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Abstract 

Optic nerve section (ONS) is an experimental model for damage of the optic nerve associated with 

diseases such as glaucoma and optic neuritis.  Damage to the optic nerve causes loss of retinal 

ganglion cells that are attached, once the cells are damaged, they are not typically replaced.  Recently, 

Fischer and Reh (2003) found that Müller glia have the potential to adopt phenotypes and functional 

capabilities similar to those of retinal progenitors, a potential source of retinal regeneration.  In the 

chick, when the specific retinal cells are targeted for damage by chemotoxins, there is widespread 

apoptosis but also mitotically active cells that label with retinal progenitor markers.  Fischer and Reh 

(2002) also discovered that the combination of growth factors FGF2 and insulin is capable of 

stimulating the regenerative response of the Müller glia to retinal progenitor cells in chick eyes.  This 

study was conducted to analyse damage to the ganglion cells by optic nerve section in chicks to 

determine the effect of age on the cell death timeline, the proliferative qualities of the retina and to 

see if injections of growth factors had the ability to increase the proliferation.  Histological methods 

were used to analyse cellular changes and ultrasound to monitor eye growth.   Apoptotic activity 

preceded retinal thinning and ganglion cell loss, indicating that ONS-related cell death is mediated at 

least in part by apoptotic mechanisms and age did not affect the time course, although, age did affect 

the eye growth changes, which may be attributed to the plasticity of the younger eyes.  ONS damage 

elicited proliferative activity in the retina as did growth factor injections alone.  The combination of 

ONS damage and growth factor injections increased the proliferative activity and the overall total 

number of cells in the ganglion cell layer.  These findings can potentially lead to the development of 

therapeutic strategies for the preservation or restoration of retinal cells in diseased eyes.   
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I. LITERATURE REVIEW 

1.1 Development of the human eye 

In humans, development of the ocular structures begins during the third week of gestation with the 

formation of an embryonic plate consisting of three primary germ layers: ectoderm, mesoderm and 

endoderm (Moore, 1989).  The ectoderm and the mesoderm, found below it, form the various ocular 

structures.   As the ectoderm thickens it forms the neural plate that serves as the basis of the central 

nervous system.  At day 18 of gestation, a groove develops in the neural plate forming the neural 

folds and by day 22 the folds grow toward each other to meet then pinch off to form the neural tube 

(Moore, 1989).  Cells of the neural tube are henceforth known as neuroectoderm and remaining 

ectoderm at the surface of the embryo is known as the surface ectoderm (Moore, 1989).  Neural crest 

cells bud off of the neuroectoderm and are responsible for various structures within the eye (Moore, 

1989).   

 The eyes are extensions of the neural tube, initially known as optic pits (Oyster, 1999) that 

proliferate and increase in size until they become the optic vesicles on day 25.  The connection 

between the optic vesicles and the neural tube is the optic stalk (Cook et al., 1994; Oyster, 1999).  The 

contact of the optic vesicle to the surface ectoderm on day 27 causes a thickening of the surface 

ectoderm, forming the lens placode, and an invagination of the optic vesicle, forming the optic cup 

(Cook et al., 1994; Oyster, 1999).  The surface ectoderm, lens placode and resulting bilayered optic 

cup contain the progenitor cells that form almost all of the ocular structures within the vertebrate eye. 

1.1.1 Development of non-retinal ocular structures  

The cornea is the transparent layer at the front of the eye that is composed of corneal epithelium, 

stroma and endothelium, that helps to focus light.  The cornea is stimulated to develop by signals 

from the developing lens at the time that the lens vesicle detaches from the surface ectoderm at day 
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33 (Coulombre, 1969; Coulombre and Coulombre, 1969).  The surface ectoderm proliferates, 

resulting in the establishment of multiple epithelial cell layers that eventually become the corneal 

epithelium.  Corneal epithelium development is complete around the fifth or sixth month of gestation 

(Zinn and Mochel-Pohl, 1975).  The corneal endothelium is formed by the neural crest cells that 

migrate between the corneal epithelium and the lens and by 4 months gestation the endothelium is a 

flat single row of cells with a basal lamina that gives rise to Descemet’s membrane (Cook et al., 

1994).  At week 8, another wave of neural crest cells migrate between the epithelium and the 

endothelium to give rise to the stroma of the cornea made up of fibroblasts, collagen and ground 

substance (Oyster, 1999; Pearson, 1969; Remington, 1998).  The majority of the layers of the cornea 

are developed in the first 3 months except for Bowman’s layer, which arises from the superficial 

neural crest cells in the fifth month of gestation (Cook et al., 1994).           

 

 

 

 

 

 

 

Figure 1  Diagram of the corneal layers. 
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   The crystalline lens is a transparent structure in the eye that helps to focus light along with the 

cornea.  Lens formation begins with the lens vesicle, which is a hollow sphere with walls consisting 

of a monolayer of epithelial cells that is surrounded by a thin basal lamina, the latter of which 

eventually develops into the lens capsule (Pearson, 1969; Remington, 1998).  The posterior cells of 

the sphere elongate, eventually filling the lumen; these differentiated cells become the primary lens 

fibres and form the embryonic nucleus at the centre of the adult lens.  The anterior epithelial cells of 

the lens stay in place, while cells near the equator of the lens undergo mitosis before differentiating 

anteriorly and posteriorly to form the secondary lens fibres that lie around the embryonic nucleus 

(Remington, 1998).  The close proximity of the developing retina aids in inducing the formation and 

elongation of the lens cells (Remington, 1998). 

 The uveal or vascular layer that encompasses the eye consists of the choroid, the ciliary body 

and the iris.  The choroid is the vascular structure that surrounds the eye and supplies oxygen and 

nutrients to the retina and is located between the retina and the sclera.  The choroid develops from the 

mesoderm and neural crest cells and vessels within the choroid appear in the second month of 

gestation (Mund et al., 1972).  The ciliary body is a tissue located behind the iris and its functions 

include changing the shape of the lens during accommodation and producing aqueous humour that 

fills the anterior chamber of the eye that provides nourishment to the posterior surface of the cornea.  

The ciliary body is composed of pigmented and nonpigmented epithelium that is formed from the 

epithelial layers of the optic cup.  In the fourth month of development, the source of blood that 

courses through the ciliary body is formed and is followed by the formation of the ciliary muscle from 

neural crest cells in the fifth month (Oyster, 1999; Remington, 1998).  The production of aqueous 

humour begins between 4-6 months of gestation.  Development of the iris, or the coloured part of the 

eye, begins with the migration of mesenchymal cells of the neural crest origin between the cornea and 
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lens.  These cells form the anterior half of the iris, while the posterior half arises from the ends of the 

optic cup at the end of the third month.  During the fifth and sixth months of gestation, the muscles of 

the iris form from cells that were derived from the optic cup epithelium (Tamura and Smelser, 1973).  

The vascular parts of the iris form from the vessels of the long posterior and anterior ciliary artery 

(Oyster, 1999).   

 The vitreous is the large gel-like substance localised between the lens and the retina.  The 

vitreous is formed from fibrils derived from the lens, retina and degenerating hyaloid system and 

begins to accumulate at the end of the 7th week of development (Cook et al., 1994; Oyster, 1999).  

The primary vitreous is composed of collagen and later is largely compressed and replaced by the 

secondary vitreous, composed of type II collagen produced by the cells of the developing retina 

(Oyster, 1999).  Proteoglycans and hyaluronic acid are thought to be produced by the cells of the 

hyaloid artery, mesenchyme and/or the neuroectoderm.  When the developing eye no longer requires 

the hyaloid artery system, it begins to break down and disappear (Oyster, 1999).  The vitreous 

humour fills the majority of the eye and is a clear substance to allow for the unimpeded passage of 

light.       

The sclera, the outer tough covering of the eye, also known as the “white of the eye”, 

develops from neural crest mesenchymal cells that surround the optic cup.  These cells condense in an 

anterior to posterior direction until complete development of the sclera has occurred, usually by the 

third month, when all of the globe has been encompassed by the differentiated cells (Duke-Elder and 

Cook, 1963).   
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Figure 2  Diagram of the eye with the various structures.  

1.1.2 Development of the retina, vessels and optic nerve 

While the lens is forming, the optic vesicle invaginates to form the optic cup (Oyster, 1999).  A deep 

groove is formed from the joining of the edges of the cup as they are drawn together and is known as 

the choroidal or embryonic fissure.  During this invagination, the hyaloid artery forms to supply 

nutrients to the developing structures of the eye (Pearson, 1969).  It runs along the fissure and optic 

stalk before entering the fissure posterior to the optic cup.  It then extends anteriorly to the rim of the 

cup as well as to the lens (Oyster, 1999; Pearson, 1969).  The hyaloid artery begins to regress when 

the lens can grow independent of the blood supply, but atrophy ceases at the posterior portion of the 

eye that eventually becomes the retina.  The hyaloid artery, at this time, branches with the retina, 

eventually giving rise to the central retinal artery (CRA) and its capillary beds (Oyster, 1999; Pearson, 

1969).  The edges of the fissure eventually fuse, and in the region of the optic stalk, enclose the 

central retinal artery as it exits the eye (Oyster, 1999; Pearson, 1969).  The rim of the cup becomes 

cornea 

lens 

iris

ciliary body

retina

anterior chamber

sclera

vitreous

limbus

fovea

choroid

optic nerve

central retinal artery and vein

 
 iris  lens 



 

6 

 

the epithelium of the prospective iris (Pearson, 1969).  Lens differentiation and the closing of the 

choroidal fissure both occur around week 5 to 6 of gestation (Oyster, 1999).              

  At this point, the optic cup is the primative retina, and the optic stalk is the optic nerve.  The 

eye generally develops from the center to the periphery.  The retinal pigment epithelium (RPE) and 

retina are the first to develop followed by the uveal tract, the cornea and sclera, finally the extraocular 

muscles and orbital bones (Oyster, 1999).   

 The RPE is the first retinal layer to differentiate (Warwick, 1976).  At week 3 or 4, 

melanosomes and cellular structures begin to appear in the outer layer of the optic cup allowing for 

pigmentation.  After week 6, the RPE is one cell layer thick, made of up cuboidal and columnar cells 

(Hollenberg and Spira, 1972; Mund et al., 1972).  The base of each cell is adjacent to the developing 

choroid and the apical ends of the cells face inward into the optic cup.  At week 4 or 5, cells begin to 

proliferate in the inner layer of the optic cup to form the neural retina.  Two zones of cells develop in 

the inner layer of the optic cup; cells accumulate in outer region called the proliferative or 

germinating zone, while the inner marginal zone (of His) remains anuclear (Remington, 1998).  The 

separation between the marginal zone of the optic cup and the vitreous later becomes the area where 

the internal limiting membrane is formed (O’Rahilly, 1975).  At week 7, the primitive cells in the 

proliferative zone separate into an inner and an outer neuroblastic layer of cells, which are divided by 

a transient fibre layer of Chievitz, a nucleus free region (Hollenberg and Spira, 1972; Smelser et al., 

1973).  The inner neuroblastic layer contains the differentiating retinal ganglion cells (RGC), 

amacrine cells, and Müller cells (Uga and Smelser, 1973).  The ganglion cells migrate forward 

towards the vitreous to form a third nuclear layer and by week 8 they begin to send out their axonal 

processes to form the optic nerve within the optic stalk and these axonal processes form the nerve 

fibre layer (NFL) of the retina (O’Rahilly, 1975).  The outer neuroblastic layer gives rise to the 
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bipolar, horizontal and photoreceptor (PR) cells (O’Rahilly, 1975).  The bipolar and horizontal cells 

migrate from the outer neuroblastic layer towards the Müller and amacrine cells and gradually the 

layer of Chievitz disappears (O’Rahilly, 1975).  By week 12 there is a clear arrangement of the cells 

consisting of the photoreceptors in the outermost nuclear layer, eventually known as the outer nuclear 

layer (ONL), the bipolar, horizontal, amacrine and Müller cells in the middle cellular layer, called the 

inner nuclear layer (INL) and the ganglion cells and displaced amacrine cells form the innermost 

layer called the ganglion cell layer (GCL).  Cytoplasmic processes develop between the cellular 

layers and the Müller cells extend their radial fibres to form the internal and external limiting 

membrane (Cook et al., 1994; Pearson, 1969).  The inner plexiform layer (IPL) separates the GCL 

and the INL and the outer plexiform layer (OPL) separates the INL and the ONL.  The photoreceptors 

are responsible for capturing the light or visual input, the information is then sent through their axons 

to the bipolar cells.  The bipolar cells relay the signal through their axons to the ganglion cells.  The 

ganglion cells then send the signal through their axons that traverse the retina and through the optic 

nerve that to the visual centres of the brain.  The amacrine and horizontal cells modulate the bipolar 

cell activity and the glial cells, known as Müller cells, are also present to act as support cells.  

Although the cells have different functions, it has been shown that there is a single neuroblastic 

precursor cell that has the ability to develop into at least three types of neurons or two types of 

neurons and a Müller glial cell (Turner and Cepko, 1987).  The retina continues to develop synaptic 

connections starting with the connections at the centre of the retina and then development continues 

peripherally.  The area that allows for the best visual acuity is known as the fovea and is the last to 

finish maturing post-natal in humans.                                
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Figure 3  Chick retina labeled with the 3 nuclear and 3 plexiform layers.   

The top of the image is closest to the vitreous, the bottom of the image is closest to the 

choroid and sclera of the eye.   

