
A Lightweight Processor Core for Application

Specific Acceleration

by

David Grant

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

c© David Grant 2004

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

(David Grant)

ii

Abstract

Advances in configurable logic technology have permitted the development of low–cost, high–

speed configurable devices, allowing one or more soft processor cores to be introduced into a config-

urable computing system. Soft processor cores offer logic–area savings and reduced configuration

times when compared to the hardware–only implementations typically used for application specific

acceleration. Programs for a soft processor core are small and simple compared to the design of

a hardware core, but can leverage custom hardware within the processor core to provide greater

acceleration for specific applications.

This thesis presents several configurable system models, and implements one such model on a

Nios Embedded Processor Development Board. A software programmable and hardware config-

urable lightweight processor core known as the FAST CPU is introduced. The configurable system

implementation attaches several FAST CPUs to a standard Nios processor to create a system for

experimentation with application specific acceleration. This system incorporating the FAST CPUs

was tested for bus utilization behaviour, computing performance, and execution times for a minheap

application. Experimental results are compared to the performance of a software–only solution, and

also with previous research results.

Experimental results verify that the theory and models used to predict bus utilization are correct.

Performance testing shows that the FAST CPU is approximately 25% slower than a general purpose

processor, which is expected. The FAST CPU, however, is 31% smaller in terms of logic area than

the general purpose processor, and is 8% smaller than the design of a hardware–only implementa-

tion of a minheap for application specific acceleration. The results verify that it is possible to move

functionality from a general purpose processor to a lightweight processor, and further, to realize an

increase in performance when a task is parallelized across multiple FAST CPUs. The experimenta-

tion uses a procedure by which a set of equations can be derived for predicting bus utilization and

deriving a cost–benefit curve for a coprocessing entity. They are applied to a specific system in this

research, but the methods are generalizable to any coprocessing entity.

iii

Acknowledgments

First and foremost, I would like to thank my supervisors Dr. Wayne Loucks and Dr. William

Bishop. Even with their hectic schedules, they managed to always be around when I needed help or

advice. Their support and guidance made my research possible.

Thanks to Science and Engineering Research Canada (SERC, formally NSERC) for providing

funding for my research. Thanks to Altera Corporation for donating hardware and software to our

research lab on such a regular basis that it was necessary to recompute many results as the synthesis

tools and Nios software changed and improved.

To my friends, both new and old, thank–you for putting up with me in “school mode”.

Most importantly, I would like to thank my parents and family for their constant encouragement

and support. I could not have completed this degree without it.

iv

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Statement of Thesis . 3

1.3 Thesis Contributions . 4

1.4 Outline . 4

2 Background 6
2.1 Terminology . 6

2.1.1 Configurable Computing . 7

2.1.2 Programmability . 8

2.2 A Brief Introduction to Configurable Computing 9

2.3 Configurable Computing System Architectures 10

2.3.1 Coupling . 11

2.3.2 Memory Location . 12

2.4 Systems for Application Specific Acceleration . 14

3 Configurable Computing Platform 15
3.1 Nios Embedded Processor Development Board 15

3.1.1 Nios Processor . 16

3.1.2 Avalon Bus . 17

3.1.3 Host PC . 18

3.1.4 Tool Flow . 18

4 System Design 21
4.1 System Model Used . 21

4.2 The FAST CPU . 23
4.2.1 Avalon Bus Slave Interface . 28

v

4.2.2 Avalon Bus Master Interface . 30
4.2.3 Boot Loader . 30

4.3 FAST CPU Application Programming Interface 31

4.4 FAST CPU Integration . 33

5 System Testing 36
5.1 The Testing Module . 36

5.2 Avalon Bus Utilization Testing . 41

5.2.1 Test Procedure . 42

5.2.2 Theoretical and Experimental Results . 43

5.2.3 Discussion of Results . 51

5.3 FAST CPU Computation Testing . 56

5.3.1 Test Procedure . 56

5.3.2 Experimental Results . 57

5.3.3 Discussion of Results . 57

5.4 Minheap Testing . 60

5.4.1 Test Procedure . 60

5.4.2 Experimental Results . 61

5.4.3 Discussion of Results . 62

5.5 Comparison with Previously Tested Systems . 64

5.5.1 Hardware Size . 66

5.5.2 Maximum Frequency (fmax) . 66

5.5.3 Design Complexity . 67

5.5.4 Minheap Reference Time . 67
5.5.5 Configuration Time . 68

5.6 Summary . 68

6 Concluding Remarks 70
6.1 Thesis Conclusions . 70

6.2 Challenges Encountered . 72

6.2.1 Hardware . 72

6.2.2 Software . 73

6.2.3 Minheap Related . 74

6.3 Future Work . 75

vi

A FAST CPU Code 77
A.1 Bus–Busy Code . 77

A.2 Factor Code . 79

A.3 Minheap Code . 82

B Minheap Results 89

C Nios C Code 94
C.1 FAST CPU API and Interface Driver . 94

C.2 Nios Minheap Code using the FAST CPUs . 97

Bibliography 109

vii

List of Figures

2.1 Coupling in Configurable System Architectures 11

2.2 Memory Locations in Configurable System Architectures 13

3.1 Nios Embedded Processor Development Board 16

3.2 Development Tool Chain . 19

4.1 Coupling in a Nios Embedded System . 21

4.2 Nios32 System with FAST CPUs . 24

4.3 The FAST CPU Opcode Format . 26

4.4 The FAST CPU Avalon Bus Slave Interface . 29
4.5 Template for a Program using a FAST CPU . 34

5.1 Nios and FAST CPU Test Program Flow . 37

5.2 System with Testing Module Inserted . 39

5.3 FAST CPU Bus Utilization Loop Code with m Bus Operations 43

5.4 Number of MAR Opcodes versus Total Cycles . 52

5.5 Attempted Per–Processor Bus Utilization versus Ideal and Experimental Total Cycles 54

5.6 Attempted Per–Processor Bus Utilization versus Extra Clock Cycles per 1000 Total

Cycles . 55

5.7 Total Normalized Clock Cycles versus Number of FAST CPUs 60

5.8 Insert–Delete Pair Time versus Minheap Size . 62

6.1 Problematic 2–FAST CPU Bus Utilization Results 73

viii

List of Tables

4.1 The FAST CPU Opcodes . 27

4.2 The FAST CPU Bus Mastership Opcodes . 30

4.3 Resource Requirements for an Individual FAST CPU 35

5.1 Testing Module Memory Map . 41

5.2 Selected Bus Utilization Test Results for 1 FAST CPU 48

5.3 Selected Bus Utilization Test Results for 2 FAST CPUs 49

5.4 Selected Bus Utilization Test Results for 3 FAST CPUs 50

5.5 Linear Regression Results . 53
5.6 Factorization Test Results . 57

5.7 Resource Requirements for Tested Configurable Systems 65

5.8 Minheap Results for Tested Configurable Systems 66

B.1 Minheap Results for a Nios Implementation . 90

B.2 Minheap Results for a 1–FAST CPU Implementation 91

B.3 Minheap Results for a 2–FAST CPU Implementation 92

B.4 Minheap Results for a 3–FAST CPU Implementation 93

ix

Chapter 1

Introduction

This thesis investigates the use of a configurable and programmable application specific lightweight

processor core in an embedded Nios environment. The goal of the thesis is to examine a configurable

system containing lightweight processor cores to determine the feasibility of using such processors

for application specific acceleration. Using multiple, stripped–down processor cores, to provide

acceleration for several applications simultaneously, is part of the overall goal.

This research is part of a larger body of research investigating the most effective use of config-

urable resources, with an emphasis on the minimal use of resources, to solve a problem (or a series

of different problems) as efficiently as possible. The efficiency may be based on the area, complex-

ity, and speed of the solution, and may also include factors such as the ease of the development

process, or the effort required to develop, debug, and maintain the solution.

1.1 Motivation

Advances in configurable logic technology have permitted the development of low–cost, high–speed

configurable devices. These devices can be used to provide application specific acceleration to

a system, but must be reconfigured with each new hardware design as the needs of the running

applications change, which can take a significant amount of time. The fact that configurable devices

1

CHAPTER 1. INTRODUCTION 2

are becoming cheaper and faster [Alt02b, Xil04b] means that it is now feasible to introduce one or

more processor cores into a system.

A processor core has several particularly attractive features to application specific acceleration:

• The implementation of a design is relatively small (on the order of kilobytes of compiled

code), compared to a synthesized hardware design of an application specific acceleration core

suitable for downloading into an FPGA (250 kB for small FPGAs [Alt99]).

• The time to reprogram a core is small, as it only needs to download a program then execute a

jump to the beginning of the program.

• It is faster1 to design, implement, and debug algorithms in software than in hardware [CN96,

HS98].

This research into lightweight processor cores is further motivated by the following questions

from the larger body of research:

1. A lightweight processor core can be used to implemented large, complicated algorithms for

application specific acceleration. Can the lightweight processor core that is used for the im-

plementation consume less chip area than the hardware core implementation of the same

algorithm? If so, then it may be possible to use several processor cores in the same area to

mirror the speed of a hardware implementation. Or, if speed is not an issue, to use only a

single processor to reduce the area requirements.

2. Will the total storage required for a lightweight processor core and the programs for it be

significantly smaller than the hardware implementations for each of the programs?

There are drawbacks to developing for processors. Foremost, it is known that a good hardware

description of many algorithms will be faster than the software implementation [De 94]. Consider,
1And thus cheaper, since time is money.

CHAPTER 1. INTRODUCTION 3

however, an algorithm implemented with a re–usable hardware component (the lightweight pro-

cessor), and an application specific software component. Such a system can leverage some of the

benefits of hardware (speed) and many of the benefits of software (size, configuration time, devel-

opment time). This realization serves as the purpose for developing a new configurable (hardware)

and programmable (software) lightweight processor core for application specific acceleration.

1.2 Statement of Thesis

It is my thesis that lightweight processor cores can be used effectively as accelerators for applica-

tion specific acceleration. The tradeoffs associated with moving some software–only designs into a

configurable system containing processor cores will be positive. Furthermore, systems already em-

ploying custom–hardware for application acceleration may benefit from a migration to lightweight

processors to reduce the complexity of the implementation and improve the switching time between

designs.

The theory is to create a system using a procedure analogous to process and thread switching in

modern operating systems. Using this analogy, a lightweight processor core that provides a basic

set of opcodes tailored specifically for running an application is essentially a “process” within a

configurable system. The program running on the lightweight processor is effectively a “thread”.

Switching between the lightweight processor programs is like thread switching: the programs

are small, so they can be switched quickly. For systems which require a form of custom–hardware

acceleration to achieve the desired (or necessary) system speed, hardware can be added to the

lightweight processor in the form of opcodes. A complete hardware–only implementation can be

created within the processor core by designing an opcode that implements the complete accelerator,

and by calling that opcode from a lightweight processor program.

Entire lightweight processors can be swapped depending on the opcode needs of the applica-

tions, which is akin to process switching. It takes a long time relative to the lightweight processor

program (“thread”) switching, so it is desirable to switch processor cores as infrequently as possi-

CHAPTER 1. INTRODUCTION 4

ble. Advantages can be realized if the basic set of opcodes remains constant across all processors,

allowing any application that only uses the basic opcode set to be scheduled on any lightweight

processor, even if the processor contains additional opcodes.

Developing an algorithm to effectively schedule the processor cores and the applications within

the cores is necessary, but is beyond the scope of the thesis, and will be reserved for future work.

1.3 Thesis Contributions

My thesis makes the following contributions to the larger body of research encompassing config-

urable computing for application specific acceleration:

1. Introduces the FAST CPU, a configurable and programmable lightweight processor core for

application specific acceleration, useful for performance and tradeoff testing between per-

forming certain tasks in hardware and software.

2. A method to derive a set of equations to predict the bus utilization of a specific implementation

of a configurable system.

3. A method to derive a cost–benefit curve to determine when it is beneficial to migrate a soft-

ware algorithm on a general purpose processor to a lightweight processor from a purely com-

putation standpoint. The method is valid for algorithms that permit fairly course–grained

parallelism.

4. A comparison with experimental results from various configurable computing designs using

a similar Nios embedded system architecture.

5. Highlights several problems encountered when pushing the resource limits of an Altera APEX

FPGA and the design tools.

CHAPTER 1. INTRODUCTION 5

1.4 Outline

Chapter 2 provides a summary of configurable computing and defines the terminology related to

configurable computing used in this research. Several models of configurable computing are also

presented. Chapter 3 describes the Nios Embedded Processor Development Board, which is used in

this research. One model presented in Chapter 2 is selected for implementation and testing on this

board. Following the platform description, Chapter 4 presents the design of a specific system for the

Nios Embedded Processor Development Board. It also introduces and describes the FAST CPU as

a lightweight processor core for application specific acceleration. Chapter 5 covers the testing and

verification of the system containing several FAST CPUs. Chapter 6 summarizes the conclusions

of the thesis research, highlighting several challenges encountered and presenting the directions for

future research. Raw results, and sample source code for the FAST CPU and Nios processors are

given in the appendices.

Chapter 2

Background

2.1 Terminology

It is generally accepted in current research that terms containing the root “configurable” (config-

urable, reconfigurable) refer to a piece of hardware that can have its behaviour changed in some

way. Whereas terms based on “programmable” (programmable, reprogrammable) can refer to ei-

ther hardware or software. When referring to hardware it is used synonymously with configurable,

and when referring to software it refers to the ability of a programmer to control and change the

behaviour of the device by changing the software.

There are many terms to describe systems involving varying degrees of hardware and software,

and the degree to which the hardware and software can be changed. Some terms are distinct, and

some have been redefined by the various groups and fields which have emerged in the research. To

distinguish between hardware and software in this research, configurable and all derivative words

are used to refer to hardware, whereas programmable and all derivative words refer to software.

Terms of interest in this research are only those related to hardware configuration and software

programming, no references are made to hardware changes that involve altering the physical system

(i.e., by physically rewiring components or moving components around).

6

CHAPTER 2. BACKGROUND 7

2.1.1 Configurable Computing

Traditionally, the term configurable computing is used interchangeably with the term reconfigurable

computing [CH02, DG97]. Both terms refer to a system containing a configurable device (or recon-

figurable device, again used interchangeably) that implements a hardware design, and that can be

changed without changing the physical hardware. The configuration (or reconfiguration) of the de-

vice refers to the event of downloading a new hardware design, usually represented by a bitstream,

into the device to change the behaviour. Once downloaded, the device (or system) is sometimes

restarted so the changes take effect. Earlier systems, such as [GKC+94], [Cha94], and [CR93] re-

quired this restart, whereas systems using more recent technology [Alt97], [Xil02], and [Mic02] can

handle the device being configured without resetting the entire system. In all of these systems the

process of configuring the device effectively resets it, since the configuration causes the loss of all

state information.

Recent advances in FPGA technology have created hardware devices that support configuring

part of the device, and leaving the rest of the hardware design untouched. In this set of definitions,

these devices have been called partially–configurable (or partially–reconfigurable). A partially–

configurable computing system is a configurable computing system which contains a partially–

configurable device.

The terminology used in this research, however, is from a second set of definitions which have

been gaining popularity in recent research [Hau98]. The term configurable computing is taken to

mean what it has traditionally meant: A method of computing that contains some way of changing

the hardware in the system without physically modifying it. However the term reconfigurable com-

puting is used to refer to a disjoint set of systems which contain devices that do not lose all state

information when configured, hence, they can be reconfigured.

Traditional FPGAs are configurable since they expect to be given their complete hardware de-

sign information through a serial bitstream; To download a new hardware design the device must be

reset. In contrast, the set of devices classified as reconfigurable do not need to be reset. The clock

CHAPTER 2. BACKGROUND 8

to the device can be stopped, new design information can be given to the device to change part (or

all) of the hardware, and the clock can then be resumed. Any part of the hardware not reconfigured

continues exactly as it was before the reconfiguration. The key advantage to reconfigurable devices

over configurable ones is that the state information is left untouched on the unchanged parts of the

device.

Even more recent advances in FPGA technology have necessitated a need for a further sub–

classification of reconfigurable devices. A run–time reconfigurable device is one that can be recon-

figured while the unaffected parts of the hardware are not interrupted due to a clock stoppage or any

another method of suspending the device for reconfiguration. The term Run–time reconfigurable

computing has thus been created to refer to systems employing run–time reconfigurable devices.

Chapter 4 presents the design of a system that requires reconfigurable hardware for implemen-

tation. The platform in Chapter 3, however, contains only a configurable FPGA. Consequently, no

testing is done that involves changing parts of the hardware while the system is operational.

2.1.2 Programmability

Unlike the various classifications of configurable hardware devices, the term “programmable” is

more clearly defined by the literature. Programmability, in the context of computing, refers to the

flexibility and control a programmer has over the behaviour of hardware by changing the software in

the device1 . A hardware design can be viewed as forming a continuum between not programmable

and programmable:

1. not programmable – These devices contain no software, and thus cannot be controlled by

software. The direction the hardware takes can only be influenced by changing the exter-

nal inputs to the device. Custom ASICs and FPGA hardware designs that do not read any

instruction stream fall into this category.

1There is one subtle exception to this definition. In the context of PLDs (Programmable Logic Devices), “pro-
grammable” refers to a configurable hardware device.

CHAPTER 2. BACKGROUND 9

2. programmable – These devices use an instruction set architecture (ISA) to provide the pro-

grammer with a model of the hardware [DG97]. In the extreme sense, a programmable de-

vice gives the programmer control over every aspect of the hardware through the ISA. These

devices read program instructions and act on them accordingly. Virtually all modern day pro-

cessors are almost completely programmable. A programmer has control over most of the

hardware but some components like the cache, prefetch, and branch prediction units operate

independently of the software.

A configurable computing system may use hardware designs that are programmable to various

degrees. A soft processor core2, for example, is quite programmable, and a programmer can im-

plement virtually any algorithm in it. In contrast, consider a hardware encryption algorithm that is

implemented using a minimal processor and a small amount of software to direct the flow of the

hardware (as opposed to a state machine to control the flow). The encryption system would be situ-

ated closer to the middle of the programmability continuum, since it consists mostly of the hardware

implementation of encryption routines, which are independent of the software, but does contain a

small programmable element. It can still be viewed as programmable, but not to the same degree as

the soft processor core.

2.2 A Brief Introduction to Configurable Computing

The concept of using changeable hardware to expedite processing is not new. It was first proposed

by Estrin in 1960 as a “fixed plus variable structure computer” [Est60]. His implementation (actually

developed in [EBTB63]) consisted of a standard processor which would have control over an array

of “reconfigurable” hardware. His belief was that when the “reconfigurable” hardware was setup to

perform a specific task, thus removing the burden from the standard processor, the performance of

the entire system could be enhanced.
2A soft processor core is a processor core which is downloaded to an FPGA. The Nios and FAST CPU are both

examples of soft processor cores.

CHAPTER 2. BACKGROUND 10

Modern configurable computing platforms have benefited from significant improvements in

technology and design tools. However, the basic principle of configurable computing has remained

unchanged. A configurable computing system incorporates some form of configurable (or recon-

figurable) device that can be changed to perform various tasks, especially processor bound tasks

[DW99]. Many vendors currently produce configurable computing systems for research, educa-

tional, and commercial applications [Guc00].

A configurable computing system for application specific acceleration can be viewed as some-

thing between a pure software implementation of an algorithm, and the custom hardware circuit

of the same design. The system attempts to leverage the benefits of both hardware(fast) and soft-

ware(small, easy to implement and debug) to create an overall “better” implementation. To accom-

modate multiple applications, the hardware portion of the design uses configurable logic to allow

hardware changes as the demands of the applications change. The configurable hardware can be

used to implement custom hardware designs for specific applications, or can be treated as a more

general purpose resource and used to implement more generic designs[WK01], like soft proces-

sor cores. There are also several ways to attach configurable logic to the system that can alter the

behaviour of the system, as discussed in Section 2.3.

2.3 Configurable Computing System Architectures

For any particular implementation of a configurable system (including reconfigurable and run–time

reconfigurable systems), there are many possibilities for the system layout. Many systems have a

general purpose “main” system processor, a configurable entity, and usually also contain memory

and peripherals. It is the location of these components relative to the configurable entity that define

and limit how the overall system behaves.

