Low Power Register Exchange Viterbi Decoder
for
Wireless Applications

by

Dalia Abdel-Wahed Fouad El-Dib

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004
(© Dalia Abdel-Wahed Fouad El-Dib 2004

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

il

Abstract

Since the invention of wireless telegraphy by Marconi in 1897, wireless tech-
nology has not only been enhanced, but also has become an integral part of our
everyday lives. The first wireless mobile phone appeared around 1980. It was based
on first generation analog technology that involved the use of Frequency Division
Multiple Access (FDMA) techniques. Ten years later, second generation (2G) mo-
biles were dependent on Time Division Multiple Access (TDMA) techniques and
Code Division Multiple Access (CDMA) techniques. Nowadays, third generation
(3G) mobile systems depend on CDMA techniques to satisfy the need for faster, and
more capacious data transmission in mobile wireless networks. Wideband CDMA
(WCDMA) has become the major 3G air interface in the world. WCDMA employs
convolutional encoding to encode voice and MPEG4 applications in the baseband
transmitter at a maximum frequency of 2Mbps. To decode convolutional codes,
Andrew Viterbi invented the Viterbi Decoder (VD) in 1967. In 2G mobile termi-
nals, the VD consumes approximately one third of the power consumption of a
baseband mobile transceiver. Thus, in 3G mobile systems, it is essential to reduce
the power consumption of the VD.

Conceptually, the Register Exchange (RE) method is simpler and faster than the
Trace Back (TB) method for implementing the VD. However, in the RE method,
each bit in the memory must be read and rewritten for each bit of information
that is decoded. Therefore, the RE method is not appropriate for decoders with
long constraint lengths. Although researchers have focused on implementing and
optimizing the TB method, the RE method is focused on and modified in this thesis
to reduce the RE method’s power consumption.

This thesis proposes a novel modified RE method by adopting a pointer concept
for implementing the survivor memory unit (SMU) of the VD. A pointer is assigned
to each register or memory location. The contents of the pointer which points to
one register is altered to point to a second register, instead of copying the contents
of the first register to the second. When the pointer concept is applied to the RE’s
SMU implementation (modified RE), there is no need to copy the contents of the
SMU and rewrite them, but one row of memory is still needed for each state of the
VD. Thus, the VDs in CDMA systems require 256 rows of memory. Applying the
pointer concept reduces the VD’s power consumption by 20 percent as estimated
by the VHDL synthesis tool and by the new power reduction estimation that is
introduced in this work. The coding gain for the modified RE method is 2.6dB at
an SNR of approximately 1073.

Furthermore, a novel zero-memory implementation for the modified RE method
is proposed. If the initial state of the convolutional encoder is known, the entire

il

SMU of the modified RE VD is reduced to only one row. Because the decoded
data is generated in the required order, even this row of memory is dispensable.
The zero-memory architecture is called the MemoryLess Viterbi Decoder (MLVD),
and reduces the power consumption by approximately 50 percent. A prototype
of the MLVD with a one third convolutional code rate and a constraint length of
nine is mapped into a Xilinx 2V6000 chip, operating at 25 M Hz with a decoding
throughput of more than 3Mbps and a latency of two data bits.

The other problem of the VD which is addressed in this thesis is the Add Com-
pare Select Unit (ACSU) which is composed of 128 butterfly ACS modules. The
ACSU’s high parallelism has been previously solved by using a bit serial implemen-
tation. The 8-bit First Input First Output (FIFO) register, needed for the storage
of each path metric (PM), is at the heart of the single bit serial ACS butterfly
module. A new, simply controlled shift register is designed at the circuit level and
integrated into the ACS module. A chip for the new module is also fabricated.

v

Acknowledgments

Foremost, all thanks are due to Almighty, the most merciful God. God blessed
me and gave me the strength to finish this study while taking care of my family.

Prof. M.I. Elmasry, my thesis supervisor, has guided my work insightfully and
enriched my research with his fruitful experience. Special thanks for trusting me
and providing such a flexible working environment.

My parents, though not with me in Canada, have supported me with their love,
care and prayers. Owing them my success, I will never be able to thank them
enough. To them, I would like to express my sincere thanks.

My husband, Sherif Sadek, deserves a special acknowledgement. He has always
encouraged me and stood by my side taking care of our little children (Hassan
and Hussein). I would never have completed this work without his support. Also
my dear and only brother, Mohamed EI-Dib, has supported me unconditionally.
Thanks to him and all my family members and friends.

Our VLSI system administrator, Phil Regier, has provided all of us with a very
organized lab, and is always willing to help out with any technical problem. I really
appreciate his dedication and experience, which helped me a lot throughout this
research work.

CMC has provided me with a fabrication grant to fabricate my chip and provided
technical support during the design, fabrication and test of the chip. Special thanks
to Mariusz Jarosz and Hui Xu from CMC. Finally, I would like to acknowledge the
financial support provided by the Egyptian government. OGSST and Professor
Elmasry’s NSERC Research Grants have supported my work for the last year.

Contents

2

1 Introduction 1
1.1 Motivation for Low Power 1
1.2 Third Generation (3G) Mobile Systems 2
1.3 Thesis Overview 2
Low Power Digital VLSI Design 4
2.1 Energy Consumption versus Power Consumption 4
2.2 Sources of Power Dissipation 4

2.2.1 Switching Power oL 5
2.2.2 Short Circuit Power 6
2.2.3 Leakage Power 0L 7
2.2.4 StaticPower 7
2.3 Low Power Design Techniques 7
2.3.1 System Level Optimization 7
2.3.2 Algorithm Level Optimization 8
2.3.3 Architecture Level Optimization 9
2.3.4 Logic Level Optimization 11
2.3.5 Circuit Level Optimization 12
2.3.6 Physical Level Optimization 13

vi

3 CDMA Wireless Systems and Viterbi Decoders (VDs)

3.1

3.2
3.3

3.4
3.5

3.6

Multiple Access Comparison
3.1.1 Frequency Division Multiple Access (FDMA).
3.1.2 Time Division Multiple Access (TDMA)
3.1.3 Code Division Multiple Access (CDMA)
Brief History
WCDMA Transceiver
3.3.1 WCDMA Transmitter
3.3.2 WCDMA Receiver,
Convolutional Codes
Viterbi Algorithm (VA).
3.5.1 Trace Back (TB) Method
3.5.2 Register Exchange (RE) Method
Viterbi Decoder (VD)

4 Modified Register Exchange (RE) Viterbi Decoder (VD)

4.1
4.2

4.3

Surveying the State of the Art Developments
Modified RE Method
4.2.1 Performance Simulation Results
4.2.2 Other Suboptimal Decoders
VHDL Models for Comparison
4.3.1 TB Survivor Memory Unit (SMU) VHDL Model
4.3.2 Modified RE VHDL Model
4.3.3 SMU Comparison

5 Add Compare Select Unit (ACSU) Chip

0.1
5.2
2.3

Previous Designs for the ACSU,
Bit Serial ACS Architecture
Simple Shift Register

vil

17
17
18
18
19
20
23
23
24
25
26
28
28
29

31
34
37
37
39
39
40
41

5.3.1 Power Consumption
5.4 Carry Propagation
5.5 Low Power Adder
5.6 Chip Specifications
5.6.1 Chip Testing

6 Memoryless Viterbi Decoder (MLVD)

6.1 Architecture of the MLVD
6.1.1 Convolutional Encoder
6.1.2 Branch Metric Unit (BMU)
6.1.3 Add Compare Select Unit(ACSU)
6.1.4 Add Compare Select TO Survivor Memory (ACSTOSM) . .
6.1.50 Pointero
6.1.6 Most Significant Bit (MSB)

6.2 Power Consumption of the MLVD

6.3 Xilinx Implementation and Test Results

7 Conclusions and Recommendations
Publications
Bibliography

A VHDL code for the Memoryless Viterbi Decoder

A1 Lfstovhd . .00 0o
A2 Encoder.vhd
A3 Bmu.wvhd
A4 Parallel-to-serial.vhd
A5 Acsuvhd.
A6 Acstosm.vhdo

57
o7
60
60
61
61
62
62
63
68

69

71

72

A7 Bmu.vhd 101

A.8 Pointer.vhd 102
A9 Comparator.vhd 103
A.10 Ledcounter.vhd 104
A.11 Viterbiovhdo 105
B Inputs of the ACSUs 109

X

List of Figures

2.1 Emergy consumption versus power consumption
2.2 Glitching in static CMOS gates
2.3 DC current in a Pseudo-NMOS inverter
2.4 Simple and parallel architectures of an 8 x 8 multiplier
2.5 Parallel and time-multiplexed architectures for a simple adder

2.6 Pipelined architecture for the multiplier
2.7 Reducing activity by reordering inputs

3.1 FDMA waveform
3.2 TDMA waveform
3.3 CDMA waveform
3.4 Block diagram of a wideband CDMA transceiver
3.5 Block diagram of a WCDMA digital transmitter
3.6 Block diagram of a digital WCDMA receiver
3.7 4 state rate 1/3 convolutional encoder
3.8 State diagram for the encoder shown in Figure 3.7
3.9 Trellis diagram for the encoder shown in Figure 3.7
3.10 Trace Back (TB) Viterbi Decoding
3.11 Register Exchange (RE) Method
3.12 Simplified block diagram of the VD

4.1 Butterfly structure of the ACS

4.2
4.3

4.4
4.5
4.6
4.7

5.1
5.2
2.3
5.4
2.5
5.6
5.7
0.8
2.9

6.1

6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9

Register contents for the modified RE method

New RE approach with pointer implementation (the upper register
carries the pointer and the lower register carries the decoded bits) .

BER vs. SNR for the proposed modified RE method
Timing chart of the main clocks for the TB VD
VHDL block diagram of the TB SMU architecture
VHDL block diagram for the new RE SMU architecture

Bit serial ACS architecture
8-bit shifter
New master latch 00000
Timing simulations for the 8-bit shifter
Simple resetter
16-transistor low power FA
Layout of the fabricated chip.
Timing simulation of the layout

Testing simulations of the chip on the IMS shifter

New RE approach with pointer implementation (the upper register
carries the pointer and the lower register carries the decoded bits) .

MLVD approach with pointer implementation (the upper box carries
the pointer and the lower box carries the decoded bits)

MLVD block diagram
Convolutional encoder: G0=557, G1=663, and G2=711
Branch Metric Unit (BMU) operations
One ACS butterfly module
Snapshot of the timing simulation for the routed MLVD
Snapshot of the timing simulation for the routed MLVD (zoom out)
Rapid prototyping systemo

xi

List of Tables

2.1

3.1

4.1
4.2
4.3

5.1

6.1
6.2
6.3

B.1

Binary and gray code representations L. 10
Evolutionary path of mobile generations 22
Surveying the state of the art developments 33

Comparison of the memory /register operations to decode 48 codewords 43

Estimated cost function for the memory /register operations to de-

code 48 codewords 44
Function of the control signals 54
VD specifications L 59
Estimated cost function to decode 48 codewords 64
Specifications comparison 65
ACSU modules connections 109

xii

List of Abbreviations

Abbreviation Details
1G First Generation
2G Second Generation
3G Third Generation
ACS Add Compare Select
ACSTOSM Add Compare Select TO Survivor Memory
ACSU Add Compare Select Unit
ADC Analog to Digital Converter
AMPS Advanced Mobile Phone Service
ASIC Application Specific Integrated Circuits
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BM Branch Metric
BMU Branch Metric Unit
CDMA Code Division Multiple Access
CMC Canadian Microelectronics Corporation
CPL Complementary Pass Gate Logic
CRC Cyclic Redundancy Code
CS Carry Save
CTIA Cellular Telecommunications Industry Association
DSP Digital Signal Processor
FDMA Frequency Division Mutliple Access
GSM Global System for Mobile Communications
IF Intermediate Frequency
IPR Intellectual Property Rights
ITU International Telecommunication Union
LFSR Linear Feedback Shift Register
LSB Least Significant Bit

x1ii

Detalils

Abbreviation
MLVD MemoryLess Viterbi Decoder
MSB Most Significant Bit
OVSF Orthogonal Variable Spreading Factor
PCCC Parallel Concatenated Convolutional Code
PDC Personal Digital Cellular
PM Path Metric
PMM Path Metric Memory
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RE Register Exchange
RF Radio Frequency
RTL Register-Transfer-Level
SMU Survivor Memory Unit
TACS Total Access Communication System
TB Trace Back
TDMA Time Division Multiple Access
TTA Telecommunication Technology Association
UPR Users’ Performance Requirements
VA Viterbi Algorithm
VD Viterbi Decoder
VLSI Very Large Scale Integrated
WCDMA Wideband Code Division Multiple Access

Xiv

Chapter 1

Introduction

From the advent of integrated circuits, circuit designers have been concerned with
increasing circuit performance and minimizing the design area. Although low power
microelectronics can be traced back to the invention of the transistor in 1947, it was
an afterthought, not a design criterion. Today, a major creative challenge facing
VLSI designers is to design products which consume minimal power on both the
circuit level and the system level. This will significantly increase the battery life of
portable devices, a necessity for the consumer who is on the go and requires a reli-
able and efficient wireless environment. Therefore, reducing the power consumption
of 3G mobile terminals is the main objective of this thesis. The motivations for low
power design are detailed in the next section.

1.1 Motivation for Low Power

The motivation for low power electronics has been derived from the following needs:

1. To extend the battery lifetime for portable devices such as laptops, cellu-
lar phones, electronic organizers, pacemakers, and hearing aids. This is the
earliest and the most demanding motivation for low power design.

2. To increase the packing density which imposes severe restrictions on the power
dissipation density in order to further enhance the speed of high performance
systems. Low power reduces the costs that are associated with packaging,
cooling, and fans, in addition to keeping a certain level of system reliability,
which is threatened by excessive power dissipation. This is the most recent
motivation for low power design.

Chapter 1 Introduction 2

3. To curb the increasing power consumption of desktop and deskside systems,
where a competitive cost to performance ratio demands low power operations
to reduce the power supply and cooling costs. In addition, the fact that
50 percent of office power is used by PCs suggests that low power design is
essential for reducing the overall power budget. This is the broadest need for
low power design.

A brief introduction to 3G mobile terminals is given in the next section.

1.2 Third Generation (3G) Mobile Systems

Since the introduction of cellular networks in the early 1980s, mobile technology
has evolved very rapidly. In the 1990s 1G analog wireless systems were replaced by
2G digital technologies that delivered significant improvements in capacity, voice
quality, and spectral efficiency. Most importantly, 2G digital technologies laid the
foundation for the value added services, including data, which will continue to be
enhanced into the future. Now, the 3G era that promises further improved network
capacity provides high speed packet data, simultaneous data, and voice and realtime
multimedia services.

The benefits of 3G to end users translate to the availability of a full suite of inno-
vative services such as mobile access to intranets or the Internet, videoconferencing,
and sending and receiving high quality images. 3G terminals and devices can pro-
vide the user interface for experiencing these enhanced services. CDMA2000 and
WCDMA are two technologies that have been approved for 3G. Since the world’s
first commercial 3G network was based on WCDMA, the VD, which is part of the
WCDMA mobile terminal, is investigated in this thesis to reduce the VD’s power
consumption.

1.3 Thesis Overview

Chapter 2 deals with the sources of power dissipation and the various low power
design techniques. In Chapter 3, an overview of CDMA mobile systems and the
application of the Viterbi Algorithm (VA) to decode the convolutional codes in
such systems is presented. Chapter 4 introduces the pointer concept and its novel
application to the RE implementation of a VD. Chapter 5 describes the fabricated
chip which implements an ACS module, and Chapter 6 presents the ultra low

Chapter 1 Introduction 3

power VD architecture, the MLVD. Finally, the conclusions and recommendations
for future work are outlined in Chapter 7.

Chapter 2

Low Power Digital VLSI Design

2.1 Energy Consumption versus Power Consump-
tion

Energy consumption is different from power consumption. If for example, for a
CMOS gate we reduce its clock rate f, its power consumption will be reduced by
the same proportion. However, its energy consumption will still be the same as
shown in Figure 2.1 [1]. Only, the time required to complete the computation with
low clock rate, will be increased. Therefore, after the computation is completed the
battery will be just as dead as if the computation had been performed at high clock
rate. Thus, for battery-operated devices low energy design is more important than
low power design. However, the conventional term low power is used throughout
the thesis to mean that low energy is the target [2].

2.2 Sources of Power Dissipation

In the 1980s, an increase in the power dissipation of Application Specific Inte-
grated Circuits (ASICs) caused a worldwide shift from NPN bipolar and NMOS
technologies to CMOS technology. CMOS significantly reduces the average power
dissipation, but it is the demand for higher packing densities and higher operating
frequencies in microelectronics that keeps low power design as the primary require-
ment. In order to minimize the power dissipation of a CMOS circuit, the main
sources for the power dissipation of CMOS devices must be identified. There are
three major power dissipation components within the CMOS inverter switching
power, leakage power, and short circuit power [3].

Chapter 2 Low Power Digital VLSI Design 5

A
Ener
Power o< VDD2 f <4
>
t time
A
Power VDD2 /2 Energy
>
2t time

Figure 2.1: Energy consumption versus power consumption

2.2.1 Switching Power

The most dominant source of power dissipation in digital circuits is dynamic power
dissipation. It describes the power required to charge and discharge the load ca-
pacitance, C'p, at the switching activity a, and is expressed as.

denc = CYCLVDDszmgf- (2-1)

Equation (2.1) shows that the dynamic power is decreased, by reducing the
supply voltage, but this also reduces the speed. Py, is reduced also, by reducing
C, but it is noted that scaling down the circuit does not necessarily reduce the
capacitance by the same ratio. This occurs because the wiring capacitance does
not scale well with submicron technologies. Thus, this source of power dissipation
is usually reduced at the algorithmic, architectural, and Register-Transfer-Level
(RTL) levels. A very important part of dynamic power is the glitching power,
which is discussed as follows.

Chapter 2 Low Power Digital VLSI Design 6

Glitching Power

In a static logic gate, the output or internal nodes can switch before the correct
logical value is reached. Figure 2.2 depicts the logic transitions for a cascaded
configuration. When the input is switched from 100 to 111, the output should
remain high, but due to the delay associated with each gate, a glitch is added
to the total switching of the circuit. The glitch is sometimes called a spurious
transition.

A :D Ol
B I lo— Z

ABC 100 | 111
o} |
z |
A
\ Spurious
Delay Transitions

Figure 2.2: Glitching in static CMOS gates

If the power dissipation that is due to spurious transitions is important, then
the logic of the circuit should be redesigned to avoid the cascaded implementation
and to balance the delay paths, particularly on highly loaded nodes.

2.2.2 Short Circuit Power

Short circuit power is due to finite rise and fall times of the input signal. For
a short period of time, there will be a conducive path open between Vpp and
GND, because both NMOS and PMOS devices are ON. Such a path never exists
in dynamic circuits, as precharge and evaluate transistors should never be ON
simultaneously as this would lead to incorrect evaluation [4]. Short circuit power

can be expressed as:
Psc = [chDDa (22)

where [, is the short circuit current. This power is limited by giving the output
signal and the input signal equal rise and fall times. As a result, the P, is less than

Chapter 2 Low Power Digital VLSI Design 7

20 percent of the total power. For submicron devices, where the Vpp approaches
(Vi + Vi) or is less, the P, can be eliminated, because both devices cannot
conduct simultaneously [2].

2.2.3 Leakage Power

The leakage power can be expressed as:

Pleakage = IleakageVDD7 (23)

where [jeqrage is the total leakage current in a CMOS circuit [3]. jeqkage is caused
by six short channel leakage mechanisms [5] the reverse bias pn junction leakage,
subthreshold leakage, oxide tunneling current, gate current due to hot carrier in-
jection, gate induced drain leakage, and the channel punchthrough current. For
deep submicron devices with low supply voltages and low threshold voltages, the
subthreshold leakage is the dominant leakage mechanism. As CMOS process ad-
vances to the sub-100nm regime, the gate oxide thickness of sub-20A4 prevails in
CMOS processes [3]. Gate leakage may become the dominant factor for sub-100nm
generations unless new solutions emerge [6].

2.2.4 Static Power

Some CMOS circuit families such as the pseudo NMOS dissipate static power when
the output is at logic 0 as illustrated in Figure 2.3 for a pseudo-NMOS inverter.

2.3 Low Power Design Techniques

Power dissipation is minimized at all design levels. At the circuit level, for example,
the power is minimized by aggressively scaling down the supply voltage. It is also
essential to minimize the switching activity. This can be accomplished at the logic,
RTL, architectural, or algorithmic levels. The following is a brief discussion of some
low power methodologies that are applied at various levels, including the system,
algorithm, architecture, logic, circuit, and physical levels [2] [4].

2.3.1 System Level Optimization

Usually, low power design at the system level is realized by utilizing lower system
clocks, in addition to using a high level integration. The high level integration

Chapter 2 Low Power Digital VLSI Design 8

Voo
Voul: ‘0’
" e —
ldc CL
Vin: "4{ i
v

Figure 2.3: DC current in a Pseudo-NMOS inverter

includes the integration of off-chip memories and digital and analog peripherals.
Other ways to reduce power at system level include using dynamic Vpp control
according to system workload [3].

2.3.2 Algorithm Level Optimization

Secondly, at the algorithm level, the main concern is to minimize the number of op-
erations, and thus, the number of hardware resources, or to minimize the switching
activity by data coding.

Minimizing the Number of Operations

Minimizing the number of operations is crucial in minimizing power dissipation.
However, different types of operations do not consume the same amount of power.
The number of operations at the algorithm level can be decreased by data coding.
The use of an appropriate coding technique for the signals, rather than a direct bi-
nary code, can reduce power by reducing the temporal bit transition activity. The
following sections provide some examples of different data representations which
are used to reduce power dissipation [4].

Chapter 2 Low Power Digital VLSI Design 9

One Hot Coding: In regards to an inter-chip communication problem, where
n-bit data words will be transmitted, a connection of m = 2" wires can be used.
The n-bit data word is encoded for transmission by placing a 1 on the ith wire
and 0 on the remaining m-1 wires. One hot encoding requires an exponentially
increasing number of wires (2"), but the coding does guarantee that precisely one
0—1 and one 1—0 bit transition occur when a different data word is sent.

Gray Coding: Gray coding, a coding style in which two successive numbers differ
by one bit only, is most useful when the coding is sequential, and highly correlated
data is transmitted over a bus. The number of transitions for the binary represen-
tation is twice the number of transitions for the gray coding. Table 2.1 displays
the binary representation and gray code representation for the decimal numbers 0
to 15 [4].

Two’s Complement vs. Sign Magnitude: In a sign magnitude representa-
tion, only one bit is allocated for the sign, and the others are designated for the
magnitude. When the signals, transmitted over a bus, switch frequently around zero
and do not utilize the entire bit-width, the sign magnitude representation reduces
power significantly. This occurs because the sign bit representation prevents the
sign extension of the most significant bits from switching each time, from positive to
negative or vice versa, which is the case with the two’s complement representation.

2.3.3 Architecture Level Optimization

Architecture level optimization is the third way to reduce power dissipation. At
this level, a set of primitives such as adders, multipliers, ROMs and register files
are adopted. Some techniques that have been used are examined in the following.

Parallel Processing

Usually, parallel processing trades area for reduced power dissipation. Parallelism
can be applied to the same input to reduce the operating frequency, or parallelism
can be applied to different inputs which are using the same computational resource.
Both cases are explained next.

Parallel Processing for Reduced Operating Frequency: Typically, N pro-
cessors can be parallelized by duplication with each processor running with a slower
clock (by a factor N). Therefore, the power supply voltage can be aggressively de-
creased to meet a delay, which is almost equal to the reference delay, divided by
N [2]. For the simple multiplier of Figure 2.4 [2], it is possible to maintain the

Chapter 2 Low Power Digital VLSI Design 10

Table 2.1: Binary and gray code representations

Decimal Binary Gray Code
Value Code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

throughput while the power supply voltage is reduced by using the illustrated par-
allel architecture. This results in an estimated 63 percent power reduction, when
the voltage drops from 5v to 2.9v. However, the area doubles [7].

Parallel Processing to Avoid Resource Sharing: One strategy for imple-
menting a signal processing algorithm is the direct mapping approach, where there
is a one-to-one correspondence between the operations in the signal flow graph
and the operators in the final implementation. This strategy is also called a fully
parallel implementation. In time-multiplexed architectures, the same functional
hardware is used to execute multiple operations. Often, time-multiplexed architec-
tures are employed, when there are area constraints or high throughput is not the
goal. Figure 2.5 [8] demonstrates the parallel and time-multiplexed architectures of
the simple addition (C=A+B). The time-multiplexed adder switches to a 50 per-
cent extra capacitance, which results in a 50 percent increase in power dissipation.

Chapter 2 Low Power Digital VLSI Design 11

In other words, the fully parallel architecture results in a 33 percent reduction in
power dissipation due to the lower switching activity.

Pipelining

Usually, if a processor is pipelined with N stages of registers, then the delay between
the pipeline stages is reduced by almost a factor of N. Thus, it is possible to
maintain the operating frequency, while the supply voltage is aggressively scaled
down. A pipelined architecture for a simple multiplier is given in Figure 2.6 [2].
Moreover, there is a 63 percent power reduction if the voltage drops from 5v to
2.9v. Consequently, the combination of pipelining and parallel processing results
in large power savings.

