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Abstract 

The recent breakthroughs in genomics and molecular diagnostics will not be reflected in health-care 

systems unless the biogenetic or other nucleic acid-based tests are transferred from the laboratory to 

clinical market. Developments in microfabrication techniques brought lab-on-a-chip (LOC) into being 

the best candidate for conducting sample preparation for such clinical devices, or point-of-care testing 

set-ups. Sample preparation procedure consists of several stages including cell transportation, 

separation, cell lysis and nucleic acid purification and detection. LOC, as a subset of 

Microelectromechanical systems (MEMS), refers to a tiny, compact, portable, automated and easy-to-

use microchip capable of performing the sample-preparation stages together. Complexity in micro-

fabrications and inconsistency of the stages oppose integration of them into one chip. 

Among the variety of mechanisms utilized in LOC for cell lysis, electrical methods have the highest 

potential to be integrated with other microchip-based mechanisms. There are, however, major 

limitations in electrical cell lysis methods: the difficulty and high-cost fabrication of microfluidic 

chips and the high voltage requirements for cell lysis. Addressing these limitations, the focus of this 

thesis is on realization of cell lysis microchips suitable for LOC applications.  

We have developed a new methodology of fabricating microfluidic chips with electrical functionality. 

Traditional lithography of microchannel with electrode, needed for making electro-microfluidic chips, 

is considerably complicated. We have combined several easy-to-implement techniques to realize 

electro-microchannel with laser-ablated polyimide. The current techniques for etching polyimide are 

by excimer lasers in bulky set-ups and with involvement of toxic gas. We present a method of 

ablating microfluidic channels in polyimide using a 30W CO2 laser. Although this technique has 

poorer resolution, this approach is more cost effective, safer and easier to handle. We have verified 

the performance of the fabricated electro-microfluidic chips on electroporation of mammalian cells.  
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Electrical cell lysis mechanisms need an operational voltage that is relatively high compared to other 

cell manipulation techniques, especially for lysing bacteria. Microelectro-devices have dealt with this 

limitation mostly by reducing the inter-distance of electrodes. The technique has been realized in tiny 

flow-through microchips with built-in electrodes in a distance of a few micrometers which is in the 

scale of cell size. In addition to the low throughput of such devices, high probability of blocking cells 

in such tiny channels is a serious challenge. We have developed a cell lysis device featured with 

aligned carbon nanotube (CNT) to reduce the high voltage requirement and to improve the 

throughput. The vertically aligned CNT on an electrode inside a MEMS device provides highly 

strengthened electric field near the tip. The concept of strengthened electric field by means of CNT 

has been applied in field electron emission but not in cell lysis. The results show that the 

incorporation of CNT in lysing bacteria reduces the required operational voltage and improves 

throughput. This achievement is a significant progress toward integration of cell lysis in a low-

voltage, high-throughput LOC.  

 We further developed the proposed fabrication methodology of micro-electro-fluidic chips, described 

earlier, to perform electroporation of single mammalian cell. We have advanced the method of 

embedding CNT in microchannel so that on-chip fluorescent microscopy is also feasible. The results 

verify the enhancement of electroporation by incorporating CNT into electrical cell lysis. In addition, 

a novel methodology of making CNT-embedded microfluidic devices has been presented. The 

embedding methodology is an opening toward fabrication of a CNT-featured LOC for other 

applications. 
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Chapter 1 

Introduction  

1.1 Overview 

Researches in the field of molecular biology and genetics have increased dramatically in recent 

decade. Much of the efforts in those areas are dedicated to developing efficient ways of preparing 

biological samples for a particular analysis. In general, sample preparation consists of transportation, 

separation, cell lysis, purification and detection processes employed for targeted sample analysis.   

Cell lysis is one of the initial steps of sample preparation procedure. Cell lysis refers to the process 

through which cell membrane is disrupted and the intracellular components including DNA, RNA, 

proteins and organelles are released.  

Prior to performing cell lysis, sample cells must undergo different treatments to be prepared for lysis 

in a desired location. When cell lysis procedure is complete, the released components will be directed 

to the next stages where the specific components of interest will be detected among and separated 

from other useless debris. Depending on the sensitivity of the detection system, some lysis products 

may need to be amplified prior to detection. In conventional methods, each step needs its separate 

device which is usually bulky and its operation is usually labor-intensive. Consequently, the whole 

process is accomplished only in specific equipped laboratories with trained technicians and through 

time-consuming processes. 

Development of Microelectromechanical Systems (MEMS) has opened a new window to sample 

analysis experiments where those bulky laboratory instruments can be scaled down and integrated 

into one chip. This subset of MEMS, which is referred to as lab-on-a-chip (LOC) technology, makes 

it possible to compact point-of-care testing in a portable and automatic device. Such portable, 
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compact, automated biosample analysis devices are, in fact, miniaturized clinical laboratories that 

have enormous advantages over traditional methods including: 

 Potential to integrate different functional devices into one chip; 

 Reduction in required samples as well as reagents/waste; 

 Faster processing time since several processes can be run at the same time; 

 Automation and portability; 

 Capability of microfluidic cell manipulation process; 

 Possibility of analyzing a single cell. 

The feasibility of sample preparation procedures in LOC is a challenge toward developments in on-

chip molecular diagnostics. As an example, centrifugation is repeatedly used in biological treatments 

but it is not normally amenable to LOC. Therefore, the traditional approaches have to be replaced by 

new techniques whose establishment leads the development.  

The main goal of the sample preparation project in our group in Micro/nano Devices Lab at 

University of Waterloo is to develop LOC systems capable of performing cell treatments required for 

preparing molecular components. The research project is split into sub-projects including particle/cell 

movement/separation, cell lysis, Polymerase Chain Reaction (PCR) and integration of these processes 

into one chip. The focus of this thesis is on developments of LOC devices particularly for cell lysis. 

Cell lysis, in our scheme, is the mechanism to lyse the cells that are hypothetically separated from 

debris. The products of cell lysis are the intercellular components for subsequent processes, such as 

PCR. We have considered the fact that the developing cell lysis devices intend to be integrated with 

other on-chip functions as straightforwardly as possible. In addition, novelty, simplicity and 

affordability of the proposed fabrication methodologies are taken into our considerations.  
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1.2 Research objectives and outline of the thesis 

The goal of this research is to develop electrical cell lysis devices suited for LOC technology. Two 

overall objectives of the thesis are as follow:  

i) Developing a fast and straightforward fabrication methodology for making electro-

microdevices for cell lysis.  

ii) Overcoming the high voltage requirements as the main barrier toward integration of 

electrical cell lysis with other on-chip systems, by incorporating carbon nanotube into 

electrical cell lysis.  

 The thesis content is outlined as follows: 

Chapter 1 introduces cell lysis through the MEMS point of view.  

Chapter 2 covers a comprehensive review over the wide range of cell lysis methods classified into 

four groups: mechanical, physical, chemical, electrical as well as combined methods. The review 

explains common advantages and disadvantages of each group. Treatments prior and after cell lysis as 

well as various cutting edge techniques employed in “single cell lysis” are also reviewed. The chapter 

envisions the future direction of on-chip cell lysis developments. 

Chapter 3 presents a novel methodology for fabricating electrical microfluidic chips for single cell 

electroporation. We introduce a new methodology of fabricating microchannel with electrical 

functionalities achieved through fast and cheap processes. The performance of the chips has been 

tested on electroporation of single mammalian cells. 

Chapter 4 reports on the effects of carbon nanotube on electrical lysis of bacteria. Voltage 

reduction and throughput enhancement are presented as the main benefits of incorporating CNT into 

electrical cell lysis. 
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Chapter 5 presents application of CNT in single cell electroporation. A new fabrication 

methodology for making CNT-embedded microchannel is introduced and the enhancement of 

mammalian cell electroporation by the use of CNT is explored. 

Chapter 6 concludes the results of the research and summarizes the presented contributions. 

Directions for future works are presented in this chapter.  
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Chapter 2 

Literature Review 

2.1 Introduction 

MEMS-based sample preparation techniques for molecular diagnostic have been reviewed widely  
1–5

. 

A comprehensive review on recent achievements in lab-on-a-chip (LOC) technology under the wide 

title of micro total analysis systems is also available in literature 
6
.  

We narrow the focus of this chapter to concentrate on only those techniques which specifically 

involve cell lysis. MEMS contributions to cell lysis methods are our interest in this chapter. We 

classify cell lysis methods into physical, mechanical, chemical, electrical methods as well as any 

combination of these methods. Traditional techniques of cell lysis associated with each class are first 

introduced along with their limitations and drawbacks. Then the techniques that are appropriate to on-

chip integration are discussed in details and advantages and disadvantages of each classification are 

evaluated individually and in comparison with the other classes. A brief introduction of single-cell 

lysis and nucleic acid purification techniques are presented. Finally, future direction of this field of 

research is discussed.  

2.2 Cell lysis techniques 

Cell lysis involves mechanisms in which the cell membrane is broken apart and intracellular 

components are released into surrounding medium. The intracellular components such as DNA, RNA 

and proteins are the main products of cell lysis.  
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2.2.1 Pre-lysis sample treatment 

Depending on the sample complexity and the lysate of interest, some treatments need to be 

accomplished prior to cell lysis. Pre-lysis treatments are required to isolate the target cells out of the 

complex matrix and remove those particles that interfere with the cell lysis or downstream processes. 

The treatments consist of several processes such as sample filtration, centrifugation, pre-

concentration, dilution, target enrichment, etc. that are yet mostly performed off-chip due to their 

incompatibility with analytical instruments 
7
. Raw samples such as whole blood are usually complex 

and separation of target cells out of them on chip is challenging. Conventional sample separation 

techniques cannot be readily scaled down to microchip devices due to the extent of hands-on tasks 

that they demand. For example, there has not yet been devised a chip to mimic the functionality of 

centrifugation, a method widely used for cell separation. However, some novel on-chip mechanisms 

for pre-lysis treatment have been developed. 

Microfabricated filters are presented for on-chip sample filtration 
8
. The micropillar gaps inside the 

flow-through system restrict cell movement, separating and trapping the cells based on their size. 

Dielectrophoresis (DEP) has been widely employed for cell separation based on the physical principle 

that dielectric particles experience force while exposed to a non-uniform electric field 
9–12

. Dielectric 

particles can also be manipulated with optical tweezers instrument while focused laser beam provides 

with either attractive or repulsive force exerted to dielectric particles 
13

. Sample derivatization refers 

to the chemical transformation in cells prior to analysis that make them detectable or suitable for 

analysis system. It is mostly achieved with fluorescent labels that tag to the cells and make them 

colored compounds and suitable for optical detection. Depending on the sensitivity of the detector 

used in the system, sometimes sample pre-concentration is required prior to detection step in order to 
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increase the number of sample molecules to be more detectable. A review of on-chip sample 

treatments prior to cell lysis has been presented by Lichtenberg et al. 
14

.  

Upon separation of target cells through sample pre-lysis treatments, a variety of methods can be used 

to break apart the membrane of cells. In terms of the principles employed for cell disruption, the 

methods developed for cell lysis are classified in four groups: mechanical, physical, chemical and 

electrical. It should be noted that no well-defined boundaries can be considered between the above-

mentioned groups. In many approaches, a combination of two or more methods is used. In what 

follows, we describe each of these methods and discuss their characteristics. 

2.2.2 Mechanical methods 

Mechanical method refers to cell disruption technique which is based on exerting shear stress or 

pressure difference across the membrane. The force is exerted on the cell as a consequence of 

physical contact between the cells and agitating agents such as beads.  

 

Conventional methods- There is a wide range of mechanisms in macro scale to apply shear stress or 

mechanical force on cell membrane. Mechanical cell lysis has been traditionally carried out by high 

pressure homogenizer 
15,16

 or high speed bead mills 
17,18

.  

The high pressure homogenizer consists of a high-pressure pump and a lysis chamber. The cell 

suspension with quantities as large as 500 ml up to even 5 liters is forced to pass through a channel at 

a relatively low speed but high pressure. The stream then passes through a tiny gap whose size is 

adjustable by a discharge valve.  Thorough this gap, the pressure drops suddenly and the speed 

increases in return. The homogenized suspension of lysed cells is collected in the lysis chamber 

afterwards. Although the sudden pressure drop across the discharge valve is reported to be the main 
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factor of disrupting cells by high pressure homogenizer, the multiplicity of forces including shear, 

cavitation and impingement is involved in such conventional mechanical cell lysis 
19,20

.  

Bead mills systems consist of a double walled grinding chamber and a rotating shaft located centrally 

inside the chamber. Some grinding elements are patterned on the outer side of the shaft making a 

helical array. The cell suspension mixed with tiny beads is loaded into the chamber. The high speed 

rotation of the shaft exerts shear force between liquid layers and causes collisions between cells and 

agitating beads. The shear forces and agitation lead to mechanical cell lysis.  

 

On-chip methods- Depending on the mechanism by which the shear forces are produced, mechanical 

cell lysis can or cannot be implemented on chip. For example, techniques such as milling 
21

, 

inevitably need moving parts that are challenging to be miniaturized. Nevertheless, microfluidic 

chambers that function based on mechanical cell lysis have been made. An example is cell lysis via 

spherical beads in a microfluidic chamber in a compact disk (CD) 
22

. In this pure mechanical cell lysis 

method, an annular microfluidic channel was patterned on a Polydimethylsiloxane (PDMS) sheet 

using standard soft lithography techniques. The sheet was sandwiched between two polycarbonate 

disks building the CD. This is illustrated in Figure ‎2-1a.  The beads are uniformly coated on the outer 

wall of the chamber. While the CD is spinning, the cells are lysed due to collision and impulse 

between cells and beads. The large cells such as mammalian cells (about 10 µm in diameter), small 

sample cells such as bacterial cells and hard-to-lyse cells such as yeast cells have been successfully 

lysed by the device. However, the large set-up requirement to provide rotational power to the CD 

(Figure ‎2-1b) is not suitable for LOC systems that are desired to be compact and portable.    
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To avoid moving part supplies, mechanical methods in LOC are commonly limited to those 

integratable onto nano-sharp elements or microfluidic gaps through which sample cells are forced to 

pass by pump. As an example, Carlo et al. 
23

 efficiently lysed HL-60 and red blood cells through a 

microfluidic channel with nano-scale knives. The lysing gate of the device is schematically shown in 

Figure ‎2-2a-b. Figure ‎2-2c illustrates sharp nano-knives that have been patterned on the lysing 

surfaces. These nano-knives enhance cell lysis by exerting shear stress on passing cells. 