Retinal vessels begin to develop in the fourth month of gestation.  Primitive vessels emerge 

from the previously formed hyaloid artery near the optic nerve and the new vessels insert into the 

nerve fibre layer.  The retinal vessels continue to develop until 3 months after birth.  The development 

of the nasal vessels precede the temporal peripheral vessels (Cook et al., 1994). 

The optic stalk is the primitive form of the optic nerve that connects the optic vesicle to the 

forebrain during development.  As the eye develops, the outer layer of the optic stalk becomes a 

sheath made up of glial tissue that surrounds the optic nerve composed of the axons of the ganglion 

cells pass as they pass through the lumen to extend to the central nervous system (CNS) along with 

the central retinal artery (Cook et al., 1994). 

1.2 Damage to the retina and optic nerve 

Damage to the retina or RGCs and optic nerve can occur in an anterograde or a retrograde fashion 

(Cowan, 1970).  During anterograde damage, the cell or cell body degenerates and cell processes or 

nerves downstream to the cell can be affected, in the retina, damage to the RGCs results in damage to 

the RGC axons that comprise the optic nerve.  Retrograde damage, which begins behind the eye and 
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moves to within the retina, can occur if the optic nerve is damaged first, followed by further injury to 

the attached RGCs.  The retina and optic nerve can be mechanically damaged if too much pressure is 

applied; ischemic damage, where the blood supply is compromised, and/or injury due to tissue 

inflammation can also be causes for visual dysfunction.   

1.2.1 Glaucoma 

Glaucoma is a chronic and progressive optic neuropathy that appears as a thinning of the bundle of 

nerves exiting the optic nerve (Lin and Orengo-Nania, 2012) and can be observed by examination of 

the retina with direct or indirect ophthalmoscopy when the RGCs and their axons are damaged.  

Glaucoma is typically associated with a rise in the pressure in the eye, known as intraocular pressure 

(IOP), but glaucoma can also occur in patients with normal eye pressure or low pressure potentially 

associated with nerve tissue with high susceptibility to damage.  The loss of cells and axons causes 

significant loss of vision that is currently irreversible and the current treatment for glaucoma is to 

attempt to reduce the IOP to prevent or to slow the damage to the optic nerve.  Glaucoma is classified 

in a variety of ways, typically based on the anatomy of the angle or the structure where the fluid in the 

eye drains located between the junction of the cornea and iris.  Glaucoma is commonly divided into 

open angle glaucoma, associated with open drainage and a rise in pressure, or angle closure glaucoma 

where the drainage is closed, which increases the pressure in the eye.  Patients typically have a loss of 

vision initially in the periphery that slowly encroaches on central vision.  In 2002, The Eye Diseases 

Prevalence Research Group estimated that open angle glaucoma affected 2.22 million citizens in the 

United States and they predicted the number would rise to 3.36 million in 2020 (Friedman et al., 

2004) given the inability to cure the disease.    
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1.2.2 Optic neuritis 

Optic neuritis is acute demyelination of the optic nerve caused by inflammation.  Optic neuritis is 

strongly associated with the onset of multiple sclerosis (MS) and occurs in 14 – 45% of patients with 

MS (Sorensen et al., 1999).  Patients can experience a sudden loss of vision that varies in severity and 

extent of visual field loss.  Color vision abnormalities and contrast sensitivity changes can also be 

assessed and can have lasting effects but can also potentially improve over time (Beck et al., 1992).  

Optic neuritis is a condition that can be treated and the Optic Neuritis Treatment Trial (ONTT) 

examined the difference between treatment with oral prednisone, to treat the inflammation, compared 

to intravenous methylprednisolone sodium succinate followed by oral prednisone treatment (Beck and 

Cleary, 1993).  It was found that there was short-term acceleration of the rate of recovery for those 

treated with intravenous plus oral steroids and that oral prednisone alone should not be used as a form 

of treatment (Beck and Cleary, 1993).  The effects of treatment do not guarantee full function of the 

optic nerve to be restored.     

1.2.3 Ischemic optic neuropathy 

Ischemic optic neuropathy can cause severe visual impairment or blindness due to lack of blood flow 

to the retina (Hayreh, 2009).  Ischemic optic neuropathy encompasses two main groups of diseases, 

anterior ischaemic optic neuropathy (AION) and posterior ischaemic optic neuropathy (PION), with 

the former resulting from the loss of blood supply to the anterior part of the optic nerve, the posterior 

ciliary artery (PCA), and the latter involving damage to the posterior part of the optic nerve that is 

supplied by multiple sources but not the PCA (Hayreh, 2009).  Typically the treatment of ischemic 

optic neuropathy is to administer systemic high dose steroids to stop further vision loss in the affected 
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eye and to prevent vision loss in the other eye although it has not been shown to be successful in the 

treatment of PION, which is very difficult to treat (Hayreh, 2011).   

1.3 Chick as a model 

The chick (Gallus gallus domesticus) model is widely used for eye growth, development and 

regulation studies.  They are readily available, inexpensive and easy to maintain in comparison to 

larger animals.  The development of the chick eye is very similar to the development of the human 

eye but occurs at a faster rate starting within the first 24 hours of incubation of the eggs and the 

chicks hatch after 21 days with fully developed eyes.  The developmental advantages of using the 

chick model include the ability to do short studies (1-2 weeks) and the responses are robust to visual 

manipulations.             

1.3.1 Development of the chick retina and optic nerve 

In the chick retina, all of the retinal cell types are believed to be formed one week before hatching 

(Prada et al., 1991).  The chick retina, similar to human retina, develops from the centre to the 

periphery and contains the same six neuronal cells and one glial cell as humans.  The chick retina 

develops in three large stages beginning with the ganglion cells, the first cells to form, which appear 

very quickly in development, on the fourth day of development before sending their axons through 

the space in the optic stalk to connect with neurons in the midbrain.  The amacrine and horizontal 

cells are the next to develop, forming in the layer external to the ganglion cell layer, in the INL, 

followed by differentiation of the cone photoreceptors in the ONL (Fujita and Horii, 1963; Morris, 

1973; Prada et al., 1991; Spence and Robson, 1989).  The last cells to develop around embryological 

day 12 (E12) are the bipolar cells, rod photoreceptors and Müller glia (Kahn, 1974; Prada et al., 

1991).  This order of differentiation of the retinal cells varies slightly from that of human 
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development which occurs in two large cohorts, the first includes the ganglion cells, horizontal cells 

and cones while the second cohort includes the amacrine cells, bipolar cells, Müller cells and rods 

(Oyster, 1999).  At the time of hatching, around E21, the chick retina differs from humans given its 

fully functional and post-mitotic state. 

1.3.2 Ocular similarities and differences between humans and chicks 

The ocular structures of the chick eye have similarities as well as differences compared to the human 

eye (Walls, 1967).  Chicks have laterally placed eyes with only a small degree of binocularity (20 

degrees) (Martin, 2009) in contrast to humans who have frontally placed eyes with a large degree of 

binocularity (114 - 120 degrees) (Howard, 1995; Lens et al., 2008).  The outer fibrous scleral layer of 

the chick is similar to that of humans but the chick also has an inner cartilaginous layer, which does 

not exist in humans.  Like humans, the chick exhibits lenticular accommodation however the chick 

also exhibits corneal accommodation.  The chick changes the shape of the lens using its ciliary 

muscles, which are skeletal in nature and therefore signaled by nicotinic agonists; in contrast, human 

ciliary muscle is smooth and relies on muscarinic receptors for signaling.  In terms of the retina, the 

chick has an area centralis, an area of high cone density that is similar to the fovea of humans, 

although equivalent of a foveal pit is not observed in the chick retina.  Chicks also have colour vision, 

however, unlike humans, who are trichromats, chicks are tetrachromats, having an additional set of 

ultraviolet-sensitive cones. 

1.3.3 Vasculature of the chick eye 

The chick retina does not have a central retinal artery that courses through the optic nerve like 

humans do, having instead, an equivalent structure called pecten oculi that projects into the vitreous 

chamber to nourish the inner retina.  For this reason, the chick has been used in numerous studies to 
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isolate the retina from the brain by severing the optic nerve without compromising the vascular 

nourishment to the retina (Wildsoet, 2003).  This method thus provides a solely mechanical means of 

damage to the eye without involving an ischemic form of damage.   

1.3.4 Eye growth and regulation studies 

The chick model has been extensively used in eye growth and regulation studies.  Emmetropia 

describes the normal state of the eye when the eye is relaxed and allows the light from an object to 

fall on the retina to create a clear image without the aid of spectacles.  The opposite of emmetropia is 

ametropia and consists of myopia (near-sightedness) and hyperopia (far-sightedness).  

Emmetropisation is the process by which the eye changes from being ametropic to emmetropic.  The 

process of emmetropisation is similar between humans and chicks but the process occurs much faster 

in chicks (12 – 14 days in chicks vs. 7-9 years in children) (Irving et al., 1992; Pickett-Seltner et al., 

1988).  Emmetropisation requires the co-ordination of growth of the cornea, anterior segment, lens 

and vitreous chamber (Troilo, 1992).   

  The understanding of the emmetropisation mechanism has been primarily investigated using 

the chick model.  One of the first experimental investigations to induce myopia was utilising form-

deprivation, which involved degrading the visual environment in a variety of ways, including use of 

diffusers or by suturing the eyelid shut to prevent vision (Sherman et al., 1977; Wallman et al., 1978; 

Wiesel and Raviola, 1977; Wilson and Sherman, 1977).  It was discovered that the ability to induce 

myopia was highly susceptible at a young age but decreased with age, which is also true for humans 

(Wallman and Adams, 1987).  The form deprivation myopia studies showed that when there is no 

visual feedback (lid suture), myopia develops and continues until the experimental treatment was 

removed.  To further investigate the evidence for emmetropisation as a visually guided mechanism, 



 

14 

 

studies involving lens-induced refractive errors were undertaken.  The first report of lens-induced 

refractive errors was by Schaeffel et. al. 1988, where chick eyes compensated for various amounts of 

defocus they were subjected to.  Since then, there have been similar findings in many other species 

including tree shrews (Siegwart and Norton, 1998) and monkeys (Hung et al., 1995).  The chick 

model has also been noted as having the ability to compensate quickly for a large range of defocus 

(Irving et al., 1992; Nevin et al., 1998; Schaeffel and Howland, 1988; Wallman et al., 1995).  The 

mechanism for emmetropisation is still unclear but there are many theories to explain the process 

(Yackle and Fitzgerald, 1999).  The two largest opposing ideas view emmetropisation as either as an 

active mechanism (Troilo and Wallman, 1991), whereby visual feedback is involved in the process, or 

as a passive mechanism (Troilo and Wallman, 1991; Troilo, 1992), where the outcome of eye growth 

is predetermined. 

 The active emmetropisation mechanism is thought to be regulated by the clarity of the retinal 

image.  The eye detects blur and then adjusts the components of the eye accordingly to create a clear 

image by making the eye longer or shorter.  The most compelling evidence to support the active 

feedback mechanism of the eye comes from studies where spectacle lenses were used to create 

myopic or hyperopic defocus on normal chick eyes (Irving et al., 1992; Schaeffel et al., 1988).  The 

defocus resulted in the eyes developing functional emmetropia by changing the shape and length of 

the eye to meet the new image plane.  A plus (biconvex) lens was used to create myopic defocus, 

where the focal plane of the image was placed in front of the retina, and the retina was found to 

compensate by first expanding the choroid to push the retina forward to match the image plane, then 

by slowing ocular elongation to make the eye shorter (Hung et al., 2000; Wildsoet and Wallman, 

1995).  When a minus (biconcave) lens was used to create hyperopic defocus, to shift the image plane 

behind the eye, the opposite happened; the eye elongated to compensate for the blur and the retina 
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was displaced to the same plane as the image.  Elongation of the eye occurred by remodeling the 

sclera at the posterior pole (Gentle and McBrien, 1999) and a backwards movement of the retina as a 

consequence of the thinning of the choroid and elongation of the vitreous (Wallman et al., 1995; 

Wildsoet and Wallman, 1995).  In the chick model, it has been shown that the refractive changes in 

the eye are very plastic and chick eyes respond to a large range of lenses from -10D to +15D, 

although this asymmetry indicates that the mechanisms for myopic and hyperopic defocus may not be 

the same (Irving et al., 1992).  In contrast to the lens induced eye growth changes, continuous 

excessive eye elongation and myopia occurs when an eye is deprived of a visual stimulus with a 

diffuser because the images were never brought into focus, resulting in vitreous chambers that were 

25% longer than normal but when the visual impediment was removed, the eye still had the ability to 

recover (Wallman and Adams, 1987).   

 The passive theory of emmetropisation suggests that genetics and control from coordinated 

growth of all the other ocular structures is what directs the eye to change shape.  It has been shown 

that there is a 42% chance that a child will be myopic if both parents are myopic, a 22.5% chance of 

myopia if one parent has myopia, and an 8% chance of being myopic if neither parents have myopia 

(Gwiazda et al., 1993).  It has also been suggested that emmetropisation can be coordinated with lens 

and anterior segment changes during development without visual input (Yackle and Fitzgerald, 1999).   

A recent study used the chick to investigate the interaction between passive and the active 

forms of emmetropisation, specifically genetics and the environment (Chen et al., 2011).  Chicks 

were selectively bred for high susceptibility or low susceptibility to form deprivation myopia and then 

treated with different lenses to assess the refractive error development.  Compared to the lowly 

susceptible birds, highly susceptible birds developed a larger degree of myopia when treated with 

minus lenses, proving that environmentally induced myopia has a strong genetic component.  The 
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degree of change with the plano (no refractive power) lens and the plus lens groups did not differ 

between the high and low-susceptibility birds.  These findings suggest that high myopia and lens-

induced myopia have a similar molecular component in their pathways that is not found in the 

visually guided regulatory system for plus lenses (Chen et al., 2011).  It also shows that the 

mechanisms guiding myopia and hyperopia are different, and that the interaction between genetics 

and environment may exist for myopia but not for hyperopia.         