Ordering of Input Signals

Switching activity can be reduced by optimizing the ordering of the operations in
a design [2]. Figure 2.7 exemplifies the multiplication of the variable M with a con-
stant, and the multiplication is decomposed into M+(M>>7)4(M>>8). The figure
indicates two possible topologies. The second implementation switches 30 percent
less capacitance than the first one, because the shifting to the right represents a
scaling operation, which reduces the dynamic range of the signal.

2.3.4 Logic Level Optimization

The fourth way to reduce the power dissipation is optimization at the logic level.

Technology Mapping

Here, the reduction of the power dissipation during the logic synthesis is based on
choosing a logic to minimize switching, positioning registers through retiming to
reduce the glitching activity, and choosing gates from a library which reduces the
switching.

Logic Level Power Down

For each logic function, there are several logic structures for implementing the
function, but give different power results due to different switching activities and/or

Chapter 2 Low Power Digital VLSI Design 12

different operating times. For example, an adder has several topologies, including
the ripple carry, carry lookahead, carry skip, carry select, and conditional sum,
each with a different switching activity. For low power purposes only, the ripple
carry is chosen. Also, the power dissipation can be reduced at the logic level at the
expense of some additional control circuitry. For example, in a comparator with
the inputs, A and B, an additional circuitry compares A[N-1] with B[N-1] (N is
the number of bits). The result of this stage is used to decide if the comparison of
A[N-1:0] and B[N-1:0] is necessary or not. The output of the most significant bit
comparator provides a gated clock signal to the comparator of the remaining bits.
The small overhead control circuitry provides significant power reductions [4].

2.3.5 Circuit Level Optimization

Circuit level optimization is the fifth way to reduce the power dissipation. Whereas
scaling down of the power supply voltage Vpp is one of the most effective ways
to achieve low power design, the threshold voltages of transistors also need to
be scaled down to meet performance requirement. However the lowering of the
transistor threshold voltage leads to the exponential growth of the subthreshold
leakage current and the subthreshold leakage power dissipation [3]. In addition,
power supply voltage reduction reduces the fault tolerance. A recent study [9]
concludes that the use of minimally sized devices is the best option to save power
and to increase fault tolerance.

Also, choosing the circuit topology affects the power dissipation. There are sev-
eral options for the use of circuit topology to implement the various logic functions
[2] [4]. Some of these options are discussed next.

Dynamic Logic vs. Static Logic

The choice of using static or dynamic logic depends on many criteria. Dynamic logic
reduces the switching activity by reducing hazards, by eliminating short circuit dis-
sipation, and by reducing parasitic node capacitances. Static logic has advantages
because no precharge operation nor charge sharing exists.

Pass Transistor Logic vs. Conventional CMOS Logic

Since fewer transistors are required, pass gate logic is attractive. It reduces the
physical capacitance and power dissipation. However, a Complementary Pass Gate

Chapter 2 Low Power Digital VLSI Design 13

Logic (CPL) implementation has two fundamental problems. First, the thresh-
old drop across single channel pass transistors requires an increase in the minimal
supply voltage, Vpp. Secondly, because the high input voltage level at the regener-
ative inverters is not the Vpp, the PMOS device in the inverter is not fully turned
OFF. As a result, direct path static power dissipation is significant. To solve these
problems, reducing the threshold voltage has proven to be effective.

Synchronous vs. Asynchronous

The clock tree of synchronous circuits consumes significant power and is eliminated
in asynchronous ones. Local handshake signals, which typically require less power
than the clock tree are used instead. Thus, asynchronous circuits typically switch
(and consume switching power) only when required or when their inputs change
[10].

2.3.6 Physical Level Optimization

The last way to reduce power dissipation is at the physical level [2] [4].

Layout Optimization

The layout of a module can be rigid or flexible. A rigid module is restored as a layout
in the design library and its dimensions and power dissipation are fixed. A flexible
module does not have a predetermined implementation and is parameterizable with
parameters such as shape and power dissipations for flexible implementations.

Place and Route

The placement and routing of standard cells, which are already laid out and well
characterized, affects power dissipation. To minimize power, the modules should be
placed so that the switching activity capacitance product is minimized and routed
so that the high activity wires are kept short.

The low power design methodologies discussed in this chapter are very impor-
tant for the design of mobile terminals. Because CDMA is the proposed digital
communication technique for 3G wireless systems, CDMA wireless systems will be
reviewed in Chapter 3.

Chapter 2 Low Power Digital VLSI Design 14

R
Q 32
fref/2_ 8 X 8. //
? Multiplier
N R 8// L
R
8/
R 4] fref/Z_A_
c LN exs [|% Mux
1" — | Multiplier [|7 -
8, | |R R
R 7 > R 8// L
fref___zlx_ _A_ 8x8 3/2
Frel2 = Multiplier | |7
R 8// —
fref/Z_A_
Simple Multiplier Parallel Multiplier
Architecture Architecture

Figure 2.4: Simple and parallel architectures of an 8 x 8 multiplier

Chapter 2 Low Power Digital VLSI Design

A_D_’ IN1

+
B_D_’ IN2

Adderl

[]

1

IN1

IN2

Parallel Adder
Architecture

Figure 2.5: Parallel and time-multiplexed architectures for a simple adder

Adder2

A H

@)

i

-

)_
=

IN1

|

IN2

Time-Multiplexed
Adder Architecture

REG —>

Half
Multiplier

AB ig) REG || Half
' Multiplier
fref

Figure 2.6: Pipelined architecture for the multiplier

15

Chapter 2 Low Power Digital VLSI Design 16

M DSUMINSUM:) N A NSUMi TN SUM,

O R
5 “”

M

Implementation after

Direct Implementation .
Reordering

Figure 2.7: Reducing activity by reordering inputs

Chapter 3

CDMA Wireless Systems and
Viterbi Decoders (VDs)

CDMA, a form of the spread spectrum technique, belongs to the family of digital
communication techniques that have been used in military applications for many
years. The core principle of spread spectrum is the use of noise-like carrier waves,
and, as the name implies, bandwidths that are much wider than those that are
required for simple point-to-point communication at the same data rate. Originally,
there were two motivations for the development of CDMA: either to resist the efforts
of the enemy to jam communications, or to hide the fact that communications were
even taking place. The CDMA spread spectrum technology was introduced in the
2G of mobile systems, and then retained for the 3G of such systems.

This chapter outlines the background of the CDMA technique, including a brief
history of the successive mobile generations. After a block diagram for the Wide-
band CDMA (WCDMA) modem is presented, a discussion of convolutional codes
and the Viterbi decoding algorithm is presented. Finally, the different parts of the
VD are outlined.

3.1 Multiple Access Comparison

There are three types of multiple access techniques used in communication systems:
FDMA, TDMA, and CDMA. The following section discusses the different multiple
access techniques used in the successive generations of mobile systems.

17

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 18

3.1.1 Frequency Division Multiple Access (FDMA)

In the FDMA standard analog cellular system, each user is assigned a discrete slice
of the RF spectrum. FDMA permits only one user per channel so that the user can
use the channel 100 percent of the time (Figure 3.1). Therefore, only the frequency
dimension is adopted to define the channels. The principal disadvantage of FDMA
is that it involves narrow band filters. They are not realizable in Very Large Scale
Integrated (VLSI) circuits, which can lead to a high cost floor for terminals, even
with a high production volume [11].

Channel Width
X = 30 KHz (AMPS)
X =25 KHz (TACS)

‘m X KHz [-

Frequency

Figure 3.1: FDMA waveform

3.1.2 Time Division Multiple Access (TDMA)

The key point about TDMA is that the user is still assigned a discrete slice of
RF spectrum, but multiple users now share the RF carrier on a time slot basis,
alternately using the RF carrier. Frequency division is still employed, but the
carriers are now subdivided into a number of time slots per carrier as seen in
Figure 3.2. TDMA has the potential to be implemented in VLSI without narrow
band filtering. However, particularly for mobile handsets on the reverse link, TDMA
demands high peak power in the transmission mode which reduces battery life.
A wuser is assigned a particular time slot in a carrier, and can send or receive
information only at those times. This is true whether or not the other time slots

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 19

are being used. Information flow is not continuous for any user; instead, it is sent
and received in bursts, which are reassembled at the receiving end, and appear to
provide a continuous flow because the process is so fast.

30 KHz Channels
for 1S-54 TDMA

BB

Frequency
3 Users per Narrowband Channel

Figure 3.2: TDMA waveform

3.1.3 Code Division Multiple Access (CDMA)

With CDMA, each signal consists of a different pseudo random binary sequence that
modulates the carrier, spreading the spectrum of the waveform. A large number
of CDMA signals share the same frequency spectrum, reflected in Figure 3.3. If
CDMA is viewed in either the frequency or the time domain, the multiple access
signals appear to be on top of each other. The signals are separated in the receivers
by using a correlator which accepts signal energy only from the selected binary
sequence, and despreads its spectrum. The other users’ signals, whose codes do not
match, are not despread in the bandwidth. As a result, the other signals contribute
only to the noise and represent a self interference that is generated by the system.
It is important to note that TDMA and CDMA use FDMA to divide the frequency
band into smaller frequency channels which are then divided in a time or code
division fashion

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 20

s WL i
Frequency

Time

M Uzers perNMarrowband Channel

Figure 3.3: CDMA waveform

3.2 Brief History

Traditional analog cellular systems, representing the 1G cellular systems, adopt
FDMA [12]. These systems are based on the Advanced Mobile Phone Service
(AMPS) and Total Access Communication System (TACS) standards. In Septem-
ber 1988, the Cellular Telecommunications Industry Association (CTIA) released
the Users’ Performance Requirements (UPR) document, which specified the cellular
carriers’ requirements for the next (second) generation of cellular technology [13].
These requirements for digital technology include:

e A 10 fold increase over analog system capacity.

A long life and adequate growth of 2G technology.

An ability to introduce new features.

Quality improvements.

Privacy.

Transition and compatibility with existing analog system.

Availability and reasonable costs for dual mode radios and cells.

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 21

e Cellular open network architecture.

A common multiple access method for new digital cellular systems, represent-
ing the second generation cellular systems, is TDMA. Its digital standards include
the North American Digital Cellular (known by its standard number, 1S-54), the
Global System for Mobile Communications (GSM), and the Personal Digital Cel-
lular (PDC) [12].

In 1978, Cooper and Nettleton suggested the use of spread spectrum for cel-
lular applications [13][14]. During the 1980s, Qualcomm investigated DS-CDMA
techniques, which finally led to the commercialization of cellular spread spectrum
communications in the form of the narrowband CDMA IS-95 standard in July 1993
[15]. In 1999, there were 250 million users in the global mobile communications mar-
ket; 30 million of them were CDMA customers (12 percent) [11]. A recent analysis
of wireless platform performance by TRAC found that CDMA outperforms other
digital and analog technologies in every aspect, including signal quality, security,
power consumption, and reliability. Also, TRAC found CDMA to be superior in
signal security and voice quality over other digital air interface standards [11]. But
by 2003, CDMA had a world market share of just 15 percent [16]. Emerging de-
mands for higher rate data services and for better spectrum efficiency necessitated
the development of 3G mobile radio systems. In the International Telecommunica-
tion Union (ITU), 3G networks are called IMT-2000 (UMTS in Europe) [15]. The
objectives for the IMT-2000 air interface can be summarized as follows:

Full coverage and mobility for 144 Kb/s, preferably 384 Kb/s.

Limited coverage and mobility for 2Mb/s.

High spectrum efficiency compared to that of existing systems.

High flexibility to introduce new services.

During the 1990s, researchers focused on wideband CDMA technologies with a
bandwidth of 5M Hz or more. As a result, several trial systems have been built
and tested. In Europe and Japan, WCDMA has been proposed to avoid IS-95
Intellectual Property Rights (IPR). In Korea, the Telecommunication Technology
Association I and II (TTA I and TTA II) schemes have been adopted. In North
America, cdma2000 uses a CDMA air-interface, based on the existing [S-95 stan-
dard, to provide wireline quality voice service, and high speed data services ranging
from 144kbps for mobile users to 2Mbps for stationary ones. Cdma2000 is consid-
ered by the ITU to be 3G compatible, but this requires the implementation of a

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 22

version of the technology, called cdma2000 3xRTT. Since only cdma2000 1xRTT,
a narrowband version of the technology, has been implemented in practice, the
cdma2000 systems fall short of the requirements for the 3G standards set by the
ITU. The practical implementations of cdma2000 are comparable to those of GPRS
and EDGE. Consequently, the 1xEV-DV, which is not commercially available, is
really the 3G equivalent to WCDMA as it utilizes a new spectrum [16]. This im-
portant difference means that the world’s first commercial 3G network was, in fact,
based on WCDMA, which will be examined closer in the next section. Table 3.1
summarizes the evolutionary path of mobile generations.

Table 3.1: Evolutionary path of mobile generations

Specification | 2nd Generation | 2.5 Generation | 3rd Generation

Data Rate 9.6kbps 115kbps 2Mbps
384kbps
Applications Voice Internet (WAP) Multimedia
Drivers SMS Data Interactivity
GSM GPRS/EDGE | UMTS(WCDMA)

Standards CDMA(IS-95A) | CDMA2000 1X | CDMA2000 1xEV

Products Phones Smart Phones Multimedia
PDAs Laptops

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 23

3.3 WCDMA Transceiver

Figure 3.4 depicts a general block diagram [13] for a CDMA mobile transceiver.
Traditionally, Radio Frequency (RF) functions and Intermediate Frequency (IF)
functions have been realized by analog technology, and the baseband has been real-
izeable by digital technology [14]. Nowadays, the analog digital border is infringing
on the IF section.

Antenna
Radio ' Intermediate '
Frequency Frequency Baseband
Functions Functions Functions
D D— <

Figure 3.4: Block diagram of a wideband CDMA transceiver

3.3.1 WCDMA Transmitter

The digital architecture of a mobile transmitter that supports WCDMA is presented
in Figure 3.5 [17]. To conform to the WCDMA standard, Cyclic Redundancy Code

FEC
Da Convolutional Block Signal Signal Pulse N\
> CRC > Encoder || ™| Interleaver [Spreading [>|Scrambling[™| shaping [PAC

Turbo Encoder

Figure 3.5: Block diagram of a WCDMA digital transmitter

(CRC) bits are added for error detection, and error correction bits are added for

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 24

channel coding. The standard defines two encoding schemes to support a differ-
ent quality of services. For voice and MPEG4 applications, the standard employs
convolutional encoding. For data applications, the standard uses turbo encoding.
Turbo encoding yields a relatively large encoding gain with a reasonable compu-
tational complexity. This encoding scheme is useful for data services that permit
longer transmission delays. The data is then interleaved. The coded symbols are
written into the interleaver, a memory array, by columns, and read out by rows in
a predetermined order. Interleaving is a standard practice to combat signal degra-
dation due to burst errors on the channel [15]. The data is then spread with a user
or channel specific Orthogonal Variable Spreading Factor (OVSF) code to produce
a data stream at a given chip-rate, where the cross correlation among all users is
zero. The spread data stream is scrambled with Gold code so that the multipath
signals can be uniquely identified and decoded by the receiver. To transmit a signal
within the specified bandwidth, the data bits are shaped by using a pulse shaping
filter. Next, the signal passes through carrier modulation and up-conversion to RF.

3.3.2 WCDMA Receiver

Figure 3.6 illustrates the general block diagram for a WCDMA receiver. Each chan-

Channel Multi-Path
Estimation Estimator
Delay
FEC Decoder
vy Phases . s
N A r— —
Viterbi De- Multi-Path Y Multi-User 3 De- ch i ADC
Data < Decoder | *Tinterleaver*] Combiner | o| Detector | [spreading annelizer
e —
y Turbo
Decoder
Errgr <«—ICRC
Indicator

Figure 3.6: Block diagram of a digital WCDMA receiver

nelizer accesses the digital IF and translates a channel to the baseband. The radio
environment of a wireless network system is multipath. To be effective, the system
requires a despreader that can simultaneously despread the numerous multipaths
of a single user, as well as multiple users (for a joint detection). A RAKE receiver,
with its multiple fingers to despread the different multipaths, is employed for this
function. Then, the block deinterleaver is responsible for performing the reverse

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 25

action of the interleaver of the transmitter. There are two types of decoders that
are used in the receiver. The VD is used to decode signals encoded by the con-
volutional encoder, and the turbo decoder is used with the turbo encoder. In the
following sections, the convolutional encoder and its VD are detailed.

3.4 Convolutional Codes

Convolutional coding can be applied to a continuous input stream to generate a
coded output data stream. Convolutional encoders involve the modulo-2 addition
of selected taps of a serially time shifted delayed data sequence. The length of the
delay is equal to K-1, where K is the constraint length. The exclusive OR gate
performs a modulo-2 addition of the inputs. Typically, the encoder is composed
of shift registers and a network of modulo-2 addition gates [18], evident in the
example in Figure 3.7. Here, the encoder consists of a two-tap binary shift register,

GO + Yl,n
X D D
G

+ Y2,n

G2 _l_\/ Y3,n

State Sn:Xn-Z Xn-1

Figure 3.7: 4 state rate 1/3 convolutional encoder

and produces three bits of encoded information for each bit of input information.
The encoder is a rate 1/3 convolutional encoder with a constraint length of K=3.
Generally, the convolutional encoder contains K-1 shift registers. The output of
the convolutional decoder is a function of the current state and the current input;

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 26

the generator functions for the encoder in Figure 3.7 are G0=101, G1=111, and
G2=111. It is noted that there is no theoretical basis for the optimal location of
the shift register stages to be connected to the modulo-2 addition. The operation of
the convolutional encoder can be easily represented by the state transition diagram
in Figure 3.8. Because of the two memory elements in the encoder, there are four

0/000

0/011

1/000

Figure 3.8: State diagram for the encoder shown in Figure 3.7

possible states, (Sp-S3). Each input to a state generates an encoded output code,
and causes a transition. For each state, there are two outgoing transitions; one
corresponding to a 0 input bit, and the other corresponding to a 1 input bit. The
evolution of the state diagram over time is described by the trellis diagram in
Figure 3.9. Consequently, the trellis is a time-indexed version of the state diagram.
Each node corresponds to a state at a given time index, and each branch corresponds
to a state transition.

3.5 Viterbi Algorithm (VA)

In 1967, Viterbi developed the Viterbi Algorithm (VA) as a method to decode
convolutional codes [19]. In order to make the VA a practical decoding technique,
certain refinements were made on the basic algorithm [20]. A comprehensive tutorial
on the VA is reported in [21]. The VA uses the trellis diagram to decode an input
sequence, as demonstrated in Figure 3.10. To demonstrate the functionality of the

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 27

Figure 3.9: Trellis diagram for the encoder shown in Figure 3.7

VA, a sample input to the encoder of Figure 3.7 is tracked until the input is decoded.
The encoder has an input sequence, (10110100100), and generates the code stream,
(111, 011, 000, 100, 100, 000, 011, 111, 111, 011, 111). This stream is transmitted
over a noisy channel, and the code stream, (111, 011, 001, 100, 100, 000, 011, 111,
110, 011, 111), for example, is received at the decoder. (The underlined bits are
incorrect due to the noise encountered during transmission.) The VA, which uses
a hard decision format, is exhibited in Figure 3.10. A node is assigned to each
state for each time stage. The transition between two states is represented by a
branch, which is assigned a weight, referred to as a branch metric (BM). The BM
is a measure of the likelihood of the transition, given the noisy observations. The
BM, in the simple hard decision example demonstrated in Figure 3.10, is simply
the number of bits, in which the received and expected signals differ. The BMs
that are accumulated along a path form a path metric (PM). For the two branches
entering the same state, the branch with the smaller PM survives, and the other
one is discarded. Then two methods can be used to extract the decoded bits: the
trace back (TB) or the register exchange (RE). The calculation of the BMs and
the PMs is required for both the TB and the RE methods. However, the nature of
the decision bits, in addition to the methodology of extracting the decoded output
bits, is different for each method.

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs) 28

AR
%& 5 %@ %o%

Figure 3.10: Trace Back (TB) Viterbi Decoding

3.5.1 Trace Back (TB) Method

At the last stage of the trellis diagram (see Figure 3.10), the TB method extracts
the decoded bits, beginning from the state with the minimum PM, Sy. From this
state and tracing backwards in time by following the survivor path, which originally
contributed to the current PM, a unique path is identified. This is indicated by
the bold line in Figure 3.10. While tracing back through the trellis, the decoded
output sequence is generated in the reverse order.

3.5.2 Register Exchange (RE) Method

In the RE approach, a register is assigned to each state. The register records the
decoded output sequence along the path from the initial state to the final state.
This is depicted in Figure 3.11. At the last stage, the decoded output sequence
is the one that is stored in the survivor path register, the register assigned to the
state with the minimum PM. Since the RE method does not need tracing back, it is
faster. However, the RE method does require the copying of all the registers at each
stage. (The computations of the BMs and PMs are not indicated in Figure 3.11 for
reasons of clarity.)

Next, the basic blocks of the hardware implementation of the VA, namely the
VD are discussed.

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs)

29

H1 000 10000100000 1010110041011 0100H

#101101000Hs

Ha11010000

10110100100

0 N
y

M

[

]

oiroif|1iiatl)jio1iotfiioooooliiaiioiol

11101001

1011010001

10110100001

| b

A NS\

[

t\

™

)

Ma,

)
1110ff10110p010110(1011010f (10000010

11101010

1011010010

10110100010

b / E

\

\

Al L |
ot faottpjiriotf|toriaoil|(1ot11o111

101101011

1011010011

10110100011

=12 =1 =4 =5 =6 t=7 t=3

=5

=10

Figure 3.11: Register Exchange (RE) Method

3.6 Viterbi Decoder (VD)

The VD is composed of the three functional units in Figure 3.12:

1. The BM Unit (BMU) which calculates the BMs;

t=11

2. The Add Compare Select Unit (ACSU) which adds the BMs to the corre-
sponding PMs, compares the new PMs, and then stores the selected PMs in
the Path Metric Memory (PMM); at the same time, the ACSU stores the
associated survivor path decisions in the Survivor Memory Unit (SMU);

3. The SMU which stores the survivor path decisions; then the TB mechanism

is applied to the SMU.

Regarding the power dissipation of the VD, the SMU is the hottest spot in the
VD due to the frequent memory accesses [22]. However, the ACSU is tradition-
ally considered to be a bottleneck for the speed of the VD due to its intensive
computations, but recently the memory access speed in the SMU has created even
greater limitations. Therefore, this work focuses on modifying the SMU to improve
both the speed and power dissipation of the VD. The new modified RE method is

detailed in the next chapter.

Chapter 3 CDMA Wireless Systems and Viterbi Decoders (VDs)

EXT

Figure 3.12: Simplified block diagram of the VD

>

ACST

S ITT

P

30

Chapter 4

Modified Register Exchange (RE)
Viterbi Decoder (VD)

Section 4.1 of this chapter summarizes the different implementations reported in
the literature. Afterwards, the SMU of the modified RE design, proposed in this
study, and its associated RTL design are detailed. All of the main concepts that
are demonstrated in the figures have a small constraint length (K'=3) VD. This
simplifies the figures, because it is impossible to demonstrate the concepts by using
a 256-state-VD (K=9) in a simple figure.

4.1 Surveying the State of the Art Developments

Usually, with the Viterbi Algorithm (VA), two methods are adopted to extract
the decoded bits: the RE and the TB [23]. In the literature, the RE technique
is acceptable for trellises with only a small number of states, whereas the TB ap-
proach is acceptable for trellises with a large number of states. Therefore, the
TB method has been widely investigated and implemented. To attain high per-
formance decoders, several architectures for the TB method have been reported
[24]]25][26][27][28][29][30][31][32][33][34][35][36]. An M-layered approach that com-
bines the M-stages of the trellis into one stage has been proposed [24], and further
developed by using radix-4 architectures [25|[26]. Also, the block-based decoding
approach [24] has been improved by designing the sliding block architecture [27].
Bit-serial approaches and operation reformulations have also been initiated [28][29].
An attempt to reduce the power consumption of the TB VD by reducing the paths
being traced back was the minimum-transition TB scheme [30]. Lin increased the
speed of the TB by saving the decisions in a permutation network [31].

31

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 32

Fettweis and Meyr have proposed a semi-ring algebraic solution [32]. All of
these architectures utilize the TB method. Only a few attempts to combine the
advantages of the TB and RE methods have been reported [33][34]. All of the
previous design approaches were developed for low constraint length VDs (K'=3 to
K=T). The decoders in [35], [37], and [36] were designed for CDMA applications
for which the constraint length must be K=9. Although Kang and Willson have
introduced a very low-power TB VD [37], its speed is limited due to the use of
sequential architectures for the ACS processing.

The decoder that was devised by Chang et al. has an even lower power con-
sumption and achieves speeds in the range of Mb/s [36]. Because the authors’ VD,
as far as it is known, has the lowest power dissipation in its class, it is chosen as
the VLSI benchmark in this paper and is referred to as the TB method.

This work introduces a new implementation which enables the RE method to
be used for large constraint length VDs. In addition, the modified RE method is
simpler, and has a lower power dissipation than that of the TB method.

