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Abstract

There are two main tools for determining the stability of nonlinear partial differential
equations (PDEs): Lyapunov Theory and linearization. The former has the advantage of
providing stability results for nonlinear equations directly, while the latter considers the
stability of linear equations and then further justification is needed to show the linear
stability implies local stability of the nonlinear equation. Linearization has the advantage
of investigating stability on a simpler equation; however, the justification can be difficult
to prove.

Both Lyapunov Theory and linearization are applied to the Landau–Lifshitz equation,
a nonlinear PDE that describes the behaviour of magnetization inside a magnetic object.
It is known that the Landau-Lifshitz equation has an infinite number of stable equilibrium
points. We present a control that forces the system from one equilibrium to another. This
is proved using Lyapunov Theory. The linear Landau–Lifshitz equation is also investi-
gated because it provides insight to the nonlinear equation. The linear model is shown to
be well–posed and its eigenvalue problem is solved. The resulting eigenvalues suggest an
appropriate control for the nonlinear Landau–Lifshitz equation. Mathematically, the con-
trol causes the initial equilibrium to no longer be an equilibrium and the second point to
be an asymptotically stable equilibrium point. This implies the magnetization has moved
to the second equilibrium and hence the control objective is successfully achieved.

The existence of multiple stable equilibria is closely related to hysteresis. This is a
phenomenon that is often characterized by a looping behaviour; however, the existence of
a loop is not sufficient to identify hysteretic systems. A more precise definition is required,
which is presented, and applied to the Landau–Lifshitz equation (both linear and nonlinear)
to establish the presence of hysteresis.
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Notation

C Complex numbers.

R Real numbers.

e1 Standard basis vector, e1 = (1, 0, 0).

e2 Standard basis vector, e2 = (0, 1, 0).

e3 Standard basis vector, e3 = (0, 0, 1).

m Magnetization, m(x, t) = (m1(x, t),m2(x, t),m3(x, t)).

mx Partial derivative with respect to x; that is, mx(x, t) = (m′1(x, t),m
′
2(x, t),m

′
3(x, t)).

ṁ Partial derivative with respect to t; that is, ṁ(x, t) = (ṁ1(x, t), ṁ2(x, t), ṁ3(x, t)).

L3
2 L3

2 = L2[0, L]× L2[0, L]× L2[0, L] with norm || · ||L3
2

and inner product 〈·, ·〉L3
2
.

L2[0, L] Space of square integral functions with norm || · ||L2 and inner product 〈·, ·〉L2 .

ν Damping parameter in the Landau–Lifshitz equation.

× Cross product.

|| · ||op Operator norm.

| · | Absolute values.

|| · ||2 Euclidean norm.

Y Hilbert space.

Z Hilbert space.
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Chapter 1

Introduction

The Landau–Lifshitz equation describes the energy interactions between a magnetic ma-
terial and the effect an applied external magnetic field has on the magnetization. As a
physical example, an external magnetic field is generated by wrapping some coil around
a nanowire (Carbou et al. [26]). Nanostructures are found inside memory storage devices
such as hard disks. The emergence of magnetic materials in nanostructures is of growing
interest in the nanotechnology sector. Recent advances allow for more accurate experi-
mental research with nanostructures (Cowburn et al. [29], Noh et al. [69]). Because of this,
theoretical results on the control of stability is necessary, yet control results are not well
developed.

The Landau–Lifshiftz equation is a nonlinear partial differential equation (PDE). It is
known that the Landau–Lifshitz equation has multiple stable equilibria (Guo and Ding [40,
Section 6.1.1]). We present a control which forces the dynamics in the Landau–Lifshitz
equation to move from one equilibrium to another. In particular, the control causes the
initial equilibrium to no longer be an equilibrium of the controlled system and the second
point to be an asymptotically stable equilibrium point of the controlled system. This
provides a framework for controlling mathematical models that exhibit multiple equilibria.

Investigating the linear Landau–Lifshitz equation provides insight in designing the ap-
propriate control for the original nonlinear equation. The linear model is shown to be
well–posed and its eigenvalue problem is solved. In particular, the operator associated
to the linear Landau–Lifshitz equation generates an analytic semigroup and hence the
eigenvalues of the linear operator determines the stability of the linear system. The eigen-
values also suggest that a constant control is appropriate for the nonlinear Landau–Lifshitz
equation. This control is shown to be successful using Lyapunov theory.
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Lyapunov theory applies stability analysis directly to a nonlinear partial differential
equation (PDE). Lyapunov theory is commonly applied to nonlinear ordinary differential
equations (ODEs) (Khalil [50, Chapter 4], Vidyasagar [89, Chapter 5]) but it can be
similarly applied to PDEs, whether linear or nonlinear. We present Lyapunov theory for
invariant sets, which is nearly identical to the well–known version for equilibrium points,
but not as commonly applied. The one–dimensional heat equation, which we discuss
in detail, is an ideal example that illustrates Lyapunov theory for PDEs and invariant
sets. It also demonstrates how boundary conditions significantly affect stability. The
main disadvantage of Lyapunov theory is that the result requires finding an appropriate
Lyapunov function, which often requires guesswork.

An alternative approach to Lyapunov theory is linearization. It has the advantage of
working with a simpler equation; namely, a linear equation. However, there needs to be a
justification that the behaviour of the linearized equation implies the same behaviour as
the original nonlinear equation. For ODEs or more generally, finite–dimension, the jus-
tification is well–established in the form of the Lyapunov’s Indirect Method (Khalil [50,
Theorem 4.7]). For PDEs or more generally, infinite–dimension, an equivalent result is
not available. This justification is sometimes overlooked, dismissed or even trivialized.
We describe a framework for infinite–dimensional systems that allows the stability of the
linearized equation to imply the same type of stability for the original nonlinear equa-
tion. Moreover, we present a nonlinear system which is not asymptotically stable while its
linearization is.

The stability for infinite–dimensional systems is far more complex than for finite–
dimensional systems. For instance, the stability of infinite–dimensional systems depends
heavily on the choice of the norm, while for finite–dimensional systems the choice of the
norm is insignificant since all norms are equivalent in finite–dimensions. Because of these
complexities, determining the stability of a PDE is challenging, especially if it is nonlinear.
Furthermore, because of the nonlinearity, control results are also hard to achieve. An exam-
ple which faces this challenge is the nonlinear Saint–Venant equations (Bastin et al. [12]).
The Saint–Venant equations model the flow of water along a channel. Gates are placed
along the channel to control the flow of the water as shown in Figure 1.1. The Saint–Venant
equations are a system of coupled nonlinear equations where each equation represents one
gated region along the channel. The gates are the physical controls and hence the controls
are part of the boundary conditions of the Saint–Venant equations. Using Lyapunov theory,
conditions on the control parameters are determined which provide exponential stability
of the equilibrium solutions but only for the linear Saint–Venant equations. This result
cannot necessarily be applied to the nonlinear Saint–Venant equations. The stability of
nonlinear reaction diffusion equations are also hard to determine (Dramé et al. [34, 55]). In
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the work by Dramé et al. , the nonlinear equations are linearized and their eigenvalues are
calculated as a way of determining the stability of the equilibrium solutions, but this does
not necessarily imply the same stability of the original nonlinear equations. Our stability
and control results pertain to the original nonlinear Landau–Lifshitz equation.

Figure 1.1: Flow of water along a channel. Gates placed along the channel control the flow
of water. These dynamics are governed by the Saint–Venant equations. This illustration
is taken from Bastin et al. [12] and has been modified.

Nonlinear PDEs often have multiple equilibria. The existence of multiple equilibria is
closely related to the elusive but often occurring phenomenon known as hysteresis, which
the Landau–Lifshitz equation exhibits. By elusive, we mean there is no rigorous definition
of hysteresis. Loosely, hysteresis is associated with a looping behaviour in the input–output
map; however, merely a looping behaviour is not sufficient to define hysteresis. The shape
of the loop varies depending on the example or can even differ within the same example.
This is one of the reasons why hysteresis is so difficult to define. Mathematically, hysteresis
is often defined using operators (Brokate and Sprekels [20, Chapter 2], Valadkhan et al.
[86]). The hysteresis operator is included as an additional term in the mathematical model,
which can complicate the equation. As well, the mathematical definition of a hysteresis
operator can include operators which are not hysteretic (Morris [67]).

It follows that a more fundamental approach in defining hysteresis is needed. We con-
sider two such definitions. The first definition states that a system is hysteretic if it exhibits
persistent looping behaviour as the frequency of the input signal approaches zero (Bern-
stein and Oh [70]). We show that the Landau–Lifshitz equation (both linear and nonlinear)
satisfies this definition. The presence of hysteresis in the Landau–Lifshitz equation is usu-
ally demonstrated by a looping behaviour either experimentally (Noh et al. [69], Suess et
al. [82]) or numerically (Wiele [87], Yang and Zhao [100]). Looping at a fixed frequency
is actually not enough to define hysteresis. The second definition states a system exhibits
hysteresis if it has multiple stable equilibria and fast dynamics compared to the rate at
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which inputs are varied (Morris [67]). This definition is closely related to the looping be-
haviour associated with hysteresis. Both the linear and nonlinear Landau–Lifshitz equation
have multiple stable equilibria. It is widely regarded that nonlinearity of the dynamical
system is essential for a system to be hysteretic (see for example Bernstein and Oh [70]).
The fact that the linear Landau–Lifshitz equation exhibits hysteresis highlights that the
existence of multiple equilibria equilibrium, and not nonlinearity, is crucial for hysteretic
behaviour. A classic second order ODE example is also presented to illustrate this point.

We present control that forces the dynamics of the Landau–Lifshitz equation to move
from one stable equilibrium to another. Essentially this means controlling the hysteresis
arising in the Landau–Lifshitz equation, which is useful since the looping behaviour of
hysteresis means one input can lead to more than one output. Moreover, the control can
force any arbitrary magnetization to any arbitrary stable equilibrium point. This means
the control results are global control results.

Our controller design can be applied to other systems that exhibit hysteresis. An
example is a chemical reactor model governed by nonlinear diffusion reaction equations,
which has been shown to have multiple stable equilibria and exhibit hysteresis (Jensen and
Ray [45], Mancusi et al. [63]). Hysteresis also arises in many biological models because
they often have multiple stable equilibria (Murray [68, Section 1.2]). Freezing and thawing
processes are also hysteretic since freezing is not the opposite of thawing and hence follows
a different path back than thawing, which leads to the formation of a loop (Alimov et al.
[5]).

The structure of this thesis is as follows. Chapter 2 discusses the stability of PDEs. In
particular, linearization and Lyapunov theory are presented. Chapter 3 defines hysteresis
and how to identify it. An illustrative example of a second order ODE is considered.
Chapters 4 and 5 focus on the Landau–Lifshitz equation. To begin, a literature review is
presented. The thesis then focuses on the stability, hysteresis and control of the Landau–
Lifshitz equation and the linear Landau–Lifshitz equation. The control chosen is shown to
be successful in Chapter 5. In the final chapter, a brief summary and some extensions are
discussed.
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Chapter 2

Stability

Stability analysis of infinite–dimensional systems is far more complex than finite–dimensional
systems. Well–known results for finite–dimensions do not always generalize to infinite–
dimensions.

In finite–dimensions the local stability of a nonlinear system can often be determined
from its corresponding linear system. The result which justifies this is Lyapunov’s indirect
method (Khalil [50, Theorem 4.7]). The theorem states that near an equilibrium point,
the nonlinear system has the same stability as the linear system. This applies to all linear
systems except those with eigenvalues that have zero real part. Unfortunately, Lyapunov’s
indirect method does not extend to infinite–dimensions. We will discuss justification of
linearization for infinite–dimensional systems in Section 2.1.

In finite–dimensions, since all norms are equivalent, the choice of norm does not play
a significant role in stability results; however, for infinite–dimensions, stability properties
depend heavily on the choice of the norm which depends on the infinite–dimensional space.
Let Z be a Hilbert space with norm || · ||Z and inner product 〈·, ·〉Z . We use this notation
throughout the thesis. Consider the linear abstract Cauchy problem

ż(t) = Az(t), z(0) = z0 ∈ D(A) (2.1)

where A is a linear operator and D(A) is the domain of A. Suppose A generates the
semigroup, T (t), for all t ≥ 0. The dot notation denotes differentiation with respect to
time. Define R+ = [0,∞).

Definition 2.1. (Luo et al. [62, Definition 2.1])
Let T (t) : Z → Z be a family of bounded linear operators for t ∈ R+. Then T (t) is a
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strongly continuous semigroup (C0-semigroup) if
(i) T (0) = I

(ii) T (t+ s) = T (t)T (s) for s, t ∈ R+

(iii) limt→0+ ||T (t)z0 − z0||Z = 0 for all z0 ∈ Z.

An operator T (t) that satisfies (iii) is said to be strongly continuous at 0. In fact, T (t)
is strongly continuous on all t ≥ 0 since T (t) is a linear and bounded operator. A detailed
proof can be found in Curtain and Zwart [31, Theorem 2.1.6b].

Semigroups are closely related to solutions of abstract Cauchy problems. If A generates
a semigroup, T (t), then the solution to (2.1) is

z(t) = T (t)z0.

There are different types of semigroups. Denote the operator norm by || · ||op.

Definition 2.2. (Banks [10, Definition 6.1])
A semigroup, T (t), on Z is called an analytic semigroup if t→ T (t)z is analytic for each z
in Z.

Definition 2.3. (Luo et al. [62, Definition 2.18])
A C0-semigroup, T (t), on Z is uniformly bounded if ||T (t)||op ≤M where M ≥ 1. If M = 1,
then T (t) is a contraction semigroup.

Definition 2.4. (Luo et al. [62, Definition 3.1])
A C0-semigroup, T (t), on Z is asymptotically stable (or sometimes called strongly stable) if
for every z0, ||T (t)z0||Z → 0 as t→∞.

Definition 2.5. (Luo et al. [62, Definition 3.1])
A C0-semigroup, T (t), on Z is exponentially stable if there exists positive constants M and
σ such that ||T (t)||op ≤Me−σt for t ≥ 0.

In finite–dimensions, asymptotic stability and exponential stability are equivalent. This
is not necessarily true in infinite–dimensions. A semigroup that is asymptotically stable
but not exponentially stable is illustrated in example 3.2 in Luo et al. [62].

In finite–dimensions, if all the eigenvalues of A are in the left-half plane, then A gen-
erates an exponentially stable semigroup; however, this is not always true for infinite–
dimensions. Luo et al. [62, Example 3.3] and Pazy [71, Example 4.4.2] present an operator
whose spectrum is contained in the left-half plane but the semigroup is not exponentially
stable. This leads to another concept unique to infinite–dimensional space known as the
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spectrum–determined growth assumption (Curtain and Zwart [31, Section 5.1], Luo et al.
[62, Section 3.2]). The spectrum–determined growth assumption holds if

ω0 = sup{Reλ : λ ∈ σ(A)} (2.2)

where σ(A) is the spectrum of A and

ω0 = inf
t>0

log ||T (t)||op
t

. (2.3)

Equation (2.2) helps to identify exponential stability via the spectrum of A for infinite–
dimensional systems that satisfy the spectrum–determined growth assumption. Analytic
semigroups and delay equations satisfy the spectrum–determined growth assumption (see
Luo et al [62, Corollary 3.1.4], Curtain and Zwart [31, Theorem 5.1.7], respectively).

There are a number of theorems that show A generates a semigroup. We present
two which have relatively tractable conditions. Both theorems are applied to the linear
Landau–Lifshitz equation in Section 4.3 to show the problem is well–posed.

Theorem 2.6. [Lumer–Phillips Theorem] (Pazy [71, Corollary 1.4.4].)
If A is a densely defined closed linear operator satisfying

Re〈Az, z〉z ≤ 0 for all z ∈ D(A) (2.4)

Re〈A∗z, z〉z ≤ 0 for all z ∈ D(A∗), (2.5)

then it generates a contraction semigroup.

The requirement on A and its adjoint, A∗, described in (2.4),(2.5) means that A and
A∗ are dissipative (Pazy [71, Definition 1.4.1]).

