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Abstract 

Rural two-lane highways make up a large portion of road networks around the world. The special 

geometric and traffic attributes of these highways pose special challenges to safety and traffic 

operation. In recent years, microscopic simulation models have gained increased acceptance as a 

reliable tool for investigating traffic operations and evaluating safety performance. Despite this trend, 

the development and application of these models to two-lane highway operations has not kept pace 

with those of freeways and urban networks, and this is due, in large part, to difficulties in modeling 

the overtaking process. This process has been rendered complex by the large number of inter-related 

decision factors that need to be considered by the overtaking driver in a bi-directional driving regime. 

In this research, a new overtaking gap-acceptance model is developed to simulate traffic operation 

and safety performance on two-lane highways. This model considers a wide spectrum of physical and 

behavioral variables that could affect overtaking. It does so by introducing a new safety-based gap-

acceptance decision variable based on the overtaking driver’s perception of time-to-collision (TTC) 

with an opposing vehicle. The decision to overtake was expressed as a function of the perceived TTC 

in comparison to an established driver risk threshold (critical TTC). The distribution of critical TTC 

among drivers are determined through a model calibration and validation procedure based on 

overtaking observational data obtained from a video-recording of a one-kilometer segment of a two-

lane highway. Unlike previous models, the proposed gap-acceptance model makes use of only a few 

calibration parameters. The proposed overtaking models along with other components of a micro-

simulation traffic model are implemented in a software framework that can simulate traffic and safety 

operation for two-lane highways.  

The overall simulation results demonstrate that the proposed simulation model can provide reliable 

measures of traffic and safety for two-lane highway operation. The overtaking model was found to 

yield both consistent and transferable results. The model is then applied successfully to provide more 

accurate estimates of traffic measures used in level-of-service analysis for two-lane highways and to 

compare these results to values reported in the two versions of the Highway Capacity Manual (HCM). 

In another application, this model is used to investigate the impact of truck mandated speed limiters 

on safety and traffic operation of two-lane highways and specifically their impact on overtaking. 

Finally, the potential implications of adaptive cruise control for overtaking and its resultant traffic and 

safety impacts are studied using the developed simulation model.  
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Chapter 1 

Introduction 

1.1 Background 

In spite of growth in freeway construction, two-lane highways are still the dominant highway type in 

most developed and developing countries. In the United States, for example, two-lane highways 

account for over 65% of total urban and rural route mileage (FHWA, 2008). According to 

Transportation Association of Canada (TAC), the Canadian highway networks (mostly two-lane 

highways) summed 879,530 kilometers in 1989 and carried 83% of all domestic travel in 1990 and 84 

billion tonne-kilometres of freight travel in 1988 (TAC, 1990). Traffic safety poses special challenges 

for two-lane highway operations. Lamm et al. (2006) reported that more than 60% of accident 

fatalities took place on rural two-lane highways. A similar statistic, reported by Transport Canada 

(2006), shows that rural two-lane highways account for over 62% of road accident fatalities in 

Canada.  

The two-way traffic nature as well as special geometric characteristics of two-lane highways 

distinguishes it from other type of roads. According to Neuman et al. (2003), 75% of all head-on 

collisions in the US roads take place on two-lane undivided highways. Persaud et al. (2004) reported 

that 20% of all fatal accidents on two-lane rural highways (4,500 fatalities per year) were accidents 

with opposing vehicles. Figure  1-1 presents the percentage of different types of accidents that took 

place on rural two-lane highways in California between 2004-08 (HSIS, 2012). The data shows that 

head-on and rear-end accidents account for 5.7% and 19.0% of total accidents, respectively. Hit-

Object accidents account for the largest accidents proportion (33.3%). 

In two-lane highway traffic operation, overtaking maneuver is desired to improve driving comfort; 

however, this may create major safety concerns especially head-on accidents. Overtaking can also 

cause other type of accidents such as sideswipe or rear-end (prior to overtake). Overtaking related 

accidents on rural two-lane highways tend to be more serious, mainly due to the increased likelihood 

of high speed head-on collisions. According to the Highway Safety Information System report 

(FHWA, 1994), based on accident data from three states in U.S., 13.9% of overtaking-related 

collisions on two-lane rural highways resulted in fatalities or serious injuries, as compared to 9.4% for 

all accidents on this type of road. In this report, the overtaking related accidents were found to be 

around 2.01% of total accidents for rural two-lane highways in the three states. 
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Figure  1-1-Proportion of accident types on two-lane highways in California (HSIS, 2012) 

Safety performance and traffic operation efficiency on two-lane highways are highly dependent on 

providing safe overtaking opportunities for fast vehicles to pass slower moving vehicle in the traffic 

stream. These opportunities could be limited by geometry or high traffic volume. Road designers try 

to provide sufficient passing sight distances (PSD) for overtaking along a two-lane highway, where it 

is cost effective to do so. Koorey (2002) found that drivers are likely to perform unsafe overtakes 

when they cannot pass slower vehicles due to lack of overtaking opportunities. Morrall and Werner 

(1990) used overtaking ratio (ratio of accomplished overtakes to the desired number) as an alternative 

measure for level-of-service for two-lane highways. 

1.2 Problem Statement 

Microscopic simulation models provide a reliable tool for investigating traffic operations and 

obtaining various measures of operational traffic performance. In the past few years, micro-

simulation models have also been applied to investigate road safety performance. Application of 

microscopic simulation for safety performance was first undertaken by Darzentas et al. (1980) in their 

study of conflicts for a typical T-intersection. The main idea underlying this approach is to model the 

complex behavior of drivers and vehicle interactions that could lead to accident. Vehicle interaction 

over time serves as an input into establishing surrogate measures of safety performance (Gettman and 

Head, 2003) and these interactions are a function of time-dependent speeds and spacings for specific 

pairs of vehicles as they progress along their respective paths.  
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In spite of advances in traffic simulation models, the application of these models for two-lane 

undivided highways has not kept pace with the application of simulation for freeway and urban 

network operations. This is mainly due to difficulty to model overtaking with potential head-on 

conflict. In order to analyze safety and traffic on two-lane highways we require a full understanding 

of the overtaking process, when and how it occurs. The modeling of this process is rendered complex 

by the need to consider a large number of inter-related decision inputs, such as availability of gaps in 

the opposing traffic stream, instantaneous vehicle speeds, spacing and acceleration profiles, traffic 

and driver characteristics, as well as road and weather conditions.  

The complexity of traffic flow for two-lane highways and the difficulty of collecting reliable field 

data for validation and calibration are two of the ongoing issues that have hampered progress in 

modeling two-lane operations. Most of the current commercially available traffic simulation 

platforms apply only to uninterrupted freeway traffic (Koorey, 2002) and as a result, they fail to 

adequately consider the overtaking logic. For instance, VISSIM (PTV), AIMSUN (TSS), 

PARAMICS (Quadstone), and INTEGRATION currently have no specific overtaking logic in their 

algorithm. TWOPAS (St John and Harwood, 1986; Leiman et al., 1998), TRARR (Troutbeck, 1981; 

Shepherd, 1994; Hoban et al., 1991), and VTI (Ahman, 1972) are the most well-known two-lane 

simulation models that were developed during 1970’s and 1980’s. 

The review of current overtaking models indicates that challenges in modeling overtaking 

maneuver is related to linking the “decision-to-overtake” to available gaps in the traffic stream for 

different road and traffic conditions. Unlike other driving regimes such as car-following or lane-

changing, it has been difficult to specify certain model parameters for overtaking. This is mainly due 

to involvement of multiple factors influencing gap-acceptance behavior such as size of the available 

gap, speed, type, and length of vehicles, type of overtaking (flying versus accelerated), and driver’s 

aggression level.  

In most of the existing overtaking models the decision to overtake is established as a function of the 

available gap size (separating overtaking vehicle from the opposing vehicle prior to initiating the 

overtake), but varies based on other influencing factors that are considered for a limited range of 

values. For instance, the model determines the probability of gap-acceptance for a given gap size at 

three speed levels of 80, 90, and 100 km/h. Given the number of these factors and their range of likely 

values, updating the exiting model or development of a new overtaking model, which considers a 

wide spectrum of these factors, would require extensive overtaking field data and this is both difficult 
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and expensive to obtain. This is critical because the data used for calibration of the existing 

overtaking models are dated now.  

These create a motivation to develop a new behavioral overtaking model that considers the 

overtaking maneuver in a way that it can be calibrated through adjustment of a few parameters with 

less data collection effort. The structure of the proposed model is such that the influencing overtaking 

factors are mechanistically encapsulated in a new decision variable that considers the available gap 

size as well as an estimate of overtaking distance in the overtaking gap-acceptance decision logic.  

1.3 Objectives 

The purpose of this research is to develop a behavioral overtaking micro-simulation model for two-

lane highways and incorporate it in a simulation framework.  This model is then applied to simulate 

traffic and safety performance for two-lane highway operations. The proposed research has the 

following specific objectives: 

1. Develop an enhanced and thorough mechanism for modeling overtaking maneuvers. 

2. Propose a mechanistic overtaking gap-acceptance decision logic. 

3. Calibrate and validate the gap-acceptance model based on observational overtaking traffic 

data. 

4. Test the validity and transferability of the model against independent field data and the other 

existing models. 

5. Implement different components of two-lane highway operation in a unified micro-simulation 

platform named OTSIM (OverTaking SIMulation).  

6. Apply OTSIM to assess the following specific problems of two-lane highways level-of-

service and safety performance. 

a) Analyze traffic operation and level-of-service of two-lane highways and compare the 

results with the existing findings in the literature.  

b) Evaluate safety and traffic implication of car/truck differential speed limits for two-

lane highways. 

c) Evaluate the potential impacts of adaptive cruise control on overtaking for two-way 

traffic stream. 
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1.4 Thesis Outline 

The remainder of the thesis has been organized into seven chapters. Chapter 2 presents the main 

structure of the proposed two-lane simulation framework. The basic components of the simulation 

model including platoon generation model, vehicles performance characteristics, and driving regimes 

are discussed. In addition, special attention is made to developing and discussing the proposed 

mechanism and decision logic for overtaking maneuver. 

Chapter 3 presents an overview of existing overtaking gap-acceptance models in the literature 

along with their shortages. A new model for overtaking gap-acceptance logic is subsequently 

introduced, which is then calibrated, and validated using observational overtaking data collected from 

video-taping of a two-lane highway segment. The simulation outputs are compared with independent 

field data and other two other simulation models developed for two-lane highways. In addition, the 

model outputs’ sensitivity to calibration parameters is investigated.  

The application of OTSIM in level-of-service analysis for two-lane highways is presented in 

Chapter 4. Percent time spent following (PTSF) and average travel speed (ATS) are estimated using 

the simulation model for various ranges of traffic volumes. The results are compared with those 

reported in two versions of the Highway Capacity Manual (HCM 2000 and HCM 2010). 

In Chapter 5, the proposed simulation model is applied to evaluate potential safety and traffic 

impacts of implementing differential car/truck speed limits for two-lane highways. Traffic, surrogate 

safety, and overtaking related measures are used in this analysis for a range of traffic volumes, 

percentage of trucks, and three speed limit scenarios. 

Chapter 6 describes the OTSIM application to assess the potential impacts of adaptive cruise 

control (ACC) on the overtaking process for two-lane highway traffic streams. Traffic, surrogate 

safety, and overtaking related measures were compared when vehicles are equipped with the system, 

with different penetration rates, versus the case that no active adaptive cruise control is used. 

Chapter 7 summarizes the major contributions of this research along with general conclusions and 

findings. Several recommendations for future research are proposed.  
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Chapter 2 

Two-lane Traffic Simulation Framework 

2.1 Introduction 

This chapter discusses the details of the traffic simulation platform developed in this research with a 

main focus on developing an overtaking simulation logic. Due to unavailability of any appropriate 

open-source traffic micro-simulation software, it was decided to implement the proposed overtaking 

model in a new simulation framework. This also provided the flexibility to modify the micro-

simulation framework based on the needs proposed by various model applications considered in this 

research.  With the exception of the overtaking component of this framework, the other components 

are mainly borrowed from the existing models in the literature. The proposed model is cable of 

simulating two-way traffic for straight road segments and with vertical grades. Horizontal curves are 

not included in the simulation. In addition, post-processing software was developed to analyze and 

summarize the simulation output results. The simulation platform developed for this research is called 

OTSIM (OverTaking SIMulation). In OTSIM, simulation data can be entered through Graphic User 

Interface (GUI) menus. An optional animation feature is available to show vehicles’ movements in 

the software. OTSIM and its post-processing software were implemented in MATLAB programming 

environment. The user manual and more details about OTSIM are presented in Appendix A.The 

proposed traffic micro-simulation framework consists of a number of mathematical and empirical 

models. In simulation of two-way two-lane traffic, the behavioral components of simulation include 

car-following and overtaking models. In addition, platoon and headway generation models are used to 

create realistic initial vehicles flow and headways in the traffic stream.  

2.2 Model Structure 

OTSIM makes use of a time-based scanning simulation approach such that for every simulated time 

increment the position and speed of each vehicle in the traffic stream is updated. While a shorter 

simulation time-step yields smoother and more accurate vehicle trajectories, it can result in a 

significant increase in simulation run-time. The simulation time-step was selected to be 1 second in 

OTSIM.  

Figure  2-1 illustrates the overall structure of the simulation framework. The OTSIM model inputs 

consist of road, traffic, and vehicle data, as well as behavioral model calibration parameters. The road  
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Figure  2-1- OTSIM simulation schematic diagram 

data includes geometric design features, such as, segment length and grade as well as location of 

passing/no-passing zones. The traffic data includes directional flows, proportion of vehicles  

(passenger-car, truck, RV), and distribution of desired speeds. Vehicle data consists of type, weight, 

length, and engine power as well as vehicle’s acceleration and deceleration parameters. The 

calibration parameters of the car-following and overtaking models are the other required inputs in 

OTSIM. The model outputs include both traffic and safety measures which can be calculated from 

speed, position, and acceleration of individual simulated vehicles. The traffic outputs consist of 
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percent time spent following, average travel speed, journey time, delay, and overtaking frequency. 

The safety outputs include head-on and rear-end time-to-collision. However, the traffic measures can 

potentially be categorized as safety measures too. For instance, percent time spent following and 

overtaking frequency can also represent the risk of rear-end and head-on collisions, respectively. 

2.3 Traffic Flow 

The traffic flow (in vehicles per hour) represents the average number of vehicles that want to enter to 

the road in a given time period. For each direction, volume can be set through the User Interface (UI) 

menu developed in OTSIM. The actual generated flow is stochastic depending on mean flow and 

distribution of vehicles headways. Normally for uninterrupted traffic flow, shifted exponential 

distribution is used to generate vehicles headways. However, the realistic headway pattern in two-lane 

traffic stream is different from those of freeways in some ways. This is mainly due to formation of 

platoons in the traffic stream as a result of vehicles’ inability to pass. To decrease the simulation 

equilibrium time, a platoon generation model is employed to create expected initial platoons of 

vehicles. 

2.3.1 Platoon generation model 

A two-lane highway segment was considered with a traffic stream for which overtaking is limited by 

opposing traffic and/or geometry. Faster vehicles tend to catch-up to slower vehicles in the traffic 

stream and form a queue behind the slower vehicles. The queuing reduces the speed variance of the 

traffic stream and; consequently, the rate of catch-up is reduced. On the other hand, as more vehicles 

join the queue, the desire-to-overtake and therefore the overtaking rate (number of overtakes per unit 

of distance per unit of time) is increased. However, there is an equilibrium point at which the 

overtaking rate equates the catch-up rate. Figure  2-2 illustrates the overtaking/catch-up rate and the 

equilibrium point. 

The platoon generation model is aimed to determine the equilibrium average size of platoons for 

each traffic direction based on two-directional traffic volumes. This reduces the warm-up time of the 

simulation to reach the equilibrium point in traffic. In this research, we adopt the platoon generation 

model proposed by Miller (1967). It is noted that the actual platoon size, as obtained from simulation 

outputs, depends on traffic composition as well as the underlying simulation models and their 

parameters (specifically those related to overtaking gap-acceptance), which can be different from the 

initial generated platoon patterns. 
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Figure  2-2-Catch-up/overtaking rate versus extension of queue in a two-way traffic stream 

(reproduced from McLean, 1989) 

Based on Miller’s model, the average platoon size of   (veh) is given by: 

             Eq. 2-1 

where, z is a model parameter such that: 

  
      

 (   )
 Eq. 2-2 

where, 

   traffic density in the analysis direction (veh/m) 

   overtaking rate (overtakings/h) 

   proportion of the road occupied by vehicles 

   standard deviation of vehicles speed (m/s) 

In Miller’s model, the overtaking rate was estimated based on the Swedish rural two-lane data for a 

given opposing direction traffic volume of  , such that: 
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              Eq. 2-3 

The proportion of road occupied is obtained as: 

     Eq. 2-4 

where,  

   average distance between vehicles in the platoon including vehicle length (m) 

Each vehicle is assumed to occupy its own length plus a headway distance to the rear of the vehicle 

ahead. This assumption is consistent regardless whether or not the vehicle is single or a part of the 

platoon. Therefore,   can be calculated as: 

        ̅  Eq. 2-5 

where,  

   average vehicle length (m) 

   average speed of platoon (m/s) 

  ̅   average time headway between vehicles in the platoon (s) 

Substituting Eq.  2-5 in Eq.  2-4 provides: 

   (      ̅ ) Eq. 2-6 

 Substituting Eq.  2-6 and Eq.  2-3 in Eq.  2-2 and then in Eq.  2-1, the average platoon size is given by: 

       
   

           (   (      ̅ ))
 Eq. 2-7 

The traffic density can alternatively be expressed as: 
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 Eq. 2-8 

where, 

   traffic volume of the analysis direction(veh/s) 

Figure  2-3 shows the average size of platoon versus volumes for three opposing traffic volumes ( ) 

for the variables values presented in Table  2-1. 

 

Figure  2-3- Mean platoon size vs. volume for three opposing volumes 

 

Table  2-1-SampleinputvariablesforMiller’splatoongenerationmodel 

 ( )   ̅ ( )  (    )  (    )        
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2.3.2 Headway generation model 

Depending on average input volumes, the headway generation model in OTSIM determines the initial 

time headways between the individual vehicles when they enter the simulation. For a given average 

platoon size of  , the proportion of free vehicles in the traffic stream would be    . The initial status 

of a generated vehicle (free-flow or following in platoon) can be determined using a uniformly 

distributed random variable          such that: 

{
                                                                      

                                                                 
 

In addition, the total time headways must equate the sum of headways of all vehicles such that: 

    

 
   ̅ (  

 

 
)    ̅ 

 

 
 Eq. 2-9 

where, 

  ̅  mean time gap headway of free vehicles 

From the above equation, the mean time headway between platoons can be obtained as: 

  ̅  
    

 
  (   )  ̅  Eq. 2-10 

The time gap between platoons (free vehicles) can be represented by a shifted exponential distribution 

with mean of   ̅  and minimum value of     , i.e.: 

{
 (   )       ( 

      

       ̅ 
)                        

 (   )                                                                 

 Eq. 2-11 

Based on the above distribution, a randomly distributed headway variable ( ) can be generated as: 

         (   )(  ̅      ) Eq. 2-12 

where, as previously defined,          
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2.3.3 Proportion of vehicle types 

Three classes of vehicles are included in the OTSIM simulation model: Passenger cars, Recreational 

Vehicles (RVs), and Trucks. The percentage of each vehicle type in traffic stream needs to be 

inputted. A uniformly distributed random variable          can be used to determine the type of 

randomly generated vehicle based on vehicle proportion specified by the user, such that: 

{
 
 

 
 

                                                                                       

                                                                                

                                                                  

 
                                                                       

 

where,         is the proportion of vehicle type  . 

2.4 Vehicle Characteristics and Performance 

The physical characteristics of the vehicles in OTSIM include vehicle length, vehicle mass, and 

engine power parameters. Figure  2-4 illustrates a vehicle (here truck) ascending an up-grade with the 

corresponding forces applied to it. The equation of motion for this vehicle is given by: 

 
  

  
                 Eq. 2-13 

where,  

    tractive force (N) 

    air resistance (N) 

    rolling resitance (N) 

   vehicle mass (kg) 

   acceleration due to gravity (9.8 m/s2) 

   vehicle speed (m/s) 

   grade angle(degree) 

 

The pulling force is given by: 

 

   
 

 
 Eq. 2-14 
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𝜃 
 

Figure  2-4- Forces on a vehicle ascending an upgrade (reproduced from McLean, 1989) 

where,   is the utilized power in Watt. Drivers usually use the maximum power for a performance-

limited vehicle, e.g. trucks, on an up-grade (McLean, 1989). 

The air resistance can be expressed as (McLean, 1989): 

             Eq. 2-15 

where,  

    drag coefficient (dimensionless) 

   projected frontal area (m2) 

   air density (kg/m3) 

The drag coefficient (  ) is a dimensionless quantity that is used as a measure of vehicles resistance 

against air.  The more aerodynamic vehicle, the less drag coefficient it takes. 

The rolling resistance can be approximated as: 

      g Eq. 2-16 

where, 

    rolling resistance coefficient (dimensionless) 

The rolling resistance coefficient is a function of tire wear and pavement conditions. 

Substituting Eq.  2-14, Eq.  2-15, and Eq.  2-16 in Eq.  2-13 provides: 

   

   

   

     𝜃 
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 ⏟    
  

             
Eq. 2-17 

The value of 
 

 
 is known as power to mass ratio. When the forces are in equilibrium(

  

  
  ), the 

vehicle gets an equilibrium speed of    which is also known as crawl speed. 

In simulation of vehicles dynamics, Eq.  2-17 can be used to calculate the instant vehicle acceleration 

for a given speed of   and a grade angle of  . For passenger cars and RVs, Eq.  2-17 can be 

approximated with a linear relation between acceleration and the vehicle speed: 

  

  
   (  

 

  
)      (𝜃) Eq.  2-18 

where, 

    maximum acceleration at zero speed (m/s2) 

    maximum speed attainable (m/s) 

Table  2-2 presents a list of physical characteristic of four types of passenger-car vehicles with their 

corresponding specifications used in OTSIM. For each set of parameters listed in Table  2-2, Eq.  2-17 

was solved numerically to estimate passenger-cars speed profiles. Then, the best estimates of    and 

   parameters was determined by fitting Eq.  2-18 to the speed curves (Figure  2-5). The list of the 

parameters obtained for the regression analysis for four passenger-cars is presented in Table  2-3.  

