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Abstract

With the rapid growth of video services on smartphones such as video conferencing, video

telephone and WebTV, implementation of video compression on mobile terminal becomes ex-

tremely important. However, the low computation capability of mobile devices becomes a bot-

tleneck which calls for low complexity techniques for video coding. This work presents two

set of algorithms for reducing the complexity of motion estimation. Binary motion estima-

tion techniques using one-bit and two-bit transforms reduce the computational complexity of

matching error criterion, however sometimes generate inaccurate motion vectors. The first set

includes two neighborhood matching based algorithms which attempt to reduce computations to

only a fraction of other methods. Simulation results demonstrate that full search local binary

pattern (FS-LBP) algorithm reconstruct visually more accurate frames compared to full search

algorithm (FSA). Its reduced complexity LBP (RC-LBP) version decreases computations signif-

icantly to only a fraction of the other methods while maintaining acceptable performance. The

second set introduces edge detection approach for partial distortion elimination based on binary

patterns. Spiral partial distortion elimination (SpiralPDE) has been proposed in literature which

matches the pixel-to-pixel distortion in a predefined manner. Since, the contribution of all the

pixels to the distortion function is different, therefore, it is important to analyze and extract these

cardinal pixels. The proposed algorithms are called lossless fast full search partial distortion

elimination ME based on local binary patterns (PLBP) and lossy edge-detection pixel decima-

tion technique based on local binary patterns (ELBP). PLBP reduces the matching complexity

by matching more contributable pixels early by identifying the most diverse pixels in a local

neighborhood. ELBP captures the most representative pixels in a block in order of contribution

to the distortion function by evaluating whether the individual pixels belong to the edge or back-

ground. Experimental results demonstrate substantial reduction in computational complexity of

ELBP with only a marginal loss in prediction quality.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, the demand for video communication is increasing with the development of mobile

communication systems such as videophone and digital multimedia broadcasting. 3G technolo-

gies and faster internet access enable us to use video conferencing and WebTV on mobile devices.

Therefore, the limited bandwidth and computation capability demand faster video compression

techniques. Motion Estimation (ME) has been widely used in many applications, but it is re-

garded as the most computationally intensive part [29]. Block matching algorithm (BMA) as

shown in Fig. 1.1 is the simplest and most popular ME algorithm. But, its huge computational

complexity makes it impractical for real-time applications. Therefore, low complexity ME algo-

rithms with reasonable visual quality of compressed frames are required.

Several fast techniques have been proposed in literature that reduce the computational com-

plexity of Full Search Algorithm (FSA). These include algorithms that either try to reduce the

search space effectively or by reducing the number of representative pixels to be matched be-
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(a) Previous frame (b) Current frame

(c) Prediction with displacement vectors (d) Motion-compensated prediction error

Figure 1.1: Block-based Motion Estimation procedure.

tween candidate and test blocks. There are two categories of these algorithms: lossless whose

performances are the same as that of FSA and lossy which suffers from performance degradation

at the cost of computational efficiency. A survey of some of these algorithms has been done in

Chapter 2.
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1.2 Summary of Contribution

In this work, we analyze the pixel-to-pixel distortion error between the block to be coded and the

test block using local binary pattern (LBP) [44], and we propose two ME algorithms based on

neighborhood matching and two ME algorithms based on edge detection.

Full search local binary pattern (FS-LBP) block motion estimation essentially captures the

neighborhood information around a central pixel which is used as the matching criterion along

with the pixel intensity values which has been used alone in classical sum of absolute differ-

ences (SAD) till now. It is shown that the proposed LBP based block motion estimation results

in visually more accurate frames compared to Full search algorithm (FSA). It provides better per-

formance in terms of structural similarity (SSIM) of the FS-LBP reconstructed frames. However,

it is computationally intensive, therefore a reduced complexity LBP (RC-LBP) is also proposed

which reduces computations significantly to only a fraction of the other methods while maintain-

ing acceptable performance.

A lossless fast full search partial distortion elimination ME based on local binary patterns (PLBP)

and a lossy edge-detection pixel decimation technique based on local binary patterns (ELBP) has

also been proposed. PLBP is based on the generation of a good sequence for matching pixels

using the diversity information at the local level. The matching order is derived such that the

pixels which have more non-uniformity around itself contribute more to the distortion function.

Experimental results show that they reduce the computations by 28% over spiral partial distortion

elimination (SpiralPDE) [1]. It has also been shown that not all pixels are necessary in evaluat-

ing the SAD distortion function and that only a subset of these containing important information

about the local texture of the image can be used to obtain similar results. Thus, ELBP has been

proposed which extracts these cardinal pixels efficiently. It has been compared with other pixel

decimation based lossy approaches, and there is a significant computational gain.
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1.3 Thesis Organization

The thesis is organized as follows. Chapter 1 presents the motivation behind the work and the

contributions. We discuss various algorithms categorized under three broad classes in Chapter 2.

A general overview of local binary patterns is provided in Chapter 3, where we discuss the bene-

fits of using LBP approach in motion estimation. In Chapter 4, we discuss the two neighborhood

matching algorithms based on local binary patterns providing extensive analysis and simulation

results. We further discuss edge detection approaches for partial distortion elimination based

motion estimation in Chapter 5. We conclude the thesis in Chapter 6.
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Chapter 2

General Background: Motion Estimation

and Related Work

In Block matching algorithm, the current frame is divided into a matrix of macroblocks (MB)

which are then compared within the MB’s search range in the reference frame to come up with

motion vectors (MV) according to a certain matching error criterion such as sum of absolute

differences (SAD) or the sum of squared differences (SSD). The full search algorithm exhaus-

tively searches for the minimum cost at each possible location in the search window thus giving

optimal motion vectors.

The SAD of two blocks of size N×N is given in (2.1),

SAD(m,n) =
N−1
∑

i=0

N−1
∑

j=0

|I t(i, j)− I t−1(i+m, j + n)| (2.1)

where I t and I t−1 are the pixel intensity values of the current and the reference image frames,
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and (m,n) denotes the candidate block displacement. The motion vector is given in (2.2),

MV = {(u, v)| SAD(u, v) ≤ SAD(m,n); − s ≤ m,n ≤ s} (2.2)

For a search range of ±s, the motion vector of current block is the one with minimum SAD

among the (2s+1)2 search positions. As mentioned earlier, FSA has been improved by reducing

the search space for candidate block (fast searching) [11, 24, 30, 32] and by reducing the number

of matching pixels for SAD calculations (fast matching) [25, 53]. It is important to note that

the matching process is nested into the searching process. Many new reduced computational

complexity techniques have been proposed in literature. Some of them can be categorized into the

reduction in search positions, the simplification of matching criterion and the bitwidth reduction

techniques. The following subsection provides a brief overview of these categories. Although,

many hybrid methods [22, 35] are also reported in literature which make use of a combination

of these categories but basic categorization is made depending on the main characteristic of a

particular approach. The following section provides a brief overview of both lossless and lossy

techniques for these approaches.

2.1 Fast Searching Techniques

Fast searching approaches involve pruning the search space effectively with or without a loss

in prediction performance. The key idea is to reach the optimal MV in a minimum number of

searches by decimating the search space and looking into the region of low distortion.

One of the earliest algorithms that reduced the number of search positions was the Three-

Step-Search (TSS) introduced by Koga [28]. It became very popular because of its simplicity,

robustness and near optimal performance. It recursively searches for the best MV in a coarse

6



Figure 2.1: Three Step Search Procedure [3].

to fine search pattern. A sample procedure for a search range of ±7 in a macroblock is shown

in Fig. 2.1. It starts with the search location at the center and sets the step size S = 4. It then

searches at the eight positions ±S pixels around around the center. From these nine locations

searched so far it picks the one with the least distortion cost and makes it the new search origin

but now, it sets the new step size S = S/2, and then repeats in a similar fashion for two more

iterations until S = 1. At that point it finds the location with the least cost and the macroblock at

that location is the best match. Therefore, in this case it reduces the computational complexity

by a factor of nine. The main assumption that was used in TSS is that there is a monotonic

7



increase in the the distortion as the search position deviates from the optimal position. Thus,

it effectively computes the near-optimal MV by decimation of search positions. However, as it

uses a uniformly allocated checking point pattern in the first step, it becomes inefficient for small

motion estimation.