A summary of the available implementations for the VD and its different parts
in literature is given in Table 4.1, where L is the survivor path length (5 * K), D is
the decoding depth, f; is the data frequency, and T} is the data frequency period.
However, the details for commercially manufactured VDs are not published.

Table 4.1: Surveying the state of the art developments

Ref. | Const. ; Data Clock Memory L D | Power | Latency | Tech. | Vpp | Trans.
Rate Rate Freq bits bits | bits | mW wm | volts

[36] | K=9; 2Mbps 1-8 f4 2%48%28 48 | 24 98 |(L+D)| 05 1.8
r=1/3

37 | K=9; 14.4kbs | 921.6kHz | (L+ D)*2% | >45 | >1 | 0.24 | (L+ D) | 0.8 | 1.65 | 65k
r=1/2

[27] | K=3; | 140MHz | 12MHz 6 24 1.2 1.5 150k
r=1/2

[25] | K=6; | 140MHz | T0MHz 3*32%2° 32 1.2 5 146k
r=1/2

38] | K=T; 19MH~ 2 4.75 50k
r=1/2

(AA) 42p02a(19490 () 2buvyowy 4295169y parfipopy f 4odvy)

€€

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 34

The first implementation in Table 4.1, designed for 3G WCDMA, achieved the
target frequency of 2Mbps. Also, the implementation has a minimum power dis-
sipation at 2Mbps; the second implementation has targeted 2G wireless CDMA
terminals. Thus, a state sequential approach is used for implementing the ACSU,
which is not feasible for the high frequency requirements of 3G systems. All the
other implementations target VDs with low constraint lengths (K =9). This is not
adopted by 3G wireless systems. It is obvious why the first implementation [36]
will be the guide in the evaluation of the modified RE method, and the benchmark
for this research. Although normalizing the power consumption with regards to the
technology used is fairly useful in comparisons, normalization is eliminated in our
case. The power reduction is realized in this work at algorithm level and hence a
fair comparison is accomplished by comparing the number of operations.

In [36] a fully parallel architecture for implementing the ACSU was adopted
which can also be applied to the proposed design. For the VD in [36], the TB
method is utilized for reconstructing the decoded bits in the SMU, whereas the
new design is based on the RE method. The following sections describe the SMU
in both designs and provide a comparison of them.

4.2 Modified RE Method

In this research, a modification of the RE method which avoids the power expen-
sive RE between two successive states is proposed. The RE method is based on
successive RE operations between two origin states (i,j) and two destination states
(p,q), using the butterfly unit as shown in Figure 4.1 [18].

The shifting of one origin state to the left, and appending the decoded bit (the
bit that causes the transition) to the Least Significant Bit (LSB) of that origin state
results in the associated destination state.

In this investigation, the proposed algorithm uses the pointer concept. Instead
of moving the contents of the first register to a second register, the pointer to the
first register is altered to point to the second register. In the VD, the pointer
to a register is simply the current state of that register. For example, if (PMt(i)1
+BMt(i’p)) is greater than (PMt@l—l— BMt(j’p)), then the path from j to p is the
survivor path for p. The pointer j is shifted to the left, and the bit, which causes
the survivor path transition from j to p (in this case 0), is appended to the LSB.
Therefore, the pointer which had carried the value j now carries the value p. Then,
the decoded bit is appended to the contents of the register whose pointer value is
changed from j to p. It is noteworthy that the register has a fixed physical location;

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 35

i= Ox
j=1x
p=x0
o=x1

X is the common
group of bits
among states

Figure 4.1: Butterfly structure of the ACS

only the value of its pointer changes, and a bit is appended to the corresponding
register for each code word that is received. In the new method, the paths are
handled from the perspective of the origin states, whereas with the TB method,
the paths are handled from the perspective of the destination states. There can
be two survivor paths, beginning from the same origin state and entering both
destination states, as is the case in Figure 3.10 at time t=3, where the survivor
paths for both Sy and Sy originate from S;. This is not a problem for the TB
method which monitors the paths from the destination states. But for the modified
RE method, the following question arises: which value should the pointer S5 take,
Sp or 57

In other words, which of the two paths originating from S5 should be the survivor
path, and how should the other path terminate? The answer is a new decision bit,
called the termination bit, which the ACSU needs to produce for the modified RE
architecture. For example, if both paths from state j are considered to be survivor
paths for the destination states p and ¢, the BMs of both paths are compared. Then
the pointer, which carries the value j, changes to the destination pointer, whose
path has the smaller BM. The pointer of 7 changes to the other destination pointer,
while the path from state ¢ receives a termination high signal. This indicates that
the path from state ¢ is terminated, and the decision bits are no longer appended
to the path’s register. Consequently, only the pointer value of the terminated path
will continue to be modified in order to prevent the presence of duplicated pointer
values. The issuing of the additional termination bit for each state appears to
overload the ACSU conventional operation, but this is not the case. According
to the symmetric characteristics of the generator polynomials for the VD used in

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 36

CDMA applications (G0=557, G1=663, G2=711, K=9),

BM" = BM, (4.1)

BMI? = BM™, (4.2)
and , ,

BMI = —BM?, (4.3)

BMI) = —BMI. (4.4)
Thus, A .

BM™ = M, (4.5)
and ' '

BMt(]JJ) — —BMt(]7q). (46)

Therefore, a comparison of the BMs, originating from the same origin state, is
performed by checking the sign bit of only one BM. Figure 4.2 demonstrates the
new RE method with terminating paths. By time t=11, three paths terminate while

S0 o] oo o1o1100f (10110100 10110100100
R 7 y
N:
Lﬁ f N
S0 Wor | ftot |fotot | ritor | fiottot] 1oi101001
B! EVAR K | f N N
_flji_z’; 5 1A N M
B o to|fotofiiio [loiio [ptoitaf|i0i1010 1oi1oto0oia
0 |1 IA7 f ‘._"\l
|- \ A M
S, | Apl A ILHITL | [1011) 01011 | (111011
== =3 = =5 =6 =7 =5 =1 =10 =11

Figure 4.2: Register contents for the modified RE method

only one survives; this one will carry the decoded bits in the last stage. Figure 4.3
indicates the different values for the pointers and registers over time for the new
implementation of the RE method. Before receiving the first codeword in a stream
of length L codewords, all the PMs and termination flags (one termination flag
for each row of memory) are reset. The pseudo code, representing the operations
within a butterfly unit for a continuous uncontrolled input codestream, is presented
in Appendix A.

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 37

oo] |foa] |[10] |loa| |[2] |[zo] |jox] |po] joo] lo1] [10] l0o]

w1 |10 1ot b0t tot10b{01 101 o 11010 10110 100 101 1010011+{ 101 1010010101 10 100 100]
%ﬁ 10] | oo % AN NN RN]]]

po_Jpron | | | | | | | |
% po] |for] |f1o] [for] |[uz] |pe] jpo] |[]]] H

Heto o1 [Hoto]Ho1o1}Hoto11)Hoto110} 010110042 | | | |
% 11] |11 % 10 0l 11]]]]]

1 bean it betofH o101 4 | | | | |
=0 =1 =2 =3 =4 =5 =6 =7 =5 =3 =10 =11

Figure 4.3: New RE approach with pointer implementation (the upper register
carries the pointer and the lower register carries the decoded bits)

4.2.1 Performance Simulation Results

To test the performance of the proposed RE method, a JAVA software model is
built. The JAVA model has the following inputs: the constraint length K, the
rate r, the generator polynomials, the decoding length L, and the SNR E, /N, (in
db). Figure 4.4 plots the BER for the new VD in a channel with Additive White
Gaussian Noise (AWGN). The simulated Java VD (K=9, r=1/3, G0=557, G1=663,
G2=T711, and L=48) uses a 3-bit soft decision. The plot in Figure 4.4 illustrates the
BER versus the SNR (E,/Ny) for a continuous uncontrolled input sequence. With
an SNR of approximately 4.2 dB, the BER is 1073; the uncoded signal needs an
SNR of 6.8 dB to reach the same BER of 1073 [23]. Thus the Modified RE method
has a coding gain of approximately 2.6dB at the BER of 10~2. The equivalent TB
VD with L=45, K=9 and r=1/2 has a coding gain of approximately 3.3dB [37].
Since the rate change from r=1/2 to r=1/3 causes a coding gain of approximately
0.4dB, the loss in coding gain for the modified RE method is around 1 dB for
K=9, r=1/3 and L=48 if compared to the traditional TB method with the same
parameters at a BER of 1073.

4.2.2 Other Suboptimal Decoders

In the literature, several alternative sequential and stack based techniques have
been proposed to decode convolutional codes, but none of them are as compu-
tationally efficient as the VA. To reduce the computational complexity, several
suboptimal variations of stack-based algorithms have been investigated, but they
sacrifice performance, and require much more memory [39]. However, reference [40]
states that technological change has rendered the traditional computation/memory

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 38

0.01

0.001

BER

1*107(-4)

1*107(-

(€]

)3 4 5 6 7
SNR(dB)

Figure 4.4: BER vs. SNR for the proposed modified RE method

trade highly suspect .

Adaptive Viterbi Algorithm (VA)

Some adaptive reduced-complexity VAs have been developed. The role of these
algorithms is to adjust the number of preserved states, depending on the variation
of channel noises, so that the loss of the correct path is prevented. The algorithm
that was proposed in [41] collects several path metrics, and maps them into a path
segment metric. Another adaptive VA has been developed by Chan and Haccoun
[42]. The algorithm keeps only a certain amount of most-likely states, whose re-
spective path metrics are below a given threshold. Henning and Chakrabarti have
devised an adaptive T-algorithm, a variation of the VD that applies a threshold to
the accumulated path metrics the VD uses to select only one path per state of a
trellis stage for storage [43]. Adaptive methods can perform closely to the conven-
tional VA with a smaller computational complexity, but none of these algorithms
ensure the amount of reduction in the computational effort. In other words, the
reduction in computational complexity is statistically dependent on the channel
noise levels. These algorithms are also sensitive to the parameters of the model.
They perform as well as conventional VDs with a significant reduction in the com-
putational complexity only if the proper system parameters have been selected. In

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 39

[44], the VD was an extension of the work in [42] and it reduced the power dissi-
pation of an equivalent systolic array VD, not a conventionally implemented one.
The maximum weight basis decoding, suggested in [39], requires a low number of
operations, but its power consumption has not been tested yet.

The design that is proposed in this work reduces the power dissipation by re-
ducing the memory requirements and the memory activities. In addition, the new
design allows higher frequencies for the SMU, because the read and write operations
are performed at the data rate frequency. For a fair power reduction estimation,
the new design is compared to a conventional VD decoder implementation, which
has been considered to have the least power consumption in its class.

VHDL models are constructed for the SMUs of both the TB method and the
modified RE method, and are briefly discussed in the next section.

4.3 VHDL Models for Comparison

To quantify the power dissipation reduction, a functioning RTL VHDL model is
designed for the SMU of the new RE method, and for the SMU of the TB method.

4.3.1 TB Survivor Memory Unit (SMU) VHDL Model

Since a survivor path length of L=48 is used, the minimum survivor path memory
size is 256 x 48 bits. The memory access ratio of the write and read operation
is 1:3, instead of 1:48 [36]. The small ratio leads to a memory size of 256 x 96
bits, but achieves a much faster trace back by using a lower frequency for reading.
Figure 4.5 illustrates the timing chart of the major operations in the TB VD. The
clocks, CLK,, CLK,,, and CLK,, correspond to the operations of the input decision
sampling, TB writing, and TB reading, respectively. The decode path length that
is adopted is equal to 24. Consequently, after 48 TB read operations, 24 decoded
bits are generated, consecutively, by the TB decode operations. Thus, a 24-stage
LIFO buffer needs to be placed at the output to correct the output order.

The VHDL model for the TB SMU is composed of three main blocks which are
portrayed in Figure 4.6. The TB_MEM block consists of 256 rows of memory, and
each row is composed of 96 bits. The ROW_REG block is an 8-bit address decoder
which contains the current row address being read during the TB operation, whether
it is a TB read cycle or a TB decode cycle. For each read signal, the ROW_REG
register is shifted once to the right, and the content of the last memory cell read is

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 40

CLKg | | | L L
CLKwy |_I I_I I_I
ak, — LT THL

Figure 4.5: Timing chart of the main clocks for the TB VD

appended to the MSB of the register. The LIFO block is a 24-bit LIFO register, in
which the decoded bits are stored serially, and read out in the reversed order.

256 | ROW_REG

TB_MEM
. 256 _ 1 Decoded
Decision 22y Ly LFO > Output

Figure 4.6: VHDL block diagram of the TB SMU architecture

4.3.2 Modified RE VHDL Model

To obtain a reasonable comparison between the TB and the RE implementations,
the same survivor path length of L=48 is chosen. The VHDL model for the new
RE SMU is also composed of three main blocks as signified in Figure 4.7. The
ACS_to_SM block contains 256 pointers, each pointing to one row of memory. The
block is responsible for routing the decision and termination bits to the appropriate
row in the RE_IMEM, and for changing the associated pointer to the new value.
Instead of shifting 256 (8-bits) pointers for each incoming codeword, a circular
pointer is used; that is, the MSB block, which is denoted in Figure 4.7. It is a
circular counter which points to the current MSB of the pointers. Thus, the MSB
block acts like an indirect pointer, a pointer to the pointer.

The MSB block has eight outputs that point to the eight bits of the pointers
in parallel. The reset signal causes the eighth bit of the MSB block to be high
which, in turn, causes the eighth bit of any pointer to be the MSB of that pointer.

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 41

. 256 256
Decision ——>{ ACS to_SM ,j RE_MEM 1 gfgjjted
Termination =] 556:
256 /'Y
8.1
MSB

Figure 4.7: VHDL block diagram for the new RE SMU architecture

After accessing an incoming code word in the ACSU, a decision bit is written
into the MSB of each pointer, and the output of the MSB block is shifted to the
right such that only the seventh bit is high. For each pointer, this indicates that
the seventh bit is now considered to be the MSB. In this case, pointer P should
be read in the following order: PgsPsPyP3P, P, FPyP-, instead of the usual order:
P, PsPsPyP3 P, P Py. This process continues with each incoming code word. The
ACS_to_SM block design avoids the power dissipation that is associated with the
register shifting of the pointers. The RE_ZMEM block in Figure 4.7 consists of 256
rows of memory, and each row is composed of 48 bits. Only one write_enable signal
is required for each column, because the ACSU writes the decision bits into all the
elements, one column at a time.

4.3.3 SMU Comparison

The RTL simulation-based power analysis, provided by Synopsys and based on a
0.35pum CMOS technology, is applied to both designs. The analysis shows a power
reduction of 45 percent in the SMU of the modified RE method, and a power
reduction of 23 percent for the entire VD. (The SMU consumes more than half of
the power of the VD [21].) A simple power reduction estimation is presented in the
next section.

The new RE implementation that is presented in this paper reduces the memory
requirements of the SMU by 50 percent. Table 4.2 provides a comparison of the
register and memory access operations that are completed by each method: the TB
and the modified RE in the SMU. The operations in Table 4.2 are those that are
required to decode 48 codewords.

W, r, and rg represent the power dissipation cost function for writing one bit
into the memory block, reading one bit from the memory block, and writing one
bit into a register, respectively. The reduction in the number of decision bits that

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD) 42

are written into the memory for the new RE method is due to the termination
concept. The power that is consumed by the memory cells during the precharge
is a high percentage of a cell’s power dissipation. Also, the power consumption
of one memory cell is proportional to the number of memory cells in the memory
block [45]. The memory block used in the designs is 256 x 48 bits (256 rows and
48 columns), and the size of one register is, approximately six times the size of
one memory cell. Therefore, the following is assumed: w:rg ~ 256 x 48:6 [46].
Since all the contents of one column of the memory block are written one at a
time, the assumption is altered to the following: w:rg ~ 48:6 = 8:1. In addition, a
memory cell uses less power for reading than for writing, because the reading can
be performed by using a reduced swing on the bit lines. Consequently, it is assumed
that w:r ~ 2:1 [46].

If the equivalent estimated value of w is substituted for » and rg in Table 4.2,
the results in Table 4.3 are produced. According to Table 4.3, the estimated power
reduction is 39 percent in the SMU (20 percent for the whole VD). This estimation
yields acceptable results, if it is compared to the VHDL results.

The SMU is the hottest spot in the VD due to the frequent memory accesses [22];
therefore, it is modified to reduce the power dissipation. Regarding the speed of the
VD, the ACSU is traditionally considered to be a bottleneck, because of the ACSU’s
intensive computations. Recently, the memory access speed in the SMU has created
even greater limitations. The ACSU is composed of 128 ACS butterfly modules.
One ACS butterfly module is designed at the circuit/gate level and fabricated. The
ACS module inlcudes a new shifter and a low power 16-transistor full adder. The
module is detailed in the next chapter.

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD)

43

Table 4.2: Comparison of the memory /register operations to decode 48 codewords

pend a bit to the LSB)

1152rg

Operation TB New RE
Writing decision bits into the memory 256 x 48 (256 x 48)/2
12288w 6144w
Reading from the memory 48 x 3 48
144r 48r
Writing into the MSB of the pointers - 256 x 48
12288rg
Writing termination bits into the termi- | — 256
nation registers
256rg
8-bit register shifting (shift right and ap- | 48 x 3 x 8 —

Chapter 4 Modified Register Exchange (RE) Viterbi Decoder (VD)

44

Table 4.3: Estimated cost function for the memory/register operations to decode

48 codewords

Operation TB Modified RE
Writing decision bits into the memory 256 x 48 (256 x 48)/2
12288w 6144w
Reading from the memory 48 x 3r 487
2w 24w
Writing into the MSB of the pointers - 256 x 48rg
1536w
Writing the termination bits into the ter- | — 256rg
mination registers
32w
8-bit register shifting (shift to the right | 48 x 3 x 8rg | —
and append a bit to the LSB)
144w
Total 12504w 7736w

Chapter 5

Add Compare Select Unit
(ACSU) Chip

For WCDMA systems with K=9, there are 256 states (28=256) in the trellis. There-
fore 512 Add and 256 Compare and Select operations need to be conducted for each
decoded bit. A total number of 256/2= 128 ACS butterfly modules are needed.

5.1 Previous Designs for the ACSU

For a large constraint length VD, which requires a low decoding rate, a state se-
quential approach is normally used, where the same ASCU unit is serially used by a
number of states [37]. To achieve higher speeds, state parallel approaches have been
adopted. Earlier attempts to increase the speed of the ACS suggest a semi ring
algebraic solution. It replaces the recursive ACS operations by an (n x n) matrix
multiplication, where n is the number of states [32]. This method is not feasible for
the large constraint length VD (K'=9) that is employed in CDMA systems, because
it requires a 256 x 256 matrix multiplication.

Because the absolute values of the path metrics are not relevant (only their
relative values are), a Carry Save (CS) addition has been suggested [47]. In the CS
addition, instead of loading each carry bit to the next full adder, the carry bit is
combined with the sum bit for a new digit. This leads to a redundant representation
with a larger number of bits, but has the advantage of eliminating the ripple in
both the addition and minimum selections. Due to the increased complexity and
increased number of bits, this technique is not adopted in the proposed ACSU
design.

45

Chapter 5 Add Compare Select Unit (ACSU) Chip 46

Lou has proven that five bits and eight bits are sufficient to store the branch
metrics and path metrics [48]. To compare two path metrics, the computation of
the MSB of the result for a straight forward two’s complement subtraction of the
two 8-bit path metrics is necessary. Thus, for a butterfly organization, the required
operations are 1,024 8-bit additions, and 512 8-bit subtractions and selections. To
reduce the power consumption of the ACSU, a reformulation of the ACS operations
has been proposed in [29]. Another approach to reduce power consumption has been
developed in [36] by applying a bit serial approach instead of a bit parallel approach,
thus reducing the interconnect network between the ACSU and PMM. To improve
the throughput of the ACSU, the M-layered approach for the ACSU indicates that
M-stages of the trellis should be combined into one stage by dividing the received
codeword stream into short blocks of codewords with a length of M [24]. Thus,
instead of entering only one codeword to one stage of the ACS, a group of M
codewords are entered to one M-layered ACSU. The memory and computational
requirements increase drastically with the increased value of M. A special case
for the M-layered method is the radix-4 (M=2) method in [25] which improves
the throughput by a factor of 1.7, compared to the throughput of the conventional
radix-2 VDs. The radix-4 implementation has been further improved in [27][26], but
the relative power consumption of this technique has never been investigated. In
[28], a technique, called the Decoupled radix-4, has combined the three techniques:
the ACS operations reformulation, the Radix-4 method, and the bit serial approach.

Many researchers have explored the problem of interconnecting the various ACS
modules [38] [49]. The interconnection problem results from the feedback that is
inherent in the ACSU. The PMs that are calculated at one time stage are used in
the next time stage to calculate the new PMs. Therefore, there are 256 connections
among the 128 ACS modules in the parallel approach. If each connection is, in
turn, composed of eight bits, the interconnection load is fairly large. As as a
result, the bit serial approach significantly reduces the interconnection load. Based
on the in-place updating of the path metrics [50], Chang has presented an efficient
architecture for the VA which reduces the interconnection complexity of the ACSU,
in addition to reducing the memory size and operations [51].

The ACSU architecture that is adopted in this research is presented in the next
section.

Chapter 5 Add Compare Select Unit (ACSU) Chip 47

5.2 Bit Serial ACS Architecture

For the modified RE method, the bit serial approach is used. The block diagram for
one ACSU is displayed in Figure 5.1 The bit serial approach significantly reduces the

B Mt— 1 @i,p)

PM, (i)

) e < > ~
reset_P FA 8-stage Shifter [()

-, PMC
8-stage Shifter | p |

G — —P
PM[.]) > FA > FA | Decl

Figure 5.1: Bit serial ACS architecture

BM,, G.p)

interconnection load, but does not allow for the reformulation of the ACS functions.
Thus, the traditional addition and subtraction operations are performed in the bit
serial ACSU. However, the bit serial approach necessitates two 8-bit registers for
each PM to temporarily store the two calculated PM values which are compared in
the ACSU so that the smaller one can be chosen as the new PM. In addition, extra
registers are required to store the carry bits that are generated during the addition
and subtraction operations in the ACSU. The registers’ overload is reduced by
using a ring-type FIFO register [36] [52]. According to the power estimates, a shift
register based circuit consumes 35 percent more power than the ring-type FIFO
[36]. But an 8-bit ring-type FIFO requires two 8-bit address pointers to control the
FIFO functionality. In this work, a very simple shifter is introduced which requires
only one control signal and is composed of eight master latches with a new design.

Chapter 5 Add Compare Select Unit (ACSU) Chip 48

5.3 Simple Shift Register

Figure 5.2 is a diagram of the 8-bit shifter that is used in the ACSU. The transistor
design of each master latch is represented in Figure 5.3.

1 i

e | ﬂ

W, Master [TW, Master [TW, Master [TW, Master [TW, Master [TW, Master [TW, Master o Master
| Wy Latch TW,y Latch TWoy Latch W,y Latch W,y Latch W,y Latch TW,y Latch W,y Latch
IN N Out| ~N outf, ™ out| N out| = N out|, ™ out|, ™ out| , ™ out
In out—In Out = In Out = In out = In Out [In Out = In Oout = In Out [Out_

Figure 5.2: 8-bit shifter

e P

ks .
L
.

Figure 5.3: New master latch

=1

‘ Z
-
[]

{

=

The master latch is a slight modification of a regular transmission gate latch.
The output stage is changed to ensure a proper shift operation with only one clock
signal. The output is enabled by an NMOS pass transistor and buffered with an in-
verter. Since the output of the NMOS pass transistor has a high level of (Vpp—Vr),
the output buffer adopts a feedback PMOS device to restore the high level to the
VDD [2]. For simulation purposes, the input and output signals are generated from
buffers in order to emulate real conditions. The two control signals for controlling
the shift operation are the inverse of each other. Since Wyy is generated by in-
verting the clock Wy, this simple shifter requires only one clock signal. The timing

Chapter 5 Add Compare Select Unit (ACSU) Chip 49

simulation for the 8-bit-shifter is shown in Figure 5.4. If minimum sized transistors
with a width of 0.5um (0.18 um technology) are used, a maximum frequency of
125M H z is achieved. The delay at this frequency is 0.6ns.

1.99
—100m E

(v)

1.90
E I !] ! i 1 { I { i i | f | ! | | i i
—100m b U I - - [- — | — I

(v)

1.99
—tom £

(v)

19g i /Outd
—100m £

(v)

19g »/Outz R
—100m E i

(v)

1.90
—100m E

(v)

~ 1.9
2 —100m]

~ 198
2 —100m]

—~ 1.90
2 —100m]

~ lgg -t /Outd gy, o,
i—w@mE ‘ | ‘

1.99
2 —1gem]
2.00

)

ZZ:EH 40.0n 60.0n 80.0n 100n 12@n
time (s)

Figure 5.4: Timing simulations for the 8-bit shifter

5.3.1 Power Consumption

The shifter, in the ACSU design consumes more power than the ring-type FIFO.
However, the simple shifter requires only one clock signal, whereas the ring-type
FIFO requires eight control signals. These signals are anti phase and are routed
to all 128 ACSU pairs. Since the routing presents a high hardware overhead, the
simple shifter is used.