 

(a) 
(b) 

Figure ‎2-1 a) Mechanical cell lysis device through microfluidic channel designed in a CD. The 

CD spins forward and backward alternatively and the aqueous medium containing sample 

cells and glass beads were injected into the lysis chamber meanwhile the CD is at rest. The 

beads are uniformly coated on the outer wall of the chamber. The inner wall is designed wavy 

to get cells to stay longer there, interacting with bead particles more efficiently. b) Set-up for 

mechanical cell lysis via CD 
22
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Unlike chemical methods which are presented in section ‎2.2.4, usually no enzyme or chemicals are 

added in mechanical methods. Consequently, the mechanical methods do not chemically affect 

downstream processes. However, since the whole cells are broken in mechanical methods, it disfavors 

detection of targets including DNA or RNA which are suspended in a complex pool of debris. To 

achieve a high throughput cell lysis, cells are usually passed through several gaps. This requirement 

leads to increase in size of equipment which opposes the scope of LOC technology. For systems with 

flow-through gaps, adequate flow rates as well as very small channel structures are required to exert 

high enough shear stress on the membranes. So, with such scaled-down channels, clogging is a 

serious problem which necessitates considerable caution. 

 

 

δ<25‎nm 

2δ 

Figure ‎2-2- a) Mechanical cell lysis device. Cells are forced by syringe pump to pass through 

tiny gaps b) Dimensions of the semicircular microfilter used for mechanical cell lysis. Lysing 

gate surfaces fabricated by modified deep reaction etching method are vertically in 3m 

distance and the gap is 3 mm in width c) Nano-knives patterned on the lysing surfaces 
23
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2.2.3 Physical Methods 

Physical cell lysis methods refer to the techniques that influence physical properties of cells.  

2.2.3.1 Thermal Lysis: 

Thermal lysis methods make use of temperature effects on stability of cell membrane or 

thermostability, i.e. high temperature or cyclic heating is utilized 
24

.  

 

Conventional methods- Thermal cell lysis has been traditionally achieved by immersing the sample 

tubes into boiling water or incubator for 10 to 30 minutes 
25

. The typical temperature used for cell 

lysis in this technique is 50-100 C. The period of temperature time should be carefully controlled so 

that only the membrane of cells is lysed and the nucleic acids remain intact. Thermal lysis techniques 

are naturally simple and cost-effective. However, this method is not reliable for extraction of 

intracellular proteins since proteins cannot stand high temperatures and they might be denatured 

before cell membrane is disrupted. Therefore, thermal lysis is limited to the applications whose 

products can safely stand such temperatures.  

Boiling lysis is very common in releasing plasmid DNA from bacteria. The conventional protocol of 

boiling lysis which is used to provide bacterial plasmids is presented by Holmes et al. 
26

. In this 

technique, bacteria were boiled for less than one minute after some agents were added to them. These 

agents were responsible for weakening bacterial cell wall prior to boiling process, facilitating the 

process of cell disruption at a lower temperature. The protocol has been modified several times to 

improve cell lysis efficiency and the yield of plasmid DNA 
27–30

. The protocols require centrifugation 

process for debris removal after cell lysis. This requirement imposes a barrier on integration of the 

process into miniaturized on-chip devices.  
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Thermal cell lysis is commonly used in polymerase chain reaction (PCR) process through which the 

copies of released DNA strands are amplified after cell lysis. This is usually performed by cyclic 

heating and cooling processes. In PCR machines, the thermal protocol of lysis is programmed prior to 

PCR protocol. Belgrader et al. 
31

 used Advanced Nucleic Acid Analyzer (ANAA) to lyse the cells 

prior to PCR process. Using ANAA, they preheated sample cells at 96 C for 15 minutes at real-time 

PCR. PCR-based thermal cell lysis is also realized in miniaturized devices as follows.  

 

 On-chip methods- In on-chip integration of cell lysis with PCR, the microfluidic chip is entirely put 

into cyclic heater 
32

. The cell lysis heating time is added to the basic protocol of PCR in order to 

release DNA. The products is collected by a sieving medium and electrophoretically separated in 

terms of their size. One of the other successful integration of cell lysis and PCR is the fully integrated 

microchip developed by Liu et al. 
33

. As illustrated in Figure ‎2-3, the LOC device consists of mixers, 

valves, pumps, channels, chambers, heaters, and sensors that are all integrated in one microchip. The 

target cells are pre-concentrated in the PCR chamber. The cells are thermally lysed prior to PCR 

cyclic heating through which the DNA sequences are amplified. Heat treatment here has been 

achieved by a resistive heating element attached to the PCR chamber. Piezoelectric transducer (PZT) 

has been used to mix the liquid solutions through the cavitation microstreaming phenomenon 
34

.  
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Figure ‎2-3 On-chip sample preparation device integrated cell lysis with PCR. A) Schematic 

view of microfluidic biochip consisting of mixers, valves, pumps, channels, chambers, heaters, 

and DNA microarray sensors.  B) A snapshot of the biochip device 
33

. 

 

2.2.3.2 Osmotic Lysis 

Osmotic Lysis (Cytolysis and Plasmolysis) is categorized under physical method. In this technique, 

the osmotic pressure exerted on the membrane is imbalanced by sudden change in concentration of 

the surrounding medium. For cytolysis or plasmolysis, the target cell is enclosed by hypotonic or 

hypertonic medium, respectively. In cytolysis, excess water diffuses through membrane causing 

increase in osmotic pressure and, consequently, increase in volume of cell. If the membrane cannot 
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stand the exceeded capacity, it is disintegrated. In contrary, for plasmolysis, the osmotic pressure is 

decreased when cell loses too much water.  

 

Conventional methods- Osmotic lysis has been traditionally performed by introducing some 

membrane pore formers such as staphylococcal -toxin and cytolytic T-cell perforin to cell medium 

35
. This method works based on the fact that cytolytic perforin, the pore-forming protein of cytotoxic 

T cell (CTL), creates nano-scale channels across the membrane 
36

.  

 

On-chip methods- Literature contains some instances of fabricated cell lysis chips that operate using 

osmotic method. Commonly, those chips employ osmotic principles in conjunction with other 

methods.   

Augmentation of osmotic lysis, as a physical method, along with mechanical lysis has been reported 

37
. In this approach, the cells are principally lysed by shear stress when passing through tiny gaps. 

Additionally, hypotonic medium surrounding the cell facilitates the lysis by causing the cells to swell, 

resulting in higher shear stress through the passage.  

Feril et al. 
38

, too, have taken advantage of cell enlargement in hypotonic medium. They have 

integrated this idea into an ultrasound-based cell lysis. This combination has two advantages: first, the 

swollen cells are bigger targets to be struck by ultrasound waves. Second, the tension between 

components of the membrane of the low-density, high-volume cell is dramatically higher, making the 

cells more susceptible to ultrasonic damage.  

Prinz et al. 
39

 have applied osmotic lysis to lyse bacterial cells in a microchannel. The principle of the 

phenomenon is illustrated in Figure ‎2-4. The cells are directed to the T-junction lysis zone where the 

introduction of deionized water to the pre-weakened E. coli cells makes the cells to absorb water, 

swell and rupture. The weakening pretreatment is done by breaking down the peptidoglycan layer 
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between the inner and the outer membranes of the bacteria that otherwise would resist against the 

osmotic shock.   

  

 

 

 

 

2.2.3.3 Ultrasonic cell lysis 

Ultrasonic cell lysis, which can also be considered as a thermal method, utilizes ultrasound waves or 

sonication as the source of required energy. In this method, sample cells enclosed by liquid medium 

are exposed to high-intensity focused energy of ultrasound. The effects of ultrasound waves on 

viability of living organisms have been examined extensively for many years 
40,41

, however the 

underlying principle of the reaction is not still fully understood. What plays the main role in cell 

disruption seems to be the generation of microbubbles which are powered by concentrated pulsed 

ultrasonic waves. The rapid compression and expansion of the microbubbles exerts such great 

shockwave on the membrane that breaks membrane integrity. 

 

(a) (b) 

Figure ‎2-4 a) Illustration of an osmotic lysis microchannel, b) Images of E. coli cells while 

passing the lysis T-junction lysis zone 
39

.   
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Conventional methods-In traditional ultrasound lysis system, the ultrasound power is provided by a 

resonant probe which is immersed into suspension of sample cells. The suspension is kept at a 

cylindrical vessel which is in turn placed in a mixture of ice and water to cool down the suspension 

during the process. Acoustic power applied to the medium will results in growth and collapse of 

micro bubbles during the rarefaction phase of the sound waves causing subsequent pressure on cells 

that leads to cell rupture 
42

.  

Cells are required to be located as an optimum distance from the probe in order to be lysed. This 

criterion adds a restriction to the volume of the suspension containing sample cells in conventional 

ultrasonic method due to the difficulty in transferring sufficient power to bulky volume of cells. This 

restriction does not apply to ultrasonic cell lysis in microfluidic chip. 

 

On-chip methods- Ultrasonic utilization has been broadly implemented into microfluidic cell lysis 

chips 
43–46

. In these applications, the sonication is produced either by an external transducer or by a 

built-in piezoelectric film. In both methods, the acoustic energy must be highly concentrated in a 

small zone 
47,48

. The external transducer delivers sonic pressure waves to the flexible surface of the 

flow-through channel, causing creation of micro-bubbles that leads to cell lysis. Piezoelectric 

transducers made of zinc oxide are deposited on the floor of microchannel. The transducers are driven 

by a sinusoidal source in the frequency as high as the resonance of the transducers so that the acoustic 

power exerting to the cell medium is amplified. Consequently, cavitation along with heat generation 

inside the microchannel leads to cell lysis 
47

. 

The fabrication process for the built-in piezoelectric-based lysis is more complex than using external 

transducers. Through external sonicators, however, the horn tip of transducer has to be in physical 

contact with lysis chamber wall in order to induce pressure waves. The complete transmission of 

energy through interface between transducer probe and liquid medium is a challenge in this approach.  
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The outstanding feature of ultrasonic lysis is the capability of concentrating a high density of energy 

into a small lysis chamber inside the microchannel. Commercial transducers, as depicted in Figure 

‎2-5, can be employed out of the device to focus ultrasonic irradiation into a very small scale of the 

lysis area 
48

.    

 

 

Figure ‎2-5a) Control system for automated cell lysis device b) schematic view of the flow-

through ultrasonic lysing device c) orientation of transducers employed for ultrasonic lysis. A 

flow rate of 1l/s is acquired by a syringe pump and the sample cells and other chemicals are 

added through selection valves. The flow-through tube is faced in parallel to two commercial 

transducers that exert the power of 10 W/cm2 to the tube at the frequency of 1.4 MHz 
48

. 

 

The high temperature gradient in sonication systems should be taken into caution. However, the high 

temperature is not an issue for entire device since high energy concentration is localized only in a 

small region of lysis. This is favorable for the devices with some temperature-sensitive parts that 



 

 18 

cannot endure high temperature of thermal lysis. Ultrasonic cell lysis can be implemented in such 

devices as an alternative for thermal lysis. Unlike chemical methods which are discussed in the 

following section, continuous cell lysis without a need to add any chemical can be achieved by 

ultrasonic cell lysis, leaving the suspension clean from any disturbing substances. Thanks to the high 

intensity of energy delivered to cell memberane, ultrasound methods are the best candidate for lysing 

hard-to-lyse sample cells such as eukaryotic cells and bacterial spores 
47

.  

Each of the above-mentioned physical techniques suffers from some drawbacks when used alone. 

Therefore it is desirable to use each in conjunction with the other methods in one chip. As an example 

of combination of physical and mechanical methods, Khanna et al. 
49

 have assisted ultrasonic cell 

lysis by incorporating Nanocrystalline Diamond (NCD) micro spikes. As depicted in Figure ‎2-6a, the 

bottom floor of the microfluidic chamber is covered by sharp NCD micro spikes. Cell lysis of an 

equal number of murine melanoma cells has been repeated in three sets of experiment. Figure ‎2-6b 

compares efficiency of the cell lysis in three methods: i) control unit (only micro spike), ii) plain unit 

(only ultrasound) and enhanced unit (both ultrasound and micro spike). This figure clearly indicates 

that the combination of the two techniques has significantly increased cell lysis rate.   
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2.2.4 Chemical Methods 

In chemical methods, membranes of cells are disintegrated by adding proper reagents to samples. The 

added reagents dissolve the membrane or increase permeability of the cell wall. Enzymatic lysis 
50

 

can be considered as a chemical method where some enzymes are responsible to digest the wall of the 

target cells. Another sample of chemical method is viral lysis where specific viruses or bacteria are 

introduced to cells and they take on the task of disrupting cell membranes. 

 

Conventional methods- Acid and alkali lysis have been traditionally employed to disrupt cells. In 

acid hydrolysis, concentrated acids such as HCL or H2SO4 at temperatures of 55 to100C are 

Figure ‎2-6- a) ultrasound-assisted cell lysis by nanocrystalline diamond microspikes b) 

Concentration of viable cells for different sets of experiment 
49 
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responsible to either rupture cells or extract intracellular components within 6-12 hours 
51

. As an 

example, treatment with NaOH results in hydrolysis and solubilization of cell envelope, that in turn 

weakens or disrupts cell walls 
52

. Sodium dodecyl sulfate (SDS), tweens, and triton X-100 have been 

traditionally employed for cell lysis 
52

. These detergents disturb interaction of lipid and proteins of the 

cell membrane resulting in solubilization of the membrane components.  

 

On-chip methods-Microfluidic channel networks can be employed to introduce lysing detergent to 

target cells. In this approach, sample cells and lysing chemicals are directed separately to the lysis 

chamber through Y-shaped or H-shaped or from different microchannels by electrophoresis or 

syringe pump. They then blend inside the lysis chamber where the membrane of cells is disrupted and 

intercellular components are released. A variety of lytic chemicals is often used for this purpose such 

as toluene, ether, phenylethyl alcohol, DMSO, benzene, methanol, and chloroform 
2
. Sodium dodecyl 

sulfate (SDS) 
53

 and Triton X-100 
54

 are also utilized for chemical cell lysis. 

Carlo et al. 
55

 have reported a system which is able to release both DNA and protein by using 

hydroxide ion as a lysing reagent. As illustrated in Figure ‎2-7a-b, a filter unit lysis is sandwiched 

between two palladium electrodes placed with 600m separation distance. The applied electric field 

of 43V/cm is strong enough to hydrolyse water, producing     at the cathode and    at the anode 

due to the following reactions: 
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As depicted in Figure ‎2-7a-b, sample cells introduced into the lysis unit from the bottom are lysed due 

to the reaction illustrated in Figure ‎2-7c. The membrane phospholipids are cleaved and 

lysophospholipids are created. The cell is finally disrupted due to change in permeability of its 

membrane. The role of hydroxide ions in cell lysis enhancement is so significant that the cells are 

lysed even in regions with no electric field. 

 

 

 

 

 

Separation and detection of lysis products among cell suspension mixed with lysing chemical is a 

major challenge in chemical lysis methods. Fractionation can be employed for separation of mixing 

molecules based on their size. Schilling et al. developed an on-chip chemical cell lysis system 

integrated with fractionation process of released intracellular proteins 
56

. The microfluidic channel 

Figure ‎2-7- a) A view of two lysing chambers of hydroxide cell lysis device   b) Schematic view of a 

lysing chamber c) Cleaving of membrane phospholipids by reaction with hydroxide 
55 
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network, schematically displayed in Figure ‎2-8, was to introduce lytic agent to cell suspension 

separately through left and right side of the lysis chamber. Since molecules are large, they do not 

diffuse into the lytic agent stream and remain on the left side. The lytic agent, however, diffuses 

rapidly into the cell suspension and lyses the cells. Then the extracted intracellular components that 

have a smaller size would be able to diffuse freely to the right half side. At the end of the lysis 

chamber, the large molecules along with cell fragments flow out of the lysis channel. The targeted 

components that reach the detection chamber are introduced to detection molecule, such as a 

fluorogenic substrate. Bacterial cells are lysed by the device and an intracellular enzyme is detected 

and quantified through fluorescent enzyme assay 
56

.   

