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Abstract

Quantum computing exists at the intersection of mathematics, physics, chemistry, and
engineering; the main goal of quantum computing is the creation of devices and algo-
rithms which use the properties of quantum mechanics to store, manipulate and measure
information. There exist many families of algorithms, which, using non-classical logical
operations, can outperform traditional, classical algorithms in terms of memory and pro-
cessing requirements. In addition, quantum computing devices are fundamentally smaller
than classical processors and memory elements; since the physical models governing their
performance are applicable on all scales, as opposed to classical logic elements, whose
underlying principles rely on the macroscopic nature of the device in question.

Quantum algorithms, for the most part, are predicated on a theory of resources. It is
often assumed that quantum computers can be placed in a precise fiducial state prior to
computation, and that logical operations are perfect, inducing no error on the system which
they affect. These assumptions greatly simplify algorithmic design, but are fundamentally
unrealistic. In order to justify their use, it is necessary to develop a framework for using
a large number of imperfect devices to simulate the action of a perfect device, with some
acceptable probability of failure. This is the study of fault-tolerant quantum computing.
In order to pursue this study effectively, it is necessary to understand the fundamental
nature of generic quantum states and operations, as well as the means by which one can
correct quantum errors. Additionally, it is important to attempt to minimize the use of
computational resources in achieving error reduction and fault-tolerant computing.

This thesis is concerned with three projects related to the use of error-prone quantum
systems to transmit and manipulate information. The first of these is concerned with the
use of imperfectly-prepared states in error-correction routines. Using optimal quantum
error correction, we are able to deduce a method of partially protecting encoded quantum
information against preparation errors prior to encoding, using no additional qubits. The
second of these projects details the search for entangled states which can be used to transmit
classical information over quantum channels at a rate superior to classical states. The third
of these projects concerns the transcoding of data from one quantum code into another
using few ancillary resources. The descriptions of these projects are preceded by a brief
introduction to representations of quantum states and channels, for completeness.

Three techniques of general interest are presented in appendices. The first is an in-
troduction to, and a minor advance in the development of optimal error correction codes.
The second is a more efficient means of calculating the action of a quantum channel on a
given state, given that the channel acts non-trivially only on a subsystem, rather than the
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entire system. Finally, we include documentation on a software package developed to aid
the search for quantum transcoding operations.
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Chapter 1

Introduction

Quantum computing is a burgeoning field of research, uniting mathematics, physics, chem-
istry and engineering, with the eventual aim of producing devices which store and manip-
ulate information using quantum superposition states and unitary operations, in addition
to classical states and Boolean logic gates. There are many potential benefits of research
into quantum computing, but there are two broad categories in which quantum computing
surpasses strictly classical computing:

• Quantum algorithms can be found which outperform classical algorithms. Such
algorithms already exist for simulating quantum systems, searching unstructured
databases, and performing Fourier transforms, among many other tasks.

• Quantum computers are fundamentally smaller than classical computers, because
the essential mechanism of a quantum computer is defined in terms of fundamental
microscopic systems, and can be implemented using the smallest known particles.

The simulation of quantum systems alone stands to revolutionize the study of molecular
biology, condensed-matter physics, materials science and nanotechnology, among many
others; the potential applications of quantum computers are too numerous to list here.

What, then, defines a quantum computer? There is a canonical list of necessary criteria,
first laid out by David DiVincenzo in 1997 [26]:

1. There must be well-defined individual quantum systems which store information at
the small scale. Typically, these are assumed to be two-level systems, called qubits.
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2. It must be possible to initialize these qubits into a well-known state before attempting
any computation. Typically, this requirement manifests itself as the necessity to cool
the system to the ground state of its steady-state Hamiltonian.

3. The qubits must be isolated from their local environment, such that random fluc-
tuations from the external world do not alter the state on the quantum register
unpredictably.

4. It must be possible, using an external control system, to drive the system according
to an arbitrary Hamiltonian.

5. It must also be possible to measure the final state of the register, in order to interpret
the result of a computation.

On the surface, this seems like a reasonable set of requirements. There are two features
of these criteria, however, which make them extremely difficult, if not impossible to fulfil
exactly.

Firstly, if an external apparatus is used to control the register (requirement 4), the
register must interact with it, violating requirement 3, in principle. This conflict in the
requirements is more than an abstract, theoretical challenge to quantum computing as de-
fined above; random fluctuations introduced by the control apparatus are a major limiting
factor for the overall efficacy of current quantum computing implementations.

The other difficulty in creating a quantum computer can be realized, when examining
the thermodynamic implications of requirements 2 and 4. In order to do this, we first
introduce the von Neumann entropy, a measure of disorder in quantum states.

1.0.1 The von Neumann Entropy

The quantum state of a system can be represented as a convex sum of orthonormal rank-one
projectors:

ρ =
∑
j

pj |ψj〉〈ψj| , 0 ≤ pj ≤ 1∀pj,
∑
j

pj = 1. (1.1)

The von Neumann entropy is equivalent to the Shannon entropy [74] over the set { pj }:

S(ρ) = −
∑
j

pj log2 pj = −tr(ρ log2 ρ) (1.2)
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Treating { pj } as a discrete probability distribution, this is the average uncertainty in
obtaining a given |ψj〉〈ψj| upon measurement in the basis defined by |ψj〉〈ψj|.

The thermal equilibrium state for a quantum system with a Hamiltonian Ĥ is

ρT =
exp

(
−βĤ

)
tr
(

exp
(
−βĤ

)) , β =
1

kBT
(1.3)

To illustrate the difficulty in complying with the second DiVincenzo criterion, we calculate
the von Neumann entropy of the thermal state of a simple two-level Hamiltonian:

Ĥ = ~ω
[

1 0
0 −1

]
tr
(

exp
(
βĤ
))

= 2 cosh(β~ω)

ρT =

[
exp(−β~ω)/2 cosh(β~ω) 0

0 exp(β~ω)/2 cosh(β~ω)

]
S(ρT ) = −

∑
j

pj log2(pj) = − (exp(−β~ω)/2 cosh(β~ω)) log2 (exp(−β~ω)/2 cosh(β~ω))

− (exp(β~ω)/2 cosh(β~ω)) log2 (exp(β~ω)/2 cosh(β~ω)) (1.4)

The second DiVincenzo criterion from the list above, the requirement that the system
can be initialized to a pure state, requires β~ω =∞, necessitating either zero temperature,
or an infinite energy gap. Therefore, initialization to a pure state is incompatible with
thermal equilibrium. This does not render initialization to a pure state impossible, but
difficult in practice.

In addition, the fourth DiVincenzo criterion, the ability to perform arbitrary unitary
operations, requires a set of control operations which does not increase the von Neumann
entropy of a quantum state. This is infeasible, since it implies the 2ndlaw of thermody-
namics can be saturated, which is physically permissible, but very difficult in practice.

One can contrast this with the case of classical computing, where it is possible to define
computational states which are defined over domains. For example, the logical zero on a
CMOS-transistor-based logic gate is defined as any voltage between 0 and Vsupply/2, with
the logical one being any voltage between Vsupply/2 and Vsupply [10]. Any probabilistic state
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with support only on one of these domains will be treated as an unambiguous logical value,
without the necessity for perfect purity at the physical level.

In order to realize the potential of quantum computing as specified by the DiVin-
cenzo criteria, then, we must follow one of two paths. The first is the development of
an infinitely-precise method of control over quantum states which are initialized to zero
effective temperature, with noiseless measurement to determine the result of a computa-
tion. The second is the pursuit of an advanced understanding of the effects of imperfect
initialization, control, and measurement, so that a DiVincenzo-compliant quantum com-
puter can be simulated with a high, known probability by a faulty quantum computer.
This second path appears more feasible at the outset, since it mimics the development of
classical computers, and since the demands it places on experimental apparatus are not as
severe as in the first.

This ‘second path’ is the combination of two areas of research, quantum information
theory (the study of the effects of general quantum operations on probabilistic quantum
states) and fault-tolerant quantum computing (the development of ways and means for
mitigating the effects of decoherence using quantum algorithms). This thesis is concerned
with recent developments in these fields; the remaining chapters correspond to the following
topics:

Chapter 2 gives mathematical descriptions which can be used to model quantum systems
which interact non-trivially with their local environments.

Chapter 3 is an introduction to current practices in quantum error correction and fault
tolerance, with a focus on the most-often-used Pauli stabilizer formalism.

Chapter 4 is an introduction to the specific subset of quantum information theory known
as quantum communication; the study of quantum information transmitted between
distinct entities without mutual simultaneous access.

Chapter 5 details the consequences of relaxing the initialization requirement on a small
quantum error-correction protocol.

Chapter 6 details a numerical study of the classical information which can be conveyed
through a quantum channel by an entangled state.

Chapter 7 concerns fault-tolerant transformations between quantum error-correcting codes.

Appendix A gives an application of past research into optimal error correction, which
is used in Chapter 5 to modify quantum error-correcting codes to protect against
initialization noise.
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Appendix B gives a more efficient classical algorithm for calculating the effect of a quan-
tum channel on a system, given that the channel can be expressed as a tensor product
of small channels.

Appendix C comprises documentation on the QuaEC code library, developed in order
to analyse the fault-tolerance of circuits performing transcoding operations.

5





Chapter 2

Quantum Channels and their
Representations

Throughout the remainder of this thesis, we will need to analyse general quantum opera-
tions in order to quantify the degree to which a quantum channel allows high-fidelity trans-
mission of classical information (in Chapters 4 and 6), and to determine error-correcting
codes which may be used to preserve quantum information, both during storage and com-
putation (in Chapters 3, 5 and 7). To this end, we provide a brief introduction to quantum
states and operations. (For an in-depth treatment of quantum states and operations as
they pertain to quantum computing, see [46], [60] or [13].) We begin, below, by detailing
the ‘noiseless’ states and operations (pure states and unitary operators), which we wish
to simulate with high fidelity in order to implement quantum algorithms (see Chapter 1).
We then move on to discuss mixed states and CPTP (completely positive trace-preserving)
maps, the ‘noisy’ quantum states and operations whose properties are integral to the study
of quantum communication and error correction. After a discussion of composite systems,
and the tensor products required to describe them, we conclude by describing the vari-
ous mathematical representations of quantum channels. This chapter can be used as a
reference for the remainder of the document.

2.1 Pure State Vectors/Projectors

In closed quantum systems (ideal systems not interacting with the rest of the universe),
the state is represented by an N -dimensional complex-valued vector with unit length [71]:
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|ψ〉 ∈ CN , 〈ψ|ψ〉 = 1, (2.1)

where a unit-magnitude complex phase leaves the state invariant, exp(iθ) |ψ〉 ≡ |ψ〉. Given
the norm above, there is also a conjugate vector 〈ψ| for any |ψ〉, it is given by the Hermitian
transpose of the state vector:

〈ψ| = (|ψ〉)†. (2.2)

Since multiplication by a complex number of unit norm (a ‘global phase’) leaves the state
invariant, the relevant information about |ψ〉 is contained in |ψ〉〈ψ|, since eiα |ψ〉 (eiα |ψ〉)† =
|ψ〉〈ψ|. These projectors can also be treated as measurement operators. When a projective
measurement |φ〉〈φ| is performed on a state |ψ〉, one of two things occurs:

1. The state |φ〉 is output from the measurement with probability tr(|φ〉〈φ| |ψ〉〈ψ|) =
|〈φ|ψ〉|2, or

2. The state |ψ〉−〈φ|ψ〉|φ〉
‖|ψ〉−〈φ|ψ〉|φ〉‖2 is output from the measurement with probability 1−|〈φ|ψ〉|2.

There is one measurement of this form which will output the state |ψ〉 with unit probability;
|ψ〉〈ψ|. This gives us an operational definition of a pure state, one for which there exists
a measurement that will always, with certainty, confirm the state in question.

2.2 Density Matrices

There are, in addition to pure states, states for which no measurement returns a given
outcome with certainty. Such a ‘mixed’ state ρ is represented by a convex sum of pure
state projectors:

ρ =
∑
j

pj |ψj〉〈ψj| (2.3)

The probability of finding a mixed state ρ to be equal to a pure state |φ〉〈φ| upon mea-
surement is what one would expect from measuring a pure state projector on an ensemble
of differing pure states, or from a single system which is assigned randomly to any of a
number of possible states, each with a certain probability:

tr(|φ〉〈φ| ρ) =
∑
j

pj |〈φ|ψj〉|2 (2.4)
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Note that density matrices are positive-semidefinite matrices (having 〈ψ|ρ|ψ〉 ≥ 0 ∀ |ψ〉)
with unit trace. We can calculate for each mixed state ρ a measure of its purity, tr(ρ2).
This purity has a minimal value of 1/d in a d-dimensional system, corresponding to the
completely mixed state, a uniform distribution over an orthonormal basis. For any rank-
one projector σ, σ2 = σ, therefore tr(σ2) = 1, and these projectors have the maximal value
of purity.

2.3 Unitary Operations

We wish to define the set of transformations on quantum states that preserve purity. It is
easy to confirm that unitary matrices acting on vectors in the Hilbert space are suited to
this task, since unitary matrices preserve the inner product between Hilbert space vectors,
and the trace can be taken over any orthonormal basis.

U(|ψ〉) = U |ψ〉 ∴ U(ρ) =
∑
j

pjU |ψj〉〈ψj|U † = UρU † (2.5)

tr((UρU †)2) = tr(Uρ2U †) = tr(ρ2) (2.6)

Quantum algorithms can be expressed in terms of unitary operations and projective mea-
surements, with computational states corresponding to pure state vectors. We move on to
describing more general quantum operations.

2.4 Composite Systems and Tensor Products

General quantum operations need not be represented in terms of the Hilbert space on
which the states reside. Quantum operations may act only on a subsystem of the system
of interest. It is also possible that such an operation may expand or contract the Hilbert
space on which the states reside, by adding or discarding quantum systems. In order to
describe these operations, and the constraints which are required on mathematical models
which describe them, we discuss composite quantum systems, whose states are described
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by matrix tensor products:

A⊗B =

 A0,0 · · · A0,dA−1
...

. . .
...

AdA−1,0 · · · AdA−1,dA−1

⊗
 B0,0 · · · B0,dB−1

...
. . .

...
BdB−1,0 · · · BdB−1,dB−1


=

 A0,0B · · · A0,dA−1B
...

. . .
...

AdA−1,0B · · · AdA−1,dA−1B

 (2.7)

where

Aj,kB =

 Aj,kB0,0 · · · Aj,kB0,dB−1
...

. . .
...

Aj,kBdB−1,0 · · · Aj,kBdB−1,dB−1

 .
If, for example, we wish to describe a combined state which consists of ρA on the Hilbert
space HA and ρB on the Hilbert space HB, we can use ρA⊗ρB, supported on the combined
Hilbert space HAB. Every state on a composite Hilbert space can be written as a sum of
tensor products:

ρAB ≡
∑
jklm

ρAB,jklm |ψA,j〉〈ψA,k| ⊗ |φB,l〉〈φB,m| . (2.8)

Therefore, the action of a quantum channel can be evaluated when it acts only on a subspace
of a composite Hilbert space, or changes the total dimension of the space, considering only
the subsystem being acted upon.

2.5 Representations of Quantum Channels

In this section, we discuss constraints on quantum channels by noting that they must
output valid density matrices when density matrices are input, even when acting on a
subsystem. Operations that preserve non-negativity (the property of a density matrix ρ
which guarantees 〈ψ|ρ|ψ〉 ≥ 0∀ |ψ〉) under these conditions are called completely positive.
Also, since density matrices have unit trace, these operations must be trace-preserving.
Completely-positive trace-preserving (or CPTP) maps can be expressed in various forms;
here, we briefly introduce three representations:
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• the Stinespring (or system-environment) representation [86], which treats the action
of a quantum channel as the result of a unitary operation acting on a larger Hilbert
space,

• the Kraus (or operator-sum) representation [54], which treats the action of a quantum
channel as a sum of (in general, non-unitary) operations on the original Hilbert space,
and

• the set of ‘super-matrix’ representations [17], which use (in general, non-unitary)
matrices on larger Hilbert spaces to represent the channel.

In order to highlight the different properties of each of these representations, we express
thermal equilibration (also known as ‘generalized amplitude damping’) in the given repre-
sentation as an example. Generalized amplitude damping is physically-motivated, being a
model for random emission and absorption of energy in quantum systems. It is especially
applicable in spin-based quantum computing [45] and superconducting-circuit-based quan-
tum computing [16]. There is a simple, operational description for thermal equilibration
in terms of discrete-time quantum operations. On two-level systems:

ΛGAD : ρ 7→
[

(1− η)ρ00 + ηp
√

1− ηρ01√
1− ηρ∗01 (1− η)(1− ρ00) + η(1− p)

]
(2.9)

ρT =

[
p 0
0 (1− p)

]
(2.10)

The fixed state of the generalized amplitude damping channel (ΛGAD above) is labelled ρT ,
it can be thought of as a two-level thermal state for a diagonal Hamiltonian.

We have treated Λ as a function on the space of matrices. In the remainder of this
section, we use the CPTP constraints on quantum channels to express them as operators
whose action on states can be studied and calculated more efficiently.

2.5.1 The Stinespring Representation

The Stinespring representation is an operational definition of a quantum channel, modelling
the action of the channel as the result of an interaction with the external environment which
can be described by a large unitary operator:
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ρS
USE

Λ(ρS)

ρE

Figure 2.1: The Stinespring representation of a quantum channel Λ. The action of the
channel on the state |ψ〉 is calculated by applying the unitary USE to the state ρS ⊗ ρE,
then tracing out the subspace HE.

It is important to note that, for a given Λ, many sets { ρE, USE } will give identical dynamics
on the state ρS, and there exists a freedom in which basis one uses to take a ‘partial trace’
over the subspace HE. The resulting quantum operation can then be expressed as

Λ(ρ) = trE(U(ρS ⊗ ρE)U †). (2.11)

Considering the representation-independent definition given in Equation 2.9, we can
formulate the quantum circuit implementing this map as a controlled unitary, being con-
trolled by the fixed state ρT :

ρ • ΛGAD(ρ)

|0〉 Ry(θ) • Ry(θ) •

ρT • •
Figure 2.2: A Stinespring representation of the thermal equilibration channel ΛGAD. The
action of this channel on the state ρ is, with probability p, to perform a spontaneous
emission channel (see [60]), and with probability 1−p, to perform a spontaneous absorption
channel.

There are two more interesting properties that become apparent about quantum chan-
nels in the Stinespring representation, and in general. Firstly, any CPTP map acting
on density matrices in a d-dimensional Hilbert space can be expressed using at most d2

elements of the associated Liouville space (the vector space of operators on the Hilbert
space). Therefore, it is never necessary to introduce an ‘environment’ that is larger than
two copies of the original system in order to describe the channel Λ acting on ρ. In addi-
tion, the initial state of the environment can always be taken to be |0〉〈0| in the appropriate
ancillary Hilbert space, absorbing the parameters contained in the initial state into USE,
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using the partial trace after USE to produce probabilistic mixture. This gives a standard, or
canonical, Stinespring representation [60], which we show below for generalized amplitude
damping:

ρ • ΛGAD(ρ)

|0〉 Ry(θ) • Ry(θ) •

|0〉 Ry(φ) • •

Figure 2.3: A standard Stinespring representation of the circuit producing ΛGAD. Here,
y-axis rotations by two angles θ and φ are introduced; φ = 2 sin−1

(√
p
)
, θ = 2 sin−1

(√
η
)
.

Standard constructions such as these are not necessarily concise, but are useful in trans-
forming channels expressed in the Stinespring representation to other representations.
(Readers unfamiliar with the circuit diagram notation above may refer to [46].)

The main disadvantage of representing channels in the Stinespring representation is that
the resulting operator is d3-by-d3 in size. For n-qubit Hilbert spaces, the number of matrix
elements grows as 26n, and the number of elementary operations required to evaluate the
action of such a map grows as 29n in its leading term. This complexity can be reduced
with the introduction of more compact, efficient representations of quantum operations.
We focus on the Kraus representation and the family of ‘super-matrix’ representations
below.

2.5.2 The Kraus Representation

In order to reduce the size and evaluation time of quantum operations, we simplify the
Stinespring quantum operation analytically. In order to do so, we provide a formula for
the partial trace introduced in the last subsection:

trB(ρAB) =
∑
j

(1̂⊗ 〈j|)(ρAB)(1̂⊗ |j〉) =
∑
jklmn

ρAB,klmn |k〉〈l| ⊗ 〈j |m〉〈n| j〉

=
∑
jkl

ρAB,kljj |k〉〈l| , (2.12)
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the partial trace over the system HB reduces operators on the composite space HAB to
those on the system HA, summing over matrix elements whose indices on the system HB

are diagonal.

trB(ρA ⊗ ρB) =
∑
j

(1̂⊗ 〈j|)(ρA ⊗ ρB)(1̂⊗ |j〉)

=
∑
j

ρA ⊗ 〈j|ρB|j〉 = tr(ρB)ρA = ρA, (2.13)

where |j〉 is a pure state in the Hilbert space HB.

See above that, for a separable state (expressed as the Kronecker product of two states
on smaller Hilbert spaces), the partial trace over one of the subspaces is equivalent to the
factor state on the other subspace. Using this formula for the partial trace, we calculate
the effect of applying the channel Λ in the standard Stinespring representation.

Λ(ρ) =
∑
j

(
1̂⊗ 〈j|

)
USE (ρ⊗ |0〉〈0|)U †SE

(
1̂⊗ |j〉

)
=
∑
j

(
1̂⊗ 〈j| · USE · 1̂⊗ |0〉

)
ρ
(
1̂⊗ 〈0| · USE · 1̂⊗ |j〉

)
=
∑
j

AjρA
†
j; Aj =

(
1̂⊗ 〈j| · USE · 1̂⊗ |0〉

)
(2.14)

Note that the complete positivity of the unitary USE and the partial trace defined above
guarantees the complete positivity of the channel Λ, the trace of Λ(ρ) is

tr

(∑
j

AjρA
†
j

)
= tr

((∑
j

A†jAj

)
ρ

)
≡ tr(ρ)

∴
∑
j

A†jAj = 1̂. (2.15)

There is a special class of quantum operations, the unital channels, whose characteristics
can easily be specified in the Kraus form. Abstractly, the unitality constraint can be
defined as

Λ

(
1̂
d

)
=

1̂
d
, (2.16)
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with the constraint being∑
j

AjA
†
j = 1̂ (2.17)

in the Kraus representation.

To express generalized amplitude damping in the Kraus form, we calculate Aj =(
1̂⊗ 〈j| · USE · 1̂⊗ |0〉

)
.