Table  2-2- Updated passenger-car physical specifications used in the simulation model 

 (Source: www.carfolio.com) 

Vehicle 

type 

Engine size 

(cc) 

Power 

(watt) 

Mass 

(kg) 

Frontal Area 

(m
2
) 

Drag 

Coef. 

Rolling 

Coef.  

Length 

(m) 

1 3000 177000 1706 2.12 0.3 0.14 5.5 

2 2000 114000 1400 2.19 0.27 0.14 5.2 

3 1800 88000 1370 2.19 0.27 0.14 4.9 

4 1600 77200 1255 2.22 0.3 0.14 4.3 
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Table  2-3- Passenger-car parameters for Eq.  2-18 as obtained from the regression analysis 

Vehicle 

Type 
am(m/s

2
) vm(m/s) 

1 6.4 55.5 

2 5.6 47.6 

3 4.7 42.5 

4 4.6 40.1 

 

The list of physical parameters for the four types of recreational vehicles is presented in Table 2-4. 

 

Table 2-4- Recreational vehicle (RV) performance parameters used in OTSIM (Allen et al., 

2000) 

Vehicle 

Type 
am(m/s

2
) vm(m/s) Length (m) 

1 4.3 38.1 11 

2 3.8 36.6 8.5 

3 3.4 35.1 6.4 

4 2.7 33.5 9.8 

 

Table  2-5 provides the list of physical parameters used for four truck types in OTSIM.  

 

Table  2-5- Truck physical parameters used in OTSIM (Allen et al., 2000) 

Truck 

Type 

Power/Mass 

(W/kg) 

Mass/Frontal 

Area (kg/m
2
) 

Rolling Coef. 

(m/s
2
) 

Length(m) 

1 7.2 3329.9 0.08 19.8 

2 9.3 2255.7 0.08 19.8 

3 11.7 1660.1 0.08 19.8 

4 21.6 849.6 0.08 9.1 



 

 17 

 

 

Figure  2-5-Passenger-car speed curves  

2.5 Desired Speed 

In micro-simulation models, for highway traffic, the desired speeds are usually obtained from a 

truncated normal distribution. Users can specify the mean and standard deviation of the distribution 

plus a minimum and maximum value set to avoid generating very low and very high speeds. In 

OTSIM, the mean desired speed can be set by users based on field data or the speed limit for each 

class of vehicles. McLean (1989) found that a normal distribution with mean speed between 90 and 

100 km/h and coefficient of variation between 0.11 and 0.14 can represent the distribution of desired 

speeds of vehicles on two-lane highways. In OTSIM, the default coefficient of variation of speed is 

set to be 0.12; however, users can specify any value for the standard deviation of desired speed based 

on field observations. 
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In generating random desired speed from the assumed distribution, the following criteria must be 

checked to ensure that the desired speed is attainable according to the vehicle engine performance; 

i.e., (Tapani, 2005): 

 

 
      

       
Eq.  2-19 

 

where, 

  = generated free-flow (desired) speed 

Figure  2-6 shows the distribution of free flow speeds for passenger cars obtained from a two-lane 

highway in Italy (SS18 highway near Amantea CS). The distribution of passenger cars appears to be 

normal with a mean value of around 89.7 km/h and standard deviation of 17.6 km/h. A similar 

distribution can be assumed for trucks; however, the distribution of trucks free-flow speeds under a 

mandated speed limiter does not follow the normal distribution. This is further discussed in  Chapter 5. 

 

Figure  2-6– Distribution of passenger car speeds for a two-lane highway in Italy 

2.6 Road Data 

The road data consist of geometric information such as road length, width, elevation, grade 

percentage and location of passing/no-passing zones. Horizontal curvatures are not included in 

OTSIM. The percentage grade is convertible to angle unit as: 
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𝜃       (
      

   
) Eq. 2-20 

where, 

       road slope in percentage 

𝜃   road slope in angle 

It is known that truck performance is highly dependent on the road segment grade. Figure  2-7 

illustrates how truck speed declines from 110 km/h to the crawl speed on a 3% and 6% upgrade for 

four types of trucks used in OTSIM. 

In the road data entry menu, users can specify the no-passing zone segments. In the real world the 

no-passing zones are marked by solid lines on the pavement. In the model, the vehicles do not 

overtake if they are located in the no-passing zones of the highway. The no-passing zone marking is 

normally determined according to available passing sight distance based on criteria provided in 

Manual on Uniform Traffic Control Devices (MUTCD, 2006).  

 

Figure  2-7- Truck speed decline on 6% and 3% upgrade segments 

2.7 Driving Regimes 

Three driving regimes consisting of free-flow, car-following, and overtaking are considered for 

simulating vehicle movement on two-lane highways in OTSIM. Depending on the position and speed 

of the simulated vehicle and its surrounding vehicles, the driving regime for each simulation time step 
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is determined and the corresponding acceleration/deceleration is calculated. In the following sections, 

the description of each driving regime and the underlying simulation models are presented.  

2.7.1 Free-flow 

In this mode of driving, drivers accelerate/decelerate to achieve their desired speed. In this situation, 

no interaction occurs between the simulated vehicle and the other surrounding vehicles. The amount 

of acceleration employed is a function of speed differential between the target desired speed and the 

current speed of the vehicle such that: 

     ( )      ( ) Eq. 2-21 

where, 

    desired speed of vehicle  

 ( )   current speed of vehicle 

The actual acceleration employed is given by: 

    ( )      (    ( )       ( )) Eq. 2-22 

where, 

      maximum acceleration available at speed  ( ) 

   calibration parameter 

For passenger cars and trucks, the maximum available acceleration at time   and instant speed of  ( ) 

can be determined from the following equations: 

    
   ( )    (  

 ( )

  
) Eq. 2-23 

    
     ( )  

 

 

 

 ( )
    ( )           Eq. 2-24 
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Figure  2-8 presents speed and acceleration profiles of a simulated vehicle starting from stop position 

accelerating up to 90 km/h for      .  

 

Figure  2-8- Acceleration to desired speed of 90 km/h for k=0.3 (free-flow regime) 

2.7.2 Car-following 

Two types of car-following models are used in OTSIM. The car-following model adopted for normal 

driving is borrowed from the Gipps model (Gipps, 1981). The second car-following model embedded 

in OTSIM is used for simulation of adaptive cruise control (ACC) system. This model is discussed 

and used in the investigation of ACC effect on overtaking in  Chapter 6. The Gipps model is a safety 

distance (collision avoidance) model. The model is based on the logic that drivers always keep a safe 

headway such that they can stop without colliding if the preceding vehicle comes to a sudden stop. 

Table  2-6 presents the notations used in this model. The speed of the following vehicle (  ) during 

time         can be determined as: 

  (   )        
 (   )   

 (   )  Eq. 2-25 

where, 

  
 (   )    ( )       

    (  
  ( )

  
)√      

  ( )

  
 Eq. 2-26 

and 
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 (   )    

     √(  
    )    

   [      ( )          ( )    ( )  
    ( )

 

 ̂   

] Eq. 2-27 

Table  2-6- Gipps car-following model parameters definition and notations 

   Position of the following vehicle( )  

   Speed of the following vehicle(   ) 

     Position of the lead vehicle( ) 

     Speed of the lead vehicle(   ) 

  
    Maximum desired acceleration of the following vehicle (    ) 

  
   <0 Maximum desired deceleration of the following vehicle, (    ) 

 ̂    Estimation of max. desired deceleration rate of the lead vehicle (    ) 

  desired distance to the lead vehicle while standing (front to end) 

     length of the lead vehicle, ( ) 

   Desired speed of the following vehicle (   ) 

  Reaction time of the following vehicle, ( ) 

 

One of the advantages of the Gipps model is that the model parameters are associated with physical 

characteristics of vehicles and behavioral characteristics of drivers. As long as reasonable values are 

assigned to these parameters the model can be an acceptable reflection of real car-following behavior 

(Panwai and Dia, 2005). The calibration results for the car-following model are reported in  Chapter 3. 

2.7.3 Overtaking 

The overtaking maneuver refers to the situation when the following vehicle driver in the traffic stream 

decides to pass the lead vehicle using the opposing lane.  Figure  2-9a provides an overtaking situation 

snapshot.  The overtaking vehicle (also referred to as the following vehicle or FV) overtakes the lead 

vehicle (or LV). The third vehicle of interest in this process is the on-coming or opposing vehicle 

(OP). Based on the current available gap (D), the FV driver checks whether initiating an overtaking is 

safe or not. This means whether it is possible to pass the slower moving vehicle(s) and return back 

before the OP reaches some critical spacing or the geometric sight distance ends. Figure  2-9b 

illustrates the overtaking maneuver in a time-space diagram. In this demonstration, there are five 

operational stages for overtaking namely catch-up, desire-to-overtake, acceptance or rejection of the 
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gap, passing, and return to travel lane. Next, we elaborate on these five operational stages and 

introduce their underlying modeling relationships. In the remaining of this thesis, the “following 

vehicle” (FV) and the “lead vehicle” (LV) terms will be used interchangeably as the “overtaking 

vehicle” and the “overtaken vehicle”, respectively.  
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Figure  2-9- a) An snapshot of vehicles involved in an overtaking decision process b) Time-space 

diagram of an overtaking maneuver consisting of five sequential stages 

The following rules are used in OTSIM overtaking logic: 

1- The drivers cannot overtake if the vehicle is in an overtaking restriction zone (solid single or 

double lines). 

2- A vehicle cannot overtake if it is being overtaken. 

3- A vehicle cannot overtake if the vehicle in front is overtaking. 

4- The travel speed of vehicles before and during the overtake can exceed the speed limit.  
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2.7.3.1 Catch-up, desire-to-overtake, gap-acceptance 

The catch-up stage refers to the time interval during which the FV approaches the slower moving LV 

and matches its speed in a car-following state. The catch-up stage normally takes place prior to 

initiating the overtaking. However, in flying overtakes this stage can be partially or fully skipped; i.e., 

the FV does not slow down to the speed of LV and passes the LV with its initial speed. The distance 

to the LV, from which the speed of FV begins to be impeded by the lower speed of LV and 

deceleration is required, can be estimated using a simple motion equation as (Tapani, 2005): 

     
      ( )  

(  ( )      ( ))
 

   
      

         Eq. 2-28 

where: 

    catch-up distance (m) 

  
        desired deceleration rate of the FV (m/s2) 

  
   desired following time headway of the FV (s) 

         operating speed of the FV and LV respectively at a given point in time (m/s) 

After this stage the FV keeps desired time headway of   
  to the LV. Following catch-up, a “desire-

to-overtake” can be triggered by comparing LV operating speed to FV driver’s desired speed, and 

estimating: 

     
         Eq. 2-29 

where,   
    is the desired speed of the FV (a function of driver attributes) and      is the “actual” 

operating speed of the LV. We assume that FV driver will consider overtaking if    exceeds a pre-set 

speed differential or threshold (      ).  In OTSIM a default value of 8 km/h is used for        as 

reported by Kim and Elefteriadou (2010).  

After this stage the driver considers overtaking the slower vehicle in the traffic stream if suitable 

gaps become available. This decision is central in modeling the overtaking maneuver and will be 

discussed in detail in the next chapter. Based on the position of the vehicle in the platoon, the initial 

decision can be overtaking of a single or multiple vehicles in the traffic stream. Once the gap is 

accepted the overtaking vehicle moves to the opposing lane and accelerates to pass.     
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2.7.3.2 Passing and return  

When the gap in the opposing direction is accepted, the driver pulls out to the opposite lane and 

accelerates to his/her desired overtaking speed (usually higher than normal desired speed) to pass the 

slower vehicle ahead. The overtaking vehicle continues its path in the opposing lane until a safe time 

gap between the rear bumper of overtaking vehicle (FV) and the front bumper of overtaken vehicle 

(LV2) is available to return back. At this point (whether or not the initial gap-acceptance decision was 

to overtake single or multiple vehicles) the driver checks the gap between the overtaken vehicle 

(already passed) and any other possible vehicle in front (second potential overtaken vehicle, LV1). 

This gap is named as the return or pull-back-gap (    ). Depending on      size, overtaking vehicle 

may react differently (return back, continue, abort overtake). Figure  2-10 illustrates the overtaking 

vehicle in four situations of return back and the corresponding possible decisions as discussed below.  

FV

LV2

OP

LV1
Gret

FV

LV2

OP

LV1
Gret

a) Not sufficient pull-back gap (Gret<Gmin), next overtaking is unsafe: overtaking must be aborted

b) Not sufficient pull-back gap(Gret<Gmin), Next overtaking is safe: another overtaking must be undertaken

FV

LV2 LV1
Gret

c) Sufficient pull-back gap for return or considering the second overtake (Gmin<Gret<Gmax)

FV

LV2 LV1
Gret

d) Very large pull-back gap (Gret>Gmax), vehicle must return back to normal travel lane

LV1: First vehicle in platoon, LV2: Second vehicle in platoon, FV: Following (overtaking) vehicle, OV: Opposing vehicle
 

Figure  2-10- Possible decision situations at the return back position 
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If      is shorter than a minimum safe return gap (    ) then the driver must either overtake the 

next vehicle if it is safe to do so (situation “a”) or abort overtake because there is not enough safe 

space to return and second overtake is unsafe (situation “b”). However, if      is larger than      and 

shorter than a max value (    ), the overtaking vehicle may return back or consider the second 

overtaking (situation “c”). In this situation, if the overtaking driver has desire-to-overtake the second 

vehicle (refer to desire-to-overtake condition) and the gap-acceptance decision is to pass, the next 

overtake occurs. In this case, the second overtake can be treated as a flying overtake since the 

overtaking vehicle is already in the opposing lane and the catch-up stage is skipped. However, if there 

is no further desire-to-overtake or the next available gap is rejected, the vehicle returns back to its 

normal travel lane. If the distance to the next slow moving vehicle is larger than      (situation “d”), 

the overtaking vehicle returns back to the normal travel lane and any future overtake will be 

considered later down the road.  

Figure  2-11 illustrates the decision flowchart that is discussed in above. When the driver returns 

back to the normal travel lane he/she slows downs to the normal desired travel speed. 

 

Calculate gap 
available to pull-

back (Gret)

No
Return gap is 

safe enough to 
pull back?

(Gret>Gmin)

Another 
overtaking is 

safe?

Overtake next vehicle
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Yes No

Yes

No

Yes

Yes

No

Return gap is 
shorter enough to 
consider another 

overtake?
(Gret<Gmax)

Return 
back

Another overtake is 
desired and safe?

 

Figure  2-11- Passing process decision flowchart 
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2.7.3.3 Abort 

In situations where continuing overtake is not safe, the overtaking vehicle will abort the maneuver 

by using appropriate deceleration. The overtaking vehicle continues to decelerate until a safe 

headway between its front bumper and the rear bumper of the overtaken vehicle is available. The 

employed deceleration rate and the return headway are calibration parameters associated with this 

process. One of the abort situations was discussed in the above section. In addition, during the passing 

phase if continuing overtaking becomes unsafe the logic considers to abort the overtake. This check is 

done up to the abreast position. 

2.8 Simulation Platform 

OTSIM was implemented in MATLAB programming environment. The software makes use of 

Graphic User Interface (GUI) for entering the simulation input data, animation of micro-simulation, 

and presenting the simulation outputs. Separate post-processing software is developed to analyze the 

simulation log data and provide detailed specific output results. OTSIM makes use of maximum 20 

simulation random seeds. Each random seed consists of series of random generation numbers that 

create stream of pseudo random numbers for generating traffic and driver attributes including traffic 

flow, desired speeds, vehicle composition, and drivers’ aggression level. The evaluation of traffic and 

safety outputs are normally based on an average of 10 to 20 runs depending on the variance of the 

output variable, the desired confidence level, and an acceptable error value. 

Figure  2-12 proposes the overall simulation flowchart used in OTSIM. The following steps are 

executed during the simulation run: 

1) Generate random traffic and vehicle/driver attributes (   ). 

2) For every time increment (1s) the following steps are carried out until the simulation stop time is 

reached (      ):  

a) Load a vehicle to the road if it is time to do so. 

b) For each vehicle   currently on the road (        ) update the acceleration, speed, and 

position of the vehicles based on the vehicle status   ( :Free, Following, Overtaking, 

Aborting).  

c) Remove the vehicle from the road if it has reached end of the road. 

d) Update the graphical animation. 

3) Log the output results if requested. 

The following pseudo code represents the sequence of algorithm execution: 
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For     to        

 For     to     

  Case   

   “Free” 

    Acceleration to desired speed 

    Switch to “Following” or “Overtaking” if conditions are met 

   “Following” 

    Acceleration/Deceleration based on GHR car-following formula 

    Switch to “Overtaking” or “Free” if conditions are met 

   “Overtaking” 

    Acceleration to desired overtaking speed 

    Switch to “Free” or “Abort” if conditions are met 

   “Aborting” 

    Deceleration using abort deceleration rate 

    Switch to “Free” if conditions are met 

  End 

 End 

End 

At each simulation time step, depending on the vehicle’s status (free-flow, following, overtaking, 

or aborting), an appropriate acceleration/deceleration is calculated for the corresponding driving 

regimes, and the position of the vehicle is then updated. In addition, at every time step, conditions are 

checked as whether switching from a driving regime to another regime is necessary. Figure  2-13 

illustrates this process using a state flow diagram. Conditions for transition between different states 

are indicated on the links connecting two states. The triangular bubbles present the corresponding 

actions (e.g. acceleration/deceleration) associated with each driving regime.  

The diagram illustrates that free-flow state can change to car-following or overtaking states. For the 

first case the following vehicle slows down to catch-up to the speed of the lead vehicle while for the 

latter case the following vehicle fly-overtakes the lead vehicle without reducing its speed. The 

overtaking state may lead to free-flow state when the maneuver is successfully finished or to abort 

state when continuing overtaking is unsafe. Car-following can be switched to overtaking if the gap is 

accepted or to free-flow state if the lead vehicle departs the road or changes lane (overtake). 
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Figure  2-12- OTSIM simulation flowchart 
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Figure  2-13- The transition process between the driving regimes 

2.9 Conclusion 

In this chapter, the overall structure of the proposed two-lane simulation model (OTSIM) was 

discussed in detail.  The traffic generation model including platoon and headway models were 

presented and the corresponding model parameters were introduced. Vehicle performance parameters 

for passenger-cars, recreational vehicles and trucks were determined and the underlying motion 
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equations were presented. In OTSIM, a normal distribution was assumed to generate vehicles desired 

speeds. The road data in OTSIM presents the segment grade as well as passing and no-passing zones. 

The truck performance on upgrade was simulated for a sample truck and segment grade. As shown, 

OTSIM consists of three behavioral driving models listed as free-flow, car-following and overtaking. 

The overtaking process was broken down to a number of phases and the underlying relationships and 

mathematical formulations were presented. Finally, a large view of the simulation algorithm and its 

flowchart were illustrated and switching conditions between driving regimes were discussed. In the 

next chapter, the discussions will mainly focus on the development and the calibration of the 

overtaking gap-acceptance model introduced as part of the overtaking process in this chapter. 
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Chapter 3 

Overtaking Gap-acceptance Model 

3.1 Introduction 

As discussed in the previous chapter, the gap-acceptance decision is a part of the overtaking process, 

where the following vehicle finds a sufficient gap in the opposing traffic and decides to pass the 

slower lead vehicle in the traffic stream.  The purpose of this chapter is to develop and calibrate a new 

mechanistic (physical) overtaking gap-acceptance model for application to two-lane highways. The 

structure of this model is such that it can more easily be calibrated and validated than the existing 

models from observational overtaking data. Unlike previous models, the proposed gap-acceptance is 

based on the driver’s perception of safe separation between overtaking and opposing vehicles after 

the overtaking maneuver has been completed. This includes the perception of overtaking distance into 

the decision logic. Because the gap-acceptance decision is made at the beginning of the maneuver, 

this separation needs to be perceived by the overtaking driver at the beginning of the maneuver, based 

on incomplete traffic information.  Hence this unknown perceived overtaking gap is subject to 

estimation error that needs to be taken into account in the model. The content of this chapter is 

published in Ghods and Saccomanno (2013a). 

3.2 Overtaking Gap-acceptance Behavior  

An appreciation of how overtaking drivers respond to the size of available gaps in the opposing traffic 

stream is central to modeling the overtaking process. The overtaking gap is defined as the separation 

distance of the overtaking vehicle from the first opposing vehicle (if any) at the moment the gap 

becomes available given the driver has desire-to-overtake.  

McLean (1989) noted that the gap-acceptance logic for overtaking (similar to street crossing gap-

acceptance) can be categorized into two basic behavioral assumptions: consistent and inconsistent 

gap-acceptance. In the case of consistent behavior, it is assumed that each driver has a critical 

minimum acceptable gap (critical gap). These critical gaps are ascribed to individual drivers based on 

an assumed probability distribution (e.g. normal or log-normal). More aggressive drivers have shorter 

critical gaps. In this assumption, the decision to accept or reject a gap is assumed to be deterministic, 

based on gaps shorter or longer than critical. The consistent behavior refers to “between-driver” 

variability.   
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Figure  3-1- Three models of overtaking gap-acceptance behavior (reproduced from McLean 

1989) 

For inconsistent behavior, however, drivers will accept or reject gaps within some level of 

“behavioral” variability or uncertainty, such that, a particular driver responds to an available gap 

stochastically.  This can be modeled through an assumed gap-acceptance probability such that the 

longer the gap, the greater the probability of acceptance.  The inconsistent behavior refers to “within-

driver” variability. Figure  3-1 illustrates the concept of overtaking gap-acceptance behavior. The 

nature of parameters underlying these models will need to be established from observational gap-

acceptance data. In practice, the drivers’ gap-acceptance overtaking logic lies somewhere between 

inconsistent and consistent behavioral assumptions (Figure  3-1-behavioural model). However, unlike 

stream crossing gap-acceptance behavior, the consistent behavior appears to be more dominant in 

overtaking mainly due to the larger impact of vehicles’ performance in the overtaking maneuver, 
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which reduces the tendency of drivers to change their aggression level very frequently (McLean 

1989). In addition, unlike stream crossing, there is less social pressure from other vehicles in the 

platoon to encourage the driver to overtake aggressively because overtaking gap-acceptance is an 

optional choice for drivers (McLean 1989). Although these statements are valid, drivers usually tend 

to become more aggressive in accepting shorter gaps as their following time behind a slow moving 

vehicle is increased (Koorey, 2007). However, considering both between and within drivers’ 

variability, in a more complex model structure, requires more extensive field data for calibration and 

validation. This has been a challenge since overtaking can occur anywhere on a road section, where 

information regarding the past gap-acceptance and following time circumstances are unknown. 