Addressing this issue, a center-biased New Three-Step-Search (NTS) [33] was proposed. The

TSS uses a uniformly allocated checking pattern for motion estimation and is prone to missing

small motions. In the first step sixteen points are checked in addition to the search origin for

lowest cost. Of these additional search locations, eight are a distance of S = 4 away (like TSS)

and the other eight are at S = 1 away from the origin. If the lowest cost is at the origin then the

search is stopped and the motion vector is set to (0, 0). If the lowest cost is at any of the eight

locations at S = 1, then the origin of the search point is changed to that point and checks are

made adjacent to it. On the other hand, if the lowest cost after the search step was one of the

eight locations at S = 4, then the normal TSS procedure is followed. Thus, it makes the search

adaptive to the motion vector distribution by checking an additional eight neighbors to the center

pixel.

A Four-Step-Search (4SS) [47] was also proposed which is similar to NTS. It is center-biased

and has a half-way stopping technique but it uses a smaller initial step size compared to NTS.

Fig. 2.2 shows a sample procedure. 4SS sets a fixed pattern size of S = 2 for the first step

independent on the value of the search area. Thus it calculates the cost at the nine locations in

the 5×5 window. Therefore, depending on the location of the least cost, it may either check

three or five locations. Once again if the least cost location is at the center of the search window,

it jumps to the fourth step or else it continues with the third step. In the final step, the search

window size is set to 3×3, and search radius is dropped to 1.

Diamond Search (DS) proposed in [59] does not fix the search window size, alternatively, it

employs the use of large diamond search (LDS) pattern and small diamond search (SDS) pattern

8



Figure 2.2: Four Step Search procedure [3]. The motion vector is (3, -7).
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Figure 2.3: Diamond Search procedure. This figure shows the large diamond search pattern and

the small diamond search pattern. It also shows an example path to motion vector (-4, -2) in five

search steps-four times of LDS and one time of SDS [3].
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Figure 2.4: Adaptive rood pattern [43].

instead of the square shaped pattern as shown in Fig. 2.3. LDS is used in all the steps except for

the last step in which the minimum distortion occurs at the center of the pattern, upon which SDS

is used to obtain the MV. This approach significantly reduces the computational expense while

achieving PSNR close to FSA. Adaptive Rood Pattern Search (ARP) [43] was proposed in order

to overcome essentially two problems in DS. Firstly, in low motion content videos DS would

oversearch by performing unnecessary LDS search while it can directly do the SDS. Secondly,

in high motion content videos DS can be trapped in a local minima or it leads to a longer search

path. ARP uses the fact that the MV of a macro-block can be effectively predicted from its

neighboring macro-block (as shown in Fig. 2.4). Thus using the MV of the immediate left MB

as the first step size, it carries on SDS until the center pixel is the minima. Some other algorithms

in this class are [13, 17, 40, 42, 46, 50, 57, 58].
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2.2 Fast Matching Techniques

In FSA, all the pixels in a macroblock are used to determine the distortion function when match-

ing the current frame to the reference frame. Thus, for a macroblock of size 16×16, the SAD

distortion is calculated for all the 256 pixels which leads to the high computational complexity of

FSA. Thereby, reducing the number of pixels by selecting only a subsample of these samples can

reduce computations significantly. Some examples for various pixel decimation patterns have

been shown in Fig. 2.5.

In [4], a quarter subsampling pattern was used which reduced the computations by a factor of

four. A hexagonal subsampling pattern [36] was used to overcome the drawback of aliasing effect

without filtering. It is a popular belief that human visual system detects motion by processing

edge signals [48]. Therefore, it makes sense to imitate human brain by using edge information

but the main problem in such system arises when the video is quite uniform or when it is very

noisy. In [10], a local pixel decimation scheme was proposed which divided the block into several

regions and selecting more number of pixels from texture rich regions and it was subsequently

improved in [8]. In [7], an edge oriented motion estimation was proposed. Hilbert scan was

used in [53] to extract the global edge pixels in a one dimensional space. The algorithm does

not divide the block into regions but it selects pixels only when they have important features.

In [39], another fast matching method (FFSSG) based on pixel ordering was proposed. FFSSG

attempts to sort the contributions to the gradient between the pixels to quickly discard invalid

blocks. It proposes a more general framework for approaches used in [8] and [26]. In [26], the

authors use Taylor’s expansion to show the fact that the matching distortion at a certain position

is proportional to the gradient magnitude of the reference block. The two algorithms are similar,

but [26] uses a local area based gradient sorting, while FFSSG works on pixel based gradient

sorting. Another pixel decimation approach using boundary-based (B4Q4) and genetic algorithm

12



(a) Full pattern (b) Quarter pattern (c) Hexagonal pattern

(d) Rectangular pattern (e) Quincunx pattern (f) 4-Queen pattern

(g) 8-Queen pattern

Figure 2.5: Various pixel decimation patterns [52].
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based (BVG11) patterns was proposed in [49]. The authors speed up the process by matching

the boundary regions only based on the observation that new objects usually enter macroblocks

through their boundaries. They improve the boundary-based approach further, by performing a

genetic-algorithm based search to find optimal set of pixels to be used for matching in order to

have better spatial homogeneity and directional coverage.

Other algorithms such as pixel difference classification (PDC) [20], MiniMax criterion [12]

were proposed in literature but it was observed that the N-Queen patterns [52] performed better

than most in terms of reconstructed video quality and speed. In N-Queen pixel decimation ap-

proach, the spatial information of a N×N macroblock had been fully represented by the least

number of pixels by selecting one pixel from each row, column and diagonal. Other important

algorithms in this category includes but not limited to [9, 23].

2.3 Reduction in Bitwidth

Originally, eight-bit representation is used for each pixel but in [41] one-bit representation was

used which yielded substantial reduction in arithmetic and hardware complexity with reduced

power consumption. It transforms the current frame and the reference frame into one-bit repre-

sentation using a transform kernel of 17×17 and use exclusive-OR (XOR) as the matching error

criterion instead of SAD. This reduces the hardware area since a one-bit comparator is smaller

than an eight-bit accumulator. In order to get rid of the binary multiplication complexity burden

in 1BT, a multiplication-free one-bit transform (1MF) was introduced in [19]. Since a direct pixel

truncation to one-bit was used, it resulted in significant performance loss. Thereupon, a modified

one-bit transform (M1BT) and two-bit transform (2BT) were proposed in [18, 56] to improve

degraded PSNR by adding a conditional search and an extra bit plane respectively. 2BT was sub-

sequently improved by using positive and negative second derivatives in the derivation of second

14



bit plane in 2BT-SD [27]. A high performance systolic hardware architecture for 1BT based FSA

was proposed in [2]. The hardware architecture performed full search ME for 4 MBs in parallel

and they use less on-chip memory than previous 1BT by using a data reuse scheme and memory

organization. In [6], another hardware implementation of 1MF was proposed. The authors used

source pixel based linear array (SPBLA) hardware architecture for low bit depth ME which re-

sults in a genuine data flow scheme reducing the number of data reads from the current block,

which in turn reduces the power consumption by at least 50% compared to conventional 1BT.

Also, because of the binary nature of low bit-depth ME algorithms, their hardware architectures

are more efficient than existing 8 bits/pixel representation based ME architectures. Some other

algorithms in this class are [15, 31, 34, 37].