CHAPTER 2. BACKGROUND 11

L2 Cache
Bus

CPU
Cache

L2 System
Bus

Bridge

Memory

Peripheral Bus

Peripherals

c2

c1

c3

c4

Figure 2.1: Coupling in Configurable System Architectures

2.3.1 Coupling

Coupling refers to the way in which a configurable entity is attached to the main processor and the

system [CH02]. A tightly–coupled system has the configurable entity directly attached, or even

inside the main processor, whereas a loosely–coupled system has the configurable entity far away

from the main processor. Figure 2.1, adapted from [CH00] and [Bis03], demonstrates the varying

degrees of coupling, which are shaded and labeled “c1” through “c4”. As the configurable hard-

ware moves away from the main processor, it generally becomes larger due to the reduced cost to

implement it, but incurs a higher communication penalty for any communication with the processor.

c1. When the configurable hardware is within the main processor it is referred to as a tightly–

coupled. The hardware is generally small due to the high cost of situating it within a pro-

cessor. It is usually located on, or has access to, the main datapath of the processor, and is

used to partially or completely implement custom opcodes. For example, it may be used to

implement a new function for the Arithmetic and Logic Unit (ALU). There is a very low la-

tency for communication allowing the main processor to be in frequent communication with

the configurable hardware (several times per instruction).

c2. This configuration moves the configurable units outside the main processor, but leave them

directly connected by dedicated pins. The configurable hardware is in direct communication

CHAPTER 2. BACKGROUND 12

with the main processor but not under its direct supervision. This means that the hardware is

effectively a coprocessor for the main processor and can be used, for example, to implement

complete opcodes such as floating point arithmetic instructions or hardware multiply and

divide. This particular configuration is referred to as instruction level coupling in [Bis03],

meaning that while the hardware is independent, the results from the hardware are used as

results from an instruction, or a series of instructions, in the main processor.

c3. In this configuration, the reconfigurable hardware behaves like an additional processor. It is

either connected directly to the bridge (as shown in Figure 2.1), or can be directly connected

to the high speed system bus. It does not have access to the L2 cache of the main processor.

It becomes increasingly likely, as the system moves away from the tightly–coupled system,

that there may be more than one configurable device present. This is referred to as system

bus level coupling [Bis03]. There is a moderate penalty for communication, so the main

system processor and the configurable hardware communicate infrequently. For example,

each configurable entity may be active in rendering part of a scene, and only communicate

with the main processor to exchange scene data or to report results.

c4. This is referred to as a loosely–coupled system or as peripheral bus level coupling [Bis03].

The configurable resources are stand–alone processing units (and there are often more than

one of them), connected to the peripheral bus or even across a network. These units rarely

communicate with the main processor, usually only to download a “task” to be computed, and

then to give the result back to the main processor. An example in this case would be if each

entity were rendering a complete scene. They would each download the complete scene data,

and only report back when the final rendering was complete.

2.3.2 Memory Location

The location of memory in relation to the configurable device is also important. The data mem-

ory location and instruction memory location refer, respectively, to where the configurable device

CHAPTER 2. BACKGROUND 13

Configurable
Device

 System / Peripheral Bus

Main Memory
m2

m1

m3

Figure 2.2: Memory Locations in Configurable System Architectures

fetches program data and instructions. Each of the coupling configurations in Section 2.3.1 may re-

quire the use of either instruction or data memory, or both. Just as there are several ways to connect

a configurable resource to a system, there are several ways of connecting a memory to a configurable

resource. Figure 2.2 shows the three locations of memory (numbered and shaded) in relation to a

configurable device. A configurable system may use the same method for implementing instruction

and data memory, or may use two different methods.

m1. The memory for the configurable device is located inside the device itself. Since the device

is implemented in configurable logic, the memory is most likely part of the device design and

is also implemented in configurable logic. In this case, the memory is quite small but fast. It

uses on–chip resources, so it is size limited, but it can be connected directly to the hardware

design within the configurable resource.

m2. The memory is external to the device, but the configurable device has exclusive access to it.

The memory is most likely not implemented with configurable logic, and is still fairly small

since it is not cost–effective to outfit each configurable entity with a large dedicated memory.

However, it can be quite fast since the hardware can communicate directly with the memory

without any bus contention issues.

m3. In this location, the configurable device uses the main memory, and thus shares memory

with the main processor. Memory requests need to be routed across the system or peripheral

bus and into the main memory. Bus collisions become an issue as the device no longer has

CHAPTER 2. BACKGROUND 14

exclusive access to the memory (as it did in the first two cases). Multiple devices may now be

making concurrent requests to the memory, so a method of synchronization and arbitration is

needed on the bus shared between all the devices.

2.4 Systems for Application Specific Acceleration

Taking a step back from all the permutations of configurable systems possible by combining the

various architecture layouts presented in Section 2.3, it is further possible to replace the configurable

entity with a non–configurable entity. This begins to define coprocessing systems in the broader

sense which are used for application specific acceleration. Such systems cover everything from

ones where dedicated custom hardware provides acceleration to full symmetric–multiprocessing

(SMP) [Int97] systems.

At one extreme of such systems, there is a dedicated custom ASIC providing a specific function

targeted to a specific application. The ASIC is not configurable, so it can only provide assistance

to an application which requires the function implemented. Moving slightly away from this ex-

treme, the application specific hardware can be implemented in an FPGA, or another configurable

resource. While not as fast as the custom ASIC solution, the hardware resource is reusable by other

applications.

The other extreme also contains a non–configurable ASIC, in the form of a general purpose

processor. An application targeted for acceleration would simply use both processors to achieve

a higher execution rate. Again, moving away from the absolute extreme, it is also possible to

implement a general purpose processor in an FPGA (a soft processor core).

It is the entire range involving configurable hardware that is of interest to the PADS Research

Group at the University of Waterloo, Ontario, Canada. The topic of lightweight soft processor cores

for application specific acceleration is what is studied in this research.

Chapter 3

Configurable Computing Platform

This chapter describes the hardware and software used in the design and implementation of a con-

figurable computing system for this research in using lightweight processor cores for application

specific acceleration. The hardware and software permit the development of a system that is repre-

sentative of the configurable computing systems that are currently used by academia.

3.1 Nios Embedded Processor Development Board

The hardware used for the implementation of the system in this research is an Altera Nios Embed-

ded Processor Development Board [Alt03c] depicted in Figure 3.1. The board contains an APEX

20K200EFC484-2X FPGA which is the only user configurable logic device on the board. This

FPGA contains 8, 320 Logic Elements (LEs) which translates into approximately 526, 000 total us-

able gates. It also contains 52 Embedded System Blocks (ESBs) providing a total of 106, 496 usable

bits of internal RAM.

Along with the APEX FPGA, the board also provides 256 kB of onboard SRAM for bulk data

storage and processor instruction memory, a UART for downloading code and as a means to interact

with the configured hardware and software, a JTAG connector to configure the FPGA with a new

core, several buttons and LEDs (primarily used for debugging), and other features not used in this

15

CHAPTER 3. CONFIGURABLE COMPUTING PLATFORM 16

Figure 3.1: Nios Embedded Processor Development Board

research. A complete list of board features can be found in [Alt03c].

3.1.1 Nios Processor

While the Nios Embedded Processor Development Board can be programmed with any hardware

design, it is geared towards use with the Altera Nios processor [Alt03b]. A Nios processor serves

as the master (or main) processor in the embedded system for this research.

The Nios processor is a 33 MHz processor which has a 16–bit and 32–bit version. Both ver-

sions can be created with a minimal, average (default), or a full set of processor features, and can

be optimized in synthesis for speed or area. For the purposes of this document, the “Nios32” pro-

cessor refers to the 32–bit version of the Nios processor with the average set of processor features

optimized for area. The average set of processor features was chosen because the minimal set elim-

inates the interrupt handling features of the Nios processor (which are required for peripherals to

CHAPTER 3. CONFIGURABLE COMPUTING PLATFORM 17

give notifications to the Nios processor), and the full set provides extra hardware features (such as a

hardware multiplier) that are not needed. The system is clocked at 33 MHz, and optimizing for area

meets all timing requirements, so optimizing for speed is unnecessary. It should be noted that the

feature set chosen and the optimizations used have little influence on the performance of any other

system component, provided the entire system meets the 33 MHz clock frequency requirement.

3.1.2 Avalon Bus

At the core of a Nios system is the Avalon Bus [Alt03a], which interconnects all the processors,

memories, and peripherals. The Avalon Bus really consists of many point–to–point links, one be-

tween each master and slave device. All slave devices, including main memory, appear in the global

addressable memory space at offsets defined in the System On a Programmable Chip Builder (SOPC

Builder, see Section 3.1.4).

An Avalon Bus master device can only make requests to slave devices. That is, it can read data

from, and write data to, a slave device by simply reading/writing to offsets in the global memory

space. Other master devices cannot initiate communication with a bus master unless the target also

has a slave interface.

The Avalon Bus slave interface defines the number and width of registers within the slave device

that are available to any bus master. No slave device may initiate communication with another slave

or master device. The slave interface exists entirely to serve read and write requests from bus

masters.

Mastership arbitration on the Avalon Bus follows a fixed priority scheme. The Avalon Bus

arbitrator has a built–in priority for each master, which defaults to the order components are defined

in the SOPC Builder. If multiple requests for mastership are active at the arbitrator, the one with the

highest priority is allowed to proceed when the bus becomes free. There is no need for a FIFO or

any other queuing system with this scheme, however it does mean there is a possibility of starving

low priority bus masters.

CHAPTER 3. CONFIGURABLE COMPUTING PLATFORM 18

3.1.3 Host PC

The Nios Embedded Processor Development Board is connected to a host computer (host PC). The

computer uses the parallel port to control the JTAG programmer, and a serial port to communicate

with the UART on the development board. The host computer also contains most of the tool flow

(see Section 3.1.4) so it was used to design, build, and test the implementations of the system. The

host computer has an Intel Pentium 4 2.60 GHz CPU with 1 GB of RAM, running Windows Server

2003.

A second computer running Linux, however, was used as part of the development platform,

mainly to edit VHDL and C files and to provide convenient access to a revision control repository.

The second computer was also used to create the assembler for the lightweight processor core de-

signed for the research (the processor is called the FAST CPU, and is introduced in Section 4.2),

and to assemble files for the FAST CPU. The Windows Server 2003 host computer accesses files on

the Linux workstation through a network share directory.

3.1.4 Tool Flow

The development tool chain is shown in Figure 3.2, and includes both the required flow to produce

a system containing a Nios32 processor, and the components added to the flow for the purposes of

this research. Altera provides the Quartus II application suite to target hardware designs for the Nios

Embedded Processor Development Board. Quartus II provides an end–to–end tool flow from VHDL

and schematic editors, through a synthesizer and timing analyzer, and to a programmer to download

a synthesized design to a development board through a JTAG interface. Part of the Quartus II suite

is the SOPC Builder (System On a Programmable Chip Builder) [Alt03e]. The SOPC Builder tool

is used to construct an Avalon Bus [Alt03a] based system on a chip, by connecting processors,

memory, and other peripherals on a configurable number of buses. The output of the SOPC Builder

is a series of VHDL files which implement the designed system.

Quartus II synthesizes the entire system using user written VHDL files, schematic design files,

CHAPTER 3. CONFIGURABLE COMPUTING PLATFORM 19

Windows Workstation

Quartus II
Schematic

Editor SOPC Builder

Synthesizer

Schem
atic VHDL

Programmer

Linux Workstation

Programmer

gcc, gas, ld

Nios Toolkit

FAST CPU assembler

gVIm

Assembly code

Nios Development Board

UART

JTAG Interface

Assembled FAST CPU code
stored in arrays in C header filesC

 headers

Remote SMB
directory mount

Serial Object File

S−Record S−Record

C co
de

JTAG

C headers

VHDL

Figure 3.2: Development Tool Chain

CHAPTER 3. CONFIGURABLE COMPUTING PLATFORM 20

and VHDL files produced by the SOPC Builder. When successfully synthesized, the output is a

SRAM Object File (.sof file) which can be downloaded to the board through the Quartus II JTAG

programmer.

The SOPC Builder also generates a series of header files that describe the existence and ad-

dresses of the hardware/peripherals in the synthesized system. Code written to execute on a Nios

processor uses these header files to access the hardware so that memory offsets do not need to be

hard–coded in the program. Application code for the Nios processor is built using the GNUPro

toolkit [Cyg99]. The GNUPro toolkit uses a gcc cross–compiler and a Nios assembler (and linker)

to build an S-Record suitable for execution on a Nios processor. The S-Record is downloaded to the

Nios Embedded Processor Development Board through a UART connection.

The Nios32 processor code used in this research also includes header files generated by the

lightweight processor (FAST CPU) assembler, which contain arrays of code built specifically for the

FAST CPUs. The code running on the Nios32 processor instructs a FAST CPU core to download

the code in one of these arrays when the FAST CPU functionality needs to be changed.

Chapter 4

System Design

4.1 System Model Used

Using the system platform described in Chapter 3, it is not possible to implement all the combina-

tions of system architectures presented in Sections 2.3.1 and 2.3.2. The tools for the Nios Embedded

Processor Development Board generate a system in which all components are connected to a single

Avalon Bus. Without designing custom implementations of all the system components, which is

beyond the scope of the thesis, this behaviour cannot be changed. Figure 4.1 shows a modified

version of Figure 2.1 representing the types of coupling implementable with a Nios system. The

changes are as follows:

Memory

Avalon Bus

Peripherals

CPU
Nios32

c2

c3

Figure 4.1: Coupling in a Nios Embedded System

21

CHAPTER 4. SYSTEM DESIGN 22

• Configurable entity number “c1” is removed – The Nios32 processor is a standard component

from Altera, and is not generally modifiable. Adding the facilities to support an internal

configurable logic component would require an in–depth knowledge of the Nios processor.

This is beyond the scope of the thesis.

• The “L2 Cache” component is removed – The Nios32 processor used in this research does not

support a cache. A cache, specifically an instruction cache, would decrease the bus demands

of the Nios processor by reducing the number of accesses to the main memory. The presence

of a cache would significantly impact any bus–bound activities in the system, but would not

change the computational performance of each system component with respect to the others.

• The “Bridge” component is removed – All components and peripherals in many Nios systems

are connected directly to a single Avalon Bus. A bridge is normally used to switch data

between buses of differing bandwidth. Although it is possible to implement a multi–bus

system on a Nios Embedded Processor Development Board, investigating this type of system

is beyond the scope of the thesis.

• Configurable entities “c3” and “c4” are combined. The system and peripheral buses in Fig-

ure 2.1 are really the same physical bus in a Nios system, so configurations “c3” and “c4”

result in the same implementation.

Coupling configuration “c2” can be implemented in a Nios processor by using Nios custom

instructions [Alt02a]. The Nios custom instruction interface automatically modifies the hardware

description of a Nios processor to add the necessary external dedicated pins1 for connection with

external logic. However, this does not scale well to a multiple processor implementation (which

is one of the goals of the research). There is a limit of 5 custom instructions in a Nios processor,

limiting the number of directly connected processors to that number. A single instruction could be

used for all processors to overcome that limit, however the Nios custom instructions only support

1These are really virtual pins since the entire system is being synthesized within a single FPGA.

CHAPTER 4. SYSTEM DESIGN 23

one argument (perhaps the target processor number), meaning any other data would need to be read

from an external connection to memory. This creates the need for extra logic within the custom

instruction to route the data to the appropriate processor and necessitates an Avalon Bus connection

since all data cannot be passed through the instruction. Coupling configuration “c3” already contains

an Avalon Bus interface, so the extra logic required in configuration “c2” would only add to the size

of the design, without adding any features that could not be realized by using the Avalon Bus directly

(i.e., for all communication).

Configuration “c2” is not implementable on a system with a general purpose processor that can-

not be resynthesized to support the necessary custom instructions or external interfaces. Previous

research into using custom hardware designs for application specific acceleration has used configu-

ration “c3” [Bis03], so for these reasons, coupling configuration “c3” is used in this research.

Figure 2.2 shows the three possible memory locations within the Nios Embedded Processor

Development Board for a piece of configurable logic. All three locations are possible with coupling

configuration “c3”. The choice of memory location for the data (chosen to be location “m3”) and

the instructions (chosen to be “m1”) is justified as the system design is described in Section 4.2.

Figure 4.2 shows the resulting system layout which is defined in the SOPC Builder. The system

consists of a Nios32 processor, an interface to the 256 kB onboard SRAM, a UART for communi-

cation with the host PC, and a several FAST CPUs. All components communicate across a single

Avalon Bus. The shaded area of Figure 4.2 is a standard Nios system, described in the Nios Software

Development Tutorial [Alt03d].

4.2 The FAST CPU

The Flexible Application Specific Tiny CPU (FAST CPU) was designed to be small and fast, yet

allow for the easy insertion of opcodes to test the tradeoffs of performing tasks in hardware or

software. The FAST CPU model was written entirely in VHDL, as are the hardware modules for it.

The idea behind this modular approach, is that the FAST CPU offers a limited set of op-

CHAPTER 4. SYSTEM DESIGN 24

Nios32 CPU
master port

slave port
UART

slave port
SRAM

master port
slave port

FAST CPU n

Avalon Bus

to serial
port

SRAM

APEX EP20K200 FPGA

to 256 kB

FAST CPU 0

slave port
master port

1 kB RAM

1 kB RAM

Figure 4.2: Nios32 System with FAST CPUs

codes which are sufficient to implement most algorithms. If further hardware acceleration is de-

sired/required however, hardware modules can be inserted in the FAST CPU to add opcodes to the

instruction set. Essentially, this ability to add instructions provides a means to accelerate part, or

all, of an algorithm in hardware. The process of “inserting a hardware module into the FAST CPU”

involves synthesizing the VHDL to create a new core, which then can be downloaded into an FPGA

while the system is running. Since the Nios Embedded Processor Development Board has only a

single FPGA which is not reconfigurable, and which must implement the entire system, the possi-

bility of testing dynamically changing the FAST CPU cores has been deferred for future work (see

Section 6.3). A system which could support changing the FAST CPU cores would require a board

which is either run–time reconfigurable, such as a Xilinx Virtex-II Pro development board[Xil04a],

or a development board that has multiple FPGAs.

The major features of the FAST CPU evolved over the design phase of the CPU, and are chosen

to meet the needs of the applications examined. The features are as follows:

• 32–bit processor – The FAST CPU uses a 32–bit design to easily interface with a Nios32

CHAPTER 4. SYSTEM DESIGN 25

processor on the Avalon Bus so that longwords can be transferred in single bus transactions.

The ability to natively handle 32–bit operations also reduces the code size, complexity, and

processing time compared to performing them on a 16–bit processor. In application specific

acceleration, complex algorithms that involve large (32–bit) integers are excellent candidates

for moving to hardware cores (or lightweight processor cores in this research) to improve

processing speed.

• 16 General Purpose Registers – Each register is 32–bits wide, and no register contains any

special definition or meaning.

• 1 kB Internal RAM – Contention on the memory bus was a concern for the FAST CPU if the

main Nios processor and all FAST CPUs were constantly fetching program instructions from

the main memory. To avoid any potential bottleneck here, the FAST CPU contains a small

internal RAM which is the exclusive source of instructions for the FAST CPU. The RAM

is longword addressable only, since each FAST CPU opcode is exactly 32–bits wide (see

Figure 4.3) so a word or byte addressable instruction memory is unnecessary. This RAM may

also be used for data storage if the 16 registers are insufficient, for example, in the storing of

a small array of data. The RAM and the registers are implemented using the same technology

in the FPGA, so they have the same access time.

• 4 addressing modes – Although register to register operations are expected to be the most

common, the FAST CPU was also designed to support several more complicated addressing

modes. The source argument can be any of the four addressing modes, and the destination

argument, if required by the opcode, is always a register. Figure 4.3 shows that there are 2

dedicated bits for specifying the addressing mode of the source argument in the opcode. The

possible value of these two bits are:

0. Register to Register – The source operand is a register, as is the destination operand.

1. Immediate to Register – The source operand is a 16–bit immediate value encoded in

CHAPTER 4. SYSTEM DESIGN 26

Source Dest Immediate Data

016202431

4 164

32

Opcode

26

6

Addressing Mode

2

Figure 4.3: The FAST CPU Opcode Format

the opcode, sign extended to 32–bits. The destination is a register.

2. Immediate–Indirect to Register – The source operand is in the FAST CPU internal

RAM location specified by the 16–bit value encoded in the opcode (only the lower 10–

bits are used however to address the 1 kB internal RAM). The destination is a register.

3. Register–Indirect to Register – The source operand is in the internal memory location

specified by the source register. The destination is a register.

One opcode reverses the definition of the source and destination operands so that values can be

written to the internal RAM. The store opcode (ST) stores the value located in the destination

register in either the source register, or an internal memory location specified by the source

operand.

• 24 opcodes – The FAST CPU contains a limited set of opcodes to keep the size of the proces-

sor small, and because an application specific processor that only runs a single program has

no need for many instructions which would be found in a general purpose processor. Each op-

code has an identical format to facilitate easily decoding and executing the opcode. Figure 4.3

shows the opcode format, and Table 4.1 describes the basic set of FAST CPU opcodes.

