally, the effect of pair-feeding on hepatic fatty acid 

synthase, pyruvate dehydrogenase kinase, (PDHK), carnitine palmitoyl transferase 1 (CPT1), and 

stearoyl CoA desaturase 1 (SCD1) were assessed to determine hepatic fuel substrate metabolism 

and muscle CPT1 and PDHK will be measured to estimate fuel substrate oxidation. 

METHODS 

 Animals were ovariectomized or sham-operated by Harlan technicians at 5 weeks of age 

and arrived at the University of Waterloo at 6 weeks of age.  Animals were individually housed 

in the animal facility in the Department of Kinesiology, and had ad libitum access to drinking 

water.  Ovariectomized animals were divided into two groups to receive either ad libitum access 

to standard laboratory chow (OVX+AL) or to be pair-fed (OVX+PF) relative to the sham-

operated control group (SHAM) (n = 6 for each group), and feeding protocol lasted for 32 days.  

Food intake of all animals was measured daily and the OVX+PF animals were provided the mass 

of food consumed by the SHAM animals the previous day.  OVX+PF animals were provided 

food at the beginning of the dark phase, as it has been shown that this feeding schedule is 

required to prevent weight gain of pair-fed ovariectomized animals relative to sham-operated 

controls (Shimomura et al. 1989).  Animals were weighed every 4 days. 

 Whole body metabolism of the rats (n = 4 per group) was determined using a 

Comprehensive Lab Animal Monitoring System (Oxymax series, Columbus Instruments, 

Columbus, Ohio, USA).  Animals were acclimatized to the monitoring system in two 24-hour 

sessions.  Measurement was performed every 26 minutes over a 24-hour period following a 2-

hour acclimation period.  Resting metabolic parameters were assessed by monitoring the animals 
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over a 24 hour period on day 23 of the study.  VO2, VCO2, body temperature, total cage activity, 

and energy expenditure for each individual animal was recorded using Oxymax/CLAMS 

Software (Columbus Instruments) and exported for statistical analysis. 

Animals were fasted overnight and sacrificed on day 33 by cardiocentesis with a syringe 

containing EDTA following sodium pentobarbital injection (65mg/kg).  Plasma was isolated by 

centrifuging whole-blood at 1500g.  Liver, adipose posterior hind limb skeletal muscle, and 

uterus+fallopian tubes were collected, washed in saline (0.9% w/v), weighed, and snap-frozen in 

liquid nitrogen.  Tissues were pulverized using mortar and pestle under liquid nitrogen prior to 

analysis. All samples were stored at -80°C until analysis.  

Antibodies used for protein expression analysis were Δ6-desaturase (Abcam, ab72189, 

1:500 v/v skim milk), Δ5-desaturase (Santa Cruz Biotechnology, sc-101953, 1:100 dilution v/v 

in BSA), elovl2 (Santa Cruz Biotechnology, sc-54874, 1:250 dilution v/v in BSA), elovl5 (Santa 

Cruz Biotechnology, sc-54888, 1:250 dilution v/v in milk), MFP2 (Santa Cruz Biotechnology sc-

135045, 1:200 v/v in milk), PPARα (Santa Cruz Biotechnology, sc-9000, 1:250 dilution v/v in 

milk), SREBP1c (Santa Cruz Biotechnology, sc-8984, 1:500 v/v in milk), CPT-1α (Cell 

Signalling Technology, Danvers, Massachusetts, cat no 12252, 1:1000 v/v in BSA, transferred to 

nitrocellulose membrane), fatty acid synthase (Cell Signalling Technology, 3180, 1:1000 v/v in 

milk), pyruvate dehydrogenase kinase 1 (Cell Signalling Technology, 3820, 1:1000 v/v in milk), 

stearoyl-CoA desaturase 1 (Abcam, ab19862, v/v 1:1000 in milk) and ERα (Abcam, ab16460, 

v/v 1:1000 in milk).  Chemiluminescent detection was performed by ECL prime (GE 

Healthcare). 

The fatty acid compositions of plasma PL, TAG, cholesteryl esters and non-esterified 

fatty acids were determined by gas chromatography (Stark et al. 2005b) after neutral lipid TLC 
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separation (Christie 2003) following extraction of lipids (Folch et al. 1957).  Fatty acid 

composition of hepatic TAG, total PL, PC, PE, PI, and PS was determined as described in 

Chapter 4.  Concentration of PI and PS were determined by addition of 22:3n-3 internal 

standard after TLC as described in Chapter 7. 

Measurement of plasma 17β-estradiol was performed by competitive enzyme-linked 

immunosorbent assay (Cayman Chemical) following extraction of 17β-estradiol from plasma by 

methylene chloride according to the manufacturer’s instructions and as described in Chapter 7.  

Statistical comparisons between groups were made using one-way ANOVA.  Bonferroni 

post-hoc test was applied to variables in which repeated measurements over time were included 

in the ANOVA modelling procedure (body weight, food intake).  Otherwise, Tukey’s post-hoc 

test was used.  

RESULTS 

Plasma 17β-estradiol concentration 

The plasma concentrations of 17β-estradiol were similar in all three groups, although the 

uterus+fallopian tube mass of OVX+AL and OVX+PF was lower compared with SHAM 

(Figure 8.1). 

Effect of treatment on enzymes and transcription factor expression 

Ovariectomy with or without food restriction elicited no effect on the expression of Δ6-

desaturase, Δ5-desaturase, elovl2, elovl5, or MFP2 in the liver (Figure 8.2).  In addition, 

PPARα, SREBP1c, and ERα protein levels in liver were similar in all three groups (Figure 8.3).  

PDHK1 expression was 20% lower in OVX+AL relative to SHAM, with OVX+PF levels being 

intermediate in (Figure 8.4).  Hepatic CPT-1a and fatty acid synthase were similar in all groups, 

but SCD1 expression in OVX+AL was 63% higher than OVX+PF and 141% higher than 
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SHAM.  In skeletal muscle, CPT-1a was 40% lower in OVX+AL compared with SHAM, while 

no differences were observed in OVX+PF.  No effect on skeletal muscle PDHK1 was observed. 

Body mass and resting metabolic parameters 

 Body weight increased in all animals throughout the study.  The body mass of both 

OVX+AL and OVX+PF was significantly higher than SHAM throughout the study (Figure 8.5).  

OVX+AL and OVX+PF had similar body mass until day 28, after which the mass of OVX+AL 

was significantly higher.  Food intake was approximately 30% lower in SHAM and OVX+PF 

compared with OVX+AL after the 17
th

 day of the study and remained lower throughout the study 

(Figure 8.5). 

The respiratory exchange ratio (RER) was significantly lower in OVX+PF rats compared 

to OVX+AL, while SHAM was intermediate (Table 8.1).  The 24-hour average body 

temperature was higher in OVX+PF compared to SHAM, while OVX+AL was intermediate.  No 

significant differences were observed between groups in VO2, VCO2, energy expenditure, total 

activity, or maximum and minimum body temperature. 

Tissue and plasma fatty acid content 

No effect of ovariectomy with or without food restriction was observed on the DHA 

concentration in PL of liver (Table 8.2) and plasma (Table 8.3).  Concentration of 20:3n-6 was 

higher in OVX+PF relative to SHAM in hepatic total phospholipids, with no difference in 

plasma PL.  DPAn-3 was higher in hepatic PL of both ovariectomized groups relative to SHAM, 

but this did not translate into differences in plasma PL DPAn-3 levels.  

DHA concentrations in hepatic PC, PE, PS, or PI were similar in all groups,  but the 

DHA n-6 equivalent, DPAn-6, was lower in hepatic PC of OVX+AL as compared with SHAM 

and OVX+AL (Figure 8.6, full fatty acid composition in Appendix 3, Tables 1-4).  The 
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concentration of 20:3n-6 PC was also higher in OVX+PF compared with SHAM, while 

OVX+AL was intermediate (Appendix 3 Table 1).  In PE, OVX+AL had significantly lower 

percentage of HUFA as n-3 HUFA and higher n-6/n-3 ratio compared to SHAM and OVX+PF, 

but no significant differences between individual PUFA (Appendix 3 Table 2).  

 The total fatty acid concentration of hepatic TAG was significantly higher in OVX+AL 

relative to SHAM and OVX+PF (Figure 8.7), due to increases in the concentration of most fatty 

acids (Appendix 3 Table 5).  As a result, fatty acid concentrations of liver total lipid extracts 

were also increased (Appendix 3 Table 6).  Plasma TAG was significantly increased in both 

ovariectomized groups relative to SHAM (Figure 8.7), with increases in most fatty acids 

(Appendix 3 Table 7).  The increase in total fatty acids in plasma and liver were due only to 

increases in TAG, as no significant effects of treatment were observed in hepatic and plasma PL 

(Figure 8.7).  The concentration and relative percentages of fatty acids in plasma CE and NEFA 

did not differ between groups (Appendix 3 Tables 8 and 9, respectively).  No differences in the 

fatty acid composition of adipose or posterior hind limb skeletal muscle were observed 

(Appendix 3 Tables 10 and 11, respectively). 

DISCUSSION 

 This study demonstrates that ovariectomy with or without food restriction does not 

significantly affect hepatic Δ6-desaturase expression and DHA concentrations in hepatic and 

plasma PL.  An association between withdrawal of ovarian hormones via ovarian removal and 

DHA synthesis-mobilization is therefore not supported.  Additionally, similar expression of Δ6-

desturase and DHA concentrations in OVX+AL and OVX+PF rats, despite significantly lower 

hepatic TAG in OVX+PF, indicates that hyperphagia-induced hepatic TAG accumulation does 

not affect DHA biosynthetic capacity in rats after 33 days of ovariectomy.   
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 The absence of an effect of ovariectomy with ad libitum access to food on Δ6-desaturase 

expression is contrary to previous research.  Hepatic Δ6-desaturase mRNA is increased at 5 

weeks after ovariectomy (Alessandri et al. (2011), but this may be due to differences in mRNA 

and protein expression as discussed previously in Chapter 7.  We observed increased hepatic 

Δ6-desaturase protein, but not mRNA, following 4 weeks of ovariectomy (as presented in 

Chapter 7).  The lack of effect of ovariectomy on hepatic Δ6-desaturase in our latter study may 

be due to difference in the age of rats at ovariectomy, as ovariectomy was performed at 8 weeks 

of age in the study in Chapter 7 while ovariectomy occurred at 6 weeks of age in the present 

study which may have been slightly before full sexual maturity was reached.  It is possible that 

ovariectomy after sexual maturity versus ovariectomy during sexual maturation may influence 

lipid and DHA metabolism afterwards.  Similarly, the slightly longer duration of this study 

compared with the Chapter 7 study would have resulted in longer exposure of the 

ovariectomized rats to the higher levels of hepatic TAG.  It has been shown that the hepatic 

transcript profile changes over time in response to hepatic TAG accumulation in mice fed a high-

fat diet (Oh et al. 2013; Radonjic et al. 2009), that could explain differences in hepatic transcript 

profiles of the two ovariectomy studies in this thesis.  In addition, the rats in the first study were 

group-housed (3-4 per cage); while individual housing was used in the second study to 

accomplish the pair-feeding protocol.  Cohabitation has previously been shown to decrease 

testosterone synthesis in male F344 rats attributable to increased stress-induced corticosteroid 

levels (Nyska et al. 2002). As some evidence suggests that female rats prefer to be housed in 

groups, it is likely that individual housing in may increase stress levels, resulting in a decrease in 

testosterone synthesis, the precursor of 17β-estradiol (Nathan et al. 2001). 
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Food restriction of ovariectomized rats in the present study reduced body mass relative to 

those with ad libitum food access, however body mass remained significantly higher than sham-

operated controls.  This has been observed in some studies (Mueller et al. 1980; Roy et al. 1977; 

Shimomura et al. 1989; Witte et al. 2010) but not others (Liang et al. 2002), and indicates that 

metabolic adaptations occur in ovariectomy that result in weight gain that are independent of 

hyperphagia.  In ovariectomized ad libitum-fed rats, both fat mass and lean mass are increased, 

while food restriction of ovariectomized rats causes an increase in lean mass only (Chen et al. 

2001), indicating greater lean mass relative to total body mass in the OVX+PF groups relative to 

OVX+AL and SHAM.  This change in body composition may be associated with the lower 

respiratory exchange ratio (RER) in OVX+PF relative to OVX+AL and SHAM, which indicates 

greater usage of fat for energy rather than carbohydrates.  Because fat has approximately 2-fold 

greater energy density relative to carbohydrate, higher relative fat usage at a given energy 

expenditure would contribute to body mass gain.  Lower RER has been found to be positively 

associated with body mass in chow or high-fat diet fed mice (Longo et al. 2010), suggesting that 

switching towards more fat usage for energy may predispose animals to body mass gain.  

Decreased voluntary locomotor activity as assessed by wheel running has also been associated 

with ovariectomy in rats (Thomas et al. 1986), but decreased physical activity was not observed 

during the 24-hour monitoring in our study.  Lower skeletal muscle CPT-1 expression in 

OVX+PF and OVX+AL suggests lower peripheral fatty acid oxidation, which may result in 

storage of fatty acids as adipose tissue. 

The increased hepatic TAG in ovariectomized rats appears to be due to hyperphagia, as 

food restriction via pair-feeding prevented the increase.  This is in agreement with previous work 

showing reduced hepatic TAG in ovariectomized rats after 13 weeks of 25% caloric restriction 
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(Pighon et al. 2009a; Pighon et al. 2009b).  Ovariectomy has also been shown to decrease the 

hepatic expression of microsomal triacylglycerol transfer protein (MTP), which is involved in 

assembly of VLDL for secretion (Barsalani et al. 2010; Cote et al. 2012), suggesting increased 

storage of hepatic TAG due to impaired lipoprotein secretion.  The effects of food restriction on 

MTP expression are not known, but increased MTP expression may also be involved in 

decreased hepatic TAG in these animals.  The lower hepatic TAG in OVX+PF relative to 

OVX+AL was associated with lower hepatic expression of SCD-1, which is the rate-limiting 

enzyme in de novo MUFA synthesis and is positively associated with hepatic TAG content 

(Cohen et al. 2003).  Hepatic PDHK was lower in ovariectomized rats regardless of food intake, 

suggesting an increase in pyruvate decarboxyation and flux of acetyl-CoA into the tricarboxylic 

acid cycle.  Increased acetyl-CoA can be used either for fatty acid synthesis or oxidative 

phosphorylation, however the lower SCD1 expression in OVX+PF relative to OVX+AL 

suggests that the acetyl-CoA generated by pyruvate dehydrogenase in OVX+PF is not being used 

for MUFA or TAG synthesis.  Additionally, the lower RER in OVX+PF may indicate greater 

relative hepatic fatty acid oxidation and less hepatic storage of fatty acids as TAG.  

The role of ovariectomy in plasma TAG accumulation is more controversial.  In the 

present study, plasma TAG was increased relative to sham-operated controls following 

ovariectomy with or without food restriction, which has been observed in another study using 

ovariectomized Sprague Dawley rats with ad libitum access to food (Choi 2008).  However, no 

increase in plasma TAG has been found in ad libitum-fed ovariectomized Wistar rats (Kishida et 

al. 2003), 13-week ovariectomized Sprague Dawley rats (Pighon et al. 2009b), mice (Ludgero-

Correia, Jr. et al. 2012), Syrian hamsters (Lucas et al. 2011) and women that have had an 

ovariectomy (Cheung et al. 1998; Suda et al. 1998).  A study in Wistar rats has shown decreased 
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plasma TAG following 8 weeks of 25% food restriction in ovariectomized rats compared with 

those fed ad libitum (Pighon et al. 2009b).  The influence of ovariectomy on plasma TAG may 

be species or strain specific, as it has been shown that there are significant differences between 

C57BL/6 mice and Long Evans rats in the response of metabolism and energy expenditure to 

ovariecomy (Witte et al. 2010).  In the present study, the higher plasma TAG in ovariectomized 

as compared with sham-operated rats may be related to the decreased muscle CPT-1 expression.  