3.3 Previous Models 

Various methods have been investigated for modeling the overtaking gap-acceptance logic and its 

application in traffic simulation. As compared to car-following or lane-changing models, however, it 

has been difficult to provide specific calibration parameters for overtaking gap-acceptance due to 

complexity of the process and lack of suitable vehicle tracking and overtaking data for two-lane 

highways for model validation. In this section of the chapter we briefly review several major 

microscopic traffic simulation models that have been developed for application to two-lane highway 

operations including: TWOPAS (St John and Harwood, 1986; Leiman et al., 1998), TRARR 

(Troutbeck, 1981; Shepherd, 1994; Hoban et al., 1991), and VTI (Ahman, 1972).  

TWOPAS was developed by MRI (Midwest Research Institute) in the early seventies and was 

modified by Leiman et al. (1998) under the name of UCBRURAL. This model was applied to 

estimate two-lane highway capacity and level-of-service in the Highway Capacity Manual (HCM) 

(TRB 2000).  TWOPAS has also been applied in the Interactive Highway Safety Design Model 

(IHSDM) (Paniati and True, 1996) as a Traffic Analysis Module (TAM). The overtaking logic in 

TWOPAS is probabilistic in nature and is based on gap-acceptance probability functions for a number 

of overtaken vehicle speeds and available sight distance types limited by opposing vehicle or 

geometry (Figure  3-2). The probability functions in TWOPAS were determined from empirical 

overtaking data collected in the early seventies (Harwood et al., 1999). In this chapter the output 

results of the proposed overtaking gap-acceptance logic will be compared to those of TWOPAS. 
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(a) 

 

(b) 

Figure  3-2- Gap-acceptance probability function used in TWOPAS: (a) Sight-distance-limited 

(b) Opposing-vehicle-limited (Source: St John and Kobett, 1978 from McLean, 1989)  

TRARR was developed by the Australian Road Research Board (ARRB) as a research tool for the 

design of passing lanes in level highway segments (Hoban et al., 1991; Lovell et al., 1993). The 

overtaking logic in TRARR is deterministic and the decision to overtake is based on the available 

overtaking time gap multiplied by a vehicle-specific safety factor. A driver aggressiveness factor is 
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assigned to each vehicle such that drivers do not overtake when their aggression level is lower than 

that for any driver vehicle(s) in the lead position(s). Hegeman (2004) reported that the application of 

TRARR in the Netherlands resulted in higher overtaking frequencies or rate when compared to field 

observations. In this chapter, the application of the proposed overtaking gap-acceptance logic will be 

compared to results from the Netherlands data. 

The VTI model was developed to analyze traffic behavior for rural two-lane highways in Sweden. 

The stochastic overtaking logic of VTI is generally more advanced than either TWOPAS or TRARR. 

It accounts formally for a large number of factors affecting overtaking, such as, type of overtaking 

(flying or accelerated), available gap with opposing vehicles, type of overtaken vehicle (car or truck), 

road cross-sectional width and grade, etc.  A total of 32 combinations of these factors are considered 

by VTI for which a separate gap-acceptance versus gap size function was developed. Figure  3-3 

illustrates some of the gaps acceptance curves originally developed for the VTI model. As can be 

expected, given the large number of factors that could affect overtaking, the VTI model requires a 

significant amount of field data for calibration that accounts for the full spectrum of overtaking 

situations (combination of factors). A modified version of VTI known as RuTSim is proposed in 

Tapani (2005) for two-lane highways by adding intersection control logic to the simulation 

framework; however, the same VTI overtaking model was used. The application of RuTSim for 

overtaking assistance systems is used in Hegeman et al. (2009). 

Among other models, Farah et al. (2009a) used a critical gap-acceptance concept and a binary 

choice Logit model in their proposed gap-acceptance logic. The critical gap for an overtaking vehicle 

was determined based on traffic variables, road geometry, and driver characteristics as obtained from 

a driving simulator. In this work, limited traffic and road conditions were evaluated and the validity 

of simulator data may have introduced some bias into the model results. In Farah et al. (2009b) a 

regression model was developed to link overtaking time-to-collision (TTC) with respect to opposing 

vehicles for different assumed road, traffic, and driver characteristics, as obtained from a driving 

simulator. 

Recently, Li and Washburn (2011) implemented a two-lane highway simulation algorithm into 

CORSIM model (Halati et al., 1997). The overtaking decision in this model is based on comparing 

available gaps with estimates of safe passing sight distances (PSD) as proposed by the AASHTO  
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Figure  3-3- Gap-acceptance probability function for accelerative and flying overtake for two 

overtaking gap types originally developed for the VTI model (Source: Ahman, 1972 from 

McLean, 1989) 

Green Book (AASHTO, 2004). This approach, although simple to implement, does not make use of 

any overtaking field data for calibration nor does it propose a new behavioral overtaking logic. In 

addition, a number of studies have reported that PSD values in AASHTO are very conservative for 

application to overtaking behavior (Harwood et al., 2008). Although the proposed model is also able 

to use the Manual of Uniform Traffic Control Devices (MUTCD) PSD values, there has not been any 

attempt to show which one may yield more realistic results. Similarly, Kim and Elefteriadou (2010) 

used AASHTO Green Book guidelines to develop an overtaking simulation model known as 

TWOSIM for application to two-lane highway capacity analysis.  

The review of current overtaking gap-acceptance models indicates that challenges in modeling 

overtaking maneuver is related to linking decision to overtake to available gaps in different road, 

traffic, vehicles, and driving conditions.  Unlike other driving regimes such as car-following or lane-

changing, it has been difficult to specify model parameters for the overtaking gap-acceptance model. 

This is mainly due to separate involvement of factors influencing gap-acceptance behavior, in the 
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simulation logic. Given the number of these factors and their range of likely values, any updates to 

these models would require extensive overtaking field data that is difficult and expensive to obtain.  

3.4 OTSIM Overtaking Gap-acceptance Model 

The gap-acceptance logic in OTSIM takes a mechanistic view of the overtaking process (established 

on motion physical laws). In principle we would expect that the overtaking decision depends on the 

overtaking driver’s perception of the residual gap separating the overtaking vehicle from the opposing 

vehicle after the maneuver has been completed as perceived by the overtaking driver prior to 

initiating the overtaking maneuver. It is reasonable to assume therefore, that the overtaking driver 

needs to be cognizant of this “safe separation” in order to avoid a potential head-on crash with the on-

coming vehicle.   

Unlike previous models that use the available gap to the opposing vehicle or maximum sight 

distance at the beginning of maneuver in the decision logic, in OTSIM the decision to overtake is also 

dependent on a prediction (perception) of the driver’s overtaking distance prior to initiating the 

maneuver and estimate of distance travelled by the opposing vehicle during the overtaking time. The 

inclusion of overtaking distance in the decision logic can systematically take into account a number of 

overtaking conditions that may occur at different speeds and composition of vehicles (with different 

physical attributes) involved in overtaking. This logic is established based on estimate of the 

perception of the residual gap separating the overtaking vehicle from the opposing vehicle after the 

maneuver is completed. This estimate is based on: 1-vehicle dynamics information available prior to 

the maneuver (e.g. speed of overtaking and overtaken vehicles and the distance headway between 

them), 2- estimates of variables that determine overtaking distance (e.g. overtaking acceleration and 

speed profiles), and 3-estimate of distance travelled by the opposing vehicle during the overtaking. 

The difference between the available gap and the distances by overtaking and opposing vehicle 

during the overtaking provide the estimation of the residual gap.  

In this chapter, this separation gap is referred to as the overtaking vehicle’s “time-to-collision” 

or    , a measure that encapsulates a full spectrum of physical variables influencing the gap-

acceptance process. In other words, the perceived     is assumed to combine all physical (vehicle, 

traffic, and driver) attributes that play a role in the overtaking process because it takes into account an 

estimate of overtaking distance in initiating gap-acceptance decision. Finally the perception of TTC 
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will need to exceed some driver specific critical value (threshold) before the gap is accepted and 

overtaking is initiated.  

In the proposed overtaking gap-acceptance logic two measures of     need to be considered: 1) 

that which is perceived by the overtaking driver prior to initiating the maneuver (    ) and 2) the 

actual value that can be calculated after the maneuver is completed (   ). Because it is not possible 

to obtain an estimate of     , we assume that       can be expressed as a random variable with the 

mean of      (the actual overtaking-opposing vehicles separation time) plus a random error term, 

such that: 

where,   is randomly distributed; i.e.,     (    ) 

The assumption of normality and variance of the error term will need to be verified empirically based 

on observed traffic data.  

As noted previously     is a function of the overtaking distance.  As a result, the adoption of     

and      in the overtaking gap-acceptance model can systematically account for physical length of 

vehicles, and type of overtaking behavior, i.e., flying or accelerated as well as single or multiple 

vehicles overtakes. 

3.4.1 Estimation of TTC 

In this section, the “following vehicle” (FV) and the “lead vehicle” (LV) terms will be used 

interchangeably as the “overtaking vehicle” and the “overtaken vehicle”, respectively.  

As illustrated in Figure  3-4, the estimation of TTC involves three sequential overtaking distances 

(or decision phases):   

           Eq.  3-1 
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Figure  3-4- Snapshots of overtaking maneuver phases for TTC estimation. 

  : Distance travelled by the FV from the initial decision-to-overtake point to pull out (beginning of 

the OT maneuver) 

  : Distance travelled by the FV from pull-out to the point where desired overtaking speed is 

achieved, and 

  : Distance travelled by the FV to achieve safe separation with the overtaken vehicle while returning 

to its normal travel lane.  

To estimate      we assume a perception/reaction time of            and a constant initial FV speed 

of   
    such that this vehicle will cover a distance of:  
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       Eq.  3-2 

During this time, the LV is assumed to cover a distance of   
   assuming a constant speed of     , 

such that:  

  
          Eq.  3-3 

To estimate   , the time for FV to pull out and attain its desired overtaking speed (  
      ) is 

estimated to be    (derivation in Appendix A):  

    
    

     
   (

       
      

       
   

) Eq. 3-4 

where, 

  
        desired overtaking speed of the FV 

      maximum achievable speed of the FV (vehicle specific) 

      maximum achievable acceleration of the FV from stopped position (vehicle specific) 

   proportion of maximum acceleration employed by the driver for overtaking 

The distance covered in the interval    is estimated as: 

          
    

     
(       

   )( 
 

     

        ) Eq.  3-5 

and the  corresponding distance traversed by the LV during this     time interval is: 

  
          Eq.  3-6 

To estimate   , the distance covered by the FV in passing the LV and completing the maneuver 

during the interval    is estimated as:   



 

 42 

    =       
       Eq. 3-7 

where,    is obtained from the expression involving headways, length of vehicles, speeds and 

distances,  such that:  

    
                     (        

    
 )

  
           

 Eq. 3-8 

where, 

        initial distance headway between front bumper of the FV and rear bumper of LV 

        distance headway for pull back (rear bumper of FV and front bumper of LV). 

     = length of overtaken vehicle 

   = length of overtaking vehicle 

 

The total overtaking distance and time interval for FV is calculated as  

             

             
Eq. 3-9 

The opposing vehicle (OP) is also assumed to maintain a constant speed of     during the FV 

overtaking maneuver.  During the      time interval, the distance covered by the OP can be calculated 

as: 

            Eq. 3-10 

The difference between the initial separation between FV and OP prior to pull out (main gap,  ) 

and the “closing”  distance covered by these vehicles during the overtaking is the residual distance 

gap (    ).  This gap reflects a “safe” separation distance remaining between the FV and OP after 

overtaking maneuver such that a head-on crash is avoided.       can be estimated as: 
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       (       ) Eq. 3-11 

TTC is basically       in units of time such that: 

    
    

      
       Eq.  3-12 

In those instances where the desired overtaking speed (  
       ) is not achieved prior to the FV 

pull back or return point, we set the end point for distance    to the return point and distance    to  

zero. We note that in the case of multiple overtaking, a contiguous platoon of vehicles (separated by 

short time headway of less than 3s and up to three vehicles) is considered such that all vehicles in the 

platoon are assumed to travel at the same speed of     ( )  and act as a single “undivided” decision 

unit. Hence the FV driver’s initial decision is to overtake all or none of the LV vehicles in the 

platoon. However, this decision may alter during the passing process as discussed in section  2.7.3.2. 

In order to generalize the     for multiple-vehicle overtakes, the term      in Eq. 3-8 is replaced 

with the estimated length of the platoon. This acts to reduce the estimated     resulting in a lower 

overtaking gap-acceptance probability.  

In case of flying overtaking,   
    takes the initial non-reduced operating speed of FV, which is 

normally higher than that of LV. In this case    will be close to zero since the driver has skipped the 

catch-up process and the overtaking desired speed is already achieved. This results in reduced 

overtaking distance and increased    . 

As shown,     encapsulated the traffic and physical factors that might influence overtaking, in a 

single decision variable.  

3.4.2 Procedure for calibration 

In this overtaking model we assume that each driver ( ) has a critical minimum acceptable gap 

(    
    ) for overtaking, which is normally distributed with a mean of    ̅̅ ̅̅ ̅̅      and a given variance 

of   , such that: 

    
        ̅̅ ̅̅ ̅̅         Eq. 3-13 
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where, the error term is assumed to be normally distributed; i.e.,     (    ). 

The parameters of the distribution for     
      in Eq. 3-13 can be determined empirically from 

observed overtaking gap-acceptance data. For accepting a gap, the available        must exceed the 

critical value for the     overtaking driver (    
    ).  

We define the probability that perceived time-to-collision (    ) is accepted/rejected as series of 

FV binary decisions, such that for the     FV in the traffic stream: 

   {
                                   

                                       
 Eq.  3-14 

The probability that the     overtaking driver accepts an available perceived gap of size      can 

be expressed as:  

  (           |   ̅̅ ̅̅ ̅̅        )   (         
    ) 

                                       = P(        ̅̅ ̅̅ ̅̅        ) 

                                       =  (
        ̅̅ ̅̅ ̅̅     

 
) 

Eq.  3-15 

where,  ( ) in the above expression denotes the standard cumulative normal curve of the Probit 

function. This type of relationship has been applied in the literature to a gap-acceptance problem for 

stream crossing by Mahmassani and Sheffi (1981) and Daganzo (1981).  

The overtaking gap-acceptance parameters can be estimated using maximum likelihood method 

such that: 

        ∏  
  

 

   

(    )     

   ̅̅ ̅̅ ̅̅        

Eq. 3-16 

where,   corresponds to the number of vehicles in the traffic stream being considered in “desire-to-

overtake” mode. For a given distribution of        , the gap-acceptance function is defined as the 

probability that a randomly selected driver will accept an available “perceived”     . 
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3.5 Calibration of Gap-acceptance Model 

In this section, details of field data collected for calibration of the gap-acceptance model are 

discussed, and then the results of the model calibration are presented. 

3.5.1 Calibration data 

The overtaking data used to calibrate and validate the gap-acceptance model were obtained from a 

traffic videotaping survey of a 1-km stretch of two-lane highway in Southern Italy (the SS18 near 

Amantea CS).  The videotaping was carried out over a three-hour period on two consecutive 

weekdays. The posted speed limit on this segment of highway was 80 km/h. The segment was 

selected such that overtaking was permitted and geometry did not significantly restrict maximum 

sight distances within the studied segment. The videotaped segment was situated between two short 

tunnels or overpasses. As illustrated in Figure  3-5, two cameras were located approximately 50 

meters above the highway at an offset distance of about 200 meters from the centerline.  Placement 

of cameras was such that driving behavior was not influenced. An average two-way volume of 533 

vph was observed for the first day and 436 vph for the second day.   

 

Figure  3-5- Site characteristics for video recording  

A program was developed by Guido et al. (2013) to extract frame-by-frame video images of the 

trajectory and speed of individual vehicles in 0.1s intervals as they progressed along their travel path. 

The accuracy of the video extraction program was tested based on a sample of GPS equipped 

vehicles. The GPS tracking system which yielded the benchmark vehicle profiles for this test was a 

Trimble® GPS Pathfinder® ProXRT considered accurate within a tolerance of 10 cm.   
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In order to compare the accuracy of the video extraction measures to those obtained from GPS, 

three measures were considered:  X and Y-coordinates for longitudinal and lateral offsets and speed.  

The Root Mean Square Error (RMSE) was estimated using an expression of the form: 

     √
∑(           )

 

 
 Eq. 3-17 

where, 

     = measure obtained from GPS  

       = measure obtained from video image processing algorithm  

  = number of evaluation time intervals 

The RMSE errors are summarized in Table  3-1 for nine test runs. The average RMSE values were 

found to be 1.22 meters for the X position, 1.10 meters for the Y position, and 1.09 km/h for the 

speed. These results indicate a close match between the GPS measures and the video extraction for 

the nine trajectories, and suggest that the extracted video-taped trajectories obtained for the 1km test 

road segment can be used to calibrate the overtaking model in this study. 

Table  3-1- Analysis of errors between vehicle position and speed obtained from video 

image processing software and GPS 

 

For the overtaking model calibration, a total of 97 vehicles trajectories were extracted from the 

three-hour videotaping in which the potential overtaking vehicle (referred to FV) was assumed to be 

Trajectories 
RMSE 

X (m) Y (m) Speed (km/h) 

1 2.12 1.05 0.96 

2 0.63 0.81 0.77 

3 1.28 0.87 1.04 

4 0.75 0.91 1.14 

5 1.09 0.99 1.34 

6 0.93 1.31 1.30 

7 1.30 1.39 1.31 

8 0.99 1.22 0.87 

9 1.85 1.34 1.16 

Average 1.22 1.10 1.09 
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in “desire-to-overtake” mode although not necessarily in the process of overtaking.  To be in desire-

to-overtake at least one of the following two conditions was required: 

· FV accepts an eventual gap within the observed segment after one or more gaps were rejected 

· FV is observed to veer toward the centerline, presumably searching for an overtaking 

opportunity and the headway between the lead and following vehicles is less than 30 meters.  

The latter assumption agrees with findings reported in Hegeman et al. (2005), that the distance 

between overtaking and overtaken vehicles at the beginning of maneuver was distributed with mean 

of 17.8 m and standard deviation of 9.8 m and about 92% of these headways were found to be less 

than 30 m.  The 97 sample trajectories yielded a total of 171 gaps of which 81 were accepted and 90 

were rejected.   

Using Eq.  3-2 to Eq.  3-12, the corresponding perceived time-to-collision was estimated at the 

moment the overtaking gap is available. To estimate      we assumed the following perceived 

parameters to estimate overtaking distance and distance travelled by the opposing vehicle:  

·   
        is assumed to be m (km/h) higher than the speed of overtaken vehicle (    )  

According to Harwood and Sun 2008, the overtaking speed differential ( ) between the FV and LV 

vehicles can be obtained based on the speed of the LV (    ), such that: 

                

  
               

Eq. 3-18 

· Return headway       is assumed to be 1 second as specified by Glennon (1988) 

· Speed of the opposing vehicle     is assumed to be the average speed of the traffic stream as 

observed from the survey (90 km/h). 

·      is 160 km/h for all the vehicles.       was assumed to be 1.82 (m/s2). This value is 

calculated from results of a recent overtaking acceleration study conducted by Brooks (2012) 

The other parameters involved in calculation of      such as  ,       ,       and   
    are assumed 

to be perfectly known by the driver at the beginning of the maneuver.  
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After      is estimated, FV driver’s gap-acceptance decision with respect to the perceived time-

to-collision was recorded as a binary decision variable (0 for Rejected, 1 for Accepted). The results of 

this procedure are presented for a sample of trajectories in Table  3-2.  

Table  3-2- A sample of processed disaggregate overtaking data from video cameras 

 

In this study, it is assumed that gap decisions are independent events, such that for a single driver 

the decision to accept a gap is independent of previous rejected gaps. In reality, the decision to accept 

a gap and overtake is very likely influenced by the number of gaps rejected previously, such that 

overtaking drivers are subject to an impatience factor in the process that builds with the number of 

gaps that have been rejected.  Hence, the higher the number of gaps rejected, the shorter the gap that 

is eventually accepted to initiate the overtaking. In this case, the impatience factor can be represented 

by an addition adjustment term in the critical gap formulation so that Eq. 3-13 and can be revised as: 

    
        ̅̅ ̅̅ ̅̅

      (∑  

 

   

)     Eq.  3-19 

where, 

    time duration of the     gap in the opposing traffic stream given the overtaking desire is triggered 

   number of gaps rejected before the one accepted 

The impatience term  (∑   
 
   ) in Eq.  3-19 could be obtained by observing a sequence of rejected 

gaps for a longer highway segment observed over a more extensive period of time. However, such 

data were not available for this study and hence, this term has not been used in this analysis. 