Theorem 2.7. (Banks [10, Theorem 6.1], Showalter [78, Theorem 6.1])
Let Y be another Hilbert space with Y ⊂ Z and, norm and inner product, || · ||Y and
〈·, ·〉Y , respectively. Suppose Y is a dense subset of Z and

||y||Z ≤ k||y||Y for all y ∈ Y

for some positive constant k. Suppose σ : Y × Y → C satisfies

|σ(φ, ψ)| ≤ γ||φ||Y ||ψ||Y for all φ, ψ ∈ Y (2.6)

and
Reσ(φ, φ) ≥ δ||φ||2Y for all φ ∈ Y (2.7)
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for some constants γ, δ > 0. Define A : D(A) ⊂ Y → Z by

D(A) = {φ ∈ Y : there exists Kφ > 0 depending on φ

such that |σ(φ, ψ)| ≤ Kφ||ψ||Z for all ψ ∈ Y }

and
σ(φ, ψ) = 〈−Aφ, ψ〉Z for all φ ∈ D(A), ψ ∈ Y.

Then D(A) is dense in Z and A generates an analytic semigroup on Z.

The conditions in Theorem 2.7 are also sufficient to show A generates a contraction
semigroup. The proof of the theorem is found in Showalter [78, Theorem 6.1]). An example
of the heat equation with boundary conditions w(0, t) = 0, w′(L, t) = 0 is illustrated in
Banks [10, example 6.1]. An immediate consequence of Theorem 2.7 is presented in the
following corollary.

Corollary 2.8. (Banks [10, Theorem 6.2])
Suppose all the assumptions of Theorem 2.7 hold except that (2.7) for σ is replaced by

Reσ(φ, φ) + λ0||φ||2Z ≥ δ||φ||2Y for all φ ∈ Y (2.8)

for some λ0 > 0, δ > 0. Then defining A as in Theorem 2.7, we have that A is densely
defined and is the infinitesimal generator of an analytic semigroup in Z.

Semigroups associated to nonlinear Cauchy problems are defined similarly to their linear
counterparts. Consider the nonlinear abstract Cauchy problem

ż(t) = f(z(t)), z(0) = z0 (2.9)

where f : Z → Z is a nonlinear operator. Assume (2.9) is well–posed; that is, f generates
a semigroup. We also consider semilinear problems

ż(t) = Az + f(z), z(0) = z0 ∈ D(A). (2.10)

The domain of A and f are denoted, D(f) and D(A), respectively. Suppose A + f(·)
generates the nonlinear semigroup, F (t), then

z(t) = F (t)z0.

Definition 2.9. (Michel and Wang [65, Definition 2.9.7])
Let D be a subset of Z. A family of one-parameter nonlinear operators F (t) : D → D, t ∈

8



R+ is a nonlinear semigroup defined on D if
(i) F (0)z0 = z0 for z0 ∈ D

(ii) F (t+ s)z0 = F (t)F (s)z0 for t, s ∈ R+, z0 ∈ D
(iii) F (t)z0 is continuous in t on R+

(iv) F (t)z0 is continuous in z0 on D.

There are generation theorems available for the nonlinear problem described in (2.9)
such as the Crandall–Liggett Theorem (Luo et al. [62, Theorem 2.115]). We will not go
into further details but for more on nonlinear semigroups, see Luo et al. [62, Section 2.9]
and Barbu [11].

The stability of semigroups is related to the stability of equilibrium points. Suppose
z(t) ∈ D(f) is a solution of (2.9) and z̃ ∈ D(f) is an equilibrium point of (2.9); that is, z̃
such that f(z̃) = 0. The equilibrium point can also be defined using the semigroup, F (t),
as z̃ = F (t)z̃ for all t.

Definition 2.10. (Walker [93, Definition 3.2])
The equilibrium point z̃ is (locally) stable if for any ε > 0, there exists a δ > 0 such that
||z(0)− z̃||Z < δ implies ||z(t)− z̃||Z < ε for all t ≥ 0.

Definition 2.11. (Walker [93, Definition 3.2])
The equilibrium point z̃ is (locally) asymptotically stable if z̃ is stable and there exists a
δ > 0 such that ||z(0)− z̃||Z < δ implies

lim
t→∞
||z(t)− z̃||Z = 0. (2.11)

The finite–dimensional versions of Definition 2.10 and 2.11 can be found in Khalil [50,
Definition 4.1] and are identical. Clearly, asymptotically stable implies stable but the
converse is not true. A pictorial description highlighting the difference between stable
and asymptotically stable is displayed in Figure 2.1. Another common type of stability is
exponential stability.

Definition 2.12. (Smoller [81, Definition 11.21])
The equilibrium point z̃ is (locally) exponentially stable if there exists a δ > 0 and positive
numbers k and α such that ||z(0) − z̃||Z < δ implies ||z(t) − z̃||Z < ke−αt||z(0) − z̃||Z for
all t ≥ 0.

The stability of invariant sets can also be considered.
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(a) Stable (b) Asymptotically Stable

Figure 2.1: Pictorial descriptions of Definition 2.10 and 2.11. Let z̃ and z0 be an equi-
librium and initial condition of (2.9), respectively. (a) If z̃ is stable, then solutions of
(2.9) stay within an ε–ball for all time. (b) If z̃ is stable and satisfies (2.11), then z̃ is
asymptotically stable.

Definition 2.13. (Xu and Yung [98, Definition 2.4])
A set M ⊂ Z is called an invariant set with respect to (2.9) if for each z(0) ∈M , it follows
that z(t) ∈M for all t ≥ 0.

Define dist(z,M) as the minimum distance from z ∈ Z to a point in M ; that is, for
any z ∈ Z,

dist(z,M) = inf{||z − y||Z : y ∈M}.

Definition 2.14. (Xu and Yung [98, Definition 2.6])
The invariant set M is (locally) stable if for any ε > 0, there exists a δ > 0 such that
dist(z(0),M) < δ implies dist(z(t),M) < ε for all t ≥ 0.

Definition 2.15. (Xu and Yung [98, Definition 2.6])
The invariant set M is (locally) asymptotically stable if M is stable and there exists a δ > 0
such that dist(z(0),M) < δ implies

lim
t→∞

dist(z(t),M) = 0. (2.12)

In the above stability definitions, the initial condition depends on δ and hence these
notions of stability are local. If stability occurs for any initial state, then we say it is
globally stable or globally asymptotically stable.

Define a set of equilibrium points as an equilibrium set, E. By definition, an equilibrium
point does not change with respect to time and hence remains in E. It follows that E is
an invariant set; that is, every equilibrium set is an invariant set.
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There are two main methods for examining the stability of equilibrium points and
equilibrium sets: linearization and Lyapunov Theory. The discussion on the linearization
of nonlinear infinite–dimensional systems is based on the semilinear form described in
(2.10). The justification is not trivial and many examples do not satisfy the necessary
conditions. The Landau–Lifshitz equation is one such example. Fortunately, Lyapunov
Theory provides a successful alternative.

2.1 Linearization

Requirements on how the stability of a nonlinear infinite–dimensional system can be de-
termined by its corresponding linear system are presented. Three main issues need to
be addressed. First, how to differentiate the nonlinear operator. We discuss Fréchet and
Gateaux differentiability. Second, a relationship between the semigroup of the linear sys-
tem and the semigroup of the nonlinear system must be made. This allows for a connection
between the stability of a nonlinear equation and its corresponding linearized equation.

We begin by defining Fréchet and Gateaux differentiability.

Definition 2.16. (Hutson et al. [43, Definition 4.4.1])
Let D(f) be an open subset of Z and f : D(f) → Z be an operator. For h, a ∈ D(f), an
operator f is Fréchet differentiable at a if there exists a bounded linear operator dfa : Z → Z
such that

lim
||h||Z→0

||f(a+ h)− f(a)− dfah||Z
||h||Z

= 0. (2.13)

The operator, dfa, is the Fréchet derivative of f at a.

Definition 2.17. (Lebedev and Vorovich [60, Definition 3.1.2])
The operator G : D(G) ⊂ Z → Z is Gateaux differentiable at a ∈ D(G) if there exists a
linear operator ∂Ga : Z → Z such that

lim
ε→0

||G(a+ εv)−G(a)− ∂Gav||Z
ε

= 0 (2.14)

for every a+ εv, v ∈ D(G). The operator ∂Ga is called the Gateaux derivative of G at a.

The precise definition of Gateaux differentiability varies depending on the reference. For
example, the Gateaux derivative may be defined as bounded and linear (Joshi and Bose
[47, Definition 2.1.1], Kato [48, Section 1]). In Banks [10, Definition 1.1], the Gateaux
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derivative need not be linear. In comparison, the definition of Fréchet differentiable is
consistent. Fréchet differentiability requires uniform convergence while convergence for
Gateaux differentiability depends on the direction v. This suggests Fréchet differentiable
implies Gateaux differentiable and this is easily proven by setting f = G and h = εv in
equation (2.13) which leads to

lim
||εv||Z→0

||G(a+ εv)−G(a)− dGaεv||Z
||εv||Z

= 0.

Since the limit is independent of v,

1

||v||Z
lim
ε→0

||G(a+ εv)−G(a)− dGaεv||Z
ε

= 0.

Multiplying by ||v||Z and with ∂Gav = dGav, we recover (2.14). Therefore, Fréchet dif-
ferentiable implies Gateaux differentiable and their derivatives are equal (Lebedev and
Vorovich [60, Theorem 3.1.1]); however, the converse is not true. For example, the deriva-
tive of a linear differentiable operator is just itself; however on the space of square integrable
functions, the derivative operator is unbounded and hence is a Gateaux derivative but not
a Fréchet derivative.

Consider the nonlinear problem

ż(t) = G(z(t)) (2.15)

where G is Gateaux differentiable with Gateaux derivative, ∂Gz, for some z ∈ D(G). Let
z̃ be an equilibrium solution of (2.15) and

Br(z̃) = {z ∈ Z : ||z − z̃||Z < r}

for some constant r > 0. Define the corresponding linear problem to be

ż(t) = ∂Gz̃z(t)

and suppose it generates an exponentially stable semigroup. If there exists a λz̃ > 0 and
nondecreasing function Lz̃ : R+ → R+ such that

||(I + λ∂Gz)
−1v − (I + λ∂Gy)

−1v||Z ≤ λ||z0 − y0||ZLz̃(||v||Z) (2.16)

for 0 < λ < λz̃ with y, z ∈ Br(z̃) ∩ D(G) and v ∈ Z, then z̃ is an exponentially stable
equilibrium of (2.15). This result and its proof are found in Kato [48, Theorem 2.1]. In
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general, the condition described in (2.16) is not easy to check.

We now consider the semilinear equation (2.10), which generates the semigroup, F (t).
Temam [84, Section VI.8] investigates when F (t) is Fréchet differentiable, which is useful
for showing the stability of the linearized equation of (2.10) has similar stability to (2.10)
(see Theorem 2.24 below and al Jamal [3]). The linear operator, A : D(A)→ Z of (2.10) is
assumed to be self-adjoint and negative. The nonlinear operator is defined as f mapping
from Y to Y ′ where Y = D((−A)1/2) and Y ′ is its corresponding dual space. For y ∈ Y ,
define the norms ||y||Y = ||(−A)1/2y||Z and ||y||Y ′ = ||(−A)−1/2y||Z , write

f(z(t))− f(w(t)) = L(z(t)− w(t)) +Q(z(t)− w(t)) (2.17)

where L is a linear bounded operator on Y to Y ′. For some 0 < ε ≤ 1 and positive constant
cε that depends on ε, assume L satisfies

|〈Lv, v〉Z | ≤ (1− ε)||y||2Y + cε||y||2Z (2.18)

for all y ∈ Y and assume Q satisfies

||Q(z(t)− w(t))||Y′ ≤ k1||z − w||1+σ1
Y

for some k1 > 0 and σ1 > 0. For every R > 0, suppose there exists 0 < σ2 ≤ 1 and constant
kR depending on R such that

|〈f(z)− f(w), z − w〉Z | ≤ kR||z − w||σ2
Z ||z − w||

2−σ2
V

for all z, w ∈ D(A1/2) with ||z||Z ≤ R and ||w||Z ≤ R. Given these conditions, F (t) is
Fréchet differentiable and its derivative is equal to the semigroup of the linearized equation
of (2.10).

In what is to follow, we consider Fréchet differentiability of the nonlinear operator.
Consider the semilinear equation in (2.10), which generates the nonlinear semigroup F (t).
Suppose the nonlinear operator, f, in (2.10) is Fréchet differentiable. Define the corre-
sponding linear problem to (2.10) as

dψ

dt
= Aψ + dfzψ (2.19)

where dfz is the Fréchet derivative of f at z. We are interested in knowing the conditions
required on A and f such that the stability of (2.19) implies similar stability of (2.10). We
begin by presenting the Mean Value Theorem.
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Theorem 2.18. ([Mean Value Theorem] Hutson et al. [43, Lemma 4.4.7])
Let f : Z → Z be an operator. Define for any z ∈ Z and some positive constant r,

Nz,r = {p ∈ Z : ||p− z||Z ≤ r}. (2.20)

If f is Fréchet differentiable on Nz,r, then

||f(y)− f(z)||Z ≤ sup
η ∈Nz,r

||dfη||op||y − z||Z for all y, z ∈ Nz,r

where dfη is the Fréchet derivative of f at η.

We will be referring to the neighbourhood, Nz,r, of z throughout this section.

There are a number of results in the literature that show if the linear system in (2.19)
generates an exponentially stable semigroup, then the original semilinear system (2.10) is
locally exponentially stable (Kato [48, Corollary 2.2], Henry [41, Section 5.1] and Smoller
[81, Section 11.B]). These results require the nonlinear operator, f , in (2.10) to be Fréchet
differentiable. Furthermore, f or its derivative is often required to be locally Lipschitz
continuous, which is defined as follows.

Definition 2.19. (Belleni-Morante and McBride [13, Definition 3.6])
The operator f : Z → Z is locally Lipschitz continuous on Nz,r, defined in (2.20), if

||f(p)− f(q)||Z ≤ Kz,r||p− q||Z , for all p, q ∈ Nz,r.

The bound Kz,r is called the Lipschitz constant and depends on r and z.

Let z̃ be an equilibrium point of (2.10). In Kato [48, Corollary 2.2], A in (2.10) is
assumed to generate an exponentially stable semigroup and the nonlinear operator, f , is
assumed to be Fréchet differentiable in D(f). For all z, y ∈ D(f) with ||z||Z ≤ r, ||y||Z ≤ r
for some r > 0, the Fréchet derivative, df , is assumed to satisfy

||dfy − dfz||op ≤ d(r)||y − z||Z

where d : R+ → R+ is a continuous increasing function. Given these assumptions, Corol-
lary 2.2 in Kato [48] establishes that z̃ is a locally exponentially stable equilibrium of
(2.10).

Smoller [81, Section 11.B] shows a similar result to Corollary 2.2 in Kato but with
different assumptions. He assumes A in (2.10) generates a semigroup on Z and f is locally
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Lipschitz continuous; that is, for all y, z ∈ Z

||f(y)− f(z)||Z ≤ k(||y||Z , ||z||Z)||y − z||Z

where k(s1, s2) is a continuous nonnegative real–valued function that is increasing in s1 and
s2. Define df as the Fréchet derivative of f . Smoller also requires the mapping z → dfz to
be continuous on Z and the following inequality to hold,

||f(z)− f(w)− dfw(z − w)||Z ≤ c||z − w||2Z for all z, w ∈ Nz,r (2.21)

for some positive constant, c. Given these assumptions, Smoller [81, Theorem 11.17] proves
the semigroup, F (t), of (2.10) is Fréchet differentiable with its derivative equal to the semi-
group of (2.19). This result is used to show z̃ is a locally exponentially stable equilibrium
point of (2.10) if equation (2.19) generates an exponentially stable semigroup (Smoller [81,
Theorem 11.22]).

In Theorem 2.23 below, we also prove the semigroup of F (t) of (2.10) is Fréchet dif-
ferentiable and its Fréchet derivative is equal to the semigroup of (2.19). We require A
in (2.10) to be nonpositive and the derivative of f , denoted df , to be locally Lipschitz
continuous on Nz,r and that df satisfies

sup
η∈Nz,r

||dfη||op = Kz,r <∞ (2.22)

for some constant Kz,r > 0 that depends on z and r. Given these assumptions, f is locally
Lipschitz continuous on Nz,r by the Mean Value Theorem, which is a required condition
of f in Smoller [81, Section 11.B] and our assumptions on f imply Smoller’s condition in
(2.21) as illustrated in Lemma 2.21. Furthermore, if df is continuous on Z, which is an
assumption in Smoller, then (2.22) is satisfied. The result in Theorem 2.23 and the result
in Smoller [81, Section 11.B] require similar assumptions. Depending on the equation, it
may be easier to satisfy the conditions in Smoller or those in Theorem 2.23.