The idea that emmetropisation is locally regulated is supported by several studies.  The first 

study involved using minus lenses and diffusers to cover only half of the eye/retina, and resulted in 

elongation or myopia of only the half of the eye that was subjected to the visual manipulation (Hodos 

and Kuenzel, 1984).  A similar experiment with positive lenses resulted in less eye growth in the half 

of the eye exposed to the lenses. (Diether and Schaeffel, 1997; Hodos and Kuenzel, 1984; Wallman et 

al., 1987).  Another study involving optic nerve section (ONS) to isolate the retina from the brain 

showed that that central nervous system played a role in the emmetropisation process.  After ONS, 

myopia in chicks was still able to be altered by form deprivation (Troilo et al., 1987) and ONS did not 

prevent the chick eye’s ability to recover (Troilo and Wallman, 1991) accomplished by the local 

control of the retina, choroid and sclera in response to blur.  Although these findings support local 

control of emmetropisation, there are also findings that support that the control is altered.  After ONS, 

eyes tend to show a hyperopic state compared to normal eyes (Troilo et al., 1987; Wildsoet and 

Wallman, 1995) and the eyes recovering from form deprivation tend to over-shoot emmetropia 

(Troilo and Wallman, 1991).  In addition, hyperopic defocus compensation is altered as well as the 

growth responses of the fellow eye of ONS-treated plus lens-wearing eyes (Wildsoet and Wallman, 

1995), where the responses tend to be attenuated. 
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1.3.5 Retinal and optic nerve damage studies 

In the chick retina, anterograde degeneration can be induced by injection of colchicine, a microtubule 

depolymeriser, in hatching chick eyes, leading to ganglion cell death and amacrine cell dysfunction or 

loss as well (Fischer et al., 1999; Morgan, 1981).  The physiological effects of colchicine on chick 

eye growth include longer axial lengths (myopic shift), larger vitreous chamber and equatorial 

diameters, increased eye weight and myopic refractive error (Fischer et al., 1999).  Another 

experimental model of damage to target ganglion cells is transecting the optic nerve, and this method 

represents a retrograde form of damage.  Presumably, optic nerve transection leads to ganglion cell 

loss without affecting the amacrine cells, although secondary degenerative effects are unknown.  The 

physiological effects of ONS include an initial hyperopic shift due to smaller vitreous chamber depths 

and thickening of the choroid (Choh and Wildsoet, 2002).  Although the targets of destruction are the 

same (ganglion cells) for anterograde and retrograde models of damage, distinct eye growth patterns 

exist for the specific dysfunctional retinal states.  Since the retinal cell death and proliferation 

characteristics of the retina have yet to be explored, the difference in eye growth patterns warrants 

investigation of ONS-treated eyes.       

1.4 Cell Death (Apoptosis) 

Apoptosis is a cell death mechanism that is programmed in the cell, activated naturally during 

development and possibly also in response to injury.  In one of the first studies to examine apoptosis 

(Kerr, 1971) it was shown that ligation of the portal vein branches supplying the rat liver resulted in 

atrophy of the hepatic lobes and the presence of Councilman bodies (apoptotic bodies) containing 

intact unharmed mitochondria and lysosomes.  Moreover, the cells had shrunk in size and were 

characterised by condensed chromatin fragments that were at times surrounded by membranes.  The 
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cells did not become degraded but were eventually ingested by macrophages or surrounding cells.  

The phenomenon was thought to be complementary to mitosis and was later termed “apoptosis”, 

referencing the Greek term for leaves falling from trees (Kerr et al., 1972). 

The main enzymes involved in apoptosis are the caspases (cysteine-dependent aspartate-

cleaving proteases) or procaspases (the inactive form) (Taatjes et al., 2008).  Two distinct classes of 

caspases have been identified, initiators, which are activated through protein-protein interactions, and 

effectors, which are activated later in the enzymatic cascade (Hengartner, 2000).  The first caspase 

identified, cell-death abnormality-3 (ced-3), found in the nematode, closely resembled interleukin-1ß 

converting enzyme (ICE) now known as caspase-1 in humans (Fan et al., 2005).  Presently, 14 

caspases have been identified and they are divided into three subgroups based on their homology of 

amino acid sequence (Fan et al., 2005).  The first subgroup has the role of activating apoptosis, and is 

also known as initiator caspases (-2, -8, -9 and -10).  The other 2 groups involve the roles of apoptosis 

executioner (caspase-3, -6, -7) and inflammatory mediator (caspase-1, -4, -5, -11, -12, -13, and -14) 

respectively, and fall under the category of effector caspases (Fan et al., 2005).  The activation of cell 

death involves the interaction of protein domains such as the death effector domain (DED) or caspase 

recruitment domain (CARD) (Fan et al., 2005).  Initiator caspases are cleaved, resulting in their 

activation, which then triggers a cascade of events including the activation of the effector caspases by 

initiator caspase dependent cleavage of their respective procaspases, finally ending in cell death.   

1.4.1 Apoptotic pathways 

There are two common pathways to activate caspases: the extrinsic and the intrinsic.  The extrinsic 

pathway is also referred to as the death receptor-mediated pathway and the intrinsic referred to as the 

mitochondrion-mediated pathway (Fan et al., 2005).  The extrinsic pathway is initiated by the binding 
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of an extracellular ligand to either the Fas or tumour necrosis factor receptor (TNFR1); the ligand is 

also known as the death ligand or the cell death signal (Fan et al., 2005; Riedl and Shi, 2004).  The 

recruitment and aggregation of cytosolic factors FADD (Fas-associated death domain) and TRADD 

(TNFR-associated death domain), then activate initiator procaspases such as procaspase-8 (Fan et al., 

2005; Riedl and Shi, 2004).  Typically, effector caspase-3 activation follows.  Caspase-3 then cleaves 

and activates DNA fragmentation factor (DFF) to fragment DNA.   

 The intrinsic pathway is commonly activated by caspase-8 and caspase-9.  The caspase-9 

intrinsic pathway involves the opening of mitochondrion permeability transition pores (MPTPs) to 

allow for the release of cytochrome c from the mitochondria to the cytosol (Fan et al., 2005).  The 

combination of cytosolic procaspase-9, deoxyadenosine triphosphate (dATP), cytochrome c, and 

oligomerised Apaf-1 result in the formation of a complex called an apoptosome (Fan et al., 2005)  

that activates caspase-9.  Procaspases-3 and -7 are the effector caspases associated with caspase-9 

(Fan et al., 2005).  Unlike caspase-9, caspase-8 only requires cytochrome c for activation.  Cytosolic 

caspase-6 is recruited and is the only caspase that can cleave procaspase-8 to caspase-8, in effect 

enhancing the caspase activity.  Caspase-8 then activates caspase-3 to cause DNA fragmentation.   

 Bcl-2 family of proteins are regulators of apoptosis and are commonly found in the intrinsic 

pathway of apoptosis and can either increase or suppress apoptosis (Hengartner, 2000).  In humans, 

there are 20 Bcl-2 proteins found so far to date (Reed, 2000).  Most pro-apoptotic Bcl-2 proteins such 

as Bax, Bak and Bid are inserted into the mitochondrial membrane (Fan et al., 2005; Gross et al., 

1999) while other pro-apoptotic proteins such as Bad are moved from the cytosol to enter the 

mitochondria (Reed, 2000).  The proteins that become integral to the mitochondrial membrane act by 

controlling the permeability of the MPTPs.  In contrast, the Bcl-2 proteins that enter the mitochondria 

associate with other Bcl-2 proteins already present to alter their function to either increase or decrease 
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the apoptotic activity (Gross et al., 1999).  Bcl-2/Bcl-XL are anti-apoptotic and they have the ability 

to stop apoptosis by inhibiting pro-apoptotic proteins such as Bax from inserting into mitochondrial 

membrane (Gross et al., 1999).  Ultimately, when the Bcl-2 family proteins reach the mitochondria 

they can increase or decrease apoptosis by regulating the release of cytochrome c and other proteins 

including caspases or caspase-activating proteins by forming channels/holes or by altering the 

permeability of MPTPs (Hengartner, 2000; Reed, 2000).     

 Once the apoptotic cascade has been initiated, the degradation of DNA soon follows.  One 

way to fragment DNA is with the apoptotic endonuclease known as the DNA fragmentation factor 

(DFF) also known as caspase-activated-deoxyribonuclease (CAD).  Studies have shown that caspase-

3 can cleave the CAD inhibitor (ICAD) off of the DFF/CAD to activate the endonuclease function to 

cleave DNA.  Caspase-9 causes damage to the nuclear pores to allow for caspase-3 to enter the 

nucleus to cause DNA degradation.  The high-mobility group (HMG) proteins and histone H1 have 

the ability to increase the endonuclease activity of DFF/CAD (Fan et al., 2005).  The fragmentation of 

the DNA is a key step in apoptosis but the cell must then undergo vital morphological changes 

including the breakdown of nuclear lamins to cause nuclear shrinkage, breakdown of the cytoskeletal 

proteins and cleavage of the cell to allow for cell blebbing.    

 Condensation of chromatin is a key feature in apoptosis that is mediated by nuclear lamins.  

Nuclear lamins are intermediate filament proteins that make up the underlying inner nuclear 

membrane and they also function to help organise the chromatin (McKeon, 1991).  In apoptosis, 

protease cleavage causes the disassembly of lamins (Earnshaw, 1995; Lazebnik et al., 1995) and in 

mutant lamin cells where cleavage is not found, there is a delay in nuclear shrinkage, nuclear 

breakdown is not complete, the chromatin is prevented from condensing and is not packed into 

apoptotic bodies (Rao et al., 1996).  The formation of the apoptotic bodies and the regulation of 
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cytoskeletal changes have been identified to be linked to gelsolin and p21-activated kinases (PAKs).  

In vitro, gelsolin is an actin-binding protein that is cleaved by caspases to cause cells to become round 

and detach themselves from the dish and cause nuclear fragmentation (Kothakota, 1997).  Gelsolin is 

found widely in the mammalian tissues (Kothakota, 1997) and is identified as a substrate for caspase-

3, a key mediator in the apoptosis of mammalian cells, and may be a key player in effecting 

morphological change (Kothakota, 1997).  In vitro, when apoptosis was induced, PAK2 cleavage also 

occurred by caspase activation (Rudel, 1997).  Cells that had PAK2 that were not cleaved showed no 

apoptotic bodies when apoptosis was induced but the cells were still intact with fragmented DNA 

(Rudel, 1997).  It was determined that since PAKs are common in mammalian tissues, caspase 

activation of PAK2 may also be essential for the formation of apoptotic bodies and blebbing in the 

apoptotic cascade. 

1.4.2 Apoptosis detection 

Apoptosis can be detected in a variety of ways.  Currently the most common 

cytochemical/spectroscopic method for detection is the use of the TUNEL assay or terminal 

deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labeling.  During apoptosis, 

endonucleases cause DNA strand breaks leaving free 3’-OH ends.  TUNEL detects and labels the free 

3’-OH terminal ends of single and double-stranded DNA breaks.  TUNEL is used to detect apoptosis 

at the late stage and the advantage of 3’OH labeling is the ability to tag the initial DNA breaks (Sgonc 

and Gruber, 1998).  The procedure requires pre-treatment of the sample with protease, then a labeled 

dUTP is incorporated into the DNA breaks (Vecino et al., 2004).  The Apostain is a newer method 

that is similar to TUNEL but was developed as a more specific probe for apoptotic cells that is not 
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easily affected by the method of tissue fixation but is not yet commonly used (Prochazkova et al., 

2003).    

 Electron microscopy is another way of detecting apoptosis by identifying apoptotic 

characteristics including cell shrinkage, increased cytoplasmic density, chromatin condensation, 

circumscribed masses in the nuclear membrane, blister-like formations and finally membrane-bound 

apoptotic bodies (Kerr, 1971).  The advantage of electron microscopy is the high spatial resolution 

but due to costs associated with this technique, it is no longer routinely used (Taatjes et al., 2008).  

More commonly used nowadays is light microscopy with various DNA and cellular stains.  A 

common histological method is Feulgen staining (Kuo et al., 1998; Vecino et al., 2004) where Schiff 

reagent is used to stain aldehyde groups on acid exposed deoxyribose sugars and the amount of stain 

is directly proportional to the amount of DNA.  The apoptotic cells are easily identified by the dark 

purple compacted nucleus (Vecino et al., 2004).   

 Flow cytometry is a common laser-based method of counting cells along with the treatment 

of specific reagents (Sgonc and Gruber, 1998) but does not always allow for imaging of structural 

changes (Taatjes et al., 2008).  Dyes highlight the change in size and granularity of the cells and 

apoptotic cells cause light scattering properties to be altered.  In apoptosis, early morphological 

changes such as water loss, cell shrinkage and fragmentation cause light scatter patterns that are not 

found in cells dying by other cell death mechanisms.  Apoptotic cells have lower forward scattering 

and higher side scatter than viable cells because of their smaller size and the change in the cytoplasm.  