Vehicle 

#

Gap size 

(m)

Decision 

(0:Reject) 

(1:Accept)

Overtaking 

veh speed 

(km/h)

Overtaken 

veh speed  

(km/h)

Oppossing 

veh speed 

(km/h)

HWinit

(m)

 HWret 

(m)

Max 

speed 

(km/h)

k*MaxAcc

(m/s2)

OT 

desired 

speed 

(km/h)

TOT (s)
DOT 

(m)

DOP 

(m)

Actual 

ResGap 

(m)

Perceived 

ResGap 

(m)

Actual 

TTC (s)

Perceived

TTC (s)

1 328 0 105.5 105.5 90.0 15 25 160 1.82 123.2 9.2 300.9 231.7 NA -204.6 NA -3.4

600 1 105.5 105.5 90.0 15 25 160 1.82 123.2 8.9 292.1 197.3 110.6 167.3 2.0 3.2

2 462 0 90.1 90.1 90.0 22 25 160 1.82 111.7 9.3 271.0 228.4 NA -37.4 NA -0.7

93 0 90.1 90.1 90.0 22 25 160 1.82 111.7 9.3 271.0 228.4 NA -406.4 NA -7.3

211 0 90.1 90.1 90.0 22 25 160 1.82 111.7 9.3 271.0 228.4 NA -288.4 NA -5.2

4 383 0 117.6 77.9 90.0 20 25 160 1.82 117.6 4.2 125.6 95.0 NA 162.4 NA 2.9

800 1 77.9 77.9 90.0 20 25 160 1.82 102.5 8.0 207.2 199.0 592.8 483.9 20.8 18.5

5 800 1 85.5 85.5 90.0 21 25 160 1.82 108.2 8.8 246.4 219.7 553.6 561.0 18.4 18.6

6 800 1 78.4 78.4 90.0 20 25 160 1.82 102.9 9.4 239.7 234.7 560.3 607.8 19.6 20.6

8 800 1 81.0 81.0 90.0 20 25 160 1.82 104.9 7.5 205.4 188.0 594.6 704.9 20.4 22.7

9 80 0 79.2 79.2 90.0 20 25 160 1.82 103.5 8.0 211.4 182.3 NA -313.8 NA -6.1

42 0 79.2 79.2 90.0 20 25 160 1.82 103.5 8.0 211.4 182.3 NA -351.8 NA -6.8

165 0 79.2 79.2 90.0 20 25 160 1.82 103.5 8.0 211.4 182.3 NA -228.8 NA -4.4

620 1 79.2 79.2 90.0 20 25 160 1.82 103.5 8.5 222.0 211.9 398.0 447.9 13.8 14.9

10 476 0 82.3 82.3 90.0 21 25 160 1.82 105.8 8.3 226.9 241.4 NA 7.7 NA 0.1

… … … … … … … … … … … … … … … …
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The error term associated with     , as defined in Eq.  3-1, can be estimated from observations of 

accepted overtaking gaps for which we can calculate      from the traffic data at the end of each 

overtaking maneuver. For the 81 accepted gaps, the difference between the measured valued for the 

    accepted gap at the end of the maneuver (    ) and its perceived value (    
 
) at the beginning 

of the maneuver established the error term. For the     overtaking driver this time difference or error 

in gap perception is estimated as: 

            
 

 Eq.  3-20 

Figure  3-6 illustrates the distribution of perception errors for a sample of overtaking accepted gaps 

in the videotaped data. The mean of the perceived distance and time distributions was found to be 

around zero with corresponding standard deviations of 52 meters and 1.2 seconds, respectively. We 

note that, this is consistent with our assumptions that the error terms for     are approximately 

normally distributed.  

In simulation, however, the complete information about speed of individual vehicles, physical 

variables and overtaking process are known; hence,     can be estimated (from Eq.  3-2 to Eq.  3-12 

using accurate parameters), but the decision to overtake is based on the value of      obtained by 

adding the random error term (as determined above) to the calculated     value. 

 

Figure  3-6- Perception error distribution estimated from observed accepted gaps 
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3.5.2 Calibration results  

For the 171 overtaking gap decisions in the sample, 70% were randomly selected for calibration and 

30% for validation. A generalized linear Probit model based on Eq.  3-15 and Eq. 3-16 was fitted to 

the calibration data with the results summarized in Table  3-3. The mean and variance of         was 

estimated from the traffic data to be 3.0 seconds and       respectivly. These parameters were found 

to be statistically significant at 95% confidence level (p < 0.05). The log likelihood value for this 

expression was found to be -16.35.  

Table  3-3- Parameter estimates for the critical residual gaps based on the Probit model 

Model:          (   ̅̅ ̅̅ ̅̅
      

 ) 

Parameter Estimated Value Standard Error P-value 

   ̅̅ ̅̅ ̅̅
    ( ) 3.0 0.80 0.010 

 ( ) 0.7 0.51 0.003 

Log likelihood = - 16.35 

 

Figure  3-7 illustrates the distribution of critical TTC superimposed on the Probit cumulative 

distribution function. The dot points on “1” and “0” lines represent accepted and rejected overtaking 

gaps, respectively. The negative values for the TTC perceived variable corresponds to unsafe 

available gaps which would have led to head-on collision if the gap had been accepted. 

 

Figure  3-7- Probit regression and distribution of TTC critical gaps for the population of drivers 
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3.5.3 Model validation 

In order to determine predictive ability of the overtaking gap-acceptance model, the Probit model was 

applied to an “independent” sample of gaps comprising 30% of the total data. The percent correct 

prediction rate for the validation sample was found to be 89%, confirming that the calibrated model 

predicts overtaking gap-acceptance for a different dataset with good transferability.  

To further validate the gap-acceptance relationship, simulated overtaking frequency from OTSIM 

and observed frequencies from the data collection study as discussed above can be compared. For this 

purpose, the proposed gap-acceptance model was implemented in OTSIM with overtaking gap 

acceptance parameters obtained as obtained above. To simulate the studied location, the input 

volumes composition of vehicles, and distribution of desired speeds were selected in accordance with 

the observed traffic data (mean unimpeded speeds = 90 km/h, standard deviation of unimpeded 

speeds = 17 km/h). In addition, the car-following calibration parameters must be determined such that 

the observed vehicle headways match the simulated headways. From the video recording study, the 

average following time headways for vehicles in desired-to-overtake mode was found to be 0.8 

second while this value for other drivers in the car-following mode, but without overtaking desire, 

was 1.3 s. This shows that overtaking vehicles tend to keep shorter headways possibly to minimize 

their overtaking time and distance. This finding is relatively consistent with those reported by 

Hegeman et al. (2005). The Gipps model parameters presented in Table  3-4 were found to generate 

the average headways as observed in field data for normal following and following with desire-to-

overtake. 

As shown in Table  3-4, two parameters of the car-following model are changed to address changes 

in the two car-following situations. In general lower   
   (maximum desired deceleration of the 

following vehicle) and higher  ̂    (estimation of maximum desired deceleration rate of the lead 

vehicle) results in less conservative following behavior. This leads to shorter time headway between 

the lead and following vehicles when overtaking is desired. The coefficient variation of 0.15 is 

assumed for the all car-following parameters which are randomly assigned to the drivers.  

From 20 simulation runs, the simulated overtaking rate was found to be 27.2±5 maneuvers/km/h 

versus an observed rate of 24.6 maneuvers/km/h from the video-taped data.  This suggests a good 

measure of consistency for overtaking frequency between the simulation and field data. 
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Table  3-4- Gipps car-following model calibration parameters 

Gipps Car-following 

Parameters 
  

   (    )   
   (    )  ̂   (    )     ( )  ( )  ( ) 

Normal Following                     

Following With 

Overtaking Desire 
                      

 

To check whether the overtaking dynamics simulated in OTSIM properly represent actual 

overtaking attributes, another simulation case study was carried out for a six-kilometer straight 

segment of a two-lane highway with overtaking permitted in both directions. Overtaking attributes 

including overtaking time and distance as well as speed differential between overtaking and overtaken 

vehicles were compared with estimates obtained from three sources of: 1) calibration video-recorded 

segment, 2) observations reported by Harwood and Sun 2008 from their video-recording exercise, and 

3) observations reported by Carlson et al. (2006) from a set of instrumented vehicle experiments. 

Table  3-5 provides a summary of the average, standard deviation, minimum, and maximum 

estimates of the overtaking attributes for three posted speed limits (80 km/h, 90km/h, and 110 km/h). 

The first speed limit reflects maximum posted speed for the video-recorded segment used in the 

calibration and validation of the model. The second and third limits reflect the average posted speeds 

for highways reported in Harwood and Sun (2008) and Carlson et al. (2006) studies respectively. As 

can be seen, the results suggest a close match between the simulated values and field observations. 

The three posted limits yield the expected results; i.e., overtaking time and distance increase with 

speed limit. 

3.6 Model Transferability and Comparison 

In this section, we test the transferability of the proposed gap-acceptance model to independent field 

data and to simulated results as obtained from TRARR and TWOPAS models. The field data and 

TRARR results were obtained for a five kilometers segment of a two-lane highway in Netherlands, as 

reported by Hegeman (2004). The posted speed for the Netherland highway is 100 km/h for cars and 

80 km/h for trucks with volumes for all vehicle types of 1026 vph and 471 vph in direction 1 and 2, 

respectively. A few basic features of Netherlands highway traffic data are given in Table  3-6. 

Since the primary focus of this research is overtaking, the performance measures used in comparing 

model results are: average overtaking rate (OR) and average travel speed (ATS). For this exercise, we 
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have assumed that the average desired speed of vehicles is equal to the posted differential speed limits 

of 100 km/h and 80 km/h for cars and trucks, respectively. The coefficient of variation for the desired 

speed is assumed to be 0.1 (details about these assumptions are provided in Fitzpatrick, 2003). 

Table  3-5- Comparison of simulated and field overtaking attribute measures 

Posted Speed 
(km/h) 

Study # of Observations Mean 
Standard 
Deviation 

Minimum Maximum 

    Travel Time in Opposing Lane (s) 

80 
OTSIM 250 9.1 1.4 5 13 

Video recording 74 8.5 1.8 4 13 

100 
OTSIM 250 9.4 1.6 5 16 

Harwood et al. (2008) 60 10 2.8 5 19 

110 
OTSIM 250 9.7 1.7 7 17 

Carlson et al. (2006) 105 9.9 2.5 5.3 18.2 

    Travel Distance in Opposing Lane (m) 

80 
OTSIM 250 229 46 110 382 

Video recording 74 208 43 106 330 

100 
OTSIM 250 255 56 116 509 

Harwood et al. (2008) 60 282 75 123 491 

110 
OTSIM 250 285 60 205 472 

Carlson et al. (2006) 105 313 62 195 533 

    Speed Differential Between Overtaking and Overtaken Vehicle (km/h) 

80 
OTSIM 250 25.2 4.4 8.5 28.4 

Video recording 74 24.6 7.7 6.6 46 

100 
OTSIM 250 23.1 19 1.6 26 

Harwood et al. (2008) 60 24.8 11.3 0.2 53.3 

110 
OTSIM 250 20.9 2.5 16 30 

Carlson et al. (2006) 105 19.8 5.1 8.2 32.2 

 

Table  3-6- Traffic data information reported in Hegeman (2004) study 

 Direction 1 Direction 2 

Volume (vph) 1026 471 

Truck Percentage (%) 7.2 5.2 

Average speed (km/h) 85.9 91.8 

Standard deviation of speed (km/h) 5.8 7.2 

Minimum speed (km/h) 61 71.6 

Maximum speed (km/h) 115.7 114.5 

 

Table  3-7 provides comparison of OR and ATS between OTSIM and TWOPAS with respect to the 

field data and TRARR, as reported by Hegeman for the Netherlands data. As reported by by 
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Hegeman (2004) , TRARR was found to significantly overestimate the overtaking rate in comparison 

to the field data. However, the OTSIM overtaking rate yielded the lowest error with respect to these 

data for direction 1. TWOPAS, on the other hand, generated a significantly higher error (lower 

overtaking rate) compared to OTSIM for this direction. For direction 2, the lowest error was obtained 

for TWOPAS, although the difference between the two simulations (TWOPAS and OTSIM) is not 

high. For ATS, the absolute difference between simulation and the field data was found to be lowest 

for OTSIM as compared to TWOPAS. It appears that OTSIM was able to yield closer overtaking 

rates and average travel speed with respect to field data than were obtained from the TRARR and 

TWOPAS model simulations. 

Table  3-7- Observed versus simulated overtaking rate for the three simulation model of 

TRARR, OTSIM, and TWOPAS 

Data source 
Field 

Data* 
TRARR* OTSIM 

TWOPAS 

(IHSDM) 

Absolute Difference 

TRARR 

vs. Field 

OTSIM 

vs. 

Field 

TWOPAS 

vs. Field 

Overtaking rate 

(OT/km/h) 

Direction 1 52.1 109 49.8 30.5 56.9 2.3 21.6 

Direction 2 3.7 66 7.5 2.5 62.3 3 1.2 

Average travel 

speed (km/h) 

Direction 1 85.9 NA** 81.6 77.2 NA 4.3 8.7 

Direction 2 91.8 NA 87.2 84.5 NA 4.6 7.3 

* Reported in Hegeman (2004) 

** Not Available  (reported to be lower than field data) 

A further comparison was made between OTSIM, TWOPAS and values reported in HCM 2010 

(TRB, 2010) based on the percent time spent following (PTSF). The PTSF is an indicator of the 

inability of the FV to overtake so as to attain the desired speed in two-lane traffic operations. As 

PTSF increases, we would expect the number of vehicles successfully overtaking to decrease. For this 

test, simulation results were obtained for a range of analysis volumes (100 pc/h to 1700 pc/h) and 

opposing volume (100 pc/h to 1600 pc/h) as illustrated in Figure  3-8. 



 

 55 

 

Figure  3-8- Comparing PTSF between OTSIM, TWOPAS, and HCM2010 

We note that, at low opposing volumes, where we would expect higher passing opportunities, there 

is a closer match in PTSF between OTSIM and HCM 2010. The TWOPAS results suggest higher 

values of PTSF and presumably fewer overtaking maneuvers. This is consistent with the findings 

from application of OTSIM and TWOPAS to the Netherlands data, as discussed above. As opposing 

volume increases and passing opportunity are reduced, there is a shift in OTSIM estimates away from 

the HCM values towards those suggested by TWOPAS. For example, at 1600 pc/h opposing volume, 

PTSF obtained from OTSIM matches that from TWOPAS. These results are encouraging in that they 
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suggest an acceptable level of transferability in OTSIM simulation results. These results also indicate 

that the adjustments made to PTSF values in HCM 2000 and reported in HCM 2010 may have been 

exaggerated. This is discussed in more details in the next chapter of the thesis. 

3.7 Model Sensitivity to Calibration Parameters 

In this section, we conduct a sensitivity analysis of simulated traffic and safety measures to the 

OTSIM calibration parameters including mean critical TTC (   ̅̅ ̅̅ ̅̅     ) as introduced in this chapter 

and the speed differential threshold (      ) between overtaking and overtaken vehicle used to 

trigger desire-to-overtake, as introduced in section  2.7.3.1 of this thesis. Four measures of average 

travel speed (ATS), percent time spent following (PTSF), overtaking rate (OTrate), and average 

overtaking head-on time-to-collision (TTC) are considered in this analysis. 

3.7.1 Sensitivity analysis for mean critical TTC  

For this purpose, simulations are conducted with four levels of volumes with 50/50 directional split. 

For each simulation case, four levels of    ̅̅ ̅̅ ̅̅      with the same standard deviation of 0.7 s (as 

obtained from the calibration study in the previous section) and a no-passing-allowed scenario are 

considered and the corresponding measures are compared. The speed differential threshold (      ) 

is set at 8km/h. Figure  3-9 illustrates the simulation results for the four model outputs with critical 

    ranges from 1.5 s to 6 s. As shown, speed drops when volume increases. Lower critical     

resulted in statistically significantly higher speeds (based on t-stat test). This was the case for the 

whole range of volume considered based on paired comparison of simulation seeds (p<0.05), 

although the difference is very marginal. The ultimate case (highest speed drop) corresponds to the 

no-passing scenario when critical     becomes close to infinity. At 500 vph volume, the maximum 

speed drop, from lowest critical     (1.5 s) to the no-passing scenario, was close to 5% (from 89 

km/h down to 85 km/h). 

The PTSF increases with volume. The impact of critical     to increase PTSF is statistically 

significant, although very marginal for the range of critical     values considered. The highest 

critical    , the highest PTSF will be. PTSF shows maximum increase at 500 vph volume from 56% 

(1.5 s critical    ) to 70% (no-passing scenario). The impact of critical     on PTSF (similar to 

ATS) at high volumes is the lowest.  
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The overtaking rate increases initially with volume then reaches a maximum and then drops with 

further increase in volume. This shows how overtaking demand and supply changes. At low volumes 

the gaps in the opposing traffic are quite large and drivers can overtake easily. With volume increased 

the overtaking demand increases and there are still quite large gaps in the opposing traffic. This will 

increase the number of overtakes up to a certain point. Then, with further two-directional volume 

increase, the gaps become shorter and the overtaking becomes more limited and overtaking frequency 

drops. At 500 vph volume overtaking rate increases 16 OT/km/h when mean     critical decreases 

from 6 seconds to 1.5 seconds.  

 

Figure  3-9- Model output sensitivity to mean critical TTC (50/50 split): a) Average travel speed, 

b) Percent time spent following, c) Overtaking rate, d) Time-to-collision 

Average     sharply drops with initial increase in volume then it increases slightly. Lower values 

for critical     caused lower average    . This is an indication of increased head-on risk associated 

with lower critical    . The effect of critical     on average     was statistically significant 

(p<0.05) and substantial. At 500 vph volume, the average     associated with 6 seconds threshold is 

5.8 seconds lower than that of 1.5 seconds. It can be concluded that, for the range of parameter values 

considered, average     and overtaking rate showed higher sensitivity to the mean critical     than 

ATS and PTSF.  
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Another simulation was conducted to investigate the distribution of available and accepted gaps in 

the traffic stream. Figure  3-10 illustrates histograms of ”available” and “accepted” residual gaps for 

this simulation case with volumes set at 500 and 1000 vph for direction 1 and 2, respectively. In this 

analysis, “available gaps” means calculated     or residual gaps values greater than zero, which 

potentially provide non-crashing overtaking opportunities. The corresponding calibration parameters 

for this simulation were 3 seconds and 0.7 second for mean and standard deviation of critical    , 

respectively. Comparing available and accepted residual gaps, one can determine the proportion of 

gaps that were not accepted. The shortest accepted residual gap is around 150 meters. The available 

gaps look to have an exponential distribution form. This figure also illustrates that the average 

residual gaps available for overtaking, when the opposing volume is 1000 vph, is much lower than 

that of the case when the opposing volume is 500 vph. Figure  3-11 shows a similar histogram for 

available and accepted     values obtained from the simulation. The observed minimum accepted 

    was 1 second. This corresponds to residual gap of around 50 meters. 

 

Figure  3-10- Histograms of available and accepted residual gaps (Simulation of the case with 

direction1=500vph, direction2=1000vph volumes) 
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Figure  3-11- Histograms of available and accepted TTC gaps (Simulation of the case with 

direction1=500vph, direction2=1000vph volumes) 
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(a) (b) 

(c) (d) 

Figure  3-12- Model output sensitivity to speed differential threshold (50/50 split): a) Average 

travel speed, b) Percent time spent following, c) Overtaking rate, d) Time-to-collision 

3.8 Conclusion 

An in-depth analytical and behavioral formulation of the overtaking gap-acceptance process for two-

lane highway operations was discussed in this chapter. The decision to overtake was expressed as a 

function of the perceived time-to-collision (TTC) and established driver gap-acceptance thresholds. 

The gap-acceptance logic adopted in this research is assumed to encapsulate the full spectrum of 

physical variables influencing the gap-acceptance decision, resulting in reduced numbers of 

parameters requiring calibration. The model was calibrated using observed overtaking data obtained 

by video-taping a two-lane highway segment.  The distribution of critical TTC gaps for a population 

of drivers was found to be normally distributed with a mean of 3.0 seconds and standard deviation of 

0.7s. The model was then compared with independent aggregate field data as well as simulated results 

based on TRARR, TWOPAS and HCM models. The overtaking model was found to yield both 

consistent and transferable results for PTSF, ATS, and overtaking rate when compared to field data 
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and other simulation model values. The sensitivity of model outputs to the proposed calibration 

parameters was analyzed. For the range of values considered, critical     showed marginal impact 

on the traffic measures including average travel speed and percent time spent following. However, 

this impact is quite significant for safety measures including overtaking rates and average   . In this 

chapter we could demonstrate that in spite of complexity of overtaking maneuver and challenges 

posed by data collection, it is possible to develop and calibrate a logical overtaking gap-acceptance 

model that yields both consistent and transferable results in two-lane highway operations. 
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Chapter 4 

Level-of-service Measures for Two-lane Highways using OTSIM 

(Model Application 1) 

4.1 Introduction 

Level-of-service (LOS) has been widely used by traffic engineers to measure the operational 

efficiency of transportation facilities, such as, freeways, highways, intersections, transit systems, etc. 

The Highway Capacity Manual (HCM) proposes guidelines and procedures for estimating the 

capacity and quality of service for various highway facilities. Along with empirical models, 

established on field data, simulation models have been a viable alternative tool for the purpose of 

highway capacity analysis (Courage et al., 2010). 

The purposed of this chapter is to discuss the application of OTSIM in level-of-service analysis for 

two-lane highways. In this analysis the proposed overtaking component of the simulation model plays 

a central role in the estimation of traffic measures used in determination of two-lane highways level-

of- LOS. The Highway Capacity Manual (HCM) makes use of two main traffic attributes in 

determination of LOS for two-lane highway operations: average travel speed (ATS) and percent time 

spent following (PTSF). ATS is the average travel time taken by vehicles to traverse a given length of 

highway and this serves as a mobility indicator for LOS for the traffic stream.  PTSF is the average 

percentage of time spent by vehicles behind slower moving vehicle as a result of an inability to 

overtake.  PTSF reflects a kind of freedom to maneuver in the traffic stream as an indicator of LOS at 

the highway location. In LOS analysis for two-lane traffic, an accurate estimation of ATS and PTSF 

are very important. Once a simulation model is used for this purpose, these measures are dependent 

on reliability and accuracy of the underlying simulation model especially those related to overtaking 

such that underestimation of number of overtakes results in higher PTSF and lower ATS and vice 

versa. The link between these scalar measures and LOS for two-lane highways has been expressed in 

the HCM using five distinctive categories that range  from “high” for level-of-service (A) to “poor or 

inadequate” for level-of-service (E).   

The two most recent versions of HCM use linear and exponential empirical expressions to model 

the relationship between traffic volume and the ATS and PTSF, respectively. In preparation of HCM 

2010 version, there have been attempts to improve the accuracy and reliability of the traffic measures 

over the previous HCM 2000 version (Zegeer et al., 2008). Although the nature of the expressions 
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adopted in HCM 2010 is similar to those used in HCM 2000, for directional PTSF, the model 

coefficients were modified. User feedback concerning the HCM 2000 suggested that estimation of 

directional PTSF resulted in lower LOS than expected.   Harwood et al. (2003) reported that based on 

this feedback, the PTSF indicators given in HCM 2000 tended to overestimate PTSF. The 

overestimation of PTSF was found to be especially problematic at low traffic volumes. The HCM 

2010 expressions attempted to correct this bias by adjusting the model coefficients of the HCM 2000 

version for PTSF. Because two-way analysis curve of PTSF was found to be properly estimated, 

Harwood et al. (2003) used this curve to generate additional data points for low volume conditions 

and to correct the directional segment analysis curves in HCM 2000. These adjustments were 

subsequently published in the HCM 2010 version for two-lane highways.  It was further stated that 

ATS was estimated properly in HCM2000 and no change was applied to ATS equation except unit 

change from “km/h” (HCM 2000) to “mile/h” (HCM 2010). 