A pictorial representation of Theorem 2.23 is depicted in Figure 2.2. Before proving
Theorem 2.23, we prove several lemmas needed in the proof. Recall the neighbourhood N
of z defined in (2.20) is Nz,r, which is used throughout the proofs.

Lemma 2.20. (Lebedev and Vorowich [60, Lemma 3.1.2])
Suppose f is Fréchet differentiable on Nz,r, then

f(y)− f(z) =

∫ 1

0

dfz+s(y−z)(y − z)ds for all y ∈ Nz,r.
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Nonlinear System
dz

dt
= Az + f(z)

-

?

Linear System
dψ

dt
= Aψ + dfzψ

?
Semigroup
of nonlinear
system, F (t)

-
Semigroup
of linear
system, Tz(t)

dFz0(t) = Tz(t)

Figure 2.2: Consider the semilinear equation (2.10) with its nonlinear operator, f , Fréchet
differentiable, and which generates the semigroup, F (t). The corresponding linearized
problem is (2.19). Then F (t) is Fréchet differentiable and its derivative is equal to the
semigroup generated by (2.19). See Theorem 2.23.

Proof of Lemma 2.20: Let q(s) = z + s(y − z). Taking the derivative of f(q(s)) with
respect to s leads to

d

ds
f(q(s)) = dfq(s)(y − z).

This is a consequence of the chain rule for Fréchet differentiability (Lebedev and Vorowich
[60, Lemma 3.1.1]). Integrating from 0 to 1, we obtain∫ 1

0

df(q(s))

ds
ds =

∫ 1

0

dfq(s)(y − z)ds.

It follows that

f(q(1))− f(q(0)) =

∫ 1

0

dfq(s)(y − z)ds

and substituting in q leads to the desired result.

A similar result and proof of the following lemma can be found in Siegel [79, Sec-
tion 3.12].

Lemma 2.21. Suppose f is Fréchet differentiable on Nz,r and its derivative is locally
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Lipschitz continuous on Nz,r; that is,

||dfy − dfz||Z ≤ Lz,r||y − z||Z for all y ∈ Nz,r

where Lz,r is the Lipschitz constant that depends on z and some r > 0. Then

||f(y)− f(z)− dfz(y − z)||Z ≤
Lz,r

2
||y − z||2Z for all y ∈ Nz,r.

Proof of Lemma 2.21: Consider the function g : [0, 1]→ Z,

g(s) = f(z + s(y − z))− sdfz(y − z).

By the chain rule,
g′(s) = dfz+s(y−z)(y − z)− dfz(y − z). (2.23)

Consider ∫ 1

0

g′(s)ds =

∫ 1

0

dfz+s(y−z)(y − z)ds−
∫ 1

0

dfz(y − z)ds.

The second integral evaluates to f(y)− f(z) from Lemma 2.20. The integrand in the third
integral is constant with respect to s and hence the integral evaluates to dfz(y − z). It
follows that ∫ 1

0

g′(s)ds = f(y)− f(z)− dfz(y − z)

and hence

||f(y)− f(z)− dfz(y − z)||Z ≤
∫ 1

0

||g′(s)||Zdt

≤
∫ 1

0

||dfz+s(y−z) − dfz||op ||y − z||Zds by (2.23).

Since dfz is locally Lipschitz continuous on Nz,r, then

||f(y)− f(z)− dfz(y − z)||Z ≤ Lz,r||y − z||2Z
∫ 1

0

sds.

Lemma 2.22. Consider the semilinear equation in (2.10). Suppose the nonlinear operator,
f , of (2.10) satisfies the assumptions in Lemma 2.21. For some positive constant Kz,r that
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depends on z and r, assume

sup
η∈Nz,r

||dfη||op = Kz,r <∞

where df is the Fréchet derivative of f . Assume Re〈Az, z〉Z ≤ 0 for all z ∈ Nz,r. Let
y, z ∈ Nz,r be solutions to (2.10) with corresponding y0, z0 initial conditions. Then

||y(t)− z(t)||2Z ≤ ||y0 − z0||2Ze2Kz,rt.

Proof of Lemma 2.22: Let y, z ∈ Nz,r be solutions to (2.10) and define h(t) := y(t) −
z(t). It follows that

dh

dt
= Ah+ f(y)− f(z), h(0) = y0 − z0. (2.24)

Taking the inner product of (2.24) with h yields

〈dh
dt
, h〉Z = 〈Ah, h〉Z + 〈f(y)− f(z), h〉Z .

For any z ∈ C and its conjugate, z̄, we have z + z̄ = 2Re(z) and hence

2Re〈dh
dt
, h〉Z = 〈dh

dt
, h〉Z + 〈h, dh

dt
〉
Z

=
d

dt
〈h, h〉Z

=
d

dt
||h||2Z .

It follows that
1

2

d

dt
||h||2Z = Re〈Ah, h〉Z + Re〈f(y)− f(z), h〉Z .

Since Re〈Ah, h〉Z ≤ 0, then

1

2

d

dt
||h||2Z ≤ Re〈f(y)− f(z), h〉Z

and by the Cauchy-Schwarz inequality

1

2

d

dt
||h||2Z ≤ ||f(y)− f(z)||Z ||h||Z . (2.25)
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From the Mean Value Theorem (Theorem 2.18), we have

||f(y)− f(z)||Z ≤ sup
z∈Nz,r

||dfz||op||y − z||Z .

It follows that
||f(y)− f(z)||Z ≤ Kz,r||y − z||Z for all y, z ∈ Nz,r

since Kz,r = supη ∈Nz,r ||dfη||op <∞. Equation (2.25) then becomes

d

dt
||h||2Z ≤ 2Kz,r||h||2Z .

Integrating with respect to t yields

||h(t)||2Z ≤ ||h(0)||2Ze2Kz,rt.

Substituting in h(t) = y(t)− z(t) leads to the desired result.

Theorem 2.23. Consider the semilinear equation in (2.10), which generates the semigroup
F (t), and its corresponding linearized problem in (2.19). Suppose the same assumptions
in Lemma 2.22 hold and also that A generates a semigroup. Then (2.19) generates the
semigroup, Tz(t), and furthermore,

Tz(t) = dFz0(t)

where dFz0(t) is the Fréchet derivative of F (t) at z(0) = z0 for all 0 ≤ t ≤ tf for some
positive tf .

Proof of Theorem 2.23: Recall the linearized equation of (2.10) is

dψ

dt
= Aψ + dfzψ, ψ(0) = y0 − z0 =: ψ0 (2.26)

where dfz is the Fréchet derivative of f at z. Since A generates a semigroup and dfz is
bounded, then A+ dfz generates a C0-semigroup, Tz(t), and

ψ(t) = Tz(t)ψ0 (2.27)

is the unique solution to (2.26) (see Curtain and Zwart [31, Theorem 3.2.1]).
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Define φ(t) := y(t)− z(t)− ψ(t). Taking the time derivative of φ leads to

dφ

dt
=
dy

dt
− dz

dt
− dψ

dt
.

Substituting in (2.10) and (2.26) yields

dφ

dt
= Ay + f(y)− Az − f(z)− Aψ − dfzψ.

Replacing with φ = y − z − ψ, it follows that

dφ

dt
= Aφ+ dfzφ+ f(y)− f(z)− dfz(y − z), φ(0) = 0. (2.28)

Taking the inner product of (2.28) with φ yields

1

2

d

dt
||φ||2Z = Re〈Aφ, φ〉Z + Re〈dfzφ, φ〉Z + Re〈f(y)− f(z)− dfz(y − z), φ〉Z

and applying Cauchy-Schwarz leads to

1

2

d

dt
||φ||2Z ≤ Re〈Aφ, φ〉Z + ||dfzφ|| ||φ||Z + ||f(y)− f(z)− dfz(y − z)||Z ||φ||Z .

Applying Re〈Aφ, φ〉Z ≤ 0 and Lemma 2.21 implies,

1

2

d

dt
||φ||2Z ≤ ||dfzφ|| ||φ||Z +

Lz,r
2
||y − z||2Z ||φ||Z

where Lz,r is the Lipschitz constant. Since dfz is a linear bounded operator on Z, then

1

2

d

dt
||φ||2Z ≤Mz||φ||2Z +

Lz,r
2
||y − z||2Z ||φ||Z

where Mz is a positive constant that depends on z and Mz 6= Kz,r. From this, we have

d

dt
||φ||Z ≤ 2Mz||φ||Z + Lz,r||y − z||2Z .
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Applying Gronwall’s inequality (Robinson [73, Lemma 2.8]) with φ(0) = 0 implies

||φ||Z ≤ Lz,re
2Mzt

∫ t

0

e−2Mzs||y(s)− z(s)||2Zds.

Applying Lemma 2.22 yields

||φ||Z ≤ Lz,re
2Mzt

∫ t

0

e2(Kz,r−Mz)s||y0 − z0||2Zds.

For t ∈ [0, tf ] with tf any positive constant, it follows that

||φ||Z ≤ Lz,re
2Mztf ||y0 − z0||2Z

∫ tf

0

e2(Kz,r−Mz)sds.

and solving the integrals leads to

||φ(t)||Z ≤ k(tf )||y0 − z0||2Z , for t ∈ [0, tf ]

where

k(tf ) =
Lz,r

2 (Kz,r −Mz)
(e2Kz,rtf − e2Mtf ).

Since φ = y − z − ψ, we have

||y − z − ψ||Z ≤ k(tf )||y0 − z0||2Z .

From (2.27) and recalling that y(t) = F (t)y0 and z(t) = F (t)z0, we obtain

||F (t)y0 − F (t)z0 − Tz(t)ψ0||Z ≤ k(tf )||y0 − z0||2Z .

Defining h0 = y0 − z0 leads to

||F (t)(h0 + z0)− F (t)z0 − Tz(t)h0||Z ≤ k(tf )||h0||2Z

and hence

lim
||h0||Z→0

||F (t)(h0 + z0)− F (t)z0 − Tz(t)h0||Z
||h0||Z

= 0

for all t ∈ [0, tf ]. Therefore, (2.13) is satisfied which means F (t) is Fréchet differentiable
at z0 and its derivative is dFz0(t) = Tz(t) for t ∈ [0, tf ].

Recall the usefulness of Theorem 2.23. It can allow the stability of a nonlinear infinite–

21



dimensional system to be determined by its corresponding linear system. Such a result is
found in Desch and Schappacher [33, Theorem 2.1], which we state for completeness.

Theorem 2.24. (Desch and Schappacher [33, Theorem 2.1])
Let F (t) be a nonlinear semigroup and let z̃ be an equilibrium point. Suppose F (t) is
Fréchet differentiable at z̃ with Fréchet derivative dFz̃(t) and dFz̃(t) is an exponentially
stable semigroup, then z̃ is an exponentially stable equilibrium with respect to F (t).

The assumptions needed to satisfy Theorem 2.24 are quite strong. Furthermore, it is
not always true that the stability of a linearized equation implies the same stability of
the original nonlinear equation. In the following example, we consider a nonlinear system
which does not have an asymptotically stable solution while its linearization does. The
example is due to Hans Zwart.

Example 2.25. Let `2 be the space of square summable sequences and N the set of natural
numbers. For any z(t) = (z1(t), z2(t), . . . , zn(t), . . . ) ∈ `2 with n ∈ N, consider

żn = − 1

n
zn + z2

n. (2.29)

Denote z̃n as the equilibrium solutions of (2.29). Then solving

0 = − 1

n
z̃n + z̃2

n,

we find that z̃n = 0 and 1
n
. This means the full system has an infinite number of equilibria

of the form z̃ = (z̃1, z̃2, . . . ) ∈ `2 where z̃n = 0 or 1
n
. That is, the equilibrium set is{

z̃ = (z̃1, z̃2, . . . ) ∈ `2
∣∣∣ z̃n ∈ {0, 1

n
} for n ∈ N

}
.

We show that the linearization of (2.29) at z̃ = (0, . . . , 0, . . . ) is asymptotically stable.
Denote the nonlinear term in (2.29) as

fn(zn) = z2
n,

then f ′n(0) = 0 and hence the linearization is

ẇn = − 1

n
wn. (2.30)
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Solving, the solution is wn(t) = wn(0)e−
1
n
t. It follows that

w(t) = (w1(0)e−t, w2(0)e−
1
2
t, . . . ) (2.31)

and hence for any w0 = (w1(0), w2(0), . . . ) ∈ `2,

lim
t→∞
||w(t)||2`2 = lim

t→∞

∞∑
n=1

w2
n(0)e−

2
n
t = 0.

By Definition 2.4, this implies w(t) is an asymptotically stable solution.

Observe that w(t) in (2.31) is not exponentially stable. Let T (t) be the semigroup
of (2.30); that is, w(t) = T (t)w0. For any t ≥ 0,

||T (t)||op = sup
||w0||`2=1

||w(t)||`2

= sup
||w0||`2=1

(
∞∑
n=1

w2
n(0)e−

2
n
t

)1/2

(by (2.31))

= sup
||w0||`2=1

(
lim
k→∞

k∑
n=1

w2
n(0)e−

2
n
t

)1/2

.

Since n ≤ k, then e−
2
n
t ≤ e−

2
k
t for all t ≥ 0 and hence the exponential is independent of

the sum. It follows that

||T (t)||op = sup
||w0||`2=1

(
∞∑
n=1

w2
n(0) lim

k→∞
e−

2
k
t

)1/2

= lim
k→∞

e−
1
k
t sup
||w0||`2=1

(
∞∑
n=1

w2
n(0)

)1/2

= lim
k→∞

e−
1
k
t

= 1

and hence T (t) is not an exponentially stable semigroup.

We now show the solution to the original nonlinear problem (2.29) is not asymptotically
stable. For zn 6= 0, define yn = z−1

n , then ẏn = −z−2
n żn and equation (2.29) can be rewritten
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as

ẏn −
1

n
yn = −1.

Multiplying this equation by e−
1
n
t leads to

d

dt

(
e−

1
n
tyn

)
= −e−

1
n
t.

Solving,
yn = n+ cne

1
n
t

where cn is a constant of integration. Replacing yn with z−1
n yields

zn(t) =
1

n+ cne
1
n
t
.

This is the nontrivial solution to (2.29).

For the initial condition z0 = (0, . . . , 0, 1
n
, 0, . . . ) ∈ `2 where the nonzero entry is at the

n-th position, we have cn = 0 and hence zn = 1/n, while zi(t) = 0 for i 6= n. The solution
to (2.29) is

z(t) = (0, . . . , 0,
1

n
, 0, . . . ).

For any δ > 0, pick n such that 1
n
< δ. For z̃ = (0, . . . , 0, . . . ), ||z0 − z̃||`2 = 1

n
< δ but

lim
t→∞
||z(t)− z̃||`2 = lim

t→∞
||z(t)||`2 =

1

n
.

That is, there exists an initial condition, z0, such that limt→∞ ||z(t)||`2 6= 0. This implies
z(t) is not an asymptotically stable solution.

Example 2.25 illustrates the limitation of linearization for infinite–dimensions and sug-
gests that exponential stability is a necessary requirement for linear stability to imply the
same stability of the corresponding nonlinear equation and that asymptotic stability is
not sufficient. For a large class of systems, Theorem 2.24 demonstrates that exponential
stability is a sufficient condition.

Example 2.25 also illustrates the significant difference between stability for finite–
dimensions compared to infinite–dimensions. Consider the system described by (2.29)
for n ≤ N ; that is, finite–dimensions. The solution to (2.29) for any initial condition,
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z0 = (z10, z20, . . . , zN0), is

z(t) =

(
z10

z10 + (1− z10)et
,

z20

2z20 + (1− 2z20)e
1
2
t
, . . . ,

zN0

NzN0 + (1−NzN0)e
1
N
t

)
.

