
Runtime Verification with
Controllable Time Predictability and

Memory Utilization

by

Deepak Kumar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

c© Deepak Kumar 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The goal of runtime verification is to inspect the well-being of a system by employing a
monitor during its execution. Such monitoring imposes cost in terms of resource utilization.
Memory usage and predictability of monitor invocations are the key indicators of the quality
of a monitoring solution, especially in the context of embedded systems. In this work,
we propose a novel control-theoretic approach for coordinating time predictability and
memory utilization in runtime monitoring of real-time embedded systems. In particular,
we design a PID controller and four fuzzy controllers with different optimization control
objectives. Our approach controls the frequency of monitor invocations by incorporating
a bounded memory buffer that stores events which need to be monitored. The controllers
attempt to improve time predictability, and maximize memory utilization, while ensuring
the soundness of the monitor. Unlike existing approaches based on static analysis, our
approach is scalable and well-suited for reactive systems that are required to react to
stimuli from the environment in a timely fashion. Our experiments using two case studies
(a laser beam stabilizer for aircraft tracking, and a Bluetooth mobile payment system)
demonstrate the advantages of using controllers to achieve low variation in the frequency
of monitor invocations, while maintaining maximum memory utilization in highly non-
linear environments. In addition to this problem, the thesis presents a brief overview of
our preceding work on runtime verification.

iii

Acknowledgements

I am grateful to my supervisor, Dr. Sebastian Fischmeister, for providing me this oppor-
tunity and his ample support. He not only guided me in the project, but also encouraged
me at every step and expressed confidence in my efforts.
I would also like to express my gratitude to Dr. Borzoo Bonakdarpour for guiding me in
my reasearch. Despite mutiple projects going on simultaneously under his guidance, he
always helped me promtly and made sure that my work did not suffer any delays.
I would also like to extend my thanks to my friend Ramy Medhat and other colleagues at
the Real-Time Embedded Software Group, who helped me in completing this work with
their valuable comments and suggestions.
I am thankful to my friends in Waterloo for making my stay memorable and a great learn-
ing experience.
It would never be sufficient to thank my parents and grandparents; they have always been
there for me throughout my life, and it is their success that my life is about to be adorned
with a master’s degree.

iv

Dedication

This thesis is dedicated to my mother Smt. Kamlesh Devi and my father Shri Umed
Singh Rangi.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Thesis Organization . 5

2 Literature Review 6

2.1 Overhead Reduction . 7

2.2 Predictable Runtime Verification . 8

2.3 Fuzzy Logic in Telecommunication Network 9

3 Basic Control Theory 11

3.1 PID Controller . 11

3.2 Fuzzy Controller . 13

4 Problem Description 16

5 Monitor Controller Design 19

5.1 PID Controller . 19

5.2 Fuzzy Controller 1 . 21

5.3 Fuzzy Controller 2 . 22

vi

5.4 Fuzzy Controller 3 . 23

5.5 Fuzzy Controller 4 . 25

6 Experiment Design 27

7 Case Studies 29

7.1 Bluetooth Mobile Payment (BTP) . 29

7.2 Laser Beam Stabilization (LBS) . 35

8 Preceding Work on Runtime Monitoring 38

8.1 Sampling-based Execution Tracing and Monitoring 38

8.1.1 Overview of Different Marking Schemes 40

8.1.2 Expressiveness Comparison Results 40

8.2 Hybrid Runtime Verification . 41

9 Conclusion 43

10 FutureWork 44

References 45

vii

List of Tables

5.1 Symmetric mapping of input variables in if-then rules. 24

5.2 Asymmetric mapping of input variables in if-then rules. 26

viii

List of Figures

1.1 Outline of the proposed controller design. 4

3.1 PID controller. 12

3.2 Structure of a Fuzzy Controller [18]. 14

3.3 Membership functions of input fuzzy sets. 15

5.1 Membership functions of the error fuzzy sets. 21

5.2 Membership functions of EX̄ . 22

5.3 Membership functions of Ecv . 25

7.1 Polling period coefficient of variation vs. error mean at buffer size 20 for BTP 30

7.2 Polling period coefficient of variation vs. error mean at buffer size 40 for BTP 31

7.3 Polling period coefficient of variation vs. error mean at buffer size 60 for BTP 31

7.4 Box-plot of polling periods for different controllers of BTP. 32

7.5 Number of buffer triggers vs. number of context switches at buffer size 20
for BTP . 32

7.6 Number of buffer triggers vs. number of context switches at buffer size 40
for BTP . 33

7.7 Number of buffer triggers vs. number of context switches at buffer size 60
for BTP . 33

7.8 Polling period coefficient of variation vs. error mean at buffer size 40 for LBS 35

7.9 Number of buffer triggers vs. number of context switches at buffer size 40
for LBS . 36

ix

8.1 Example of a single instrumentation to extend ∆t [48]. 39

x

Chapter 1

Introduction

Program debugging and verification have been one of the most expensive part of the soft-
ware development cycle and its cost can range from 50 to 75 percent of the total develop-
ment cost [25]. Software issues create huge managerial and financial impact on the soft-
ware industry. A recent report of National Institute of Standards and Technology (NIST)
suggests that $59.6 billion are lost to software issues each year [46]. Another report by
Charette [13] lists some incidents that incurred great financial losses. For example, a $3.45
billion tax-credit overpayment was made by Inland Revenue (from the United Kingdom)
in 2004–2005 that was attributed to software errors. It is important to realize that the
losses are not limited to monetary considerations, but may also include loss of human lives.
Modern aircrafts and automobiles run on millions of lines of code. For example, the F-35
Joint Strike Fighter and Boeing’s 787 Dreamliner require the use of 5.7 and 6.5 million
lines of code, respectively. Whereas lines of code executed in automobiles have increased
from 50,000 in 1981 to 100M in current generation [47]. The complexity of such systems
is increasing rapidly [14] and any failures due to software bug may be fatal for the people
operating and using them. Hence, it is of utmost importance to ensure correctness in such
critical software applications.

Program verification and testing are the two commonly used practices to ensure pro-
gram correctness. Program verification includes model checking and theorem proving, that
verify the program behavior against a set of properties. Such verification is exhaustive be-
cause it aims at analyzing all the execution paths. However, program verification requires
developing a correct mathematical model of the system and has limited application due to
state-explosion problem. On the other hand, exhaustively covering all parts of large code
through testing is infeasible. Therefore, depending on the test case, testing scrutinizes only
a subset of behaviors of the system and can miss testing of unanticipated critical part. The

1

limitations of program verification and testing necessitates development of complementary
techniques that can check the correctness of the program at runtime. Runtime verifica-
tion [3, 15, 23, 27, 35, 38] (RV) is one such complementary technique, where a monitor
checks at run time whether or not the execution of a system under inspection satisfies a
given correctness property. If the monitor observes that the system is about to violate a
property, it can trigger a steering method, so the system is led to a safe behavior. The
ability of a monitor to evaluate the system’s properties at run time and take all the system
dynamics as well as environment stimuli into account has made RV an excellent technique
to ensure the well-being of computing systems, especially in the domain of embedded
safety/mission-critical systems.

The inherent cost of RV is runtime overhead. In the context of embedded systems, this
cost by itself is not the main obstacle in augmenting a system with RV technology. The
more significant problem is the fact that if events that would potentially invoke the monitor
do not occur in a time-predictable manner (e.g., periodic), monitoring tasks can severely
intervene the normal system execution, thereby, causing deadline misses and unscheduled
resource utilization. To tackle this problem, there has recently been an emerging trend on
designing time-triggered monitors. Such a monitor is invoked within fixed time intervals,
while ensuring soundness. The existing methods incorporate static analysis techniques to
ensure minimum instrumentation [10] and execution path-aware adjustment of monitor
invocation [36] to decrease the overhead. However, deep static analysis techniques suffer
from two drawbacks: they (1) may not scale, and (2) are completely blind to system
dynamics and environment actions at run time, especially in reactive systems. For example,
in an inverted pendulum, the behavior of the system depends more on forces and their
angles rather than execution path of the program that controls the pendulum. Thus, static
analysis techniques by themselves are not well-equipped to deal with reactive systems.

With this motivation, we focus on designing a RV technique, where the monitor should
react to system dynamics and environment actions, while taking resource limitations into
account. We, in particular, target reactive embedded real-time systems, where time-
predictability plays an important role and memory usage is limited by physical constraints.
To this end, we require the following:

1. The monitor is not invoked by occurrence of each event that may change the valuation
of properties and rather invoked within time intervals, called the polling period. In
order to enforce property violation detection latency, the polling period cannot be
greater than some value given as a system parameter. The monitor is also required
to maintain minimum jitter in changing the polling period.

2. The monitor must be sound; i.e., false-positives and false-negatives are not acceptable.

2

3. Since the monitor is invoked within time intervals, multiple events of interest may
happen between two monitor invocations. Thus, the program under inspection must
be instrumented such that the events of interest between the two invocations are
buffered. We assume that the program under inspection provides only a bounded-
size buffer. This buffer is required to be filled with maximum utilization.

In order to achieve the above requirements and make the polling period resilient to non-
uniform environment actions, the monitor must be able to learn, predict, and adapt to the
environment stimuli at run time. To design such a monitor, we utilize the rich literature
of control theory to enforce the three aforementioned requirements. The controller (see
Figure 1.1) executes within the monitor thread. With every invocation of the monitor,
the controller determines when the next invocation should occur to satisfy the memory
utilization and time predictability objectives. In order to maintain soundness, no events
should be dropped from the buffer. Thus, when the buffer is full, the monitor invocation
is automatically triggered ahead of its scheduled invocation. We design five controllers:

• A PID feedback controller with variable polling period for systems in which events of
interest are expected to occur linearly. This controller aims at maximizing memory
utilization.

• Four fuzzy controllers for handling systems where events of interest occur in a non-
linear fashion. Moreover, each controller targets achieving a different objective with
respect to our problem:

– The first fuzzy controller attempts to maximize memory utilization, similar to
the PID controller.

– The second fuzzy controller targets both memory utilization and time pre-
dictability. The controller attempts to balance between (1) polling periods that
would minimize the empty spaces in the buffer, and (2) choosing intervals as
close as possible to the mean of all previous intervals.

– Fuzzy controllers 3 and 4 attempt to maintain an upper bound on the variance
of intervals. Their difference is in their internal decision process.

We conduct two thorough case studies. The first case study is on a Bluetooth mobile
payment system. This system is highly non-linear and our experiments clearly demonstrate
the advantages of using our controllers to achieve low variation in the monitor polling
period, while maintaining maximum memory utilization in highly non-linear environments.

