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Abstract

Feedback control is used in almost every aspect of modern life and is essential in almost
all engineering systems. Since no mathematical model is perfect and disturbances occur
frequently, feedback is required. The design of a feedback control has been widely inves-
tigated in finite-dimensional space. However, many systems of interest, such as fluid flow
and large structural vibrations are described by nonlinear partial differential equations and
their state evolves on an infinite-dimensional Hilbert space. Developing controller design
methods for nonlinear infinite-dimensional systems is not trivial.

The objectives of this thesis are divided into multiple tasks. First, the well-posedness
of some classes of nonlinear partial differential equations defined on a Hilbert space are
investigated. The following nonlinear affine system defined on the Hilbert space H is
considered

ż (t) = F (z (t)) +Bu (t) , t ≥ 0
z (0) = z0,

where z (t) ∈ H is the state vector and z0 is the initial condition. The vector u (t) ∈ U ,
where U is a Hilbert space, is a state-feedback control. The nonlinear operator F : D ⊂
H → H is densely defined in H and the linear operator B : U → H is a linear bounded
operator. Conditions for the closed-loop system to have a unique solution in the Hilbert
space H are given.

Next, finding a single bounded state-feedback control for nonlinear partial differential equa-
tions is discussed. In particular, Lyapunov-indirect method is considered to control non-
linear infinite-dimensional systems and conditions on when this method achieves the goal
of local asymptotic stabilization of the nonlinear infinite-dimensional system are given.

The Kuramoto-Sivashinsky (KS) equation defined in the Hilbert space L2(−π, π) with
periodic boundary conditions is considered.

∂z
∂t

= −ν ∂4z
∂x4
− ∂2z

∂x2
− z ∂z

∂x
, t ≥ 0

z (0) = z0 (x) ,
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where the instability parameter ν > 0. The KS equation is a nonlinear partial differential
equation that is first-order in time and fourth-order in space. It models reaction-diffusion
systems and is related to various pattern formation phenomena where turbulence or chaos
appear. For instance, it models long wave motions of a liquid film over a vertical plane.
When the instability parameter ν < 1, this equation becomes unstable. This is shown
by analyzing the stability of the linearized system and showing that the nonlinear C0-
semigroup corresponding to the nonlinear KS equation is Fréchet differentiable.

There are a number of papers establishing the stabilization of this equation via boundary
control. In this thesis, we consider distributed control with a single bounded feedback
control for the KS equation with periodic boundary conditions. First, it is shown that sta-
bilizing the linearized KS equation implies local asymptotical stability of the nonlinear KS
equation. This is done by establishing Fréchet differentiability of the associated nonlinear
C0-semigroup and showing that it is equal to the linear C0-semigroup generated by the
linearization of the equation. Next, a single state-feedback control that locally asymptot-
ically stabilizes the KS equation is constructed. The same approach to stabilize the KS
equation from one equilibrium point to another is used.

Finally, the solution of the uncontrolled/state-feedback controlled KS equation is ap-
proximated numerically. This is done using the Galerkin projection method to approx-
imate infinite-dimensional systems. The numerical simulations indicate that the proposed
Lyapunov-indirect method works in stabilizing the KS equation to a desired state. More-
over, the same approach can be used to stabilize the KS equation from one constant
equilibrium state to another.
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Chapter 1

Introduction

The Kuramoto-Sivashinsky (KS) equation is a nonlinear partial differential equation (PDE)
that is often related to turbulence phenomena in chemistry and combustion. For instance,
it models the Bénard problem in an elongated box. The convection cell pattern developed
from heating the plane horizon from below are modeled by the nonlinear KS equation (See
Figure 1.1) [85].

Figure 1.1: Bénard cells in a gravity field.

(http://en.wikipedia.org/wiki/Rayleigh-Bénard-convection)

In this thesis, the state-feedback control problem of the KS equation defined in L2(−π, π)
is considered

∂z

∂t
+ ν

∂4z

∂x4
+
∂2z

∂x2
+ z

∂z

∂x
= BKz, t ≥ 0,
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with periodic boundary conditions

∂nz

∂xn
(−π, t) =

∂nz

∂xn
(π, t) , n = 0, 1, 2, 3,

and initial condition

z (x, 0) = z0 (x) ,

where z ∈ L2(−π, π) is the state of the system, ν > 0 is the instability parameter, −ν ∂4z
∂x4

is the dissipative term, ∂2z
∂x2

is the anti-dissipative term and z ∂z
∂x

is the nonlinear term that
can be interpreted as the energy transfer mechanism that transfers energy from low to high
wave numbers [74]. The operators B : C → L2(−π, π) and K : L2(−π, π) → C are linear
bounded operators. The operator K will be designed to force the solution to converge
to a desired state. The nonlinear KS equation was first derived in 1978 by Kuramoto in
one space dimension for the theoretical study of a turbulent state in a distributed chemical
reaction system [50]. Then Sivashinsky [76, 77, 56] extended the equation to two dimension
or more in his study of the propagation of a flame front to describe the combined influence
of diffusion and thermal conduction of the gas.

The stability analysis of the dynamics of the KS equation analytically as well as numerically
has attracted many researchers for years [6, 16, 17, 18, 19, 27, 35, 36, 37, 41, 46, 57, 65].
Analytical as well as numerical studies on the dynamics of the KS equation showed the
existence of steady-state and periodic solutions and chaotic behaviour for very small val-
ues of the instability parameter [57]. This was done using the Lyapunov-indirect method.
However, a counter example will be given in this thesis to show that the Lyapunov-indirect
method does not hold for all infinite-dimensional systems in general. Furthermore, the
Fréchet differentiability of the C0-semigroup generated by the nonlinear operator of the
infinite-dimensional system is essential for the Lyapunov-indirect method to hold. This
work is carried out on the nonlinear KS equation.

There are a number of papers establishing the stabilization of the KS equation via bound-
ary control. In this thesis, we consider a bounded state-feedback control to the KS equation
with periodic boundary conditions. First, we show that stabilizing the linearized KS equa-
tion implies local exponential stability of the KS equation (See Figure 1.3). This is done
by establishing Fréchet differentiability of the associated semigroup and showing that it is
equal to the semigroup generated by the linearization of the equation. Next, we construct
a single state-feedback control that locally exponentially stabilizes the KS equation. Note
that although the procedure used to design a state-feedback control to the KS equation
is not new, the justification presented to show that this method actually works for the
infinite-dimensional KS equation is new and original (See Figure 1.2). This result can be
generalized to a larger class of PDEs that generates Fréchet differentiable C0-semigroups.
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Nonlinear KS equation Linearize around an equilibrium solution ze

Design a state-feedback control

Gâteaux derivative

Figure 1.2: A bounded state-feedback control to the Kuramoto-Sivashinsky equation.

Finally, it is numerically verified that the method introduced earlier works in stabilizing
the KS equation to a desired fixed point. Moreover, it can also be stabilized from one
equilibrium solution to another. In conclusion, although the obtained stability result is
local, it is very useful and can be used to drive the dynamics of the KS equation from one
state to another.

Nonlinear KS equation Linearized KS at an equilibrium solution ze

The nonlinear C0-semigroup SB (t) The linear C0-semigroup DSB (t)

Exponentially stableLocally exponentially stable

Gâteaux derivative

Fréchet derivative

Figure 1.3: An approach to stabilize the nonlinear Kuramoto-Sivashinsky equation.

The thesis is organized as follows. In Chapter 2, the well-posedness problem of nonlin-
ear partial differential equations (PDEs) defined on a Hilbert space is tackled and some
original results are obtained for nonlinear affine infinite-dimensional systems. Chapter 3
reviews some stability analysis methods to analyze the stability of an equilibrium solution
to nonlinear PDEs defined on a Hilbert space. In Chapter 4, we focus on stabilization
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techniques for nonlinear PDEs defined on a Hilbert space. Then, in Chapter 5, the above
stability and stabilization techniques are used to analyze the stability of the nonlinear KS
equation defined on the Hilbert space L2(−π, π) with periodic boundary conditions. A
bounded state-feedback control is designed to locally exponentially stabilize the KS equa-
tion. Finally, in Chapter 5, some numerical simulations are presented. This is done using
the classical Galerkin projection method.
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Chapter 2

Well-posedness of nonlinear
infinite-dimensional dynamical
systems

In this chapter, the well-posedness of nonlinear systems defined on a Hilbert space H is
investigated. The uncontrolled nonlinear system is considered in section 2.1 and some con-
ditions on the operator are assumed in order to ensure the well-posedness of the system.
Next, the perturbed system is considered. That is, the nonlinear system with a distributed
control added to the system. Some original results are obtained to show the existence of a
unique mild solution to the controlled system.

2.1 The well-posedness of partial differential equa-

tions defined on a Hilbert space

Consider the nonlinear abstract Cauchy problem defined on a complex Hilbert space H:

ż (t) = F (z (t)) , t ≥ 0
z (0) = z0 ∈ H,

(2.1)

where z (t) ∈ H is the state vector, z0 is an initial condition and F : D ⊂ H → H is a
nonlinear operator that is densely defined on H.

Definition 2.1.1. (Nonlinear C0-semigroup)
A nonlinear C0-semigroup defined on a Hilbert space H is a family of nonlinear operators
S (t) : H → H that satisfies the following conditions:
• S (0) z = z, for all z ∈ H.
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• S (t+ s) z = S (t)S (s) z, for all z ∈ H, s, t ≥ 0
• t 7→ S (t) z is continuous in t, for all z ∈ H

Definition 2.1.2. (Nonlinear Contraction C0-semigroup)
A nonlinear contraction C0-semigroup S (t) defined on a Hilbert space H is a nonlinear
C0-semigroup that satisfies

‖S (t) z − S (t)w‖ ≤ ‖z − w‖ for all t ≥ 0, z, w ∈ H.

Definition 2.1.3. [66, Definition 1.4.1] (Dissipative Operator)
The operator F : D ⊂ H → H is a dissipative operator if

Re 〈F (z) , z〉 ≤ 0, for all z ∈ D.

Definition 2.1.4. [61, Definition 2.5] (m-dissipative operator)
An operator F : D → H that is densely defined on a Hilbert space H is m-dissipative if it
is dissipative and the range R (I − λF ) = H for some λ > 0.

Definition 2.1.5. [61, Definition 3.2]
The nonlinear operator F is the generator of a nonlinear C0-semigroup S (t) if

F (z) = lim
t→0+

S (t) z − z
t

,

for all z such that this limit exists.

Theorem 2.1.6. [58, Theorem 2.110]
Let S (t) be a nonlinear contraction C0-semigroup defined on a nonempty closed convex
subset of a Hilbert space H. Then there exists a unique m-dissipative operator F that
generates S (t). Conversely, let F be an m-dissipative operator on H. Then there exists a
unique C0-semigroup S (t) defined on H such that F is the generator of S (t).

Assume that the operator F in (2.1) is an m-dissipative operator, then it generates a unique
contraction C0-semigroup S (t) defined on H. Hence, the abstract Cauchy problem (2.1)
has a unique solution in H.

6



2.2 Well-posedness of nonlinear affine systems defined

on a Hilbert space

In this section, we will consider the well-posedness of affine controlled systems defined on
a Hilbert space H

ż (t) = F (z (t)) +Bu (t) , t ≥ 0
z (0) = z0 ∈ D,

(2.2)

where z (t) ∈ H is the state vector, z0 is an initial condition. The vector u (t) ∈ U where U
is a Hilbert space is a control input, the operator F : D ⊂ H → H is a nonlinear operator
that is densely defined on H and generates a nonlinear C0-semigroup S (t), B : U → H a
linear bounded operator. Consider a feedback control law defined by u (t) = φ (z (t)) with
φ : H → U .

Definition 2.2.1. (Locally Lipschitz Continuous Function)
The function φ : H → U is locally Lipschitz continuous if for all z0 ∈ H, there exists a
neighbourhood N ⊂ H of z0 and M > 0 such that

‖φ (z)− φ (w) ‖ ≤M‖z − w‖, for all z, w ∈ N .

Definition 2.2.2. (Globally Lipschitz Continuous Function)
The function φ : H → U is globally Lipschitz continuous if there exists M > 0 such that

‖φ (z)− φ (w) ‖ ≤M‖z − w‖. for all z, w ∈ H.

Definition 2.2.3. [29, Definition 3.1.1] (Strong Solution)
Consider (2.2) on the Hilbert space H. The function z (t) is a strong solution to (2.2) on
[0, τ ], if z ∈ C1 ([0, τ ];H), z (t) ∈ D (F ) for all t ∈ [0, τ ] and z (t) satisfies the initial value
problem (2.2) for all t ∈ [0, τ ].

Consider the following class of infinite-dimensional systems where the operator F in (2.2)
is given by

F (z (t)) = A1z (t) + A2 (z (t)) , (2.3)

where A1 : DA1 ⊂ H → H is a linear operator that generates a C0-semigroup T (t) and
A2 : DA2 ⊂ H → H is a nonlinear function. Finding a strong solution that satisfies (2.2)
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is often impossible, a weaker version of a solution is needed. Below is the definition of a
mild solution.

Definition 2.2.4. [88, Definition 10.6 & Proposition 10.11] (Mild Solution)
Consider (2.2) on the Hilbert space H. The function z ∈ Lp ([0, τ ];H) for some p ≥ 1 is a
mild solution to (2.2), if it satisfies the integral

z (t) = z0 +

∫ t

0

(F (z (s)) +Bu (s)) ds,

where z0 is the initial condition.

In [44, 66, 83], the existence of a unique solution to the above system, under some condi-
tions, that will be mentioned in the next theorem, was proved.

Theorem 2.2.5. [83, Theorem 6.1.1]
Consider the uncontrolled system (2.2) with u (t) = 0, where the operator F is given by
(2.3). Assume that the operator A1 is an infinitesimal generator of a contraction C0-
semigroup T (t) on H and A2 : H → H is a nonlinear function that satisfies the following
condition: For any C > 0, there exists a constant KC > 0 such that, for every z, w ∈ H,

‖A2 (z) ‖ ≤ KC ,

‖A2 (z)− A2 (w) ‖ ≤ KC‖z − w‖, for ‖z‖ ≤ C, ‖w‖ ≤ C.
(2.4)

If ‖z0‖ < C, then there exists a unique mild solution z (t) ∈ C ([0, tmax], H), tmax < ∞ of
the form

z (t) = T (t) z0 +

∫ t

0

T (t− s)A2 (z (s)) ds.

Corollary 2.2.6. Consider the controlled system (2.2) where the operator F is given by
(2.3) and satisfies the conditions in Theorem (2.2.5). Assume that the state-feedback control
φ : H → U globally Lipschitz continuous and there exists M > 0 such that

‖φ (z) ‖ ≤M, for every z (t) ∈ C ([0, tmax], H) , tmax <∞.

Then there exists a unique mild solution z (t) ∈ C ([0, tmax], H), tmax <∞ of the form

z (t) = T (t) z0 +

∫ t

0

T (t− s) (A2 (z (s)) +Bφ (z (s))) ds.

8



Proof. The proof is straightforward using Theorem 2.2.5. �

The existence of a unique strong solution for nonlinear systems with feedback depends on
the properties of the feedback control law. In the following theorem, it is shown that if
the state-feedback control φ (z) is Lipschitz continuous, then the above mild solution is the
same as the strong solution.

Theorem 2.2.7. [66, Theorem 6.1.6]
Consider the uncontrolled system (2.2) with u (t) = 0, where the operator F is given by
(2.3). Let A1 be an infinitesimal generator of a C0-semigroup T (t) on a Hilbert space H.
If A2 is globally Lipschitz continuous, z0 ∈ DA1 and z is a mild solution to the system,
then z is the strong solution for the system.

Corollary 2.2.8. Consider the controlled system (2.2) where the operator F is given by
(2.3). Let A1 be an infinitesimal generator of a C0-semigroup T (t) on a Hilbert space H.
If A2 and the state-feedback control φ (·) are globally Lipschitz continuous, z0 ∈ DA1 and z
is a mild solution to the system, then z is the strong solution for the system.

The following results will be used later in this thesis.

Proposition 2.2.9. [94, Theorem 1.4.1] (Gronwall-Bellman Inequality)
Let f, g : [a, b] → R be continuous functions with g non-negative. If z : [a, b] → R is a
continuous function satisfying

z (t) ≤ f (t) +

∫ t

a

g (τ) z (τ) dτ, t ∈ [a, b]

then

z (t) ≤ f (t) +

∫ t

a

f (s) g (s) e
∫ t
s g(τ)dτds.

In particular, if f (·) ≡ P is a constant, then

z (t) ≤ Pe
∫ t
a g(τ)dτ .

If, in addition g (·) ≡ G is a non-negative constant, then

z (t) ≤ PeG(t−a).

9



Proposition 2.2.10. (Young’s Inequality) [70, Lemma 5.40]
If a, b ≥ 0, then

ab ≤ ε

2
a2 +

1

2ε
b2,

where ε > 0 is any positive constant in R.

Proposition 2.2.11. (Poincaré Inequality) [70, Lemma 1.8]
If z ∈ H2

periodic[−π, π], then ∥∥∥∥∂z∂x
∥∥∥∥ ≤ ∥∥∥∥∂2z

∂x2

∥∥∥∥ .
Moreover, if

∫ π
−π zdx = 0, then

‖z‖ ≤
∥∥∥∥∂z∂x

∥∥∥∥ .
Proposition 2.2.12. (Multiplicative Algebra) [85, Page 51]
The space Hm[−π, π] for m ≥ 1 is a multiplicative algebra. That is, there exists a constant
c > 0 such that if z, y ∈ Hm[−π, π], then z · y ∈ Hm[−π, π] and

‖z · y‖Hm ≤ c ‖z‖Hm ‖y‖Hm ,

where ‖ · ‖Hm = ‖ · ‖+ · · ·+
∥∥ ∂m

∂xm
·
∥∥.

Lemma 2.2.13. Suppose that the nonlinear operator F generates a nonlinear C0-semigroup
S (t) on a Hilbert space H. Let γ ∈ R, then the nonlinear operator (F − γI) generates the
nonlinear C0-semigroup e−γtS (t) on the Hilbert space H.

Proof. The proof is shown using [9, Example 3.6] on rescaling semigroups. Denote the
nonlinear C0-semigroup generated by the operator (F − γI) by Sγ (t). Using the exponen-
tial formula for generators of C0-semigroup [61, Theorem 4.2],

Sγ (t) = lim
n→∞

(
I − t

n
(F − γI)

)−n
,

= lim
n→∞

(
n

t

(n
t
I − (F − γI)

)−1
)n

, (2.5)

where the limit is uniform in t on bounded intervals. Defining k = n + γt, the fraction n
t

can be written as

n

t
=
k − γt
t

=

(
1− γt

k

)
k

t
. (2.6)
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Now, the terms of the sequence in (2.5) can be written as

(
n

t

(n
t
I − (F − γI)

)−1
)n

=

(
k − γt
t

(
n+ γt

t
I − F

)−1
)k−γt

,

=

(
k − γt
t

(
k

t
I − F

)−1
)k−γt

,

=

(
k − γt
t

(
k

t
I − F

)−1
)k

·

(
k − γt
t

(
k

t
I − F

)−1
)−γt

.

Use (2.6) to obtain the following representation(
n

t

(n
t
I − (F − γI)

)−1
)n

=((
1− γt

k

)
k

t

(
k

t
I − F

)−1
)k((

k

t
− γ
)(

k

t
I − F

)−1
)−γt

. (2.7)

Using [9, Lemma 2.11(ii)] and Crandall-Liggett [58, Theorem 2.115],

lim
k→∞

(
k

t
− γ
)(

k

t
I − F

)−1

= lim
k→∞

k

t

(
k

t
I − F

)−1

− lim
k→∞

γ

(
k

t
I − F

)−1

,

= I. (2.8)

Also, limk→∞
(
1− γt

k

)k
= e−γt. This implies that the limit of (2.7) as k →∞ is

lim
k→∞

((
1− γt

k

)
k

t

(
k

t
I − F

)−1
)k((

k

t
− γ
)(

k

t
I − F

)−1
)−γt

= e−γtS (t) . �
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Chapter 3

Stability analysis of nonlinear
dynamical systems defined on a
Hilbert space

In this chapter, the stability analysis of an equilibrium solution to a nonlinear dynamical
system defined on a Hilbert space is presented. The first approach is by using Lyapunov
direct method. That is, finding a Lyapunov function for the nonlinear system. Next, the
Lyapunov indirect method is described and some examples that shows the failure of this
approach in the stability analysis for infinite-dimensional systems are presented. Finally,
some conditions on nonlinear infinite-dimensional system are suggested so that the Lya-
punov indirect method can be used in analyzing the stability of an equilibrium solution to
the nonlinear infinite-dimensional system.

3.1 Lyapunov direct method and LaSalle’s invariance

principle to analyze the stability of dynamical sys-

tems defined on a Hilbert space

Consider the following nonlinear system in a Hilbert space H

ż (t) = F (z (t)) , t ≥ 0
z (0) = z0,

(3.1)

where z0 is the initial condition, the nonlinear operator F : D (F ) ⊂ H → H is densely
defined on H with F (ze) = 0. That is, ze is an equilibrium solution to the nonlinear
system. Assume that the above system is well-posed. In other words, the above system
has a unique mild solution that can be written in terms of a nonlinear C0-semigroup in H

z (t) = S (t) z0,
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where S (t) is a nonlinear C0-semigroup generated by the operator F .

Definition 3.1.1. (Types of stability)
Consider the nonlinear system (3.1).

1. The equilibrium solution ze to (3.1) is stable if for all ε > 0, there exists δ > 0 such
that if ‖z0 − ze‖ < δ, then ‖z (t)− ze‖ < ε, t ≥ 0.

2. The equilibrium solution ze to (3.1) is locally asymptotically stable if it is stable and
there exists δ > 0 such that if ‖z0 − ze‖ < δ, then limt→∞ z (t) = ze.

3. The equilibrium solution ze to (3.1) is locally exponentially stable if there exists
δ, α, β > 0 such that if ‖z0 − ze‖ < δ, then ‖z (t)− ze‖ ≤ α‖z0 − ze‖e−βt, t ≥ 0.

4. The equilibrium solution ze to (3.1) is globally asymptotically stable if it is stable and
for all z0 ∈ H, we have limt→∞ z (t) = ze.

5. The equilibrium solution ze to (3.1) is globally exponentially stable if there exists
α, β > 0 such that for all z0 ∈ H, we have ‖z (t)− ze‖ ≤ α‖z0 − ze‖e−βt, t ≥ 0.

6. The equilibrium solution ze to (3.1) is unstable if it is not stable.

Definition 3.1.2. (The orbit through z )
Define for every z ∈ H, the orbit through z,

γ (z) = ∪t≥0S (t) z, (3.2)

where S (t) is a nonlinear C0-semigroup in H.

Definition 3.1.3. (Pre-compact orbit)
The orbit therough z, γ (z) is pre-compact, if γ (z) is compact.

Definition 3.1.4. (The ω-limit set)
Define for every z0 ∈ H, the ω-limit set,

ω (z) =
{
w ∈ H : w = lim

n→∞
S (tn) z0, tn →∞ as n→∞

}
,

=
⋂
t≥0

γ (S (t) z0),

where γ (z) is the orbit through z defined in (3.2).
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Proposition 3.1.5. [58, p.158]
The ω-limit set is positively invariant. That is, S (t)ω (z) ⊂ ω (z).

Proof. Let y ∈ S (t)ω (z), then

y = S (t) lim
n→∞

S (tn) z, for some tn →∞, as n→∞.

= lim
n→∞

S (t)S (tn) z,

= lim
n→∞

S (t+ tn) z ∈ ω (z) . �

Definition 3.1.6. For z ∈ H and Ω ⊂ H, the distance from z to Ω is

d (z,Ω) = inf
w∈Ω
‖z − w‖.

Theorem 3.1.7. [58, Proposition 3.59 and Theorem 3.61]
If for z ∈ H, γ (z) is pre-compact, then the ω-limit set ω (z) is compact, not empty,
connected and limt→∞ d (S (t) z, ω (z)) = 0. In fact, ω (z) is the smallest closed set that
S (t) approaches. That is, if S (t) z → Ω ⊂ H as t→∞, then ω (x) ⊂ Ω.

The above theorem is used to characterize the stability of a dynamical system once the
pre-compactness of the orbit is proven and the ω-limit set can is determined. Lyapunov
direct method has been generalized to analyzing the stability of an equilibrium point to
infinite-dimensional dynamical systems [7, 89, 92]. Below is the statement of the theorem.

Definition 3.1.8. (Continuous Lyapunov Function)
The functional V : H → R+ is a continuous Lyapunov function if it is continuously
differentiable with V (ze) = 0 and for every z ∈ H,

V̇ (z) = lim
t→0

V (S (t) z)− V (z)

t
≤ 0.

Definition 3.1.9. (Radially unbounded)
The functional V : H → R+ is radially unbounded if

V (z)→∞ as ‖z‖ → ∞.
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Theorem 3.1.10. [89, Theorem 3.6 & 3.7](Lyapunov Theorem)
Consider the nonlinear dynamical system (3.1). If there exists a continuous Lyapunov
functional V : H → R such that

V̇ (z) ≤ 0, z 6= ze,

then, the equilibrium point ze is locally stable. Moreover, if

V̇ (z) < 0, z 6= ze,

then, the equilibrium point ze is locally asymptotically stable. In addition, if the functional
V is radially unbounded, then a global stability is achieved.