This implies

lim
t→∞
||z(t)||2`2 = lim

t→∞

N∑
n=1

∣∣∣∣∣ zn0

nzn0 + (1− nzn0)e
1
n
t

∣∣∣∣∣
2

=
N∑
n=1

lim
t→∞

∣∣∣∣∣ zn0

nzn0 + (1− nzn0)e
1
n
t

∣∣∣∣∣
2

= 0

and hence the solution is asymptotically stable. Recall from example 2.25 that (2.29) is
not asymptotically stable in infinite–dimensions.

2.2 Lyapunov Theory

Lyapunov Theory is useful for determining the stability of equilibrium points or invariant
sets. The latter is not as well–known but is nearly identical to the version for points. Lya-
punov Theory can be applied to finite–dimensions or infinite–dimensions and to linear or
nonlinear systems. It also has tractable conditions; however, finding an appropriate Lya-
punov function, which is vital in the application of Lyapunov Theory, can be a challenge.
Lyapunov Theory also provides global stability, which is proved by showing the Lyapunov
function is radially unbounded.

Definition 2.26. (Michel and Wang [65, Definition 5.1.11])
Let V : Z → R be a continuous function and suppose there exists ψ : R+ → R+ such
that ψ is strictly increasing on R+, ψ(0) = 0 and limz→∞ ψ(z) = ∞. Then V is radially
unbounded if V (0) = 0 and V (z) ≥ ψ(||z||Z) for all z ∈ Z.

This definition of radially unboundness in Michel and Wang [65, Definition 5.1.11] is
in finite–dimensions and then remarked on page 320 to be identical for infinite–dimensions
after replacing the spaces appropriately. From the definition, it is clear that V (z) is radially
unbounded if V (||z||Z)→∞ as ||z||Z →∞.

Lyapunov stability theory for (2.9) is discussed in Michel and Wang [65, Chapter 6]
and Xu and Yung [98]. To be precise, it is a time–varying system,

ż(t) = f(t, z(t)), (2.32)
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that is investigated in these references but no information is lost as (2.9) is clearly a subclass
of (2.32). Walker [93] investigates the Lyapunov stability of (2.9) for f linear.

Theorem 2.27. [Lyapunov Theorem for Equilibrium Points] (Michel and Wang [65, The-
orem 6.2.13])
Suppose z(t) is a (strong) solution to (2.9). Let z̃ be an equilibrium point of (2.9) and
D ⊂ Z containing z̃. Let V : D → R be a continuously differentiable functional such that
V (z̃) = 0, V (z(t)) > 0 for all z ∈ D\{z̃}, and

dV (z(t))

dt
≤ 0 for all z(t) ∈ D,

then z̃ is stable. Moreover, if

dV (z(t))

dt
< 0 for all z(t) ∈ D\{z̃},

then z̃ is asymptotically stable. In addition, if V is radially unbounded, then z̃ is globally
asymptotically stable.

Consider the heat equation with Dirichlet boundary conditions. Define L2[0, L] to be

the space of real square–integrable functions with norm ||w(t)||2L2
=
∫ L

0
w2(x, t)dx. The

one dimensional heat equation is

ẇ(x, t) = w′′(x, t) (2.33a)

w(0, t) = w(L, t) = 0 (2.33b)

w(x, 0) = w0(x) (2.33c)

The solution to (2.33a) describes the distribution of temperature of an object, say a rod of
length L, at position x ∈ [0, L] and time t ≥ 0. Equation (2.33) has an unique equilibrium
at w̃ = 0.

Define A : D1 ⊂ L2[0, L]→ L2[0, L],

Aw = w′′

with

D1 = {w : w ∈ L2[0, L], w′ ∈ L2[0, L], w′′ ∈ L2[0, L], w(0, t) = 0 = w(L, t)}.

It is known that A with domain D1 generates a semigroup and is proved using the
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Lumer–Phillips Theorem (see Theorem 2.6). We apply Theorem 2.27 to determine the
stability of w̃ = 0. Poincare’s inequality is needed in establishing the stability of w̃ = 0. It
is stated and proved for completeness.

Lemma 2.28. [Poincare’s Inequality](Krstic and Smyshlyaev [54, Lemma 2.1])
For any w continuously differentiable on [0, L],∫ L

0

w2dx ≤ 2w2(L, t)L+ 4L2

∫ L

0

w′
2
dx. (2.34)

Proof of Lemma 2.28: For any continuously differentiable w,∫ L

0

w2dx = w2(L, t)L−
∫ L

0

2ww′xdx (integration by parts)

≤ w2(L, t)L+
1

2

∫ L

0

w2dx+

∫ L

0

2w′
2
x2dx (Young’s Inequality)

≤ w2(L, t)L+
1

2

∫ L

0

w2dx+ L2

∫ L

0

2w′
2
dx (x ∈ [0, L]).

Rearranging leads to

1

2

∫ L

0

w2dx ≤ w2(L, t)L+ 2L2

∫ L

0

w′
2
dx.

Theorem 2.29. The equilibrium point, w̃ = 0, of (2.33) is globally asymptotically stable
in the L2–norm.

Proof of Theorem 2.29: Consider the Lyapunov candidate, V1(w) = 1
2
||w||2L2

. It is clear
that V1(0) = 0 and when V1(w) = 0 then w = 0, which is the equilibrium point. Therefore,
V1(w) > 0 for all w except w = 0.
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The derivative of V1 is

dV1

dt
=

1

2

d

dt

∫ L

0

w2dx

=

∫ L

0

wẇdx (chain rule)

=

∫ L

0

ww′′dx (substituting in (2.33a))

= −
∫ L

0

w′
2
dx (integration by parts with (2.33b))

= −||w′||2L2
.

Applying the boundary conditions in (2.33b) to Poincare’s inequality in (2.34) leads to

||w||2L2
≤ 4L2||w′||2L2

and hence
dV1

dt
≤ − 1

4L2
||w||2L2

. (2.35)

If dV1

dt
= 0, then ||w||L2 = 0 and hence w = 0. Therefore, dV1

dt
< 0 for all w 6= 0.

Since V1 is radially unbounded, V1(0) = 0 and for all w 6= 0, we have V1 > 0 and
dV1

dt
< 0, Theorem 2.27 implies w̃ = 0 is a globally asymptotically stable equilibrium of

(2.33).

It turns out that w̃ = 0 in problem (2.33) is exponentially stable.

Theorem 2.30. (Krstic and Smyshlyaev [54, Section 2.2])
The equilibrium point w̃ = 0 for (2.33) is globally exponentially stable in the L2–norm.

Proof of Theorem 2.30: It follows immediately from (2.35) that

d||w||2L2

dt
≤ − 1

2L2
||w||2L2

.

Solving yields ||w(x, t)||L2 ≤ ||w(x, 0)||L2e
− 1

2L2 t and hence by Definition 2.12, w̃ = 0 is an
exponentially stable equilibrium. This is true for any initial condition w(x, 0) and hence
global stability is obtained.

Due to Theorem 2.30, the result in Theorem 2.29 is redundant since exponential stability
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implies asymptotic stability. As well, it is shown in Michel and Wang [65, Example 6.2.14]
that w̃ = 0 is a globally exponentially stable equilibrium point in the norm, ||w||2L2

+||w′||2L2
.

Now consider Neumann boundary conditions rather than the Dirichlet boundary con-
ditions in (2.33b). This leads to

ẇ(x, t) = w′′(x, t) (2.36a)

w′(0, t) = w′(L, t) = 0 (2.36b)

w(x, 0) = w0(x). (2.36c)

Define A : D2 ⊂ L2[0, L]→ L2[0, L],

Aw = w′′

with

D2 = {w : w ∈ L2[0, L], w′ ∈ L2[0, L], w′′ ∈ L2[0, L], w′(0, t) = 0 = w′(L, t)}.

It is known that A with domain D2 generates a semigroup. This is proved using the
Lumer–Phillips Theorem (see Theorem 2.6).

Equation (2.36) has equilibrium w = c where c is a constant function. That is, the
equilibrium is not unique; in fact, there are an infinite number of equilibria. Denote the
set of equilibrium points of (2.36) by

E = {w ∈ D2 : w = c ∈ R}. (2.37)

Our objective is to establish asymptotic stability of the set E (see Definition 2.15).
Lyapunov stability theory can easily be applied to equilibrium sets. This is not surprising
since we can define an equilibrium point, z̃, as an invariant set {z̃}. This is precisely how
Michel and Wang [65, Definition 3.1.8] define equilibrium points.

Theorem 2.31. [Lyapunov Theorem for Invariant Sets] (Xu and Yang [98, Theorem 4.3])
Suppose z(t) is a (strong) solution of (2.9). Let M be a invariant set of (2.9) and D ⊂ Z
be a neighbourhood of M . Let V : D → R be a continuously differentiable functional such
that V (z(t)) = 0 for all z(t) ∈M and V (z(t)) > 0 for all z(t) ∈ D\M . If

dV (z(t))

dt
≤ 0 for all z(t) ∈ D,
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then M is a stable invariant set. Moreover, if

dV (z(t))

dt
< 0 for all z(t) ∈ D\M,

then M is an asymptotically stable invariant set. In addition, if V is radially unbounded,
then M is a globally asymptotically stable invariant set.

We can apply Theorem 2.31 to the heat equation described in (2.36) since the problem
is well-posed and the required Lyapunov function exists. Set Z = L2[0, L] and D = D2 in
Theorem 2.31. Since we are interested in the stability of the equilibrium set, then M = E
defined in (2.37).

Theorem 2.32. The equilibrium set E defined in (2.37) is locally asymptotically stable
in the L2–norm.

Proof of Theorem 2.32: Consider the Lyapunov candidate

V2(w) =
1

2
||w′||2L2

=
1

2

∫ L

0

w′
2
dx.

It is clear that V2 ≥ 0 for all w ∈ D2, and V2(c) = 0 whenever c ∈ E. If V2(w) = 0, then
w′ = 0 and hence w must be a constant; that is, w ∈ E. Therefore, V2(w) > 0 for all
w ∈ D2\E. (Notice if the Lyapunov candidate had been V1(w) = 1

2
||w − c||2L2

, then V1(w)
would be zero only for a particular constant and not for the entire set E.)

The derivative of V2 is

dV2

dt
=

1

2

d

dt

∫ L

0

w′
2
dx

=

∫ L

0

w′ẇ′dx (chain rule)

= −
∫ L

0

w′′ẇdx (integration by parts with (2.36b))

= −
∫ L

0

w′′
2
dx (substituting in (2.36a))

= −||w′′||2L2
.
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It follows from Poincare’s Inequality (Lemma 2.28) that

||w′||2L2
≤ 2w′

2
(L, t)L+ 4L2||w′′||2L2

and applying the boundary conditions in (2.36b) gives ||w′||2L2
≤ 4L2||w′′||2L2

. Substituting
into the derivative of V2 yields

dV2

dt
≤ − 1

4L2
||w′||2L2

.

It is clear that dV2

dt
≤ 0 for all w ∈ D2. Furthermore, if dV2

dt
= 0, we obtain w′ = 0 and

hence w is any constant. This implies dV2

dt
< 0 for all w ∈ D2\E. By Theorem 2.31, E is

an asymptotically stable equilibrium set of (2.36) in the L2–norm.

Recall that any constant, c, is an equilibrium of (2.36). The equilibrium is uniquely
determined by the initial condition, w0(x) and in particular

c =
1

L

∫ L

0

w0(x)dx; (2.38)

that is, the equilibrium is the average of the initial distribution (Boyce and DiPrima [19,
Section 10.6, Equation (38)]). Based on the boundary conditions in (2.36b), the rate
of change at the endpoints is zero and hence there is no heat flowing in or out of the
rod. Therefore, the heat distribution of the object will settle to the average of the initial
temperature.

We saw in Theorem 2.32 that E is an asymptotically stable equilibrium set. Is a
particular c ∈ E an asymptotically stable equilibrium point? The answer is that c is stable
but not asymptotically stable.

Theorem 2.33. Any equilibrium point of (2.36) is locally stable in the L2–norm.

Proof of Theorem 2.33: Let c be an equilibrium point of (2.36). Consider the Lyapunov
candidate

V1(w) =
1

2
||w − c||2L2

=
1

2

∫ L

0

(w − c)2dx.

It is clear that V1 ≥ 0 for all w and V1(c) = 0. If V1(w) = 0, then w = c and therefore,
V1(w) > 0 for all w except when w = c. (If the Lyapunov candidate had been V2(w) =
1
2
||w′||2L2

instead, then for V2(w) = 0, it follows that w′ = 0 and hence w = d, where d is
any constant. Since d is not necessarily equal to c, then it is not true that V2(w) > 0 for
all w not equal to c and hence V2 is not a Lyapunov function.)
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The derivative of V1 is

dV1

dt
=

1

2

d

dt

∫ L

0

(w − c)2dx

=

∫ L

0

(w − c)ẇdx (chain rule)

=

∫ L

0

(w − c)w′′dx (substituting in (2.36a))

= −
∫ L

0

w′
2
dx (integration by parts with (2.36b))

= −||w′||2L2
.

Clearly, dV1

dt
≤ 0. Therefore, from Theorem 2.27, c is a stable equilibrium of (2.36).

If dV1

dt
= 0, then w′ = 0 and hence w = d where d is a constant. Since d is not necessarily

equal to c, we cannot conclude that dV1

dt
< 0 for all w except when w = c. We cannot make

any conclusions from V1 about the asymptotic stability of c.

It turns out that c is not asymptotically stable. In order for c to be asymptotically
stable requires that (2.11) be satisfied; however, the following shows (2.11) is not satisfied.
Let L = 1 and w0(x) be a constant, say ŵ0. From (2.38), it is clear that c = ŵ0. For any
δ > 0, if the system begins at ŵ0 + δ/2, which is within a δ–ball of the initial condition ŵ0,
then since any constant is an equilibrium and ŵ0 + δ/2 is a constant, solutions will go to
ŵ0 + δ/2 and not c. This means (2.11) is not satisfied and hence c is not asymptotically
stable.

The result in Theorem 2.33 that c is not asymptotically stable, does not pertain specif-
ically to the heat equation. That is, no matter which equilibrium is chosen and no matter
how small δ > 0 is chosen, we can always find another equilibrium within the δ–ball, which
implies that none of the equilibria can be asymptotically stable. If the set of all equilibria
is disconnected, then asymptotic stability may be possible because there can exist a δ–ball
around c such that no other equilibrium points are in the δ–ball.

The solution to the heat equation with Neumann boundary in (2.36) is

w(x, t) = c+
∞∑
n=1

cn cos
(nπx
L

)
e−

n2π2

L
t (2.39)
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where c is defined in (2.38) and

cn =
2

L

∫ L

0

w0(x) cos
(πx
L

)
dx

(see Boyce and DiPrima [19, Section 10.6, Equation (35)]). It is clear from (2.39) that
w(x, t) → c exponentially fast as t → ∞. This does not contradict the result in The-
orem 2.33 which shows c is stable but not asymptotically stable because the solution in
(2.39) depends on a particular initial condition and hence Definitions 2.10 and 2.11 are no
longer applicable.

We chose the heat equation as our illustrative example because the Landau–Lifshitz
equation behaves similar to the heat equation. This similarity is useful when analyzing the
stability and control of the Landau–Lifshitz equation.
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Chapter 3

Hysteresis

Hysteresis is a phenomenon that occurs in nature and man–made processes. It often ap-
pears in engineering applications such as magnetization (Bertotti [15], Morris [67], Schnei-
der and Winchell [76]) and smart materials (Valadkhan et al. [85], Smith [80, Section 2.4]).
As well, many diffusion problems, such as freezing and thawing processes (Alimov et al.
[5, 4], Christenson [28], Petrov and Furo [72]), chemical reactors (Jensen and Ray [45],
Mancusi et al. [63]) and saturation of porous media (Bagagiolo and Visintin [8, 9], Kor-
dulova [52, 53], Visintin [92, Section 1.11], Wu et al. [97]), exhibit hysteresis. Biological
examples, such as predator and prey relationships (Aiki and Minchev [1], Murray [68, Sec-
tion 1.3]), also display hysteretic behaviour. A man–made process that exhibits hysteresis
is the dynamics of a thermostat. From this small collection of examples, it should be clear
that hysteresis occurs in a number of different applications.

Hysteresis is difficult to define precisely; however, a common theme is the notion of a
looping behaviour. One reason it is challenging to rigorously define hysteresis is that the
shape of the loop can appear quite different even within the same problem (see Figure 3.5
for an example). There is still no consensus on how best to describe hysteresis from a
mathematical viewpoint and there are several definitions of hysteresis available.