USE =

p̃η̃ −√pη̃ −√ηp̃ √
pη 0 0 0 0√

p p̃ 0 0 0 0 0 0
0 0 0 0 0 0 p̃ −√p
0 0 0 0

√
pη
√
ηp̃

√
pη̃ p̃η̃

0 0 0 0 p̃ −√p 0 0
0 0 0 0

√
pη̃ p̃η̃ −√pη −√ηp̃√

ηp̃ −√pη p̃η̃ −√pη̃ 0 0 0 0
0 0

√
p p̃ 0 0 0 0


(2.18)

where x̃ =
√

1− x. There are four Kraus operators;
(
1̂⊗ 〈00|

)
USE

(
1̂⊗ |00〉

)
,(

1̂⊗ 〈01|
)
USE

(
1̂⊗ |00〉

)
,
(
1̂⊗ 〈10|

)
USE

(
1̂⊗ |00〉

)
, and

(
1̂⊗ 〈11|

)
USE

(
1̂⊗ |00〉

)
, given

below:(
1̂⊗ 〈00|

)
USE

(
1̂⊗ |00〉

)
=
√
p

[
1 0
0
√

1− η

]
(
1̂⊗ 〈01|

)
USE

(
1̂⊗ |00〉

)
=
√

1− p
[ √

1− η 0
0 1

]
(
1̂⊗ 〈10|

)
USE

(
1̂⊗ |00〉

)
=
√
p

[
0
√
η

0 0

]
(
1̂⊗ 〈11|

)
USE

(
1̂⊗ |00〉

)
=
√

1− p
[

0 0√
η 0

]
(2.19)
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The action of Λ on ρ is calculated in the Kraus representation as follows:

ρ =

[
ρ00 ρ01

ρ∗01 1− ρ00

]
Λ(ρ) = p

[
1 0
0
√

1− η

] [
ρ00 ρ01

ρ∗01 1− ρ00

] [
1 0
0
√

1− η

]
+ p

[
0
√
η

0 0

] [
ρ00 ρ01

ρ∗01 1− ρ00

] [
0 0√
η 0

]
+ (1− p)

[ √
1− η 0
0 1

] [
ρ00 ρ01

ρ∗01 1− ρ00

] [ √
1− η 0
0 1

]
+ (1− p)

[
0 0√
η 0

] [
ρ00 ρ01

ρ∗01 1− ρ00

] [
0
√
η

0 0

]
= p

[[
ρ00

√
1− ηρ01√

1− ηρ∗01 (1− η)(1− ρ00)

]
+

[
η(1− ρ00) 0

0 0

]]
+ (1− p)

[[
(1− η)ρ00

√
1− ηρ01√

1− ηρ∗01 1− ρ00

]
+

[
0 0
0 ηρ00

]]
=

[
(1− η)ρ00 + ηp

√
1− ηρ01√

1− ηρ∗01 (1− η)(1− ρ00) + η(1− p)

]
, (2.20)

which is identical to the action of ΛGAD on ρ shown in 2.9.

Since a quantum operation on a 2n-dimensional Hilbert space can have 22n Kraus
operators, each of which is a 2n-by-2n matrix, applying a quantum operation in Kraus form
requires approximately 25n operations, and 24n stored parameters. This representation is
convenient for applying quantum operations to states analytically; we proceed to describe
a family of representations which share this level of convenience, which are also convenient
for other applications.

2.5.3 Super-matrix Representations

Since 24n parameters are required to describe a quantum operation on n qubits, it is in-
teresting to consider the means by which these parameters can be compiled into a single
22n-by-22n matrix such that the channel can be easily applied to a state. There are three
such representations that are considered here: the Choi matrix, the column-stacked super-
operator and the Pauli-basis superoperator.
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The Choi Matrix

We examine the effect of a quantum operation on a d-dimensional space, extended onto a
d2-dimensional space, acting on a fixed state, defined below:

Φ(Λ) = 1̂⊗ Λ (|Ω〉〈Ω|) ; |Ω〉 =
1√
d

d−1∑
j=0

|j〉 ⊗ |j〉 (2.21)

Φ(Λ) =
1

d
1̂⊗ Λ

(
d−1∑
j,k=0

(|j〉 ⊗ |j〉)(〈k| ⊗ 〈k|)

)
=

1

d

d−1∑
j,k=0

|j〉〈k| ⊗ Λ(|j〉〈k|) (2.22)

We can write this sum in block matrix notation, noting that each block of the resulting
matrix is equivalent to the action of the channel on an elementary matrix:

Φ(Λ) =
1

d

 Λ(|0〉〈0|) · · · Λ(|0〉〈d− 1|)
...

. . .
...

Λ(|d− 1〉〈0|) · · · Λ(|d− 1〉〈d− 1|)

 (2.23)

Since the set |j〉〈k| (0 ≤ j, k ≤ d − 1) forms a basis for the space of operators, all the
information about Λ is contained within Φ(Λ), and we can express Λ(ρ) as

Λ

(
d−1∑
j,k=0

ρjk |j〉〈k|

)
=

d−1∑
j,k=0

ρjkΛ(|j〉〈k|) =
d−1∑
j,k=0

ρjk(〈j| ⊗ 1̂) · Φ(Λ) · (|k〉 ⊗ 1̂); (2.24)

where it is possible to think of (〈j| ⊗ 1̂) ·Φ(Λ) · (|k〉 ⊗ 1̂) as the block, or submatrix, of the
Choi matrix corresponding to the element ρjk of the matrix ρ.

For generalized amplitude damping, the Choi matrix is:

∴ Φ(Λ) =


1− η + ηp 0 0

√
1− η

0 η(1− p) 0 0
0 0 ηp 0√

1− η 0 0 1− η + η(1− p)

 (2.25)

Λ(ρ) = ρ00

[
1− η + ηp 0

0 η(1− p)

]
+ ρ01

[
0
√

1− η
0 0

]
+ ρ∗01

[
0 0√

1− η 0

]
+ (1− ρ00)

[
ηp 0
0 1− η + η(1− p)

]
=

[
(1− η)ρ00 + ηp

√
1− ηρ01√

1− ηρ∗01 (1− η)(1− ρ00) + η(1− p)

]
(2.26)
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In general, this requires 24n stored parameters, and 24n operations to calculate Λ(ρ).

Since the matrices |j〉〈k| form a basis for the vector space of density operators, we
explore below two other representations for quantum channels which act as matrices on
the operator vector space; the column-stacked superoperator, and the Pauli basis superop-
erator.

The Column-Stacked Superoperator

Since the d-by-d operator space is a vector space, its elements can be expressed as column
vectors in a d2-dimensional space. This can be accomplished for a matrix B, either a
density matrix or operator, using the state |Ω〉 defined in 2.21:

col(B) =
√
d(1̂⊗B) |Ω〉 (2.27)

In order to obtain a column-stacked superoperator for a given quantum channel, it is
convenient to begin with a channel in either the Kraus representation, or the Choi matrix
for a channel.

Beginning with the Kraus representation of a channel, the superoperator can be ex-
pressed using the well-known identity on generic matrices A, B, and C [40]:

col(ABC) =
(
CT ⊗ A

)
col(B) (2.28)

col

(∑
j

AjρA
†
j

)
=
∑
j

A∗j ⊗ Aj col(ρ), ∴ [Λ] =
∑
j

A∗j ⊗ Aj (2.29)

Beginning with the Choi matrix, we can use [40] to obtain the superoperator [Λ] for a
given channel Λ:

[Λ] =
d−1∑
j,k=0

(|j〉〈k| ⊗ 1̂)Φ(Λ)(1̂⊗ |j〉〈k|). (2.30)

Note that this operation is a permutation of indices, which, if applied twice, results in the
identity. This means that the Choi matrix can be obtained using the same formula, given
the superoperator.
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Either of these methods result in the superoperator for generalized amplitude damping:

[ΛGAD] =


1− η + ηp 0 0 ηp

0
√

1− η 0 0
0 0

√
1− η 0

η(1− p) 0 0 1− η + η(1− p)

 (2.31)

[ΛGAD] col(ρ) =


(1− η)ρ00 + ηp√

1− ηρ01√
1− ηρ∗01

(1− η)(1− ρ00) + η(1− p)

 = col(ΛGAD(ρ)) (2.32)

This, too, requires 24n stored parameters and operations to apply. For certain channels,
the superoperator will be sparse in the column-stacked basis. This eases the application
of certain channels. Many channels which are dense in this basis are sparse in the Pauli
basis, which necessitates the introduction of Pauli-basis superoperators next.

The Pauli-Basis Superoperator

The decomposition of a 2-by-2 density matrix into sums over the basis |j〉〈k| , j, k ∈ {0, 1}
is used extensively in the definition of the Choi matrix and column-stacked superoperator.
However, it is not the only permissible decomposition; there are other bases which are
frequently useful in the study of CPTP maps. The Pauli basis is a good example:

ρ =
1

2

(
1̂ + ρxσx + ρyσy + ρzσz

)
; ρa = tr(ρσa), a ∈ {x, y, z } (2.33)

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(2.34)

ρ ≡ 1

2


1
ρx
ρy
ρz

 , [Λ]Pauli =


1 0 0 0

~t M

 (2.35)

where ~t is a 3-by-1 vector of non-unital ‘shift’ coefficients and M is a 3-by-3 matrix acting
on [ρx, ρy, ρz]

T .

Generalized amplitude damping can be described in terms of its Pauli-basis superoper-
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ator as

[ΛGAD]Pauli =


1 0 0 0
0

√
1− η 0 0

0 0
√

1− η 0
η(2p− 1) 0 0 1− η

 (2.36)

ΛGAD(ρ) =
1

2


1√

1− ηρx√
1− ηρy

η(2p− 1) + (1− η)ρz


=

1

2
(1̂ +

√
1− η(ρxσx + ρyσy) + (η(2p− 1) + (1− η)ρz)σz)

=

[
(1− η)ρ00 + ηp

√
1− ηρ01√

1− ηρ∗01 (1− η)(1− ρ00) + η(1− p)

]
. (2.37)

Many channels on qubits exhibit the same symmetries as generalized amplitude damping,
requiring only four stored parameters, and greatly simplifying the calculation of Λ(ρ).
Generally, a Pauli-basis superoperator requires the same number of stored parameters and
the same amount of calculation in applying them to states, 24n parameters/operations.

2.6 Conclusion

We have seen parametrizations for pure and mixed states, as well as quantum channels both
perfect (unitary) and imperfect (CPTP). Mixed states and CPTP channels are ubiquitous,
and the study of quantum communication/error-correction makes extensive use of them.
In the following two chapters, we outline quantum error-correction and communication.
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Chapter 3

Quantum Error Correction, the
Stabilizer Formalism, and Fault
Tolerance

In the previous chapter, we discussed non-unitary quantum operations, and gave examples
of common non-unitary processes in quantum systems. While these non-unitary opera-
tions can be useful during initialization and measurement of quantum systems, they are
detrimental to stable memory and high-fidelity control (DiVincenzo criteria 3 and 4, see
Chapter 1). In order to simulate unitary evolution, it is necessary to use a set of states
entangled across multiple imperfect quantum systems. This is the practice of quantum er-
ror correction [25]. In this chapter, we describe the basic properties of quantum codes and
criteria for correcting errors on quantum states, which is the prior work necessary for the
introduction of augmented error correction codes in Chapter 5 and quantum transcoding
in Chapter 7.

3.1 Error-Correcting Codes

In any information-processing system, it is possible that some interaction with the envi-
ronment will result in the application of an unwanted operation, regardless of whether the
system is classical or quantum-mechanical. Such operations are called errors. A common
classical error model is symmetric bit-flip, which takes an input state, labelled α, to the
state 1− α with probability p, for α ∈ { 0, 1 }, 0 ≤ p ≤ 1:
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Figure 3.1: Symmetric bit-flip. With probability p, an incoming bit is ‘flipped’, changing
its state from 0 to 1 and vice versa.

Given access to multiple bits which are subject to errors, individual states which remain
distinguishable after being subjected to the error in question can be found. We refer to this
set of resilient states collectively as the error-correcting code, with each state also being
known as a codeword. For example, the states 000 and 111 on a three-bit register remain
distinguishable after a single bit-flip error, since individual bit flips correspond to steps on
the following graph:

000

100

010

001

111

011

101

110

Figure 3.2: States on three bits which can be transformed to one another by single bit flip
errors.

Note that the state 000 can be mapped by a single probabilistic bit flip to any state from
the set { 000, 100, 010, 001 }, where the state 111 is mapped to its complement. Therefore,
if only one bit flip occurs, the original state from the set of codewords { 000, 111 } can
be recovered, knowing that the other six states correspond to errors. The probability of
successful recovery is (1− p)3 + 3p(1− p)2, which is greater than 1− p, the probability of
preserving the original message without encoding, for p < 1/2.

A similar procedure can be used to protect quantum information against bit-flip errors,
mapping the state |0〉 to |000〉 and |1〉 to |111〉. The use of this three-bit code to correct
bit-flip is seen in the circuit below:
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|ψ〉 •

Λ

• |ψ〉

|0〉 • tr

|0〉 • tr

Figure 3.3: An error-correcting circuit for the three-qubit channel Λ, whose Kraus operators
are proportional to 1̂⊗ 1̂⊗ 1̂ = 1̂⊗3, X⊗ 1̂⊗ 1̂ = X1, 1̂⊗X⊗ 1̂ = X2, and 1̂⊗ 1̂⊗X = X3.
See [46], Chapter 10.

|ψ〉, above, is an arbitrary one-qubit input state, which can be expressed as a linear
combination α |0〉 + β |1〉. The addition of two qubits in the state |0〉, followed by the
controlled X ⊗X gate results in the arbitrary encoded state α |000〉+ β |111〉. This state
can be written as a linear combination of |000〉 and |111〉; the codewords of the repetition
code. To show how the circuit corrects these errors, we describe the role of the Toffoli gate
at the end of the circuit. The four possible states after the second controlled-X ⊗X gate
are:

Error Resulting State

1̂⊗3 α |000〉+ β |100〉 = |ψ〉 ⊗ |00〉
X1 α |111〉+ β |011〉 = (X |ψ〉)⊗ |11〉
X2 α |010〉+ β |110〉 = |ψ〉 ⊗ |10〉
X3 α |001〉+ β |101〉 = |ψ〉 ⊗ |01〉

Table 3.1: States resulting from the application of single bit-flip errors to the encoded
state α |000〉 + β |111〉, followed by the decoding operation. Note that only the error X1

produces an error on the output state, and it is uniquely associated with the state |11〉 on
the ancillae, regardless of the encoded state.

These states are each tensor products of two components, the second of which is com-
monly called the error syndrome. This syndrome identifies the errors from the map, so
that the recovery operation (in this case, the final Toffoli gate), can apply the appropriate
correction operator (in this case, the Pauli X) to states with specific syndromes (in this
case, |11〉). Note that it is not necessary to apply a Toffoli gate to correct the indicated
error, the syndrome bits can be measured, and classical control can be used to correct the
resulting error (see [83, 27, 5] for examples of error-correction protocols which use classical
control).

Thus, for a specified error model, a code can be found which allows information about
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the logical state to be recovered after errors have acted on the system, given that the
output states of the error channel are distinguishable. In the next section, we discuss a
general requirement for the recovery of information from noisy channels.

3.2 The Knill-Laflamme Criterion

The requirement that codewords transform under the error map to sets of distinguishable
states can be expressed mathematically, for a generic set of codewords { | ψj〉 } and error
operators {Ea }. This is the Knill-Laflamme criterion [51]:

〈ψj|E†aEb|ψk〉 = Cabδjk. (3.1)

When it is satisfied, the existence of a recovery operator (such as the Toffoli gate above)
is implied. Note that the value of the inner product when j = k is independent of j,
so that there is no correlation between the codeword sent through the channel and the
coefficient Cab. For the three-bit code correcting a single bit-flip, the Knill-Laflamme
criterion is satisfied, since the states in the set {|000〉 , |100〉 , |010〉 , |001〉}, are orthogonal
to the states in the set {|111〉 , |011〉 , |101〉 , |110〉}, corresponding exactly with the classical
repetition code correcting bit-flip.

This exact criterion for whether error sets are correctable provides a rigorous, convenient
means of qualifying the performance of an error-correcting code. However, the Knill-
Laflamme criterion is rarely satisfied exactly for physically-motivated noise maps. We will
discuss, in the following section, we discuss a means of quantifying the ability of a quantum
channel to preserve or destroy quantum information when the Knill-Laflamme criterion is
not satisfied exactly.

3.3 Channel Fidelity

It is rarely, if ever, possible to design a quantum error-correcting code which can perfectly
correct a physically-motivated error channel. It is therefore important to evaluate the
performance of such a given code using numerical metrics. One such metric is a specific
case of Schumacher’s entanglement fidelity [72], typically called the channel fidelity :

FC(Λ) = 〈Ω|ΦΛ|Ω〉 , (3.2)

ΦΛ = 1̂⊗ Λ(|Ω〉〈Ω|)
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Here, |Ω〉 is defined as:

|Ω〉 =
1√
d

d−1∑
j=0

|j〉 ⊗ |j〉 . (3.3)

Note that this fidelity is linear with respect to the Choi matrix ΦΛ, which allows for
efficient optimization over families of channels (for more details, see [68], Chapter 5 of
this thesis, or Appendix A), and it has an operational definition, in that it is proportional
to the average state fidelity of the output of the channel with the input, the expression∫
〈ψ|Λ(|ψ〉〈ψ|)|ψ〉 dψ [44]. The channel fidelity can also be calculated given the Kraus

operators {Aj }, although it is not linear in the Kraus representation:

FC(Λ) =
∑
j

|tr(Aj)|2 ,
∑
j

|tr(Aj +Bj)|2 6=
∑
j

|tr(Aj)|2 +
∑
j

|tr(Bj)|2 (3.4)

There is a family of methods for deriving quantum error correction codes which rely on
violating the Knill-Laflamme criterion, and instead maximizing the channel fidelity of the
corrected noise channel [67, 30, 29]. Codes derived using these methods can perform more
effectively than the exact codes presented above, at the cost of increased complexity [56, 18].

It is interesting to note that the ‘exact’ codes are also approximate, in the sense that
they correct an approximation to some physically-motivated noise. Returning to the bit-flip
code presented earlier, we note that it will exactly correct the error set { 1̂⊗3, X1, X2, X3 }.
This error set is unlikely to occur if errors on independent qubits have independent prob-
abilities, since, in this channel, if the operator X has been applied to one of the qubits,
we are guaranteed that it has not been applied to the others. A more realistic model is an
independent noise map on each qubit:

ΛFLIP =
{√

1− p 1̂,
√
pX
}

(3.5)

Λ⊗3
FLIP =

{√
1− p

3
1̂1̂1̂, (1− p)√pX1̂1̂, (1− p)√p 1̂X1̂, (1− p)√p 1̂1̂X,

p
√

1− p 1̂XX, p
√

1− pX1̂X, p
√

1− pXX1̂,
√
p3XXX

}
(3.6)

Note that, if the bit-flip probability p is small, (1− p)√p is much larger than p
√

1− p, so
the channel can be approximated by one with Kraus operators proportional to those which
can be corrected exactly by the repetition code above. In this sense, all error correction
can be thought of as approximate.
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We can think of an error-correcting code as being useful when the channel fidelity of
the corrected noise channel exceeds that of the uncorrected noise acting on a single bit.
For example, if the bit-flip channel is left uncorrected, the channel fidelity is

FC(ΛFLIP) = 1− p. (3.7)

The channel fidelity for bit-flip, corrected using the three-qubit code, is

FC(Λ3) = 1− 3p2 + 2p3. (3.8)

When 0 < p < 1/2, this code can be considered useful, since FC(Λ3) > FC(ΛFLIP) in this
regime.

3.3.1 The Pauli Basis for Errors

We have seen that, given an error model which is known and specified prior to encoding,
it is possible to create a quantum error-correcting code which allows information to be
recovered when the system is subject to errors, and to quantify its performance. This
ability to correct errors extends to the case in which the error model is not completely
specified, allowing for codes which correct classes of errors. This is important, since it
increases the versatility of quantum error-correcting codes, allowing errors to be corrected
without a perfect error model.

It is possible to correct more general classes of errors because, for any code correct-
ing the error set {Ea}, any error set {Fb} will be correctable using the same code, if
Fb =

∑
a cabEa ∀Fb, for some complex coefficients cab (for a comprehensive proof, see [60],

Chapter 10). For this reason, we require a code that corrects a basis of the possible errors
within a specific class in order to state with certainty that it can correct any error within
that class. The most popular basis for errors is the basis of Pauli matrices, defined in
Equation 2.34.

Given a code which can correct a Pauli error on one qubit (called a weight-one Pauli
error), one can correct any single-qubit error. If errors are the result of the random applica-
tion of unwanted operators with some probability perr, then the probability of a two-qubit
error is proportional to p2

err < perr, and the use of codes to correct weight-one errors is
well-justified. In the following sections, we will discuss an efficient means of constructing
error-correcting codes, given the constraint that the error set is composed of Pauli opera-
tors. We will then show how this is extended to allow computation with imperfect control
operations, and point out some of the limitations of this approach.
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3.4 The Stabilizer Formalism

Error-correcting codes are difficult to derive by using the Knill-Laflamme condition, and
their performance is difficult to evaluate using the channel fidelity, because, for an n-qubit
quantum code, the space of possible codewords over which to search or calculate grows as
2n. Fortunately, the symmetries of the Pauli group can be used to design quantum codes
to correct Pauli errors, using only a quadratic number of parameters. This is the stabilizer
formalism [36], which we discuss in this section. This formalism is best understood with a
few properties of the n-qubit Pauli group, which we detail below.

3.4.1 The n-Qubit Pauli Group

The n-qubit Pauli group is a finite matrix group consisting of tensor products of the
following matrices:

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
Table 3.2: Matrix representations of the one-qubit Pauli operators.

Note that the usual tensor product notation for such an operator (e.g. X⊗Y ⊗Z⊗I⊗Z)
is often eschewed in favour of a more concise product notation (e.g. XY ZIZ). There are
many special properties of the n-qubit Pauli group which are relevant to quantum error
correction in the stabilizer formalism. In this section, we discuss a few of the Pauli group’s
special properties.

Firstly, the product of two n-qubit Paulis can be determined without explicit matrix
multiplication. This is due to the closure of the single-qubit group under multiplication,
and a convenient property of the tensor product:

(A⊗B)(C ⊗D) = AC ⊗BD.

For example, (XY Z)(ZIX) = XZ ⊗ Y I ⊗ ZX = (−iY )⊗ Y ⊗ (iY ) = Y Y Y .

Also, each pair of n-qubit Pauli operators either commutes or anti-commutes. Commu-
tation of a pair of n-qubit Pauli operators p and q can be easily determined by examining
the commutation of their single-qubit constituents. If an even number of these constituents
anti-commute, then p and q commute. For example, [XY Z, ZIX] = 0 since {X, Z} = 0,
and two of the single-qubit constituents of Paulis XY Z and ZIX anti-commute.
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There is a third special property of the elements of the Pauli group on n qubits which
allows us to specify an (n − 1)-qubit subspace of a Hilbert space using a single Pauli
operator. Namely, each n-qubit Pauli has 2n−1 eigenvalues equal to 1 and 2n−1 eigenvalues
equal to −1, so labelling the +1-eigenspace of a Pauli P as a subspace of interest results in
a subspace of dimension 2n−1, specified using a Pauli with n characters in its description.
If a second Pauli is chosen, such that it commutes with, and is not equal to, the first,
then the two share an eigenbasis, and their mutual +1-eigenspace is 2n−2-dimensional. In
general, selecting m Paulis which mutually commute and are independent (no member of
the set being a product of the others) results in a subspace which is 2n−m-dimensional.
This property of the Pauli group is what motivates the definition of a stabilizer code in
the following section.