Example 3.1.11. (Heat equation with Dirichlet Boundary conditions)
Consider the 1-D heat equation with Dirichlet boundary conditions defined in the Hilbert
space L2(0, 1),

ż (x, t) =
∂2z

∂x2
(x, t) , t ≥ 0, x ∈ [0, 1] (3.3)

with Dirichlet boundary conditions

z (0, t) = 0,

z (1, t) = 0,

and initial condition

z (x, 0) = z0 (x) ∈ L2(0, 1).

The domain of the operator D
(
∂2

∂x2

)
=
{
z ∈ L2(0, 1)| ∂z

∂x2
, ∂

2z
∂x2
∈ L2(0, 1)

}
. It can be easily

be shown that z = 0 is the only equilibrium solution to the above system. Now consider the
following Lyapunov function candidate V : L2(0, 1)→ R+

V (z) =
1

2
‖z‖2.

The Lyapunov derivative is

V̇ (z) = Re〈z, ż〉,

= Re〈z, ∂
2z

∂x2
〉.
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That is,

V̇ (z) = Re

{
z
∂z

∂x

∣∣∣∣1
0

−
∫ 1

0

∂z

∂x

∂z

∂x
dx

}
,

= −‖∂z
∂x
‖2.

Now, using Poincaré inequality (Proposition 2.2.11), we have for some constant C > 0

V̇ (z) ≤ −C‖z‖2 < 0, z 6= 0.

Since the Lyapunov function V is radially unbounded, Lyapunov Theorem (3.1.10) implies
that the zero equilibrium solution to the 1-D heat equation is globally asymptotically stable.
�

The strict negative definiteness condition on the Lyapunov derivative V̇ (x) of Theorem
3.1.10 can be relaxed while ensuring the asymptotic stability of system (2.1) by using
LaSalle’s invariance principle.

Theorem 3.1.12. [58, Theorem 3.64] (LaSalle’s Invariance Principle)
Let V : H → R be a continuous Lyapunov function and ω (z) the largest invariant subset
of R = {z ∈ H : V̇ (z) = 0}. If the orbit γ (z) is pre-compact, then

lim
t→∞

d (S (t) z, ω (z)) = 0.

That is z (t)→ ω (z) as t→∞.

The following corollary is a straightforward consequence of LaSalle’s Invariance Principle.

Corollary 3.1.13. If the orbit γ (z) is pre-compact and ω (z) contains only the equilibrium
point {ze}, then the equilibrium solution ze to the nonlinear system is asymptotically stable.

Hence, LaSalle’s invariance principle can be used to characterize the asymptotic behaviour
of system (3.1) if one is able to show the pre-compactness of the orbit γ (x) and that
ω (z) = {ze}, where ze is the equilibrium solution. The orbit γ (z) is pre-compact in many
cases. The following result is useful.

Theorem 3.1.14. [58, Theorem 3.65]
Let F : D → H be a nonlinear m-dissipative operator that is densely defined on a Hilbert
space H. If the resolvent (I − λF )−1 is compact for some λ > 0, then the orbit γ (z) is
pre-compact for any z ∈ D.
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Sketch of the proof.

1. Let Jλ := (I − λF )−1 for λ > 0 and show that for all z ∈ R (I − µF ) with µ > 0,

Jµz = Jλ

(
λ

µ
z +

µ− λ
µ

Jµz

)
.

2. Show that the operator Jµ is compact and for all λ > µ > 0, z ∈ D (Jλ) ∩ D (Jµ),

‖z − Jµz‖ ≤
λ

µ
‖z − Jµz‖.

3. Show that for every z ∈ D (F ), 0 ≤ t ≤ nλ for n = 1, 2, · · · ,

‖S (t) z − J 1
n
S (t) z‖ ≤ 1

n
‖F (z) ‖,

where S (t) is the C0-semigroup generated by F .

4. Show that the orbit γ (z) is bounded.

5. Show that the orbit γ (z) is pre-compact provided that γ (z) is bounded. That is,
use Tychonov’s theorem to show for any given sequence {τm} ⊂ R+, there exists a
subsequence {tm} such that for each n,

‖J 1
n
S (tm+1) z − J 1

n
S (tm) z‖ < 1

m
, for all m ≥ 1. �

Many infinite-dimensional dynamical systems possess an infinite number of stable equilib-
rium solutions. The equilibrium solution to the dynamical system is determined by the
initial condition.

Definition 3.1.15. [92, Definition 2.6] (Stable Equilibrium Set)
Consider the dynamical system (3.1). Let E be the set of all equilibrium solutions to the
system. The set E is said to be stable if for every ε > 0, there exists δ > 0 such that if
distH (z0, E) < δ, then

distH (z (t) , E) < ε. t ≥ 0

Definition 3.1.16. [92, Definition 2.6] (Globally Asymptotically Stable Equilibrium Set)
Let E be the set of all equilibrium solutions (3.1). The set E is said to be globally asymp-
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totically stable if it is stable and for every z0 ∈ H,

lim
t→∞

distH (z (t) , E) = 0.

Example 3.1.17. (Heat equation with Neumann Boundary conditions)
Consider the 1-D heat equation with Neumann boundary conditions defined in the Hilbert
space L2(0, 1),

ż (x, t) =
∂2z

∂x2
(x, t) , t ≥ 0, x ∈ [0, 1] (3.4)

with Neumann boundary conditions

∂z

∂x
(0, t) = 0,

∂z

∂x
(1, t) = 0,

and initial condition

z (x, 0) = z0 (x) ∈ L2(0, 1).

The above system has equilibrium solutions of the form ze = c, where c ∈ R. Define the
set of equilibrium solutions

E = {c|c ∈ R} . (3.5)

Note that the set E is a closed invariant set. Now, consider the same Lyapunov function
candidate V : L2(0, 1) → R+ used in Example (3.1.11) and find the Lyapunov derivative
to obtain

V̇ (z) = −‖∂z
∂x
‖2 ≤ 0.

Poincaré inequality (Proposition 2.2.11) cannot be used in this example due to different
boundary conditions. Now, we shall consider using the LaSalle’s invariance principle
(3.1.12). That is, V̇ (z) = 0 if and only if ∂z

∂x
= 0. This implies that

z = c, where c ∈ R.

The Lyapunov derivative V̇ (z) = 0 if and only if z is an element of E in (3.5).

Using [29, Example 2.1.13], the resolvent of the operator d2

dx2
is compact, therefore by The-

orem (3.1.14), the orbit of the heat equation is pre-compact. Since the Lyapunov function

18



V is radially unbounded, by Lyapunov Theorem (3.1.10) and LaSalle’s invariance principle
(3.1.12), the solution of the above heat equation will converge to the equilibrium set E.
Hence, the equilibrium set E is globally asymptotically stable. �

The Lyapunov instability theorem for finite-dimensional systems generalizes to nonlinear
infinite-dimensional systems.

Theorem 3.1.18. [89, Theorem 3.8] (Lyapunov Instability Theorem)
Consider the nonlinear system (3.1). Let ze be the equilibrium solution to the system and
let V : D → R+ be a continuously differentiable function such that V (ze) = 0 and for every
z 6= ze, z in a neighbourhood of the equilibrium solution ze, the Lyapunov derivative

V̇ (z) > 0.

Furthermore, assume that for every δ > 0, there exists z0 ∈ D such that ‖z0 − ze‖ < δ and
V (z0) > 0. Then the equilibrium solution ze to (3.1) is unstable.

3.2 Lyapunov indirect method to analyze the stability

of dynamical systems defined on a Hilbert space

First, we shall consider finite-dimensional dynamical systems defined in Rn, for n <∞

ż (t) = f (z (t)) , t ≥ 0
z (0) = z0,

(3.6)

where z0 is the initial condition, the function f : D ⊂ Rn → Rn is continuously differen-
tiable and D is an open set with 0 ∈ D. Assume f (ze) = 0, then ze is an equilibrium
solution to the nonlinear system. Below is the theorem statement for the Lyapunov indi-
rect method for finite-dimensional systems.

Theorem 3.2.1. [39, Theorem 3.19]
Consider the nonlinear system defined in (3.6). Let

A =
∂f

∂z

∣∣∣∣
z=ze

.

Then the following statements hold:

1. If Reλ < 0 for all λ ∈ Spec (A), then the equilibrium solution ze to (3.6) is exponen-
tially stable.
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2. If there exists λ ∈ Spec (A) such that Reλ > 0, then the equilibrium solution ze to
(3.6) is unstable.

Below is an example to illustrate the method.

Example 3.2.2. [39, Example 3.15]
Consider the dynamical system describing the motion of a simple pendulum with viscous
damping

ż1 (t) = z2 (t) , t ≥ 0

ż2 (t) = −g
l

sin (z1 (t))− z2 (t) ,
(3.7)

and initial condition

z1 (0) = z10,
z2 (0) = z20,

where g is the acceleration due to gravity and l is the length of the pendulum. The above
system (3.7) can be written in the form defined in (3.6) where z (t) ∈ R2 is defined by

z (t) =

(
z1 (t)
z2 (t)

)
.

and

f (z (t)) =

(
f1 (z)
f2 (z)

)
,

=

 z2 (t)

−g
l

sin (z1)− z2 (t)

 .

The above system has infinitely many equilibrium solutions

ze =

(
nπ
0

)
, n = 0,±1,±2, · · · .

Next, we shall analyze the stability of the equilibrium solution (0, 0). First, linearize the
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system around the equilibrium solution. That is, compute the matrix A

A =
∂f

∂z

∣∣∣∣
(0,0)

,

=

(
∂f1
∂z1

∂f1
∂z2

∂f2
∂z1

∂f2
∂z2

)∣∣∣∣∣
(0,0)

,

=

(
0 1

−g
l

cos (z1) −1

)∣∣∣∣
(0,0)

,

=

(
0 1
−g

l
−1

)
.

The determinant of the matrix A is positive |A| = g
l

and the trace of the matrix A is nega-
tive tr (A) = −1. This implies that Reλ < 0 for all λ ∈ Spec (A). Hence, using Lyapunov
Indirect method (Theorem 3.2.1), the zero equilibrium solution (0, 0) to the nonlinear sys-
tem (3.7) is exponentially stable.

Similarly, we can analyze the stability of the equilibrium solution (π, 0) and use Theorem
(3.2.1) to show that it is an unstable equilibrium solution. �

It will be natural to use the Lyapunov indirect method an analyze the stability of nonlinear
infinite-dimensional dynamical systems. However, there are two issues that need tackling.
First, how to linearize the nonlinear systems defined on a Hilbert space H. In other words,
how to differentiate the nonlinear operator defined on the Hilbert space H. Second, what
guarantees that the stability of the linearized infinite-dimensional system is the same as
the nonlinear system. That is, if the linearized system is stable/unstable, then does the
same conclusion apply to the original nonlinear system?

Consider the nonlinear infinite-dimensional system (3.1), where ze is an equilibrium solu-
tion to the system. Now, we shall look at linearizing (3.1) at the equilibrium ze. Below
are two ways of differentiating nonlinear operators.

Definition 3.2.3. (Fréchet Differentiable)
Consider an operator F : H → H defined on a normed linear space H. F is Fréchet
differentiable at z0 if there exists a bounded linear operator DF (z0) : H → H such that for
all h ∈ H

lim
h→0

‖F (z0 + h)− F (z0)−DF (z0)h‖
‖h‖

= 0, (3.8)
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That is, there exists ε > 0 such that ‖h‖ < ε

F (z0 + h)− F (z0) = DF (z0)h+ ω (z0, h) ,

where

‖ω (z0, h) ‖
‖h‖

→ 0 as ‖h‖ → 0.

Moreover, F is Fréchet differentiable if it is Fréchet differentiable at every z0 ∈ D (F ).

Definition 3.2.4. (Gâteaux Differentiable)
Let F : D (F ) ⊂ H → H be an operator defined on a Hilbert space H. The operator F is
Gâteaux differentiable at z0 ∈ D (F ) if there exists a linear operator dF (z0) : H → H such
that

lim
ε→0

F (z0 + εh)− F (z0)

ε
= dF (z0)h,

where h, (z0 + εh) ∈ D (F ).

Note that the Fréchet derivative is a very strict way of differentiation for nonlinear oper-
ators defined on a Hilbert space H. This is because such nonlinear operators are usually
unbounded operators. Hence, we shall consider Gâteaux derivative to linearize nonlinear
infinite-dimensional systems.

In general, the Lyapunov Indirect method can not be used to analyze the stability of a non-
linear infinite-dimensional systems. Below is an counter-example derived by Hans Zwart.

Example 3.2.5. Consider the nonlinear system defined on the Hilbert space l2 (C).

ż (t) = F (z (t)) , t ≥ 0
z (0) = z0.

(3.9)

where z = (z1, z2, · · · , zn, · · · ), for , n = 1, · · · ,∞ and

F (z (t)) =


−z1 (t) + z2

1 (t)
...

− 1
n
zn (t) + z2

n (t)
...

 . t ≥ 0
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That is,

F (z (t)) = −


1 0 . . .

0
. . .

1
n

. . .

 z +


z2

1 (t)
...

z2
n (t)
...

 . (3.10)

Define the linear operator A : l2 (C)→ l2 (C)

A = −


1 0 . . .

0
. . .

1
n

. . .

 . (3.11)

Hence, (3.10) can be written as

F (z) = Az +


z2

1 (t)
...

z2
n (t)
...

 . (3.12)

The exact solution of the above system (3.9) is z ∈ l2 (C) where

zn (t) =
1

n+ cne
1
n
t
, (3.13)

and cn is determined by the initial condition z0.

The above system has infinitely many equilibrium solutions ze ∈ l2 (C) since ż = 0 if and
only if − 1

n
zn + z2

n = 0 for n = 1, · · · ,∞. This implies that zn = 0, 1
n

.

That is, an equilibrium solution to the above system ze ∈ l2 (C) is the infinite vector with
value 0 or 1

n
in every nth index. The set of equilibria is

E =

{
z ∈ l2|zn ∈

{
0,

1

n

}
, n = 1, · · · ,∞

}
.

In this example we shall look at the stability of the zero equilibrium solution ze = 0.

First, let’s use the Lyapunov Indirect method. To do so, we linearize the system (3.9)
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around the equilibrium solution ze = 0 to obtain

ż (t) = Az (t) , t ≥ 0
z (0) = z0,

(3.14)

where the operator A is defined in (3.11). The operator A generates an asymptotically
stable C0-semigroup. This is true, since

lim
t→∞
‖z (t)− ze‖ = lim

t→∞
‖z (t) ‖,

= lim
t→∞

(
∞∑
n=1

z2
n (0) e−

2
n
t

) 1
2

,

= 0.

Moreover, the C0-semigroup generated by the operator A is not exponentially stable

eAt =


e−t 0

. . .

e−
1
n
t

0
. . .

 .

Furthermore,

‖eAt‖ = sup
‖z0‖=1

‖eAtz0‖,

= sup
‖z0‖=1

(
∞∑
n=1

z2
n (0) e−

2
n
t

) 1
2

,

=
(

lim
k→∞

e−
2
k
t
) 1

2
,

= 1.

In the nonlinear system (3.9), choose components of the initial condition z0 to be zero
except in the nth position to be 1

n
. That is,

z0 =

(
0, · · · , 0, 1

n
, 0, · · ·

)
.

The solution is

z (t) =


0
...
1
n
...

 .
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For any δ > 0, choose n such that 1
n
< δ. We have ‖z0 − ze‖ = 1

n
< δ and

lim
t→∞
‖z (t)− ze‖ =

1

n
,

6= 0.

Hence, the zero equilibrium solution ze to the nonlinear system (3.9) is not asymptotically
stable. �

The above example illustrates that the Lyapunov Indirect method can not always be used
for infinite-dimensional systems. That is, the zero equilibrium solution to the nonlinear
system (3.9) is not asymptotically stable but it is asymptotically stable to the linearized
system (3.14). However, the zero equilibrium solution is not exponentially stable and this
was shown in the above example.

It will be interesting and useful to investigate when Lyapunov indirect method can be used
to give information about the stability of a nonlinear infinite-dimensional system. This will
be discussed below. The connection between the stability analysis of a nonlinear system
and its linearization will be shown next.

Proposition 3.2.6. (The Mean Value Theorem) [33, Theorem 8.5.4]
Let X, Y be two Banach spaces, G : D (G) ⊂ X → Y be a continuous mapping into Y . If
G is Fréchet differentiable at every z ∈ S ⊂ D (G) where S is convex, then

‖G (z)−G (y) ‖ ≤ sup
η∈S
‖DG (η) ‖ · ‖z − y‖, z, y ∈ S,

where DG (η) is the Fréchet derivative of G at η.

Smoller [80] considered the following system defined on a Banach space X

ż = Az + f (z) ,
z (0) = z0,

where z (t) ∈ X is the state and z0 is the initial condition. The operator A : D (A) ⊂
X → X is a linear operator that generates a C0-semigroup on X. The nonlinear opera-
tor f : D (f) ⊂ X → X is a Fréchet differentiable locally Lipschitz continuous operator.
In [80, Theorem 11.18], he showed that the nonlinear C0-semigroup corresponding to the
nonlinear system is continuously Fréchet differentiable.

Smoller [80, Theorem 11.22] showed that if the linearized system at an equilibrium solu-
tion generates an exponentially stable C0-semigroup, then the nonlinear system generates
a locally exponentially stable C0-semigroup in a neighbourhood of that equilibrium. He
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used the Mean Value Theorem (Theorem 3.2.6) to show the result as well as the fact that
the C0-semigroup is continuously Fréchet differentiable. This is a quite strong condition.
However, the idea of the proof is very useful and can be used to extend this result to a
larger class of systems.

Theorem 3.2.7. Consider the nonlinear system (3.1) defined on a Hilbert space H. As-
sume that the nonlinear operator F : D (F ) ⊂ H → H generates a nonlinear C0-semigroup
S (t). Let ze be an equilibrium solution to the above system (3.1) and suppose that S (t)
is Fréchet differentiable at ze. If ze is an exponentially stable equilibrium of the linearized
system, then ze is a locally exponentially stable equilibrium of the nonlinear system (3.1).

Proof. The idea of the proof is similar to [30, Proposition 2.1] and [80, Theorem 11.22].
Let Tze (t) be the Fréchet derivative of the nonlinear C0-semigroup S (t) at the equilibrium
solution ze. Since ze is an exponentially stable equilibrium solution of the linearized system,
then there exists M ≥ 1 and γ > 0 such that for all z0 ∈ H

‖Tze (t) z0 − ze‖ ≤Me−γt‖z0 − ze‖, t ≥ 0. (3.15)

Using the definition of Fréchet derivative (Definition 3.2.3)

S (t) z0 − S (t) ze = Tze (t) (z0 − ze) + ω (ze, z0 − ze) ,

where

lim
‖z0−ze‖→0

‖ω (ze, z0 − ze) ‖
‖z0 − ze‖

= 0.

Furthermore, since the C0-semigroups S (t) and Tze (t) are continuous in t, then the function
ω is continuous in t. Moreover, since S (t) is Fréchet differentiable at ze, then for any εt > 0,
there exists δ > 0 such that if ‖z0 − ze‖ < δ, then for every t > 0,

‖ω (ze, z0 − ze) ‖
‖z0 − ze‖

< εt.

Since the function ω is continuous in t, there exists ε > 0 such that for τ ∈ [0, t̄], t̄ < ∞,
‖ω(ze,z0−ze)‖
‖z0−ze‖ < ε and
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‖S (τ) z0 − ze‖ ≤ ‖Tze (τ) (z0 − ze) ‖+ ‖ω (ze, z0 − ze) ‖,

≤ Me−γτ‖z0 − ze‖+ ε‖z0 − ze‖,

=
(
Me−γτ + ε

)
‖z0 − ze‖,

= C‖z0 − ze‖,

where C = M + ε.

Next show that ze is locally exponentially stable to the nonlinear system (3.1). Choose

t̄ = ln(4M)
γ

> 0, then using (3.15),

‖Tze (t̄) z0 − ze‖ ≤ Me−γt̄‖z0 − ze‖,

≤ 1

4
‖z0 − ze‖. (3.16)

Furthermore, using the definition of Fréchet derivative (Definition 3.2.3),

lim
‖z−ze‖→0

∥∥∥∥S (t̄) z0 − S (t̄) ze − Tze (t̄) z0 + Tze (t̄) ze
z0 − ze

∥∥∥∥ = lim
‖z−ze‖→0

∥∥∥∥S (t̄) z0 − Tze (t̄) z0

z0 − ze

∥∥∥∥ ,
= 0.

Thus, there exists δ > 0 such that if ‖z0 − ze‖ < δ, then

‖S (t̄) z0 − Tze (t̄) z0‖ ≤
1

4
‖z0 − ze‖. (3.17)

Using (3.16) and (3.17),

‖S (t̄) z0 − ze‖ = ‖S (t̄) z0 − Tze (t̄) z0 + Tze (t̄) z0 − ze‖,
≤ ‖S (t̄) z0 − Tze (t̄) z0‖+ ‖Tze (t̄) z0 − ze‖,

≤ 1

2
‖z0 − ze‖,

= e− ln 2‖z0 − ze‖. (3.18)
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Now, let k > 0 be an integer, then using the semigroup property and (3.18),

‖S (kt̄) z0 − ze‖ = ‖Sk (t̄) z0 − ze‖,
= ‖S (t̄)Sk−1 (t̄) z0 − ze‖,
≤ e− ln 2‖Sk−1 (t̄) z0 − ze‖,
≤ e−(ln 2)k‖z0 − ze‖. (3.19)

Now, if t > 0 is given, let k =
[
t
t̄

]
and τ = t− kt̄. Then τ ∈ [0, t̄] and using the semigroup

property, (3.16) and (3.19),

‖S (t) z0 − ze‖ = ‖S (kt̄+ τ) z0 − ze‖,
= ‖S (τ)S (kt̄) z0 − ze‖,
≤ C‖S (kt̄) z0 − ze‖,
≤ Ce−(ln 2)k‖z0 − ze‖,
≤ Ce−αt‖z0 − ze‖,

for α ≤ ln 2
t̄

. This implies that the equilibrium solution ze to the nonlinear system is locally
exponentially stable. �

The above result is very important and will be used to analyze the stability of nonlin-
ear infinite-dimensional systems. In the next theorem, we will show that if the linearized
system at an equilibrium ze is unstable, then the nonlinear system is unstable near that
equilibrium point.

Theorem 3.2.8. Let ze be an equilibrium solution to the system (3.1). Assume that S (t)
is Fréchet differentiable at ze and the derivative is given by Tze (t). If the linearized system
is unstable, then the nonlinear system (3.1) is unstable.

Proof. The proof is done by contrapositive. Let ze be a locally stable equilibrium solution
to the nonlinear system (3.1). Using the definition of Fréchet differentiable (Definition
(3.2.3)), there is r > 0 so that for all z0

S (t) z0 − S (t) ze = Tze (t) (z0 − ze) + ω (ze, z0 − ze) ,

where ω (ze, z0 − ze) satisfies

lim
‖z0−ze‖→0

‖ω (ze, z0 − ze) ‖
‖z0 − ze‖

= 0. (3.20)

Since Tze (t) is a linear operator and ze is an equilibrium solution,

S (t) z0 − ze = Tze (t) z0 − ze + ω (ze, z0 − ze) . (3.21)
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The definition of locally stable equilibrium of the nonlinear system (Definition 3.1.1) implies
that for any ε > 0, there exists δ > 0 such that if

‖z0 − ze‖ < δ, (3.22)

then

‖S (t) z0 − ze‖ ≤
ε

2
, for all t ≥ 0, (3.23)

Also, since

lim
‖z0−ze‖→0

‖ω (ze, z0 − ze) ‖
‖z0 − ze‖

= 0, (3.24)

there is δ̂, with 0 < δ̂ < δ, such that if ‖z0 − ze‖ ≤ δ̂, then

‖ω (ze, z0 − ze) ‖
‖z0 − ze‖

≤ ε

2
.

Then, from (3.21)

‖Tze (t) z0 − ze‖ ≤ ‖ω (ze, z0 − ze) ‖+ ‖S (t) z0 − ze‖,

≤ ε

2
+
ε

2
,

= ε.

Thus, ze is a stable equilibrium point of the linearization. This completes the proof. �

In summary, the Fréchet differentiability of the nonlinear C0-semigroup corresponding to
the nonlinear system plays an important role in analyzing the stability using Lyapunov
indirect method. If the equilibrium solution of the linearized system around the equilib-
rium solution is exponentially stable, then the equilibrium solution to the nonlinear system
is locally exponentially stable. Furthermore, if the equilibrium solution to the linearized
system is unstable, then the nonlinear system is also unstable.

In addition, if the equilibrium solution to the linearized system is only asymptotically sta-
ble, then Lyapunov-indirect method can not be used and no conclusion about the stability
of the equilibrium solution to the nonlinear system can be obtained. A counter example
by Hans Zwart was presented (Example 3.2.5).
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Chapter 4

Stabilization of partial differential
equations

Feedback control is utilized in almost every aspect of life. Regulating the flow rate, tem-
perature, concentration of substances in a reaction, amplifiers, modern commercial and
military aircraft are some examples of control systems where feedback control may be
used. Feedback control is essential in almost all engineering systems. Since no mathemat-
ical model is perfect and disturbances occur frequently, feedback is required to correct the
errors. Also, feedback is used to drive the model to a desired state and hence change an
unstable model to a stable one.