 

 

Figure ‎2-8 Schematic view of the chemical cell lysis microfluidic device 
56
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The big drawback of enzymatic and chemical methods is the complexity of removal of the detergents, 

enzymes or reagents which will otherwise interfere with the following processes. Although chemical 

lysis techniques are usually suffering from long-time processing, especially by non-ionic detergents, 

they are still widely used. Thus, the purification and gene amplification steps in chemical methods are 

generally far more complex than other methods. The inherently slow chemical procedure becomes 

even slower with the fore-mentioned additional considerations for purification requirements. To 

diminish this disadvantage, usually a combination of different methods is more favorable. Examples 

of this combined method will be presented later. 

 

2.2.5 Electrical Methods 

In electrical cell lysis method, sample cells are exposed to an external electric field. Since electrical 

techniques create nano-sized pores across the membrane that makes membrane permeable to the 

outside medium, electrical cell lysis is also called Electroporation or electropermeabilization. 

Although electroporation has been investigated for a long time 
57

, the underlying physics of the 

electroporation process is not still well understood. One hypothesis is that cell lysis occurs due to 

potential difference across the membrane that causes the build-up of ions across the membrane. If this 

potential difference which is called transmembrane potential increases, the ions squeeze the 

membrane and reduce its thickness. If the applied electric field is strong enough, nano-pores create 

paths between the external-internal cell medium 
57

. 

Electroporation process can be either reversible or irreversible. Reversible electroporation is used 

when permeability of the membrane is increased but the membrane lipids return back to their natural 

state once the electric field is removed. Irreversible electroporation is achieved when the applied 
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electric field is so strong that the induced transmembrane potential surpasses a threshold value. Then 

the imbalanced osmotic pressure makes the membrane lose its integrity. 

 

Conventional methods- Electrical cell lysis has been traditionally achieved by applying an 

operational pulse voltage as high as 2000 V on E. coli cells. The cells are stored in cuvettes that are 

exposed to the electric field exerted through stainless steel 
58

. The main barrier to using electrical 

techniques is the high voltage requirements for cell lysis that limits the incorporation of electrical 

systems onto LOC technology.  

 

On-chip methods- Several solutions have been reported to reduce the required voltage in order to 

make the electroporation feasible on LOC devices. One idea is to create a local high voltage by 

narrowing the small gate through which the cells are to be lysed. Cells in the technique proposed by 

Lee et al. 
59

 pass through a narrow orifice whose width and length is 20 times shorter than the micro 

channel, as shown in Figure ‎2-9. With a 50 V DC as the operational voltage, the electric field at the 

orifice part will reach the strength as high as 1.2 KV/Cm. This electric field condition is enough to 

disrupt cells with 100% lysis rate. 
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Figure ‎2-10 is an illustration of the device created by Lu et al. 
60

 to lyse human carcinoma cells. The 

saw-tooth electrodes apply non-uniform electric field in the microfluidic channel while the strongest 

field is at the tip of electrodes. It is found that cell lysis can be achieved with operational voltage of 

less than 10 V when the tip-to-tip distance is 30 m.   

 

 

 

 

Figure ‎2-10- Electrical cell lysis device with Saw-tooth electrodes 
60

  

Figure ‎2-9  a) Schematic of microfluidic channel with lysing orifice b) Simulation of the strength of 

the applied electric field 
59 
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The high electric field required for lysis of smaller cells can also be achieved in these electrical 

schemes. But, it imposes shortening the inter-distance of electrodes which is not favorable in 

microchannels. In addition to the costly fabrications, such flow-through channels are likely to be 

blocked at their tiny gaps.  

A successful 3-dimensional structure for electrically lysing virus has been developed by Park et al. 
61

. 

The apparatus captures vaccinia virus particles via positive dielectrophoresis (pDEP) and then lyses 

them. Pairs of three-dimensional probes are patterned on silicon on insulator wafer in tiny inter-

distances of 100 nm to 1.5 m. As shown in Figure ‎2-11, the cells are attracted by DEP toward the 

probe gap where the high electric field of 10
7
 V/m is applied through the same probes.  

 

 

 

 

 

(a) (b) 

Figure ‎2-11 a) schematic front view of the cell capture by pDEP: virus particles are attached to 

the probe array and electrically lysed b) Top-view SEM image showing the gap between 

electrodes: the tiny gap between electrodes (100 nm – 1.5 µm) provides very strong electric field 

(about 10
7
 V/m) 

61 
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2.3 Single Cell Lysis 

When a bulky group of cells are examined, the information obtained is usually averaged over a large 

number of individual cells. Since it has been understood that identical cells are quite likely to be 

diverse in their chemical composition and their activity characteristics, bulky-cell analysis systems 

are not able to see such cellular heterogeneities like variability of gene expressions levels and 

individual cell responses to an external particular stimulus 
62,63

. Thus the single-cell analysis 

techniques have been increasingly taken into interests within the past few years 
64

. Categorized in five 

classes of optical, acoustic, mechanical, electrical and chemical groups, single-cell lysis techniques 

have been more profoundly reviewed recently 
65

. In what follows, a few examples of the works 

toward single-cell lysis that are implemented on LOC technology are summarized to outline the 

cutting edge techniques employed for single-cell lysis.  

Since microfluidics has the capability of cell manipulation, automation and integration with other 

functional processes in a very small scale of the sample volume, microfluidics is a first-rate platform 

into which single-cell analysis processes can be implemented 
66–70

.   

Chemical method is the most popular approach employed for single-cell lysis. It has been 

accomplished by introducing target cells to lytic agent through Y-shaped microfluidic channel 
71

  or 

by suspending the cell-containing medium that is as little as few nano-liters into lysis buffer 
72

. As an 

example of chemical cell lysis achievement toward the analysis of single-cell manipulation, Marcus et 

al. 
69

 have developed a single-cell mRNA isolation device platformed on a microfluidic scheme to 

analyze gene expression in individual cells. The system has integrated cell capture, cell lysis, mRNA 

purification, and complementary DNA (cDNA) synthesis and purification into one microfluidic 

device. Using micromechanical valves, the single cells are isolated and then chemically lysed with 
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lysis buffer. cDNA is synthesized from the subpicogram messenger RNA (mRNA) templates 

extracted from single cells.  

Pulsed laser beam-induced techniques are amenable to single-cell lysis schemes. The cells suspended 

in a droplet are entrapped inside a microfluidic chamber where the optical transparency of the 

chamber lets the laser pulse localize precisely onto the area of lysis. Single-cell analysis has been 

carried out on the target cell that is selectively encapsulated in a pico-liter aqueous droplet and being 

lysed using frequency-tripled Nd-YAG pulsed lasers (355 nM) with about 5-ns pulse duration 
73

. It is 

challenging to accurately locate the individual cells at the center of the laser beam. And, the cell 

adhesion to channel may defect the efficiency of the system. However laser-beam induced techniques 

need no chemical addition and lysing process is relatively fast. Mechanical single-cell lysis is 

achieved by nano-structured barbs patterned into a microfluidic channel with pressure driven cell 

flow 
23

. The size of the thorough-pass channel has to be in scale of the cell size. It causes structural 

complexity and increases the cost. Such a-few-micron scale schemes are more amenable to large cells 

rather than bacterial cells. Sonication by itself does not seem to be suitable for single-cell lysing due 

to the lysis time requirement that is reported to be longer than 50s for one human natural killer cell 
74

. 

However, ultra-sonication in incorporation with the chemical detergent-based lysis has led to reduce 

the lysis time to 3s 
75

. In contrary, electrical cell lysis method has been employed for rapid single-cell 

lysis, namely less than 33ms for complete lysis of a mammalian cell by applying a 1 ms pulse length 

76
; but it still suffers from relatively high voltage requirement, that is to say 40V for 20-m inter-

electrode distance. The adhesion of cells and lysate to the electrodes is more challenging for single-

cell cell lysis systems than the population-cell lysis systems.  The coating of some known polymers 

such as PDMS on the channel walls usually eases the problem. An electrical fast high throughput 

single-cell lysis has been achieved on microfluidic platform where the cell adsorption has been 

reduced by adsorbing a polymer surfactant to the channels coated with PDMS 
77

. 
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2.4 Nucleic Acid Purification 

After cell is lysed, the lysis products need to be collected and separated. Nucleic acid purification is 

performed to isolate the nucleic acid lysis product out of the debris. Phenol-chloroform extraction is 

the conventional method through which DNA-containing sample is precipitated with an alcohol such 

as phenol–chloroform solution, followed by ultra-centrifugation 
78

. Since DNA is not soluble in the 

alcohol, the pellet of DNA is left upon centrifugation. For RNA extraction, guanidinium thiocyanate 

is added to an acidic solution which is containing sodium acetate, phenol and chloroform.  

Guanidinium thiocyanate denatures DNA and proteins and separates rRNA from ribosomes. RNA can 

be separated from DNA and proteins, based on phase separation technique. After centrifugation, all of 

the RNA is present in the aqueous phase of the acidic solution and DNA and proteins stay either in 

the inter-phase or in the lower organic phase 
79

.  

Centrifugation requirement is not amenable to microchip technology so that the above-mentioned 

conventional techniques cannot be integrated on-chip. The developments on on-chip separation 

techniques have been reviewed recently 
80

. Here the platforms of on-chip nucleic acid purification 

approaches are presented.  

Silica-based solid-phase extraction is the primary technique for DNA purification implemented in 

LOC technology. It is based on the affinity of DNA adsorption to silica-based surfaces in the presence 

of a chaotropic salt. Chaotropic salt denatures cellular proteins but not DNA or RNA. The high 

concentration of the salt facilitates binding of the nucleic acids to the silica-based surfaces, while the 

other components in the lysis debris freely pass the surface. The adsorbed DNA can be washed away 

by an alcohol out of the device. This technique can be implemented into microfluidic channels with 

high surface area in contact with sample-containing solution. Oxidized silica-based channels 

fabricated through deep reactive ion etching 
81

 and silica pillars that are deeply etched in silicon 
82

 can 
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provide the high surface-area-to-volume features for DNA binding. Based on the same concept, silica 

beads and silica resins have also been employed for purification of DNA 
83

 and RNA 
84

. The 

purification of nucleic acids implemented into LOC technology has been discussed in more detail in 

85
. 

 

2.5 Envision the Future Direction of Cell Lysis in LOC 

The ultimate target of LOC technology, and the main trend, is to develop a stand-alone system which 

encapsulates all sample preparation procedures, including cell lysis, together in one single hand-held, 

easy-to-use device. This of course would be a very attractive tool for biological laboratories in the 

way it saves them space, cost, and time. The path to reach this destination passes through the 

intermediate station where the LOC may not necessarily include the entire needed sample 

preparation, but rather, they have successfully realized the integration of two or more of those 

procedures in one chip. If these intermediate-level LOC are compatible with one another in such a 

way that the outcome product of one fits well as an input of the other, they may as well serve as the 

completed final-destination LOC. These techniques are widely presented under the title of micro total 

analysis systems (TAS) or LOC 
86,87

. To give a general overview of the lysis techniques which have 

been successfully integrated into TAS, a few examples are presented here.  

Hong et al. 
88

 have integrated cell lysis with purification of nucleic acids from small number of 

bacterial and mammalian cells through a microfluidic device featured by mechanical micro-valves.  

Integration of single-cell capture and chemical cell lysis has been studied by Irimia et al. 
89

, using a 

picoliter-scale chamber featured by four thermopneumatic actuators. Lee et al. 
90

 have developed an 

automate bio-analysis system in which cell lysis, sample transportation, sample/reagent mixing and 

DNA amplification are performed in a microchip. As shown in Figure ‎2-12, a PDMS-based 
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microfluidic channel is constructed on a glass substrate. The cells are thermally lysed through 

microheaters deposited on the glass substrate. Then they are electro-osmotically transported to the 

mixture reservoir where required PCR reagents are mixed to the sample cells. The released DNAs are 

amplified in the micro PCR chamber.  

 

 

 

 

 

Another trend is to increase the efficiency of cell lysis in order to release targeted intracellular 

components with high yield. This is particularly important when the samples are not abundant.  

Most of the systems introduced are capable of lysing only specific kind of cells with limited range of 

properties such as size, shape, etc. Also, sometimes some pretreatments have to be done on samples 

prior to cell lysis. For instance, the above-mentioned systems 
88–90

 call for cell culturing to be 

performed off-chip in order to prepare sample cells for the devices. The cell culturing protocol 

proceeds with centrifugation for cell washing and for cell diluting/concentrating. These are necessary 

pre-treatments that have to be accomplished before the chip functions because each chip is designed 

(a) (b) 

PDMS 

temp sensor 

heater 

Micro PCR 

chamber 
mixer 

glass Primer 
injection 

micro lysis 

reactor 

Pt layer 
mixer 

Figure ‎2-12 a) Schematic view of the integrated cell lysis with several sample analysis functions into one 

chip b) Top view of the bottom glass substrate 
90

   

reservoirs Cell lysis reactor 

glass 

cover slide 
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for specific cell types suspended in a specific buffer with a specific range of cell concentration. If a 

miniaturized cell lysis chip is so developed that has the flexibility in lysing different kinds of cells 

without pretreatment, they will highly promote research on bio-sample analysis. 

 

2.6 Conclusions 

In this chapter, different techniques for cell lysis that are used in LOC technology were presented. 

The methods were classified as mechanical, physical, chemical and electrical. It was demonstrated 

that a wide range of principles can implement cell lysis. Advantages and drawbacks of each group 

were discussed from the point of view of integratability onto LOC technology. The trends of future 

development of the technology were described.   

Thermal lysis is a simple and cost effective physical method. It is not yet reliable for extraction of 

protein. This method is conveniently integratable with PCR. Osmotic lysis is usually combined with 

other methods to enhance cell lysis efficiency. Ultrasonic lysis methods are capable of lysing hard-to-

lyse cells without adding any chemicals. 

The problem of most mechanical techniques is the challenge to scale them down to fit LOC 

technology. The most common method in this category for cell lysis is applying shear stress via 

microfluidic channels. 

Chemical methods are normally suffering from the necessity of post cell-lysis purification and 

detergent removal processes. The detergent removal is necessary to keep the downstream stages intact 

against harmful chemicals. Despite this, they can be used in combination with other techniques to 

ease the disruption process of cell membranes. 

In electrical cell lysis, sample cells are exposed to a high voltage electric field where the ions inside 

cell exert a force on membrane until disrupted. The big limitation for electroporation is the high 
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voltage requirements. Some approaches are presented in literature to minimize this problem, namely 

by decreasing the distance between electrodes. 