As seen, in order to take into account the difference between the HCM 2000 values and the 

suggested feedback estimates, the modification to directional PTSF was applied externally. In the 

earlier HCM 2000 version, TWOPAS was used to establish model some of the relationships for PTSF 

and ATS. However, in the updating procedure for HCM 2010 neither new field data was used nor any 

simulation model was employed. In other word, the revisions that were made tended to be aggregate 

in nature.  The purpose of this chapter is to use OTSIM to provide estimates for ATS and PTSF for 

two-lane highway operation and compare them with those reported in HCM 2000 and 2010. In 

addition, standard deviation of desired speeds is suggested to add as an adjustment factor in 

estimation of ATS and PTSF.  

4.2 HCM Level-of-Service Measures for Two-lane Highways 

The expressions used in HCM 2000 and HCM 2010 to estimate ATS for two-lane highway operations 

are given as (TRB, 2000; TRB, 2010):  

                (     ) Eq.  4-1 

where, 

     = is average travel speed in the analysis direction (km/h) 

    = free flow speed in the analysis direction (km/h) 
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    passenger-car equivalent flow rate for the peak 15-min period in the analysis direction (pc/h) 

    passenger-car equivalent flow rate for the peak 15-min period in the opposing direction (pc/h) 

ATS is expressed as a function of Free Flow Speed (FFS) and traffic volume in the travel and the 

opposing directions. In this expression the effect of each direction volume on ATS of the analysis 

direction is assumed to be the same since a single coefficient is used for    and   .  

The relationship between PTSF and volume in both HCM 2000 and HCM 2010 is based on an 

underlying expression of the form: 

         (      (   
 )) Eq.  4-2 

where, 

    passenger-car equivalent flow rate for the peak 15-min period in the analysis direction (pc/h) 

     coefficients determined from the volume in the opposing direction. 

The parameters   and   in Eq.  4-2 are a function of the volume in the opposing direction. The 

parameter values used in HCM 2000 and HCM 2010 for estimating PTSF are given in Table  4-1 for a 

range of volumes from 200 to greater than 1600 vph. The differences between the 2000 and 2010 

parameters in this table reflect adjustments applied to the “overestimated” HCM 2000 values in 

accordance with observation-based feedback concerning the previous estimates.  

The other difference between the 2000 and 2010 HCM versions concerns the introduction of an 

additional indicator called Percent Free Flow Speed (PFFS) for class III highway in the HCM 2010.  

A Class III refers to highways that serve moderately developed areas while Class I and Class II refer 

to major intercity routes and access routes, respectively (refer to TRB 2010 for more information on 

two-lane highway classes).  PFFS reflects an ability of vehicles in the traffic stream to travel at or 

near the posted speed limit for a given highway location, such that: 

     
   

   
 Eq.  4-3 

where, 

   = Free flow speed 
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The application of these measures in determination of LOS for distinctive types of highways is 

indicated in Table  4-2. 

Table  4-1- Coefficients used in estimating PTSF in HCM 2000 and HCM 2010 (TRB, 2000; 

TRB, 2010) 

 HCM 2000 HCM 2010 

   

Opposing volume (pc/h) 
        

     -0.013 0.668 -0.0014 0.973 

    -0.057 0.479 -0.0022 0.923 

    -0.100 0.413 -0.0033 0.870 

    -0.173 0.349 -0.0045 0.833 

     -0.320 0.276 -0.0049 0.829 

     -0.430 0.242 -0.0054 0.825 

     -0.522 0.225 -0.0058 0.821 

      -0.665 0.199 -0.0062 0.817 

 

 

Table  4-2- HCM 2000 and HCM 2010 LOS criteria for two-lane highways (TRB, 2000; TRB, 

2010) 

Highway Class Class II Class II Class III

LOS PTSF(%) ATS(km/h) PTSF(%) PTSF(%) ATS(mi/h) PTSF(%) PFFS(%)

A ≤35 >90 ≤40 ≤35 >55 ≤40 >91.7

B >35-50 >80-90 >40-55 >35-50 >50-55 >40-55 >83.3-91.7

C >50-65 >70-80 >55-70 >50-65 >45-50 >55-70 >75.0-83.3

D >65-80 >60-70 >70-85 >65-80 >40-45 >70-85 >66.7-75.0

E >80 ≤60 >85 >80 ≤40 >85 ≤66.7

Class I

HCM 2000

Class I

HCM 2010
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The ATS and PTSF values in HCM, as presented in above expressions, are for the “base” traffic 

and road conditions. The base conditions for two-lane highways include: 

· Lane widths greater than or equal to 12 ft 

· Clear shoulders wider than or equal to 6 ft 

· No no-passing zones 

· All passenger cars in the traffic stream 

· Level terrain, and 

· No impediments to through traffic (e.g., traffic signals, turning vehicles) 

Adjustment factors are normally used to correct the estimates if any of the above conditions are 

violated. 

4.3 OTSIM Two-Lane Highway Level-of-Service Measures 

In this section, the result of a case study simulation, carried out in OTSIM, for a six-kilometer 

segment of a two-lane highway with overtaking permitted in both directions is reported. The purpose 

is to compare ATS and PTSF as obtained from the simulation with those reported in HCM manuals. 

The basic geometric attributes of the simulated highway segment are illustrated in Figure  4-1. The 

first one kilometer on each end are considered as the warm-up zones and will not be included in the 

simulation results. The simulation period is 70 minutes in duration, including a 10 minutes warm-up 

interval.  An average of 20 simulation runs was carried out for each simulation case, with directional 

traffic flows input varying from 100 vph to 1700 vph.  Mean and standard deviation of desired speed 

for the traffic stream were set at 100 km/h and 12 km/h, respectively. Average ATS and PTSF values 

were estimated for each direction. 

 

Figure  4-1- Case study highway segment 
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Direction 2

6km

1km1km
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Figure  4-2 illustrates ATS versus the travel volume (in the analysis direction), for different 

opposing volumes, as obtained from simulation (with the corresponding error bars) and those from 

HCM expressions (ATS is the same for both versions so only one curve is shown). From this figure, 

we note that ATS decreases gradually with increasing travel volumes. When compared to the OTSIM 

results, the estimates given in HCM appear to be significantly lower especially at high volumes. At 

low volumes simulated results tend to approximate the free flow speed of 100 km/h for the different 

opposing volumes. This makes sense because regardless of opposing volume, at low travel volumes 

vehicles in the traffic stream are generally well-spaced with minimal interactions, such that drivers 

can attain their desired speeds without being impeded by the speed of any slower moving vehicle. 

Therefore, the speed drop at low volumes should not be very significant. This was captured in the 

simulation results more clearly than using the expression used in the HCM. Unlike the HCM 

assumption, ATS decreases nonlinearly with volume. 

In this thesis, we suggest considering the following exponential expression to estimate ATS more 

accurately. 

             (   
 ) Eq.  4-4 

where, 

     = average travel speed for analysis direction of traffic (km/h) 

   = free flow speed (km/h) 

  = traffic flow of the analysis direction (veh/h) 

   = coefficients determined from the volume in the opposing direction 

In this new expression, as opposed to HCM, the effects of directional volumes on ATS are not the 

same for the analysis and opposing directions.  
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Figure  4-2- Average travel speed (ATS) versus travel volume for different opposing volume 

obtained from OTSIM simulation, HCM 2000, and HCM 2010 

Table  4-3 presents the coefficients values of   and   obtained from the regression analysis. For this 

regression, all coefficients were found to be statically significant, and the expression exhibited an 

excellent goodness of fit (Average R-squared ≈ 0.98). 
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Figure  4-3 illustrates the relationship between PTSF and travel volume for different opposing 

volumes from the simulation (with the corresponding error bars) and the HCM expressions. As shown 

in this figure, PTSF obtained from HCM 2010 closely matches simulated results at low opposing 

volume. Simulated PTSF is estimated to be higher than HCM 2010 values as opposing volume 

increases. As can be seen PTSF obtained from HCM 2000 is significantly overestimated. 

Table  4-4 provides a summary of model coefficients relating PTSF to travel volume for different 

volumes in the opposing direction. These coefficients are obtained by applying a nonlinear expression 

relating simulated PTSF to the volumes obtained by regression. For this regression, all coefficients 

were found to be statically significant (t-test), and the expression exhibited an excellent goodness of 

fit (Average R-squared ≈ 0.99). 

Table  4-3- Coefficients for new ATS expression obtained from regression and OTSIM data   

 
Simulated ATS coefficients 

            (   
 ) 

   

Opposing volume (pc/h) 
    

    -0.00064 0.786 

    -0.00091 0.744 

    -0.00141 0.714 

    -0.00191 0.648 

    -0.00289 0.593 

    -0.00345 0.571 

    -0.00527 0.517 

     -0.00720 0.479 

     -0.00766 0.474 

     -0.00897 0.458 

     -0.0104 0.441 

     -0.0113 0.432 
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Figure  4-3- Percent time spent following (PTSF) versus travel volume for different opposing 

volume obtained from OTSIM, HCM2000, and HCM2010 
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Table  4-4- Updated coefficients for estimating PTSF as obtained from OTSIM  

 
Simulated PTSF coefficients 

        (      (   
 )) 

    Opposing volume 

(pc/h) 
    

    -0.000655 1.083 

    -0.001157 1.012 

    -0.002085 0.936 

    -0.00268 0.909 

    -0.00391 0.863 

    -0.00521 0.828 

    -0.00877 0.764 

     -0.01078 0.746 

     -0.01225 0.737 

     -0.01225 0.751 

     -0.01227 0.764 

     -0.01365 0.754 

 

4.1 Effect of Standard Deviation of Speeds on ATS and PTSF 

As mentioned previously, the HCM adjustment factors are aimed to provide correction to ATS and 

PTSF measures if the conditions deviate from those assumed for the base case. One factor that can be 

considered as an adjustment factor is the effect of standard deviation of speeds. This factor can play 

an important role in efficiency of two-way traffic flow operation and is easy to obtain using 

conventional speed measurement devices such as dual loop detectors or radars. Wardrop (1953) 

proposed an overtaking demand formula (catch-up rate) that can be mathematically described as: 

  
       

  
 Eq. 4-5 

where,  
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   overtaking demand (overtaking/km/h) 

   stream flow (veh/km) 

   mean of unimpeded speed (km/h), and 

   standard deviation of the unimpeded speed distribution (km/h) 

Eq.  4-5 expresses the upper bound of the overtaking demand. The actual overtaking rate in real 

traffic conditions are less than this value. Based on this expression, the catch-up rate between vehicles 

increases with standard deviation of unimpeded (desired) speeds. Presumably, higher variation in 

unimpeded speeds result in higher catch-up rate and because overtaking opportunity is always limited 

by opposing volume or geometry, this leads to increased PTSF, and decreased ATS.  

To address the effect of standard deviation of speeds as an adjustment factor in calculation of ATS 

and PTSF, simulations for four levels of directional traffic volumes of 100, 500, 1000, and 1500 vph 

and three levels of 0.10, 0.12, 0.14 for Coefficient of Variation (CV) of free-flow speed were 

conducted. For average free flow speed of 100 km/h, this results in standard deviation (SD) for 

desired speed of 10, 12, 14 km/h. The base condition corresponds to CV=0.10 and correction factors 

are provided for CV=0.12 and CV=0.14. The updated form of Eq.  4-4, which includes the CV 

correction factor, has the following form: 

           (   
 )          Eq.  4-6 

where,          ATS adjustment factor for the coefficient variation of free-flow speeds 

Figure  4-4 illustrates the simulation results for ATS for three levels of coefficient of variation and 

four flow rates. As shown, the effect of standard deviation of speeds is to decrease the average travel 

speed. This effect is more significant at higher volumes when the average speed gets closer to the 

speed of slowest vehicle in the traffic stream and passing opportunity is very limited. The lowest 

speed in the traffic steam is lower when standard deviation of speed is higher.  

Table  4-5 provides the list of coefficients for ATS base condition (CV=0.10) as obtained from 

regression. The corresponding adjustment factors for CV=0.12 and CV=0.14 are listed in Table  4-6.  
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Figure  4-4-Average travel speed versus volume for three standard deviation of speeds 

 

Table  4-5- ATS coefficients for base condition 

 
ATS coefficients (CV = 0.10) 

           (   
 ) 

   

Opposing volume (pc/h) 
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    -0.00146 0.655 

     -0.00324 0.558 

     -0.00483 0.513 
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Table  4-6- ATS adjustment factors for coefficient of variation of free-flow speed  

   

Opposing direction 

volume (pc/h) 

   

Analysis direction 

volume (pc/h) 

        

(CV=0.12) 

        

(CV=0.14) 

100 

100 0.5 1.1 

500 2.1 3.9 

1000 3.0 5.6 

1500 3.6 6.4 

500 

100 0.8 1.9 

500 2.7 4.8 

1000 3.7 6.2 

1500 3.8 6.7 

1000 

100 1.6 2.8 

500 2.9 5.8 

1000 3.7 6.6 

1500 4.1 6.9 

1500 

100 1.5 3.2 

500 3.5 6.6 

1000 4.2 7.2 

1500 4.3 7.3 

 

A similar analysis is conducted for PTSF. For this measure, the updated form of Eq.  4-2 with CV 

correction factor has the following form: 

         (      (   
 ))          Eq.  4-7 

where,           PTSF adjustment factor for the standard deviation of free-flow speeds 

Figure  4-5 illustrates the simulation results for PTSF for three standard deviations of speeds. As 

shown, the effect of standard deviation of speeds is to increase PTSF. This effect is less significant at 

higher volumes, where the overtaking opportunities are scarce and regardless of speed deviations 

vehicles must follow slower moving vehicles in the traffic stream.  

Table  4-7 provides the list of coefficients for PTSF base condition (CV=0.10) as obtained from 

non-linear regression. The corresponding adjustment factors for CV=0.12 and CV=0.14 are listed in 
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Table  4-8. As expected, a larger correction value is required for higher opposing volumes and larger 

standard deviations. 

 

Figure  4-5- Percent time spent following versus volume for three standard deviation of speeds 

 

Table  4-7- PTSF coefficients for base condition 
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 )) 
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Table  4-8- PTSF adjustment factors for coefficient of variation of free-flow speed 

   

Opposing direction 

volume (pc/h) 

   

Analysis direction 

volume (pc/h) 

         

(CV=0.12) 

         

(CV=0.14) 

100 

100 0 1 

500 2 3 

1000 1 3 

1500 1 2 

500 

100 1 3 

500 3 5 

1000 2 3 

1500 0 0 

1000 

100 3 5 

500 3 6 

1000 1 2 

1500 0 0 

1500 

100 3 6 

500 4 7 

1000 2 3 

1500 0 0 

4.2 Safety Measures as an Alternative for Level-of-Service 

As introduced previously, head-on TTC and overtaking rate (OTrate) are considered as two measures 

of safety for two-lane highways in this research. These safety measures can be used alternatively in 

determination of LOS. Morrall and Werner (1990) used overtaking ratio (ratio of accomplished 

overtakes to the estimated desired number) as an alternative measure for level-of-service for two-lane 

highways. In this section, based on OTSIM simulated outputs, mathematical expressions are proposed 

for these measures that can be potentially used as an indication of safety performance on two-lane 

highways. Similar to the previous section, four levels of volumes and three levels of standard 

deviation of speeds are considered in the simulation case study. Figure  4-6 illustrates the simulation 

results. A polynomial model of the following form was found to represent the overtaking rate 

appropriately. 
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Figure  4-6-Overtaking rate versus volume for three standard deviation of speeds 

           
               Eq.  4-8 

where,         OTrate adjustment factor for the standard deviation of free-flow speeds 

Table  4-9 provides a list of coefficients, calculated from a regression analysis, for OTrate base 

condition. Similar to ATS and PTSF, adjustment factors are provided to compensate the effect of 

standard deviation of speeds in overtaking rate (Table  4-10).  
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Table  4-9- OTrate coefficients for base condition 

 

OTrate coefficients (CV=0.10) 

           
        

  , opposing volume (pc/h)       

    -3.645e-005 0.1247 -5.742 

    -2.464e-005 0.08014 -5.269 

     -7.783e-006 0.03992 -3.686 

     -1.14e-006 0.01517 -1.464 

 

Table  4-10- OT-rate adjustment factors for coefficient of variation of free-flow speed 

   

Opposing direction 

volume (pc/h) 

   

Analysis direction 

volume (pc/h) 

       

(CV=0.12) 

       

(CV=0.14) 

100 

100 1 2 

500 12 23 

1000 19 33 

1500 20 33 

500 

100 1 2 

500 7 12 

1000 9 20 

1500 14 27 

1000 

100 0 1 

500 6 10 

1000 7 12 

1500 11 17 

1500 

100 0 1 

500 2 3 

1000 2 4 

1500 4 6 
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The effect of standard deviation is to increase overtaking rate. This effect is not very significant at 

low analysis direction volumes, where the catch-up rate is still insignificant; i.e., no adjustment is 

required. However, as volume increases larger adjustment values must be used. 

Another overtaking frequency based measure is the overtaking rate per vehicle (OTperVeh). This 

measure can be calculated by dividing the overtaking rate by traffic volume of the analysis direction. 

Figure  4-7 illustrates OTperVeh as a function of volume for three standard deviations of speed. 

Unlike OTrate, OTperVeh does not continuously increase with volume. There is a volume at which 

this measure reaches its maximum. For the range of opposing volume up to 500 vph, the maximum 

OTperVeh is around 500 vph.  

 

Figure  4-7- Overtaking rate per vehicle versus volume for three standard deviation of speeds 
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Similar to OTrate, a polynomial function is used to represent OTperVeh: 

             
                  Eq.  4-9 

where,            OTperVeh adjustment factor for the standard deviation of free-flow speeds 

Table  4-11 provides list of coefficients calculated from regression analysis for OTperVeh base 

condition. The corresponding adjustment factors are provided in Table  4-12. The correction factors 

are significant for the whole range of volume considered. 

 

Table  4-11- OTperVeh coefficients for base condition 

 

OTperVeh coefficients (CV=0.10) 

             
        

  , opposing volume (pc/h)       

    -2.884e-007 0.0004797 0.1795 

    -1.759e-007 0.0003021 0.09503 

     -1.024e-007 0.0002089 0.01758 

     -4.574e-008 0.0001007 0.0004223 

 

Figure  4-8 illustrates TTC as a function of volume for three standard deviations of speeds. TTC 

increases linearly with analysis direction volume while sharply decreases with the opposing volume. 

A linear function is used to represent TTC in our analysis: 

                   Eq.  4-10 

         TTC adjustment factor for the standard deviation of free-flow speeds 
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Table  4-12- OT-rate per vehicle adjustment factors for coefficient of variation of free-flow 

speed 

   

Opposing direction 

volume (pc/h) 

   

Analysis direction 

volume (pc/h) 

          

(CV=0.12) 

          

(CV=0.14) 

100 

100 0.0139 0.0728 

500 0.0189 0.1085 

1000 0.0232 0.1471 

1500 0.0210 0.1281 

500 

100 0.0190 0.1127 

500 0.0152 0.1031 

1000 0.0131 0.0882 

1500 0.0138 0.0706 

1000 

100 0.0128 0.0533 

500 0.0118 0.0663 

1000 0.0139 0.0800 

1500 0.0121 0.0746 

1500 

100 0.0094 0.0707 

500 0.0102 0.0650 

1000 0.0092 0.0573 

1500 0.0070 0.0396 

 

 



 

 82 

 

Figure  4-8- TTC versus volume for three standard deviation of speeds 
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Table  4-13- TTC coefficients for base condition 

 

TTC coefficients (CV = 0.10) 

           

   

Opposing volume (pc/h) 
    

    21.6 0.00325 

    5.8 0.00341 

     4.2 0.00344 

     4.5 0.00260 

 

Table  4-14- TTC adjustment factors for standard deviation of free-flow speed 

   

Opposing direction 

volume (pc/h) 

   

Analysis direction 

volume (pc/h) 

        

(CV=0.12) 
        

(CV=0.14) 

100 

100 0.2 0.4 

500 0.9 1.8 

1000 1.2 2.3 

1500 1.0 2.3 

500 

100 0.7 1.1 

500 0.9 1.5 

1000 1.1 2.2 

1500 1.4 3.0 

1000 

100 0.9 1.2 

500 0.9 1.4 

1000 0.9 1.4 

1500 1.9 2.7 

1500 

100 0.3 0.5 

500 0.4 0.8 

1000 0.3 0.9 

1500 1.0 2.2 
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4.3 Conclusion 

In this section, OTSIM model was used to provide estimates for average travel speed (ATS) and 

percent time spent following (PTSF) measures used to establish level-of-service (LOS) for two-lane 

highways in the Highway Capacity Manual (HCM).  The results obtained from the simulation model 

were compared to published values in the HCM 2000 and HCM 2010.  Estimates of ATS as reported 

in HCM 2000 and HCM 2010 were found lower than those obtained from the simulation.  A new 

nonlinear model was suggested to replace the current linear function relating volume to ATS in HCM.  

PTSF obtained from HCM 2010 closely matches simulated results at low opposing volumes. A new 

adjustment factor was introduced to take into account the effect of standard deviation of unimpeded 

speeds on ATS and PTSF. Three safety indicators including overtaking rate, overtaking rate per 

vehicle, and time-to-collision (TTC) were estimated as an alternative measure of level-of-service for 

two-lane highways. The underlying model coefficients for these indicators along with the adjustment 

factors for standard deviation of speeds were calculated. 
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Chapter 5 

Safety and Traffic Implications of Truck/Car Speed Limit Strategies 

for Two-lane Highways (Model Application 2) 

5.1 Introduction 

While differential car/truck speed limits have been mainly applied to freeways and divided highways, 

where the speeds are relatively high, there is also a potential of using differential speed limit 

strategies for two-lane undivided highways. The implementation of differential speed limit strategies 

on two-lane highways can have significant effects on interactions between cars and trucks especially 

in overtaking maneuver and the special safety intervention this may pose. The objective of the 

research in this chapter is to use OTSIM to assess the safety and traffic implications of three speed 

control strategies applied to two-lane highway operations including uniform speed limits (USL), 

discretionary differential speed limits (DSL) and differential speed controls with truck mandated 

speed limiters (MSL). The major issue separating DSL from MSL is separate compliance 

assumptions for trucks and the effect this has on vehicle interactions. Safety and traffic performance 

of USL, DSL and MSL specifically for overtaking are evaluated. Similar to the previous OTSIM 

model application, the developed overtaking model plays an important role in this analysis. The 

content of this chapter is published in Ghods and Saccomanno (2013b) and Ghods and Saccomanno 

(2012). 