All feedback systems have common elements. The plant is the system being controlled.
The controller is the system that affects the control. Measured outputs from the plant are
fedback to the controller.

The design of a feedback control has been widely investigated in finite-dimensional space
[23, 39, 43, 48, 62, 81], etc. However, many systems of interest, such as fluid flow and
large structural vibrations are described by partial differential equations and their state
evolves on an infinite-dimensional Hilbert space. Developing controller design methods
for nonlinear infinite-dimensional systems is not trivial, although some results have been
achieved e.g. [5, 15, 22, 23, 44, 58, 66]. Some previous work will be reviewed.

4.1 Background literature

In the last few years, stabilizing techniques and methods have been intensively investigated
by many researchers [23, 39, 48, 58, 62, 66, 81] and others. It is used to drive the error
between the measured and desired response to zero and drive the model to a desired state.
Also it can be used to reduce the effects of disturbances to the system. There are many
methods to stabilize a nonlinear finite-dimensional system such as feedback linearization
[39, 43, 81] or back-stepping control [8, 48]. These two methods apply some coordinate
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transformation to produce an equivalent linear system that can be easily stabilized. The
main advantage of the back-stepping technique is that it is a systematic way to construct
a Lyapunov function for the closed loop system [48]. However, extending these methods
to infinite-dimensional systems is not trivial, as a matter of fact, the coordinate trans-
formation in feedback linearization and back-stepping involves repeated differentiation of
the nonlinear terms which can cause problems in the nonlinear operators for coordinates
transformation and control laws [8].

The stabilizing of linear infinite-dimensional systems has been widely explored e.g. [10, 12,
29, 53, 58, 63, 66]. In this section, a literature review about stabilizing nonlinear PDEs is
presented e.g. [5, 21, 24, 26, 58]. The conventional approach to control infinite-dimensional
systems is by approximating the model by a finite set of ODEs, then applying some lin-
ear/nonlinear control methods to the system to obtain the stability desired [22]. However,
this method shows poor performance for systems where a large order system is needed to
obtain a good finite-dimensional approximation. This will lead to a complicated control
design. Hence it may be more convenient to control the original infinite-dimensional system.

Quasi-linear PDE systems arise in different models in chemical engineering. For instance,
it models fluidized-bed reactor [21], fixed-bed reactor [82], plug-flow reactor [69] and pres-
sure swing absorption processes. The eigenmodes of the partial differential operators in
quasi-linear parabolic PDE systems can be divided into finite-dimensional slow modes and
an infinite-dimensional stable fast complement [21]. The standard approach to stabilize
such systems is by applying Galerkin’s method to produce a system of ODEs that approx-
imates the dynamics of the original PDE.

In [20], Christofides proposed a Lyapunov-based robust controller design method for a
quasi-linear parabolic PDE system under the assumption that the measurements of the
state variables are available. Later, in [21] Christofides and Baker extended the proposed
method for which only a finite number of measurements of the output variable is available
for the feedback. Their approach was to use Galerkin method to derive a system of ODEs
that approximates the original system, then the new system is used to synthesize a robust
feedback controller using Lyapunov’s direct method. They used the assumption that the
number of measurements is equal to the number of slow modes to obtain estimates for the
states of the approximate ODE model from the measurements.

As for quasi-linear hyperbolic PDEs, the eigenmodes have almost the same energy and thus
an infinite number of modes is needed to accurately describe the dynamics of the original
system [22]. An alternative approach to stabilize such systems is by Lyapunov’s direct
method [90, 91]. In [3], Alonso and Ydstie constructed a Lyapunov functional candidate
for quasi-linear PDE systems and showed that the closed loop systems is asymptotically
stable. Moreover, in [22] Christofides and Daoutid considered first-order quasi-linear hy-
perbolic PDE systems with uncertain variables and un-modeled dynamics and were able to
derive a necessary and sufficient conditions for the well-posedness of the system as well as
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to construct an explicit controller synthesis formula. The controller is constructed by using
the Lyapunov’s direct method and requires that there exists a known bounded function
that captures the magnitude of the uncertain terms.

Slemrod [78] considered the feedback stabilizing problem of affine linear systems defined
on a Hilbert space H,

ż (t) = Az (t) +Bu (t) ,
z (0) = z0 ∈ H,

(4.1)

where z (t) is the state, u (t) is a feedback control with ‖u (t) ‖ ≤ r, r > 0, the operator
A : D ⊂ H → H is an infinitesimal generator of a contraction C0-semigroup T (t), and
B : U → H is a linear bounded operator. Slemrod was able to show that the above system
(4.1) can be stabilized. That is, there exists a feedback control law u such that z (t) → 0
as t → ∞. He derived the following feedback control law based on the ”energy” stability
method suggested by finite-dimensional systems where B∗ denotes the adjoint operator

u (t) =

{
−r B∗z(t)
‖B∗z(t)‖ , if ‖B∗z (t) ‖ ≥ r

−B∗z (t) , if ‖B∗z (t) ‖ ≤ r

In [15] Bounit and Hammouri have developed Slemrod’s work and derived a nonlinear
feedback control law that globally stabilizes the system (4.1) via arbitrary smooth state
feedback. However, the compactness of the resolvent (λI − A)−1, for some λ > 0 is as-
sumed. The proposed control law is given by

u (t) = −r B∗z (t)

1 + ‖B∗z (t) ‖
.

Recently, feedback control design for nonlinear infinite-dimensional systems have been
studied by several researchers e.g.[2, 5, 10, 22, 21, 23, 44, 45, 58, 66]. Many results on
the asymptotic behaviour of the system are known [2, 58, 66, 83] where the dissipativity
property of the system plays an important role in ensuring the well-posedness of the system.

In [26], the stability of one-dimensional nonlinear PDEs were investigated in which the sys-
tem is linearized and a boundary control law is constructed to achieve the stability of the
PDE. They showed that the stability is guaranteed if the Jacobian matrix of the boundary
conditions satisfies a sufficient dissipativity condition. For example, in the Saint-Venant
equations - which represent the dynamics of open water channels - the stability may be
proved using a Lyapunov approach under the assumption that the bottom and friction
slopes are sufficiently small. Later, in [10] they improved the result by giving a sufficient
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conditions for the exponential stability of the strong solution of the linearized Saint-Venant
equations without any condition on the bottom and friction slopes. The stability analysis
relies on finding a Lyapunov function for the system with strict negative definite Lyapunov
derivative [25].

In [25], Coron et al. considered the boundary control problem of nonlinear hyperbolic
PDEs. They designed a scheme where a boundary control is chosen such that the Lya-
punov derivative of a Lyapunov function to the system is negative definite. Moreover, they
showed that the derived boundary control guarantees the local convergence of the solution
towards the desired state.

In addition, Krstic and Smyshyaev [49] considered the feedback boundary stabilization
problem of first-order hyperbolic PDEs. They designed controllers using a backstepping
techniques. That is, to use an integral transformation along with a boundary feedback in
order to convert an unstable PDE into a delay line system that converges to zero in a finite
time. In [49], their approach of the backstepping was to use invertible Voltera integral
transformation together with the boundary feedback.

In [11], the stabilization of a non-relativistic charged particle in a one-dimensional infinite-
dimensional square potential well is considered. An explicit feedback control law was
constructed through a Lyapunov analysis to insure the stability of the system.

Furthermore, in [44] Ito and Kunisch considered the optimal control problem of semi-linear
systems that are defined on a Hilbert space. Their approach was to construct a local con-
trol Lyapunov function such that a feedback control law of the form u (t) = −βB∗z, with
β > 0, B a bounded linear operator and z the state, stabilizes the system. They were
able to achieve their goal under the assumption that A − βBB∗, with A an infinitesimal
generator of a C0-semigroup, generates an exponentially stable C0-semigroup. More on
this result is presented later.

Kang and Ito [45] considered a control problem of semi-linear system that arises in fluid
dynamics on a Hilbert space H:

ż (t) = −εAz (t)− F (z (t)) +Bu (t) ,
z (0) = z0 ∈ H,

(4.2)

where ε > 0, A is a non-negative self-adjoint linear operator defined on H with D
(
A1/2

)
⊂

H, B is a bounded linear operator, and F is a nonlinear operator that satisfies

〈F (z)− F (ze) , z − ze〉 = 0,

for all z ∈ D
(
A1/2

)
and F (z) is Fréchet differentiable at ze with derivative F ′ (ze) ∈
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L (V, V ∗), where ze is the desired equilibrium state. Furthermore, they derived a feedback
control law for system (4.2) based on nonlinear dynamic programming techniques that
drives the solution to a desired equilibrium state ze and enhances the energy dissipation
effects on the given dynamics. The feedback control is given by

u (t) =

{
ε〈Aw(t),w(t)〉−

√
g1(w(t))+g2(w(t))‖B∗w(t)‖2
‖B∗w(t)‖2 B∗w (t) , if B∗w (t) 6= 0

0 , if B∗w (t) = 0

where

w (t) = z (t)− ze,
g1 (w (t)) = (ε 〈Aw (t) , w (t)〉)2 ,
g2 (w (t)) = 〈Aw (t) , w (t)〉+ 〈Qw (t) , w (t)〉 ,

with Q ∈ L (H) is a non-negative self-adjoint operator.

It is worth mentioning that finding a control Lyapunov function for an infinite-dimensional
controlled system is very difficult and is often impossible since that there is no rule to
follow to obtain such function. Hence, another approach to stabilize controlled infinite-
dimensional systems is needed. This will be investigated in the next section.

4.2 A bounded state-feedback for affine infinite-

dimensional dynamical systems: A linearization

approach

In this section, we consider the controlled affine system (2.2) defined on a Hilbert space
H and we shall find a bounded state-feedback control such that the closed loop system is
locally exponentially stable. This is done by finding a state-feedback control to the lin-
earized system at the equilibrium ze using Gâteaux derivative (Definition 3.2.4). Then, the
same state-feedback control is used to locally exponentially stabilize the nonlinear affine
system (2.2). Conditions and justification of this approach are presented.

Consider the linearized controlled system (2.2) at the equilibrium solution ze

ż = dF (ze) z +Bu,
z (0) = z0,

(4.3)

where the operator dF (ze) : D → H is the Gâteaux derivative of the operator F at the
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equilibrium solution ze and the actuator B : C→ H is defined by

Bu = bu, (4.4)

with b an element in the Hilbert space H. Assume that the operator dF (ze) is a Riesz-
spectral operator. Let {φn} be the eigenfunctions of dF (ze) and define

bn =< b, φn >, for n = 1, 2, · · · ,∞. (4.5)

Let N <∞ be the number of unstable eigenvalues of the linear operator dF (ze). Assume
that

bn 6= 0 for n = 1, 2, · · · , N. (4.6)

Since the operator dF (ze) is a Riesz-spectral operator, then by [29, Theorem 5.2.10] the
system (dF (ze) , b (x)) is exponentially stabilizable. That is, using [29, Definition 5.2.1]
there exists a bounded linear feedback control operator K : H → C with Kz (t) =<
K, z (t) >, where k ∈ L2(−π, π) such that dF (ze) + b (x)K generates an exponentially
stable C0-semigroup, call it TBK (t). That is, the controlled linearized system (4.3) can be
written as

ż (t) = dF (ze) z (t) + b (x) < k, z (t) > . (4.7)

Assume that the nonlinear C0-semigroup S (t) generated by the the nonlinear operator F
in (2.2) is Frechét differentiable (see Definition 3.2.3). Moreover, the Fréchet derivative of
S (t) at ze is the linear C0-semigroup generated by the Gâteaux derivative of the nonlinear
operator F at z0. If ze is an exponentially stable equilibrium solution to the linearized
system (4.3). That is, the operator dF (ze) + b (x) generates an exponentially stable C0-
semigroup TBK , then by Theorem 3.2.7, the nonlinear operator F+b (x) generates a locally
exponentially stable C0-semigroup resulting a locally exponentially stable system (2.2).

The next theorem shows the existence of a finite-dimensional controller that locally stabi-
lizes the nonlinear system (2.2).

Theorem 4.2.1. Consider the nonlinear affine system (2.2) defined on a Hilbert space
H where the nonlinear operator F generates a Fréchet differentiable C0-semigroup S (t)
and the Fréchet derivative of S (t) at an equilibrium point ze is the linear C0-semigroup
generated by the linearized system at ze.

Let the operator dF (ze) in (4.3) be a Riesz-spectral operator in H and the actuator b (x)
satisfies condition (4.6). Then, a finite-dimensional controller stabilizes the linearized sys-
tem (4.3) and locally stabilizes the nonlinear system (2.2).

Proof. Since assumption (4.6) holds and the linear operator dF (ze) is a Reisz-spectral
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operator, then by [29, Theorem 5.2.10], the linearized system (dF (ze) , b (x)) is stabilizable.

Using [29, Theorem 5.2.6], the linearized system (dF (ze) , b (x)) satisfies the spectrum de-
composition assumption and a finite-dimensional controller can be designed to stabilize
the linearized system. For completeness of the proof, this will be shown below.

For every z ∈ H, define the orthogonal projection operator of H onto the space spanned by
the finite number of eigenvectors corresponding to the unstable eigenvalues of the linearized
system (4.3), P by

Pz =
N∑
n=1

znφn, (4.8)

where zn =< z, ψn >, φn is an orthonormal basis in the Hilbert space H, ψn is its adjoint
operator for n = 1, 2, · · · ,∞ and N is the number of unstable eigenvalues of the linearized
system (4.3). Then the above projection induces the following decomposition of the Hilbert
space H

H = H+ ⊕ Z = H−, where H+ = PH and H− = (I − P )H. (4.9)

Also, we have the following decompositions

dF (ze) =

(
dF (ze)

+ 0

0 dF (ze)
−

)
, (4.10)

B =

(
B+

B−

)
, (4.11)

where for every z ∈ D and u ∈ C

dF (ze)
+ z =

∑N
n=1 λnznφn.

B+u = u
∑N

n=1 bnφn.

dF (ze)
− z =

∑∞
n=N+1 λnznφn.

B−u = u
∑∞

n=N+1 bnφn.

(4.12)

In fact, we have decomposed linearized system (4.3) as a vector sum of two subsystems.
The first subsystem is the finite-dimensional system

(
dF (ze)

+ , B+
)

and the second sub-

system is the infinite-dimensional system
(
dF (ze)

− , B−
)
.

Using [29, Theorem 5.2.6], one can find a stabilizing feedback operator K = K0P , where

K0 is a finite dimensional operator for
((
A− ze ∂∂z

)+
, B+

)
. That is, a finite-dimensional

36



feedback can be used to stabilize the infinite-dimensional linearized system (4.3).

Furthermore, using Theorem (3.2.7), it is enough to use the finite-dimensional controller
obtained earlier for a linearized system to locally exponentially stabilize the infinite-
dimensional nonlinear system (2.2). �

There are many ways to design a bounded feedback control to the infinite-dimensional
linearized system (4.3). It can be designed using LQR or H∞ controllers where the goal
is to minimize the cost functional corresponding to the system. This is done by solving
the algebraic Riccati equation [29, 63]. Furthermore, a bounded feedback control can be
designed so that the energy of the system decays as time grows resulting an asymptotically
stable system [14, 78]. In [78], Slemrod considered the linear system similar to (4.3). His
approach was based on the energy stability method.
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Chapter 5

The Kuramoto-Sivashinsky equation

Consider the open-loop controlled Kuramoto-Sivashinsky (KS) equation with a single state-
feedback control

∂z

∂t
+ ν

∂4z

∂x4
+
∂2z

∂x2
+ z

∂z

∂x
= b (x)u (t) , (5.1)

and periodic boundary conditions,

∂nz

∂xn
(−π, t) =

∂nz

∂xn
(π, t) , n = 0, 1, 2, 3

and initial condition

z (x, 0) = z0 (x) ,

where ν > 0 is the instability parameter, the vector z ∈ L2(−π, π) is the state of the system,
the actuator b (x) ∈ L2(−π, π) has a finite rank and u ∈ C is a state-feedback control to the
KS equation. We shall consider state-feedback control of the form u (t) = Kz (t), where
K : L2(−π, π)→ C is defined by

Kz = 〈k, z〉, (5.2)

with k ∈ L2(−π, π).

Definition 5.0.2. For n ≥ 1

Hn
periodic(−π, π) :=

{
z ∈ Hn(−π, π)|∂

iz

∂xi
(−π) =

∂iz

∂xi
(π) for i = 0, · · · , n− 1

}
.

Define the linear operator A : D (A) ⊂ H4(−π, π)→ L2(−π, π) by

Az = −ν ∂
4z

∂x4
− ∂2z

∂x2
, (5.3)
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with

D (A) =

{
z ∈ L2(−π, π)|∂

iz

∂xi
∈ L2(−π, π) for i = 1, · · · , 4 and

∂iz

∂xi
(−π) =

∂iz

∂xi
(π) for i = 0, · · · , 3

}
, (5.4)

the nonlinear operator J : D (F ) ⊂ H1(−π, π)→ L2(−π, π) by

J (z) = −z ∂z
∂x
, (5.5)

with

D (J) =

{
z ∈ L2(−π, π)|∂z

∂x
∈ L2(−π, π) and z (−π) = z (π)

}
,

and the bounded linear operator B : C→ L2(−π, π) by

Bu = b (x)u, (5.6)

where b (x) ∈ L2(−π, π) has a finite rank.

Then, the feedback controlled KS equation (5.1) can be written in state-space form

ż = Az + J (z) +BKz,
z (0) = z0.

(5.7)

5.1 Background literature

The Kuramoto-Sivashinsky (KS) equation is a nonlinear partial differential equation (PDE)
that is first-order in time and fourth-order in space. It was first introduced by Kuramoto
[50] in one space dimension for the theoretical study of a turbulent state in a distributed
chemical reaction system. Then Sivashinsky [56, 76, 77] extended the equation to two di-
mension or more in his study of the propagation of a flame front to describe the combined
influence of diffusion and thermal conduction of the gas. The analysis of the KS equation
in two space dimension or more is not complete yet as the semigroup is not defined every-
where in this case [85].

The KS equation is a mathematical model of reaction-diffusion systems and is related to
various pattern formation phenomena where turbulence or chaos appear. For instance, it
models long wave motions of the liquid film over a vertical plane, dendritic fronts in dilute
binary alloys, unstable flame front, Belouzov-Zabotinskii reaction pattern and interfacial
instabilities between two viscous fluids [4, 34, 38, 47, 54, 56, 72]. Also, it describes the
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feature of a nonlinear saturation mechanism of dissipative trapped ion modes [56]. Fur-
thermore, the KS equation model is often used in the study of convective hydrodynamics,
plasma confinement in toroidal devices, interfacial instabilities between two viscous fluids
[34] and the bifurcation solutions of the Navier-Stokes equation [74].

Nicolaenko et al. [65] proved the existence and uniqueness of solutions to the KS equa-
tion under the assumption that solutions are odd and periodic. Then, Robinson [70] and
Sell & You [74] showed the existence and uniqueness of the solution to the KS equation.
Moreover, they showed the existence of global finite-dimensional attractor for some values
of the instability parameter in the model.

Figure 5.1: A prototype of a combustor.

(http://www.osakagas.co.jp/rd/sheet/126e.html)

An example of an experimental setup for the dynamics of the KS equation where control is
needed is a combustor consisting of two concentric cylinders with a narrow gap filled with
combustible gas (see Figures 5.1 & 5.2). In this case, without any control introduced to
the system, the flame front will develop wrinkles governed by the KS dynamics.

∂z

∂t
+
∂4z

∂x4
+ µ

∂2z

∂x2
+ z

∂z

∂x
= 0, x ∈ (0, 1) , t > 0,

where µ > 0 is an anti-diffusion parameter. In order to control the flame front, one sug-
gestion is to apply a distributed control to the system which is done through actuating the
fuel supply all around the base of the combustor (see Figure 5.3). Another way is to apply
a boundary control which will require fuel modulation only on a small section of the base
of the combustor [56].
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Figure 5.2: Gas turbine model combustor for swirled methane/air flames.

(http://www.dlr.de/vt/en/desktopdefault.aspx/tabid-3080/4657 read-15212/)

Another example of a physical experiment that is modelled by the KS equation where
control is needed is a thin liquid film falling down a vertical plane. The height of the
falling liquid in the vertical plane is regulated by the upwind gas flow or simply the air
(See Figure 5.4). This phenomenon occurs in both natural and industrial ways such as the
flow of a thin raindrop down a windowpane under the action of gravity or the paint flow
down a wet painted wall. This phenomenon causes an undesirable unsightly drip marks in
the final dry coating process of the wall (see Figure 5.5). Therefore, a control in needed
in such application to regulate the film thickness at a desired constant value and as fast
as possible to speed up the process. The dynamics is given by the following mathematical
model

∂z
∂t

+ ν ∂
4z
∂x4

+ ∂2z
∂x2

+ z ∂z
∂x

=
∑m

i=1 biui (t) ,

∂nz
∂xn

(−π, t) = ∂nz
∂xn

(π, t) , n = 0, 1, 2, 3,

z (x, 0) = z0 (x) ∈ L2[−π, π],

(5.8)

where z ∈ L2[−π, π] is the state which represents the interface elevation that is assumed
to be smaller than the film thickness, ν > 0 is called the instability parameter which de-
scribes incipient instabilities of the system [57]. The parameter ν depends on a variety
of parameters in the physical model such as the density of the liquid, the viscosity, the
surface tension, the gas flow and the Reynolds number [20, 87]. For small values of the
instability parameter ν, the solution of the system becomes oscillatory or unstable. The
purpose of the control problem here is to regulate the film thickness at a desired constant
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Figure 5.3: A diagram showing the distributed control concept to stabilize the flame front
of a combustor.

(http://www.osakagas.co.jp/rd/sheet/126e.html)

value along the surface. This can be done through blowing or suction on the wall surface.
That is by applying distributed control to the system given by the right-hand side of the
above equation where m is the number of inputs, ui (t) is the ith input and bi is the ith

actuator which determines how the control action is computed by the ith control input.
That is, the actuator bi is either blowing or suction with magnitude ui [20, 34, 51, 54].

   x

   z(x,t)

   
Liquid

  Gas Control 
Actuator

Figure 5.4: A thin liquid film falling down a vertical tube.

Many researchers studied the stability of the dynamics of the KS equation analytically as
well as numerically [6, 16, 17, 18, 19, 27, 35, 36, 37, 41, 46, 57, 65]. The KS equation is
a nonlinear PDE that can be regarded as an extension of the heat equation [56]. Further-
more, analytical as well as numerical studies on the dynamics of the KS equation showed
the existence of steady-state and periodic solutions and chaotic behaviour for very small
values of the instability parameter [57]. In [95], Zhang, Song and Axia considered the KS
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Figure 5.5: The phenomenon of the flow of a thin paint over a wet painted wall.

(http://www.generalpaint.com/problem solution sagging)

equation with periodic boundary conditions and odd solutions and were able to show that
the zero equilibrium solution to the KS equation is globally exponentially stable for certain
values of the instability parameter. A more general result will be obtained in a later section.

Liu and Krstic [56] considered the following KS equation

∂z

∂t
+
∂4z

∂x4
+ µ

∂2z

∂x2
+ z

∂z

∂x
= 0, x ∈ (0, 1) , t > 0,

where µ > 0 is a parameter with Dirichlet/Neumann boundary conditions. They showed
that the closed loop system is well-posed by using the Banach contraction principle. In
addition, they showed that the zero solution z (x, t) ≡ 0 of the KS equation under Dirichlet
boundary conditions is unstable if µ > 4π2 and is asymptotically stable if µ < 4π2 (the
case when µ = 4π2 was not investigated). Moreover, they showed that the zero solution to
the KS equation under Neumann boundary conditions is unstable regardless to the value of
µ. Finally, for µ < 4π2, they considered the boundary control problem of the KS equation
with the following boundary conditions

∂2z
∂x2

(0) = u1 (t) , ∂3z
∂x3

(0) = u2 (t) ,

∂2z
∂x2

(1) = u3 (t) , ∂3z
∂x3

(1) = u4 (t) ,

where u1 (t) , · · · , u4 (t) are boundary controllers. They designed a nonlinear boundary
feedback control
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u1 (t) = k ∂z
∂x

(0, t) , u2 (t) = −kz (0, t)− z (0, t)3 ,

u3 (t) = −k ∂z
∂x

(1, t) , u4 (t) = kz (1, t) + z (1, t)3 ,

for a sufficiently large constant k and showed that the closed loop system is globally
exponentially stable in L2 (0, 1) and globally asymptotically stable in H2 (0, 1). Moreover,
they designed a simpler linear feedback control that guarantees the local stability of the
system. The feedback is of the form

u1 (t) = k ∂z
∂x

(0, t) , u2 (t) = −kz (0, t) ,

u3 (t) = −k ∂z
∂x

(1, t) , u4 (t) = kz (1, t) .

However, In [56], Liu and Krstic claims that the boundary stabilization problem for the
KS equation when µ > 4π2 is still an open problem and a different approach is needed to
stabilize the system.

Koboyashi [47] considered the adaptive stabilization problem of the KS equation.