Late apoptotic changes, including fragmentation and a decreased amount of DNA, can be easily 

identified because of their low affinity for stains.  The changes in the plasma membrane that occur 

during late apoptosis can also be detected using a combination of one dye that diffuses through intact 

membranes, Hoeschst, and a dye that does not such as Propidium Iodide, allowing for discrimination 
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between dying and viable cells (Sgonc and Gruber, 1998).  Annexin V staining is another method of 

detecting the apoptotic pathway and can be used in both flow cytometry and light microscopy to 

identify early- to mid-stage apoptosis by binding to the phosphatidylserine (PS) on the surface of the 

cell membrane that gets flipped from the internal to the external side of the cell.  

  Gel electrophoresis is another way to identify the apoptotic process.  The degradation of 

DNA by nucleosomes causes cleavage of the DNA in certain locations, the size of the fragments 

produced during apoptosis is approximately 185bp (Martinez et al., 2010; Wyllie et al., 1980) and can 

be observed with gel electrophoresis and is typically referred to as the DNA-ladder configuration 

(Sgonc and Gruber, 1998).  Western blotting is also a common technique for protein-based analyses 

of the release of cytochrome c, regulation of apoptotic proteins and the activation of caspases 

(Martinez et al., 2010).  Western blotting detection of cytochrome c release is faster than detection by 

immunoelectron microscopy.  Antibodies to tag caspase-cleaved proteins or “neoepitopes” (formed 

after the enzymatic cleavage of proteins) are now commercially available.  The neoepitopes are used 

as antigens to produce reagents against caspase-mediate apoptosis components.  The most common 

antibodies are raised against neoepitopes for cytokeratin 18 and caspase-3.  Since caspase-3 is 

common in almost all apoptotic cells, this reagent is typically the reagent of choice to label caspase-

mediated apoptotic cell death (Taatjes et al., 2008). 

1.4.3 Other types of cell death 

Necrosis was once thought to be the only cell death mechanism until 1951, when apoptosis was 

characterised (Glücksmann, 1951).  Unlike apoptosis, necrosis is a pathological and unregulated 

process that occurs in response to severe forms of environmental changes, hypoxia, and toxins and 

results in inflammation of a mass of cells.  The characteristics of necrosis are cell swelling, as a result 
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of a loss of selective permeability of the cell membrane, which ultimately causes damage to the 

organelles including the mitochondria.  Other cellular organelles are also affected (Hawkins et al., 

1972).  The nucleus remains intact while the cytoplasmic components are altered as a result of 

changes to the organelles of the cell.  The end stages involve the breakdown of the DNA into 

fragments (Hawkins et al., 1972).      

Autophagy is another programmed cell death pathway but unlike apoptosis, apoptotic bodies 

are not formed.  Instead, materials for degradation are packaged into autophagosomes which are 

double-membraned vesicles containing cytosolic components.  The autophagosome fuses with 

membrane of a lysosome resulting in the release of a single membraned autophagic body into the 

lumen.  The autophagic body degrades by lysosomal hydrolases resulting in the recycling of the 

cytoplasmic components.  Autophagy has been referred to as type II PCD and apoptosis as 

programmed cell death type I (type I PCD) (Wang and Klionsky, 2003).  The two programmed cell 

death mechanisms can interact, where apoptosis can activate autophagy and autophagy can facilitate 

efficient apoptosis (Xue et al., 1999).  Defective autophagy has been implicated in diseases such as 

cancer, Huntington’s and Parkinson’s (Klionsky and Emr, 2000).    

Necroptosis is also known as programmed necrosis (Vandenabeele et al., 2010).  Similar to 

necrosis, necroptosis involves rapid dysfunction of the mitochondria, development of reactive oxygen 

species, cell-swelling, rupture of the plasma membrane and spilling of the cellular contents (Galluzzi 

and Kroemer, 2008).  The cell is able to disintegrate by oxidative burst, membrane polarisation of the 

mitochondria, lysosomal and membrane permeabilisation.  Necroptosis is defined as programmed cell 

death because it follows a program, requiring the activation of caspases and serine-threonine kinase 

receptor-interacting protein 1 (RIP1) (Vanden Berghe et al., 2010).   
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1.5 Cell Death Processes in the Vertebrate Eye 

Apoptosis also plays a vital role in the development of the vertebrate visual system.  Apoptosis occurs 

in the early morphogenesis and embryological stages of the eye including invagination, fusion and the 

separation of tissue (Wride, 1996).  In the later stages of eye development, apoptosis regulates the 

number of cells and determines the size and shape of the various ocular structures (Bozanić et al., 

2003).  Changes in apoptotic cell distribution have the potential to lead to malformations of the eye 

(Bozanić et al., 2003).     

 Apoptosis is a key component of normal development especially during early stages in the 

formation of the parts of the optic cup, stalk, epithelium of the lens pit and the ectoderm where the 

lens detaches (Bozanić et al., 2003).   The highest amount of apoptotic activity has been identified in 

areas where morphogenetic events to shape the eye occur (Bozanić et al., 2003).  The other large area 

of apoptosis is the remodeling of the optic nerve (Bozanić et al., 2003).         

 In the lens, apoptosis has been identified using embryos with mutant genes.  Ischizaki et. al. 

showed that apoptosis is needed during the lens epithelial cell differentiation into lens fibres process 

because machinery that is common in programmed cell death mechanisms, including caspases, were 

involved (Ishizaki et al., 1998).  To create the clarity of the lens in a variety of species including 

bovine (Dahm et al., 1998), monkey (Bassnett, 1997), rat (Richardson and McAvoy, 1986) and aves 

(Bassnett and Mataic, 1997; Chaudun et al., 1994; Wride and Sanders, 1998), apoptosis occurs to 

remove the nuclei and other organelles from the lens fibres (Wride, 1996).  Over-expression of Bcl-2 

(anti-apoptosis), resulted in the development of disorganised fibres (Wride, 1996), while an increase 

in apoptosis led to smaller eyes (Hettmann et al., 2000).   
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Cell death is important for the development of the retinal layers and occurs in at least two 

phases, an early phase during neurogenesis, cell migration and cell differentiation and a late phase 

when connections or synapses are being formed.  The pattern of cell death is common amongst 

different vertebrates but the time and the amount of cell death varies (Vecino et al., 2004).  In general, 

retinas undergo 2 or 3 waves of apoptosis with each wave causing degeneration of cells.  The number 

of waves differ with amphibians (Glücksmann, 1940) showing three waves and the rest (fish, 

mammals, rodents, retiles, humans) occur in two waves (Bozanić et al., 2003; Cole and Ross, 2001; 

de la Rosa and de Pablo, 2000; Francisco-Morcillo et al., 2004; Galli-Resta and Ensini, 1996). 

1.6 Cell Proliferation  

Cell proliferation is the sequence of events that occur when cells that are stimulated to reproduce by 

entering the cell cycle.  Cells at rest are initially in G0 phase.  Upon entering the cell cycle, cells enter 

the first period of growth G1.  This stage prepares the cell for DNA synthesis/replication or S phase.  

At the end of G1, there is a restriction point (R), the point where the cell commits to complete the cell 

cycle.  When there are two copies of the cell’s chromosomes, the cell enters G2, the second period of 

growth where the cell prepares for mitosis (M).  M phase is when the cell divides into two daughter 

cells and this phase is divided into a series of steps: prophase, prometaphase, metaphase, anaphase 

and finally telophase including cytokinesis allowing the cell to divide into two parts (Berridge, 2012).       

 Mitosis begins with prophase, with the pair of centrosomes in the cell separating and 

migrating to opposite poles of the cell.  The pairs of chromosomes condense and form sister 

chromatids and the nuclear membrane then begins to break down (Berridge, 2012).  Spindles begin to 

form in the next phase, prometaphase, including astral microtubules, polar microtubules and 

kinetochore spindles.  The astral and polar microtubules overlap with each other and aid in pushing 
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the poles apart, while the kinetochore spindles attach to the kinetochores on the sister chromatids.  

Metaphase involves the aligning of the chromatids at the metaphase plate and separation is delayed 

until all the chromatids are in place.  Once all the cells are aligned, the cell moves into anaphase 

where separation of the chromatids begins.  Finally, telophase involves the separation of the 

chromosomes to either pole of the cell and cytokinesis allows the cell to divide by way of a 

contractile ring of actomyosin, which marks the end of the mitotic process until the cells are 

stimulated to repeat the process.    

1.6.1 Proliferation detection 

The most common analougue of the DNA bases is bromodeoxyuridine (BrdU) that gets incorporated 

into the proliferation DNA during S phase.  BrdU is detected indirectly with anti-BrdU along with a 

fluorescent tag.  The development of BrdU assays eliminated the need of radioisotopes, which was 

needed to detect 3H-thymidine, a radioactive thymidine nucleoside that was commonly used in the 

past.  A newer method, similar to BrdU includes the use of 5-ethyny-2’-deoxyuridine (EdU) 

incorporation.  EdU can be used to label cells in S-phase of the cell cycle and typically uses an alkyne 

modified dUTP that is detected by click chemistry that fluoresces the azide attached to the alkyne.  

The small size of the EdU regent allows detection without the use of harsh denaturation steps as is 

needed for BrdU treatment.  Although it is not commonly used at the moment, EdU is expected to 

increase in popularity (Zeng et al., 2010). 

 Proliferating cells can be detected using antibodies to specific antigens such as monoclonal 

antibody Ki-67 that is a commonly used antigen to label human cells in S, G2 and M phase (Gerdes et 

al., 1983).  The MCM2-7 complex, the replicative helicase needed for DNA replication initiation and 

elongation that is essential for entry into S phase of the mitotic cycle, is another marker for mitosis 
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(Nishiyama et al., 2011).  Antibodies for specific phosphorylation sites of histone H3, which play a 

role in chromosome condensation, have also been used to mark mitotic cells (Goto et al., 1999).      

 Other methods to detect proliferation take advantage of the by-products resulting from the 

process of mitosis.  The use of tetrazolium salts and AlamarBlue reagent can be reduced by metabolic 

intermediates during the proliferative process, the increase in metabolic intermediates is measured by 

a shift in colours, with tetrazolium salts changing in color from yellow to purple and AlamarBlue 

changing from a non-fluorescing indigo blue to a fluorescent pink colour (Caviedes et al., 2002).  The 

ViaLight assay uses bioluminescence levels to measure the amount of intracellular ATP which 

increases with cells proliferation (Jiang et al., 2008).  The oxygen biosense system uses oxygen-

sensitive ruthenium-based fluorescence levels, which are directly proportional to the amount of 

cellular or enzymatic oxygen consumption (Wang et al., 2005).   

1.7 Cell Regeneration in the Retina 

In light of the many sight threatening eye diseases, stem cell researchers have been searching for 

ways to replace cells that are lost.  Three methods have been developed, the use of human embryonic 

stem cells (hES), induced pluripotent stem cells (iPS) and the stimulation of retinal progenitor cells.  

hES cells isolated from blastocyts are pluripotent and have the ability to replicate indefinitely (Evans 

and Kaufman, 1981; Martin, 1981).  Difficulties with the use of hES cells are ethical problems 

associated with the use of human embryos and the possibility of tissue rejection.  The discovery that 

iPS cells, derived from adults cells, could be induced by transcription factors to become pluripotent, 

removed the need for embryonic tissue (Takahashi and Yamanaka, 2006) but the ability to transplant 

cells in vivo still posed another difficulty.  Retinal progenitor cells are multipotent, having the 

capability to differentiate into the various neurons and glial cells types of the retina; their use 
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eliminates the need for transplantation of cells (Xiang, 2013).  It has been long recognised that cold-

blooded, lower vertebrates retain retinal progenitor cells that have the ability to generate new neurons 

throughout life at the retinal margin.  In amphibians and fish, the growth of the eye is coordinated 

with the growth of new neurons (Perron and Harris, 2000; Reh and Levine, 1998).  In warm-blooded 

vertebrates, it was generally accepted that after the early stages of development, the retina does not 

have the ability to generate new neurons.  In birds and mammals, the ocular growth that occurs post-

natally or post-hatch is not coordinated with new neurons but by the stretching of the retina to 

compensate for eye growth (Teakle et al., 1993).  While it was generally thought that progenitors 

were limited to lower vertebrates, at least three sources of progenitor cells have been identified in the 

chick retina including (1) the cells at the peripheral edge of the retina, similar to the ciliary marginal 

zone in lower vertebrates as well as the ora serrata in humans (Fischer and Reh, 2000), (2) the non-

pigmented ciliary epithelial cells of the ciliary body (Fischer and Reh, 2003b) and (3) the Müller glial 

cells of the retina (Fischer and Reh, 2003a).  In adult chicken retina there is a potential source of 

progenitor cells in the area of the pigmented cells at the pars plana of the ciliary body (Fischer and 

Reh, 2001a).  Mammalian equivalents of progenitor cells have also been reported, although they show 

a much more reduced neurogenic ability (Nickerson et al., 2007).      