5.2 Literature Review 

A number of researchers have argued that speed is the single most important factor affecting the 

frequency and severity of highway accidents (Evans, 1991; Elvik, 2005). The deterrence of unsafe 

operating speeds is viewed as being a key objective for reducing both the frequency and severity of 

crashes, and the conventional way to do this is through “posted speed limits”.  Highway design or 

geometric restrictions are the main factors in setting appropriate posted speed limits that are normally 

applied to all types of vehicles. Given size and weight differences between cars and trucks and special 

maneuverability characteristics associated with these two types of vehicles, uniform speed limits 

(USL) may be inappropriate to account for all the potential safety problems. Recognizing the more 

restrictive maneuverability of large trucks, differential speed limit (DSL) strategies are used to 

address this issue. DSL normally sets the maximum speeds for trucks at about 10 – 20 km/h lower 
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than for cars for the same highway conditions.  For instance, in Michigan the posted speed limit for 

trucks has been set at 16km/h lower than for cars (cars: 60 mph versus trucks: 70mph) on rural 

interstates highways (GHSA, 2012). 

In most jurisdictions, DSL control strategies tend to be discretionary in nature, in that they 

invariably depend on compliance among target drivers in the traffic stream.  Compliance with speed 

limits depends on many factors including degree of enforcement, limit level, road and traffic 

conditions, etc. Johnson and Pawar (2007) found that, in certain DSL jurisdictions in U.S., 

compliance rates were low (similar speed distributions as per USL state) while in other DSL states 

compliance was found to be higher. Lack of compliance can have a significant effect on safety for 

both compliant and non-compliant vehicles. The effect of discretionary differential speed limits on 

safety has been widely studied. However, the results reported have been often inconclusive or 

sometimes contradictory. Some studies show negative safety impacts while others indicate positive or 

negligible impacts (Johnson and Pawar, 2005, Neeley and Richardson Jr, 2009, Garber et al., 2003). 

Most of these studies concerning the impact of DSL on road safety have adopted statistical before-

and-after approaches.  One of the major flaws of the statistical approach concerns limitations placed 

on the analysis by the available data, especially as it relates to levels of compliance to speed limits.  

The use of microscopic traffic simulation platforms in conjunction with surrogate safety measures 

provides an alternative approach for studying the safety of uniform and differential speed limits. 

Saccomanno et al. (2009) discuss the advantages of this approach in their speed limit study applied to 

freeway operations. 

Given the severity of accidents involving large trucks, truck compliance to DSL is especially 

important. A study carried out by FMCSA (2008) in the U.S. noted that excessive speeds were the 

primary factor in 22% of fatal crashes involving trucks. Recently, a number of jurisdictions have 

recognized this issue and have required all trucks to be equipped with mandated speed limiters 

(MSL). A limiter is a built-in microchip that limits the maximum revolutions that an engine can 

achieve, thereby restricting the maximum operating speed of the vehicle. Trucks equipped with 

limiters are assumed to be 100% compliant with truck speed limit.  

A common belief is that DSL/MSL increases speed variance in the traffic stream, and this becomes 

more pronounced where trucks are equipped with limiters. Solomon 1964 found a U-shaped 

relationship between the crash involvement rate and the amount of deviation from the average speed. 

Increased variance may lead to increased number of accidents, especially accidents involving (non-
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compliant) cars and (compliant) trucks. However, other factors may act to mitigate the effect of speed 

variance on safety, for example, lower crash severity, improved lane discipline on freeways and 

changes in the pattern of overtaking for two-lane highway operations.  In a recent study by Hanowski 

et al. (2012), more than 15,000 truck crash data from 20 truck fleets (approximately 138,000 trucks)  

were analyzed to investigate the effect of MSL on truck crashes that could have been avoided with 

activation of the speed limit device. The findings showed a significant reduction in speed limit related 

crashes (approximately 50%) for trucks equipped with the speed limiter compared to trucks without 

the speed limiter.  

In spite of the above mentioned findings the potential implications of using differential speed 

limiters for two-lane highway operations have been unknown to date. Differential speed limits may 

impact the number of overtakes and safety of overtaking. Hauer (1971) has shown that increase in the 

number of overtaking maneuvers correlates with increase in accidents probability. In addition, 

vehicles seeking to overtake can be more at risk of rear-end accident due the tendency of drivers to 

maintain shorter headways prior to overtaking. This is suggested by Hegeman (2008) who found that 

the headway between the overtaking and overtaken vehicles prior to overtaking can be as low as 7.7m 

(~0.35s). This has not been researched adequately so far. 

It must be noted that the current mandated speed limit thresholds set for trucks (105 kmh in Canada 

and 68 mph in U.S.) are relatively high for operation speed of two-lane highways. However, some 

two-lane highways with higher posted speed can be still affected by these speed limit thresholds. For 

example in Nebraska posted speed limits for rural two-lane highway can be as high as 65 mph (Schurr 

et al., 2002). Nevertheless, in this study a lower value of truck mandated speed limit is used 

(presumably this affects a larger proportion of rural two-lane highways around the world).  

5.3 Distribution of Free-flow Speeds for Car/Truck Speed Limit Scenarios 

In order to simulate the three candidate speed limit scenarios in OTSIM, it is crucial to determine the 

distribution of vehicles (car/truck) free-flow speeds (desired speeds) based on the USL/DSL posted 

limit and MSL maximum speed threshold for trucks. This includes the shape of the distributions as 

well as the corresponding means and standard deviations. As discussed previously, in micro-

simulation the free-flow operating speed of individual vehicles speeds are sampled from an assumed 

desired speed distribution of the corresponding vehicle class.  
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The relationship between posted speed and operating speed has been an issue for many years. This 

has been extensively studied by Fitzpatrick (2003) for different types of roads. This study 

demonstrated that 85th percentile operating speeds normally exceed posted speed limits while the 50th 

percentile operating speed is usually near or above the posted speed limit. Although this does not 

distinguish passenger-cars and trucks, the mean operating speed is usually lower for trucks. Johnson 

and Murray (2007) found that the operating speed of trucks was 5% lower than that of cars for four 

posted USL sites (car: 70 mph; truck: 70 mph) on rural interstate highways in U.S.. In the same study, 

car speeds was 10% higher than that of trucks for three posted DSL sites (car: 70 mph; truck: 60 

mph). McLean (1989) stated that for motorized countries normal distribution with mean of about 90 

to 100 km/h and coefficient of variation between 0.11 to 0.14 can represent the distribution of desired 

speeds for two-lane highways.  

These findings will justify the assumption made in this study about the distribution of car and truck 

speeds for USL and DSL scenarios; i.e., a normal distribution with the mean equating the posted 

speed can represent the actual operating driving speed of passenger-cars on two-lane highways. In 

addition, the truck average speed can be assumed to be 5% and 10% lower than that of passenger-car 

for USL and DSL scenarios, respectively. Nevertheless, the truck speed distribution for MSL scenario 

is still undetermined and discussed in the followings. 

Figure  5-1 illustrates the distribution of free-flow speeds for heavy trucks obtained from a Weigh-

In-Motion (WIM) station on Highway 401, Ontario, Canada (Vaziri et al., 2013). In Ontario, all large 

trucks (with Gross Vehicle Weight (GVW) greater than 11,794kg) must be equipped with a maximum 

allowable speed threshold set uniformly at 105 km/h. As seen the shape of this distribution does not 

follow a standard distribution curve e.g. normal. This is mainly due to the concentration of speed at 

the maximum limit (105 km/h) which creates a skew-shaped distribution. In this figure, the other 

proportion of trucks with speeds higher than 105 km/h can be trucks from other jurisdictions e.g. U.S. 

(at the time of data collection truck speed limiter was not mandatory in U.S.) or trucks from non-

compliance common carriers in Canada. In this research, a custom distribution is fitted to the truck 

speed when mandated speed limit is in effect.  

The best distribution found for this purpose is a linear combination of two distributions (Weibull 

and Cauchy), which is itself a probability distribution function, i.e.: 
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Figure  5-1- Distribution of trucks free-flow speeds with mandated speed limiters set at 105 

km/h (Ontario, Canada) 
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Eq. 5-1 

where, 

   weighting parameter 

          probability distribution parameters 

The maximum likelihood method is used to determine the five unknown parameters of the above 

distribution such that it fits the speed data presented in Figure  5-1.  

Figure  5-2 illustrates the fitted distribution of trucks speeds with their corresponding optimal 

parameter values. It is interesting to note that the median of the Cauchy distribution (  ) was found to 

be 105 km/h which is actually the truck maximum mandated speed. Additionally, the sigma 

parameter in the Weibull distribution can logically be assumed as the mean of truck distribution speed 

if MSL had not been applied. Although this finding is based on dataset from a freeway section, with 
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reasonable assumption, it can be extended to lower operating speed for two-lane highways. 

Considering the findings and assumption made previously, one can determine the distribution of 

desired speeds for the three speed limit scenarios for our hypothetical two-line highway segment. 

5.4 Case Study and Simulation Inputs 

Table  5-1 presents the distribution of car and truck free-flow operating speeds (desired speed) 

assumed in this research for the three speed control strategies. For the USL strategy, the maximum 

posted speed is set at 90 km/h for both cars and trucks. In this case, we assume that the distribution of 

speeds has a mean of 90 km/h for cars and 85 km/h for trucks (5% lower). As a result, 50% of cars 

and 31% of trucks exceed the posted limits.  

 

Figure  5-2- Linearly combined probability distribution functions fitted to distribution of truck 

speed with mandated speed limiters, a) Weibull distribution, b) Cauchy distribution, c) Scaled 

Weibull and Cauchy distributions, d) Linearly combined distribution 
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(a) Weibull distribution (=102.5, =29.5)
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(b) Cauchy distribution (x0=105, =0.45)
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(c) p*Weibull distribution, (1-p)*Cauchy distribution
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Table  5-1-Distribution of free-flow speeds for car and truck for the three speed limit strategies 

USL 

 Car Truck 

 

Posted Speed 

 (km/h) 
90 90 

Mean Operating 

Speed 

(km/h) 

90 85 

DSL 

 Car Truck 

 

Posted Speed 

 (km/h) 
90 80 

Mean Operating 

Speed 

(km/h) 

90 80 

MSL 

 Car Truck 

 

Posted Speed  

(km/h) 
90 80 

Mean Operating 

Speed 

(km/h) 

90 
Skewed 

(Max:85) 
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For the DSL scenario, the maximum posted speeds are set at 90km/h for cars and 80km/h for trucks 

with the corresponding operating mean speeds of 90km/h for cars and 80km/h for trucks. DSL does 

not change the percentage non-compliant cars, but it increases the non-compliance trucks to 50%. The 

effect of the DSL is assumed to reduce the truck mean speed by 5km/h (10% lower than that of cars). 

The introduction of MSL has the effect of shifting the DSL non-compliant trucks that are above 

85km/h (MSL threshold) into a skewed speed distribution shown in Table  5-1. 

Similar to the previous simulation studies, the case study for the simulation of speed limits is 

carried out for a six kilometers segment of two-lane highway with overtaking permitted in both 

directions.  The first one kilometer on each end of the segment is considered as the warm-up zones 

and will not be considered in the simulation results. The simulation period is 70 minutes in duration, 

including a 10 min warm-up interval. A simulation experimental design was developed to optimize 

the results with minimum number of simulation runs. The design consists of four factors including 

analysis direction flow (Flow1), opposing direction flow (Flow2), percentage of trucks (PT), and the 

speed limit scenarios (SL). Table  5-2 presents the list of the four factors with their corresponding 

level values. Ten runs were carried out for each combination of experiment. Therefore, a total of 1440 

(4×4×3×3×10) simulations were conducted (full factorial design). For each simulation run, the 

average travel speed (ATS), percent time spent following (PTSF), overtaking rate (OTrate), and 

average time-to-collision (TTC) were recorded. 

Table  5-2-Factors included in the experimental design 

 

5.5 Analysis of Variance 

In this section we conduct an ANOVA test to discover the possible main and interaction effects of the 

factors (Flow1, Flow2, PT, SL) on the four output measures. In this analysis, three-way and higher 

interactions are ignored. Table  5-3 presents the ANOVA tests conducted for ATS. As seen, all the 

factors and their interactions effects are highly significant. Figure  5-3 illustrates a multiple 

comparison graph based on Tukey's honestly significant difference criterion. As shown, all the four 

factors at all levels show significant effect on ATS. ATS decreases with increase in both Flow1 and  

Variable Name Flow1 Flow2 PT SL 

Level values 100, 500, 1000, 1500 100, 500, 1000, 1500 5%, 10%, 15% USL, MSL, DSL 
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Flow2 factors. As Percentage Truck (PT) increases ATS decreases. ATS drops as speed limit 

scenarios (SL) changes from USL to DSL and finally to MSL. The lowest ATS corresponds to the 

MSL scenario. 

Table  5-4 presents the ANOVA table for PTSF.  In this analysis all the main and interaction effects 

except that of Flow1*SL appear to be significant. As Figure  5-4 shows both Flow1 and Flow2 

increased PTSF. This effect appears to be linear for Flow2 and nonlinear for Flow1. This is consistent 

with the relation between PTSF and analysis direction flow observed previously. PTSF increases with 

PT. This indicates that increased truck percentage results in more catch-up rates and less overtaking 

opportunities. USL and MSL resulted in lowest and highest PTSF values, respectively. This effect 

also appears to be nonlinear. 

 

Figure  5-3- Multilevel comparison of factor effects on average travel speed (ATS) 

 

65 70 75 80 85

Flow1=1500vph

Flow1=1000vph
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Speed (km/h)

72 74 76 78

Flow2=1500vph

Flow2=1000vph

Flow2=500vph

Flow2=100vph

Speed (km/h)

73 74 75 76 77

Truck%=15

Truck%=10

Truck%=5

Speed (km/h)

72 73 74 75 76 77

SL=MSL

SL=DSL

SL=USL

Speed (km/h)
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Table  5-3- ANOVA table for average travel speed (ATS) 

 

 

Figure  5-4- Multilevel comparison of factor effects on percent time spent following (PTSF) 

 

 

20 40 60 80 100

Flow1=1500vph

Flow1=1000vph

Flow1=500vph

Flow1=100vph

PTSF

55 60 65 70 75

Flow2=1500vph

Flow2=1000vph

Flow2=500vph

Flow2=100vph

PTSF

64 64.5 65 65.5 66 66.5

Truck%=15

Truck%=10

Truck%=5

PTSF

64.5 65 65.5 66 66.5

SL=MSL

SL=DSL

SL=USL

PTSF
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Table  5-4- ANOVA table for percent time spent following (PTSF) 

 

The overtaking rate is analyzed in three different categories: Overtaking rate between car and car 

(OTrate-carcar), overtaking rate between car and truck (OTrate-cartruck) and total overtaking rate. 

Since truck-truck and truck-car overtakes are scarce, they are omitted from the analysis. The ANOVA 

table for OTrate-carcar, presented in Table  5-5, demonstrates that all main effects and interactions are 

significant. As illustrated in Figure  5-5, OTrate-carcar increases nonlinearly with Flow1. This is due 

to the increased overtaking demand in the traffic stream. In an opposite way, an increase in Flow2 

leads to decreased OTrate-carcar. This in an indication of reduced overtaking supply as volume in the 

opposing direction increases. Interestingly, higher PT resulted in lower number of car-car overtakes.  

Table  5-5- ANOVA table for overtaking rate between car and car (OTrate-carcar) 

 

 

In addition, MSL resulted in lowest number of overtakes between cars. However, this trend is 

opposite for OTrate between car and trucks (Figure  5-6). OTrate-cartruck increases with percentage 



 

 96 

truck. The highest number of overtakes between car and truck was observed when MSL was used. 

The effect of volumes (Flow1 and Flow2) on OTrate-cartruck is similar to that of carcar. 

 

Figure  5-5- Multilevel comparison of factor effects on overtaking rate between car and car 

(OTrate-carcar) 

Table  5-6- ANOVA table for overtaking rate between car and truck (OTrate-cartruck) 
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Figure  5-6- Multilevel comparison of factor effects on overtaking rate between car and truck 

(OTrate-cartruck) 

The total overtaking rate is an aggregation of the two carcar and cartruck categories. As expected, 

the OTrate increases with Flow1 and decreases with Flow2. Total OTrate decreases with  PT (similar 

to OTrate-carcar case) and is highest when MSL is used (similar to OTrate-cartruck case). For the 

three overtaking rate categories the effects are significant at all range of levels considered.  

Table  5-8 presents the ANOVA table for average overtaking TTC. In this analysis, the main four 

effects and four interaction terms are significant. As illustrated in Figure  5-8, TTC increases with 

Flow1 volume. However, Flow2 has an opposite effect; i.e., TTC decreases sharply with initial 

increase in the opposing volume (from 100 to 500 vph). This is an indication of increased head-on 

risk when the opposing volume increases from low to middle range values. TTC remains almost 

constant with further increase in Flow2. Higher percentage truck led to higher TTC values for 
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Flow1=1500vph

Flow1=1000vph

Flow1=500vph

Flow1=100vph

OTrate-cartruck(OT/km/h)
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Flow2=1000vph

Flow2=500vph

Flow2=100vph

OTrate-cartruck(OT/km/h)

6 8 10 12 14 16

Truck%=15

Truck%=10

Truck%=5

OTrate-cartruck(OT/km/h)

5 10 15 20

SL=MSL

SL=DSL
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OTrate-cartruck(OT/km/h)
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overtakes. MSL scenario resulted in higher TTC values compared to USL and DSL. The difference 

between the effects of USL and DSL on TTC is not significant. 

 

Figure  5-7- Multilevel comparison of factor effects on total overtaking rate (OTrate) 

Table  5-7- ANOVA table for total overtaking rate (OTrate) 

 

0 20 40 60 80

Flow1=1500vph

Flow1=1000vph

Flow1=500vph

Flow1=100vph

Total OT(OT/km/h)

10 20 30 40 50 60 70

Flow2=1500vph

Flow2=1000vph

Flow2=500vph

Flow2=100vph

Total OT(OT/km/h)

38 39 40 41 42 43 44

Truck%=15

Truck%=10

Truck%=5

Total OT(OT/km/h)

39 40 41 42 43

SL=MSL

SL=DSL

SL=USL

Total OT(OT/km/h)
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Figure  5-8- Multilevel comparison of factor effects on average time-to-collision (TTC) 

 

Table  5-8- ANOVA table for average time-to-collision (TTC) 

 

6 8 10 12 14

Flow1=1500vph

Flow1=1000vph

Flow1=500vph

Flow1=100vph

TTC-carcar(s)

5 10 15 20 25

Flow2=1500vph

Flow2=1000vph

Flow2=500vph

Flow2=100vph

TTC-carcar(s)

9.8 10 10.2 10.4 10.6 10.8 11

Truck%=15

Truck%=10

Truck%=5

TTC-carcar(s)

10 10.2 10.4 10.6 10.8 11

SL=MSL

SL=DSL

SL=USL

TTC-carcar(s)
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Table  5-9 summarizes the effect of the four factors (Flow1, Flow2, PT, SL) on the six output 

measures. In the ANOVA analysis, all the main factors were found to have significant effect on all 

measures. The difference between all the factor levels was also significant with the exception of USL 

and DSL effect on TTC.  

Table  5-9- Summaryofthefactors’effectsontheoutputmeasures 

Measures 

Analysis 

direction flow  

(Flow1) 

Opposing 

direction Flow  

 (Flow2) 

Percentage 

truck 

 (PT) 

Speed limit strategy from 

USL to DSL and MSL 

 (SL) 

Average travel 

speed  

(ATS ) 

- - - - 

Percent time spent 

following 

(PTSF) 

+ + + + 

Overtaking rate 

between car-car  

(OTrate-carcar)  

+ - - - 

Overtaking rate 

between car-truck  

(OTrate-cartruck) 

+ - + + 

Overtaking rate total 

(OTrate) 
+ - - + 

Time-to-collision 

 (TTC) 
+ - + 

+  

(no difference between 

USL and DSL) 

+/-: increase/decrease in the measure 

5.6 Model Development 

In the previous section, the ANOVA tables provided valuable information regarding the relationship 

between the independent variables and the measures in the study. In this section, mathematical 

models are developed to predict the changes in output measures (ATS, PTSF, OTrate, and TTC) as a 

function of input factors (Flow1, Flow2, PT, SL). In the regression analysis proposed here, speed 

limit strategy is treated as a nominal variable. The following polynomial function was found to be 

appropriate for estimating ATS as a function of independent variables.  
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Eq. 5-2 

Table  5-10 presents list of coefficients and the corresponding estimates, standard errors, t-Stats and 

p-Values. As it is shown, all variables are significant in the model. The adjusted R2 corresponding to 

this model was 0.972 showing good model predictability. Figure  5-9 provides analysis of residuals for 

the regression. In this figure, three tests including residual plot, normal plot, and probability density 

plot are shown for this regression. The residuals are appeared to be randomly and normally 

distributed and no systematic trend is observed. Figure  5-10 illustrates actual (as per simulation) 

versus estimated (as per regression) for the ATS measure. As seen, MSL scenario significantly 

reduced ATS as compared to USL while the difference is slight when comparing USL and DSL. 

Table  5-10- List of model coefficients from regression of ATS 

Coefficient                  Estimate SE t-Stat p-Value 

   93.283 0.55146 169.16 5.3562e-160 

   -0.020685 0.00092277 -22.416 1.6486e-47 

   -0.0034309 0.00019347 -17.733 3.485e-37 

   -0.19571 0.044393 -4.4085 2.0962e-05 

       -1.0687 0.24936 -4.2855 3.4275e-05 

       -4.6165 0.24936 -18.513 5.493e-39 

   -0.00010121 4.739e-05 -2.1357 0.034496 

   5.7976e-06 4.7751e-07 12.141 1.9492e-23 
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Figure  5-9- Analysis of residuals for ATS regression 
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To model PTSF, a nonlinear form of function with exponential and polynomial expressions 

provides an appropriate fit for PTSF. Although the effect of percentage truck (PT) and speed limit 

type (SL) were found to be statistically significant, their contribution to PTSF was very marginal and, 

hence eliminated.  