3.5 Stabilizer Codes

As with any error-correcting code, a stabilizer code is represented by the set of its codewords
C:

C = {|ψ〉 |P |ψ〉 = |ψ〉 ∀P ∈ S} . (3.9)

Here, S is the stabilizer, a mutually-commuting set of 2n−k Paulis, defining a code which
protects k-qubit states. It deserves mention that, if two Paulis P1 and P2 are in the
stabilizer for a given code, so is P1P2 (since P1P2 |ψ〉 = P1 |ψ〉 = |ψ〉), so it is sufficient to
specify a generating set of n− k Paulis for the stabilizer.

Returning to the example of protecting a quantum state against bit-flip using a three-
qubit repetition code, we can express the stabilizer as

S = 〈ZZI, ZIZ〉 , (3.10)

with 〈A〉 specifying the group generated by the set A. This definition of the code is more
concise than the circuit representation given in Figure 3.3, requiring only n(n−k) symbols
to represent, as opposed to the 22n parameters required to specify the encoding operator
explicitly. It is advantageous, therefore, to work with the stabilizer whenever possible.

It is possible to determine which errors can be corrected by a stabilizer code using
only the Paulis describing the generating set. To see this, we first note that specifying a
generator for a code divides the Pauli group on n qubits into three categories:
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1. Those that are in the stabilizer S. Note that, for any Paulis P1 and P2 in S,
〈ψj|P1P2|ψk〉 = 〈ψj|ψk〉, trivially. Also, any Pauli drawn from the stabilizer will
have no effect on the logical state, since P |ψ〉 = |ψ〉.

2. Those that anti-commute with at least one element of the stabilizer. Choosing S∗ to
be one of the stabilizer generators with which the a Pauli P anti-commutes, we can
write

〈ψj|P |ψk〉 = 〈ψj|S∗PS∗|ψk〉
= −〈ψj|S∗S∗P |ψk〉 = −〈ψj|P |ψk〉 , ∴ 〈ψj|P |ψk〉 = 0. (3.11)

3. Those that are not within S, but commute with every element of S. This set of Paulis
is typically called the normalizer, mod S, or N(S)\S of the stabilizer code. If N is
such a Pauli, then |ν〉 = N |ψj〉 is a codeword, since P |ν〉 = PN |ψ〉 = NP |ψ〉 =
N |ψ〉 = |ν〉 for all P in the stabilizer. Therefore, for some state |ψj〉, 〈ψj|N |ψj〉 6= 1.
The subset N(S)\S is the set of logical Pauli operators.

The three-qubit bit-flip code is simple enough that we can explicitly calculate these
sets of Paulis. Firstly, we generate the stabilizer:

S = 〈ZZI, ZIZ〉 = { III, ZZI, ZIZ, IZZ } (3.12)

The normalizer, mod S of the bit-flip code can be expressed in terms of cosets of the
stabilizer, which are sets of stabilizer elements, multiplied by a specific operator:

p · S = { ps | s ∈ S } . (3.13)

The normalizer, mod S of the bit-flip code consists of the stabilizer cosets of XXX (which,
for clarity, is {XXX,−Y Y X,−Y XY,−XY Y }), Y Y Y , and ZZZ. The Paulis which anti-
commute with at least one element of the stabilizer, can, in turn be expressed as cosets of
the normalizer, with the coset operators being XII, IXI, and IIX, the errors which the
code is designed to correct.

Errors are detected by measuring the stabilizer generators, the measurement results
providing a syndrome which can reveal the nature of an error without yielding any infor-
mation about the codeword. For the bit-flip code, these measurement results can be easily
tabulated:
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Error 〈ZZI〉 〈ZIZ〉
III 1 1
XII -1 -1
IXI -1 1
IIX 1 -1

Table 3.3: Measurement results for the stabilizer generators of the three-qubit bit-flip code,
in the cases where either no error has occurred, or a single-qubit bit-flip error has occurred.

These measurement results can then be used to implement a classically-controlled Pauli,
which corrects the detected error.

Stabilizer codes, then, can fulfil the Knill-Laflamme criterion for any set of errors {E}
for which EaEb is never in N(S)\S. For codes correcting weight-one Pauli errors on
n qubits, the set EaEb is the set of all n-qubit Paulis of weight one or two (recall, from
Subsection 3.3.1 that, to correct general single-qubit errors, it is sufficient to correct single-
qubit Pauli errors). The minimum weight of a logical Pauli, or distance of a stabilizer code
must be at least three in order to correct one Pauli error on an n-qubit register. Several
such codes exist [14, 81, 55, 77], along with analytic means of deriving them [82]. This
suffices for reducing the logical error probability for the stochastic errors discussed above
from order perr to order p2

err, given that a logical state is prepared, no operations (or noiseless
operations) are carried out on the register, and then the state is measured. In the following
sections, we examine methods for carrying out noisy operations on encoded registers so as
to limit the effects of the noise, and an additional means of suppressing errors by successive
encoding.

3.6 Fault-Tolerant Computation

If, in order to alter the state on an encoded register, it is first necessary to decode that
register, then there is a finite amount of time which each qubit must spend unencoded. This
negates the performance of any potential error-correcting scheme, since data will be left
unprotected from error for a finite amount of time in each computational step. Therefore,
it is necessary to perform operations directly on encoded data. In this section, we discuss
methods to accomplish this, and constraints on these methods.

In the previous section, the central criterion for logical Paulis (membership in the set
N(S)\S) was introduced, as a constraint on Pauli operators. In addition, there exist non-
Pauli unitary operators which can be said to normalize a stabilizer group S. Selecting a
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member S∗ of the stabilizer, and a stabilized state |ψ〉, we perform a brief calculation to
illustrate the constraint on such unitaries:

U |ψ〉 = US∗ |ψ〉 = (US∗U
†)U |ψ〉 . (3.14)

In order for the operator U to normalize S, then, the set of operators
{
USU †

}
must be

equivalent to the stabilizer S. Since the stabilizer group is a subgroup of the Pauli group,
we focus on the operators which map each Pauli P to another Pauli P ′ = UPU †. These are
called Clifford operators, and while they are not sufficient for universal computation [2],
there is a large set of important tasks which can be accomplished using Clifford operators.

The Clifford operators can be generated by multiplying a small set of operators, acting
on individual qubits/pairs of qubits:

H =
1√
2

[
1 1
1 −1

]
P =

[
1 0
0 i

]
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 3.4: Matrix representations of the primitive Clifford operators.

These operators can also be completely described by their action on generating sets of
the Pauli group (typically Xj and Zj for 0 ≤ j ≤ n− 1):

H =
X 7→ Z
Z 7→ X

P =
X 7→ Y
Z 7→ Z

CNOT =

X1 7→ X1X2

X2 7→ X2

Z1 7→ Z1

Z2 7→ Z1Z2

Table 3.5: Representations of the primitive Clifford operators by their action on the gen-
erators of the Pauli group {Xj, Zj | j ∈ Zn }.

Clifford operators can be specified using a number of parameters which is quadratic in
the number of qubits using the system above.

Note that the CNOT can map weight-one Paulis to weight-two Paulis. For a stabilizer
code which can correct weight-one errors, the CNOT can transform correctable errors to
non-correctable errors. In order to implement a Clifford operator fault-tolerantly, then, it
is sufficient for the Clifford to be transversal, having no physical CNOT gates (or other
controlled-Pauli gates) on a given logical qubit. It is permissible to use physical CNOT
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gates to implement two-qubit logical gates, as long as the control and target physical qubits
are components of separate logical qubits, since a weight-one error on one code block will
be mapped to two separate correctable errors.

The ability to fault-tolerantly apply Clifford gates to stabilizer states is insufficient for
universal computation [2]. Furthermore, not all stabilizer codes admit a complete set of
transversal Cliffords. However, some codes, such as the punctured Reed-Muller code on
15 qubits [84] admit transversal implementations of non-Clifford gates. This raises the
question of whether a universal set of transversal gates can be obtained for a given code.
Eastin and Knill [28] showed that no quantum code which detects a local error can possess
a universal set of unitary gates, if all of the gates are transversal with respect to a fixed
partition of the register.

In order to design protocols for universal fault-tolerant computation, it is necessary to
circumvent this no-go result. The most popular means of doing so is gate teleportation,
which uses controlled-Pauli gates and non-stabilizer states (called ‘magic states’) to imple-
ment non-Clifford gates [91]. Crucial to this approach is magic state distillation, the use of
Clifford gates and projective measurements to extract small numbers of magic states from
large registers initialized in noisy magic states [12]. Recently, Paetznick and Reichardt [62]
showed that there exist codes which admit a transversal universal gate set on a subset of
the protected qubits, provided that there are unused ‘gauge’ qubits prepared in a fixed
state. These transversal operations induce Pauli errors on these gauge qubits which can
be corrected using standard error-correction procedures.

3.6.1 Concatenation

In order to suppress errors to arbitrary precision, it is possible to concatenate a stabilizer
code; each logical qubit being re-encoded into the same stabilizer code. We return to the
three-qubit repetition code correcting bit-flip:
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Figure 3.4: An encoding circuit for the correction of bit-flip errors using nine qubits.
The state |ψ〉 is first encoded as in Figure 3.3 on qubits 1, 4, and 7 (dashed box). This
encoding is then repeated on three registers, resulting in a second level of concatenation
(dotted boxes).

The stabilizer for this code includes three sets of stabilizers for the three-bit repetition
code, on neighbouring sets of three qubits, as well as one set of stabilizers expressed using
the logical operators of the three-bit code:

S = 〈Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, Z1Z2Z3Z4Z5Z6, Z4Z5Z6Z7Z8Z9〉 . (3.15)

This technique, applied to a code which can correct generic errors, produces an encoder with
depth (number of timesteps required to execute a given circuit) ld, where l is the number
of concatenation levels and d is the depth of the bottom-level encoder, and produces a code
with a number of stabilizer generators (n+1)l−1r, where n is the number of qubits used by
the bottom-level code, and r is the number of stabilizer generators used by the bottom-level
code. Note that, at the lowest level of concatenation, errors with probability of order p are
replaced by errors with probability of order p2. The second level of concatenation maps
errors of order p2 to errors of order p4, and the lth level produces an effective error of order
p2l , which scales double-exponentially in l. In this way, only logarithmically-many levels
of concatenation are required in order to ensure that the error rate decays exponentially in
the size of the register. This analysis holds whenever the order-p2 error probability is less
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than the original error probability p. If p 7→ cp2 under concatenation, then p < 1/c ensures
that concatenation improves the error rate [52]. There are associated threshold error rates
for the success of various fault-tolerant operations, see [3] for a comprehensive treatise.

3.7 Conclusion

Stabilizer codes based on the Pauli group are an extremely useful tool in quantum er-
ror correction. They provide a means of describing a quantum error-correcting code on
n qubits, using only a quadratic number of parameters, which is a boon to analysis and
simulation. Operations can also be performed directly on encoded data, in such a way
that errors do not propagate within the registers associated with the same logical qubits.
Assuming that the encoding operations are perfect, and error probabilities are sufficiently
small, independent Pauli errors can be suppressed to arbitrarily low levels using concatena-
tion, which does not consume a prohibitive amount of resources. In Chapter 5, we discuss
improvements to common error-correcting codes, given that the ancilla states may not be
pure before encoding. In Chapter 7, we discuss a potential alternative to the use of gate
teleporation and magic states, which would use Clifford-based computation to alter the
stabilizer code into which some data is encoded, without altering the data itself.
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Chapter 4

Quantum Communication

Another important application of quantum information theory, including the theory of
quantum codes, is the problem of transmitting classical information through noisy quantum
channels. This differs from the central problem in quantum error correction in that it is
not necessary for the quantum state itself to be preserved after transmission through the
channel. In order to consider an attempt at classical communication through a quantum
channel a success, it is only necessary to infer which state of a fixed set (typically called
an alphabet) was sent. Compare this with quantum error correction, in which, in order for
a procedure to be considered successful, a quantum state must be preserved independently
of its membership in a given alphabet.

It is important to note that classical communication theory can be expressed in the
language of quantum mechanics, with the restriction that states sent through channels
are taken from an orthonormal alphabet, {|j〉}, 0 ≤ j ≤ d − 1 for some d-dimensional
system, and that the channels probabilistically transform the alphabet states |j〉 7→ |j′〉,
without any accompanying unitary rotation, similarly to generalized amplitude damping,
introduced in Equation 2.9. Another similarity between classical and quantum communi-
cation is that the amount of information which can be extracted from a state on a space
A by measuring on another space B is given by the mutual information:

S(A : B) = S(ρA) + S(ρB)− S(ρAB), (4.1)

which is zero for states ρAB = ρA ⊗ ρB. In order to discover the properties of quantum
information which deviate from intuition and classical theory, the focus in quantum infor-
mation theory tends toward non-orthogonal alphabets [32], ‘overloaded’ alphabets which
contain more than d states [49], and on non-standard channels, constructed with the goal of
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exhibiting a certain property (See [80] for an example, though the cited work is concerned
with a different information capacity than the one considered here).

In the first step of a quantum communication protocol, a transmitter (traditionally
named Alice), selects a classical label corresponding to one of the states in the agreed-
upon alphabet. She then prepares a quantum state corresponding to the classical label,
and transmits it through a quantum channel. When Bob receives this quantum state,
he performs a measurement, and attempts to deduce the original classical label. Since
the protocol is considered successful when Bob’s post-measurement classical state matches
Alice’s pre-preparation classical state, the fundamental problem under consideration is the
transmission of classical information over quantum channels. The amount of information
that can be transmitted using optimal preparations and measurements is quantified by the
Holevo bound. A derivation for this quantity is presented in [88], it is presented below for
completeness.

4.1 The Holevo Capacity

Suppose that Alice prepares a state |ψj〉〈ψj| with probability pj from a known alphabet,
also preparing (and subsequently retaining) a ‘label’ state |j〉〈j|. The combined state of
the system is a tensor product between Alice’s Hilbert space A and the Hilbert space T ,
which is to be transmitted to Bob:

ρAT =
∑
j

pj |j〉〈j| ⊗ |ψj〉〈ψj| (4.2)

After transmission, the state is a tensor product between Alice’s and Bob’s respective
Hilbert spaces:

ρAB =
∑
j

pj |j〉〈j| ⊗ ρj, (4.3)

where ρj = Λ(|ψj〉〈ψj|).

There are two simple ways to formulate the Holevo quantity. The first is to consider
the average change in entropy (see Chapter 1) when Bob identifies the index j. The state
of Bob’s system if the space A is traced out is

∑
j pjρj. This changes to ρj when Bob

learns j, with the difference in entropy being S(ρj) − S
(∑

j pjρj

)
. Averaging over the

distribution { pj } gives the Holevo quantity.
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Alternatively, one can calculate the mutual information between Alice and Bob after
transmission:

S(A : B) = S(A) + S(B)− S(A,B)

S(A) = S
(∑

pj |j〉〈j|
)

= H(p)

S(B) = S
(∑

pjρj

)
The calculation of S(A,B) is more complicated, and is given in [89]. It begins by taking
the spectral decomposition of ρAB,

ρAB =
∑
j,k

pjpkj |j〉〈j| ⊗ |kj〉〈kj| ,

and proceeds, using the spectral theorem to simplify the matrix logarithm:

S(A,B) = S

(∑
j,k

pjpkj |j〉〈j| ⊗ |kj〉〈kj|

)

= −tr

((∑
j,k

pjpkj |j〉〈j| ⊗ |kj〉〈kj|

)
log

(∑
j′,k′

pj′pk′j |j
′〉〈j′| ⊗ |k′j〉〈k′j|

))
= −

∑
j,j′,kj ,k′j

pjpkj log(pj′pk′j)tr
(
|j〉〈j|j′〉〈j′| ⊗ |kj〉〈kj|k′j〉〈k′j|

)
= −

∑
j,k

pjpkj log(pjpkj)

= −
∑
j,k

pjpkj log(pj)−
∑
j,k

pjpkj log(pkj)

= H(p) +
∑
j

pjS(ρj)

The mutual information between Alice and Bob after transmission, then, is equal to the
Holevo quantity. This is the maximum amount of information that can be transmitted
through a quantum channel serially, preparing one d-dimensional state at a time from the
alphabet |ψj〉〈ψj| according to the discrete probability distribution {pj}, and sending it
through the channel Λ. In order to determine how much information can be sent through
a channel in principle, it is first necessary to maximize over the sets {|ψj〉〈ψj|} and {pj}:

CH(Λ) = max
{|ψj〉〈ψj |},{pj}

S

(∑
j

pjρj

)
−
∑
j

pjS(ρj) (4.4)
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This is the Holevo capacity [42], it is closely related to the classical capacity of a quantum
channel. However, the two are not identical, because of the serial constraint mentioned
earlier. Physically, it is possible for Alice to prepare an entangled state and send the sub-
systems through the channel Λ. To express the classical capacity, then, we must regularize
the Holevo capacity:

Cclassical(Λ) = lim
n→∞

1

n
CH(Λ⊗n). (4.5)

If this regularized capacity is greater than the Holevo capacity, then the channel capacity
is super-additive. In the next section, we discuss what is known with respect to super-
additivity of the Holevo capacity.

4.2 Super-additivity

There are four related conjectures in quantum information theory, which were proven by
Shor in 2003 [78] to be identical:

1. The Holevo capacity is additive.

2. The minimum output entropy
(
Smin(Λ) = min|ψ〉〈ψ| Λ(|ψ〉〈ψ|)

)
is additive.

3. The entanglement of formation is additive.

4. The entanglement of formation is also strongly super-additive.

(Since this section is concerned with the relation between conjectures 1 and 2, above,
discussion of the entanglement of formation is omitted.)

The minimum output entropy is the simplest of these quantities, and it became the
focus of study in this area. In 2009, Hastings [39] showed that there exist certain pairs of
channels {Λ1, Λ2} for which Smin(Λ1⊗Λ2) < Smin(Λ1) + Smin(Λ2). This implies that there

exist channels or sets of channels for which CH

(⊗
j Λj

)
>
∑

j CH (Λj).

However, no explicit example of the super-additivity of the Holevo capacity has been
found. The applicability of the Hastings result to the search for such channels is not
obvious, for two reasons, which were laid out by Fukuda, King and Moser in [33]. Firstly,
the dimension of the space on which the Hastings result holds are lower-bounded by 7.8×
1032 ∼ 1.2× 2109, requiring calculations on a 218-qubit register in order to see an explicit
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example. This is numerically prohibitive. In addition, there is a lower bound of ∼ 39000 on
the rank of such a channel, further prohibiting direct numerical investigation. The specific
channels studied by Hastings have also proven to possess additive Holevo capacities, by
King in 2002 [48].

Recently, Belinschi, Collins and Nechita [8] showed that a macroscopic amount of sub-
additivity, approaching one bit, can be attained in the minimum output entropy with spaces
which are 183-dimensional, or between 7 and 8 qubits. It remains to be seen whether similar
results can be obtained for the Holevo capacity, this will be discussed in Chapter 6.

39





Chapter 5

Quantum Error Correction with
Mixed Ancilla Qubits

(This chapter is adapted from [20].)

This chapter is concerned with improving the encoding unitaries used in quantum error
correction to better prevent the propagation of noise in the initial state of the ancillae,
the n − k qubits to which the system is coupled before encoding. In the simple scenarios
which this document has considered, the implementation of an error-correcting code can
be divided into four operations:

1. The one-qubit input state α |0〉+β |1〉 is attached to an ancilla and a unitary operation
rotates the state into the final encoded state α |0̄〉+ β |1̄〉, where {|0̄〉 , |1̄〉} are a set
of orthogonal states in the larger Hilbert space.

2. Each qubit in the register is subjected to the random error process that the code is
designed to correct.

3. The inverse of the encoding unitary is applied. The density matrix for the resulting
state will contain terms proportional to U |ψ〉〈ψ|U †⊗|s〉〈s|, where |ψ〉 is the original
state and s is a classical n− 1-bit string, the syndrome of the error U .

4. A unitary, controlled on the syndrome qubits, inverts the unitary in the terms de-
scribed above, producing a final state which has greater fidelity to the input state
than the state resulting from unencoded transmission.
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It is useful to think of a quantum error correcting code as diverting entropy accrued dur-
ing transmission to the ancilla qubits. It is often assumed that the qubits which comprise
the ancilla are initialized in a pure state |0〉, or a state with negligible entropy. However,
this assumption can only be satisfied approximately in practice. The difficulty in creating
fiducial states at thermal equilibrium was discussed in Chapter 1; we can also consider
the state of the ancilla immediately after either the procedure in Figure 3.3 or Figure 5.2
has been performed. This returns an ancilla state with higher entropy, which must be
‘refreshed’ to |00〉 in order for the code to be used again. This can be accomplished, for
example, by projective measurement. If the operation which accomplishes this is imperfect,
the ancilla will retain some of the entropy it gained during error correction.

In addition, many quantum computing architectures exist in which qubits equilibrate
into Boltzmann distributions. Consider, for example, low-temperature solid-state ESR [34,
7, 79], where the relative population of the ground state of an electron spin is ∼ 3/4 at 4.2
Kelvin and 7 Tesla. Throughout the remainder of this chapter, we treat the initial state
as the result of a noisy process which occurs before the encoding operation.

In the following sections, we detail the error map that produces the ancilla noise we
consider, and describe an additional operation to be performed prior to encoding (also
known as an augmentation to an error-correcting code) which prevents some of the dele-
terious effects of this initialization error. We proceed to test this augmentation on two
widely-studied error correction codes, correcting bit-flip and depolarization. We conclude
by examining the effects of augmentation on a concatenated code.

5.0.1 Initialization Error

We assume each ancilla qubit is initialized in the state

ρq =

[
1− q/2 0

0 q/2

]
. (5.1)

In order to study the effect of initialization noise, we wish to model the noisy initial state
as the result of an error process. There are many such processes that take the state |0〉〈0|
to ρq, such as the generalized amplitude damping presented in Chapter 2. A much simpler
error process which accomplishes the same task is the bit-flip channel described below,

Λ =

{√
1− q

2
1̂,

√
q

2
X̂

}
, (5.2)
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where the channel is given in the Kraus representation detailed in Chapter 2. The initial
state on the ancillae is Λ⊗n

[
|0〉〈0|⊗n

]
. This additional error limits the ability of the an-

cilla to absorb entropy. As a result, any error-correcting code with ancilla qubits being
maximally mixed, with q = 1, will not permit error syndromes to be measured for use
in error correction. Note that maximally-mixed states can be used to encode information
into decoherence-free subspaces [53] (see [57] for an introduction to decoherence-free sub-
spaces). However, decoherence-free subspaces are not applicable to the error channels we
examine in this chapter.