In much of the literature, hysteresis is represented by an operator (Aiki and Minchev
[1], Brokate and Sprekels [20], Carbou et al. [21], Eleuteri and Krejci [35], Jayawardhana
et al. [44], Valadkhan et al. [86], Visintin [90], [92, Section 1.1]). A hysteresis operator
relates an input to the output of a system. One input can lead to more than one possible
output. Therefore, past output is required to determine present output. For this reason,
hysteresis is often said to require a memory. Another feature of hysteresis is that the
output is independent of the speed of the input. This is known as rate independence. For
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a precise definition of hysteresis operators, see Brokate and Sprekels [20, Definition 2.2.8].

- Input

6

Output

6

?

s+ rs− r

+1

−1

s
q

Figure 3.1: The relay operator has exactly two outputs, {−1,+1}, and two threshold
input values, s+ r and s− r.

There are different types of hysteresis operators. They differ in the shape of the loop
they govern. For example, Figure 3.1 shows a relay operator which is distinguished as
having two outputs and two “threshold” inputs (Brokate and Sprekels [20, Example 2.1.1]).
The dynamics of a thermostat exhibit hysteresis and the resulting shape of the looping
behaviour is governed by a relay operator. In particular, the thermostat has on and off
as its two outputs and the range of the desired room temperature provides a minimum
and maximum value for the two threshold inputs. Notice from Figure 3.1, if the desired
temperature is between s − r and s + r, then it is unknown whether the thermostat is
off or on, unless the previous output is given. This is the memory behaviour of hysteresis
previously stated. More hysteresis operators are discussed in Brokate and Sprekels [20,
Section 2.1].

Hysteresis operators are sometimes included as an additional term in a mathematical
equation and hence increase the complexity of the equation. As well, not all hysteretic
systems are rate independent and the definition of hysteresis operator can include oper-
ators that are not hysteretic (Morris [67]). These shortcomings are avoided if hysteresis
is considered from a more fundamental perspective as is the approach in the following
definition. This definition of hysteresis considers the properties of the dynamical system
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to establish hysteretic behaviour, whereas, considering a hysteresis operator assumes the
model already exhibits hysteresis.

Definition 3.1. (Morris [67, Definition 3])
A system exhibits hysteresis if it has
(a) multiple stable equilibrium points and
(b) dynamics that are considerably faster than the time scale at which inputs are varied.

Definition 3.1 is related to the looping behaviour often associated with hysteresis. Con-
sider a system with two stable equilibria (Figure 3.2) and suppose the system is initially at
the left equilibrium (Figure 3.2a). If the input is increased, the system will tend to stay in
equilibrium (Figure 3.2b) with only a small move upward along the hysteresis curve. When
the input is increased enough such that the equilibrium disappears, the system moves to
the right equilibrium (Figure 3.2c). This corresponds to moving along the steepest por-
tion of the hysteresis loop. The system stays at the right equilibrium (Figure 3.2d). For
systems which move to equilibrium faster than changes in the input, the transition from
one equilibrium to the other is nearly instantaneous (Morris [67]). Physically, this means
the system is observed only in equilibrium. If the input decreases enough so that the right
equilibrium disappears (Figure 3.2e), the system moves back to the left equilibrium (Fig-
ures 3.2f, 3.2g). For a specific example, see the discussion on the Schmitt trigger in Morris
[67], which explains how Definition 3.1 applies to the relay operator depicted in Figure 3.1.

However, the existence of a loop is not enough to identify hysteretic systems. Consider
the following second order ODE

ÿ(t) + cẏ(t) + ky(t) = u(t) (3.1)

where c and k are constants. This ODE often describes oscillatory motion such as the
motion of a cart attached to a spring (see Figure 3.3). The displacement of the cart is
denoted by y(t), the force exerted by the spring is governed by ky(t), and cẏ(t) describes
damping which is proportional to velocity. In this case, k is the spring constant and c
is the damping constant. The forcing term, u(t), is usually a sinusoid. Writing (3.1) in
first-order form with x = [y, ẏ] leads to

ẋ1(t) = x2(t) (3.2a)

ẋ2(t) = −cx2(t)− kx1(t) + u(t). (3.2b)

A short MATLAB code (Appendix A) provides the appropriate input–output curves. The
input is chosen to be u(t) = sin(ωt) where ω is the frequency and the constants are set

36



(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.2: Dynamics of a system with two stable equilibria and its corresponding hys-
teresis loop. For the left curves, the horizontal axis is the output of the system and the
vertical axis is the state of the system. For the right curves, the horizontal axis is the input
while the vertical axis represents the output. As input varies, the dynamics of the system
move from (a) to (g). (a) The system is initially at equilibrium. (b) As input increases, the
system will tend to stay in equilibrium with only a small move upward along the hysteresis
curve. (c) When input increases enough, the equilibrium disappears and the system moves
to the right equilibrium and (d) stays there. This corresponds to moving along the steepest
portion of the hysteresis loop. (e)–(g) Moving back to the left equilibrium is simply the
reverse procedure.
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Figure 3.3: A cart attached to a spring.

to c = 15 and k = 1. When the forcing term is zero, the equilibrium is (0, 0) and the
eigenvalues are

λ1 =
−c+

√
c2 − 4k

2
=
−
√

225 +
√

221

2
(3.3a)

λ2 =
−c−

√
c2 − 4k

2
=
−
√

225−
√

221

2
. (3.3b)

Both eigenvalues are negative and hence the equilibrium is stable. Suppose the system
begins at equilibrium. It is clear from Figure 3.4 that for large ω a loop appears. However,
since (3.2) has exactly one equilibrium, then from Definition 3.1 the system does not exhibit
hysteresis. Therefore, the existence of an input-output loop is not sufficient to indicate the
existence of hysteresis. Upon further examination of Figure 3.4, as ω approaches zero,
the loop begins to vanish. Therefore, the notion of a persistent loop provides another
interpretation of hysteresis.

Definition 3.2. (Oh and Bernstein [70])
A system exhibits hysteresis if a nontrivial closed curve in the input–output map persists
for a periodic input as the frequency component of the input signal approaches zero.

For arbitrary initial conditions, y(0) = y0 and ẏ(0) = y1, the solution to (3.1) with
u(t) = sin(ωt) is

y(t) =
1√
221

(
(−λ1 − λ2ω

2) y0 + ω

ω2 − 1− 15λ1

+ y1

)
eλ1t − 1√

221

(
(−λ2 − λ1ω

2) y0 + ω

ω2 − 1− 15λ2

+ y1

)
eλ2t

+
15ω cos(ωt) + (ω2 − 1) sin(ωt)

2ω2 − 1− ω2(152 + ω2)
.
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(b) ω = 0.1
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(c) ω = 0.01
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(d) ω = 0.001

Figure 3.4: Input–output curves for equation (3.1) with c = 15 and k = 1. The initial
position is y(0) = 0, ẏ(0) = 0 and the input is u(t) = sin(ωt) for various ω. Looping
behaviour is observed for large ω but the loops do not persist as ω approaches 0. By
Definition 3.2, equation (3.1) does not exhibit hysteresis.
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It follows that

lim
ω→0

y(t) =
1√
221

(
λ1y0

1 + 15λ1

+ y1

)
eλ1t − 1√

221

(
λ2y0

1 + 15λ2

+ y1

)
eλ2t

and since both eigenvalues are negative (see equation (3.3)), then y(t)→ 0 as t→∞, which
means regardless of the initial condition, the steady state is zero as ω → 0 and t → ∞.
This supports the fact that as ω → 0, the input–output dynamics of (3.1) degenerate to a
function as illustrated in Figure 3.4.

Consider now a nonlinear equation of motion,

ÿ(t) + cẏ(t) + k
(
y(t)− y3(t)

)
= u(t). (3.4)

This is equation (3.1) with an additional nonlinear term. The parameter c = 15 as before
but k is set to −1. The initial condition is y(0) = 0 and ẏ(0) = 0. These curves are
depicted in Figure 3.5. It is clear from the figure that even for low ω a loop persists, which
by Definition 3.2 indicates the presence of hysteresis.

The dynamics governed by (3.4) also satisfy the requirements for hysteresis described
in Definition 3.1. Rewrite (3.4) as

ẋ1(t) = x2(t)

ẋ2(t) = −cx2(t)− kx1(t) + kx3
1(t) + u(t).

For the unforced system, the equilibrium points are (xeq, 0) where xeq satisfies

x1 − x3
1 = 0.

Therefore, equation (3.4) has equilibrium points, (0, 0) and (±1, 0). The corresponding
Jacobians are [

0 1
−k −c

]
and

[
0 1

2k −c

]
for the (0, 0) and (±1, 0) equilibriums, respectively. The eigenvalues of (0, 0) are

λ1,2 =
−c±

√
c2 − 4k

2
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and the eigenvalues of (±1, 0) are

λ3,4 =
−c±

√
c2 + 8k

2
.

For c = 15 and k = 1, we have λ3,4 < 0 and hence (±1, 0) are stable equilibrium points.
This satisfies the first condition in Definition 3.1. (The equilibrium (0, 0) is unstable since
one of λ1,2 is positive.) Figure 3.6 demonstrates that the dynamics in equation (3.4) are
independent of the rate at which inputs are varied given the range of frequencies. This
satisfies the second condition in Definition 3.1. For larger ω, the distinctly different shaped
hysteresis loops in Figure 3.5 show that dynamics are rate dependent. A similar example
illustrating the displacement of a magnetic beam is presented in Morris [67].

The dynamics in (3.4) illustrate it is crucial to have multiple stable equilibria and fast
dynamics in comparison to the rate of change of inputs when defining hysteresis. Although
hysteresis is synonymous with nonlinear systems (Bernstein and Oh [70]), linear systems
can exhibit hysteresis. This is because linear systems can have multiple stable equilibria.
Consider again equation (3.1) but with k = 0; that is,

ÿ(t) + cẏ(t) = u(t). (3.5)

From (3.2), this leads to

ẋ1(t) = x2(t) (3.6a)

ẋ2(t) = −cx2(t) + u(t). (3.6b)

Suppose the forcing term is zero, then (3.6) has an infinite number of equilibria given
by (xeq, 0) where xeq is any constant function. Moreover, the eigenvalues of (3.6) are 0 and
−c, which implies the equilibrium points are stable for c > 0. The input-output curves are
displayed in Figure 3.7 with c = 15, u(t) = sin(ωt) and initial condition (x1, x2) = (0, 0).
It is clear from the figure that a loop persists as ω approaches 0. Furthermore, since the
solution to (3.5) is

y(t) = y0 +
y1

c
+

1

ωc
− 1

c

(
y1 +

ω

ω2 + c2

)
e−ct − ω sin(ωt) + c cos(ωt)

ω (ω2 + c2)

= y0 +
y1

c

(
1− e−ct

)
− sin(ωt)

ω2 + c2
+
ω2 + c2 − c2 cos(ωt)− ω2e−ct

ωc (ω2 + c2)
,

then we have

41



−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

y

(a) ω = 1

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

y

(b) ω = 0.1

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

y

(c) ω = 0.01

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

y

(d) ω = 0.001

Figure 3.5: Input–output curves for equation (3.4) with c = 15 and k = −1. The initial
position is y(0) = 0, ẏ(0) = 0 and the input is u(t) = sin(ωt) for various ω. As ω approaches
0, looping behaviour persists. By Definition 3.2, equation (3.4) exhibits hysteresis. Notice
that the loops are differently shaped, which implies rate dependence of the system.
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Figure 3.6: Input–output diagrams for the nonlinear equation (3.4) with c = 15, k = −1.
The initial position is y(0) = 0, ẏ(0) = 0 and the input is u(t) = sin(ωt) for ω ≤ 0.0001.
At these low frequencies, the system exhibits rate independence.

lim
ω→0

y(t) = y0 +
y1

c
(1− e−ct).

It follows that
lim
t→∞

y(t) = y0 +
y1

c

which means the equilibria of (3.5) depends on the initial conditions as ω → 0. This leads
to a looping behaviour in the input–output map as ω → 0, which from Definition 3.2
illustrates the presence of hysteresis in the dynamics of (3.5).

The arbitrary closeness of the equilibrium points of (3.5) explains the absence of sharp
jumps that usually appear in hysteresis loops (see Figure 3.7). For the nonlinear example
in (3.4), there are three distinct equilibrium points, (−1, 0), (0, 0) and (1, 0). Due to
hysteresis the system moves virtually instantaneously from one equilibrium to another
which leads to the sharp jumps (see Figure 3.5). In the case of arbitrarily close equilibrium
points, the jumps do not occur. We will see in Section 4.4 that hysteresis in the Landau–
Lifshitz equation behaves similarly.

43



−1 −0.5 0 0.5 1

0

20

40

60

80

100

120

140

u

y

(a) ω = 1

−1 −0.5 0 0.5 1

0

20

40

60

80

100

120

140

u

y

(b) ω = 0.1

−1 −0.5 0 0.5 1

0

20

40

60

80

100

120

140

u

y

(c) ω = 0.01

−1 −0.5 0 0.5 1

0

20

40

60

80

100

120

140

u

y

(d) ω = 0.001

Figure 3.7: Input–output curves for (3.5) with c = 15. The initial condition is y(0) =
0, ẏ(0) = 0 and the input is u(t) = sin(ωt) for various ω. It is clear the loops persist as ω
approaches 0 and hence, by Definition 3.2 the system is hysteretic. The lack of jumps in
the loop is also clear and is due to the arbitrary closeness of the equilibria of (3.5).

44



Chapter 4

Landau–Lifshitz Equation

The most common type of magnetism is ferromagnetism. It is responsible for the mag-
netism observed in everyday objects such as refrigerator magnets. Examples of pure fer-
romagnets include iron, cobalt and nickel. Ferromagnets created from a combination of
iron, cobalt and nickel are known as ferromagnetic alloys (Cullity and Graham [30, Sec-
tion 4.5]). The Landau–Lifshitz equation describes the magnetization dynamics within a
ferromagnetic object. On a molecular level, ferromagnets are divided into regions called
magnetic domains or simply domains. Domains are separated by domain walls. Landau
and Lifshitz derived their equation in 1935 as a way to model the motion of domain walls
[58]. They were particularly interested in the velocity of the domain walls. In recent years,
with the advancement of nanotechnology, the Landau–Lifshitz equation has been used to
describe the dynamics of magnetization inside nanostructures such as nanowires (Carbou
et al. [23, 26, 24], Noh et al [69], Gou et al. [39]), nanomagnets (Cowburn et al. [29]) and
nanoparticles (Mayergoyz et al. [64]).

Each domain in a ferromagnet is magnetized to the same saturation, Ms. That is,
every domain has the same magnetization magnitude but their directions may differ. Fur-
thermore, the direction of the magnetization of each domain is such that the sum of the
magnetizations is zero. When a magnetic field is applied to a ferromagnetic object, the
domains align in the direction of the applied magnetic field and hence its net magnetiza-
tion becomes nonzero. This is illustrated in Figure 4.1. For more details, see Cullity and
Graham [30, Section 4.1].

Mathematically, the characteristic that each domain is magnetized to saturation through-
out the ferromagnet is governed by ||m(x, t)||2 = Ms where m(x, t) is the magnetization
in the ferromagnet and || · ||2 is the Euclidean norm. In much of the literature, Ms is set
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(a) external magnetic field absent, net magnetization is zero

-

-

(b) external magnetic field present, net magnetization is nonzero

Figure 4.1: Two magnetic domains separated by a domain wall (solid line). The vectors
represent the direction and magnitude of each domain. (a) In the absence of an applied
magnetic field, the magnitude of both domains is the same while the directions are opposite.
This implies a net magnetization of zero. (b) When a magnetic field is applied, the magnetic
domains orient themselves parallel to the magnetic field and hence the net magnetization
is no longer zero.

to 1 and we follow the same convention; that is,

||m(x, t)||2 = 1. (4.1)

For x ∈ [0, L] where L is a positive length and time t ∈ R+, the magnetization,

m(x, t) = (m1(x, t),m2(x, t),m3(x, t)),

in a ferromagnetic object is described by the one–dimensional Landau–Lifshitz equation,

∂m

∂t
= m×Heff − νm× (m×Heff ) (4.2)

where × denotes cross product and ν ≥ 0 is the damping parameter. The effective field,
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Heff , governs the various energy interactions within a ferromagnet. It is the sum of the
external applied magnetic field, Ha, the demagnetization field, Hd, exchange energy Hex,
anisotropy energy Han, and magnetoelastic energy Hme (Gilbert [37]); that is,

Heff = Hex + Han + Hme + Hd + Ha.