A processing unit dedicated entirely to the acceleration of a particular portion of a specific ap-

plication does not need to be a full–featured general purpose processor. Such a processing unit only

needs to execute a single program specifically designed to compute results used by the application

running on the main system processor. The logic area required by the FAST CPU can be reduced by

CHAPTER 4. SYSTEM DESIGN 27

Table 4.1: The FAST CPU Opcodes
Opcode Mnemonic Description
0x20 ADD src,dst src + dst → dst – Unsigned addition
0x22 AND src,dst src AND dst → dst – Bitwise AND
0x09 BEQ src Jump to src if src == dst in the last CMP
0x0B BGE src Jump to src if src ≥ dst in the last CMP
0x0A BGT src Jump to src if src > dst in the last CMP
0x0D BLE src Jump to src if src ≤ dst in the last CMP
0x0C BLT src Jump to src if src < dst in the last CMP
0x08 BNE src Jump to src if src 6= dst in the last CMP
0x25 CMP src,dst Perform src − dst and set branch flags according to the

result
0x05 IRQ src Set the interrupt status to the least significant big of src. A

value of 1 means the FAST CPU is generating an interrupt
for the Nios32 processor.

0x00 JMP src Jump unconditionally to the address in src

0x28 LD src src → dst – Load the destination register with the value in
the source

0x01 NOP No operation
0x23 OR src,dst src OR dst → dst – Bitwise OR
0x26 SHL src,dst dst << src → dst – Shift dst left by the number of bits

specified in src. Fills the least significant bits shifted in
from the right with zero

0x27 SHR src,dst dst >> src → dst – Shift dst right by the number of bits
specified in src. Fills any bits shifted in from the left with
the value of the most significant bit, so the result remains
sign extended

0x12 SLC src Clear the Avalon Bus slave read buffer address src

0x11 SLR src,dst Read the Avalon Bus slave read buffer address src, storing
the value in register dst

0x10 SLW src,dst Write the value in register dst to the Avalon Bus slave write
buffer address src

0x29 SPC src PC + 2 → src – Write the program counter value, plus 2,
into the register or memory address src

0x04 SSEG src Place the lower byte of src on the seven segment display
0x02 ST src,dst Store the value in register dst into the address or register

specified in src

0x21 SUB src,dst src − dst → dst – Unsigned subtraction
0x24 XOR src,dst src XOR dst → dst – Bitwise XOR

CHAPTER 4. SYSTEM DESIGN 28

purposely omitting several features from the design which are found in general purpose processors:

• Exception support (interrupt handling) – The FAST CPU does not contain any support for

externally or internally generated interrupts. A program executing on the FAST CPU can-

not be interrupted by any means other than a reset, which is done by writing a value of

0xFFFFFFFF to the first offset of the FAST CPU slave interface, causing the processor to

restore the bootloader. The FAST CPU does, however, contain an opcode (IRQ) for generat-

ing an interrupt on the main system processor.

• Stack – A stack was deemed largely unnecessary due to the limited resources in the FAST

CPU environment and the fact that the FAST CPU is not designed to run multiple applications

concurrently, which would require memory separation between the applications. For calling

functions, the SPC opcode saves the current PC into a register. The end of a function can JMP

to the contents of this register to effectively execute a return–from–subroutine instruction.

• Register Windows – For the same reasons that a stack was determined to be unnecessary,

register windows are unnecessary. All the internal resources of the FAST CPU should be

simultaneously available to a program, not only a subset of them.

4.2.1 Avalon Bus Slave Interface

All FAST CPUs must contain an Avalon Bus slave interface to provide a common way to commu-

nicate with the Nios32 processor. The slave interface memory–maps 4 longwords (a longword is 4

bytes) of the addressable system memory to each FAST CPU. The slave interface implementation

is split into a read buffer and a write buffer, as shown in Figure 4.4.

To a bus master, the interface appears to consist of only 4 registers, represented in Figure 4.4 by

the 4 hatched squares on the FAST CPU–slave port boundary. The registers on the boundary are not

for storage; they are virtual registers. The actual storage is implemented by 4 registers in the read

buffer and 4 registers in the write buffer. When a bus master writes to an address which maps to the

CHAPTER 4. SYSTEM DESIGN 29

� �� ���� �� �� �
��
�� �� �� �
��
�� �� ���

write

read

slave interface

SLR

SLC

SLW

FAST CPU
Avalon Bus

slave
port

Buffer
FA

ST
 C

PU
 d

at
ap

at
h

address

Read

Buffer
Write

Figure 4.4: The FAST CPU Avalon Bus Slave Interface

FAST CPU, the value written is placed at the appropriate offset of the read buffer. The FAST CPU

can read these values by executing a SLR instruction, to read from the bus read buffer. Similarly,

when a bus master reads from an address mapped to the FAST CPU, the value is taken out of the

write buffer. The FAST CPU can write to the slave write buffer by using the SLW opcode. A value

written to the FAST CPU at an offset will not be the same value read back from the same offset.

This buffered approach was chosen because the FAST CPU does not support interrupt handling.

As a result, the executing program cannot be interrupted when a bus master performs a read or

a write on an address that is mapped to a FAST CPU. This means that, unlike most hardware

peripherals, the FAST CPU cannot take immediate action when a particular address is written or

read. The synchronization between the main system processor and the FAST CPU has been moved

to software, and is done by probing the values in the read buffer and taking action based only on

those values. The FAST CPU cannot tell if a bus master had read something from a write buffer,

so the bus masters must inform the FAST CPU if it requires such a notification. The FAST CPU

uses a third bus slave opcode, SLC, to clear the value at a particular address of the read buffer to

detect when the same (or a different) value is written to an address by a master (other than a value

of 0). If the detection of multiple writes of 0 are required, then a hardware module could be used to

CHAPTER 4. SYSTEM DESIGN 30

Table 4.2: The FAST CPU Bus Mastership Opcodes
Opcode Mnemonic Description
0x14 MAR src,dst Master the Avalon Bus, and read the value at address src

into register dst

0x15 MAW src,dst Master the Avalon Bus, and write the value in register dst

to the address in src

introduce a new SLC instruction which clears the specified address to a value other than 0, maybe

0xFFFFFFFF.

4.2.2 Avalon Bus Master Interface

The first, and only, additional hardware module designed for the FAST CPU provides Avalon Bus

mastership. Table 4.2 shows the additional two opcodes which the mastership module adds to the

FAST CPU.

The FAST CPU has a very limited internal RAM for all the program code and for limited data

storage. Bulk data storage cannot be accomplished within the FAST CPU, and must be offloaded to

the main memory. The FAST CPU Avalon Bus master interface was designed for this purpose. It

is the responsibility of the program on the main system processor, and the code on the FAST CPU

to negotiate the location of the data in main memory. There is no pre–defined dedicated memory

region in main memory for the FAST CPUs to use.

4.2.3 Boot Loader

To facilitate the process of downloading code to the FAST CPU, the CPU is configured with one

of two boot loaders during synthesis. If the FAST CPU contains the bus master module, then a bus

mastering boot loader is used; if not, an alternative slave–only boot loader is used. Immediately

after a processor reset, the boot loader becomes active, and waits to receive data from the main

processor.

In the bus mastering boot loader, the main system processor (the Nios32) gives the FAST CPU

CHAPTER 4. SYSTEM DESIGN 31

the location and size of a program in main memory. Once it has obtained this information, the FAST

CPU copies the program out of main memory and into its 1 kB internal RAM. When complete, it

signals the Nios32 processor with an interrupt. After the Nios32 acknowledges the interrupt, the

FAST CPU jumps to the first instruction of the program.

With the slave–only boot loader, the Nios32 processor enters a loop writing the offset and data

at that offset to the FAST CPU. The FAST CPU polls the slave interface register which stores the

offset and when it changes, the FAST CPU reads and stores the associated piece of data at that

offset. The FAST CPU then sends an interrupt to the Nios32 processor to indicate it is ready for the

next piece of data. The download is complete when the offset is set to 0xFFFFFFFF by the Nios32

processor, which is way beyond the size of the internal FAST CPU RAM. At this point, the FAST

CPU jumps to the first instruction of the program.

4.3 FAST CPU Application Programming Interface

A programming model where programs communicate directly with the FAST CPUs at their indi-

vidual memory offsets would not abstract well into a device driver and user library pair. Such an

abstraction would be required if an actual operating system were to be used on this system. It is also

not easy to develop or maintain user programs that use direct hardware communication. An API

was developed to hide the hardware communication and to present the user with a friendly interface

on which FAST CPU programs can be based. The code for the API is included in Appendix C.1.

The functions which implement the API communicate directly with the hardware. Normally

they would use a series of memory mapped requests or I/O Control (IOCTL) calls to communicate

with a kernel driver, and the kernel handles the direct hardware communication. The lack of an

operating system, however, prevents such a design. The functions in the FAST CPU API are as

follows:

int fastcpu init(unsigned long base, unsigned long irq);

CHAPTER 4. SYSTEM DESIGN 32

Probes for FAST CPUs beginning at the specified base, and initializes structures for all

FAST CPUs found in the system. The irq is the interrupt number that will be generated if

the FAST CPU executes the IRQ opcode, and is incremented as each FAST CPU is found.

struct fastcpu *fastcpu alloc(void);

Allocates a FAST CPU. Returns the FAST CPU structure to the caller. The caller must use

the returned structure pointer in all further communication with the FAST CPU subsystem.

void fastcpu program(struct fastcpu *cpu,

unsigned long *program, unsigned long len);

Loads the specified program code into the FAST CPU.

void fastcpu free(struct fastcpu *cpu);

Returns the FAST CPU given by cpu to the pool. It is automatically reset when this function

is called.

void fastcpu reset(struct fastcpu *cpu);

Forces the FAST CPU given by cpu to reset. After a reset fastcpu program can be

called to download a program into it.

int fastcpu num cpus(void);

Returns the number of FAST CPUs that the probe function was able to find.

Using the API, the FAST CPUs appear to the programmer as an allocatable resource. To be

used they must first be allocated, then programmed. If no FAST CPUs are available, the program-

mer has a choice of either waiting, or invoking an implementation of the program on the main

processor. Once programmed, the interface to the FAST CPU takes on whatever format the FAST

CPU program implements, with the exception that the FAST CPU can be reset at any time to return

it to a known good state, and restore the boot loader. When the Nios program is finished using a

CHAPTER 4. SYSTEM DESIGN 33

FAST CPU, it must be freed. Figure 4.5 is minimal C code for communication with a FAST CPU

application, it illustrates how a programmer can use the API to gain access to the FAST CPUs.

All the programs in this research that use the FAST CPU are based on the code in Figure 4.5.

As shown in System Testing (Chapter 5), this code may be a useful resource in deciphering what

each test is attempting to do.

4.4 FAST CPU Integration

Since the FAST CPU is designed to appear as an Avalon Bus peripheral, the process of attaching a

FAST CPU to a Nios32 system on the Nios Embedded Processor Development Board requires little

effort. The bus slave and master interfaces are created using the SOPC Builder, which then auto-

matically generates all necessary Avalon Bus VHDL code, signal exports, and header files for the

interfaces. Figure 4.2 shows a graphical view of the SOPC Builder system definition of the Nios32

system with n–FAST CPUs attached to it. Unfortunately, the FPGA on the Development Board

is relatively small by today’s (2004) standards, so there are only sufficient resources to synthesize

a system with 3 FAST CPUs. Consequently, all tests are done using a maximum of 3 CPUs, and

larger systems are left for future work (see Section 6.3). It is known, though, that it is possible to

synthesize a 10–FAST CPU system using a board containing the smallest available Stratix–II (the

EP2S15 [Alt04]) FPGA.

Table 4.3 shows the resource requirements of the FAST CPUs before integration with a Nios sys-

tem. The first row is a FAST CPU without the bus master module (so it is using the slave–only boot

loader), and the FAST CPU in the second row is using the bus master module (so it is using the bus

mastering boot loader). The resources used by a Nios processor (again, outside a system) are also

included for comparison, and it can be seen that the FAST CPU is indeed quite small compared to a

general purpose Nios processor. The “Time to Program” information represents the time to down-

load each longword of a program into the FAST CPU. The slave–only boot loader is significantly

slower since it goes through the process of an interrupt for each longword downloaded, whereas

CHAPTER 4. SYSTEM DESIGN 34

/* FAST CPU example program */
#include <fastcpu.h>

/* include the output of the FAST CPU assembler */
#include "program_code.h"

void main(void)
{

struct _fastcpu *cpu[3];
int data;
char done = 0;

/* Probe for FAST CPUs starting at offset 0x1000 with irq 20 */
fastcpu_init(0x1000, 20);

/* Allocate a CPU */
cpu[0] = fastcpu_alloc();

/* If that fails, we may want to use a software implementation of
* whatever we’re trying to ask the FAST CPU to do */

if(cpu[0] == NULL) {
/* do something in software, or just wait, keep calling
* fastcpu_alloc() to get a FAST CPU */

}

/* Program the CPU */
fastcpu_program(cpu[0], program_code, program_size);

while(!done) {
/* Send something to the FAST CPU */
*(cpu[0]->loc[0]) = 0x97071435;

/* Wait for the interrupt from the CPU */
while(!cpu[0]->done) ;

/* Read something back */
data = *(cpu[0]->loc[0]);

/* Exit under some condition */
if(data == 42) done = 1;

}

/* Free the CPU */
fastcpu_free(cpu[0]);

}

Figure 4.5: Template for a Program using a FAST CPU

CHAPTER 4. SYSTEM DESIGN 35

Table 4.3: Resource Requirements for an Individual FAST CPU
Processor Area fmax Time to Program toverhead

(LEs) (MHz) (
cycles

longword) (cycles)
FAST CPU 716 59.40 391 383

FAST CPU with bus
master module

894 59.40 7 383

Nios32 Processor ≈ 1300 ≈ 62

the bus mastering boot loader reads the entire program directly out of the memory. The toverhead

column is the command overhead, that is, the number of cycles required to write a command to the

slave port of the FAST CPU and process the interrupt that the FAST CPU responds with when the

command has finished. The overhead is measured by invoking a command that does nothing on the

FAST CPU, and is used to confirm the experimental results in testing and verification.

Many of the FAST CPU tests in Chapter 5 require the bus master module to be installed. To

avoid synthesizing different systems for different tests, all the testing and verification is done using

the same system in which all the FAST CPUs have the bus mastership module.

Chapter 5

System Testing

This chapter presents the testing and validation done with the FAST CPU system from Chapter 4. A

testing module is first presented as a means of facilitating system testing. The tests are divided into

Avalon Bus (I/O) tests (Section 5.2), computation tests (Section 5.3), and a minheap application test

(Section 5.4). Conclusions are drawn from each of these tests with respect to the expected behaviour

of the test, and how the results compare to the Nios32 processor.

The flow of each test is illustrated in Figure 5.1. The Nios32 processor first instructs each FAST

CPU in the test to download the program code related to the test. Once all downloads are complete,

the testing module is activated, and the Nios32 processor sends a series of commands to the FAST

CPUs. Each FAST CPU responds with an interrupt when each command is complete. When the

entire test is complete, the testing module is deactivated and the results are read. Then either another

test is started, or the testing process is complete and the results are recorded.

5.1 The Testing Module

The testing module measures the number of Avalon Bus (I/O) cycles required by various compo-

nents in the system, and also counts the total number of clock cycles required to complete the test.

By strategically counting the clock cycles used by various activities, instead of only measuring the

36

CHAPTER 5. SYSTEM TESTING 37

send program
information wait for

data

activate testing
module

Avalon Bus and store
read program using

acknowledge
wait for

wait for
command

busy wait
loop, wait for

interrupt

acknowledge
wait for

testing module
deactivate

read count values

wait for
interrupt

do command

interrupt

power on
or reset

commandnext
command

next
test

done

Nios FAST CPUsAvalon
Bus

FA
ST

 C
PU

 P
ro

gr
am

FA
ST

 C
PU

 B
oo

t L
oa

de
rprogram offset and length

acknowledge

acknowledge

interrupt

Figure 5.1: Nios and FAST CPU Test Program Flow

CHAPTER 5. SYSTEM TESTING 38

elapsed time (or total clock cycles) for a complete test, the cycles can be categorized into processing

(CPU) cycles, and bus (I/O) cycles. A greater understanding of the interaction of the FAST CPUs

with a Nios32 processor and the Avalon Bus can be developed with this categorization.

When the Nios32 processor gives a task to a FAST CPU, it enters a busy–wait loop, and waits

for an interrupt from the FAST CPU to signal the task is complete. During this loop the Nios32

processor constantly fetches instructions from the main memory, making it challenging to measure

the individual the sources of memory utilization in the system. Memory accesses can come from

either FAST CPU data memory accesses, or Nios32 instruction fetching (in the busy–wait loop).

Ideally, probes could be inserted at strategic points in the system to directly count the bus ac-

cesses from each source, however, without modification of the system VHDL generated by the

SOPC Builder this is not possible. The shaded area in Figure 5.2 shows the part of the system

containing generated (and thus, not easily modifiable) code. The entire Avalon Bus and Nios32

processor fall withing this region.

If it were possible to collect these metrics with a single probe on the SRAM, it would be done

by subtracting results of a measurement when the Nios32 processor is active during FAST CPU

activity, and one where it is not. However, this approach is not possible, since the Nios32 processor

cannot be halted or otherwise prevented from fetching instructions from main memory during the

busy–wait loop. The Nios32 lacks an instruction that can halt or stop the processor until an interrupt

occurs, so it simply cannot be “stopped”. Attempts at pointing the Nios32 to a small internal ROM

containing the busy–wait code, to take it off the Avalon Bus while waiting for the FAST CPUs

to respond, was equally not possible as the Nios32 processor automatically resets whenever the

program counter is set to any address outside the main memory.

The solution, was to create a testing peripheral with several probes to count cycles at various

points in the system. The module appears on the Avalon Bus as a peripheral so the Nios32 processor

can start, stop, and read the values out of the module as desired. Figure 5.2 shows the testing module

added to the original system of Figure 4.2. The probe are attached only to “external” signals to

CHAPTER 5. SYSTEM TESTING 39

Nios32 CPU
master port

slave port
UART

slave port
SRAM

master port
slave port

FAST CPU n

to serial
port

SRAM

APEX EP20K200 FPGA

slave port
Testing Module

counters
2

3

Avalon Bus

to 256 kB

FAST CPU 0

slave port
master port

1 kB RAM

1 kB RAM

Figure 5.2: System with Testing Module Inserted

eliminate the need to alter the existing VHDL1 for the Avalon Bus, the Nios32 processor, or any

peripherals in the system.

The module consists of nine counters. One counter is connected to the clock signal so it always

increments when the module is active. The remaining eight are triggered by external probes and

only increment on a clock edge when the probe signal is low (’0’). The first seven probes trigger a

count on the rising edge of the clock, and the 8th probe count increments on a falling clock edge.

The eight probes are connected as follows, and all test results are derived from these probe locations:

p1. FAST CPU 1 Avalon Bus Read Request – This signal is low (’0’) when FAST CPU 1 is

either requesting or performing a read on the Avalon Bus.

p2. FAST CPU 2 Avalon Bus Read Request – Same as p1, but for FAST CPU 2.

p3. FAST CPU 3 Avalon Bus Read Request – Same as p1, but for FAST CPU 3.
1The existing VHDL is machine generated and is optimized. The VHDL is re–generated, resulting in the loss of any

manual changes, when the system is modified. In addition, optimized machine generated VHDL is not easy to grok.

CHAPTER 5. SYSTEM TESTING 40

p4. FAST CPU Any Read Request – This signal is low when any FAST CPU is waiting to

perform a read request. It is the result of (p1 AND p2 AND p3). The purpose of this probe

was originally to compute the number of bus collisions in the system. The value of the

respective counters from (p4−(p1 +p2 +p3)) was thought to be the number of bus collisions.

Unfortunately, this does not take into account the number of stalls due to the Nios32 processor,

which can artificially inflate the count of this probe. For example, if all FAST CPUs are

reading, or attempting to read, on the Avalon Bus it cannot be determined if one is succeeding,

or if they are all stalling while the Nios32 processor is performing a read. Consequently, it

is quite possible for the value of this probe to exceed the total number of SRAM read cycles

observed with probe p7.

p5. FAST CPU All Read Request – This signal is the result of (p1 OR p2 OR p3), so it is

low when all FAST CPUs are either performing, or waiting to perform, a read request. The

purpose of this signal is only to determine if collisions are happening between FAST CPUs.

It does not add any other beneficial data to the analysis.

p6. SRAM Chip–Select – This signal is low when a master on the Avalon Bus is performing a

read or write operation to the SRAM. This signal should be the sum of the counters triggered

by p7 and p8.

p7. SRAM Read – This signal is low when a bus master is reading from the SRAM.

p8. SRAM Write – This signal is low when a bus master is writing to the SRAM. The write signal

to the SRAM is triggered on a falling clock edge, so the counter triggered by p8 increments

when p8 is low on the falling edge of the clock. The SRAM write signal is always low on a

rising clock edge.