The ACSU is responsible for adding the BM to the corresponding PMs, and
then comparing them so that the smaller PM can be chosen. Because the bit serial
approach is adopted, extra registers are needed to save the carry bits.

Chapter 5 Add Compare Select Unit (ACSU) Chip 50

5.4 Carry Propagation

The output of the carry’s register, needs to be reset at the beginning of each cycle
of the ACS operation. Only the output, not the content of the carry’s register,
must be reset. Resetting the content causes logical errors, because the FA itself is
not synchronized. Consequently, correct functionality is maintained by providing
the inputs at the appropriate time. A resetter, composed of only one transistor as
shown in Figure 5.5, is used.

Reset-Signal 4| d

Figure 5.5: Simple resetter

Line to be Reset

The low power FA used in the ACSU is discussed in the next section.

5.5 Low Power Adder

The bit serial approach requires three 1-bit FAs for each branch of the butterfly
ACSU. Thus, the VD needs (256%3=)768 1-bit FAs. Therefore, it is essential to use
a low power FA design. Shams and Bayoumi have devised a novel high performance
CMOS one-bit FA cell [53] [54], which outperforms other standard implementations.
Another implementation, presented in [55], apparently has a lower power consump-
tion, but due to the lack of detailed transistor sizing information and questionable
loading effects, this cell is not used in the ACSU. The 16-transistor FA cell is
presented in Figure 5.6.

5.6 Chip Specifications

One ACS butterfly module is fully designed and implemented on a chip. The chips
fall into two general categories: core limited and pad limited. A core limited chip is
one in which the size of the chip is dependent on the amount of logic it contains. The
perimeter of the chip is more than sufficient to support the 1/O, clock, power, and

Chapter 5 Add Compare Select Unit (ACSU) Chip 51

X Y C,
_Q 0o JL2
B ey I vy B o~
S
— 23
[i 21
e .
1
%E‘ 4 +—Cu

J o
,_J—\J ;
o1 Lo T =1

Figure 5.6: 16-transistor low power FA

ground bonding pads surrounding the chip. A pad limited chip’s size is dictated by
the bonding pads on the chip’s perimeter. The pads are as close as possible which
is consistent with the chip’s design rules. Also, there can be a wasted, open area
within the chip’s core.

The fabricated ACS chip is pad limited and has a size of 1756um x 1489um.
The fabrication is run through Canadian Microelectronics Corporation (CMC) by
using 0.18um technology. Figure 5.7 shows the layout of the design, including the
pads.

The chip operates at a 3.3v ring voltage and a 1.8v core voltage. A snapshot
of the timing simulation for the designed chip with pads attached is depicted in
Figure 5.8. The input signals are listed on the right side of the figure and the
output signals are listed on the left side of the figure. There are two clock signals
(W0, WO0n), four data signals (BM,,, BM,,, PM,;, PM;, and msb_BM,,), and four
control signals (reset_comp, reset_PM, comp_enable, and comp_enable_n). The
function of the control signals is detailed in Table 5.1.

Chapter 5 Add Compare Select Unit (ACSU) Chip

i
] '_.
EEE ‘

1 =
]
| — L
(— [|
| [1rs
I
=
Hj -
e
[1n
1 =
I
(E— [& |
[1
|
:.
[

.-_,i_-_;

Figure 5.7: Layout of the fabricated chip

(V)

(V)

(v)

(V)

(v)

(v)

Transient

Response U

Figure 5.8: Timing simulation of the layout

du) (150V) wug 199198 aundwioy) ppy ¢ Ladvyy)

€q

Chapter 5 Add Compare Select Unit (ACSU) Chip 54

Table 5.1: Function of the control signals

Control Signal Function
reset_PM to reset the PMs for the first cycle of the ACS module
reset_comp to reset the carry signals at the proper time
comp_enable to control the latch that latches the subtraction’s MSB
comp_enable_n which decides the smaller PM

Two packages are chosen for fabrication: the 40DIP and 44CQFP. The 40 pin
DIP performs well at up to about 50 or 60 M Hz, but the parasitic losses distort
the signals if the chip operates at frequencies higher than 60 M Hz. Therefore,
40DIP chips are only used for the basic operational checks. The 44CQFP package
can operate at 160 M Hz easily, and therefore is the best choice for the at-speed
testing.

5.6.1 Chip Testing

The testing of the 40DIP chip was run on the IMS Tester at CMC. I sent the test
vectors and they set up the testing equipment and the test settings and ran several
tests. We shared the application online and I ran the final test. The snapshot
of the final test is shown in Figure 5.9. All outputs were generated correctly at
frequencies up to 100 MHz except one output.

Tining Tiag

PRl error count: Sequencefd B0

Figure 5.9: Testing simulations of the chip on the IMS shifter

dwy)y (NSOV) 1uy) 199]28 24ndwioy) ppy ¢ 423dvy))

qq

Chapter 5 Add Compare Select Unit (ACSU) Chip 56

The fabricated chip represents only one ACS butterfly module for the modified
RE VD, and the VD is fully implemented on an FPGA after the VD’s power
consumption is further reduced. This is detailed in Chapter 6.

Chapter 6

Memoryless Viterbi Decoder
(MLVD)

The modified RE VD uses a memory of 256 x 48. This is the minimum memory a
traditional implementation of the VD requires to decode a convolutional code with
K =9 and r = 1/3. The modified RE architecture is further enhanced to reduce
the required memory to zero. This is detailed in this chapter.

6.1 Architecture of the MLVD

The diagram of the modified RE approach, which was detailed in Chapter 4, is
presented in Figure 6.1. This figure displays the successive values for the pointers
and rows of memory over time. A closer look reveals that each row of memory
is used to trace the decoded bits, if an initial state is assumed. The first row of
memory decodes the data, if an initial state, Sy, is assumed. The last row records
the decoded data, if an initial state, Soss5, is assumed, and so on. At the end of
the decoding process, the row which has the lowest PM is chosen to be the decoder
output. If the initial state is known, are all these rows of memory necessary?
Absolutely not. For example, if the initial state is zero, then only the first row of
memory is needed. In other words, the storage of the decoded bits is necessary in
order to choose only one row of memory at the end to represent the actual decoded
bits. If the required row of memory is predetermined, then there is no need for the
storage of the other rows.

Furthermore, there is no need for the storage of the row that is assigned to
the predetermined initial state, because the RE approach generates the decoded
bits in the correct order. The decoded bits are produced, and then read out from

57

Chapter 6 Memoryless Viterbi Decoder (MLVD) 58

oo] |foa] |[10] |loa| |[2] |[zo] |jox] |po] joo] lo1] [10] l0o]

w1 |10 1ot b0t tot10b{01 101 o 11010 10110 100 101 1010011+{ 101 1010010101 10 100 100]
%ﬁ 10] | oo % AN NN RN]]]

po_Jpron | | | | | | | |
% po] |for] |f1o] [for] |[uz] |pe] jpo] |[]]] H

Heto o1 [Hoto]Ho1o1}Hoto11)Hoto110} 010110042 | | | |
% 11] |11 % 10 0l 11]]]]]

1 bean it betofH o101 4 | | | | |
=0 =1 =2 =3 =4 = =6 =7 =5 =9 =10 =11

Figure 6.1: New RE approach with pointer implementation (the upper register
carries the pointer and the lower register carries the decoded bits)

the decoder. Thus, a memory free Viterbi decoder can be implemented by solely
resetting the encoder contents for each L bits that are encoded. There is no need
to interrupt the data sequence nor to transmit a long sequence of zero data bits.
The encoded data is continuous, but the contents of the encoder bits (eight bits for
K =9 convolutional encoder) are reset to zero for each L bits transmitted. The only
overhead for such an implementation in a communication system is to synchronize
between the transmitter and the receiver. The new VD implementation is called,
the MemoryLess Viterbi Decoder (MLVD). Since the MLVD needs to track only
one row, the MLVD requires only one pointer to track the current position of the
decoder in the trellis in Figure 6.2.

The MLVD is designed in VHDL for the WCDMA applications. As mentioned
in Chapter 3, the specifications for the VD for the reverse link (mobile to base) of
WCDMA applications are listed in Table 6.1.

(1]
[H+ 13 + 101 -+ 1011 [H~{ 10120 H-4+] 101101 =} 1012010] [1011010014 101201001} 1011010010 |- [10110100100]

=0 =1 t+=2 =3 =4 =5 =6 =7 =3 =3 =10 =11

1
1
]

Figure 6.2: MLVD approach with pointer implementation (the upper box carries
the pointer and the lower box carries the decoded bits)

The MLVD is an extra low power design for a VD with the only restriction of
resetting the encoder register at each L of the encoded data bits and providing the
necessary synchronization. The block diagram of the MLVD, designed in VHDL,

Chapter 6 Memoryless Viterbi Decoder (MLVD)

Table 6.1: VD specifications

99

Constraint Length

K=9

Coding Rate

r=1/3

Generator Polynomials

G0= 557, G1=663 G2=T711

Decision Level

3-bit Soft Decision

Path Metric

8-Modulo Arithmetic

Target Speed 2Mbps
is shown in Figure 6.3.
ACSU
i BMU » dec<0:255>
o 3,1 bmoon[g > oaralle -
b 3 e T Sy Acs2 | [Acs3
e ot Lo rcsTos MU
Soft bm(111) > H H pointer<0:7>
decision
o
Encoder
G0=557
G1=663 : .
G2=711 MSB MSH<0:77, Pointer
Data_in |_Data_out

Figure 6.3: MLVD block diagram

In order to have a built-in self-test design, a Linear Feedback Shift Register
(LFSR) and a comparator are added. The LFSR produces the random input for
the encoder, whereas the comparator compares the delayed version of the LFSR
with the output of the MLVD. An output signal, status, indicates the correct func-
tionality of the design. The VHDL code for the MLVD is listed in Appendix A.
The following is a discussion of the different parts of the MLVD design and their

functionality:.

Chapter 6 Memoryless Viterbi Decoder (MLVD) 60

6.1.1 Convolutional Encoder

The convolutional encoder that is implemented is that of the reverse link for
WCDMA applications. It is a K=9 and r=1/3 convolutional encoder. Its in-
put is generated by a LFSR which generates a random sequence of ones and zeros.
Figure 6.4 shows the block diagram of the convolutional encoder. Three outputs
are generated for each bit encoded. To implement a soft-decision VD, the output
of the encoder is translated from (0,1) to (101, 011). 101 is the two’s complement
representation of the decimal number -3, and 011 is the representation of the dec-
imal number 3. The output of the encoder is fed directly (without noise) into the
first block of the VD, the BMU.

Input

Data DD DTDTDIT DD DI/

modulo 2 addition modulo 2 addition modulo 2 addition
i 1 i
io iy i

Figure 6.4: Convolutional encoder: G0=557, G1=663, and G2=T11

6.1.2 Branch Metric Unit (BMU)

In the VA for decoding convolutional codes, the squared Euclidean distance is the
optimum branch metric for decoding sequences that are transmitted in an AWGN
channel [21]. Multiplication operations or look up tables are required for the VA to
compute the squared distances to obtain the branch metrics. However, for binary
convolutional codes, it is proven that linear distances (Hamming distances) can be
used as the optimum branch metrics. This is true for convolutional codes, using

Chapter 6 Memoryless Viterbi Decoder (MLVD) 61

anti-podal signaling [56], and for trellis codes with Quadrature Phase Shift Keying
(QPSK), 8-Phase Shift Keying (8-PSK), 16 Quadrature Amplitude Modulation
(16-QAM), or larger constellations [57].

For three 3-bit soft decision input bits, (ig, 1, i2), each ranging from -3 to 3,
eight 5-bit branch metrics are generated. The decision bits are represented in the
two’s complement representation. The BMU performs simple add and subtract
operations on the decision bits to generate the output; for example, the branch
metric for the state transition which produces the binary output (010) is ig-i;+iz.
The BMU performs the computations, as represented in Figure 6.5. The output of
the BMU is still in a two’s complement format. The bit serial format of the branch
metrics is generated by the parallel to serial module at the output of the BMU, as
shown in Figure 6.3. The bit serial format of the BMs is then fed into the ACSU.

3
3

iy

i
3

iy

+ [+]+
T O T O T T

bmu(000) bmu(001) bmu(010) bmu(011) bmu(100) bmu(101) bmu(110) bmu(111)

Figure 6.5: Branch Metric Unit (BMU) operations

6.1.3 Add Compare Select Unit(ACSU)

The ACSU is composed of 128 units; each is composed of an ACS butterfly module,
as shown in Figure 6.6. The functionality of each ACS module is as described
in Chapter 5, and the input PMs and BMs for the different ACSs are detailed
in Appendix B. The routing among the different ACSU modules represents an
overhead, which is left for the automatic optimization of the FPGA router.

6.1.4 Add Compare Select TO Survivor Memory (ACSTOSM)

The ACSTOSM is employed to route the decision of the appropriate ACS module
to the output. The ACSTOSM is a 256 to one decoder. The select signal for this

Chapter 6 Memoryless Viterbi Decoder (MLVD) 62

BMt_l(i’p)
BMt_l(j’p)

PM,,)

| ACS |— & o
M, 0 PM,

AC S > PM[(q)

A A 4 Al I A A 4
o

Figure 6.6: One ACS butterfly module

large decoder is the output of the pointer module. The output of the ACSTOSM
module is already the decoded output sequence of the VD, but is fed back into the
pointer module to update the current state in the decoding trellis.

6.1.5 Pointer

The pointer block contains the current state of the decoder (eight bits). For each
bit decoded, the pointer content is updated. The exact position of the bit that will
be updated is determined by the MSB block.

6.1.6 Most Significant Bit (MSB)

The MSB block has eight outputs that point to the eight bits of the pointer in
parallel. At the reset, the eighth bit of the MSB block is enabled which, in turn,
causes the eighth bit of the pointer to be the most significant bit. After accessing
an incoming code word in the ACSU, a decision bit is written into the MSB of
the pointer, and the output of the MSB block is shifted to the right so that only
the seventh bit is enabled. For the pointer, this indicates that the seventh bit
is now considered to be the most significant bit. In this case, pointer P should
be read in the following order: PgsPsPy P3P, P, PyP-, instead of the usual order:
P;PsPs Py P3P, Py Py. This process continues with each incoming code word.

Chapter 6 Memoryless Viterbi Decoder (MLVD) 63

6.2 Power Consumption of the MLVD

To calculate the power reduction estimation, cost values for the MLVD operations
are provided in Table 6.2. It is noted that many operations are no longer exe-
cuted with the MLVD. The total in Table 6.2 shows that there is almost no power
consumption that is associated with the SMU anymore. This occurs because all
the SMU operations are related to the memory, and for the MLVD, no memory is
required. Typically, the SMU consumes about 50 percent of the total VD power.
Thus the MLVD reduces the power consumption of the VD by half. The MLVD has
the same BER as the modified RE VD has. Table 6.3 demonstrates a quick com-
parison of the specification for the Traditional TB [36], the modified RE method
[58], and the MLVD. To prepare the MLVD VHDL design that is implemented on
the FPGA, the design is synthesized by using Synopsys tools. Then, the design
is imported into Xilinx tools for the mapping and routing; then a VHDL file with
timing information is re-simulated for the timing verification. The next two figures
(Figure 6.7 and Figure 6.8) represent snapshots of the timing simulation for the
MLVD.The last step is to generate the bit file that is downloaded on the FPGA
chip.

Chapter 6 Memoryless Viterbi Decoder (MLVD)

Table 6.2: Estimated cost function to decode 48 codewords

64

Operation TB Modified RE | MLVD
Writing decision bits into the | 256 x 48 6144w -
memory
12288w
Reading from the memory 48 x 3 r 48r -
2w 24w
Writing into the MSB of the | - 256 x 48 rg 48rg
pointers
1536w 6w
Writing the termination bits into | — 256rg -
the termination registers
32w
8-bit register shifting (shift to the | 48 x 3 x 8rg | — -
right and append a bit to the
LSB)
144w
Total 12504w 7736w 6w

Chapter 6 Memoryless Viterbi Decoder (MLVD)

Table 6.3: Specifications comparison

65

Specification TB Modified RE MLVD
Power Consumption 100% 80% 50%
Memory 2 x 48 x 256 48 x 256 -
Coding Gain 3.7dB 2.6dB ~2.6dB
Latency (L+ D) x Ty LxTy 2x Ty

Waveform 1 — SimVision

Cursor
Baszeline
‘—Baseline

OS5I S0B0L000008088E

= 3,360,500,000fs
— U
= 3,360,500,000f=

start_out

clk
reset_comp_carry
reset_encoder
reset_mpl
reset PM
reset_p2s
data_random
term_out

clk
clk_encoder
clk_mp
data_out

pointer_internal[7:0]
encoderu_stored[8:0]

led[3:0]
It1_led[7:0]
msb_BMjp[7 0]
msb_signal[7:0]

Figure 6.7: Snapshot of the timing simulation for the routed MLVD

0 1000ns
1
0
1
0
0
1
0
1
a
a
0
a
1
' hEF (0o jo3 o7
*hlFF {ooefool joo3 foo7 jooe
"hl (1 14
"hol (o1
" hB2 {00 |E8 (26 YEs
"hso (o1 ; 120

2000ns

fir Jar
foir jo3r (o7 [oER | 1EE

I2

71
o4

3000ns

Pag:
TimeA = 3364
(1Fm
2 ¥4
(4D

fso Jao 2o

(AATIN) 42po2a(T 1qio91/ ssapfisowapy g 1a3dvy))

99

Waveform 1 - SimVision

Cursor =

3,360,500,0001s

Baseline=0
—Baseline = 3,360,500,000fs

IISSS000L00000004

start_out

clk
reset_comp_carry
reset_encoder
reset_mpl

reset PM
reset_p2s
data_random
term_out

clk

clk_encoder
clk_mp

data_out
pointer_internal[7:0]
encoderu_stored[8:0]
led[3:0]

[t1_led[7:0]
msb_BMjp[7 0]
msb_signal[7:0]

o RESGERSERE O . D SR NERSNER - 0 B

'hERF
'h1FF
Ak
S
"hB2
"had

Fage
TimeA = 3360.5ns
0 4000ns B000Ns 12,000ns 16,000ns 20,10

T e ” T T TV
TTTHTECTTT II [T

I | I
T A AR T AT R TR TR

I |
10 OO0 TS
RRAARSRRRRRAARANRRARAAARRRRRAAARARARARTRRARARLNYRRRNASURRRRY

Figure 6.8: Snapshot of the timing simulation for the routed MLVD (zoom out)

(AATIN) 42po2a(T 1qio91/ ssapfisowapy g 1a3dvy))

L9

Chapter 6 Memoryless Viterbi Decoder (MLVD) 68

6.3 Xilinx Implementation and Test Results

The MLVD is designed and implemented on a 2V6000 Xilinx chip. The chip is
mounted on a rapid prototyping system provided to the University of Waterloo by
CMC. The System includes the LT-XC2V6000 logic tile, which provides some leds
to be connected to the output of the Xilinx Chip. These are used to flash serially
in the case of the correct functionality. The MLVD consumes only 8 percent of
the total slices of the 2V6000, comprising a total of 68,736 gates. The design
consumes 16 1/O bits, and can be implemented on a much smaller FPGA, but
was not available. Even the power consumption of the design on the FPGA is not
very significant, because the main objective is to test the design feasibility and
operability. The MLVD has a latency of two bits. The implemented design on the
Xilinx FAPGA operates at 25 M Hz with a decoding throughput of more than 3
Mbps. The detailed code is in Appendix A. Figure 6.9 shows the RPP system,
mounted in a PC.

Figure 6.9: Rapid prototyping system

Chapter 7

Conclusions and
Recommendations

Among the several architectures that are available to realize the VD, the RE method
is conceptually the simplest, fastest, and most commonly used in VDs with only
small values of K. The main drawback of the RE method is its power hungry
implementation. In this work, the RE method even with large values of K (K=9)
is modified to reduce the power consumption. The power reduction is as high as
50 percent, whereas the speed of the modified RE method is still higher than that
of the TB method. An initial power reduction of 20 percent is realized by applying
the pointer concept to the RE implementation. By reinforcing the initial state of
the convolutional encoder and synchronizing the VD with the resetting procedure,
a design, the MLVD, with the highest power reduction is realized (50 percent). The
new MLVD is a memoryless high speed, low latency, and low power variation to
the VD with an approximated BER of 107° and an SNR of 6.1 dB. The MLVD
along with a convolutional encoder is implemented on a Xilinx 2V6000 chip to
demonstrate both the design’s functionality and feasible implementation.

For digital implementations, the Viterbi engine can be included in the core for
some modern sigital signal processors (DSPs).For example, the wireless multimedia
DSP chip in [59] supports the packed ACS byte instruction for Viterbi Decoding.
The new MLVD in this thesis requires a slight modification in this wireless multi-
media DSP and similar implementations in order to be executed by such DSPs.

This is true for 3G wireless technologies which are being produced as fast as ex-
pected because of the worldwide market downturn. Due to the low power and high
speed challenges for the 4G wireless technologies, new developments are emerging.
Analog decoders are proposed in the literature to replace digital decoders. So far,
the implemented analog decoders have only a small number of states (as high as

69

Chapter 7 Conclusions and Recommendations 70

four) [60] [61]. These implementations assume that the VD is adjacent to the Ana-
log to Digital Converter (ADC) in the receiver. This is not the case for the mobile
terminal receiver. Thus, if the other components in the receiver, between the ADC
and the VD, are also implemented in analog form, the ADC is shifted towards the
decoders. Then, implementing an analog MLVD with 256 states is possible in the
future.

Publications

[1] Dalia A. El-Dib and M.I. Elmasry, ”Low-power register-exchange Viterbi de-
coder for high-speed wireless communications,” IEFE International Sympo-
sium on Circuits and Systems, May 2002, pp. 737-740.

[2 | Dalia A. EI-Dib and M.I. Elmasry, ”Modified Register-Exchange Viterbi De-
coder for Low-Power Wireless Communications,” IEEE Transactions on Cir-

cuits and Systems I: Regular Papers, vol. 51, no. 2, pp. 371- 378, February
2004.

[3] Dalia A. El-Dib and M.I. Elmasry, ”Memoryless Viterbi Decoder: an extremely
low power Viterbi Decoder,” to be submitted in July 2004.

71

Bibliography

1]

A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srinivasan, and B. Jacob,
“A control-theoretic approach to dynamic voltage scheduling,” Proc., Inter-

national Conference on Compilers, Architectures and Synthesis for Embedded
Systems, pp. 255-266, 2003.

A. Bellaouar and M. Elmasry, Low Power Digital VLSI Design. Kluwer
Academic Publishers, 1995.

S.-M. Kang, “Elements of low power design for integrated systems,” Proc.

International Symposium on Low Power Design and FElectronics, pp. 205-210,
2003.

A. Chandrakasan and R. Brodersen, Low Power Digital CMOS Design.
Kluwer Academic Publishers, 1995.

K. Roy and et al., “Leakage control for deep-submicron circuits,” Proc. of
SPIE, VLSI Circuits and Systems, vol. 5117, pp. 135-146, 2003.

T. Ghani and et al., “Scaling challenges and device design requirements for high
performance sub-50nm gate length planar cmos transistors,” VLSI Technology,
Digest of Technical Papers, pp. 174-175, 2000.

A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital de-
sign,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473-484, April
1992.

A. Chandrakasan and R. Brodersen, “Minimizing power consumption in digital
cmos circuits,” Proceedings of the IEEFE, vol. 83, no. 4, pp. 498-523, April 1995.

A. Maheshwari, W. Burleson, and R. Tessier, “Trading off transient fault tol-
erance and power consumption in deep submicron (dsm)vlsi circuits,” IEEE

TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYS-
TEMS, vol. 12, no. 3, pp. 299-311, March 2004.

72

[10]

[20]

[21]

22]

A. Branover, R. Kol, and R. Ginosar, “Asynchronous design by conversion:
converting synchronous circuits into asynchronous ones,” Proc., Design, Au-
tomation and Test in Furope Conference and Fxhibition, vol. 2, pp. 870-875,
2004.

V. Garg, I5-95 CDMA and Cdma2000-Cellular/PCS Systems Implementation.
Upper Saddle River, NJ: Prentice Hall, 1999.

CDMA technology and benefits - An introduction to the benefits of CDMA for
wireless telephony, Motorola Inc., March 1996.

Q. Inc., An overview of the application of code division multiple access (CDMA)
to digital cellular systems and personal cellular networks, May 1992.

Cooper and R. Nettleton, “A spread-spectrum technique for high capacity
mobile communications,” IEEFE Trans. Veh. Tech., vol. 27, no. 4, pp. 264-275,
1978.

R. Prasad and T. Ojanpera, “An overview of cdma evolution toward wideband
cdma,” IEFEE Communications Surveys, vol. 1, no. 1, Fourth Quarter, 1998.

A History of Third Generation Mobile 3G, Nokia Networks, March 2003.

Implementing a W-CDMA System with Altera Devices IP Functions, Altera
Corporation, September 2000.

S. Ranpara, “On a viterbi decoder design for low power dissipation,” Master’s
thesis, Virginia Polytechnic Institute and State University, 1999.

A. Viterbi, “Error bounds for convolutional codes and asymptotically optimum
decoding algorithm,” IFEE Transactions on Information theory, vol. It-13, no.
2, pp. 260269, April 1967.