Peripheral fatty acid oxidation may be decreased and fatty acid uptake by skeletal muscle may be 

reduced.  Previous work has shown no change in white gastrocnemius CPT-1 mRNA expression 

following ovariectomy in Sprague Dawley rats, which may be explained by different muscle 

oxidative capacity and mRNA as compared with protein measures.  Decreases in lipoprotein 

lipase expression could also account for higher plasma TAG in ovariectomized animals; 

however, adipose tissue lipoprotein lipase does not change with 16-days of ovariectomy in 

Sprague Dawley rats (Toth et al. 2001).  The effect of ovariectomy on lipoprotein lipase activity 

in other tissues has not been examined.  The effects of species, strain, and duration of 

ovariectomy with and without food restriction on plasma TAG levels should be assessed.  

Ovariectomy with or without food restriction failed to reduce the circulating 

concentration of 17β-estradiol in the present study, which is contrary to previous studies 

(Davidge et al. 2001).  It is possible that the eugonadal rats had lower than expected plasma 17β-

estradiol concentrations due to sampling during estrous or diestrous phases of the estrous cycle, 

as serum 17β-estradiol concentrations are 3-fold lower in these phases (Gomes et al. 2005) and 

are similar between eugonadal and ovariectomized rats (Strom et al. 2008).  Also, it has been 

shown that 17β-estradiol synthesis by muscle, skin, and adipose increases over time in 

ovarictomized rats, corresponding to increases in serum 17β-estradiol (Zhao et al. 2005).  The 
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finding of similar plasma 17β-estradiol between ovariectomized rats undergoing food restriction 

or with ad libitum access to food is consistent with previous results (Davidge et al. 2001), and 

suggests that extragonadal 17β-estradiol production is unaffected by feeding status of 

ovariectomized rats.  The immature age of the rats at ovariectomy may also have altered the 

response of 17β-estradiol to ovariectomy as compared with the response to ovariectomy of a 

sexually mature rat. However, the uterine atrophy observed in both groups of ovariectomized 

compared with sham-operated rats suggests that 17β-estradiol withdrawal did occur (Alessandri 

et al. 2011). 

The lack of an effect on Δ6-desaturase expression of ovariectomy with or without food 

restriction was associated with no differences in the hepatic expression of the transcription 

factors PPARα, SREBP1c, and ERα.  The effect of pair-feeding or food restriction on hepatic 

expression of these transcription factors has not been previously investigated, but previous 

studies have shown increased SREBP1c mRNA in rats ovariectomized for 8 (Paquette et al. 

2008) and 10 weeks  (Domingos et al. 2012).  The lack of an effect of ovariectomy on SREBP1c 

in the present study may be due to shorter duration of ovariectomy and the time-dependent 

changes in hepatic transcript profiles in response to TAG accumulation (Oh et al. 2013; Radonjic 

et al. 2009).  Similarly, disparate results between this study and others with regards to the effect 

of ovariectomy on PPARα (Alessandri et al. 2011) and ERα expression (Hao et al. 2010) may be 

related to differences in the length of time rats are exposed to the hormonal and metabolic milieu 

of ovariectomy. 

CONCLUSION 

Prevention of hyperphagia and hepatic TAG accumulation in ovariectomized rats did not 

result in any differences in hepatic Δ6-desaturase of hepatic phospholipid DHA concentration 
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relative to ad libitum-fed rats, suggesting that this is not a confounding factor in the assessment 

of the role of ovariectomy in hepatic DHA metabolism.  Additionally, the lack of an effect of 

ovariectomy with or without food restriction on DHA metabolism relative to sham-operated rats 

suggests that ovarian hormone withdrawal via ovariectomy is not associated with alterations in 

hepatic DHA metabolism or plasma DHA status.  
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Figure 8.1: Effects of ovariectomy with or without pair-feeding on uterus mass and plasma 17β-

estradiol concentration. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad 

libitum access to food, OVX+PF: ovariectomized rats pair-fed to SHAM rats. *: significantly 

lower compared to sham-operated rats.  

  

* 

* 
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Figure 8.2. Effects of ovariectomy with or without pair-feeding on expression of enzymes of 

DHA biosynthesis.  SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum 

access to food, OVX+PF: ovariectomized rats pair-fed to SHAM rats.  
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Figure 8.3: Effects of ovariectomy with or without pair-feeding protein expression of 

transcription factors. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum 

access to food, OVX+PF: ovariectomized rats pair-fed to SHAM rats, PPARα: peroxisome 

proliferator activated receptor α, SREBP1c: sterol response element binding protein 1c. 
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Figure 8.4. Effects of ovariectomy with or without pair-feeding on expression of enzymes involved in fuel substrate metabolism. 

SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: ovariectomized rats pair-fed to 

SHAM rats. Bars with different letters are significantly different by Tukey’s post-hoc test following significant F value by one-way 

ANOVA. 
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Figure 8.5: Effects of ovariectomy with or without pair-feeding on changes in body weight and 

food intake. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access 

to food, OVX+PF: ovariectomized rats pair-fed to SHAM rats. *:significantly less than OVX+PF 

and OVX+AL, †: significantly less than only OVX+AL, §: significantly greater than both 

SHAM and OVX+PF. Significant differences determined by Bonferroni post-hoc test following 

significant F value by one-way ANOVA.   
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Figure 8.6: Effects of ovariectomy with or without pair-feeding on concentrations of 

docosahexaenoic acid and n-6 docosapentaenoic acid in hepatic phospholipids fractions. 

Columns with a different letter are significantly different by tukey’s post-hoc test following 

significant F-value by one-way ANOVA. SHAM: sham-operated rats, OVX+AL: 

ovariectomized rats with ad libitum access to food, OVX+PF: ovariectomized rats pair-fed to 

SHAM rats.    
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Figure 8.7: Effects of ovariectomy with or without pair-feeding on hepatic and plasma 

phospholipid and triacylglycerol concentrations.  Columns with a different letter are significantly 

different by Tukey’s post-hoc test following significant F-value by one-way ANOVA.  SHAM: 

sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. 
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Table 8.1: Effects of ovariectomy with or without pair-feeding on resting metabolic 

measurements 

Metabolic SHAM OVX+AL OVX+PF 

VO2 (ml/kg/hr) 1697 ± 185 1565 ± 193 1504 ± 117 

VCO2 (ml/kg/hr) 1687 ± 207 1578 ± 175 1448 ± 118 

RER 0.992 ± 0.022
ab

 1.011 ± 0.028
a
 0.958 ± 0.001

b
 

Energy Expenditure    

kcal/hr 1.5 ± 0.1 1.8 ± 0.2 1.7 ± 0.1 

total 24 hr kCal 36 ± 3 44 ± 6 40 ± 2 

Activity    

Total activity counts 20758 ± 3615 21160 ± 3903 22000 ± 5050 

Body Temperature    

high 24.6 ± 0.3 25.1 ± 0.3 25.4 ± 0.8 

low 23.3 ± 0.4 23.6 ± 0.2 23.7 ± 0.3 

average 24.2 ± 0.2
a
 24.5 ± 0.1

ab
 24.7 ± 0.3

b
 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad 

libitum access to food, OVX+PF: ovariectomized rats pair-fed to SHAM rats, RER: respiratory 

exchange ratio. Values with a different letter superscript are significantly different by Tukey’s 

post hoc test following significant F value by one-way ANOVA. 
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Table 8.2: Effects of ovariectomy with or without pair-feeding on fatty acid concentration of 

hepatic phospholipids  

 

SHAM OVX+AL OVX+PF 

 μg/g liver 

C 16:0 2092 ± 496 2351 ± 270 2366 ± 354 

C 18:0 4021 ± 484 3938 ± 467 3927 ± 982 

SFA 6712 ± 1102 6962 ± 811 6954 ± 1472 

C 16:1 65 ± 36 70 ± 14 100 ± 41 

C 18:1n-7 275 ± 33 312 ± 44 300 ± 51 

C 18:1n-9 478 ± 347 392 ± 35 496 ± 143 

MUFA 862 ± 420 830 ± 87 947 ± 210 

C 18:2n-6 1571 ± 250 1731 ± 183 1696 ± 330 

C 18:3n-6 19 ± 7 22 ± 5 23 ± 6 

C 20:2n-6 29 ± 9 35 ± 5 32 ± 6 

C 20:3n-6 43 ± 9
a
 47 ± 6

ab
 56 ± 9

b
 

C 20:4n-6 3095 ± 365 3438 ± 397 3334 ± 722 

C 22:4n-6 33 ± 9 39 ± 7 33 ± 9 

C 22:5n-6 19 ± 9 14 ± 3 19 ± 8 

N-6 PUFA 4825 ± 664 5327 ± 575 5194 ± 1064 

C 18:3n-3 16 ± 3 17 ± 4 16 ± 6 

C 20:5n-3 26 ± 8 22 ± 4 21 ± 12 

C 22:5n-3 69 ± 11
a
 89 ± 11

b
 85 ± 13

ab
 

C 22:6n-3 832 ± 153 828 ± 109 856 ± 205 

N-3 PUFA 943 ± 165 956 ± 119 978 ± 230 

PUFAs 5768 ± 813 6283 ± 681 6172 ± 1267 

HUFAs 4117 ± 536 4477 ± 510 4404 ± 946 

N-6/N-3 5.2 ± 0.5 5.6 ± 0.4 5.4 ± 0.6 

HUFA Score 22 ± 2 21 ± 1 22 ± 2 

Total 13655 ± 2387 14355 ± 1596 14486 ± 3032 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad 

libitum access to food, OVX+PF: ovariectomized rats pair-fed to SHAM rats. SFA: saturated 

fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA. Values 

with a different letter superscript are significantly different by Tukey’s post hoc test following 

significant F value by one-way ANOVA. 
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Table 8.3: Effects of ovariectomy with or without pair-feeding on fatty acid concentration of 

plasma phospholipids 

 SHAM OVX+AL OVX+PF 

 μg/ml plasma 

C 16:0 263 ± 50 389 ± 54 405 ± 66 

C 18:0 431 ± 122 500 ± 45 453 ± 70 

SFA 770 ± 183 980 ± 113 945 ± 122 

C 16:1 7 ± 3 9 ± 2 11 ± 5 

C 18:1n-7 19 ± 5 25 ± 5 24 ± 4 

C 18:1n-9 48 ± 11 60 ± 13 77 ± 19 

MUFA 87 ± 20 110 ± 18 128 ± 27 

C 18:2n-6 172 ± 49 254 ± 42 278 ± 52 

C 18:3n-6 2 ± 1 3 ± 1 2 ± 1 

C 20:2n-6 2 ± 1 3 ± 1 3 ± 1 

C 20:3n-6 4 ± 1 6 ± 1 7 ± 1 

C 20:4n-6 321 ± 108 412 ± 55 362 ± 62 

C 22:4n-6 3 ± 1 4 ± 1 4 ± 1 

C 22:5n-6 1.2 ± 0.7 1.6 ± 0.4 1.7 ± 0.5 

N-6 PUFA 506 ± 160 684 ± 98 659 ± 116 

C 18:3n-3 0.6 ± 0.4 1.2 ± 0.5 1.1 ± 0.2 

C 20:5n-3 1.7 ± 0.9 1.4 ± 0.5 1.2 ± 0.2 

C 22:5n-3 6 ± 2 9 ± 2 8 ± 2 

C 22:6n-3 49 ± 15 63 ± 10 58 ± 14 

N-3 PUFA 57 ± 18 75 ± 13 69 ± 16 

PUFAs 563 ± 177 759 ± 111 728 ± 131 

HUFAs 386 ± 128 497 ± 68 443 ± 79 

N-6/N-3 9.0 ± 0.9 9.2 ± 0.5 9.7 ± 1 

HUFA Score 15 ± 1 15 ± 1 15 ± 1 

Total 1466 ± 387 1899 ± 242 1858 ± 272 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad 

libitum access to food, OVX+PF: ovariectomized rats pair-fed to SHAM rats. SFA: saturated 

fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA. Values 

with a different letter superscript are significantly different by Tukey’s post hoc test following 

significant F value by one-way ANOVA. 
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CHAPTER 9 

NO DIFFERENCES IN Δ6-DESATURASE AND HEPATIC DHA IN ESTROGEN 

RECEPTOR α KNOCKOUT MICE COMPARED WITH WILD-TYPE 

INTRODUCTION 

 Estradiol supplementation of ovariectomized rats increases DHA concentration and Δ6-

desaturase expression.  It is likely that this effect of 17β-estradiol is mediated by hepatic ERα, as 

this is the estrogen receptor most highly expressed in the liver (Pelletier 2000) and has been 

shown to have effects on hepatic fat and carbohydrate metabolism (Dupont et al. 2000; Matic et 

al. 2013), while estrogen receptor β has no effect (Dupont et al. 2000).  DHA tissue content and 

metabolism in the ERα-knockout mice (ERαKO) (Lubahn et al. 1993) has not been examined 

previously and can provide insights into the regulation of DHA synthesis by 17β-estradiol.  The 

goal of the present study was to examine the differences in hepatic and plasma DHA and on the 

hepatic expression of DHA biosynthesis enzymes between ERα-KO and wild-type controls. 

METHODS 

 ERαKO (strain name: B6.129P2-Esr1
tm1Ksk

/J) and wild-type controls (strain name: 

B6.129PF2/J) were obtained from Jackson Labs (Bar Harbour, ME, USA) at 5 weeks of age and 

housed individually in the central animal facility in the University of Waterloo with ad libitum 

access to food and water (n = 6 for each genotype).  Mice were sacrificed on post-natal day 65 by 

cervical dislocation after body weight was assessed, and 24-hour food intake was measured the 

day prior to sacrifice.  Livers were quickly excised and snap-frozen in liquid nitrogen and stored 

at -80°C until biochemical analysis. 

 Fatty acid composition of liver total lipids, PL, TAG, PC, PE, PI, and PS were 

determined by gas chromatography (Stark et al. 2005b) after neutral lipid (Christie 2003) or 
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phospholipid TLC (Chen et al. 2011) following extraction of lipids from tissue (Folch et al. 

1957).  22:3n-3 internal standard was added to PI and PS fractions after TLC. 

 Antibodies used for western blot analysis were Δ6-desaturase (sc-98480, 1:500 dilution 

in 1% skim milk), Δ5-desaturase (Santa Cruz Biotechnology, sc-101953, 1:100 dilution v/v in 

BSA), elovl2 (Santa Cruz Biotechnology, sc-54874, 1:250 dilution v/v in BSA), elovl5 (Santa 

Cruz Biotechnology, sc-54888, 1:250 dilution v/v in milk), MFP2 (Santa Cruz Biotechnology sc-

135045, 1:200 v/v in milk), and ERα (Abcam, ab16460, v/v 1:1000 in milk).  Chemiluminescent 

detection was performed by ECL prime (GE Healthcare). 

 Statistical comparison between the ERαKO and wild-type mice was done using 

independent samples T-Test.   

 

RESULTS 

 No differences were observed in the food intake (3.2 ± 0.6 g/d for ERαKO and 3.0 ± 0.2 

g/d for wild-type) or body weight (18.8 ± 0.6 g for ERαKO and 18.0 ± 2.4 g for wild-type) 

between ERαKO and wild-type mice.  ERαKO mice had 40% higher expression of elovl5 

compared with wild-type controls, with no differences in Δ6-desaturase, Δ5-desaturase, elovl2, 

and MFP-2 (Figure 9.1).  No differences were observed in the content of PPARα and nuclear 

and reticular forms of SREBP1c (Figure 9.2). 