We now define these fields and describe how they interact with each other. Suppose a
ferromagnetic object is magnetized by Ha. An external field surrounds the magnet, but
there is also a field within the magnet which tends to demagnetize the magnet. This is the
demagnetization field (Cullity and Thomas [30, Section 2.7]). The exchange energy, Hex, is
due to the forces between magnetic molecules and can be thought of as the potential energy
of the ferromagnet (Cullity and Graham [30, Section 4.3]). The anisotropy energy is the
tendency of a magnetic molecule to stay in its current position (Cullity and Graham [30,
Section 7.2]). It is measured by the amount of energy, usually from an external magnetic
field, needed to change the molecule’s position. The magnetoelastic energy originates from
the stress and strains caused by Ha (Cullity and Graham [30, Section 8.5]). Observe that
Ha influences the behaviour of Hd and Han and Hme but not Hex.

When analyzing (4.2), often only some of these energies are included in the effective
field. For example, Hd is sometimes omitted because its influence on the magnetization
dynamics is very small, such is the case in Bertotti et al. [17, Section 2.1] when he derives
(4.2) and hence his Heff is

Heff = Hex + Han + Hme + Ha.

In another instance, Sanchez [75] considers only the exchange energy and applied external
magnetic field; that is,

Heff = Hex + Ha.

We consider Heff = Hex because given this effective field, analytical stability results for
(4.2) are available (see Section 4.2). The exchange energy in one–dimension is Hex = mxx

where the subscript partial derivative notation means

mx(x, t) = (m′1(x, t),m
′
2(x, t),m

′
3(x, t))

mxx(x, t) = (m′′1(x, t),m′′2(x, t),m′′3(x, t)) .

The prime represents differentiation with respect to x. The Landau–Lifshitz equation with
effective field, Heff = Hex, is investigated in Alouges and Soyeur [7], Carbou et al. [22],
Guo and Ding [40, Chapter 6], Fuwa et al. [36]. Therefore, the form of the (uncontrolled)
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Landau–Lifshitz equation we will be investigating in this chapter is

∂m

∂t
= m×mxx − νm× (m×mxx) , m(x, 0) = m0(x). (4.3)

Note that

m×mxx = (m2m
′′
3 −m3m

′′
2,−m1m

′′
3 +m3m

′′
1,m1m

′′
2 −m2m

′′
1) . (4.4)

The initial condition m0(x) is chosen such that ||m0(x)||2 = 1. This condition on
m0(x) is standard in the literature (Alouges and Soyeur [7], Carbou and Fabrie [22], Guo
and Ding [40, Section 6.3.1]). Physically, ||m0(x)||2 = 1 means initially the magnetization
throughout the ferromagnet is the same, which represents the property that each domain in
a ferromagnet is magnetized to the same saturation. We also assume m0(x) is real–valued.

We consider Neumann boundary conditions,

mx(0, t) = mx(L, t) = 0, (4.5)

which means there is no magnetic flux at the boundaries.

The dynamics governed by (4.3) are such that (4.1) is preserved. This is proved in
Lemma 4.2. Lemma 4.1 is needed in the proof of Lemma 4.2, which requires properties
of cross products. Furthermore, much of our analysis of the Landau–Lifshitz equation
requires properties of cross products. For convenience, Table 4.1 contains a list of cross
product properties (Bernstein [14, Fact 3.5.25]) that will be useful in the analysis of the
Landau–Lifshitz equation.

Lemma 4.1. For m a solution of (4.3),

mT∂m

∂t
= 0

where T means transpose.

Proof of Lemma 4.1: Substituting (4.3) into mT ∂m
∂t

yields

mT∂m

∂t
= mT (m×mxx)− νmT [m× (m×mxx)]

= mT
xx (m×m)− ν (m×mxx)

T (m×m) (Table 4.1)

= 0. (Table 4.1)
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1. p× p = 0

2. q× p = −p× q

3. p× (q + y) = (p× q) + (p× y)

4. (p + q)× y = (p× y) + (q× y)

5. pT (q× y) = qT (y × p) = yT (p× q)

6. (p× q)× y =
(
pTy

)
q−

(
qTy

)
p

7. p× (q× y) =
(
pTy

)
q−

(
pTq

)
y

8. z× [p× (q× y)] = pTy (z× q)− pTq (z× y)

Table 4.1: Suppose p,q,y, z ∈ R3 and × denotes cross product. The table forms a
list of common cross product properties. A more detailed list is found in Bernstein [14,
Fact 3.5.25].

Lemma 4.2. (Guo and Ding [40, Lemma 6.3.1])
Suppose ||m(x, 0)||2 = 1, then the solution, m, to (4.3) satisfies ||m(x, t)||2 = 1.

Proof of Lemma 4.2: For m a solution to (4.3), it follows that

∂||m||22
∂t

=
∂(mTm)

∂t
= mT∂m

∂t
+
∂mT

∂t
m = 2mT∂m

∂t

where T means transpose. Applying Lemma 4.1 leads to

∂||m||22
∂t

= 0

and hence ||m(x, t)||22 = c(x). Since ||m(x, 0)||2 = 1, then c(x) = 1.

Equation (4.1) is often written as part of the Landau–Lifshitz model and plays an
important role in the analysis of the Landau–Lifshitz equation. Further details are found
in Bertotti et al. [17, Section 2.1] and Guo and Ding [40, Section 1.1].
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c

b

a

Figure 4.2: The 3-dimensional coordinate system, {a,b, c}, form a right handed set of
orthogonal unit vectors.

The nonnegative parameter ν in (4.3) is the dimensionless Gilbert damping constant.
It depends on the magnetization saturation and hence ν varies depending on the type of
ferromagnet. Experimental values of ν are between 0.0001 and 0.03 (Widom et al. [95,
Table 1]). When ν = 0, the Landau–Lifshitz equation in (4.3) becomes

∂m

∂t
= m×mxx. (4.6)

Equation (4.6) has been studied extensively with analytic solutions known (Bertotti et al.
[16], Gilbert [37], Lakshmanan et al. [57], Guo and Ding [40, Section 2.1, Section 3.3] and
Wang et al. [94]). One such solution is stated in Theorem 4.3.

Theorem 4.3. (Guo and Ding [40, Section 2.1])
Solutions to (4.6) are given by

m(x, t) = a cos(α) + [b cos(kx− ωt) + c sin(kx− ωt)] sin(α) (4.7)

where {a,b, c} form a right–handed coordinate system of orthogonal unit vectors as illus-
trated in Figure 4.2, α and k are arbitrary with ω = k2 cos(α).

The solutions in (4.7) are clearly oscillatory and describe the wave motion in a ferro-
magnet due to the change in direction of a magnetic atom. These wave motions are called
spin waves. The oscillations eventually die down due to internal friction (or damping)

50



within the ferromagnet. A source of damping is the interactions between spin waves from
different magnetic atoms. The damping behaviour in a ferromagnet is governed by the
second term in (4.3). For more details on spin waves and magnetic damping, see Akhiezer
et al. [2, Chapter 2] and Cullity [30, Section 12.6].

We end this section by briefly mentioning that there is another well–known equation
which describes the dynamics of magnetization in a ferromagnetic object. It is called the
Landau–Lifshitz–Gilbert equation,

∂m

∂t
=
(
1 + ν2

)
m×mxx − ν(m× ∂m

∂t
). (4.8)

Both equations are derived from physics but from different arguments which lead to the
Landau–Lifshitz–Gilbert equation having a time dependent damping term (Gilbert [37]). A
literature search of each equation will reveal that they are equally regarded by researchers.
Aside from the discussion here, we consider only the Landau–Lifshitz equation.

From a mathematical viewpoint, the Landau–Lifshitz and the Landau–Lifshitz–Gilbert
equations are equivalent; that is, equation (4.3) can be recovered from (4.8) and vice versa.
This is illustrated in the next proposition.

Proposition 4.4. The Landau–Lifshitz equation in (4.3) is mathematically equivalent to
(4.8); that is, equation (4.3) can be recovered from (4.8) and vice versa.

Proof of Proposition 4.4: Taking the cross product of νm with (4.3) leads to

νm× ∂m

∂t
= νm× (m×mxx)− ν2m× [m× (m×mxx)] . (4.9)

From Table 4.1, we see that the second term can be rewritten as

m× [m× (m×mxx)] = mTmxx (m×m)−mTm (m×mxx) .

Since mTm = 1 from Lemma 4.2 and m×m = 0, then

m× [m× (m×mxx)] = −m×mxx

and substituting into (4.9), we obtain

νm× ∂m

∂t
= νm× (m×mxx) + ν2m×mxx. (4.10)

Adding (4.10) to (4.3) yields (4.8).

51



On the other hand, we can recover (4.3) from (4.8) as follows. Taking the cross product
of m with (4.8) produces

m× ∂m

∂t
=
(
1 + ν2

)
m× (m×mxx)− νm× (m× ∂m

∂t
).

It follows that

m× (m× ∂m

∂t
) =

(
mT∂m

∂t

)
m−mTm

∂m

∂t
(Table 4.1)

=

(
mT∂m

∂t

)
m− ∂m

∂t
(Lemma 4.2)

= −∂m

∂t
(Lemma 4.1)

and hence

m× ∂m

∂t
=
(
1 + ν2

)
m× (m×mxx) + ν

∂m

∂t
.

Substituting this result into (4.8) leads to

∂m

∂t
=
(
1 + ν2

)
m×mxx − ν

(
1 + ν2

)
m× (m×mxx)− ν2∂m

∂t

and after rearranging, (4.3) is recovered.

4.1 Well–Posedness

Existence and uniqueness results for the Landau–Lifshitz equation are shown in Gill and
Zachary [38, Theorem 1], Li [61, Theorem 2.7, Theorem 3.1] and Carbou and Fabrie [22,
Theorem 1.1, 1.2]. See also Chapter 3 in Guo and Ding [40] which includes existence and
uniqueness results for nonlinear boundary conditions [40, Section 3.2] and when ν = 0 [40,
Section 3.3].

The uniqueness and existence results in Carbou and Fabrie [22, Theorem 1.1, 1.2] are
stated below but first we establish a few notational definitions. Let L3

2 be the Hilbert space

L3
2 = L2[0, L]× L2[0, L]× L2[0, L] (4.11)
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and

H1 = {m ∈ L3
2, mx ∈ L3

2}
H2 = {m ∈ L3

2, mx ∈ L3
2, mxx ∈ L3

2}
H3 = {m ∈ L3

2, mx ∈ L3
2, mxx ∈ L3

2, mxxx ∈ L3
2}.

The corresponding norms are

||m||2L3
2

= ||m1||2L2
+ ||m2||2L2

+ ||m3||2L2

||m||2H1
= ||m||2L3

2
+ ||mx||2L3

2

||m||2H2
= ||m||2L3

2
+ ||mx||2L3

2
+ ||mxx||2L3

2

||m||2H3
= ||m||2L3

2
+ ||mx||2L3

2
+ ||mxx||2L3

2
+ ||mxxx||2L3

2
.

Theorem 4.5. (Carbou and Fabrie [22, Theorem 1.1], Sanchez [74, Theorem 1.1])
If m0(x) ∈ H2,m0x(0) = 0,m0x(L) = 0 and ||m0(x)||2 = 1, then there exists a time t∗f > 0
depending on m0(x) and there exists an unique m(x, t) ∈ C([0, tf ];H2)∩L2([0, tf ];H3) for
all tf < t∗f such that m(x, t) satisfies (4.3), (4.5) and ||m(x, t)||2 = 1.

Theorem 4.6. (Carbou and Fabrie [22, Theorem 1.2])
If m0(x) ∈ H2,m0x(0) = 0,m0x(L) = 0 and ||m0(x)||2 = 1, the solution given by Theo-
rem 4.5 depends continuously on m0(x) on the topology of C([0, tf ];H2).

Define D ⊂ L3
2 as

D = {m ∈ L3
2 : mx ∈ L3

2, mxx ∈ L3
2, mx(0, t) = 0 = mx(L, t)}. (4.12)

From the existence and uniqueness of (4.3), (4.5) established in Theorem 4.5, we can define
for any m0 ∈ D an operator F (t) on D by

F (t) : m0(x)→m(x, t). (4.13)

Theorem 4.7. The operator, F (t), defined in (4.13) is a nonlinear contraction semigroup.

Proof of Theorem 4.7: We show (4.13) satisfies condition (i) to (iv) in Definition 2.9.

Setting t = 0, equation (4.13) becomes F (0)m0(x) = m0(x). This is true for any
m0 ∈ D and hence (i) is proved.

For any m0 ∈ D and t, s ∈ R+, it follows from (4.13) that m(x, t+ s) = F (t+ s)m0(x)
and m(x, s) = F (s)m0(x). Since solutions to (4.3) are unique (see Theorem 4.5), then
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m(x, t+s) is the unique solution to (4.3) with initial condition m(x, s); that is, m(x, t+s) =
F (t)m(x, s). It follows that F (t+ s)m0(x) = F (t)m(x, s) = F (t)F (s)m0(x) and hence (ii)
is proved.

Since m(x, t) = F (t)m0(x), conditions (iii) and (iv) of Definition 2.9 follow immediately
from Theorems 4.5 and 4.6, respectively. It follows that F (t) is a nonlinear semigroup and
from Lemma 4.2, F (t) is a contraction semigroup.

4.2 Stability

Stability behaviour of the Landau–Lifshitz equation is discussed in Carbou and Labbé et
al. [23, 24, 56], Jizzini [46] and Gou et al. [39]. In Gou et al. [39], analytic stability results
are for the associated linear equation, while stability for the full (nonlinear) equation is
verified numerically. In Labbé et al. [56], equilibrium solutions of (4.2) with

Heff = mxx −m2e2 −m3e3,

where e2 = (0, 1, 0) and e3 = (0, 0, 1) , are determined by writing

m1(x) = cos(θ(x))

m2(x) = cos(ψ(x)) sin(θ(x))

m3(x) = sin(ψ(x)) sin(θ(x)).

This defines the unit sphere on R3 and automatically satisfies equation (4.1). Further-
more, periodic boundary conditions are considered. It is shown that all equilibria, θeq, are
solutions to

θ′′eq −
1

2
sin(2θeq) = 0

with θeq(0) = θeq(L) and θ′eq(0) = θ′eq(L). Equilibrium solutions are in terms of elliptic
functions. For more on elliptic functions, see Lawden [59]. After this, equation (4.2) with
Heff = mxx−m2e2−m3e3 is linearized around a particular equilibrium (see equation (30)
in Labbé et al. [56]). The resulting equation is of semilinear form. The spectral properties
of the linear operator are determined. The papers by Carbou and Labbé [23, 24] and Jizzini
[46] are similar to Labbé et al. [56] in their approaches for determining stability.

In Mayergoyz et al. [64], the stability of magnetization in nanoparticles is investigated.
The magnetization dynamics, msu, are assumed to be spatially uniform and are governed
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by
dmsu

dt
= −msu ×Heff − νmsu × (msu ×Heff ) + F(msu). (4.14)

Equation (4.14) is an ODE and not a PDE. The F(msu) term describes a torque–like force
acting on the nanoparticles. Standard expressions for F(msu) are found in Mayergoyz et
al. [64]. The effective field, Heff , is the sum of the exchange energy, anisotropy energy and
demagnetization field; that is,

Heff = Hex + Han + Hd.

Neumann boundary conditions are applied. A perturbed magnetization,

m = msu(t) + vsn(t) + vsu(t),

is considered where vsn(t) and vsu(t) are spatially nonuniform and spatially uniform per-
turbations, respectively. The perturbed dynamics are governed by

∂m

∂t
= −m×Heff − νm× (m×Heff ) + F(m)

and from this, equations for ∂vsn/∂t and dvsu/dt are derived with both equations inde-
pendent from one another. It is shown that

d||vsn||L3
2

dt
< 0,

which implies that spatially nonuniform magnetization dynamics is stable in the L3
2–norm

with respect to any spatially uniform perturbation.