Table ‎2-1 summarizes the cell lysis methods that are categorized based on the principle involved. The 

list of advantages and disadvantages in the table are collected from the broad range of developed 

systems that are discussed in this chapter. It should be noted that there is not a boundary defined 

between each classes and different categories of the methods are found in literature.  

 

Table ‎2-1 Summary of cell lysis methods implemented in LOC  

Cell Lysis Method Advantages Disadvantages 

Mechanical No chemical necessarily added 

 

With moving elements: challenging 

to be miniaturized 
With tiny flow-through gaps: 

clogging probability 

Physical Thermal No chemical necessarily added 

 
Amenable to  miniaturization 

Not reliable for extraction of protein 

Osmotic Effective in combination with 

other methods 

A change in cell medium 

concentration required 

Pretreatments required to weaken 
cells prior to osmotic lysis 

Ultrasonic Capable of lysing hard-to-lyse 

cells  

Applicable in single cell lysis 

Heat generation 

High gradient of temperature 

Transmission of Energy to cell 
medium 

Chemical Available variety of lytic 

chemicals  

No external power required 

Complexity due to removal of added 

chemical 

Slow processing 

Electrical No chemical necessarily added 
Highly amenable to  

miniaturization 

 

Complicated fabrication of  electro-
microfluidic devices 

High voltage requirements 

 
 

 

Since each class of the methods has its own drawback, combination of methods has attracted interests. 

One mechanism is to produce microchannel walls with a sharp micro textures. Combined chemical 
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methods can be used to imbalance osmotic pressure of cells in order to weaken their enduring 

strength prior to cell lysis process.  

Microfluidics is the first-rate platform on which single-cell lysis techniques have been integrated. 

Laser beam lysis techniques have been widely employed for single-cell lysis due to its capability of 

concentrating energy to a very small area of interest.  

It is envisaged that the integration of cell lysis with other sample preparation procedure in single LOC 

is going to be the main trend of the researches in this area in the following years.  

As mentions in Table ‎2-1, the complicated fabrication of micro-electrical devices and relatively high 

voltage requirements are the main barriers toward development of electrical cell lysis systems. We 

have addressed these two limitations by developing novel systems for cell lysis that are presented in 

the following chapters.  

The three projects that will be introduced in the following chapters are the achievements toward 

development of cell lysis devices suitable for LOC. The main focus of the project presented in chapter 

3 is to devise a fabrication methodology for making electrical cell lysis devices through a fast and 

cheap procedure. Performance-enhancing of cell lysis by applying CNT in electrical cell lysis is the 

main achievement of the project presented in chapter 4. In the project described in Chapter 5, the 

fabrication of CNT-featured cell lysis device is advanced and the application of CNT in single cell 

electroporation is also developed.     
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Chapter 3 

Fabrication of Electro-microfluidic Channel for Single Cell 

Electroporation 

 

The content of this chapter has been published in Biomedical Microdevice, DOI 10.1007/s10544-013-9761-0 

 

3.1 Introduction 

The point of this chapter is to demonstrate the use of a quick and cheap fabrication method to realize 

a laser-ablated microfluidic channel for single cell electroporation.  Traditional lithography of 

microchannel with electrode in MEMS applications has always been complicated.  Most microfluidic 

devices are created as low-cost disposables, in order to minimize the risk of sample contamination 

and increase their practicality in developing countries. For this application, polymers are very well 

suited, being cheap, easy to work with and available with a wide range of specifications 
91

. Popular 

polymers for microfluidic applications are Poly (methyl methacrylate) (PMMA) 
92

, 

Polydimethylsiloxane (PDMS) 
93

 and SU-8 photoresist 
94

. Polyimide is also often used for 

microfluidics 
95

, offering excellent properties specifically for biological applications, such as good 

thermal stability, low uptake of water and good biocompatibility 
96

. There are also no known solvents 

for polyimide 
91

, giving it an excellent chemical stability. Its low absorption of small molecules is 

especially advantageous when compared to the other popular polymer PDMS, which does suffer from 

such problems 
97

.  

Fabrication methods used to create the microfluidic channels are mostly derived from the 

semiconductor industry, and include photolithography 
98

, etching 
99

 and laser ablation 
100

. Laser 

http://link.springer.com/article/10.1007%2Fs10544-013-9761-0
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ablation is most often performed using excimer laser systems 
101

, operated at wavelengths from 193 

nm to 355 nm. This technique provides good results and excellent controllability, allowing easy 

creation of new patterns for prototyping. 

Often, electrodes are incorporated with microfluidic channels, allowing functions such as cell 

electroporation 
102

, electrochemical detection 
103

, the manipulation of the liquid 
104

 or simply as pads 

and wires for connecting the chip to external equipment.  

Electroporation techniques require creation of electrodes in the microfluidic chip. Creation of such 

electrodes can be done in multiple ways; for example, by depositing thin (typically 50-250 nm) metal 

layers on the polymer in vacuum. However, since polymers have much greater thermal expansion 

coefficients, the temperature during deposition must be kept near room temperature to prevent 

cracking in the metal electrode layers. Another disadvantage is that lift-off lithography must be used 

to‎achieve‎features‎less‎than‎10‎μm‎in‎size,‎and‎most‎polymers‎are chemically incompatible with the 

photoresist and developer used in such steps. If a thick-film method is used, no vacuum is required. In 

such a method, a paste of metallic particles is smeared on a mask placed over the sample. The mask is 

then removed, and the residue left to dry. This typically yields electrode thicknesses of tens of 

micrometers, and worse resolution than the thin-film depositing method 
91

. In contrast, glass slides 

coated with Indium Tin Oxide (ITO) can be easily used. If chip-wide electrodes are all that is 

required, no extra steps at all are required. If more intricate electrode patterns are required, 

lithography can be easily done on the chips, without suffering from the thermal expansion mismatch 

when depositing on polymers. Previously, transparent ITO substrates have been used in microfluidic 

applications 
92,105

, but never in combination with laser-ablated polyimide. 

The laser ablation fabrication technique is well suited for fabricating microfluidic channels in 

polyimide. It is fast, detailed, controllable and very flexible. However, most laser systems used are 

excimer lasers, which are bulky and require sophisticated systems for handling the toxic gas used. In 
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this chapter, we present a method of ablating microfluidic channels in polyimide using a 30W CO2 

laser‎with‎a‎wavelength‎λ=10.6‎μm.‎Although‎lacking‎the‎resolution‎of‎excimer‎lasers,‎this‎system‎is‎

low-cost, safe and easy to handle. Laser ablation using excimer lasers of polymers is a complicated 

process of both photothermal and photochemical breakup of the polymer chains
106

. In contrast, the 

infrared wavelength of a CO2
 
laser means that it always ablates the material photothermally. Although 

CO2 laser ablation of polymers has been done before 
107

, it has not been done on polyimide. Bonding 

of polyimide can be performed in multiple ways, with lamination by far the most used method. When 

creating a polyimide-polyimide bond in this way, polyamic acid can be used as a solvent to enact 

diffusion of the polymer chains, yielding a very strong bond 
95

. This method has the disadvantage that 

it results in shrinkage of the polyimide, reducing the control over the feature size. On the other hand, 

using polyimide with a Fluorinated Ethylene Propylene (FEP) coating‎ (such‎as‎DuPont's‎Kapton™‎

Type FN), no additional solvents are needed, and bonding can be done by simple thermal lamination 

techniques. 

In this work, we combine many of the easiest techniques to create a low-cost, quick and versatile 

method for prototyping microfluidic chips. Use of transparent ITO coated substrates will allow easy 

electrode creation, while retaining the ability to quickly image the channel performance using optical 

microscopy techniques. The use of a CO2 laser will give great flexibility in channel design, without 

the difficulties normally associated with handling an excimer laser.  

In the present methodology, the microchannel pattern is cut out of polyimide, bonded to two ITO-

coated substrates using Teflon as an adhesion layer.  ITO as a conductive material enables electric 

field in the channel and its optical transparency allows microscopy techniques to be utilized in 

characterizing the behavior of the microfluidic chip. The performance of the chip was tested on 

irreversible single-cell scale electroporation which requires relatively high voltages. Chinese Hamster 

Ovary (CHO) cells, as mammalian cells, were passed through the microchannel to experience electric 
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field. Cells were loaded with a fluorogenic dye, Calcein AM, and the electroporation of each was 

individually recorded in real-time via fluorescent microscopy. The results show promising 

performance of the electric microchannel in electroporation. By customizing of ITO electrodes and 

the design of microchannel pattern, utilization and integration of the proposed electrical microchannel 

in variety of other MEMS-based devices are achievable.  

This method has a low start-up cost, but the cost per unit does not decrease appreciably for larger 

volumes. Therefore, our method will be most useful for rapid prototyping and characterization of 

microfluidic chips, rather than bulk-volume fabrication. 

3.2 Fabrication of electro-microfluidic channel 

Our microfluidic channels are made‎by‎using‎a‎10.6‎μm‎CO2 laser engraving system (Universal Laser 

Systems, VLS2.30) to cut the channels completely through polyimide (DuPont Kapton FN 

200FN919), thus yielding channels of the same height as the thickness of the polyimide layer.  

Our tests on cutting 50-µm thick polyimide showed that engraving at 1% of the maximum power (30 

mW) and 1% of the maximum speed (0.25 mm/s), and making 3 passes over the same pattern yields 

the best results. At this speed, hardly any material is ejected from the channel, but rather is left behind 

as residue of broken monomers. This residue is easily removed after machining using ethanol as a 

cleaning agent. Engraving at higher power and/or speed caused an excess of heat buildup in the 

sample, resulting in thermal buckling and loss of positional control of the laser spot on the polyimide. 

Using the same laser, access holes to the microfluidic channels are drilled in the backside of the ITO-

coated slides (Sigma Aldrich, 30-60‎Ω/sq,‎Cat.‎No.‎703184).‎The‎experimentally optimized settings 

for laser cutting/engraving of all components used for the microchannel are listed in Table ‎3-1. 

PMMA cutting and engraving were performed to provide the customized chip holders.  
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Table ‎3-1 Laser settings used for different components of microchip 

 

Material 

Thickness 

(mm) 

Power  Speed 

(mm/s) 

Iterations 

Kapton Polyimide 0.05 30 mW 0.25 3 

ITO-coated microscope 

slide 

1.1 1.5 W 0.5 10 times from each side 

PMMA cutting 4.5 24 W 2.5 1 

PMMA engraving 1.1 1.5 W 2.5 5 

 

 

The polyimide used (Kapton FN) is pre-coated on both sides with Teflon FEP fluoropolymer as 

adhesive‎layers.‎This‎FEP‎coating‎can‎be‎bonded‎to‎ITO‎glass‎by‎heating‎it‎to‎280˚C‎under‎pressure‎

of a small vise, and letting it gradually cool. Samples of laser-cut polyimide before and after bonding 

are seen in Figure ‎3-1. A sample line scan by a Dektac surface profilometer made perpendicular to the 

channel is illustrated in Figure ‎3-1c. The roughness at the edges is diminished after bonding to ITO-

coated cover slips. ITO-coated cover slips (SPI supplies, 30-60‎Ω/sq,‎Cat.‎No.‎06467-AB) was used 

in this sample. It should be noted that the ITO-coated cover slip, as thin as 130-170 µm, provides 

capability‎ of‎ imaging‎ in‎ higher‎magnifications‎ where‎ the‎microscope’s‎ objective‎ lens‎ has‎ to‎ be‎ in‎

such tiny distance to the specimen in the channel. Since CHO cells are big enough to be visible in 

lower magnifications, the chips used in our experiments are all made with ITO-coated glass slides.  
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The chip that is presented in this chapter contains simple straight channels that are 3 mm in length. 

The‎width‎is‎200‎μm.‎The‎Kapton‎is‎cut‎to‎size‎using‎the‎laser‎cutter,‎and‎the‎channel‎is‎cut‎within‎it.‎

The ITO-coated slides, having a sheet resistance of 30-60‎Ω/sq, are also laser-drilled. All components 

are then cleaned using an ultrasonic cleaner (FisherScientific, FS30D), and are rinsed thoroughly by 

hand using ethanol. The whole stack is bonded in a vacuum oven, and syringe tips are attached and 

glued in place over the access holes in the bottom ITO-coated slide. For gluing, epoxy glue thickened 

(a) 

 

200 µm 

(b) 

(c) 

(e) (d) 

Figure ‎3-1 Samples of laser-ablated poyimide, a) post-cutting but pre-bonding, b) under 

11.25x magnification, c) line scan made by a Dektac surface profilometer made perpendicular 

to the channel, d) polyimide samples after bonding to ITO-coated cover slips, e) front view of 

the bonded polyimide   
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with fumed silica is used. Normal epoxy glue was found to be not viscous enough, and was likely to 

flow into the microfluidic channels, thereby blocking them. During experiments, tubes will be 

attached to the syringe tips. The whole chip is then placed on a PMMA support structure, allowing 

top-down observation by fluorescence microscope while leaving room for the tubes to be guided 

away to syringes and waste disposal vials. A snapshot of the chip is depicted in Figure ‎3-2. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Cell Preparation and Fluorescent Microscopy 

Chinese Hamster Ovary cell line CHO-K1 (ATCC, Cat. No. CCL-61) was used as a sample for 

mammalian cells. The frozen cells thawed in growth medium, containing F-12 Kaighns (Fisher 

Scientific,‎Cat.‎No.‎SH3052601)‎supplemented‎by‎10%‎Fetal‎Bovine‎Serum‎(Fisher‎Scientific,‎Cat.‎

No. SH3039602) and 1% Penicillin / Streptomycin (Bio Basic Canada, BS732). The cells were 

transferred to a cell culture flask and incubated at 37 °C, 5% CO2. Every two days, cells were sub-

Microchannel 

Electrical contacts 

Figure ‎3-2 snapshot of the fabricated electro-microfluidic chip for mammalian cell 

electroporation 
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cultured as follows: the cell medium was aspirated from the cell culture flask and then, cells were 

washed‎by‎PBS.‎One‎milliliter‎of‎Trypsin‎0.25%‎(Fisher‎Scientific,‎Cat.‎No.‎SH3004202)‎was‎ then‎

added to the medium in order to detach cells. After five minutes incubation in room temperature, 7 ml 

of cell medium was added to the trypsin to deactivate it. Cells were transferred into a centrifuge tube 

and centrifuged at 300 g for 1 minute.  The supernatant was discarded and electroporation buffer (10 

mM phosphate buffer and 250 mM sucrose, pH 7.4) containing 0.05% Calcein dye was added. 

The cells were loaded with Calcein AM dye during 30 minutes incubation at 37 ºC.  

Calcein AM is membrane permeant; in live cells, intracellular esterases remove the acetomethoxy 

group so that the non-fluorescent Calcein AM gets trapped inside and gives strong green-

fluorescence. The resulting fluorescent Calcein is highly charged and therefore cannot be excised 

from the cytoplasm once it has infiltrated the cell unless non-selective pores are introduced. The high 

sensitivity of Calcein AM fluorescence makes it useful in detecting the diffusion of dye out of the cell 

once the cell is electro-permeated. Here, the leakage of the dye through permeabilized cell 

membranes has been used as an indication of cell electroporation 
108

.  