∂z

∂t
+ ν

∂4z

∂x4
+ µ

∂2z

∂x2
+ γz

∂z

∂x
= 0, x ∈ (0, 1) , t > 0, (5.9)

with boundary conditions

∂z
∂x

(0) = 0, ∂3z
∂x3

(0) = u1 (t) + θTv (t) ,

∂z
∂x

(1) = 0, ∂3z
∂x3

(1) = −u2 (t) ,

where ν, µ > 0 are positive parameters, γ is a constant, u1 (t) and u2 (t) are input con-
trollers, the vector v (t) is a bounded disturbance vector function and θ is the l -dimensional
unknown constant vector.

Under the existence of a bounded deterministic disturbances, Koboyashi was able to con-
struct a nonlinear adaptive stabilizer by using the high-gain nonlinear output feedback
and the mechanism of the unknown parameters in the system. Furthermore, his controller
guarantees global asymptotic stability and the convergence of the system state to zero.

Dubljevic [34] introduced a boundary model predictive controller for the KS equation. His
approach was to transform the original boundary control problem into an abstract bound-
ary control problem which provides a model basis for synthesis of a finite-dimensional
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model modal predictive controller (MMPC). That is, a low dimensional model representa-
tion of the KS equation is used in the synthesis of a finite-dimensional MMPC in the full
state feedback control realization. Moreover, the proposed boundary control guarantees
asymptotic stability of the unstable KS equation.

Sakthivel and Ito [72] considered the robust boundary control problem of the KS equation
(5.9) with boundary conditions

∂z
∂x

(0, t) = 0, ∂z
∂x

(1, t) = 0.

∂3z
∂x3

(0, t) = u1 (t) , ∂3z
∂x3

(1, t) = u2 (t) ,

where ν, µ, γ are positive constant, ν ∈ [ε0− 1
γ
, ε0+ 1

γ
] for some fixed constants ε0, γ > 0 and

u1 (t) , u2 (t) are input controllers. They derived a robust boundary control using Lyapunov
based stabilization that achieves the global asymptotic stability of the system in both L2

and L∞ spaces despite the uncertainty in the instability parameter ν. The derived control
law can be implemented as a Neumann-like boundary control of the form

u1 (t) = − γ

ε0γ − 1

[
c0 +

c2

18c0

z (0, t)2

]
z (0, t) .

u2 (t) =
γ

ε0γ − 1

[
c1 +

c2

18c1

z (1, t)2

]
z (1, t) ,

for c0, c1 > 0 positive constants. Moreover, since the above control is invertible, it can be
implemented as Dirichlet-like boundary control.

Many researchers considered distributed stabilization of the KS equation with periodic
boundary conditions e.g.[1, 4, 20, 54, 57, 79]. Periodic boundary conditions are often used
with the KS equation model because it is suitable from the mathematical tractability point
of view. That is, having periodic boundary conditions with the KS equation model removes
irregularities and wave interactions since they correspond to the monochromatic wave de-
scription. This implies that waves retain their wave length as they grow in amplitude [34].

An approach that is commonly used to design a distributed control to the KS equation is
by using Galerkin methods to produce a finite-dimensional system of ordinary differential
equations (ODEs) [85]. Then, using the solution of the Hamilton-Jacobi-Bellman equation
a feedback control is constructed to stabilize the system. However, the success of this
method is not theoretically justified. That is, it is not proven that stabilizing the approx-
imated system will guarantee stabilization of the original infinite-dimensional dynamical
system.

In [54], Lee and Tran considered stabilization of the KS equation in one space dimension,
with periodic boundary conditions. They designed both linear and nonlinear distributed
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feedback controls that stabilize the system. The dynamics of the system is given by (5.8).
First, they applied some reduced-order methods such as the approximate inertial mani-
fold and the proper orthogonal decomposition to the original system to obtain a system
of ODEs that approximates the dynamics of the original system. Then, they constructed
linear and nonlinear feedback control laws for the reduced system using the linear and
nonlinear quadratic regulator methods which are first and second order approximation of
the Hamilton-Jacobi-Bellman equation respectively. Finally, they numerically compared
the two controllers and showed the better performance of the closed loop system with the
nonlinear feedback control over the linear one.

Another approach that is used to stabilize infinite-dimensional nonlinear dynamical systems
is by first linearizing the system then reducing the order of the system. For instance, in [4],
Armaou and Christofides assumed that the linearized system around the zero solution is
exactly controllable and were able to design an output feedback controller to the linearized
reduced-order system that globally exponentially stabilizes the system if 0.25 < ν < 1 .
Hence, it will locally exponentially stabilize the nonlinear system [40, Theorem 5.1.1].

Lou and Christofides [57] computed the optimal locations of point control actuators and
measurement sensors to the nonlinear output feedback control of the KS equation. They
constructed a finite-dimensional approximation of the KS equation using the Galerkin
method and designed a feedback control to the approximated system under the assump-
tion that the number of measurement sensors is equal to the number of slow modes. Then,
they obtained estimates for the states of the approximated finite-dimensional system for
the KS equation from the measurements. These estimates are combined with the state
feedback controllers to obtain an output feedback control. Furthermore, the optimal loca-
tion of the measurement sensors is derived by minimizing a cost function of the estimation
error in the closed loop infinite-dimensional system.

In [49], Krstic and Smyshlyaev used back-stepping techniques to stabilize the KS equation

∂z

∂t
+ δ

∂4z

∂x4
+ λ

∂2z

∂x2
+ z

∂z

∂x
= 0,

where δ > 0 and λ ∈ R are constant parameters. Their approach to stabilize the above
nonlinear KS equation and drive the solution to the zero equilibrium solution z = 0 is by
linearizing the KS equation around the equilibrium solution, then adding a new effect/term
to the equation to make it trackable using back-stepping ideas.

ε
∂z

∂t
=

∂2z

∂x2
− ∂v

∂x
,

0 = ε
∂2v

∂x2
+ a

(
γ
∂u

∂x
− v
)
,
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with boundary conditions

z (0) = 0, z (1) = 0,

∂z
∂x

(0) = v (0) , ∂v
∂x

(0) = 0,

where a = 1
δ
, ε = ν

δ
, γ = 1 + ελ and u is the input controller. They designed an input-

feedback control that converts the KS-like equation (The KS equation after adding the
new term) into the exponentially stable heat equation

ν ∂z
∂t

+ δ ∂
2z
∂x2

= 0,

∂z
∂x

(0) = z (1) = 0,

where ν > 0.

In conclusion, the boundary control problem of the KS equation has been widely explored
[34, 47, 55, 56, 72]. However, little work has been done on the distributed control of the
KS equation [4, 20, 49, 54]. The conventional approach that is used to design a distributed
feedback control to the KS equation is not theoretically proven. That is, it is not shown
that stabilizing the linearized KS equation will stabilize the nonlinear infinite-dimensional
KS equation. In this thesis, it will be proved that such technique works in stabilizing
the KS equation. Moreover, a single bounded state-feedback control will be designed that
locally exponentially stabilizes the KS equation at a desired state.

5.2 The linearized Kuramoto-Sivashinsky equation

In this section, the feedback controlled KS equation (5.7) will be linearized at z0 ∈ D (A),
where the operator A is defined in (5.3). This is done by using the Gâteaux derivative
(Definition 3.2.4).

We find the Gâteaux derivative of the nonlinear operator J (z) defined in (5.5) at z0 ∈
D (J). Using Definition 3.2.4, the Gâteaux derivative dJ (z0) : H1[−π, π] ⊂ L2[−π, π] →
L2[−π, π]

dJ (z0) z = lim
ε→0

J (z0 + εz)− J (z0)

ε
,

= lim
ε→0

ε
(
∂
∂x

(z0z) + εz ∂z
∂x

)
ε

,

=
∂

∂x
(z0z) . (5.10)
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Hence, the linearized controlled system of the KS equation around z0 is

ż = dA (z0) z − dJ (z0) z +Bu (t) ,

= Az − ∂

∂x
(z0z) +Bu (t) , (5.11)

where A is defined in (5.3).

Let ze be a constant function that does not depend on x, then ze is an equilibrium solution
to the KS equation. The Gâteaux derivative of the nonlinear operator J at ze is

dJ (z̃) = ze
∂z

∂x
,

and the linearized open-loop controlled system of the KS equation around a constant
function ze is

ż = Az − ze
∂z

∂x
+Bu (t) . (5.12)

Theorem 5.2.1. The operator
(
A− ze ∂∂x

)
, where ze is a constant function that does not

depend on x, is a Riesz-spectral operator that has eigenvalues λn = −νn4 +n2−inze, n ∈ Z
and the corresponding eigenvectors φn (x) = 1√

2π
einx.

Proof. Let ze be a constant function and consider the eigenvalue problem

Aφn − zeφ
′

n = λnφn, n ∈ Z

subject to periodic boundary conditions

∂iφn
∂xi

(−π, t) =
∂iφn
∂xi

(π, t) , i = 0, 1, 2, 3, (5.13)

Solving the above eigenvalue problem. The eigenvalues are λn = −νn4 +n2− inze and the
corresponding eigenfunctions are φn (x) = 1√

2π
einx for n ∈ Z.

It is clear that the closure of {λn} is totally disconnected and {φn}∞n=−∞ form a Riesz

basis in L2[−π, π]. Therefore, by [29, Definition 2.3.4] the operator
(
A− ze ∂∂x

)
is a Riesz-

spectral operator with eigenvalues {λn} and corresponding eigenvectors {φn} for n ∈ Z. �

Theorem 5.2.2. Consider the linearized open-loop controlled KS equation at a constant
function ze defined in (5.12). The operator B : C→ L2(−π, π) is a linear bounded operator
and the control u (·) ∈ Lp ([0, T ],C) for some p ≥ 1. The system is well-posed. That is,
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there exists a unique mild solution

z (t) = T (t) z0 +

∫ t

0

T (t− s)Bu (s) ds,

where z0 ∈ L2(−π, π) is the initial condition and T (t) is the C0-semigroup generated by
the operator

(
A− ze ∂∂x

)
.

Proof. Using Theorem (5.2.1) that the operator
(
A− ze ∂∂x

)
is a Riesz spectral operator.

That is, it generates a C0-semigroup T (t) on L2(−π, π).

Using [29, Definition 3.1.4]) the open-loop controlled system (5.12) has a unique mild
solution

z (t) = T (t) z0 +

∫ t

0

T (t− s)Bu (s) ds. �

5.3 The well-posedness of the controlled Kuramoto-

Sivashinsky equation and some properties of the

solution

In this section, we shall investigate the well-posedness of the nonlinear open-loop con-
trolled KS equation (5.1), then investigate the Fréchet differentiability of the nonlinear
C0-semigroup corresponding to the nonlinear open-loop controlled system (5.1).

Definition 5.3.1. (Compact C0-semigroup) [74, Page 22]
A C0-semigroup S (t) in a Hilbert space H is said to be compact if for every bounded set
B ⊂ H, there exits r = r (B) with 0 ≤ r <∞ such that for every t > r, the set S (t)B lies
in a compact subset of H. That is, the set S (t)B is compact.

Definition 5.3.2. [74, Page 27]
Let S (t) be a C0-semigroup in M ⊂ H where H is a Hilbert space and let M1,M2 ⊂ M .
We say that M1 attracts M2 if for every ε > 0, there exists T ≥ 0 such that

distH (S (t)u,M1) ≤ ε for every t ≥ T and u ∈M2.

Definition 5.3.3. (Global attractor) [74, Page 29]
A set Ψ ⊂ H is said to be a global attractor for the C0-semigroup S (t) in a Hilbert space
H if Ψ is a compact, invariant set in H and Ψ attracts H.
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The uncontrolled nonlinear KS equation (5.1) with u (t) = 0 is well-posed. That is, the
uncontrolled KS equation has a unique strong solution [70, 74, 85]. In [74, Theorem 54.3],
it is shown that the uncontrolled KS equation has a unique solution

z (t) = S (t) z0 ∈ L2
(
[0, T ];H2

periodic (−π, π)
)
∩ L∞

(
[0, T ];L2 (−π, π)

)
, T <∞,

where z0 ∈ H2
per(−π, π) is the initial condition and S (t) is a nonlinear C0-semigroup.

Moreover, in [74, Theorem 54.3] they showed that the C0-semigroup is compact and that
the KS equation has a global attractor in H2

periodic[−π, π] when the instability parameter
ν = 1. The global attractor when the instability parameter ν > 0 will be investigated later
in this chapter.

Lemma 5.3.4. Consider the uncontrolled KS equation (5.1) with u (t) = 0. Let S (t) be
the C0-semigroup generated by the nonlinear uncontrolled KS equation. Then,

‖S (t) z0‖ ≤ eαt‖z0‖, z0 ∈ L2[−π, π],

where α = 1√
ν
.

Proof. The uncontrolled KS equation is well-posed [74, Theorem 54.3] and the solution
can be written as

z (t) = S (t) z0,

where S (t) is a nonlinear C0-semigroup in L2[−π, π] and z0 is the initial condition.

Multiply the uncontrolled KS equation by z (t) and integrate with respect to x over [−π, π]∫ π

−π
z
∂z

∂t
dx =

∫ π

−π

(
−ν ∂

4z

∂x4
− ∂2z

∂x2
− z ∂z

∂x

)
zdx. (5.14)

We have ∫ π

−π
z
∂z

∂t
dx =

∫ π

−π

1

2

d

dt
|z|2dx,

=
1

2

d

dt
‖z‖2,
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∫ π

−π
−ν ∂

4z

∂x4
zdx = −ν ∂

3z

∂x3

∂z

∂x

∣∣∣∣π
−π

+

∫ π

−π
ν
∂3z

∂x3

∂z

∂x
dx,

= ν

∣∣∣∣∂2z

∂x2

∣∣∣∣2
∣∣∣∣∣
π

−π

−
∫ π

−π
ν

∣∣∣∣∂2z

∂x2

∣∣∣∣2 dx,
= −ν‖∂

2z

∂x2
‖2,

∫ π

−π
−∂

2z

∂x2
zdx = −

∣∣∣∣∂z∂x
∣∣∣∣2
∣∣∣∣∣
π

−π

+

∫ π

−π

∣∣∣∣∂z∂x
∣∣∣∣2 dx,

= ‖∂z
∂x
‖2,

and ∫ π

−π
−|z|2 ∂z

∂x
= −1

3
|z|3
∣∣∣∣π
−π

= 0.

Substitute the above in equation (5.14) to obtain

1

2

d

dt
‖z‖2 = −ν‖∂

2z

∂x2
‖2 + ‖∂z

∂x
‖2.

Re-arrange the terms

1

2

d

dt
‖z‖2 + ν‖∂

2z

∂x2
‖2 = ‖∂z

∂x
‖2. (5.15)

Now, using Cauchy-Schwarz inequality and Young’s inequality, we have

‖∂z
∂x
‖2 = 〈∂z

∂x
,
∂z

∂x
〉,

= −〈z, ∂
2z

∂x2
〉, (Integration by parts)

≤ |〈z, ∂
2z

∂x2
〉|,

≤ ‖z‖ · ‖∂
2z

∂x2
‖,

≤ 1

2ν
‖z‖2 +

ν

2
‖∂

2z

∂x2
‖2. (5.16)
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Use the above result in equation (5.15) and re-arrange the terms to obtain

d

dt
‖z‖2 + ν‖ ∂

2

∂x2
‖2 ≤ 1

ν
‖z‖2, (5.17)

and so,

d

dt
‖z‖2 ≤ 1

ν
‖z‖2. (5.18)

Using Gronwall’s lemma 2.2.9, we have

‖z‖2 ≤ e
1
ν
t‖z0‖2, t ≥ 0,

and so since z (t) = S (t) z0, the result follows. �

Now, we shall re-write the KS equation (5.7) in terms of different operators. This will be
used in the proof of the theorem and lemmas below. First, re-write the operator A in (5.3)

Az = −
(
Â+R

)
z, (5.19)

where Â : D (A)→ L2[−π, π] is the linear operator

Âz = ν
∂4z

∂x4
(5.20)

and D (A) is defined in (5.4). The operator R : D (R) ⊂ H2[−π, π]→ L2[−π, π] is

Rz =
∂2z

∂x2
, (5.21)

with

D (R) = H2
periodic,

=

{
z ∈ L2[−π, π]|∂

iz

∂xi
∈ L2[−π, π] and

∂iz

∂xi
(π) =

∂iz

∂xi
(π) , for i = 0, 1

}
.

The controlled KS equation (5.7) can be written

ż = −Âz −Rz − J (z) +BKz (t) ,
z (0) = z0,

(5.22)

where the operator J is defined in (5.5) and the linear operator BK : L2(−π, π) →
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L2(−π, π) is bounded. That is, there exists M > 0 such that

‖BKz (t) ‖ ≤M‖z (t) ‖, for all z (t) ∈ L2(−π, π).

It can be shown that the controlled KS equation has a unique strong solution.

Lemma 5.3.5. For every z ∈ H2
per(−π, π),

‖Rz‖ ≤ c1‖z‖H2 ,

for some constant c1 > 0.

Proof. Let z ∈ H2
per(−π, π), then using the definition of the operator R, the triangle

inequality and the fact that the operator BK is bounded,

‖Rz‖ = ‖∂
2z

∂x2
−BKz‖,

≤ ‖∂
2z

∂x2
‖+ ‖BKz‖,

≤ ‖∂
2z

∂x2
‖+M‖z‖,

≤ c1

(
‖z‖+ ‖∂

2z

∂x2
‖
)
,

for an appropriate choice of c1 > 0. This implies that

‖Rz‖ ≤ c1

(
‖z‖+ ‖∂z

∂x
‖+ ‖∂

2z

∂x2
‖
)
,

= c1‖z‖H2 . �

Lemma 5.3.6. For every z, y ∈ H2
per(−π, π),

|〈Rz, y〉| ≤ c1‖y‖ · ‖z‖H2 ,

where c1 > 0.

Proof. Let z, y ∈ H2
per(−π, π), then using Cauchy-Schwarz inequality and Lemma 5.3.5,

|〈Rz, y〉| ≤ ‖Rz‖ · ‖y‖,
≤ c1‖y‖ · ‖z‖H2 . �

Lemma 5.3.7. For every z ∈ H2
per(−π, π), the L2-inner product 〈J (z) , z〉 = 0.

Proof. This result is straightforward using the definition of the inner product and the
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periodic boundary conditions,

〈J (z) , z〉 =

∫ π

−π
z
∂z

∂x
zdx,

=
1

3
|z|3
∣∣∣∣π
−π
,

= 0. �

Lemma 5.3.8. For every z, y, w ∈ H2
per(−π, π),

1. |〈z ∂y
∂x
, w〉| ≤ c2‖z‖

1
2 · ‖z‖

1
2

H2 · ‖y‖H2 · ‖w‖, where c2 > 0.

2. |〈z ∂y
∂x
, w〉| ≤ c3‖y‖H2 · ‖z‖ · ‖w‖, where c3 > 0.

Proof. Let z, y, w ∈ H2
per(−π, π), then using the definition of the L2-inner product,

Cauchy-Schwarz inequality and Agmon’s inequality [85, Page 50],

|〈z ∂y
∂x
, w〉| =

∣∣∣∣∫ π

−π
z
∂y

∂x
wds

∣∣∣∣ ,
≤ ‖z‖∞ · ‖

∂y

∂x
‖ · ‖w‖,

≤ c2‖z‖
1
2 · ‖z‖

1
2

H1 · ‖
∂y

∂x
‖ · ‖w‖,

≤ c2‖z‖
1
2 · ‖z‖

1
2

H2 · ‖y‖H2 · ‖w‖.

Furthermore, using the same inequalities as above,∣∣∣∣∫ π

−π
z
∂y

∂x
wds

∣∣∣∣ ≤ ‖∂y
∂x
‖∞ · ‖z‖ · ‖w‖,

≤ c3‖
∂y

∂x
‖

1
2 · ‖∂y

∂x
‖

1
2

H1 · ‖z‖ · ‖w‖,

≤ c3‖y‖H2 · ‖z‖ · ‖w‖. �

Theorem 5.3.9. The feedback controlled KS equation with periodic boundary conditions
has a unique strong solution

z (t) ∈ C
(
[0, T ];L2(−π, π)

)
∩ L2

(
[0, T ];H2

per(−π, π)
)
, 0 < T <∞.

Proof. The proof is a special case of the result [59, Theorem 1.1]. The proof is presented
below for completeness. The idea is to show the existence of a unique solution to the KS
equation with periodic boundary conditions by using the Galerkin method.
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First, solve the eigenvalue problem of the linear operator A with periodic boundary con-
ditions to obtain the following orthonormal eigenfunctions that form a basis for L2(−π, π){

φn (·) =
1√
2π
ein·
}
n∈Z

.

Let N ∈ N, N <∞,

zN (x, t) =
n=N∑
n=−N

an (t)φn (x) .

Substitute zN (x, t) into the KS equation,

d
dt
zN (t) + AzN (t) +RzN (t) + PNJ (zN (t)) = 0,

zN (0) = PNz0,
(5.23)

where PN is the projection in L2(−π, π) on the space spanned by {φn}N−N . The above
system has a unique solution. This can be shown by finding the inner product of the above
system with {φn}N−N to obtain the finite-dimensional ODE system

d
dt
a (t) = f̃ (a (t)) ,

a (0) = a0,

where a ∈ C2N+1 and

f̃ (an) = (−νn4 + n2) an + 〈BKzN + PNJ (zN) , φn〉,
a (0) = 〈z0, φn〉,

for n = −N, · · · , N .

The function f̃ is Lipschitz continuous. Let z ∈ C2N+1, choose a neighbourhood N ={
y ∈ C2N+1|‖y − z‖ ≤ r

2

}
for some r > 0 , then for every z1, z2 ∈ N ,

‖f̃ (z1)− f̃ (z2) ‖ ≤
(
N2 +M + r

)
‖z1 − z2‖.

Hence, by [39, Theorem 2.25], the finite-dimensional system (5.23) has a unique solution
for t ∈ [0, T ] with T <∞.

Now, take the L2-inner product of (5.23) with zN and use Lemma 5.3.7, Cauchy-Schwarz
inequality and Young’s inequality to obtain

1

2

d

dt
‖zN (t) ‖2 + ν‖∂

2zN
∂x2

(t) ‖2 = −〈RzN (t) , zN (t)〉 − 〈J (zN (t)) , zN (t)〉,

= −〈RzN (t) , zN (t)〉+ 0. (5.24)
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That is,

1

2

d

dt
‖zN (t) ‖2 + ν‖∂

2zN
∂x2

(t) ‖2 ≤ |〈RzN (t) , zN (t)〉|,

≤ ‖RzN (t) ‖‖zN (t) ‖,

≤ ‖zN (t) ‖ · ‖∂
2zN
∂x2

(t) ‖+M‖zN (t) ‖2,

≤ ν

2
‖∂

2zN
∂x2

(t) ‖2 +

(
1

2ν
+M

)
‖zN (t) ‖2.

This implies that

d

dt
‖zN (t) ‖2 + ν‖∂

2zN
∂x2

(t) ‖2 ≤
(

1

ν
+ 2M

)
‖zN (t) ‖2, (5.25)

and so

d

dt
‖zN (t) ‖2 ≤

(
1

ν
+ 2M

)
‖zN (t) ‖2,

which implies

‖zN (t) ‖ ≤ ‖zN (0) ‖e(
1
2ν

+M)t. (5.26)

Hence,

sup
t∈[0,T ]

‖zN (t) ‖ ≤ ‖zN (0) ‖e(
1
2ν

+M)T ,

and

zN (t) is uniformly bounded in L∞
(
[0, T ];L2(−π, π)

)
.

Furthermore, combining (5.46) and (5.26) and integrating with respect to T , we obtain

‖zN (T ) ‖2 + ν

∫ T

0

‖∂
2zN
∂x2

(t) ‖2dt ≤ ‖zN (0) ‖2e(
1
ν

+2M)T ,

and so, ∫ T

0

‖∂
2zN
∂x2

(t) ‖2dt ≤ 1

ν
‖zN (0) ‖2e(

1
ν

+2M)T .
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Hence, ∫ T

0

‖zN (t) ‖2
H2dt =

∫ T

0

(
‖zN (t) ‖2 + ‖∂zN

∂x
(t) ‖2 + ‖∂

2zN
∂x2

(t) ‖2

)
dt

≤
∫ T

0

(
‖zN (t) ‖2 + 2‖∂

2zN
∂x2

(t) ‖2

)
dt

≤
(

1
1
ν

+ 2M
+

2

ν

)
‖zN (0) ‖2e(

1
ν

+2M)T .

and so

zN (t) is uniformly bounded in L2
(
[0, T ];H2

per(−π, π)
)
.

Thus,

zN (t) is uniformly bounded in L∞
(
[0, T ];L2(−π, π)

)
∩ L2

(
[0, T ];H2

per(−π, π)
)
. (5.27)

Let H−2
per(−π, π) indicate the dual space of H2

per(−π, π). The operator J can be extended
to J : H2

per → H−2
per and using Lemma 5.3.8

‖J (z) ‖H−2 = sup
y∈H2(−π,π),‖y‖H2 6=0

|〈J (z) , y〉|
‖y‖H2

,

≤ sup
y∈H2(−π,π),‖y‖H2 6=0

c2‖z‖
1
2 · ‖z‖

3
2

H2 · ‖y‖
‖y‖H2

,

≤ sup
y∈H2(−π,π),‖y‖H2 6=0

c2‖z‖
1
2 · ‖z‖

3
2

H2 · ‖y‖H2

‖y‖H2

,

= c2‖z‖
1
2 · ‖z‖

3
2

H2 .