3

Program Threads

Monitor Thread

Event Buffer

Read Events Verify Properties

Monitor

Controller

Calculate Polling Period

Idle

Buffer
Trigger

Empty
Locations

Legend

Data Flow

Control Flow

Buffer Triggered
Invocation

Instrumentation

Figure 1.1: Outline of the proposed controller design.

The second case study is on a laser beam stabilizer (LBS) used for aircraft tracking. The RV
system for LBS aims at monitoring the location of the laser beam, where aircraft movements
are the environment actions. The laser beam control software works periodically and
although aircraft movements happen non-linearly, the buffer gets filled up within periods
uniformly. This characteristic may unnecessecitate a monitor controller. However, we
conduct this experiment to demonstrate that the controlled monitor performs as well as
the uncontrolled monitor. That is, our controller introduces negligible disturbance to the
system.

4

1.1 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents a summary of related
work in the literature on the reduction of resource requirement by runtime verification,
techniques designed to make runtime verification predictable, and use of fuzzy logic to solve
the problem of buffer management in communication networks which is somewhat similar
to our problem. Chapter 3 recaps the basic control theory concepts on PID and fuzzy
controllers that are useful to understand the proposed solutions later in Chapter 5. Then,
in Chapter 4, we formally state the problem by introducing monitoring objectives. Our
controller design choices are explained in Chapter 5. We present our experiment design, and
two case studies and the experimental results in Chapter 6 and 7 respectively. In Chapter 8
we present an overview of our preceding work on runtime verification. Finally, we make
concluding remarks and discuss future work in Chapter 9 and Chapter 10 respectively.

5

Chapter 2

Literature Review

This chapter presents a brief overview of the existing work and literature on runtime
verification and control theory. Main focus of work discussed in this chapter is related to
efficient implementation and invocation of monitors, and use of different type controllers
to achieve desired output in non-linear systems.

Compared to traditional methods that ensure the correctness of software before their
execution, Runtime verification is a relatively new research area which aims to dynamically
observe, scrutinize and sometime even guide the execution of a possibly incorrect system.
This way runtime verification is more of a complementary technique to testing and model
verification than an alternative. Under the paradigm of program checking, Blum and
Kannan [4] first presented a rigorous technique to proving the correctness at run time. This
was done because, despite the best verification and testing efforts, problems can happen
at run time and a dynamic scrutiny of system is required to improve the confidence in
the system evolution. Currently, runtime verification is not only being used for system
monitoring purposes but also for understanding programs, detecting security or safety
violations, performing fault recovery, etc.

Classically, in runtime verification [26, 32, 38] a system comprises an observer module
called monitor. During the execution program generates execution traces, i.e., sequence
of states or events that can affect the correctness properties. Generally traces are gener-
ated with the help of efficient instrumentation [6, 16, 31]. The monitor then dynamically
checks these traces against formally specified properties (generally formal languages such
as linear temporal logic [23, 40, 45] or ω-language are used for specifications [17] and ver-
ification purposes) to detect whether or not the execution of the system satisfies the given
correctness properties. If any violation is detected, the monitor can take actions such as

6

raising an alarm, stopping the execution of system or switching to a secondary mode [42].

Outline. The rest of this chapter outlines some recently published research work to
address the challenges in making applicablity and feasiblity of runtime verification more
predictable and resource efficients in terms of overhead. Section 2.1 presents the literature
survey of work done to reduce overhead cost of monitoring, and hence effectively utilize
the computational resources. Section 2.2 discusses work done by authors to make runtime
verification predictable with the help of time-triggered monitor invocation. In section 2.3,
we present a literature survey of techniques used to manage data buffers in communication
networks which is similar to our problem.

2.1 Overhead Reduction

Most of the work proposed to reduce the runtime verification overhead is done by combin-
ing static analysis and dynamic runtime checking. In this regard, Eric Bodden et al. [7, 5]
propose the use of static analysis of the program to be monitored to identify instrumen-
tation points that can be removed without affecting the correctness of verification. This
work was further implemented in the tool Clara [8]. On the similar line of work, authors
in [19] aim to reduce monitor invocations. In their framework, Adaptive Online Program
Analysis, they show that monitor invocation can be lowered by dynamically adjusting the
runtime monitoring scheme with the help of semantic analysis of the correctness properties
and the program state. The overall overhead is reduced because of efficient synthesis of
monitor and intelligently placed instrumentation.

In [2], authors propose that monitoring overhead can be reduced with the help of effi-
cient logic to express the correctness properties. Authors propose a unifying logic, EAGLE,
to express safety and liveliness properties, and demonstrate that monitors synthesized from
the properties expressed in EAGLE do not require to store program traces. This reduces
the memory overhead of runtime verification. Some other works on reducing the monitoring
overhead based on similar ideas include improved instrumentation [16], static analysis [5],
and efficient monitor generation [17].

In [49] authors propose a novel hybrid method of monitor invocation that leverages
the benefits of both event- and time-triggered methods to reduce the overall monitoring
overhead. This work demonstrates that, in case of frequently occuring critical events event-
triggered approach suffers higher overhead as compared to time-triggered approach due to
frequent context switching. Whereas time-triggered approach takes unnecessary samples
if events are sparsely distributed. Authors proposed that, with the help of static analysis

7

of program one can effectively decide which techniques should be used on different paths
to achieve lower overhead.

In some cases, it is possible to compromise the accuracy of verification, and it can be
used to lower the overhead of monitoring. Huang, et al. [28] propose a control-theoretic
based Software monitoring with controllable overhead (SMCO) technique where PID con-
trollers are used to maintain overhead below a user-defined threshold level. Controllers
maintain the given target by disabling the monitor whenever an overload is caused by
sudden bursts of critical events in a short span. This is the first work that uses controllers
to reduce runtime verification overhead. While their technique effectively maintains the
overhead below the pre-specified level, it does not ensures correctness. To tackle this prob-
lem, Bartocci et al. [44] augment the method presented by Huang, et al. [28] with a hidden
Morkov model (HMM) to fill the gaps in event sequences.

Except SMCO, all of the above proposed work for overhead reduction require static
analysis and make these technique unscalable like model checking. Although SMCO and
extended work by Bartocci et al. [44] do not require static analysis, they are also unscalable
because multiple PID controllers require tuning, which is system specific and consumes
huge amount of time of the designer.

2.2 Predictable Runtime Verification

The increased use of runtime verification to ensure the correct behaviour of cyber-physical
systems required more predictable runtime verification models and researchers started work
toward this goal. Initially monitoring was used to verify timing constraints of real-time
systems with the help of time stamps and clock-synchronization [30]. Later different ap-
proaches such as real-time monitoring, time-triggered monitoring, and networked monitor-
ing were developed to meet timing requirements of real-time embedded systems. Rest of
this Section describes some recent approaches related to predictable runtime verification.

Pike et al. [37] developed domain-specific language, Copilot, which can be used for
synthesis of time-aware monitor. Monitors synthesized using Copilot periodically sample
the system state and adhere to hard real-time deadlines. However, the proposed monitors
are not sound as the approach does not consider the effect of change in program state
between two consecutive samples. Another limitation of Copilot based monitors is their
inability to monitor local variables. Also this work is limited to hard-real time systems
because synthesis of monitor requires knowledge of detailed timing behavior of system.

Time-triggered monitoring is another idea proposed by Bonakdarpour et al. [9], where

8

monitor is invoked for verification only after a fixed period called sampling period (equiv-
alent to polling period). The correctness of such monitor is maintained by formally calcu-
lating a sampling period using static analysis in such a way that no state change is missed
between two consecutive samples. However such sampling period is very conservative as
it depends on the best case execution time between the two most densely packed state
changes. To this end authors demonstrate that it is possible to increase sampling period
and hence reduce monitoring overhead, arising due to high frequency of monitor invocation,
with the help auxiliary memory to buffer program states between two consecutive samples.
Buffering is done in such a way that monitor can correctly reconstruct the system states
between two samples and thus soundness of verification is ensured. This work also explores
methods for balancing the trade off between auxiliary memory and sampling period.

Navabpour et al.[36] further extend the work in [9] with the help of symbolic execu-
tion [33] to predict the set of feasible execution paths before execution. Longest sampling
period for each of the predicted path is computed separately. At the runtime, monitor
dynamically adjusts its sampling period to longest sampling period of the path which the
program is currently executing. This scheme helps in effective utilization of computing
resources while scarifying a little on monitoring predictability.

Bonakdarpour et al. [11] propose a technique called time-triggered self-monitoring,
where self-sampling instrumentation instructions are inserted into the program. Number
of such instrumentation instructions is minimized by formulating an optimization problem
and solving it using a SAT solver or a heuristic. This technique eliminates the assistance
from external monitor or internal timer, and manages its timing based on program’s tem-
poral behavior.

Time-triggered monitoring provides an effective way of ensuring predictability of mon-
itors, and increases the applicability of runtime verification in real-time domain. However
these methods require extensive static analysis, knowledge of best case execution time and
temporal distribution of critical events for a given program. This severely limits the appli-
cation of these approaches for complex systems and reactive non-linear systems which is
the focus of our work.

2.3 Fuzzy Logic in Telecommunication Network

Complex networks are becoming more and more dynamic while input traffic is increasing
rapidly and getting highly uncertain. This results into unexpected overloads and network
failures. It has limited the application of accurate analytical modeling to manage im-
portant network aspects. Since fuzzy set theory provides robust mathematical model to

9

deal with uncertain real-world problems, researchers have explored use of fuzzy logic for
buffer management, routing, load balancing and congestion mitigation problems. Among
them, buffer management is closely related to the problem we discuss in this work. This
is because, the objective of buffer management policies is to effectively use bounded buffer
to minimize transmission delay. Bonde et al. [12] demonstrate the use of fuzzy logic to
define soft thresholds in cell-switching networks. They use linguistic system variables to
model buffer queues. Fuzzy logic based soft thresholds results in robust and adaptive buffer
management, in contrast to traditionally used binary thresholds. They show that buffer
queues managed through fuzzy logic exhibit greater resilience and adaptability towards
rapidly changing network traffic.

Although, understanding the use of fuzzy logic for buffer management provides insight
into possible use of fuzzy theory for our problem. However the solution can not be used
as-is. This is because the constraints and objectives of the two problems are different. In
buffer management objective is to predict full buffer criteria under non-linear overloads.
This is then used by higher level policy to make appropriate decisions once the buffer
is full. Whereas our problem has two conflicting objectives: (1) effectively utilizing the
buffer, and (2) maintaining time predictability of the monitor. These two objectives have
opposite effect on polling rate. Another constraint is that buffer overflow be minimized
and no event is dropped.

10

Chapter 3

Basic Control Theory

Control theory is one of the most researched discipline of engineering that deals with
behaviour of dynamic systems. Broadly there are three components of a closed loop control-
system:

Plant The target system that needs to be controlled

Transducer Measures output of plant and generates an appropriate input to the con-
troller.