 

3.4 Cell Electroporation 

To show the useful and correct operation of our microfluidic chip, electroporation experiments have 

been done. In electrical lysis of the cells, a voltage is applied across the cell suspension. The resulting 

electrical field causes a voltage drop across the membrane (transmembrane potential), which 

introduces pores. If the transmembrane potential is large enough, and is maintained long enough, 

these pores can permanently disrupt the cell membrane thereby lysing the cell. The voltage applied to 

the chip (operational voltage) must be high enough to induce the required transmembrane potential. 

Electroporation depends on the strength of electric field as well as the duration of time the field is 
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applied. Since the threshold operational voltage is dependent on the system characteristics, the 

consequent external field (Eext) applied to the cell-containing medium is more common in reports. The 

threshold values for electroporation of CHO cells have been studied by Valic et al. 
109

. They have 

reported the threshold strength of electric field within the range of 200-250 V/cm with pulses of 

milliseconds in duration. Electroporation can happen within 30 ms, if suitably high voltages and 

channel designs are used 
110

. Tweaking the pulse characteristics of a pulsed electrical field can also 

improve efficiency 
111

. The difference between reversibly electroporating a cell and lysing a cell is 

mostly a matter of field strength and exposure time, both of which can easily be controlled.  

 

3.5 Cell Electroporation Experiments   

Cell electroporation was performed as one example of the applications of the proposed polyimide-

made electro-microfluidic channel. Direct imaging of lysis was used as a method to determine 

whether the microfluidic chip was capable of electroporating cells.  

The prepared cells were loaded with Calcein-AM dye and imaged using fluorescent imaging. Calcein-

AM is a non-fluorescent cell-permeable compound that hydrolyses to the fluorescent anion Calcein 

inside the cells. Before switching on the electrical field, the cells were very visible green dots. This 

allowed for following the cells in real-time during lysis. Cells were pumped to the chip through 

silicone tubing (VWR, Cat. No. CA62999-850). The pump turned off and cells became stationary 

before operational voltage was applied. A data acquisition system (DAQ) was used to supply 

operational pulse voltage and also to measure the passing current. Images were taken by a CCD 

camera (CoolSNAP, Turbo 1394 Series EZ) on a fluorescent microscope (Nikon Eclipse E600FN). 

Schematic view of the set-up of experiment is shown in Figure ‎3-3.  
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3.6 Results 

Cell electroporation experiments were conducted as explained in previous section. When a cell was 

electroporated, the fluorescent dye inside the cell would flow out through the ruptured membrane, and 

the brightness of the cell would reduce strongly. Electroporation is thus determined by watching the 

intensity of the fluorescent cell over time, and correlating this with the time the electrical field is 

switched on. The images were taken by the CCD camera at frame rate of 2 Hz with exposure time of 

30 ms.  

The Calcein AM dye did show deterioration when under prolonged excitation lighting, based on 

polarization quenching theory
112

. This is illustrated in Figure ‎3-4, but this process has a time scale of 

about 140 seconds. It is determined by fitting the normalized measured intensity graph with:  

DAQCells pumped to chip

Voltage Applied 

to Chip via DAQ

USB Power

Image analysis

CCD camera

Fluorescent microscopy

Figure ‎3-3 Schematic overview of the experimental setup 
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I=I0 exp(-t/τ)‎+‎Ibase   (3.1) 

 

where I0 (= 0.4876) is the starting intensity, Ibase (= 0.465) is the background intensity and τ (= 141.5 

s) is the decay time constant. This deterioration is thus not significant when determining cell lysis 

through imaging, since that process takes place over a timescale of 10-20 seconds.  

 

 

 

 

Figure ‎3-5a) shows images of four cells staying in a microchannel under microscope light when the 

voltage of V=0 V (no electric field) is applied to the chip. The walls of the channel are depicted by 

the straight lines in the pictures. Figure ‎3-5b) shows images of four cells in the channel being 

electroporated within 20 seconds while the operational voltage of V=5 V was applied to the chip at 

Figure ‎3-4 Fluorescence decay of CHO cells loaded with Calcein-AM (blue) and 

the fitting exponential graph (red). 
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the time of t=5 s. The drop in color intensity of Calcein-AM loaded cells indicates electroporation for 

all the four target cells.  

The intensity of the cell spots in Figure ‎3-5b is quantified by a MATLAB program and the results are 

shown in Figure ‎3-5c. The intensity of all pixels in a square zone of 20 × 20 µm
2
, surrounding each 

cell, is summed up and the total value is illustrated vs. time. The natural decay is also shown in the 

graph. The intensity of the brightest cell is normalized to start at 1, and the intensities of the other 

cells are normalized relative to the brightest cell using the ratio of maximum pixel values within the 

measured area. Even though the total intensities of the target cells are not equal at the time electric 

field is applied, the identical drops seen for the all cells indicate electroporation occurs within the first 

five seconds. It means the electric field in the channel is strong enough to electroporate cells with 

100% rate. The variation of the graph is not considerable after the time of t=10 s. To confirm that 

100% electroporation occurs at this voltage, more experiments have been performed at the same 

condition and the intensity variations of more cells are shown in Figure ‎3-5d. The black dot line 

indicates the time electric field turned on.  

 

t=20 s 
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Figure ‎3-5  Images of four cells loaded with Calcein AM dye, a) not exposed to electric field 

(V=0 V), b) exposed to electric field at t=5 s and operational voltage of V=5 V, c) total intensity 

of the square zones surrounding the four cells labeled in (b), d) more cells experienced the same 

field as b (V=5 V) 

 

t=5 s t=10 s t=20 s 

(b) 

t=15 s 

(c) 
(d) 

(a) 

t=5 s t=10 s t=15 s 
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The experiment was repeated with operational voltage of V=3 V. New chips were used to avoid 

contamination left from the previous experiments. The results for some target cells are illustrated in 

Figure ‎3-6. As seen in the graph, nine cells out of thirteen are fully electroporated. An increase in the 

total intensity of the electroporated cell is visible right after electric field is turned on. It should be due 

to the abrupt expansion of the cell size while being electroporated. 
110,113,114

 

 

 

 

 

 

 

 

The last experiment was performed at the operational voltage of V=1 V. As shown in Figure ‎3-7, 

none of the target cells experienced full electroporation. It is understood that the strength of electric 

field is not high enough to affect membrane permeabilization of CHO cells.  

Figure ‎3-6 Total intensity of the square zones surrounding individual cells, exposed to an 

electric field turned on at t=5 s with operational voltage of V=3 V.     
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3.7 Discussion 

The results presented here are samples to show the application of the electro-microchannel in 

electrical cell manipulation mechanisms. It is a promising approach to analyze behavior of single cells 

under electrical configurations. It should be noted that the capability of the proposed methodology is 

not limited to mammalian cells with relatively larger sizes. For electrical manipulation of smaller bio-

samples, for example bacteria, ITO-coated cover slip, as one sample is seen in Figure ‎3-1, enables 

high magnification microscopic analysis. Moreover, the geometry customization of electrodes in 

deposition of ITO makes non-uniform electric fields in the microchannel. If such step is taken toward 

Figure ‎3-7 Total intensity of the square zones surrounding individual cells, exposed to an 

electric field turned on at t=5 s with operational voltage of V=1 V.     
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development of the chip, a broad range of cell treatments based on dielectrophoresis will be also 

achievable. Customized patterning of polyimide with no extra cost is another possibility toward 

integration and customization of the electro-fluidic channel in other on-chip cell manipulation 

systems. 

The proposed methodology presented in this chapter is ideal for LOC since it can be easy to produce 

and relatively cheap, but the fabrication methodology needs ITO coatings that increase the cost. It has 

been reported that ITO might be degraded during thermal lamination 
115

. These are the two drawbacks 

of the methodology that should be taken into consideration.  

The complexity in the proposed system is the requirement of an AC power supplier. In 

electroporation systems, usually AC fields have been preferred to DC because DC current causing 

more bubbling through electrolysis.  In addition, an alternating electric field enhances the efficiency 

of electroporation‎because‎of‎what‎has‎been‎reported‎as‎“mechanical‎disturbance”‎that‎an‎alternating‎

field exerts to the cell membranes 
116

.  However, AC brings with it a lot of complexity because of the 

number of variable it has and is harder to generate than DC.  

By varying the shape of a microfluidic channel and running current through the cell solution, a 

channel with different electric fields can be made, such as the one developed by Wang et al. 
117

. They 

have made a microchannel with varying cross-section area. The electrodes are two platinum probes 

that are inserted at the inlet and outlet of the channel. The geometrically-varying design of the 

channel creates varying electric field in the channel.  It means the narrower cross-section area of the 

channel, the stronger electric field it has. However, the PDMS-based fabrication of their chip still 

involves soft lithography that is not as cheap and straight-forward as the methodology we introduced 

in this chapter.  

The fabrication methodology presented in this chapter can be used to make such microchannels with 

varying design which are powered by a DC input and no ITO coatings are needed. It can be simply 
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achieved if ITO-coated glass slides are replaced by glass slides and two metal needles are placed at 

the inlet and outlet of the microchannel. The varying design of microchannel can also be simply made 

by customizing the laser-ablated pattern of polyimide which is simple. The fabrication of the electro-

microfluidic device with varying design will be discussed in detail as a suggestion for future works in 

section ‎6.3.  The proposed methodology of making electro-microfluidic channels is considered as an 

alternative  for creating many other microchips not only for cell electroporation, but also for other 

stages of sample preparation procedure, for example DEP-based separation of micro-

particles/biological cells. It is also presented in section ‎6.3 as a suggestion for future works.   

 

3.8 Conclusion 

In the present chapter, a cheap and fast fabrication methodology of making electric microchannel with 

Teflon-coated Kapton polyimide is presented. It is shown that a thin laser-ablated polyimide sheet 

thermally bonded to two ITO-coated glasses provides a cheap microchannel with electrical 

functionalities. The optical transparency and high throughput of the devices made by the 

methodology are the main features. Straight microchannels with 50 µm height were fabricated and 

their electrical performance was tested on electroporation of CHO cells. Different operational 

voltages (1-5 volt) were applied to the chip and the fluorescent imaging of electroporation in real-time 

for individual cells was carried out. The results show a promising practicability of the proposed 

methodology in analysis of single cell electroporation. Further developments of the proposed 

electrical microchip by customizing ITO-coatings and polyimide cutting patterns are practical. Such 

developments will extend the application of the electrical microchip so that it can be utilized and 

integrated to many other MEMS devices.   
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Chapter 4 

Carbon Nanotube for Enhancement of Electrical Lysis of Bacteria 

 

The content of this chapter has been published in Nanotechnology, DOI:10.1088/0957-4484/22/32/325705 

 

4.1 Introduction 

In this chapter, we report on the enhancement of electrical cell lysis using Carbon Nanotube (CNT). 

Electrical cell lysis systems utilize an external electric field to induce opposing charges across the 

membrane that leads to cell lysis 
76,77,118–120

. No chemical is required and such electromechanical 

systems are easily integrated into LOC devices. Electrical cell lysis systems are widely utilized in 

microchips as they are well-suited to be integrated into LOC devices. However, cell lysis based on 

electrical mechanisms has high voltage requirements.  

The developments to reduce required operational voltage are mainly based on reducing distance 

between electrodes. By employing micro-fabrication technologies, the micro-distant electrodes can be 

structured where electric intensity is locally enhanced between the electrodes 
59,108

. Lee and Cho 
59

 

have demonstrated a flow-through microchannel device featured by a narrow orifice gate for cell 

lysis. The cross section of the microchannel is narrowed 20 times at the orifice gate so that the electric 

field is strengthened up to 1.2  kV/cm with the operational DC voltage of 50 V. The three-

dimensional electrodes in the shape of saw-tooth built in a microfluidic channel have been developed 

by Lu et al. 
60

 where cells are lysed while passing by electrode tips. They have reported that, with the 

http://iopscience.iop.org/0957-4484/22/32/325705/
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tip-to-tip distance of 30 µm between electrodes, an operational AC voltage of less than 10 V is 

enough to lyse mammalian cells with the average size of 10 µm. Although reducing the electrode 

distance down to the scale of sample cells leads to a locally strengthened electric field, the high cost 

of fabrication acts as a barrier to widely employ these systems for LOC cell lysis. Moreover, such 

microfluidic channels are likely to be blocked at the micro-gaps.  

Here, we demonstrate that by incorporating CNT into microfluidic electrical lysis systems, the 

required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by 

ten times, compared to a no-CNT microchip. In our experiment, E. coli cells are lysed while passing 

through a forest of aligned CNT in a microchannel. Based on the lightning rod effect, the electric field 

is locally-strengthened at the tip of CNTs 
121

. It enhances the efficiency of cell lysis so that cell lysis 

occurs at lower voltages or with higher throughput. This approach enables easy integration of cell 

lysis with other on-chip high-throughput sample preparation processes.  

 

4.2 Theory 

When a cell exposed to an electric field, the intrinsic membrane potential (typically 70 mV under 

normal condition 
122

) resulting from gradient of ionic concentrations is imbalanced by the external 

electric field. If the transmembrane potential exceeds a threshold value, the induced opposing charges 

inside the cell squeeze the membrane until nano-pores are formed across the membrane. The nano-

pores allow open paths between the cellular matrix and the external media suspending the cell. 

Depending on the magnitude, frequency and duration of the applied pulsed voltage, the created nano-

pores can either be resealed (reversible electroporation) or remain open permanently (irreversible 

electroporation). Irreversible electroporation results in a failure of the cell membrane to maintain 

essential ionic balance across the membrane and the cell ruptures. The threshold transmembrane 
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potential over which the electroporation is irreversible can be estimated for spherical cells from Ref. 

123
:  

 





cos5.1 a
E


   (4.1) 

  

where  is the transmembrane potential, a is the radius of the cell and θ is the angle between the 

direction of electric field and radial line at the point of interest on the membrane, as shown in Figure 

‎4-1. 
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Figure ‎4-1 Illustration of a cell exposed to an electric with the graph of transmembrane 

potential induced across the cell membrane causing the build-up of the opposing charges on the 

membrane 

 

The threshold transmembrane potential is also dependent on the pulse duration of the applied voltage 

as the structural change in cell membrane can go back to its original state if the duration of charging 

time is not long enough. The pulse duration (or charging time constant) required that transmembrane 

potential of a spherical cell reaches the threshold value is expressed by: 
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where ρ1 and ρ2 are, respectively, the resistivities of the external cell medium and internal cell 

medium (cytoplasm) and, C is the capacitance of the membrane. The threshold transmembrane 

potential for irreversible electroporation is typically 1 V for spherical cells with pulse duration of a 

few microseconds 
123

. Considering =1 V, the critical electric field strength of tens to hundreds of 

kV/cm is obtained from the equation (4.1). 