In addition,

‖Az‖H−2 = sup
y∈H2(−π,π),‖y‖H2 6=0

|〈Az, y〉|
‖y‖H2

,

= sup
y∈H2(−π,π),‖y‖H2 6=0

ν‖ ∂2z
∂2x
‖ · ‖ ∂2y

∂2x
‖

‖y‖H2

,

≤ sup
y∈H2(−π,π),‖y‖H2 6=0

ν‖z‖H2 · ‖y‖H2

‖y‖H2

,

= ν‖z‖H2 .

57



And using Lemma 5.3.6

‖Rz‖H−2 = sup
y∈H2(−π,π),‖y‖H2 6=0

|〈Rz, y〉|
‖y‖H2

,

≤ sup
y∈H2(−π,π),‖y‖H2 6=0

c1‖y‖ · ‖z‖H2

‖y‖H2

,

≤ sup
y∈H2(−π,π),‖y‖H2 6=0

c1‖y‖H2 · ‖z‖H2

‖y‖H2

,

= c1‖z‖H2 .

Therefore,∫ T

0

(
‖AzN (t) ‖2

H−2 + ‖RzN (t) ‖2
H−2 + ‖PNJ (zN (t)) ‖2

H−2

)
dt <∞.

Hence, AzN , RzN , J (zN) and PNJ (zN) are bounded in L2
(
[0, T ], H−2

per(−π, π)
)
.

Since

‖dzN
dt

(t) ‖H−2 ≤ ‖AzN (t) ‖H−2 + ‖RzN (t) ‖H−2 + ‖PNJ (zN (t)) ‖H−2 ,

≤ c4‖zN (t) ‖H2 ,

then

dzN
dt

(t) is uniformly bounded in L2
(
[0, T ];H−2

per(−π, π)
)
. (5.28)

Now using the weak compactness theorem [70, Corollary 4.19], there exists a subsequence
zM such that

zM → z ∈ L2
(
[0, T ], H2

per(−π, π)
)

weakly,

zM → z ∈ L∞ ([0, T ], L2(−π, π)) weak-star,

dzM
dt
→ dz

dt
∈ L2

(
[0, T ];H−2

per(−π, π)
)

weakly.

(5.29)

Note that using [70, Corollary 4.19], the sequence dzM
dt
→ φ ∈ L2

(
[0, T ];H−2

per(−π, π)
)

weakly.

However, since the derivative operator is a closed operator, φ = dz
dt

.

Furthermore, from (5.28), (5.28) and using Aubin’s compactness theorem [84, Theorem
III.2.1],

zM → z ∈ L2
(
[0, T ], L2(−π, π)

)
strongly. (5.30)
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That is,

lim
M→∞

∫ T

0

‖zM (t)− z (t) ‖2 = 0.

In order to show that z (t) is a strong solution to the KS equation, let y ∈ H2
per(−π, π) be

fixed and let M ≥ N . We shall take the limit as M →∞ of the following

〈 d
dt
zM (t) + AzM (t) +RzM (t) + PMJ (zM (t)) , y (t)〉 = 0. (5.31)

First,

〈 d
dt
zM (t) , y (t)〉 → 〈 d

dt
z (t) , y (t)〉 as M →∞,

〈RzM (t) , y (t)〉 → 〈Rz (t) , y (t)〉 as M →∞,

〈AzM (t) , y (t)〉 = ν〈∂2zM
∂x2

(t) , ∂
2y
∂x2

(t)〉 → ν〈 ∂2z
∂x2

(t) , ∂
2y
∂x2

(t)〉 = 〈Az (t) , y (t)〉 as M →∞.

(5.32)

As for the nonlinear term, using integration by parts

〈J (zM (t)) , y (t)〉 =

∫ π

−π
zM (t)

∂zM
∂x

(t) y (t) dx,

=
1

2
|zM |2 y (t)

∣∣∣∣π
−π
− 1

2

∫ π

−π
zM (t)

∂y

∂x
zM (t) dx,

= −1

2
〈zM (t)

∂y

∂x
(t) , zM (t)〉.

For any y ∈ H2
per(−π, π), the bilinear operator 〈· ∂y

∂x
(t) , ·〉 : H2

per × L2(−π, π) → C is
continuous. Therefore,

〈zM (t)
∂y

∂x
(t) , zM (t)〉 → 〈z (t)

∂y

∂x
(t) , z (t)〉 as M →∞.

Hence,

〈J (zM (t)) , y (t)〉 → 〈J (z (t)) , y (t)〉 as M →∞. (5.33)

Therefore,

〈 d
dt
z (t) + Az (t) +Rz (t) + J (z (t)) , y (t)〉 = 0 for any y (t) ∈ H2

per(π, π),

z (0) = z0.
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In addition, since

z (t) ∈ L2
(
[0, T ];H2

per(−π, π)
)
∩ L∞

(
[0, T ];L2(−π, π)

)
,
dz

dt
(t) ∈ L2

(
[0, T ];H−2

per(−π, π)
)
,

and using [85, Lemma II.3.1], the above system is equivalent to

d
dt
z (t) + Az (t) +Rz (t) + J (z (t)) = 0,

z (0) = z0.

Moreover, using [85, Lemma II.3.2], the solution z ∈ L2
(
[0, T ];H2

per(−π, π)
)

is almost
everywhere equal to a continuous function from [0, T ] into L2(−π, π). That is,

z (t) ∈ C
(
[0, T ];L2(−π, π)

)
∩ L2

(
[0, T ];H2

per(−π, π)
)
.

This implies that z (t) is a strong solution of the KS equation.

Finally, we show that the solution is unique. It is worth mentioning that this result is
not shown in [59, Theorem 1.1] although an outline can be found in [70, Exercise 17.7].
Suppose that z (t) , y (t) are two strong solutions of the KS equation where

z (t) , y (t) ∈ L2
(
[0, T ], H2

per(−π, π)
)
∩ C

(
[0, T ];L2(−π, π)

)
.

Let w (t) = z (t)− y (t), then w satisfies

∂w
∂t

(t) + Aw (t) +Rw (t) + J (z (t))− J (y (t)) = 0,
w (0) = 0.

(5.34)

Since

J (y (t))− J (z (t)) = y (t)
∂y

∂x
(t)− z (t)

∂z

∂x
(t) ,

= y (t)
∂y

∂x
(t)− z (t)

∂y

∂x
(t) + z (t)

∂y

∂x
(t)− z (t)

∂z

∂x
(t) ,

= (y (t)− z (t))
∂y

∂x
(t) + z (t)

∂

∂x
(y (t)− z (t)) ,

= −w (t)
∂y

∂x
(t)− z (t)

∂w

∂x
(t) ,

using Cauchy-Schwarz inequality, Agmon’s inequality [85, page 45], Lemma 5.3.8 and
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Poincaré inequality,

〈J (y (t))− J (z (t)) , w〉 ≤ |〈w (t)
∂y

∂x
(t) , w (t)〉|+ |〈z (t)

∂w

∂x
(t) , w (t)〉|,

=

∣∣∣∣∫ π

−π
w (t)

∂y

∂x
(t)w (t) dx

∣∣∣∣+

∣∣∣∣∫ π

−π
z (t)

∂w

∂x
(t)w (t) dx

∣∣∣∣ .
That is,

〈J (y (t))− J (z (t)) , w〉 ≤ ‖w (t) ‖ ‖∂y
∂x

(t) ‖∞ ‖w (t) ‖+ ‖z (t) ‖∞ ‖
∂w

∂x
(t) ‖ ‖w (t) ‖,

≤ c3‖
∂y

∂x
(t) ‖

1
2‖∂y
∂x

(t) ‖
1
2

H1‖w (t) ‖2 + c2‖z (t) ‖
1
2‖z (t) ‖

1
2

H1 ·

‖w (t) ‖‖∂
2w

∂x2
(t) ‖.

Take the L2-inner product of equation (5.34) with w and use Cauchy-Schwarz inequality,
Lemma 5.3.8 and Young’s inequality,

1

2

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 = −〈∂

2w

∂x2
(t) , w (t)〉+ 〈BKw (t) , w (t)〉

+〈J (y (t))− J (z (t)) , w〉,

≤ ‖∂
2w

∂x2
(t) ‖ · ‖w (t) ‖+ ‖BK‖‖w (t) ‖2 + c3‖

∂y

∂x
(t) ‖

1
2 ·

‖∂y
∂x

(t) ‖
1
2

H1‖w (t) ‖2 + c2‖z (t) ‖
1
2‖z (t) ‖

1
2

H1‖w (t) ‖ ·

‖∂
2w

∂x2
(t) ‖,

≤ ν‖∂
2w

∂x2
(t) ‖2 +

(
1

2ν
+M + c3‖

∂y

∂x
(t) ‖

1
2‖∂y
∂x

(t) ‖
1
2

H1

+
c2

2

2ν
‖z (t) ‖‖z (t) ‖H1

)
‖w (t) ‖2,

where ν > 0 is the instability parameter. This implies that

d

dt
‖w (t) ‖2 ≤ g (t) ‖w (t) ‖2, (5.35)
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where

g (t) =
1

2ν
+M + c3‖

∂y

∂x
(t) ‖

1
2‖∂y
∂x

(t) ‖
1
2

H1 +
c2

2

2ν
‖z (t) ‖‖z (t) ‖H1 .

Since z (t) , y (t) ∈ L2
(
[0, T ];H2

per(−π, π)
)
∩ L∞ ([0, T ];L2(−π, π)), then

sup
t∈[0,T ]

|g (t)| = Q <∞,

for some Q > 0. Finally, integrate (5.35) with respect to t and use Cauchy-Schwarz
inequality, the above result and the fact that w (0) = 0 to obtain

‖w (t) ‖2 ≤
∫ t

0

g (t) ‖w (t) ‖2dt,

≤ Q

∫ t

0

‖w (s) ‖2dt.

Using Gronwall’s inequality (Proposition 2.2.9), ‖w‖2 ≤ 0, which shows the uniqueness of
the solution to the KS equation. �

Note that if z (t) is a solution to the feedback controlled KS equation (5.7), then for any
T > 0, z (t) ∈ L2

(
[0, T ];H2

per (−π, π)
)
∩ L∞ ([0, T ];L2 (−π, π)) and hence,

‖z‖∞ = ess sup
t∈[0,T ]

‖z‖ <∞.

We will now show that the C0-semigroup SB (t) of controlled nonlinear KS equation (5.1) is
Fréchet differentiable at any y0 ∈ L2[−π, π] and the Fréchet derivative is equal to the semi-
group corresponding to the linearized system at y0 given in (5.11). Note that if b (x) = 0,
then the uncontrolled KS equation is obtained.

Lemma 5.3.10. For every z, w ∈ H1
periodic[−π, π],

|〈z∂w
∂x

,w〉| ≤ ‖z‖∞ ‖w‖ ‖
∂w

∂x
‖. (5.36)

Proof. Let z, w ∈ H1
periodic[−π, π], then using Cauchy-Schwarz inequality [29, page 576],
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we obtain

|〈z∂w
∂x

,w〉| =

∣∣∣∣∫ π

−π

∂w

∂x
zwdx

∣∣∣∣ ,
≤ ‖z‖∞

∣∣∣∣∫ π

−π
w
∂w

∂x
dx

∣∣∣∣ ,
≤ ‖z‖∞ ‖w‖ ‖

∂w

∂x
‖. �

Lemma 5.3.11. For every y, w ∈ H1
periodic[−π, π],

|〈w∂y
∂x
, w〉| ≤ 2 ‖y‖∞ ‖w‖ ‖

∂w

∂x
‖. (5.37)

Proof. Let y, w ∈ H1
periodic[−π, π], then using integration by parts and Cauchy-Schwarz

inequality, we obtain

|〈w∂y
∂x
, w〉| =

∣∣∣∣∫ π

−π
w
∂y

∂x
wdx

∣∣∣∣ ,
=

∣∣∣∣∫ π

−π
y

(
w
∂w

∂x
+ w

∂w

∂x

)
dx

∣∣∣∣ ,
≤ 2 ‖y‖∞

∣∣∣∣〈w, ∂w∂x 〉
∣∣∣∣ ,

≤ 2 ‖y‖∞ ‖w‖ ‖
∂w

∂x
‖. �

Lemma 5.3.12. Define the nonlinear operator G : H2
periodic[−π, π]→ L2[−π, π] by

G (z) = Rz + J (z)−BKz, (5.38)

where the operators R, J,B,K are defined in (5.21), (5.5), (5.6), (5.2), respectively. For
each z, y ∈ H2

periodic[−π, π],

G (z)−G (y) =
∂

∂x
(y (z − y)) + (R−BK) (z − y) + J (z − y) . (5.39)

Furthermore,

‖J (z (t)− y (t)) ‖ ≤ c

2
‖z − y‖H1 , (5.40)

where c > 0 is as in Proposition (2.2.12).
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Proof. Let z, y ∈ H2
periodic[−π, π]. Define w = z − y. Since the operator BK is a

linear bounded operator, the there exists M > 0 such that ‖BK‖ ≤ M . Now, using the
definitions of G,J in (5.38) and (5.5), respectively. We obtain

G (z)−G (y) = w
∂y

∂x
+Rw −BKw + z

∂w

∂x
,

= y
∂w

∂x
+ w

∂y

∂x
+Rw −BKw + z

∂w

∂x
− y∂w

∂x
,

= y
∂w

∂x
+ w

∂y

∂x
+Rw −BKw + w

∂w

∂x
,

Next, use Poincaré inequality and Proposition (2.2.12) to obtain

‖J (z − y) ‖ = ‖ (z − y)

(
∂z

∂x
− ∂y

∂x

)
‖,

=
1

2
‖ ∂
∂x

(z − y)2 ‖,

≤ c

2
‖z − y‖2

H1 , (Proposition 2.2.12)

as was to be shown. �

The next result is the main theorem. It shows that the nonlinear C0-semigroup corre-
sponding to the open-loop controlled nonlinear KS equation (5.1) is Fréchet differentiable
at every z0 ∈ L2[−π, π] and the derivative is the linear C0-semigroup corresponding to
the linearized KS equation around z := SB (t) z0. The proof of the theorem is similar to
Temam’s approach to differentiability of semigroups [85, Section VI.8]. In this reference,
it is shown that the nonlinear C0-semigroup generated by the uncontrolled KS equation
(5.1) with b (x) = 0 is Fréchet differentiable. However, he assumed that 〈z ∂y

∂x
, z〉 = 0. In

the next theorem, this assumption is not needed.

Theorem 5.3.13. Consider the controlled KS equation (5.7). The nonlinear semigroup
SB (t) is Fréchet differentiable at every z0 ∈ L2[−π, π].

Sketch of the Proof. The proof of this theorem is lengthy and complicated. Thus, below
is a sketch of the proof to make it easier to follow.

1. (a) Bound on the integral
∫ t

0
‖∂2w
∂x2
‖2ds, where w = z−y, z, y are solutions to the KS

equation (5.22) corresponding to different initial conditions z0, y0, respectively
with ‖z0 − y0‖ ≤ ε for some ε > 0.

(b) Choose r = (‖y0‖+ ε) max{1, e(
1
2ν

+M)T} > 0 and show that ‖z‖∞ ≤ r and
‖y‖∞ ≤ r.
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2. Linearize the KS equation around y, where y is a solution to the KS equation with
initial condition y0 for some y0 ∈ L2[−π, π].

3. Show that the nonlinear C0-semigroup SB (t) is Fréchet differentiable at y0.

Proof of Theorem 5.3.13.

1. Consider the nonlinear controlled KS equation given by (5.7) with different initial
conditions z0, y0 ∈ L2[−π, π]

ż (t) = −Âz (t)−G (z (t)) , z (0) = z0,

ẏ (t) = −Ây (t)−G (y (t)) , y (0) = y0,
(5.41)

where the operators Â and G are given in (5.20) and (5.38), respectively.

Since the operator BK is bounded, then there exists M > 0 such that ‖BKz‖ ≤
M‖z‖ for every z ∈ L2(−π, π). Using the same approach in Lemma 5.3.4. It can be

shown that the L2-norm of the solution ‖z (t) ‖ ≤ e(
1
2ν

+M)T‖z0‖, where ν > 0 and

t ∈ [0, T ]. Suppose ‖z0 − y0‖ ≤ ε for some ε > 0. Choose r = (‖y0‖+ ε) e(
1
2ν

+M)T .
Then

‖y0‖ ≤ r − ε,

sup
t∈[0,T ]

‖y (t) ‖ ≤ r,

sup
t∈[0,T ]

‖z (t) ‖ ≤ sup
t∈[0,T ]

e(
1
2ν

+M)t (‖z0 − y0‖+ ‖y0‖) ,

≤ r.

Note that r does not depend on z0. Subtracting the above two equations and letting
w (t) = z (t)− y (t),

ẇ (t) + Âw (t) = − (G (z (t))−G (y (t))) ,
w (0) = z0 − y0 =: w0.

(5.42)

Moreover, it was shown in Lemma (5.3.12) that

G (z (t))−G (y (t)) = Rw (t) + z (t)
∂w

∂x
(t) + w (t)

∂y

∂x
(t)−BKw (t) . (5.43)

Take the inner product of (5.42) with w to obtain

〈ẇ (t) , w (t)〉+ 〈Âw (t) , w (t)〉 = −〈(G (z (t))−G (y (t))) , w (t)〉.
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That is,

1

2

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 = −〈(G (z (t))−G (y (t))) , w (t)〉,

≤ |〈(G (z (t))−G (y (t))) , w (t)〉|. (5.44)

Using (5.43), Triangle inequality, Cauchy-Schwarz inequality, Lemma (5.3.10), Lemma
(5.3.11), the Poincaré inequality and choosing M ≥ ‖BK‖, we have

1

2

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ |〈Rw (t) , w (t)〉|+ |〈z (t)

∂w

∂x
(t) , w (t)〉|

+|〈w (t)
∂y

∂x
(t) , w (t)〉|+ |〈BKw (t) , w (t)〉|,

≤ ‖∂
2w

∂x2
(t) ‖ ‖w (t) ‖+ ‖z (t) ‖∞ ‖w (t) ‖ ‖∂w

∂x
(t) ‖

+2‖y (t) ‖∞ ‖w (t) ‖ ‖∂w
∂x

(t) ‖+M‖w (t) ‖2,

≤ (1 + 3r) ‖w (t) ‖ ‖∂
2w

∂x2
(t) ‖+M‖w (t) ‖2,

= Kr ‖w (t) ‖ ‖∂
2w

∂x2
(t) ‖+M‖w (t) ‖2, (5.45)

where Kr = 1 + 3r.

Using Young’s inequality from Proposition (2.2.10),

1

2

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ ν

2
‖∂

2w

∂x2
(t) ‖2 +

(
K2
r

2ν
+M

)
‖w (t) ‖2. (5.46)

Multiplying the above inequality by 2 and re-arranging the terms, we obtain

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ 2Cr‖w (t) ‖2, (5.47)

where Cr = K2
r

ν
+M and so

d

dt
‖w (t) ‖2 ≤ 2Cr‖w (t) ‖2. (5.48)

This implies that

‖w (t) ‖2 ≤ ‖w0‖2e2Crt, t ≥ 0, (5.49)
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and so ∫ t

0

‖w (s) ‖4ds ≤ 1

4Cr
‖w0‖4e4Crt, t ≥ 0. (5.50)

Combine inequalities (5.48) and (5.49) to obtain

d

dt
‖w (t) ‖2 ≤ 2Cr‖w0‖2e2Crt.

Square the above inequality and integrate with respect to t to obtain∫ t

0

(
d

ds
‖w (s) ‖2

)2

ds ≤ 4C2
r‖w0‖4

∫ t

0

e4Crsds,

≤ Cr‖w0‖4e4Crt. (5.51)

Combine inequalities (5.47) and (5.49),

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ 2Cr‖w0‖2e2Crt. (5.52)

Integrate (5.52) with respect to t to obtain

‖w (t) ‖2 − ‖w0‖2 + ν

∫ t

0

‖∂
2w

∂x2
(s) ‖2ds ≤ ‖w0‖2e2Crt − ‖w0‖2,

which implies ∫ t

0

‖∂
2w

∂x2
(s) ‖2ds ≤ 1

ν
‖w0‖2e2Crt. (5.53)

Now, square inequality (5.52) and expand the perfect square on the left hand side to
obtain(

d

dt
‖w (t) ‖2

)2

+ 2ν‖∂
2w

∂x2
(t) ‖2 · d

dt
‖w (t) ‖2 + ν2‖∂

2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt,

Re-arrange the terms and use Young’s inequality (|2a · b| ≤ 2a2 + 1
2
b2) to obtain

ν2‖∂
2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt −
(
d

dt
‖w (t) ‖2

)2

− 2ν‖∂
2w

∂x2
(t) ‖2 · d

dt
‖w (t) ‖2.
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That is,

ν2‖∂
2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt +

(
d

dt
‖w (t) ‖2

)2

+ 2ν‖∂
2w

∂x2
(t) ‖2 ·

∣∣∣∣ ddt‖w (t) ‖2

∣∣∣∣ ,
≤ 4C2

r‖w0‖4e4Crt +

(
d

dt
‖w (t) ‖2

)2

+ 2

(
d

dt
‖w (t) ‖2

)2

+
ν2

2
‖∂

2w

∂x2
(t) ‖4.

Re-arrange the terms to obtain

ν2

2
‖∂

2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt + 3

(
d

dt
‖w (t) ‖2

)2

.

Finally, integrate with respect to t and use inequality (5.51) to obtain

ν2

2

∫ t

0

‖∂
2w

∂x2
(s) ‖4ds ≤ Cr‖w0‖4e4Crt + 3Cr‖w0‖4e4Crt,

= 4Cr‖w0‖4e4Crt.

Hence, ∫ t

0

‖∂
2w

∂x2
(s) ‖4ds ≤ 8Cr

ν2
‖w0‖4e4Crt. (5.54)

2. Next, use the Gâteaux derivative (5.10) to linearize the KS equation (5.42) around
y = SB (t) y0

ẇ (t) = −Âw (t)−Rw (t)− ∂
∂x

(y (t)w (t)) +BKw (t) ,
w (0) = w0 := z0 − y0.

(5.55)

Using [85, Theorem II.3.4] and [29, Lemma 3.1.5], the controlled linearized KS equa-
tion (5.55) has a unique strong solution

w (t) ∈ L2
(
0, T ;H2

periodic[−π, π]
)
∩ L∞

(
0, T ;L2[−π, π]

)
, for t ≤ T <∞.

That is, the solution can be written as

w (t) = TB (t)w0, (5.56)

where TB (t) is a C0-semigroup on L2[−π, π].
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3. Now, we will show that the nonlinear C0-semigroup SB (t) is Fréchet differentiable at
y0 and TB (t) is its Fréchet derivative. Set φ = w − w and use equations (5.42) and
(5.55) and Lemma 5.3.12 to obtain

φ̇ (t) = ẇ (t)− ẇ (t) ,

= −Â (w (t)− w (t))− (G (z (t))−G (y (t))) +Rw (t) +
∂

∂x
(y (t)w (t))

−BKw (t) ,

= −Âφ (t)−Rφ (t)− ∂

∂x
(y (t)φ (t)) +BKφ (t)− F (w (t)) , (Using (5.39))

φ (0) = 0.

That is,

φ̇ (t) + Âφ (t) = −Rφ (t)− ∂
∂x

(y (t)φ (t)) +BKφ (t)− F (w (t)) ,
φ (0) = 0.

(5.57)

Take the L2-inner product of the above system (5.57) with φ to obtain

〈φ̇ (t) , φ (t)〉+ 〈Âφ (t) , φ (t)〉 = −〈Rφ (t) +
∂

∂x
(y (t)φ (t))−BKφ (t) , φ (t)〉

−〈F (w (t)) , φ (t)〉.

Thus,

1

2

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 = −〈Rφ (t) +

∂

∂x
(y (t)φ (t))−BKφ (t) , φ (t)〉

−〈F (w (t)) , φ (t)〉,

≤ |〈Rφ (t) +
∂

∂x
(y (t)φ (t))−BKφ (t) , φ (t)〉|

+|〈F (w (t)) , φ (t)〉|. (5.58)

Moreover, using Cauchy-Schwarz inequality, Lemma (5.3.10), Lemma (5.3.11) and
Poincaré inequality (2.2.11), we have

|〈Rφ (t) +
∂

∂x
(y (t)φ (t)) − BKφ (t) , φ (t)〉| ≤ |〈Rφ (t) , φ (t)〉|+ |〈BKφ (t) , φ (t)〉|

+|〈y (t)
∂φ

∂x
(t) , φ (t)〉|+ |〈φ (t)

∂y

∂x
(t) , φ (t)〉|.
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That is,

|〈Rφ (t) +
∂

∂x
(y (t)φ (t)) − BKφ (t) , φ (t)〉| ≤M‖φ (t) ‖2 + 3‖y (t) ‖∞‖φ (t) ‖ ·

‖∂φ
∂x

(t) ‖+ ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖,

≤ M‖φ (t) ‖2 + (1 + 3‖y (t) ‖∞) ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖,

≤ M‖φ‖2 + (1 + 3r) ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖,

= M‖φ (t) ‖2 +Kr ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖,

where Kr = 1 + 3r.