        (     (               ))                                  

                  
Eq.  5-3 

Table  5-11 presents list of coefficients estimated for PTSF. As shown, all variables are significant 

in the model. The adjusted R2 corresponding to this model was 0.996 showing good model 

predictability. Figure  5-11 provides analysis of residuals for regression of PTSF. The residuals are 

appeared to be randomly and normally distributed without any systematic trend. Figure  5-12 

illustrates actual versus estimated PTSF.  

Table  5-11- List of model coefficients from regression of PTSF 

Coefficient Estimate SE t-Stat p-Value 

   -0.00053427 2.6365e-05 -20.265 2.4854e-43 

   0.19986 0.0084433 23.671 1.2923e-50 

   1.3273e-06 2.7736e-07 4.7854 4.3079e-06 

   6.0507e-06 2.861e-07 21.149 2.7784e-45 

   -8.4521e-06 4.934e-07 -17.13 4.514e-36 

 

Similar to ATS a polynomial function is used to represent overtaking rates between cars 

(OTratecarcar) i.e.: 

                   Flow1   Flow   3SL   Flow1 Flow    Flow1 PT  

  Flow1 SL   Flow1
    Flow1 Flow  PT   Flow1 Flow  SL  

   Flow1 PT SL    Flow1
 
 Flow     Flow1

 
 PT    Flow1 Flow 

 
 

    Flow1
3 

                  

Eq.  5-4 
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Figure  5-11- Analysis of residuals for PTSF regression 

Table  5-12 presents list of coefficients for OTratecarcar regression. The adjusted R2 corresponding 

to this model was 0.991 showing good model predictability. Figure  5-14 provides analysis of 

residuals for this variable. The residuals are appeared to be randomly and normally distributed 

without any systematic trend. Figure  5-14 illustrates actual versus estimated OTratecarcar. As seen, 

the effect of differential speed limit is to reduce number of overtakes between cars. This reduction is 

more significant with MSL scenario. 
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Table  5-12- List of model coefficients from regression of OTratecarcar 

Coefficient Estimate SE t-Stat p-Value 

   -7.7377 1.0534 -7.3452 2.3244e-11 

   0.18901 0.005308 35.609 2.7079e-67 

   0.0020794 0.00088848 2.3404 0.020846 

  _DSL 0.21341 0.82147 0.25979 0.79545 

  _MSL 1.9814 0.82147 2.412 0.017316 

   -9.5645e-05 3.35e-06 -28.551 1.3032e-56 

   -0.0028748 0.00022844 -12.585 5.7634e-24 

  _DSL -0.0047532 0.0016587 -2.8656 0.0048845 

  _MSL -0.014908 0.0016587 -8.9876 3.313e-15 

   -9.2714e-05 6.7993e-06 -13.636 1.6865e-26 

   1.3046e-06 9.3615e-08 13.936 3.2355e-27 

  _DSL 2.8375e-06 9.3615e-07 3.031 0.0029631 

  _MSL 9.2383e-06 9.3615e-07 9.8684 2.4574e-17 

   _DSL -0.00016184 0.00012066 -1.3413 0.18226 

   _MSL -0.00070516 0.00012066 -5.8442 4.1517e-08 

    2.2073e-08 1.6793e-09 13.145 2.5501e-25 

    3.3931e-07 1.5526e-07 2.1854 0.030726 

    1.0992e-08 9.4328e-10 11.653 1.0678e-21 

    1.8451e-08 2.6835e-09 6.8756 2.6182e-10 
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Figure  5-13- Analysis of residuals for OTratecarcar regression 
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The regression model to represent overtaking rates between car and truck (OTratecartruck) is given 

as: 

                     PT   Flow1 PT   Flow1 SL   Flow  SL  

  Flow1 Flow  PT   Flow1 Flow  SL   Flow1 PT SL   Flow1
 
 PT  

  Flow 
 
 SL    Flow1 Flow  PT SL    Flow1

 
 Flow  SL  

   Flow1
 
 PT SL 

                 

Eq. 5-5 

 

The adjusted R2 associated with this model is 0.97. Table  5-13 provides the list of coefficients used 

in the regression, which were found to be statistically significant. Figure  5-15 illustrates the residuals 

analysis for this regression. The residuals appear to be normally distributed, although with 

presentation of some outliers. Figure  5-16 illustrates estimation of OTratecartruck variable as 

obtained from the regression versus simulated values. The impact of differential speed limit strategies  

Table  5-13- List of model coefficients from regression of OTratecartrcuk 

Coefficient Estimate SE t-Stat p-Value 

   1.5616 0.6471 2.4132 0.017287 

   -0.16189 0.070477 -2.297 0.023309 

   0.0016784 0.00018637 9.0057 3.3487e-15 

  _DSL 0.0065971 0.0016394 4.024 9.925e-05 

  _MSL 0.011895 0.0016394 7.2558 3.9242e-11 

  _DSL -0.0051564 0.0019599 -2.631 0.0096015 

  _MSL -0.010976 0.0019599 -5.6003 1.3277e-07 

   -6.9301e-07 5.5823e-08 -12.414 1.9336e-23 

  _DSL -9.6287e-06 3.6015e-06 -2.6735 0.0085246 

  _MSL -2.2036e-05 3.6015e-06 -6.1185 1.16e-08 

  _DSL 0.0010561 0.00028045 3.7656 0.00025616 

  _MSL 0.0040122 0.00028045 14.306 6.1139e-28 

   -3.0721e-07 1.1518e-07 -2.6672 0.0086772 

  _DSL 3.4572e-06 1.2899e-06 2.6801 0.0083675 

  _MSL 7.8779e-06 1.2899e-06 6.1072 1.2245e-08 

   _DSL -8.9708e-08 1.5789e-07 -0.56816 0.57096 

   _MSL -8.5495e-07 1.5789e-07 -5.4148 3.0907e-07 

   _DSL 4.3948e-09 2.0668e-09 2.1263 0.035475 

   _MSL 1.1549e-08 2.0668e-09 5.588 1.4051e-07 

   _DSL -5.6868e-07 1.7729e-07 -3.2076 0.0017063 

   _MSL -1.7896e-06 1.7729e-07 -10.094 8.0633e-18 
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(DSL and MSL) is to increase number of overtakes between car and trucks. The effect of percentage 

truck is also to increase number of overtakes for this variable. These findings are also accordance 

with the ANOVA study presented in the previous section. 

 

Figure  5-15- Analysis of residuals for OTratecartruck regression 
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A similar polynomial equation form is used to model total overtaking rate.  This model yielded 

adjusted R2 of 0.97. Table  5-14 shows the corresponding coefficient values for this model. As shown 

in Figure  5-17, residuals are normally distributed with no systematic trend. As ANOVA study showed 

previously, the total overtaking rate is slightly higher for differential speed limits. This is opposite for 

percentage of trucks; i.e., higher number of trucks in the traffic stream led to fewer number of 

overtakes. 

            Flow1   Flow1 Flow    Flow1 PT   Flow  PT  

  Flow1 SL   PT SL   Flow1
    Flow  PT SL   Flow1

 
 Flow  

    Flow1 Flow 
 
    Flow1

 
 SL     Flow1

3
 

                 

Eq. 5-6 

 

Table  5-14- List of model coefficients from regression of total OTrate 

Coefficient Estimate SE tStat pValue 

   -10.443 1.2168 -8.5826 2.7944e-14 

   0.20182 0.0070517 28.62 3.154e-57 

   -0.0001094 3.7669e-06 -29.043 6.2528e-58 

   -0.0010049 9.9792e-05 -10.07 6.8371e-18 

   0.0003986 9.4034e-05 4.2389 4.2852e-05 

  _DSL 0.0024046 0.0040311 0.59652 0.55189 

  _MSL 0.012911 0.0040311 3.2029 0.0017198 

  _DSL 0.07616 0.1301 0.5854 0.55932 

  _MSL 0.52098 0.1301 4.0045 0.00010511 

   -0.00010268 9.5245e-06 -10.781 1.2177e-19 

  _DSL -9.2075e-05 0.00011151 -0.82572 0.41051 

  _MSL -0.00046743 0.00011151 -4.1919 5.1454e-05 

   2.8038e-08 2.0241e-09 13.852 3.7072e-27 

    1.7118e-08 1.3498e-09 12.681 
2.5

727e-24 

   _DSL -9.7177e-07 2.634e-06 -0.36893 0.7128 

   _MSL -9.3327e-06 2.634e-06 -3.5431 
0.0

0055401 

    2.054e-08 3.84e-09 5.3488 
3.9

841e-07 
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Figure  5-17- Analysis of residuals for total OTrate regression 
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A nonlinear equation is used as a regression model for TTC with adjusted R2 = 0.991 representing a 

good predictability property of the model. Table  5-15 presents the list of coefficients for this variable. 

The SL variable is not in the proposed model since the effect of speed limit was to increase TTC 

marginally. Figure  5-19 shows the residual analysis for this regression. TTC estimated versus 

simulated is illustrated in Figure  5-20. 

         Flow1             PT  

                  
Eq.  5-7 

Table  5-15- List of model coefficients from regression of TTC 

Coefficient Estimate SE t-Stat p-Value 

   0.62208        0.23167      2.6852      0.0081308 

   0.0047059     0.00010258      45.875     7.8218e-86 

   6457.4         1806.4      3.5747     0.00048265 

   -1.281       0.062575     -20.472     8.6055e-44 

   0.10746       0.013222      8.1273     2.1582e-13 

5.7 Discussion of Results  

In summary, it can be concluded that ATS decreases with volume of both directions. This is due to 

increased interactions between vehicles in the analysis direction and reduced overtaking opportunities 

in the opposing direction when volume is increased. The increased number of trucks in the traffic 

stream is also contributing to lower speeds. This is mainly due to the fact that trucks desired speeds 

are normally lower than that of cars. The MSL showed highest impact on reducing the average travel 

speed. PTSF increases with volume, reflecting higher number of rear-end interactions between 

overtaking and overtaken vehicles. The effect of percentage truck and differential speed limit is to 

increase PTSF, although marginal. Overtaking rate increases with analysis flow and decreases with 

opposing flow. The impact of speed limit scenarios on overtaking rate is twofold. Differential speed 

limit decreases number of car-car overtakes while increases number of car-truck overtakes. The effect 

of slower moving trucks in DSL and MSL seems to be acting as a kind of speed calming factor on the 

traffic stream resulting in fewer interactions between cars (resulting in fewer car-car overtakes) while 

creating more interactions between cars and trucks (resulting in more car-truck overtakes). In a 

similar way, percentage truck decreases/increases car-car/car-truck overtakes, respectively. The total 
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overtake rate is statistically higher for differential speed limit strategies although very marginal. TTC 

drops rapidly with initial increases in opposing volume. This is a reflection of increased head-on risk. 

The effect of speed control strategies and truck percentage on TTC is negligible. Two-dimensional 

multi-level comparison graphs for the above analysis are provided in Appendix C. From these graphs, 

one can determine the effect of each factor at different level of another factor(s) e.g. effect of speed 

limit strategies at different volumes. 

 

Figure  5-19- Analysis of residuals for TTC regression 
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5.8 Conclusion 

In this chapter, the traffic and safety implications of car-truck differential speed limit (DSL), truck 

mandated speed limits (MSL), and uniform speed limits (USL) were investigated. Differential speed 

limit strategies (DSL and MSL) reduced the average travel speed of the traffic stream. This is 

associated with increased traffic delay. No significant effect was observed concerning differential 

speed control strategies and PTSF. Although differential speed strategies (DSL and MSL) were 

observed to have a minimal increase in the total number of overtake maneuvers, the effect on the 

nature of the overtakes; i.e., car-car versus car-truck was significant. Differential speed strategies 

increased the rate of car-truck overtakes over the range of volumes considered in this analysis. This 

suggests a negative effect on safety resulting from differential speed strategy applied to two-lane rural 

highways. On a positive side, DSL and MSL strategies reduced the number of car-car overtakes at 

different volumes, hence increasing safety. This latter relationship suggests a calming effect of slower 

trucks on the speed of the traffic stream, which results in fewer interactions between cars. TTC 

sharply dropped with increases in the opposite volume. Similar to PTSF, the impact of differential 

speed limit strategies on TTC was minimal. For the cases that differential speed limit contributed to 

significant changes to the traffic and safety measures, the impact of MSL was larger than that of DSL.  
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Chapter 6 

The Impact of Adaptive Cruise Control on Overtaking Maneuver 

(Model Application 3) 

6.1 Introduction 

A number of in-vehicle driving systems have been recently introduced to increase safety and 

reliability of vehicles. Stability control, blind spot detection, lane keeping, collision avoidance, and 

adaptive cruise control (ACC) are some examples of these systems. An ACC system is intended to 

maintain a safe distance between the following and the preceding (lead) vehicle through space 

adjustment in a car-following situation. In the absence of any preceding vehicle, ACC acts as the 

standard cruise control system to keep the speed of the vehicle at a user preset speed. The system 

makes use of radar technology to detect the vehicle in front and switch from speed control to space 

control mode if necessary.  

The objective of this section is to assess the traffic and safety implication of adaptive cruise control 

for two-lane highway operations especially those related to overtaking maneuver. The traffic and 

safety indicators are evaluated using OTSIM.  Safety and traffic performance are evaluated using the 

following indicators: average travel speed (ATS), percent time spent following (PTSF), overtaking 

rate (OTrate), and time-to-collision (TTC) of the overtaking vehicle to the opposing vehicle prior to 

return to normal travel lane. 

6.2 Literature Review 

Rear-end collision account for a large percentage of total accidents and this is known to be highly 

dependent on human factors. The ACC can help reduce this type of accidents by providing safe time 

headway between vehicles in the traffic stream. In addition, ACC with low headway thresholds can 

increase road’s capacity. The first generation of ACC was introduced in Japan and Europe in 1997 

(Watanabe et al., 1995) and then became available in North America (Fancher et al., 1997; Reichart et 

al., 1996; Woll, 1997). Currently, vehicles from different manufacturers come with an optional laser 

based adaptive cruise control system. 

A number of studies have been conducted to evaluate the impact of ACC on comfort, safety, and 

traffic flow. Touran et al. (1998) used simulation and found that the probability of accidents between 

ACC controlled vehicles and leading vehicles can be significantly reduced while ACC slightly 
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increased the probability of accidents between ACC vehicles and their non-ACC following vehicles. 

Liang and Peng (1999) found that the vehicles equipped with ACC can contribute to improved 

average speed and reduced average acceleration. These can be translated to improved traffic flow and 

lower fuel consumption and smoother rides. Bose and Ioannou (2001) found that air pollution can be 

reduced by 60%, if 10% of vehicles are equipped with ACC. In Marsden et al. (2001), ACC showed 

reduction in the standard deviation of acceleration of the following vehicles between 44% and 52%. 

This indicated ACC contributed to better driving comfort and reduced fuel consumption. A more 

detailed discussion of ACC impacts on safety and traffic are provided in Vahidi and Eskandarian 

(2003).  

In spite of these findings, the potential impacts of ACC on two-lane two-way highway traffic 

operation are not well understood. On one hand, larger headways can reduce the risk of rear-end 

accidents between the lead and following vehicles. This is especially beneficial when the following 

vehicle desires to overtake and tend to keep shorter headways than he/she would normally do in a 

following situation. On the other hand, the increased initial overtaking headway can increase the 

overtaking time (time spent by the overtaken vehicle to pull-out, pass, and return to normal travel 

lane) and cause other types of safety issues such as increased risk of head-on collision. To date, there 

is no research investigating the possible influence of ACC on overtaking maneuver safety.  

6.3 Car-following Model 

As discussed in section  2.7.2 of the thesis, OTSIM makes use of two car-following models. The first 

model, which is used for simulation of normal car-following driving is a collision avoidance type 

model borrowed from the Gipps car-following formulation. The car-following model, which is aimed 

to maintain a fixed time-headway between lead and following vehicles in the adaptive cruise control 

system, is borrowed form Ioannou and Chien (1993) model. In this mode of driving, the ACC system 

adjusts the speed of the following vehicle such that a constant time-gap is maintained between the 

lead and following vehicles. Ioannou and Chien (1993) provided a stable control law for the ACC 

system. In this model, the speed differential between the lead and following vehicles is denoted as: 

  
          Eq. 6-1 

and the spacing error is defined as: 
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                   Eq. 6-2 

where,  

  desired time-gap as determined in ACC system 

The control law can be represented such that: 

   
 

 
(  

     
 ) Eq. 6-3 

where, 

    acceleration/deceleration of the following vehicle in ACC headway control mode 

   model parameter 

To illustrate the difference between the two car-following models, a pair of lead and following 

vehicles is simulated in a car-following situation. The initial speed of the lead and following vehicles 

are assumed to be 70 and 80 km/h respectively and the initial distance between the two vehicles is 

100 meters. The lead vehicle keeps the constant speed of 70 km/h for about 100 seconds and then 

decelerates to 57 km/h. Then, after about 50 seconds, it accelerates to the speed of around 77 km/h. 

The following vehicle changes its speed based on the two car-following model formulations, 

accordingly. The model parameters (default), used for simulation of the two models, are presented in 

Table  6-1. 

Figure  6-1 illustrates the results of the Gipps car-following model simulation for the two simulated 

vehicles. At the beginning, the following vehicle decelerates slowly to match the speed of the lead 

vehicle. Afterward, the two vehicles continue with the same speed until the time that the lead vehicle 

starts decelerating.  The following vehicle accordingly uses an appropriate deceleration, based on the 

Gipps car-following rule, to match the speed of the lead vehicle again. Finally, acceleration of the 

lead vehicle causes the following vehicle to react and accelerate accordingly. As shown, in the Gipps 

model, the equilibrium time-headway between the two vehicles is shorter at higher speeds. 

Figure  6-2 illustrates the simulation results for the same pair of vehicles in a car-following situation 

using the ACC car-following rule with desired time-headway of 2 seconds (    ).  Similarly, the 

following vehicle was able to track the speed of the lead vehicle by choosing appropriate 
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acceleration/deceleration. As opposed to the Gipps model, the ACC always kept a 2-second headway 

to the lead vehicle at different speeds. 

 

Table  6-1- Default parameters used in the simulation of the Gipps and ACC car-following 

models 

Parameter   
   (    )   

   (    )  ̂   (    )     ( )  ( )  ( ) 

Gipps                   

Parameter  ( )  (   ) 

ACC 2 0.2 

 

 

 

Figure  6-1- Simulation of a lead-following pair interaction (Gipps car-following model) 
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Figure  6-2- Simulation of a lead-following pair interaction (ACC car-following model) 
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Using Eq. 3-9,     and      can be calculated for a given       . Figure  6-3 illustrates the 

changes in overtaking distance and time as a function of time-gap headway threshold for four posted 

speeds. As can be seen, the overtaking duration and distance increase linearly when time-gap 

headway is increased. Moreover, as expected, higher speeds resulted in larger overtaking time and 

distance. This directly reduces the resultant TTC which was assumed to be central in the decision to 

overtake logic in our model. Once an available TTC gap is small, the gap may not be accepted by 

drivers or if accepted the resultant TTC will be short and unsafe. Therefore, depending on effect of 

ACC on TTC (decrease or increase depending on the headway threshold), the number of 

accomplished overtakes and their average TTC can be influenced significantly. This can be evaluated 

and quantified through OTSIM simulation of traffic when ACC is in effect. The following section 

provides details about the simulation case study and its results. 

 

Figure  6-3- Overtaking time and distance vs. time-gap headway threshold in ACC system 
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following (PTSF), overtaking rate (OTrate), and time-to-collision (TTC) are obtained from each 

simulation run.  

Table  6-2-Factors included in the experimental design 

6.6 Analysis of Variance 

Table  6-3 presents the results of ANOVA test for ATS. As seen all the main and interaction factors 

are statistically significant except Flow2*HW and Flow2*PenRate. Figure  6-4 illustrates a multiple 

comparison graph based on Tukey's honestly significant difference criterion. As shown, all the four 

factors at all levels show significant effect on ATS. ATS decreases with increase in both Flow1 and 

Flow2 factors. As ACC headway threshold increases, ATS decreases. Higher penetration rate resulted 

in lower average travel speed. The relationship between penetration rate and headway threshold with 

average travel speed appears to be linear. 

 

Figure  6-4- Multilevel comparison of factor effects on average travel speed (ATS) 

75 80 85 90 95 100

Flow1=1300vph

Flow1=700vph

Flow1=100vph

Speed(km/h)

84 86 88 90

Flow2=1300vph

Flow2=700vph

Flow2=100vph

Speed(km/h)

84 86 88 90

HW=2s

HW=1.5s

HW=1s

Speed(km/h)

85 86 87 88 89

PenRate=100%

PenRate=60%

PenRate=20%

Speed(km/h)

Variable Name Flow1 (vph) Flow2 (vph) HW (s) PenRate (%) 

Level values 100, 700, 1300 100, 700, 1300 1, 1.5, 2 20, 60, 100 
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Table  6-3- ANOVA table for average travel speed (ATS) 

 

Table  6-4 presents the result of ANOVA test for PTSF. All factors except Flow1*PenRate, 

Flow2*HW and Flow2*PenRate were statistically significant. As shown in Figure  6-5, PTSF 

increases with both Flow1 and Flow2. Larger HWs resulted in increased PTSF. The role of ACC 

penetration rate is to increase PTSF. Except flow that shows nonlinear relationship with PTSF, the 

effect of HW and PenRate appears to be linearly related to PTSF. 

 

Table  6-4- ANOVA table for percent time spent following (PTSF) 
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Figure  6-5- Multilevel comparison of factor effects on percent time spent following (PTSF) 

The results of ANOVA test for overtaking rate (Table  6-5) shows statistically significant effect of 

factors except for Flow2*PenRate and HW*PenRate interactions. Figure  6-6 illustrates that OTrate 

increases and decreases with Flow1 and Flow2, respectively. The effect of HW is to reduce 

overtaking rate at all levels of HW. The difference, however, is less significant between HW=1.5s and 

HW=2s. OTrate decreases linearly with penetration rate.  

For TTC, ANOVA test (Table  6-6) showed that the effect of PenRate rate and some interactions are 

not statistically significant, although TTC moderately increases with penetration rate. Figure  6-7 

shows TTC increases with Flow1, but sharply decreases with initial increase in Flow2. The difference 

between HW=1s and HW=2s TTCs are not significant; while between these two and HW=1.5 are 

statically different (HW=1.5s resulted in lower TTC).  