Controller Generates an output which is used to steer plant’s output toward the reference
input. The generated output is a function of the error (the difference between the
input received from transducer and the reference input).

However there are open loop control systems where controller does not receive feedback
from plant. There are multiple classifications of control systems. In this work we are
concerned with PID and fuzzy controllers, we recap the concepts of these controllers in
Section 3.1 and Section 3.2 respectively.

3.1 PID Controller

A PID feedback controller [39] consist of (1) a proportional, (2) an integral, and (3) a
derivative component. An error signal e(t) is sampled within fixed time intervals called

11

+
∑ ∑+

Processu(t)
+
-

e(t)

P

I

D

Kpe(t)

Kd
de(t)
dt

+
Kie

∫ t
0(τ)dτ

y(t)

(a) Structure

Point
Set

Period

Oscillation

Time
(b) Tuning through stable oscillation.

Figure 3.1: PID controller.

the sampling period. The three components are then applied collectively to e(t) as follows:

u(t) = KP e(t) +KI

∫
e(t)dt+KD

d

dt
e(t) (3.1)

where KP is the proportional gain, KI is the integral gain, and KD is the differential gain.
Figure 3.1(a) demonstrates the structure of a PID controller.

PID controllers are often used to control linear systems. One approach to using PIDs
is to model the system accurately, so as to deduce ideal gains that ensure controllable
behavior. Another method is using experience to configure these controllers; often engineers
on site can come up with an initial configuration for PID controllers using well known
methods. In this work, we use the popular Ziegler-Nichols method [50] to tune KP , KI ,
and KD. We begin by disabling KI and KD, and increasing KP gradually until oscillation
begins with a constant amplitude (see Figure 3.1(b)), where

e = SetPoint − Feedback Reading

12

SetPoint is the desirable set point and Feedback Reading is output of the plant. The gain at
which oscillation begins is called the ultimate gain KU . Using KU and the oscillation period
TU , we can determine the values of KP , KI , and KD by substituting in the Ziegler-Nichols
rules.

The main drawback of PID controllers is that their performance in non-linear systems
is variable, as they are inherently linear. The engineer is, hence, faced with the trade-off
of decreasing overshoot versus decreasing settling time.

3.2 Fuzzy Controller

A fuzzy controller is often considered as a real-time expert system that relies in part on
the system operator’s expertise in the form of situation/action rules [18]. This differs
from PID controllers in that fuzzy controllers mainly describe what the system’s operator
would do in different situations based on a set of fuzzy conditions, which resembles our
human perception of conditions/actions such as the control we employ while driving. This
fundamental basis enables fuzzy controllers to outperform PID controllers in non-linear
systems.

Fuzzy Logic

The first function of a fuzzy controller is to transform a discrete measured value (called
a crisp value) to a fuzzy value. We first define fuzzy sets as sets, whose elements have
degrees of membership to that set. For a universe U , each fuzzy set is associated with a
membership function (µ), which maps each value u ∈ U to a value within the interval [0, 1],
indicating the percentage of membership of the value u to the set. That is

µ : U → [0, 1]

An if-then implication rule is generally of the form “if X is A then Y is B”, where X is
a fuzzy variable, A is an antecedent fuzzy set, Y is an output fuzzy variable and B is a
consequent fuzzy set. In fuzzy logic, there are many methods with which we can perform
inference based on this implication. We use scaled inference, which has the advantage of
preserving the shape of the membership function. In scaled inference, an implication is
represented by scaling the consequent membership function with the degree of membership
of the crisp value in the antecedent function. Thus, for an if-then rule, scaled inference S
is calculated as follows:

µS(x, y) = µA(x) · µB(y)

13

Reulebase

Inference

Fuzzification Defuzzification

Database

 Engine

Information

Legend

Computation

Figure 3.2: Structure of a Fuzzy Controller [18].

where x is the the measured crisp value of the fuzzy variable X and y is the output crisp
value of fuzzy variable Y . This process of evaluating the above equation is called firing.

Applying scaled inference to support multiple rules is our goal in fuzzy controllers, since
we need to control the system using a set of rules that account for the expert’s response
in different situations. There are two ways to apply scaled inference to multiple rules:
(1) composition-based inference, and (2) individual-rule-based inference. The difference
between these two methods is that in individual-rule-based inference, each rule is fired
individually and then a union is calculated for all rules. Composition-based inference
calculates the union first and then fires the resulting set. The output for both methods is
the same when using scaled inference. Thus, for a given u ∈ U , the result of firing the set
of rules using individual rule-based inference is obtained by the following equation:

µI (u) = max
k
{µA(k)(x) · µB(k)(u)} (3.2)

where k is the enumerator over the set of rules, and x is the crisp input.

Structure of a Fuzzy Controller

Figure 3.2 shows the structure of a typical fuzzy controller [18]. A fuzzy controller consists
of the following components:

Fuzzification When a fuzzy controller receives a measured value from the system, this
value must be fuzzified, so that its membership to the associated fuzzy sets could be
determined. As mentioned earlier, in this work, we use scaled inference for fuzzifica-
tion.

14

0
0

0.25

0.75

0.5

1
LargeNeg MedNeg Small MedPos LargePos

−10 −5 5 10

Figure 3.3: Membership functions of input fuzzy sets.

Knowledge base This component consists of a rulebase and a database. The rulebase
contains the set of rules including the antecedents and consequents. The database
contains the membership functions of fuzzy sets. In common practice there are five
fuzzy sets for each fuzzy variable: LargeNeg, MedNeg, Small, MedPos, and Large-
Pos. The membership functions for these sets are lambda-type functions, with the
exception of LargeNeg and LargePos, which are Z-type and S-type respectively [41].
An example of these functions is shown in Figure 3.3.

Inference engine The inference engine employs either composition-based inference or
individual-rule-based inference, described above. The latter is more widely used in
fuzzy control since it is computationally more efficient and uses less memory.

Defuzzification This component transforms the output of the inference engine into one
single point-wise value. This value is then applied to the system to complete the con-
trol loop. The most widely used method for defuzzification is gravity defuzzification,
which calculates the center of gravity for µI (u) in Equation 3.2. The output crisp
value u∗ is calculated as follows:

u∗ =

∫ +∞

−∞
u · µI (u) du

∫ +∞

−∞
µI (u) du

(3.3)

15

Chapter 4

Problem Description

Expressing logical properties of a system normally involves a set of program variables
whose value may change over time. We call such change of value an event. Monitoring
an event involves invoking a process (called the monitor) that evaluates the properties
associated with that event at run time. This work is concerned with the problem of runtime
verification of reactive systems, where the monitor is required to exhibit the following
features simultaneously:

Soundness For verification to be sound, all events should be monitored. That is, no event
that can potentially change the valuation of a property is overlooked.

Time predictability Since invocation of the monitor interrupts the program execution,
we require that these interruptions are predictable with respect to time. This re-
quirement assists in achieving more accurate system-wide scheduling.

Resource utilization The monitor may use bounded memory space to buffer events. We
require maximum utilization of this buffer.

We now formulate the above constraints. Let R be a reactive system with limited
memory under inspection and Φ be a set of logical properties (e.g., in LTL), where R is
expected to satisfy Φ. Since, system R has limited memory, we assume that the number
of events that it can buffer for monitoring has an upper bound B.

Let E = e1e2 · · · en be a given finite sequence of events that can change the valuation of
Φ and Te = te1te2 · · · ten be the finite sequence of timestamps of occurrence of the events,

16

where n ∈ N. Also, let M = m1m2 · · ·mk be the output finite sequence of monitor invoca-
tions and Tm = tm1tm2 · · · tmk

be the finite sequence of timestamps of monitor invocations,
where k ∈ N. We note that k is a variable to be controlled, meaning that depending upon
the monitoring policy, k may change. We denote the start time of the monitor by m0.
Thus, we extend Tm as tm0tm1tm2 · · · tmk

.

Let function between(τ1, τ2) be a function that returns all the events that occur between
time τ1 and τ2:

between(τ1, τ2) = {ei | τ1 < tei < τ2} (4.1)

Based on the above description, we say that the monitor is sound iff:

∀ i ∈ {1 · · · k} :
∣∣between

(
tmi

, tmi−1

)∣∣ ≤ B (4.2)

which implies that at no point in time incoming events will overflow the buffer.

We formalize maximization of memory utilization as the following objective:

max

{
1

k

k∑

i=1

∣∣between
(
tmi

, tmi−1

)∣∣
B

}
(4.3)

Thus, the objective is to maximize the average memory utilization across the complete run
of the monitor.

Let X = {Xi | 1 ≤ i ≤ k} be the set, where

Xi = tmi
− tmi−1

i.e., each Xi is the amount of time elapsed between monitor invocations mi and mi−1.
Thus, we characterize time predictability by the following objective:

min {V (X) | for all possible sets of X} (4.4)

where V (X) is the variance of X. In other words, by minimizing the variance of all possible
X’s, we achieve predictability in the invocation of the monitor.

Observe that the best case minimum variance is zero, which means that for all i,
tmi
−tmi−1

remains constant. However, if a monitor adopts a constant monitoring frequency,
it may be possible to lose soundness in a reactive system, as the rate of occurrence of
events depends upon external stimuli, such as environment actions. Furthermore, for
memory utilization, the best case is 100% average utilization. However, such a constraint

17

conflicts with the time predictability requirement, since invoking the monitor whenever the
buffer is full will result in a variance that is totally controlled by external actions. This
discussion clearly illiterates that memory utilization and time-predictability are conflicting
requirements.

Since the sequence of events to be monitored is not given a priori, an optimal monitoring
policy that satisfies soundness, time predictability, and high memory utilization cannot be
designed before system deployment. In other words, the times and frequency of monitor
invocations have to be dynamically adjusted based on the conditions of the system under
inspection. Consequently, our goal is to design a runtime control mechanism that enforces
our objectives (i.e., Equations 4.2, 4.3, and 4.4) simultaneously through identifying Tm
(i.e., time of monitor invocations and, hence, k) in a best-effort fashion.

18

Chapter 5

Monitor Controller Design

This chapter presents in detail the design of our controllers based on the objectives in
Equations 4.2, 4.3, and 4.4. As discussed in the introduction (see Figure 1.1), the program
under inspection can be multi-threaded running on a single-core machine. We instrument
the program, so that it enqueues the events in a bounded-size buffer whenever they are
modified. The monitor is a separate thread within the program’s process, that executes at
a higher priority than the program threads. It is idle for a period of time while events are
being enqueued in the buffer, and once invoked, it preempts the program threads due to
having a higher priority. The monitor then reads all events and verifies a set of predefined
logical properties. Once the verification is complete, the monitor enters idle mode again,
and awaits the refilling of the event buffer. The controller (see Figure 1.1) executes within
the monitor thread. With every invocation of the monitor, the controller determines when
the next invocation should occur to satisfy Equations 4.3 and 4.4. In order to maintain
soundness, no events should be dropped from the buffer. Thus, when the buffer is full, the
monitor invocation is automatically triggered ahead of its scheduled invocation to ensure
soundness. This is called a buffer-triggered invocation. Subsections 5.1–5.5, describe the
design of our PID and four fuzzy controllers.