The testing module uses an Avalon Bus slave interface similar to the one used the FAST CPUs to

memory map internal registers to the total addressable memory space. Table 5.1 shows the memory

CHAPTER 5. SYSTEM TESTING 41

Table 5.1: Testing Module Memory Map
Address Offset Mode Width Description

0x00 read 32 Read the clock cycle counter
0x04→ 0x20 read 32 Read Probe p1 → p8

any even write 32 Reset all counters and activate counters
any odd write 32 Stop all counters

map for the testing module. To start a test, the Nios32 processor writes to any even address in the

testing module, which causes all the counters to reset, and the testing module to become active. The

system can then conduct whatever test is desired, and stop the testing by writing to any odd address

in the testing module to stop the counters. After the counters are stopped, the results can be read

from the various probes to get the cycle counts. The testing module can be started and stopped in

33 clock cycles (quantified by activating, then immediately deactivating the module, then reading

the clock counter value).

5.2 Avalon Bus Utilization Testing

The Avalon Bus consists of many point–to–point links, one between each master and slave device.

In the configurable system under test, all the FAST CPUs and the master Nios32 CPU access the

main memory. The Nios32 fetches both instructions and data from the SRAM, and the FAST CPUs

fetch only data from main memory. This convergence on main memory (the SRAM) may cause the

system to bottleneck as the memory attempts to serve all the masters making requests.

The goal of this test is to find a relationship between the bus utilization demands of each FAST

CPU processor, and the total number of cycles required to complete the task at hand. In the test,

each FAST CPU runs a program that demands the Avalon Bus for a known percentage of the total

cycles if there are no bus collisions2 (the bus utilization is the independent variable in this test).

2It is computed, anyway, for the ideal case (no collisions). The actual individual FAST CPU bus utilization is difficult
to measure since stalls are indistinguishable from active transfers. A probe would be required directly on the Avalon Bus
to make this distinction (see Section 5.1)

CHAPTER 5. SYSTEM TESTING 42

The clock cycles (the dependent variable) required to perform the complete test concurrently on

one, two, and three FAST CPU processors are measured for different bus utilization demands, then

compared and analyzed for evidence of bus collisions.

5.2.1 Test Procedure

Figure 5.3 shows code for the FAST CPU which loops a desired number of iterations (stored in

R2) to keep the Avalon Bus busy. The number of cycles required to execute each instruction on

the FAST CPU is also shown. Ideally 3 of the 8 cycles required for each MAR opcode will use the

Avalon Bus, however if there is a collision on the bus then the MAR may use more while it is forced

to wait for the bus, so it is designated “3†”. The extra 8 clock cycles required to exit the loop when

R2 becomes 0 and the cycles required to setup R2 (not shown in Figure 5.3) are not included in the

total clock cycle computation in Figure 5.3. Instead, these times are folded into a parameter called

toverhead,n which is explained in Section 5.2.2.

A test on a single FAST CPU consists of a pair of parameters, m and i. m is the number of MAR

instructions the FAST CPU should execute in sequence for each bus–busy loop iteration it performs,

and has a range of 1 ≤ m ≤ 100. i is the number of loop iterations to perform and ranges from

0 ≤ i ≤ 1000. The lower bound of m is 1 because measurements using m = 0, where there are no

bus transactions in the bus–busy loop, do not add anything beneficial to a bus analysis. The lower

bound of i = 0 is used to measure the toverhead,n parameter.

The testing module from Section 5.1 has a probe for each FAST CPU to count the total number

of Avalon Bus read accesses. This quantity is the sum of the 3†m values for all i iterations of the

loop in Figure 5.3. It is possible to do the analysis using 3†m, so the value of 3† does not need to be

measured for each MAR instruction in each loop iteration.

The test follows the testing flow diagram in Figure 5.1. The Nios32 processor begins by dy-

namically rewriting the piece of FAST CPU code in Figure 5.3 to insert the desired number (m) of

MAR opcodes into the bus test loop. It then instructs the FAST CPUs to download this code, and

CHAPTER 5. SYSTEM TESTING 43

Clock Cycles
lp:
CMP 0, R2 4
BEQ lpdone 4
MAR R0, R1 5 + 3†

Additional (m − 1) MAR instructions inserted here
each requiring 5 + 3† clock cycles

SUB 1, R2 4
JMP lp 4

lpdone:
Total: 16 + 5m + 3†m

Figure 5.3: FAST CPU Bus Utilization Loop Code with m Bus Operations

waits for an interrupt from each FAST CPU. The Nios32 then activates the counters in the testing

module, and writes the desired number of iterations of the bus–busy loop to perform to each pro-

cessor which begins the test. The number of iterations is stored in register R2 on the FAST CPU,

which is decremented in the bus loop on the FAST CPU. The Nios32 processor enters a busy–wait

loop, while the FAST CPUs execute the bus loop. An interrupt is used by the FAST CPUs to signal

the completion of the task to the Nios32 processor, at which point the interrupting FAST CPU does

not perform any further bus transactions. The testing module counters are disabled when all FAST

CPUs in the test have responded with an interrupt so the results can be read.

5.2.2 Theoretical and Experimental Results

For any single FAST CPU, if the number of MAR instructions is increased (which adds 8 cycles to

the loop for each MAR), then the total number of clock cycles required to complete the test should

increase by the same amount if there are no bus collisions. If there are bus collisions, then the

increase in the total number of cycles may be linear and greater than 8 (indicating a constant number

of collisions added for each MAR instructions), or may be something beyond linear indicating that

the MAR instructions have a cumulative effect on the bus collisions.

CHAPTER 5. SYSTEM TESTING 44

Comparing the 1–, 2–, and 3–processor case, if there are no bus collisions (hence, no memory

bottleneck) the total time to execute the task on a single processor will be the same as that on three

processors (allowing for toverhead clock cycles, from Table 4.3, to start the task on all processors,

versus only starting it on one processor).

Recall that the bus utilization referred to in the testing is not measured. Bus utilization is the

independent variable and it is computed from the code in Figure 5.3 assuming that the bus accesses

never stall. The equation to convert the number of MAR instructions (m) to bus utilization is shown

in Equation 5.1. A bus utilization of 1 indicates that the bus is 100% busy.

bus utilization =
3m

8m + 16
(5.1)

With only a single MAR instruction in the loop, the bus utilization demanded by a single FAST

CPU is 3

8+16
= 0.125, or 12.5% of the total number of clock cycles. At 12.5% per–processor, the

Avalon Bus should be able to support three FAST CPUs without showing evidence of a bottleneck

at the main memory, since the total usage (12.5% × 3 = 37.5%) is much less than 100%. If it

were possible to insert an infinite number of MAR instructions3 , however, then each FAST CPU

could keep the bus busy lim
m→∞

3m
8m+16

× 100 = 37.5%4 of the total number of clock cycles. Even

with 100 MAR instructions, the demanded bus utilization percentage is 36.67% for each FAST CPU,

which is close to the limit of 37.5% so it serves as the maximum test point. This percentage is

slightly over one third of the bus, per–processor, so it is expected that with three FAST CPUs

(37.5% × 3 = 112.5% or 36.67 × 3 = 110.01%) there would be many collisions on the bus. In

addition, the Nios32 processor is constantly fetching instructions from main memory, which only

furthers the expectation of collisions.

Due to the nature of the FAST CPU instruction set, it is not possible to construct a FAST CPU

program that attempts to use more than 37.5% of the Avalon Bus. As each MAR instruction is added
3Unfortunately, the FAST CPU does not have sufficient RAM to store an infinite number of MAR instructions.
4The fact that this value is the same as the 3–FAST CPU case with a single MAR instruction is purely coincidental.

CHAPTER 5. SYSTEM TESTING 45

to the bus–busy loop, meaning that m is increased by 1, the total execution time should increase

linearly under ideal conditions (no bus collisions). The bus utilization increase, however, is shown

in Equation 5.2 and is dependent on the reciprocal of m and m2.

∆bus utilization = bus utilization(m + 1) − bus utilization(m)

=
3(m + 1)

8(m + 1) + 16
−

3m

8m + 16

=
(8m + 16) · (3m + 3)

(8m + 16) · (8m + 24)
−

(8m + 24) · 3m

(8m + 24) · (8m + 16)

=
(24m2 + 64m + 48) − (24m2 + 64m)

64(m2 + 5m + 6)

=
3

4(m + 2)(m + 3)
(5.2)

It follows, then, that if the total number of clock cycles have a linear relation with the number

of MAR instructions, and the bus utilization is dominated by the squared reciprocal of the number

of MAR instructions (in such a way that the bus utilization never exceeds 0.375), then when the bus

utilization is plotted on a linear axis against the total number of clock cycles, the total execution

time will be non–linear, approaching positive infinity at an asymptote on 37.5% bus utilization.

Tables 5.2, 5.3, and 5.4 show theoretical and selected experimental results for the 1–, 2–, and

3–FAST CPU case respectively. The number of MAR instructions (m), and the number of loop iter-

ations (i) are parameters to the program. The remaining variables are either measured or calculated,

and all contain a second subscript (n, for example tcc,n) which is either 1, 2, or 3. The second

subscript denotes whether the test result refers to a 1–, 2–, or 3–FAST CPU test. The variables are

as follows:

• tcc,n – Measured – The total clock cycles to complete the test, which consists of i iterations

of a FAST CPU bus–busy loop containing m MAR instructions.

• trs,n – Measured – Total number of read cycles observed at the SRAM. This is the counter

value from probe p7 in Section 5.1.

CHAPTER 5. SYSTEM TESTING 46

• tr1,n, tr2,n, tr3,n – Measured – Total number of read cycles for FAST CPU 1, 2, or 3 both

waiting for the Avalon Bus, or using it (probes p1, p2, and p3 respectively).

• toverhead,n – Measured – The number of clock cycles for 0 iterations of the bus–busy loop. It

represents the amount of time to send a request to the FAST CPU, process the 0 iterations, and

process the resulting FAST CPU interrupt. toverhead,n should be slightly larger than toverhead

in Table 4.3 since toverhead,n includes the time to process the 0–iteration loop. toverhead,n will

be constant across all tests with the same number of processors, and is used in the computation

of tideal,n and test,n.

• tideal,n – Computed – Ideal total number of clock cycles for the test. Equation 5.3 shows this

computation, which is the total number of cycles that are required if no Avalon Bus collisions

occur. This value is also the minimum amount of time required to complete the bus test. The

quantity 3† from the code in Figure 5.3 has been replaced with 3 in this equation because with

no collisions, each bus transaction will only require 3 clock cycles to complete.

Notice that tideal,n for n = {1, 2, 3} will have the same slope for a given m and i, because

ideally, the bus transactions can be interleaved so that no collisions occur. Practically this will

not be the case, especially in tests where collectively, the FAST CPUs attempt to use more

than 100% of the bus.

tideal,n = toverhead,n + (16 + 5m + 3m)i (5.3)

• test,n – Computed from Theoretical and Measured Values – Estimated number of total clock

cycles, shown in Equation 5.4. This estimation replaces the theoretical 3†m parameter from

the code in Figure 5.3 with a measured quantity, but leaves the remaining parts of the equation

unchanged. The 3†m quantity may change for each of the i iterations, so it is not easily

measurable, however 3†mi is a measurable quantity and is equal to tr1,n, tr2,n, or tr3,n for

the individual FAST CPUs. Equation 5.4 replaces the 3mi parameter in Equation 5.3 with the

CHAPTER 5. SYSTEM TESTING 47

maximum of tr1,n, tr2,n, or tr3,n from the experimental results.

test,n = toverhead,n + (16 + 5m)i + MAX(tr1,n, tr2,n, tr3,n) (5.4)

Any deviation from the ideal calculation (tideal,n) should be manifested in extra bus cycles. So

the number of bus cycles in the MAR instruction will not be the ideal 3, but more. The decision

to use the maximum of the three FAST CPU read quantities comes from the fixed priority

arbitration scheme used by the Avalon Bus (see Section 3.1.2). If simultaneous requests for

mastership are pending at the arbitrator, the one with the highest priority is allowed to proceed.

Therefore, the 3rd FAST CPU (defined last in the SOPC Builder) will always be serviced last,

and will always have to wait the longest. Following this logic, then, the total number of clock

cycles for the 2– and 3–FAST CPU case should be equal to the time it takes the slowest CPU

to complete the task.

• ∆ideal,n = tcc,n − tideal,n – Computed – The difference from the actual number of clock

cycles (tcc,n) to the computed ideal number of clock cycles (tideal,n). This quantity removes

the ideal portion of the total number of clock cycles, leaving a quantity which shows how

the Avalon Bus collisions impacted the results. tideal,n can be viewed as the minimum time

required to complete the bus test, and collisions only increase the total number of cycles

beyond tideal,n. If there are no Avalon Bus collisions, then tcc,n will equal tideal,n, and this

quantity will be 0.

• ∆est,n = tcc,n − test,n – Computed – The difference from the actual number of clock cycles

(tcc,n) to the computed estimated number of clock cycles (test,n). This quantity should be 0

for all cases in the experimental results, since it is computed using all available knowledge

of the Avalon Bus and how the testing code operates. If this value is not 0 (or close to 0), it

means that the theory used in the calculations is incorrect.

C
H

A
PT

E
R

5.
SY

ST
E

M
T

E
ST

IN
G

48

Table 5.2: Selected Bus Utilization Test Results for 1 FAST CPU
Total SRAM Read FAST CPU 1 Ideal Total Estimate

MAR Iter %Bus Cycles Cycles Read Cycles Cycles Total Cycles tcc,1 − tideal,1 tcc,1 − test,1

(m) (i) (bus) (tcc,1) (trs,1) (tr1,1) (tideal,1) (test,1) (∆ideal,1) (∆est,1)
1 0 12.5 4171 231 0 417 417 3 3

200 12.5 5220 2793 603 5217 5220 3 0
400 12.5 10020 5353 1203 10017 10020 3 0
600 12.5 14820 7913 1803 14817 14820 3 0
800 12.5 19620 10473 2403 19617 19620 3 0

1000 12.5 24420 13033 3003 24417 24420 3 0
10 0 31.25 417 231 0 417 417 3 3

200 31.25 20274 11906 6656 19617 20273 657 1
400 31.25 40134 23586 13317 38817 40134 1317 0
600 31.25 59994 35266 19977 58017 59994 1977 0
800 31.25 79855 46947 26637 77217 79854 2638 1

1000 31.25 99715 58626 33297 96417 99714 3298 1
50 0 36.06 423 233 0 417 417 6 6

200 36.06 87338 52589 33726 83617 87343 3721 −5
400 36.06 174151 104896 67332 166817 174149 7334 2
600 36.06 261189 157315 101177 250017 261194 11172 −5
800 36.06 348113 209677 134901 333217 348118 14896 −5

1000 36.06 434769 261906 168351 416417 434768 18352 1
100 0 36.76 426 234 0 417 417 9 9

200 36.76 171529 103583 67911 163617 171528 7912 1
400 36.76 342648 206942 135830 326817 342647 15831 1
600 36.76 513771 310305 203753 490017 513770 23754 1
800 36.76 684891 413665 271673 653217 684890 31674 1

1000 36.76 856003 517017 339585 816417 856002 39586 1
1This is toverhead,1, the time to do 0 iterations.

C
H

A
PT

E
R

5.
SY

ST
E

M
T

E
ST

IN
G

49

Table 5.3: Selected Bus Utilization Test Results for 2 FAST CPUs
Total SRAM Read FAST CPU Read Cycles Ideal Total Estimate

MAR Iter %Bus Cycles Cycles CPU 1 CPU 2 Cycles Total Cycles tcc,2 − tideal,2 tcc,2 − test,2

(m) (i) (bus) (tcc,2) (trs,2) (tr1,2) (tr2,2) (tideal,2) (test,2) (∆ideal,2) (∆est,2)
1 0 12.5 6501 358 0 0 648 648 2 2

200 12.5 5743 3200 612 1087 5448 5935 295 −192
400 12.5 11042 6138 1222 2186 10248 11234 794 −192
600 12.5 16357 9079 1825 3301 15048 16549 1309 −192
800 12.5 21669 12017 2437 4413 19848 21861 1821 −192

1000 12.5 26966 14957 3038 5510 24648 27158 2318 −192
10 0 31.25 650 359 0 0 648 648 2 2

200 31.25 22881 14735 6577 9225 19848 23073 3033 −192
400 31.25 45291 29180 13155 18435 39048 45483 6243 −192
600 31.25 67682 43603 19736 27626 58248 67874 9434 −192
800 31.25 90084 58030 26294 36828 77448 90276 12636 −192

1000 31.25 112500 72497 32915 46044 96648 112692 15852 −192
50 0 36.06 653 360 0 0 648 648 5 5

200 36.06 99965 66445 33767 46305 83848 100153 16117 −188
400 36.06 199370 132559 67681 92506 167048 199554 32322 −184
600 36.06 298785 198722 101552 138725 250248 298973 48537 −188
800 36.06 398215 264881 135419 184959 333448 398407 64767 −192

1000 36.06 497700 331025 169255 231236 416648 497884 81052 −184
100 0 36.76 656 362 0 0 648 648 8 8

200 36.76 196605 130971 67546 92949 163848 196797 32757 −192
400 36.76 392854 262301 135370 185998 327048 393046 65806 −192
600 36.76 589204 393391 203068 279148 490248 589396 98956 −192
800 36.76 785529 524483 270778 372273 653448 785721 132081 −192

1000 36.76 981733 655534 338502 465277 816648 981925 165085 −192
1This is toverhead,2, the time to do 0 iterations.

C
H

A
PT

E
R

5.
SY

ST
E

M
T

E
ST

IN
G

50
Table 5.4: Selected Bus Utilization Test Results for 3 FAST CPUs

Total SRAM Read FAST CPU Read Cycles Ideal Total Estimate
MAR Iter %Bus Cycles Cycles CPU 1 CPU 2 CPU 3 Cycles Total Cycles tcc,3 − tideal,3 tcc,3 − test,3

(m) (i) (bus) (tcc,3) (trs,3) (tr1,3) (tr2,3) (tr3,3) (tideal,3) (test,3) (∆ideal,3) (∆est,3)
1 0 12.5 8851 492 0 0 0 884 884 1 1

200 12.5 5759 3413 666 666 1055 5684 6139 75 −380
400 12.5 11014 6523 1329 1331 2109 10484 11393 530 −379
600 12.5 16300 9637 1996 1996 3195 15284 16679 1016 −379
800 12.5 21558 12749 2658 2658 4253 20084 21937 1474 −379

1000 12.5 26861 15874 3329 3329 5356 24884 27240 1977 −379
10 0 31.25 885 493 0 0 0 884 884 1 1

200 31.25 23447 16622 6866 6759 9742 20084 23826 3363 −379
400 31.25 46435 32961 13730 13551 19530 39284 46814 7151 −379
600 31.25 69712 49421 20539 20366 29607 58484 70091 11228 −379
800 31.25 92923 65846 27386 27217 39622 77684 93306 15239 −383

1000 31.25 115937 82142 34275 33955 49432 96884 116316 19053 −379
50 0 36.06 885 494 0 0 0 884 884 1 1

200 36.06 101553 74737 33147 32898 47851 84084 101935 17469 −382
400 36.06 202561 149034 66329 65709 95659 167284 202943 35277 −382
600 36.06 303562 223484 99440 98717 143459 250484 303943 53078 −381
800 36.06 404496 297919 132675 131740 191191 333684 404875 70812 −379

1000 36.06 505024 372004 165481 164545 238519 416884 505403 88140 −379
100 0 36.76 885 496 0 0 0 884 884 1 1

200 36.76 197967 145120 64087 63879 94262 164084 198346 33883 −379
400 36.76 395648 289705 128064 127914 188743 327284 396027 68364 −379
600 36.76 593463 435000 192559 192000 283358 490484 593842 102979 −379
800 36.76 791575 581390 257920 256677 378270 653684 791954 137891 −379

1000 36.76 988962 724677 320868 320164 472457 816884 989341 172078 −379
1This is toverhead,3, the time to do 0 iterations.

CHAPTER 5. SYSTEM TESTING 51

5.2.3 Discussion of Results

Taking any column except ∆est,n from the Tables 5.2, 5.3, or 5.4 and dividing by the number of bus

iterations (i) gives approximately the same number down the entire column. This is particularly true

for higher values of i where the effects of the constant overhead time for each test is minimized.

This means that the number of iterations is largely inconsequential to the results, thus, all analysis

is done for i = 1000.