Each category of algorithms achieves different tradeoff between computational complexity

and performance. The main drawback of approaches discussed in section 2.1 is that since the

search window is minimized after the first iteration in general, it gets trapped in a local min-

ima. Reduction in computational complexity obtained by using approaches in section 2.2 is also

minimal as important pixels may be missed while evaluating the distortion function. Also, com-

paring their complexity directly is not easy as both run-time in software and area/bandwidth in

hardware has to be compared. But, from the descriptions of these techniques it is evident that

bitwidth reduction techniques is very fast in hardware implementation as fixed length pixel trun-

cation produces a massive reduction in hardware complexity as one-bit comparator is smaller

than an eight-bit accumulator; and in turn reduces power consumption. Also, with the one-

bit/pixel or two-bit/pixel representation, it paves the way to make use of single instruction multi-

ple data (SIMD) architecture with high degrees of parallelism in software. The above-mentioned

observation lays the foundation for developing the Local Binary Pattern based strategy for motion

estimation.
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Chapter 3

Local Binary Patterns

Local binary pattern [38, 44] is a texture description operator with many features such as gray-

scale invariance and no normalization in a neighborhood window which makes it favorable for

use in motion estimation. The LBP operator T can be defined in a local neighborhood of a

gray-scale image as the joint distribution of P image pixels and is given in (3.1),

T = t(gc, g0, . . . , gP−1). (3.1)

where the center pixel intensity and its P neighbors are represented by gc and gp(p =

0, . . . , P − 1). The P equally spaced pixels form a circle of radius R. The local binary pat-

terns can be computed at circular neighborhoods of any quantization of the angular space and

at any spatial resolution. Fig. 3.1 shows some examples of circularly symmetric neighbor sets

for various (P,R) values, where P is the number of neighboring pixels and R is the radius. The

joint difference distribution of the spatial characteristics can be found by,

16



(a) LBP(4,4) (b) LBP(8,1)

(c) LBP(8,4)

Figure 3.1: Local Binary Patterns

T ≈ t(g0 − gc, g1 − gc, . . . , gP−1 − gc). (3.2)

It is a highly discriminative operator which stores the various patterns in the neighborhood

17
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Figure 3.2: LBP(8,1) Operator

of each central pixel. For example, the differences are zero in a constant region, high along the

direction of increasing or decreasing gradient, zero along the edge and very high in all directions

for a dark/bright spot. In order to achieve invariance against scaling of gray scale, only the sign of

the differences is considered ignoring the exact difference as shown in (3.3). Let B(i) represent

the binary bit at the neighboring pixel i, and let I(c) represent the intensity at the center pixel c

of the block, then the binary value at the ith neighbor is given by,

B(i) =







1, if I(i) ≥ I(c)

0, otherwise
(3.3)

The LBP operator LBP(P,R) = B(0, 1, ..., P − 1) can be defined in a local neighborhood of

a gray-scale image as the joint distribution of P image pixels at radius R. Thus, for each center

pixel there is a corresponding LBP(P,R) value. This P bits pattern store valuable information

which correspond to primitive structural micro-features on a local level, such as the presence of

edges, corners and spots. This unique LBP(P,R) transform stores the characteristics spatial struc-
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Dark spot Bright spot Line end Edge Corner

Figure 3.3: Various edge textures detected using LBP(8,1)

ture of the local image texture around the center pixel gc which has been exploited for developing

the Local Binary Pattern based block motion estimation. LBP is a non-parametric method which

means that no underlying assumptions are needed for computations. The transform is also di-

rection invariant as it contains only the bit representation of the neighbor pixels without any

encoding to decimal. It should be noted that no kernel is needed to calculate the comparison

threshold, instead it is set to the center pixel intensity. For example, in Fig. 3.2 the LBP operator

labels the pixels in a 3×3 neighborhood by thresholding each pixel value with the center value.

Fig. 3.3 shows a few of the discriminative textures that can be efficiently identified using LBP(8,1)

codes.
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Chapter 4

Neighborhood Matching Approach

Various techniques to reduce computational complexity were discussed in Chapter 2. Among

them, the bitwidth reduction techniques are quite robust to complex motion as well as their

hardware and software implementation is quite simple. However, there are two main issues

that needs to be addressed: 1) it has been inherently assumed that block estimation is invariant

against scaling of gray-scale values of the pixels, and 2) there is no significant reduction in the

number of operations when compared to full search techniques (FSA). Regarding the first issue,

in most cases a lower bit representation has been used instead of eight bits which results in poor

performance. Therefore, instead of scaling the whole image to a lower bit representation, some

information about the scaling of the gray-scale values has been retained. By reducing the number

of bit planes, the advantages of faster hardware implementation has been utilized but the number

of operations has remained the same as FSA. Therefore, it would be beneficial to develop a faster

algorithm that reduces the complexity further with acceptable performance, thereby enabling

implementation on low capability mobile devices. The main objective of this work is to reduce

the computations significantly so that it can be used on mobile devices. In the following sections,
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the proposed approach has been discussed to effectively address the above-mentioned issues.

4.1 Full Search Local Binary Patterns (FS-LBP)

Local binary pattern (LBP) is a texture description operator with many features such as gray-

scale invariance and no normalization in a neighborhood window which makes it favorable for

use in motion estimation. LBP is a non-parametric method which means that no underlying

assumptions are needed for computation. LBP transform is also directional invariant which is

achieved by comparing each of the neighbors with the central pixel as mentioned in the previous

section. The transform is also direction invariant as it contains only the bit representation of the

neighbor pixels without any encoding to decimal, thus it is independent of directional encoding.

It should be noted that no kernel is used to calculate the comparison threshold as used in [18,

19, 27, 41], instead it is set equal to the center pixel intensity. Thus, for each pixel there are P

bits of information about its P neighbors. These P bits pattern store valuable information which

correspond to primitive structural micro-features on a local level, such as the presence of edges,

corners and spots; hence, they can be used to describe the region around a center pixel efficiently.

The objective is to use these local texture features to develop a new matching criterion which not

only captures the gray-scale variations between macro-blocks but also the spatial texture of that

local region.

In order to derive a motion vector with FS-LBP representation, a combination of the sum

of absolute difference (SAD) and the number of non-matching neighbors (NNMN) is used as

the matching criterion as SAD maintains the original pixel intensity and NNMN contains the

neighborhood information. The SAD of two blocks of size N×N is given by,
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SAD(m,n) =
N−1
∑

i=0

N−1
∑

j=0

|I t(i, j)− I t−1(i+m, j + n)| (4.1)

where I t and I t−1 are the intensity values of the current and the reference image frames, and

(m,n) denotes the candidate displacement. The NNMN is given by,

NNMN(m,n) =
N−1
∑

i=0

N−1
∑

j=0

LBPt
(P,R)(i, j)⊗ LBPt−1

(P,R)(i+m, j + n);

− s ≤ m,n ≤ s− 1

(4.2)

where LBPt
(P,R) and LBPt−1

(P,R) are the LBP transforms for the current and the reference frames

respectively, and s is the search range. NNMN captures the number of mismatching neighbors

around the central pixel of a macro-block in the current frame and the reference frame. The cost

function is defined as,

Cost(m,n) = α ∗ NNMN(m,n) + (1− α) ∗ SAD(m,n) (4.3)

where α is the scaling factor. The motion vector (MV) is given by,

MV = (u, v) | Cost(u, v) ≤ Cost(m,n);

− s ≤ m,n ≤ s− 1
(4.4)

The cost function incorporates the advantage of SAD as well as it gives lesser error if most

of the neighbors are matching, but at the cost of added computations.
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4.2 Reduced Complexity Local Binary Patterns (RC-LBP)

The computational complexity of the proposed FS-LBP technique is higher than FSA as it has to

compute the additional local binary patterns and also uses a new cost function instead of classical

SAD. Thus in order to overcome the high computational complexity of the LBP technique, a re-

duced complexity LBP (RC-LBP) is proposed in this section. As observed in LBP, a small region

around a central pixel can be effectively represented by an LBP(P,R) code that contains useful

information about the structural micro-features. The objective is to find a good approximation of

that region (a sub-block) as a whole in terms of LBP rather than the usual gray-scale values for

each pixel. Thus, a sub-block (SB) can be effectively represented by P single bits of information

instead of 8-bits for each pixel covered by a sub-block in the macro-block. Let S denote the

sub-sampling ratio of MB to SB. For example, in Fig. 4.1 it can be seen that each macro-block

of size 16×16 pixels is divided into sub-blocks of size 4×4.