 There are several sources of evidence that indicate that Müller glia share a similar lineage and 

precursor with the retinal neurons (Holt et al., 1988; Turner and Cepko, 1987).  This relationship 

between retinal neurons and Müller glia has led to the idea that proliferating glia may be a target for 

retinal regeneration.  In mammals, Müller cells can re-enter the cell cycle and continue to survive in 

vitro after the retina has been damaged (Lewis et al., 1992; Sarthy, 1985).  The relationship between 

neural progenitors, stem cells and glia has recently been investigated and it has been discovered that 

in the chick retina, Müller glia have the potential to adopt phenotypes and functional capabilities 
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similar to those of retinal progenitors, which may allow them to serve as a source of retinal 

regeneration (Fischer and Reh, 2003a).  When the chick retina is subject to extensive damage by 

neurotoxin injection, there is widespread apoptosis, but surprisingly there is also a large number of 

mitotically active cells that remains in the retina, as indicated by BrdU incorporation, Phospho-

Histone H3 and proliferating cell nuclear antigen (PCNA) labeling (Fischer and Reh, 2001b).  The 

newly generated cells initially labeled with a marker glutamine synthetase (GS) for Müller cells but 

after a few days began to express markers for embryonic retinal progenitors including Pax6 and 

Chx10 (Fischer and Reh, 2001b).  Newly generated cells distributed throughout the inner and outer 

nuclear layers of the retina and were able to survive for a few weeks post-damage.  Overall, the fates 

of the BrdU-labeled cells included a small percentage (less than 4%) that differentiated into retinal 

neurons expressing Hu, calretinin or cellular retinoic acid-binding protein (CRABP), a larger 

percentage (~20%) that differentiated into Müller glia and the majority of the cells (~80%) that 

remained undifferentiated and continued to express the embryonic markers, Pax6 and Chx10.  When 

damage to the retina occurred within the first week post-hatch, the Müller glia proliferated in the 

central regions of the retina, whereas treatment after the first week post-hatch resulted in Müller glial 

cell proliferation in the peripheral regions of the retina (Fischer and Reh, 2003a).   

 It has been determined that the type of neuron targeted for destruction may be the neuron 

promoted for regeneration by the Müller glia-derived progenitor cells.  This conclusion was drawn 

from studies (Fischer et al., 2002a) using kainate used to damage bipolar, amacrine and ganglion 

cells, colchicine to selectively target ganglion cells and N’methyl-D-aspartate (NMDA) to destroy 

amacrine and bipolar cells.  With the use of kainate or colchicine, the newly generated cells expressed 

markers of ganglion cells that were not observed with NMDA-induced damage, in general indicating 

that the cell targeted for destruction was the cell type replaced (Fischer and Reh, 2003a).   
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 Chick embryos have shown the ability to regenerate neural retina from surgically removed 

RPE after insertion into embryonic chick otocyst (Coulombre and Coulombre, 1965).  The 

regeneration was determined to be growth factor driven, specifically basic fibroblast growth factor 

(bFGF) (Park and Hollenberg, 1989).  FGFs are produced by retinal cells in response to damage (Cao 

et al., 2001; Kostyk et al., 1994; Wen et al., 1995), to promote the development of ganglion cells in 

cultures of chick and rodent (Guillemot and Cepko, 1992; McCabe et al., 1999; Pittack et al., 1991; 

Zhao and Barnstable, 1996), to stimulate the proliferation of embryonic retinal progenitors (Anchan 

and Reh, 1995; Lillien and Cepko, 1992), and to enhance the survival of RGCs targeted by optic 

nerve section in frogs (de la Rosa et al., 1994).  FGF2 prevents apoptosis by increasing the amount of 

anti-apoptotic proteins and by reducing the apoptotic effectors (Ríos-Muñoz et al., 2005).  During 

retinal development, the Müller glia and pigmented epithelial cells also express insulin-like growth 

factors (IGFs) (de la Rosa et al., 1994; Hansson et al., 1989).  IGF stimulates proliferation of retinal 

progenitors cells and works synergistically with FGF2 (Jiang et al., 2001).  The combination of FGF2 

and insulin alone was sufficient to stimulate the regenerative response of the Müller glia of chick eyes 

(Fischer et al., 2002b).  The Müller glia have shown the ability to dedifferentiate and proliferate but 

they seem to be limited to the progenitor state, rarely re-differentiating into specific neurons.  

Limitations may be attributed to the retina not having the signals or support for neuronal 

differentiation of embryonic progenitors into post-mitotic neurons (Fischer and Reh, 2003a).   

1.7.1 Gliosis 

There are three types of glial cells in the retina, microglia, astrocytes and Müller cells (Bringmann et 

al., 2006).  Gliosis is a process stimulated in response to damage to physically replace the cells that 

are damaged, although the function of the previously damaged cells is not restored.  Glial cell 
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proliferation is stimulated to protect and repair neurons by releasing neurotrophic factors and 

antioxidants but it is also been associated with the release of apoptotic factors such as nitric oxide 

synthase (Bringmann et al., 2006).  As the principal glial cells of the vertebrate retina, Müller cells are 

important for the maintenance of the structure and function of the retina by providing nutrients 

(Tsacopoulos and Magistretti, 1996), regulating retinal blood flow (Paulson and Newman, 1987), 

recycling neurotransmitters for neural signaling (Matsui et al., 1999), maintaining homeostasis of the 

retina (ion, water and pH) (Newman and Zahs, 1998; Newman, 1996) and controlling excitability of 

neurons (Newman and Zahs, 1998; Stevens et al., 2003).  During pathological conditions, Müller cells 

can respond by activating microglia, altering vasculature and promoting the migration of defense 

mechanisms to the retinal tissue.  This process is referred to as Müller cell gliosis (Bringmann et al., 

2006).  The Müller glial cells, in contrast to the other retinal neurons, are surprisingly resistant to 

various forms of damage including ischemia, anoxia or hypoglycemia (Silver et al., 1997).     

 Müller cell gliosis has both non-specific and specific responses depending on the mechanism 

of damage.  Non-specific responses to injury include the up-regulation of glial fibrillary acidic protein 

(GFAP) as well as the activation of the extracellular signal-regulated kinases (ERKs) (Bringmann and 

Reichenbach, 2001; Dahl, 1979; Eisenfeld et al., 1984).  An example of a specific gliotic response 

includes the alteration of the expression of glutamine synthetase that is used for neurotransimitter 

recycling.  In the event of optic nerve crush, there is an excess of glutamate released in the area of the 

ganglion cells (Chen and Weber, 2002).  Gliosis has both neuroprotective and detrimental effects.   
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II. INTRODUCTION 

Damage to the retina is a common cause of blindness.  The retina is the light-sensitive tissue in the 

eye that captures light and sends the visual information to the brain.  Destruction to the retina can 

occur in many different ways.  Harm to the optic nerve and ganglion cells (RGCs) can occur in 

diseases such as optic neuropathy and glaucoma, whereas alteration to the retinal pigment epithelium 

(RPE) and photoreceptors can occur in diseases such as age-related macular degeneration and retinitis 

pigmentosa.  Once the cells are lost, they are not typically replaced.       

 Recent studies have also shown that in birds and rodents, specific retinal cells can be 

stimulated to regenerate (Fischer and Reh, 2001b).  Regeneration of retinal cells can be elicited by 

chemotoxic injury to the retina as well as exposure to growth factors.  Damage to the retina with 

neurotoxin injection into the vitreous and injections of exogenous growth factors, insulin and 

fibroblast growth factor-2 (FGF-2), resulted in de-differentiation and proliferation of the glial support 

cells (Fischer et al., 2002b).  Neurons were also promoted for regeneration by the Müller glia-derived 

progenitor cells, and the type of neuron initially targeted for destruction was the neuron promoted for 

regeneration by the Muller glia-derived progenitor cells.  Injections of colchicine, a toxin that targets 

ganglion cells, resulted in newly generated cells that express ganglion cell markers (Fischer and Reh, 

2001b).   

 Chemical injection is not the only method of inducing damage to the ganglion cells.  Optic 

nerve section (ONS) or RGC axotomy is a mechanical procedure that simulates an extreme form optic 

neuropathy.  Both colchicine injections and RGC axotomies have been shown to lead to altered eye 

growth patterns that differ, despite both methods targeting the same cells (RGCs).  Colchicine treated 

eyes showed an enlarged vitreous chamber, whereas eyes treated with ONS showed the opposite 
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trend, an initial hyperopic shift due to thickening of the choroid and shallowing of the vitreous 

chamber (Choh and Wildsoet, 2002; Fischer et al., 1999).  The distinct eye growth patterns are likely 

associated with the specific dysfunctional retinal states, dependent on how the retina was disturbed 

and how the cells were lost.  Given the differences in the in eye growth patterns, this project was 

undertaken to determine whether ONS-treated eyes can induce proliferative activity in the retina, to 

see if growth factors can increase the proliferation and whether the mitotic cells can be induced to 

differentiate.  The time course and cell death characteristics following ONS were also analysed.   
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III. MATERIALS AND METHODS 

3.1 Animals 

White leghorn hatchling chicks (gallus gallus domesticus) were obtained from Maple Leaf Poultry, 

New Hamburg, Ontario, Canada.  The chicks were housed in a galvanised metal brooder and were fed 

medicated chick starter ad libitum.  The chicks were subjected  to a cycle of 14-hours lights on and 

10-hours lights off.  

3.2 Experiments 

There were two different experiments carried out.  The first experiment was carried out to 

characterise the time course of degenerative cellular events and to determine whether age was a 

factor.  The second experiment examined the proliferative cellular events post-ONS and whether 

growth factor injections could affect proliferative activity.  

3.2.1 Experiment 1: Effect of age 

1-day-old chicks (n = 28) and 1-week-old chicks (n = 35) underwent ONS and sham surgery.  

Ultrasound readings were taken prior to ONS and on days 1, 3, 5, and 7 post-ONS.  Chicks were 

sacrificed and eyes enucleated on days 3, 5, 7, 10 and 14 post-ONS (1-day-old: n = 10 for all time 

points; 1-week-old: n = 3 for all time points).  Tissues were analysed for cell death using TUNEL.    

3.2.2 Experiment 2: Effect of growth factors 

An initial experiment was undertaken to determine prevalence of BrdU labeling across time points 

post-ONS.  1-day-old chicks underwent ONS and sham surgery.  Ultrasound readings were taken 

prior to ONS and on days 1, 2, 3, 4, 5, 6, 7 and 8 post-ONS.  Chicks were sacrificed and eyes 
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enucleated on days 1, 2, 3, 4, 5, 6, 7, and 8 post-ONS (n ≥ 4 for all time points) and retinas were 

analysed for proliferative activity.  BrdU was injected 4 hours prior to enucleation.    

To determine whether growth factors could affect proliferative activity, 1-day-old chicks 

underwent ONS and sham surgery, and ultrasound readings taken prior to ONS and on days 1, 3, 5, 

and 7 post-ONS (n = 28).  Chicks were injected with growth factors immediately after the ONS 

procedure and every 3 days thereafter (days 0, 3, 6, 9, and 12 post-ONS) and sacrificed on days 3, 5, 

7, 10 and 14 post-ONS (n ≥ 3 for all time points).  BrdU was injected 4 hours prior to enucleation.  

Eyes were enucleated and retinas were analysed for proliferative activity.  

3.3 Optic nerve section and sham procedures 

One-day or one-week old chicks were treated with ONS surgery on one eye and sham surgery on the 

other eye.  The eye that received ONS treatment alternated between right and left eye.  Chicks were 

wrapped in a latex blanket to prevent movement during the procedure and to provide warmth, and 

then were placed on their side with their beak placed in a nose cone attached to an anaesthetic 

machine (Benson Medical #975-0800-000).  The chicks were anaesthetised with isoflurane (CDMV 

#108737; 2 – 2.5% in oxygen at 1 litre/minute) in a few minutes.  Once anaesthetised, feathers on the 

lateral canthus of the eye were disinfected with an alcohol swab.  Scissors were used to trim the 

feathers and alcohol swabs used to remove feathers.  An incision was made on the outer canthus 

through the skin and then the thin inner fascia layer.  The slit was enlarged with forceps and the optic 

nerve was located.  The ONS procedure consisted of severing the optic nerve with a blade and 

forceps.  The sham procedure consisted of exposing the optic nerve but not severing the axons.  The 

incisions in the inner fascial tissue and skin were then closed using a suture (Johnson & Johnson 

#7733G).  Antibacterial topical gel anaesthetic (Polysporin® with lidocaine) was applied to the 



 

37 

 

surgical area.  The birds were removed from the anaesthetic and allowed to recover under a heat 

lamp.  The tools were cleaned in an ultrasonicator then sterilised with a glass bead steriliser between 

each bird.  Each surgery was approximately 20 minutes per bird.   

3.4 Ultrasound Procedure 

High frequency A-scan ultrasonography was used to measure the eye growth changes over time.  The 

head of the chick was placed into a head holder, with its beak inserted into a nose cone attached to the 

anaesthetic machine.  The birds were anaesthetised (1.5% isoflurane in oxygen) and custom-made lid 

retractors were used to hold the eye open.  A 35 MHz polymer transducer (Panametric 135-2-R 1.00, 

Pulsecho, Port Hope, Ontario) attached to a pulser-receiver (Panametrics 5073PR, Pulsecho, Port 

Hope, Ontario).  Ultrasound readings were recorded with a digital oscilloscope (LeCroy WaveRunner 

64Xi, ACA TMetrix Inc, Mississauga, Ontario) then transferred to a computer for analysis.  Each 

ultrasound procedure took approximately 5 - 10 minutes per bird.  

The ultrasound readings consisted of 7 peaks that represent the interfaces between the ocular 

components.  In order, the interfaces include the anterior corneal surface, anterior and posterior lens 

surface, vitreal-retinal interface, retinal-choroid interface and anterior and posterior sclera.  Locations 

of each peak were determined and the average inter-peak differences in time were calculated using a 

MatLab- (MathWorks, Natick, Massachusetts, U.S.A.) based custom program.  The time intervals, 

representing twice the distance traveled by sound, were then multiplied by the speed of light passing 

through the anterior chamber, lens, vitreous, retina, choroid and sclera (1.6078 mm/µsec for lens and 

1.534 mm/µsec for the rest of the eye; Wallman and Adams, 1987) and divided by 2 to yield anterior 

chamber (AC) depth, lens (LN) thickness, vitreous chamber (VC) depth, retinal (RT) thickness, 
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choroidal (CH) thickness and scleral (SC) thickness.  The lengths were statistically analysed using 

repeated measures analysis of variance (ANOVA) and values were considered significant at p ≤ 0.05.  