The high voltage requirements for electrical cell lysis limit the integration of the systems on LOC 

devices. Our approach has taken advantage of the uniquely high aspect ratio of CNT that provides 

locally concentrated electric field at the tip of CNTs, physically based on the lightning rod effect
121

. 

The simulation data for the distribution of electric field at the tip of CNT has been reported in 

literature 
124

 
125

 
121

. It has been shown that the strength of electric field is greatly enhanced near the tip 

of CNTs. Rojas-chapana et al. 
121

 have studied the localized electric field at the tip of CNT for 

reversible electroporation. They have presented an expression of the degree to which the electric field 

is enhanced at the tips of CNTs: 

 

 )(
0 D

L

E

E
  (4.3)     

 

 

where =3 is a constant, E is the electric field at the tip of CNT and L/D is the aspect ratio of CNT 

which is greatly high.   
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The results from Rojas-chapana et al 
121

 also indicated that there was a tendency of the CNTs to 

collect and adhere to lipid membrane structures. Later on, the application of CNT in voltage reduction 

in irreversible electroporation was presented in our group 
126

. Here, we have employed the lightning 

rod effect of CNT for irreversible electroporation not only to reduce the voltage requirements but also 

to improve the throughput of electrical cell lysis. 

 

4.3 Fabrication of Microfluidic channel  

We fabricated a microfluidic channel containing aligned CNTs. The assembly diagram of the 

fabricated microfluidic chip is depicted in Figure ‎4-2.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The channel has been cut off from a 75-µm-thick kapton polyimide film (DuPont). The film is 

sandwiched between an Indium Titanium Oxide (ITO)-coated sheet and stainless steel electrodes. The 

stainless steel electrode is covered by a patch of randomly aligned Multi walled CNT (MWNT) 

Figure ‎4-2 Assembly diagram of the components of the cell lysis microchip 
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(Xintek Inc, North Carolina, USA). In Xintek products, pre-synthesized CNTs are coated on the 

stainless steel through electrophoretic deposition (EPD). EPD is achieved via migration of charged 

particles dispersed in a solution toward an electrode under the influence of electric field
127,128

. 

Chemical Vapor Deposition (CVD) is widely used for the direct growth of CNT on a substrate but 

through high-temperature chemical reactions. EPD is, in contrast, cheaper and simpler. In this 

technique, as-synthesized CNTs are purified and then dispersed in a suitable liquid by sonication in 

room temperature for about 2 hours. The stainless steel substrate and a counter electrode are 

immersed into the CNT-containing medium. When a constant DC voltage is applied to the electrodes, 

CNTs start migrating toward positive electron. The more detailed procedure for fabrication of Xntek 

Inc’s‎products‎is‎found‎in‎literature‎
129,130

.        

In our designs, the channel is 1 cm long and 1 mm wide. SEM images of the Multi-walled CNT 

(MWNT) deposited on the electrode are illustrated in Figure ‎4-3. The length of the MWNTs is 6-8 

m and the diameter is 2-6 nm. The density of the aligned CNTs is estimated to be around 10
4
/cm

2
. 

 

(a) (b) 

Figure ‎4-3 SEM Image of MWCNT deposited on stainless steel electrode in front (a) and 

top (b) views. The scale bars are 2 m and 200 nm in (a) and (b), respectively 
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4.4 Preparation of Bacteria 

 

We chose Escherichia coli (E. coli) cells for lysis because bacterial cells are typically smaller than 

mammalian cells and the voltage required for lysis of bacterial cells is higher than bigger cells, as 

governed by equation (4.1). However, the presented approach can be applied for other types of cells 

as well. 

The E. coli cells were prepared as follows: Dh5 E. coli cells grown in Lysogeny Broth (LB) nutrient 

broth were incubated in a shaker at 37 C for 16 hours. Three milliliters of the solution was 

centrifuged for 15 minutes at 1750 rpm speed for two times. The resulting concentrated bacterial 

culture was rinsed and diluted with deionized (DI) water to around 0.03 OD670. The cells were kept in 

DI water no longer than half an hour before each experiment.  

 

4.5 Fluorescent Microscopy 

The cells were stained using the live/dead backlight bacterial viability kit (Invitrogen) consisting of 

two separate components of SYTO 9 and propidium iodide (PI). SYTO 9 and PI both stain nucleic 

acids. SYTO 9 penetrates through the bacteria membrane of all cells and stains them green so that it is 

used for counting the total number of cells while PI enters only bacteria with damaged membranes 

and the combination of the two stains produces red-fluorescing cells 
131,132

.  

One milliliter of the prepared cell suspension was mixed with 1.5 l of SYTO 9 and 1.5 l propidium 

iodide. The cells with intact membrane stain green while the cells with compromised membrane stain 

red. Images were taken by a digital camera (Nikon Digital Sight DS-U1) on a fluorescent microscope 

(Nikon Eclipse E600FN). The ratio of lysed cells over the whole cells which was averaged over 

several snapshots of sample cells determines cell lysis rate. Figure ‎4-4 shows the control references 

for no electroporation and fully electroporation.  
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No electroporation refers to the sample cells prior to lysis experiment and fully electroporation refers 

to the sample cells with the maximum rate of electroporation. The lysis rate of each experiment was 

calculated by analyzing the number of red and green spots in cell images. Cell lysis rate was obtained 

from the ratio of the number of red to total cells compared to the ratio in control references. As an 

example, Figure ‎4-5 is a snapshot of E. coli cells stained with the fluorescent dye, signifying the lysis 

rate of 53%. This ratio has been obtained by counting the number of green and red spots in the 

fluorescent images and analyzing the ratio of red to total spots in comparison with references. The 

lysis rates reported in the present work are the values averaged over several such snapshots. 

  

 

(a) (b) 

Figure ‎4-4 The images of stained cells with dye as control references for no electroporation (a) 

and fully electroporation (b). The scale bars are 50 m. 
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Figure ‎4-5 Sample picture of the cells stained with fluorescent dye. The green spots represent 

the cells with intact membrane and red ones are the cells with broken membranes. The scale 

bar is 50 m 

 

We verified the lysis rate by using Fluorospectrometer (NanoDrop, Wilmington, USA). The amount 

of live and lysed cells was quantified by the fluorescent emission intensities of the green (510-540 

nm) and red (620-650 nm), respectively. It was carried out by following the protocol provided by 

Invitrogen Company 
133

. The more detailed procedure is presented in ‎Appendix A. 

 

4.6 Experiment 

 
The cell lysis experiment was performed as follows: cell media was prepared as described in section 

‎4.4. The conductivity of the media containing DI water and fluorescent dye was as low as 1.4 µS/cm. 

Some control experiments were conducted prior to cell lysis experiments in both channels with and 

without CNT. At first we had to make sure that the microfluidic channels do not induce cell lysis. 50 

l of the prepared cell suspension was pumped to pass through the no-CNT channel, using a micro-
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peristaltic pump with adjustable flow rates (Instech Model P720). The images taken from the sample 

cells before and after passing through the channel were identical. It proves that microfluidic channel 

does not induce lysis. This experiment was repeated with the channel with CNT to prove that the 

presence of CNT does not cause cell lysis when no electric field is applied. It is proved by the 

pictures of the cells before and after they pass through channel with CNT. As depicted in Figure ‎4-6, 

the ratio of the red to total spots, representing the rate of lysis, does not change after the cells pass by 

MWNTs in the channel. It provides evidence that cell lysis does not occur when no voltage is applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

(a) (b) 

Figure ‎4-6 The images taken from sample cells stained with dye before (a) and after (b) they 

passed through CNTs without electric field. The scale bars are 50 m 
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A series of experiments were carried out with the operational voltage applied to the electrodes 

through chip carrier. AC voltages were supplied to the electrodes by a signal generator with the 

constant frequency of 100 kHz. It should be noted that even a normal DC voltage could be employed 

for cell lysis but would cause electrolysis and ohmotic heating. Therefore an AC field with high 

frequency is usually preferred to avoid electrolysis and consequent bubble generation. Nevertheless, 

the efficiency of AC field on cell lysis is diminished at very high frequencies 
60

. We experimentally 

found that at the frequency of 100 kHz the bubble generation is minimized and the resulting electric 

field is effective to achieve lysis.  

For each set of experiment, 50 l of cell suspension was pumped into the channel and two microlitter 

of the suspension was picked up after the experiment for fluorescent analysis. The lysis rate of cells 

was monitored before and after they experienced the electric field. The sample cells before 

experiment was considered as reference sample. After each experiment, the number of lysed and live 

cells was counted and compared with the reference sample.  

 

4.7 Results  

To evaluate the enhancement of using CNT to reduce voltage requirement during cell lysis, the 

prepared cell medium was pumped into the channel with the constant flow speed of 10 ml/hour. 

Figure ‎4-7 shows the comparison of cell lysis yield rate at different voltages with and without CNT. 

The V=0 was applied to the device as a control experiment. The identical lysis rates of zero were 

resulted for the both channels, proving that there is no influence of CNT on cell survival without 

electric field. It is observed that cell lysis increased as the operational voltage was increased. As seen 

in Figure ‎4-7, complete lysis without the presence of CNTs is achieved when the voltage is greater 

than 85 V. Complete lysis with the CNT is accomplished when the voltage is only 40 V. The 



 

 63 

corresponding cell lysis rate vs. operational voltage shows the enhancement of lysis in voltage 

reduction by using CNT.  

 

 

Figure ‎4-7 Comparison of cell lysis yield rate at different voltages with and without CNT. E. coli 

cells were continuously pumped into the microfluidic channel enclosed by electrodes  

 

 
  

Since the point-of-care testing devices are miniaturized, the amount of lysate required for downstream 

processes is subsequently reduced. To provide enough amount of intracellular biomolecules such as 

DNA and proteins for biochemical analysis processes, improvement in throughput of sample-

preparation processes, including cell lysis, has become more demanding. In our experiments, we 

characterized our device at two different flow rates, namely 20 ml/hour and 10 ml/hour, to investigate 

the effect of incorporating CNT on the throughput of cell lysis. We repeated the experiments of each 

set three times and four snapshots from each sample (similar to those depicted in Figure ‎4-6) were 

considered for cell counting. The results are presented in Figure ‎4-8.  
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With the higher flow rate, cells are exposed to the electric field for a shorter period of time and hence 

it is expected that the lysis yield rate is reduced, as seen in Figure ‎4-8. However, the device featuring 

CNT still maintains a higher lysis yield rate even at high flow rate. The enhancement of using CNT 

on the throughput of lysis is more considerable at lower operational voltages and higher flow rates. 

For example, at the voltage of 25 V, the lysis rate of the device with CNT is 10 times higher than the 

system without CNT at high flow speed.  It demonstrates that the presence of CNT not only enhances 

the voltage requirements of electrical cell lysis but also it improves the throughput of the device. 

 

 

Figure ‎4-8 Comparison of cell lysis rate in two different speeds of stream flow with and without 

the presence of CNT on one electrode 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 25 50 75 100 

C
el

l L
ys

is
  R

at
e 

(%
) 

Operational Voltage (V) 

NO CNT (High Speed) No CNT (Low Speed) 

With CNT (High Speed) With CNT (low speed) 



 

 65 

4.8 Discussion  

The CNT-mediated electrical cell lysis system presented in this chapter is considered as a great 

progress toward integration of cell lysis with other on-chip functions under the platform of LOC. 

However, there are a few points concerning the system that should be discussed.  

The first point is that the fabrication methodology used for making the microchannels does not 

provide room for real-time microscopy. This drawback has been overcome by using fabrication 

methodology for making polyimide-based microchannel that will be presented in ‎Chapter 5.  

The second challenge in relation with cell lysis is the fluorescent microscopic technique that we have 

used for evaluation of lysis rate. By using the commercial viability kit with two nucleic acid-based 

stains (PI and SYTO 9), we have considered damage membrane as the sign for cell lysis in order to 

evaluate the efficiency of cell lysis with CNT compared with no CNT. The comparison results are 

reliable due to the fact that the compromised membrane of cells represents the increase in 

permeabilization of the cell membranes as a consequence of exposure to electric field. However, by 

considering that the release of nucleic acids from the cell membranes is the purpose of cell lysis, it 

would be more suitable if the amount of targeted lysis product (DNA, RNA or any cytoplasmic 

components of interest) were measured to confirm cell lysis has occurred.  

As the last point, it should be noted that the enhancement of cell lysis achieved by the presence of 

CNT is analyzed in this chapter, but no investigation has been conducted for the influence of the 

configuration and orientation of CNT on the enhancement. The effect of morphology and density of 

CNT on field emission has been studied by Nilsson et al. 
134

. They have predicted that CNTs in the 

distance of about two times of their height will reach the maximum field enhancement factor (α in 

equation 4.3).  The prediction means further distance between CNTs does not increase the 

enhancement factor. The effects of inter-distance and morphology of CNT on the enhancement of cell 
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lysis should be theoretically and experimentally studied. We have suggested the study of these 

effective parameters for future works in section ‎6.3.  

 

4.9 Conclusion 

In this chapter, we have proposed a new electrical lysis system by incorporating aligned CNT on 

electrode. We proved that the incorporation of CNT reduces the required operational voltage to half 

due to the strengthened electric field at the tip of CNTs. Furthermore, CNT-featured lysis device 

maintains a higher lysis yield rate at high flow rate.  

The presented approach enables integration of cell lysis with other LOC functions where the bulky 

instruments are going to be scaled down into a high-throughput point-of-care testing device and the 

requirement for a separate power supply needs to be diminished.  

In addition to reduction in voltage requirements and improvement in throughput of cell lysis, 

strengthening electric field by CNT represents a useful approach for disrupting smaller cellular 

organelles and subunits that exist particularly in eukaryotic cells. 
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Chapter 5 

Single Cell Electroporation by CNT-featured Microfluidic Chip 

 

The content of this chapter has been published in Lab Chip, DOI: 10.1039/C3LC00014A 

 

5.1 Introduction 

Single cell lysis refers to the membrane disruption of individual cells in order to release and collect 

the intracellular components. Cell lysis is a part of sample-preparation procedures through which the 

lysis products, namely DNA, RNA and proteins, are provided for bio-genetics and point-of-care 

testing devices. Microelectromechanical systems (MEMS) have opened up tremendous possibilities 

for scaling down bulky laboratory instruments into micro-size chips with higher accuracy and 

sensitivity so that distinctions between individual cells can be analyzed. It has been understood that 

when bulky groups of cells are analyzed, the information obtained is averaged over a vast number of 

cells. As a result, individual characteristics are diminished. Therefore, single cell lysis has been of 

huge interest recently 
65

.  

Here, we report on application of CNTs for electroporation of mammalian cells. CNT has been 

widely utilized in MEMS application due to its unique specifications. The greatly high aspect ratio of 

CNT enhances electric field at its sharpest point, which is the tip of CNT. This well-known 

phenomenon has been broadly used in field emission where CNT acts as an electron-gun emitter. 