Using the above result, Cauchy-Schwarz inequality, Young’s inequality and Lemma
(5.3.12), inequality (5.58) becomes

1

2

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 ≤ Kr ‖φ (t) ‖ ‖∂

2φ

∂x2
(t) ‖+M‖φ (t) ‖2 + ‖J (w (t)) ‖ ·

‖φ (t) ‖,

≤ ν

2
‖∂

2φ

∂x2
(t) ‖2 +

(
K2
r

2ν
+M

)
‖φ (t) ‖2 +

ν

2
‖J (w (t)) ‖2

+
1

2ν
‖φ (t) ‖2,

and so

1

2

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 ≤ ν

2
‖∂

2φ

∂x2
(t) ‖2 +

(
K2
r + 1

2ν
+M

)
‖φ (t) ‖2

+
νc2

8

(
‖w (t) ‖2 + ‖∂

2w

∂x2
(t) ‖2

)2

,

≤ ν

2
‖∂

2φ

∂x2
(t) ‖2 +

(
K2
r + 1

2ν
+M

)
‖φ (t) ‖2

+
νc2

4

(
‖w (t) ‖4 + ‖∂

2w

∂x2
(t) ‖4

)
. (5.59)
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This implies,

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 ≤

(
K2
r + 1

ν
+ 2M

)
‖φ (t) ‖2 +

νc2

2

(
‖w (t) ‖4

+‖∂
2w

∂x2
(t) ‖4

)
,

and so

d

dt
‖φ (t) ‖2 ≤

(
K2
r + 1

ν
+ 2M

)
‖φ (t) ‖2 +

νc2

2

(
‖w (t) ‖4 + ‖∂

2w

∂x2
(t) ‖4

)
.(5.60)

Integrating with respect to t and using φ (0) = 0, inequalities (5.50) and (5.54), we
obtain

‖φ (t) ‖2 ≤
(
K2
r + 1

ν
+ 2M

)∫ t

0

‖φ (s) ‖2ds+ M̃‖w0‖4e4Crt, (5.61)

where M̃ = νc2

2

(
8Cr
ν2

+ 1
4Cr

)
.

Using Gronwall’s lemma (Proposition 2.2.9) and φ (0) = 0, we obtain

‖φ (t) ‖2 ≤ C̄2‖w0‖4, (5.62)

where C̄2 = M̃e4CrT + M̃ν
4Crν−K2

r+1−2Mν
e

4Crν−K2
r−1−2Mν

ν
T , which implies that

‖φ (t) ‖ ≤ C̄‖w0‖2, t ∈ [0, T ].

Using the definitions of φ,w

‖φ (t) ‖ = ‖w (t)− w (t) ‖ = ‖z (t)− y (t)− w (t) ‖ ≤ C̄‖w0‖2 = C̄‖z0 − y0‖2, z0 6= y0.

That is,

‖z (t)− y (t)− w (t) ‖
‖z0 − y0‖

≤ C̄‖z0 − y0‖, (5.63)

or,

‖SB (t) z0 − SB (t) y0 − TB (t)w0‖
‖w0‖

≤ C̄‖w0‖. (5.64)
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where z0 = y0+w0. Inequality (5.64) holds for every z0 ∈ L2[−π, π] with ‖z0−y0‖ ≤ ε
with ε > 0. Take the limit as ‖w0‖ → 0 to obtain

lim
‖w0‖→0

‖SB (t) (y0 + w0)− SB (t) y0 − TB (t)w0‖
‖w0‖

= lim
‖w0‖→0

C̄‖w0‖ = 0. (5.65)

Thus, the nonlinear C0-semigroup generated by the controlled KS equation, SB (t), is
Fréchet differentiable. Moreover, the Fréchet derivative is the C0-semigroup generated by
the linearized KS equation, TB (t). �

5.4 The uncontrolled Kuramoto-Sivashinsky equation

In this section, the uncontrolled KS equation is considered. That is, equation (5.1) with
u (t) = 0. First, a conservation law property is shown to hold for the uncontrolled KS
equation. Then, equilibrium solutions of the uncontrolled KS equation are investigated
and stability analyzed for different values of the instability parameter ν.

One of the properties of the uncontrolled KS equation (5.1) with u (t) = 0 is that it pos-
sesses a conservation law. That is, the integral

∫ π
−π z (t) dx is invariant under time evolution.

This is shown in the next theorem.

Theorem 5.4.1. Consider the uncontrolled KS equation (5.1) with u (t) = 0 with periodic
boundary conditions. The uncontrolled system possesses a conservation law property. That
is, ∫ π

−π
z (t) dx = C,

where C ∈ R.

Proof. We start by integrating the uncontrolled KS equation (5.1) with u (t) = 0 with
respect to the spatial variable x from −π to π.∫ π

−π

∂z

∂t
dx = −ν

∫ π

−π

∂4z

∂x4
dx−

∫ π

−π

∂2z

∂x2
dx−

∫ π

−π
z
∂z

∂x
dx,

d

dt

∫ π

−π
z (t) dx = −ν ∂

3z

∂x3

∣∣∣∣π
−π
− ∂z

∂x

∣∣∣∣π
−π
− 1

2
z2

∣∣∣∣π
−π
,

d

dt

∫ π

−π
z (t) dx = 0.
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That is, ∫ π

−π
z (t) dx = C, (5.66)

where C is an integration constant. This completes the proof. �

Note that the constant C in the above theorem represents the volume per unit circumfer-
ence.

The KS equation has an infinite number of equilibrium points. In particular, any constant
function is an equilibrium solution to the KS equation. Moreover, let ze be an equilibrium
solution to the uncontrolled KS equation, then from the conservation law property (5.66),
we have ∫ π

−π
z (t) dx =

∫ π

−π
zedx = 2πze. (5.67)

Hence, the equilibrium solution of the uncontrolled KS equation is determined by the initial
condition z0. That is

ze =
1

2π

∫ π

−π
z0dx. (5.68)

Furthermore, there are an infinite number of other functions that are also equilibrium
solutions [52, 60]. There is no explicit form known for these equilibria although they can
be approximated using Fourier truncated series. In [52], Lan and Cvitanović used the
Newton descent method to numerically determine that such equilibria are unstable. In
this thesis, we will denote an equilibrium solution by ze and will be interested in the set
of constant equilibrium solutions.

Define the closed invariant set Ze to be the set of such equilibrium solutions to the uncon-
trolled KS equation

Ze = {ze : ze is a constant function} . (5.69)

Stability of the equilibrium solutions to the uncontrolled KS equation ((5.1) with u (t) = 0)
depends on the value of the instability parameter ν. In this section, it will be shown
that if ν > 1, then the set of all equilibrium solutions Ze defined in (5.70) is globally
exponentially stable. This is done using a continuous Lyapunov function and LaSalle’s
Invariance Principle.

Theorem 5.4.2. Consider the uncontrolled KS equation (5.1) with u (t) = 0. If the
instability parameter ν > 1, then the set of equilibrium solutions Ze defined in (5.70) is
globally asymptotically stable.
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Proof. Consider the following positive definite function V : D (A) ⊂ L2[−π, π]→ R

V (z) =
1

2
‖z‖2, (5.70)

It can be easily shown that the above function (5.70) is a continuous Lyapunov function
(3.1.8) to the uncontrolled KS equation. The Lyapunov derivative is given by

V̇ (z) = Re〈z, ż〉,

= Re

{
−ν〈z, ∂

4z

∂x4
〉 − 〈z, ∂

2z

∂x2
〉 − 〈z, z ∂z

∂x
〉
}
,

= −ν〈∂
2z

∂x2
,
∂2z

∂x2
〉+ 〈∂z

∂x
,
∂z

∂x
〉 − 0, (Periodic boundary conditions)

= −ν‖∂
2z

∂x2
‖2 + ‖∂z

∂x
‖2,

≤ − (ν − 1) ‖∂z
∂x
‖2. (Poincaré inequality)

≤ 0,

since the instability parameter ν > 1. Next we shall investigate when V̇ (z) vanishes. That
is,

− (ν − 1) ‖∂z
∂x
‖2 = 0.

So we have

∂z

∂x
= 0.

Which implies that

z = C.

Next, we shall use LaSalle’s Invariance Principle (Theorem 3.1.12) to show that the solu-
tion of the uncontrolled KS equation converges to the set of equilibrium solutions Ze as
t → ∞. Since the C0-semigroup generated by the uncontrolled KS equation is compact
[74, Theorem 54.3], then the orbit γ (z) is precompact for every z ∈ D (A). Therefore, by
LaSalle’s Invariance Principle (Theorem 3.1.12), the solution of the KS equation converges
to the invariant set that contains all equilibrium solution Ze defined in (5.70) resulting a
globally asymptotically stable equilibrium set. �
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If the instability parameter ν = 1, then the Lyapunov derivative V̇ (z) = 0 for every
z ∈ D (A). Hence, by Lyapunov Theorem (Theorem 3.1.10), the zero solution z = 0 is
stable. In other words, the KS equation has a global attractor which is not surprising as
Sell & You showed this result in [74, Theorem 54.3]. However, from the above analysis,
we know what this global attractor is. Stability or instability of the equilibria for the KS
equation when the instability parameter ν < 1 needs to be determined.

We shall look at the linearized KS equation at the constant equilibrium ze. The goal is to
linearize the KS equation around an equilibrium ze and analyze the stability of the system
for different values of the instability parameter ν. This is done by means of the Gâteaux
derivative. This has been done earlier. The linearized uncontrolled KS equation around
the equilibrium solution ze is

ż = Az − ze
∂z

∂x
, (5.71)

where A is defined in (5.3).

In Theorem 5.2.1, it was shown that the operator
(
A− ze ∂∂x

)
is a Riesz-spectral operator

that has the distinct eigenvalues λn = −νn4 + n2 − izen, n ∈ Z, and the corresponding
eigenvectors φn (x) = 1√

2π
einx.

Note that the real part of an eigenvalue of the operator
(
A− ze ∂∂x

)
crosses the imaginary

axis when

ν =
1

n2
, n = ±2, ...,±∞

Furthermore, since the operator
(
A− ze ∂∂x

)
is a Riesz-spectral operator, then by [29, The-

orem 2.3.5 c] the spectrum determined growth assumption (SDGA) holds with growth
bound ω0 is given by

ω0 = sup
n∈Z

Re{λn}.

Therefore, from the above analysis of the linearized KS equation around a constant equi-
librium solution ze. If ν > 1, then all eigenvalues have strictly negative real part, resulting
a stable linearized system and if ν < 1, then the linearized system is unstable. The number
of unstable eigenvalues depends on the value of the instability parameter ν which is a finite
number. For a given 0 < ν < 1, choose N to be the smallest integer such that

N >

√
1

ν
. (5.72)

The constant N is the number of unstable modes for the uncontrolled linearized KS equa-
tion at the equilibrium solution ze.
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Theorem 5.4.3. Consider the feedback controlled KS equation (5.1). If the instability
parameter ν > 1, then the equilibrium solution to the KS equation is locally exponentially
stable. If the instability parameter ν < 1, then the KS equation is unstable.

Proof. The stability analysis of the linearized uncontrolled KS equation discussed in ear-
lier in this section shows that if ν > 1, then all eigenvalues have strictly negative real part,
resulting an exponentially stable linearized system around an equilibrium solution ze. Us-
ing Theorem 3.2.7, the equilibrium solution ze ∈ R is locally exponentially stable. This is
not surprising as it was shown in Theorem 5.4.2 that the set of all equilibrium solution ze
is globally exponentially stable when ν > 1.

Moreover, if ν < 1, then the linearized system is unstable. Using Theorem 3.2.8, the non-
linear KS equation is unstable near the equilibrium ze when ν < 1. �

Finally, if the linearized KS equation around an equilibrium solution ze is stabilizable, that
is, there exists an input-feedback control such that the closed loop system generated an
exponentially stable C0-semigroup, then the same input feedback control can be used to
locally stabilize the nonlinear controlled KS equation. This will be discussed next.

5.5 A bounded state-feedback control to the Kuramoto-

Sivashinsky equation

In this section, we shall find a bounded state-feedback control to the KS equation (5.1)
when the instability parameter ν ≤ 1. The feedback control is of the form u (t) = Kz (t),
where the bounded linear operator K : L2[−π, π] → C. This is done by finding a sta-
bilizing control to the linearized KS equation at an equilibrium ze. Although the theory
below holds for all equilibrium solutions of the KS equation, for simplicity only constant
equilibrium solutions will be considered.

Consider the linearized controlled KS equation at ze. Let {φn, ψn}, where φ0 = 1√
2π

,

φn (·) = 1√
π

cos (n·) and ψn (·) = 1√
π

sin (n·) for n = 1, · · · ,∞ be a basis in L2[−π, π] and
define

b1n =< b, φn >, for n = 0, 1, · · · ,∞.
b2n =< b, ψn >, for n = 1, 2, · · · ,∞. (5.73)

Define the state-feedback control u (t) = Kz (t), where Kz (t) =< k, z (t) >, for an ap-
propriate choice of k ∈ L2[−π, π].The controlled linearized KS equation can be written
as

ż = Az − ze
∂z

∂x
+ b (x) < k, z > . (5.74)
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Now using Theorem (3.2.7), the nonlinear operator A+BK+J generates a locally asymp-
totically stable C0-semigroup for the nonlinear open-loop controlled KS equation (5.1) if
there exists K ∈ L (L2(−π, π),C) such that A − ze

∂
∂x

+ BK generates an exponentially
stable C0-semigroup.

The next theorem summarizes this approach to designing an state-feedback control for the
nonlinear KS equation (5.7).

Theorem 5.5.1. Consider the linearized KS equation around the constant state ẑ not nec-
essarily an equilibrium solution (5.11). Let Nunstable is the number of unstable eigenvalues
of the operator

(
A− ẑ ∂

∂x

)
. Then there exists a finite-dimensional controller that locally

stabilizes the unstable nonlinear KS equation (5.7) if

b1n 6= 0 for n = 0, 1, · · · , Nunstable.
b2n 6= 0 for n = 1, 2, · · · , Nunstable.

(5.75)

Proof. The linear operator A− ẑ ∂
∂x

is a Reisz-spectral operator (Theorem (5.2.1)). Using
[29, Theorem 5.2.10],

((
A− ẑ ∂

∂x

)
, B
)

is stabilizable if assumption (5.75) holds. Moreover,
using [29, Theorem 5.2.6] a finite-dimensional stabilizing controller can be chosen to sta-
bilize the infinite-dimensional system.

The C0-semigroup generated by the nonlinear open-loop controlled KS equation is Fréchet
differentiable (Theorem 5.3.13). This implies by using Theorem 3.2.7 that if the linearized
KS equation at an equilibrium solution ze generates an exponentially stable C0-semigroup,
then the controlled nonlinear KS equation with the same control generates a locally asymp-
totically stable C0-semigroup. In other word, the equilibrium solution z̄ to the controlled
nonlinear KS equation is locally exponentially stable. �

The same approach can be used to show that there exists a controller that stabilizes the
KS equation from one constant state to another. That is, if one desires the solution of the
KS equation to converge to another constant equilibrium say ẑe. A state-feedback control
can be found by stabilizing the linearized KS equation at ẑe. This is justified because the
nonlinear C0-semigroup corresponding to the nonlinear KS equation is Fréchet differen-
tiable at any constant ẑe ∈ L2[−π, π] (see Theorem 5.3.13).

There are many ways to design a state-feedback controller that stabilizes linear infinite-
dimensional systems [10, 12, 29, 53, 58, 63]. One approach is to design a bounded feedback
controller that exponentially stabilizes the system

dz
dt

(t) = Ãz (t) +Bu (t) ,
y (t) = Cz (t) ,

where Ã is a linear infinitesimal generator of a C0-semigroup defined on a Hilbert space

77



H, the operators B and C are linear bounded operators defined on a Hilbert space H, is
by designing a linear quadratic controller [29, 63, 93]. The idea is to minimize the cost
functional corresponding to the system

min J (z0, u) =

∫ ∞
0

(〈y (s) , y (s)〉+ 〈u (s) , Ry (s)〉) ds,

where the linear operator R is a self-adjoint, coercive operator defined on the Hilbert space
U . Such optimal bounded input-feedback is of the form

u (t, z0) = −R−1B∗Πz (t) ,

where the linear operator Π : H → H is the solution of the algebraic Riccati equation
(ARE)

〈Ãz1,Πz2〉+ 〈Πz1, Ãz2〉+ 〈Cz1, Cz2〉+ 〈B∗Πz1, R
−1B∗Πz2〉 = 0, for z1, z2 ∈ D

(
Ã
)
.

Another approach is by designing an H∞ controller where the effect of the disturbance on
the cost is considered instead of the initial condition. For more details see [63, Section 5]

78



Chapter 6

Galerkin Projection method to
approximate infinite-dimensional
systems

It is important to find a numerical approximation to the solution of nonlinear infinite-
dimensional systems. This is because it is difficult and sometimes impossible to explicitly
solve infinite-dimensional dynamical systems. In this thesis, the approximated solution to
the nonlinear KS equation as well as the state-feedback controlled KS equation will be
used to illustrate the theoretical results on the stability and the effect of the state-feedback
control on the KS equation.

There are many choices for the numerical solution of partial differential equations (PDEs).
For instance, the finite difference (FD) method or the finite element (FE) method. The
FD method is the oldest and is based upon applications of a local Taylor series expansion
to approximate differential equations [67]. In [42], Ide and Okada proposed an implicit FD
scheme that preserves the energy properties such as energy dissipation, energy conserva-
tion, etc. of the PDE system. The method they proposed is called the discrete variational
derivative method and is designed to compute and approximate solution for nonlinear
PDEs with variable coefficients. Furthermore, they proved the stability, existence, unique-
ness and convergence rate of O (∆x2 + ∆t2) of the solution.

In FD method a square grid of lines is used to construct the discretization of the PDE
which will become a problem handling complex geometries in multiple dimensions. This
issue motivates the use of an integral form of the PDE and hence development of the FE
method [67].

Another method is also known as the Karhunen-Loève decomposition or the proper or-
thogonal decomposition. It is widely used in identifying and analyzing coherent structure
in turbulent fluids, or for determining low-order models for complex dynamical systems
[54, 71]. The idea of this method is to generate a basis of a finite-dimension for a given
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set of snapshots of the original system that spans the data optimally in L2-sense. That
is, a reliable solver is used to compute a priori ensemble solutions to the model which are
called snapshots, then these snapshots are used to produce an optimal representation of
the model. The main challenge is to find a good set of snapshots for the original system
that captures the energy of the system.

In this thesis, we will use the Galerkin method to approximate infinite-dimensional systems
(3.1). In particular, the uncontrolled and the state-feedback controlled KS equation. The
Galerkin method is used to approximate the infinite-dimensional KS equation in terms of
a finite-dimensional one [13, 31, 32]. The idea is to derive a system of ordinary differential
equations (ODE’s) that mimics the dynamics of the nonlinear uncontrolled/state-feedback
controlled KS equation. More details on this are in the next section.

6.1 The Galerkin Projection method

The Galerkin Projection method provides a discrete algorithm to approximate the solution
of infinite-dimensional PDEs. The idea is to produce a finite-dimensional ODE system that
approximates the dynamics of the original PDE.

Consider the open-loop controlled infinite-dimensional system defined on a Hilbert space
H

dz
dt

= Az (t) +Bu (t) ,

z (0) = z0,
(6.1)

where the linear operator A : D (A) ⊂ H → H is an infinitesimal generator of a C0-
semigroup T (t) on H, the actuator B : U → H is a linear bounded operator, u ∈ U is a
controller which will be assumed to be finite (u ∈ C), and z0 ∈ H is the initial condition.
The system is well-posed [29, Definition 3.1.4]. That is, there exists a unique mild solution

z (t) = T (t) z0 +

∫ ∞
0

T (t− s)Bu (s) ds.

Let HN ⊂ H be a finite subspace of the Hilbert space H equipped with the same norm of
H. Define an orthogonal projection P : H → HN . This will be used to approximate the
original system (6.1). The natural assumption for this approximation scheme is

lim
N→∞

‖Pz − z‖ = 0, for every z ∈ H.

Define BN = PB and AN : HN → HN using some method. Then the infinite-dimensional
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system (6.1) is approximated by

dz
dt

= ANz (t) +BNu (t) ,

z (0) = Pz0,
(6.2)

where the operator AN generates a C0-semigroup (matrix exponential), TN (t) on HN .

The solution of the uncontrolled nonlinear KS equation ((5.7) with u (t) = 0) can be
expanded using Fourier series expansion [64, Theorem 5.17.8]. Let φ0 = 1√

2π
, φn (·) =

1√
π

cos (n·) and ψn (·) = 1√
π

sin (n·) for n = 1, · · · ,∞, then {φ0, φn, ψn}∞n=1 form an or-

thonormal basis in the Hilbert space L2(−π, π). The solution of the nonlinear KS equation
can be written as

z (x, t) =
∞∑
n=0

an (t)φn (x) +
∞∑
n=1

cn (t)ψn (x) . (6.3)

That is,

z (x, t) ≈
N∑
n=0

an (t)φn (x) +
N∑
n=1

cn (t)ψn (x) ,

for sufficiently large N . Substituting the above approximated solution in the uncontrolled
KS equation implies

N∑
n=0

ȧn (t)φn (x) +
N∑
n=1

ċn (t)ψn (x) =
N∑
n=1

(
−νn4 + n2

)
(an (t)φn (x) + cn (t)ψn (x)) + α (x, t) ,

where

α (x, t) =

(
N∑
n=0

an (t)φn (x) +
N∑
n=1

cn (t)ψn (x)

)
·

(
N∑
n=1

(
an (t)φ

′

n (x) + cnψ
′

n (x)
))

. (6.4)

That is,

ȧn (t) = (−νn4 + n2) an (t) + < α (t) , φn >,

ċn (t) = (−νn4 + n2) cn (t) + < α (t) , ψn >,

an (0) =< z0, φn >,

cn (0) =< z0, ψn > .

(6.5)
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Using Runge-Kutta method to solve the above ODE system numerically from MATLAB,
one can obtain an approximated solution to the uncontrolled nonlinear KS equation ((5.7)
with u (t) = 0).

Let ze be a constant equilibrium solution to the KS equation and let Nunstable be the number
of unstable modes of the linearized KS equation around ze which is given in (5.72). Define
the finite subspace of Z+ ⊂ L2(−π, π) spanned by the eigenfunctions corresponding to the
unstable eigenvalues of the linearized KS equation and define the orthogonal projection
operator of L2(−π, π) onto Z+, P : L2(−π, π)→ Z+,

Pz =

Nunstable∑
n=0

anφn +

Nunstable∑
n=1

cnψn, (6.6)

where an =< z, φn >, cn =< z, ψn >. The above projection induces the following approx-
imated linearized system around a constant equilibrium solution ze defined on Z+

P
dz

dt
= P

(
Az − ze

dz

dx

)
+ PBu (t) , (6.7)

where A, B are in (5.3), (5.6), respectively.

6.2 Numerical simulation

In this section, we will consider the uncontrolled nonlinear KS equation with instability
parameter ν = 1

2

∂z

∂t
= −1

2

∂4z

∂x4
− ∂2z

∂x2
− z ∂z

∂x
, x ∈ [−π, π], t ≥ 0, (6.8)

with periodic boundary conditions,

∂nz

∂xn
(−π, t) =

∂nz

∂xn
(π, t) , n = 0, 1, 2, 3

and initial condition

z0 (x) =
1

2
cos
( x

10

)
·
(

1 + sin
( x

10

))
. (6.9)

Using the Galerkin method discussed earlier to approximate the solution to the uncontrolled
KS equation, we use 9 eigenfunctions to approximate the solution

z (x, t) =
1√
2π
a0 (t) +

4∑
n=1

1√
π

(an (t) cos (nx) + cn (t) sin (nx)) ,
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where an (t) , cn (t) is the solution of the ODE system in Appendix A. Note that the KS
equation model is real-valued and hence all computations are carried out in the real sense.
Figure 6.1 is a 3-D landscape of the approximated solution. Clearly, the system is unstable.

Figure 6.1: A 3-D landscape of the approximated uncontrolled solution of the nonlinear
KS equation when ν = 1

2
with the initial condition given in (6.9).

In order to find the number of unstable eigenfunctions for the nonlinear KS equation with
ν = 1

2
, the result (5.72) is used. That is, the number of unstable eigenfunctions in the

above KS equation is 2Nunstable + 1, where Nunstable is smallest integer such that

Nunstable ≥
√

2.

That is, Nunstable = 2 and hence, the number of unstable eigenvalues in the above KS
equation (6.8) is equal to 5.

Next, we will consider controlling the KS equation to an equilibrium solution ze. That is,
we consider the following state-feedback controlled KS equation

∂z

∂t
= −1

2

∂4z

∂x4
− ∂2z

∂x2
− z ∂z

∂x
+ b (x)u (t) , x ∈ [−π, π], t ≥ 0, (6.10)
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with actuator

b (x) =
1

0.3
· I[ε−0.1,ε+0.2], (6.11)

where ε ∈ R and

I[ε−0.1,ε+0.2] =

{
1, if x ∈ [ε− 0.1, ε+ 0.2]
0, otherwise

and u (t) = −Kz (t), the operator K : L2[−π, π]→ R is a linear bounded operator.