3.5 Injections 

Prior to injections, birds were anaesthetised and the area around the orbit was disinfected.  All 

injections (10 µL) were made into the vitreous chamber.  Intravitreal injections consisted of either 5-

bromo-2-deoxyuridine (BrdU from Sigma-Aldrich, B5002, 100 µg/mL) alone, a marker for mitosis or 

a combination of growth factors, insulin (Cedarlane MAB1417, 2 µg per injection) and fibroblast 

growth factor-2 (FGF-2, Cedarlane 133-FB-025/CF, 100 ng per injection) followed by BrdU.  The 

injection procedure took approximately 3 – 5 minutes per bird.    

3.6 Dissection, preparation and staining of retinal sections 

Chicks were sacrificed at various time points and their eyes enucleated.  The anterior portion of the 

eye including the anterior chamber, lens and vitreous were removed leaving the posterior eyecup.  

The eyecup was fixed in 4% (w/v) paraformaldehyde solution in 0.1M Sorensen’s sodium buffer (SB: 

23.996 g/L NaH2PO4, 28.392 g/L Na2HPO4, in deionised water, pH 7.5) with 3% sucrose for 20 mins.  

The eyecups were then washed (3 x 5 mins) in a 0.1M SB solution and crytoprotected overnight in 

30% (w/v) sucrose in SB.  Eyecups were then embedded in Optimal Cutting Temperature Embedding 

medium (VWR CA27900-246; embedding molds 22x22 mm, Fischer Scientific 38 104 18) before 

being frozen.  Tissues were sectioned at 12 µm (Leica CM 1900 UV) and mounted onto Superfrost 

Plus glass slides (Fischer Scientific 12 550-15).  Sections were air-dried before being stored at -20°C.        

Central sections of the retina of the chicks were used for immunohistochemical staining.   
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3.6.1 TUNEL 

Retinas were treated with a TUNEL kit from Roche Diagnostics (1 684 795).  Slides were treated 

according to the instructions provided with the kit.  Sections were washed (3 x 5 mins) in phosphate 

buffered saline (PBS: 137 mM NaCl, 3 mM KCl, 101 mM Na2HPO4, 2 mM KH2PO4, in deionised 

water), followed by treatment with 3% (v/v) H2O2 in methanol (10 mins).  Sections were washed 

again (3 x 5 mins PBS) then permeabilsed with 0.1% (v/v) Triton-X in PBS (30 mins) at room 

temperature.  The slides were washed again (3 x 5 mins PBS) and blocked with 4% (w/v) bovine 

serum albumin (BSA) in Tris HCl (30 mins).  The TUNEL mixture (label and enzyme) was then 

applied for a 2-hour incubation at 37ºC before being washed (3 x 5 mins PBS) and counterstained 

with 4’,6-diamidino-2-phenylindole (DAPI, Invitrogen D1306; 5 mins) to label cell nuclei.  Washed 

slides were mounted under a coverslip with Prolong Antifade Gold (Invitrogen P36930).   

 Positive controls were treated with DNase (Roche Diagnostics 10 104 159 001) prior to the 

TUNEL protocol.  Negative controls were slides treated according to the TUNEL protocol except that 

the TUNEL mixture contained the label and no enzyme.   

3.6.2 BrdU 

Birds received BrdU injections 4 hours prior to being sacrificed.  Sections were washed (3 x 5 mins 

PBS) and treated with 4N HCl (10 mins at room temperature) to unwind the DNA and allow for 

antibody tagging.  Slides were washed again (3 x 5 mins PBS) then incubated with anti-BrdU 

(Developmental Studies Hybridoma Bank (DSHB) G3G4; 1:80 in 0.3% (v/v) Triton-X in PBS, 37 ºC, 

2 hours) to tag BrdU incorporation into the retina.  Slides were washed again (3 x 5 mins PBS) then 

incubated with fluorescein isothiocyanate (FITC) anti-mouse IgG (Fab specific, Sigma F5262; 1:200 

in 0.3% (v/v Triton-X in PBS, 37 ºC, 1 hour).  Following washing (3 x 5 mins PBS), slides were 
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counterstained with DAPI (5 mins) before being washed again (3 x 5 mins PBS) and mounted under a 

coverslip with Antifade.   

3.7 Imaging, Cell Counts and Analysis 

Microscopic analysis of the tissue was performed using an upright fluorescence deconvolution 

microscope (Zeiss Axio Imager.Z2).  Z-stack images of central regions of the retina were taken at 20x 

magnification.   

For each time point, the total number of cells in the ganglion cell layer was counted (DAPI).  

Cells labeled with TUNEL and BrdU were also counted and compiled per time point.  Cells were 

considered to be localised to the GC layer if they lay within, touching or within 1 cell away from the 

GCL.  All cells were calculated as a value per mm of retina.  The average total number of cells in the 

GC layer and the average number of immuno-labeled cells were analysed for differences with two-

way ANOVAs followed by Tukey or Bonferroni post-hoc tests.  Values were considered significant 

at p ≤ 0.05.   
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IV. Results 

4.1 Experiment 1: Effect of age  

4.1.1 Ocular components showing similar growth patterns but different magnitudes 

To determine the effect of age on ocular growth patterns, the ocular components were measured at 

various time points post-surgery, for both sets of birds.  Overall, the anterior chamber depth, lens 

thickness, choroidal thickness and scleral thickness changes exhibited similar growth patterns 

between the younger and the older chicks.   

The younger chicks had smaller anterior chambers (ACs) overall (Fig 4A, day 7: ONS 1.27 ± 

0.02 mm, sham 1.31 ± 0.01 mm) compared to the older chicks (Fig 4B, day 7: ONS 1.45 ± 0.02 mm, 

sham 1.44 ± 0.01 mm).  The AC depths increased over time in both younger and older chicks (p < 

0.0001 for both; but only the younger chicks showed significant expansion differences between the 

eyes (p = 0.0185, Fig 4A).  Specifically, AC expansion in ONS-eyes of the younger chicks (Fig 4A) 

was slightly slower than that of sham eyes, with significant changes relative to baseline occurring 5 

days post-ONS (p < 0.0001) compared to 3 days post-sham (p = 0.0001) resulting in significantly 

deeper AC depths beginning at 3 days post-ONS (p < 0.0106).  Expansion of ACs in older chicks (Fig 

4B) was significant relative to baseline starting at day 3 (p ≤0.0010). 

The younger chicks had thinner lenses (LNs) overall (Fig 4C, day 7: ONS 2.06 ± 0.02 mm, 

sham 2.01 ± 0.01 mm) compared to the older chicks (Fig 4D, day 7: 2.17 ± 0.14, sham 2.23 ± 0.01 

mm).  The lens became thicker in both the younger and older chicks, although lens thickening was 

faster in the younger chicks (Fig 4C) beginning at 1 day post-ONS (p = ≤ 0.0001), compared to that 

in older chicks (Fig 4D) beginning at 3 days post-surgery (p = 0.0004).  Lens thicknesses were not 
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different between the eyes for both older and younger chicks (p = 0.1088, p = 0.2530, respectively) 

for all time-points except for day 7 post-ONS, where lenses of ONS-treated eyes of the older chicks 

were thinner at day 7 (p = 0.0017; Fig 4D).     
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Figure 4  AC, LN, CH, and SC changes as a function of time of younger and older chicks.  

Normalised mean AC depth for younger (A) and older (B) chicks, LN thickness for younger (C) 

and the older (D) chicks, CH thickness for younger (E) and older (F) chicks, SC thickness for 

younger (G) and older (H) chicks, as a function of time.  (*) significance from baseline, (†) 

significance between treated and control, (**) significant changes of both eyes from baseline.  

The dashed vertical lines on the graphs indicate the time of the ONS and sham procedure.     
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For both younger and older chicks, expansion pattern of the choroids (CHs) in the ONS-eyes 

were similar (Fig 4E and F), showing significant increases beginning at day 1 (p = 0.0029, p < 

0.0001, respectively) until day 3 (day 3 thickness: younger 0.50 ± 0.04 mm, older 0.34 ± 0.02 mm), at 

which time, expansion of the choroids stopped (p ≥ 0.1267, p ≥ 0.1979, respectively).  Sham-treated 

eyes showed no differences as a function of time (p = 1.0000 for all time points) of the choroidal 

thickness, for either younger or older chicks. 

Scleral (SC) patterns (Fig 4G and H) of growth for both younger and older birds were similar 

to the lens, showing expansion over time (p < 0.0001 for both), but no overall difference between the 

eyes (p = 0.9401, p = 0.1727, respectively).  Like the growth of the lenses, only older birds (Fig 4H) 

showed slight differences between the eyes, with scleras in ONS-eyes both expanding faster (day 3, p 

< 0.0001) than those in their fellow eyes (day 5, p = 0.0001) and becoming significantly thicker 

(mean difference ± s.e.m.: 0.016 ± 0.007 mm) than fellow eyes at day 7 (p = 0.0005).   Younger 

chicks (Fig 4G) showed no differences between the eyes over time (p = 0.4440); significant increases 

in scleral thicknesses began at day 3 (p = 0.0060).   

 

4.1.2 Ocular components showing different growth patterns 

The ultrasound data was again used to determine the ocular components showing different growth 

patterns.  Overall, the vitreous chamber (VC) depth and the retinal thickness (RT) changes exhibited 

different growth patterns between the younger and the older chicks.   

Two phases of growth patterns were observed for vitreous chambers for both the younger 

(Fig 5A) and older (Fig 5B) chicks, however changes within each phase were different between the 

two groups.  Overall, vitreous chambers in ONS-treated eyes were more shallow compared to their 

Younger chicks 
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fellow eyes (p < 0.0001 for both younger and older chicks).  However in younger chicks (Fig 5A), 

VC depth in ONS-eyes decreased over the first three days (p <0.0001), followed thereafter by a 

progressive expansion resulting in significantly deeper VCs at day 7 relative to day 3 (p = 0.0143).  In 

contrast, in older chicks (Fig 5B), VC depth in ONS-eyes did not change over the first three days (p = 

1.0000), although, similar to the younger chicks, VC expansion was also observed after 3 days post-

ONS.  The rate of vitreous expansion after day 3 post-ONS was also faster in the older chicks (Fig 

5A), with significant differences detected at day 5 (p < 0.0001 vs. day 3) compared to significance 

occurring at day 7 in the younger chicks (Fig 5B, p = 0.0143).  VCs in the sham-treated eyes also 

differed between the two groups.  VCs of sham-eyes in younger chicks (Fig 5A) showed biphasic 

development with no change over the first 3 days followed by expansion between days 3 and 5.  In 

contrast, the VCs in sham-eyes of the older chicks (Fig 5B) showed a progressive increase, resulting 

in earlier significant changes (day 3: p < 0.0001 relative to baseline), compared to later significant 

changes in younger chicks (day 7: p < 0.0001).  Despite the differences in growth patterns for the 

eyes, in both younger and older chicks, significantly shallower VC depths were observed in the ONS-

eyes starting at day 3 post-ONS (p ≤ 0.0001, p ≤ 0.0036, respectively).        

 Like the vitreous chamber, growth pattern differences of the retina were different between the 

2 groups.  Retinas of ONS-treated eyes in younger chicks (Fig 5C) showed a significant thickening 

starting at 1 day (p = 0.0001) and peaking at day 3 (p = 0.0001), before thinning significantly relative 

to peak thickness (p < 0.0001 for both day 5 and 7).  Sham-eyes (Fig 5C) showed a similar but slower 

thickening of retinas that became significant (p = 0.0142) at day 3.  Retinal thicknesses after day 3 did 

not change over time (p = 1.0000 for both day 5 and 7).  Since retinal thickness changes in ONS-

treated eyes were faster, retinas in these eyes were thicker at day 1 (p = 0.0347) and day 3 (p < 

0.0001) and significantly thinner at day 7 (p < 0.0001) compared to sham-treated eyes.  The time 
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course for retinal thickness changes in the ONS-eyes of the older chicks (Fig 5D) appeared to follow 

the same biphasic pattern, except that no significant differences were detected until day 7 post-ONS 

when retinas were significantly thinner compared to all other time points (p ≤ 0.0001) and compared 

to sham-treated eyes at the same time point (p ≤0.0001).  RT changes of the sham-treated eyes in 

these birds (Fig 5D) did not change as a function of time (p ≥ 0.5265).   
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Figure 5  VC and RT changes as a function of time of younger and older chicks. 

Normalised mean VC depth in the younger (A) and older (B) chicks and RT thickness in the 

younger (C) and older (D) chicks, as a function of time.  (*) indicates significance from baseline 

and (†) indicates significance between treated and control eyes.  The dashed vertical lines on 

the graphs indicate the time of the ONS and sham procedure.      

Younger chicks Older chicks 
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4.1.3 Correlation between structures 

To determine whether vitreous chamber depths were inversely related to retinal and choroidal 

thickness changes, vitreous chambers were correlated to retina plus choroid and choroid alone.  The 

data in the younger chicks (Figure 6A and B) did not show a strong correlation when retinal values 

were included (r2 = 0.2659) or when excluded (r2 = 0.3095).  The data in the older chicks (Figure 6C 

and D) showed no correlation when retina values were included (r2 = 0.0134) or when excluded (r2 = 

7.1444x10-8).       