5.1 Augmented Error Correction

When subjected to initialization error, the controlled operations in the correction stage
can introduce new errors into the output state, since the syndrome has been altered by the
initialization error. A new code can be created to mitigate this error by implementing the
inverse of the correction operation before the encoding unitary. This is shown in Figures
5.1 and 5.2.

|ψ〉

R−1 C

Λ

C−1 R

ρ

ρq Λ tr

...
... tr

ρq Λ tr

Figure 5.1: In order to augment an error correction code on n qubits, the recovery operator
is inverted and implemented before encoding. This eliminates faults caused solely by false
syndromes. Here, R is the recovery operator, C is the encoding operator and Λ is the error
map.

The augmented three-qubit code in Figure 5.2 can be shown to satisfy a numerically-
derived upper bound for the channel fidelity using an arbitrary CPTP/unital channel for
encoding. To derive this bound, the optimization of channel fidelity is posed as a semi-
definite program [68], optimizing over the encoding channel, which is linearly constrained
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|ψ〉 • Λ • ρ

ρq • Λ • tr

ρq • Λ • tr

Figure 5.2: The traditional 3-qubit code to correct bit-flip errors (seen in Chapter 3),
augmented to provide increased fidelity, in the case where each ancilla qubit is subject to
the initialization noise map discussed above. The map E in this example is the bit-flip

map
{√

1− p1̂, √pX̂
}

. The augmentation consists of implementing the Toffoli used to

correct detected errors before the standard encoding procedure takes place. This improves
the overall fidelity by ensuring that, if no error occurs, the encoded state remains unaltered
by false syndromes.

to be both CPTP and unital. The numerical search for optimal encoders is the origin of
the augmentation in this chapter. For more information on this numerical method, see
Appendix A.

The advantages of this augmentation are:

1. The fidelity of the augmented codes will always exceed or equal that of the unaug-
mented codes, since the augmentation corrects additional errors left uncorrected by
the unaugmented codes without altering the function of the error correcting code for
pure ancillae.

2. The augmented code is especially useful in implementations where the main error
parameter p can be constrained, and the initialization parameter q cannot. For
example, when the error parameter during a storage operation is time-dependent,
reducing the storage time reduces the error parameter. This is true for any error
channel, and any number of ancilla qubits, since the inverse recovery operator pre-
vents faults in the case where the error map acts trivially. Therefore, when p can
be diminished to arbitrary size, the augmented code allows arbitrarily high fidelity,
where the unaugmented code does not.

3. Augmented codes provide increased fidelity at higher q than unaugmented codes. A
code (whose implementation will be denoted Θ) is useful if, for an error channel Λ,
FC(Θ) ≥ FC(Λ).To illustrate this, we plot the tolerable q in Figures 5.3, 5.4 and 5.5.
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# Qubits c0 c1

U
n
a
u
g
m
e
n
te

d 3 1− 1/4q2 −2q + 3/2q2

5 1− 1/2q3 + . . . −9/2q2 + 6q3 − . . .
7 1− 15

16
q4 + . . . −10q3 + . . .

9 1− 7/4q5 + . . . −175/8q4 − . . .
A
u
g
m
e
n
te

d

3 1 −2q + 1/2q2

5 1 −9/2q2 + 3q3 + . . .

7 1 −5/16q3 + . . .

9 1 −175/8q4 − . . .

Table 5.1: Fidelity coefficients for four repetition codes, correcting bit flip. Each fidelity
is expressed as a polynomial in p, FC =

∑
k ckp

k, the c0, c1 are shown. Note that, for the
augmented codes, c0 = 1, indicating that the contribution to the error term due solely to
the mixed ancilla has been eliminated.

Furthermore, note that this procedure increases the gate complexity of the code by
at most a factor of 2, since the augmenting unitary is already required for the code to
function. We conclude that this augmentation will be useful in a variety of circumstances,
and in the following sections, we examine examples of this strategy used to counter two
common error processes; bit flip and depolarization.

5.2 Bit Flip

In order to correct Pauli-X̂ (bit flip) errors, we encode the state we wish to preserve
into the 2-dimensional subspace of an n-qubit (2n-dimensional) register having maximum
distinguishability under bit flip; {|0〉⊗n , |1〉⊗n}. In order to correct tth-order bit flip errors,
2t + 1 qubits are required. Here, we analyse 3-, 5-, 7- and 9-qubit repetition codes to
counter bit flip errors, with and without augmentation. Each fidelity is expressed as a
polynomial in p, FC =

∑
k ckp

k, the c0, c1 are shown in Table 5.1.

We conclude by noting that this behaviour can be trivially extended to codes that
correct any channel of the form

{√
1− p1̂, √pUXU †

}
.
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3 qubits, augmented
5 qubits, augmented
7 qubits, augmented
9 qubits, augmented

3 qubits, unaugmented
5 qubits, unaugmented
7 qubits, unaugmented
9 qubits, unaugmented

Figure 5.3: The initialization error for which an error correcting code can give a channel
fidelity ≥ 1 − p. This is shown for four repetition codes correcting bit-flip errors (3, 5, 7,
and 9 qubits, shown in red, yellow, green and blue, respectively). Note that the tolerable
error for small values of p, the parameter describing the main bit-flip channel, approaches
0 rapidly for unaugmented codes (dashed lines). By contrast, augmentation (solid lines)
provides a high tolerable q for every value of p.

5.3 Depolarization

It is important, in order to ensure that augmented error correction codes are widely useful,
to examine the performance of such codes correcting depolarization, an error process to
which all error processes can be reduced [21]. Depolarization is a channel which consists
of the following Kraus map:

Γ =

{√
1− 3p

4
1̂,

√
p

4
X̂,

√
p

4
Ŷ ,

√
p

4
Ẑ

}
(5.3)

We find channel fidelities for an augmented 5-qubit code versus depolarization, and an
unaugmented code [55, 9].

Here, the optimization of the channel fidelity has not been posed as a semi-definite
problem. Instead, we have assumed that a unitary will be appended to the encoder which
consists of 2n−1 single-qubit unitaries, each controlled on a unique binary string on the
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c0 c1

Unaugmented 1− 3/2q2 + q3 − . . . −6q + 21/2q2 − 11/2q3 + . . .

Augmented 1 −6q + 9/2q2 − 3/2q3 + . . .

Table 5.2: Fidelity coefficients for the 5-qubit perfect code, correcting depolarization. Each
fidelity is expressed as a polynomial in p, FC =

∑
k ckp

k, the c0, c1 are shown. Coefficients
for the unaugmented code are above, those for the augmented code below. Note that, for
the augmented codes, c0 = 1, indicating that the contribution to the error term due solely
to the mixed ancilla has been eliminated.

ancilla. This reduces the size of the optimization problem from 4n to 3 · 2n−1, each single-
qubit unitary having 3 free parameters. We observe that the optimal unitary is the inverse
of the correcting operation.

We present the polynomial coefficients for the fidelity, as described in Table 5.2. Here,
we see that the p-independent terms are eliminated, but the term linear in p remains. We
continue, showing the tolerable initialization noise levels for codes that counter depolar-
ization errors in Figure 5.4

0 0.05 0.1 0.15 0.2
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0.1
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Figure 5.4: The initialization error for which an error correcting code can give a channel

fidelity ≥ 1 − 3

4
p. This is shown for the perfect 5-qubit code. Note that the behaviour

of this code is qualitatively different, having 0 tolerable initialization for p ∼ 0.18. The
ability of the augmented code to provide finite tolerable q at p = 0 is preserved.
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c0 c1

Unaugmented 1− 1/4q2 + 1/2q3 + . . . −4q2 + 3q3 + . . .

Top-Level Augmented 1− 1/2q3 + . . . −4q2 + q3 + . . .

Fully Augmented 1 −4q2 + 2q3 + . . .

Table 5.3: Fidelity coefficients for the two-level concatenated repetition code, correcting
bit flip. Each fidelity is expressed as a polynomial in p, FC =

∑
k ckp

k, the c0, c1 are shown.
The unaugmented code is presented, first, followed by the top-level augmented code and
the fully-augmented code.

5.4 Concatenation

It is useful to examine the effect of augmentation on a two-level concatenated code, in
order to determine the benefits of augmentation at each level. Below, we examine the
effect of augmentation on the concatenated 3-qubit code. With bit-flip probability p and
initialization error q as defined above, the channel fidelity for unaugmented, top-level
augmented, and fully augmented codes are shown in Table 5.3 The tolerable initialization
noise is shown in Figure 5.5.

5.5 Discussion & Summary

The large initialization errors discussed in this chapter render fault-tolerant computation
impossible with current methods. The purpose of the augmented error correction described
above is to partially compensate for these errors, and to increase the utility of highly mixed
states. This technique is intended for experimental use in the near term, in venues such as
solid-state nuclear magnetic resonance (SSNMR), which does not possess an easy means of
refreshing ancilla qubits, and where the error introduced by implementing the additional
recovery operator is likely to be much smaller than the error in ancilla state preparation.
An emphasis has been placed on avoiding the incorporation of additional ancilla qubits,
since experimental implementation is currently restricted to small registers. This is true
not only for SSNMR, but in other venues as well.

The recovery operator in a stabilizer error correcting code, such as those shown above,
is costly to implement fault-tolerantly. This is due to the fact that Pauli gates which are
controlled on n− 1 qubits are not in the Clifford group, a set of gates that can be imple-
mented without causing adverse error propagation in deeply concatenated error correcting
codes. This has motivated the development of alternate recovery procedures, such as those

48



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

pbit-flip

T
ol

er
ab

le
A

n
ci

ll
a

E
rr

or
(q
∗ )

augmented, both levels
augmented, bottom level

unaugmented

Figure 5.5: The tolerable initialization noise for the twice-concatenated 3-qubit code cor-
recting bit-flip. For the top-level concatenation, the encoder used in the top of Figure
5.2 has been replaced with the encoder used in the bottom of Figure 5.2. For the full
concatenation, all the encoding circuits used are augmented, as in Figure 5.2. Note that
the bottom curve (for the unaugmented concatenated code) is identical to the tolerable
initialization noise for the 3-bit error correcting code when left unconcatenated, shown in
Figure 5.3. Also, the tolerable q for the fully augmented code is 2 −

√
2, identical to the

augmented 3-qubit code.

used in Knill error correction [50]. It is possible that a fault-tolerant recovery scheme can
be adapted to the task of preventing ancilla error propagation. It remains to be seen,
however, whether this will increase the error threshold for fault-tolerant protocols.

In summary, the assumption that there exists a pure ancilla, initialized in the state |0〉⊗n
is often violated, since the initialization process is imperfect in practice. This motivates the
study of error correcting codes whose encoding operators are augmented to produce higher
fidelities in the presence of initialization errors. The augmentation consists of inverting the
recovery operator (which performs a single-qubit unitary on the message qubit, controlled
on the end state of the ancilla qubits) and inserting it before encoding. The action of
this augmented encoding can be easily understood from Figure 5.1; it ensures that, if the
main error channel acts trivially, the output state is equal to the input state, as opposed
to having been altered by the false syndrome generated by the initialization noise. This
augmentation produces fidelities strictly greater than those from unaugmented codes, and
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constrains all error terms to be proportional to the main error probability, useful when
that parameter can be controlled experimentally.

Z • •

H Z • • • •

H • •

H • • • •

H Z • • • •
• • • •

• • • • •

• • • • • •

• • • • • •

• • • • •
Figure 5.6: The augmented version of the ‘perfect’ 5-qubit code given in [36] and errata.
The circuit above is the unaugmented encoder, the circuit below is the correction operator.
These are combined according to the prescription in Figure 5.1. Here, the error channel
is the depolarizing channel {

√
1− 3p/41̂,

√
p/4X̂,

√
p/4Ŷ ,

√
p/4Ẑ}. The augmentation

has a similar effect to that used on the (2t + 1)-qubit codes countering tth-order bit flip
errors, shown in Figure 5.3. We can deduce from this that the benefits of augmentation as
described above are not limited to codes which counter classical errors.
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Chapter 6

Search for Concrete Examples of
Super-Additivity of the Holevo
Capacity

This Chapter is intended to discuss an in-depth numerical examination of the potential
super-additivity of the Holevo capacity of a given channel, introduced in Chapter 4. The
overall goal of this work is to provide a concrete demonstration of super-additivity, i.e. a
numerical channel Φ and an input state |ψ〉 which is a member of a family of optimal inputs
producing CH(Φ⊗n) > nCH(Φ). We begin in Section 1, by defining the Holevo capacity
both operationally, and using a formula which simplifies numerical evaluation. In Section
2, we discuss the means by which this capacity will be calculated, focusing on an iterative
optimization algorithm developed by Shor (unpublished, though details of the algorithm’s
function can be found in [22]). In Section 3, we introduce the special class of channels for
which we suspect super-additivity of the Holevo capacity will be apparent. In Section 4,
we give the criteria we will use to determine whether a channel exhibits super-additivity.
In Section 5, we present the results of numerical calculation, and we conclude in Section
6, presenting a series of directions for further research.

6.1 The Holevo Capacity

Recalling Chapter 4, the Holevo capacity is defined as the amount of classical information
which can be extracted from a quantum communication channel using an optimal mea-
surement, when inputs to the channel are restricted to separable states on a composite
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quantum system [42, 73]. Since the inputs must be separable, they can be described on
a single instance of the system of interest. We define an ensemble to be a set of (for the
purposes of this chapter, single-qubit) states { ρj } with associated probabilities { πj }. The
Holevo capacity is:

CHolv(Φ) = sup
{πj ,ρj }

χHolv(Φ, { πj, ρj }) (6.1)

χHolv(Φ, { πj, ρj }) =

[
S

(∑
j

πjΦ(ρj)

)
−
∑
j

πjS(Φ(ρj))

]
where S(ρ) = −trρ log2(ρ)

This definition is operational, being the maximum of the average distinguishability of the
set of output states {Φ(ρj) } from the ‘average’ output

∑
j πjΦ(ρj). It is worthwhile to

note that, since the action of Φ is linear, the average output from the channel is simply
the action of Φ on the average input to the channel,

∑
j πjρj.

In order to evaluate the classical capacity of a quantum channel, it is necessary to
regularize the Holevo capacity:

CClassical(Φ) = lim
n→∞

1

n
CHolv(Φ⊗n) (6.2)

If the Holevo capacity is super-additive, then the Holevo capacity of Φ⊗n is greater than
nCHolv(Φ) for some value of n. However, if the Holevo capacity is additive for a given chan-
nel, then regularization is not necessary, since nCHolv(Φ) = CHolv(Φ⊗n). In the following
section, we discuss the process by which we determine empirically whether this capacity is
additive for a given channel.

Equation 6.1 is operationally-defined, but prohibitively difficult to optimize numerically,
since it requires simultaneous maximization over ensembles consisting of at most 4n 2n-
dimensional vectors, each with an associated probability. Instead, we use a formula for the
Holevo capacity which is defined in terms of the relative Von Neumann entropy between
individual outputs from the channel and the output average [73, 61]:

CH(Φ⊗n) = min
γ

max
ψ

H
[
Φ⊗n(|ψ〉〈ψ|),Φ⊗n(γ)

]
(6.3)

where H[ρ, σ] = tr(ρ log ρ− ρ log σ),
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where |ψ〉 is a single pure state, and γ is a density matrix. This expression for the Holevo
capacity is related to Equation 6.1, in that the optimal γ is equal to the average of opti-
mal inputs to the channel Φ⊗n, and the optimal |ψ〉 is one of the optimal inputs to the
channel. Since only a single 2n-dimensional vector is required for the inner maximization,
this maximization requires far fewer parameters than the optimization in Equation 6.1.
We will argue that the inner maximization is sufficient to determine whether the Holevo
capacity is super-additive for a given channel, reducing the number of parameters required
in a numerical optimization.

To make this argument, we introduce a pseudo-capacity for Φ, using the tensor product
of the single-qubit average optimal output as a substitute for γ:

C̃H = max
ψ

H
[
Φ⊗n(|ψ〉〈ψ|),Φ⊗n(ρ⊗nav )

]
(6.4)

where ρav is the optimal input average for the one-qubit channel. One of two arguments
holds. If ρ⊗nav is the minimum-satisfying value of γ, the pseudo-capacity is equal to the
Holevo capacity. If ρ⊗nav is not the minimum-satisfying value of γ, then the optimal ensemble
must contain states which are not tensor products of the states in the one-qubit optimal
ensemble. This also indicates that the Holevo capacity is super-additive. In either case,
we can learn whether the Holevo capacity is super-additive for a given channel simply by
performing this inner maximization. The sufficiency of the inner maximization reduces
the nested optimization over 4n 2n-dimensional vectors from Equation 6.1 to a simple
optimization over a single 2n-dimensional input state.

Note that it is sufficient to consider pure input states, rather than mixed states. This
is because, with γ fixed at the value ρ⊗nav , the relative entropy is convex in |ψ〉, and the
mixed states are convex combinations of the pure states. Since the maximum of a convex
function on a convex set lies on the boundary, it suffices to optimize over pure states. We
detail, in the following section, a pair of algorithms for optimizing over pure states.

6.2 Methods For Calculating Capacity

In order to evaluate the Holevo capacity, it is necessary to optimize over 2n-dimensional
states. We detail how this optimization can be carried out, using a convergent update rule
from Shor (unpublished, for proof of its convergence, see Appendix A of [22]). We also
introduce a more efficient means of evaluating the action of a quantum channel of the form
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Φ⊗n on an n-qubit density matrix, which is, if performed näıvely, the most numerically
expensive component of the calculation (due to the technical nature of this discussion, we
will only provide a brief introduction to the channel-application algorithm in this Chapter;
for a comprehensive discussion, see Appendix B).

6.2.1 Shor Optimization

The relative Von Neumann entropy between Φ⊗n(|ψ〉〈ψ|) and Φ⊗n(ρ⊗nav ), used in Equation
6.3 to express the Holevo capacity, can be expressed as a trace whose cyclic property can
then be exploited:

H
[
Φ⊗n(|ψ〉〈ψ|),Φ⊗n(ρ⊗nav )

]
= tr

(
Φ⊗n(|ψ〉〈ψ|)

(
log Φ⊗n(|ψ〉〈ψ| − log Φ⊗n(ρ⊗nav )

))
= 〈ψ|Φ⊗n∗

(
log Φ⊗n(|ψ〉〈ψ| − log Φ⊗n(ρ⊗nav )

)
|ψ〉 ≡ 〈ψ| ζ(ψ) |ψ〉 , (6.5)

where Φ∗ is the dual channel to Φ, with respect to the Hilbert-Schmidt inner product
tr(A†B). That is, tr(Φ∗(A)†B) = tr(A†Φ(B)). The action of a dual channel is roughly
as expensive to compute as the action of the corresponding channel. For example, if the
action of Φ in the Kraus representation is

∑
j FjρF

†
j the action of Φ∗ will be

∑
j F
†
j ρFj.

The matrix element in Equation 6.5 is maximized when |ψ〉 is the principal eigenvector
of ζ(ψ). Also, for any |ψ〉, the principal eigenvalue of ζ(ψ) is greater than or equal to
〈ψ| ζ(ψ) |ψ〉. Therefore, if we begin with a random state |ψ〉, and iteratively update |ψn〉
to the principal eigenvector of ζ(ψn−1), we obtain convergence to a value of |ψ〉 which is
locally maximal.

In order to calculate the result of this update rule, it is necessary to calculate the action
of Φ and Φ∗ on large matrices. If implemented näıvely, this is the most computationally
intensive of the operations that must be performed. In the following section, we detail a
way to take advantage of the tensor product structure of the channel Φ⊗n to evaluate its
action more efficiently than can be done for general n-qubit channels.

6.2.2 Evaluation of Channel Action

To show how channels of the form Φ⊗n can be efficiently implemented, we first establish a
case for comparison, the evaluation of channel action for general channels. As discussed in
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Chapter 2, in order to evaluate the action of an n-qubit channel on a state ρ, 24n operations
are required for super-matrix based channel representations, 25n in the Kraus representation
if the channel possesses 22n Kraus operators (the maximum number necessary to describe
a channel on n qubits). Evaluation of channel action, therefore, is the most costly step
in calculating the Holevo capacity, since the numerical evaluation of the matrix logarithm
and the principal eigenvector require a number of operations on the order of 23n [35].

Fortunately, it is possible to take advantage of the structure of Φ⊗n to perform the
required evaluation in an amount of time which requires order n · 22n operations, requiring
only the original Φ (a 1-qubit channel) to be stored. In brief, the reduction in the number
of operations is due to two special properties of the channel. The first is that a channel of
the form Φ⊗n can be expressed as a composition of n much simpler channels:

Φ⊗n =
n

©
j=1

Φj; Φj = 1̂⊗j−1 ⊗ Φ⊗ 1̂⊗n−j, (6.6)

It is therefore sufficient to evaluate the action of Φj for all values of j from 1 to n. Each
such evaluation requires an amount of work scaling as 23n in the Kraus representation,
since the channels Φj each possess a maximum of 4 Kraus operators. To evaluate the
action of these channels in series, then, requires an amount of work scaling as n23n. This
can be further reduced to n22n, using a more advanced method detailed in Appendix B.
With these efficient algorithms in hand, we advance, in the next section, to the task of
selecting a channel which we believe will exhibit concrete super-additivity.

6.3 Channel Selection

We must select a channel Φ, for which we suspect CHolv(Φ⊗n) > nCHolv(Φ), for some n.
We examine a family of channels which have simple representations in the Pauli basis:

ρ = [ρx, ρy, ρz] , ρa = tr(ρA)

[ρx, ρy, ρz] 7→ [λxρx, λyρy, λzρz + tz] , 0 ≤ λx, λy, λz, tz ≤ 1. (6.7)

These four parameters describe a reasonably general family of quantum maps (see
Chapter 2). A pair of parameters { tx, ty }, if included, would provide a completely general
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description of any CPTP map up to a change of basis [47]. However, they are not necessary
to derive a set of channels which we suspect will exhibit super-additivity, so they are set to
0 for simplicity. We discuss below the necessary constraints on the parameters λx, λy, λz,
and tz, as well as constraints which will limit the search to channels which have not been
proven to possess additive Holevo capacities.

Any channel Φ must, first of all, be completely-positive and trace preserving (CPTP).
Ruskai, Szarek and Werner [70] proved that, for the channel family given in Equation 6.7,
the CPTP condition can be reduced to the Algoet-Fujiwara conditions:

(λx ± λy)2 ≤ (1± λz)2 − t2z (6.8)

In addition, we note that there are two families of channels whose Holevo capacities
have been proven additive. These are the unital channels [48], for which Φ

(
1̂/2
)

= 1̂/2, and
the entanglement-breaking channels, for which all output states are separable [76]. Each
of these constraints can be reduced to a constraint on the parameters {λx, λy, λz, tz }.