The values of ∆est,n for n = 1 (the single FAST CPU case) are approximately 0 for all i,

indicating that the equations can almost perfectly predict the behaviour of the Avalon Bus. However,

the equations over–predict the total required cycles by a constant 192 clock cycles for the 2–FAST

CPU case, and by almost double that, 379 cycles, in the 3–FAST CPU case. Notice that the error in

the prediction is constant and independent of m and i, for i 6= 0. When i is greater than 0, there is

a non–trivial amount of work to be done by each FAST CPU in the test. To begin a test, each FAST

CPU is given a “go” command in sequence, so it is possible that the first FAST CPUs in the test

can be working while the remaining FAST CPUs are being given the instruction to begin the test.

This parallelism is most likely reducing the observed value of toverhead,n by a near–constant amount

for each processor added. At i = 0, where toverhead,n is measured, there is insufficient processing

time in the task for this parallelism to significantly change the measured value of toverhead,n. An

alternative measurement of toverhead,n that compensates for this parallelism would likely reduce

∆est,n to near 0 for all cases.

Figure 5.4 shows a graph of tideal,1, tcc,1, tcc,2, tcc,3, ∆ideal,1, ∆ideal,2, and ∆ideal,3 versus the

number of MAR instructions in the bus–busy loop. The graph contains a datapoint for each m in

1 ≤ m ≤ 100. tideal,1 is a linear function (defined in Equation 5.3). tideal,2 and tideal,3 are not

plotted, as they follow the same slope as tideal,1 with just a different y–axis intercept. The graph

shows that the three tcc,n and plots are approximately linear, which is verified by a linear regression

and standard deviation calculation, shown in Table 5.5. Since the tcc,n curves are (approximately)

linear the ∆ideal,n must also be approximately linear, as they are computed by subtracting a linear

CHAPTER 5. SYSTEM TESTING 52

Figure 5.4: Number of MAR Opcodes versus Total Cycles

equation from the set of tcc,n data points. This means that the extra bus cycles due to collisions

increases linearly as the number of MAR instructions (m) is increased.

It is evident from the graph in Figure 5.4 that the 2– and 3– FAST CPU cases execute in nearly

the same amount of time, which is a somewhat surprising result. It suggests that the bus transaction

interleaving in the 2–FAST CPU tests leaves sufficient free bus cycles with main memory that a

third processor may be added which effectively uses these holes. Investigating this specific inter-

leaving further through simulation or a digital scope would be a logical next step, and is discussed in

Section 6.3. However for the goals of this research, only the results of multiple processors using the

memory bus are useful, not how the bus specifically interleaves the requests to reach the observed

values.

The data in Table 5.5 shows the results of a linear regression for the tcc,n and ∆ideal,n data sets.

The correlation index is very close to 1 (perfect correlation) for all cases, indicating that the linear

regression is a good fit for the data.

Recall that the tcc,n data points are for i = 1000 iterations of the bus–busy code in Figure 5.3.

For each MAR instruction added to the loop in the 1–FAST CPU case, there are approximately 8388

CHAPTER 5. SYSTEM TESTING 53

Table 5.5: Linear Regression Results
Correlation Index Standard Error of the

Line y–intercept slope r2 Regression (SEy)

tcc,1 15630.08 8388.28 0.99999 796.43

tcc,2 15770.39 9643.76 0.99998 1168.44

tcc,3 18517.57 9727.86 0.99997 1623.48

∆ideal,1 −786.91 388.29 0.99508 796.43

∆ideal,2 −887.91 1643.76 0.99941 1168.44

∆ideal,3 1633.57 1727.86 0.99896 1623.48

extra cycles required to complete all 1000 iterations (the slope of tcc,1). Dividing by i = 1000

shows 8.388 extra cycles for each MAR instruction per iteration. A MAR instruction requires 8 cycles

(see Figure 5.3), leaving 0.388 cycles cycles due to bus collisions for each iteration. The value of

0.388 extra cycles can also be found by taking the slope of the 1–FAST CPU case differential line,

∆ideal,1, and dividing by the number of iterations (1000).

For the 3–FAST CPU test, there are 1728 extra bus collision cycles added, or 1.728 cycles

per added MAR instruction per iteration. The fact that the total time required to complete the test

is not three times the total time required for the 1–FAST CPU tests, shows that there is indeed

parallelization occurring (parallelization that is forced to serialize across all bus masters for bus

accesses).

This analysis of the number of clock cycles versus the number of MAR instructions is valid only

for the bus–busy loop code in Figure 5.3. For general applicability to any piece of FAST CPU code,

an analysis of the percentage of extra cycles versus the percentage of bus utilization is required.

First, however, Figure 5.5 shows a graph of tideal,1, tcc,1, and tcc,3 versus the bus utilization, which

demonstrates the asymptote when the per–processor attempted bus utilization approaches 37.5%. It

is evident from this graph that the experimental results agree with the theory. Also notice in this

graph that even for the 3–FAST CPU case, the per–processor bus utilization goes well beyond 33%.

Recall that the bus utilization refers to the attempted bus utilization for each processor, not the actual

utilization. The attempted bus utilization is set by the number of MAR instructions in the code in

CHAPTER 5. SYSTEM TESTING 54

Figure 5.5: Attempted Per–Processor Bus Utilization versus Ideal and Experimental Total Cycles

Figure 5.3. For all cases, the actual total bus utilization is 100%, since the Nios32 processor (which

is constantly fetching instructions while executing the busy–wait loop) is able to fill any idle bus

cycles, and sometimes collides with the FAST CPUs in the process.

Figure 5.6 shows the extra cycles caused by Avalon Bus collisions for each 1000 total clock

cycles at a given bus utilization. Equation 5.5 shows how the extra cycles are computed for each

value of m.

Extra Cycles =
tcc,n − tideal,n

tideal,n

× 1000 (5.5)

As in Figure 5.4 it is interesting to note that the results for the 2 and 3 FAST CPU systems

are somewhat close. It is also interesting to note that the extra clock cycles level off around 45

cycles for the 1–FAST CPU case, and approach 200 and 210 for the 2– and 3–FAST CPU cases

respectively, without showing much evidence of leveling. This figure represents the general result

of the measurements and bus utilization analysis. It relates a measurable quantity for any FAST

CPU program to a number of extra clock cycles. It can be used to determine how many extra clock

CHAPTER 5. SYSTEM TESTING 55

Figure 5.6: Attempted Per–Processor Bus Utilization versus Extra Clock Cycles per 1000 Total
Cycles

cycles per 1000 total system cycles will be incurred for any FAST CPU program, given the number

of FAST CPUs and the percentage of the Avalon Bus used by the FAST CPU program.

Recall from Section 4.2 that the FAST CPU was designed with a 1 kB internal RAM to avoid

fetching instructions out of main memory. The average CPI of the FAST CPU is 4, and each request

to the main memory requires 3 bus cycles (unless they are “pipelined”, which is what the Nios

processor does to achieve a CPI of 1 [Alt03b]). Assuming the CPI is to remain at 4, it means

that a single FAST CPU would need to keep the Avalon Bus busy 3 cycles
4 cycles , or 75% of the time.

None of the collected data extends to 75% bus utilization, however extrapolating from Figure 5.5 or

Figure 5.6 indicates that there would be a high frequency of bus collisions. Therefore, the decision

to use the 1 kB internal RAM was a “good” design decision.

CHAPTER 5. SYSTEM TESTING 56

5.3 FAST CPU Computation Testing

To test the relative computational performance of the FAST CPU compared to a Nios32 processor

and whether the Nios32 processor can act as a controller for several FAST CPUs, a factorization test

was chosen. Factorization requires no memory accesses other than the initial bus operation to write

the number to be factored into each FAST CPU, and a bus operation to read the result back from

the FAST CPU once factorization is complete. The read–back is not strictly necessary, but useful

to determine if the FAST CPU factored the number correctly. After a write to each CPU, the only

activity on the Avalon Bus is the Nios32 CPU executing the busy–wait loop, waiting for a FAST

CPU to finish and respond with an interrupt.

5.3.1 Test Procedure

The test procedure is based on the flow graph in Figure 5.1, and only adds a few minor steps.

The Nios32 processor first programs each FAST CPU with a piece of code which factors a 32–

bit number, given in Appendix A.2. Once complete, it picks two random prime numbers between

60, 000 and 65, 535, multiplies them, and writes the product (which is not more than 32–bits) to

each FAST CPU. It then enables the testing module, and instructs each CPU to begin factoring

through the use of a second command. While each FAST CPU is factoring a number, the Nios32

processor enters the busy–wait loop, and waits for all FAST CPUs to respond. Each CPU is an

independent processing entity, and each is working on the same problem, so each of the CPUs will

take exactly the same number of cycles to factor the number (the FAST CPU factorization routine

is deterministic, meaning that there is no randomness in it). When all FAST CPUs have responded

with an interrupt, the testing module counters are deactivated to read the values. The entire test is

repeated with 100, 000 different 32–bit numbers.

CHAPTER 5. SYSTEM TESTING 57

Table 5.6: Factorization Test Results
Total Cycles Speedup

Nios32 factoring 30,353,043 1.000x
1 FAST CPU 39,718,061 0.764x

2 FAST CPUs 39,718,458 1.528x
3 FAST CPUs 39,718,855 2.293x

5.3.2 Experimental Results

Table 5.6 presents the average results of the factorization test. The clock cycle counts in the table

represent the average clock cycles required to factor a single 32–bit integer. It is immediately

evident that the Nios32 processor outperforms the FAST CPU by approximately 25% in factoring

the number. For the 1, 2, and 3 FAST CPU case in Table 5.6, the Nios32 processor is only serving

numbers to the FAST CPUs, it is not performing any of the factoring. It can be seen that that the

Nios32 processor is capable of controlling all three FAST CPUs without slowing down the system

at all. In the 3 FAST CPU case, the number is factored once by each CPU in approximately the

same amount of time as on a single FAST CPU.

For convenience, Table 5.6 also shows the speedup using the Nios32 factor results as the base-

line. The speedup is computed by normalizing the results, which is explained in the next section,

and dividing each normalized value by the clock cycles required for the Nios32 processor to perform

the factorization.

5.3.3 Discussion of Results

It is expected that the Nios32 processor can outperform a single FAST CPU in processing through-

put, so a 25% faster time posted by the Nios32 processor is not surprising at all. The time difference

is largely because the Nios32 is an optimized processor that contains a 5–stage pipeline that most

instructions can complete without stalling, giving an average CPI of approximately 1 [Alt03b]. The

average CPI on the FAST CPU (which is unoptimized, and contains no pipeline) is 4.

CHAPTER 5. SYSTEM TESTING 58

If the FAST CPU also had an average CPI of 1, then it would theoretically perform four times

faster and complete the factorization tests in 10, 000, 000 cycles (compared to 30, 000, 000 for the

Nios32 processor). This would mean the Nios32 processor is approximately three times slower than

the FAST CPU which seems a bit dubious given both processors are somewhat simple and both are

restricted to operating at 33 MHz (so the maximum pipeline stage size is essentially fixed). There

are, however, two differences that can explain this theoretical result, and show that this is not an

unreasonable expectation for a FAST CPU:

• Programming Language Used – Eventhough the same algorithm was used for both im-

plementations, the code for the Nios32 processor was written in C, and compiled using all

optimizations available in the compiler. The factorization code for the FAST CPU was writ-

ten directly in assembly, since there is no C compiler which can target the FAST CPU (yet,

see Section 6.3).

• Instruction Set Differences – The FAST CPU opcode set has been tailored specifically to

run a single program. Time is saved by not using a stack, and by having addressing modes

which support immediate operands. The FAST CPU is capable of retrieving a 32–bit constant

operand as part of an instruction, whereas the Nios32 processor must load any non-register

operands into a register first (requiring 2 additional instructions, and potentially more if the

previous contents of the target register need to be saved on the stack.)

There is a difference of 39, 718, 458 − 39, 718, 061 = 397 total clock cycles between the 1 and

2 FAST CPU case, and also between the 2 and 3 CPU case. This is the overhead required to write

to additional processors, and is only slightly larger than the minimum overhead (toverhead = 383 in

Table 4.3). The 397 − 383 = 15 extra cycles can be attributed to the fact that the FAST CPU factor

code always retrieves the number to factor from the Avalon Bus slave interface before responding

with an interrupt to the Nios32 processor. It can therefore be concluded that the extra 397 clock

cycles incurred for adding additional FAST CPUs to the test is entirely attributable to the overhead

CHAPTER 5. SYSTEM TESTING 59

for the additional CPUs. This means that, as expected, there are no Avalon Bus collisions even in

the 3–FAST CPU case.

Using the factorization results from Table 5.6, and assuming that the Nios32 processor can

perfectly and completely use multiple FAST CPU factorization routines5 , is possible to construct

a simple model to describe when it is beneficial to migrate code to a FAST CPU from a purely

computational standpoint. Normalizing the factorization results, the Nios32 and the single FAST

CPU processor can complete one factorization in the posted time of 30, 353, 043 and 39, 718, 061

cycles respectively. The 2 and 3 FAST CPU systems are actually doing two and three factorizations

in the posted time, so they can complete a single factorization (in theory, under full parallelization)

in one half and one third of the time shown in Table 5.6. Figure 5.7 shows the total cycles plotted

against the number of FAST CPUs. Dividing each normalized data point by the result of the Nios32

processor gives the speedup, shown in Table 5.6.

In Figure 5.7, the intersection of the Nios curve and the FAST CPU curve is the breakeven–

point, located at slightly less than 1.5 FAST CPUs. Concluding, if the algorithm in question is

parallelizable across at least 2 FAST CPUs in such a way that at least 1.5 of the total cycles on

the CPUs are dedicated to performing the algorithm, then the system will show a speed increase.

This result, however, does not take into account any factor other than speed (other factors include

communication delays, total area consumed, design time, and design complexity).

One additional note to the previous analysis is that if the computation can be completed on

the Nios32 processor in less than the overhead cost (397 cycles for the factorization) then there is

no point whatsoever in migrating the code to a FAST CPU. The cost of the communication will

immediately negate any possible gain.

5It has been suggested that this be called “embarrassing parallelism”.

CHAPTER 5. SYSTEM TESTING 60

Figure 5.7: Total Normalized Clock Cycles versus Number of FAST CPUs

5.4 Minheap Testing

The minheap was chosen as a test for the FAST CPU system largely because of the availability of

results from a custom hardware implementation available in [Bis03], and further, for three reasons

given in [Bis03]:

1. Minheaps are used by many mainstream software applications including spreadsheets, databases,

simulators, and operating systems.

2. Minheaps use memory resources efficiently.

3. Minheaps are relatively complex to manage with a coprocessor.

5.4.1 Test Procedure

The minheap test measures the amount of time required to fill a minheap to a specified number of

entries and empty it over 5 iterations. The tests in [Bis03] actually measured the amount of time

CHAPTER 5. SYSTEM TESTING 61

required for 5000 iterations using the Nios timer peripheral. The timer, however, has an unknown

start–stop time, and requires regular interrupt servicing which significantly impacts short tests. Con-

sequently, in [Bis03], 5000 iterations were used to remove any impact these unknowns may have

had on the results.

At 5000 iterations with the test module, the cycle counters used in this research would overflow.

5 iterations are sufficient for this test because the testing module counters can be started and stopped

in 33 clock cycles, which is insignificant compared to the several hundred–million clock cycles

required to complete the entire minheap test. It is therefore safe to assume that the entire measured

time is for the minheap, and thus that it is safe to run the tests with only 5 iterations.

The Nios32 processor (running the code in Appendix C.2) begins by instructing all FAST CPUs

in the test to download the minheap code given in Appendix A.3. If the test is for a Nios–only test,

this step is skipped. Once complete, the Nios activates the testing module, and fills the minheap on

each processor to the required amount for the test with random key–value pairs. Then, it executes

the same number of delete operations to empty the heaps. The entire process is repeated 5 times, at

which point the testing module counters are disabled so the results can be read.

5.4.2 Experimental Results

An analysis of the FAST CPU minheap code in Appendix A.3, similar to the clock cycle breakdown

of the code in Figure 5.3, shows that the approximate Avalon Bus read utilization should be 4%. The

Avalon Bus write cycles utilization will be the same as the read utilization (4%), since each MAR

opcode has a paired MAW opcode in the minheap code. From the graph in Figure 5.6, it is expected

that there will be almost no Avalon Bus collisions in the single CPU case. Even with all 3 FAST

CPUs active at 8% bus utilization, there should be very few collisions.

Table B.1 in Appendix B gives the results of the test procedure for the Nios–only minheap

implementation. Tables B.2, B.3, and B.4 are the results for the 1–, 2–, and 3–FAST CPU imple-

mentations respectively.

CHAPTER 5. SYSTEM TESTING 62

Figure 5.8: Insert–Delete Pair Time versus Minheap Size

It is expected that when the results are graphed, they will show a logarithmic relationship be-

tween the total time required to complete the test versus the number of entries in the heap. Inserting

into a minheap and deleting from the heap are both O(log n) operations. So as the heap increases

in size, the total clock cycles required to insert, delete, and re–balance the tree will follow a log n

relationship, since
h∑

i=0

log(ni) = log(
h∏

i=0

ni).

Figure 5.8 graphs the results from the four raw data tables, plotting the total test cycles against

the number of items in the heap, and does indeed show the logarithmic relationship. This figure

adds two additional “normalized” curves. Using the same normalization technique that was used in

Section 5.3, the results from the two and three FAST CPU systems are normalized to reflect the fact

that they are essentially doing two and three times the amount of work in the measured time.

5.4.3 Discussion of Results

The results appear to show no bus collisions whatsoever across all tests. While this is not un-

expected, verification can be done several ways to ensure this assessment is correct. First, it is

CHAPTER 5. SYSTEM TESTING 63

important to notice that the FAST CPUs all take the same number of Avalon Bus read cycles to

perform all tests (the write cycles were not measured, however they behave the same as read cycles,

so the same is true) in Tables B.2, B.3, and B.4. This indicates that no FAST CPUs wait for the bus,

or that they all wait the same number of cycles.

A better validation is to quantify the difference in clock cycles between the 1–, 2–, and 3–FAST

CPU tests for a given number of minheap entries, to account for all the “extra” cycles incurred by

adding an additional FAST CPU. For the 10, 000 entry minheap test, the difference between the

1–FAST CPU and 2–FAST CPU clock cycles is 271, 069, 870 − 244, 880, 487 = 26, 189, 383. The

extra clock cycles per insert/delete pair can be computed as follows:

26, 189, 383 cycles ×
1 iteration
10000 pairs

×
1

5 iterations
= 523

cycles
pair

(5.6)

Similarly for the differences between the 2– and 3–FAST CPU systems for 10, 000 entry min-

heaps: 296, 927, 993 − 271, 069, 870 = 25, 858, 123.

25, 858, 123 cycles ×
1 iteration
10000 pairs

×
1

5 iterations
= 517

cycles
pair

(5.7)

From Table 4.3, the overhead time for writing a command to the FAST CPU and processing the

interrupt response is toverhead = 383 cycles. Each insert/delete pair in the minheap test requires 2

commands: insert and delete. When an additional FAST CPU is added, the inserts, which must be

sent to each processor, are in fact parallelized. All the inserts are written, then all the interrupts are

processed, allowing the interrupt processing to occur concurrently with any other FAST CPUs still

performing the minheap operations. Because of this parallelism, the full overhead of 2×toverhead =

766 cycles can be reduced. The computed extra clock cycles for adding a second FAST CPU (523

cycles), and for a third FAST CPU (517 cycles) are consistent with the expected parallelism. It can

be concluded then, that there are no bus collisions occurring, and thus, no bottleneck at the main

memory.

CHAPTER 5. SYSTEM TESTING 64

The “normalized” curves on the graph in Figure 5.8 illustrate what has been shown in Sec-

tion 5.3, that there is a performance increase between the 1–FAST CPU and the 2 or 3–FAST CPU

implementations when the parallel work that was done is considered.

5.5 Comparison with Previously Tested Systems

This section combines the presented results from the FAST CPU with several other results that

were obtained during testing, and compares them to known results from previous research. The

hardware–only design used for comparison is from [Bis03], and uses a straight–forward finite state

machine model to implement the minheap functionality. Of course, there are larger, faster, and more

complex implementations of a heap, such as massively parallel priority queues [Sep02]. The results

from [Bis03] are used because they are for a small heap implementation and are readily available.

The goal is to illustrate where the system model used in this research fits into the larger body of

research and show how the various systems compare using several metrics:

• Hardware Size – The Altera APEX series FPGAs measure hardware resources using LEs

(Logic Elements) and ESBs (Embedded System Blocks, which implement RAM). The APEX

FPGA on the Nios Embedded Processor Development Board contains 8320 LEs and 52 ESBs

(providing a total of 106, 496 bits of RAM).

• Maximum Frequency (fmax) – This is the maximum clock frequency of the hardware,

which is a direct function of the slowest path through the circuit. This metric comes directly

from the Quartus II synthesizer and timing analyzer.