 

 

 

A B

C D

Figure 6  Linear correlation between RT+CH vs. VC and CH vs. VC of younger and older 

chicks.  

Linear correlation between normalised retina and choroid (RPC) values against 

normalised VC values in younger (A) and older (C) chicks and between normalised CH 

values against normalised VC values in younger (B) and older (D) chicks.    

Younger chicks, r2 = 0.2659 Younger chicks, r2 = 0.3095 

Older chicks, r2 = 0.0314 
Older chicks, r2 = 7.1444x10-8 
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4.1.4 Cell death activity in the GCL  

To determine the cell death activity in the GCL over time and to compare the activity between the 

younger and the older chicks, retinal images were stained with TUNEL and DAPI, and cell counts 

performed.  Images of retinas for younger (Fig 7) and older chicks (Fig 8) were relatively similar, 

images showing GCL, INL and ONL.  ONS-treated eyes in both the younger and older chicks showed 

progressively decreasing numbers of GCL cells starting from day 3, with significantly lower number 

of cells at day 5 (relative to day 3; p = 0.0272; Fig 9A) in younger birds, and at day 7 (c.f. p ≤ 0.0061; 

Fig 9B) in older birds.  Cells in the GCL of sham-treated eyes in both groups of birds did not change 

over time (younger p ≥ 0.4651, older p ≥ 0.9792; Fig 9A and B).    

The younger and the older chicks also showed the same trends in apoptotic activity (Fig 9C 

and D); apoptotic activity increased to a significant peak at day 5 post-ONS (peak values ± s.e.m.: 

younger, 20.50 ± 2.83% cells/mm, p ≤ 0.0002; older, 15.76 ± 4.24% cells/mm, p = 0.0182), before 

decreasing thereafter.  Little to no activity was detected at day 14 post-ONS (younger: 1.23 ± 0.02% 

cells/mm; older: 0% cells/mm).  There was little to no apoptotic activity in the sham-treated eyes of 

either the younger or older chicks (images: Fig 6 and 7, graph: Fig 9C and D).   
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Figure 7  TUNEL and DAPI stained retinal cell images of younger chicks 

Retinal cell nuclei in the younger chicks stained with DAPI (blue) and TUNEL 

(green) in the ONS- (left) and sham-treated (right) eyes for each time point.  GCL at 

the top, followed by the INL and ONL.   
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Figure 8  TUNEL and DAPI stained retinal cell images of older chicks 

Retinal cell nuclei in the older chicks stained with DAPI (blue) and TUNEL (green) in the 

ONS- (left) and sham-treated eyes for each time point.  GCL, at the top followed by the 

INL and ONL.   
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4.2 Experiment 2: Effect of growth factors  

4.2.1 Ocular components showing similar growth patterns but different magnitudes 

To determine the effect of growth factors on ocular growth patterns, the ocular components were 

measured using ultrasound at various time points post-surgery, for both sets of birds.  Overall, the 

lens thickness, vitreous chamber depth, retinal thickness, and choroidal thickness changes exhibited 

Figure 9  Total number of cells and apoptotic cell numbers in the GCL as a function of time 

of the younger and older chicks.   

Total number of cells in the GCL as a function of time in the younger (A) and older (B) 

chicks.  Apoptotic cells in the GCL in the younger (C) and older (D) chicks.  (*) indicates 

significance from baseline and (†) indicates significance between treated and control eyes.   

D 

B

C 

A 

Younger chicks Older chicks 
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similar growth patterns between the chicks that did receive GF (+GF) compared to those that did not 

(-GF).   

Like the eyes of day old birds that did not receive growth factor injections (-GF birds, Fig 

10A), the lens thicknesses of +GF birds (Fig 10B) did not differ between the eyes, although they 

increased, with significant changes also occurring at 1 day post-ONS.  A slight attenuation of lens 

thickening of the +GF birds between days 5 and 7 (p = 0.6226, compared to p < 0.0001 for –GF 

birds).   

The vitreous changes (Fig 10C and D) were also very similar; ONS-eyes (+GF, Fig 10D) 

showed biphasic growth patterns with time course for an initial decrease in VC depth also occurring 

between day 0 and 3 (p < 0.0001) followed by an expansion between days 3 and 5 that was slightly 

faster than for –GF birds, with the former showing earlier significant changes at day 5 (p = 0.0242 

compared to p = 1.0000 for -GF birds).  Sham-eyes (Fig 10D) were also slightly different, expansion 

was faster in the +GF group with significant changes occurring at day 5 (p < 0.0001) compared to day 

7 for –GF group (p < 0.0001).  Interocular differences in VC depths in +GF group from time points 3, 

5 and 7, as was observed for -GF birds (p < 0.0001 for all time points).   

The initial thickening of retinas (Fig 10E and F) observed in ONS-eyes of +GF birds was 

slightly slower than for -GF birds with significant changes occurring at day 3 (p = 0.0010) rather than 

at 1 day post-ONS (p < 0.0001).  The rate of decrease in retinal thickness in ONS-eyes was similar in 

both groups, although, at day 7 the +GF retinas (Fig 10F) were thicker than those of the –GF group 

(+GF: 0.25 ± 0.003 mm, -GF: 0.24 ± 0.003 mm).  Unlike the sham-eyes of –GF birds, no changes in 

retinal thickness as a function of time were detected in sham-eyes of +GF birds (p = 1.0000).  Unlike 

in –GF birds, interocular retinal thickness differences were not significant at days 1 and 3 (p = 

0.3137, p = 1.0000, respectively) for +GF birds but were at day 7 (p = 0.0119, Fig 10F).    
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Like retina, initial thickening of choroid (Fig 10G and H) observed in ONS-eyes was also 

slower in +GF birds, showing significantly greater thickening later, at day 3 (p < 0.0001), compared 

to at day 1 as observed for –GF (p = 0.0029, Fig 10G), which was reflected by the larger increase in 

choroidal thickness at day 3 in –GF chicks compared to the +GF chicks (Fig 10H: +GF 0.32 ± 0.04 

mm, Fig 10G: -GF 0.50 ± 0.04 mm).  Choroidal thicknesses of sham-eyes in both groups of birds did 

not change with respect to time (p = 1.0000 for both).  Interocular differences were also significant at 

the same time points, days 3, 5, and 7 (p < 0.0001 for all time points).       
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Figure 10  LN, VC, RT and CH changes as a function of time of –GF and +GF chicks 

Normailsed mean LN thickness –GF (A) and +GF (B), VC depth –GF (C) and +GF (D), 

retinal thickness –GF (E) and +GF (F), and CH thickness –GF (G) and +GF (H) as a function 

of time.  (*) significance from baseline, (†) significance between treated and control eyes, (**) 

significant changes of both eyes from baseline.  The dashed vertical lines on the graphs 

indicate the time of the ONS and sham procedure.      

-GF chicks +GF chicks 
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4.2.2 Ocular components showing different growth patterns 

To determine the ocular components showing different growth patterns, the ultrasound data collected 

was again analysed.  Overall, the anterior chamber depth and scleral thickness changes exhibited 

different growth patterns between the –GF and +GF chicks.  The anterior chamber (Fig 11A and B) 

and sclera (Fig 11C and D) both showed differences in growth between the +GF and the –GF groups.  

The anterior chamber of the ONS-treated eyes differed the most, with the +GF ONS-eyes (Fig 11B) 

showing none of the expansion observed for the –GF birds (Fig 11A), although the anterior chamber 

of sham-treated eyes showed the same pattern of increasing growth (significantly thicker ACs at days 

3, 5 and 7; p < 0.001 for all time points).  Interocular differences varied slightly with differences 

occurring later at day 5 (p < 0.0001) in +GF birds (Fig 11B) compared to day 3 (p = 0.0106) in –GF 

birds (Fig 11A).  

Unlike scleras of the –GF group, the scleras in ONS-eyes of the +GF group (Fig 11D) were 

thicker overall (p = 0.0007; compared to p = 0.9401 for –GF group).  Scleral thickening was similar, 

with the +GF group showing significant thickness increase at day 3 (p < 0.0001, Fig 11D).       
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Figure 11  AC and SC changes as a function of time of –GF and +GF chicks 

Normalised mean AC depths –GF (A) and +GF (B) and SC thickness –GF (C) and +GF (D) 

as a function of time.  (*) indicates significance from its respective baseline, (†) indicates 

significance between treated and control eyes, (**) indicate significant changes of both eyes 

from baseline.  The dashed vertical lines on the graphs indicate the time of the ONS and 

sham procedure.       
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4.2.3 Correlation between structures 

 

 

 

To determine whether vitreous chamber depths were inversely related to retinal and choroidal 

thickness changes after treatment with growth factors, vitreous chambers were correlated to retina 

plus choroid and choroid alone.  Correlations of vitreous chamber depths to retinal and choroidal 

thicknesses were again analysed for +GF birds (Fig 12A and B).  Similar to –GF birds, the correlation 

between the vitreous and the retina plus the choroid was quite similar to that of the vitreous against 

the choroid alone, although the correlation was slightly stronger in the +GF (+GF: r2 = 0.5005 and r2 

= 0.4234, respectively; -GF r2 = 0.2659 and r2 = 0.3095). 

 

 

 

 

r2 = 0.4234 r2 = 05005 

Figure 12  Linear correlation between RT+CH vs. VC and CH vs. VC in +GF 

chicks 

Linear correlation between normalised RT+CH values against normalised VC 

values (A) and between CH values against VC values (B). 
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4.2.4 Cellular activity in the GCL  

The total number of cells in the GCL decreased in 

both the –GF and +GF groups (Fig 13A and B; 

images Fig 14 and 15) but to different degrees in 

the ONS-treated eyes, with no differences over 

the first 3 days (p = 1.0000 for all time points), 

followed by a significant decrease in cell 

numbers starting day 5 post-ONS (relative to day 

3: -GF p ≤ 0.0026, Fig 13A; +GF p ≤ 0.0070, Fig 

13B).  When comparing the overlapping time 

points (days 3, 5 and 7 post-ONS, Fig 13C), no 

difference between the two groups of birds was 

found (p = 0.6218).  The sham-treated eyes for 

both groups did not show any statistically 

significant changes over time (+GF p ≥ 0.9989,  

-GF p ≥ 0.4961).   

Figure 13  Total number of cells in the GCL 

of –GF and +GF chicks 

Total number of cells in the GCL of –GF 

chicks (A), +GF chicks (B) and overlapped 

graphs (C).  (*) indicates significance from 

baseline and (†) indicates significance 

between treated and control eyes.   
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+GF chicks 
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Figure 14  BrdU labeled 

retinal cell images of –GF 

chicks 

Retinal cells of the –GF 

chicks stained with DAPI 

(blue) and BrdU (green) in 

the ONS- (left) and sham-

treated (right) eyes for 

each time point.  GCL at 

the top, followed by the 

INL and ONL.   
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Figure 15  BrdU labeled retinal cell images of +GF chicks 

Retinal cells of the +GF chicks stained with DAPI (blue) and BrdU (green) in the 

ONS- (left) and sham-treated (right) eyes for each time point.  GCL at the top, 

followed by the INL and ONL. 
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 The –GF chicks (images Fig 14 and 

cell counts Fig 16A) showed proliferative cells 

in only the ONS-treated eyes starting at 3 days 

post-ONS (2.23 ± 0.71 cells/mm) that 

continued until 7 days post-ONS (12.5 ± 1.66 

cells/mm average of days 4 – 7 post-ONS), 

with values at 5 days post-ONS statistically 

greater than 1 day post-ONS (p = 0.0453, 13.77 

± 3.02 cells/mm).  No activity on days 1, 2 or 8 

post-ONS, nor at any time point in the sham-

treated eyes.  The +GF chicks (images Fig 15 

and cell counts Fig 16B) showed proliferative 

cells in both the ONS- and sham-treated eyes at 

all time points.  The ONS-treated eyes showed 

proliferative activity at day 3 post-ONS (7.82 ± 

1.22 cells/mm) that increased to a peak at day 5 

(17.88 ± 2.91 cells/mm, p = 0.0058), followed 

by a decrease thereafter.  Activity was still 

present at 14 days post-ONS (1.68 ± 1.07 

cells/mm).  In contrast to the –GF birds, the 

sham-treated eyes in the +GF group showed 

proliferative activity at every time point (3, 5, 7, 10 and 14 post-ONS) although values did not change 

significantly over time (p ≥ 0.6645 for all time points).   

Figure 16  Proliferative activity in the GCL 

of –GF and +GF chicks 

Proliferative activity in the GCL of –GF 

chicks (A), +GF chicks (B) and overlapping 

graphs (C).  (*) indicates significance from 

baseline and (†) indicates significance 

between treated and control eyes.   
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4.2.5 Proliferative activity in the GCL + NFL  

The proliferative activity was not limited to the GCL; many cells were also detected in the NFL.  

When the values of the proliferative cells from both layers were combined (Fig 17), the number of 

proliferative cells in –GF birds (Fig 17A) increased for every time point that activity was found (days 

3 – 7 post-ONS) and days 4 and 5 were significant from baseline (day 4: 15.65 ± 3.04 cells/mm vs. 

GCL only 12.29 ± 3.23 cells/mm, day 5: 19.71 ± 2.79 cells/mm vs. GCL only 13.77 ± 3.02 cells/mm, 

p ≤ 0.0339).  The +GF chicks (Fig 17 B) showed increases in proliferative cells for all time points in 

the ONS-treated eyes except at day 14, and in sham-treated eyes the number of proliferative cells was 

also greater, with the most striking difference occuring at day 5 post-ONS (31.61 ± 5.36 cells/mm vs. 