5.1 PID Controller

Since we deal with reactive systems, overshoots are inevitable. In the context of our
problem, an overshoot refers to the event that the buffer overflows before the monitor is
invoked. Our design supports a safety threshold for buffer utilization. For instance, a

19

controller with an 80% safety threshold will attempt to keep the buffer 80% utilized in
every monitor invocation.

• Input. In order to achieve maximum memory utilization (Equation 4.3), the
controller should target maintaining a completely full buffer up to the safety threshold
at every invocation of the monitor. Thus, the input error signal to the controller is
the number of empty locations in the buffer at the moment the monitor is invoked.
The safety threshold is also a configuration parameter of the controller that can be
altered depending upon the system requirements. Hence, the input error signal is
formally the following:

e(tmi
) = B × S −

∣∣between
(
tmi

, tmi−1

)∣∣

where B is the buffer size, S is the safety threshold percentage, tmi
is the timestamp

of the current invocation of the monitor, tmi−1
is the timestamp of the last invocation

of the monitor, and between
(
tmi , tmi−1

)
is the set of events received between the two

timestamps (defined in Equation 4.1).

• Output. Initially the controller schedules the monitor to run after a predefined
idle period. The goal of the controller is to change this initial period dynamically
to maintain zero error. We refer to this period as the polling period, i.e. the period
with which the monitor polls the application for new events. Thus, the output of the
controller is the offset (positive or negative) with which to change the polling period
to maintain zero error.

• Tuning. The controller is tuned using the Ziegler-Nichols method [50]for classic
PID controller. According to this method, the proportional, integral and deriva-
tive gains are 0.6Ku, 2Kp/Tu, and KpTu/8, respectively, where Tu is the period of
constant oscillation and Ku is the proportional gain at which oscillation occurs (see
Figure 3.1(b)).

The controller updates are not periodic due to the fact that the period depends on
the output of the controller itself, and also due to buffer triggered invocations. Thus, the
integral component is calculated as in a variable sampling period PID [21], and not a classic
PID, as described in Section 3.1.

20

0

LargePos

M
em

b
er
sh
ip

−B(1−S) B.S error

1

0.75

0.5

0.25

LargeNeg MedNeg Small MedPos

0−B(1−S)/2 B.S/2

Figure 5.1: Membership functions of the error fuzzy sets.

5.2 Fuzzy Controller 1

The first fuzzy controller attempts to maximize memory utilization, similar to the PID
controller.

• Input. The input to the controller is the fuzzy variable EB representing the number
of empty locations in the buffer. The crisp value for this variable is calculated the
same way e(t) is calculated in the PID controller:

EB = B × S −
∣∣between

(
tmi

, tmi−1

)∣∣

There are 5 fuzzy sets for the error variable based on lambda-type functions as shown
in Figure 5.1. The Small set has a peak at zero error, with the left x-intercept at
−B(1−S)

2
and the right x-intercept at B×S

2
. The reason these points are not symmetric

is that the largest positive error that could be reached is B × S, which denotes that
the buffer is completely empty. However, the largest negative error is −B(1 − S),
since buffer triggering will prevent the error from exceeding that value.

• Output. The output of the controller is the offset value from the current polling
period, which we denote as ∆X . The membership functions for the output variable
are standard lambda-type functions similar to those in Figure 3.3, with centers at
−1, −0.5, 0, 0.5, and 1, respectively. The output from defuzzification is a percentage,
which is then converted to absolute ∆X multiplied by a factor depending on the unit
and allowed range of polling period for the given system.

21

15%
0

0.25

0.75

0.5

1
LargeNeg MedNeg Small MedPos LargePos

−30% error

M
em

b
er
sh
ip

0% 30%−15%

Figure 5.2: Membership functions of EX̄

• If-then rules. The if-then rules for the controller are as follows:

– if EB is LargeNeg, ∆X is LargeNeg

– if EB is MedNeg, ∆X is MedNeg

– if EB is Small, ∆X is Small

– if EB is MedPos, ∆X is MedPos

– if EB is LargePos, ∆X is LargePos

• Fuzzification, inference, and defuzzification. The fuzzification module uses
scaled inference and the inference engine uses individual rule based firing. The de-
fuzzification module uses the center of gravity method to calculate the output value.
The calculations involved in applying these methods are minimal, with the advantage
that most of the calculations can be precomputed before the system executes, thus
decreasing the processing overhead of the controller in run time.

5.3 Fuzzy Controller 2

Fuzzy controller 2 targets both memory utilization and time predictability. The approach
of this controller is to balance between choosing a polling period that would minimize the
error in the buffer, and choosing a polling period of a value as close as possible to the
mean of all previous polling periods. The second condition ensures that the variance of
the polling period is minimized.

22

• Input. In addition to EB, we introduce a new fuzzy variable EX̄ to control the
polling period variance. EX̄ represents the difference between the current polling
period and the mean of all previous polling periods. The crisp values of EX̄ is
calculated as follows:

EX̄ =
X − X̄
X̄

(5.1)

where X is the current polling period and X̄ is the mean of all previous polling peri-
ods. EX̄ is a percentage so as to make the controller computations independent of the
time scale at which the system operates. The membership functions for this variable
are standard lambda-type, as shown in Figure 5.2. These values are configuration
parameters and can be changed according to the user requirement. The choice of the
range −30% to 30% produces low variation in polling periods, and consequently high
time predictability.

• Output. The output of the controller is the same as Fuzzy 1 (i.e., the offset value
from the current polling period).

• If-then rules. Since the controller is now targeting two simultaneous goals
involving two fuzzy variables (EB and EX̄), with 5 fuzzy sets each, there are 25
possible if-then rules. Table 5.1 shows the consequent fuzzy set of each rule based on
the combination of the two antecedent fuzzy sets, where the columns are EX̄ fuzzy
sets, the rows are EB fuzzy sets, and LN, MN, S, MP, and LP are abbreviations
of LargeNeg, MedNeg, Small, MedPos, and LargePos, respectively. The mapping
above is symmetric, meaning that no variable has a more significant effect on the
output than the other; i.e., both are equally contributing to the decision made by
the controller. This mapping is a configuration parameter and could be changed
according to the system requirements.

5.4 Fuzzy Controller 3

Instead of minimizing the variance, fuzzy controller 3 attempts to maintain an upper bound
on the variance. Thus, this controller adds a configuration parameter to fix that upper
bound. However, since the mean of polling period is not known a priori and changes during
the program’s execution, the value that the user chooses as an upper bound on the variance
does not represent the actual variation in the polling period. For instance, a variance of
10 for a polling period mean of 1000 is an indicator for very high predictability and low

23

EX̄ Fuzzy sets

LN MN S MP LP

EB

Fuzzy
sets

LN S MN LN LN LN
MN MP S MN LN LN
S LP MP S MN LN

MP LP LP MP S MN
LP LP LP LP MP S

Table 5.1: Symmetric mapping of input variables in if-then rules.

variation. However, the same variance when the mean is 10 shows very high variation in
polling times. This has led to using the coefficient of variation as the metric that has an
upper bound. The coefficient of variation is calculated as cv = σX/X̄, where σX is the
standard deviation of all previous polling periods, and X̄ is the mean. Since the polling
period mean will never be zero, cv is a safe metric. The coefficient of variation enables the
user to dictate the required shape of the distribution of polling periods; i.e., whether to
have a broad or narrow curve around the mean.

Fuzzy controller 3 adopts a fuzzy variable Ecv which is simply the last polling period
of the controller. Let all polling periods since the start of execution be the sequence
X = X1X2X3 · · ·XN , where XN is the last polling period. Since the upper bound of cv is
fixed by a constant k, the controller needs to determine the best XN+1 that guarantees k
as the coefficient of variation. We expand the coefficient of variation formula, so that we
can obtain the value of XN+1. This led to deriving a quadratic equation whose roots are
the values for XN+1 that produce cv = k. To simplify the equation, we define γ as the
following quantity:

γ =

(
N + 1 + k2N

N (N + 1)2

)
(5.2)

where N is the number of polling periods in the sequence X. The quadratic equation to
calculate XN+1 is as follows:

(
1

N
− γ
)
X2

N+1 −
(

2 γ
N∑

i=1

Xi

)
XN+1+

(
1

N

N∑

i=1

X2
i − γ

N∑

i=1

Xi

)
= 0 (5.3)

24

r2µ

MedNeg Small MedPos LargePos

Membership

r2 +
µ−r2
2

LargeNeg

r1 r2 − µ−r2
2r1 +

µ−r1
2r1 − µ−r1

2
Polling period

Figure 5.3: Membership functions of Ecv

If Equation 5.3 has complex roots, then it is not possible for XN+1 to lower the coefficient
of variation down to k. In this case, fuzzy controller 3 falls back to Fuzzy 2, attempting
to minimize the variance all together. This will continue until the coefficient of variation
is low enough that it can be controlled within the upper bound.

If the two roots of Equation 5.3 are real values, the mean is a number between these
two roots. The membership functions for Ecv are designed in such a way that it tries to
keep the polling period between the two roots, with preference to the mean. Figure 5.3
shows how these functions are defined, where r1 and r2 are the roots of Equation 5.3. The
Small membership function has a peak at the mean µ, has a left x-intercept at r1, and a
right x-intercept at r2. MediumNeg and MediumPos are centered around r1 and r2 with
intercepts at half the distance between the mean and the roots. This maintains fairness in
treating the polling period regardless of which root it is closer to.

The mapping in the if-then rules in this controller is similar to the mapping in Fuzzy 2
as shown in Table 5.1, which maintains a balanced trade-off between memory utilization
and time predictability.

5.5 Fuzzy Controller 4

Fuzzy controller 4 is essentially the same as Fuzzy 3, with the exception of the mapping
for the if-then rules. In this controller, the mapping gives preference to controlling mem-

25

Ecv Fuzzy sets
LN MN S MP LP

EB

Fuzzy
sets

LN MN LN LN LN LN
MN S MN MN LN LN
S LP MP S MN LN

MP LP LP MP S MN
LP LP LP LP MP S

Table 5.2: Asymmetric mapping of input variables in if-then rules.

ory utilization when EB is a large negative value, even if that contradicts with the time
predictability requirement. Table 5.2 shows the modified mapping. This mapping enables
Fuzzy 4 to react faster to large overshoots in the error, thereby maintaining stability and
giving room for the controller to work on a balanced trade-off.