• Design Complexity – There are several ways to measure the design complexity including

time to design, lines of code in the design, and complexity of the code. The number of lines

of code in the design is the only quantitative measure available, so the “complexity” is taken

as the number of lines of C code, assembly code, and VHDL. The number of lines of each

type of code in the design give a relative indication about the time and effort required for the

CHAPTER 5. SYSTEM TESTING 65

Table 5.7: Resource Requirements for Tested Configurable Systems

Design Complexity
Hardware Size fmax (lines of code) Configuration

LEs % ESBs % (MHz) VHDL ASM C Time
Nios only1 2385 28 16 31 52.32 0 0 02 < 300 ns

1 3661 44 28 54 45.11 Software: < 300 ns

FAST CPU 2 4868 58 40 77 45.11 2072 58 276 Hardware: 34.5 ms

3 6137 73 52 100 45.11
Hardware only 4247 52 52 100 36.94 0 0 0 34.5 ms

1Recall that Table 4.3 presented the size of individual processors, whereas the data in this table is for complete systems.
2This table compares only the resource requirements for a system, and does not include any application implementation
on top of the design (which is why the Design Complexity is 0 for some designs). Table 5.8 shows the metrics for a
minheap implementation on each system.

design. For example, writing, debugging, and testing C code is easier than assembly (ASM)

code, and producing correctly functioning VHDL is more difficult (at least for the author)

than both assembly and C code.

• Minheap Reference Time – The normalized time required to conduct the minheap tests

described in Section 5.4.1. The time reported is the clock cycles to complete the 10, 000

entry test divided by the clock speed, 33 MHz.

• Configuration Time – This is the time required to change the design that is assisting with

application specific acceleration. For software, it is the time required to change the software,

and for hardware, the time required to configure the FPGA as specified by the manufacturer.

For both hardware and software, the time to download the design to a location where the

device can be reprogrammed (or configured) is omitted, it is assumed all designs are readily

available or that the downloading can be done in parallel with system operation.

Table 5.7 shows a summary of the metrics for a Nios system, a 1–, 2–, and 3–FAST CPU

system, and a hardware–only system, and Table 5.8 shows the relevant metrics for a minheap im-

plementation on each system. For Table 5.7 the design complexity shows the requirements to bring

the system to a point where any design can be implemented with it, whereas in Table 5.8 the design

CHAPTER 5. SYSTEM TESTING 66

Table 5.8: Minheap Results for Tested Configurable Systems
Design Complexity

Minheap (lines of code)
Time (µs) VHDL ASM C

Nios32 121.60 0 0 568
FAST CPU 1 148.41

Minheap 2 82.14 0 351 82
3 59.99

Hardware 6.00 1572 0 0

complexity gives the code required only for the minheap implementation.

5.5.1 Hardware Size

As expected, in Table 5.7, the Nios only system is the smallest in terms of hardware area (ESBs)

because all other systems include a Nios processor, Avalon Bus, and various system peripherals

along with additional hardware. It is interesting however, that the single FAST CPU system, which

can implement almost any algorithm, is approximately 8% smaller than the hardware–only minheap

core, which only implements a minheap. Of course, this is only one data point for all the implemen-

tations of algorithms for application specific acceleration, but this one implementation shows that a

lightweight processor core can produce an overall more area–efficient system than a hardware core

(saying nothing about processing speed, see Section 5.5.4). Note that the 3 FAST CPU system has

completely used all the available ESBs (memory) on the FPGA, so additional FAST CPUs cannot

be added to the system even though there is available area.

5.5.2 Maximum Frequency (fmax)

The fmax results show that there is little penalty in adding hardware to a Nios system. In the case

of the FAST CPU systems, the longest delay path is from an automatically generated Avalon Bus

slave module for the FAST CPU to the Nios32 master module. The maximum delay in the hardware

implementation is through the minheap hardware, but the Nios Embedded Processor Development

CHAPTER 5. SYSTEM TESTING 67

Board operates with a 33 MHz clock, so all the maximum frequencies are well within the board

specifications.

5.5.3 Design Complexity

In Table 5.7, the code required for the Nios32 processor and related peripherals, which is auto-

matically generated by the SOPC Builder, is excluded. The Nios–only and hardware–only systems

require no additional code. The FAST CPU systems require the development of the FAST CPU

(VHDL), the boot loader (FAST CPU assembly), and the API (C code), before any application can

be developed on top of a FAST CPU system. It is important to distinguish between this work, and

the work required to implement an algorithm on each of the configurable systems, as the FAST CPU

complexity reported in Table 5.7 has been done, and never has to be done again for any algorithm

implemented on the FAST CPU system.

Table 5.8 shows the lines of code in the minheap designs for the Nios processor, the FAST CPU

systems, and the hardware implementation. The code required for the hardware implementation is

slightly smaller than the code required to implement the FAST CPU, which was not an insignificant

design6 . The FAST CPU design, while the smallest in terms of total lines of code, definitely required

more effort than the Nios–only software design because of the language used7. A FAST CPU C

compiler would bring the complexity down to that of the Nios–only software implementation (see

Section 6.3 for comments about a FAST CPU C compiler).

5.5.4 Minheap Reference Time

The normalized minheap times have been discussed in Section 5.4.3, except for the hardware–only

result. This value (6 µs [Bis03]) is significantly less than the Nios–only system and all the FAST

CPU systems, which is expected. The hardware can manage a minheap approximately 20 times

6For a rough comparison, the FAST CPU took approximately 8 months to design, develop, and debug.
7Again, for a rough comparison, the Nios design was written and debugged, in C, in approximately half an hour,

whereas converting that design to FAST CPU assembly took three hours.

CHAPTER 5. SYSTEM TESTING 68

faster than the Nios software implementation, and 24 times faster than a single FAST CPU, but only

10 times faster than the 3 CPUs, when parallelization is considered.

5.5.5 Configuration Time

The configuration time for the Nios–only system is taken to be the time to change from one pro-

gram to another. On a Nios processor that involves simply changing the program counter to a new

memory location, and maybe flushing the pipeline, the exact behaviour of the jump instruction is

not known. The same is true for the FAST CPU software, provided both programs fit in the 1 kB in-

ternal RAM. A simple JMP instruction effectively changes the code that the FAST CPU is running.

The FAST CPU is also designed to be reconfigured with a new core to add or remove hardware

features. The complete configuration of an APEX 20K200EFC484-2X FPGA on the Nios Embed-

ded Processor Development Board takes 34.5 ms [Bis03]. The hardware–only system must always

be reconfigured to change the design, so this is the time for changing between custom hardware

designs.

5.6 Summary

This chapter has presented the results from several tests conducted with a FAST CPU system. The

bus utilization tests have shown a linear relationship between the demands for the Avalon Bus and

the resulting clock cycles required to complete the test using the bus. The linearity was verified

by a linear regression. The results also show evidence of bus collisions which is expressed in a

generalized plot that relates the number of extra bus cycles per 1000 system cycles to the ideal bus

utilization of a piece of FAST CPU code.

The computation testing compared the factorization of 32–bit integers on a Nios processor, and

on the FAST CPUs. The Nios processor is faster, as expected, because of the design of the processor.

A minheap application was used to test the FAST CPUs as well. The bus utilization results

correctly predicted few–to–no bus collisions when the minheap algorithm was analyzed, and the

CHAPTER 5. SYSTEM TESTING 69

computation analysis showed that a single FAST CPU would be slower than the Nios, but 2 or 3

FAST CPUs could outperform a Nios processor when parallelism was considered. The minheap

results are compared to a hardware–only implementation of a minheap, where it can be seen that the

design complexity, design area, and configuration time are improved with a lightweight processor

core, but the performance is approximately 24 times slower than the hardware–only core.

Chapter 6

Concluding Remarks

6.1 Thesis Conclusions

A system using programmable lightweight processor cores within a configurable system has been

presented. The system design was based on known models of configurable systems. Using the

designed system, containing 3 FAST CPUs, it has been shown that it is possible to move function-

ality from the general purpose processor into a lightweight processor with little penalty. Indeed,

exploiting parallelism can actually improve the system performance of a multi–FAST CPU system

compared to a Nios–only system. The speed improvements, however, come with a size penalty, as

it takes more resources to implement additional processing units to achieve the speedup.

A single FAST CPU has been shown to be smaller than a hardware–only implementation of a

minheap, which verifies that it is possible to make a system for application specific acceleration

smaller, in terms of area, by using a lightweight processor core instead of a custom hardware core

(which includes the 1 kB of internal RAM for instructions in the FAST CPU). In addition, the

complexity of the code for the processor core is much less than the hardware description. The

FAST CPU system, however was significantly slower than the custom hardware implementation

(by factor of 24), which was expected.

70

CHAPTER 6. CONCLUDING REMARKS 71

Through the bus utilization analysis it was shown that for the particular configuration of the

system studied that, even with the Nios processor constantly fetching instructions, congestion at

the main memory is not an issue if the FAST CPUs use main memory for bulk data storage. The

utilization was compared to the ideal bus usage of an algorithm to derive an expression for finding

the number of extra cycles incurred in a program due to bus collisions given the number of FAST

CPUs in the system and the average bus utilization. If the FAST CPU fetched instructions from the

main memory, instead of from an internal RAM, then it is conceivable that each FAST CPU may be

closer to utilizing 75% of the Avalon Bus. While the results from Section 5.2 do not extend beyond

37.5%, the trend indicates that at 75% utilization, bus collisions should occur frequently. The 1 kB

of FAST CPU internal RAM (to help keep the FAST CPUs off the bus) was therefore was a good

design decision.

A factorization test was also performed to compare the relative performance of the FAST CPU

compared to a Nios processor. It showed that the FAST CPU was approximately 25% slower than

the Nios processor, which was expected since the Nios processor was designed by professionals

over a long period of time. The performance results were used to construct a cost analysis graph,

which showed that it becomes advantageous to migrate code to FAST CPUs if the code can be

parallelized across at least two processors, and in such a way that no more than 25% of the time on

each processor is spent doing synchronization and communication.

The method used to perform bus and computation analysis is presented as a technique to de-

rive equations for any specific configurable system, in general, to predict bus utilization and find a

breakeven point in relation to the number of configurable lightweight processor cores required to

show a system speedup. Based on the analysis of a minheap in the FAST CPU system, it was sug-

gested that there should be no bottleneck at the memory, and that the 1–FAST CPU case should be

slower than the Nios–only system. The normalized 2– and 3–FAST CPU systems, however, should

be faster. This theory was verified by experimental observation.

CHAPTER 6. CONCLUDING REMARKS 72

6.2 Challenges Encountered

As with the development of any complicated system involving hardware or software (or in the case

of this research, the interaction of both), there will be problems encountered. Some are solvable,

some can be worked around, and some persist and must be strategically avoided.

6.2.1 Hardware

One particularly puzzling problem occurred during the bus utilization testing presented in Sec-

tion 5.2. Figure 6.1 shows ∆ideal,2: the difference between the results of the 2 FAST CPU bus test

and the ideal results. The oscillating and somewhat erratic curve represents the test results using

CPUs {1, 2} in the 3 CPU system, whereas the results from the other two combinations of CPUs

({1, 3} and {2, 3} as presented in Section 5.2) showed near identical results that agreed with the

theory. All testing was done without resynthesizing the system, or even downloading a new system

core to the FPGA on the Nios Embedded System Development Board. Resynthesizing and config-

uring the board again, however, did not change the results. Even in the case where CPUs {1, 2}

failed to run the test correctly, the single CPU tests all worked successfully (and returned identical

results) on each of the 3 CPUs, and the 3 FAST CPU test returned data that is consistent with what

is expected. This suggests that it is not a problem with the VHDL design, or with the software. The

only theory (so far) to explain this phenomenon is that for the {1, 2} test, there is some interference

with the parts of the FPGA that are active and inactive that is not encountered in any other case.

A second problem was encountered where occasionally the system would not synthesize cor-

rectly. Most likely, this was the optimizer slightly misbehaving. However, this particular behaviour

is to be expected with modern synthesis tools, so it is not a profound result, merely an annoying

one.

CHAPTER 6. CONCLUDING REMARKS 73

Figure 6.1: Problematic 2–FAST CPU Bus Utilization Results

6.2.2 Software

One notable problem was encountered as the testing module was being developed. The Nios pe-

ripheral timer was originally to be used for data collection, but it did not function reliably as an

interval timer (see the next section on minheap related challenges). During the development of the

testing module, and before the Nios timer peripheral had been removed from the system, if the C

code drivers for both the timer and the testing module were included in the system (not called to

initialize the hardware, or for any other purpose, just included), then the FAST CPU–2 would cease

to function. If, however, either of the drivers were omitted, then without resynthesizing any parts

of the system, the entire system would function as expected. This is similar to the aforementioned

hardware problem, except that it can be reliably triggered by simply changing the software built and

downloaded to the Nios processor.

An undocumented limitation was discovered with respect to global variables in the code for the

Nios processor, or at least in the ability of the compiler to generate code for a Nios processor. There

is an upper bound on the amount of data which can be placed in the global space, and if too much

CHAPTER 6. CONCLUDING REMARKS 74

data is compiled as global, then it trounces on program memory. This particular feature limited

the size of the FAST CPU code which could be included in the Nios processor, as it it is required

to be global so the FAST CPU can download it. This problem was worked around by moving all

other data structures to the stack of the main() routine, and passing them as pointers to the various

functions.

6.2.3 Minheap Related

Before the testing module was created (Chapter 5), the initial system testing was done using a min-

heap, however the results showed evidence of a significant memory bottleneck for the 3–FAST CPU

system. That is, it showed little improvement from the three FAST CPU system compared to the

single FAST CPU system. It is expected that with a Nios32 processor controlling multiple FAST

CPUs, that the one–, two–, and three–FAST CPU tests should return nearly identical test results

after compensating for the additional Avalon Bus transactions to communicate with additional pro-

cessors. An analysis of the FAST CPU implementation of the minheap showed that it would use, in

theory, less than 4% of all cycles for bus read operations, and even fewer for write operations. In

the worst case, and assuming there are equal numbers of reads and writes, each FAST CPU could

potentially consume 8% of the Avalon Bus. It does not make sense then, that any sort of slowdown

would occur due to memory congestion, even in the 3–FAST CPU case.

Instead of proceeding with additional and more complicated tests, the testing module was devel-

oped and used in the Avalon Bus utilization test and the processor computation tests (in Chapter 5).

This was done to investigate whether the system was achieving a bottleneck, or if something else

was causing the slowdown from the first minheap test (or if the minheap test itself was flawed).

Comparing the original minheap tests to the testing presented in Chapter 5, the only difference

in the tests is the actual measurement device used. The original tests used the Nios timer peripheral,

whereas the tests in Chapter 5 used the testing module. The original tests showed similar results

as Figure 5.8, with each minheap/delete pair measured as approximately 4µs faster, meaning the

CHAPTER 6. CONCLUDING REMARKS 75

curves were all shifted down by approximately 4µs. It must be concluded, then, that the Nios

peripheral timer was the source of the inaccuracies, which makes sense and can be explained.

The original attempt at measuring the overhead time in Table 4.3 using the Nios timer periph-

eral gave toverhead ≈ 200 clock cycles1. This number was computed by timing the delivery and

response of 1000 commands, and dividing the resulting time by 1000. Equations 5.6 and 5.7 show

a differential average insert/delete pair time difference of around 500 cycles between the 1– and

2–FAST CPU test and the 2– and 3–FAST CPU test respectively. Assuming that toverhead = 200

cycles, and given a minheap insert/delete pair requires 2 commands, there are at least 100 “miss-

ing” cycles. The only source of these missing cycles is bus collisions caused by the MAR and MAW

instructions waiting to use the bus, so they were attributed to that. An investigation of the code,

though, showed that in theory there should not be bus collisions, so the tests in Sections 5.2 and 5.3

were performed. As it turns out, those particular tests were also extremely useful towards the goals

of the thesis.

6.3 Future Work

There have been several paths highlighted throughout the discussion of the thesis for future work:

• Extend the tests to run on a configurable system that supports more than 3–FAST CPUs, to

verify the results hold for additional processors. For example, it has been determined that the

smallest Altera Stratix–II FPGA (the EP2S15 [Alt04]) is capable of synthesizing a system

with 10 FAST CPUs.

• A C compiler for the FAST CPU would greatly assist programmers in creating code for the

FAST CPUs. While writing assembly code can be invigorating for some, developing C code

is generally a much faster procedure. The lcc [HF95] C compiler is a configurable compiler
1The measurement of toverhead using the testing module is known to be correct, since the testing module measure-

ments agree with the computed values for the run–time required for various pieces of code. While it is known that the
author has problems with simple integration, it has yet to be proven that the author is not proficient with addition and
multiplication. It is therefore assumed that the computed values are correct.

CHAPTER 6. CONCLUDING REMARKS 76

which allows customization of the assembly output. lcc also supports calling a custom

assembler which could turn the FAST CPU assembly code generated by the compiler into

something downloadable into a FAST CPU.

• Further investigation into the bus utilization may uncover additional interesting facts about

the FAST CPU and bus interaction. The 2– and 3–FAST CPU bus access tests required

approximately the same amount of time to complete. Determining specifically where all the

cycles are allocated may show why the 2– and 3–FAST CPU bus test cycle counts are so close,

and may allow prediction of behaviour with more FAST CPUs. For example, would there be

another jump in clock cycles counts for a 4th processor, would the 5th processor be close to

the 4th processor, or is this particular behaviour of similar cycle counts a phenomenon unique

to the 2 and 3–FAST CPU systems?

• The next family of Nios processors (Nios2) from Altera support a processor cache if synthe-

sized on a Stratix FPGA. Experimentation on systems with a cache–enabled Nios processor

would make it possible to keep the Nios processor “off the bus” as the FAST CPUs operated,

and may lead to a more accurate prediction of bus utilization in the system.

• Beyond the immediate future, the goal is to extend the system onto multiple FPGAs, or onto

an FPGA that supports reconfiguration, so that each FAST CPU can be contained in an in-

dividual configurable entity (as opposed to the research done for the thesis, where the entire

system was implemented within a single configurable FPGA). When this occurs, a schedul-

ing algorithm will be needed to schedule the FAST CPU cores, and the specific FAST CPU

applications within the cores. The development of this algorithm should prove to be quite

academically entertaining.

Appendix A

FAST CPU Code

A.1 Bus–Busy Code

This is the FAST CPU code which floods the Avalon Bus with Read Requests.

bus util test fastcpu.s

; FAST CPU Avalon Bus Busy
; David Grant, 2004

; Commands:
; r0 r1 r2 desc
; 00000100 d2 iterations, and go

.org 0x20

JMP main

main:
; Wait for a command
SLC 0
SSEG R0
command_wait:

SLR 0, R0
CMP 0, R0
BEQ command_wait

; Now, command is in R0, load commands and decide what command it is

77

APPENDIX A. FAST CPU CODE 78

LD commands, R1
LD 0, R2
command_find:

CMP (R1), R2 ; Compare with 0
BEQ command_not_found ; Yes, command not found.
CMP (R1), R0 ; Check with the loaded command
BEQ command_found ; Yes, command match.

ADD 2, R1 ; Proceed to next array member
JMP command_find

command_found:
ADD 1, R1 ; Increment to the command pointer
LD (R1), R2
SPC R15 ; Save pc
JMP R2 ; Run the function

; Returns here
JMP main

command_not_found:
SSEG 0xfe
JMP command_not_found
JMP main

; We’ll never get here.

command_wait_done:

SLC 0
IRQ 1
command_wait_done_wait:

SLR 0, R0
CMP 0, R0
BEQ command_wait_done_wait

IRQ 0
JMP R15

.long commands 0xFF000001

.long __c1 #command_reset

.long __c2 0x00000100

.long __c3 #command_set

.long __c_last 0x00000000

; Command FF000001
command_reset:

SSEG 0xFF
JMP 0x0

.long testlong 0x12345678
command_set:

APPENDIX A. FAST CPU CODE 79

SLR 1, R0
SLR 2, R2
LD (testlong), R1
lp:

CMP 0, R2
BEQ lpdone
; Nios code will rewrite this and insert desired number of
; MAR R0,R1 operations here.
SUB 1, R2
JMP lp

lpdone:
JMP command_wait_done

A.2 Factor Code

This is the FAST CPU code for a deterministic factorization routine used to factor a 32–bit number.

factor32 fastcpu.s

; FAST CPU factor program
; David Grant, 2004

; Commands:
; r0 r1 desc
; 00000100 n set longward to factor
; 00000104 -- start factoring

.org 0x20
JMP main

.long number 0x0

.long factor_count 0x0

.long msb1 0x80000000

.long pause 0x20000

main:
; Wait for a command
SLC 0
SSEG R0
command_wait:

SLR 0, R0
CMP 0, R0
BEQ command_wait

APPENDIX A. FAST CPU CODE 80

; Now, command is in R0, load commands and decide what command it is
LD commands, R1
LD 0, R2
command_find:

CMP (R1), R2 ; Compare with 0
BEQ command_not_found ; Yes, command not found.
CMP (R1), R0 ; Check with the loaded command
BEQ command_found ; Yes, command match.