Note that condition (5.75) is satisfied. That is, the L2-inner product < b (x) , φn >6= 0
for n = 0, 1, · · · , 4 and < b, ψn >6= 0 for n = 1, · · · , 4. Hence the linearized system is
stabilizable. First, we shall consider the equilibrium solution ze = 0 and ε = 0. The goal
is to design a state-feedback control such that the solution of the KS equation converges
to the equilibrium solution ze = 0.

A state-feedback control can be designed to stabilize the KS equation using a number of
approaches. A linear-quadratic approach was chosen. That is, a state-feedback control law
u (t) = −Ka (t) is designed to minimize the quadratic cost function

J (u) =

∫ ∞
0

(
aTa+ uTu

)
dt

subject to (6.7). This is done using LQR in MATLAB and a feedback control that stabilizes
the linearized KS equation around ze = 0

u (t) = −K ·


a0 (t)
a1 (t)
a2 (t)
c1 (t)
c2 (t)

 , (6.12)

where a0 (t) , a1 (t) , a2 (t) , c1 (t) , c2 (t) are the solutions of the ODE system given in Ap-
pendix B and

K = [−1.0000 4.7373 0.0486 35.6283 0.0054].

Figure 6.2 is a 3-D landscape of the controlled nonlinear KS equation to the equilibrium
ze = 0. The graph indicates that the proposed scheme of stabilizing the nonlinear KS
equation worked in forcing the solution to converge to the desired equilibrium solution
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ze = 0.

Note that the number of unstable eigenfunctions is 5 and the state-feedback control is
designed to stabilize these eigenfunctions only. It is worth mentioning that such finite-
dimensional feedback controller is enough and using [63, Theorem 3.5], the approximated
solution of the controlled KS equations converges to the exact solution of the KS equation.
That is, the finite-dimensional controller K converges as the number of eigenfunctions cho-
sen to approximate the solution increases. Note that the number of eigenfunctions used
in the simulations is equal to 9 which is larger than the number of eigenfunctions used to
design the controller, yet the feedback controller achieved the stabilizing goal and there
was no spillover

Figure 6.2: A 3-D landscape of the approximated controlled solution of the KS equation
when ν = 1

2
and ze = 0 with the initial condition given in (6.9) and actuator given by

(6.11).

Next, we consider another equilibrium solution ze = 1 and ε = 1. As above, a state-
feedback control is obtained to exponentially stabilize the linearized KS equation around
the equilibrium solution ze = 1. This is again done by designing a state-feedback control
law u (t) = −Ka (t) that minimizes the quadratic cost function
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J (u) =

∫ ∞
0

(
aTa+ uTu

)
dt

subject to (6.7). The feedback control (6.12) stabilizes the linearized KS equation around
ze = 1, where

K = [1.0000 5.2073 −0.0121 1.5929 0.0397]. (6.13)

Figure 6.3 is a 3-D landscape of the approximated controlled KS equation to the equi-
librium solution ze = 1 using 9 modes. Note that the state-feedback control (6.13) uses
only 5 eigenfunctions which corresponds to the unstable eigenfunctions of the KS equation.
The figure shows that the approximated solution of the KS equation converging towards
the desired equilibrium solution ze = 1 indicating that proposed scheme of stabilizing the
nonlinear KS equation by stabilizing its linearized system at ze = 1 worked in stabilizing
the solution of the KS to the equilibrium solution ze = 1.

Figure 6.3: A 3-D landscape of the approximated controlled solution of the KS equation
when ν = 1

2
and ze = 1 with the initial condition given in (6.9) and actuator given by

(6.11).
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Moreover, we can use the same approach introduced earlier to stabilize the KS equation
from one equilibrium state to another. For instance, ze = 1 to ze = 2. To do so, consider
the following controlled KS equation

∂z

∂t
= −1

2

∂4z

∂x4
− ∂2z

∂x2
− z ∂z

∂x
+ b (x)u (t) , x ∈ [−π, π], t ≥ 0, (6.14)

where b (x) defined in (6.11) and

u (t) =

{
u1 (t) , t ∈ [0, 30],
u2 (t) , t > 30,

(6.15)

where for t ∈ [0, 30], the state-feedback control introduced earlier in (6.13) is used to
stabilize the KS equation to the first equilibrium solution ze = 1. Then, for t > 25, the
state-feedback control

u2 (t) = −K2 ·


a0 (t)
a1 (t)
a2 (t)
c1 (t)
c2 (t)

 ,

where a0 (t) , a1 (t) , a2 (t) , c1 (t) , c2 (t) are the solutions of the ODE system given in Ap-
pendix C and

K2 = [1.0000 3.6731 −0.0115 2.5365 0.0469].

Figure 6.4 is a 3-D landscape of the controlled nonlinear KS equation to the equilibrium
solution ze = 1, then from ze = 1 to the equilibrium solution ze = 2.
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Figure 6.4: A 3-D landscape of the approximated controlled solution of the nonlinear KS
equation when ν = 1

2
from the equilibrium ze = 1 to another equilibrium ze = 2 with initial

condition (6.9) and actuator (6.11).
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Chapter 7

Conclusions and Future work

In this thesis, the well-posedness of some classes of nonlinear partial differential equations
defined on a Hilbert space are investigated. Next, Lyapunov indirect method is proposed
to analyze the stability of these classes. However, the Fréchet differentiability of the gen-
erator is required for the method to hold.

The Kuramoto-Sivashinsky (KS) equation defined on the Hilbert space L2(−π, π) with
periodic boundary conditions is considered.

∂z
∂t

= −ν ∂4z
∂x4
− ∂2z

∂x2
− z ∂z

∂x
, t ≥ 0

z (0) = z0 (x) ,

where the instability parameter ν > 0. The KS equation has infinitely many equilibria.
The set of all constant equilibrium solutions is analyzed. In particular, the set of all con-
stant equilibria is globally exponentially stable when the instability parameter ν > 1 and
the zero equilibrium solution is Lyapunov stable when ν = 1. This is shown using a Lya-
punov function. Furthermore, the set of constant equilibria to the KS equation is unstable
when ν < 1. This result is obtained using Lyapunov indirect method and showing that
the nonlinear operator corresponding to the KS equation generates a Fréchet differentiable
C0-semigroup.

A single bounded state-feedback control is designed for the KS equation with periodic
boundary conditions when the instability parameter ν ≤ 1 to drive the solution of the KS
equation to converge to a desired constant equilibrium solution. This is done by stabilizing
the linearized KS equation around the constant equilibrium solution, then the same control
is used to stabilize the nonlinear KS equation. This approach is proved to work by showing
that the nonlinear C0-semigroup generated by the state-feedback controlled KS equation
is Fréchet differentiable and the derivative is the linear C0-semigroup generated by the
linearization of the equation. Simulations are presented to illustrate the effectiveness of
the developed control scheme where the solution of the KS equation is driven to several
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constant equilibrium solutions and from one constant equilibrium solution to another.

Future work includes stabilizing the KS equation to any desired state not necessarily a
constant function. Another research avenue deals with the development of an output-
feedback control for the KS equation as the full state of infinite-dimensional systems is not
accessible. Developing an adaptive control scheme for the KS equation when the instability
parameter ν is unknown is another problem to consider.
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Appendix A

The following is ODE system derived by MATLAB using the Galerkin projection method
on the approximated solution of the uncontrolled KS equation (5.1) where u (t) = 0 and
the instability parameter ν = 1

2
with periodic boundary conditions and initial condition

defined in (6.9)

function ODEsystem = Uncontrolled(t,a)

ODEsystem=[0;

a(2)/2 - (7186705221432913*a(1)*a(6))/18014398509481984 - (5081767996463981

*a(2)*a(7))/18014398509481984 + (5081767996463981*a(3)*a(6))/18014398509481

984 - (1270441999115995*a(3)*a(8))/4503599627370496 + (1270441999115995*a(4

)*a(7))/4503599627370496 - (2540883998231991*a(4)*a(9))/9007199254740992 +

(2540883998231991*a(5)*a(8))/9007199254740992;

(10163535992927961*a(4)*a(6))/18014398509481984 - (7186705221432913*a(1)*a(

7))/9007199254740992 - (5081767996463981*a(2)*a(6))/9007199254740992 - (101

63535992927961*a(2)*a(8))/18014398509481984 - 4*a(3) - (5081767996463981*a(

3)*a(9))/9007199254740992 + (5081767996463981*a(5)*a(7))/9007199254740992;

(15245303989391943*a(5)*a(6))/18014398509481984 - (5390028916074685*a(1)*a(

8))/4503599627370496 - (15245303989391943*a(2)*a(7))/18014398509481984 - (1

5245303989391943*a(3)*a(6))/18014398509481984 - (15245303989391943*a(2)*a(9

))/18014398509481984 - (63*a(4))/2;

- 112*a(5) - (7186705221432913*a(1)*a(9))/4503599627370496 - (2032707198585

5923*a(2)*a(8))/18014398509481984 - (5081767996463981*a(3)*a(7))/4503599627

370496 - (20327071985855923*a(4)*a(6))/18014398509481984;

a(6)/2 + (7186705221432913*a(1)*a(2))/18014398509481984 + (5081767996463981

*a(2)*a(3))/18014398509481984 + (1270441999115995*a(3)*a(4))/45035996273704

96 + (2540883998231991*a(4)*a(5))/9007199254740992 + (5081767996463981*a(6)

*a(7))/18014398509481984 + (1270441999115995*a(7)*a(8))/4503599627370496 +

(2540883998231991*a(8)*a(9))/9007199254740992;

(5081767996463981*a(2)^2)/18014398509481984 + (10163535992927961*a(4)*a(2))

/18014398509481984 - 4*a(7) + (7186705221432913*a(1)*a(3))/9007199254740992

+ (5081767996463981*a(3)*a(5))/9007199254740992 + (10163535992927961*a(6)*a

(8))/18014398509481984 + (5081767996463981*a(7)*a(9))/9007199254740992 - (5

081767996463981*a(6)^2)/18014398509481984;

(5390028916074685*a(1)*a(4))/4503599627370496 - (63*a(8))/2 + (152453039893

91943*a(2)*a(3))/18014398509481984 + (15245303989391943*a(2)*a(5))/18014398

91



509481984 - (15245303989391943*a(6)*a(7))/18014398509481984 + (152453039893

91943*a(6)*a(9))/18014398509481984;

(5081767996463981*a(3)^2)/9007199254740992 - 112*a(9) + (7186705221432913*a

(1)*a(5))/4503599627370496 + (20327071985855923*a(2)*a(4))/1801439850948198

4 - (20327071985855923*a(6)*a(8))/18014398509481984 - (5081767996463981*a(7

)^2)/9007199254740992];

end
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Appendix B

The following is ODE system derived by MATLAB using the Galerkin projection method
on the approximated solution of the state-feedback controlled KS equation (5.1) to the
equilibrium solution ze = 0 and ze = 1 with the instability parameter ν = 1

2
, periodic

boundary conditions and initial condition defined in (6.9)

function ODEsystem = Control2(t,a)

ze=0;

if ze==0

%K=[ -1.0000 4.7373 0.0486 35.6283 0.0054]

ODEsystem=[

(7186705221432891*a(1))/18014398509481984 - (6291097799158453*a(2))/450

3599627370496 - (2712474457236645*a(3))/144115188075855872;

(2528202848011265*a(1))/4503599627370496 - (6600752716515019*a(2))/4503

599627370496 - (3816873204979573*a(3))/144115188075855872 - (7186705221

432913*a(1)*a(6))/18014398509481984 - (5081767996463981*a(2)*a(7))/18014398

509481984 + (5081767996463981*a(3)*a(6))/18014398509481984 - (1270441999115

995*a(3)*a(8))/4503599627370496 + (1270441999115995*a(4)*a(7))/450359962737

0496 - (2540883998231991*a(4)*a(9))/9007199254740992 + (2540883998231991*a(

5)*a(8))/9007199254740992;

(4980875193822341*a(1))/9007199254740992 - (8720316752741677*a(2))/4503

599627370496 - (36263788164448035*a(3))/9007199254740992 - (71867052214

32913*a(1)*a(7))/9007199254740992 - (5081767996463981*a(2)*a(6))/900719

9254740992 - (10163535992927961*a(2)*a(8))/18014398509481984 + (1016353

5992927961*a(4)*a(6))/18014398509481984 - (5081767996463981*a(3)*a(9))/

9007199254740992 + (5081767996463981*a(5)*a(7))/9007199254740992;

(15245303989391943*a(5)*a(6))/18014398509481984 - (5390028916074685*a(1

)*a(8))/4503599627370496 - (15245303989391943*a(2)*a(7))/18014398509481

984 - (15245303989391943*a(3)*a(6))/18014398509481984 - (15245303989391

943*a(2)*a(9))/18014398509481984 - (63*a(4))/2;

- 112*a(5) - (7186705221432913*a(1)*a(9))/4503599627370496 - (203270719

85855923*a(2)*a(8))/18014398509481984 - (5081767996463981*a(3)*a(7))/45

03599627370496 - (20327071985855923*a(4)*a(6))/18014398509481984;

(7186705221432913*a(1)*a(2))/18014398509481984 - (5589455281664639*a(7)

)/36893488147419103232 - (70491744655467*a(6))/140737488355328 + (50817
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67996463981*a(2)*a(3))/18014398509481984 + (1270441999115995*a(3)*a(4))

/4503599627370496 + (2540883998231991*a(4)*a(5))/9007199254740992 + (50

81767996463981*a(6)*a(7))/18014398509481984 + (1270441999115995*a(7)*a(

8))/4503599627370496 + (2540883998231991*a(8)*a(9))/9007199254740992;

(5081767996463981*a(2)^2)/18014398509481984 + (10163535992927961*a(4)*a

(2))/18014398509481984 - (4451350885692725*a(6))/2251799813685248 - (73

792496079636601109*a(7))/18446744073709551616 + (7186705221432913*a(1)*

a(3))/9007199254740992 + (5081767996463981*a(3)*a(5))/9007199254740992

+ (10163535992927961*a(6)*a(8))/18014398509481984 + (5081767996463981*a

(7)*a(9))/9007199254740992 - (5081767996463981*a(6)^2)/1801439850948198

4;

(5390028916074685*a(1)*a(4))/4503599627370496 - (63*a(8))/2 + (15245303

989391943*a(2)*a(3))/18014398509481984 + (15245303989391943*a(2)*a(5))/

18014398509481984 - (15245303989391943*a(6)*a(7))/18014398509481984 + (

15245303989391943*a(6)*a(9))/18014398509481984;

(5081767996463981*a(3)^2)/9007199254740992 - 112*a(9) + (71867052214329

13*a(1)*a(5))/4503599627370496 + (20327071985855923*a(2)*a(4))/18014398

509481984 - (20327071985855923*a(6)*a(8))/18014398509481984 - (50817679

96463981*a(7)^2)/9007199254740992 ];

end

if ze==1

% K=[1.0000 5.2073 -0.0121 1.5929 0.0397]

ODEsystem=[

(2785489162780709*a(3))/576460752303423488 - (584737779088081*a(2))/281

474976710656 - (3593352610716427*a(1))/9007199254740992 - (572387991275

8521*a(5))/9007199254740992 - (2280268326253537*a(6))/144115188075855872;

(7810911856391975*a(3))/2305843009213693952 - (2153477598973917*a(2))/2

251799813685248 - (2519069261359359*a(1))/9007199254740992 - (125395169

793359*a(5))/281474976710656 + (35629159516705917*a(6))/ - (71867052214

32913*a(1)*a(6))/18014398509481984 - (5081767996463981*a(2)*a(7))/18014

398509481984 + (5081767996463981*a(3)*a(6))/18014398509481984 - (127044

1999115995*a(3)*a(8))/4503599627370496 + (1270441999115995*a(4)*a(7))/4

503599627370496 - (2540883998231991*a(4)*a(9))/9007199254740992 + (2540

883998231991*a(5)*a(8))/9007199254740992;

(5054401834381525*a(1))/18014398509481984 + (3289963466920349*a(2))/225

1799813685248 - (4615604081322752261*a(3))/1152921504606846976 + (80511

96825089241*a(5))/18014398509481984 + (3207420384163213*a(6))/288230376

151711744 + 2*a(7) - (7186705221432913*a(1)*a(7))/9007199254740992 - (5

081767996463981*a(2)*a(6))/9007199254740992 - (10163535992927961*a(2)*a

(8))/18014398509481984 + (10163535992927961*a(4)*a(6))/1801439850948198

4 - (5081767996463981*a(3)*a(9))/9007199254740992 + (5081767996463981*a

(5)*a(7))/9007199254740992;

3*a(8) - (63*a(4))/2 - (5390028916074685*a(1)*a(8))/4503599627370496 -

(15245303989391943*a(2)*a(7))/18014398509481984 - (15245303989391943*a(
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3)*a(6))/18014398509481984 - (15245303989391943*a(2)*a(9))/180143985094

81984 + (15245303989391943*a(5)*a(6))/18014398509481984;

4*a(9) - 112*a(5) - (7186705221432913*a(1)*a(9))/4503599627370496 - (20

327071985855923*a(2)*a(8))/18014398509481984 - (5081767996463981*a(3)*a

(7))/4503599627370496 -(20327071985855923*a(4)*a(6))/18014398509481984;

(3404220556044299*a(3))/576460752303423488 - (7968788826789647*a(2))/22

51799813685248 - (8783064020471533*a(1))/18014398509481984 - (699530621

7558461*a(5))/9007199254740992 + (138541634666816719*a(6))/288230376151

711744 + (7186705221432913*a(1)*a(2))/18014398509481984 + (508176799646

3981*a(2)*a(3))/18014398509481984 + (1270441999115995*a(3)*a(4))/450359

9627370496 + (2540883998231991*a(4)*a(5))/9007199254740992 + (508176799

6463981*a(6)*a(7))/18014398509481984 + (1270441999115995*a(7)*a(8))/450

3599627370496 + (2540883998231991*a(8)*a(9))/9007199254740992;

(7186705221432913*a(1)*a(3))/9007199254740992 - (5625332660195887*a(2))

/2251799813685248 - (2299143722917172781*a(3))/1152921504606846976 - (3

441577764405647*a(5))/4503599627370496 - (2742098327751459*a(6))/144115

188075855872 - 4*a(7) - (8642251502967453*a(1))/18014398509481984 + (10

163535992927961*a(2)*a(4))/18014398509481984 + (5081767996463981*a(3)*a

(5))/9007199254740992 + (10163535992927961*a(6)*a(8))/18014398509481984

+ (5081767996463981*a(7)*a(9))/9007199254740992 + (5081767996463981*a(2

)^2)/18014398509481984 - (5081767996463981*a(6)^2)/18014398509481984;

(5390028916074685*a(1)*a(4))/4503599627370496 - (63*a(8))/2 - 3*a(4) +

(15245303989391943*a(2)*a(3))/18014398509481984 + (15245303989391943*a(

2)*a(5))/18014398509481984 - (15245303989391943*a(6)*a(7))/180143985094

81984 + (15245303989391943*a(6)*a(9))/18014398509481984;

(5081767996463981*a(3)^2)/9007199254740992 - 4*a(5) - 112*a(9) + (71867

05221432913*a(1)*a(5))/4503599627370496 + (20327071985855923*a(2)*a(4))

/18014398509481984 - (20327071985855923*a(6)*a(8))/18014398509481984 -

(5081767996463981*a(7)^2)/9007199254740992];

end

end
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Appendix C

The following is ODE system derived by MATLAB using the Galerkin projection method
on the approximated solution of the state-feedback controlled KS equation (5.1) from the
equilibrium solution ze = 1 to the equilibrium solution ze = 2 with the instability parameter
ν = 1

2
, periodic boundary conditions and initial condition defined in (6.9)

function ODEsystem = Control_Again2(t,a)

ze=1;

ze_2=2;

%K=[ 1.0000 3.6731 -0.0115 2.5365 0.0469]

ODEsystem=[

(2655637397646189*a(3))/576460752303423488 - (6599366044267057*a(2))/450359

9627370496 - (898338152679111*a(1))/2251799813685248 - (4557270461222655*a(

6))/4503599627370496 - (5392944996471325*a(7))/288230376151711744;

(930848606086713*a(3))/288230376151711744 - (2374592847305897*a(2))/4503599

627370496 - (2519069261359371*a(1))/9007199254740992 + (11624777908191687*a

(6))/9007199254740992 - (7561296338298463*a(7))/576460752303423488 - (71867

05221432913*a(1)*a(6))/18014398509481984 - (5081767996463981*a(2)*a(7))/180

14398509481984 + (5081767996463981*a(3)*a(6))/18014398509481984 - (12704419

99115995*a(3)*a(8))/4503599627370496 + (1270441999115995*a(4)*a(7))/4503599

627370496 - (2540883998231991*a(4)*a(9))/9007199254740992 + (25408839982319

91*a(5)*a(8))/9007199254740992;

(2527200917190775*a(1))/9007199254740992 + (4641326840625337*a(2))/45035996

27370496 - (9230842864234245771*a(3))/2305843009213693952 + (64102465508899

93*a(6))/9007199254740992 + (2313428713717502369*a(7))/576460752303423488 -

(7186705221432913*a(1)*a(7))/9007199254740992 - (5081767996463981*a(2)*a(6)

)/9007199254740992 - (10163535992927961*a(2)*a(8))/18014398509481984 + (101

63535992927961*a(4)*a(6))/18014398509481984 - (5081767996463981*a(3)*a(9))/

9007199254740992 + (5081767996463981*a(5)*a(7))/9007199254740992;

6*a(8) - (63*a(4))/2 - (5390028916074685*a(1)*a(8))/4503599627370496 - (152

45303989391943*a(2)*a(7))/18014398509481984 - (15245303989391943*a(3)*a(6))

/18014398509481984 - (15245303989391943*a(2)*a(9))/18014398509481984 + (152

45303989391943*a(5)*a(6))/18014398509481984;

8*a(9) - 112*a(5) - (7186705221432913*a(1)*a(9))/4503599627370496 - (203270

71985855923*a(2)*a(8))/18014398509481984 - (5081767996463981*a(3)*a(7))/450
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3599627370496 - (20327071985855923*a(4)*a(6))/18014398509481984;

(6491050505069841*a(3))/1152921504606846976 - (8536230205320317*a(2))/22517

99813685248 - (8783064020471575*a(1))/18014398509481984 - (1658880947960687

*a(6))/2251799813685248 - (3295430917468849*a(7))/144115188075855872 + (718

6705221432913*a(1)*a(2))/18014398509481984 + (5081767996463981*a(2)*a(3))/1

8014398509481984 + (1270441999115995*a(3)*a(4))/4503599627370496 + (2540883

998231991*a(4)*a(5))/9007199254740992 + (5081767996463981*a(6)*a(7))/180143

98509481984 + (1270441999115995*a(7)*a(8))/4503599627370496 + (254088399823

1991*a(8)*a(9))/9007199254740992;

(7186705221432913*a(1)*a(3))/9007199254740992 - (7935956652933133*a(2))/450

3599627370496 - (4605299034243676375*a(3))/1152921504606846976 - (548026895

2102399*a(6))/4503599627370496 - (289851674979378241*a(7))/7205759403792793

6 - (4321125751483747*a(1))/9007199254740992 + (10163535992927961*a(2)*a(4)

)/18014398509481984 + (5081767996463981*a(3)*a(5))/9007199254740992 + (1016

3535992927961*a(6)*a(8))/18014398509481984 + (5081767996463981*a(7)*a(9))/9

007199254740992 + (5081767996463981*a(2)^2)/18014398509481984 - (5081767996

463981*a(6)^2)/18014398509481984;

(5390028916074685*a(1)*a(4))/4503599627370496 - (63*a(8))/2 - 6*a(4) + (152

45303989391943*a(2)*a(3))/18014398509481984 + (15245303989391943*a(2)*a(5))

/18014398509481984 - (15245303989391943*a(6)*a(7))/18014398509481984 + (152

45303989391943*a(6)*a(9))/18014398509481984;

(5081767996463981*a(3)^2)/9007199254740992 - 8*a(5) - 112*a(9) + (718670522

1432913*a(1)*a(5))/4503599627370496 + (20327071985855923*a(2)*a(4))/1801439

8509481984 - (20327071985855923*a(6)*a(8))/18014398509481984 - (50817679964

63981*a(7)^2)/9007199254740992];

end
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Appendix D

Below is the MATLAB code used to approximate the solution of the KS equation, design
an state-feedback control and approximate the solution of the input-feedback controlled
KS equation.

clear

% This code approximates the nonlinear controlled/uncontolled KS equation:

% \dot{z} = -\nu z_(4) - z_(2) -z z_x + Bu(t),

% z(0) = z_0.

% Periodic boundary conditions

% The solution z = \sum(0..N) a_n(t)\phi(x) + c_n(t)\psi(x).

% There will be 3 options:

% (1) To solve the uncontrolled KS equation.

% (2) To control to one equilibrium solution.

% (3) To control from one equilibrium to another.

% This is determined by "control_again"

% if control_again =

% -1: means no control at all.

% 0: means only one equilibrium

% 1: means controlling from equilibrium ze1 to ze2 to ze1

control_again =0;

ze = 0; % Equilibrium 1

ze_2 = 2; % Equilibrium 2.