J. Heller and I. Jacobs, “Viterbi decoding for satellite and space communica-
tion,” IEEE Transactions on Communication Technology, vol. COM-19, no.
5, pp. 835848, Oct. 1971.

G. Forney, “The viterbi algorithm,” Proceedings of the IEEFE, vol. 61, no. 3,
pp- 268-278, March 1973.

J. Ryu, S. Kim, J. Cho, H. Park, and Y. Y.H. Chang, “Lower power viterbi
decoder architecture with a new clock-gating trace-back unit,” Proc. 6th In-
ternational Conference on VLSI and CAD, pp. 297-300, Oct. 1999.

73

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[34]

[35]

S. B. Wicker, Error Control Systems for Digital Communication and Storage.
Prentice Hall, 1995.

H.-D. Lin and D. Messerschmitt, “Algorithms and architectures for concurrent
viterbi decoding,” Proc. IEEFE International Conference on Communications,
pp. 836-840, June 1989.

P. Black and T.-Y. Meng, “A 140 mb/s 32-state radix-4 viterbi decoder,” IEEE
Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1877-1885, December 1992.

A. Yeung and J. Rabaey, “A 210 mb/s radix-4 bit-level pipelined viterbi de-
coder,” Digest of Technical Papers, Proc. International Solid-State Chrcuits
Conference, February 1995.

P. Black and T.-Y. Meng, “A 1-gh/s, four-state, sliding block viterbi decoder,”
IEEE Journal of Solid-State Circuits, vol. 32, no. 6, pp. 797-805, June 1997.

K. Page and P. Chau, “Improved architectures for the add-compare-select oper-
ation in long constraint length viterbi decoding,” IEEE Journal of Solid-State
Circuits, vol. 33, no. 1, pp. 151-155, January 1998.

C.-Y. Tsui, R.-K. Cheng, and C. Ling, “Low power acs unit design for the
viterbi decoder,” Proc. IEEE International Symposium on Chircuits and Sys-
tems, pp. 137-140, 1999.

D.-I. Oh and S.-Y. Hwang, “Design of a viterbi decoder with low power using
minimum-transition traceback scheme,” IEE FElectronics Letters, vol. 32, pp.
2198-2199, November 1996.

M.-B. Lin, “New path history management circuits for viterbi decoders,” IFEFE
Transactions on Communications, vol. 48, no. 10, pp. 1605-1608, October 2000.

G. Fettweis and H. Meyr, “Feedforward architectures for parallel viterbi de-
coding,” Journal of VLSI Signal Processing, vol. 3, pp. 105-119, 1991.

S.-J. Jung, M.-H. Lee, and H.-J. Choi, “A new survivor memory management
method in viterbi decoders: trace-delete method and its implementation,”
Proc. ICASSP, pp. 3284-3286, 1996.

P. Black and T.-Y. Meng, “Hybrid survivor path architectures for viterbi de-
coders,” Proc. ICASSP, pp. 433-436, 1993.

J. H. et al, “”cdma mobile station modem asic”,” IEFE Journal of Solid-State
Circuits, vol. 28, no. 3, pp. 253-260, March 1993.

74

[36]

[37]

[38]

[40]

[41]

Y .-N. Chang, H. Suzuki, and K. Parhi, “A 2-mb/s 256-state 10-mw rate-1/3
viterbi decoder,” IEEFE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 826-
834, June 2000.

I. Kang and A. W. Jr, “Low-power viterbi decoder for cdma mobile terminals,”
IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 473-482, March 1998.

J. Sparso, H. Jorgensen, E. Paaske, S. Pedersen, and T. Rubner-Petersen, “An
area-efficient topology for vlsi implementation of viterbi decoders and other
shuffle-exchange type structures,” IFEE Journal of Solid-State Circuits, vol.
26, no. 2, pp. 90-97, February 1991.

S. Das, E. Erkip, J. Cavallaro, and B. Aazhang, “Maximum weight basis de-
coding of convolutional codes,” Proc. Global Telecommunication Conference,
pp. 835-841, 2000.

G. Pottie, “Low latency sequential decoding,” Proc. IEEE International
Symopsium on Information Theory, p. 499, 1997.

C. Feldmann and J. Harris, “A constraint-length based modified viterbi algo-
rithm with adaptive effort,” IEEE Transactions on Communications, vol. 47,
no. 11, pp. 1611-1614, Nov. 1999.

F. Chan and D. Haccoun, “Adaptive viterbi decoding of convolutional codes

over memoryless channels,” IEEFE Transactions on Communications, vol. 45,
no. 11, pp. 1389-1400, Nov. 1997.

R. Henning and C. Chakrabarti, “Low-power approach for decoding convo-
lutional codes with adaptive viterbi algorithm approximations,” Proc. IEEE
International Symposium on Lower Power Electronics and Design, pp. 68-T1,
August 2002.

M. Guo, M. O. Ahmad, M. Swamy, and C. Wang, “A low-power systolic array-
based adaptive viterbi decoder and its fpga implementation,” Proc. IEEE In-
ternational Symposium on Circuits and Systems, vol. 2, pp. 276-279, May 2003.

D. Liu and C. Svensson, “Power consumption estimation in cmos vlsi chips,”
IEEE Journal of Solid-State Circuits, vol. 29, no. 6, pp. 663-670, June 1994.

C. Svensson, Private correspondence, Department of Physics and Measurement
Technology, Linkping Univ., Sweden.

)

[47]

[48]

[49]

[50]

[51]

[52]

[53]

G. Fettweis and H. Meyr, “High-rate viterbi processor: a systolic array so-
lution,” IEEFE Journal on Selected Areas in Communications, pp. 1520-1534,
Oct. 1990.

H. Lou, “Viterbi decoder design for the is-95 cdma forward link,” Proc. Vehic-
ular Technology Conference, pp. 1346-1350, April 1996.

B. Min and N. Demassieux, “A versatile architecture for vlsi implementation
of the viterbi algorithm,” Proc. International Conference on Acoustics, Speech
and Signal Processing, pp. 1101-1104, May 1991.

M. Biver, H. Kaeslin, and C. Tommasini, “In-place updating of path metrics
in viterbi decoders,” IEEFE Journal of Solid-State Circuits, vol. 24, no. 4, pp.
1158-1160, August 19809.

Y.-N. Chang, “An efficient in-place vlsi architecture for viterbi algorithm,”
Journal of VLSI Signal Processing, vol. 33, no. 3, pp. 317, March 2003.

C. Nicol, P. Larsson, K. Azadet, and J. O’Neill, “A low-power 128-tap digi-
tal adaptive equalizer for broadband modems,” IFEE Journal of Solid-State
Circuits, vol. 32, no. 11, pp. 1777-1789, November 1997.

A. Shams and M. Bayoumi, “A novel high-performance cmos 1-bit full-adder
cell,” IEEE Transactions on Circuits and Systems-11: Analog and Digital Signal
Processing, vol. 47, no. 5, pp. 478-481, May 2000.

A. Shams and M. Bayoumi, “A novel low-power building block cmos cell for
adders,” Proc. IEEE International Symposium on Circuits and Systems, pp.
153-156, 1998.

A. Fayed and M. Bayoumi, “A low power 10-transistor full adder cell for em-
bedded architectures,” Proc. IEEE International Symposium on Circuits and
Systems, pp. 226-229, 2001.

H.-L. Lou, “Implementing the viterbi algorithm,” IEFEE Signal Processing
Magazine, vol. 12, pp. 42-52, September 1995.

H.-L. Lou, “Linear distances as branch metrics for viterbi decoding of trellis
codes,” Proc. IEEFE International Conference on Acoustics, Speech, and Signal
Processing, vol. 6, pp. 3267-3270, June 2000.

D. A. EI-Dib and M. I. Elmasry, “Modified register-exchange viterbi decoder
for low-power wireless communications,” IEFE Transactions on Circuits and
Systems I, vol. 51, no. 2, pp. 371-378, February 2004.

76

[59]

K. L. Heo, M. H. Sunwoo, and S. K. Oh, “Implementation of a wireless multi-
media dsp chip for mobile applications,” IEEE Workshop on Signal Processing
Systems, pp. 51-56, August 2003.

V. Gaudet and P. Gulak, “A 13,3-mb/s 0.35-pm cmos analog turbo decoder
ic with a configurable interleaver,” IEEE Journal of Solid-State Circuits, vol.
38, no. 11, pp. 2010-2015, November 2003.

A. Demosthenous and J. Taylor, “A 100-mb/s 2.8-v cmosp current-mode ana-
log viterbi decoder,” IEEE Journal of Solid-State Clircuits, vol. 37, no. 7, pp.
904-910, July 2002.

7

Appendix A

VHDL code for the Memoryless
Viterbi Decoder

A.1 Lfsr.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity Ifsr is
port (clock : std_logic;
reset : std_logic;
data_out : out std_logic);
end Ifsr;

—— The linear feedback shift register serves the gemeration
—— of random input to the encoder.

architecture rtl of lfsr is
signal Ifsr_reg : std_logic_vector (9 downto 0);

begin
process (clock ,reset)
variable lIfsr_tap : std_ulogic;
begin
if reset = ’'1’ then
lfsr_reg <= (others =>’1");
data_out <= '17;
else
if clock ’EVENT and clock=’"1" then
Ifsr_tap := lfsr_reg (6) xor lfsr_reg (9);
lfsr_reg <= lfsr_reg (8 downto 0) & lfsr_tap;
data_out <= Ifsr_reg (9);
end if;
end if;
end process;
end rtl;

A.2 Encoder.vhd

78

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity encoder is
port (data_in, reset, clk: in std_logic;
i0,i1,i2: out std-logic_-vector (2 downto 0)
)5

end encoder;

— This is the code for K=9 r=1/8 encoder.

— The output is converted into soft decision , such that:
— 0 ——> =38 (101)

— 1 ——> +8 (011)

architecture rtl of encoder is
signal stored: std-logic_-vector (0 to 8);
signal code: std_logic_vector (0 to 2);
begin

process(reset ,clk ,stored ,data_in)
begin
if clk=’1" and clk ’event then
if reset =’1’ then
stored(0)<=data_in;
stored (1 to 8)<="00000000";
else
stored<=data_in & stored (0 to 7);
end if;
end if;
end process;
code(0)<=stored (0) XOR stored (2) XOR stored (3) XOR stored (5) XOR
stored (6) XOR stored (7) XOR stored (8);
code(l)<=stored (0) XOR stored (1) XOR stored (3) XOR stored (4) XOR
stored (7) XOR stored (8);
code(2)<=stored (0) XOR stored (1) XOR stored (2) XOR stored (5) XOR
stored (8);
process(code)
begin
—— the following is to present code in the range (=38 to 3)
case code is
when 70007 => i0<="101"; il<="101";i2<="101";
when 7001”7 => i0<="101"; i1<="101";i2<="011";
when 70107 => i0<="101"; il<="011";i2<="101";
when 7011”7 => i0<="101"; i1<="011";i2<="011";
when 71007 => i0<="011"; il<="101";i2<="101";
when 71017 => i0<="0117; il<="1017;i2<="011";
when 71107 => i0<="0117; il<="011";i2<="101";
when 71117 => i0<="011"; i1<="011";i2<="011";
when others => i0<="000"; i1<="000";i2<="000";
end case;
end process;
end rtl;

A.3 Bmu.vhd

79

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

— The BMU s operating at the bit rate. It receives soft—decision
— decoded bits in the range {—8,8}.
—— The output is a signed 5—bit number (in 2’s complement format)

entity bmu is
port (i0, il, i2: in std-logic-vector (2 downto 0);
bmu000, bmu001, bmu010, bmu0ll, bmulO0, bmulOl,
bmull0, bmulll: out std-logic_-vector (4 downto 0)
)s

end bmu;

architecture rtl of bmu is
begin
process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_-vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed (i0))+ conv_integer (signed(il)),5);
temp000_l:=conv_std_logic_vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);
bmu000<=temp000-_1;
end process;

process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_-vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed (i0))+ conv_integer (signed (il)),5);
temp000_1l:=conv_std_logic_-vector (conv_integer (signed (temp000-0))—
conv_integer (signed (i2)),5);

bmu001<=temp000-_1;

end process;

process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_-vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed(i0))— conv_integer (signed(il)),5);
temp000_1:=conv_std_-logic_-vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);

bmu010<=temp000_1;

end process;

process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed (i0))— conv_integer (signed (il)),5);
temp000_1:=conv_std_-logic_vector (conv_integer (signed (temp000-0))—
conv_integer (signed (i2)),5);

bmu0ll<=temp000_1;

end process;

process (i0,i2,il)
variable temp000.0,temp000_1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed(i0))+ conv_integer (signed(il)) ,5);
temp000_1:=conv_std_-logic_vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);

80

bmul00<=temp000-1;
end process;

process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_-vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed (i0))+ conv_integer (signed(il)),5);
temp000_1l:=conv_std_logic_-vector (conv_integer (signed (temp000-0))—
conv_integer (signed (i2)),5);

bmulOl<=temp000-1;

end process;

process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed(i0))— conv_integer (signed (il)),5);
temp000_1:=conv_std_-logic_-vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);

bmull0<=temp000-_1;

end process;

process (i0,i2,il)
variable temp000.0,temp000_1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed (i0)) — conv_integer (signed (il)),5);
temp000_1:=conv_std_-logic_vector (conv_integer (signed (temp000-0))—
conv_integer (signed (i2)),5);
bmulll<=temp000_1;
end process;
end rtl;

A.4 Parallel-to-serial.vhd

library ieee;
use ieee.std_logic_1164.all;

entity p2s is

port (reset ,clk: in std_logic;
din: in std_-logic_-vector (4 downto 0);
serout : out std_logic
);

end p2s;

—— This is a parallel to serial converter for conwverting the
— parallel output of the bmu to serial format.

architecture rtl of p2s is
— the clk is working at 8 times the bit rate, while the reset
— signal works at the bit rate only.
signal defl: std_logic_vector (4 downto 0);
signal start , signbit: std_logic;
begin

process (reset ,din,clk)

variable def2: std_logic_vector (4 downto 0);
begin
if reset =’1’ then

defl<=din;

81

start<=din (0);
signbit<=din (4);

elsif clk =’1’ and clk ’event then
def2:=signbit & defl (4 downto 1) ;
start<=defl (1);
defl<=def2;

end if;

end process;

serout<=start ;

end rtl;

library ieee;
use ieee.std_logic_1164.all;

entity p2s_block is
port (reset ,clk: in std_logic;
bmu000, bmu00l1, bmu010, bmu0Oll, bmul00, bmulOl,
bmull0, bmulll: in std_logic_vector (4 downto 0);
BM: out std-logic_-vector (0 to T7)
)5

end p2s_block;

—— This module contains eight wunits of the parallel to serial,
— component which is responsible for conwverting the parallel
—— output of the BMU to a serial one.

architecture struct of p2s_block is
— the clk 1s working at 8 times the bit rate, while the reset
— signal works at the bit rate only.

component p2s

port (reset ,clk: in std_logic;
din: in std_-logic_-vector (4 downto 0);
serout : out std_logic

)k

end component;

begin
p2s0: p2s port map (reset ,clk, bmu000,BM(0));
p2sl: p2s port map (reset ,clk, bmu001l,BM(1));
p2s2: p2s port map (reset,clk, bmu010,BM(2));
p2s3: p2s port map (reset ,clk, bmu011,BM(3));
p2s4: p2s port map (reset ,clk, bmul00,BM(4));
p2s5: p2s port map (reset ,clk, bmul0l,BM(5));
p2s6: p2s port map (reset ,clk, bmull0,BM(6));
p2s7: p2s port map (reset ,clk, bmulll ,BM(7));

end struct;

A.5 Acsu.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity acsu is
port (PMi, BMip, PMj, BMjp, clk, reset_carry , clk_sub: in std_logic;
PM, comp-out : out std_logic

)

82

end acsu;

— This module represents one unit of the add compare select operation.

architecture rtl of acsu is

signal resultc ,resulta_internal ,resulta_bar ,cina: std_-logic;
signal resultb_internal , cinb: std_-logic;

signal cinc, selection ,clk_data: std_logic;

signal resulta , resultb: std_logic_vector (0 to 7);

begin

clk_data <= clk;

— This process represents the first and second FIFO and the latches
—— for the carry of the three FAs and also the selection of the
— smaller PM according to the MSB of the subtraction.

process (clk_data, resultc, resulta_bar , BMjp, PMj, resulta_bar , selection ,
cinb, cinc, clk_sub ,reset_carry , clk, BMip, PMi, cina,
resulta_internal , resultb_internal ,resulta, resultb)

begin
if reset_carry=’1’ then
cina <="07;
cinb <="0";
cinc <="07;
elsif clk_data=’0’and clk_data ’event then
cina <= ((PMi AND BMip) OR (cina AND PMi) OR (cina AND BMip)) ;
cinb <= ((PMj AND BMjp) OR (cinb AND PMj) OR (cinb AND BMjp)) ;
cinc <= ((resulta_bar AND resultb_internal) OR (cinc AND resulta_bar) OR
(cinc AND resultb_internal)) ;

end if;
if clk="1" then
— first FA

resulta_internal <=PMi XOR BMip XOR (cina);
resulta_bar <=not (PMi XOR BMip XOR (cina));

— second FA
resultb_internal <=PMj XOR BMjp XOR (cinb);

— third FA, which acts as a subtractor
resultc <= resulta_bar XOR resultb_internal XOR (cinc);

end if;
end process;

process (clk_data ,resultc ,resulta_bar ,BMjp, PMj, resulta_bar ,selection , cinb,
cinc, clk_sub ,reset_carry , clk, BMip, PMi, cina, resulta_internal
resultb_internal ,resulta, resultb)

begin

if c¢lk=’0’ and clk ’event then

resulta (0 to 7)<= resulta_internal&resulta (0 to 6);
resultb (0 to 7)<= resultb_internal&resultb (0 to 6);

if clk_sub=’1" then

83

selection <=mnot(resultc);
— comp_out <=not(resultc);
end if;
end if;

end process;
comp_out<=selection ;

PMk=resulta (7) when selection='1" else resultb (7);
end rtl;

library ieee;
use ieee.std_logic_1164.all;

entity acsu_pair is
port (PMi, BMip, PMj, BMjp, clk, reset_carry : in std_logic;
msb_BMjp, comp_enable, reset_PM: in std_logic;
PMp, PMq, termi, termj, deci, decj : out std_logic
end acsu_pair;

— This module represents one butterfly unit, which contains a pair
— of the ACSU components.

architecture rtl of acsu_pair is

component acsu

port (PMi, BMip, PMj, BMjp, clk, reset_carry , clk_sub: in std_logic;
PM, comp_out : out std_logic

end component;

signal PMi_internal , PMj_internal ,compl, comp2: std_logic;

begin

acsul: acsu port map(PMi_internal , BMip, PMj_internal , BMjp, clk, reset_carry ,
comp-enable , PMp, compl);

acsu2: acsu port map(PMi_internal , BMjp, PMj_internal , BMip, clk, reset_carry ,
comp_enable , PMq, comp2);

process (PMi, PMj, reset_.PM , clk)

begin

If (clk="1" and clk event) then

— (PMi and PMj need to be reset with each reset of the decoder)
PMi_internal<=PMi AND reset_PM;

PMj_internal<=PMj AND reset_PM;

end if;

end process;

termi<=(not (compl)) and (not(comp2));

termj<=compl and comp2;

deci<=(not (compl) and comp2) or (msb_.BMjp and (not(compl)) and (not(comp2))) or
((msb_-BMjp) and compl and comp?2);

decj<=(not (comp2) and compl) or (not(msb_BMjp) and (not(compl))and(not(comp2)))
or (not(msb_-BMjp) and compl and comp2);

end rtl;

library ieee;
use ieee.std_logic_1164.all;

entity acsu_block is
port (BM, msb_.BMjp: std_logic_vector (0 to 7);

84

clk ,

term ,

)

reset_carry
comp_enable |

in std-logic;
reset_PM: in std_logic;

dec out std_logic_vector (0 to 255)

end acsu_block;

This module represents the whole ACSU.

— acsu component.

architecture struct of acsu_block

is

component acsu._pair

port (PMi, BMip, PMj, BMjp, clk,
msb_BMjp,
PMp, PMq, termi, termj, deci, decj

reset_carry

comp_enable, reset_PM: in std_lo

b
end component ;

signal PM:

begin

acsu_pairl

acsu_pair2

acsu-pair3

acsu_pair4

acsu_pairb

acsu_-pair6

acsu_pair7

acsu_pair8

acsu_-pair9

acsu-pairl0

acsu_pairll

acsu_-pairl2

acsu-pairl3

acsu_pairl4

std_logic_vector (0 to 255);

: acsu_pair port map
(PM(0), BM(0), PM(128
reset _PM , PM(0), PM(
: acsu-pair port map
(PM(1), BM(3), PM(129),
reset _PM , PM(2), PM(3),
: acsu-pair port map
(PM(2), BM(5), PM(130), BM(2), clk,

, BM(7), clk,
)7

=

BM(4), clk,

reset_.PM , PM(4), PM(5), term(2), term(130), dec(2), dec(

: acsu_pair port map
(PM(3), BM(6), PM(131), BM(1), clk,

It contains 126 units

of the

in std_logic;

gic;

out std_logic

reset_carry , msb_.BMjp(7), comp-_enable

term (0), term (128), dec(0), dec(128));

reset_carry , msb_.BMjp(4), comp_enable

term (1), term (129), dec (1), dec(129));

reset_carry , msb_BMjp , comp_enable

(2)
130));

reset_carry , msb_.BMjp (1), comp-_enable

reset _.PM , PM(6), PM(7), term(3), term(131), dec(3), dec(131));

: acsu-pair port map
(PM(4), BM(6), PM(132), BM(1), clk,

reset_carry , msb_.BMjp(1), comp_enable

reset _PM , PM(8), PM(9), term(4), term (132), dec(4), dec(132));

acsu-pair port map
(PM(5), BM(5), PM(133), BM(2), clk,
reset_.PM , PM(10), PM(11), term(5),
: acsu_pair port map
(PM(6), BM(3), PM(134), BM(4), clk,
reset_.PM , PM(12), PM(13), term (6),
acsu_pair port map
(PM(7), BM(0), PM(135), BM(7), clk,
reset _.PM , PM(14), PM(15), term(7),
: acsu-pair port map
(PM(8), BM(2), PM(136), BM(5), clk,
reset _.PM , PM(16), PM(17), term(8),
: acsu-pair port map
(PM(9), BM(1), PM(137), BM(6), clk,
reset_.PM , PM(18), PM(19), term(9),
acsu_pair port map
(PM(10), BM(7), PM(138), BM(0), clk,
reset _.PM , PM(20), PM(21), term(10),
: acsu_pair port map
(PM(11), BM(4), PM(139), BM(3), clk,
reset_.PM , PM(22), PM(23), term(11),
acsu-pair port map
(PM(12), BM(4), PM(140), BM(3), clk,
reset_.PM , PM(24), PM(25), term(12),
acsu_pair port map

85

reset_carry , msb_BMjp(2), comp_enable
term (133), dec(5), dec(133));

reset_carry , msb.BMjp(4), comp-_enable
term (134), dec(6), dec(134));

reset_carry , msb_.BMjp(7), comp_enable
term (135), dec(7), dec(135));

reset_carry , msb_BMjp(5), comp_enable
term (136), dec(8), dec(136));

reset_carry , msb_.BMjp(6), comp_enable
term (137), dec(9), dec(137));

reset_carry , msb_.BMjp(0), comp_enable,

term (138), dec(10), dec(138));

reset_carry , msb_BMjp(3), comp_enable,

term (139), dec(11), dec(139));

reset_carry , msb_BMjp(3), comp_enable,

term (140), dec(12), dec(140));

acsu-pairlb

acsu_pairl6

acsu_pairl?