In what is to follow, we determine in detail the equilibrium solutions of (4.3), (4.5) and
their stability. All of the results are analytical and pertain to the full equation in (4.3); that
is, there is no linearization. These results are found in Guo and Ding [40, Section 6.1.1] with
a slightly different proof than given here. Specifically, their results are for an equilibrium
that is not associated to a boundary condition. The main result is in Theorem 4.10. We
begin by establishing some lemmas needed in the proof of Theorem 4.10.

Lemma 4.8. For m ∈ L3
2, m is an equilibrium solution of (4.3) if and only if m×mxx = 0.

Proof of Lemma 4.8: Suppose m×mxx 6= 0. Taking the product of (4.3) with m×mxx
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leads to

(m×mxx)
T ∂m

∂t
= (m×mxx)

T (m×mxx) + ν (m×mxx)
T (m× (m×mxx))

= ||m×mxx||22 + ν (m×mxx)
T (m× (m×mxx))

= ||m×mxx||22 + mT((m×mxx)× (m×mxx)) (Table 4.1)

= ||m×mxx||22 (Table 4.1).

Since m×mxx 6= 0, then
∂m

∂t
6= 0

and hence m is not an equilibrium. Considering the contrapositive, it follows that m is an
equilibrium if m×mxx = 0. On the other hand, substituting m×mxx = 0 into (4.3) gives
∂m/∂t = 0 and hence is an equilibrium solution to (4.3). Therefore, m is an equilibrium
solution of (4.3) if and only if m×mxx = 0.

Lemma 4.9. If m ∈ L3
2 satisfies (4.1), then mTmxx = − ||mx||22 .

Proof of Lemma 4.9: Differentiating (4.1) with respect to x produces

0 =
∂||m||22
∂x

=
∂(mTm)

∂x
= 2mTmx

and differentiating again yields

0 =
∂

∂x

(
mTmx

)
= mT

xmx + mTmxx = ||mx||22 + mTmxx.

This implies mTmxx = − ||mx||22 as desired.

Theorem 4.10. The set of equilibrium points of (4.3), (4.5) is

E = {a = (a1, a2, a3) ∈ R3 : a1, a2, a3 constants and aTa = 1}. (4.15)

Proof of Theorem 4.10: If m is an equilibrium solution of (4.3), Lemma 4.8 implies
m is parallel to mxx. That is, there exists a real function, l(x), such that mxx = l(x)m.
Taking the scalar product with m yields

mTmxx = mT(l(x)m)

= l(x)(mTm).
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From Lemma 4.2, mTm = 1 and hence,

mTmxx = l(x).

It follows from Lemma 4.9 that
||mx||22 = −l(x). (4.16)

Substituting (4.16) into mxx = l(x)m yields

mxx = − ||mx||22 m.

Taking the scalar product with mx, we obtain

mT
xxmx = − ||mx||22 mTmx. (4.17)

Since

∂mT
xmx

∂x
= mT

xxmx + mT
xmxx = 2mT

xxmx

∂mTm

∂x
= mT

xm + mTmx = 2mTmx,

equation (4.17) becomes
∂mT

xmx

∂x
= − ||mx||22

∂mTm

∂x
.

Applying equation (4.1) leads to
∂

∂x
||mx||22 = 0.

Equation (4.16) implies
∂ l(x)

∂x
= 0.

This means that l(x) is a constant; that is, independent of x. Define this constant to be −k2

which we know is negative or zero from (4.16). Substituting l(x) = −k2 into mxx = l(x)m
leads to mxx = −k2m. This is a system of linear second order ODEs,

m′′1(x) = −k2m1(x)

m′′2(x) = −k2m2(x)

m′′3(x) = −k2m3(x).

57



These ODES are easily solved and have solutions

m1(x) = a1 cos(kx) + b1 sin(kx)

m2(x) = a2 cos(kx) + b2 sin(kx)

m3(x) = a3 cos(kx) + b3 sin(kx)

where ai, bi ∈ R for i = 1, 2, 3 are constants.

Equation (4.1) requires that ||m||22 = m2
1 +m2

2 +m2
3 = 1 which forces

a2
1 + a2

2 + a2
3 = 1

b21 + b22 + b23 = 1

a1b1 + a2b2 + a3b3 = 0.

Therefore, the equilibrium solutions to (4.3) are of the form

m(x) = a cos(kx) + b sin(kx)

for any k ∈ R with ||a||2 = 1, ||b||2 = 1 and aTb = 0 where a = (a1, a2, a3) and b =
(b1, b2, b3). Given Neumann boundary conditions, we have mx(0) = kb = 0 which implies
either k = 0 or b = 0; however, since ||b||2 = 1, then k = 0. Therefore, the equilibrium
solution to (4.3), (4.5) is m(x) = a which also satisfies the second boundary condition
mx(L) = 0. That is, the equilibrium is not unique; in fact, there are an infinite number of
equilibria. We denote the set of equilibrium solutions associated to (4.3) as

E = {(a1, a2, a3) ∈ R3 : a1, a2, a3 constants}

with ||a||2 = 1.

In the following theorem, E is shown to be an asymptotically stable equilibrium set.
A similar result to is shown in Guo and Ding [40, Proposition 6.2.1]; however, the authors
only establish the stability of the equilibrium points, and do not prove the equilibrium set
is asymptotically stable. We apply Lyapunov’s Theorem for sets (see Theorem 2.31) to
show E is asymptotically stable.

Theorem 4.11. The equilibrium set in (4.15) is asymptotically stable in the L3
2–norm.

Proof of Theorem 4.11: The Lyapunov candidate is

V (m) =
1

2
||mx||2L3

2
(4.18)
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where m(x, t) is the solution to (4.3). It is clear that V ≥ 0 for all m ∈ D in (4.12) and
V (a) = 0 for any a ∈ E. If V (m) = 0, we have mx = 0 which implies m = a for some
a ∈ E. Therefore, V (m) > 0 for all m ∈ D\E and V (a) = 0 for any a ∈ E.

The derivative of V is

dV (m)

dt
=

1

2

d

dt
||mx||2L3

2
=

∫ L

0

mx
Tṁxdx.

Applying integration by parts with the Neumann boundary conditions in (4.5) produces

dV (m)

dt
= −

∫ L

0

mT
xxṁdx. (4.19)

Substituting in (4.3) yields

dV (m)

dt
= −

∫ L

0

mT
xx (m×mxx − νm× (m×mxx)) dx

and rearranging leads to

dV (m)

dt
=

∫ L

0

−mT (mxx ×mxx) + ν (m×mxx)
T (mxx ×m) dx

The first term in the integral is zero since any element cross product with itself is zero
(Table 4.1). The second term can be written as

dV (m)

dt
= −ν

∫ L

0

||m×mxx||22 dx = −ν ||m×mxx||2L3
2
.

Since ν ≥ 0, it is clear that dV
dt
≤ 0 for all m ∈ D. Furthermore, if dV

dt
= 0, then

m×mxx = 0. From Lemma 4.8, m×mxx = 0 if and only if m is an equilibrium solution
and since E is the set of all equilibria (see Theorem 4.10), then dV

dt
< 0 for all m ∈ D\E.

It follows from Theorem 2.31 that E is an asymptotically stable equilibrium set of (4.3),
(4.5).
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Figure 4.3: Numerical solution of the Landau–Lifshitz equation on [0, 1] in the m1 di-
rection. The initial condition is m0(x) = (sin(2πx), cos(2πx), 0) and ν is 0.02. On the
horizontal axis is the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetiza-
tion. The initial magnetization is depicted in (a) and as time progresses, the magnetization
evolves from (a) to (d). It is clear that the dynamics eventually settle to 0. For a three–
dimensional depiction, see Figure 4.6a
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Figure 4.4: Numerical solution of the Landau–Lifshitz equation on [0, 1] in the m2 di-
rection. The initial condition is m0(x) = (sin(2πx), cos(2πx), 0) and ν is 0.02. On the
horizontal axis is the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetiza-
tion. The initial magnetization is depicted in (a) and as time progresses, the magnetization
evolves from (a) to (d). It follows that the dynamics eventually settle to -0.6. For a three–
dimensional depiction, see Figure 4.6b
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Figure 4.5: Numerical solution of the Landau–Lifshitz equation on [0, 1] in the m3 di-
rection. The initial condition is m0(x) = (sin(2πx), cos(2πx), 0) and ν is 0.02. On the
horizontal axis is the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetiza-
tion. The initial magnetization is depicted in (a) and as time progresses, the magnetization
evolves from (a) to (d). It follows that the dynamics eventually settle back to 0. For a
three–dimensional depiction, see Figure 4.6c
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Figure 4.6: Magnetization dynamics to the Landau–Lifshitz equation as x, t varies. The
initial condition is m0(x) = (sin(2πx), cos(2πx), 0) with ν = 0.02 and L = 1. The magne-
tizations settle to (0,−0.6, 0).

Figures 4.3 to 4.6 demonstrate that solutions to the Landau–Lifshitz equation nat-
urally settle to a constant. This supports the analytical results in Theorem 4.10 and
Theorem 4.11. The initial condition is chosen to be m0(x) = (sin(2πx), cos(2πx), 0), which
satisfies ||m0(x)||2 = 1. The parameter, ν, is chosen to be 0.02 and L is set to 1. It is
clear from the figures that the magnetization settles to (0,−0.6, 0). Comparing all three
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figures, the influence of m1 and m2 on m3 is apparent. That is, even though m3 begins at
a constant equilibrium of 0, which is already stable by Theorem 4.11, the dynamics require
some time to settle back to 0. This is due to the influence of m1 and m2. See Appendix B
for the numerical approximation.

4.3 Linear Landau–Lifshitz Equation

To obtain the linear Landau–Lifshitz equation, we perturb (4.3) with

m(x, t) = m̃(x) + v(x, t)

where m̃ is an equilibrium of (4.3) and v ∈ L3
2 is a small perturbation.

To begin, rewrite the last term in (4.3) as follows

−νm× (m×mxx) = −ν
(
mTmxx

)
m + ν

(
mTm

)
mxx (Table 4.1)

= −ν
(
mTmxx

)
m + νmxx (applying (4.1))

= ν ||mx||22 m + νmxx (Lemma 4.9)

and substituting into (4.3) implies

∂m

∂t
= νmxx + m×mxx + ν ||mx||22 m. (4.20)

Equation (4.20) is the semilinear form of the Landau–Lifshitz equation. Substituting
m(x, t) = m̃(x) + v(x, t) into (4.20) yields

∂v

∂t
= νm̃xx + νvxx + (m̃ + v)× (m̃xx + vxx) + ν ||m̃x + vx||22 (m̃ + v) .

Expanding leads to

∂v

∂t
= νm̃xx + νvxx + m̃× m̃xx + m̃× vxx + v × m̃xx + v × vxx

+ ν
(
||m̃x||22 + 2m̃T

xvx + ||vx||22
)

(m̃ + v)

and considering only the terms that are linear in v, we have

∂v

∂t
= νvxx + m̃× vxx + v × m̃xx + 2ν

(
m̃T

xvx
)
m̃ + ν ||m̃x||22 v. (4.21)
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From (4.15), m̃ = a, which is a constant vector and hence (4.21) becomes

∂v

∂t
= νvxx + a× vxx . (4.22)

Equation (4.22) is the Landau-Lifshtiz equation in (4.3),(4.5) linearized at a = (a1, a2, a3)
where a2, a2, a3 ∈ R with ||a||2 = 1.

Let z = (z1, z2, z3) ∈ L3
2. Consider the linear Landau–Lifshitz equation in state–space

form
ż = Az, z(0) = z0 (4.23)

for all t ≥ 0 where A : D(A)→ L3
2 is defined as

Az = νzxx + a× zxx =

 νz′′1 − a3z
′′
2 + a2z

′′
3

a3z
′′
1 + νz′′2 − a1z

′′
3

−a2z
′′
1 + a1z

′′
2 + νz′′3

 (4.24)

and
D(A) = {z : z ∈ L3

2, zx ∈ L3
2, zxx ∈ L3

2, zx(0, t) = 0 = zx(L, t)}. (4.25)

4.3.1 Well–Posedness

We apply the Lumer–Phillips Theorem (see Theorem 2.6) to show the linear operator A
defined in (4.24) generates a contraction semigroup. The main result is in Theorem 4.14;
however, we first show A is closed in Lemma 4.12 and dissipativity in Lemma 4.13. These
lemmas are required in the proof of Theorem 4.14.

Lemma 4.12. The operator, A, defined in (4.24) is closed.

Proof of Lemma 4.12: Let A0 be the second derivative operator on D(A0) = D(A). It
is shown in Curtain and Zwart [31, Example A.3.48] that A0 with D(A0) is closed. Define
A1 : L3

2 → L3
2 as

A1 =

 ν −a3 a2

a3 ν −a1

−a2 a1 ν

 .
It is clear that A1 is a linear bounded operator; that is, ||A1z||L3

2
≤Ma,ν ||z||L3

2
for all z ∈ L3

2

where Ma,ν is a positive constant that depends on a and ν. Furthermore, the determinant
of A1 is det(A1) = ν3 + ν (a2

1 + a2
2 + a2

3) = ν3 + ν > 0 since ai ∈ R with ||a||2 = 1 and
ν > 0. Therefore, A1 is invertible. For all z ∈ D(A), it follows that Az = A0A1z.
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For n ∈ N, let zn ∈ D(A) with limn→∞ zn = z and

lim
n→∞

Azn = y. (4.26)

Since A1 is a linear bounded operator, then A1 is continuous and hence, limn→∞A1zn =
A1z. Define xn = A1zn and x = A1z. It follows from (4.26) with A = A0A1 that
limn→∞A0xn = y. Since A0 is a closed operator, then x ∈ D(A0) and A0x = y. This
implies A1z ∈ D(A0) = D(A) and A0A1z = y; and hence z ∈ D(A) since A1 is invertible
and Az = y, which means A is a closed operator.

A similar result to Lemma 4.12 can be found in Hundertmark [42, Proposition A.9]. It
is written for a general closed linear operator and a general linear bounded operator.

Lemma 4.13. The operator, A, defined in (4.24) and its adjoint are dissipative.

Proof of Lemma 4.13: For all z ∈ D(A),

〈Az, z〉L3
2

= 〈νz′′1 −a3z
′′
2 +a2z

′′
3 , z1〉L2 + 〈a3z

′′
1 +νz′′2 −a1z

′′
3 , z2〉L2 + 〈−a2z

′′
1 +a1z

′′
2 +νz′′3 , z3〉L2

and applying integration by parts yields

〈Az, z〉L3
2

=− ν〈z′1, z′1〉L2 + a3〈z′2, z′1〉L2 − a2〈z′3, z′1〉L2

− a3〈z′1, z′2〉L2 − ν〈z′2, z′2〉L2 + a1〈z′3, z′2〉L2

+ a2〈z′1, z′3〉L2 − a1〈z′2, z′3〉L2 − ν〈z′3, z′3〉L2 .

Upon rearranging, it follows that

〈Az, z〉L3
2

=− ν||z′1||2L2
+ a3〈z′1, z′2〉L2 − a2〈z′1, z′3〉L2

− a3〈z′1, z′2〉L2 − ν||z′2||2L2
+ a1〈z′2, z′3〉L2

+ a2〈z′1, z′3〉L2 − a1〈z′2, z′3〉L2 − ν||z′3||2L2
.

Since ν > 0, then

Re〈Az, z〉L3
2

= −ν||z′1||2L2
− ν||z′2||2L2

− ν||z′3||2L2
≤ 0.
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Before establishing the adjoint of A is dissipative, we first calculate A∗. For z,w ∈ D(A)

〈Az,w〉L3
2

= 〈νz′′1 − a3z
′′
2 + a2z

′′
3 , w1〉L2

+ 〈a3z
′′
1 + νz′′2 − a1z

′′
3 , w2〉L2

+ 〈−a2z
′′
1 + a1z

′′
2 + νz′′3 , w3〉L2

and applying integration by parts twice,

〈Az,w〉L3
2

= ν〈z1, w
′′
1〉L2 − a3〈z2, w

′′
1〉L2 + a2〈z3, w

′′
1〉L2

+ a3〈z1, w
′′
2〉L2 + ν〈z2, w

′′
2〉L2 − a1〈z3, w

′′
2〉L2

− a2〈z1, w
′′
3〉L2 + a1〈z2, w

′′
3〉L2 + ν〈z3, w

′′
3〉L2 .