In order to ensure that the channel we select is non-unital, we note that Φ
(

1̂/2
)

=(
1̂/2
)

+ tz (Z/2), so tz 6= 0 is a necessary condition for super-additivity. We will restrict tz
to be greater than 0, since channels given by Equation 6.7 which differ only in the sign of
tz are equivalent under a change of basis, and therefore have the same Holevo capacity.

In order to ensure that a channel preserves entanglement, it is necessary and sufficient
[69] to show that its Choi state 1̂⊗Φ (|Ω〉〈Ω|) (where |Ω〉 = 1/

√
2(|00〉+ |11〉)) is entangled.

This can be accomplished using the negativity of the partial transpose [63, 43], since the
system in question is 2× 2. The Choi state for a four-parameter channel is:

1̂⊗ Φ (|Ω〉〈Ω|) =
1

2


1 + tz + λz 0 0 λx + λy

0 1− tz − λz λx − λy 0
0 λx − λy 1 + tz − λz 0

λx + λy 0 0 1− tz + λz

 (6.9)

The partial transpose acting on this matrix yields the same result as the transformation
λy 7→ −λy. Therefore, in order for the channel to preserve entanglement, one of the
following conditions must hold:

(λx ∓ λy)2 > (1± λz)2 − t2z.
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One of the entanglement-preserving constraints is not physical, since channels satisfying
it cannot be CPTP. Consider the inequalities which contain the term (1 + λz)

2:

(CPTP): (λx + λy)
2 ≤ (1 + λz)

2 − t2z
(non-EB): (λx − λy)2 > (1 + λz)

2 − t2z

This implies that (λx + λy)
2 < (λx − λy)2, which is impossible. We therefore reject the

non-physical entanglement-preserving criterion (λx − λy)2 ≤ (1 + λz)
2 − t2z, and use only

(λx + λy)
2 > (1− λz)2 − t2z, which can be satisfied for CPTP channels.

These constraints alone are not sufficient to specify a single channel Φ for further
study. To further narrow the search, we further restrict the channel to have a property
first described in [49], the necessity for an ensemble containing more than two states to
be used in order to achieve the Holevo capacity. This channel property is non-classical, in
that the capacity of a classical channel can always be attained with a two-state ensemble.
It is hoped that there exists a three-state channel which exhibits super-additivity, since
this is also a non-classical property.

In order to determine a three-state channel, we can use the sufficient conditions from
[49]. We first introduce, for channels of the form given in Equation 6.7, two restricted
capacities, the vertical and horizontal capacities:

Evert = {(p, [0, 0, 1]), (1− p, [0, 0,−1])} (6.10)

Cvert(λz, tz) = max
p
S([0, 0, λz(2p− 1) + tz])

− pS([0, 0, λz + tz])− (1− p)S([0, 0,−λz + tz]) (6.11)

Ehorz =
{

(1/2, [
√

1− z2, 0, z]), (1/2, [−
√

1− z2, 0, z])
}

(6.12)

Chorz(λx, λz, tz) = max
z
S([0, 0, λzz + tz])− S([λx

√
1− z2, 0, λzz + tz]) (6.13)

When these restricted capacities are equal (Cvert = Chorz), but the averages over the
respective ensembles are not equal (ρav(vert) 6= ρav(horz)), then
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χ

(
1

2
(Evert + Ehorz)

)
=

1

2
(Cvert + Chorz) + S

(
1

2
Φ
(
ρav(vert) + ρav(horz)

))
− 1

2
S
(
Φ
(
ρav(vert)

))
− 1

2
S
(
Φ
(
ρav(horz)

))
> Cvert, (6.14)

because the entropy is strictly concave. This implies that an ensemble of two states is
insufficient to achieve the Holevo capacity of these channels. It has been shown that, for
any qubit channel, an ensemble of four states is sufficient to achieve the Holevo capacity
[23].

In principle, the constraint Cvert = Chorz can be used to constrain λx for given values
of λz and tz. We will show below that this constraint can only be satisfied numerically,
though Cvert can be found analytically.

The vertical capacity can be obtained by maximizing

χvert = S([0, 0, λz(2p− 1) + tz])− pS([0, 0, λz + tz])− (1− p)S([0, 0,−λz + tz])

To differentiate this, we introduce zout = λz(2p− 1) + tz:

χvert = S([0, 0, zout])− pS([0, 0, λz + tz])− (1− p)S([0, 0,−λz + tz])

∂

∂p
χvert = λz log2

(
1− zout

1 + zout

)
− S([0, 0, λz + tz]) + S([0, 0,−λz + tz])

∂2

∂p2
χvert =

2λz
z2

out − 1

The second derivative is negative for −1 ≤ zout ≤ 1, so
∂

∂p
χvert = 0 indicates the unique

maximum. Continuing the derivation:

log2

(
1− zout

1 + zout

)
=
S([0, 0, λz + tz])− S([0, 0,−λz + tz])

λz

z∗out =
1− k
1 + k

; k = 2
1
λz

(S([0,0,λz+tz ])−S([0,0,−λz+tz ])), p∗ =
z∗out − tz + λz

2λz
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This provides an analytic definition for Cvert, specifying the value of p for which the capacity

is obtained (denoted p∗ above). The corresponding derivation for
∂χhorz

∂z
is as follows:

∂χhorz

∂z
=
λz
2

log

(
1− zout

1 + zout

)
+

λ2
xz − λzzout

2
√
z2

out + λ2
x(1− z2)

log

(
1−

√
z2

out + λ2
x(1− z2)

1 +
√
z2

out + λ2
x(1− z2)

)
(6.15)

Setting this quantity equal to 0 results in a transcendental equation, so in order to constrain
λx for a given channel, it is necessary to ensure that this constraint is satisfied numerically.
It is also necessary, therefore, to evaluate ρav(vert) and ρav(horz) numerically, to ensure that
they are not equal.

Additional constraints must be introduced in order for numerical evaluation of the
Holevo capacity to be tractable. The minimum eigenvalue of Φ(|ψ〉〈ψ|) must be bounded
above 0, in order to be able to accurately calculate the matrix logarithm. This constrains
the maximum purity of an output state to be bounded away from 1. The highest-purity
output state is Φ(|0〉〈0|), whose minimum eigenvalue is 1/2(1 − λz − tz), so we constrain
λz + tz = k < 1. A high value for λz + tz is desirable for entanglement preservation and
high capacity, however, so we will search over the space for which k ≥∼ 0.95. Also, the
Holevo quantity χ has zero gradient along the equator of the output ellipsoid, since any
state on that equator has the same relative entropy distance from the average than the
optimal states on the z − x plane. This will slow a precise numerical calculation of the
Holevo capacity if λx = λy. To ensure that a non-zero gradient for the Holevo quantity
exists, we set λy < λx. Its value is constrained by the CPTP inequalities, which we will
use below to constrain it. This leaves two free parameters, k and λz. We will search for a
pair k, λz such that deformations of the resulting channel also possess three-state optimal
input sets. Using the entropy expression in Equation 6.14, we can define the degree to
which a given channel exhibits the three-state property:

∆S = S(Φ(ρav(3)))−
1

2
(S(Φ(ρav(vert))) + S(Φ(ρav(horz))) (6.16)

where S is the von Neumann entropy introduced earlier. In order to select a single channel
for further study, we will use an algorithm derived by Sam Bader (unpublished):

• Select a value of k.

• Maximize ∆S over λz, subject to the constraints that:
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– tz = k − λz
– λx is selected such that Chorz(λx, λz, tz) = Cvert(λz, tz)

Given {λx, λz, tz }, select λy to saturate the CPTP inequality:

(λx − λy)2 = (1− λz)2 − t2z (6.17)

This will result in an optimal channel for each value of k. In order to ensure that
the minimum eigenvalue of an output density matrix is on the order 10−13 (so that it is
representable with 3 digits of precision using double-precision floating-point numbers), we
select k = 0.95, the minimum eigenvalue then being equal to (1− k)n9.8× ∼ 10−14 for 10
copies of the channel in question. Setting k = 0.95 results in a channel with the following
parameters:

λx = 0.5364033760658395, λy = 0.3114370291232779

λz = 0.4689014274331901, tz = 0.4810985725668099 (6.18)

This channel has three optimal inputs:

|ψ̃1〉〈ψ̃1| = |0〉〈0| = [0, 0, 1], |ψ̃2〉〈ψ̃2| = [sin(θ), 0, cos(θ)]

|ψ̃3〉〈ψ̃3| = [− sin(θ), 0, cos(θ)], θ = 1.930429566653508 (6.19)

The optimal ensemble consists of |ψ̃1〉 with probability p0 = 0.3622220716889054, and the
states |ψ̃2〉 and |ψ̃3〉 with equal probability 1/2(1− p0).

Given a preferred channel, and a method of calculating the Holevo capacity, the task
which remains is the determination of super-additivity from the result of numerical opti-
mization. In the following section, we go over a few important properties of these numerical
results, resulting in methods of observing super-additivity.

6.4 Criteria for Super-Additivity

After convergence is obtained, we are left with a state |ψ〉 and a locally-optimal relative
von Neumann entropy, the value of the pseudo-capacity. In order to determine whether
the Holevo capacity of the channel being studied is super-additive, we can examine either
the relative entropy obtained, or the pure state corresponding to this optimal relative
entropy. As previously discussed, If the pseudo-capacity C̃H(Φ) is greater than nCH(Φ),
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the Holevo capacity of Φ is super-additive since either CHolv(Φ⊗n) > nCHolv(Φ), or the
optimal input ensemble contains at least one entangled state. Given that the state |ψ〉
obtained by performing this optimization corresponds to one of the optimal inputs to Φ⊗n,
we consider states which are not tensor products of the optimal one-qubit states to warrant
further study. This is also true in the case that such an entangled state does not achieve
the Holevo capacity, since it comprises a local optimum whose entanglement structure
we may analyse to gain information for further trials. States from the optimal one-qubit
ensemble have ρx = 0, ± sin θ, so tensor products of these states will have Tr(ρX⊗n) equal
to either zero, or ± sinn θ. Note that any state of the form |ψ〉 = |0〉 ⊗ |ψn−1〉 will have
〈ψ|X⊗n|ψ〉 = 0. If the state on the remaining n − 1 qubits is entangled, it is likely that
the study of n − 1 copies of the same channel would have revealed interesting behaviour
on a previous iteration. Therefore, any deviation from this value of tr(ρX⊗n) indicates
non-standard behaviour, and can be considered indirect evidence of super-additivity. For
completeness, we also analyse the entanglement entropy of the optimal input states.

6.5 Numerical Results

In this section, we present tables of numerical optimization results for the Shor optimiza-
tion defined in the previous section. Before presenting these results, however, we define
the ‘seed’ states used to initialize the optimization routine. Since we wish to study the
role entanglement plays in transmitting information through the channel Φ⊗n, we select
entangled seed states, from three families; the GHZ states, the cluster states, and a family
of states constructed from the three single-qubit optimal inputs to the channel Φ given in
Equation 6.19. For reference, we introduce these states below.

GHZ States The GHZ state [38] can be easily described both in ket notation, and by
specifying an n-qubit stabilizer for the n-qubit state:

|ψGHZ〉 =
1√
2

(|0〉⊗n + |1〉⊗n) (6.20)

SGHZ =
〈
X⊗n, ZjZj+1∀j ∈ 1 . . . n− 1

〉
(6.21)

In order to extend this single state to a basis of 2n states on n qubits, we multiply the n
stabilizers by ±1̂. The resulting family of states can be described as 1/

√
2(|b〉 ± X⊗n |b〉),

where b is an n-bit bitstring.
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Cluster States The cluster state [66] is another entangled stabilizer state. In contrast
to the GHZ state, which is generated by a non-local stabilizer (since any generating set
must contain some product of X⊗n with the ‘ZZ’ stabilizers, which acts on all qubits in the
register simultaneously), there exists a generating set for the cluster state which consists
of local stabilizers:

SCluster = 〈X1Z2, {Zk−1XkZk+1∀k ∈ 2 . . . n− 1 } , Zn−1Xn〉 (6.22)

To extend this state to a basis for an n-qubit space, we apply the same generalization as
before, multiplying elements of the generator by ±1̂. For this family of states, we use the
fact that the projector onto the +1-eigenspace of a stabilizer subspace is 1/2r

∏r
j=1(1̂ +Sj),

where the set {Sj } is a set of generators for the stabilizer in question.

Compressed Qutrit States Both GHZ and cluster states will function as entangled
seed states for Shor optimization. However, we also wish to use a set of entangled seed
states which take advantage of the known optimal inputs of Φ. Since there are three
optimal inputs, we will seed the optimization with a family of ‘compressed’ qutrit GHZ
states. The qutrit GHZ state from which we will construct this family is

|ψGHZ-3〉 =
1√
3

(
|0〉⊗n + |1〉⊗n + |2〉⊗n

)
. (6.23)

We extend this state to a larger set, allowing an arbitrary computational qutrit basis state
to replace |0〉⊗n:

|ψGHZ-3〉 7→
1√
3

(
|t〉⊗n + (X |t〉)⊗n + (X2 |t〉)⊗n

)
, (6.24)

where X, here is an operator on qutrits satisfying X |j〉 = |j + 1 mod 3〉, and t is an n-trit
string. This set of states can then be compressed by applying a map from the qutrit space
to the qubit space:

|0〉Qutrit 7→ |ψ̃1〉 , |1〉Qutrit 7→ |ψ̃2〉 , |2〉Qutrit 7→ |ψ̃3〉 . (6.25)

6.5.1 Tables of Results

For 2-5 copies of the channel Φ, we input the three families of seed states described above
into the Shor optimization algorithm, and analyse the resulting optimal states for their
values of tr(ρX⊗n), the pseudo-capacities with which they are associated (as defined by
Equation 6.4), and their entropies of entanglement [60]. For 6-10 copies of the channel, we
select 36 seed states from each of these families.
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6.5.2 Discussion

There are four key observations that we determine from the data above:

1. None of the seed states result in an optimum which shows super-additivity of the
Holevo capacity.

2. GHZ seed states result in entangled optima for n = 2, 4, but not for any other values
of n.

3. GHZ seed states result in deviations in the value of tr(ρX⊗n) in the local optima for
n = 2, 4, but not for any other values of n.

4. Cluster seed states result in increasing values of the deviation in the value of tr(ρX⊗n)
in the local optima.

In the following section, we draw conclusions from this data, and discuss additional research
to be conducted.

6.6 Conclusions and Future Work

No direct numerical observation of the super-additivity of the Holevo capacity has been
made. However, the research explained in this chapter comprises a useful first step in
the search for concrete numerical examples of channels (or sets of channels) whose Holevo
capacities are super-additive. Future research will likely focus on increasing the number
of channel copies n. In order to calculate Holevo capacities for higher n, this research
will need to use a more efficient representation of the interim state Φ⊗n(|ψk〉〈ψk|), and the
matrix log(Φ⊗n(ρav

⊗n)), as memory is the limiting factor in determining the maximum
n. It is possible that, due to the tensor-product structure of log(Φ⊗n(ρav

⊗n)), it can be
efficiently subtracted from log(Φ⊗n(|ψk〉〈ψk|)) without storing it. Taking this into account,
and only storing the upper-triangular portion of Φ⊗n(|ψk〉〈ψk|) (which is Hermitean) would
reduce the amount of memory required by a factor of 4, allowing an calculation at n = 12.
It will also be necessary to transfer the Holevo capacity calculation algorithm to a large
computational cluster, where the amount of memory is greater by a factor of 4−10, possibly
allowing for calculations of the capacity at n = 13− 14.
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Chapter 7

Quantum Transcoding

Another important problem in quantum computing is the design of protocols to perform
universal computation on data which has been encoded into a quantum error-correcting
code, so-called fault-tolerant quantum computation. The stabilizer formalism discussed in
Chapter 3 can be used to efficiently design error-correcting codes, but the implementation
of a universal set of logical operations has historically required additional resources, such
as ancillary systems prepared in non-stabilizer states [12]. In this chapter, we summarize
the history of development of fault-tolerant computing, then introduce quantum transcod-
ing, the practice of transferring data between quantum error-correcting codes in order to
perform individual logical operations within codes in which they are fault-tolerant. We
conclude with a preliminary result which shows the utility of a simple transcoding opera-
tion, not for implementing a universal gate set, but for increasing the memory threshold
of a QECC.

7.1 History of Fault-Tolerant Computing

The development of individual quantum codes to correct local Pauli errors [77, 81, 55], be-
ginning in 1994, gave way to a single framework which unified the known quantum codes,
the stabilizer formalism ([36], also see Chapter 3). This unification provided a general
means of defining the logical gates which act on an encoded register. Specifically, since
the stabilizer of a given code is a commutative subgroup of the Pauli group, the opera-
tions which map the Pauli group onto itself are a group which contains logical operations.
This set of operations forms a finite group (the Clifford group), which cannot be used for
universal computation.
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As a result, development of universal fault-tolerant computing using stabilizer codes
shifted its focus toward methods of implementing the Clifford group in a fault-tolerant
fashion, then extending it to a universal set of logical gates. Throughout this phase of
development, it was often possible to find transversal implementations of the elements of the
Clifford group, with some codes having transversal implementations of the entire Clifford
group. Later, individual stabilizer codes were found with transversal implementations of
specific non-Clifford operators [84], but at no point was there a single code which possessed
a transversal, universal set of logic gates.

This gave rise to a conjecture that no stabilizer code could admit such a set, which was
proven for stabilizer codes on qubits in 2007 by Zeng, et al. [90]. This proof employed a
contradiction, showing that a transversal universal gate set could map a logical Pauli to a
Pauli of weight less than the distance of the relevant stabilizer code. This result was later
extended by Chen et al [15] to stabilizer codes on quantum systems of arbitrary dimension,
and by Eastin and Knill [28] to any quantum code, independent of its representability in
the stabilizer formalism, which can detect local errors.

There remained, and exist today, avenues to circumvent these results. The first and
most widely studied of these is gate teleportation [37, 91], which, in conjunction with
the preparation of Clifford eigenstates, can be used to implement non-Clifford logic gates.
These Clifford eigenstates (also called ‘magic states’) can be prepared iteratively, first
preparing a large number of magic states which are subject to noise, then distilling from
this large set of states a small number of high-fidelity states. The process of magic state
distillation has been the subject of much research [12, 11, 62]. The magic state distillation
schemes put forth thus far have been extremely expensive [31], prompting research into
alternate means of circumventing the no-go result.

Another means to implement fault-tolerant computation hinges on a detail of the proofs
given in [90, 15, 28], that all two-qubit transversal gates are transversal with respect to the
same partition of a code register. That is, if for every qubit j in a code block there exists
a qubit j′ in a second code block and a transversal operation couples qubits j and j′, the
relationship between the indices j and j′ does not depend on the gate being implemented.
There exist codes which violate this criterion, such as the Bacon-Shor codes [6, 4], which
use re-labellings of the qubits in order to implement the logical Hadamard, although this
does not lead to universality.

A promising result in fault-tolerant computing without gate teleportation was recently
put forth by Paetznick and Reichardt [62]. They show that a known J15, 7, 3K quantum
error-correcting code allows a transversal Hadamard gate, subject to the constraint that 6
of the 7 logical qubits are unused, since the transversal implementation of the Hadamard
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gate only corresponds to the logical Hadamard gate on the remaining qubit. This code
also allows a transversal implementation of the doubly-controlled Z gate, which is not a
Clifford gate, subject to the constraint that the same set of 6 logical qubits is kept in the
state |0L〉⊗6. This scheme, while it proves that fault-tolerant universal computation can
be obtained using only transversal operations and established error-correcting techniques,
does not represent a feasible protocol in terms of its error threshold which, while not
rigorously bounded, is estimated to be below 10−4.

These fault-tolerance schemes vary greatly in their error thresholds and levels of over-
head. It is not clear, a priori, which approach is preferable for creating fault-tolerant uni-
versal gate sets. There remains a largely-unexplored avenue for circumventing the no-go
results [90, 15, 28], if information in a quantum error-correcting code can be fault-tolerantly
transferred to another code, each possessing transversal gate sets whose union is universal.
This is quantum transcoding, which we outline in the next section.

7.2 Quantum Transcoding

In order to define an operation which transfers information between codes, we first examine
the process of encoding one qubit into an Jn, 1, dK code:

|ψ〉

E
|0〉

|ψL〉
n− 1 ...

|0〉




Figure 7.1: A generic encoder for a stabilizer code, taking |ψ〉 ⊗ |0〉⊗n−1 to |ψL〉.

The stabilizer group which defines the state before it is encoded is generated by {Zj | 2 ≤ j ≤ n },
operators which constrain the state of the n− 1 ancilla qubits to be |0〉⊗n−1, while leaving
the first qubit in an arbitrary state |ψ〉. After the encoding operation is complete, the sta-
bilizer group is that for the code in question. Likewise, the logical Paulis prior to encoding
are simply X1 and Z1, encoding maps them to XL, ZL. We can specify the action of the
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encoder in Clifford notation, describing its action on the Pauli group generators:

IZ · · · I
...

II · · ·Z

E7−→
S1
...

Sn−1

, ZI · · · I E7−→ ZL, XI · · · I E7−→ XL (7.1)

We note that the action of a decoding Clifford can be specified by reversing the maps given
in Equation 7.1.

There is no unique encoder for a given stabilizer code. The action of the encoder is
unspecified on the generators {Xj | 2 ≤ j ≤ n }. We are free to select an arbitrary set of
Paulis to assume the roles of { X̄j | 2 ≤ j ≤ n }, as long as they preserve the commutation
relations between {Xj | 2 ≤ j ≤ n } and the other generators. Specifically:

• Each Pauli X̄j must commute with X̄1 = XL, the logical X for the code, and all other
elements of {Xj | 2 ≤ j ≤ n }.

• Each Pauli X̄j must anti-commute with the corresponding Z̄j.

• Each Pauli X̄j must be independent from the rest of the set { X̄j | 1 ≤ j ≤ n }, no
product of the set { X̄k, k 6= j } being equal to X̄j.

The number of Pauli sets which fulfil these criteria is equal to
∏n

j=2Nj where Nj is the

number of satisfying assignments for the jth Pauli in the set. The total size of the Pauli
group on n qubits is 22n. Anti-commutation with Z̄j restricts the size of the set from which
X̄j can be drawn from to size 22n−1. Commutation with { Z̄k | k 6= j } further reduces this
size to 2n. Thinking of the process of selecting these Paulis as being serial, the jth Pauli
must commute with j−1 Paulis. The constraint that X̄j not be generated by { X̄k | k < j }
is automatically fulfilled, since no Pauli generated by that set can anti-commute with Z̄j,
and X̄j is constrained to do so. Therefore, Nj = 2n−j+1, and the number of Pauli sets
which can be selected to constrain the degrees of freedom for an encoder is

n∏
j=2

2n−j+1 = 2
n(n−1)

2 . (7.2)

This function grows extremely rapidly, attaining a value in excess of 35 trillion for 10
qubits. This restricts any search over encoding operations to small numbers of qubits,
∼ 5− 7.