To find an accurate motion vector, a two step search process has been employed in order

to accomplish a fast motion estimation. The first search works on the sub-sampled LBP image

instead of the full image so as to find a good starting point for the second step which involves

local refinement thereby, avoiding unnecessary full search and reduce the risk of being trapped

in a local minimum. The reduced complexity algorithm performs the following steps for each

macro-block (MB):

Step 1 (LBP Transform): Compute the LBP(P,R) transform for only the pixels shown in

Fig. 4.1 for a MB in the current and the reference frame. The LBP transform for each selected

pixel uses the same values of P and R. A good estimate of the general motion of a macro-

block can be obtained by using the sub-block (SB) since block motion estimation is based on

the assumption that all pixels in a macro-block move by the same amount. Note that for sub-

sampling ratio S each 16×16 MB in the original image is represented by (16/S)×(16/S) SB’s
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Figure 4.1: Macro-block division into Sub-block for S = 4

in the transformed image which store the LBP values. Thus, instead of computing the LBP

transform for each of the 256 pixel in a MB, the image is analyzed in a non-overlapping window

of S×S pixels in raster order. Thereby, effectively dealing with a subsampled image which has

been subsampled by S in each of the two directions.

Step 2 (Cost Function): Compute the cost function according to (4.3). Thus, effectively

giving the MV for each SB in a MB. It should be noted that now the NNMN is calculated for

only one center pixel and SAD is just the intensity difference of the center pixel instead of all

the pixels as was done in the FS-LBP method. The MV’s are calculated for each SB (which

is equivalent to S×S block in the original image) with each ± 1 movement in the transformed

image equivalent to ±S in the original image. Thus, instead of calculating the MV’s in steps
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Figure 4.2: Local refinement of average MV in a window of ±2

of 1 pixel, the movement is quantized in steps of S. Previously, the search range was ±16 but

now the search range is reduced to ±(16/S) representing the same amount of motion. This step

reduces the required number of operations drastically. The main idea is to divide and conquer

the size of a MB and work with smaller SB.

Step 3 (Average MV): The individual MV of each SB is combined into an average motion

vector which represents the general sense of motion of the macro-block. It is also inherently

assumed in BMA’s with MB size of 16×16 that a body is rigid and the block represents the

translation motion of the entire body. Thus, their performance is poor when objects within the

same MB move in different directions or with different velocities. Therefore, it is more likely

that these objects moving in different directions will be found in smaller SB’s with the afore-
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mentioned assumption being valid. Consequently, the quality of motion vectors improves with

the use of smaller blocks, but it increases the bit rate. Thus, a tradeoff between block size and bit

rate exists. In order to take advantage of smaller block size by maintaining the bit rate, average

motion vectors are used to represent them.

Step 4 (SDS Refinement): Average MV gives the general motion of the entire MB which

is subsequently refined locally. The average MV identified is hopefully as close to the global

minimum as possible. Both FSA and small diamond search pattern (SDS) [59] has been inves-

tigated in our experiments for local MV refinement and the results show that SDS reduces the

search points by 45% to 80% while maintaining similar PSNR. Therefore, SDS has been used for

refinement procedure as shown in Fig. 4.2. It is observed in our experiments that SDS refinement

in a small, compact, and fixed-size window of ±2 around the average motion vector yields ac-

ceptable performance with minimum searches. Thus, average MV helps to reach the local region

of global minimum distortion directly and SDS refinement leads to the optimal MV efficiently.

4.3 Simulation Results and Analysis

The most widely used and simplest full-reference quality metric is the peak signal-to-noise ratio

(PSNR). It is simple to calculate with clear physical meaning and mathematically convenient to

study as an optimization criteria. But, it does not give a very good match to the perceived visual

quality. It has been shown in [54, 55], that structural similarity (SSIM) metric provides more

resemblance to the human visual system as it compares the local patterns of pixel intensities

which have been normalized for contrast and luminance instead of intensity difference error-

pooling. This section aims to evaluate the effectiveness of the proposed motion estimation based

on LBP.
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4.3.1 Parameters P , R, α and S

As shown in Fig. 3.1, there are many possible combinations for various values of the number

of neighboring pixels (P ) and the radius of operation (R). Extensive experiments were per-

formed with different values of (P,R) such as {(4, 1), (4, 2), (8, 1), (8, 2), (8, 4), (16, 4)}. Our

experimental results show that these yield almost similar performance in terms of PSNR (with

difference within 0.05 dB). (P = 8, R = 4) has been chosen so that the LBP value represents

the texture of a middle range value instead of being too local or too global. Thus, it effectively

captures the neighborhood information in a window of size 9×9.

The parameter α used in (4.3) is used to determine which of the two: NNMN or SAD,

becomes the main contributor to the final cost distortion function. Variable α = 0 is equivalent to

using only SAD and α = 1 denotes using NNMN as the only deciding criterion in the distortion

function. The value of α varies from frame to frame as well as for different sequences. By

applying FS-LBP on 8 typical video sequences, it was found that the mean NNMN per MB is

3.8075 and mean SAD per MB is 25.8622, therefore the best reconstruction quality performance

was obtained for α = 0.9. Therefore, for cost calculations with almost similar intensity value

pixels, NNMN becomes the deciding distortion criterion but when there is large variation in

pixel intensities, SAD becomes the major contributor to the cost distortion function. Therefore,

this type of cost function not only eliminates the complete dependence on the pixel intensities

but also takes into account the spatial structure of a local region. Thus, α = 0.9 confirms with

the theory and is validated by experiments. But (4.3) contains two multiplications which is

computationally expensive compared to additions, therefore a multiplication-free cost functions

as defined in (4.5) is used which gives almost similar performance with β being the new scaling

factor given by (4.6).
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Figure 4.3: Variation of SSIM performance with β for Foreman image sequence.

MFCost(m,n) = β ∗ NNMN(m,n) + SAD(m,n) (4.5)

β =
α

1− α
(4.6)

Fig. 4.3 shows the performance of FS-LBP in terms of SSIM of the reconstructed frames for

Foreman image sequence which essentially contains almost all types of motion including camera

panning, fast and slow motion. It can be seen that using LBP features gives better performance

than just using pixel intensities (for β = 0). Also, if only LBP features are used neglecting the

pixel intensities (for β = 64), the performance degrades. Therefore, the value of β is set to 8

which is closest to α = 0.9 which gives the value of β to be 9. Also, it can be easily achieved in

hardware by a bit shift operation without using multiplication.
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RC-LBP was tested on the test sequences with varying values of S such as {2, 4, 8}. Since

lower value of S would result in higher complexity and higher S would result in performance

loss, it was conservatively chosen as 4, which achieves fairly good computational gain without

causing noticeable degradation on visual quality.

4.3.2 SSIM and PSNR performance

FS-LBP and RC-LBP are compared with FSA, 1BT, 1BT-MF, 2BT and 2BT-SD. These algo-

rithms employ exhaustive full search algorithm for fair comparison. Eight sequences Foreman,

Football, Tennis, Coastguard, Mother & Daughter, Salesman, Miss America (CIF 352×288) and

Akiyo (QCIF 176×144) has been used as test sequences with a macro-block size of 16×16 and a

search range of ±16 pixels. PSNR and SSIM values for the video sequences with image frames

reconstructed from the previous frames are utilized for statistical evaluation of motion estima-

tion accuracy. These reconstructed frames are furthermore used for visual evaluation of motion

estimation accuracy.