CNT has been widely utilized as an electron source in field emission (FE) 
135

. In applications of CNT 

in FE, the enhancement field at the tip of CNT, (which is applied in electroporation here), has been 

widely‎studied.‎The‎enhanced‎field‎by‎CNT‎is‎discussed‎under‎the‎physics‎of‎“lightning‎rod‎effect”‎

http://pubs.rsc.org/en/content/articlelanding/2013/lc/c3lc00014a#!divAbstract
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which justifies accumulation of charges over the sharpest feature of an object, thus leading to 

strongest electric field. 

We have presented the enhancement of lysis of bacteria cells in terms of throughout and voltage 

reduction in ‎Chapter 4.  In this chapter, we examine the effect of field enhancement by CNT on 

electroporation of single mammalian cells.  

 

5.2 Fabrication of CNT-embedded microfluidic chip 

Microfluidic channels were made of polyimide sheets (DuPont Kapton FN 300FN929), ITO-coated 

slides (Sigma Aldrich, 8-12‎Ω/sq,‎Cat.‎No.‎703192)‎and‎customized‎CNT-coated substrates (Xintek 

Inc, North Carolina, USA). The pattern of microchannel was cut out the polyimide sheet by using 

10.6‎μm‎CO2 laser engraving system (Universal Laser Systems, VLS2.30). As demonstrated at the 

left side of Figure ‎5-1, the polyimide sheet with the thickness of 75 µm was sandwiched between an 

ITO-coated microscope slide and a stainless steel sheet on which three patches of aligned CNT are 

pre-coated. The CNT coating by Xintek Inc. is explained in section ‎4.3. Inlet and outlet holes are 

featured through the stainless steel substrate at the sides of each CNT coatings.  
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Figure ‎5-1 Simplified illustration of the set-up for cell electroporation experiment. The chip 

components (shown in left) are thermally bonded under pressure. Polyimide sheet has been 

sandwiched between the substrates to structure microchannels 

 

The polyimide sheet has thin layers of Teflon FEP fluoropolymer on both sides as adhesion layers. 

Heated up to 280 ºC in vacuum, the Teflon layer rendered bonding to the top and bottom substrates 

under high pressure which was applied by a vise press. After bonding, six small blocks of 

prefabricated Polydimethylsiloxane (PDMS) were placed on the top of holes to secure attachment of 

tubing to the chip. Silicone tubing (VWR, Cat. No. CA62999-850) penetrated into the PDMS was 

connected‎ to‎ the‎ channels’‎ ports.‎ The‎ connection‎ was‎ then‎ sealed‎ by‎ epoxy‎ glue‎ thickened‎ with‎

fumed silica. The tubes are attached to the tip of syringes in a pump.  

Electrical connection to the ITO layer was attached, via extension in glass slide, to a conductive tape. 

Operational voltage was supplied by using a data acquisition system (DAQ) powered by USB port of 

a laptop. Fluorescent microscope (Nikon Eclipse E600FN) equipped with a CCD camera (CoolSNAP, 
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Turbo 1394 Series EZ) was used to take images of cells in microchannels in real-time.  The overview 

of the set-up is schematically illustrated in Figure ‎5-1 and SEM images of a CNT array are depicted 

in Figure ‎5-2. Multi-walled CNTs with 2-6 nm diameter and 6 µm height are randomly distributed on 

a stainless steel with average concentration of 10
4
/cm.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Preparation of CHO cells 

As a sample for mammalian cells, the Chinese Hamster Ovary cell line CHO-K1 (ATCC, Cat. No. 

CCL-61) was used in our experiments. Cell samples were prepared as follows: frozen cells were 

thawed in growth medium that was containing F-12‎Kaighns‎(Fisher‎Scientific,‎Cat.‎No.‎SH3052601)‎

and‎ supplemented‎ by‎ 10%‎ Fetal‎ Bovine‎ Serum‎ (Fisher‎ Scientific,‎ Cat. No. SH3039602) and 1% 

Penicillin / Streptomycin (Bio Basic Canada, BS732). The cells were then transferred to a cell culture 

(a) (b) 

Figure ‎5-2 SEM image of randomly oriented CNT on stainless steel substrate a) side view of 

a single aligned CNT b) top view of a CNT array 
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flask followed by incubation at 37 °C with 5% CO2. Cells were subcultured through the following 

procedure: the cell medium was aspirated from cell culture flask. After washing cells by PBS for two 

times,‎one‎milliliter‎of‎Trypsin‎0.25%‎(Fisher‎Scientific,‎Cat.‎No.‎SH3004202)‎was‎added‎to‎detach‎

cells. After five minutes incubation in room temperature, 7 ml of cell growth was added to the 

medium to stop trypsinization. Detached cells were then transferred into a tube and centrifuged at 300 

g for 1 minute.  The supernatant was discarded and electroporation buffer (10 mM phosphate buffer 

and 250 mM sucrose, pH 7.4) was replaced.  

 

5.4 Experiments and results 

Electroporation experiments were performed with two different types of chips: (i) with CNT; and (ii) 

without CNT. The prepared cells were loaded with Calcein AM dye, after being mixed with the dye 

solution in an incubator for 30 minutes at 37 ºC. The non-fluorescent Calcein AM which is cell-

permeable hydrolyses to the green fluorescent Calcein inside the cell. The Calcein-AM loaded cells 

were then washed by the electroporation buffer in order to minimize the green background in the 

buffer. The concentration of cells was adjusted to 1×10
6
/ml for the whole experiments. The cells were 

then pumped to the chips through the tubes. The pump was turned off once the cells reached the 

microchannel. When the target sample of cells became stationary, the pulse voltage with the 

frequency of 100 kHz was applied from the DAQ to the chip electrodes. The leakage of Calcein AM 

dye indicated electroporation. Electroporation of the target cells were imaged at frame rate of 2 Hz 

with exposure time of 30 ms.  

The voltage of zero was applied to no-CNT and with-CNT chips to make sure cells are not 

automatically electroporated as a result of being in the channels or being in contact with CNTs. 

However, the intensity of green spots is reduced due to natural fluorescence decay under prolonged 
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excitation lighting. The fluorescent decay has been illustrated in Figure ‎5-3 for sample cells in with-

CNT and no-CNT chips.  

The normalized measured intensities are fitted with the exponential equation of I=I0 exp
(-t/τ)

, in which 

the‎decay‎time‎constant,‎τ,‎represents‎the‎time‎scale‎for‎dye‎deterioration.‎The‎time‎constants‎of‎513‎

and 338 seconds are found for the sample cells in with and without CNT devices, respectively. 

Therefore the fluorescent decay is not significant during cell electroporation which normally occurred 

within a time scale of 10-20 seconds. And, no electroporation was indicated within this time scale 

when zero voltage was applied. 

 

 

 

 

Figure ‎5-3 Fluorescent decay of Calcein AM-loaded cells stayed in the chips under zero voltage, 

along with the fitting exponential curves 
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For cell electroporation, the voltage of 3.75 V was applied to a no-CNT chip at the frequency of 100 

kHz at t=5 s. As snapshots of cells in Figure ‎5-4 show, the cells experiencing electric field inside the 

channel were all electroporated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It shows the electric field provided inside the channel is strong enough to increase the permeability of 

CHO cell membrane so that the intercellular materials are released.  

The same experiment was carried out with a CNT chip. It was interesting that the majority of targeted 

cells were electroporated as expected, except for a few cells that remained completely intact. 

t=7s 

t=15 s 

t=2 s 

Figure ‎5-4  Electroporation of fifteen targeted cells loaded with green dye in a no-CNT 

microchannel. The walls of the channels are shown with red lines. The field (V=3.75 V) was 

applied at t=5 s; the dye leaked through the electroporated cell membranes. The yellow scale 

bar represents 50 µm 
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Snapshots of two examples of such survival have been depicted in Figure ‎5-5. It is an evidence that 

electroporation in CNT-featured device is position-dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The survival against high electric field in a CNT-featured device should be due to the non-uniformity 

of electric field generated by the presence of CNTs. Electric field near the tips of aligned CNT is 

greatly enhanced due to the lightning rod effect. The enhancement field is found to be dependent on 

the aspect ratio of CNTs and the distance between them 
136

, even though there is no consensus in 

literature on enhancement factor (α in equation 4.3) for field enhancement at the apex of CNT arrays. 

The non-uniformity of electric field results in stronger field near the tips and weaker field at the base 

of CNTs. To show the concept, two aligned CNTs with the aspect ratio of 1000 and the inter-distance 

of 100 µm have been simulated. The details of simulation process are provided in ‎Appendix B. The 

simulation results are shown in Figure ‎5-6. In the contour of electric field, demonstrated in Figure 

‎5-6a, the high intensity of lines near the tips represents strong field while the low density of them 

represents weak field. The strength of electric field along the red line crossing the middle height of 

CNTs is shown in Figure ‎5-6b. Without CNT, the uniform electric field with the strength of 500 

Figure ‎5-5 Examples of the few cells in a CNT-featured microchannel which survived high 

electric field 
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V/cm is provided (continuous line), by ignoring the fringe effect near the edges. With CNTs, the non-

uniform field is achieved while its maximum strength is about half of that without CNTs (dotted line). 

This results prove that electroporation of cells at the CNT-coated electrode is position-dependent so 

that cells staying near the base of CNTs can survive high electric field. However the inter-distance of 

CNTs can be adjusted to minimize the chance of such survival. 

 

 

Figure ‎5-6 Simulation results for two aligned CNTs with the aspect ratio of 1000 and the inter-

distance of 100 µm. The variation of strength of electric field along the red line in graph (a) is 

shown in graph (b).  
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The second experiment was performed under the operation voltage of 3 V. The electroporation was 

imaged from time t=0 until t=30 s. The electric field turned on at the time t=5 s. To quantify 

electroporation rate, the mean intensity of green spots were measured and normalized for targeted 

cells of each device in order to set the maximum to one. The image analysis results have been 

depicted in Figure ‎5-7. The number of target cells for no-CNT chip and with-CNT is 15 and 16, 

respectively. It is seen that at this voltage, the electric field is not strong enough to electroporate all 

the cells. It is also noticeable that single cells show individual rate of leakage through their 

membranes. Averagely, with the presence of CNT, electroporation was completed within a shorter 

time compared to when there was no CNT. It is also obvious that more cells have experienced 

electroporation when exposed to the field of CNT.  

 

 

 

Figure ‎5-7 Degradation of the mean intensity of Calcein AM-loaded CHO cells when exposed to 

the field (V= 3 V) applied at t=5 s 
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To compare electroporation rate more accurately, more experiments were performed and the number 

of electroporated cells and survived ones was compared for a population of 95 cells and 54 cells in 

with-CNT and no-CNT devices, respectively. The result is illustrated in Figure ‎5-8. The 

electroporation rate is calculated based on the number of cells whose mean intensity has reduced 

(from 1 to 0.2), over the total targeted cells. It is found that the electroporation rate at the voltage of 3 

V is 72% higher compared to a no-CNT chip   

 

 

Figure ‎5-8 Comparison of electroporation rate of no-CNT and with-CNT devices for V=3 V 

 

5.5 Discussion 

This project has attained two goals: i) enhancement of single cell lysis by utilizing the field 

enhancement of CNT in cell lysis, ii) development of a great approach to integrate CNT with 

microfluidic channels. However, there are some challenges involved with CNT-mediated cell lysis 

that are discussed here.    
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Concerning the integration of CNT with electrical cell lysis, it is important to know how much of 

nucleic acids attach to CNTs after electroporation. It is known that DNA and proteins tend to attach 

CNT by their nature, but it occurs in a considerable quantity under certain conditions that are not met 

in our experiments. The adsorption of double-stranded DNA (dsDNA) on MWNT has been reported 

to occur after MWNTs are mixed with DNA solution for 24 hours 
137

. In our experiments, the device 

electroporates cells in a few seconds and the lysate can be taken out of the chip immediately after. 

Therefore, we do not expect considerable adsorption of DNAs to CNTs within the short time. 

Modifications/functionalizations of CNTs, such as covalent functionalization of CNT, is often 

performed to promote attachment of DNA  
138–140

. The fact that a broad range of functionalization 

techniques have been developed demonstrates that the adsorption is not significant without a 

functionalization process. Dwyer et al. 
140

 have presented the use of CNT for immobilization of DNA 

via covalent functionalization of CNT. They found from their control experiment that DNA does not 

interact with CNT non-specifically. They have reported near zero immobilization in experiments 

without involving functionalization. The adsorption of biomolecules to CNT can be minimized in 

different ways. It is reported that Single-walled CNTs (SWNTs) have fewer defects when compared 

to MWNTs so that they have fewer sites for immobilization of DNA 
141

. Therefore SWNT is a 

preferred candidate if adsorption is to be minimized or even eliminated. Furthermore, CNTs could be 

functionalized in a way such that any absorption of DNA/protein can be minimized. .  

Notwithstanding with the above-mentioned reasons, we were still interested to measure the content of 

DNA released out of the cell as a result of cell lysis. Cell lysis refers to the disruption of the cell 

membrane, with the goal of releasing the intracellular components out of the cell. Therefore, 

comparison between the content of DNA collected from the CNT chip with that collected from a no-

CNT chip could explain the enhancement of cell lysis by CNT in terms of the obtained DNA.  We 

followed a protocol of a commercial DNA extraction to measure the amount of DNA released from 
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the chips and compared them with a baseline as the reference for the maximum amount of DNA 

obtained after chemically lysing cells with a lysis buffer.  

After cells experienced cell lysis in the chips, the lysate was collected and DNA extraction of the 

lysate was performed. This was done using a DNA extraction kit (illustra tissue and cells 

genomicPrep Mini Spin Kit, GE), designed for use with mammalian tissue and cells. The resulting 

DNA suspension was analysed using a spectrophotometer (Thermo Scientic Nanodrop-1000). 

Because the kit includes a chemical lysis step, it would lyse all the cells including those not lysed by 

the microfluidic chip. To avoid this, the lysate was first centrifuged at 2000 g to drive the live cells to 

the bottom of the tube while keeping the lysate in the suspension. The supernatant was used for the 

DNA extraction measurements. However, the results of these attempts at measuring lysis were 

inconclusive because the measured DNA content in lysate did not match the baseline. A very weak 

absorption across the entire spectrum was observed that could be indicative of sample contamination 

rather than the DNA content. It is most likely due to the fact that lysis of plasma membrane does not 

necessarily leads to disruption of nuclear membrane wherein DNA is enclosed.  

The concept of selective lysis of nuclear membrane or plasma membrane has not been much 

addressed yet in the literature of LOC. Lu et al. 
60

 have presented a modeling scheme to predict an 

optimum frequency of electric field that causes the disruption of plasma membrane but not 

intracellular organelles. The basic of it is understood from the equation (4.2) that the charging time 

constant (representing the time required for transmembrane potential to be charged) is proportional to 

the size of the structure that is targeted for lysis. In AC fields, the charging time constant is 

determined by the frequency of electric field. Based on the modeling results of Lu et al. 
60

  it is found 

that 100 kHz frequency, which we have used throughout our experiments, is effective on lysis of 
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plasma membrane but should not be much effective on disruption of nuclear membrane. This 

assumption most likely explains why we could not detect much DNA in our experiments.  