Table  6-7 summarizes the factors effects on simulation outputs as discussed above. 
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HW=1.5s

HW=1s

PTSF

55 56 57 58 59 60

PenRate=100%

PenRate=60%

PenRate=20%

PTSF



 

 129 

Table  6-5- ANOVA table for overtaking rate (OTrate) 

 

 

Figure  6-6- Multilevel comparison of factor effects on overtaking rate (OTrate) 
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Table  6-6- ANOVA table for average TTC 

 

 

Figure  6-7- Multilevel comparison of factor effects on average TTC 
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 Table  6-7- Summary of the factors effects on the output measures 

Measures 

Analysis 

direction flow  

(Flow1) 

Opposing 

direction flow  

 (Flow2) 

ACC time headway 

 (HW) 

ACC penetration 

rate (PenRate) 

Average travel 

speed  

(ATS ) 

- - - - 

Percent time spent 

following 

(PTSF) 

+ + + + 

Overtaking rate 

total 

(OTrate) 

+ - - - 

time-to-collision 

 (TTC) 
+ - 

NC  

(lowest at HW=1.5s) 
+  

+/-: increase/decrease in the measure 

NS: Not consistent 

 

Figure  6-8 illustrate the comparison results between ACC (with 100% penetration rate) and Gipps 

(normal car-following mode). In simulation of Gipps car-following model calibration parameters, 

reported in Table  4-3, are used. These parameters, for vehicles in desired-to-overtake mode, yielded 

average headway of 0.7 second and for normal car-following mode (without overtaking desire) 

yielded average headway of 1.3 s. As seen previously, average travel speed decreases with increased 

ACC headway. HW=1s resulted in slightly higher speed as compared to Gipps. A similar pattern is 

observed for PTSF. PTSF increases with HW and is slightly higher for Gipps as compared to HW=1s. 

OTrate increases as HW decreases. The difference between Gipps and HW=1s is not statistically 

significant for OTrate. ACC does not appear to have consistent effect on average TTC for the range 

of HW considered. HW=1.5s resulted in lowest TTC and HW=1s resulted in highest TTC. The 

difference between Gipps and HW=2s and HW=1.5s is not statistically significant.  

6.7 Discussion of Results  

The most important effect of ACC was to reduce overtaking rate. This can be explained that larger 

controlled time gaps in ACC creates larger initial headways between overtaking and overtaken 

vehicles and this increases required overtaking time. This leads to increased overtaking distance, 

lower available TTC gaps and rejection of some gaps that would have been accepted if initial 

headways had been lower (e.g. No-ACC scenario).  
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Figure  6-8- Multilevel comparison of factor effects for ACC versus GHR car-following model 

The lowest and highest number of overtakes were observed for ACC with 2s time gap and No-ACC 

scenarios, respectively. The reduced number of overtakes resulted in decreased average travel speed, 

and increased PTSF. These effects are more significant as ACC time headways and/or penetration 

rate increases.  If compared with no-ACC scenario (Gipps car-following), the results of ACC with 

one second headway are close to those of no-ACC. There was actually no significant difference 

between no-ACC scenario and ACC with 1-second control headway for overtaking rate. However, as 
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compared to ACC-1s scenario, average travel speed and PTSF were slightly lower and higher for no-

ACC scenario, respectively.  

The average accepted TTC drops rapidly with initial increase in volume. This is a reflection of risk. 

The highest risk is associated with volumes around 700 vph. As volume increases further, TTC 

increases slightly primarily due to slower moving vehicles in the traffic stream in particular opposing 

vehicles and overtaken vehicles. The effect of ACC on TTC is more complex. On one hand, the larger 

ACC time-gap headway increases the overtaking time and presumably decreases average available 

TTC gaps. On the other hand, when available TTC gaps become too short and unsafe (due to the 

headway control) they may not be accepted anymore. This can lead to lower number of unsafe 

overtakes and increased average TTC. The safest TTC (highest average TTC) was for ACC-1s 

scenario where the effect of reduced overtaking time increased safety. However, as ACC headway 

increases further to 1.5s, TTC decreases (presumably due to increased overtaking time). With further 

ACC headway increase to 2 second, TTC increases again (presumably due to decreased number of 

unsafe overtakes). 

6.8 Conclusion 

The potential impacts of adaptive cruise control (ACC) system on safety and traffic operation of two-

lane two-way highways were investigated in this chapter. Traffic and safety measures including 

average travel speed, percent time spent following, number of overtakes, overtaking time, and times 

to collision (TTC) to the opposing vehicles were measured for a range of directional volumes. Three 

ACC scenarios with 2s, 1.5s, and 1s gap-time headways with three penetration levels as well as no-

ACC onboard scenario were tested. The results showed that ACC significantly increases overtaking 

time duration. This led to reduction in the number of accomplished overtakes and consequently 

reduced average travel speed and increased average vehicle following time. These effects are more 

significant with larger time-gap thresholds set for ACC system and higher penetration rates. It appears 

that the impact of ACC on TTC, at different ACC headway levels, is different. The highest and 

lowest TTC corresponded to ACC-1s and ACC-1.5s scenarios, respectively. It must be noted that 

ACC always reduces the probability of rear-end collision by keeping larger headway between 

overtaking and overtaken vehicles. However, this can be sometimes compromised by increased risk 

of head-on collision and larger following time. The combination effect of these factors on head-on 

and rear-on crash risks require further investigation. 
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Chapter 7 

Conclusion 

7.1 Research Summary 

In this research, an in-depth analytical and behavioral formulation of the overtaking gap-acceptance 

process for two-lane highway operations was presented. The decision to overtake was expressed as a 

function of the perception of time-to-collision (TTC) to the opposing vehicle at the end of maneuver 

and an established driver’s gap-acceptance threshold. The perception error was determined based on 

difference between estimation of TTC at the beginning and measure of TTC at the end of maneuver 

for observed overtaking maneuvers. The gap-acceptance logic adopted in this research was assumed 

to encapsulate the full spectrum of physical variables influencing the gap-acceptance decision, 

resulting in reduced number of calibration parameters. Observational video data of a two-lane 

highway segment was used to estimate TTC perception error values and calibrate the gap-acceptance 

model.  

From the observational video data, the mean of the TTC perception error was found to be around 

zero with corresponding standard deviations of 1.2 seconds. This shows drivers may underestimate or 

overestimate TTC in their perception of available gaps. The distribution of critical TTC gaps for a 

population of drivers was found to be normally distributed with a mean of 3.0 seconds and standard 

deviation of 0.7 s. This shows 95% of drivers have critical gap-acceptance thresholds between  1.6 

and 4.4 seconds (mean±2*SD), and the corresponding headway distance thresholds from 80 to 220 

meters, between the overtaking vehicle and the opposing vehicle, prior to returning to the  normal 

travel lane (assuming average speeds of 90 km/h).  

The gap-acceptance model was incorporated into a new simulation framework (OTSIM) and the 

simulation outputs were compared with independent aggregate field data as well as simulated results 

based on the TRARR, TWOPAS and HCM models. The overtaking model was found to yield both 

consistent and transferable results for PTSF, ATS, and overtaking rate when compared to field data 

and other simulation model values. In this research, it is demonstrated that in spite of complexity of 

overtaking maneuver and challenges in data collection process, it is possible to develop and calibrate 

a logical overtaking gap-acceptance model that yield both consistent and transferable results in two-

lane highway operations. 
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The sensitivity of model outputs to the proposed calibration parameters was analyzed. For the 

range of values considered, critical TTC showed marginal impact on the traffic measures including 

average travel speed and percent time spent following. However, this impact is quite significant for 

safety measures including overtaking rates and average TTC. 

The OTSIM model was applied to three different traffic and safety performance applications in 

which the proposed overtaking model played a crucial role. In the first application, OTSIM was used 

to provide estimates on level-of-service (LOS) measures for two-lane highways. The results obtained 

from the simulation model were compared to the published values in HCM 2000 and HCM 2010.  

Estimates of average travel speed (ATS) as reported in HCM 2000 and HCM 2010 were found to be 

lower than that of OTSIM. A new nonlinear model form was suggested to replace the current linear 

function relating volume to ATS in HCM.  As found in this research and elsewhere, percent time 

spent following (PTSF) as obtained from the HCM 2000 was highly overestimated especially at low 

analysis direction volumes. PTSF from HCM 2010 compared well with simulated results at low 

opposing volumes, but was lower for higher opposing volumes than that of simulation. A new set of 

updated model parameters were provided for the PTSF expression. In addition, new adjustment 

factors were introduced to take into account the effect of standard deviation of speed on ATS and 

PTSF. Standard deviation of speed demonstrated a significant effect on LOS measures for two-lane 

highways.  

Further simulation analysis was proposed to model three measures of safety performance for two-

lane highways and accordingly the corresponding expressions versus directional traffic volume were 

formulated. These measures included overtaking rate, overtaking rate per vehicle, and average 

overtaking head-on time-to-collision (TTC). As expected overtaking rate (OT/km/h) increased with 

analysis direction volume and decreased with opposing direction volume. However, the overtaking 

rate per vehicle (OT/km/veh/h) hit a maximum value at around 500 vph volume. This volume may 

represent the maximum overtaking risk for drivers in terms of the expected number of overtaking 

maneuvers that they accomplish. Average overtaking TTC increased with analysis direction volume, 

but sharply decreased with opposing direction volume. This showed that for a given opposing 

volume, overtaking is safer at higher analysis direction volumes presumably due to lower speed of 

overtaken vehicles. However, an initial increase in opposing volume significantly reduced the average 

TTC. 
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In the second application of OTSIM, the model was used to assess the traffic and safety implication 

of car-truck differential speed limit (DSL) and truck mandated speed limit (MSL) as compared to 

uniform speed limit (USL) for cars and trucks. In this research overtaking was also a key component 

of the simulation process. Differential speed strategies (DSL and MSL) reduced the average travel 

speed of the traffic stream. This was associated with increased traffic delay. No significant effect was 

observed in PTSF using differential speed control strategies. Although differential speed strategies 

(DSL and MSL) were observed to have a minimal increase in the total number of overtake maneuvers 

in comparison to a uniform strategy (USL), the effect on the nature of the overtakes (i.e., car-car 

versus car-truck) was significant. Differential speed strategies increased the rate of car-truck 

overtakes over the range of volumes considered in this analysis. This suggested a negative effect on 

safety resulting from differential speed strategy applied to two-lane rural highways. On a positive 

side, the DSL and MSL strategies reduced the number of car-car overtakes at different volumes, 

hence increasing safety. TTC sharply dropped with increase in the opposition volume. Similar to 

PTSF, the impact of differential speed limit strategies on TTC was minimal. For the cases that 

differential speed limit contributed to significant changes in the traffic and safety measures, the 

impact of MSL was larger than that of DSL.  

The last application of OTSIM concerned the potential impacts of adaptive cruise control (ACC) 

system on safety and traffic operation of two-lane two-way highways resulted from changes in 

overtaking behavior. Traffic and safety measures were estimated for three ACC scenarios with 2s, 

1.5s, and 1s gap-time headways as well as no-ACC scenario. The results showed that ACC (with 

large headways greater than 1 second) significantly increased overtaking time duration due to larger 

headways at the beginning of the overtaking. This led to a reduction in the number of overtakes and 

average travel speed, and also an increase in the average following time of vehicles. These effects 

were more significant with larger time-gap thresholds set for the ACC system. The impact of ACC on 

TTC at different ACC headway levels was investigated. The highest and lowest TTC corresponded to 

ACC-1s and ACC-1.5s scenarios, respectively. It is noted that ACC always reduces the probability of 

rear-end collision by keeping larger headway between overtaking and overtaken vehicles. However, 

this can be sometimes compromised by increased risk of head-on collision at high volumes and 

increased following time. 

7.2 Main Contributions 

This research provided a number of significant contributions summarized as follows:  
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1. Introducing a new mechanistic and behavioral overtaking model for two-lane highway 

operation. This model was developed in such a way that unlike previous models, a few 

overtaking model parameters (e.g. distribution of critical TTC) are required to capture 

realistic overtaking behavior and true measure of traffic field. This provides a flexibility to 

calibrate the model based on either aggregate traffic data or disaggregate overtaking 

observational data.  

2. Proposing an overtaking gap-acceptance logic based on the perception of driver to estimate 

overtaking time-to-collision (TTC) to the opposing vehicle. 

3. Determining the perception error based on observation of overtaking maneuvers from 

overtaking field data. 

4. Calibration and validation of the overtaking gap-acceptance model on observational 

overtaking data using a binary Probit model.  

5. The application of the new model contributed to improved estimates for ATS and PTSF 

measures used in determination of level-of-service for two-lane highways. For the first time, 

the effect of standard deviation of speed was proposed as a correction factor to increase the 

accuracy of ATS and PTSF. Safety alternative measures including overtaking rate and 

average TTC were proposed as an alternative measure for the LOS analysis on two-lane 

highways. 

6. The application of the model to evaluate safety and traffic implications of truck mandated 

speed limiter on two-lane highways was demonstrated in this thesis. This is the first research 

using micro-simulation to assess the potential effects of imposing mandated truck speed 

limiter for two-lane highways. Although previous studies proposed both statistical and 

simulation approaches to evaluate this countermeasure for freeways, using two-lane 

simulation to study safety and traffic consequences of using truck speed limiters especially on 

overtaking maneuver is a new approach in its kind.  

7. The last contribution of this research regards the application of OTSIM to model safety and 

traffic implications of adaptive cruise control (ACC) if used in two-lane traffic flow and how 

this may specifically affect overtaking behavior.  
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7.3 Future Research 

A number of potential research subjects are proposed as future works for this thesis. First is to 

improve the accuracy of the proposed overtaking model and extend its validity through more 

comprehensive field data collection. In addition, there are also a number of recommendations for 

future works regarding the model applications. 

The inclusion of an impatience factor in overtaking decision logic can improve accuracy of the 

overtaking model. In the proposed data collection study, it was not possible to determine the driver’s 

past driving circumstance e.g. number of rejected gaps or time spent in desire-to-overtake mode, 

although a general formulation was provided in Chapter 3 to calibrate the impatient function. As 

discussed, this could result in reduction in driver’s critical TTC threshold and increased driver’s 

aggression level. This data is normally difficult to obtain unless, a large section of two-lane highway 

is monitored, or a driving simulator is used. 

The other improvement area, which is also related to model validation, is to collect aggregate 

traffic data at multiple locations of a two-lane highway with permitted overtaking. The traffic data 

can include spot speeds, vehicles headways, and occupancies. This data would be valuable to further 

check the transferability of the model in generating real world field data. This can also check whether 

simulation outputs will be consistent with field data through adjustment of the overtaking model 

parameters. This is not a very difficult data collection task since this type of traffic data can be easily 

obtained from ordinary traffic sensors e.g. loop detectors. The challenge remains to find an 

appropriate site location with minimum access points, minimum overtaking restriction and significant 

traffic volume.  

In this research, the model parameters were determined as per calibration overtaking data for 

normal driving, road, and traffic conditions as well as good weather and clear visibility. Any changes 

to these conditions may change the calibration results; i.e., calibration parameters must be adjusted. It 

is also useful to collect overtaking and traffic data for two-lane highways on different conditions; e.g. 

bad weather, narrow lanes and shoulder at multiple locations. Given the availability of aggregate 

traffic data or disaggregate observational overtaking data for these locations, the proposed overtaking 

model can be recalibrated by adjusting the model calibration parameters.  

In this research, the desire-to-overtake was simply modeled based on a speed differential threshold. 

This may be more complicated since drivers may change their tendency to overtake at different road 
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and traffic conditions. This requires more investigation and specific data collection effort, which was 

out of scope of this research. 

The application of OTSIM in the study of car-truck differential speed limit was limited to the 

assumption made on distribution of speeds which were mostly borrowed from freeways and multi-

lane highways. This was especially true about truck speed distribution with mandated speed limiters. 

New speed field data can be collected on two-lane highways to validate these assumptions.  

It is known ACC always reduces the probability of rear-end collision by keeping larger headway 

between overtaking and overtaken vehicles. However, as shown in this study, this can be sometimes 

compromised by increased risk of head-on collision and larger percent time spent following. The 

combination of these factors and associated crash risks require further investigation. 

In addition, it is also recommended to decrease the simulation time-step to 0.1 second to improve 

the accuracy of simulation outputs especially those related to surrogate safety performance measures. 

That would require implementing the software code in a faster language platform such as C++. 

 Finally with advancement in vehicles technologies, especially development and implementation of 

connected vehicles, more extensive overtaking data can be collected and used to improve the 

reliability and accuracy of overtaking simulation models in various driving and traffic conditions.     
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Appendix A 

- OTSIM manual 

In this appendix, the OTSIM manual is described. Figure A1 illustrate the OTSIM main interface 

window. The description of each section, numbered from 1 to 8, is as follow.  

1: Simulation run control including “start”, “stop”, and “resume/pause” buttons. A slider bar below 

these buttons is designed to control the speed of animation. 

 :  This section is aimed to provide appropriate view of the simulation screen through “zoom in” 

and “zoom out” buttons. The “fit” button returns the screen view to the view of the entire road 

section. 

3: In this section, user can disable/enable simulation animation, restrict/allow overtaking for the 

entire section, and disable/enable data logging.  

4: Data logging information can be provided in this section. This includes the file and folder names 

for log files as well as number of runs for batch simulation. 

5: Directional flow information is provided in this section. The traffic flow in vehicle per hour is 

given for both entry flows and actual randomly generated flows. 

 

Figure A1- OTSIM software main interface window 
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6: Information regarding the average generated platoon size is given in section 6 in the simulation 

main interface. 

7: Simulation time including current simulation time, simulation time period, and simulation warm-

up time are provided in seconds. 

8: View of the simulation section as well navigation to right and left can be performed using the 

left/right arrow buttons. 

Figure A2 illustrates the flow entry menu designed in OTSIM. Directional flow, minimum 

generated headway, and percentage of vehicles can be entered by users through this mean. “Max time 

HW of platoon” is the maximum time headway between vehicle to be considered as a part of platoon. 

Vehicles with headways more than this value are considered as separate vehicles. This parameter 

plays role in multiple overtaking logic in OTSIM to determine whether the potential overtaking 

vehicle must overtake a platoon of vehicles or a single vehicle. The “platoon forming Eq. parameter 

(A)” is a calibration parameter playing role in the OTSIM’s platoon generation model.  

Distribution of desired speed for three classes of vehicles for each direction can be entered through 

the menu shown in Figure A3. The “Auto Generate” button create minimum and maximum of desired 

speeds based on the mean and standard deviation (min = mean – 3*SD, max = mena+3*SD). The 

distributions of desired speed are assumed to be normally distributed in OTSIM. Mandated speed 

limit for trucks can be activated by putting a check mark to the corresponding activation box and 

entering the desired maximum value. 

 

Figure A2- OTSIM flow entry menu 
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Figure A3- OTSIM desired speed distribution menu 

Figure A4 illustrates the simulation time menu. Total simulation as well as warp-up time can be 

determined in this menu. The “Auto Generate” menu creates minimum warm-up time based on the 

length of the simulated section and average travel speed of vehicles. 

Figure A5 shows the user interface menu for entering physical characteristics of vehicles. Care 

should be taken in changing the default parameter values since a significant impact may be observed 

on model outputs especially those related to overtaking maneuver. 

 

Figure A4- OTSIM simulation time control  
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Figure A5- OTSIM simulation time control  

Parameters related to driving behavior is shown in Figure A6 (driving behavior menu). The first 

section of this menu determines the desired deceleration rate of vehicles used in OTSIM. The second 

section provides the list of parameters playing rule in the overtaking decision logic. The Gipps car-

following model parameters can be changes in section three and finally the last section is to activate 

the adaptive cruise control and change the corresponding penetration rate and desired time-gap 

headway for three classes of vehicles.  

Figure A7 presents the menu used in OTSIM to enter road data. The road data include segment 

length, lane width, shoulder width, and elevation. Segment grade information as well as passing/no-

passing information can be entered by users in this section. 

A view of the post processing software developed to analyze and summaries the simulation log 

files generated by OTSIM is shown in Figure A8. The left section of this figure shows the log file 

information and the right side shows the summary of results. Detailed overtaking information as well 

as summary of results can be generated in spreadsheet format.  
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Figure A6- OTSIM simulation time control  

 

 

Figure A7- OTSIM road entry menu  

 

 



 

 145 

 

Figure A8- Post processing software used in OTSIM  
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Appendix B 

- Calculation of distance covered by overtaking vehicle to reach the 

desired overtaking speed 

The instant acceleration for light vehicles can be linearly approximated as a function instant speed of 

the vehicle such that:  

 ( )  
  ( )

  
      (  

 ( )

    
) B1 

where, 

      maximum achievable speed 

      maximum achievable acceleration from the stopped position 

   porportion of maximum available acceleration employed by the driver 

Eq. A1 is an ordinary differential equation (ODE) that can be solved as follow: 

 ( )              ( )  
 

     

     
 B2 

where, 

 ( )   initial speed =      

The time required to achieve the desired speed of      from initial speed of      using   proportion of 

     can be determined from Eq. A2 as: 

   
    

     
   (

         

         
) B3 

The distance travel during   can be estimated as follow: 

∫  ( )    ( )|
 

 

           ( )         
→                  

 

 

 

∫ (            ( )  
 

     

     
 )     ( )   ( )

 

 

 

B4 

 

Finally, the travel distance can be determined as: 
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Appendix C 

- Two-dimensional multi-level comparison graphs for speed 

limiters 

 

Figure C1- Flow1/SL versus Speed 
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Figure C3- PT/SL versus Speed 

 

 

Figure C4- Flow1/SL versus PTSF 
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Figure C5- Flow2/SL versus PTSF 

 

 

Figure C6- PT/SL versus PTSF 
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Figure C7- Flow1/SL versus OTrate-carcar 

 

 

Figure C8- Flow2/SL versus OTrate-carcar 
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Figure C9- PT/SL versus OTrate-carcar 

 

 

Figure C10- Flow1/SL versus OTrate-cartruck 
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Figure C11- Flow2/SL versus OTrate-cartruck 

 

 

Figure C12- SL/SL versus OTrate-cartruck 
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Figure C13- Flow1/SL versus Total OT 

 

 

Figure C14- Flow2/SL versus Total OT 
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Figure C15- PT/SL versus Total OT 

 

 

Figure C16- Flow1/SL versus TTC 
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Figure C17- Flow2/SL versus TTC 

 

 

Figure C18- PT/SL versus TTC 
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