 The concentration of DHA in liver total lipids, PL, and TAG was not different between 

ERαKO and wild-type mice (Table 9.1).  DHA was lower in PE of ERαKO compared to wild-

type mice, which corresponded to a decreased n-6/n-3 PUFA ratio and a higher percentage of 

HUFA as n-3 HUFA (Table 9.2).  No differences in DHA concentration in PC, PS, and PI were 

observed between ERαKO and wild-type mice. Higher 20:3n-6 was found in total lipids, PC, and 
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PE, and PI in ERαKO mice.  Higher concentrations of EPA and DPAn-3 were found in total 

lipids, PL, TAG, PE and PC of ERαKO compared to wild-type mice.  Higher concentrations of 

16:1n-7 and 18:1n-7 were observed in hepatic total lipids, TAG, PE, and PC 

DISCUSSION 

 This study demonstrates that there are no differences in the hepatic expression of Δ6-

desaturase between ERαKO and wild-type mice, corresponding to no differences between these 

animals in hepatic DHA concentrations, except for a 15% decrease in the PE fraction.  ERαKO 

mice did exhibit higher expression of elovl5, corresponding to higher concentrations of DPAn-3, 

EPA, and 20:3n-6 in various lipid fractions, suggesting that these mice have altered PUFA 

metabolism.  The higher concentrations of 16:1n-7 and 18:1n-7 indicate that production of n-7 

MUFA is higher in ERαKO mice, possibly through higher expression of stearoyl-CoA desaturase 

1 (SCD1) that has been seen previously in these mice (Bryzgalova et al. 2006). 

 The lack of effect of ablation of ERα on Δ6-desaturase and DHA may be due to residual 

activity of ERα associated with this knockout.  This ERαKO mouse is generated by insertion of a 

neomycin resistance gene 280 base pairs downstream of the transcription start site of exon 2 of 

the ERα gene (Korach et al. 1996; Lubahn et al. 1993), and alternative splicing has been shown 

to result in transcription and translation of 2 mutant genes, one of which still contains the 

hormone-binding domain and binds to endogenous 17β-estradiol (Couse et al. 1995).  This 

variant has approximately 8% of the genomic activity relative to wild-type ERα (Couse et al. 

1995), however the possible non-genomic actions of this variant have not been investigated.  

Exposure of mice that express only the hormone-binding domain of ERα anchored to the cell 

membrane (Pedram et al. 2009) to an ERα agonist induces lipid catabolism that is absent in a 

mouse that does not express this domain (Pedram et al. 2013), suggesting that this domain is 
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sufficient to mediate the non-genomic effects of 17β-estradiol on hepatic lipid metabolism.  

Importantly, plasma concentrations of 17β-estradiol are increased approximately 4-fold in 

ERαKO compared to wild-type mice (Couse et al. 1995), suggesting that the non-genomic 

actions of ERα may be higher in ERαKO mice.  However, the degree of hepatic non-genomic 

ERα signaling present in these animals is not characterized. 

 Therefore, the ERαKO model utilized presently is likely deficient in genomic ERα 

signaling only.  It can only be concluded that removal of genomic ERα activity does not affect 

Δ6-desaturase expression and only has minor effects on cellular DHA concentrations, as it is 

possible that the non-genomic actions of ERα continue to affect these measures.  Future work 

should utilize ERαKO mice that do not express ligand binding domain (Dupont et al. 2000) to 

estimate the effects of fully functional ERα ablation on Δ6-desaturase expression and DHA 

concentration.  A possible mechanism for non-genomic ERα signalling in regulation of Δ6-

desaturase expression and DHA synthesis is detailed in Figure 9.3, based on previous work 

showing increased activation of SREBP1c via phosphoinositide-3 kinase (PI3K) – Akt activity 

(Krycer et al. 2010), and ERα activates PI3K-Akt by a non-genomic mechanism (Marino et al. 

2003).  Conversely, the effects on MUFA metabolism observed presently that are likely due to 

increased SCD1 expression that has been observed previously (Bryzgalova et al. 2006) are due to 

the genomic effects of ERα, indicating that ERα may have a direct inhibitory role in the 

expression of this enzyme.  

 The higher elovl5 expression in ERα-KO relative to wild-type mice is therefore due to 

the removal of the genomic effects of ERα, indicating that DNA binding of ERα either directly 

or indirectly regulates elovl5.  There is a putative estrogen response element 3.7 kb upstream 

from the transcription start site of elovl5 (Bajic et al. 2013), suggesting that ERα may inhibit 
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expression from this site.  However, an ERE was also identified 0.6 kb upstream of the Δ6-

desaturase promoter and we did not observe significant differences in Δ6-desaturase expression.  

Characterization of the interaction of ERα with the promoter regions of these genes is required. 

 The lack of a difference in SREBP1c between ERαKO and wild-type mice is surprising, 

as reduction of circulating estradiol via ovariectomy increases SREBP1c mRNA, and estradiol 

supplementation restores it (Paquette et al. 2008).  Similarly, SREBP1c cleavage is increased in 

mice lacking a functional ERα ligand-binding domain (Pedram et al. 2013).  This lack of effect 

in the present study is likely due to the presence of active ligand-binding domain of the estrogen 

receptor, as it has been shown that this domain alone is sufficient to restore SREBP1c cleavage 

in mice (Pedram et al. 2013).  Similarly, hepatic PPARα expression is typically decreased 

following ovariectomy (Paquette et al. 2008), indicating a regulatory role of hepatic ERα 

signaling on PPARα.  Though not previously investigated, the presence of the ligand-binding 

domain may explain the lack of an effect of the ablation of genomic action of ERα on PPARα 

expression in the present study. 

 It has been shown previously that these ERαKO mice have increased hepatic mRNA for 

stearoyl-CoA desaturase 1 and elovl3 (Bryzgalova et al. 2006), however this effect does not 

appear to translate into increased hepatic lipid storage, as there were no differences in hepatic 

total lipids or triacylglycerols in the present study.  However, higher levels of n-7 MUFA suggest 

that SCD1 and/or SFA/MUFA elongases such as elongase 3 or elongase 6 (Jakobsson et al. 

2006) are more active in the ERαKO mice, and the expression of these enzymes should be 

assessed. 

Previous work has also shown 20% higher body weight in this strain of ERαKO mouse 

relative to wild-type controls at the same age as the present study (Bryzgalova et al. 2006) which 
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was not observed presently.  This may be due to slightly different genetic backgrounds resulting 

from different suppliers of mice.  

CONCLUSIONS 

 The elimination of genomic ERα signalling does not affect Δ6-desaturase and exerts mild 

effects on cellular DHA concentration that are limited to the PE fraction.  Non-genomic 

mechanisms may still be present, and are possibly regulating Δ6-desaturase expression and DHA 

concentration.  However, elovl5 expression was increased, and several n-3 and n-6 elovl5 

products were higher in ERαKO compared to wild-types, suggesting that genomic ERα activity 

regulates this enzyme.  Further research using a full ERα ablation is required.  
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Figure 9.1: Expression of enzymes involved in DHA biosynthesis in wild-type and estrogen 

receptor α-knockout mice. ERα-KO: estrogen receptor α-knockout, MFP-2: multifunctional 

protein 2. *Significantly different between groups by independent samples T-test. 
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Figure 9.2: Expression of transcription factors affecting expression of enzymes involved in 

DHA biosynthesis in wild-type and estrogen receptor α-knockout mice. ERα-KO: estrogen 

receptor α-knockout, PPARα: peroxisome proliferator activated receptor α, SREBP1c: sterol 

response element binding protein 1c. 
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Figure 9.3: Potential non-genomic regulation of DHA synthesis by ERα involving Akt-mediated 

increase in SREBP1c action.  ER: estrogen receptor, PI3K: phosphoinositide-3 kinase, PI: 

phosphatidylinositol, PDK1: phosphoinositide dependent kinase 1, SREBP1c: sterol response 

element binding protein 1c, SCAP: SREBP1c cleavage activating protein, FADS2: fatty acid 

desaturase 2, the Δ6-desaturase gene
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Table 9.1: Fatty acid concentration of total lipids, phospholipids, and triacylglcyerols of estrogen receptor α-knockout and wild-type 

mice. 

 
Total Lipids Phospholipids Triacylglycerols 

 

Wild-Type ERα-KO Wild-Type ERα-KO Wild-Type ERα-KO 

Fatty Acid μg/g liver 

C 16:0 28397 ± 3275 28935 ± 7057 6947 ± 1107 6504 ± 2512 3599 ± 1076 3801 ± 844 

C 18:0 11796 ± 1276 11019 ± 1285 5753 ± 1047 5174 ± 1654 457 ± 127 389 ± 88 

SFA 42868 ± 3618 42408 ± 6571 13216 ± 2230 12185 ± 4354 4272 ± 1237 4412 ± 891 

C 16:1 1412 ± 289 2941 ± 1321* 178 ± 28 248 ± 82 267 ± 90 574 ± 120* 

C 18:1n-7 1857 ± 309 2710 ± 914 390 ± 60 535 ± 166 264 ± 70 375 ± 117 

C 18:1n-9 20208 ± 1476 24176 ± 8494 2050 ± 588 2006 ± 541 3783 ± 889 4771 ± 929 

MUFA 20798 ± 8954 30688 ± 10638 2809 ± 610 3143 ± 836 4396 ± 1063 5822 ± 1153 

C 18:2n-6 35441 ± 6636 34452 ± 11056 5036 ± 795 4781 ± 1640 5793 ± 1759 5644 ± 1557 

C 18:3n-6 659 ± 132 526 ± 198 50 ± 6 44 ± 28 115 ± 34 89 ± 41 

C 20:2n-6 347 ± 70 355 ± 73 73 ± 12 64 ± 16 38 ± 20 45 ± 9 

C 20:3n-6 895 ± 173 1345 ± 267* 258 ± 71 374 ± 125 66 ± 36 107 ± 19 

C 20:4n-6 12224 ± 1627 12038 ± 1038 5071 ± 671 4847 ± 1550 269 ± 80 254 ± 70 

C 22:4n-6 302 ± 44 308 ± 62 46 ± 8 50 ± 21 44 ± 15 42 ± 8 

C 22:5n-6 200 ± 58 140 ± 22 46 ± 27 31 ± 9 26 ± 9 16 ± 4 

N-6 PUFA 50069 ± 7760 49165 ± 10836 10581 ± 1533 10191 ± 3328 6351 ± 1919 6197 ± 1673 

C 18:3n-3 1115 ± 319 1571 ± 766 47 ± 4 55 ± 18 217 ± 83 314 ± 82 

C 20:5n-3 345 ± 76 657 ± 162* 65 ± 24 107 ± 28* 39 ± 11 83 ± 20* 

C 22:5n-3 486 ± 77 775 ± 236* 89 ± 21 120 ± 46 58 ± 16 102 ± 27* 

C 22:6n-3 10639 ± 1259 9628 ± 1171 3699 ± 721 3170 ± 1249 434 ± 114 414 ± 103 

N-3 PUFA 12585 ± 1402 12631 ± 2185 3900 ± 766 3452 ± 1332 748 ± 215 913 ± 228 

PUFA 62654 ± 8544 61796 ± 12935 14481 ± 2188 13643 ± 4638 7099 ± 2124 7110 ± 1897 

HUFA 25092 ± 3032 24891 ± 2022 9275 ± 1429 8699 ± 2947 936 ± 248 1018 ± 228 

N-6/N-3 4.0 ± 0.6 3.9 ± 0.3 2.7 ± 0.3 3.0 ± 0.3 8.5 ± 0.8 6.8 ± 0.4* 

HUFA Score 46 ± 2 44 ± 4 41 ± 3 39 ± 3 57 ± 4 59 ± 3 

Total 127521 ± 20779 136511 ± 29700 31355 ± 4754 29433 ± 9828 16169 ± 4514 17823 ± 3705 

Data is mean ± SD. *Significantly different from wild-type by independent samples T-test. ERα-KO: estrogen receptor α-knockout 

mice, SFA: saturated fatty acids, MUFA, monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated 

fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA.  
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Table 9.2: Fatty acid concentration of phospholipid fractions from livers of estrogen receptor α-knockout and wild-type mice. 

 
Phosphatidylcholine Phosphatidylethanolamine Phosphatidylinositol Phosphatidylserine 

 
Wild-Type ERα-KO Wild-Type ERα-KO Wild-Type ERα-KO Wild-Type ERα-KO 

Fatty Acid μg/g liver 

C 16:0 4618 ± 264 4715 ± 419 1875 ± 170 1743 ± 63 375 ± 55 339 ± 66 378 ± 59 405 ± 45 

C 18:0 3056 ± 327 2892 ± 418 2669 ± 216 2675 ± 105 1543 ± 109 1403 ± 175 1100 ± 81 1101 ± 85 

SFA 8350 ± 521 8077 ± 693 4926 ± 370 4700 ± 153 2001 ± 171 1823 ± 249 1692 ± 114 1747 ± 125 

C 16:1n-7 88 ± 21 148 ± 32* 33 ± 10 59 ± 11* 12 ± 4 9 ± 6 12 ± 5 17 ± 3 

C 18:1n-7 203 ± 25 315 ± 95* 82 ± 16 129 ± 38* 23 ± 22 18 ± 8 13 ± 10 15 ± 6 

C 18:1n-9 980 ± 56 1281 ± 200* 859 ± 260 849 ± 118 174 ± 95 223 ± 89 120 ± 57 151 ± 127 

MUFA 1390 ± 60 1891 ± 332* 1088 ± 280 1152 ± 149 283 ± 112 322 ± 90 220 ± 70 258 ± 134 

C 18:2n-6 2932 ± 221 3097 ± 309 647 ± 69 635 ± 62 91 ± 7 97 ± 10 94 ± 19 106 ± 53 

C 18:3n-6 33 ± 17 36 ± 10 6 ± 3 10 ± 9 4 ± 1 5 ± 1 5 ± 2 5 ± 2 

C 20:2n-6 25 ± 8 34 ± 10 11 ± 3 11 ± 3 3 ± 1 3 ± 2 3 ± 3 4 ± 2 

C 20:3n-6 152 ± 41 246 ± 75* 33 ± 8 48 ± 14* 14 ± 8 24 ± 7* 14 ± 1 15 ± 4 

C 20:4n-6 2022 ± 106 1869 ± 303 1437 ± 133 1662 ± 305 574 ± 45 563 ± 58 140 ± 22 131 ± 24 

C 22:4n-6 12 ± 6 11 ± 5 22 ± 6 17 ± 7 7 ± 4 8 ± 6 10 ± 2 10 ± 3 

C 22:5n-6 35 ± 12 29 ± 10 36 ± 7 29 ± 9 15 ± 7 12 ± 5 20 ± 5 19 ± 7 

N-6 PUFA 5239 ± 290 5351 ± 656 2222 ± 169 2439 ± 373 729 ± 51 734 ± 76 306 ± 38 309 ± 71 

C 18:3n-3 24 ± 6 33 ± 5* 9 ± 5 10 ± 3 8 ± 3 6 ± 2 8 ± 2 8 ± 2 

C 20:5n-3 28 ± 10 39 ± 15 22 ± 8 42 ± 11* 7 ± 4 6 ± 2 4 ± 2 6 ± 2 

C 22:5n-3 33 ± 16 52 ± 11* 38 ± 9 43 ± 8 7 ± 3 12 ± 5 8 ± 3 10 ± 3 

C 22:6n-3 1476 ± 167 1412 ± 170 1599 ± 152 1368 ± 179* 26 ± 1 24 ± 5 110 ± 7 112 ± 10 

N-3 PUFA 1561 ± 185 1536 ± 180 1661 ± 159 1463 ± 189 51 ± 8 47 ± 7 130 ± 9 135 ± 11 

PUFA 6800 ± 349 6887 ± 786 3883 ± 242 3903 ± 512 787 ± 49 781 ± 77 436 ± 41 445 ± 68 

HUFA 3758 ± 220 3659 ± 495 3180 ± 225 3209 ± 475 656 ± 53 649 ± 69 306 ± 29 303 ± 30 

N-6/N-3 3.4 ± 0.5 3.5 ± 0.4 1.3 ± 0.2 1.7 ± 0.2* 15 ± 3 16 ± 2 2.4 ± 0.3 2.3 ± 0.7 

HUFA Score 41 ± 3 41 ± 4 52 ± 3 45 ± 3* 6 ± 1 6 ± 1 40 ± 3 42 ± 4 

Total 17009 ± 901 17287 ± 1646 10296 ± 705 10103 ± 654 3197 ± 283 2981 ± 265 2533 ± 226 2578 ± 273 

Data is mean ± SD. *Significantly different from wild-type by independent samples T-test. ERα-KO: estrogen receptor α-knockout 

mice, SFA: saturated fatty acids, MUFA, monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated 

fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA.
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CHAPTER 10 

GENERAL DISCUSSION 

Due to the very low intakes of DHA in North America, an improved understanding of 

factors affecting DHA status is required, particularly considering the importance of DHA in 

neurological development (Brenna 2011) and the sensitive dose-response between DHA status 

and risk of sudden cardiac death (Mozaffarian et al. 2006).  Female sex (Lohner et al. 2013), 

pregnancy (Stark et al. 2005a), and 17β-estradiol status (Giltay et al. 2004b) are all positively 

associated with blood DHA levels. This higher DHA is not due to higher dietary n-3 PUFA 

intake, indicating that higher synthesis of DHA from other n-3 PUFA is likely occurring.  