acsu_-pairl8

acsu_pairl9

acsu_-pair20

acsu_-pair2l

acsu-pair22

acsu_-pair23

acsu_-pair24

acsu-pair25h

acsu_-pair26

acsu_-pair27

acsu_-pair28

acsu_pair29

acsu_-pair30

acsu_-pair3l

acsu-pair32

acsu_-pair33

(PM(13), BM(7), PM(141), BM(0), clk,
reset _.PM , PM(26), PM(27), term(13),
: acsu-pair port map
(PM(14), BM(1), PM(142), BM(6), clk,
reset_.PM , PM(28), PM(29), term(14),
acsu_pair port map
(PM(15), BM(2), PM(143), BM(5), clk,
reset . PM , PM(30), PM(31), term(15),
: acsu_pair port map
(PM(16), BM(5), PM(144), BM(2), clk,
reset _.PM , PM(32), PM(33), term(16),
: acsu_pair port map
(PM(17), BM(6), PM(145), BM(1), clk,
reset_.PM , PM(34), PM(35), term (17),
acsu_pair port map
(PM(18), BM(0), PM(146), BM(7), clk,
reset_.PM , PM(36), PM(37), term (18),
: acsu_pair port map
(PM(19), BM(3), PM(147), BM(4), clk,
reset _.PM , PM(38), PM(39), term(19),
acsu-pair port map
(PM(20), BM(3), PM(148), BM(4), clk,
reset _PM , PM(40), PM(41), term(20),
: acsu-pair port map
(PM(21), BM(0), PM(149), BM(7), clk,
reset_.PM , PM(42), PM(43), term(21),
acsu_pair port map
(PM(22), BM(6), PM(150), BM(1), clk,
reset _PM , PM(44), PM(45), term(22),
: acsu_pair port map
(PM(23), BM(5), PM(151), BM(2), clk,
reset _PM , PM(46), PM(47), term(23),
: acsu-pair port map
(PM(24), BM(7), PM(152), BM(0), clk,
reset_.PM , PM(48), PM(49), term(24),
acsu_pair port map
(PM(25), BM(4), PM(153), BM(3), clk,
reset _PM , PM(50), PM(51), term(25),
acsu-pair port map
(PM(26), BM(2), PM(154), BM(5), clk,
reset _PM , PM(52), PM(53), term(26),
acsu-pair port map
(PM(27), BM(1), PM(155), BM(6), clk,
reset_.PM , PM(54), PM(55), term (27),
: acsu_pair port map
(PM(28), BM(1), PM(156), BM(6), clk,
reset _.PM , PM(56), PM(57), term(28),
acsu_pair port map
(PM(29), BM(2), PM(157), BM(5), clk,
reset _.PM , PM(58), PM(59), term(29),
: acsu_pair port map
(PM(30), BM(4), PM(158), BM(3), clk,
reset_.PM , PM(60), PM(61), term(30),
acsu-pair port map
(PM(31), BM(7), PM(159), BM(0), clk,
reset_.PM , PM(62), PM(63), term(31),
acsu_pair port map
(PM(32), BM(4), PM(160), BM(3), clk,
reset _PM , PM(64), PM(65), term(32),

86

reset_carry , msb_.BMjp(0), comp_enable
term (141), dec(13), dec(141));

reset_carry , msb_BMjp(6), comp_enable
term (142), dec(14), dec(142));

reset_carry , msb_.BMjp(5), comp_enable
term (143), dec(15), dec(143));

reset_carry , msb_.BMjp(2), comp_enable
term (144), dec(16), dec(144));

reset_carry , msb_BMjp (1), comp_enable
term (145), dec(17), dec(145));

reset_carry , msb_BMjp(7), comp_enable
term (146), dec(18), dec(146));

reset_carry , msb_.BMjp(4), comp_enable
term (147), dec(19), dec(147));

reset_carry , msb_BMjp(4), comp_enable
term (148), dec(20), dec(148));

reset_carry , msb_BMjp(7), comp_enable
term (149), dec(21), dec(149));

reset_carry , msb_.BMjp (1), comp_enable
term (150), dec(22), dec(150));

reset_carry , msb_.BMjp(2), comp_enable
term (151), dec(23), dec(151));

reset_carry , msb_BMjp(0), comp_enable
term (152), dec(24), dec(152));

reset_carry , msb_.BMjp(3), comp_enable
term (153), dec(25), dec(153));

reset_carry , msb_.BMjp(5), comp_enable
term (154), dec(26), dec(154));

reset_carry , msb_BMjp(6), comp_enable
term (155), dec(27), dec(155));

reset_carry , msb_.BMjp(6), comp_enable
term (156), dec(28), dec(156));

reset_carry , msb_.BMjp(5), comp_enable
term (157), dec(29), dec(157));

reset_carry , msb_BMjp(3), comp_enable
term (158), dec(30), dec(158));

reset_carry , msb_BMjp(0), comp_enable
term (159), dec(31), dec(159));

reset_carry , msb_.BMjp(3), comp_enable
term (160), dec(32), dec(160));

acsu-pair34

acsu_-pair35

acsu_-pair36

acsu-pair37

acsu_-pair38

acsu_-pair39

acsu-pair40

acsu_pair4l

acsu_-pair42

acsu_-pair43

acsu-pair44

acsu_-pair45b

acsu_-pair46

acsu-pair4d7

acsu_-pair48

acsu_-pair49

acsu-pairb50

acsu_pairbl

acsu_-pairb52

acsu_-pairb3

acsu_-pair port map

(PM(33), BM(7), PM(161), BM(0), clk ,
reset_.PM , PM(66), PM(67), term (33),

acsu_pair port map

(PM(34), BM(1), PM(162), BM(6), clk,
reset_.PM , PM(68), PM(69), term(34),

acsu-pair port map

(PM(35), BM(2), PM(163), BM(5), clk ,
reset _.PM , PM(70), PM(71), term(35),

acsu-pair port map

(PM(36), BM(2), PM(164), BM(5), clk ,
reset_.PM , PM(72), PM(73), term(36),

acsu_pair port map
(PM(37) , BM(1) ,

acsu-pair port map

(PM(38), BM(7), PM(166), BM(0), clk,
reset_.PM , PM(76), PM(77), term(38),

acsu-pair port map

(PM(39), BM(4), PM(167), BM(3), clk ,
reset _PM , PM(78), PM(79), term(39),

acsu_pair port map

(PM(40), BM(6), PM(168), BM(1), clk ,
reset_.PM , PM(80), PM(81), term (40),

acsu_pair port map

(PM(41), BM(5), PM(169), BM(2), clk,
reset _PM , PM(82), PM(83), term(41),

acsu-pair port map

(PM(42), BM(3), PM(170), BM(4), clk,
reset _PM , PM(84), PM(85), term(42),

acsu_-pair port map

(PM(43), BM(0), PM(171), BM(7), clk,
reset_.PM , PM(86), PM(87), term (43),

acsu_pair port map

(PM(44), BM(0), PM(172), BM(7), clk,
reset _PM , PM(88), PM(89), term (44),

acsu_-pair port map

(PM(45), BM(3), PM(173), BM(4), clk,
reset_.PM , PM(90), PM(91), term (45),

acsu_-pair port map

(PM(46), BM(5), PM(174), BM(2), clk ,
reset_.PM , PM(92), PM(93), term (46),

acsu_pair port map
(PM(47) , BM(6) ,

acsu-pair port map

(PM(48), BM(1), PM(176), BM(6), clk ,
reset _PM , PM(96), PM(97), term (48),

acsu-pair port map

(PM(49), BM(2), PM(177), BM(5), clk ,
reset_.PM , PM(98), PM(99), term (49),

acsu_pair port map

(PM(50), BM(4), PM(178), BM(3), clk ,
reset _PM , PM(100), PM(101), term(50), term (178),

acsu-pair port map

(PM(51), BM(7), PM(179), BM(0), clk,
reset _.PM , PM(102), PM(103), term(51), term (179),

acsu-pair port map

(PM(52), BM(7), PM(180), BM(0), clk ,

87

PM(165), BM(6), clk,
reset_.PM , PM(74), PM(75), term (37),

PM(175), BM(1), clk,
reset _PM , PM(94), PM(95), term (47),

reset_carry

, msb_.BMjp(0), comp_enable

term (161), dec(33), dec(161));

reset_carry

, msb_.BMjp(6), comp-_enable

term (162), dec(34), dec(162));

reset_carry

, msb_.BMjp(5), comp-enable

term (163), dec(35), dec(163));

reset_carry

, msb_.BMjp(5), comp_enable

term (164), dec(36), dec(164));

reset_carry

, msb_.BMjp(6), comp_enable

term (165), dec(37), dec(165));

reset_carry

, msb_.BMjp(0), comp-enable

term (166), dec(38), dec(166));

reset_carry

, msb_.BMjp(3), comp_enable

term (167), dec(39), dec(167));

reset_carry

, msb_.BMjp (1), comp_enable

term (168), dec(40), dec(168));

reset_carry

, msb_.BMjp(2), comp-enable

term (169), dec(41), dec(169));

reset_carry

, msb_.BMjp(4), comp_enable

term (170), dec(42), dec(170));

reset_carry

, msb_.BMjp(7), comp_enable

term (171), dec(43), dec(171));

reset_carry

, msb_.BMjp(7), comp-_enable

term (172), dec(44), dec(172));

reset_carry

, msb_.BMjp(4), comp_enable

term (173), dec(45), dec(173));

reset_carry

, msb_.BMjp(2), comp_enable

term (174), dec(46), dec(174));

reset_carry

, msb_.BMjp (1), comp-_enable

term (175), dec(47), dec(175));

reset_carry

, msb_.BMjp(6), comp-enable

term (176), dec(48), dec(176));

reset_carry

, msb_.BMjp(5), comp_enable

term (177), dec(49), dec(177));

reset_carry

reset_carry

reset_carry

, msb_.BMjp(3), comp_enable
dec(50), dec(178));

, msb_.BMjp(0), comp-enable
dec(51), dec(179));

, msb_.BMjp(0), comp_enable

acsu_-pairb54

acsu_-pairbb

acsu-pairb56

acsu_-pairbd7

acsu_pairb8

acsu-pairb9

acsu_-pair60

acsu_-pair61

acsu-pair62

acsu_-pair63

acsu_-pair64

acsu_-pair65h

acsu_-pair66

acsu_-pair67

acsu_-pair68

acsu-pair69

acsu_-pair70

acsu_-pair71

acsu-pair72

acsu_pair73

reset_.PM , PM(104), PM(105), term(52), term(180),

: acsu_-pair port map

(PM(53), BM(4), PM(181), BM(3), clk,

reset _PM , PM(106), PM(107), term(53), term (181),

: acsu_pair port map

(PM(54), BM(2), PM(182), BM(5), clk,

reset_PM , PM(108), PM(109), term (54), term (182),
acsu-pair port map

(PM(55), BM(1), PM(183), BM(6), clk, reset_carry , msb.BMjp(6), comp_enable

reset_.PM , PM(110), PM(111), term(55), term(183), dec(55), dec(183));

: acsu_pair port map

(PM(56), BM(3), PM(184), BM(4), clk,

reset . PM , PM(112), PM(113), term(56), term (184),
acsu-pair port map

(PM(57), BM(0), PM(185), BM(7), clk,

reset _PM , PM(114), PM(115), term(57), term (185),

: acsu-pair port map

(PM(58), BM(6), PM(186), BM(1), clk,

reset_.PM , PM(116), PM(117), term(58), term(186),
acsu_pair port map

(PM(59), BM(5), PM(187), BM(2), clk,

reset _.PM , PM(118), PM(119), term(59), term (187),

: acsu_pair port map

(PM(60), BM(5), PM(188), BM(2), clk,

reset _PM , PM(120), PM(121), term(60), term (188),

: acsu-pair port map

(PM(61), BM(6), PM(189), BM(1), clk,

reset_.PM , PM(122), PM(123), term(61), term(189),
acsu_pair port map

(PM(62), BM(0), PM(190), BM(7), clk, reset_carry , msb.BMjp(7), comp_enable

reset _.PM , PM(124), PM(125), term(62), term (190), dec(62), dec(190));

: acsu_pair port map

(PM(63), BM(3), PM(191), BM(4), clk,

reset . PM , PM(126), PM(127), term(63), term (191),
acsu-pair port map

(PM(64), BM(6), PM(192), BM(1), clk,

reset_.PM , PM(128), PM(129), term(64), term(192),

: acsu_pair port map

(PM(65), BM(5), PM(193), BM(2), clk, reset_carry , msb.BMjp(2), comp_enable

reset_.PM , PM(130), PM(131), term(65), term(193), dec(65), dec(193));
acsu_pair port map

(PM(66), BM(3), PM(194), BM(4), clk,

reset . PM , PM(132), PM(133), term(66), term(194),

: acsu-pair port map

(PM(67), BM(0), PM(195), BM(7), clk,

reset _PM , PM(134), PM(135), term(67), term (195),

: acsu-pair port map

(PM(68), BM(0), PM(196), BM(7), clk,

reset_.PM , PM(136), PM(137), term(68), term(196),
acsu_pair port map

(PM(69), BM(3), PM(197), BM(4), clk,

reset _PM , PM(138), PM(139), term(69), term (197),

: acsu_pair port map

(PM(70), BM(5), PM(198), BM(2), clk,

reset _PM , PM(140), PM(141), term(70), term (198),
acsu-pair port map

(PM(71), BM(6), PM(199), BM(1), clk,

reset_.PM , PM(142), PM(143), term(71), term(199),
acsu_pair port map

dec(52) s dec(lSO));

reset_carry , msb_.BMjp(3), comp_enable
dec(53), dec(181));

reset_carry , msb_BMjp(5), comp_enable
dec(54), dec(182));

reset_carry , msb_.BMjp(4), comp_enable
dec(56), dec(184));

reset_carry , msb_BMjp(7), comp_enable
dec(57), dec(185));

reset_carry , msb_BMjp (1), comp_enable
dec (58), dec(186));

reset_carry , msb_.BMjp(2), comp_enable
dec(59), dec(187));

reset_carry , msb_.BMjp(2), comp_enable
dec (60), dec(188));

reset_carry , msb_BMjp (1), comp_enable
dec(61), dec(189));

reset_carry , msb_.BMjp(4), comp_enable
dec(63), dec(191));

reset_carry , msb_BMjp (1), comp_enable
dec (64), dec(192));

reset_carry , msb_.BMjp(4), comp_enable
dec(66), dec(194));

reset_carry , msb_BMjp(7), comp_enable
dec(67), dec(195));

reset_carry , msb_BMjp(7), comp_enable
dec (68), dec(196));

reset_carry , msb_.BMjp(4), comp_enable
dec(69), dec(197));

reset_carry , msb_.BMjp(2), comp_enable
dec(70), dec(198));

reset_carry , msb_BMjp (1), comp_enable
dec(71), dec(199));

88

acsu_-pair74

acsu_pair7b

acsu_pair76

acsu_-pair77

acsu_pair78

acsu_pair79

acsu_-pair80

acsu-pair81

acsu_-pair82

acsu_-pair83

acsu-pair84

acsu_-pair85

acsu_-pair86

acsu-pair87

acsu_pair88

acsu_-pair89

acsu_-pair90

acsu-pair91

acsu_-pair92

(PM(72), BM(4), PM(200), BM(3), clk,

reset _PM , PM(144), PM(145), term(72), term (200),

: acsu-pair port map
(PM(73), BM(7), PM(201), BM(0), clk,

reset_.PM , PM(146), PM(147), term(73), term(201),

acsu_pair port map
(PM(74), BM(1), PM(202), BM(6), clk,

reset _PM , PM(148), PM(149), term(74), term(202),

: acsu_pair port map
(PM(75), BM(2), PM(203), BM(5), clk,

reset _.PM , PM(150), PM(151), term(75), term(203),

: acsu_pair port map

(PM(76), BM(2), PM(204), BM(5), clk,

reset_.PM , PM(152),
acsu_pair port map

(PM(77), BM(1), PM(205), BM(6), clk,

reset_.PM , PM(154), PM(155), term(77), term(205),

: acsu_pair port map
(PM(78), BM(7), PM(206), BM(0), clk,

reset _.PM , PM(156), PM(157), term(78), term (206),

acsu-pair port map
(PM(79), BM(4), PM(207), BM(3), clk,

reset _PM , PM(158), PM(159), term(79), term (207),

: acsu-pair port map
(PM(80), BM(3), PM(208), BM(4), clk,

reset_.PM , PM(160), PM(161), term(80), term(208),

acsu_pair port map
(PM(81), BM(0), PM(209), BM(7), clk,

reset _.PM , PM(162), PM(163), term(81), term(209),

: acsu_pair port map
(PM(82), BM(6), PM(210), BM(1), clk,

reset _PM , PM(164), PM(165), term(82), term(210),

: acsu-pair port map
(PM(83), BM(5), PM(211), BM(2), clk,

reset_.PM , PM(166), PM(167), term(83), term(211),

acsu_pair port map
(PM(84), BM(5), PM(212), BM(2), clk,

reset _PM , PM(168), PM(169), term(84), term(212),

: acsu_pair port map
(PM(85), BM(6), PM(213), BM(1), clk,

reset .PM , PM(170), PM(171), term(85), term(213),

acsu-pair port map
(PM(86), BM(0), PM(214), BM(7), clk,

reset_.PM , PM(172), PM(173), term(86), term(214),

: acsu_pair port map
(PM(87), BM(3), PM(215), BM(4), clk,

reset . PM , PM(174), PM(175), term(87), term(215),

acsu_pair port map
(PM(88), BM(1), PM(216), BM(6), clk,

reset .PM , PM(176), PM(177), term(88), term(216),

: acsu_pair port map

(PM(89), BM(2), PM(217), BM(5), clk,

reset_.PM , PM(178),
acsu-pair port map

(PM(90), BM(4), PM(218), BM(3), clk,

reset_.PM , PM(180), PM(181), term(90), term(218),

acsu_pair port map
(PM(91), BM(7), PM(219), BM(0), clk,

reset _PM , PM(182), PM(183), term(91), term(219),

89

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

PM(153), term (76), term(204),

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

reset_carry ,

PM(179), term(89), term(217),

reset_carry ,

reset_carry ,

msb_BMjp(3), comp-_enable
dec (72), dec(200));

msb_BMjp(0), comp_enable
dec(73), dec(201));

msb_BMjp (6), comp_enable
dec(74), dec(202));

msb_BMjp(5), comp-_enable
dec(75), dec(203));

msb_BMjp(5), comp_enable
dec (76), dec(204));

msb_BMjp (6), comp_enable
dec (77), dec(205));

msb_BMjp (0), comp_enable
dec(78), dec(206));

msb_BMjp(3), comp_enable
dec(79), dec(207));

msb_BMjp(4), comp_enable
dec (80), dec(208));

msb_BMjp(7), comp_enable
dec(81), dec(209));

msb_BMjp (1), comp-_enable
dec (82), dec(210));

msb_BMjp(2), comp_enable
dec (83), dec(211));

msb_BMjp(2), comp_enable
dec(84), dec(212));

msb_BMjp (1), comp-_enable
dec (85), dec(213));

msb_BMjp(7), comp_enable
dec (86), dec(214));

msb_BMjp(4), comp_enable
dec(87), dec(215));

msb_BMjp (6), comp-_enable
dec(88), dec(216));

msb_BMjp(5), comp_enable
dec (89), dec(217));

msb_BMjp(3), comp_enable
dec (90), dec(218));

msb_BMjp (0), comp_enable
dec(91), dec(219));

acsu-pair93 : acsu_pair port map

(PM(92), BM(7), PM(220), BM(0), clk, reset_carry ,

reset_.PM , PM(184), PM(185), term(92), term(220),
acsu_-pair94 : acsu_-pair port map

(PM(93), BM(4), PM(221), BM(3), clk, reset_carry ,

reset _PM , PM(186), PM(187), term(93), term(221),
acsu_-pair95 : acsu_-pair port map

(PM(94), BM(2), PM(222), BM(5), clk, reset_carry,

reset_PM , PM(188), PM(189), term (94), term (222),
acsu-pair96 : acsu-pair port map

(PM(95), BM(1), PM(223), BM(6), clk, reset_carry,

reset_.PM , PM(190), PM(191), term(95), term(223),
acsu_pair97 : acsu_pair port map

(PM(96), BM(2), PM(224), BM(5), clk, reset_carry ,

reset _PM , PM(192), PM(193), term(96), term (224),
acsu_-pair98 : acsu_-pair port map

(PM(97), BM(1), PM(225), BM(6), clk, reset_carry ,

reset _PM , PM(194), PM(195), term(97), term(225),
acsu-pair99 : acsu_pair port map

(PM(98), BM(7), PM(226), BM(0), clk, reset_carry,

reset_.PM , PM(196), PM(197), term(98), term(226),
acsu_-pairl00: acsu_pair port map

(PM(99), BM(4), PM(227), BM(3), clk, reset_carry ,

reset.PM , PM(198), PM(199), term(99), term(227),
acsu-pairl0l: acsu_-pair port map

(PM(100), BM(4), PM(228), BM(3), clk, reset_carry ,

reset _PM , PM(200), PM(201), term(100), term(228),
acsu-pairl02: acsu_pair port map

(PM(101), BM(7), PM(229), BM(0), clk, reset_carry,

reset_.PM , PM(202), PM(203), term(101), term(229),
acsu-pairl03: acsu-pair port map

(PM(102), BM(1), PM(230), BM(6), clk, reset_carry,

reset_.PM , PM(204), PM(205), term(102), term(230),
acsu-pairl04: acsu_-pair port map

(PM(103), BM(2), PM(231), BM(5), clk, reset_carry ,

reset _.PM , PM(206), PM(207), term(103), term(231),
acsu-pairl05: acsu_-pair port map

(PM(104), BM(0), PM(232), BM(7), clk, reset_carry,

reset_PM , PM(208), PM(209), term (104), term (232),
acsu-pairl06: acsu_pair port map

(PM(105), BM(3), PM(233), BM(4), clk, reset_carry,

reset_.PM , PM(210), PM(211), term(105), term(233),
acsu-pairl07: acsu_-pair port map

(PM(106), BM(5), PM(234), BM(2), clk, reset_carry ,

reset _.PM , PM(212), PM(213), term(106), term(234),
acsu-pairl08: acsu_-pair port map

(PM(107), BM(6), PM(235), BM(1), clk, reset_carry,

reset _.PM , PM(214), PM(215), term(107), term(235),
acsu-pairl09: acsu_pair port map

(PM(108), BM(6), PM(236), BM(1), clk, reset_carry,

reset_.PM , PM(216), PM(217), term(108), term(236),
acsu_-pairll0: acsu_pair port map

(PM(109), BM(5), PM(237), BM(2), clk, reset_carry ,

reset . PM , PM(218), PM(219), term(109), term(237),
acsu-pairlll: acsu_-pair port map

(PM(110), BM(3), PM(238), BM(4), clk, reset_carry ,

reset _PM , PM(220), PM(221), term(110), term(238),
acsu-pairll2: acsu_-pair port map

(PM(111), BM(0), PM(239), BM(7), clk, reset_carry,

90

msb_BMjp(0), comp_enable
dec(92), dec(220));

msb_BMjp (3), comp_enable
dec(93), dec(221));

msb_BMjp(5), comp-enable
dec(94), dec(222));

msb_BMjp (6), comp_enable
dec (95), dec(223));

msb_BMjp(5), comp_enable
dec(96), dec(224));

msb_BMjp (6), comp-_enable
dec (97), dec(225));

msb_BMjp (0), comp_enable
dec (98), dec(226));

msb_BMjp(3), comp_enable
dec (99), dec(227));

msb_BMjp (3), comp_enable
dec(100), dec(228));

msb_BMjp (0), comp_enable
dec(101), dec(229));

msb_BMjp (6), comp_enable
dec(102), dec(230));

msb_BMjp (5), comp_enable
dec(103), dec(231));

msb_BMjp(7), comp_enable
dec(104), dec(232));

msb_BMjp(4), comp_enable
dec (105), dec(233));

msb_BMjp(2), comp_enable
dec (106), dec(234));

msb_BMjp (1), comp-_enable
dec(107), dec(235));

msb_BMjp (1), comp_enable
dec(108), dec(236));

msb_BMjp(2), comp_enable
dec(109), dec(237));

msb_BMjp(4), comp-_enable
dec(110), dec(238));

msb_BMjp(7), comp_enable

reset_.PM , PM(222), PM(223), term(111), term(239),
acsu-pairll3: acsu_-pair port map

(PM(112), BM(7), PM(240), BM(0), clk, reset_carry ,

reset _PM , PM(224), PM(225), term(112), term(240),
acsu-pairll4: acsu_pair port map

(PM(113), BM(4), PM(241), BM(3), clk, reset_carry,

reset_PM , PM(226), PM(227), term (113), term (241),
acsu-pairll5: acsu-pair port map

(PM(114), BM(2), PM(242), BM(5), clk, reset_carry,

reset_.PM , PM(228), PM(229), term(114), term(242),
acsu-pairll6: acsu_-pair port map

(PM(115), BM(1), PM(243), BM(6), clk, reset_carry ,

reset _PM , PM(230), PM(231), term(115), term(243),
acsu-pairll7: acsu_-pair port map

(PM(116), BM(1), PM(244), BM(6), clk, reset_carry,

reset_PM , PM(232), PM(233), term (116), term (244),
acsu-pairll8: acsu_pair port map

(PM(117), BM(2), PM(245), BM(5), clk, reset_carry,

reset_.PM , PM(234), PM(235), term(117), term(245),
acsu_-pairll9: acsu_pair port map

(PM(118), BM(4), PM(246), BM(3), clk, reset_carry ,

reset _PM , PM(236), PM(237), term(118), term(246),
acsu-pairl20: acsu_-pair port map

(PM(119), BM(7), PM(247), BM(0), clk, reset_carry ,

reset _PM , PM(238), PM(239), term(119), term(247),
acsu-pairl2l: acsu_-pair port map

(PM(120), BM(5), PM(248), BM(2), clk, reset_carry,

reset_.PM , PM(240), PM(241), term(120), term(248),
acsu_pairl22: acsu_pair port map

(PM(121), BM(6), PM(249), BM(1), clk, reset_carry ,

reset _.PM , PM(242), PM(243), term(121), term(249),
acsu-pairl23: acsu_-pair port map

(PM(122), BM(0), PM(250), BM(7), clk, reset_carry ,

reset _PM , PM(244), PM(245), term(122), term(250),
acsu-pairl24: acsu_pair port map

(PM(123), BM(3), PM(251), BM(4), clk, reset_carry,

reset_.PM , PM(246), PM(247), term(123), term(251),
acsu_-pairl25: acsu_pair port map

(PM(124), BM(3), PM(252), BM(4), clk, reset_carry ,

reset_.PM , PM(248), PM(249), term(124), term(252),
acsu-pairl26: acsu_-pair port map

(PM(125), BM(0), PM(253), BM(7), clk, reset_carry ,

reset _PM , PM(250), PM(251), term(125), term(253),
acsu-pairl27: acsu_-pair port map

(PM(126), BM(6), PM(254), BM(1), clk, reset_carry,

reset_PM , PM(252), PM(253), term (126), term (254),
acsu-pairl28: acsu-pair port map

(PM(127), BM(5), PM(255), BM(2), clk, reset_carry,

reset_.PM , PM(254), PM(255), term(127), term(255),

end struct;

A.6 Acstosm.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

91

dec(111), dec(239));

msb_BMjp (0), comp_enable
dec(112), dec(240));

msb_BMjp(3), comp_enable
dec(113), dec(241));

msb_BMjp(5), comp_enable
dec(114), dec(242));

msb_BMjp (6), comp_enable
dec(115), dec(243));

msb_BMjp (6), comp_enable
dec(116), dec(244));

msb_BMjp(5), comp_enable
dec(117), dec(245));

msb_BMjp (3), comp_enable
dec(118), dec(246));

msb_BMjp (0), comp-_enable
dec(119), dec(247));

msb_BMjp(2), comp_enable
dec(120), dec(248));

msb_BMjp (1), comp_enable
dec (121), dec(249));

msb_BMjp (7), comp-_enable
dec (122), dec(250));

msb_BMjp(4), comp_enable
dec(123), dec(251));

msb_BMjp(4), comp_enable
dec(124), dec(252));

msb_BMjp (7), comp_enable
dec(125), dec(253));

msb_BMjp (1), comp_enable
dec (126), dec(254));

msb_BMjp(2), comp_enable
dec (127), dec(255));

entity acstosm_mux is

port (clk ,reset : in std_logic;
decision_in : in std_logic_vector (0 to 255);
termination_in : in std_logic_vector (0 to 255);
pointer : in std_logic_vector (7 downto 0);

decision_out , termination_out: out std_logic
);

end acstosm_mux;

— The ACSTOSM module serves the routing of the desired decision bit
— into the pointer for successive wupdating of the pointer and for

— providing the decoded output.