Transcoding operations between a pair of codes (called C and C ′ here) can be defined
analogously to encoders. There are three cases which we must consider; n1 = n2, n1 < n2

and n1 > n2:
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|0〉

T

|0〉

|ψL〉 ...
...

|0〉 |0〉
|ψ′L〉

|0〉 |0〉

|ψA〉 ...
...

|0〉 |0〉






|0〉

T

|0〉

...
... |ψ′L〉

|ψL1〉
|0〉 |0〉

|0〉 |0〉

...
... |ψA〉

|0〉 |0〉






|0〉

T

|0〉

|ψL〉 ...
... |ψL′〉

|0〉 |0〉




Figure 7.2: A generic transcoder for a stabilizer code, taking |ψL〉 to |ψ′L〉, involving an
ancillary stabilizer state in the case that n < n′, yielding a measurement result in the case
n > n′, and having no effect outside the encoded register when n = n′.

The action of a transcoder on a generating set of the Pauli group can also be analysed.
The initial generating set consists of a stabilizer generator, pair of logical Paulis and n−1 X̄
operators (the unconstrained degrees of freedom in the encoder), and the final generating
set consists of the stabilizer, logical operators, and free operators of C ′. We constrain both
codes to have the same number of logical qubits (k = k′ = 1 in the examples considered

here), and constrain XL
T7−→ X ′L, ZL

T7−→ Z ′L. In the case where n = n′, the Clifford
relation is easy to define:

S1
...

Sn−1

XL

X̄1
...

X̄n−1

ZL

T7−→

S ′1
...

S ′n−1

X ′L
X̄ ′1
...

X̄ ′n−1

Z ′L

(7.3)

Each such transcoder construction must satisfy the following constraints:
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• A generating set S for the stabilizer of the initial code must be mapped to another
generating set S ′ for the output code.

• XL
T7−→ X ′L, ZL

T7−→ Z ′L, as discussed earlier.

• A generating set for the free operators { X̄ } must be mapped to another generating
set { X̄ ′ }.

The number of operators which satisfy all of these constraints is the product of the number
of operators satisfying the constraints individually, since they are independent.

To count the generating sets of the stabilizer for an Jn, 1, dK code, we construct an
arbitrary generating set from the 2n−1 elements of the stabilizer group, by selecting inde-
pendent Paulis in series. To select the jth Pauli, we must not select one generated by the
j − 1 Paulis selected prior to the jth, including the identity. Thus, there are 2n−1 − 2j−1

Paulis which can be selected at the jth step, and
∏n−1

j=1 2n−1 − 2j−1 generating sets for
the stabilizer code C. Note that, if S is one of the sets selected according to the scheme
presented here, all permutations of S are also generated by this scheme. Since the defini-
tion of a Clifford as a map from Paulis to Paulis does not depend on the order in which
the inputs and outputs are enumerated, we divide by the number of permutations of S,

counting permutations of S ′ relative to S, to obtain
(∏n−1

j=1 2n−1 − 2j−1
)2

/(n− 1)! as the

number of distinct stabilizer-to-stabilizer maps.

Each of the logical operators, in turn, can be replaced by a member of the set consisting
of products of the logical operator in question with an element of the stabilizer group
(known in group theory as the coset of the stabilizer). Since there are two logical Paulis
and 2n−1 elements of the stabilizer group, there are 22n−2 permissible logical Pauli sets for
each of the codes C and C ′, with 24n−4 maps between permissible sets.

As discussed earlier, there are 2
n(n−1)

2 satisfying assignments for the set { X̄ } and { X̄ ′ }.
Identical permutations of two of the satisfying assignments result in an identical map from
Paulis to Paulis, so we divide by (n− 1)! again. The total number of transcoding Cliffords
between two codes on n qubits is then:

2n(n−1)24n−4

(∏n−1
j=1 2n−1 − 2j−1

)2

((n− 1)!)2

For five qubits, this number is in excess of 48 quadrillion, prohibiting a direct search over
the entire set of transcoders for those that are fault-tolerant. The criterion we use for fault-
tolerance assumes that both the input and output codes have distance 3, so that weight-one
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errors must be mapped by T to weight-one errors. Since there exists no two-qubit gate
for which this is the case, such a transcoding operation would have to be transversal.
However, since the overall goal of transcoding is to facilitate universal computation, either
the transcoder or one of the logical gates used by the input or output code must be non-
transversal. Since we wish to use transversal logical gates, we must generalize to the case
n 6= n′.

We elect to study the case n > n′, since output faults of weight greater than one on
the n-qubit register after transcoding are still correctable, if their support on the n′ qubits
on which data still resides is one or less. Transcoders between C and C ′ must satisfy a
set of constraints when n > n′ which is similar to those satisfied for n = n′. For instance,
it is still the case that k = k′ = 1, so there exist 22n−2 × 22n′−2 permissible maps from
logical Paulis to logical Paulis. There still exist the same number of free operators for both
the input and output to T , so the number of permissible maps from free operators to free
operators is 2n(n−1).

The constraint that T maps a generating set of the input stabilizer to a generating set
of the output requires additional work to analyse, since the number of generators for C ′

is less than that for C. Also note that the output state must be separable, so the output
stabilizers must either be supported on the first n′ of the n-qubit register, or the last n−n′.
The map acts on the input stabilizers as follows:

S1
...

Sn−1

T7−→

S ′1 ⊗ 1̂⊗n−n
′

...

S ′n′−1 ⊗ 1̂⊗n−n
′

1̂⊗n
′ ⊗ P ′1
...

1̂⊗n
′ ⊗ P ′n−n′

(7.4)

The number of satisfying assignments for the output of the map changes to the product
of the number of generating sets for S ′ and the number of sets of n − n′ commuting,
independent Paulis that can be found on n − n′ qubits. The number of generating sets
for S ′ is, as calculated earlier,

∏n′−1
j=1 2n

′−1 − 2j−1. The number of satisfying assignments
for the operators P can be derived using a similar iterative calculation. When selecting
the jth Pauli, one can select any of the 22n members of the Pauli group, subject to j − 1
commutation constraints, selecting none of the 2j−1 Paulis which are in the generated group
of the j − 1 Paulis selected thus far. Therefore, the number of satisfying assignments to
this set is

∏n−n′
j=1 22(n−n′)−j − 2j−1. All permutations of the individual sets S ′ and P are

included, but the calculation thus far assumes that the elements of S ′ are listed, followed
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by the elements of P . This need not be the case, elements of P can be interspersed with
elements of S ′ in any order. The number of ways in which this can be accomplished is the

multicombination,
((

n′

n−n′
))

=
(
n−1
n−n′

)
.

Performing the same product as for the case n = n′, then, the number of transcoding
Cliffords for the case n > n′ is:

2n(n−1)22n−222n′−2

(∏n−1
j=1 2n−1 − 2j−1

)(∏n′−1
j=1 2n

′−1 − 2j−1
)(∏n−n′

j=1 22(n−n′)−j − 2j−1
)

(n− n′)!(n′ − 1)!

For n = 5, n′ = 3, the number of possible transcoders is approximately 1.8× 1015. For any
transcoding problem of interest, the size of this set makes a complete search prohibitively
expensive, especially considering that the number of potential transcoding Cliffords is the
product of its size with the size of the set of valid outputs. Since the set of transcoding
Cliffords cannot be directly searched, there are two options available. We can either place
additional restrictions on the input and output sets of a given transcoding operation, or
we can restrict the form of the transcoder in another fashion. In the following subsections,
we explore each of these options in turn, ending with a preliminary result in enhancing the
memory thresholds of CSS codes [82].

7.3 Restricted Search

The number of Cliffords which perform a given transcoding operation is extremely large.
In order to ensure that a transcoding operation can be fault-tolerantly implemented, we
examine its circuit decomposition to determine if faults in the circuit propagate adversely.
However, if there exist a large fraction of transcoding operations which admit fault-tolerant
circuit decompositions, we may be able to locate one of them by examining only a small
number of transcoding Cliffords. For this reason, we perform a restricted search, fixing the
input/output stabilizer generators and logical operators, searching over the free operators
{ X̄ } and { X̄ ′ }, and the values of the output ancilla set P . This reduces the number of
Cliffords to

2n(n−1)

n−n′∏
j=1

22(n−n′)−j − 2j−1

We focus on three specific transcoding tasks; taking the ‘perfect’ 5-qubit code to the three-
bit repetition code versus bit-flip, taking the perfect 5-qubit code to the three-bit repetition
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code versus phase-flip, and taking the Steane 7-qubit code to the perfect code. These tasks
have been considered in the past, with measurement-based gadgets having been derived
[85, 41]. The number of Cliffords in the restricted set is approximately 14 million for
n = 5, n′ = 3, 28 trillion for n = 7, n′ = 5. While only a small fraction of the transcoders
taking the Steane code to the perfect code can be searched, a complete search over the
restricted set can be executed for the transcoders taking the perfect code to either of the
three-bit repetition codes.

In order to analyse the output Cliffords, we find their circuit decompositions using
an algorithm defined by Aaronson and Gottesman [2], implemented in QuaEC, a Python
library for quantum error correction (for an introduction to QuaEC, see Appendix C or
[19]). To determine which, if any, of the found transcoding Cliffords are fault-tolerant, we
count the number of two-qubit gates in the circuit decomposition. We show, below, the
circuits output by the search which have the minimal number of two-qubit gates:

• • • • H P • H

× P • H P • H

P • H P • H

×

× H H × H P H

Figure 7.3: A transcoding circuit taking the 5-qubit perfect code to the 3-qubit repetition
code correcting bit-flip, containing the minimal number of error-propagating two-qubit
gates (nine).

• • • • • • H • • • • H

× • H • • H

× • • • H • H

× H • H

×

Figure 7.4: A transcoding circuit taking the 5-qubit perfect code to the 3-qubit repetition
code correcting phase-flip, containing the minimal number of error-propagating two-qubit
gates (eighteen).
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• • •
• • • • • • H • H

× H • H

H H • •

H • H • H

× H H

Figure 7.5: A transcoding circuit taking the 7-qubit Steane code to the 5-qubit perfect
code, containing the minimal number of error-propagating two-qubit gates (fifteen).

It is evident that restricting the search in this manner does not lead to fault-tolerant
circuits, given that errors can propagate adversely across any of the quantum circuits given
above. We advance, in the next section, to restricting the form of the output circuit directly,
deriving a transcoding circuit which, while not facilitating universal quantum computing,
assists in storing quantum information in CSS codes.

7.4 Transversal Transcoding & Memory Threshold En-

hancement

It is prohibitively expensive to construct the set of transcoding Cliffords and search through
that set for Cliffords which can be decomposed into fault-tolerant circuits. In this section,
we analyse the opposite approach; searching sets of fault-tolerant Cliffords for those which
execute transcoding operations.

One such set can be constructed analytically. We note that the stabilizers of the CSS
codes share an important trait with that for the Steane 7-qubit code:

SSteane = 〈G〉 , G =

XXXXIII
XXIIXXI
XIXIXIX
ZZZZIII
ZZIIZZI
ZIZIZIZ

, (7.5)

namely, their generating sets can be partitioned into two sets, one containing stabilizers
consisting of tensor products of the Paulis X and I, the other consisting of tensor products
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of Z and I. The correctable errors for distance-3 CSS codes are then X, Y and Z-errors
on any individual qubit, as well as weight-two errors consisting of one X and one Z on
distinct qubits. This increases the ability of a CSS code to correct X and Z errors, relative
to the ability to correct Y errors. This ability can be easily analysed using the effective
Pauli-basis error map introduced by Rahn, Doherty and Mabuchi [65], which treats the
error-correction process as a quantum channel acting on the 2-dimensional Hilbert space of
the logical qubit. The effective noise parameters in the x, y, and z-directions (these being
the diagonal elements of the noise superoperator in the Pauli-basis, see Chapter 2 for an
introduction) are given for the Steane code:

[x, y, z] 7−→
Steane

[S(x), T (x, y, z), S(z)] ,

where S(x) =
7

4
x3 − 3

4
x7, T (x, y, z) =

7

16
y3 +

9

16
y7 − 21

16
(x4 + z4)y3 +

21

8
x2yz2

(7.6)

For isotropic noise (x = y = z = r, r = 1 − 4
3
p for uniform error probability p), we can

calculate a threshold value of p, pth, by taking the maximum value of the fixed points of
the maps r 7→ S(r), and r 7→ T (r). The map r 7→ S(r) has a fixed point at r∗ ∼ 0.8708,
and r 7→ T (r) has a fixed point at r∗ ∼ 0.7639. Since r = 1 − 4

3
p, the value of pth

is 0.0969, being dominated by the x and z terms, both of which are susceptible to Y
errors. The corresponding value of the threshold probability for Y -eigenstates is ∼ 0.1771,
approximately 82% greater. Therefore, it is desirable to ‘symmetrize’ the performance of
the code, rendering its thresholds equal for X, Y and Z noise.

This symmetrization can be accomplished by a transversal Clifford, implemented im-
mediately after error correction, which alters the stabilizer as follows:

T =
X 7→ Y
Y 7→ Z

, (7.7)

T⊗n(GSteane) =

Y Y Y Y III
Y Y IIY Y I
Y IY IY IY
XXXXIII
XXIIXXI
XIXIXIX

, T⊗n(T⊗n(GSteane)) =

XXXXIII
XXIIXXI
XIXIXIX
Y Y Y Y III
Y Y IIY Y I
Y IY IY IY

(7.8)

If we assume the execution of the T gate here to be perfect (or absorb it into the action
of the error-correcting gadget), we can replace the action of the error-correction gadget/-
transcoder with perfect decoding and re-encoding into the new code. For 3 iterations

77



of this scheme, we compare the unencoded channel [r3, r3, r3] to the encoded channel
[S(r)S(r)T (r), S(r)T (r)S(r), T (r)S(r)S(r)]. The map r 7→ S(r)S(r)T (r) has the fixed
point r∗ = 0.8018, which implies pth ∼ 0.1487, a value 53% larger than the threshold
without having transcoded. Similar gains in memory threshold can also be had for other
codes which exhibit similar susceptibility to one type of Pauli error.

7.5 Conclusions and Future Work

The utility of transcoding as a means of obtaining fault-tolerant gate sets is still in question,
due to the immense size of the Clifford group on n qubits. However, there exist a few simple
circuits which prove that transcoding has some benefits to quantum error-correction. The
next avenue of research to pursue is the expansion of the circuit search set to include circuits
possessing a limited number of two-qubit Clifford gates, examining this set for those which
perform transcoding operations, since these circuits number far fewer than the number of
Clifford operators which perform a transcoding task. In any event, quantum transcoding
remains a relatively unexplored area of research with interesting results ahead.
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Chapter 8

Conclusion

The development of quantum information processing has reached an exciting new stage.
Research continues into physical systems which allow storage and manipulation of quantum
information with ever-higher speed and fidelity, and into error-correction schemes which
permit the simulation of perfect operations using fewer, noisier physical qubits. The state
of the art in error-correction research is quite sophisticated, having advanced from proofs of
principle to analysis and improvement of performance, with current research being focused
on schemes for universal computation, and families of codes exhibiting common properties.

At this stage of research, marginal gains in performance become more important, and
it becomes useful to study ways in which more can be done with less. This is the overall
theme of the research in this thesis. We have discussed, in Chapter 5 means of partially
correcting additional errors without adding ancilla qubits to a quantum error-correcting
scheme. In Chapter 6, we attempt to determine whether more classical information can be
transmitted through a composite channel using entangled states. In Chapter 7, we show
a means of increasing the memory performance of CSS codes using no additional ancilla
qubits, and discuss an extension of the techniques involved to performing universal encoded
computation.

In addition, we detail two useful tools for performing calculations related to quantum
error correction and communication. In Appendix B we introduce a more efficient way to
calculate the effect of a CPTP map on a density matrix, given that the map acts on one
qubit. In Appendix C, we introduce a Python library for performing calculations involving
Pauli and Clifford operators. We believe that these tools, along with the research detailed
in this thesis, will aid the development of quantum computing in the near future.
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Appendix A

Semi-Definite Programming for QEC

In Chapter 5, we considered the task of correcting quantum errors when an additional
source of noise is present; specifically, the presence of initialization noise on the ancilla
qubits. To accomplish this, we rephrased the problem of maximizing channel fidelity for
a given error-correcting code as a semi-definite program, following the method of [68]. In
this appendix, we provide a brief introduction to semi-definite programs, and a derivation
showing that, with certain restrictions, quantum error correcting codes can be designed
using semi-definite programs. We conclude by detailing a method for placing additional
constraints on the encoding and decoding maps, ensuring that they are unital.

A.1 Semi-definite Programs

A semi-definite program is an optimization problem of the following form:

min
x
〈c|x〉

such that A |x〉 = |b〉 (A.1)

where |c〉, |x〉, and |b〉 are members of a convex cone (a subset of a vector space with closure
under convex combinations using positive coefficients, see [68] and references), such as the
positive semi-definite matrices. Here, the bra-ket notation is meant to denote abstract
inner products, and the matrix-vector constraint A |x〉 = |b〉 denotes the satisfaction of
numerous linear constraints by |x〉.

Semi-definite programs can be solved in an amount of time which scales as n3
x, where

nx is the number of parameters in |x〉. There are numerous free software packages which
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solve semi-definite programs, such as CVXOPT [59] and SeDuMi [87]. The reduction of
the derivation of quantum-error-correcting codes to the solution of semi-definite programs
thus provides access to a well-developed set of optimization algorithms.

In the following section, we provide a brief derivation of the semi-definite programs
whose solutions represent locally-optimal quantum-error-correcting operations with respect
to channel fidelity. A comprehensive treatise on this derivation can be found in [68];
it is included here because we will have to include a non-standard constraint, that the
encoding/decoding maps are unital. The reason for this constraint (that error correcting
operations are not permitted to increase the purity of an input state) is explained in detail
in the final section.

A.2 Optimal Encoders/Decoders using SDP

We consider an error-correction procedure to consist of three steps; encoding E, trans-
mission through a noisy channel T , and decoding D (we encapsulate any error-correction
operations which perform syndrome-controlled operations on the decoded qubit in D). For
either of the two maps E and D, but not both simultaneously, we can express the channel
fidelity FC as a matrix inner product, exploiting the cyclic property of the trace, and the
existence of dual channels (introduced in Chapter 4):

FC(D ◦ T ◦ E) = 〈Ω|D ◦ T ◦ E ⊗ 1̂ [|Ω〉〈Ω|] |Ω〉
= tr(〈Ω|D ◦ T ◦ E ⊗ 1̂ [|Ω〉〈Ω|] |Ω〉)
= tr(|Ω〉〈Ω| ·D ◦ T ◦ E ⊗ 1̂ [|Ω〉〈Ω|])
= tr((D ◦ T ⊗ 1̂)∗ [|Ω〉〈Ω|]E ⊗ 1̂ [|Ω〉〈Ω|]) (A.2)

where |Ω〉 =
1√
d

∑
j |j〉 ⊗ |j〉, as defined in Chapter 2, and Λ∗ is the dual channel to Λ,

this duality being defined in Chapter 4.

This matrix inner product can be expressed as a vector inner product, since:

tr(A†B) =
∑
j

(A†B)jj =
∑
jk

A†jkBkj = 〈col(A)|col(B)〉 . (A.3)

Therefore, the channel fidelity can be expressed in the semi-definite programming form, an
inner product of column-stacked Choi matrices:

FC(D ◦ T ◦ E) = 〈col((D ◦ T ⊗ 1̂)∗ [|Ω〉〈Ω|])|col(E ⊗ 1̂ [|Ω〉〈Ω|])〉 . (A.4)
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A similar relation can be seen to hold for the decoding map:

FC(D ◦ T ◦ E) = 〈col((T ◦ E ⊗ 1̂)∗ [|Ω〉〈Ω|])|col(D ⊗ 1̂ [|Ω〉〈Ω|])〉 . (A.5)

Thus, in order to perform joint optimization, we alternately optimize over E and D, until a
sufficient threshold of convergence has been met. This does not guarantee global optimality
over the set E, D. However, numerous codes have been found using this method which
exceed the performance of known codes [30, 56].

In order to place the familiar trace-preserving constraint (expressed in the Kraus for-
malism),∑

k

A†kAk = 1̂,

in the semi-definite programming form A |x〉 = |b〉, we use the map between the Kraus and
Choi representations of a quantum channel:

ΦΛ = Λ⊗ 1̂ [|Ω〉〈Ω|]

=
∑
k

Ak ⊗ 1̂ |Ω〉〈Ω|A†k ⊗ 1̂

=
∑
k

|col(Ak)〉〈col(Ak)| . (A.6)

We also use the identity

tr1 |col(Ak)〉〈col(Ak)| = A†kAk,

resulting in

tr1(ΦΛ) = 1̂ (A.7)

as the CPTP constraint on Λ (where, here, Λ will be E or D). The partial trace can
be expressed in Kraus notation, and its action can be expressed in the column-stacked
notation, resulting in a constraint of the appropriate form:

tr1(ρ) =
∑
k

〈k| ⊗ 1̂ρ |k〉 ⊗ 1̂ (A.8)

|col(PQR)〉 = (RT ⊗ P ) |col(Q)〉

∴ |col(tr1(ΦΛ))〉 =

(∑
k

(〈k| ⊗ 1̂)⊗ (〈k| ⊗ 1̂)

)
|col(ΦΛ)〉 = |col(1̂)〉 . (A.9)

With A =
(∑

k(〈k| ⊗ 1̂)⊗2
)

and |b〉 = |col(1̂)〉, the CPTP constraint is expressed in the
standard SDP form. In this way, quantum codes can be derived automatically, and their
properties can be studied.

83



A.3 Unitality

It is important to note that, when selecting E and D, it is typical to restrict E and D to
be unitary, since unitary control is to be used for encoding and decoding. However, the
unitarity constraint is non-linear, so it cannot be included in the semi-definite program.
This implies that, for example, if initialization noise is present (see Chapter 5), the encoder,
which is an arbitrary CPTP channel, can take the following form:

•

Γ

Γ

where the channel Γ maps all states to |0〉. Γ can be though of as a generalized amplitude
damping channel (see Chapter 2), and is thus CPTP. In order to find the optimal unitary
operator, we use an extra semi-definite constraint to derive a bound for unital channels,
then attempt to saturate that bound with a unitary encoder. The unital constraint is
closely related to the CPTP constraint:∑

k

AkA
†
k = 1̂,∴ A =

[ (∑
k(〈k| ⊗ 1̂)⊗2

)(∑
k(1̂⊗ 〈k|)⊗2

) ] , |b〉 =

[
|col(1̂)〉
|col(1̂)〉

]
,

where the rows of A and |b〉 are vertically concatenated, since both CPTP and unitality
constraints are to be satisfied. The augmentation in Chapter 5 is the result of such a
constrained optimization.