Accordingly, the primary purpose of this thesis was to examine differences in the expression of 

DHA biosynthesis enzymes between sexes and during pregnancy, and to evaluate the potential 

role of 17β-estradiol in mediating these differences in rodent models.   

The higher hepatic Δ6-desaturase expression and DHA concentrations observed presently 

in female relative to males, in pregnant relative to non-pregnant rats, and in rats supplemented 

with 17β-estradiol indicates that 17β-estradiol increases the DHA biosynthesis capacity of rats, 

as hypothesized.  Higher Δ6-desaturase expression in pregnancy strongly suggests that this is a 

mechanism to provide DHA to a fetus, the importance of which is indicated by delayed neural 

development in pre-term infants not supplemented with DHA (Koletzko et al. 2001) and spatial 

and cognitive impairments resulting chronic in utero deprivation of DHA in rats (Lim et al. 

2005b).  It is likely that this increase in DHA production is sufficient for fetal neurodevelopment, 

as several interventions increasing DHA intake of pregnant mothers have failed to result in any 

gains in cognitive and visual function besides those provided by baseline maternal DHA supply 

(Makrides et al. 2010; Malcolm et al. 2003; Smithers et al. 2011; Stein et al. 2012).  Positive 
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benefits for fetal/infant neurodevelopment may result from higher dosages of DHA than have 

previously been assessed (200-400 mg), as the increase in maternal blood DHA resulting from 

these dosages may be masked by the natural increase in plasma DHA that occurs during 

pregnancy as a result of increased Δ6-desaturase expression.  

The dose-response of DHA synthesis and Δ6-desaturase is not clear. Supplementing rats 

with 17β-estradiol or 17β-estradiol+progesterone resulted in 620% and 420% higher plasma 17β-

estradiol, respectively, associated with significantly higher Δ6-desaturase expression and hepatic 

and plasma DHA.  Surprisingly, ovariectomy in both Chapter 7 and Chapter 8 did not reduce 

DHA levels as expected, and Δ6-desaturase was actually higher in ovarictomized rats in 

Chapter 7 which was not observed in Chapter 8.  It is likely that the effects of ovariectomy on 

17β-estradiol concentrations was not large enough to elicit effects on DHA metabolism, as 

ovariectomy resulted in 17β-estradiol concentrations that were only 40% (Chapter 7) and 33%  

(Chapter 8) lower, respectively, compared with controls. Postmenopausal women have plasma 

17β-estradiol levels less than 10% those of premenopausal women (Burger 1999), and male 17β-

estradiol is 15% and 27% of female estradiol in the follicular and luteal phase, respectively 

(Eldrup et al. 1987), suggesting that these differences in 17β-estradiol may be sufficient to elicit 

changes in Δ6-desaturase and DHA status.  A dose-response of 17β-estradiol on DHA synthesis 

should be determined.  

It is possible that other sex hormones effect DHA status as well, in addition to 17β-

estradiol. For example, testosterone supplementation of female-to-male transsexuals results in 

decreased serum cholesteryl ester DHA (Giltay et al. 2004b), and progesterone has been shown 

to correlate with hepatic Δ6-desaturase mRNA in pregnancy (Childs et al. 2012).  All three 

hormones are increased during pregnancy (O'Leary et al. 1991), and males have higher 
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testosterone and lower 17β-estradiol and progesterone relative to females (Eldrup et al. 1987), 

making interpretation of the effects of these hormones on DHA metabolism difficult.  The effects 

of all three sex hormones on DHA synthesis should be assessed in male and female animals 

using hormone supplementation of gonadectomised rats.  In addition, hepatocyte cell culture 

would allow the assessment of these hormones without any extra-hepatic effects, as it has been 

shown that a liver-specific knockout of ERα displays markedly different hepatic lipid 

metabolism compared to whole body ERα knockout (Matic et al. 2013). 

The mechanism underlying the positive effect of 17β-estradiol on DHA synthesis remains 

unclear, but does not appear to be mediated by the DHA binding activity of ERα as demonstrated 

by the lack of an effect of disruption of this activity of ERα on hepatic DHA levels and Δ6-

desaturase, contrary to our hypothesis.  Also, changes in the expression of PPARα and SREBP1c 

do not appear to directly mediate the effects of 17β-estradiol on DHA synthesis, particularly 

considering PPARα expression was lower in female as compared with male liver. Future studies 

examining the role of non-genomic ERα signalling mechanisms as well as the possible influence 

of ERβ and GPER on DHA synthesis and Δ6-desaturase expression are required. 

Though conducted in animal models, the studies of this thesis can most likely be applied 

to human populations as well, based on the occurrence of similar changes in DHA status 

resulting from changes in 17β-estradiol.  Differences in DHA production between humans and 

rats are difficult to determine due to a lack of consensus regarding DHA synthesis rates in 

humans, with estimates of fractional conversion of ALA to DHA ranging from 0.2-4% (Emken 

et al. 1989; Pawlosky et al. 2001), roughly corresponding to 0.2-3.1 μmol/d/kg body weight 

based on daily ALA intake of 1500 mg (Gebauer et al. 2006) in a 70kg individual. On the other 

hand, rat hepatic DHA synthesis has been directly estimated following infusion of stable isotope-
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labelled ALA as 31 μmol/day/kg body weight (Gao et al. 2009a), although this estimate in rats 

does not account for loss of label during digestion/absorption.  Nevertheless, similar changes in 

DHA status in response to 17β-estradiol suggest that a similar adaptive mechanism exists in both 

species, although the magnitude of Δ6-desaturase response to 17β-estradiol in humans should be 

assessed.   

Similarly, the PUFA composition of the rodent diet used in this work in relation to North 

American dietary intakes suggests that these conclusions can be applied to human populations as 

well. While the amount of total PUFA is higher in this work (approximately 53% of total fatty 

acids in the rat chow, and 21% in intake estimates of North Americans), the ratio of n-6 to n-3 

PUFA is 10:1 for both (Ervin et al. 2004; Kitson et al. 2012). The proportions of EPA and DHA 

are higher in the present work (0.29 and 0.24% of total fatty acids, respectively) as compared 

with the North American diet (0.04 and 0.1% of total fatty acids, respectively). However, it is 

unlikely that this higher n-3 PUFA content would confound the findings of the present thesis as 

sex differences in hepatic and plasma DHA were found that were similar to a previous study in 

which n-3 PUFA intakes were much lower [no detectable EPA or DHA, 0.5% of fatty acids as 

ALA, (Extier et al. 2010)].  In rats, sex differences in DHA synthesis are present when DHA is 

not consumed or consumed at low levels which is consistent with low intakes in North 

Americans (Denomme et al. 2005).  However, evidence in humans suggests that the sex 

difference in blood DHA is not present when n-3 HUFA intakes are very high (Lohner et al. 

2013), and sex differences in DHA synthesis disappear when subjects are fed a fish-based diet as 

compared with a beef-based diet {Pawlosky, 2003 5269 /id}. Further study of variable dietary n-

3 HUFA intakes on the effects of sex, pregnancy, and 17β-estradiol is warranted to determine the 
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specific intake where sex difference disappear and the mechanisms involved, as this may be 

relevant to DHA requirements.  

The studies in this thesis have some limitations, including a lack of direct measurement 

of DHA synthesis. Measures of microsomal Δ6-desaturase activity or whole-body DHA 

synthesis using isotopically labelled fatty acids would provide clear evidence of changes in DHA 

metabolism.  In addition, it is not known if other mechanisms regulate DHA levels in response to 

17β-estradiol besides the expression of biosynthetic enzymes. Full transcriptome microarray may 

indicate metabolic pathways that are altered in response to the hormonal factors researched in 

this thesis, and may present alternative hypotheses for the regulation of DHA metabolism by 

17β-estradiol. Similarly, the assessment of phospholipid acyl species via HPLC-mass 

spectrometry would provide insight into phospholipid remodelling activities that may mediate 

the altered accretion of DHA.  

The results of this thesis work expand our understanding of the factors affecting DHA 

synthesis, particularly in situations of altered 17β-estradiol status.  The mechanism underlying 

higher DHA in women relative to men and in pregnant relative to post-partum women appears to 

be differences in the circulating concentration of 17β-estradiol, which increases the expression of 

Δ6-desaturase and the hepatic and plasma concentrations of DHA, likely explaining changes in 

DHA status in situations of altered 17β-estradiol status.  Future DHA dietary recommendations 

tailored to an individual’s ability to synthesize DHA based on their 17β-estradiol status are 

possible.  For example, postmenopausal women may require more DHA than premenopausal 

women to attain the same health benefits.  In addition, a greater understanding of DHA synthesis 

may lead to greater DHA yields in agri- and aquaculture. Concerns have been raised regarding 

the environmental sustainability of current dietary DHA recommendations on the basis of 
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declining fish stocks (Jenkins et al. 2009), and research on factors to increase the synthesis of 

DHA has the potential to alleviate this limitation.  The finding of a biochemical mechanism to 

provide DHA to a developing fetus further reinforces the importance of this fatty acid in fetal 

neurodevelopment, and indicates the essentiality of providing DHA to pre-term infants or any 

other perinatal population sensitive to DHA deficiency.  
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Supplementary Data for Chapter 5: 

 

Tissue-specific sex differences in Δ6-desaturase expression and DHA concentration in rats 

fed a standard chow diet 
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Table A1.1: Enzyme and transcription factor protein expression in heart and brain of male 

and female rats 

 Heart Brain 

Enzyme /transcription factor Males Females Males Females 

 Arbitrary units 

Acyl-CoA Oxidase 1.0 ± 0.1 1.1 ± 0.2 1.0 ± 0.1 0.9 ± 0.1* 

Δ6-desaturase 1.0 ± 0.3 0.9 ± 0.3 1.0 ± 0.2 1.0 ± 0.3 

Δ5-desaturase 1.0 ± 0.2 0.9 ± 0.1 1.0 ± 0.3 0.9 ± 0.4 

Elovl 2 1.0 ± 0.2 1.1 ± 0.1 1.0 ± 0.4 0.9 ± 0.2 

Elovl 5 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 0.8 ± 0.3 

Peroxisome proliferator 

activated receptor 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 1.1 ± 0.2 

Sterol response element binding 

protein 1c 1.0 ± 0.3 1.2 ± 0.2 1.0 ± 0.2 1.3 ± 0.4 

Data is mean ± SD in arbitrary units. *: significantly different from males by independent 

samples T-test. 
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Table A1.2: Fatty acid concentration of triacylglycerol from liver, heart, and brain of male and female rats 

 

Liver Heart Brain 

 
µg fatty acid/g organ 

Fatty Acid Females Males Females Males Female Male 

16:0 701 ± 166 487 ± 194 544 ± 77 547 ± 153 371 ± 70 490 ± 91* 

18:0 117 ± 23 82 ± 16* 324 ± 72 382 ± 78 441 ± 188 443 ± 182 

Total SFA 846 ± 194 595 ± 220 934 ± 130 1022 ± 281 936 ± 274 1053 ± 252 

16:1 26 ± 11 15 ± 2* 18 ± 11 21 ± 9 23 ± 21 14 ± 15 

18:1n-7 49 ± 8 44 ± 15 57 ± 12 69 ± 22 16 ± 4 23 ± 7 

18:1n-9 436 ± 90 305 ± 98 272 ± 90 269 ± 79 78 ± 14 129 ± 46* 

Total MUFA 521 ± 109 378 ± 117 364 ± 120 382 ± 129 150 ± 10 201 ± 66 

18:2n-6 1044 ± 261 911 ± 318 385 ± 122 437 ± 119 40 ± 10 115 ± 85 

18:3n-6 29 ± 8 16 ± 2* 7 ± 2 12 ± 9 4 ± 3 5 ± 4 

20:2n-6 7 ± 1 11 ± 2* 12 ± 5 23 ± 13 8 ± 10 9 ± 5 

20:3n-6 8 ± 2 8 ± 3 14 ± 2 17 ± 14 7 ± 4 13 ± 10 

20:4n-6 234 ± 71 133 ± 45* 103 ± 22 104 ± 33 26 ± 3 31 ± 8 

22:4n-6 24 ± 7 24 ± 8 23 ± 13 33 ± 16 9 ± 7 12 ± 6 

Total n-6 PUFA 1345 ± 314 1106 ± 369 561 ± 145 686 ± 205 112 ± 34 210 ± 97 

18:3n-3 55 ± 23 44 ± 12 19 ± 8 28 ± 18 5 ± 3 7 ± 4 

20:5n-3 30 ± 14 25 ± 6 15 ± 5 14 ± 10 10 ± 6 10 ± 6 

22:5n-3 23 ± 6 30 ± 9 32 ± 7 48 ± 18 9 ± 3 13 ± 1 

22:6n-3 57 ± 16 50 ± 18 58 ± 10 68 ± 32 26 ± 11 35 ± 13 

Total n-3 PUFA 167 ± 48 151 ± 43 129 ± 26 177 ± 73 56 ± 23 81 ± 26 

Total PUFA 1512 ± 359 1257 ± 411 690 ± 156 863 ± 276 168 ± 57 291 ± 113 

Total Fatty Acids 2947 ± 667 2340 ± 674 2165 ± 399 2524 ± 587 1364 ± 271 1587 ± 384 

Data is mean ± SD. *: significantly different from females (p < 0.05). SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, 

PUFA: polyunsaturated fatty acids. 
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Table A1.3: Fatty acid concentrations of hepatic phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and 

phosphatidylinositol in male and female rats.  