— It operates as a 256 to 1 decoder and the pointer is its select.

architecture comb of acstosm_mux is
signal termination_register: std_logic;
begin

process(clk ,reset ,pointer , decision_in , termination_in,
termination_register)
—wariable termination_variable:std_logic_vector;
begin
if reset = ’'1’ then
termination_register <='0" ;
elsif clk=’0’ and clk ’event then
—termination_variable:=termination_register;
case pointer is

when ”00000000” => decision_out <= decision_in (0);
termination_register <= termination_in (0) OR termination_register;
when 7000000017 => decision_out <= decision_in (1);
termination_register <= termination_in (1) OR termination_register;
when 7000000107 => decision_out <= decision_in (2);
termination_register <= termination_in (2) OR termination_register;
when ”00000011” => decision_out <= decision_in (3);
termination_register <= termination_in (3) OR termination_register;
when ”00000100” => decision_out <= decision_in (4);
termination_register <= termination_in(4) OR termination_register;
when ”00000101” => decision_out <= decision_in (5);
termination_register <= termination_in(5) OR termination_register;
when ”00000110” => decision_out <= decision_in (6);
termination_register <= termination_in (6) OR termination_register;
when ”00000111” => decision_out <= decision_in (7);
termination_register <= termination_in (7) OR termination_register;
when ”00001000” => decision_out <= decision_in (8);
termination_register <= termination_in (8) OR termination_register;
when ”00001001” => decision_out <= decision_in (9);
termination_register <= termination_in (9) OR termination_register;
when 7000010107 => decision_out <= decision_in (10);
termination_register <= termination_in (10) OR termination_register;
when ”00001011” => decision_out <= decision_in (11);
termination_register <= termination_in(11) OR termination_register;
when ”00001100” => decision_out <= decision_in (12);
termination_register <= termination_in (12) OR termination_register;
when ”00001101” => decision_out <= decision_in (13);
termination_register <= termination_in (13) OR termination_register;
when ”00001110” => decision_out <= decision_in (14);
termination_register <= termination_in(14) OR termination_register;
when ”00001111” => decision_out <= decision_in (15);

termination_register <= termination_in(15) OR termination_register;

92

when 700010000” =>
termination_register <=
when 700010001” =>
termination_register <=
when ”00010010” =>
termination_register <=
when ”00010011” =>
termination_-register <=
when ”00010100” =>
termination_-register <=
when ”00010101” =>
termination_register <=
when ”00010110” =>
termination_register <=
when 7000101117 =>
termination_register <=
when 700011000” =>
termination_register <=
when 7000110017 =>
termination_register <=
when ”00011010” =>
termination_register <=
when 7000110117 =>
termination_-register <=
when ”700011100” =>
termination_register <=
when 7000111017 =>
termination_register <=
when 7000111107 =>
termination_register <=
when 7000111117 =>
termination_register <=
when 700100000” =>
termination_register <=
when ”700100001” =>
termination_register <=
when ”700100010” =>
termination_register <=
when ”700100011” =>
termination_-register <=
when ”700100100” =>
termination_register <=
when ”700100101” =>
termination_register <=
when ”700100110” =>
termination_register <=
when 7001001117 =>
termination_register <=
when 700101000” =>
termination_register <=
when ”700101001” =>
termination_register <=
when ”00101010” =>
termination_-register <=
when 7001010117 =>
termination_-register <=
when ”700101100” =>
termination_register <=
when 7001011017 =>

decision_out <= decision_in (16);

termination_in (16) OR termination_register;

decision_out <= decision_in (17);

termination_in (17) OR termination_register;

decision_out <= decision_in (18);

termination_in (18) OR termination_register;

decision_out <= decision_in (19);

termination_in (19) OR termination_register;

decision_out <= decision_in (20);

termination_in (20) OR termination_register;

decision_out <= decision_in (21);

termination_in (21) OR termination_register;

decision_out <= decision_in (22);

termination_in (22) OR termination_register;

decision_out <= decision_in (23);

termination_in (23) OR termination_register;

decision_out <= decision_in (24);

termination_in (24) OR termination_register;

decision_out <= decision_in (25);

termination_in (25) OR termination_register;

decision_out <= decision_in (26);

termination_in (26) OR termination_register;

decision_out <= decision_in (27);
termination_in (27) OR termination_register
decision_out <= decision_in (28);

termination_in (28) OR termination_register;

decision_out <= decision_in (29);

termination_in (29) OR termination_register;

decision_out <= decision_in (30);

termination_in (30) OR termination_register;

decision_out <= decision_in (31);

termination_in (31) OR termination_register;

decision_out <= decision_in (32);

termination_in (32) OR termination_register;

decision_out <= decision_in (33);

termination_in (33) OR termination_register;

decision_out <= decision_in (34);
termination_in (34) OR termination_register
decision_out <= decision_in (35);

termination_in (35) OR termination_register;

decision_out <= decision_in (36);

termination_in (36) OR termination_register;

decision_out <= decision_in (37);

termination_in (37) OR termination_register;

decision_out <= decision_in (38);

termination_in (38) OR termination_register;

decision_out <= decision_in (39);

termination_in (39) OR termination_register;

decision_out <= decision_in (40);

termination_in (40) OR termination_register;

decision_out <= decision_in (41);

termination_in (41) OR termination_register;

decision_out <= decision_in (42);

termination_in (42) OR termination_register;

decision_out <= decision_in (43);

termination_in (43) OR termination_register;

decision_out <= decision_in (44);
termination_in (44) OR termination_register
decision_out <= decision_in (45);

93

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

termination_register <= termination_in (45) OR termination_register;

when 7001011107 => decision_out <= decision_in (46);
termination_register <= termination_in (46) OR termination_register;
when ”00101111” => decision_out <= decision_in (47);
termination_register <= termination_in (47) OR termination_register;
when ”00110000” => decision_out <= decision_in (48);
termination_register <= termination_in (48) OR termination_register;
when ”00110001” => decision_out <= decision_in (49);
termination_register <= termination_in (49) OR termination_register;
when ”700110010” => decision_out <= decision_in (50);
termination_register <= termination_in (50) OR termination_register;
when ”700110011” => decision_out <= decision_in (51);
termination_register <= termination_in(51) OR termination_register;
when 7001101007 => decision_out <= decision_in (52);
termination_register <= termination_in (52) OR termination_register;
when 7001101017 => decision_out <= decision_in (53);
termination_register <= termination_in (53) OR termination_register;
when ”700110110” => decision_out <= decision_in (54);
termination_register <= termination_in (54) OR termination_register;
when ”00110111” => decision_out <= decision_in (55);
termination_register <= termination_in (55) OR termination_register;
when ”00111000” => decision_out <= decision_in (56);
termination_register <= termination_in (56) OR termination_register;
when 700111001” => decision_out <= decision_in (57);
termination_register <= termination_in(57) OR termination_register;
when 700111010” => decision_out <= decision_in (58);
termination_register <= termination_in (58) OR termination_register;
when ”700111011” => decision_out <= decision_in (59);
termination_register <= termination_in (59) OR termination_register;
when ”700111100” => decision_out <= decision_in (60);
termination_register <= termination_in (60) OR termination_register;
when ”700111101” => decision_out <= decision_in (61);
termination_register <= termination_in (61) OR termination_register;
when ”00111110” => decision_out <= decision_in (62);
termination_register <= termination_in (62) OR termination_register;
when ”00111111” => decision_out <= decision_in (63);
termination_register <= termination_in (63) OR termination_register;
when ”01000000” => decision_out <= decision_in (64)
termination_register <= termination_in (64) OR termination_register;
when ”701000001” => decision_out <= decision_in (65);
termination_register <= termination_in (65) OR termination_register;
when ”701000010” => decision_out <= decision_in (66);
termination_register <= termination_in (66) OR termination_register;
when ”701000011” => decision_out <= decision_in (67);
termination_register <= termination_in (67) OR termination_register;
when ”701000100” => decision_out <= decision_in (68);
termination_register <= termination_in (68) OR termination_register;
when 701000101” => decision_out <= decision_in (69);
termination_register <= termination_in (69) OR termination_register;
when ”01000110” => decision_out <= decision_in (70);
termination_register <= termination_in (70) OR termination_register;
when ”01000111” => decision_out <= decision_in (71);
termination_register <= termination_in(71) OR termination_register;
when ”01001000” => decision_out <= decision_in (72);
termination_register <= termination_in (72) OR termination_register;
when ”701001001” => decision_out <= decision_in (73);
termination_register <= termination_in (73) OR termination_register;
when ”701001010” => decision_out <= decision_in (74);

termination_register <= termination_in(74) OR termination_register;

94

when 7010010117 =>
termination_register <=
when 701001100” =>
termination_register <=
when 7010011017 =>
termination_register <=
when ”701001110” =>
termination_-register <=
when 7010011117 =>
termination_-register <=
when ”701010000” =>
termination_register <=
when ”701010001” =>
termination_register <=
when ”701010010” =>
termination_register <=
when 7010100117 =>
termination_register <=
when 701010100” =>
termination_register <=
when 7010101017 =>
termination_register <=
when ”701010110” =>
termination_-register <=
when ”701010111” =>
termination_register <=
when 701011000” =>
termination_register <=
when 7010110017 =>
termination_register <=
when 701011010” =>
termination_register <=
when 7010110117 =>
termination_register <=
when ”701011100” =>
termination_register <=
when 7010111017 =>
termination_register <=
when 701011110”7 =>
termination_-register <=
when 7010111117 =>
termination_register <=
when ”701100000” =>
termination_register <=
when ”701100001” =>
termination_register <=
when 701100010” =>
termination_register <=
when 7011000117 =>
termination_register <=
when ”701100100” =>
termination_register <=
when ”701100101” =>
termination_-register <=
when ”701100110” =>
termination_-register <=
when ”701100111” =>
termination_register <=
when ”701101000” =>

decision_out <= decision_in (75);
termination_in (75) OR termination_register;
decision_out <= decision_in (76);
termination_in (76) OR termination_register;
decision_out <= decision_in (77);
termination_in (77) OR termination_register;
decision_out <= decision_in (78);
termination_in (78) OR termination_register;
decision_out <= decision_in (79);
termination_in (79) OR termination_register
decision_out <= decision_in (80);
termination_in (80) OR termination_register;
decision_out <= decision_in (81);
termination_in (81) OR termination_register;
decision_out <= decision_in (82);
termination_in (82) OR termination_register;
decision_out <= decision_in (83);
termination_in (83) OR termination_register;
decision_out <= decision_in (84);
termination_in (84) OR termination_register;
decision_out <= decision_in (85);
termination_in (85) OR termination_register;
decision_out <= decision_in (86);
termination_in (86) OR termination_register
decision_out <= decision_in (87);
termination_in (87) OR termination_register;
decision_out <= decision_in (88);
termination_in (88) OR termination_register;
decision_out <= decision_in (89);
termination_in (89) OR termination_register
decision_out <= decision_in (90);
termination_in (90) OR termination_register;
decision_out <= decision_in (91);
termination_in (91) OR termination_register;
decision_out <= decision_in (92);
termination_in (92) OR termination_register;
decision_out <= decision_in (93);
termination_in (93) OR termination_register
decision_out <= decision_in (94);
termination_in (94) OR termination_register;
decision_out <= decision_in (95);
termination_in (95) OR termination_register;
decision_out <= decision_in (96);
termination_in (96) OR termination_register
decision_out <= decision_in (97);
termination_in (97) OR termination_register;
decision_out <= decision_in (98);
termination_in (98) OR termination_register;
decision_out <= decision_in (99);
termination_in (99) OR termination_register;
decision_out <= decision_in (100);

termination_in (100) OR termination_register;

decision_out <= decision_in (101);

termination_in (101) OR termination_register;

decision_out <= decision_in (102);

termination_in (102) OR termination_register;

decision_out <= decision_in (103);

termination_in (103) OR termination_register;

decision_out <= decision_in (104);

95

)

)

)

)

termination_-register <=
when 701101001” =>
termination_register <=
when ”701101010” =>
termination_register <=
when 7011010117 =>
termination_register <=
when 701101100” =>
termination_register <=
when 7011011017 =>
termination_register <=
when ”701101110” =>
termination_register <=
when 7011011117 =>
termination_register <=
when 701110000” =>
termination_-register <=
when 701110001” =>
termination_register <=
when 701110010” =>
termination_register <=
when 7011100117 =>
termination_register <=
when 701110100” =>
termination_register <=
when 7011101017 =>
termination_register <=
when ”701110110” =>
termination_register <=
when 7011101117 =>
termination_-register <=
when 701111000” =>
termination_-register <=
when 7011110017 =>
termination_register <=
when 7011110107 =>
termination_register <=
when 7011110117 =>
termination_register <=
when 701111100” =>
termination_register <=
when 7011111017 =>
termination_register <=
when 7011111107 =>
termination_register <=
when 7011111117 =>
termination_-register <=
when ”10000000” =>
termination_register <=
when ”710000001” =>
termination_register <=
when ”710000010” =>
termination_register <=
when 710000011” =>
termination_register <=
when 710000100” =>
termination_register <=
when ”710000101” =>
termination_register <=

termination_in (104) OR termination_register;

decision_out <= decision_in (105);

termination_in (105) OR termination_register;

decision_out <= decision_in (106);

termination_in (106) OR termination_register;

decision_out <= decision_in (107);

termination_in (107) OR termination_register;

decision_out <= decision_in (108);

termination_in (108) OR termination_register;

decision_out <= decision_in (109);

termination_in (109) OR termination_register;

decision_out <= decision_in (110);

termination_in (110) OR termination_register;

decision_out <= decision_in (111);

termination_in(111) OR termination_register;

decision_out <= decision_in (112);

termination_in(112) OR termination_register;

decision_out <= decision_in (113);

termination_in(113) OR termination_register;

decision_out <= decision_in (114);

termination_in(114) OR termination_register;

decision_out <= decision_in (115);

termination_in (115) OR termination_register;

decision_out <= decision_in (116);

termination_in (116) OR termination_register;

decision_out <= decision_in (117);

termination_in (117) OR termination_register;

decision_out <= decision_in (118);

termination_in (118) OR termination_register;

decision_out <= decision_in (119);

termination_in (119) OR termination_register;

decision_out <= decision_in (120);

termination_in (120) OR termination_register;

decision_out <= decision_in (121);

termination_in(121) OR termination_register;

decision_out <= decision_in (122);

termination_in (122) OR termination_register;

decision_out <= decision_in (123);

termination_in (123) OR termination_register;

decision_out <= decision_in (124);

termination_in (124) OR termination_register;

decision_out <= decision_in (125);

termination_in (125) OR termination_register;

decision_out <= decision_in (126);

termination_in (126) OR termination_register;

decision_out <= decision_in (127);

termination_in (127) OR termination_register;

decision_out <= decision_in (128);

termination_in (128) OR termination_register;

decision_out <= decision_in (129);

termination_in (129) OR termination_register;

decision_out <= decision_in (130);

termination_in (130) OR termination_register;

decision_out <= decision_in (131);

termination_in (131) OR termination_register;

decision_out <= decision_in (132);

termination_in (132) OR termination_register;

decision_out <= decision_in (133);

termination_in (133) OR termination_register;

96

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

when ”10000110” => decision_out <= decision_in (134);
termination_register <= termination_in(134) OR termination_register;

when ”10000111” => decision_out <= decision_in (135);
termination_register <= termination_in(135) OR termination_register;
when ”10001000” => decision_out <= decision_in (136);
termination_register <= termination_in(136) OR termination_register;
when ”710001001” => decision_out <= decision_in (137);
termination_register <= termination_in (137) OR termination_register;
when ”710001010” => decision_out <= decision_in (138);
termination_register <= termination_in (138) OR termination_register;
when ”710001011” => decision_out <= decision_in (139);
termination_register <= termination_in(139) OR termination_register;
when ”10001100” => decision_out <= decision_in (140);
termination_register <= termination_in (140) OR termination_register;
when ”710001101” => decision_out <= decision_in (141);
termination_register <= termination_in(141) OR termination_register;
when ”710001110” => decision_out <= decision_in (142);
termination_register <= termination_in(142) OR termination_register;
when ”710001111” => decision_out <= decision_in (143);
termination_register <= termination_in(143) OR termination_register;
when ”710010000” => decision_out <= decision_in (144);
termination_register <= termination_in (144) OR termination_register;
when ”710010001” => decision_out <= decision_in (145);
termination_register <= termination_in (145) OR termination_register;
when ”710010010” => decision_out <= decision_in (146);
termination_register <= termination_in(146) OR termination_register;
when ”710010011” => decision_out <= decision_in (147);
termination_register <= termination_in (147) OR termination_register;
when ”710010100” => decision_out <= decision_in (148);
termination_register <= termination_in (148) OR termination_register;
when ”710010101” => decision_out <= decision_in (149);
termination_register <= termination_in(149) OR termination_register;
when 710010110” => decision_out <= decision_in (150);
termination_register <= termination_in(150) OR termination_register;
when 710010111”7 => decision_out <= decision_in (151);
termination_register <= termination_in(151) OR termination_register;
when 7100110007 => decision_out <= decision_in (152);
termination_register <= termination_in (152) OR termination_register;
when ”710011001” => decision_out <= decision_in (153);
termination_register <= termination_in (153) OR termination_register;
when 7100110107 => decision_out <= decision_in (154);
termination_register <= termination_in(154) OR termination_register;
when ”710011011” => decision_out <= decision_in (155);
termination_register <= termination_in (155) OR termination_register;
when ”710011100” => decision_out <= decision_in (156);
termination_register <= termination_in (156) OR termination_register;
when ”710011101” => decision_out <= decision_in (157);
termination_register <= termination_in(157) OR termination_register;
when 7100111107 => decision_out <= decision_in (158);
termination_register <= termination_in(158) OR termination_register;
when 7100111117 => decision_out <= decision_in (159);
termination_register <= termination_in(159) OR termination_register;
when ”710100000” => decision_out <= decision_in (160);
termination_register <= termination_in (160) OR termination_register;
when ”710100001” => decision_out <= decision_in (161);
termination_register <= termination_in (161) OR termination_register;
when ”10100010” => decision_out <= decision_in (162);
termination_register <= termination_in(162) OR termination_register;
when ”710100011” => decision_out <= decision_in (163);

97

termination_-register <=
when ”710100100” =>
termination_register <=
when ”710100101” =>
termination_register <=
when ”710100110” =>
termination_register <=
when 710100111” =>
termination_register <=
when 710101000” =>
termination_register <=
when ”710101001” =>
termination_register <=
when ”710101010” =>
termination_register <=
when 7101010117 =>
termination_-register <=
when ”710101100” =>
termination_register <=
when 7101011017 =>
termination_register <=
when 7101011107 =>
termination_register <=
when 7101011117 =>
termination_register <=
when 710110000” =>
termination_register <=
when ”710110001” =>
termination_register <=
when ”710110010” =>
termination_-register <=
when ”710110011” =>
termination_-register <=
when 710110100” =>
termination_register <=
when 7101101017 =>
termination_register <=
when 710110110”7 =>
termination_register <=
when 7101101117 =>
termination_register <=
when 710111000” =>
termination_register <=
when ”710111001” =>
termination_register <=
when ”710111010” =>
termination_-register <=
when 7101110117 =>
termination_register <=
when 710111100” =>
termination_register <=
when 7101111017 =>
termination_register <=
when 7101111107 =>
termination_register <=
when 7101111117 =>
termination_register <=
when ”711000000” =>
termination_register <=

termination_in (163) OR termination_register;

decision_out <= decision_in (164);

termination_in (164) OR termination_register;

decision_out <= decision_in (165);

termination_in (165) OR termination_register;

decision_out <= decision_in (166);

termination_in (166) OR termination_register;

decision_out <= decision_in (167);

termination_in (167) OR termination_register;

decision_out <= decision_in (168);

termination_in (168) OR termination_register;

decision_out <= decision_in (169);

termination_in (169) OR termination_register;

decision_out <= decision_in (170);

termination_in (170) OR termination_register;

decision_out <= decision_in (171);

termination_in(171) OR termination_register;

decision_out <= decision_in (172);

termination_in (172) OR termination_register;

decision_out <= decision_in (173);

termination_in (173) OR termination_register;

decision_out <= decision_in (174);

termination_in (174) OR termination_register;

decision_out <= decision_in (175);

termination_in (175) OR termination_register;

decision_out <= decision_in (176);

termination_in (176) OR termination_register;

decision_out <= decision_in (177);

termination_in (177) OR termination_register;

decision_out <= decision_in (178);

termination_in (178) OR termination_register;

decision_out <= decision_in (179);

termination_in (179) OR termination_register;

decision_out <= decision_in (180);

termination_in (180) OR termination_register;

decision_out <= decision_in (181);

termination_in (181) OR termination_register;

decision_out <= decision_in (182);

termination_in (182) OR termination_register;

decision_out <= decision_in (183);

termination_in (183) OR termination_register;

decision_out <= decision_in (184);

termination_in (184) OR termination_register;

decision_out <= decision_in (185);

termination_in (185) OR termination_register;

decision_out <= decision_in (186);

termination_in (186) OR termination_register;

decision_out <= decision_in (187);

termination_in (187) OR termination_register;

decision_out <= decision_in (188);

termination_in (188) OR termination_register;

decision_out <= decision_in (189);

termination_in (189) OR termination_register;

decision_out <= decision_in (190);

termination_in (190) OR termination_register;

decision_out <= decision_in (191);

termination_in (191) OR termination_register;

decision_out <= decision_in (192);

termination_in (192) OR termination_register;