ADD 2, R1 ; Proceed to next array member
JMP command_find

command_found:
ADD 1, R1 ; Increment to the command pointer
LD (R1), R2
SPC R15 ; Save pc
JMP R2 ; Run the function

; Returns here
JMP main

command_not_found:
SSEG 0xfe
JMP command_not_found
JMP main

; We’ll never get here.

; Command FF000001
command_reset:

SSEG 0xFF
JMP 0x0

; Set the number to factor
command_set:

SLR 1, R1 ; data -> R1
SSEG R1
ST (number), R1 ; R1 -> number
JMP command_wait_done

; Factor!
command_factor:

; Load numbers
LD (number), R1 ; The number we’re factoring

; div by 2
LD R1, R3
LD 2, R2
AND 1, R3
CMP 0, R3 ; If lsb is 0, it’s divisible by 2
BEQ factor_done_found

APPENDIX A. FAST CPU CODE 81

LD 1, R2 ; Current factor
SSEG R1
factor_loop:

; Add 2 to the factor
ADD 2, R2
; Get the factor left aligned into R3
LD R2, R4
factor_setup_loop:

CMP 0, R4 ; See if we’re done.
BEQ factor_setup_loop_done
LD R4, R5 ; Make a copy, we need it in a sec.
SHR 1, R3 ; Shift output and input
SHR 1, R4
AND 1, R5 ; Test the LSB on the back up
CMP 0, R5 ; If NE, MSB R3 needs to be 1.

BEQ factor_setup_loop ; Skip OR if the bit was 0
OR (msb1), R3
JMP factor_setup_loop

factor_setup_loop_done:

; Shifted subtractor in R3
LD R1, R5 ; Remainder in R5
LD 0, R7 ; Answer in R7

JMP factor_shift_loop_start

factor_shift_loop:
SHR 1, R3 ; Shift subtractor

factor_shift_loop_start:
SHL 1, R7 ; Shift answer
CMP R5, R3 ; Check remainder with subtractor
BLT shift_no_sub; R5 < R3?
SUB R3, R5 ; R5 >= R3, subtract.
OR 1, R7 ; Put a 1 in the answer.

shift_no_sub:
CMP R2, R3 ; Check what subtractor we used
BNE factor_shift_loop

; Now, if there is anything left in R5, then R2 is
; not a factor.
CMP 0, R5
BEQ factor_done_found

; Compare the answer with the factor being checked,
; The answer should be bigger, if it isn’t we’ve
; passed the SQRT threshold, and should stop now.
CMP R7, R2 ; R7 < R2 ?
BLT factor_done_no_factor

JMP factor_loop

APPENDIX A. FAST CPU CODE 82

factor_done_found:
SLW 0, R2
JMP command_wait_done

factor_done_no_factor:
LD 1, R0
SLW 0, R0
JMP command_wait_done

; Fire an IRQ at the Nios, and wait for it to ack it
command_wait_done:

SLC 0
IRQ 1
command_wait_done_wait:

SLR 0, R0
CMP 0, R0
BEQ command_wait_done_wait

IRQ 0
JMP R15

.long commands 0xFF000001

.long __c1 #command_reset

.long __c2 0x00000100

.long __c3 #command_set

.long __c4 0x00000104

.long __c11 #command_factor

.long __c_last 0x00000000

A.3 Minheap Code

This is the FAST CPU code for the minheap implementation.

minheap fastcpu.s

; Minheap core, for keeping record of a single minheap
; David Grant, 2004

; Commands:
; r0 r1 r2 desc
; 00000100 set minheap base

APPENDIX A. FAST CPU CODE 83

; 00000101 key data minheap insert
; 00000102 minheap delete (read result from r0)

.org 0x20
JMP main

.long heap_count 0x0

.long heap_base 0x0

main:
; Wait for a command
SLC 0

LD (heap_count), R0
SLW 3, R0

SSEG R0
command_wait:

SLR 0, R0
CMP 0, R0
BEQ command_wait

; Now, command is in R0, load commands and decide what command it is
LD commands, R1
LD 0, R2
command_find:

CMP (R1), R2 ; Compare with 0
BEQ command_not_found ; Yes, command not found.
CMP (R1), R0 ; Check with the loaded command
BEQ command_found ; Yes, command match.

ADD 2, R1 ; Proceed to next array member
JMP command_find

command_found:
ADD 1, R1 ; Increment to the command pointer
LD (R1), R2
SPC R15 ; Save pc
JMP R2 ; Run the function

; Returns here
JMP main

command_not_found:
SSEG 0xfe
JMP command_not_found
JMP main

; We’ll never get here.

; Command FF000001

APPENDIX A. FAST CPU CODE 84

command_reset:
SSEG 0xFF
JMP 0x0

command_minheap_base:
SLR 1, R1
ST (heap_base), R1
SLW 1, R1
JMP command_wait_done

:
; Command 00000101
; R4 == iteration position, starts a heap count
command_minheap_insert:

; Load args
SLR 1, R1 ; Key
SLR 2, R2 ; Data

LD (heap_count), R4 ; Add 1 to the heap count
ADD 1, R4
ST (heap_count), R4

minheap_insert_loop:
LD R4, R5
SHR 1, R5 ; R5 == position / 2

; if position/2 == 0, break loop
CMP 0, R5
BEQ minheap_insert_loop_done

; Else, proceed with the insert
minheap_insert_insert:

LD (heap_base), R6 ; Load heap base
LD R5, R7 ; Load r5 to r7
SHL 3, R7 ; r7 == r5 * 4 * 2
ADD R7, R6 ; find offset in ram
MAR R6, R7 ; Read into r7

CMP R1, R7 ;
; Now, if R1=key >= R7=minheap[p/2] we don’t
; want to swap up the tree anymore, we’re done.
BGE minheap_insert_loop_done

; Else, if the parent (array[p2]) is greater than the key
; we’re inserting, so we need to rearrange things
; Read the data for the last key
ADD 4, R6
MAR R6, R10

LD (heap_base), R6 ; Load heap base
LD R4, R9 ; Load p

APPENDIX A. FAST CPU CODE 85

SHL 3, R9 ; p = p*4
ADD R9, R6 ; Add to get location of m[p]
MAW R6, R7 ; Write m[p/2] to m[p]
ADD 4, R6 ; Move to data position
MAW R6, R10 ; Write data too

LD R5, R4 ; p = p/2

JMP minheap_insert_loop

minheap_insert_loop_done:

; Store the value of key (R1) into p[m]
LD (heap_base), R6
LD R4, R9

SHL 3, R9
ADD R9, R6
MAW R6, R1
ADD 4, R6
MAW R6, R2

; send an interrupt, and wait for the ACK
JMP command_wait_done

; Min Heap Delete
command_minheap_delete:

LD (heap_base), R0
ADD 8, R0 ; Load value in m[1]
MAR R0, R1

SLW 0, R1
ADD 4, R0 ; Load data in m[1]
MAR R0, R1
SLW 1, R1

; Now at this point we could trigger the interrupt and wait for
; an ack.

; Fixup the table.
LD 1, R0

minheap_delete_loop:

; position = p = R0

; Compute the left and right locations
LD R0, R1
ADD R1, R1 ; R1 = position * 2 = left
LD R1, R2
ADD 1, R2 ; R2 = left + 1

APPENDIX A. FAST CPU CODE 86

; If left is beyond the end of the heap, then we’re done
CMP (heap_count), R1
BLE minheap_delete_loop_done ; b if (heap_count) <= R1=left

; If left(R1) == heap count, then we can jump right to the
; final swap
BEQ minheap_delete_loop_done

; Load left value
LD (heap_base), R7
LD R1, R8
SHL 3, R8
ADD R8, R7
MAR R7, R5

; Load right value
ADD 8, R7
MAR R7, R6

; Compare left to right, we want to swap up the smallest value
CMP R5, R6 ; left ?? right
BLE minheap_delete_swap ; left <= right

; Else, right is smaller
LD R2, R1 ; Load position and value
LD R6, R5

minheap_delete_swap:
; Assume postition is in R1, value is in R5

; Fetch the data
LD (heap_base), R7
LD R1, R8 ; Load location of m[l|r] + 4
SHL 3, R8
ADD 4, R8
ADD R7, R8
MAR R8, R10 ; Read data

LD R0, R8 ; Load location of m[p]
SHL 3, R8
ADD R8, R7
MAW R7, R5 ; Write key
ADD 4, R7
MAW R7, R10 ; Write data

; Store the new position
LD R1, R0
JMP minheap_delete_loop

minheap_delete_loop_done:
; Load m[p] <= m[heap_count]

APPENDIX A. FAST CPU CODE 87

; Load m[heap_count] and data
LD (heap_base), R6
LD (heap_count), R7
SHL 3, R7
ADD R7, R6
MAR R6, R8
ADD 4, R6
MAR R6, R9

; Write it to m[p]
LD (heap_base), R6
LD R0, R7
SHL 3, R7
ADD R7, R6
MAW R6, R8
ADD 4, R6
MAW R6, R9

LD (heap_count), R6
SUB 1, R6
ST (heap_count), R6

JMP command_wait_done

; Empty the heap
command_minheap_empty:

LD 0, R0
ST (heap_count), R0
JMP command_wait_done

; Fire an IRQ at the Nios, and wait for it to ack it
command_wait_done:

SLC 0
IRQ 1
command_wait_done_wait:

SLR 0, R0
CMP 0, R0
BEQ command_wait_done_wait

IRQ 0
JMP R15

.long commands 0xFF000001

.long __c1 #command_reset

.long __c2 0x00000100

.long __c3 #command_minheap_base

.long __c4 0x00000101

.long __c5 #command_minheap_insert

APPENDIX A. FAST CPU CODE 88

.long __c6 0x00000102

.long __c7 #command_minheap_delete

.long __c8 0x00000103

.long __c9 #command_minheap_empty

.long __c_last 0x00000000

Appendix B

Minheap Results

This chapter contains the raw minheap test results. Each result is obtained by filling and emptying

a minheap with the specified number of entries 5 times. Table B.1 gives the result for a Nios

only implementation of the heap. In this test, no FAST CPUs are activated and the Nios processor

manages the entire heap. Tables B.2, B.3, and B.4 give the result for a 1–, 2–, and 3–FAST CPU

system respectively. In these tests, the Nios processor is instructing the FAST CPUs to insert or

delete items from the heap, but is performing no heap management itself. The far righthand column

of each table is computed to be the average time to insert an item into the tree and then delete it.

89

A
PPE

N
D

IX
B

.
M

IN
H

E
A

P
R

E
SU

LT
S

90
Table B.1: Minheap Results for a Nios Implementation

TotalClock SRAM Cycles FAST CPU Read Cycles µs per ins+del
Entries Cycles Read Write CPU 1 CPU 2 CPU 3 @33 MHz1

1 10192 5942 325 0 0 0 61.77
50 678395 398510 18353 0 0 0 82.23

100 1443614 849738 37754 0 0 0 87.49
250 3876988 2288918 97572 0 0 0 93.99
500 8194648 4846813 200471 0 0 0 99.33

1000 17236251 10211760 411003 0 0 0 104.46
1500 26624215 15789445 625512 0 0 0 107.57
2000 36164717 21460020 842082 0 0 0 109.59
2500 45928638 27267090 1061142 0 0 0 111.34
3000 55795867 33138444 1281377 0 0 0 112.72
3500 65739460 39055691 1502671 0 0 0 113.83
4000 75714907 44993534 1724273 0 0 0 114.72
4500 85854123 51030615 1947798 0 0 0 115.63
5000 96082792 57121920 2172317 0 0 0 116.46
5500 106385330 63258338 2398058 0 0 0 117.23
6000 116694405 69400149 2623620 0 0 0 117.87
6500 127044921 75566946 2849716 0 0 0 118.46
7000 137405439 81740288 3075638 0 0 0 118.97
7500 147764718 87913767 3301467 0 0 0 119.41
8000 158215066 94141823 3529207 0 0 0 119.86
8500 168704562 100394539 3756569 0 0 0 120.29
9000 179344195 106736691 3986237 0 0 0 120.77
9500 189998744 113088430 4215939 0 0 0 121.21

10000 200644581 119435784 4445386 0 0 0 121.60

1This is computed by: Total Cycles
5×Entries × 1

33 MHz

A
PPE

N
D

IX
B

.
M

IN
H

E
A

P
R

E
SU

LT
S

91
Table B.2: Minheap Results for a 1–FAST CPU Implementation

TotalClock SRAM Cycles FAST CPU Read Cycles µs per ins+del
Entries Cycles Read Write CPU 1 CPU 2 CPU 3 @33 MHz1

1 10207 5372 175 20 0 0 61.86
50 744240 385497 8750 5750 0 0 90.21

100 1609661 831644 17500 13910 0 0 97.56
250 4422178 2278018 43750 42470 0 0 107.20
500 9474539 4871268 87500 97330 0 0 114.84

1000 20201276 10368659 175000 219540 0 0 122.43
1500 31556490 16179745 262500 353950 0 0 127.50
2000 42913993 21993520 350000 488950 0 0 130.04
2500 54873992 28108027 437500 635260 0 0 133.03
3000 66894174 34251517 525000 782760 0 0 135.14
3500 78939450 40407411 612500 930260 0 0 136.69
4000 90979722 46560544 700000 1077760 0 0 137.85
4500 103487623 52948789 787500 1235370 0 0 139.38
5000 116173803 59424018 875000 1395370 0 0 140.82
5500 128753536 65850980 962500 1555370 0 0 141.88
6000 141375009 72296079 1050000 1715370 0 0 142.80
6500 154052091 78767373 1137500 1875370 0 0 143.64
7000 166717151 85232992 1225000 2035370 0 0 144.34
7500 179338150 91678578 1312500 2195370 0 0 144.92
8000 191980758 98133989 1400000 2355370 0 0 145.44
8500 205018155 104786931 1487500 2523080 0 0 146.18
9000 218271652 111549258 1575000 2695580 0 0 146.98
9500 231614120 118352863 1662500 2868080 0 0 147.76

10000 244880487 125121551 1750000 3040580 0 0 148.41

1This is computed by: Total Cycles
5×Entries × 1

33 MHz

A
PPE

N
D

IX
B

.
M

IN
H

E
A

P
R

E
SU

LT
S

92
Table B.3: Minheap Results for a 2–FAST CPU Implementation

TotalClock SRAM Cycles FAST CPU Read Cycles µs per ins+del
Entries Cycles Read Write CPU 1 CPU 2 CPU 3 @33 MHz1

1 12973 6913 345 20 20 0 78.62
50 873709 458516 17250 5750 5750 0 105.90

100 1873782 980094 34500 13910 13910 0 113.56
250 5073895 2645340 86250 42470 42470 0 123.00
500 10766364 5600258 172500 97330 97330 0 130.50

1000 22819960 11842441 345000 219540 219540 0 138.30
1500 35482558 18390068 517500 353950 353950 0 143.36
2000 48152462 24942541 690000 488950 488950 0 145.92
2500 61417975 31791768 862500 635260 635260 0 148.89
3000 74710171 38655183 1035000 782760 782760 0 150.93
3500 88055062 45542309 1207500 930260 930260 0 152.48
4000 101313304 52391208 1380000 1077760 1077760 0 153.51
4500 115138927 59521832 1552500 1235370 1235370 0 155.07
5000 129099793 66717606 1725000 1395370 1395370 0 156.48
5500 143056776 73912241 1897500 1555370 1555370 0 157.64
6000 156946123 81078474 2070000 1715370 1715370 0 158.53
6500 171044791 88340986 2242500 1875370 1875370 0 159.48
7000 184835085 95458183 2415000 2035370 2035370 0 160.03
7500 198944417 102724149 2587500 2195370 2195370 0 160.76
8000 212772507 109862150 2760000 2355370 2355370 0 161.19
8500 227204377 117289989 2932500 2523080 2523080 0 162.00
9000 241851074 124822309 3105000 2695580 2695580 0 162.86
9500 256340526 132293022 3277500 2868080 2868080 0 163.53

10000 271069870 139861206 3450000 3040580 3040580 0 164.28

1This is computed by: Total Cycles
5×Entries × 1

33 MHz

A
PPE

N
D

IX
B

.
M

IN
H

E
A

P
R

E
SU

LT
S

93
Table B.4: Minheap Results for a 3–FAST CPU Implementation

TotalClock SRAM Cycles FAST CPU Read Cycles µs per ins+del
Entries Cycles Read Write CPU 1 CPU 2 CPU 3 @33 MHz1

1 15484 8342 515 20 20 20 93.84
50 1004503 532713 25750 5750 5750 5750 121.76

100 2132287 1127326 51500 13910 13910 13910 129.23
250 5721448 3013711 128750 42470 42470 42470 138.70
500 12066954 6339931 257500 97330 97330 97330 146.27

1000 25409983 13314001 515000 219540 219540 219540 154.00
1500 39343991 20588110 772500 353950 353950 353950 158.97
2000 53303777 27873225 1030000 488950 488950 488950 161.53
2500 67849690 35453341 1287500 635260 635260 635260 164.48
3000 82500083 43082425 1545000 782760 782760 782760 166.67
3500 97063295 50676490 1802500 930260 930260 930260 168.07
4000 111686050 58295970 2060000 1077760 1077760 1077760 169.22
4500 126844127 66177993 2317500 1235370 1235370 1235370 170.83
5000 142063855 74096215 2575000 1395370 1395370 1395370 172.20
5500 157332139 82037625 2832500 1555370 1555370 1555370 173.37
6000 172613748 89983893 3090000 1715370 1715370 1715370 174.36
6500 187861726 97915799 3347500 1875370 1875370 1875370 175.16
7000 203081046 105837125 3605000 2035370 2035370 2035370 175.83
7500 218326756 113764184 3862500 2195370 2195370 2195370 176.43
8000 233591312 121706041 4120000 2355370 2355370 2355370 176.96
8500 249274280 129844740 4377500 2523080 2523080 2523080 177.74
9000 265170336 138095491 4635000 2695580 2695580 2695580 178.57
9500 281074863 146344872 4892500 2868080 2868080 2868080 179.31

10000 296927993 154574163 5150000 3040580 3040580 3040580 179.96

Appendix C

Nios C Code

C.1 FAST CPU API and Interface Driver

This is the header file and source code for the FAST CPU API and driver.

fastcpu.h

/* FAST CPU API header file
* David Grant, 2004 */

#ifndef _FASTCPU_H
#define _FASTCPU_H

struct _fastcpu {
unsigned long base;
unsigned long irq;
unsigned long busy;
volatile unsigned long *loc[4];
volatile unsigned long done;

} ;

int fastcpu_init(unsigned long base, unsigned long irq);
void fastcpu_fini(struct _fastcpu *cpu);
void fastcpu_load(struct _fastcpu *cpu, unsigned long *program,

unsigned long len);
struct _fastcpu *fastcpu_alloc(void);
void fastcpu_free(struct _fastcpu *cpu);
void fastcpu_reset(struct _fastcpu *cpu);

94

APPENDIX C. NIOS C CODE 95

int fastcpu_num_cpus(void);

#endif

fastcpu.c

/* FAST CPU API and hadware interface
* David Grant, 2004 */

#include "nios.h"
#include "fastcpu.h"

static struct _fastcpu fastcpu[2];
static unsigned long fastcpu_count=0;

static void fastcpu_isr(int cpu)
{

struct _fastcpu *f= (struct _fastcpu *)cpu;

/* Instruct the device to turn off the interrupt */
*(f->loc[0]) = 1;

/* if(done == 1) {
printf("Spurrious interrupt! called when done==1\n");
printf("n=0x%08x, requested_n=0x%08lx\n", n+1, requested_n);

}
*/

/* Singal that the interrupt has occured to the running code */
f->done = 1;

}

int fastcpu_probe(unsigned long base)
{

volatile unsigned long *loc0 = (unsigned long *)base;

/* Check the device for ’PADS’ */
if(*loc0 != 0x70616473) {

return 0;
}
return 1;

}

int fastcpu_init(unsigned long base, unsigned long irq)
{

int x, y;
struct _fastcpu *f;
unsigned long data;
volatile unsigned long *loc1 = (unsigned long *)(base+4);
fastcpu_count = 0;

APPENDIX C. NIOS C CODE 96

/* Check the device */
for(x=0;x<8;x++) {

unsigned long probe_base = base + (0x100 * x);

if(!fastcpu_probe(probe_base)) continue;

data = *loc1;
printf("fastcpu%d: PADS uP, @0x%4x irq %d, "

"loader firmware v%02x.%02x.%02x.%02x\n",
fastcpu_count,
probe_base, irq+x,
(data & 0xff000000) >> 24, (data&0x00ff0000) >> 16,
(data & 0x0000ff00) >> 8, data & 0x000000ff);