A.4 Conclusions

Semi-definite programming is a useful method for studying approximate quantum error
correction. It is likely that exact error correction will remain the prevalent avenue of
research into quantum error correction, due to the ease with which encoding/decoding
operations can be decomposed into circuits whose fault-tolerant properties can be analysed.
However, approximate error correction, and optimal codes specifically, will likely come into
greater use as low-level error-correction routines which can be adapted to the characteristics
of individual implementations of quantum computing.
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Appendix B

Numerically-Efficient Application of
Quantum Channels

Numerical calculations in quantum information theory are frequently prohibitively expen-
sive, because the size of a composite state space (consisting of multiple simple systems)
grows exponentially with the number of subsystems. To study composite systems consist-
ing of more than ∼ 10 qubits, using existing computers, it is important to develop efficient
classical algorithms for the study of quantum information. In this Appendix, we illustrate
one such algorithm, whose intended purpose is to calculate the effect of a qubit channel
Φ⊗n on an n-qubit density matrix ρ. This algorithm is used to study the super-additivity
of the Holevo capacity in Chapter 6. However, the application of tensor product channels
to large density matrices is common in theoretical investigations into quantum informa-
tion, so algorithms which perform this task more efficiently are of general interest. The
remainder of this Appendix is as follows: We outline a näıve means of calculating the ac-
tion of a tensor product channel on a register, which is then compared to a new algorithm,
which uses the special properties of Φ⊗n under block matrix decomposition to decrease
the computational time required for evaluation. We conclude by presenting source code
for this algorithm which is optimized for the study of the Holevo capacity of three-state
channels (see Chapter 6).

B.1 Näıve Channel Application

In order to demonstrate the efficiency of the algorithm presented in this Appendix, it is
necessary to compare it with a simple, inefficient, commonly-used algorithm. In chapter
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2, we introduced the Kraus and Choi representations of a quantum channel. Below, we
evaluate the complexity of calculating the action of an n-qubit channel Φ⊗n in each of these
representations.

The Kraus representation uses a set of operators {Fj } to describe a channel, the
application to a density matrix ρ is

Φ(ρ) =
∑
j

FjρF
†
j . (B.1)

For the channel Φ⊗n, each of the operators is a 2n-by-2n matrix, as is ρ. Therefore, each
matrix multiplication FjρF

†
j requires between O(22n) and O(23n) operations, depending

on the matrix multiplication algorithm being used [35]. The index j has rn distinct values,
where r is the rank of the Kraus map, the number of distinct operators in the set {Fj }. We
will assume, for simplicity, that r = 4, the maximum number of required Kraus operators
for a single-qubit channel. In order to store the operators {Fj }, then, O (24n) complex
parameters are required, and it is necessary to perform O (25n) operations in order to
evaluate its action on ρ.

The Choi representation uses a single 22n-by-22n matrix to store the parameters asso-
ciated with a channel:

β(Φ⊗n) = 1̂⊗n ⊗ Φ⊗n (|Ω〉〈Ω|) , (B.2)

where |Ω〉 =
1

2n

∑
k∈{ 0,1 }n

|k〉 ⊗ |k〉 (B.3)

To evaluate the action of a channel on a density matrix ρ in the Choi representation, we
exploit the fact that the Choi matrix can be re-written in terms of the application of Φ on
elementary matrices |j〉〈k|, with j, k being bitstrings from the set { 0, 1 }n:

β(Φ) =
1

2n

 Φ(|0〉〈0|⊗n) · · · Φ(|0〉〈1|⊗n)
... Φ(|j〉〈k|) ...

Φ(|1〉〈0|⊗n) · · · Φ(|1〉〈1|⊗n)

 . (B.4)

Using this fact, we can write the evaluation of Φ(ρ) as

ρa,b 7→
∑
j,k

ρj,k (Φ(|j〉〈k|)a,b) , a, b, j, k ∈ { 0, 1 }n . (B.5)

A single multiplication operation is associated with each value of a, b, j, k, for a total of
O (24n) operations required for evaluation. This is more efficient than the Kraus represen-
tation, due to the absence of matrix multiplication. The amount of storage required for the
channel is identical to that required to store the Kraus representation, O (24n) parameters.
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For a general n-qubit channel, these näıve algorithms are as efficient as possible. The
tensor product channels introduced earlier have additional structure, in that they can be
decomposed into a series of 1-qubit channels acting on n-qubit registers. These simple
channels also have simple block decompositions, which we will exploit, in the following
section, to evaluate the action of a tensor product channel efficiently.

B.2 Efficient Application of Tensor Product Channels

To derive an efficient algorithm to apply tensor product channels, we first express the
action of such a channel as

Φ⊗n =
n

©
j=1

Φj, (B.6)

where Φ ◦ Λ(ρ) = Φ(Λ(ρ)), ©n
j=1 Φj = Φ1 ◦ Φ2 ◦ · · · ◦ Φn, and Φj = 1̂⊗j−1 ⊗ Φ⊗ 1̂⊗n−j, In

order to evaluate the action of the composition ©n
j=1 Φj, we need only evaluate the action

of Φj for all values of j from 1 to n. There exist two special cases in which a simple block
decomposition can be used to efficiently evaluate Φj. These are the cases in which j = 1
and j = n. We describe these cases, then combine them to provide an equally-efficient
method for implementing an arbitrary Φj.

Consider first the Kraus representation of Φ1 = Φ⊗ 1̂⊗n−1:

Φ1(ρ) =
∑
j

Fj ⊗ 1̂⊗n−1 · ρ · F †j ⊗ 1̂⊗n−1 (B.7)

Each tensor product of the form Fj ⊗ 1̂⊗n−1 has a convenient block decomposition:

Fj ⊗ 1̂⊗n−1 =

[
Fj,001̂⊗n−1 Fj,011̂⊗n−1

Fj,101̂⊗n−1 Fj,111̂⊗n−1

]
(B.8)

The product Fj⊗1̂⊗n−1 ·ρ·F †j ⊗1̂⊗n−1 can then be calculated by block-multiplying matrices:[
Fj,001̂⊗n−1 Fj,011̂⊗n−1

Fj,101̂⊗n−1 Fj,111̂⊗n−1

] [
ρ{0,0} ρ{0,1}
ρ{1,0} ρ{1,1}

] [
F ∗j,001̂

⊗n−1 F ∗j,101̂
⊗n−1

F ∗j,011̂
⊗n−1 F ∗j,111̂

⊗n−1

]
=

[
ρ̃{0,0} ρ̃{0,1}
ρ̃{1,0} ρ̃{1,1}

]
(B.9)

where ρ̃{a,b} =
∑

c,d Fj,ac · F ∗j,bd · ρ{c,d}. Here, the O (23n) operations necessary to näıvely

evaluate a matrix product have been replaced by O (22n) operations.
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A similar decrease in the number of required operations is seen for Φn. The block
decomposition of the Kraus operator 1̂⊗n−1 ⊗ Fj yields a block-diagonal matrix:

1̂⊗n−1 ⊗ Fj =

 Fj · · · 0
...

. . .
...

0 · · · Fj


1̂⊗n−1 ⊗ Fj · ρ · 1̂⊗n−1 ⊗ F †j =

 Fjρ{0,0}F
†
j · · · Fjρ{0,2n−1−1}F

†
j

... Fjρ{k,l}F
†
j

...

Fjρ{2n−1−1,0}F
†
j · · · Fjρ{2n−1−1,2n−1−1}F

†
j


(B.10)

The block decomposition above replaces a single matrix multiplication of three 2n-by-2n

matrices with O (22n) multiplications of 2-by-2 matrices, ensuring that each operator in
the Kraus map can be evaluated in O (22n) operations.

To see how these two special cases can be combined in order to evaluate Φj(ρ) for
any j, we first note that the formulae above, which are derived specifically for the Kraus
representation, can be abstracted to channels in no fixed representation:

1̂⊗n−1 ⊗ Φ(ρ) =

 Φ(ρ{0,0}) · · · Φ(ρ{0,2n−1−1})
... Φ(ρ{k,l})

...
Φ(ρ{2n−1−1,0}) · · · Φ(ρ{2n−1−1,2n−1−1})

 (B.11)

Φ⊗ 1̂⊗n−1(ρ) = Φ

([
ρ{0,0} ρ{0,1}
ρ{1,0} ρ{1,1}

])
(B.12)

The evaluation of the action of Φj is equivalent to evaluating the action of Φ ⊗ 1̂⊗n−j on
the 2j−1-by-2j−1 blocks of ρ, which can be accomplished in two steps. First, the matrix
ρ is partitioned into 2j−1-by-2j−1 blocks, then the channel Φ is applied to these blocks
as 2-by-2 block matrices, each sub-block being 2j−2-by-2j−2. In this way, Φj(ρ) can be
evaluated using O (22n) operations.

Given the abstract descriptions of channel action given by Equations B.11 and B.12,
it is possible to execute this algorithm for channels in arbitrary representations of a given
channel, as needed. In the following section, we present an implementation of this algorithm
in matlab.
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B.3 Implementation

The code below is presented here for completeness. Given the discussion of the algorithm
above, the code below can be translated into any programming language. matlab is used
here, due to its familiarity for a scientific audience. Also, the specific code presented here
is intended for the study of the Holevo capacity in Chapter 6, uses the Choi matrix to
implement Φ⊗ 1̂⊗n−j, and uses a flag to select whether the dual channel is used.

function [ rho ] = apply channel to all( channel, rho, dualFlag )
%#codegen
%apply channel to all yields the result of applying the Kraus channel
% "channel" to the all qubits of the density matrix "rho in".
for idxQbit = 1:log2(length(rho))

rho=apply channel to one( channel, rho, uint32(idxQbit), uint8(dualFlag) );
end
end

function [ rho ] = apply channel to one( channel, rho, qubit, dualFlag )

%apply channel to one yields the result of applying the Kraus channel
% "channel" to the qubit "qubit" of the density matrix "rho in".

%% Kraus−based code

%rhoOut=complex(zeros(size(rhoIn)),zeros(size(rhoIn)));
%[˜,˜,leng]=size(channel);
%for idxOp = 1:leng
% rhoOut=rhoOut+apply op one qubit( channel(:,:,idxOp), rhoIn, qubit );
%end

%% Choi−based code −− assumes three−state channel with special Choi matrix:
% Here, channel is an array consisting of
% (t 3)/2, (lambda 1)/2, (lambda 2)/2, and (lambda 3)/2:

%% Temporary hack for typecasting input dualFlag
dualFlag = uint8(dualFlag);

%% Dimensions, determining whether to apply spmd
block size=length(rho)/(2ˆ(qubit−1));

for idx block row=1:2ˆ(qubit−1) %Loop over blocks horizontally
for idx block col=1:2ˆ(qubit−1) %Loop over blocks vertically
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%Indexing below is messy, but it just takes an appropriately sized
%block of rhoIn and applies the one−qubit operator to the top
%qubit.
rho((idx block row−1)∗block size+1:idx block row∗block size,...

(idx block col−1)∗block size+1:idx block col∗block size)=...
top apply choi(channel,...
rho((idx block row−1)∗block size+1:idx block row∗block size,...
(idx block col−1)∗block size+1:idx block col∗block size),dualFlag);

end
end

end

function [ rho ] = top apply choi( channel, rho, dualFlag )
%#codegen
%top apply choi uses an extremely special form for three−state channels to
%evaluate the action of a one−qubit channel on the top qubit in a register.

%% First, split rho in into the four half−size sub−blocks:

rho size=length(rho);
rho11=rho(1:rho size/2,1:rho size/2);
rho12=rho(1:rho size/2,rho size/2+1:rho size);
rho21=rho(rho size/2+1:rho size,1:rho size/2);
rho22=rho(rho size/2+1:rho size,rho size/2+1:rho size);

%% Pre−calculate multiplications (4−ish are required)
if dualFlag==0

diagonal sum=(rho11+rho22);
half diagonal sum=diagonal sum/2;
scaled diagonal sum=channel(1)∗diagonal sum;
scaled diagonal diff=channel(4)∗(rho11−rho22);
plus term=channel(2)∗(rho12+rho21);
minus term=channel(3)∗(rho12−rho21);

rho=[half diagonal sum+scaled diagonal sum+scaled diagonal diff,...
plus term + minus term; plus term − minus term,...
half diagonal sum−scaled diagonal sum−scaled diagonal diff];

elseif dualFlag==1

plus z=channel(1)+channel(4);
minus z=channel(1)−channel(4);
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diagonal sum=rho11+rho22;
diagonal diff=rho11−rho22;
off diagonal sum=rho12+rho21;
off diagonal diff=rho12−rho21;
out off diag x=channel(2)∗off diagonal sum;
out off diag y=channel(3)∗off diagonal diff;
top left=out off diag x + out off diag y;
bottom right=out off diag x − out off diag y;

rho=[diagonal sum/2 + plus z∗diagonal diff, top left;
bottom right, diagonal sum/2+minus z∗diagonal diff];

end
end
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Appendix C

QuaEC: Quantum Error Correction
in Python

In order to search for Clifford operators which perform fault-tolerant transcoding operations
(see Chapter 7), it was necessary to develop a code library for defining elements of the
Pauli and Clifford groups, as well as stabilizer codes and related quantum circuits. This
library is called QuaEC (for Quantum Error Correction), it is written in Python [58],
and it is publicly available [19]. This library, however, is not only useful for examining
the problem of converting data between quantum codes, but also for generic Gottesman-
Knill computations [60], solving commutation constraints among n-qubit Pauli operators,
and expressing Clifford operators in terms of their action on the Pauli group, as unitary
matrices, and as quantum circuits. These tasks are commonplace in the study of quantum
computing, so it is worthwhile to automate them. The goal of this appendix is to familiarize
the reader with QuaEC, explaining the principles which inform its design, and giving
examples of its use. The interested reader will likely be able, after reading this appendix
and the references herein, to replicate the core functionality of QuaEC in any programming
language. In the following, a degree of familiarity with Python is assumed, novice readers
should refer to [58] for a comprehensive introduction.

We begin by detailing the representations of Pauli and Clifford operators, along with
Pauli/Clifford arithmetic (multiplication of Paulis and Cliffords and conjugation of Paulis
by Cliffords). We conclude by discussing one of the more complicated problems that QuaEC
is designed to solve, the derivation of sets of Paulis which satisfy arbitrary commutation/anti-
commutation constraints. Note that we omit discussion of many of the high-level functions
within QuaEC (for a complete description of QuaEC’s capabilities, see [19]). We focus
here on the solution of commutation constraints, because it is a frequently-encountered
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problem in quantum information, and because the algorithm used to solve it is original
(algorithms which QuaEC implements which are not original are referenced in [19]).

C.0.1 Aside: Notes on Terminology and Obtaining/Using QuaEC

There are two important points that bear mention, in order to facilitate the understanding
of this Appendix, and of the QuaEC library itself. The first is the terminology of object-
oriented programming, the programming paradigm under which QuaEC is designed. The
second is the means by which one can obtain the necessary software to begin using QuaEC.
Readers who are familiar with object-oriented programming and the Python programming
language may advance to the following section immediately.

Object-oriented programming is a set of design practices used in computer programming
when studying data structures with defined attributes. Consider, as a simple example, the
rational numbers. Each rational number can be expressed as a/b, where a and b are integers.
A rational number can be defined as an object, with integer-valued attributes (commonly
called properties) a and b. A set of objects forms a class, which is defined by the permissible
values of the properties.

Operations on objects are referred to as methods, they are similar to functions, designed
to take the properties of an object as input. Methods are used to alter the properties of an
object, or produce some output which depends on the object in question. Again considering
the example of the rational numbers, we can define an inversion method, which performs
the map a ↔ b, providing the multiplicative inverse of the rational number defined by
a and b. We can also define a method which prints rational numbers in the form a/b.
There also exist static methods, which produce instances of the class to which they are
associated, without input drawn from that class. In the case of the rational numbers, we
can define a method which takes a floating-point number as input, producing a rational
approximation as output, for example. In addition, we can assign specific methods to
operators (special characters such as + or * in a given programming language; note that
this definition of an operator is distinct from the definition of a Pauli or Clifford operator), a
process called operator overloading. The terms introduced here (objects, classes, methods,
static methods, operators, operator overloading) will be used to describe the approach
taken to representing Pauli and Clifford group elements, and performing calculations on
these operators.

The second necessity for the understanding and use of this Appendix is that the reader
have a Python interpreter and the QuaEC library installed, so that the reader can run the
examples within this Appendix, and alter them to further examine them. Throughout the
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remainder of this Appendix, examples which are intended to be run in the interpreter have
lines beginning in ‘>>>’. The indented lines below show the expected output. There are
also samples of QuaEC’s internal code distributed throughout the Appendix; they do not
contain the prompt character >>>.

Though QuaEC will function in any Python interpreter, we recommend IPython, an
interactive interpreter with many advanced features. In addition, we recommend installa-
tion of QuaEC directly from the shell, running the following command in any operating
system, once Python is installed:

>>> easy install quaec

The above introduction to object-oriented programming and Python is meant to be suf-
ficient for using and understanding the examples in this Appendix; for a more in-depth
treatment of object-oriented programming in Python, see [58], Part VI. We resume the
discussion of QuaEC’s features and use below.

C.1 Representations of the Pauli and Clifford Groups

In order to perform calculations using elements of the Pauli and Clifford groups, it is first
necessary to store them in a form which is both amenable to computation and interpretation
by the user. In this section, we describe how QuaEC stores and manipulates Paulis and
Cliffords, focusing first on the ways in which these operators can be constructed, then
describing the implementation of Pauli/Clifford arithmetic in QuaEC.

C.1.1 Representation

We represent a Pauli as the product of a global phase iph, where ph is an integer, with a
string op. In the example below, we initialize a Pauli operator iX ⊗ Y :

>>> #import module containing error correction library, assigning local name q
>>> import qecc as q
>>> #create Pauli operator using class from q
>>> demo pauli = q.Pauli("XY",9)
>>> demo pauli

iˆ1 XY
>>> demo pauli.op
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"XY"
>>> demo pauli.ph

1

Note that the phase is stored modulo 4, since iph+4 = iph.

For convenience, there are two other means of initializing a Pauli operator. For Pauli
operators of low weight (those which differ from the identity on only a few qubits), we
implement a static method from sparse in the Pauli class, seen below. (In the code
example below, and those that follow, we will assume that import qecc as q has been
performed.)

>>> from qecc import X, Y, Z # Static methods for single−qubit Paulis
>>> #Create 20−qubit Pauli with weight 3
>>> #with operator Z on qubit 2, Y on qubit 10, X on qubit 19.
>>> sparse pauli = q.Pauli.from sparse({2:Z, 10:Y, 19:X}, nq=20)
>>> sparse pauli

iˆ0 IIZIIIIIIIYIIIIIIIIX

Also, for Paulis which, on a given qubit, are either I or P , where P ∈ {X, Y, Z }, the
method from string can be used:

>>> from qecc import X, Y, Z # Static methods for single−qubit Paulis
>>> bitstring = "10101101100"
>>> #Replace all "1"s with Pauli Xs, "0"s with identities.
>>> q.Pauli.from string(bitstring,X)

iˆ0 XIXIXXIXXII
>>> #As above, substituting "Y" for "X".
>>> q.Pauli.from string(bitstring,Y)

iˆ0 YIYIYYIYYII
>>> #As above, with "Z".
>>> q.Pauli.from string(bitstring,Z)

iˆ0 ZIZIZZIZZII

These methods are often used elsewhere within QuaEC to define stabilizer group elements,
Pauli errors on registers, etc. Users are not limited to using these methods in isolation,
however. Using the general initializer for the Pauli class, it is simple to define new functions
and methods which return Pauli objects, by specifying op and ph for the output Pauli.

Initializing a Clifford operator is a similarly simple process. In Chapter 3, we noted that
a Clifford can be specified by its action on the generating set of Paulis {Xj, Zj | 1 ≤ j ≤ n },
which we will denote { X̄j, Z̄j | 1 ≤ j ≤ n }. In QuaEC, these two lists are referred to
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internally as xbars and zbars, and assignments to these lists are used to initialize Clifford
objects:

>>> #Succinctly specify lists of Paulis using the PauliList class
>>> demo xbars = q.PauliList("XX", "ZZ");
>>> demo zbars = q.PauliList("ZI", "IX")
>>> #Initialize a Clfiford which maps XI, IX
>>> #to demo xbars, and ZI, IZ to demo zbars
>>> demo clifford = q.Clifford(demo xbars, demo zbars)
>>> print demo clifford

XI |−> +XX
IX |−> +ZZ
ZI |−> +ZI
IZ |−> +IX

Note that any list of Pauli operators can be used to specify a Clifford, even those that do
not obey the appropriate commutation constraints (

[
X̄j, Z̄k

]
= 0 when j 6= k,

{
X̄j, Z̄k

}
= 0

when j = k, and
[
X̄j, X̄k

]
=
[
Z̄j, Z̄k

]
= 0, ∀j, k). No warning or error is printed:

>>> #Same example as above, with anti−commuting demo xbars,
>>> #and demo zbars[1] commuting with demo xbars[1].
>>> demo xbars = q.PauliList("XX", "YI"); demo zbars = q.PauliList("ZI", "IX")
>>> demo clifford = q.Clifford(demo xbars, demo zbars)
>>> print demo clifford

XI |−> +XX
IX |−> +YI
ZI |−> +ZI
IZ |−> +IX

To check whether the outputs of a Clifford obey the commutation constraints, we use the
method is valid on the Clifford itself:

>>> demo xbars good = q.PauliList("XX", "ZZ")
>>> demo xbars bad = q.PauliList("XX", "YI")
>>> demo zbars = q.PauliList("ZI", "IX")
>>> demo clifford good = q.Clifford(demo xbars good, demo zbars)
>>> demo clifford bad = q.Clifford(demo xbars bad, demo zbars)
>>> #Check that commutation/anti−commutation constraints are satisfied.
>>> demo clifford good.is valid()

True
>>> demo clifford bad.is valid()

False
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Checking these commutation constraints uses an amount of work which scales quadratically
with respect to n (the number of qubits in question), so it is not performed on initialization.
It is, however, easy for the user (or a function) to check after initialization. The class
implementing Clifford operators, then, allows these objects to be initialized efficiently.

Clifford operators are often given, not in terms of their outputs { X̄j, Z̄j }, but in terms
of the generators given in Equation 3.4 in Chapter 3. QuaEC provides functions which
return instances of these generators; cnot, hadamard, and phase. Inputs to these functions
are the size of the register (nq) and, in the case of hadamard and phase, a single index
indicating which qubit in the register is subjected to the gate. For cnot, two indices are
used, ctrl and targ, indicating the control and target qubit indices, respectively.

>>> #CNOT on 2 qubits, with control on qubit 0, target on qubit 1.
>>> print q.cnot(2,0,1)

XI |−> +XX
IX |−> +IX
ZI |−> +ZI
IZ |−> +ZZ

>>> #Hadamard gate
>>> print q.hadamard(1,0)

X |−> +Z
Z |−> +X

>>> #Phase gate
>>> print q.phase(1,0)

X |−> +Y
Z |−> +Z

The representation detailed above is both convenient, allowing the construction of Pauli
and Clifford operators in an intuitive fashion, and useful for efficient computation, since the
2n-dimensional unitary matrices associated with a given Pauli or Clifford need not be gen-
erated in order to instantiate it. In the following subsection, we detail a similarly efficient,
intuitive means of performing Pauli/Clifford products, commutations and conjugations.