26

Chapter 6

Experiment Design

In order to analyze the performance of our controllers, we have conducted two case studies:
(1) a Bluetooth mobile payment, and (2) a Laser beam stabilizer for aircraft tracking. Each
case study involves using different controllers with different configurations.

Our experiments are designed based on three factors:

1. Controller type. We incorporate seven controllers in our experiments: PID, Fuzzy
1, Fuzzy 2, Fuzzy 3 with target coefficient of variation cv = 0.4, Fuzzy 3 with cv = 0.2,
Fuzzy 4 with cv = 0.4, and Fuzzy 4 with cv = 0.2.

2. Buffer size (B). We experiment with three different buffer sizes: 20, 40, and 60
events.

3. Safety threshold (S). We experiment with two safety thresholds: 80%, and 90%.

Hence, there is a total of 42 configurations to test all different combinations of the above
three factors. For both case studies, we carried out multiple runs with randomization to
provide statistical confidence and remove any hidden effects. The five measurement metrics
that we observe are:

1. Error mean. This is the mean number of empty buffer locations at every invocation
of the monitor. This value is a measure of the memory utilization of the monitor,
i.e. the lower the value, the more utilized the memory.

27

2. Polling period coefficient of variation (Cv). This value is a measure of time
predictability, i.e. the lower the value, the closer polling periods are to their mean,
and hence, more time predictable.

3. Context switches. This is the number of invocations of the monitor during a run
of an experiment. This value is a measure of the overhead introduced by the monitor;
i.e. the lower the value, the lesser the context switching between threads, and thus
the less overhead.

4. Buffer triggers. This is the number of buffer-
triggered monitor invocations. This value is a measure of the quality of the con-
troller in the sense that a well designed controller should not overshoot frequently
causing many buffer triggers.

28

Chapter 7

Case Studies

7.1 Bluetooth Mobile Payment (BTP)

Mobile payment is becoming increasingly popular and gaining assurance about the sound-
ness of such a system is an essential requirement. Whether payment is through WiFi, Blue-
tooth, or NFC, the process relies on a payment hub that communicates with smartphones
to process payments, which includes establishing a connection with devices. Verification
of such properties is a necessity in a payment system, specially since it is commonly the
case that more than one payment will need to be processed at the same time. The hub
establishes a connection with these devices and sends/receives messages. We monitor these
messages at the operating system level to ensure that every message gets a response and
no error.

Our experimental platform is single core machines running under the QNX real-time
operating system hosting a Bluetooth 2.1 adapter. Our implementation follows the outline
in Figure 1.1, with the exception that there is a single program thread responsible for
extracting events using the QNX TraceEvent API and queuing them into the buffer. We
use an experimental dataset that has been collected in a shopping mall [22]. It includes
Bluetooth contact traces from employee devices around the cashier area of a certain store.
To provide statistical confidence in the results, we run 9 replicates of a trial, where each
trial consists of running all 42 possible combinations of the experimental factors.

The setup includes 14 virtual machines running the real-time operating system QNX,
capable of running 14 experiments of different configurations in parallel. QNX is a rea-
sonable option for a payment hub since many mobile devices (e.g., Blackberry 10) use

29

QNX and it provides accurate timing behavior and scheduling. We use VMWare ESXi 5.1
to host virtual machine. VMWare ESXi provides near to native performance, and CPU
performance is more optimized when core affinity is configured [29]. Thus, for every vir-
tual machine we configure core affinity, so that a core is exclusive to that machine. Every
virtual machine has its own physical Bluetooth adapter. These virtual machines run on
three physical Core i7 machines, each with 16GB of RAM, and 2TB storage.

In all the figures showing results of the legends on horizontal axis are as follows:

• F2, ∆X is LargeNeg

• if EB is MedNeg, ∆X is MedNeg

• if EB is Small, ∆X is Small

• if EB is MedPos, ∆X is MedPos

• if EB is LargePos, ∆X is LargePos

0

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

M
e

a
n

 E
m

p
ty

 L
o

c
a

ti
o

n
 i
n

 B
uf

fe
r

C
o

e
ff

ic
ie

n
t
o

f
V

a
ri
a

ti
o

n
(C

V
)

Empty Locations(safety:90%)Empty Locations(Safety:80%) CV

of Polling Period(Safety:80%) CV of Polling Period(safety:90%)

CV for Buffer Triggered

Figure 7.1: Polling period coefficient of variation vs. error mean at buffer size 20 for BTP

Analysis of Time Predictability

Figure 7.1, 7.2, and 7.3 show the average polling period coefficient of variation Cv across all
9 replicates for buffer sizes 20, 40, and 60. As can be seen, Fuzzy 2 exhibits the lowest Cv,
since it is designed to control the polling period within ±15% of the mean (see Section 5.3).
Fuzzy 3 targets Cv = 0.2 (denoted F3-0.2 in the figure) and Fuzzy 4-0.2 show low Cv due
to having an aggressive Cv = 0.2 goal. In Figure 7.1, Fuzzy 3-0.2 and Fuzzy 4-0.2 fail

30

0

5

10

15

20

25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

M
e

a
n

 E
m

p
ty

 L
o

c
a

ti
o

n
 i
n

 B
uf

fe
r

C
o

e
ff

ic
ie

n
t
o

f
V

a
ri
a

ti
o

n
(C

V
)

Empty Locations(Safety:80%)

CV of Polling Period(Safety:80%)

Empty Locations(safety:90%)

CV of Polling Period(safety:90%)

CV for Buffer Triggered

Figure 7.2: Polling period coefficient of variation vs. error mean at buffer size 40 for BTP

0

5

10

15

20

25

30

35

40

45

0.1

0.2

0.3

0.4

0.5

0.6

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

M
e
a

n
 E

m
p

ty
 L

o
c
a

ti
o

n
 i
n
 B

u
ff

e
r

C
o
e
ff
ic

ie
n
t
o
f

V
a
ri
a
ti
o
n
(C

V
)

Empty Locations(Safety:80%)

CV of Polling Period(Safety:80%)

Empty Locations(safety:90%)

CV of Polling Period(safety:90%)

CV for Buffer Triggered

Figure 7.3: Polling period coefficient of variation vs. error mean at buffer size 60 for BTP

to meet their goals, scoring a Cv of 0.32 and 0.37. This is due to the 0.2 goal being too
aggressive to reach in a buffer of size 20. Note that at higher buffer sizes, these controllers
meet their goals, as shown in Figures 7.2 and 7.3). However, Fuzzy 3-0.4 and Fuzzy 4-0.4
consistently meet their goal (Cv = 0.4) across all configurations. Since Fuzzy 1 and PID
do not attempt to control Cv, they have the highest values.

An interesting observation is that for a purely buffer triggered implementation, where
no control is involved, the Cv is almost always higher than any controller across all con-
figurations (shown as a horizontal line in all three graphs). In fact, for Fuzzy 2, Cv is less
than a third of pure buffer triggered for buffer size 40. This shows the advantage of using
controllers to improve time predictability of the monitoring system.

Figure 7.4 shows the box-plots of the polling periods for different controllers for buffer
size B = 20 and safety threshold S = 80. The figure shows that a purely buffer triggered

31

0

20

40

60

80

100

120

140

160

180

200

PID F1 F2 F3-0.4 F3-0.2 F4-0.4 F4-0.2 Buff_trig.

P
o
lli

n
g
 r

a
te

 i
n
 t
h
o
u
s
a
n
d
s
 m

ill
is

e
c
.

Type of Controllers

Figure 7.4: Box-plot of polling periods for different controllers of BTP.

implementation exhibits the highest variability. This is expected since this implementation
responds transparently to the non-linearity of the system. The second highest variability is
present in the PID controller, explained by the inability of the PID to adapt to a non-linear
system. Again, it can be seen that using Fuzzy 1, which has the same goal as the PID, can
drastically improve the stability of the controller. The lowest variability is - as expected -
due to Fuzzy 2, Fuzzy 3-0.2, and Fuzzy 4-0.2.

Memory Utilization

0

100

200

300

400

500

600

700

800

900

1000

0

50

100

150

200

250

300

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

N
u
m

b
e

r
o

f
C

o
n

te
x
t
S

w
it
c
h
e

s
 (

C
S

)

N
u

m
b

e
r

o
f
B

u
ff

e
r

T
ri
g

g
e
rs

 (
B

T
)

CS(Safety:80%) CS(safety:90%)

BT(Safety:80%) BT(safety:90%)

CS for Buffer Triggered Controller

Figure 7.5: Number of buffer triggers vs. number of context switches at buffer size 20 for
BTP

32

0

50

100

150

200

250

300

350

400

450

0

20

40

60

80

100

120

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

N
u
m

b
e

r
o

f
C

o
n

te
x
t
S

w
it
c
h

e
s
 (

C
S

)

N
u
m

b
e

r
o

f
B

u
ff

e
r

T
ri
g
g
e

rs
 (

B
T

)

CS(Safety:80%) CS(safety:90%)

BT(Safety:80%) BT(safety:90%)

CS for Buffer Triggered Controller

Figure 7.6: Number of buffer triggers vs. number of context switches at buffer size 40 for
BTP

0

50

100

150

200

250

300

350

400

0

10

20

30

40

50

60

70

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

N
u

m
b

e
r

C
o

n
te

x
t

S
w

it
c
h

e
s
 (

C
S

)

N
u

m
b

e
r

o
f

B
u

ff
e
r

T
ri
g
g
e

rs
 (

B
T

)

CS(Safety:80%) CS(safety:90%)

BT(Safety:80%) BT(safety:90%)

BT for Buffer Triggered Controller

Figure 7.7: Number of buffer triggers vs. number of context switches at buffer size 60 for
BTP

Figure 7.1, 7.2, and 7.3 show the mean number of empty buffer locations (error) across
all 9 replicates for buffer sizes 20, 40, and 60. The 95% confidence intervals for the error
mean are also shown. As can be seen, the PID controller consistently has the lowest error
mean, and thus provides the highest memory utilization. The error mean for Fuzzy 1 is
also low, and comparable to that of the PID when the buffer size increases (see Figures 7.2
and 7.3). Fuzzy 2 exhibits a consistently high error mean. This is due to the fact that
Fuzzy 2 is designed to be aggressive in maintaining a low polling period Cv, which comes
at the cost of error. This also applies to Fuzzy 3 aggressively targeting Cv = 0.2 (denoted
F3-0.2) and Fuzzy 4 targeting Cv = 0.2. However, Fuzzy 3-0.4 and Fuzzy 4-0.4 perform
comparably to PID and Fuzzy 1, especially with increased buffer size. This stems from the
fact that these controllers have a relaxed goal (i.e., Cv = 0.4) and are thus more capable

33

of maintaining a low error mean. The error mean of a 90% safety threshold controller is
consistently higher than that of 80% simply due to having more space to control in the
buffer.