 

 

5.6 Conclusions 

We reported on the field enhancement by CNT applied in cell electroporation. The point of the work 

is to show how enhanced electric field near the tips of CNT improves cell electroporation. To test the 

hypothesis, a straight-forward fabrication methodology was presented to embed randomly aligned 

CNT in a micro-electric channel. The cells exposed to electric filed inside the channel leaked their 

intercellular components. Calcein AM as a cell-permeant dye was used to show electroporation in 

real-time under fluorescent microscopy. The results show that at a lower voltage than the threshold 

(3V), the CNT chip provides 72% higher electroporation rate. The proposed device eases integration 

of cell electroporation with high-voltage requirements with other on-chip functionalities with low-

voltage requirements. 
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Chapter 6 

Contributions, Conclusions and Future Work 

This thesis presents new developments in electrical cell lysis realized in lab-on-a-chip (LOC). LOC 

has raised unique possibilities to scale down cell manipulation systems into cellular level to achieve 

higher performance and accuracy. Among the systems employed for cell disruption, electroporation 

without chemical reagents provides many advantages but suffers from some limitations. 

Contributions of this work are the proposed schemes to overcome the limitations. 

6.1 Contributions 

The three major contributions are presented as follow: 

 

1. To overcome the high-cost and difficult lithography processes involved in fabricating cell 

lysis microchips, a new methodology of making electro-microfluidic channels is proposed. 

Mostly derived from semiconductor industry, photolithography is currently the common 

method for fabricating microfluidic chips. Traditional lithography consists of several 

micromachining processes with high-tech instrument that is expensive, complicated and 

labour-intensive. We have developed a fast and easy-to-implement methodology of making 

electrical microfluidic devices using a 30 W CO2 laser for patterning polyimide. Polyimide is 

used in microfluidic devices especially in those for biological treatments. It is because 

polyimide has excellent properties such as good thermal and chemical stability, low 

absorption of small molecules that makes it fairly biocompatible. Laser ablation of polyimide 

is fast, detailed, controllable and very flexible, and has been used in microfluidic fabrication. 

Nonetheless, laser systems are mostly excimer lasers that are massive with sophisticated 
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systems for handling the toxic gas used. Different from the recently-emerged idea of making 

biochips entirely out of polymers, we used ITO-coated glass slides in our chips as substrates. 

This removes the issue of thermal expansion mismatch when depositing metal on polymer. 

Unlike the common bonding techniques with involvement of solvents, we have bonded 

polyimide to ITO-coated glass by the use of thin layers of pre-coated FEP on polyimide, as 

adhesion layers. It is carried out via simple thermal lamination techniques. Optical 

transparency of ITO-coated glass slides enables convenient fluorescent microscopy, with high 

magnification, in real-time. By means of the fabricated lysing devices, the voltage produced 

by a USB port of a computer is found high enough for electroporating CHO cells. Although 

the proposed methodology is applied in electroporation, it has the potential to be utilized in 

any other electro-functional mechanisms such as cell/particle separation by DEP, described in 

section ‎6.3 as a future work. 

2. To ease the high voltage requirement and to improve the low throughput of MEMS-based cell 

lysis devices, incorporation of CNT into electrical cell lysis has been presented. CNT has 

been broadly integrated with microdevices due to its unique physical, electrical and 

mechanical properties suitable for MEMS applications. We proposed taking advantage of the 

substantially-high aspect ratio of CNT in order to manipulate distribution of electric field so 

that it becomes more effective on cell lysis. To prove the proposed hypothesis, we have 

fabricated prototypes of microchannels in which one electrode is coated by vertically aligned 

CNT. Bacteria cells are passed through the forest of aligned CNT in the microchannel, 

experiencing non-uniform electric field that is much stronger near the tip of CNTs.  

Therefore, lower voltages supplied to the chip result in enhanced electric field or, 

alternatively, the locally-enhanced electric field performs cell lysis in a shorter time. The 

former outcome means a reduction in operational voltage and the latter represents 



 

 83 

improvement in throughput of cell lysis.   

3. The application of CNT in cell lysis has been further developed by utilizing CNT in single 

cell electroporation. We have advanced the microchannel fabrication methodology so that 

CNT-featured microfluidic chip with electrical functionality has been created. The fabricated 

electroporation device is capable of performing single cell electroporation of mammalian 

cells with higher efficiency. The fluorescent microcopy technique has been revised so that 

electroporation of individual cells through the forest of CNT is feasible in real time. The 

effect of the enhanced electric field by CNT on electroporation of CHO cells has been studied 

and the voltage requirement of it has been compared with a no-CNT device. In addition to 

voltage reduction for mammalian cell electroporation, the achievement toward integration of 

pre-synthesized CNT with microfluidic chips is considerable. The proposed integration 

scheme applied in cell electroporation can be employed for other applications in which CNT 

is desired to be placed inside microchannels.  

6.2 Conclusions 

The followings are the summarized conclusions of the thesis: 

1. Among the variety of principles employed to perform cell lysis, electrical method is the best 

candidate for cell lysis to be integrated with other MEMS-based functions. However, high-

cost and complexity in embedding electrodes in microchannels, along with the high voltage 

requirements for cell lysis as well as the low throughput of flow-through microfluidic devices 

are found the main limitations in electrical cell lysis.  

2. We have presented a new methodology of fabricating electro-microfluidic chips for cell 

electroporation. The methodology combined several low-cost and straightforward techniques 

that lead to realization of micro-channels with electrical functionalities and suitability for 
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real-time microscopy. The performance of the fabricated chips has been tested on cell 

electroporation. The results confirm the feasibility of the use of the methodology in making 

electrical cell manipulation systems. 

3. We have introduced the use of CNT in electrical cell lysis. Microfluidic chips with and 

without CNT have been fabricated and bacterial lysis has been performed. The enhancement 

by the use of CNT is evaluated in terms of voltage reduction and throughput improvement. 

The results show that by integrating CNT in electrical lysis, the required voltage for full lysis 

of bacteria is reduced by half and the lysis throughput at low voltages is improved by ten 

times.  

4. We have exploited the electric field enhancement by CNTs to realize low-voltage single cell 

electroporation. A microchip with embedded aligned CNTs has been developed to test the 

effect of the enhanced electric field on electroporation of mammalian CHO cell. The results 

show that at a voltage as low as 3 volt, the electroporation yield rate is increased by 72% with 

the incorporation of CNT. This enhancement is a promising advancement towards integration 

of low-voltage electroporation with other low-voltage cell manipulation techniques.   

 

6.3 Future Works 

The following suggestions can be considered for the continuation of the work: 

1. The influence of the form of electric field on cell electroporation has been widely studied but 

there is not yet a report on the optimum number of times that cells require to experience high 

field until electroporated. The results of the study will be valuable because of two reasons: first, 

the lysis products may be defected as a result of being exposed to electric field for more times 
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than required and second, the lysing process or the size of the lysis chip will be optimized if the 

optimum number of field exposure is known.  

The study can be carried out by following the methodology of making cell lysis devices 

presented in ‎Chapter 3, with some revisions. Instead of the ITO-coated substrates, glass slides 

can be used as the top and bottom substrates but the inlet and outlet fluidic ports are made with 

metal tubes. The straight channels have a number of orifice gates through which the cells 

experience high electric field while passing. A schematic view of such device is shown in 

Figure ‎6-1. A DC power supplier is enough to apply voltage to the metal inlet and outlet ports 

that are acting as electrodes as well.  

AC

 

Figure ‎6-1 Illustrative scheme of the microchannels capable of lysing cells while experiencing 

high field at the orifice gates 

 

Electric field along the channel will be non-uniform due to the variation of the cross-section of 

microchannels, as simulation result shows a sample in Figure ‎6-2.  
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Figure ‎6-2 a) A sample contour of electric field simulated by COMSOL in a microchannel with 

orifice gates, b) Variation of electric field along the middle of the channel 

 

In this scheme, cells will experience alternating field not supplied with an AC signal generator 

but from a DC supplier inside a geometrically-varying channel. It makes fabrication and 

electrical operation straightforward. The number of spikes along the path of cells is considered 

as a representative of the number of times cells experience high electric field. The point of the 

research is to figure out the optimum number of field exposure to a certain type of biological 

cell until the cell is lysed. Individual cells can be tracked while passing through the gates and 

their health level can be monitored on-chip via fluorescent microscopic techniques, similar to 

the protocol that we followed for electroporation of CHO cells (described in ‎Chapter 3). For 

the case of population cell lysis, microchannels with different number of gates can be 

(a) (b) 
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fabricated and off-chip fluorescent techniques can be utilized to analyze the lysis rate, similar 

to the one used for bacterial lysis (described in ‎Chapter 4).  

2. The fabrication methodology of electro-microfluidic channels (introduced in ‎Chapter 3) can be 

implemented into other electrical cell manipulation techniques such as cell/particle separation 

through Dielectrophoresis, (DEP) concept. Separation under the physics of DEP refers to the 

phenomenon through which particles in a non-uniform electric field experience a force whose 

direction and strength is defined by the specifications of the particle and surrounding medium 

142
. To achieve separation of two types of cells or particles, a micro-device with two diverging 

channels is suggested to be fabricated by following the fabrication procedure explained in 

Chapter 3. Two polyimide films, two ITO-coated glass slides and inlet/outlet tubes can be 

assembled in the order depicted in Figure ‎6-3. The pattern of each microchannel is cut off the 

polyimide sheet. The width of one channel must be wider than the other one.  

 

 

ITO-coated glass 

First Polyimide film 

Second Polyimide film 

ITO-coated glass 

Narrow channel 

Wide channel 

Outlet tubes 

Inlet tubes 

Figure ‎6-3 Schematic illustration of the assembly components of the microchip for cell/particle 

separation application 
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A simple simulation of the electric field at the step-shaped cross-section of the design reveals that 

elecric field will form non-uniformly in the channel so that cells or particles will approach toward 

either top or bottom of the channel, depending on DEP specifications. A sample of a non-uniform 

electric field across the separating channels is shown on the left side of Figure ‎6-4, and the variation 

of field along the vertical line (red line) at the middle of the cross section is shown on the right side of 

Figure ‎6-4. The top and bottom section of channel are in 100 µm and 200 µm width, respectively, and 

the height of each section is 50 µm. When particles are traveling toward the end of microchannels, the 

top and bottom sections of channel diverse. It leads to separation of  the particles passing through the 

narrow section from those passing through the wide section.  

 

 

 

 

 

Figure ‎6-4 A sample simulation of electric field in a step-shaped channel (left); variation of the 

strength of electric field along the red line at the middle of channel (right). Dimensions are in 

cm.   
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3. As discussed in ‎Chapter 4, the enhancement of cell lysis by means of CNT is studied in this 

thesis, but not on the influence of the configuration and orientation of CNT on the 

enhancement. A sample simulation of strengthened field around a group of three CNTs, shown 

in Figure ‎6-5, demonstrates that the adjacent CNTs have influence on the electric field of each 

other.  The variation of electric field along the line across the tip of the three CNTs, depicted in 

Figure ‎6-5b, shows that the maximum strength of field at the tip of the middle CNT is lower 

than the other two.  

 

 

 

 

 

 

 

 

 

 

To find the optimal inter-distance of CNTs for cell lysis, a parameter -we call it “effective lysis 

area”- can be defined. The effective lysis area is the area in which the electric field is high 

enough for cell lysis to the whole area of interest. The largest effective lysis area represents the 

Figure ‎6-5 a) Sample of simulation results for the electric field and potential lines for three 

CNTs in 5m distant away, b) Strength of electric field varying along the line across the tip 

of CNTs  
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maximum enhancement of cell lysis. The variation of it against the inter-distance of CNTs will 

obtain the optimal state in which CNTs provide the maximum field enhancement. As a 

suggestion for the continuation of the application of CNT in electrical lysis, the optimum 

configuration of CNT can be studied analytically and experimentally.  
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Appendix A 

Fluorescence Spectroscopy and Data Analysis 

Fluorescent spectroscopy has been widely used in cell biology to quantify the viability of cells. We 

quantified the lysis rate based on the fluorescence emission spectrum of tagged cells. We used 

fluorescent dye to determine cell lysis rate, using the live/dead backlight bacterial viability kit 

(Invitrogen) consisting of two separate components of SYTO 9 and propidium iodide. One milliliter 

of the prepared cell suspension was mixed with the dye containing 1.5 l of SYTO 9 and 1.5 l 

propidium iodide. 

By using Fluorospectrometer (NanoDrop, Wilmington, USA), emission spectrum of stained cells was 

obtained when the excitation wavelength was centered at 485 nm. The amount of live and dead cells 

was quantified by the fluorescent emission intensities of the green (510-540 nm) and red (620-650 

nm), respectively.  

We prepared different volumes of live and dead cell suspensions to achieve known relative proportion 

of live to dead cells. The reference live cells were cultured by following the protocol explained in 

section ‎4.4 and the reference dead cells were obtained when the live cells were stayed at room 

temperature until they all died. Two microlitter of each suspension was excited at the wavelength of 

485 nm under the fluorospectrometer, and the emission spectra of these suspensions of dead and live 

cells were recorded, as illustrated in the following figure. This graph is used as a reference for 

quantifying cell lysis rates. The integral of the intensity curves of the green and red emission 

represent the amount of live and dead cells, respectively.  
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Reference emission spectra of various proportions of live and dead cells. The cells are stained 

with fluorescent dye and relative known proportions of live to dead cells are mixed. The 

integral of the intensity curves of the green and red emission represent the amount of live and 

dead cells, respectively 

 

We calculated the ratio between these two integrals and fit a linear relationship between cell viability 

and the green/red fluorescence ratios, as shown in the graph below. We visually verified the cell 

viability by counting the green and red cell spots in the images of samples of cells taken through a 

fluorescent microscope before and after each experiment. 
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The fit of a linear relationship between the ratio of the green/red fluorescence intensity and 

viability rate of cells. The relation has been used as a reference to quantify cell lysis rate 
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Appendix B 

Electrostatic Simulation 

The 2-dimensional application of electrostatics of dielectric materials in COMSOL 3.5a has been 

used to simulate electric field between parallel electrodes with CNT arrays on one electrode
143

.  The 

domain is a rectangle in 200 x 300 m dimension. The CNT models are subtracted from the 

surrounding dielectric domain of air. Two CNTs in 60 nm diameter and 60 m height are located at 

the bottom electrode with 100 m distance between.  As boundary conditions, the CNTs and the 

bottom electrode were grounded and the voltage of 15 V was applied to the top electrode. The 

condition of side walls were set as symmetric boundaries. Triangular mesh elements were applied in a 

non-uniform distribution, as created by the default settings of COMSOL. The maximum mesh density 

has been observed near the CNTs, illustrated in the following figure. To show the grid-size 

independency, the point x=100 and y= 30 m has been considered as the reference point at which the 

strength of electric field with different number of mesh elements has been calculated. As seen, E at 

the reference point is not dependent on the mesh elements when more than 40,000 elements are 

created.  
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Ref point 

Scheme of mesh grids b) Strength of electric field (E) at the reference point (x=100 and y= 30 m) vs. 

the number of mesh elements 
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