/* Setup the structure */
f = &fastcpu[fastcpu_count];
f->base = probe_base;
f->irq = irq + x;
f->busy = 0;
f->done = 0;
for(y=0;y<4;y++)

f->loc[y] = (unsigned long *)(probe_base + (y*4));

nr_installuserisr(f->irq, fastcpu_isr,(unsigned long)f);
fastcpu_count++;

}
return 1;

}

void fastcpu_fini(struct _fastcpu *cpu)
{

nr_installuserisr(cpu->irq, 0, 0);
}

void fastcpu_program(struct _fastcpu *cpu, unsigned long *program,
unsigned long len)

{
/* write the length first, the cpu spins waiting for addr, then
* assumes that all other data is available*/

*(cpu->loc[1]) = (unsigned long)&program[0x20];
*(cpu->loc[2]) = len - 0x20;
*(cpu->loc[0]) = 0xFF000000;

while(cpu->done == 0) ;
}

struct _fastcpu *fastcpu_alloc(void)
{

APPENDIX C. NIOS C CODE 97

unsigned long x;
for(x=0;x<fastcpu_count;x++) {

if(fastcpu[x].busy == 0) {
fastcpu[x].busy=1;
return &fastcpu[x];

}
}
return NULL;

}

void fastcpu_free(struct _fastcpu *cpu)
{

*cpu->loc[0] = 0xFFFFFFFF;
cpu->busy=0;

}

/* reset the cpu, all client programs must accept this command */
void fastcpu_reset(struct _fastcpu *cpu)
{

*cpu->loc[0] = 0xFFFFFFFF;
}

int fastcpu_num_cpus(void)
{

return fastcpu_count;
}

C.2 Nios Minheap Code using the FAST CPUs

This is the code for the minheap tests run on the configurable system. This code uses the FAST

CPUs (via. the FAST CPU API) to implement the minheap.

minheap.c

/* Minheap code that uses the FAST CPU
* David Grant, 2003,2004 */

#include "nios.h"

#include "minheap_fastcpu.h"
#include "fastcpu.h"

#include "bus_util.h"

APPENDIX C. NIOS C CODE 98

volatile unsigned long n;

//unsigned long *heap;

/**
* Pseudo-random number generator */

unsigned long seed=56254254, A=9301, C=49297, M=233280;
unsigned short prand()
{

unsigned long t;
seed = (seed * A + C) % M;
return (unsigned short)(seed & 0xffff);

}

/**
* Minimum/Average/Maximum routines, to compute averages of results and
* check to make sure no min/max data is too far off the average */

struct _mam {
unsigned long count;
unsigned long min;
unsigned long max;
unsigned long total;

};

void mam_clear(struct _mam *m)
{

m->count = 0;
m->total = 0;
m->min = 0xffffffff;
m->max = 0;

}

void mam_add(struct _mam *m, unsigned long value)
{

if(value > m->max) m->max = value;
if(value < m->min) m->min = value;
m->count++;
m->total += value;

}

void mam_print(struct _mam *m)
{

printf("(%lu/%lu/%lu)", m->min, (m->total/m->count), m->max);
}

/**
* Minheap interface with the FAST CPUs */

/* set minheap memory base , function 100*/
void minheap_base(struct _fastcpu *cpu, void *ptr)

APPENDIX C. NIOS C CODE 99

{
cpu->done=0;
*(cpu->loc[1]) = (unsigned long)ptr;
*(cpu->loc[0]) = 0x00000100;
while(cpu->done==0);

}

/* Minheap insert, function 101 */
void minheap_insert_no_wait(struct _fastcpu *cpu, int k, int x)
{

cpu->done=0;
*cpu->loc[1] = k;
*cpu->loc[2] = x;
*cpu->loc[0] = 0x00000101;

}

/* Delete, function 102 */
void minheap_delete_no_wait(struct _fastcpu *cpu, int *k, int *x)
{

cpu->done=0;
*cpu->loc[1] = 1;
*cpu->loc[0] = 0x00000102;

}
/* result from the delete */
void minheap_delete_get_result(struct _fastcpu *cpu, int *k, int *x)
{

if(k) *k = *cpu->loc[0];
if(x) *x = *cpu->loc[1];

}
/* wait for an interrupt */
void minheap_wait_complete(struct _fastcpu *cpu)
{

while(cpu->done==0);
}

/* blocking insert using above routines */
void minheap_insert(struct _fastcpu *cpu, int k, int x)
{

minheap_insert_no_wait(cpu, k, x);
minheap_wait_complete(cpu);

}

/* Blocking delete, using above functions */
void minheap_delete(struct _fastcpu *cpu, int *k, int *x)
{

minheap_delete_no_wait(cpu, k, x);
minheap_wait_complete(cpu);
minheap_delete_get_result(cpu, k, x);

}

APPENDIX C. NIOS C CODE 100

/* Minheap count, available any time */
int minheap_count(struct _fastcpu *cpu)
{

return *cpu->loc[3];
}

/* Minheap empty, function 103 */
void minheap_empty(struct _fastcpu *cpu)
{

cpu->done=0;
*cpu->loc[1] = 3;
*cpu->loc[0] = 0x00000103;

while(cpu->done==0);
}

/* forced reset */
void minheap_reset(struct _fastcpu *cpu)
{

*cpu->loc[0] = 0xff000000;
}

/**
* Ensure the correct functionality of a minheap on a processor */

int functionality_test(struct _fastcpu *cpu, int max)
{

int x, i;
long *heap;
int ret = 0;

printf("functionality test: (programming cpu)");
fastcpu_program(cpu, minheap_fastcpu_program_code,

minheap_fastcpu_program_code_count);

heap = (long *)malloc(0x20000);
if(!heap) printf(" MALLOC FAILED\n");
printf("(set to 0x%08lx) ", (long)heap);
minheap_base(cpu, heap);

for(x=0;x<16;x++) {
int k=0, d=0;
for(i=0;i<max;i++) {

minheap_insert(cpu, max - i - 1 + x, i);
}
if(minheap_count(cpu) != max) {

printf("minheap_count=%d != %d\n", minheap_count(cpu), max);
goto functionality_fail;

}

// heap_print(max);

APPENDIX C. NIOS C CODE 101

for(i=0;i<max;i++) {
minheap_delete(cpu, &k, &d);

// heap_print(max-i);
if(k != i + x) {

printf("value at %d is %d != %d\n", i, k, i+x);
goto functionality_fail;

}
if(d != max - i - 1) {

printf("data at %d:%d is %d != %d\n", x,i, d, max - i - 1);
goto functionality_fail;

}

}
if(minheap_count(cpu) != 0) {

printf("minheap_count=%d, not empty(0)\n",
minheap_count(cpu));

goto functionality_fail;
}

}
printf("OK\n");
ret = 1;
goto done;

functionality_fail:
printf("FAIL\n");
ret = 0;

done:
free(heap);
return ret;

}

/**
* Test from Bill’s PhD thesis, slightly modified */

void bill_test(int cpus, int entries)
{

int i;
long t;
int x, y;
struct _fastcpu *cpu[3];
long *heap[3];
struct _mam c_mam, s_mam[8];

for(x=0;x<3;x++) {
cpu[x] = fastcpu_alloc();
/* program it */
fastcpu_program(cpu[x], minheap_fastcpu_program_code,

minheap_fastcpu_program_code_count);

heap[x] = (long *)malloc(0x18000);

APPENDIX C. NIOS C CODE 102

if(!heap) printf(" MALLOC %d FAILED\n", x);
minheap_base(cpu[x], heap[x]);

}
bus_util_reset_and_start();
bus_util_stop();
bus_util_count(&x, s_mam);
printf("CYCLES=%d\n", x);

for(x=0;x<5;x++) {
unsigned long usage;
unsigned long c, s[8];

mam_clear(&c_mam);
for(y=0;y<8;y++) mam_clear(&s_mam[y]);

t = 0;
if(cpus == 1) {

bus_util_reset_and_start();
for(i=0;i<5;i++) {

int j, d, k;
int r;
for(j=0;j<entries;j++) {

r = prand();
minheap_insert_no_wait(cpu[0], r, j);
minheap_wait_complete(cpu[0]);

}
for(j=0;j<entries;j++) {

minheap_delete_no_wait(cpu[0], &k, &d);
minheap_wait_complete(cpu[0]);
minheap_delete_get_result(cpu[0], &k, &d);

}
}
bus_util_stop();

} else if(cpus==2) {
bus_util_reset_and_start();
for(i=0;i<5;i++) {

int j, d, k;
int r;
for(j=0;j<entries;j++) {

r = prand();
minheap_insert_no_wait(cpu[0], r, j);
minheap_insert_no_wait(cpu[2], r, j);
minheap_wait_complete(cpu[0]);
minheap_wait_complete(cpu[2]);

}
for(j=0;j<entries;j++) {

minheap_delete_no_wait(cpu[0], &k, &d);
minheap_delete_no_wait(cpu[2], &k, &d);
minheap_wait_complete(cpu[0]);
minheap_delete_get_result(cpu[0], &k, &d);
minheap_wait_complete(cpu[2]);

APPENDIX C. NIOS C CODE 103

minheap_delete_get_result(cpu[2], &k, &d);
}

}
bus_util_stop();

} else {
bus_util_reset_and_start();
for(i=0;i<5;i++) {

int j, d, k;
int r;
for(j=0;j<entries;j++) {

r = prand();
minheap_insert_no_wait(cpu[0], r, j);
minheap_insert_no_wait(cpu[1], r, j);
minheap_insert_no_wait(cpu[2], r, j);
minheap_wait_complete(cpu[0]);
minheap_wait_complete(cpu[1]);
minheap_wait_complete(cpu[2]);

}
for(j=0;j<entries;j++) {

minheap_delete_no_wait(cpu[0], &k, &d);
minheap_delete_no_wait(cpu[1], &k, &d);
minheap_delete_no_wait(cpu[2], &k, &d);
minheap_wait_complete(cpu[0]);
minheap_delete_get_result(cpu[0], &k, &d);
minheap_wait_complete(cpu[1]);
minheap_delete_get_result(cpu[1], &k, &d);
minheap_wait_complete(cpu[2]);
minheap_delete_get_result(cpu[2], &k, &d);

}
}
bus_util_stop();

}

bus_util_count(&c, s);

mam_add(&c_mam, c);
for(y=0;y<8;y++) mam_add(&s_mam[y], s[y]);

minheap_empty(cpu[0]);
minheap_empty(cpu[1]);
minheap_empty(cpu[2]);

}
/* num, total cycles, sel, rd, wr, f0cpu rd, 1,2,any,all */
printf("%d, %ld, "

"%lu, %lu, %lu, %lu, %lu, %lu, %lu, %lu, %lu ",
cpus, entries,

c_mam.total/c_mam.count,
s_mam[5].total/s_mam[5].count,
s_mam[6].total/s_mam[6].count,
s_mam[7].total/s_mam[7].count,
s_mam[0].total/s_mam[0].count,

APPENDIX C. NIOS C CODE 104

s_mam[1].total/s_mam[1].count,
s_mam[2].total/s_mam[2].count,
s_mam[3].total/s_mam[3].count,
s_mam[4].total/s_mam[4].count);

printf("\n");

for(x=0;x<3;x++) {
free(heap[x]);
fastcpu_free(cpu[x]);

}
}

/* call for bill’s sequence tests */
void sequence_test(void)
{

unsigned long tries[] = { 1, 50, 100, 250, 500, 1000, 2500, 5000,
10000, 2500, 0 };

int x;
unsigned long us;

printf("cpus, entries, ttl_cy, sel_cy, rd_cy, wr_cy, ");
printf("f0_rd_cy, f1_rd_cy, f2_rd_cy, fany_rd_cy, fall_rd_cy");
printf("\n");

for(x=0;;x++) {
if(tries[x] == 0) break;
bill_test(1, tries[x]);
if(x>0) {

if(tries[x-1] == 500) {
tries[x] += 500;
if(tries[x] > 10000) tries[x]=0;
x--;

}
}

}
tries[5]=1000;
for(x=0;;x++) {

if(tries[x] == 0) break;
bill_test(2, tries[x]);
if(x>0) {

if(tries[x-1] == 500) {
tries[x] += 500;
if(tries[x] > 10000) tries[x]=0;
x--;

}
}

}
tries[5]=1000;
for(x=0;;x++) {

if(tries[x] == 0) break;
bill_test(3, tries[x]);

APPENDIX C. NIOS C CODE 105

if(x>0) {
if(tries[x-1] == 500) {

tries[x] += 500;
if(tries[x] > 10000) tries[x]=0;
x--;

}
}

}
}

/**
* rand() time test, so we know how many cycles it takes */

int prand_test(void)
{

unsigned long x, y, r;
unsigned long tries[] = { 1000, 10000, 50000, 100000, 500000, 0 };
struct _mam c_mam;

mam_clear(&c_mam);

printf("prand() time test: ");
for(y=0;; y++) {

unsigned long s[8],c;
if(tries[y] == 0) break;
bus_util_reset_and_start();
for(x=0;x<tries[y];x++) r = prand();
bus_util_stop();
bus_util_count(&c, s);
mam_add(&c_mam, c);

printf("(%ldcy) ", c_mam.total/c_mam.count);
}
printf("\n");
return 1;

}

/**
* main routine */

/* We can only synthesize 3 cpus max */
#define FAST_CPUS_MAX 3
/*#define FAST_CPUS_MAX 10*/

int main(void)
{

int x,y,i;
unsigned long t, tl;
long delta;

struct _cpu_device {
struct _fastcpu *cpu;

APPENDIX C. NIOS C CODE 106

} cpu[FAST_CPUS_MAX];

struct _bus_util_data bus_util_data;

/* Init all CPUs, starting with the first one, and checking at
* offsets + 0x100 for subsequent ones. */

fastcpu_init(na_fastcpu_s0_base, na_fastcpu_s0_irq);
printf("total of %d FASTCPUs activated.\n", fastcpu_num_cpus());

bus_util_init(na_bus_utillization_base, &bus_util_data);

printf("timer nasys_clock_freq = %lu (0x%08lx)\n",
nasys_clock_freq, nasys_clock_freq);

printf("timer nasys_clock_freq_1000 = %lu (0x%08lx)\n",
nasys_clock_freq_1000, nasys_clock_freq_1000);

for(x=0; x<fastcpu_num_cpus(); x++) {
cpu[x].cpu = fastcpu_alloc();
if(cpu[x].cpu == NULL) {

printf("fastcpu_alloc returned NULL!\n");
}

}

for(x=0; x<fastcpu_num_cpus(); x++) {
functionality_test(cpu[x].cpu, 1000);
fastcpu_free(cpu[x].cpu);

}

prand_test();
sequence_test();

/* nr_installuserisr(na_fastcpu_s0_irq,0,0);*/

printf("done.\n\004");
}

Bibliography

[Alt97] Altera Programmable Hardware Development Program. World Wide Web Document,

January 1997. http://www.altera.com/html/programs/phd.html.

[Alt99] Altera Corporation. Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices. Ap-

plication Note A-AN-116-01, Altera Corporation, San Jose, California, August 1999.

[Alt02a] Altera Corporation. Custom Instructions for the Nios Embedded Processor v1.2. Ap-

plication Note 188, Altera Corporation, San Jose, California, September 2002.

[Alt02b] Altera Corporation. Cyclone Product Backgrounder. Product Backgrounder, Altera

Corporation, San Jose, California, November 2002.

[Alt03a] Altera Corporation. Avalon Bus Specification - Reference Manual. San Jose, California,

July 2003.

[Alt03b] Altera Corporation. Nios Embedded Processor 32-Bit Programmer’s Reference Man-

ual. San Jose, California, January 2003.

[Alt03c] Altera Corporation. Nios Embedded Processor Development Board Data Sheet. Data

Sheet DS-NIOSDEVBD-2.1, San Jose, California, July 2003.

[Alt03d] Altera Corporation. Nios Software Development Tutorial. Tutorial, Altera Corporation,

San Jose, California, July 2003.

[Alt03e] Altera Corporation. SOPC Builder Data Sheet. Data Sheet DS-SOPC-2.0, Altera Cor-

poration, San Jose, California, January 2003.

[Alt04] Altera Corporation. Section I. Stratix II Device Family Data Sheet, v1.0. San Jose,
California, February 2004.

107

BIBLIOGRAPHY 108

[Bis03] William D. Bishop. Configurable Computing for Mainstream Software Applications.
Ph.D. Thesis, Parallel and Distributed Systems Group, University of Waterloo, Water-

loo, Ontario, Canada, May 2003.

[CH00] K. Compton and S. Hauck. An Introduction to Reconfigurable Computing. Invited

Paper, IEEE Computer, April 2000.

[CH02] K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems and

Software. ACM Computing Surveys, 34(2):171–210, June 2002.

[Cha94] Pak K. Chan. A Field-Programmable Prototyping Board: XC4000 BORG User’s

Guide. Technical Report UCSC-CRL-94-18, Board of Studies in Computer Engineer-

ing, University of California, Santa Cruz, Santa Cruz, California, April 1994.

[CN96] J.M.P. Cardoso and H.C. Neto. A Co–Synthesis Environment for Embedding Digital

Systems in a Sea–of–Gates IC. In Proceedings of the Eleventh Conference on De-

sign of Integrated Circuits and Systems (DSCIS’96), pages 411–416, Sitges, Barcelona,

November 1996.

[CR93] Steven A. Cuccaro and Craig F. Reese. The CM-2X: A Hybrid CM-2/Xilinx Prototype.

In Duncan A. Buell and Kenneth L. Pocek, editors, Proceedings of the IEEE Workshop

on FPGAs for Custom Computing Machines, pages 121–130, April 1993.

[Cyg99] Cygnus. GNUpro Tools for Embedded Systems. Technical Report version 99r1, Sun-

nyvale, California, 1999.

[De 94] G. De Micheli. Computer–Aided Hardware–Software Codesign. IEEE Micro, 14(4):6–

10, August 1994.

[DG97] G. De Micheli and Rajesh K. Gupta. Hardware/Software Co–Design. Proceedings of

the IEEE, 85(3):349–365, March 1997.

[DW99] O. Diessel and G. Wigley. Opportunities for operating systems research in reconfig-

urable computing, 1999.

[EBTB63] G. Estrin, B. Bussell, R. Turn, and J. Bibb. Parallel Processing in a Restructurable

Computer System. IEEE Transactions on Electronic Computers, 12:747–755, Decem-

ber 1963.

[Est60] G. Estrin. Organization of Computer Systems – The Fixed Plus Variable Structure

Computer. Proc. Western Joint Computer Conference, pages 33–40, 1960.

BIBLIOGRAPHY 109

[GKC+94] David Galloway, David Karchmer, Paul Chow, David Lewis, and Jonathan Rose. The
Transmogrifier: The University of Toronto Field-Programmable System. Technical Re-

port CSRI-306, Computer Systems Research Institute, University of Toronto, Toronto,

Ontario, Canada, June 1994.

[Guc00] Steve Guccione. List of FPGA–Based Computing Machines. World Wide Web Docu-

ment, August 2000. http://www.io.com/˜guccione/HW list.html.

[Hau98] S. Hauck. The Roles of FPGAs in Reprogrammable Systems. Proceedings of the IEEE,

86(4):349–365, April 1998.

[HF95] David R. Hanson and Christopher W. Fraser. A Retargetable C Compiler: Design

and Implementation. Addison–Wesley Publishing Company, Reading, Massachussetts,

January 1995.

[HS98] Samuel Holstrom and Kiasa Sere. Reconfigurable Hardware – A Case Study in Code-

sign. Technical Report No 175, Turku Centre for Computer Science, Turku, Finland,

May 1998.

[Int97] Intel Corporation. Intel MultiProcessor Specification v1.4. Mt. Prospect, Illinois, May

1997.

[Mic02] Microtronix. Stratix EP1S25 Development Kit. London, Ontario, December 2002.

[Sep02] K. Seppanen. Massively Parallel Priority Queues for High–Speed Switches and

Routers. Advances in Communications and Software Technologies, pages 71–76, 2002.

[WK01] G. Wigley and D. Kearney. The Development of an Operating System for Reconfig-

urable Computing. In Proceedings of the Ninth Annual IEEE Symposium on FPGAs

for Custom Computing Machines (FCCM‘01), Napa Valley, California, 2001.

[Xil02] Xilinx, Inc. Virtex-II Pro Prototype Platform User Guide. San Jose, California, October

2002.

[Xil04a] Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.

San Jose, California, June 2004.

[Xil04b] Xilinx, Inc. Xilinx Virtex–4 Revolutionizes Platform FPGAs. World Wide Web Docu-

ment (Press Release), January 2004. http://www.xilinx.com/company/

press/kits/v4 arch/v4 finalwhitepaper4.pdf.