Table 4.1: Performance comparison in SSIM

Sequence FSA FS-LBP 1BT 1BT-MF 2BT 2BT-SD RC-LBP

Foreman 0.9231 0.9364 0.9069 0.9091 0.8999 0.9059 0.8379

Football 0.7779 0.7838 0.7574 0.7612 0.7586 0.7628 0.6851

Tennis 0.8964 0.8993 0.8896 0.8905 0.8897 0.8893 0.7862

Coastguard 0.9145 0.9153 0.9092 0.9102 0.9075 0.9103 0.8214

Akiyo 0.9943 0.9947 0.9941 0.9942 0.9933 0.9930 0.9813

Mother 0.9699 0.9703 0.9570 0.9548 0.9577 0.9633 0.9470

Salesman 0.9413 0.9419 0.9322 0.9351 0.9356 0.9351 0.9212

Miss America 0.9243 0.9255 0.9090 0.9089 0.9113 0.9131 0.8939

Average 0.9177 0.9209 0.9073 0.9080 0.9067 0.9091 0.8593

The SSIM and PSNR evaluation for various sequences are shown in Table 4.1 and Table 4.2.
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Table 4.2: Performance comparison in PSNR (dB) and average number of SDS search positions

per MB for RC-LBP

Sequence FSA FS-LBP 1BT 1BT-MF 2BT 2BT-SD RC-LBP

Foreman 32.12 32.03 30.47 30.39 30.78 31.16 27.86 (8.2)

Football 23.68 23.26 22.38 22.31 22.72 22.98 21.17 (8.2)

Tennis 29.22 28.89 28.20 28.19 28.44 28.83 23.96 (8.1)

Coastguard 30.48 30.47 29.88 29.87 29.88 30.20 25.49 (8.5)

Akiyo 43.56 43.51 43.39 43.45 43.45 43.47 42.10 (6.0)

Mother 40.47 40.39 37.06 36.22 37.79 39.30 37.54 (7.9)

Salesman 35.34 35.17 31.72 32.95 34.91 35.08 33.38 (7.8)

Miss America 37.77 37.59 35.75 35.53 36.77 36.87 34.04 (8.1)

Average 34.08 33.91 32.36 32.36 33.09 33.49 30.69 (7.8)

Table 4.1 shows that when the different sequences are evaluated using SSIM metric, FS-LBP

outperforms FSA. FS-LBP performs better than FSA in terms of structural similarity which pro-

duces a smooth video perception. FS-LBP produces a better subjective viewing quality because

it takes into account the joint distribution of neighborhood pixels. Since 1BT, 1BT-MF, 2BT and

2BT-SD evaluate the motion vectors using a lower bit representation of the central pixel, their

performance is worse than FSA. SSIM performance of RC-LBP is lower, but it is computation-

ally very efficient as compared to other methods. Table 4.2 shows that the PSNR performance of

RC-LBP is lower. However, the performance of RC-LBP can be acceptable for limited compu-

tational capability devices, such as smartphones. The main reason for performance degradation

of RC-LBP is that it takes into account the neighborhood of the central pixel and if the number

of non-matching neighbors is high then its cost function is high. Thus, FS-LBP and RC-LBP

preserves the structure around a central pixel rather than fitting the macro-block from reference

frame to current frame in order to minimize SAD. Since, RC-LBP is a reduced complexity ap-

proach its performance is worse than FS-LBP.

From Table 4.1 and Table 4.2, it can be seen that the performance of FS-LBP is worse than

30



(a) Original frame (b) FSA (PSNR: 27.60dB, SSIM: 0.7647)

(c) 1BT (PSNR: 26.12dB, SSIM: 0.7498) (d) 2BT-SD (PSNR: 26.98dB, SSIM: 0.7563)

(e) FS-LBP (PSNR: 27.28dB, SSIM: 0.7675) (f) RC-LBP (PSNR: 23.04dB, SSIM: 0.6574)

Figure 4.4: Sample reconstructed frame #28 from previous frame in Tennis sequence.
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(a) Original frame (b) FSA (PSNR: 24.18dB, SSIM: 0.7548)

(c) 1BT (PSNR: 22.11dB, SSIM: 0.7270) (d) 2BT-SD (PSNR: 23.46dB, SSIM: 0.7398)

(e) FS-LBP (PSNR: 24.07dB, SSIM: 0.7643) (f) RC-LBP (PSNR: 21.67dB, SSIM: 0.6729)

Figure 4.5: Sample reconstructed frame #15 from previous frame in Football sequence.
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(a) Original frame (b) FSA (PSNR: 33.63dB, SSIM: 0.9342)

(c) 1BT (PSNR: 31.86dB, SSIM: 0.9200) (d) 2BT-SD (PSNR: 32.59dB, SSIM:0.9193)

(e) FS-LBP (PSNR: 33.57dB, SSIM: 0.9370) (f) RC-LBP (PSNR: 29.84dB, SSIM: 0.8813)

Figure 4.6: Sample reconstructed frame #10 from previous frame in Foreman sequence.
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FSA in terms of PSNR quality metric but it is better than FSA in terms of SSIM quality metric.

Therefore, it is important to study the performance of these techniques by visual inspection

of the reconstructed frames. Subjective visual quality of the reconstructed frames shows that

the proposed FS-LBP and RC-LBP give visually more appropriate frames compared to FSA,

1BT and 2BT-SD. For Tennis sequence in Fig. 4.4, it can be seen that even the FSA is not

able to reconstruct the full frame accurately as the ping-pong ball is half missing, since FSA

is implemented using only the pixel intensity values while FS-LBP produces a better visual

quality frame. 1BT results in bad motion vector and 2BT-SD produces better visual quality than

FSA. Although there is some distortion in the reconstruction of the racket in FS-LBP and the

edge of the table in RC-LBP but they produce improved quality reconstructed frames over other

techniques. In Fig. 4.5 for Football sequence, it can be noticed that the visual appearance of

RC-LBP outperforms both FSA and FS-LBP. FSA is not able to reproduce the leg of the player

accurately and 1BT results in substantial amount of bad motion vectors. 2BT-SD produces better

visual results than FSA but RC-LBP clearly outperforms other techniques. It performs better

than FS-LBP as it evaluates the motion vector in SB’s of 4×4 rather than 16×16. Fig. 4.6 shows

sample results for Foreman sequence. It can be seen that FSA, 1BT, 2BT-SD and FS-LBP results

in degraded visual appearance as they produce bad motion vector for the mouth region. RC-

LBP outperforms even FSA in terms of visual quality and reconstruction of the mouth region.

RC-LBP results in better results since it employs smaller SB as mentioned earlier. Therefore,

RC-LBP can be used with recent video coding standards like MPEG-4 that supports smaller

block sizes for motion estimation.

The main reason for the better visual quality of the reconstructed frames using FS-LBP and

RC-LBP is that they take advantage of the correlation between a center pixel and its neighbors

by representing it in a compact LBP code. The matching distortion evaluation is done on this

LBP code instead of the individual pixels, therefore pixels belonging to high textured regions like
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edges and corners get grouped together into a code, and therefore processed together leading to

better reconstruction of the object as a whole. The reason for the quality degradation for RC-LBP

in terms of PSNR and SSIM metric is that it focusses more on producing a better reconstructed

frame rather than minimizing each pixel to pixel distortion error, therefore suffering more when

the background consist of low texture or a noisy region. Flat or background regions of an image

usually contain less edges, therefore, the LBP approach is not able to accurately distinguish them

and hence, the drop in reconstructed frame’s SSIM quality. One possible solution is to avoid us-

ing LBP motion vector search operations for these macroblocks, and deriving the motion vectors

by prediction from neighboring blocks. Although some adverse motion vectors are also encoun-

tered for RC-LBP approach compared to FS-LBP results, the amount of bad motion vectors and

their visual impact are significantly lower than that of 1BT and 2BT-SD.