% The instability parameter

nu = 0.5;

% The number of unstable modes

unstable = ceil(1/sqrt(nu));

% The number of modes used will be N+1, where N

N = unstable + 2;

nodes = N+1;
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% Orthonormal Basis

% \phi = 1/\sqrt{pi} cos(nx) & \psi = 1/\sqrt{pi} sin(nx) for n=1..N and

% \phi_0 = 1/s\sqrt(pi)

syms x;

phi = [1/sqrt(2*pi)];

psi = [];

for n=1:N

phi = [phi; (1/sqrt(pi))*cos(x*n)];

psi = [psi; (1/sqrt(pi))*sin(x*n)];

end

%initial condition

%z0 = 2*cos(x/10) * (1+sin(x/10));

z0 = (0.5)*cos(x/3) * (1+sin(x/3));

% Initial condition for the ODE system resulted by taking L^2-innr product

% with phi_n and psi_n

if control_again ~= -1

z0 = z0 - ze;

end

a0 = [double(int(z0*phi(1),-pi,pi))];

c0 = [];

for n=1:N

integ1 = int(z0*phi(n+1),-pi,pi);

integ2 = int(z0*psi(n),-pi,pi);

a0=[a0 double(integ1)]; %row vector

c0=[c0 double(integ2)]; %row vector

end

% Solving the ODE system resulted from performing the Galerkin Projection

tmax = 30; % Final time

dt=1; % Time step

if control_again==-1

% Solving the ODE system: for the uncontrolled KS equation

% a=[a0(t)...aN(t)] &c=[c1(t)...cN(t)] for different time step

% t is a cloumn vector for different time steps

% The ODE system written interms of a1..a4 and c1..c3

syms a1; syms a2; syms a3; syms a4;

syms a5; syms a6; syms a7; syms a8;

syms a9;

%system1 = GalerkinProjection22([a1 a2 a3 a4 a5 a6 a7 a8 a9])
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% solving the ODE system with the initial condition a0 & c0

tmax=40; % Final time

dt=0.75; % Time step

[t,ac] = ode45(’Uncontrolled2’,[0:dt: tmax],[a0 c0]);

%[t,a] = ode45(@GalerkinProjection1,[0:dt:tmax],b);

end %end control_again = -1

if control_again ~= -1

% Solving the ODE system: for the controlled KS equation

% a=[a0(t)...aN(t)] & c=[c1(t)...cN(t)] for different time step

% t is a cloumn vector for different time steps

% The ODE system written interms of a1..a4 and c1..c3

syms a1; syms a2; syms a3; syms a4;

syms a5; syms a6; syms a7; syms a8;

syms a9;

%system1 = GalerkinProjection22([a1 a2 a3 a4 a5 a6 a7 a8 a9])

[t,ac] = ode45(’Control2’,[0:dt: tmax],[a0 c0]);

%[t,a] = ode45(@GalerkinProjection1,[0:dt:tmax],b);

end % end control_again ~= -1

% writing the solution z using the variable x

% z is a column vactor for different time steps

z=[];

for n=1: length(t)

sum=0;

% sum(0..N) a_n*phi

for i=1:N+1

sum=sum+ac(n,i)*phi(i);

end

% sum (1..N) c_n*psi

for i=1:N

sum=sum+ac(n,i+N+1)*psi(i);

end

if control_again==-1

ze=0;

end

z=[z; sum + ze ]; %adding the equilibrium

end
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% Evaluating the solution for different x \in [-pi,pi]

dx=0.2;

xx=[-pi:dx: pi]; % row vector

if control_again == -1

% the case of no control

%-------------------------------

% To create an animation file:

% Prepare new file

%-------------------------------

fig=figure;

VidObj = VideoWriter(’KSE-no-control.avi’);

VidObj.FrameRate=5;

open(VidObj);

zz=subs(z,’x’,xx);

zz= zz’;

% Create an animaton for different time step and writing each frame to

% the file

% The first figure: For the animation

figure

f = floor(length(t)/2);

for o=1:f

TT=t(1:2*o);

Zz = zz(:,2*o);

%subplot(1,2,1) % 2D plot

plot(xx,Zz’,’LineWidth’,1.2);

axis([-4 4 -5 5]);

xlabel(’x’), ylabel(’z(x,t)’);

%subplot(1,2,2) % 3D plot

%mesh(TT,xx,zz(:,1:2*o));shading interp, lighting phong, %axis tight

%xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

set(gca,’nextplot’,’replacechildren’);

%writing the frame into the file

currFrame=getframe(gcf);

writeVideo(VidObj,currFrame);

end

% the second window & last frame in animation:3D mesh of the whole graph

mesh(t,xx,zz), shading interp, lighting phong, axis tight

xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

set(gca,’nextplot’,’replacechildren’);
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%writing the frame into the file

currFrame=getframe(gcf);

writeVideo(VidObj,currFrame);

close(VidObj);

% Second figure

figure

mesh(t,xx,zz), shading interp, lighting phong, axis tight

xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

end %end of control_again = -1

if control_again == 0

% This means we are controlling to one equilbrium ze

fig=figure;

%-------------------------------

% To create an animation file:

% Prepare new file

%-------------------------------

VidObj = VideoWriter(’KSE-control1.avi’);

VidObj.FrameRate=5;

open(VidObj);

% first figure: the 3D mesh

%figure

%zz= [subs(z(1)*ones(1,length(xx)),’x’,xx)];

%zz=[zz; subs(z(2:length(z)),’x’,xx)];

zz=subs(z,’x’,xx);

zz=zz’;

% Second figure

%figure

% Create an animaton for different time step and writing each frame to

% the file

f = floor(length(t)/2);

for o=1:f

TT=t(1:2*o);

Zz = zz(:,2*o);

%subplot(1,2,1) % 2D plot

plot(xx,ze*ones(1,length(xx)),’g+--’,xx,Zz’,’LineWidth’,1.2);

axis([-4 4 -2 7]);

xlabel(’x’), ylabel(’z(x,t)’);

%subplot(1,2,2) % 3D plot
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%mesh(TT,xx,zz(:,1:2*o));shading interp, lighting phong,%axis tight

%xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

set(gca,’nextplot’,’replacechildren’);

%writing the frame into the file

currFrame=getframe(gcf);

writeVideo(VidObj,currFrame);

end

mesh(t,xx,zz), shading interp, lighting phong, axis tight

xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

set(gca,’nextplot’,’replacechildren’);

%writing the frame into the file

currFrame=getframe(gcf);

writeVideo(VidObj,currFrame);

close(VidObj);

% second figure

figure

mesh(t,xx,zz), shading interp, lighting phong, axis tight

xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

end

if control_again==1

% This means that we need to conrol the above controlled system from ze

% to ze2 then to ze again

% The approach will be similar to before. That is, linearize the system

% around ze2, and do the chane of variables to control to the desired

% ze2.

% However, the initial condition will be different. It is going to be

% z0 introduced earlier. When change of variales is done. That is,

% w=z-ze_2, the initial condition will be w_0 = ze-ze_2. At the end to

% get the solution to th original problem: z= w + ze_2.

% For the ODE system:

%--------------------

% intial condition for the ODE system

a0_2 = [double(int((ze-ze_2)*phi(1),-pi,pi))];

c0_2 = [];

for n=1:N
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integ1 = int((ze-ze_2)*phi(n+1),-pi,pi);

integ2 = int((ze-ze_2)*psi(n),-pi,pi);

a0_2 = [a0_2 double(integ1)]; % row vector

c0_2 = [c0_2 double(integ2)]; % row vector

end

% Solving the ODE system

% Final time = the old final time + extra time1 + extra time2

tmax_2 = tmax + 20;

tmax_3 = tmax_2 + 20;

dt_2 = 0.2; % Time step

% Solving the ODE system: for the controlled KS equation

% a_2=[a0(t)...aN(t)] & c_2=[c1..cN] for different time step

% t_2 is a cloumn vector for different time steps starting by tmax

syms a1; syms a2; syms a3; syms a4;

syms a5; syms a6; syms a7; syms a8;

syms a9;

%system = GalerkinProjection22([a1 a2 a3 a4 a5 a6 a7 a8 a9])

[t_2,ac_2] = ode45(’Control_Again2’,[tmax:dt_2: tmax_2],[a0_2 c0_2]);

%[t_2,a_2] = ode45(@GalerkinProjection1,[tmax:dt_2: tmax_2],a0_2);

% To drive the system back to the first equilibrium, we shall use the

% same ODE system generated for part 1 of the control with inintial

% condition = -a0_2, - b0_2

%a00_2 = [double(int((ze)*phi(1),-pi,pi))];

%c00_2 = [];

%for n=1:N

% integ1 = int((ze)*phi(n+1),-pi,pi);

% integ2 = int((ze)*psi(n),-pi,pi);

% a00_2 = [a00_2 double(integ1)]; % row vector

% c00_2 = [c00_2 double(integ2)]; % row vector

%end

%[z1,z2]=size(ac_2);

%ac_00 = ac_2(z1,:) - [a00_2 c00_2];

%[t_22,ac_22] = ode45(’Control3’,[tmax_2:0.1: tmax_3],ac_00);

% writing the solution z using the variable x

% z is a column vactor for different time steps

% Here I will be adding more solutions to the z obtained earlier. That

104



% is, no need to start with z = [].

% NOte that the first loop will start from n=2 not 1 because it is

% already the the vector z.

for n=2: length(t_2)

sum = 0;

% sum(0..N) an*phi

for i=1:(N+1)

sum = sum + ac_2(n,i)*phi(i);

end

% sum(1..N) cn*psi

for i=1:N

sum=sum+ac_2(n,i+N+1)*psi(i);

end

z = [z ; sum + ze_2]; % adding the second equilibrium

end

%Returning to the first equilibrium ze

%for n=2: length(t_22)

% sum = 0;

% % sum(0..N) an*phi

% for i=1:(N+1)

% sum = sum + ac_22(n,i)*phi(i);

% end

% sum(1..N) cn*psi

% for i=1:N

% sum=sum+ac_22(n,i+N+1)*psi(i);

% end

% z = [z ; sum+ ze]; % adding the second equilibrium

%end

% Evaluating the solution for different x \in [-pi,pi]

dx = 0.2;

xx=[-pi:dx: pi]; % row vector

T=[t];

for n=2:length(t_2)

T=[T; t_2(n)];

end

%for n=2:length(t_22)

% T=[T; t_22(n)];
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%end

fig=figure;

%-------------------------------

% To create an animation file:

% Prepare new file

%-------------------------------

VidObj = VideoWriter(’KSE-control2.avi’);

VidObj.FrameRate=5;

open(VidObj);

% first figure: the 3D mesh

figure

zz=subs(z,’x’,xx);

zz=zz’;

% Create an animaton for different time step and writing each frame to

% the file

f = floor(length(T)/2);

for o=1:f

TT=T(1:2*o);

Zz = zz(:,2*o);

%subplot(1,2,1) % 2D plot

plot(xx,ze*ones(1,length(xx)),’g+--’,xx,ze_2*ones(1,length(xx)),’r+

--’,xx,Zz’,’LineWidth’,1.2);

axis([-4 4 -2 5]);

xlabel(’x’), ylabel(’z(x,t)’);

%subplot(1,2,2) % 3D plot

%mesh(TT,xx,zz(:,1:2*o));shading interp, lighting phong,%axis tight

%xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

set(gca,’nextplot’,’replacechildren’);

%writing the frame into the file

currFrame=getframe(gcf);

writeVideo(VidObj,currFrame);

end

mesh(T,xx,zz), shading interp, lighting phong, axis tight

xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

set(gca,’nextplot’,’replacechildren’);

%writing the frame into the file
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currFrame=getframe(gcf);

writeVideo(VidObj,currFrame);

close(VidObj);

% second figure

figure

mesh(T,xx,zz), shading interp, lighting phong, axis tight

xlabel(’t’); ylabel(’x’); zlabel(’z(x,t)’);

end

%==========================================================================

function ODE=GalerkinProjection22(a)

% In this function, there will be 3 options to obtain ODE system:

% (1) uncontrolled KS equation.

% (2) control to one equilibrium solution.

% (3) control from one equilibrium to another.

% This is determined by "control_again"

% if control_again =

% -1: means no control at all.

% 0: means only one equilibrium

% 1: means controlling from equilibrium 1 to the second ze2 then ti ze1

control_again = 1;

ze = 1; % Equilbrium 1

ze_2 = 2; % Equilibrium 2

% The instability parameter

nu=0.5;

% The number of unstable eigenvalues

unstable= ceil(1/sqrt(nu));

% The number of Modes used WILL BE (2N+1), where N is given by

N=unstable+2;

% Orthonormal Basis

% \phi = 1/\sqrt{pi} cos(nx) & \psi = 1/\sqrt{pi} sin(nx) for n=1..N and

% \phi_0 = 1/s\sqrt(pi)

syms x;

phi = [1/sqrt(2*pi)];

psi = [];

for n=1:N

phi = [phi; (1/sqrt(pi))*cos(x*n)];

psi = [psi; (1/sqrt(pi))*sin(x*n)];

end
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% The linearized KS equation around an equilibrium ze \in R is given by

% \dot(a) = (A+dF(ze)) a(t) + Bu(t), where

% Az=- nu z_xxxx - z_xx,

% dF(ze)z= -ze z_x.

% The goal is to find K (row vector) such that (A+dF(ze)-BK) is Hurwitz and

% the controller of the form u(t) = -Ka(t). This is done using LQR where

% the cost function is j(u) = int_{0}{infty} a*Qa + u*Ru + 2a*NNu dt.

% The following choices are made: Q=I(N,N), R=1, NN=0

% When ze=0: it is enough to control a part(N+1 nodes) and use symmetry to

% control all unstable nodes (N+1).

% The matrix A1 {(2unstable+1)x(2unstable+1): Used when ze \neq 0, we have

% \dot{a_n} = (-\nu n^4 + n^2) a_n +n z_e b_n for n=0..unstable

% \dot{b_n} = (-\nu n^4 + n^2) b_n -n z_e a_n for n=1..unstable

A1=zeros(2*unstable+1,2*unstable+1);

A1(1,1)=0;

for n=1:unstable

A1((n+1),(n+1)) = -1*nu *n^4 + n^2;

A1((n+unstable+1),(n+unstable+1)) = -1*nu *n^4 + n^2;

end

% terms from linearization at ze

for n=2:unstable+1

A1(n+unstable, n) = -(n-1)*ze;

end

for n=1:unstable

A1(n+1, n+unstable+1) = n*ze;

end

% The matrix A1 {(N+1)x(N+1): Used when ze=0

A2=zeros(unstable+1,unstable+1);

A2(1,1)=0;

for n=1:unstable

A2(n+1,n+1) = -1*nu *n^4 + n^2 ;

end

%The matrix A =

%A1 when ze neq 0
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%A2 when ze=0

if control_again~=-1

if ze==0

A=A2;

Q=zeros(1+unstable,1+unstable);

for n=1:(unstable+1)

Q(n,n)=1;

end

else

A=A1;

Q=zeros(1+2*unstable,1+2*unstable);

for n=1:(2*unstable+1)

Q(n,n)=1;

end

end

end

% The actuator B: Computing bn which is a column vector <b(x),phi(n)>

epsilon1= 0.1;

epsilon2=0.2;

b=1/((epsilon1+epsilon2));

B=[];

% the appropriate size of bn:

if ze == 0

B = [double(int(b*phi(1),ze - epsilon1,ze +epsilon2))];

B2= [];

for n=1:unstable

integ1 = int(b*phi(n+1),ze - epsilon1,ze +epsilon2);

integ2 = int(b*psi(n),ze - epsilon1,ze +epsilon2);

B = [B ; double(integ1)];

B2 = [B2 ; double(integ2)];

end

else

%z0 \neq 0

for n=1:(unstable+1)

integ=int(b*phi(n),ze-epsilon1,ze+epsilon2);

B=[B; double(integ)];

end

for n=1:unstable

integ=int(b*psi(n),ze-epsilon1,ze+epsilon2);

B=[B; double(integ)];

end

end

% R and NN from the cost function to perform the LQR
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R=1;

NN=0;

% the case to control the KS equation to the first equilibrium point

if control_again ~= -1

if ze==0

[K1,S,e] = lqr(A,B,Q,R,NN);

A11=A(2:unstable+1,2:unstable+1);

Q11=Q(2:unstable+1,2:unstable+1);

[K2,S,e] = lqr(A11,B2, Q11,R,NN);

eig(A - B*K1)

eig(A(2:unstable+1,2:unstable+1) - B2*K2)

B = [B;B2];

rank([B A1*B A1^2*B A1^3*B A1^4*B])

K = [K1 K2]

BK = B*K;

eig(A1-BK)

else

% Computing the contrller u = -K.a(t), where K is a raw vector

[K,S,e] = lqr(A,B,Q,R,NN);

K

BK=B*K;

eig(A-BK)

end

end

% The case to control the KS equation from one equilibrium point to

% another. I am assuming that the second equilibrium solution is never 0

% (to simplify the code).

if control_again ==1

% The matrix A_2 (2N+1)x(2N+1)

A_2=zeros(2*unstable+1,2*unstable+1);

A_2(1,1)=0;

for n=1:unstable

A_2((n+1),(n+1)) = -1*nu *n^4 + n^2;

A_2((n+unstable+1),(n+unstable+1)) = -1*nu *n^4 + n^2;

end

for n =1:unstable

A_2((n+1),(n+unstable+1)) = n*ze_2;

A_2((n+unstable+1),(n+1)) = -1*n*ze_2;

end

% Use the same actuator introduced earlier for controlling to the first
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% equilibrium solution

epsilon1= 0.1;

epsilon2=0.2;

b=1/((epsilon1+epsilon2));

B_2=[];

for n=1:(unstable+1)

integ=int(b*phi(n),ze-epsilon1,ze+epsilon2);

B_2=[B_2;double(integ)];

end

for n=1:unstable

integ=int(b*psi(n),ze-epsilon1,ze+epsilon2);

B_2=[B_2; double(integ)];

end

% Q matrix (2N+1)x(2N+1)

Q=zeros(1+2*unstable,1+2*unstable);

for n=1:(2*unstable+1)

Q(n,n)=1;

end

% Computing the second controller u_2 = -K_2.a(t), where K_2 is a row

% vector

[K_2,S_2,e_2] = lqr(A_2,B_2,Q,R,NN);

K_2

BK2=B_2*K_2;

end

% Now constructing the ODE system. Start with the linear part

if control_again==-1

ODE=[0*a(1)];

for n=1:N

ODE=[ODE;(-1*nu*(n)^4+(n)^2)*a(n+1)];

end

for n=1:N

ODE=[ODE;(-1*nu*(n)^4+(n)^2)*a(n+N+1)];

end

ODE

end

if control_again==0

if ze == 0

ODE1 = 0*a(1);

%Adding control n=1..N+1

for m=1:unstable+1

ODE1=ODE1 - BK(1,m)*a(m);
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end

ODE=[ODE1];

% phi_n: n=2..N+1

for n=1:N

ODE1=(-1*nu*(n)^4+(n)^2)*a(n+1);

% Adding the control

if n<=unstable

for m=1:unstable+1

ODE1=ODE1 - BK(n+1,m)*a(m);

end

end

ODE=[ODE; ODE1];

end

% psi_n: n=1..N

for n=1:N

ODE1=(-1*nu*(n)^4+(n)^2)* a(n+1+N);

% Adding the control

if n<=unstable

for m=1:unstable

ODE1 = ODE1 -BK(n+1+unstable,m+unstable+1)*a(m+N+1);

end

end

ODE=[ODE;ODE1];

end

else

% controlling to one equilibrium point

ODE1=(0)*a(1);

% Adding the control

for m=1:unstable+1

ODE1=ODE1 - BK(1,m)*a(m);

end

for m=1:unstable

ODE1 = ODE1 - BK(1,m+unstable+1)*a(m+N);

end

ODE=[ODE1];

for n=1:N

ODE1=(-1*nu*(n)^4+(n)^2)*a(n+1) + n*ze*a(n+N+1);

% Adding the control

if n<=unstable

for m=1:unstable+1

ODE1=ODE1 - BK(n+1,m)*a(m);

end

for m=1:unstable
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ODE1 = ODE1 - BK(n+1,m+unstable+1)*a(m+N);

end

end

ODE=[ODE; ODE1];

end

for n=1:N

ODE1=(-1*nu*(n)^4+(n)^2)* a(n+1+N) - n*ze*a(n+1);

% Adding the control

if n<=unstable

for m=1:unstable+1

ODE1=ODE1 - BK(n+1+unstable,m)*a(m);

end

for m=1:unstable

ODE1 = ODE1 - BK(n+1+unstable,m+unstable+1)*a(m+N);

end

end

ODE=[ODE;ODE1];

end

end

end

if control_again==1

%controlling from one ze to ze_2

ODE1=(0)*a(1);

% Adding the control

for m=1:unstable+1

ODE1=ODE1 - BK2(1,m)*a(m);

end

for m=1:unstable

ODE1 = ODE1 - BK2(1,m+unstable+1)*a(m+N+1);

end

ODE = [ODE1];

for n=1:N

ODE1=(-1*nu*(n)^4+(n)^2)*a(n+1) + n*ze_2*a(n+N+1);

% Adding the control

if n<=unstable

for m=1:unstable+1

ODE1=ODE1 - BK2(n+1,m)*a(m);

end

for m=1:unstable
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ODE1 = ODE1 - BK2(n+1,m+unstable+1)*a(m+N+1);

end

end

ODE=[ODE;ODE1];

end

for n=1:N

ODE1=(-1*nu*(n)^4+(n)^2)*a(n+N+1) - n*ze_2*a(n+1);

% Adding the control

if n<=unstable

for m=1:unstable+1

ODE1=ODE1 - BK2(n+1+unstable,m)*a(m);

end

for m=1:unstable

ODE1 = ODE1 - BK2(n+1+unstable,m+unstable+1)*a(m+N+1);

end

end

ODE=[ODE;ODE1];

end

end

% Adding the nonlinear term

% Buiding the nonlinear part with the inner product included

%<zz_x, phi_n>, n=1..N+1 and <zz_x,psi_n>, n=1..N

%M=[];

% start inner product with phi_n: n=0..N

for n=1:N+1

% k:0..N , m:1..N

for k=1:N+1

for m=1:N

integral=double(int(phi(k)*(-m)*psi(m)*phi(n),-pi,pi));

if integral ~= 0

ODE(n) = ODE(n) - integral*a(k)*a(m+1);

%M=[M;k m+1 n integral];

end

end

end

% k:0..N & m:1..N

for k=1:N+1

for m=1:N

integral=double(int(phi(k)*(m)*phi(m+1)*phi(n),-pi,pi));

if integral ~= 0
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ODE(n) = ODE(n) - integral*a(k)*a(m+N+1);

%M=[M;k m+N+1 n integral];

end

end

end

%k:0..N & m:1..N

for k=1:N

for m=1:N

integral=double(int(psi(k)*(-1*(m))*psi(m)*phi(n),-pi,pi));

if integral ~= 0

ODE(n) = ODE(n) - integral*a(k+N+1)*a(m+1);

%M=[M;k+N+1 m+1 n integral];

end

end

end

%k=1..N ,m:1..N

for k=1:N

for m=1:N

integral=double(int(psi(k)*(m)*phi(m+1)*phi(n),-pi,pi));

if integral ~= 0

ODE(n) = ODE(n) - integral*a(k+N+1)*a(m+N+1);

%M=[M;k+N+1 m+N+1 n integral];

end

end

end

end

% start inner product with psi_n: n=1..N

for n=1:N

% k:0..N , m:1..N

for k=1:N+1

for m=1:N

integral=double(int(phi(k)*(-m)*psi(m)*psi(n),-pi,pi));

if integral ~= 0

ODE(n+N+1) = ODE(n+N+1) - integral*a(m+1)*a(k);

%M=[M;k m+1 n+N+1 integral];

end

end

end

% k:0..N & m:1..N

for k=1:N+1
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for m=1:N

integral=double(int(phi(k)*(m)*phi(m+1)*psi(n),-pi,pi));

if integral ~= 0

ODE(n+N+1) = ODE(n+N+1) - integral*a(m+N+1)*a(k);

%M=[M;k m+N+1 n+N+1 integral];

end

end

end

%k:0..N & m:1..N

for k=1:N

for m=1:N

integral=double(int(psi(k)*(-1*(m))*psi(m)*psi(n),-pi,pi));

if integral ~= 0

ODE(n+N+1) = ODE(n+N+1) - integral*a(m+1)*a(k+N+1);

%M=[M;k+N+1 m+1 n+N+1 integral];

end

end

end

%k=1..N ,m:1..N

for k=1:N

for m=1:N

integral=double(int(psi(k)*(m)*phi(m+1)*psi(n),-pi,pi));

if integral ~= 0

ODE(n+N+1) = ODE(n+N+1) - integral*a(m+N+1)*a(k+N+1);

%M=[M;k+N+1 m+N+1 n+N+1 integral];

end

end

end

end

%[q1,q2]=size(M);

% Now building the ODE system with the nonlinear terms included

%for n=1:q1

% n1 = M(n,3); % phi_n, psi_n

% m = M(n,2); % a(i), b(i),

% k = M(n,1) ;% a(j), b(j),

% result = M(n,4); % the inner product

% % the nonlinear term

% %ODE(n1) = ODE(n1) - result*a(m)*a(k);

%end

end %function
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