The error mean trend is further clarified in Figure 7.5, 7.5, and 7.5. This figure shows
the number of buffer triggers occurred for every controller. It appears that the reason
PID has such a low error mean is because it consistently has the highest number of buffer
triggers. This is an indication that the PID controller is unable to adapt to the non-linear
nature of the system, and as a result is overshooting considerably more than any other
controller. This also shows that Fuzzy 1, although having a slightly higher error mean,
is more capable of adapting to the change in the system without frequently overshooting.
The other fuzzy controllers have a low number of buffer triggers due to their tendency to
remain stable.

Execution Time

We next study the effect of using different controllers on the execution time of the pro-
gram. The execution time includes the CPU time, time of kernel calls, CPU time by child
processes, and time of kernel calls made by child processes. We compare this time to the
execution time of the program without any monitoring functionality. Note that for this
comparison, there is no verification overhead included in the calculation. We assume that
the verification overhead can be offloaded to a seperate processing unit.

Since execution time results are subject to many factors affecting variability, we attempt
to estimate the worst case overhead introduced by our controllers based on the maximum
execution time of the program with our controllers relative to the minimum execution time
of the program without any monitoring. This comparison shows that in the worst case,
PID and F1 introduce a 19% increase in execution time. However, other fuzzy controllers
average around 10%.

Additional Observations

• Thread context switching. A high number of buffer triggers indicates that
the system is overshooting frequently and, thus, is more frequently filling the buffer
completely. This results in a lower number of context switching. Figure 7.5, 7.5,
and 7.5 illustrate the number of context switches and a trend that is related to
the number of buffer triggers. The figure also shows a horizontal line denoting the
number of context switches performed by a purely buffer triggered solution, which is
expected to be the lower than any controller-based approach.

34

• Time-predictability vs. memory utilization. The trend of polling period
coefficient of variation Cv versus error mean magnifies the trade-off between time
predictability and memory utilization. The results show that Fuzzy 3-0.4 and Fuzzy
4-0.4 exhibit the best balance between the two goals consistently across configura-
tions.

• Resilience to overshoots. Figure 7.5, 7.5, and 7.5 show that all fuzzy 4 controllers
present an advantage over fuzzy 3 in terms of number of buffer triggers. Since these
controllers are designed to be more aggressive when an overshoot occurs or is about
to occur, their behavior demonstrates a more conservative approach with respect to
buffer triggers.

7.2 Laser Beam Stabilization (LBS)

LBS technology is used in aircraft targeting, surveillance and laser-based communication
systems. A control system stabilizing a laser beam is required to maintain safety properties,
such as ensuring that the offset of the laser from the target should not exceed a certain
value. In this case study, we use the Quanser laser beam stabilization system with a
mounted motor that produces undesirable vibrations affecting the stability of the laser.
When the photodetector registers the laser at an offset larger than 0.01mm, an event is
queued into the buffer. Our experiments are based on 9 replicates and we target Cv = 0.6
for Fuzzy 3 and 4 controllers. This demonstrates how a more relaxed constraint affects the
response of the controller.

0

2

4

6

8

10

12

14

16

18

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

M
e
a

n
 E

m
p

ty
 L

o
c
a

ti
o

n
 i
n
 B

u
ff

e
r

C
o
e
ff
ic

ie
n
t
o
f

V
a
ri
a
ti
o
n
(C

V
)

Empty Locations(safety:90%)Empty Locations(Safety:80%)
CV of Polling Period(Safety:80%) CV of Polling Period(safety:90%)

CV for Buffer Triggered

Figure 7.8: Polling period coefficient of variation vs. error mean at buffer size 40 for LBS

35

0

500

1000

1500

2000

2500

3000

3500

0

200

400

600

800

1000

1200

1400

F2 F4-0.2 F3-0.2 F4-0.4 F3-0.4 F1 PID

N
u

m
b

e
r

o
f

C
o

n
te

x
t
S

w
it
c
h

e
s
 (

C
S

)

N
u

m
b

e
r

o
f

B
u

ff
e
r

T
ri
g
g
e

rs
 (

B
T

)

CS(Safety:80%) CS(safety:90%)

BT(Safety:80%) BT(safety:90%)

CS for Buffer Triggered Controller

Figure 7.9: Number of buffer triggers vs. number of context switches at buffer size 40 for
LBS

Time predictability

Figure 7.8 and 7.9 show the results of the experiments on buffer size of 40. The trend of
Cv for polling period versus error mean in Figure 7.8 is similar to that of the Bluetooth
experiment. Fuzzy 3-0.2 scores a much higher Cv than its goal (0.6 vs. a goal of 0.2).
However, Fuzzy 4-0.2 is closer to its goal, achieving Cv = 0.3. This is due to the periodic
nature of the oscillations introduced by the motor, which coupled with the aggressiveness
of Fuzzy 4 at high errors, enables it more quickly to reach low error and focus on controlling
the coefficient of variation. An interesting observation is that Cv of a purely buffer triggered
implementation is on average 0.59, which is less than all controllers except for Fuzzy 4-0.2
and Fuzzy 2. This is due to the periodic nature of the events, which enables a purely buffer-
triggered solution to naturally produce a lower Cv. Fuzzy 2 and fuzzy 4-0.2, however, are
more aggressive in maintaining a low Cv and, thus, they outperform pure buffer triggered.

Memory Utilization

Figure 7.8 shows that low Cv comes at the cost of the error mean. This is contrasted with
the number of buffer triggers in Figure 7.9, which shows that PID has the highest number.

36

Additional Observations

• Tuning cost. In Figure 7.9, the difference between the number of buffer triggers
for PID when safety is 80% versus 90% is large. This is due to the sensitivity of
PID controllers to tuning. Compared to Fuzzy 1 which attempts the same objective,
Fuzzy 1 appears to be more consistent. This is further supported by our results for
different buffer sizes not shown here.

• Controller instability. In Figure 7.8, the trend of Cv for 80% versus 90% safety
thresholds is reversed for PID. This is due to the instability of the PID, causing it to
revert more to buffer triggers (see Figure 7.9). This causes it to actually produce a
lower Cv at 90% because, in that case, it is closer to a pure buffer triggered controller.
This is why the resulting Cv is almost the same as that of pure buffer triggered.

37

Chapter 8

Preceding Work on Runtime
Monitoring

In this chapter, we present the work done on runtime monitoring and verification preceding
the main problem and its solution presented in this thesis. This includes work on two
problems: (1) design and analysis of marking schemes to lower overhead in sampling-based
execution monitoring and tracing, and (2) reducing monitoring overhead by leveraging the
benefits of event-triggered and time-triggered runtime verification approaches for hybrid
runtime verification. Section 8.1 and 8.2 briefly discuss work done on these two problems
respectively.

8.1 Sampling-based Execution Tracing and Monitor-

ing

Tracing and monitoring of program execution is a commonly used approach to debug real-
time systems where stepping through program execution usually violates deadline con-
strains. However, the applicability of tracing to debug real-time system is severely affected
by the nature of overhead that a tracing method imposes on the system. The nature of
overhead depends on requirement of CPU cycles and memory for tracing, and the temporal
distribution of these overheads across program execution. To make the tracing and mon-
itoring a more effective method of debugging real-time systems, Fischmeister et al. [20]
propose a sampling-based execution monitoring approach. According to this approach,

38

expressive schemes for handling markers called BITVEC and
BITVEC+ . Each of them is used in different applications.

• Theorems for failure conditions of the new schemes. Related
work [15] showed that instrumentation schemes might result in
a livelock situations where the scheme cannot make progress
or cannot solve the instrumentation problem. Analogous to this
concept, we present failure conditions for our two proposed
schemes.

• Improvement over related work. In general, BITVEC+ and
BITVEC result in better performance than related work by a
factor of two after 50 instrumentations. Also, the two schemes
reduce interference [15] and thereby increase monotonicity by
a factor of two over related approaches with similar memory
demands and a factor of 15 when considering the basic SAT
solution scheme.

The paper is structured as follows: Section 2 introduces sam-
pling based execution monitoring. We then define the system
model and certain terminology used in the paper (Section 3) which
is followed by looking into the expressiveness of instrumenta-
tion schemes (Section 4) which involves an overview of various
schemes and comparison of these schemes. We then propose our
approach BITVEC and BITVEC+ (Section 5) which consist of the
theorem for its failure condition and algorithm for its working. Fol-
lowing, we introduce the various experimental methods and metrics
(Section 6) we use in order to perform and get results. We then pro-
ceed to interpret the results (Section 7) and discussion on some
further observations (Section 8). By drawing conclusions, we close
the paper in Section 10 .

2. Sampling-based Execution Monitoring &
Problem Motivation

In execution monitoring, the developer wants to record an execu-
tion trace of the program under test for the purpose of, for instance,
debugging, profiling, testing, or runtime verification. In our setting
the system consists of two parts: the executing program, and a mon-
itor. The monitor observes the executing program and needs to log
the program’s execution path. In a sampling-based approach, the
monitor periodically examines the state of the program and stores
the state in a file. For example, the monitor will store the program
counter and time stamp each time it takes a sample.

The key advantage of sampling-based execution monitoring is
the bounded overhead of the monitoring system. The overhead
linearly decreases with the sampling period and sample size, so a
high sampling period generally leads to lower overhead than a low
sampling period assuming the same sample size.

The key problem in sampling-based execution monitoring is to
increase the sampling period. Notorious cases, such as programs
with short conditional branches, will result in a low sampling pe-
riod, if the resolution needs to be given at the granularity of basic
blocks.

Listing 1 shows a simple C program with three basic blocks
labeled A, B, and C. Figure 1(a) shows the resulting control flow
graph. If the developer wants to monitor the execution using the
sampling-based method, then the monitor will have to execute
at the speed of shortest best-case execution time of A + B or
A + C; otherwise, the developer might be unable to reconstruct
the execution flow assuming that it records the basic block id
(vertex A, B, or C) and a time stamp. Figure 1(b) shows the timing
diagram for the example. It demonstrates that, assuming all basic
blocks take an execution time of 1 time unit, after two time units,
it will be impossible to decide whether the program took the path
A → B → A or A → C → A. Thereby the sampling rate for the
program will be Δt = 2 (more details on the formal model are in
Section 3).

1 A : i f (x < 5) {
B : x ++

3 goto A ;
} e l s e {

5 C : x−=10;
goto A ;

7 }

Listing 1: Illustrative example.

To increase the sampling period and thereby reduce the over-
head, we introduce markers in the program. A marker is a normal
variable that the monitor and the program together control to per-
mit the developer to decide which paths the program executed even
with long sampling periods.