GCL only 17.88 ± 2.91 cells/mm, p ≤ 0.0002). 
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Figure 17  Proliferative activity in the GCL of –GF and +GF chicks 

Proliferative activity in the –GF (A) and +GF (B) comparing the values from the GCL only to 

the GCL + NFL.  (*) indicates significance from baseline and (†) indicates significance between 

treated and control eyes.   

-GF chicks 

+GF chicks 
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V. Discussion 

5.1 Experiment 1: Effect of age  

The difference in the size of the ocular components, between the younger and older chicks, was likely 

a result of the overall ocular growth of the chick between 1 day and 7 days post-hatch.  The difference 

in size was most clearly demonstrated prior to surgery in the anterior chamber and the lens (Fig 3, 

AC: A vs. B, LN: C vs. D); age-related increases in growth of the eye were previously documented 

(Avila and McFadden, 2010).     

The younger chicks also appeared to show more robust responses.  Specifically, a decrease in 

vitreous chamber depth and a larger increase in choroidal thickness were observed for the younger 

chicks.  In contrast, the older chicks exhibited no change in the vitreous chamber depth along with a 

smaller increase in choroidal thickness at the same time points.  Together these differences led to a 

distinct overall growth pattern with the observation of no growth for the older chicks in the first 3 

days, in contrast to the younger chicks that demonstrated a significant decrease in vitreous depth and 

increase in retinal thickness.  The changes in growth patterns observed for the younger birds is likely 

associated with the early phase to compensate for myopic defocus as well as post-ONS (Wildsoet and 

Wallman, 1995; Wildsoet, 2003), while, changes in growth patterns of the older birds are similar to 

previous demonstrations of the eye’s ability to compensate for myopic defocus by slowing the growth 

of the vitreous chamber in response to positive lenses and the cessation of form-deprivation  (Norton, 

1990; Sivak et al., 1990; Wallman and Adams, 1987; Wallman et al., 1995).  Differences between the 

age groups highlight the ocular plasticity of the younger birds.  Note that in addition to the changes to 

the retina and vitreous, the choroids of younger chicks became thicker in comparison to the older 

chicks. 
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The changes of the different ocular components seen in this study post-ONS follow the 

development of hyperopia that has been previously documented and attributed to the significantly 

shorter vitreous chamber (Troilo et al., 1987).  The authors of the study raised the idea that the brain 

regulates eye growth because hyperopia developed without an intact optic nerve.  Another hypothesis 

was the need for both a functional central and peripheral mediated neural mechanisms that may be 

disrupted with the death of the ganglion cells as a result of the ONS (Fischer et al., 1999).  The 

development of hyperopia in chicks has also been associated with a decrease in anterior chamber 

depth, which was demonstrated in the ONS-eyes of the chicks in our study (Fig 3A and B), along 

with a thinning of the lens (Fig 3C and D) (Avila and McFadden, 2010).  There was no change post-

ONS in the lens thicknesses of our birds, which was similar to the study by Schaeffel and Howland, 

who showed the typical hyperopia induced in chicks using plus-lenses (Schaeffel and Howland, 

1991), although other studies have shown lens thinning (0.003%)  (Wildsoet, 2003).   

Retinal thickness was of interest because of the suspected loss of the RGCs, but interestingly, the 

retina was found to thicken during the first 3 days.  This has not been previously shown by other 

authors, either it has not been documented or it has not been looked at.  However, retinal thickening 

was limited to younger chicks; this phenomenon may be attributed to the dramatic increase in the 

thickness of the choroid that was much more pronounced in the younger chicks (Fig 3E and F).  As 

the increase in choroidal thickness allows the retina to be placed at the plane of focus, there is a 

decrease in the surface area of the retina, resulting in an apparent retinal thickening.  If the opposite 

were to occur, the choroid would thin, creating an increase in surface area and a thinning of the retina 

as was previously observed by other investigators (Troilo et al., 2000).   

Control of the choroid is postulated to occur locally, partially by the retina.  The retina has been 

identified as having the ability to detect image defocus and in turn directing the choroid to 
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compensate accordingly as a form of local feedback (Wildsoet and Wallman, 1995).  Although the 

choroid demonstrates local feedback, it may also continue to be controlled by the central nervous 

system because of the innervation from the ciliary ganglion, pterygopalatine, superior cervical ganglia 

and the oculomotor, trigeminal and facial nerves (Bill, 1985), also, the choroidal bloodflow is highly 

stimulated by the Edinger-Westphal nucleus (Fitzgerald et al., 1990), all of which are unharmed after 

ONS.  Interestingly, diffusers (Shih et al., 1993) cause choroidal blood flow to be altered but not the 

thickness (Wallman et al., 1995).  The local regulation of the choroid may be accomplished by the 

RPE.  This idea is supported by the evidence that shows the choriocapillaris is strongly under the 

influence of the RPE (Korte et al., 1989).  Separation or damage of the choriocapillaris and/or RPE 

results in concurrent atrophy in various diseases including age-related macular degeneration and 

retinitis pigmentosa.   

The choroid has also been linked to scleral changes and eye development.  The choroid is thought 

to be the first to respond to the myopic signal by bringing the retina as close to the focal plane as 

possible, then a signal is sent to the sclera to complete emmetropisation, also allowing the choroid to 

return to normal thickness (Wildsoet and Wallman, 1995).  The implication is that there is local 

feedback where the retina/RPE signals the choroid and the choroid in turn signals the sclera (Wildsoet 

and Wallman, 1995).  I believe that the increase in scleral thickness as was demonstrated in the 

scleras of the older chicks should have also been found in the scleras of younger chicks because it has 

been previously shown that after ONS treatment, the eye decreases the ability to elongate and in turn 

the scleral growth is also affected via signaling mechanisms described above (Wildsoet and Wallman, 

1995).  Typically, axial growth is associated with scleral thinning (Vurgese et al., 2012), which was 

demonstrated in this study in the sham-treated eyes of the older chicks (Fig 3H).  It is unclear why the 

scleral changes were not also seen in the younger chicks and may be attributed to procedural error.   
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Although the vitreous depth has been linked to the simultaneous change in the choroid (Wildsoet 

and Wallman, 1995), the correlation between the structures was not very strong in this study (Fig 5).   

The older birds did not show any correlation whereas the younger chicks did, which may reflect the 

large and dramatic changes in the vitreous and choroid.   

This is the first study to examine the ONS cell death timeline in chick eyes.  Apoptotic cells were 

stained with TUNEL but were also smaller in size compared to the other cells in the retina.  The 

apoptotic activity timeline and the overall change in the total number of cells over time in the GCL 

were very similar between the younger and the older chicks; the implication is that ONS-related cell 

death processes were at least mediated in part by apoptosis and that the processes was dependent on 

time of surgery (or acute damage) but not the age of the chicks.  Although the apoptotic activity 

timelines were very similar, the number of apoptotic cells was consistently higher in the younger 

group of chicks, which may be attributed to the younger eyes being more susceptible to injury.  

Apoptosis has been extensively studied in the rat (Berkelaar et al., 1994; Garcia-Valenzuela et al., 

1994), mouse (Germain et al., 2012), monkey (Quigley et al., 1995) and rabbit (Quigley et al., 1995).  

In the adult rat model, it has been shown that with intracranial optic nerve transection the ganglion 

cells survived for 5 days and then diminished rapidly with only 10% of RGCs at day 14 (Berkelaar et 

al., 1994).  In mice, 6 days after axotomy, the density of the RGCs decreased to 49% of the original 

population and by 14 days the density decreased to 15% (day 5 was not assessed) (Germain et al., 

2012).  This study showed a decrease of RGC population of the younger chicks to 63% at day 5 to 

31% at day 14 (compared to the fellow eyes).  In contrast, the older birds showed a decrease to 64% 

at day 5 to 25% at day 14.  Note that apoptotic activity in chicks was induced by a mechanical model 

without ischemia and may account for slight differences in the timeline.  It is widely accepted that 

after transection of the optic nerve, there are apoptotic changes that occur and the typical timeline has 
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shown that the peak of activity occurs very rapidly around 5 – 6 days post-ONS.  The apoptosis of the 

RGCs in turn decreases the total number of cells in the GCL and the cells that are left over are 

thought to be displaced amacrine cells.  Future studies should include characterisation of the cells 

remaining in the GCL.     

5.2 Experiment 2: Effect of growth factors  

The eye growth patterns overall were similar between the –GF and +GF groups, which was to be 

expected because ONS was performed at 1 day post-hatch for both groups.  The variations in the 

speed of growth may be attributed to the stimulation of the eye with the growth factors, especially at 

the later time points.  The variation was noted in the vitreous chamber depth changes of both the +GF 

ONS- and sham-treated eyes, where a faster increase in depth was seen after 3 days post-ONS, 

indicating a faster rate of recovery.  Also, the retinas of the +GF group were slightly thicker than 

those of the -GF group at day 7, which may be attributed to a growth factor dependent increase in 

proliferative cells and/or a delay resulting from inhibition of the apoptotic mechanism (Ríos-Muñoz et 

al., 2005).  It has not been determined which of the two mechanisms occurred in these experiments.  

Further work analysing the amount of apoptotic activity and the specific timeline would yield this 

information, however, the number of apoptotic cells in the retinal sections from the –GF group and 

the +GF group were not analysed in this study.  The increase in choroidal thickness of the +GF group 

was not as large as was seen in the -GF group and this difference may be due to the growth factors 

diminishing the hyperopic response of ONS treatment.  Insulin is associated with anti-inflammatory 

effects (Jeschke et al., 2008), and if the large change in the choroidal thickness seen in the younger 

birds was due to inflammation, the growth factors used may explain less drastic change of the choroid 

in the +GF group, although ONS has not been shown to involve severe inflammation (Kreutzberg, 
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1996).  The anterior chambers of the +GF ONS-treated eyes showed no increase in thickness over 

time whereas the –GF ONS-treated eyes did, which may be the result of the injections potentially 

causing an increase in size equatorially and preventing axial elongation.  The growth factor injections 

did not have a large effect on the lens or the sclera.  Traditionally, the lens does not show large 

changes in myopia or the changes are not detectable, which may be the case in this study.  FGF is 

known to play a role in lens development but the concentrations used in this study were likely not the 

concentration at which lens cells are known to proliferate (McAvoy et al., 1991).  Like a previous 

study showing that FGF was does not play a role in scleral remodeling during the development and 

recovery of myopia (Gentle and McBrien, 2002), no changes to the sclera were found with FGF 

injection.     

The proliferative activity in the GCL without the addition of growth factors indicated that the 

acute damage caused by ONS was sufficient to stimulate cells of the retina to re-enter the cell cycle 

and show proliferative labeling.  This idea was further supported by the lack of proliferation in the 

sham-treated eyes.  The slight increase in the proliferative activity was also reflected in the small 

change in the overall number of cells in the GCL.  The use of growth factors allowed for a greater 

number of cells in the GCL to survive for a longer time (Fig 12C).  The proliferative activity in the 

GCL of the ONS-treated eyes of the +GF group was initially a synergistic (result of acute damage and 

growth factors) at day 3 (7.82 cells/mm vs. the expected 2.61cells/mm), followed by an additive 

effect at day 5 (17.88 cells/mm vs. the expected 17.91 cells/mm), and finally a less than additive 

effect at day 7 (7.79 cells/mm vs. the expected 15.38 cells/mm).  The decrease in the synergistic 

proliferative effects over time may be the result of the extensive damage at the later time points.       

Only days 3, 5 and 7 were available for comparison and it could not be determined if growth 

factors could delay the apoptotic timeline or if there was an inhibition of a component of the apoptotic 
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cascade and presumably a longer timeline would give better insight.  The appearance of proliferative 

activity in the GCL layer as well as in the NFL may indicate the possibility of Müller cell gliosis 

contributing to the proliferation.  Proliferative cellular activity (between 0 and 5 cells) was seen in the 

other cellular layers although not at all time points (data not shown).  The localisation of the 

proliferation in the GCL and NFL indicate that the stimulation was a result of the damaged cells from 

the ONS treatment.  The sham-treated +GF chicks also showed proliferative activity, confirming that 

the combination of FGF and insulin is sufficient to stimulate cells of the retina to proliferate without 

damage.  Although the proliferative activity was limited, the activity was seen in every layer of the 

retina (data not shown) in the +GF chicks.  Proliferation in all layers of the retina may reflect that 

injury to specific cells is the stimulus to drive proliferation in specific areas, and without the stimulus, 

proliferation is wide-spread.  Future studies should include characterising the type of cells labeled 

with BrdU.  Injury to a specific cell type seems to be the trigger for regeneration of the cells that are 

lost (Fischer and Reh, 2003a), regardless of the form of damage (colchicine vs. ONS).   

 The identification of apoptotic mechanisms after ONS damage, as well as the determination 

of the apoptotic timeline and apoptosis being independent of age, can potentially lead to further 

investigations of ways to block or inhibit parts of the apoptotic cascade in hopes of preventing cell 

damage and loss.  Time course for cell death is not affected by age but eye growth patterns are 

affected by age and presumably effects are due to increased plasticity.  The ability for the chick retina 

to exhibit (1) proliferation from acute ONS damage alone, (2) an increase in proliferation with the 

addition of growth factors and (3) the ability for growth factors to stimulate proliferation alone 

without damage, can potentially lead to the development of therapeutic strategies for the preservation 

or restoration of retinal cells in diseased eyes.   
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