4.3.3 Complexity analysis

In order to measure the computational complexity, the analysis on the complexity is presented

in Table 4.3 and 4.4. For FS-LBP, eight comparison operations are required per pixel for trans-

forming the image to LBP. For motion estimation, each 16×16 MB requires same addition,

comparison and absolute operations as FSA but it requires an additional overhead in terms of

shift and boolean operations to calculate the NNMN.

Table 4.3: The number of operations per pixel required for transforming each image

Operation FS-LBP 1BT 1BT-MF 2BT 2BT-SD RC-LBP

Addition 0 25 16 2.84 10.01 0

Multiplication 0 1 0 1.06 0.05 0

Comparison 8 1 1 3 2 0.5

Shift 0 0 1 0 1 0

Boolean 0 0 0 1 0 0
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Table 4.4: Computational complexity for matching in number of operations per 16x16 MB with

a 16 pixel search range

Operation FSA FS-LBP 1BT 1BT-MF 2BT 2BT-SD RC-LBP

Addition 262144 262144 262144 262144 262144 262144 4100

Comparison 1024 1024 1024 1024 1024 1024 1032

Shift 0 262144 0 0 0 0 17

Boolean 0 2097152 262144 262144 786432 1048576 8192

Absolute 262144 262144 0 0 0 0 3072

Total 525312 2884608 525312 525312 1049600 1311744 16413

For RC-LBP, the number of comparison operations required to transform the image is half

per pixel as it is evaluated for only one pixel in a 4×4 block. Since the average number of

SDS search positions for refining the average MV for various test sequences is 7.8 (∼ 8) as in

Table 4.2, it has been used for calculating the computation cost. To calculate the number of

operations in motion estimation, consider a 16×16 macro-block (MB) which has sixteen sub

blocks (SB). It is to be noted that initially MV is calculated for each SB and then it is averaged

to get the average motion vector for each 16×16 MB. For each SB, 128 additions are required

as the cost function has 2 additions. Thus total number of additions for each MB is sixteen

times that for each SB, additional sixteen for computing the average and 2048 additions for SDS

refinement. Similarly, the number of comparison required for each MB is sixteen times that of

a SB (= 64) and eight more for refinement stage. Shift operation is required to compute the

MFCost function multiplication for each SB (= 64) and the average MV for each MB (= 1).

For each SB, boolean operation (= 512) is required to compute the NNMN. Sixty four number

of absolute operation required for each SB and 2048 for SDS stage.

It can be seen that the computational complexity of RC-LBP is very low when compared to

the other techniques while maintaining good visual performance. RC-LBP is the fastest algo-

rithm, with 96.88% improvement in computational complexity over 1BT and 98.75% improve-
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ment over 2BT-SD. Another advantage is its computational simplicity as the LBP operator can

be realized with a few operations in a small neighborhood and a lookup table. The objective was

to reduce complexity by representing multiple pixel values with a single LBP feature. Owing to

high discrimination performance in searching for the best MV, it is able to produce near-optimum

MV’s with only a fraction of the computational burden of that of the other methods. A limita-

tion of RC-LBP is that it is not able to find accurate motion vectors for macroblocks belonging

flat/background or unfocussed regions, so it will work best when the video is focussed sharply.

FS-LBP results in considerable improved visual quality frames and RC-LBP is a computation-

ally efficient technique which provides a reasonable motion estimation performance along with

its potential application in recent video compression schemes where smaller block sizes are em-

ployed.
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Chapter 5

Edge Detection Approach

5.1 Partial Distortion Elimination based on LBP (PLBP)

The partial distortion elimination (PDE) algorithm is a common lossless fast matching algorithm

that eliminates redundant calculations during the computation of SAD within a block. Classical

BMAs’ compare the final SAD of the candidate search position to the current minimum SAD

in order to determine the best motion vector. But, PDE uses the partial sum of differences by

stopping midway to eliminate impossible candidates before finishing the full SAD calculation.

The row-based partial SAD (pSAD) till the kth row of a block of size N×N is given by

pSADk(u, v) =
k−1
∑

i=0

N−1
∑

j=0

|I t(i, j)− I t−1(i+ u, j + v)|;

0 ≤ k ≤ N − 1

(5.1)

The partial SAD is computed until it becomes equal to or greater than the minimum SAD
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already found. The matching is performed row wise and the check is performed after each

iteration of k until it satisfies the condition for k ≤ N − 1, thereupon the matching is terminated

and the candidate search position is rejected. Thus, the order in which the searching is done

hugely impacts the matching phase. For example, if a good motion vector prediction is found

early then the matching phase gets tighter distortion bounds thereby skipping lots of unnecessary

computations.

The order in which the pixels within a block gets matched to compute the partial SAD also

affects the speed of PDE. If the highest contributions to SAD pixels can be matched early then

the faster the pSAD will satisfy the rejection condition. Therefore, instead of using a fixed row

wise order of matching pixels, a generic order T can be used, where T contains N2 elements

each corresponding to a pixel in a reference N×N block in some order.

SpiralPDE [1] is considered to be the simplest approach. Its searching strategy is based on

a spiral from the center of the search window thereby, maximizing the chance of an initial good

minimum SAD prediction. Its matching is done in a top-to-bottom raster scan order. It has been

inherently assumed in SpiralPDE that the highest contribution pixels would be found in the first

row of a block. This assumption is not always valid and therefore, a generic order can be used

which tries to address this issue more effectively by studying the relationship between a pixel

and its surrounding neighbors in a block.

In [39], the authors provided the Taylor series expansion of the pixel distortion. Let (i, j) be

the position of a pixel in a block, the pixel distortion between the current block and the candidate

block with the position (u, v) can be given by,

Di,j
u,v = |I t(i, j)− I t−1(i+ u, j + v)| (5.2)

where I t(i, j) denotes the pixel intensity at pixel position (i, j) within the current block and
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I t−1(i+ u, j + v) denotes the pixel intensity at pixel position (i+ u, j + v) within the candidate

block located at the position given by its motion vector (u, v). Therefore, if the value of Di,j
u,v is

known for the motion vector (0, 0), then the neighboring values can be approximated using the

Taylor series expansion given by,

Di,j
u,v ≃ Di,j

0,0 +∇u,vD
i,j
0,0 · ((u, v)− (0, 0)) (5.3)

According to (5.3), the value of Di,j
u,v is approximated from the sum of Di,j

0,0 and the differential

term obtained through the inner product of the gradient vector of Di,j
0,0 and the position difference

vector. A simple way to approximate the pixel distortion given by (5.3) would be to use only the

first term that is the distribution of differences between the current block and the candidate block

at the center of the search window and use these differences to sort the positions in a decreasing

order to obtain the sequence for SpiralPDE matching. But the problem arises when the block

being coded is quite similar to the area at the center of the search window (in case of low motion

content videos), the first term of the Taylor series are quite small and almost always equal to

zero which would render sorting meaningless. Therefore, an optimized matching order cannot

be obtained by only using the first term. The spatial gradient term also has to be considered but,

its main drawback is very high computational complexity of calculating the magnitude of the

gradient for each pixel in a block. Thus, the main motivation of the proposed PLBP approach is

based on this idea of computing the gradient in an efficient as well as an effective manner so as

to get an optimized matching order.

The idea is to reduce the second term in (5.3) to a simpler term by using the LBP approach. As

mentioned earlier, in LBP, a small region around a central pixel can be effectively represented by

an LBP(P,R) code that contains useful information about the neighboring pixels. Let us formally

define the difference LBP (LBPD
(P,R)) as the LBP patterns consisting of the count of the number
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0 2 4 6 8

Figure 5.1: Various possible LBPD
(8,R) codes from basic LBP patterns

of binary-bit transitions from either one-to-zero or zero-to-one in a cyclic order.