In the example, we introduce the marker m1 and instrument
the vertex C. Figure 1(c) shows the instrumented control flow
graph. Vertex C will increment the value of the marker m1. The
monitoring program will store the basic block id (vertex A, B,
or C), the current value of m1, and a time stamp. The timing
diagram in Figure 1(d) shows that introducing the marker increases
the sampling period to Δt = 4, because only after five time units
will the program have two or more paths with the same number of
increments of m1 and the same basic block ids.

A”

B

A

C

B

C

A

c)

A B A
AC

Reaching A
with m1 = 1
at Δt = 4

a)

d)

b)

inc(m1)

at Δt = 2
Reaching A

A
B A

C A’

B
C
B’
C’

A
A’
A’

Figure 1: Example of a single instrumentation to extend Δt

3. System Model & Terminology
The following describes the system model and terminology. Our
model closely follows the one presented in [15]. However, we ex-
tend the model with a generic instrumentation function to manipu-
late markers.

To analyze and reconstruct the execution path of the application,
we convert a source program to a directed graph, representing the
program’s control flow. The resulting control-flow graph is defined
as G := 〈V,E〉. Each vertex v ∈ V represents a basic block in
program. An edge e := 〈vs, vd〉 represents a transition from source
vertex vs to a destination vertex vd. The transition itself takes no
time. Each basic block has a best-case execution time (i.e., the
shortest time that it takes to execute the program block considering
all software and hardware side effects). The best case execution
time of blocks can be calculated using either static analysis tools
or standard measurement-based analysis tools [1]. We define this
execution time via c(v) and in our graphical presentation show c(v)
on the outgoing edges of v whenever necessary. If an edge lacks an
annotation, we will assume an execution time of one (i.e., if the
edge e = 〈vs, vd〉 has no annotation, then c(vs) = 1).

A path is a walk vi → vi+1 → . . . → vk in the graph G with
a start vertex vi and a end vertex vk. The execution time of a path,
denoted as cp(p), is the sum of all vertices along that path (i.e.,
cp(p) =

P
c(vi) for all vi ∈ p)

To bound overhead, our approach samples the executing pro-
gram on a periodic basis. We define a sample as a tuple s :=

102

Figure 8.1: Example of a single instrumentation to extend ∆t [48].

a monitor, which is a part of the system along with the executing program, takes peri-
odic samples of the program state and then uses these samples to correctly construct the
execution path taken by the program. Periodic intervention of monitor ensures periodic
monitoring overhead. However, in absence of any instrumentation, the program monitor
has to intervene frequently to ensure correct reconstruction of execution path of the pro-
gram. This will result into a high overhead. Hence the key problem in sampling-based
execution monitoring is to increase the sampling period of the monitor. To illustrate it
further, Figure 8.1(a) shows control flow graph of a simple program. The node A,B and C
represent three basic blocks of the program with best-case execution time of one unit each
(the developer has to consider best-case execution time to ensure the correctness of the
monitor). Figure 8.1(b) shows that the maximum sampling period (∆)t for this program
is two units. This is because, after two time units, both execution paths of the program
will be in identical states, and the monitor can not identify the path taken by the program.
Figure 8.1(c) shows the same program instrumented with an increment marker m1, which
increases every time program execution goes from node C to node A. Figure 8.1(d) explains
that the monitor can uniquely identify the execution path of the program by looking at the
value of marker m1 at t = 4. This increases the sampling period by 2 units. Fischmeister et
al. [20] show that sampling period can be increased drastically by inserting markers in the
program and including them in the sample for execution path identification. Effectiveness
of an instrumentation depends on: (a) placement of makers, and (b) how the marker is
manipulated. To this end, in [48], we design two new marking schemes namely assignment
and bit vector schemes. We compare the expressiveness of these schemes among themselves
as well as with other existing schemes.

39

8.1.1 Overview of Different Marking Schemes

1. Single Increment Scheme. The marker function, I, for single increment scheme is
defined as I(m) = m+ 1 for marker m (proposed in [20]).

2. Multiple Increment Scheme. Same as single increment scheme except that marker
can be increased multiple times in different nodes.

3. Assignment Scheme. In this scheme marker is a variable and can be assigned any
value; i.e., I(m) = k where is k is an arbitrary constant that might change across
nodes.

4. Bit Vector Scheme. In this scheme marker a bit vector, whose bit fields are initialized
to zero. Marker function can set and clear bit at any specific location in the bit field.

8.1.2 Expressiveness Comparison Results

In [48], with the help of concrete examples, we compare the expressiveness of these mark-
ing schemes and show their strength and weakness. Naturally, single increment is less
expressive as compared to multiple increment scheme because the later can always emu-
late the former, but not vice versa. Similarly, assignment is less expressive as compared
to bit vector. The strength of increment-based marking schemes is that these can keep
the history for long time through increment of marker (depending upon the size of counter
variable). Whereas, the other two scheme, assignment and bit vector, can not keep the
history because every assignment erases erases previous changes. On the other hand, in-
crement based markers are ineffective when the two execution paths are permutation of
same nodes. In such a case, result of increment schemes will be same at the end of both
paths. Assignment and bit vector based schemes can solve this problem by assigning dif-
ferent values or setting different bits on the two paths. In [48], with the help of concrete
examples, it is argued that bit vector is more powerful than assignment scheme.

After understanding the strengths and weaknesses of these schemes, we design an auto-
instrumentation algorithm and establish its termination conditions. Another hybrid scheme
was designed by combining bit vector scheme and increment scheme. Experimentation
results show that bit vector can almost double the sampling period while keeping number
of instrumentation at the same level.

40

8.2 Hybrid Runtime Verification

Event-triggered (ET) and time-triggered (TT) are two existing approaches commonly used
to invoke monitor in a runtime verification system. In event-triggered , program immedi-
ately invokes the monitor for verification every time state of the program changes (or a
critical event happens), whereas in time-triggered monitor periodically preempts the pro-
gram and verifies the correctness properties. The period, known as sampling period (SP) is
set in such a way that the monitor does not miss any critical event. Work done by Borzoo et
al. [10] shows that time-triggered monitoring can potentially reduce the runtime overhead if
the program state changes frequently and monitor samples the program at a low frequency.
However, if critical events happens sparsely then time-triggered monitor takes redundant
samples (i.e., a sample taken without any change in program state since last sample) and
imposes higher monitoring overhead as compared to event-triggered monitoring. With this
motivation, in [49], we propose a control flow graph (CFG) based static analysis technique,
called hybrid runtime verification (HyRV). This approach exploits benefits of both event-
triggered runtime verification (ETRV) and time-triggered runtime verification (TTRV) to
reduce the runtime overhead. The switching between ET and TT happens with the help
of switches placed at appropriate locations in the program. However, switching itself im-
poses some amount of overhead which needs to be considered while formulating a solution.
To simplify this problem we divide runtime monitoring overheads into the following five
elementary costs:

• cET : cost of invoking monitor to check a single critical event in ET mode

• chist: cost of saving a critical event into the history buffer in TT mode

• cTT : cost of processing the history buffer at a sample in TT mode (sampling cost)

• cE→T : cost of a switch from ET mode to TT mode

• cT→E: cost of a switch from TT mode to ET mode

Formally, given the above five costs for a monitoring environment and a program to mon-
itor, we assign each basic block of CFG of given program to either ET or TT such that
the overall cost of monitoring (i.e., either cET or chist for all critical events, cTT for all
samples, and costs of switching between the two modes) is minimum. We believe that
finding an optimal solution to this problem is intractable. Hence, we formulate an integer
linear program (ILP) heuristic to solve this problem. Our optimization problem (or ILP)
aims to minimize the total monitoring cost of the program with three constraints: (1) every

41

critical event is monitored either by ET or TT, (2) there is an appropriate switch between
two consecutive critical events which are monitored with different monitoring methods,
and (3) depending upon longest sampling period [10] and use of TT mode, correct number
of samples are taken.

SNU Real-time benchmark suite [1] is used to empirically test the validity of HyRV
idea. To this end, we build a toolchain to automate the whole process. The tool chain
uses static analysis tools Clang and llvm [34] for computation of program’s CFG and
execution time of each basic block of resulting CFG. CodeSurfer [24] is used to determine
the location of the critical events. Next part of the tool chain is an ILP model generator
that takes CFG along with execution time estimation and the five elementary monitoring
costs (six different configurations were used), and produces the optimization problem. We
use Yices [43] to solve the optimization problem. The solution (instrumentation scheme)
along with the original program is then passed to a script which instruments the program
and runs it on Keil µVision simulator.

Our experiments show three type of results:

1. For crc program, the ILP model suggests a hybrid monitor and this monitor signifi-
cantly outperforms an ET or TT monitor.

2. For bs, fibcall, insertsort, and matmult programs, the ILP model suggests ei-
ther an ET or TT monitor and the suggested solution outperforms other monitoring
modes.

3. For fir program, the ILP model suggests monitoring modes that either exhibits slight
improvement over other monitoring modes or slightly underperforms in practice. We
think the reason for this lies in the use of heuristic to find a solution.

These results validate our belief that hybrid runtime verification can be used to reduce
monitoring overhead.

42

Chapter 9

Conclusion

Gaining assurance about the correctness of embedded systems has always been an active
and challenging area of research in computing technology. In this work, we concentrated
on designing a scalable approach for runtime verification of reactive embedded systems
with three objectives: soundness, minimum jitter in monitor invocation frequency, and
maximum memory utilization. To this end, we leveraged the rich literature of control
theory. In particular, we designed a PID and four different fuzzy controllers, each targeting
a different set of objectives. Our experiments on two embedded systems (a laser beam
stabilizer (LBS) and a Bluetooth mobile payment (BTP) system) show that our controller-
based approach is quite effective and scalable with minimal runtime overhead. In particular,
we observed that for reactive systems, where the environment stimuli occur non-linearly,
a fuzzy controller reacts the best with respect to achieving time-predictability in monitor
invocations. Fuzzy controllers have an added advantage over PID that their design is
system-independent. For example, Fuzzy controllers designed for LBS can be used directly
for the BTP case study as well with only minor modifications. However, the PID controller
needs much more elaborate tuning to adapt it for the BTP system. Among the four fuzzy
controllers, the fuzzy controllers that attempt to maintain an upper bound on the variance
of monitor invocation frequency, in most cases, provide the best balance between time-
predictability and memory utilization. If users have no knowledge about the coefficient
of variance of monitor invocation frequency then we suggest the use of Fuzzy 2 to get an
rough estimate about the variance in the system and then define an appropriate target.
The average runtime overhead of our approach is around 10%. This makes our scheme
suited for practical applications in resource constraint embedded systems.