 

Phosphatidylcholine Phosphatidylethanolamine Phosphatidylserine Phosphatidylinolsitol 

 μg fatty acid / g liver 

Fatty 

Acid Females Males Females Males Females Males Females Males 

C 16:0 1021 ± 85 1706 ± 69* 487 ± 60 624 ± 57* 28 ± 5 35 ± 8 32 ± 4 42 ± 11 

C 18:0 1944 ± 277 1552 ± 93* 1006 ± 88 962 ± 106 97 ± 17 93 ± 12 103 ± 16 110 ± 17 

SFA 3074 ± 347 3407 ± 182 1546 ± 153 1645 ± 153 145 ± 23 153 ± 18 173 ± 24 183 ± 30 

C 16:1 13.4 ± 1.5 21.7 ± 3.6* 4.1 ± 1.1 6.2 ± 1.2* 0.5 ± 0.2 0.9 ± 0.3 0.5 ± 0.3 0.7 ± 0.5 

C 18:1n-7 101 ± 17 227 ± 25* 42 ± 7 105 ± 10* 2.3 ± 0.5 3.5 ± 1.3 2.3 ± 0.7 3.8 ± 1.2* 

C 18:1n-9 146 ± 11 226 ± 22* 81 ± 10 156 ± 13* 10 ± 5 25 ± 15 27 ± 24 28 ± 41 

MUFA 272 ± 25 492 ± 50* 139 ± 17 282 ± 19* 17 ± 6 33 ± 17 34 ± 26 38 ± 43 

C 18:2n-6 698 ± 27 1112 ± 154* 216 ± 13 443 ± 80* 11 ± 3 13 ± 6 15 ± 5 23 ± 11 

C 18:3n-6 28 ± 5 22 ± 3 10 ± 2 11 ± 1 0.8 ± 0.1 1.1 ± 0.6 0.7 ± 0.1 0.7 ± 0.2 

C 20:2n-6 14 ± 2 42 ± 10* 6 ± 1 21 ± 4* 1.2 ± 0.3 1.4 ± 0.2 0.9 ± 0.2 1.5 ± 0.4 

C 20:3n-6 21 ± 5 24 ± 5 10 ± 2 11 ± 2 0.9 ± 0.3 0.8 ± 0.1 0.8 ± 0.6 2.2 ± 0.7* 

C 20:4n-6 1916 ± 295 2427 ± 101* 872 ± 90 1120 ± 123* 45 ± 11 50 ± 11 68 ± 11 82 ± 14 

C 22:4n-6 11 ± 1 10 ± 2 25 ± 2 22 ± 2* 1.6 ± 0.4 1.4 ± 0.4 0.7 ± 0.1 0.8 ± 0.3 

C 22:5n-6 9 ± 3 3 ± 1* 9 ± 2 4 ± 1* 0.9 ± 0.3 0.4 ± 0.2* 0.3 ± 0.4 0.3 ± 0.2 

N-6 2698 ± 328 3637 ± 240* 1149 ± 103 1632 ± 202* 62 ± 14 68 ± 17 86 ± 15 110 ± 24 

C 18:3n-3 7 ± 2 9 ± 1 4 ± 1 5 ± 1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.3 0.6 ± 0.2 

C 20:5n-3 15 ± 4 13 ± 3 12 ± 2 11 ± 4 0.5 ± 0.1 0.6 ± 0.2 0.4 ± 0.2 0.3 ± 0.1 

C 22:5n-3 48 ± 5 58 ± 4* 58 ± 5 71 ± 23* 2.4 ± 0.3 2.3 ± 0.8 1.2 ± 0.3 2.0 ± 0.6* 

C 22:6n-3 477 ± 87 317 ± 52* 530 ± 85 320 ± 111* 23 ± 6 15 ± 4* 6 ± 2 5 ± 1 

N-3 546 ± 89 398 ± 51* 605 ± 87 407 ± 135* 26 ± 7 18 ± 4* 8 ± 2 8 ± 2 

PUFA 3245 ± 409 4035 ± 219* 1754 ± 181 2039 ± 109* 88 ± 20 86 ± 20 94 ± 16 118 ± 25 

HUFA 2497 ± 385 2850 ± 113* 1516 ± 175 1558 ± 60 74 ± 18 70 ± 15 77 ± 12 93 ± 15 

N-6/N-3 5.0 ± 0.4 9.3 ± 1.6* 1.9 ± 0.2 5.2 ± 4.4* 2.4 ± 0.4 3.8 ± 0.8* 12 ± 3 13 ± 3 

Total 6719 ± 786 8145 ± 435* 3594 ± 350 4173 ± 338* 256 ± 47 280 ± 43 311 ± 50 349 ± 77 

Data is mean ± SD. *: significantly different from females (p < 0.05). SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, 

PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty acids. 
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APPENDIX 2 

 
Supplementary Data for Chapter 7 

 

Hepatic Δ6-desaturase expression and DHA are increased by supplementation of 

ovariectomized rats with 17β-estradiol, but not progesterone 
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Table A2.1: Fatty acid relative percent composition in hepatic phospholipids of hormone-treated rats 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 Relative area % 

SFA
1
 45.58 ± 0.91 

ab
 45.83 ± 0.79 

ab
 44.51 ± 0.58 

a
 46.08 ± 0.98 

b
 45.84 ± 0.95 

ab
 

MUFA
1
 5.53 ± 1.44  5.66 ± 1.88  6.39 ± 0.56  5.74 ± 1.43  5.53 ± 0.67  

C 18:2n-6 11.62 ± 0.53 
a
 11.92 ± 0.79 

a
 10.14 ± 1.00 

b
 12.18 ± 0.82 

a
 9.05 ± 1.04 

b
 

C 18:3n-6 0.36 ± 0.03  0.36 ± 0.02  0.36 ± 0.05  0.33 ± 0.11  0.30 ± 0.07  

C 20:2n-6 0.20 ± 0.01 
ab

 0.22 ± 0.02 
ab

 0.26 ± 0.05 
b
 0.19 ± 0.04 

a
 0.21 ± 0.04 

ab
 

C 20:3n-6 0.32 ± 0.04  0.33 ± 0.02  0.31 ± 0.09  0.31 ± 0.06  0.37 ± 0.04  

C 20:4n-6 24.21 ± 0.76  24.56 ± 1.01  23.08 ± 0.93  23.94 ± 0.75  23.52 ± 0.98  

C 22:4n-6 0.24 ± 0.04  0.22 ± 0.02  0.24 ± 0.04  0.23 ± 0.06  0.23 ± 0.04  

C 22:5n-6 0.19 ± 0.04 
a
 0.15 ± 0.04 

a
 0.54 ± 0.24 

b
 0.17 ± 0.02 

a
 0.55 ± 0.16 

a
 

N-6 PUFA 37.15 ± 1.06 
a
 37.77 ± 1.22 

a
 34.92 ± 1.16 

b
 37.35 ± 0.90 

a
 34.24 ± 1.26 

b
 

C 18:3n-3 0.12 ± 0.04  0.09 ± 0.03  0.13 ± 0.03  0.13 ± 0.03  0.13 ± 0.04  

C 20:5n-3 0.18 ± 0.06 
ab

 0.14 ± 0.04 
a
 0.24 ± 0.07 

bc
 0.18 ± 0.08 

ab
 0.27 ± 0.03 

c
 

C 22:5n-3 0.78 ± 0.10 
a
 0.75 ± 0.10 

a
 1.33 ± 0.34 

b
 0.82 ± 0.14 

a
 1.21 ± 0.30 

b
 

C 22:6n-3 8.51 ± 0.63 
a
 8.11 ± 0.68 

a
 10.87 ± 0.93 

b
 7.79 ± 0.37 

a
 11.39 ± 0.64 

b
 

N-3 PUFA 9.58 ± 0.69 
a
 9.10 ± 0.70 

a
 12.57 ± 1.05 

b
 8.91 ± 0.52 

a
 13.01 ± 0.52 

b
 

PUFA 46.73 ± 1.39  46.86 ± 1.45  47.49 ± 0.45  46.26 ± 0.98  47.24 ± 1.06  

HUFA 34.43 ± 1.13 
a
 34.27 ± 1.54 

a
 36.60 ± 1.17 

b
 33.43 ± 1.25 

a
 37.54 ± 1.02 

b
 

N-6/N-3 3.89 ± 0.27 
a
 4.17 ± 0.33 

a
 2.80 ± 0.32 

b
 4.20 ± 0.29 

a
 2.64 ± 0.18 

b
 

HUFA Score 27.48 ± 1.35 
a
 26.26 ± 1.21 

a
 33.96 ± 2.12 

b
 26.26 ± 0.80 

a
 34.31 ± 1.59 

b
 

Total 97.84 ± 1.04  98.36 ± 0.51  98.39 ± 0.75  98.09 ± 0.18  98.61 ± 0.44  

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA. Values with a different 

letter superscript are significantly different by Tukey’s post hoc test following significant F value by one-way ANOVA.  
1
Concentrations of individual SFA and MUFA can be found in (Marks 2012).
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Table A2.2: Fatty acid concentration of hepatic phosphatidyl choline of hormone-treated rats 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 μg/g liver 

C 16:0 2041 ± 476
a
 2272 ± 244

ab
 2699 ± 223

b
 2332 ± 175

ab
 2596 ± 266

b
 

C 18:0 4086 ± 785 3626 ± 403 3598 ± 249 3891 ± 271 3757 ± 304 

SFA 6749 ± 1388 6501 ± 727 6736 ± 553 6873 ± 648 7096 ± 505 

C 16:1 34 ± 6
a
 38 ± 5a

b
 51 ± 4

bc
 36 ± 3

ab
 58 ± 16

c
 

C 18:1n-7 171 ± 26
a
 173 ± 15

a
 318 ± 26

b
 195 ± 17

a
 290 ± 59

b
 

C 18:1n-9 556 ± 362 617 ± 133 711 ± 186 877 ± 526 600 ± 192 

MUFA 782 ± 390 858 ± 144 1109 ± 193 1137 ± 544 967 ± 243 

C 18:2n-6 1322 ± 144
ab

 1446 ± 96
a
 1311 ± 139

ab
 1542 ± 135

a
 1198 ± 195

b
 

C 18:3n-6 41 ± 5 38 ± 8 40 ± 7 47 ± 12 41 ± 8 

C 20:2n-6 23 ± 4
a
 29 ± 4

ab
 39 ± 5

c
 30 ± 4

ab
 36 ± 8

bc
 

C 20:3n-6 46 ± 8 44 ± 5 53 ± 9 50 ± 5 55 ± 8 

C 20:4n-6 2804 ± 339
a
 3138 ± 382

ab
 3296 ± 221

ab
 3226 ± 260

ab
 3401 ± 264

b
 

C 22:4n-6 18 ± 5
a
 22 ± 3

a
 36 ± 7

b
 21 ± 3

a
 33 ± 4

b
 

C 22:5n-6 14 ± 4
a
 11 ± 4

a
 67 ± 35

b
 16 ± 3

a
 69 ± 22

b
 

N-6 PUFA 4268 ± 469 4729 ± 442 4843 ± 236 3891 ± 2200 4832 ± 363 

C 18:3n-3 11 ± 2
a
 9 ± 4

a
 18 ± 4

b
 13 ± 2

ab
 14 ± 3

ab
 

C 20:5n-3 16 ± 5
a
 10 ± 2

a
 41 ± 11

b
 13 ± 3

a
 40 ± 6

b
 

C 22:5n-3 68 ± 9
a
 78 ± 7

a
 158 ± 45

b
 82 ± 9

a
 139 ± 31

b
 

C 22:6n-3 738 ± 97
a
 824 ± 112

a
 1262 ± 171

b
 827 ± 115

a
 1293 ± 73

b
 

N-3 PUFA 836 ± 104
a
 923 ± 114

a
 1476 ± 198

b
 936 ± 127

a
 1487 ± 55

b
 

PUFA 5104 ± 563
a
 5652 ± 540

ab
 6319 ± 409

b
 4827 ± 2168

ab
 6319 ± 396

b
 

HUFA 3706 ± 429
a
 4130 ± 499

a
 4913 ± 442

bc
 4236 ± 387

ab
 5031 ± 323

c
 

N-6/N-3 5.1 ± 0.3
a
 5.1 ± 0.4

a
 3.3 ± 0.3

b
 4.3 ± 2.4

a
 3.2 ± 0.2

b
 

HUFA Score 22 ± 1
a
 22 ± 1

a
 30 ± 1

b
 22 ± 1

a
 29 ± 1

b
 

Total 13076 ± 1736 13415 ± 1357 14695 ± 1057 14219 ± 1619 15266 ± 1667 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA. Values with a different 

letter superscript are significantly different by Tukey’s post hoc test following significant F value by one-way ANOVA.  
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Table A2.3: Fatty acid concentration of hepatic phosphatidyethanolamine of hormone-treated rats 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 μg/g liver 

C 16:0 1633 ± 279 1452 ± 402 1971 ± 674 1609 ± 497 1701 ± 408 

C 18:0 3758 ± 593 3389 ± 935 3062 ± 1111 3727 ± 1211 2553 ± 652 

SFA 6106 ± 1002 5520 ± 1577 5566 ± 1925 5848 ± 1864 4876 ± 1204 

C 16:1 29 ± 4 28 ± 9 27 ± 9 22 ± 9 29 ± 12 

C 18:1n-7 129 ± 24 113 ± 27 147 ± 55 128 ± 42 125 ± 30 

C 18:1n-9 1204 ± 1215 473 ± 105 600 ± 288 567 ± 234 614 ± 393 

MUFA 1446 ± 1245 692 ± 155 836 ± 361 797 ± 281 834 ± 418 

C 18:2n-6 783 ± 175
a
 762 ± 196

a
 400 ± 135

b
 791 ± 228

a
 375 ± 85

b
 

C 18:3n-6 24 ± 4
ab

 22 ± 8
ab

 16 ± 7
ab

 28 ± 10
a
 15 ± 4

b
 

C 20:2n-6 17 ± 5 19 ± 6 20 ± 8 19 ± 7 15 ± 4 

C 20:3n-6 40 ± 6 36 ± 12 38 ± 16 44 ± 14 31 ± 5 

C 20:4n-6 2281 ± 321 2324 ± 643 1571 ± 461 2464 ± 797 1631 ± 375 

C 22:4n-6 61 ± 13 62 ± 16 66 ± 20 64 ± 22 63 ± 15 

C 22:5n-6 26 ± 7
a
 17 ± 6

a
 74 ± 52

b
 21 ± 7

a
 71 ± 25

b
 

N-6 PUFA 3232 ± 517 3243 ± 874 2185 ± 658 3431 ± 1075 2202 ± 486 

C 18:3n-3 11 ± 3 7 ± 1 11 ± 5 10 ± 3 9 ± 3 

C 20:5n-3 28 ± 8 19 ± 6 26 ± 13 25 ± 9 28 ± 5 

C 22:5n-3 139 ± 14 133 ± 31 180 ± 76 150 ± 47 150 ± 33 

C 22:6n-3 1414 ± 212 1284 ± 357 1506 ± 530 1339 ± 396 1611 ± 413 

N-3 PUFA 1593 ± 224 1444 ± 391 1724 ± 609 1526 ± 447 1797 ± 440 

PUFA 4826 ± 720 4687 ± 1259 3909 ± 1255 4957 ± 1509 3999 ± 919 

HUFA 3990 ± 546 3877 ± 1060 3462 ± 1130 4109 ± 1268 3584 ± 838 

EPA+DHA 1442 ± 213 1303 ± 362 1532 ± 540 1365 ± 404 1638 ± 417 

N-6/N-3 2.0 ± 0.2
a
 2.3 ± 0.1

a
 1.3 ± 0.1

b
 2.2 ± 0.2

a
 1.2 ± 0.1

b
 

HUFA Score 40 ± 2
a
 37 ± 1

a
 49 ± 2

b
 37 ± 2

a
 50 ± 2

b
 

Total 12885 ± 2729 11380 ± 3113 10807 ± 3538 12240 ± 3871 10269 ± 2525 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA. Values with a different 

letter superscript are significantly different by Tukey’s post hoc test following significant F value by one-way ANOVA.  
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Table A2.4: Fatty acid concentration of hepatic phosphatidylserine of hormone-treated rats 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 μg/g liver 