LBPD
(P,R) =

P−1
∑

p=0

|gp − gp+1| (5.4)

The LBPD
(P,R) operator essentially captures the non-uniformity around a central pixel. It

should be noted that there are a total of five possible patterns for P = 8, these are {0, 2, 4, 6, 8}.

Fig. 5.1 shows some of the LBP codes that generate these difference patterns. Considering (5.3),

we approximate the gradient of distortion Di,j
0,0 using these difference LBP patterns. Therefore,

by evaluating LBPD
(P,R) for each pixel in a block and sorting the positions in a decreasing or-

der, an optimized matching order can be obtained. In practice, LBPD
(P,R) is best implemented by
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using a direct mapping look-up table that converts the basic LBP patterns into their difference

LBP correspondents. PLBP is determined only once in the current block, and then this order can

be used for all the candidate blocks within the search window. The proposed PLBP algorithm

performs the following steps for all the pixels in the current block:

Step 1: Compute the LBP(P,R) patterns for each pixel.

Step 2: Evaluate the LBPD
(P,R) codes from LBP(P,R) using look-up table.

Step 3: Obtain the block matching order for each pixel in decreasing order of their differ-

ence LBP values.

5.2 Edge Detection Based Motion Estimation (ELBP)

Fast matching approaches essentially try to reduce SAD computations for each block by selecting

only a subset of pixels in the block. Conventional works [39] used the assumption that an edge

pixel derives the greatest distortion than a background pixel. Therefore, edge pixels play an

important role in generating the set of the most representative pixels for a test block. Several

filters have been used for edge detection such as FFSSG [39], Roberts, Prewitt, Sobel [21, 51].

These belong to the first-order derivatives and the gradient of an image is obtained through the

mask of each method. However, these edge-based techniques are computationally expensive as

they need to calculate the magnitude of the gradient for each pixel within a block. The main

objective is to develop a technique that reduces the computational complexity significantly while

maintaining an acceptable performance. Therefore, instead of calculating the edge gradient for

all the pixels, it can be done only for a fraction of them without a significant loss in performance.

N-Queen fixed decimation patterns out-perform other existing patterns in terms of coding

efficiency and performance. Each block of size N×N , is decimated by N times to obtain a good
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(a) FSA (0.9397, 256.0) (b) 4-Queen (0.9375, 64.0)

(c) Canny (0.9216, 45.4) (d) ELBP (0.9331, 26.4)

Figure 5.2: Pixel selections using different approaches (SSIM, NMP) on frame #8 of Foreman

sequence (selected pixels are colored white)

representation of the block. Therefore, for a MB of size 16×16, 4-Queen gives us 64 pixels

to evaluate. The idea is to reduce the number of pixels further as all of them don’t contribute

equally to the matching distortion function. Thereby, selecting only the edge pixels using the
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LBP operator, their number can be decreased further by making use of the relationship between

a pixel and its neighbors to select the most representative pixels. The proposed fast matching

pixels for every current block of size 16×16 are identified using the following process:

Step 1: Initially, sixty-four pixels are selected using the 4-Queen fixed decimation pattern.

Step 2: These pixels are evaluated on the basis of their 8-bit LBP code that is generated

using (3.3).

Step 3: Only those subset of pixels are selected which belong to the edge.

Fig. 5.2 shows the pixels that are selected using different approaches on frame #8 of Foreman

sequence. ELBP is determined only once for the current block, and then this subset pixels can

be used for all the candidate blocks within the search range as motion estimation tries to find

the best match by comparing with the current reference block. ELBP is a bitwise approach to

evaluate the pixels whether they belong to the edge or background, and also doesn’t require

any 8-bit additions, subtractions or absolute operations. Thus, ELBP can be very efficient for

hardware implementation as working with one-bit produces a massive reduction in hardware

complexity as one-bit comparator is smaller than an eight-bit accumulator; and in turn reduces

power consumption.

5.3 Simulation Results and Analysis

In order to compare the performances of the proposed algorithms, we have used 21 different test

sequences. Eight sequences in QCIF (176×144) format (Akiyo, Bus, Carphone, Claire, Con-

tainer, Grandma, Silent and Suzie), eleven sequences in CIF (352×288) format (Coastguard,

44



Flower, Football, Foreman, Hall, Miss America, Mobile, Mother & Daughter, Salesman, Ta-

ble Tennis and Tempete) and two sequence in 720p (1280×720) format (City and Crew) were

used in our simulation. These test sequences cover a wide range of motion possibilities and

have various different formats (QCIF, CIF and 720p). In our experiments, a block size of 16×16

pixels is used and the search area is ±16 pixels for all the image formats. SAD [as defined

in (2.1)] is used as the block matching criterion. All algorithms make comparisons every eight

pixels to check if the pSAD has been exceeded. Since, structural similarity (SSIM) [54] metric

provides more resemblance to the human visual system as it compares the local patterns of pixel

intensities which have been normalized for contrast and luminance instead of intensity difference

error-pooling, therefore, SSIM has been used as the quality metric to evaluate the reconstructed

images. This section aims to evaluate the effectiveness of the two proposed algorithms.

5.3.1 Performance Evaluation of PLBP

We compare the proposed PLBP with SpiralPDE [1], which is the reference PDE algorithm

with spiral matching, FFSSD [39] which represents the full searching technique using matching

order based on sorting by distortion, FFSSG [39] which uses matching order based on sorting

by gradient, FFSSM [14] which uses matching order based on sorting by mean and HBMO [45]

which uses matching order based on sorting by histogram values. These algorithms evaluate all

the search positions to find the best match and therefore, their reconstruction quality in terms

of SSIM is the same as FSA being lossless. Only by changing the matching order of pixels,

they try to reduce the computational complexity. It should be noted that there are additional

computational costs in all algorithms to generate the pixel matching order as reported in Table 5.1

except for SpiralPDE. An additional sorting complexity has been referred to as ‘c’. Counting

sort [16] was used to sort the fixed 256 values to generate the pixel matching order as it is most
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efficient in this case. FFSSD does not have any overhead except for the sorting complexity as

pixel distortion is calculated in every PDE approach. FFSSG gradient computations is more

complex as it calculates the gradient of each pixel in a block. The proposed PLBP requires 2048

comparison operation. The total number of operations for each approach is reported just for

complexity comparison purpose. The actual complexity and execution times may vary for each

technique depending on the hardware architecture. It is also worth noting that PLBP requires

only one type of operator (comparison) which is faster than other arithmetic operators as well as

can be used in highly pipelined dedicated hardware.