98

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

when 711000001” =>
termination_register <=
when 711000010” =>
termination_register <=
when ”711000011” =>
termination_register <=
when ”711000100” =>
termination_-register <=
when ”711000101” =>
termination_-register <=
when ”711000110” =>
termination_register <=
when ”711000111” =>
termination_register <=
when 711001000” =>
termination_register <=
when 7110010017 =>
termination_register <=
when 711001010” =>
termination_register <=
when 7110010117 =>
termination_register <=
when ”711001100” =>
termination_-register <=
when 7110011017 =>
termination_register <=
when 7110011107 =>
termination_register <=
when 7110011117 =>
termination_register <=
when 711010000” =>
termination_register <=
when 7110100017 =>
termination_register <=
when ”711010010” =>
termination_register <=
when 7110100117 =>
termination_register <=
when 711010100” =>
termination_-register <=
when 7110101017 =>
termination_register <=
when 7110101107 =>
termination_register <=
when 7110101117 =>
termination_register <=
when 711011000” =>
termination_register <=
when 7110110017 =>
termination_register <=
when ”711011010” =>
termination_register <=
when 7110110117 =>
termination_-register <=
when 711011100” =>
termination_-register <=
when 7110111017 =>
termination_register <=
when 7110111107 =>

decision_out <= decision_in (193);

termination_in (193) OR termination_register;

decision_out <= decision_in (194);

termination_in (194) OR termination_register;

decision_out <= decision_in (195);

termination_in (195) OR termination_register;

decision_out <= decision_in (196);

termination_in (196) OR termination_register;

decision_out <= decision_in (197);

termination_in (197) OR termination_register;

decision_out <= decision_in (198);

termination_in (198) OR termination_register;

decision_out <= decision_in (199);

termination_in (199) OR termination_register;

decision_out <= decision_in (200);

termination_in (200) OR termination_register;

decision_out <= decision_in (201);

termination_in (201) OR termination_register;

decision_out <= decision_in (202);

termination_in (202) OR termination_register;

decision_out <= decision_in (203);

termination_in (203) OR termination_register;

decision_out <= decision_in (204);

termination_-in (204) OR termination_register;

decision_out <= decision_in (205);

termination_in (205) OR termination_register;

decision_out <= decision_in (206);

termination_in (206) OR termination_register;

decision_out <= decision_in (207);

termination_in (207) OR termination_register;

decision_out <= decision_in (208);

termination_in (208) OR termination_register;

decision_out <= decision_in (209);

termination_in (209) OR termination_register;

decision_out <= decision_in (210);

termination_in (210) OR termination_register;

decision_out <= decision_in (211);

termination_in(211) OR termination_register;

decision_out <= decision_in (212);

termination_-in (212) OR termination_register;

decision_out <= decision_in (213);

termination_in (213) OR termination_register;

decision_out <= decision_in (214);

termination_in (214) OR termination_register;

decision_out <= decision_in (215);

termination_in (215) OR termination_register;

decision_out <= decision_in (216);

termination_in (216) OR termination_register;

decision_out <= decision_in (217);

termination_in (217) OR termination_register;

decision_out <= decision_in (218);

termination_in (218) OR termination_register;

decision_out <= decision_in (219);

termination_in (219) OR termination_register;

decision_out <= decision_in (220);

termination_-in (220) OR termination_register;

decision_out <= decision_in (221);

termination_in (221) OR termination_register;

decision_out <= decision_in (222);

99

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

termination_-register <=
when 7110111117 =>
termination_register <=
when ”711100000” =>
termination_register <=
when ”711100001” =>
termination_register <=
when 711100010” =>
termination_register <=
when 7111000117 =>
termination_register <=
when ”711100100” =>
termination_register <=
when 7111001017 =>
termination_register <=
when 7111001107 =>
termination_-register <=
when 7111001117 =>
termination_register <=
when ”711101000” =>
termination_register <=
when 7111010017 =>
termination_register <=
when 711101010” =>
termination_register <=
when 7111010117 =>
termination_register <=
when ”711101100” =>
termination_register <=
when 7111011017 =>
termination_-register <=
when 7111011107 =>
termination_-register <=
when 7111011117 =>
termination_register <=
when 711110000” =>
termination_register <=
when 7111100017 =>
termination_register <=
when 711110010” =>
termination_register <=
when 7111100117 =>
termination_register <=
when ”711110100” =>
termination_register <=
when 7111101017 =>
termination_-register <=
when 7111101107 =>
termination_register <=
when 7111101117 =>
termination_register <=
when ”711111000” =>
termination_register <=
when 7111110017 =>
termination_register <=
when 7111110107 =>
termination_register <=
when 7111110117 =>
termination_register <=

termination_-in (222) OR termination_register;

decision_out <= decision_in (223);

termination_in (223) OR termination_register;

decision_out <= decision_in (224);

termination_in (224) OR termination_register;

decision_out <= decision_in (225);

termination_in (225) OR termination_register;

decision_out <= decision_in (226);

termination_in (226) OR termination_register;

decision_out <= decision_in (227);

termination_in (227) OR termination_register;

decision_out <= decision_in (228);

termination_in (228) OR termination_register;

decision_out <= decision_in (229);

termination_in (229) OR termination_register;

decision_out <= decision_in (230);

termination_in (230) OR termination_register;

decision_out <= decision_in (231);

termination_in (231) OR termination_register;

decision_out <= decision_in (232);

termination_in (232) OR termination_register;

decision_out <= decision_in (233);

termination_in (233) OR termination_register;

decision_out <= decision_in (234);

termination_in (234) OR termination_register;

decision_out <= decision_in (235);

termination_in (235) OR termination_register;

decision_out <= decision_in (236);

termination_in (236) OR termination_register;

decision_out <= decision_in (237);

termination_in (237) OR termination_register;

decision_out <= decision_in (238);

termination_in (238) OR termination_register;

decision_out <= decision_in (239);

termination_in (239) OR termination_register;

decision_out <= decision_in (240);

termination_in (240) OR termination_register;

decision_out <= decision_in (241);

termination_in (241) OR termination_register;

decision_out <= decision_in (242);

termination_in (242) OR termination_register;

decision_out <= decision_in (243);

termination_in (243) OR termination_register;

decision_out <= decision_in (244);

termination_in (244) OR termination_register;

decision_out <= decision_in (245);

termination_in (245) OR termination_register;

decision_out <= decision_in (246);

termination_in (246) OR termination_register;

decision_out <= decision_in (247);

termination_in (247) OR termination_register;

decision_out <= decision_in (248);

termination_in (248) OR termination_register;

decision_out <= decision_in (249);

termination_in (249) OR termination_register;

decision_out <= decision_in (250);

termination_in (250) OR termination_register;

decision_out <= decision_in (251);

termination_in (251) OR termination_register;

100

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

when 711111100” => decision_out <= decision_in (252);
termination_register <= termination_in (252) OR termination_register;

when 7111111017 => decision_out <= decision_in (253);
termination_register <= termination_in (253) OR termination_register;
when 7111111107 => decision_out <= decision_in (254);
termination_register <= termination_in (254) OR termination_register;
when 7111111117 => decision_out <= decision_in (255);

termination_register <= termination_in (255) OR termination_register;
when others => decision_out <=’0"; termination_register <='0";
end case;
end if;
end process;
termination_out<=termination_register;
end comb;

A.7 Bmu.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

— The BMU ts operating at the bit rate. It receives soft—decision
—— decoded bits in the range {—3,3}.
— The output is a signed 5— bit number (in 2’s complement format)

entity bmu is
port (i0, i1, i2: in std-logic_vector (2 downto 0);
bmu000, bmu001, bmu010, bmu0ll, bmulO0, bmulOl,
bmull0, bmulll: out std_logic_-vector (4 downto 0)
)i

end bmu;

architecture rtl of bmu is
begin
process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed (i0))+ conv_integer (signed (il)),5);
temp000_1:=conv_std_-logic_vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);
bmu000<=temp000_1;
end process;

process (i0,i2,il)
variable temp000.0,temp000_1: std_logic_-vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed(i0))+ conv_integer (signed(il)),5);
temp000_1:=conv_std_-logic_vector (conv_integer (signed (temp000-0))—
conv_integer (signed (i2)),5);
bmu001<=temp000_1;
end process;

process (i0,i2,il)
variable temp000.0,temp000_1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed(i0))— conv_integer (signed(il)),5);
temp000_1:=conv_std_logic_vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);

101

bmu010<=temp000-_1;
end process;

process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_-vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector (conv_integer (signed(i0))— conv_integer (signed(il)),5);
temp000_1l:=conv_std_logic_-vector (conv_integer (signed (temp000-0))—
conv_integer (signed (i2)),5);

bmu01ll<=temp000-_1;

end process;

process (i0,i2,il)
variable temp000.0,temp000-1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed(i0))+ conv_integer (signed (il)),5);
temp000_1:=conv_std_-logic_-vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);

bmul00<=temp000-_1;

end process;

process (i0,i2,il)
variable temp000.0,temp000_1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed (i0))+ conv_integer (signed(il)),5);
temp000_1:=conv_std_-logic_vector (conv_integer (signed (temp000-0))—
conv_integer (signed (i2)),5);

bmulOl<=temp000_1;

end process;

process (i0,i2,il)
variable temp000.0,temp000_1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed(i0))— conv_integer (signed (il)),5);
temp000_1:=conv_std_-logic_vector (conv_integer (signed (temp000-0))+
conv_integer (signed (i2)),5);
bmullO<=temp000_1;
end process;

process (i0,i2,il)
variable temp000.0,temp000_1: std_logic_vector (4 downto 0);
begin
temp000_0:=conv_std_logic_vector(—conv_integer (signed(i0))— conv_integer (signed (il)),5);
temp000_1l:=conv_std_logic_vector (conv_integer (signed (temp000.0))—
conv_integer (signed (i2)),5);
bmulll<=temp000_1;
end process;
end rtl;

A.8 Pointer.vhd

library ieee;
use ieee.std_logic_-1164.all;
use ieee.std_logic_arith.all;
entity pointer is
generic (reset_value: integer:=0);
—0 is just the default value;
port (msb: in std_logic_vector (7 downto 0);

102

clk , reset, new_bit: in std-logic;
pointer_out: out std_logic_vector (7 downto 0));
end pointer;

— The pointer points to the current state in the decoding trellis.
—— The most significant bit of the pointer is circular and is determined
—— by the output of the msb module.

architecture rtl of pointer is
signal pointer_register: std_logic_vector (7 downto 0);

begin
process(reset ,clk ,pointer_register ,new_bit)
begin
if reset =’1’ then

pointer_register<=conv_std_logic_.vector (reset_value ,8);
pointer_out<=conv_std_logic_-vector (reset_value ,8);
elsif clk=’1" and clk ’event then
case msb is
when ”710000000” => pointer_register(7)<=new_bit;
pointer_out<=pointer_register (6 downto 0) & new_bit;
when 701000000” => pointer_register (6) <= new_bit;
pointer_out<=pointer_register (5 downto 0) & pointer_register (7)&new_bit;
when 700100000” => pointer_register(5) <= new_bit;
pointer_out<=pointer_register (4 downto 0) & pointer_register (7 downto 6)& new_bit ;
when ”00010000” => pointer_register(4) <= new_bit;
pointer_out<=pointer_register (3 downto 0) & pointer_register (7 downto 5)& new_bit ;
when ”00001000” => pointer_register(3) <= new_bit;
pointer_out<=pointer_register (2 downto 0) & pointer_register (7 downto 4)&new_bit ;
when ”00000100” => pointer_register(2) <= new_bit;
pointer_out<=pointer_register (1 downto 0) & pointer_register (7 downto 3)&new_bit;
when ”00000010” => pointer_register (1) <= new_bit;
pointer_out<=pointer_register (0) & pointer_register (7 downto 2) & new_bit;
when 700000001” => pointer_register (0) <= new_bit;
pointer_out<=pointer_register (7 downto 1) & new_bit;
when others=> pointer_register (7) <=new_bit;
pointer_out<=pointer_register;
end case;
end if;
end process;
end rtl;

A.9 Comparator.vhd

library ieee;
use ieee.std_logic_-1164.all;
use ieee.std_logic_arith.all;

entity comparator is

port (data.random , clk, data_out_in: in std_logic;
status: out std_logic);

end comparator;

— The comparator compares the delayed wversion of the input
— to the encoder with the output of the decoder.

architecture rtl of comparator is
signal data_random_delayed: std_logic_vector (11 downto 0);

103

—input to encoder
signal data_out_delayed: std_logic_vector (9 downto 0);
—output of the decoder
signal clk_internal: std_logic;
begin
process(data_random, clk, data_out_in)
begin
if clk=’0" and clk ’event then
data_random_delayed (11 downto 0)<= data_random & data_random_delayed (11 downto 1);
data_out_delayed (9 downto 0)<= data_out_-in & data_out_delayed (9 downto 1);
end if;
end process;

clk_internal<=clk;

process(data_random , clk_internal , data_out-in, data_random_delayed)
begin
if clk_internal="1" then
if data_random_delayed (9 downto 0)=data_out_delayed (9 downto 0) then
status <=’"1";
else
status <='0";
end if;
end if;
end process;
end rtl;

A.10 Ledcounter.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned. all;

entity ledcounter is
port (clk, reset, status: in std-logic;
led: out std_-logic_-vector (3 downto 0);
I1t1_.led : out std_-logic_vector (7 downto 0));
end ledcounter;

— This module serves testing the functionality of the design.

—— If the output of the comparator (status) indicates high, then the
— decoder 1s functioning correctly and the ledcount signal counts up.
— When the status signal ts low indicating a wrong output,

— the badcount signal counts up.

—— FEight leds on the RPP systems were reserved for the correct

—— functionality and four other leds are reserved for the incorrect
— functionality indication .

architecture rtl of ledcounter is
signal ledcount: std_logic_vector (25 downto 0);
signal badcount: std_logic_vector (2 downto 0);
begin
process (reset , clk status,6ledcount)
begin
if reset=’1" then
ledcount <= (others => ’0’);
elsif (clk’event and clk="1’) then

104

if status=’'1’ then

ledcount<=unsigned (ledcount) + 1;

end if;
end if;
end process;

process (reset , clk,status,ledcount)

begin
if reset='1’ then
badcount <= (others => ’0’);
elsif (clk’event and clk="1’) then
if status=’0" then

badcount<=unsigned (badcount) + 1;

end if;
end if;
end process;

process (ledcount (25 downto 23))
— Only the three most significant

bits were

— mnormal eye can follow the flashing of the

begin
case ledcount (25 downto 23) is

when ”000” => LT1.LED <= ”00000001”
when ”001” => LT1.LED <= ”00000010”
when ”010” => LT1.LED <= ”00000100”

when 7011”7 => LT1.LED <= ”00001000";

when ”7100” => LT1.LED <= ”00010000”

when ”7101” => LT1.LED <= "00100000";

when ”7110” => LT1.LED <= ”701000000”
when 7111”7 => LT1.LED <= ”10000000”

when others => LT1.LED <="11111111";

end case;
end process;

process (badcount (2 downto 0))
begin
case badcount (2 downto 0) is

when ”000” => LED <=70001";
when 7001”7 => LED <=70010";
when ”7010” => LED <=7"0100";
when 7011”7 => LED <=7"1000";
when ”100” => LED <=70001"7;
when 7101”7 => LED <=70010";
when ”7110” => LED <="70100";
when 7111”7 => LED <=71000";
when others => LED <=71111";

end case;
end process;

end rtl;

A.11 Viterbi.vhd

library ieee;
use ieee.std_logic_-1164.all;

— This is the top wviterbt decoder.

105

used ,
leds .

such that the

entity viterbi is

port (clk,start_out: in std_logic;
data_out , term_out: out std_-logic;
led: out std_-logic_vector (3 downto 0);
ltl1_led : out std-logic_vector (7 downto 0)
)i

end viterbi;
architecture struct of viterbi is

component comparator

port (data.random , clk, data_out_-in: in std_logic;
status: out std_logic);

end component ;

component encoder
port (data_in, reset, clk: in std-logic;
i0,i1,i2: out std_logic_vector (2 downto 0)
)i

end component;

component controller
port (clk-w0, start: in std_-logic;
clkomp, clk_encoder: out std-logic;
reset_encoder ,reset_mpl: out std_logic;
reset_PM ,reset_p2s ,reset_.comp_carry: out std_logic
E

end component;

component pointer
generic (reset_value: integer:=0);
—0 is just the default value;
port (msb: in std_logic_vector (7 downto 0);
clk , reset, new_bit: in std_logic;
pointer_out: out std_-logic_vector (7 downto 0)
)5

end component ;

component acstosm_mux

port (clk , reset : in std_logic;
decision_in : in std_logic_vector (0 to 255);
termination_in : in std-logic-vector (0 to 255);
pointer : in std_logic_vector (7 downto 0);

decision_out , termination_out: out std-logic
)i

end component;

component bmu

port (i0, i1, i2: in std-logic-vector (2 downto 0);
bmu000, bmu001, bmu010, bmu0ll, bmulO0, bmulOl, bmullO,
bmulll: out std_-logic_vector (4 downto 0));

end component;

component p2s_block

port (reset ,clk: in std_logic;
bmu000, bmu001, bmu010, bmu0ll, bmul0O0, bmulOl, bmullO,
bmulll: in std_logic_vector (4 downto 0);
BM: out std-logic-vector (0 to T7)

)

106

end component;

component acsu_-block
port (BM, msb_BMjp: std_logic_vector (0 to 7);
clk, reset_carry : in std_logic;
comp_enable, reset_.PM: in std_logic;
term, dec : out std_-logic_vector (0 to 255)
)i

end component;

component msb
port (clk , reset: in std_logic;
msb: out std_logic_vector (7 downto 0)
);

end component;

component 1fsr
port (clock : std_logic;
reset : std_-logic;
data_out : out std_logic
);

end component;

component ledcounter
port (clk , reset, status: in std_logic;
led: out std_logic_vector (3 downto 0);
Itl_led: out std_logic_vector (7 downto 0)
);

end component;

signal reset-mpl, reset_.PM , reset_p2s, reset_encoder ,dec_internal: std_-logic;

signal status: std_logic;

signal data_-random ,reset_comp_carry , clk_mp,clk_encoder: std-logic;

signal dec, term: std_logic_vector (0 to 255);

signal BM : std_logic_vector (0 to 7);

signal msb_BMjp: std_logic_vector (0 to 7);

signal msb_signal , pointer_internal: std_logic_vector (7 downto 0);

signal bmu000, bmu00l1, bmu010, bmu0ll, bmulO0, bmulOl, bmullO,
bmulll: std_-logic_vector (4 downto 0);

signal i0,il,i2: std_logic_vector (2 downto 0);

signal start:std_logic;

begin
start<=not(start_out);
ledcounteru: ledcounter port map (clk_mp, start, status, led, ltl_led);
Ifsru:lfsr port map (clkomp, start, data_random);
comparatoru: comparator port map (data.random , clk.mp, dec_internal ,status);
controlleru: controller port map (clk, start, clkomp,clk_encoder,
reset_encoder , reset_mpl, reset_PM , reset_p2s, reset_comp_carry);

encoderu: encoder port map (data.random , reset_encoder , reset_p2s, i0,il,i2);
bmuu: bmu port map (i0=>i0 ,

i1=>il ,

i2=>i2

bmu000=>bmu000,

bmu001=>bmu001,

bmu010=>bmu010,

bmu011=>bmu011,

bmul00=>bmul00,

107

bmulO0l=>bmulll,
bmul10=>bmull0,
bmulll=>bmulll);
pointeru: pointer generic map(0)
port map(msb_signal ,clk_mp ,reset_mpl ,dec_internal ,
pointer_internal);

acstosmu: acstosm_mux port map (reset_comp-_carry ,reset_mpl, dec,term,pointer_internal,

dec_internal ,term_out);
p2s_blocku: p2s_block port map (reset_comp_carry ,clk ,bmu000, bmu001,
bmu010, bmu0ll, bmul00, bmulOl, bmull0, bmulll,BM);
acsu_blocku: acsu_block port map (BVE>BM,
msb_BMjp=>msb_BMjp,
clk=>clk , reset_carry=>reset_comp_carry ,
comp_enable=>clk_encoder ,reset_PM=>reset_PM ,
term=>term ,dec=>dec);
process (bmu000, bmu00l, bmu0l0, bmu0Oll, bmul00, bmul0Ol, bmull0, bmulll,
msb_BMjp, start)
begin
if start=’1’ then
msb_BMjp<="00000000" ;
elsif reset_comp-carry='0’ and reset_comp_carry ’'event then
msb_BMjp(0) <=bmu000 (
msb_BMjp(1) <=bmu001 (
msb_BMjp(2) <=bmu010 (
msb_BMjp(3) <=bmu011 (
((
((
((
((

)

)

)

1)
4)
4)
4);
msb_BMjp(4)<=bmul00 (4);
msb_BMjp 4)
msb_BMjp 4)
msb_BMjp 4)
end if;
end process;
msbu: msb port map (clk_mp, reset_mpl, msb_signal);
data_out<=dec_internal;
end struct;

4

5)<=bmul0l
6)<=bmull0
7)<=bmulll

)

)

)

108

reset_comp_carry ,

Appendix B

Inputs of the ACSUs

Table B.1: ACSU modules connections with PMs and BMs

[ACSU | PMi, PMj [BMij, BMj |
0 000000000, 100000000 | 000, 111
1 010000000, 110000000 | 011, 100
2 001000000, 101000000 | 101, 010
3 011000000, 111000000 | 110, 001
4 000100000, 100100000 | 110, 001
5 010100000, 110100000 | 101, 010
6 001100000, 101100000 | 011, 100
7 011100000, 111100000 | 000, 111
8 000010000, 100010000 | 010, 101
9 010010000, 110010000 | 001, 110
10 001010000, 101010000 | 111, 000
11 011010000, 111010000 | 100, 011
12 000110000, 100110000 | 100, 011
13 010110000, 110110000 | 111, 000
14 001110000, 101110000 | 001, 110
15 011110000, 111110000 | 010, 101
16 000001000, 100001000 | 101, 010
17 010001000, 110001000 | 110, 001
18 001001000, 101001000 | 000, 111
19 011001000, 111001000 | 011, 100
20 000101000, 100101000 | 011, 100
21 010101000, 110101000 | 000, 111
22 001101000, 101101000 | 110, 001
23 011101000, 111101000 | 101, 010
24 000011000, 100011000 | 111, 000
25 010011000, 110011000 | 100, 011
26 001011000, 101011000 | 010, 101
27 011011000, 111011000 | 001, 110
28 000111000, 100111000 | 001, 110
29 010111000, 110111000 | 010, 101
30 001111000, 101111000 | 100, 011
31 011111000,111111000 111,000
32 000000100,100000100 100,011
33 010000100,110000100 111,000
34 001000100,101000100 001,110
35 011000100,111000100 010,101

109

Table B.1: ACSU modules connections with PMs and BMs (continued)

ACSU DM, PMj BM;i, BM;
36 000100100,100100100 | 010,101
37 010100100,110100100 | 001,110
38 001100100,101100100 | 111,000
39 011100100,111100100 | 100,011
20 000010100,100010100 | 110,001
11 010010100,110010100 | 101,010
12 001010100,101010100 | 011,100
13 011010100,111010100 | 000,111
14 000110100,100110100 | 000,111
15 010110100,110110100 | 011,100
16 001110100,101110100 | 101,010
a7 011110100,111110100 | 110,001
18 000001100,100001100 | 001,110
19 010001100,110001100 | 010,101
50 001001100,101001100 | 100,011
51 011001100,111001100 | 111,000
52 000101100,100101100 | 111,000
53 010101100,110101100 | 100,011
54 001101100,101101100 | 010,101
55 011101100,111101100 | 001,110
56 000011100,100011100 | 011,100
57 010011100,110011100 | 000,111
58 001011100,101011100 | 110,001
59 011011100,111011100 | 101,010
60 000111100,100111100 | 101,010
61 010111100,110111100 | 110,001
62 001111100,101111100 | 000,111
63 011111100,111111100 | 011,100
64 000000010,100000010 | 110,001
65 010000010,110000010 | 101,010
66 001000010,101000010 | 011,100
67 011000010,111000010 | 000,111
68 000100010,100100010 | 000,111
69 010100010,110100010 | 011,100
70 001100010,101100010 | 101,010
71 011100010,111100010 | 110,001
72 000010010,100010010 | 100,011
73 010010010,110010010 | 111,000
74 001010010,101010010 | 001,110
75 011010010,111010010 | 010,101
76 000110010,100110010 | 010,101
77 010110010,110110010 | 001,110
78 001110010,101110010 | 111,000
79 011110010,111110010 | 100,011
30 000001010,100001010 | 011,100
31 010001010,110001010 | 000,111
32 001001010,101001010 | 110,001
33 011001010,111001010 | 101,010
84 000101010,100101010 | 101,010
35 010101010,110101010 | 110,001
36 001101010,101101010 | 000,111
87 011101010,111101010 | 011,100
38 000011010,100011010 | 001,110
89 010011010,110011010 | 010,101

110

Table B.1: ACSU modules connections with PMs and BMs (continued)

ACSU DM, PMj BM;i, BM;
90 001011010,101011010 | 100,011
91 011011010,111011010 | 111,000
92 000111010,100111010 | 111,000
93 010111010,110111010 | 100,011
94 001111010,101111010 | 010,101
95 011111010,111111010 | 001,110
96 000000110,100000110 | 010,101
97 010000110,110000110 | 001,110
98 001000110,101000110 | 111,000
99 011000110,111000110 | 100,011
100 | 000100110,100100110 | 100,011
101 | 010100110,110100110 | 111,000
102 | 001100110,101100110 | 001,110
103 | 011100110,111100110 | 010,101
104 | 000010110,100010110 | 000,111
105 | 010010110,110010110 | 011,100
106 | 001010110,101010110 | 101,010
107 | 011010110,111010110 | 110,001
108 | 000110110,100110110 | 110,001
109 | 010110110,110110110 | 101,010
110 | 001110110,101110110 | 011,100
T11 | 011110110,111110110 | 000,111
112 | 000001110,100001110 | 111,000
113 | 010001110,110001110 | 100,011
114 | 001001110,101001110 | 010,101
115 | 011001110,111001110 | 001,110
116 | 000101110,100101110 | 001,110
117 | 010101110,110101110 010101
118 | 001101110,101101110 | 100,011
119 | 011101110,111101110 | 111,000
120 | 000011110,100011110 | 101,010
121 | 010011110,110011110 | 110,001
122 | 001011110,101011110 | 000,111
123 | 011011110,111011110 | 011,100
124 | 000111110,100111110 | 011,100
125 | 010111110,110111110 | 000,111
126 | 001111110,101111110 | 110,001
127 | O11111110,111111110 | 101,010

111