C 16:0 387 ± 184 208 ± 66 356 ± 267 313 ± 75 295 ± 55 

C 18:0 1021 ± 477 584 ± 188 959 ± 632 709 ± 176 613 ± 100 

SFA 1716 ± 711 1076 ± 285 1529 ± 955 1257 ± 260 1347 ± 153 

C 16:1 21 ± 26
a
 12 ± 5

a
 18 ± 23

a
 45 ± 14

ab
 58 ± 23

b
 

C 18:1n-7 15 ± 10 10 ± 3 16 ± 9 23 ± 10 20 ± 6 

C 18:1n-9 162 ± 83 218 ± 118 213 ± 121 201 ± 97 277 ± 185 

MUFA 214 ± 89 260 ± 118 268 ± 139 289 ± 89 385 ± 162 

C 18:2n-6 43 ± 11
ab

 42 ± 7
ab

 38 ± 12
a
 49 ± 11

ab
 56 ± 9

b
 

C 18:3n-6 5 ± 2 4 ± 3 5 ± 2 4 ± 1 4 ± 1 

C 20:2n-6 11 ± 5 8 ± 1 12 ± 6 9 ± 1 8 ± 1 

C 20:3n-6 0.7 ± 0.4 0.4 ± 0.4 0.5 ± 0.5 0.7 ± 0.3 0.8 ± 0.5 

C 20:4n-6 115 ± 49 128 ± 25 121 ± 18 151 ± 37 128 ± 25 

C 22:4n-6 1.8 ± 0.6 2.2 ± 0.8 2.3 ± 1.6 1.2 ± 0.6 1.4 ± 0.6 

C 22:5n-6 2.0 ± 1.0
a
 1.3 ± 1.0

a
 6.8 ± 1.7

b
 1.8 ± 0.7

a
 7.4 ± 2.2

b
 

N-6 PUFA 179 ± 63 187 ± 30 187 ± 29 218 ± 49 206 ± 25 

C 18:3n-3 0.5 ± 0.3 0.4 ± 0.4 0.2 ± 0.2 0.4 ± 0.5 0.5 ± 0.4 

C 20:5n-3 8 ± 4 4 ± 1 6 ± 1 7 ± 4 5 ± 1 

C 22:5n-3 8 ± 4 4 ± 2 6 ± 5 3 ± 2 3 ± 1 

C 22:6n-3 66 ± 28
a
 73 ± 15

ab
 104 ± 8

c
 76 ± 12

abc
 96 ± 14

bc
 

N-3 PUFA 84 ± 32 83 ± 15 114 ± 8 88 ± 8 105 ± 15 

PUFA 262 ± 95 270 ± 40 294 ± 29 307 ± 53 312 ± 35 

HUFA 203 ± 81 204 ± 50 241 ± 22 243 ± 42 228 ± 55 

EPA+DHA 75 ± 29 67 ± 31 108 ± 7 84 ± 8 87 ± 39 

N-6/N-3 2.2 ± 0.2
a
 2.3 ± 0.4

a
 1.6 ± 0.2

b
 2.5 ± 0.5

a
 2.0 ± 0.3

b
 

HUFA Score 42 ± 3
ab

 34 ± 10
a
 47 ± 3

b
 37 ± 5

ab
 38 ± 14

ab
 

Total 2271 ± 805 1663 ± 296 1755 ± 353 1921 ± 308 2115 ± 179 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids, HUFA Score: percentage of total HUFA as n-3 HUFA. Values with a different 

letter superscript are significantly different by Tukey’s post hoc test following significant F value by one-way ANOVA.  
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Table A2.5: Fatty acid concentration of hepatic phosphatidylinositol of hormone-treated rats 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 μg/g liver 

C 16:0 259 ± 70
ab

 324 ± 113
a
 351 ± 47

a
 156 ± 35

b
 261 ± 64

ab
 

C 18:0 1007 ± 193
a
 1001 ± 195

a
 1009 ± 93

a
 739 ± 137

b
 871 ± 85

ab
 

SFA 1594 ± 263
a
 1669 ± 361

a
 1616 ± 122

a
 1073 ± 214

b
 1525 ± 157

a
 

C 16:1 9 ± 1 38 ± 38 38 ± 29 4 ± 4 25 ± 14 

C 18:1n-7 10 ± 4
ab

 30 ± 23
a
 26 ± 9

ab
 8 ± 3

b
 23 ± 9

ab
 

C 18:1n-9 108 ± 78 253 ± 142 241 ± 135 111 ± 86 229 ± 81 

MUFA 146 ± 86 343 ± 196 327 ± 142 138 ± 93 304 ± 91 

C 18:2n-6 61 ± 12 87 ± 24 88 ± 20 68 ± 14 79 ± 22 

C 18:3n-6 4 ± 2 6 ± 2 4 ± 1 4 ± 1 4 ± 1 

C 20:2n-6 10 ± 1 13 ± 4 15 ± 4 10 ± 2 14 ± 5 

C 20:3n-6 0.6 ± 0.3 0.4 ± 0.3 1.1 ± 0.6 0.5 ± 0.5 0.4 ± 0.3 

C 20:4n-6 489 ± 81 460 ± 82 498 ± 80 460 ± 127 503 ± 41 

C 22:4n-6 2 ± 1 2 ± 1 3 ± 1 2 ± 2 2 ± 1 

C 22:5n-6 1.1 ± 0.9 0.6 ± 0.3 2.3 ± 1.0 1.5 ± 2.2 2.2 ± 1.3 

N-6 PUFA 569 ± 91 569 ± 102 612 ± 90 546 ± 129 606 ± 59 

C 18:3n-3 0.5 ± 1.0 0.3 ± 0.4 0.9 ± 1.0 0.9 ± 0.6 0.3 ± 0.3 

C 20:5n-3 6 ± 3
ab

 6 ± 2
a
 6 ± 1

ab
 2 ± 1

b
 4 ± 1

ab
 

C 22:5n-3 4 ± 1 4 ± 2 3 ± 2 2 ± 1 3 ± 1 

C 22:6n-3 11 ± 5
a
 22 ± 12

abc
 30 ± 7

c
 15 ± 8

ab
 27 ± 7

bc
 

N-3 PUFA 23 ± 6
a
 33 ± 14

ab
 41 ± 7

b
 22 ± 9

a
 35 ± 6

ab
 

PUFA 592 ± 93 602 ± 110 652 ± 92 568 ± 131 642 ± 64 

HUFA 515 ± 84 495 ± 90 544 ± 81 485 ± 128 543 ± 45 

N-6/N-3 26 ± 5
ab

 19 ± 5
ab

 15 ± 3
a
 29 ± 13

b
 17 ± 2

ab
 

HUFA Score 4 ± 1
a
 7 ± 2

ab
 7 ± 2

b
 4 ± 2

a
 6 ± 1

ab
 

Total 2423 ± 306
ab

 2710 ± 593
a
 2690 ± 267

a
 1847 ± 385

b
 2565 ± 249

a
 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids. Values with a different letter superscript are significantly different by Tukey’s post 

hoc test following significant F value by one-way ANOVA.
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Table A2.6: fatty acid concentration of plasma non-esterified fatty acids of hormone-treated rats 

 

SHAM OVX OVX + E OVX + P OVX+ PE 

 μg/ml plasma 

SFA
1
 32 ± 4 44 ± 8 38 ± 4 33 ± 9 43 ± 7 

MUFA
1
 36 ± 12 76 ± 49 77 ± 16 44 ± 14 81 ± 39 

C 18:2n-6 8 ± 2 11 ± 3 8 ± 1 8 ± 3 10 ± 2 

C 18:3n-6 0.18 ± 0.11 0.24 ± 0.1 0.30 ± 0.10 0.27 ± 0.02 0.21 ± 0.11 

C 20:2n-6 0.9 ± 0.1 0.8 ± 0.3 0.6 ± 0.3 0.8 ± 0.1 0.8 ± 0.2 

C 20:3n-6 0.38 ± 0.04 0.44 ± 0.05 0.36 ± 0.13 0.38 ± 0.08 0.37 ± 0.07 

C 20:4n-6 1.6 ± 0.9 0.9 ± 0.1 0.7 ± 0.2 0.8 ± 0.2 1.0 ± 0.5 

C 22:2n-6 0.12 ± 0.05 0.12 ± 0.08 0.16 ± 0.02 0.10 ± 0.03 0.09 ± 0.06 

C 22:4n-6 0.13 ± 0.01 0.13 ± 0.04 0.14 ± 0.05 0.10 ± 0.03 0.10 ± 0.06 

C 22:5n-6 0.10 ± 0.02 0.11 ± 0.08 0.11 ± 0.04 0.13 ± 0.08 0.11 ± 0.03 

N-6 PUFA 12 ± 2 14 ± 3 10 ± 1 10 ± 3 13 ± 3 

C 18:3n-3 0.4 ± 0.1
a
 0.7 ± 0.2

b
 0.3 ± 0.1

a
 0.3 ± 0.2

a
 0.5 ± 0.1

ab
 

C 20:5n-3 0.09 ± 0.03 0.10 ± 0.03 0.10 ± 0.02 0.07 ± 0.03 0.12 ± 0.04 

C 22:5n-3 0.36 ± 0.05 0.37 ± 0.04 0.32 ± 0.04 0.35 ± 0.04 0.39 ± 0.07 

C 22:6n-3 0.8 ± 0.3 1.2 ± 1.0 1.3 ± 0.9 0.4 ± 0.2 0.7 ± 0.4 

N-3 PUFA 1.6 ± 0.2 2.5 ± 1.3 2.0 ± 0.8 1.1 ± 0.4 1.7 ± 0.6 

PUFAs 13 ± 2 17 ± 4 12 ± 1 12 ± 3 15 ± 3 

HUFAs 3 ± 1 3 ± 1 3 ± 1 2 ± 1 3 ± 1 

N-6/N-3 7 ± 2 7 ± 3 6 ± 3 10 ± 3 8 ± 2 

HUFA Score 37 ± 6 48 ± 14 54 ± 10 37 ± 4 42 ± 8 

Total 81 ± 16 137 ± 59 127 ± 17 88 ± 25 138 ± 47 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids. Values with a different letter superscript are significantly different by Tukey’s post 

hoc test following significant F value by one-way ANOVA.  
1
Concentrations of individual SFA and MUFA can be found in (Marks 

2012). 
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Table A2.7: fatty acid concentration of plasma triacylglycerol of hormone-treated rats 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 μg/ml plasma 

SFA
1
 72 ± 39 69 ± 19 65 ± 13 76 ± 8 51 ± 10 

MUFA
1
 111 ± 42 104 ± 65 90 ± 23 152 ± 73 65 ± 19 

C 18:2n-6 12 ± 4 12 ± 8 17 ± 9 17 ± 10 11 ± 6 

C 18:3n-6 0.3 ± 0.3 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 

C 20:3n-6 0.4 ± 0.1 0.6 ± 0.4 0.5 ± 0.2 0.4 ± 0.2 0.3 ± 0.1 

C 20:4n-6 3 ± 2 3 ± 2 5 ± 3 2 ± 1 3 ± 2 

C 22:4n-6 0.2 ± 0.2 0.3 ± 0.1 0.4 ± 0.3 0.2 ± 0.2 0.6 ± 0.2 

C 22:5n-6 0.23 ± 0.12 0.32 ± 0.16 0.28 ± 0.2 0.36 ± 0.05 0.23 ± 0.06 

N-6 PUFA 16 ± 6 16 ± 9 23 ± 13 20 ± 10 15 ± 8 

C 18:3n-3 0.34 ± 0.18 0.38 ± 0.18 0.47 ± 0.36 0.31 ± 0.03 0.42 ± 0.22 

C 20:5n-3 0.2 ± 0.2 0.4 ± 0.2 0.6 ± 0.6 0.3 ± 0.2 0.4 ± 0.4 

C 22:5n-3 0.4 ± 0.2 0.7 ± 0.3 0.8 ± 0.4 0.5 ± 0.1 0.5 ± 0.1 

C 22:6n-3 0.9 ± 0.3 0.7 ± 0.3 1.5 ± 1.4 0.7 ± 0.2 0.6 ± 0.3 

N-3 PUFA 1.92 ± 0.79 2.16 ± 0.75 3.35 ± 2.76 1.82 ± 0.02 1.98 ± 0.96 

PUFA 18 ± 7 19 ± 10 27 ± 15 22 ± 10 17 ± 9 

HUFA 5.3 ± 3.0 6.2 ± 3.0 9.0 ± 6.2 4.2 ± 0.4 5.8 ± 2.7 

N-6/N-3 9 ± 3 8 ± 3 9 ± 3 11 ± 6 8 ± 2 

HUFA Score 34 ± 14 30 ± 7 30 ± 6 36 ± 4 27 ± 4 

Total 201 ± 84 192 ± 82 182 ± 37 249 ± 85 133 ± 30 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids. Values with a different letter superscript are significantly different by Tukey’s post 

hoc test following significant F value by one-way ANOVA.  
1
Concentration of individual SFA and MUFA can be found in (Marks 

2012).  
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Table A2.8: fatty acid concentration of plasma cholesteryl esters of hormone-treated rats. 

 

SHAM OVX OVX + E OVX + P OVX+ PE 

Fatty Acid μg/ml plasma 

SFA
1
 33 ± 11 

a
 38 ± 14 

a
 39 ± 11 

a
 75 ± 19 

b
 41 ± 16 

a
 

MUFA
1
 37 ± 17  71 ± 38  57 ± 24  100 ± 43  80 ± 53  

C 18:2n-6 11 ± 1  16 ± 3  15 ± 4  20 ± 6  17 ± 5  

C 18:3n-6 0.5 ± 0.2 
a
 0.4 ± 0.2

 a
 0.6 ± 0.3

 a
 1.4 ± 0.6

 b
 0.9 ± 0.4

 ab
 

C 20:2n-6 0.9 ± 0.2 
a
 0.8 ± 0.1 

a
 1.1 ± 0.7 

ab
 2.0 ± 0.8 

b
 0.9 ± 0.3 

a
 

C 20:3n-6 0.6 ± 0.2 
a
 0.7 ± 0.2 

a
 0.8 ± 0.5 

a
 1.7 ± 0.7 

b
 0.7 ± 0.2 

a
 

C 20:4n-6 36 ± 4
 a
 43 ± 3

 ab
 52 ± 8 

ab
 38 ± 11 

ab
 56 ± 14 

b
 

C 22:2n-6 0.1 ± 0.1  0.2 ± 0.1  0.2 ± 0.1  0.3 ± 0.3  0.2 ± 0.1  

C 22:4n-6 0.15 ± 0.03  0.12 ± 0.06  0.16 ± 0.19  0.24 ± 0.15  0.22 ± 0.22  

C 22:5n-6 0.1 ± 0.1  0.2 ± 0.1  0.4 ± 0.3  0.6 ± 0.6  0.2 ± 0.1  

N-6 PUFA 50 ± 4 
a
 61 ± 7 

ab
 70 ± 11 

ab
 64 ± 13

 ab
 75 ± 16 

b
 

C 18:3n-3 0.26 ± 0.02  0.32 ± 0.07  0.22 ± 0.06  0.54 ± 0.44  0.69 ± 0.94  

C 20:5n-3 0.4 ± 0.1 
a
 0.4 ± 0.1 

a
 0.8 ± 0.4 

bc
 0.5 ± 0.1 

ab
 1.0 ± 0.2 

b
 

C 22:5n-3 0.6 ± 0.1 
a
 0.6 ± 0.2 

a
 0.7 ± 0.3 

a
 1.3 ± 0.4 

b
 0.6 ± 0.2 

a
 

C 22:6n-3 1.3 ± 0.1  2.4 ± 1.6  2.4 ± 0.4  2.1 ± 1.1  2.7 ± 0.5  

N-3 PUFA 2.5 ± 0.3  3.7 ± 1.9 4.1 ± 0.6  4.5 ± 1.1  4.9 ± 1.3  

PUFAs 52 ± 4 
a
 65 ± 9 

ab
 74 ± 12 

ab
 69 ± 13 

ab
 80 ± 17 

b
 

HUFAs 39 ± 4 
a
 47 ± 5 

ab
 57 ± 8 

ab
 45 ± 10 

ab
 61 ± 14

 b
 

N-6/N-3 20 ± 2  19 ± 7  17 ± 1  15 ± 3  15 ± 2  

HUFA Score 6 ± 1  7 ± 3  7 ± 1  9 ± 3  7 ± 1  

Total 122 ± 25 
a
 174 ± 59 

ab
 169 ± 42 

ab
 243 ± 50 

b
 202 ± 67 

ab
 

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids. Values with a different letter superscript are significantly different by Tukey’s post 

hoc test following significant F value by one-way ANOVA. 
1
Concentration of individual SFA and MUFA can be found in (Marks 