Table 5.1: Computational complexity for calculating the representative pixels per 16×16 MB for

lossless techniques

Operation FFSSD FFSSG FFSSM HBMO PLBP

Addition – 1792 255 256 –

Subtraction – 2048 256 – –

Shift – 256 1 – –

Comparison – – – – 2048

Absolute – 2048 256 – –

Sort(c) once once once once once

Total c 6144 + c 768 + c 256 + c 2048 + c

Table 5.2 shows the average number of matched pixels (NMP) per block used to compute

the partial distortion. FFSSM yields the largest computational reduction (28.75%) on an average

with respect to SpiralPDE followed by the proposed PLBP (28.09%), HBMO (23.88%) and

FFSSG (22.30%). The significant improvement of PLBP versus HBMO, FFSSG and FFSSD

can be explained by the fact that most contributive pixels can be found easily when the diversity

in a local area is considered, that is, a pixel should be selected early if its neighbors are different

from each other which has been used in developing the PLBP approach. Performance of FFSSD

is worst among these as it does not consider the characteristics of the block and just uses the

sorted pixel distortion values.
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Table 5.2: Average number of matched pixels (NMP) per 16×16 block using lossless techniques

Format Sequence SpiralPDE FFSSD FFSSG FFSSM HBMO PLBP

QCIF Akiyo 13.58 10.17 8.64 9.17 9.08 9.45

Bus 56.53 46.21 43.98 39.08 45.31 39.35

Carphone 29.43 23.09 21.78 21.65 22.65 21.95

Claire 16.59 11.94 11.21 12.16 11.38 12.21

Container 13.61 12.43 10.91 10.52 10.86 10.74

Grandma 15.26 12.25 11.31 10.68 11.26 10.88

Silent 19.65 17.93 17.20 16.08 16.91 16.21

Suzie 29.91 23.28 22.08 20.04 21.14 20.34

Average 24.32 19.66 18.39 17.42 18.57 17.64

CIF Coastguard 56.34 50.52 45.11 37.92 42.75 38.22

Flower 46.30 30.92 27.95 24.38 28.19 25.12

Football 80.13 69.14 64.64 57.66 62.92 57.81

Foreman 59.05 48.37 45.28 43.09 43.72 43.32

Hall 25.23 20.88 19.08 18.50 18.51 18.80

Miss America 115.40 107.27 100.68 97.62 98.54 97.90

Mobile 52.28 40.39 35.70 30.76 37.11 31.31

Mother 65.39 55.39 50.98 49.22 48.63 49.56

Salesman 43.98 40.64 32.77 29.52 32.83 29.94

Table Tennis 64.33 54.98 47.59 43.99 46.66 44.19

Tempete 50.46 43.02 40.04 35.93 41.11 36.30

Average 59.90 51.05 46.35 42.60 45.54 42.95

720p City 49.25 38.98 37.06 31.22 35.53 31.67

Crew 67.00 55.28 54.66 51.59 52.96 51.86

Average 58.13 47.13 45.86 41.40 44.25 41.77
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5.3.2 Performance Evaluation of ELBP

The proposed ELBP approach has been compared with FSA, 4-Queen [52], Roberts [21], Pre-

witt [21], Sobel [21], Canny [5], B4Q4 [49] and BVG11 [49]. Canny [5] is an edge detection

algorithm that uses a multi-stage technique to detect a wide range of edges in images. But, it is

computationally very expensive as it involves various stages of detection, localization and mini-

mizing multiple responses to a single edge. It has been used just to compare the performance of

ELBP in terms of reconstruction image quality and number of matching pixels. Its computations

are not considered because of the significant overheads.

Table 5.3 shows the comparison of the number of operations required for each edge detection

algorithm per 16×16 MB. It must be noted that these are extra computations required in order

to evaluate the most contributive edge pixels. 4-Queen, B4Q4 and BVG11 do not require any

added computations as they are fixed-pixel decimation approaches. It can be seen that ELBP does

not have much overheads in terms of total number of operations. It reduces the computational

complexity by 60% and 91.67% over Roberts and FFSSG, respectively. Also since, ELBP edges

are derived using only a comparison operator which is faster than addition operator, it performs

edge detection faster than other methods.

Table 5.3: Computational complexity for calculating the representative pixels per 16×16 MB for

lossy techniques

Operation Roberts Prewitt Sobel FFSSG ELBP

Addition 256 2304 2304 1792 –

Subtraction 512 512 512 2048 –

Shift – – 1024 256 –

Comparison – – – – 512

Absolute 512 512 512 2048 –

Total 1280 3328 4352 6144 512
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Table 5.4 shows the average number of matched pixels per block using various algorithms.

It can be seen ELBP consistently gives the minimum NMP per block for all the test sequences.

Also its last column under ELBP shows the computational reduction (%) in terms of the number

of matched pixels with respect to 4-Queen. In average, the ELBP reduces the computational

complexity of 4-Queen by 62.67% with other techniques always performing worse.

Table 5.5 and Table 5.6 show the performance evaluation of the ELBP with respect to various

algorithms using the SSIM and PSNR as the quality metric, respectively. On an average for all

test sequences, Prewitt and Sobel have the worst performance when the number of search pixels

is close to sixty-four per block, especially for Football and Salesman sequences. This is because

the fraction of pixels selected for matching are not sufficient for good reconstruction quality. At

about sixty-four pixels per block, 4-Queen performs the best among Roberts, Prewitt and Sobel.

ELBP outperforms state-of-the-art Canny approach in terms of reconstruction quality with even

lesser number of matching pixels (∼ 54% less pixels). ELBP also performs close to B4Q4 and

BVG11 algorithms given that the reduction in NMP is 40% and 34% respectively.
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Table 5.7: Performance evaluation of ELBP with respect to 4-Queen algorithm in terms of SSIM

difference and NMP computational reduction

Sequence ∆SSIM % Red.

Foreman -0.0088 59.84

Football -0.0198 62.81

Tennis -0.0038 66.41

Coastguard -0.0068 64.22

Akiyo -0.0002 59.53

Mother -0.0026 58.12

Salesman -0.0059 63.59

Average -0.0069 62.03

Table 5.7 shows the performance evaluation of the ELBP with respect to 4-Queen in terms

of SSIM difference and computational reduction in terms of the number of matched pixels. It

should be noted that SSIM difference is obtained by subtracting the SSIM of the 4-Queen from

the SSIM of ELBP. In average, the ELBP reduces the computational complexity of 4-Queen by

62% while maintaining comparable performance.

The ELBP can reduce a large amount of computations because of its good edge detection

characteristics. It selects only those representative pixels which are likely to contribute highly

to the distortion matching function. The most contributable pixels are found mostly in the edges

which can be easily identified using this approach as compared to other conventional methods.

Therefore, ELBP provides an excellent performance to cost ratio as compared to other methods

for all test sequences.
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Chapter 6

Conclusion

In Chapter 4, a simple and fast neighborhood-matching algorithm based on local binary patterns

was introduced. By exploiting the neighborhood information around a pixel in a local region, it

effectively captures the salient micro-features. In addition, it is also robust in terms of gray-scale

variations. FS-LBP makes use of fast binary matching criterion for reducing the computational

complexity of matching error function. It results in better performance in terms of SSIM than

even full search algorithm. A low complexity approach (RC-LBP) was also proposed which re-

duces the computational complexity hugely. It makes use of average motion vector to reduce the

problem of blocking artifacts when the size of macro-block is large. When compared to 1BT,

1BT-MF and 2BT-SD, RC-LBP significantly increases the computational gain with a marginal

loss in quality criterion metrics but, it gives better quality visually. Also, RC-LBP’s simplic-

ity and regularity are very desirable and attractive for hardware implementations. Therefore,

RC-LBP is a suitable candidate for implementation on mobile terminals owing to its low com-

putational complexity and acceptable performance.

In Chapter 5, we investigated a couple of edge detection based partial distortion elimination
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approaches. The first algorithm is a lossless fast motion estimation PDE algorithm based on

local binary patterns (PLBP). An analysis on the characteristics of pixel-to-pixel distortion has

also been presented. PLBP reduces the computational complexity over conventional methods

by generating a good matching order based on the non-uniformity around a pixel. The second

approach is a lossy motion estimation algorithm based on edge-detection using local binary pat-

terns (ELBP). This approach selects only the most contributable pixels to the distortion function

for matching by identifying the edge pixels using LBP. Experimental results demonstrate sub-

stantial reduction in computational complexity of ELBP with only a marginal loss in prediction

quality.

6.1 Future Work

The neighborhood-matching algorithm discussed in Chapter 4 attempts to take advantage of both

reduction in search positions and bitwidth reduction while edge-detection approach mentioned in

Chapter 5 tries to unify reduction in matching pixels and bitwidth reduction. In future, we plan to

integrate these algorithms together to investigate if there is further improvement in computational

complexity while maintaining performance on par or better than other approaches.
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