43

Chapter 10

FutureWork

For future work, we are planing to change our controllers to handle bimodal distribution
of critical events as well. Currently our controller designs do not factor in the bimodal
behaviour exhibited by many embedded systems. For example, a system deployed to
detect rabbit intrusion into a park will be active during during particular hours in a day
and in sleep mode for rest of time. For such system targeting variance minimization will
not produce optimal results and controller should able to detect the mode of operation
and set the goal accordingly. We are also planning to investigate employing static analysis
techniques such as symbolic execution, so our controllers are also aware of the structure of
the system under inspection. Another interesting research direction is to design controllers
for monitoring distributed embedded systems.

44

References

[1] SNU Real-Time Benchmarks. http://www.cprover.org/goto-cc/examples/snu.

html.

[2] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based
runtime verification. In Verification, Model Checking, and Abstract Interpretation,
pages 44–57. Springer, 2004.

[3] Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad, and
the ugly, but how ugly is ugly? In Proceedings of the 7th international conference on
Runtime verification, RV’07, pages 126–138, Berlin, Heidelberg, 2007. Springer-Verlag.

[4] Manuel Blum and Sampath Kannan. Designing programs that check their work. J.
ACM, 42(1):269–291, January 1995.

[5] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis to improve
the performance of runtime monitoring. In Proceedings of the 21st European confer-
ence on Object-Oriented Programming, ECOOP’07, pages 525–549, Berlin, Heidelberg,
2007. Springer-Verlag.

[6] Eric Bodden. A lightweight LTL runtime verification tool for java. In Companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, OOPSLA ’04, pages 306–307, New York, NY, USA, 2004.
ACM.

[7] Eric Bodden. Efficient hybrid typestate analysis by determining continuation-
equivalent states. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, pages 5–14, New York, NY, USA, 2010.
ACM.

[8] Eric Bodden and Laurie Hendren. The clara framework for hybrid typestate analysis.
Int. J. Softw. Tools Technol. Transf., 14(3):307–326, June 2012.

45

http://www.cprover.org/goto-cc/examples/snu.html
http://www.cprover.org/goto-cc/examples/snu.html

[9] Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Sampling-
based runtime verification. In Proceedings of the 17th international conference on
Formal Methods, FM’11, pages 88–102, Berlin, Heidelberg, 2011. Springer-Verlag.

[10] Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Time-
triggered runtime verification. Formal Methods in System Design, 43(1):29–60, 2013.

[11] Borzoo Bonakdarpour, Johnson J. Thomas, and Sebastian Fischmeister. Time-
Triggered Program Self-Monitoring. In Proceedings of the 2012 IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA ’12, pages 260–269, Washington, DC, USA, 2012. IEEE Computer Society.

[12] Allen R. Bonde, Jr. and Sumit Ghosh. A comparative study of fuzzy versus Fixed
thresholds for robust queue management in cell-switching networks. IEEE/ACM
Trans. Netw., 2(4):337–344, August 1994.

[13] Robert N. Charette. Why software fails [software failure]. IEEE Spectr., 42(9):42–49,
September 2005.

[14] Robert N. Charette. This car runs on code. IEEE Spectrum, 46(3):3, 2009.

[15] S. Colin and L. Mariani. Run-Time Verification, chapter 18. Springer-Verlag LNCS
3472, 2005.

[16] M. d’Amorim and K. Havelund. Event-based runtime verification of java programs.
SIGSOFT Softw. Eng. Notes, 30(4):1–7, May 2005.

[17] M. d’Amorim and G. Roşu. Efficient monitoring of ω-languages. In Proceedings of the
17th international conference on Computer Aided Verification, CAV’05, pages 364–
378, Berlin, Heidelberg, 2005. Springer-Verlag.

[18] D. Driankov, H. Hellendoorn, and W. Reinfrank. An introduction to fuzzy control.
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[19] Matthew B. Dwyer, Alex Kinneer, and Sebastian Elbaum. Adaptive online program
analysis. In Proceedings of the 29th international conference on Software Engineering,
ICSE ’07, pages 220–229, Washington, DC, USA, 2007. IEEE Computer Society.

[20] Sebastian Fischmeister and Yanmeng Ba. Sampling-based program execution moni-
toring. SIGPLAN Not., 45(4):133–142, April 2010.

46

[21] Peter Galan. Temperature control based on traditional PID versus fuzzy controllers.
Nortel Networks Control Software Design Documentation.

[22] A. Galati and C. Greenhalgh. Human mobility in shopping mall environments. In Pro-
ceedings of the Second International Workshop on Mobile Opportunistic Networking,
pages 1–7. ACM, 2010.

[23] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Automated Software Engineering (ASE), pages
412–416, 2001.

[24] GrammaTech Inc. CodeSurfer R©. http://www.grammatech.com/products/

codesurfer/.

[25] B. Hailpern and P. Santhanam. Software debugging, testing, and verification. IBM
Syst. J., 41(1):4–12, January 2002.

[26] K. Havelund and Gr. Rosu. Monitoring Java Programs with Java PathExplorer.
Electronic Notes in Theoretical. Computer Science, 55(2), 2001.

[27] Klaus Havelund and Allen Goldberg. Verify your Runs. In Bertrand Meyer and Jim
Woodcock, editors, Verified Software: Theories, Tools, Experiments, volume 4171 of
Lecture Notes in Computer Science, pages 374–383. Springer Berlin Heidelberg, 2008.

[28] Xiaowan Huang, Justin Seyster, Sean Callanan, Ketan Dixit, Radu Grosu, ScottA.
Smolka, ScottD. Stoller, and Erez Zadok. Software monitoring with controllable over-
head. International Journal on Software Tools for Technology Transfer, 14(3):327–347,
2012.

[29] N. Huber, M. von Quastl, M. Hauck, and S. Kounev. Evaluating and modeling virtu-
alization performance overhead for cloud environments. In International Conference
on Cloud Computing and Service Science (CLOSER 2011), Noordwijkerhout, The
Netherlands, 2011.

[30] Farnam Jahanian, Ragunathan Rajkumar, and Sitaram C.V. Raju. Runtime mon-
itoring of timing constraints in distributed real-time systems. Real-Time Systems,
7(3):247–273, 1994.

[31] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit
and Satoshi Matsuoka, editors, ECOOP’97 Object-Oriented Programming, volume

47

http://www.grammatech.com/products/codesurfer/
http://www.grammatech.com/products/codesurfer/

1241 of Lecture Notes in Computer Science, pages 220–242. Springer Berlin Heidelberg,
1997.

[32] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A Run-
Time Assurance Approach for Java Programs. Formal Methods in System Design
(FMSD), 24(2):129–155, 2004.

[33] J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[34] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis
and transformation. In International Symposium on Code Generation and Optimiza-
tion: Feedback Directed and Runtime Optimization, page 75, 2004.

[35] Patrick Meredith and Grigore Roşu. Runtime verification with the RV system. In
Proceedings of the First international conference on Runtime verification, RV’10, pages
136–152, Berlin, Heidelberg, 2010. Springer-Verlag.

[36] S. Navabpour, B. Bonakdarpour, and S. Fischmeister. Path-aware time-triggered
runtime verification. In Runtime Verification (RV), pages 199–213, 2012.

[37] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard real-
time runtime monitor. In Proceedings of the First international conference on Runtime
verification, RV’10, pages 345–359, Berlin, Heidelberg, 2010. Springer-Verlag.

[38] A. Pnueli and A. Zaks. PSL Model Checking and Run-Time Verification via Testers.
In Proceedings of the 14th international conference on Formal Methods, FM’06, pages
573–586, Berlin, Heidelberg, 2006. Springer-Verlag.

[39] D. E. Rivera, M. Morari, and S. Skogestad. Internal model control: PID controller de-
sign. Industrial & Engineering Chemistry Process Design and Development, 25(1):252–
265, 1986.

[40] Grigore Roşu, Feng Chen, and Thomas Ball. Runtime verification. chapter Synthesiz-
ing Monitors for Safety Properties: This Time with Calls and Returns, pages 51–68.
Springer-Verlag, Berlin, Heidelberg, 2008.

[41] T. J. Ross. Fuzzy logic with engineering applications. Wiley, 2009.

[42] O. Sokolsky, S. Kannan, M. Kim, I. Lee, and M. Viswanathan. Steering of Real-Time
Systems Based on Monitoring and Checking. In Proceedings of the Fifth International

48

Workshop on Object-Oriented Real-Time Dependable Systems, WORDS ’99, pages
11–, Washington, DC, USA, 1999. IEEE Computer Society.

[43] SRI. Yices: An SMT Solver (1.0.34). http://yices.csl.sri.com/index.shtml.

[44] Scott D. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund, Scott A.
Smolka, and Erez Zadok. Runtime verification with state estimation. In Proceedings
of the Second international conference on Runtime verification, RV’11, pages 193–207,
Berlin, Heidelberg, 2012. Springer-Verlag.

[45] Volker Stolz and Eric Bodden. Temporal Assertions using AspectJ. Electron. Notes
Theor. Comput. Sci., 144(4):109–124, May 2006.

[46] Gregory Tassey. The economic impacts of inadequate infrastructure for software test-
ing. National Institute of Standards and Technology, RTI Project, 7007, 2002.

[47] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition of
product lines. In Proceedings of the 6th international conference on Generative pro-
gramming and component engineering, GPCE ’07, pages 95–104, New York, NY, USA,
2007. ACM.

[48] Johnson J. Thomas, Sebastian Fischmeister, and Deepak Kumar. Lowering overhead
in sampling-based execution monitoring and tracing. SIGPLAN Not., 46(5):101–110,
April 2011.

[49] Wallace Wu, D. Kumar, B. Bonakdarpour, and S. Fischmeister. Reducing monitor-
ing overhead by integrating event- and time-triggered techniques. In International
Conference on Runtime Verification (RV), 2013. To appear.

[50] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. trans.
ASME, 64(11), 1942.

49

http://yices.csl.sri.com/index.shtml

	List of Tables
	List of Figures
	Introduction
	Thesis Organization

	Literature Review
	Overhead Reduction
	Predictable Runtime Verification
	Fuzzy Logic in Telecommunication Network

	Basic Control Theory
	PID Controller
	Fuzzy Controller

	Problem Description
	Monitor Controller Design
	PID Controller
	Fuzzy Controller 1
	Fuzzy Controller 2
	Fuzzy Controller 3
	Fuzzy Controller 4

	Experiment Design
	Case Studies
	Bluetooth Mobile Payment (BTP)
	Laser Beam Stabilization (LBS)

	Preceding Work on Runtime Monitoring
	Sampling-based Execution Tracing and Monitoring
	Overview of Different Marking Schemes
	Expressiveness Comparison Results

	Hybrid Runtime Verification

	Conclusion
	FutureWork
	References