2012). 
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Table A2.9: Fatty acid concentration of adipose tissue total lipids of hormone-treated rats 

 

SHAM OVX OVX+E OVX+P OVX+PE 

 μg/g adipose 

C 16:0 109571 ± 34226  109614 ± 30931  105216 ± 24041  117162 ± 26978  99456 ± 42714  

C 18:0 24269 ± 6719  23070 ± 4432  24273 ± 6114  23092 ± 3725  21578 ± 7518  

SFA 144064 ± 43595  142405 ± 36219  139593 ± 31981  150343 ± 32546  130572 ± 53477  

C 16:1 13353 ± 5268  16343 ± 6646  13097 ± 2081  16832 ± 6841  14309 ± 7580  

C 18:1n-7 13187 ± 3644  10405 ± 1885  13334 ± 2858  12451 ± 2391  12776 ± 5461  

C 18:1n-9 137092 ± 41632  125726 ± 33821  133588 ± 36422  135364 ± 26186  115904 ± 56734  

MUFA 165459 ± 50778  154072 ± 41850  161871 ± 41069  166321 ± 34908  143054 ± 65231  

C 18:2n-6 210099 ± 63985  189366 ± 50841  199756 ± 60698  211686 ± 30055  164900 ± 72426  

C 18:3n-6 886 ± 237  757 ± 162  806 ± 250  892 ± 89  713 ± 307  

C 20:2n-6 1293 ± 425  1158 ± 315  1605 ± 499  1395 ± 194  1150 ± 465  

C 20:3n-6 1118 ± 256  893 ± 169  1344 ± 376  1121 ± 164  1157 ± 429  

C 20:4n-6 5568 ± 1086  6391 ± 930  6768 ± 1668  6974 ± 977  5789 ± 2840  

C 22:4n-6 12 ± 8  12 ± 4  11 ± 7  8 ± 4  15 ± 13  

C 22:5n-6 558 ± 200  337 ± 125  608 ± 253  389 ± 91  603 ± 341  

N-6 PUFA 219625 ± 65952  199034 ± 51296  210990 ± 63237  222552 ± 31115  174594 ± 76650  

C 18:3n-3 12838 ± 3899  13296 ± 3795  12380 ± 3420  14705 ± 2480  10974 ± 4994  

C 20:3n-3 113 ± 36  106 ± 29  139 ± 51  127 ± 19  116 ± 58  

C 20:5n-3 349 ± 97 
a
 449 ± 126

 ab
 392 ± 130

 ab
 569 ± 102

 b
 436 ± 113

 ab
 

C 22:5n-3 1216 ± 188 
ab

 963 ± 245 
a
 1551 ± 402 

b
 1377 ± 237 

ab
 1407 ± 495 

ab
 

C 22:6n-3 2213 ± 462  2109 ± 595  2452 ± 708  2581 ± 426  2309 ± 992  

N-3 PUFA 16729 ± 4561  16923 ± 4502  16915 ± 4584  19359 ± 3177  15241 ± 6568  

PUFA 236354 ± 70440  215957 ± 55598  227905 ± 67696  241911 ± 34167  189835 ± 83170  

HUFA 11148 ± 2170  11260 ± 1943  13266 ± 3481  13147 ± 1721  11565 ± 5835  

N-6/N-3 13 ± 1 
a
 12 ± 1 

ab
 12 ± 1 

ab
 12 ± 1 

b
 11 ± 1

 b
 

HUFA Score 35 ± 1  32 ± 4  34 ± 2  35 ± 2  30 ± 13  

Total 545876 ± 164154  512433 ± 130595  529368 ± 139368  558575 ± 99950  464500 ± 198472  

Values are mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to SHAM rats. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated 

fatty acids, HUFA: highly unsaturated fatty acids. Values with a different letter superscript are significantly different by Tukey’s post 

hoc test following significant F value by one-way ANOVA. 
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APPENDIX 3 

 
Supplementary Data for Chapter 8 

 

Ovariectomy with or without food restriction elicits no effect son hepatic and plasma DHA 

concentration or hepatic Δ6-desaturase expression 
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Table A3.1: Fatty acid concentration of hepatic phosphatidylcholine of ovariectomized rats with 

or without pair-feeding 

 
SHAM OVX+AL OVX+PF 

 μg/g liver 

C 16:0 1185 ± 284 1497 ± 170 1471 ± 306 

C 18:0 1968 ± 420 1990 ± 235 1994 ± 649 

SFA 6660 ± 1561 7392 ± 847 7322 ± 1903 

C 16:1 28 ± 14 37 ± 10 47 ± 21 

C 18:1n-7 97 ± 19 115 ± 21 111 ± 22 

C 18:1n-9 238 ± 115 256 ± 62 308 ± 100 

MUFA 811 ± 320 913 ± 184 1019 ± 305 

C 18:2n-6 1642 ± 431 1794 ± 261 1819 ± 468 

C 18:3n-6 31 ± 9 27 ± 5 34 ± 11 

C 20:2n-6 26 ± 4 32 ± 6 29 ± 4 

C 20:3n-6 43 ± 10
a
 47 ± 8

ab
 60 ± 12

b
 

C 20:4n-6 3533 ± 696 3893 ± 548 3916 ± 1043 

C 22:4n-6 18 ± 5 22 ± 7 22 ± 6 

C 22:5n-6 16 ± 2
a
 12 ± 3

b
 17 ± 3

a
 

N-6 PUFA 5309 ± 1118 5826 ± 807 5898 ± 1517 

C 18:3n-3 14 ± 5 17 ± 3 15 ± 5 

C 20:5n-3 26 ± 9 18 ± 4 19 ± 9 

C 22:5n-3 77 ± 16 91 ± 15 90 ± 22 

C 22:6n-3 711 ± 168 729 ± 159 753 ± 195 

N-3 PUFA 828 ± 192 854 ± 173 878 ± 227 

PUFA 6137 ± 1303 6680 ± 968 6775 ± 1730 

HUFA 4424 ± 889 4811 ± 724 4877 ± 1267 

N-6/N-3 6.4 ± 0.4 6.9 ± 0.6 6.7 ± 0.6 

HUFA Score 18 ± 1 17 ± 1 18 ± 1 

Total 13893 ± 3237 15369 ± 1953 15531 ± 4057 

Data is mean ± SD. Values within a fatty acid with a different superscript are significantly 

different by Tukey’s post-hoc test following significant F-value by one-way ANOVA. SHAM: 

sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to sham-operated rats. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty 

acids. 
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Table A3.2: Fatty acid concentration of hepatic phosphatidylethanolamine of ovariectomized 

rats with or without pair-feeding 

 

SHAM OVX+AL OVX+PF 

 μg/g liver 

C 16:0 858 ± 86 849 ± 241 929 ± 206 

C 16:0 dma 9 ± 1 11 ± 2 12 ± 4 

C 18:0 1798 ± 262 1568 ± 430 1649 ± 706 

SFA 5859 ± 576 5407 ± 1549 5665 ± 1987 

C 16:1 153 ± 115 129 ± 54 109 ± 109 

C 18:1 dma 8 ± 0 8 ± 2 7 ± 2 

C 18:1n-7 73 ± 19 75 ± 34 71 ± 17 

C 18:1n-9 197 ± 31 177 ± 34 262 ± 102 

MUFA 887 ± 214 1006 ± 538 948 ± 474 

C 18:2n-6 720 ± 121 797 ± 200 707 ± 230 

C 18:3n-6 15 ± 7 15 ± 4 15 ± 7 

C 20:2n-6 13 ± 4 16 ± 5 15 ± 1 

C 20:3n-6 30 ± 4 25 ± 7 32 ± 7 

C 20:4n-6 2780 ± 432 2428 ± 681 2518 ± 923 

C 22:4n-6 57 ± 3 52 ± 21 52 ± 18 

C 22:5n-6 19 ± 4 19 ± 7 22 ± 7 

N-6 PUFA 3634 ± 531 3352 ± 906 3361 ± 1184 

C 18:3n-3 12 ± 3 13 ± 7 10 ± 5 

C 20:5n-3 27 ± 9 19 ± 5 19 ± 15 

C 22:5n-3 115 ± 17 110 ± 28 138 ± 28 

C 22:6n-3 1284 ± 238 966 ± 292 1174 ± 461 

N-3 PUFA 1438 ± 254 1107 ± 329 1341 ± 507 

PUFA 5072 ± 752 4459 ± 1232 4702 ± 1689 

HUFA 4313 ± 663 3619 ± 1032 3955 ± 1456 

N-6/N-3 2.5 ± 0.2
a
 3.0 ± 0.2

b
 2.5 ± 0.1

a
 

HUFA Score 33 ± 2
a
 30 ± 1

b
 34 ± 1

a
 

Total 12290 ± 1246 11538 ± 3380 12057 ± 4490 

Data is mean ± SD. Values within a fatty acid with a different superscript are significantly 

different by Tukey’s post-hoc test following significant F-value by one-way ANOVA. SHAM: 

sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to sham-operated rats. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty 

acids. 
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Table A3.3: Fatty acid concentration of hepatic phosphatidylserine of ovariectomized rats with 

or without pair-feeding 

 

SHAM OVX+AL OVX+PF 

 μg/g liver 

C 16:0 203 ± 31 249 ± 122 220 ± 112 

C 18:0 720 ± 83 751 ± 277 797 ± 383 

SFA 987 ± 113 1065 ± 418 1079 ± 525 

C 16:1 8 ± 3 10 ± 5 10 ± 6 

C 18:1n-7 23 ± 7 21 ± 8 23 ± 9 

C 18:1n-9 110 ± 33 129 ± 56 111 ± 68 

MUFA 231 ± 35 349 ± 100 267 ± 107 

C 18:2n-6 50 ± 11
a
 31 ± 9

b
 44 ± 14

ab
 

C 18:3n-6 4 ± 2 4 ± 1 4 ± 1 

C 20:3n-6 5 ± 2 4 ± 1 5 ± 1 

C 20:4n-6 223 ± 58 161 ± 105 233 ± 79 

C 22:2n-6 11 ± 2 15 ± 4 15 ± 5 

C 22:4n-6 8 ± 3 7 ± 3 8 ± 3 

C 22:5n-6 13 ± 4 8 ± 5 14 ± 5 

N-6 PUFA 328 ± 73 273 ± 67 333 ± 102 

C 18:3n-3 1.1 ± 0.6 2.1 ± 2.4 1.9 ± 0.2 

C 20:5n-3 4 ± 2 3 ± 1 3 ± 1 

C 22:5n-3 12 ± 5 10 ± 3 11 ± 4 

C 22:6n-3 120 ± 25 86 ± 28 118 ± 40 

N-3 PUFA 138 ± 27 116 ± 45 134 ± 44 

PUFA 466 ± 94 389 ± 98 468 ± 144 

HUFA 386 ± 84 295 ± 129 390 ± 127 

N-6/N-3 2.4 ± 0.5 2.5 ± 0.7 2.5 ± 0.2 

HUFA Score 36 ± 5 44 ± 22 34 ± 2 

Total 1708 ± 231 1872 ± 640 1840 ± 792 

Data is mean ± SD. Values within a fatty acid with a different superscript are significantly 

different by Tukey’s post-hoc test following significant F-value by one-way ANOVA. SHAM: 

sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to sham-operated rats. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty 

acids. 
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Table A3.4: Fatty acid concentration of hepatic phosphatidylinositol of ovariectomized rats with 

or without pair-feeding 

 

SHAM OVX+AL OVX+PF 

 μg/g liver 

C 16:0 415 ± 81 358 ± 88 312 ± 53 

C 18:0 1183 ± 171 1041 ± 322 1023 ± 233 

SFA 1853 ± 301 1620 ± 441 1518 ± 356 

C 16:1 44 ± 24 55 ± 30 47 ± 57 

C 18:1n-7 31 ± 18 23 ± 10 24 ± 11 

C 18:1n-9 174 ± 66 186 ± 131 108 ± 27 

MUFA 361 ± 130 356 ± 111 266 ± 70 

C 18:2n-6 72 ± 48 95 ± 46 73 ± 56 

C 18:3n-6 1.7 ± 0.5 1.6 ± 1.5 1.5 ± 0.4 

C 20:2n-6 1.3 ± 0.9 0.8 ± 0.3 1.4 ± 1.1 

C 20:3n-6 6 ± 4 6 ± 2 10 ± 6 

C 20:4n-6 656 ± 129 556 ± 247 611 ± 183 

C 22:4n-6 4 ± 2 4 ± 2 3 ± 1 

C 22:5n-6 8 ± 4 7 ± 2 6 ± 1 

N-6 PUFA 756 ± 151 684 ± 283 719 ± 213 

C 18:3n-3 2 ± 1 2 ± 1 2 ± 1 

C 20:5n-3 3 ± 2 1 ± 1 1 ± 1 

C 22:5n-3 8 ± 2 6 ± 2 8 ± 4 

C 22:6n-3 21 ± 7 21 ± 11 22 ± 8 

N-3 PUFA 34 ± 11 30 ± 12 34 ± 12 

PUFA 790 ± 153 715 ± 286 752 ± 221 

HUFA 705 ± 135 601 ± 251 661 ± 191 

N-6/N-3 24 ± 8 24 ± 12 22 ± 5 

HUFA Score 5 ± 1 5 ± 2 5 ± 1 

Total 3233 ± 460 2905 ± 694 2726 ± 703 

Data is mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum 

access to food, OVX+PF: ovariectomized rats pair-fed to sham-operated rats. SFA: saturated 

fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids. 
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Table A3.5: fatty acid concentration of liver triacylglycerol of ovariectomized rats with or 

without pair-feeding 

 
SHAM OVX+AL OVX+PF 

 μg/g liver 

C 16:0 1394 ± 208
a
 2367 ± 456

b
 1612 ± 396

a
 

C 18:0 550 ± 66 702 ± 296 553 ± 118 

SFA 2336 ± 307
a
 3484 ± 821

b
 2561 ± 509

a
 

C 16:1 110 ± 29
a
 201 ± 37

b
 166 ± 73

ab
 

C 18:1n-7 161 ± 23
a
 245 ± 72

b
 173 ± 49

ab
 

C 18:1n-9 964 ± 203
a
 1796 ± 414

b
 1204 ± 327

a
 

MUFA 1259 ± 231
a
 2282 ± 513

b
 1578 ± 398

a
 

C 18:2n-6 1787 ± 396
a
 3309 ± 638

b
 1804 ± 523

a
 

C 18:3n-6 36 ± 8
a
 61 ± 15

b
 43 ± 13

ab
 

C 20:2n-6 12 ± 6
a
 24 ± 7

b
 13 ± 4

a
 

C 20:3n-6 14 ± 4
a
 26 ± 6

b
 22 ± 7

ab
 

C 20:4n-6 231 ± 36
a
 425 ± 140

b
 237 ± 71

a
 

C 22:4n-6 29 ± 15 55 ± 19 47 ± 19 

C 22:5n-6 15 ± 8 19 ± 7 16 ± 6 

N-6 PUFA 2123 ± 442
a
 3919 ± 804

b
 2182 ± 615

a
 

C 18:3n-3 86 ± 21
a
 173 ± 35

b
 78 ± 32

a
 

C 20:5n-3 39 ± 10
a
 79 ± 22

b
 33 ± 13

a
 

C 22:5n-3 28 ± 8
a
 57 ± 14

b
 37 ± 8

a
 

C 22:6n-3 92 ± 18
a
 180 ± 49

b
 98 ± 30

a
 

N-3 PUFA 246 ± 51
a
 489 ± 109

b
 247 ± 67

a
 

PUFA 2369 ± 488
a
 4409 ± 907

b
 2429 ± 682

a
 

HUFA 448 ± 70
a
 841 ± 234

b
 490 ± 131

a
 

N-6/N-3 8.7 ± 0.8 8.1 ± 0.7 8.8 ± 0.4 

HUFA Score 36 ± 3 38 ± 3 35 ± 1 

Total 6281 ± 1026
a
 10533 ± 2250

b
 7063 ± 1614

a
 

Data is mean ± SD. Values within a fatty acid with a different superscript are significantly 