C.1.2 Pauli and Clifford Arithmetic

In order to perform more complicated operations involving Pauli and Clifford operators,
such as the solution of commutation constraints which concludes this chapter, it is first
necessary to perform more rudimentary operations on Pauli and Clifford operators. In
this chapter, we consider the multiplication of Pauli and Clifford operators, as well as
determining commutation for Paulis and applying Cliffords.
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Pauli Multiplication In QuaEC, the product of two single-qubit Paulis is evaluated
using a 4-by-4 lookup table, stored as a dictionary:

MULT TABLE = {
("I","I"): (0,"I"), ("I","X"): (0,"X"), ("I","Y"): (0,"Y"), ("I","Z"): (0,"Z"),
("X","I"): (0,"X"), ("X","X"): (0,"I"), ("X","Y"): (1,"Z"), ("X","Z"): (3,"Y"),
("Y","I"): (0,"Y"), ("Y","X"): (3,"Z"), ("Y","Y"): (0,"I"), ("Y","Z"): (1,"X"),
("Z","I"): (0,"Z"), ("Z","X"): (1,"Y"), ("Z","Y"): (3,"X"), ("Z","Z"): (0,"I")
}

This dictionary maps pairs of permissible values for op (one of I, X, Y, or Z) to tuples (lists
whose contents cannot be changed, see [58]), consisting of an integer and a permissible
value for op. The integer from the tuple, when summed with the values of ph for the input
Paulis, gives the appropriate value of ph for the output. The core of the multiplication
method is presented below, with p1 and p2 being the input multi-qubit Paulis:

#Initialize the output Pauli, with no entries in the operator, and a phase
#which is the product of the two input phases:
newP = Pauli("", p1.ph + p2.ph)

#Looping over qubits, calculate new values of op and ph
for paulicounter in range(len(p1)):

ph, op = MULT TABLE[(p1.op[paulicounter], p2.op[paulicounter])]
newP.op=newP.op+op
newP.ph=newP.ph+ph

The result is a Pauli which has as its op a concatenated string of products of single-qubit
Paulis, with the sum of the resulting phases as its integer ph. In this manner, the product
of two n-qubit Paulis can be evaluated in an amount of time that scales linearly with n.
The operator * is overloaded to perform multiplication, for ease of use:

>>> p1 = q.Pauli("XYZ"); p2 = q.Pauli("ZIY", 1)
>>> p1 ∗ p2

iˆ3 YYX

Pauli Commutation It is also frequently necessary to determine whether two Paulis
commute. For example, the determination of the validity of a Clifford operator can be
reduced to determining the commutation relations of its output Paulis. Also, stabilizers
and logical operators for quantum error correcting codes are defined by their commutation
properties; with the stabilizers being a mutually-commuting subgroup of the Pauli group,
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and the logical operators {XL(j), ZL(j) | 1 ≤ j ≤ k } must commute with the stabilizer, and
have the same commutation relations as the generators {Xj, Zj | 1 ≤ j ≤ k } (see Chapter
3).

In QuaEC, Pauli commutation is determined by multiplying the input Paulis and ex-
amining the output phases:

#Check phases of products of Paulis P and Q
ph1, ph2 = (P∗Q).ph, (Q∗P).ph
#Paulis commute iff phases are equal
return 0 if ph1 == ph2 else 1

The output is an integer 0 (indicating commutation) or 1 (indicating anti-commutation),
which can be treated as a Boolean variable. Access is provided through the function com:

>>> XYZ = q.Pauli("XYZ"); ZIY = q.Pauli("ZIY"); YYZ = q.Pauli("YYZ")
>>> #{XYZ, YYZ} = 0, [XYZ, ZIY] = 0
>>> q.com(XYZ,YYZ)

1
>>> q.com(XYZ,ZIY)

0

Since multiplication of Paulis is executed in linear time, commutation is determined in
linear time as well, with a factor of two overhead, since two multiplications are required.
Note that it is possible to implement a second look-up table for commutation, similar
to MULT TABLE which is used for multiplication above. We avoid this in the interest of
legibility and portability.

Clifford Application Shifting the focus to Clifford operators, we first detail the ap-
plication of a Clifford C to a Pauli P , which is the evaluation of CPC†. This is the
fundamental step in Gottesman-Knill simulation [60]. Recall that the representation of a
Clifford operator is a list of outputs from the generating set {Xj, Zj | 1 ≤ j ≤ n }, and that
C (
∏

k Pk)C
† =

∏
k CPkC

† =
∏

k P̄k, since C is unitary (C−1 = C†). Given the Clifford
representation which QuaEC uses, then, it is possible to evaluate CPC† using at most 2n
Pauli multiplications, the application of C to the input Pauli Y ⊗n being the most expensive
to evaluate. Since the time necessary to multiply Paulis scales linearly with n, the time
necessary to apply a Clifford to a Pauli is quadratic in n.

The conjugation of Paulis by multiplication of Clifford outputs { X̄, Z̄ } is carried out
in the Clifford method conjugate pauli using the Clifford self and the Pauli pauli:

100



for idx,op in enumerate(pauli.op):
#For every X/Z the input Pauli contains, multiply by the
# corresponding output Pauli from the Clifford self.
if op == "X":

rolling pauli=rolling pauli∗self.xout[idx]
elif op == "Z":

rolling pauli=rolling pauli∗self.zout[idx]
elif op == "Y":

#Y = iXZ:
rolling pauli=rolling pauli∗self.xout[idx]∗self.zout[idx]
rolling pauli.mul phase(1)

return rolling pauli

This function, for every entry in the input Pauli’s op, multiplies the output Pauli (which
is initialized to the identity) by X̄j, Z̄j, or iX̄jZ̄j on the right when the jth entry of op is
X, Z or Y = iXZ, respectively.

In QuaEC, this function can be accessed either directly, through conjugate pauli, or
by calling the Clifford as a function:

>>> #−−Begin initializing Clifford−−#
>>> xbars = q.PauliList("XX", "ZZ"); zbars = q.PauliList("ZI", "IX")
>>> cliff = q.Clifford(xbars, zbars)
>>> #−−End initializing Clifford−−#
>>> #Method on Clifford instance used below
>>> cliff.conjugate pauli(q.Pauli("XY"))

iˆ2 YZ
>>> #Cliffords can also be used as functions
>>> cliff(q.Pauli("XY"))

iˆ2 YZ
>>> #For brevity, these functions can be called on strings.
>>> cliff("XY")

iˆ2 YZ

Note that Cliffords can also be called as functions on strings; this string will be mapped
to a Pauli operator with ph = 0 if it contains only the letters I, X, Y, and Z. This compact
syntax allows for the fast evaluation of the action of single Clifford operators.

Clifford Multiplication In order to evaluate the action of a series of Clifford operators,
one can calculate their product. Such a product C2 × C1 can be evaluated by repeated
application of C2 to the output Paulis of C1, since [C2 × C1] (P ) = C2(C1(P ))∀P . Since
C1 is represented by its action on the generators {Xj, Zj | 1 ≤ j ≤ n }, the action of C2×C1

101



on these generators can be calculated using 2n applications of the Clifford C2 to the Paulis
{C1(Xj), C1(Zj) | 1 ≤ j ≤ n }.

In QuaEC, this is accomplished for two Cliffords self and other, by repeatedly calling
the method conjugate pauli, defined above:

#Loop over pairs of X and Z outputs using the Clifford self to conjugate the outputs of other
for ex, zed in zip(other.xout,other.zout):

Xs.append(self.conjugate pauli(ex))
Zs.append(self.conjugate pauli(zed))

return Clifford(Xs,Zs)

This functionality is accessed using the overloaded operator *, placed between two Cliffords:

>>> xbars = q.PauliList("XX","ZZ"); zbars = q.PauliList("ZI","IX")
>>> cliff = q.Clifford(xbars, zbars); other cliff = q.Clifford(zbars, xbars)
>>> print cliff ∗ other cliff

XI |−> +ZI
IX |−> +ZZ
ZI |−> −YY
IZ |−> +ZX

Note that, in evaluating the action of a series of Cliffords on a set of Paulis, it is not always
economical to calculate the product of the Cliffords in question. Suppose, for example,
that there is a series of m Cliffords whose action is to be evaluated on q Paulis, all Cliffords
and Paulis being defined on n qubits. Evaluating the product of m Cliffords on n qubits
requires an amount of time which scales with 4 ·m · n3 (each product requiring 2n Pauli
conjugations, each requiring at most 2n multiplications, each multiplication requiring n
operations). Application of the resulting Clifford to a set of q Paulis, then, requires an
amount of time scaling with 2 · q · n2 (each application requiring 2n2 operations). Without
multiplying the Cliffords in question, each of the m Cliffords must be applied to each of
the q Paulis, with time scaling as 2 ·m · q · n2. When q > mn

m+1
, then, less work is required

to multiply the Cliffords before application to the Pauli set. If q < mn
m+1

, it is less costly to
apply the Cliffords in series, without multiplying them.

Composition It is possible, by composing these primitive operations, to quickly program
a wide variety of tasks pertaining to Pauli and Clifford operators, making study and manip-
ulation of these groups simple and efficient. Before advancing, in the following sections, to
consider the solution of commutation constraints (one of the more complicated algorithms
in QuaEC), we conclude this section with three examples of the functions detailed above.
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As an example of a complex question which QuaEC can easily answer, we consider the
enumeration of triples of weight-(one or two) Paulis on three qubits which are mutually
anti-commuting. This example also uses itertools, a well-documented Python module
[1], to ensure that large sets of Pauli triples are not stored in memory until requested:

>>> import itertools as it #Import additional module
>>> #Produce lists of weight−two Paulis on 3 qubits using:
>>> # + the QuaEC function paulis by weight
>>> # + the combinations function from itertools
>>> triples of wt 2 on 3 = it.combinations(q.paulis by weight(3,2),3)
>>> #Produce a Boolean function indicating whether
>>> #all the elements of the list anti−commute:
>>> list anti com = lambda(p lst): \ #lambda function from Python

all([q.com(p lst[j], p lst[k]) == 1 \
for j, k in it.combinations(range(len(p lst)),2)])

>>> #See itertools documentation re: ifilter
>>> anti commuting triples = it.ifilter(list anti com, triples of wt 2 on 3)
>>> #Example:
>>> list(anti commuting triples)[324]

(iˆ0 IZI, iˆ0 XYI, iˆ0 ZYI)

As a further example, we examine the commutation properties of triples of Paulis drawn
from partitions of the operator XY ZXY Z . . .XY Z. On four qubits, for instance, this
is the set {XY ZX, Y ZXY,ZXY Z }, which is mutually commuting. We can define this
family of Paulis easily in QuaEC:

>>> #List manipulation in Python, using map:
>>> repeat paulis = lambda nq: \

map(q.Pauli,[("XYZ"∗nq)[idx∗nq:(idx+1)∗nq] for idx in range(3)])
>>> #Anti−commutation and commutation constraint Boolean functions,
>>> #as above
>>> list anti com = lambda(p lst): \

all([q.com(p lst[j], p lst[k]) == 1 \
for j, k in it.combinations(range(len(p lst)),2)])

>>> list com = lambda(p lst): \
all([q.com(p lst[j], p lst[k]) == 0 \
for j, k in it.combinations(range(len(p lst)),2)])

>>> #Proof that, for nq = 4,5,6,7, these lists commute for nq even,
>>> #anti−commute for nq odd.
>>> [list com(repeat paulis(j)) for j in range(4,8)]

[True, False, True, False]
>>> [list anti com(repeat paulis(j)) for j in range(4,8)]
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[False, True, False, True]

We see that these triples mutually anti-commute on odd numbers of qubits, and mutually
commute on even numbers of qubits.

For a third, and final example of QuaEC’s utility, we define a function that enumerates
the set of errors correctable by a distance 3 CSS code (see [36, 82] for information pertaining
to the codes themselves), the set {XjZk | 1 ≤ j ≤ n, 1 ≤ k ≤ n }:

import itertools as it
>>> #Express correctable set as union of:
>>> # + weight−one Paulis
>>> # + weight−two Paulis consisting of 1 "X" and 1 "Z" on different bits
>>> css correctable errors = lambda nq: list(q.paulis by weight(nq,1)) + \

[q.Pauli.from sparse({j:q.Z, k:q.X},nq=nq) for j,k in \
it.permutations(range(nq),2)]

>>> #Correctable set on two qubits (only an example, no distance−3
>>> #code exists on 2 qubits).
>>> css correctable errors(2)

[iˆ0 XI, iˆ0 IX, iˆ0 YI, iˆ0 IY, iˆ0 ZI, iˆ0 IZ, iˆ0 ZX, iˆ0 XZ]

These examples of the study of the Pauli group are a few of the ways in which QuaEC may
be used, there are numerous convenience functions that have been provided in QuaEC in
addition to those introduced above. For a complete list, see QuaEC’s documentation [19].
These examples show some of the objects, methods, operators and functions which can be
used to quickly solve various problems concerning the Pauli and Clifford groups. Having
shown QuaEC’s simple operations and their composition, we display one of QuaEC’s more
complicated features, solution of generalized commutation constraints.

C.2 Solution of Commutation Constraints

A common, complicated problem in the stabilizer formalism is the solution of commutation
constraints; that is, the derivation of a set of Pauli operators {Psol } such that every element
of {Psol } commutes with every element of a fixed set {Pcom }, and anti-commutes with
every element of a fixed set {Pacom }. This is a generalization of finding the centralizer of
a set of Paulis, the set for which every element commutes with every element of {Pcom }.
Problems of this ‘generalized-centralizer’ form occur in the stabilizer formalism in two
circumstances:
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• When analysing a Clifford operator whose action is only partially specified (suppose
m of the 2n output Pauli generators are known), it is necessary to find Paulis which
commute with m− 1 of the specified outputs and anti-commute with the remaining
Pauli.

• When determining logical operators for a stabilizer code, it is necessary to deter-
mine 2k Paulis which commute with the stabilizer generators, and have identical
commutation relations to {Xj, Zj | 1 ≤ j ≤ k }.

In this section, we show the capabilities within QuaEC which have been developed to solve
generalized commutation constraints. We begin with the implementation of predicates
(wrappers around Boolean functions which allow for easy manipulation), a useful tool in
the subsequent development of a solver for the centralizer of a Pauli set, followed by the
solution of the generalized-centralizer problem introduced above.

C.2.1 Predicates

In order to represent commutation constraints in a convenient form, we use predicates,
which are wrapped Boolean functions:

>>> #Regular Boolean function:
>>> test pred = lambda x: x < 9
>>> test pred(100), test pred(1)

(False, True)
>>> #Predicate based on the Boolean function:
>>> test pred = q.Predicate(test pred)
>>> test pred(100), test pred(1)

(False, True)

What makes predicates useful is that the logical ‘and/or’ operations have been imple-
mented, using & and |:

>>> #Create a pair of predicates:
>>> pred high = q.Predicate(lambda x: x < 9)
>>> pred low = q.Predicate(lambda x: x > 5)
>>> #They can be quickly composed using & and |:
>>> map(pred high & pred low, range(4:10)) #Logical AND of two predicates

[False, False, True, True, True, False]
>>> map(pred high | pred low, range(4:10)) #Logical OR

[True, True, True, True, True, True]
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These operators produce AllPredicate and AnyPredicate objects, which evaluate mul-
tiple Boolean functions, returning the result of a logical all or any on the results of the
component predicates (note that, for two inputs, all is equivalent to and and any is
equivalent to or).

General commutation constraints can be solved using a pair of AllPredicate instances
(one for the set with which output Paulis must commute, one for the set with which the
must anti-commute); this is the preferred method in QuaEC when the Paulis satisfying the
commutation/anti-commutation constraints are to be selected from a small pre-determined
set:

if search in set is not None: # A Pauli search set has been specified
commutation predicate = AllPredicate(∗map(

lambda acc: (lambda P: pc.com(P, acc) == 0),
commutation constraints
)) # AllPredicate of individual commutation predicates

# Remove non−commuting elements from list by brute force.
commuters = filter(commutation predicate, search in set)
anticommutation predicate = AllPredicate(∗map(

lambda acc: (lambda P: pc.com(P, acc) == 1),
anticommutation constraints
)) # Repeat for anti−commutation constraints

# Return result of filters.
return filter(anticommutation predicate, commuters)

This method is efficient for small sets of Paulis, such as the weight-one Paulis, of which
there are 3n on n qubits. However, for larger sets of Paulis, such as the whole Pauli group
without phases (which has 4n elements on n qubits), storing the elements in a large list
and filtering them requires a prohibitively large amount of memory.

In addition, the simple method above does not take advantage of the fact that the Pauli
centralizer of a set of Paulis is a subgroup of the Paulis. To see this, we note that:

• The centralizer of a set of Paulis is a subset of the Paulis, so the group operation
(multiplication) is associative.

• [PQ,R] = P [Q,R] + [P,R]Q, so if P and Q are elements of the centralizer of a set
for which R is an element, the product PQ is also in the centralizer.

• The Pauli identity 1̂⊗n trivially commutes with every Pauli, so it is in the centralizer.

• The inverse of P is either P or −P , both of which are in the centralizer if P is.
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The group structure of the centralizer means that only its generators need be stored, so
that an element of the centralizer can be derived when needed by multiplying at most
2n Paulis (since the entire Pauli group can be generated from 2n generators). Note that
the anti-centralizer of a set of Paulis does not form a group, since it is not closed under
multiplication (i.e. if {P,R} = {Q,R} = 0, then [PQ,R] = P{Q,R} − {P,R}Q = 0, and
PQ is in the centralizer). In the following subsection, we discuss the derivation of centralizer
generators, an important step in the solution of the generalized-centralizer problem.

C.2.2 Centralizer Generators

To solve the general problem of finding a set of Paulis which has mixed commutation
constraints, we first narrow the search to the centralizer of those Paulis with which the
solution set must commute. The centralizer of a set of Paulis is the intersection of the
centralizers of the individual elements of that set. For this reason, we can first focus on
finding the generators of the centralizer of a single Pauli, then use the algorithm for finding
these generators as a subroutine in the derivation of centralizers of sets of Paulis.

Centralizers for Single-Qubit Paulis We suppose that we are given a single Pauli P ,
and a generating set for a subgroup of the Pauli group G, and we are tasked with finding the
generators for the subgroup of G for which every element commutes with P . To accomplish
this, QuaEC uses a recursive algorithm defined within the method centralizer gens in
the Pauli class. Given a list of group generators group gens and the Pauli self, the
recursive and base cases are evaluated in the following portion of the method:

if com(self, group gens[0]) == 0:
# That generator commutes, and so we pass it along
# unmodified.
return PauliList(group gens[0], ∗self.centralizer gens(group gens[1:]))

else:
# That generator anticommutes, and so we must modify it by
# multiplication with another anticommuting generator, if one
# exists.
found = False
for idx in range(1, len(group gens)):

if com(self, group gens[idx]) == 1:
found = True
g prime = group gens[idx] ∗ group gens[0]
assert com(self, g prime) == 0
return PauliList(g prime, ∗self.centralizer gens(group gens[1:]))
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if not found:
# Generator 0 anticommuted, and so we know two things
# from our search:
# − All other generators commute.
# − The anticommuting generator (0) has no match, and must
# be excluded.
return PauliList(∗group gens[1:])

That is, if the first of the generators we are searching over commutes with the Pauli P ,
we return it, along with the other generators, determined by further recursion. If, instead,
the first of the generators anticommutes with P , one of two conditions holds true. If there
exists another generator in the list which anti-commutes with P , we return the product
of the two anti-commuting generators, along with the other generators, determined by
further recursion. Conversely, if there does not exist a second anti-commuting generator
in the input generators, we know that the remaining generators commute with P , so we
return them, without the unpaired anti-commuting generator. Since one of these cases
holds true for any Pauli in the input generators, we obtain a unique list of generators for
the centralizer of a given Pauli.

Sets of Paulis This capability can be extended to instances of the PauliList class, by
recursion over the list, here called self:

# Find the centralizer of the first element:
centralizer 0 = self[0].centralizer gens(group gens=group gens)
# If the list has only one element, return:
if len(self) == 1:

return centralizer 0
else:

# The centralizer of the list must lie within the
# centralizer of the first element, so the function recurses:
return self[1:].centralizer gens(group gens=centralizer 0)

Since determining commutation on n-qubit Paulis requires an amount of computational
time which scales linearly with n, determining the centralizer generators for a single Pauli
requires an amount of work which scales at most quadratically in n, since at most 2n
Paulis must be examined for commutation in order to determine the centralizer generators.
Therefore, the amount of work required to determine the centralizer of a set of k Paulis
requires an amount of work which scales as kn2. Given this efficient subroutine, we discuss,
in the next subsection, the method used by QuaEC to determine generalized centralizers.
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C.2.3 Generalized Centralizers

The group properties of the centralizer are used, by the algorithm in the previous subsec-
tion, to efficiently determine and represent the centralizer of a list of Paulis in terms of a
generating set. This property does not hold for the ‘de-centralizer’ of {Pacom } (the set of
Paulis which anti-commute with every element of {Pacom }), since the product of any even
number of elements in the de-centralizer of {Pacom } is in the centralizer (as discussed in the
beginning of this section). For this reason, QuaEC, beginning with the generators of the
centralizer of {Pcom }, produces an iterator (a special list-like structure whose elements are
not stored, but calculated on-demand, see [1]) onto the subset of the centralizer of {Pcom }
which de-centralizes {Pacom }. We use this datatype because the number of elements in the
centralizer scales exponentially with n, and it is frequently only necessary to derive one (for
example, when searching for the logical Z in a k = 1 code when the stabilizer and logical
X are known). This is accomplished in solve commutation constraints by defining the
centralizer, then using itertools.ifilter (the same brute-force method employed for
defined search-sets above):

search in gens =\
commutation constraints.centralizer gens(group gens=search in gens)

# Finally, we return a filter iterator on the elements of the given
# centralizer that selects elements which anticommute appropriately.
anticommutation predicate = AllPredicate(∗map(

lambda acc: (lambda P: pc.com(P, acc) == 1),
anticommutation constraints
))

assert len(search in gens) > 0
return ifilter(anticommutation predicate, pc.from generators(search in gens))

C.3 Conclusions & Future Work

The development of QuaEC has resulted in a useful library of classes and functions which
can be used to solve ubiquitous problems in quantum error correction. However, QuaEC
can perpetually be improved, and contributions are welcome. The chief improvement that is
being implemented for version 1.1 is the migration of the Pauli class to one which is based
in the binary symplectic representation [24], a means of representing Pauli and Clifford
operators using Boolean integers instead tuples consisting of integers, concatenated with

109



the strings I, X, Y, and Z, a form which is better-suited to user-facing tasks than intensive
computation. Changing the representation used by the Pauli class will provide a constant-
factor improvement in speed and memory-efficiency, but will require a long development
process to propagate the necessary changes to the components of QuaEC which depend
on the Pauli class. For this reason, version 1.0.1 has been released, and introduced in this
appendix.
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