different by Tukey’s post-hoc test following significant F-value by one-way ANOVA. SHAM: 

sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to sham-operated rats. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty 

acids. 
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Table A3.6: Fatty acid concentration of hepatic total lipids of ovariectomized rats with or 

without pair-feeding 

 
SHAM OVX+AL OVX+PF 

 μg/g liver 

C 16:0 15824 ± 3164
a
 24942 ± 6001

b
 16944 ± 3015

a
 

C 18:0 20250 ± 3528
ab

 23787 ± 4680
a
 17045 ± 2504

b
 

SFA 39069 ± 6881
ab

 52552 ± 11688
a
 37067 ± 5445

b
 

C 16:1 587 ± 168
a
 1061 ± 381

b
 541 ± 106

a
 

C 18:1n-7 1612 ± 286
a
 2362 ± 590

b
 1508 ± 160

a
 

C 18:1n-9 6886 ± 2303
ab

 11177 ± 3597
a
 6727 ± 1104

b
 

MUFA 9491 ± 2658
a
 15039 ± 4629

b
 9107 ± 1390

a
 

C 18:2n-6 18032 ± 3566
a
 28829 ± 7209

b
 16206 ± 2731

a
 

C 18:3n-6 426 ± 55
ab

 556 ± 165
a
 365 ± 73

b
 

C 20:2n-6 194 ± 38 310 ± 182 285 ± 75 

C 20:3n-6 298 ± 59
a
 466 ± 136

b
 447 ± 51

ab
 

C 20:4n-6 18743 ± 3269
ab

 25294 ± 5327
a
 18165 ± 2655

b
 

C 22:4n-6 327 ± 62
a
 551 ± 181

b
 450 ± 85

ab
 

C 22:5n-6 150 ± 10 184 ± 46 208 ± 50 

N-6 PUFA 38266 ± 6839
a
 56234 ± 12961

b
 36156 ± 5546

a
 

C 18:3n-3 644 ± 139
a
 1124 ± 322

b
 417 ± 82

a
 

C 20:5n-3 389 ± 118
ab

 594 ± 189
a
 228 ± 35

b
 

C 22:5n-3 587 ± 138
a
 928 ± 240

b
 714 ± 165

ab
 

C 22:6n-3 5208 ± 814 6692 ± 1685 5191 ± 816 

N-3 PUFA 6828 ± 1156
ab

 9338 ± 2280
a
 6550 ± 1075

b
 

PUFA 45095 ± 7922
a
 65572 ± 15162

b
 42706 ± 6619

a
 

HUFA 25703 ± 4296
a
 34708 ± 7662

b
 25403 ± 3791

a
 

N-6/N-3 5.6 ± 0.4 6.0 ± 0.4 5.5 ± 0.1 

HUFA Score 24.1 ± 1.6 23.6 ± 1.0 24.1 ± 0.5 

Total 97971 ± 17030
a
 137523 ± 32630

b
 91746 ± 13531

a
 

Data is mean ± SD. Values within a fatty acid with a different superscript are significantly 

different by Tukey’s post-hoc test following significant F-value by one-way ANOVA. SHAM: 

sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to sham-operated rats. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty 

acids. 
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Table A3.7: Fatty acid concentration of plasma triacylglycerols of ovariectomized rats with or 

without pair-feeding 

 

SHAM OVX+AL OVX+PF 

 μg/ml plasma 

C 16:0 77 ± 26 117 ± 34 107 ± 26 

C 18:0 44 ± 12 47 ± 11 47 ± 11 

SFA 151 ± 53 192 ± 48 181 ± 32 

C 16:1 5 ± 4 6 ± 5 6 ± 3 

C 18:1n-7 5 ± 2 6 ± 2 7 ± 2 

C 18:1n-9 50 ± 17
a
 85 ± 4

b
 90 ± 19

b
 

MUFA 64 ± 23
a
 100 ± 7

b
 109 ± 19

b
 

C 18:2n-6 50 ± 20
a
 96 ± 38

b
 93 ± 20

b
 

C 18:3n-6 1 ± 1 2 ± 1 2 ± 1 

C 20:2n-6 0.2 ± 0.1
a
 0.4 ± 0

ab
 0.6 ± 0.4

b
 

C 20:3n-6 0.6 ± 0.3 0.4 ± 0.2 0.7 ± 0.5 

C 20:4n-6 15 ± 6
a
 24 ± 8

ab
 29 ± 9

b
 

C 22:4n-6 0.8 ± 0.2
a
 1.1 ± 0.3

ab
 2.7 ± 1.9

b
 

C 22:5n-6 0.6 ± 0.1 0.8 ± 0.2 1.4 ± 0.9 

N-6 PUFA 68 ± 26
a
 124 ± 45

b
 129 ± 31

b
 

C 18:3n-3 2 ± 1 4 ± 2 4 ± 1 

C 20:5n-3 3 ± 1 4 ± 2 4 ± 1 

C 22:5n-3 1.4 ± 0.4
a
 1.9 ± 0.4

ab
 2.7 ± 1.1

b
 

C 22:6n-3 4 ± 2 6 ± 2 7 ± 2 

N-3 PUFA 10 ± 4 16 ± 6 17 ± 4 

PUFA 78 ± 30
a
 140 ± 50

b
 146 ± 35

b
 

HUFA 25 ± 9
a
 38 ± 13

ab
 47 ± 16

b
 

N-6/N-3 7 ± 2 8 ± 1 8 ± 1 

HUFA Score 32 ± 4 31 ± 2 29 ± 5 

Total 302 ± 87
a
 445 ± 97

b
 448 ± 78

b
 

Data is mean ± SD. Values within a fatty acid with a different superscript are significantly 

different by Tukey’s post-hoc test following significant F-value by one-way ANOVA. SHAM: 

sham-operated rats, OVX+AL: ovariectomized rats with ad libitum access to food, OVX+PF: 

ovariectomized rats pair-fed to sham-operated rats. SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty 

acids. 
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Table A3.8: Fatty acid concentration of plasma cholesteryl esters of ovariectomized rats with or 

without pair-feeding 

 

SHAM OVX+AL OVX+PF 

 μg/ml plasma 

C 16:0 13 ± 4 13 ± 6 12 ± 8 

C 18:0 6 ± 1 7 ± 4 7 ± 1 

SFA 26 ± 6 30 ± 10 26 ± 8 

C 16:1 1.3 ± 0.3 1.7 ± 0.3 1.5 ± 0.5 

C 18:1n-7 0.9 ± 0.3 1.2 ± 0.3 1.1 ± 0.4 

C 18:1n-9 10 ± 3 16 ± 11 13 ± 1 

MUFA 14 ± 4 21 ± 12 17 ± 2 

C 18:2n-6 26 ± 12 33 ± 10 31 ± 9 

C 18:3n-6 1.1 ± 0.3 1.1 ± 0.2 1.2 ± 0.1 

C 20:2n-6 0.4 ± 0.3 0.4 ± 0.3 0.3 ± 0.2 

C 20:3n-6 0.2 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 

C 20:4n-6 85 ± 29 103 ± 28 92 ± 18 

C 22:4n-6 0.04 ± 0.01 0.04 ± 0.03 0.05 ± 0.01 

C 22:5n-6 0.03 ± 0.02 0.12 ± 0.2 0.77 ± 1.48 

N-6 PUFA 112 ± 41 138 ± 38 125 ± 26 

C 18:3n-3 0.5 ± 0.2 0.8 ± 0.3 0.5 ± 0.2 

C 20:5n-3 1.1 ± 0.4 1.1 ± 0.3 1.0 ± 0.2 

C 22:5n-3 0.06 ± 0.05 0.11 ± 0.03 0.06 ± 0.03 

C 22:6n-3 2.1 ± 0.8 2.5 ± 0.7 2.3 ± 0.5 

N-3 PUFA 4 ± 1 5 ± 1 4 ± 1 

PUFA 116 ± 42 143 ± 39 129 ± 27 

HUFA 89 ± 30 107 ± 29 96 ± 19 

N-6/N-3 28 ± 2 29 ± 3 31 ± 4 

HUFA Score 3.9 ± 0.2 3.7 ± 0.4 3.7 ± 0.3 

Total 156 ± 51 194 ± 30 173 ± 34 

Data is mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum 

access to food, OVX+PF: ovariectomized rats pair-fed to sham-operated rats. SFA: saturated 

fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids. 
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Table A3.9: Fatty acid concentration of plasma non-esterified fatty acids of ovariectomized rats 

with or without pair-feeding 

 
SHAM OVX+AL OVX+PF 

 μg/ml plasma 

C 16:0 11 ± 2 12 ± 2 10 ± 2 

C 18:0 8 ± 2 9 ± 2 7 ± 1 

SFA 27 ± 7 30 ± 3 25 ± 3 

C 16:1 0.6 ± 0.3 1.2 ± 0.4 0.6 ± 0.4 

C 18:1n-7 0.5 ± 0.1 0.9 ± 0.6 0.4 ± 0.3 

C 18:1n-9 5 ± 1 8 ± 4 6 ± 2 

MUFA 7 ± 1 12 ± 5 7 ± 3 

C 18:2n-6 5 ± 1 7 ± 2 5 ± 3 

C 18:3n-6 0.19 ± 0.03 0.38 ± 0.4 0.27 ± 0.08 

C 20:2n-6 0.9 ± 1.2 1.2 ± 1.0 0.3 ± 0.1 

C 20:3n-6 0.03 ± 0.01 0.03 ± 0.02 0.03 ± 0.01 

C 20:4n-6 0.8 ± 0.1 1.0 ± 0.3 1.2 ± 0.9 

C 22:4n-6 0.09 ± 0.03 0.06 ± 0.04 0.06 ± 0.04 

C 22:5n-6 0.02 ± 0.01 0.04 ± 0.03 0.01 ± 0.02 

N-6 PUFA 7 ± 2 10 ± 2 7 ± 4 

C 18:3n-3 0.4 ± 0.1 0.6 ± 0.2 0.4 ± 0.2 

C 20:5n-3 0.11 ± 0.04 0.20 ± 0.16 0.09 ± 0.04 

C 22:5n-3 0.07 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 

C 22:6n-3 0.2 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 

N-3 PUFA 0.8 ± 0.2 1.2 ± 0.4 0.7 ± 0.4 

PUFA 8 ± 2 11 ± 3 7 ± 4 

HUFA 1.4 ± 0.1 1.8 ± 0.5 1.6 ± 1.0 

N-6/N-3 8 ± 1 8 ± 1 9 ± 1 

HUFA Score 32 ± 5 34 ± 8 26 ± 7 

Total 42 ± 9 52 ± 8 39 ± 6 

Data is mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum 

access to food, OVX+PF: ovariectomized rats pair-fed to sham-operated rats. SFA: saturated 

fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids. 
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Table A3.10: Fatty acid concentration of adipose total lipids of ovariectomized rats with or 

without pair-feeding 

 

SHAM OVX+AL OVX+PF 

 μg/g adipose 

C 16:0 188023 ± 61002 165909 ± 40908 167064 ± 42627 

C 18:0 42729 ± 24541 35559 ± 14745 33458 ± 7600 

SFA 243598 ± 85705 212672 ± 52333 209170 ± 54144 

C 16:1 36395 ± 11531 34475 ± 9891 34303 ± 10712 

C 18:1n-7 9523 ± 2945 8277 ± 2879 10678 ± 2123 

C 18:1n-9 221607 ± 70916 187064 ± 45530 208679 ± 49030 

MUFA 269834 ± 84452 231863 ± 55939 255763 ± 61919 

C 18:2n-6 286858 ± 103172 258803 ± 79115 224784 ± 70265 

C 18:3n-6 1440 ± 620 1172 ± 378 794 ± 635 

C 20:2n-6 1742 ± 761 1597 ± 610 1133 ± 510 

C 20:3n-6 1199 ± 695 636 ± 356 694 ± 365 

C 20:4n-6 7020 ± 2461 7009 ± 1761 4236 ± 1190 

C 22:4n-6 1517 ± 889 1332 ± 797 823 ± 449 

C 22:5n-6 582 ± 391 487 ± 334 294 ± 186 

N-6 PUFA 300576 ± 108018 271692 ± 82730 233013 ± 73157 

C 18:3n-3 20437 ± 6885 19656 ± 5982 15105 ± 5068 

C 20:5n-3 672 ± 339 745 ± 280 354 ± 136 

C 22:5n-3 1349 ± 854 1330 ± 800 611 ± 558 

C 22:6n-3 2799 ± 1473 2675 ± 1566 1431 ± 689 

N-3 PUFA 25375 ± 9166 24401 ± 7801 17713 ± 6228 

PUFA 325951 ± 117039 296092 ± 90500 250725 ± 79256 

HUFA 15257 ± 7035 14190 ± 6363 8042 ± 2756 

N-6/N-3 11.9 ± 0.7 11.2 ± 0.4 13.4 ± 1.3 

HUFA Score 31 ± 4 28 ± 7 24 ± 9 

Total 859307 ± 281465 757320 ± 193574 730301 ± 192270 

Data is mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum 

access to food, OVX+PF: ovariectomized rats pair-fed to sham-operated rats. SFA: saturated 

fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids. 
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Table A3.11: Fatty acid concentration of posterior hind limb skeletal muscle total lipids of 

ovariectomized rats with or without pair-feeding 

 

SHAM OVX+AL OVX+PF 

 μg/g muscle 

C 16:0 3656 ± 954 3444 ± 732 3312 ± 1098 

C 18:0 1673 ± 823 1988 ± 148 1896 ± 231 

SFA 5643 ± 966 5790 ± 986 5501 ± 1421 

C 16:1 249 ± 220 276 ± 148 359 ± 226 

C 18:1n-7 1195 ± 1871 442 ± 79 404 ± 128 

C 18:1n-9 2142 ± 1018 2451 ± 1156 2330 ± 1558 

MUFA 3654 ± 2025 3224 ± 1195 3167 ± 1930 

C 18:2n-6 4645 ± 2053 4827 ± 1885 3781 ± 2127 

C 18:3n-6 23 ± 11 28 ± 8 24 ± 8 

C 20:2n-6 43 ± 23 61 ± 12 44 ± 16 

C 20:3n-6 83 ± 10 83 ± 7 78 ± 9 

C 20:4n-6 1925 ± 102 1865 ± 67 1820 ± 79 

C 22:4n-6 121 ± 16 123 ± 11 113 ± 16 

C 22:5n-6 116 ± 28 109 ± 8 116 ± 20 

N-6 PUFA 6929 ± 2044 7099 ± 1947 6081 ± 2013 

C 18:3n-3 157 ± 118 240 ± 136 174 ± 146 

C 20:5n-3 28 ± 14 37 ± 4 27 ± 9 

C 22:5n-3 302 ± 26 299 ± 24 279 ± 43 

C 22:6n-3 1474 ± 147 1376 ± 92 1368 ± 92 

N-3 PUFA 1966 ± 191 1959 ± 122 1853 ± 282 

PUFA 8894 ± 1927 9058 ± 2048 7934 ± 2292 

HUFA 3734 ± 916 3899 ± 138 3805 ± 224 

N-6/N-3 4 ± 1 4 ± 1 3 ± 1 

HUFA Score 52 ± 16 44 ± 1 44 ± 1 

Total 18595 ± 4378 18720 ± 4459 17085 ± 5722 

Data is mean ± SD. SHAM: sham-operated rats, OVX+AL: ovariectomized rats with ad libitum 

access to food, OVX+PF: ovariectomized rats pair-fed to sham-operated rats. SFA: saturated 

fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, HUFA: 

highly unsaturated fatty acids. 