Rearranging leads to

〈Az,w〉L3
2

= 〈z1, νw
′′
1〉L2 + 〈z1, a3w

′′
2〉L2 + 〈z1,−a2w

′′
3〉L2

+ 〈z2,−a3w
′′
1〉L2 + 〈z2, νw

′′
2〉L2 + 〈z2, a1w

′′
3〉L2

+ 〈z3, a2w
′′
1〉L2 + 〈z3,−a1w

′′
2〉L2 + 〈z3, νw

′′
3〉L2

and hence the adjoint of A is

A∗w =

 νw′′1 a3w
′′
2 −a2w

′′
3

−a3w
′′
1 νw′′2 a1w

′′
3

a2w
′′
1 −a1w

′′
2 νw′′3


with D(A) = D(A∗). For all z ∈ D(A∗),

〈A∗z, z〉L3
2

= 〈νz′′1 +a3z
′′
2−a2z

′′
3 , z1〉L2 +〈−a3z

′′
1 +νz′′2 +a1z

′′
3 , z2〉L2 +〈a2z

′′
1−a1z

′′
2 +νz′′3 , z3〉L2

and applying integration by parts, we obtain

〈A∗z, z〉L3
2

=− ν〈z′1, z′1〉L2 − a3〈z′2, z′1〉L2 + a2〈z′3, z′1〉L2

+ a3〈z′1, z′2〉L2 − ν〈z′2, z′2〉L2 − a1〈z′3, z′2〉L2

− a2〈z′1, z′3〉L2 + a1〈z′2, z′3〉L2 − ν〈z′3, z′3〉L2 .
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It follows that

〈A∗z, z〉L3
2

=− ν||z′1||2L2
− a3〈z′1, z′2〉L2 + a2〈z′1, z′3〉L2

+ a3〈z′1, z′2〉L2 − ν||z′2||2L2
− a1〈z′2, z′3〉L2

− a2〈z′1, z′3〉L2 + a1〈z′2, z′3〉L2 − ν||z′3||2L2

and since ν > 0, then

Re〈A∗z, z〉L3
2

= −ν||z′1||2L2
− ν||z′2||2L2

− ν||z′3||2L2
≤ 0.

Theorem 4.14. The operator, A, defined in (4.24) generates a linear contraction semi-
group.

Proof of Theorem 4.14: Since L3
2 is dense and boundary conditions do not affect dense-

ness, then D(A) is dense in L3
2. It is easy to see that A is a linear operator and from

Lemma 4.12, A is closed. We also have from Lemma 4.13 that A and its adjoint are
dissipative operators. By the Lumer–Phillips Theorem, A generates a contraction semi-
group.

The next main result is in Theorem 4.16, which shows A defined in (4.24) generates a
linear analytic semigroup. The proof of Theorem 4.16 relies on the following lemma and
Corollary 2.8.

Lemma 4.15. If a ∈ E where E is defined in (4.15), then ||a × z||L3
2
≤ 2||z||L3

2
for all

z ∈ L3
2.

Proof of Lemma 4.15: Consider

||a× z||2L3
2

= ||a2z3 − a3z2||2L2
+ || − a1z3 + a3z1||2L2

+ ||a1z2 − a2z1||2L2
.

It follows that

||a× z||2L3
2
≤ (||a2z3||L2 + ||a3z2||L2)

2 + (||a1z3||L2 + ||a3z1||L2)
2 + (||a1z2||L2 + ||a2z1||L2)

2 .

Expanding the square and then applying Young’s inequality implies

||a× z||2L3
2
≤ 2||a2z3||2L2

+ 2||a3z2||2L2
+ 2||a1z3||2L2

+ 2||a3z1||2L2
+ 2||a1z2||2L2

+ 2||a2z1||2L2
.

Since a1, a2, a3 are constants,

||a× z||2L3
2
≤ 2a2

2||z3||2L2
+ 2a2

3||z2||2L2
+ 2a2

1||z3||2L2
+ 2a2

3||z1||2L2
+ 2a2

1||z2||2L2
+ 2a2

2||z1||2L2
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and rewriting under the L3
2–norm leads to

||a× z||2L3
2
≤ 4

(
a2

1 + a2
2 + a2

3

)
||z||2L3

2
.

We have a2
1 + a2

2 + a2
3 = 1 since a ∈ E and hence ||a× z||L3

2
≤ 2||z||L3

2
as desired.

Theorem 4.16. The operator, A, defined in (4.24) generates a linear analytic semigroup.

Proof of Theorem 4.16: This proof relies on Corollary 2.8. The state space for the linear
Landau–Lifshitz equation is L3

2. To determine a dense space Y ⊂ L3
2, multiply (4.24) by a

test function, φ, and then integrate,∫ L

0

(Az)Tφdx =

∫ L

0

νzT
xxφdx+

∫ L

0

(a× zxx)
Tφdx

= −
∫ L

0

νzT
xφxdx+

[
zT
xφ
]L
0
−
∫ L

0

(a× zx)
Tφxdx+

[
(a× zx)

Tφ
]L

0

= −
∫ L

0

νzT
xφxdx−

∫ L

0

(a× zx)
Tφxdx.

Set Y = H1 = {φ ∈ L3
2,φx ∈ L3

2} and define σ : H1 ×H1 → C as

σ(φ,ψ) = 〈νφx,ψx〉L3
2

+ 〈a× φx,ψx〉L3
2

for all φ,ψ ∈ H1. The H1 inner product and norm is as usual; that is,

〈φ,ψ〉H1 = 〈φ,ψ〉L3
2

+ 〈φx,ψx〉L3
2

||φ||2H1
= ||φ||2L3

2
+ ||φx||2L3

2
.

To show σ satisfies (2.6), consider for all φ,ψ ∈ H1,

|σ(φ,ψ)| = |〈νφx,ψx〉L3
2

+ 〈a× φx,ψx〉L3
2
|

≤ |〈νφx,ψx〉L3
2
|+ |〈a× φx,ψx〉L3

2
|

≤ ν||φx||L3
2
||ψx||L3

2
+ ||a× φx||L3

2
||ψx||L3

2
(Cauchy-Schwarz Inequality)

≤ (ν + 2) ||φx||L3
2
||ψx||L3

2
(Lemma 4.15)

≤ (ν + 2)
(
||φ||L3

2
+ ||φx||L3

2

)(
||ψ||L3

2
+ ||ψx||L3

2

)
= (ν + 2) ||φ||H1||ψ||H1 ,
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which satisfes (2.6) with γ = ν + 2.

To show σ satisfies (2.8), consider for all φ ∈ H1,

σ(φ,ψ) + ν||φ||2L2
3

= 〈νφx,φx〉L3
2

+ 〈a× φx,φx〉L3
2

+ ν||φ||2L2
3
.

The term 〈a× φx,φx〉L3
2

is zero since

〈a× φx,φx〉L3
2

=

∫ L

0

(a× φx)Tφxdx =

∫ L

0

(φx × φx)T a dx = 0

by Table 4.1. It follows that

σ(φ,φ) + ν||φ||L2
3

= ν||φx||2L2
3

+ ν||φ||2L2
3

= ν||φ||2H1
.

and hence (2.8) is satisfied with λ0 = δ = ν.

If φxx ∈ L3
2, we obtain

|σ(φ,ψ)| = |〈− (νφxx + a× φxx) ,ψ〉L3
2
|

≤ ||νφxx + a× φxx||L3
2
||ψ||L3

2
(Cauchy Schwarz inequality)

≤
(
||νφxx||L3

2
+ ||a× φxx||L3

2

)
||ψ||L3

2

≤
(
ν||φxx||L3

2
+ 2||φxx||L3

2

)
||ψ||L3

2
(Lemma 4.15)

≤ (ν + 2) ||φxx||L3
2
||ψ||L3

2
.

Let Kφ = (ν + 2) ||φxx||L3
2
, then 0 ≤ Kφ <∞ since φxx ∈ L3

2. Define

Aφ = νφxx + a× φxx

on D(A) where
D(A) = {φ ∈ H1 : φxx ∈ L3

2,φx(0) = φx(L) = 0}

and
σ(φ,ψ) = 〈−Aφ,ψ〉L3

2
for all φ ∈ D(A), ψ ∈ H1.

This is the operator, A, and domain, D(A), given in (4.24) and (4.25), respectively. By
Corollary 2.8, A generates an analytic semigroup.

Let the semigroup generated by A defined in (4.24) be denoted T (t). Since T (t) is a
linear analytic semigroup, then the spectrum determined growth assumption is satisfied

70



(see equation (2.2)). This implies ||T (t)||OP ≤ eω0t for all t where ω0 is defined in (2.3).
We will see in the next section that the eigenvalues of (4.23) are either zero or have
negative real part. Therefore, ω0 = 0 and hence ||T (t)||OP ≤ 1. This means T (t) is a
contraction semigroup which was already established in Theorem 4.14 using the Lumer–
Phillips Theorem.

4.3.2 Eigenvalues

Eigenvalues play an important role in establishing the stability of semigroups and equilib-
rium points and helping to determine the appropriate controller. This is made even more
significant since the linear Landau–Lifshitz equation satisfies the spectrum determined
growth assumption (Section 4.3.1). Therefore, in this section we evaluate the eigenvalues
of the linear Landau–Lifshitz equation.

Let λ ∈ C. The eigenvalue problem of (4.23) is

λv1 = νv′′1 − a3v
′′
2 + a2v

′′
3 (4.27a)

λv2 = a3v
′′
1 + νv′′2 − a1v

′′
3 (4.27b)

λv3 = −a2v
′′
1 + a1v

′′
2 + νv′′3 (4.27c)

with boundary conditions

v′1(0) = v′1(L) = 0 (4.27d)

v′2(0) = v′2(L) = 0 (4.27e)

v′3(0) = v′3(L) = 0 (4.27f)

where v ∈ L3
2. The eigenvalue problem is solved in Maple. See Appendix C for the code.

For the zero eigenvalue λ1 = 0, the corresponding eigenvector is v1 = (c1, c2, c3) for any
constants c1, c2, c3 ∈ C. The choice c1 = c2 = c3 = 0 is excluded since this leads to the
zero vector. The remaining eigenvalues and eigenvectors are

λ+
2 =

−(1 + 2n)2π2ν

L2
+ i

(1 + 2n)2π2

L2
, v+

2 = 2c4

[
i−a3−ia1a2

a2
2+a2

3
a2−ia1a3

a2
2+a2

3

]
cos

(
(1 + 2n)π

L
x

)

λ−2 =
−(1 + 2n)2π2ν

L2
− i(1 + 2n)2π2

L2
, v−2 = 2c5

 i
a3−ia1a2

a2
2+a2

3−a2−ia1a3

a2
2+a2

3

 cos

(
(1 + 2n)π

L
x

)
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λ3 =
−(1 + 2n)2π2ν

L2
, v3 = 2ic6

 1
a2

a1
a3

a1

 cos

(
(1 + 2n)π

L
x

)

λ+
4 =

−(2n)2π2ν

L2
+ i

(2n)2π2

L2
, v+

4 = 2c7

 i
−a3−ia1a2

a2
2+a2

3
a2−ia1a3

a2
2+a2

3

 cos

(
2nπ

L
x

)

λ−4 =
−(2n)2π2ν

L2
− i(2n)2π2

L2
, v−4 = 2c8

 i
a3−ia1a2

a2
2+a2

3−a2−ia1a3

a2
2+a2

3

 cos

(
2nπ

L
x

)

λ5 =
−(2n)2π2ν

L2
, v5 = 2ic9

 1
a2

a1
a3

a1

 cos

(
2nπ

L
x

)

where ci ∈ C for i = 4, 5, . . . , 9 are nonzero constants and n ∈ Z. Figure 4.7 depicts plots
of the eigenvalues for various values of ν with L = 1 and n = 0,±1,±2,±3,±4.

4.4 Hysteresis

It is well known that the Landau–Lifshitz equation exhibits hysteretic behaviour. The
shape of the hysteresis loop is governed by the composition and structure of the magnet
and the input. Physically, the input is the applied external magnetic field acting on the
ferromagnet. Cowburn et al. [29] investigated via experiments the shape change of the
hysteresis loop as the thickness and diameter of a circular–shaped nanomagnet varies.
Experiments conducted on nanowires also demonstrate hysteresis loops (Noh et al. [69]).
Suess et al. [83] investigates how the surface structure of a nanomagnet affects the behaviour
of hysteresis. They present numerical simulations illustrating the magnetization “jumping”
from one equilibrium to another. Numerical simulations illustrating hysteresis loops is also
found in Wiele et al. [87], and Yang and Zhao [100]. Carbou et al. [21] model the dynamics
of hysteresis by adding a hysteresis operator term to the effective field in (4.2). Visintin
[91] also considers a hysteresis operator.

In much of the aforementioned literature, the presence of hysteresis in the Landau–
Lifshitz equation is identified by the fact that input–output curves exhibit a looping be-
haviour. We demonstrated in Chapter 3 that this alone is not enough to characterize
hysteresis. In the following, we establish that the input–output curves of the Landau–
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(a) ν = 0.0001, L = 1, n = 0,±1,±2,±3,±4 (b) ν = 0.001, L = 1, n = 0,±1,±2,±3,±4

(c) ν = 0.01, L = 1, n = 0,±1,±2,±3,±4

Figure 4.7: Plots of the eigenvalues (λ2, λ
+
3 , λ

−
3 , λ4, λ

+
5 , λ

−
5 , λ6) for various values of ν with

L = 1 and n = −4, . . . , 4. The real and imaginary axis are on the horizontal and vertical
axis, respectively. The red square represents λ2 = 0, the blue dots are the eigenvalues with
real part −(1 + 2n)2π2ν/L2 (namely, λ+

3 , λ
−
3 , λ4) and the black asterisks are the eigenvalues

with real part −(2n)2π2ν/L2 (namely, λ+
5 , λ

−
5 , λ6).
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Lifshitz equation has persistent loops as the frequency of the input approaches 0. This
satisfies Definition 3.2 and hence the dynamics governed by the Landau–Lifshitz equation
exhibits hysteresis. This is not surprising as the equation has multiple stable equilibria.

The input–output curves for the Landau–Lifshitz equation is governed by
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Figure 4.8: Hysteresis loops for m1(x, t) of the Landau–Lifshitz equation with x fixed
and ν = 0.02, L = 1. The input is u(t) = (0.001 cos(ωt), 0, 0). The initial condition is
m0(x) = (1, 0, 0). It is clear loops persist as ω approaches 0.
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∂m

∂t
= m×mxx − νm× (m×mxx) + u(t)

where u(t) is the input. We have selected the input to be u(t) = (0.001 cos(ωt), 0, 0);
that is, there is a time–varying magnetic field in the m1 direction and no magnetic field
in the m2 and m3. The associated hysteresis loops for m1(x, t) with x fixed is illustrated
in Figure 4.8. A constant initial condition, m0(x) = (1, 0, 0), is chosen since for the
Landau–Lifshitz equation, any constant is an equilibrium (Theorem 4.11) and hence the
system begins at an equilibrium. The parameters ν and L are chosen to be 0.02 and
1, respectively. It is clear from Figure 4.8 that the input–output curves of the Landau–
Lifshitz equation exhibit persistent loops. Furthermore, the hysteresis loops have the same
appearance as those governed by (3.6). This is because in both examples the equilibrium
points consist of the entire real line.

Hysteresis loops for m2(x, t) and m3(x, t) with initial conditions, m0(x) = (0, 1, 0) and
m0(x) = (0, 0, 1), and input u(t) = (0, 0.001 cos(ωt), 0) and u(t) = (0, 0, 0.001 cos(ωt)) are
illustrated in Figure 4.9 and 4.10, respectively. They are nearly identical to the hysteresis
loops for m1(x, t). This is due to the symmetric structure of the three differential equations
in the Landau–Lifshitz model.

Recall that in Section 4.3, we investigated the Landau–Lifshitz equation linearized at a
constant equilibrium, a. In particular, the equation is described by (4.23). The equilibrium
solutions of the linear Landau–Lifshitz equation is determined by

0 = νzxx + a× zxx.

It is clear that any constant is an equilibrium solution of (4.23) and also satisfy the bound-
ary conditions, zx(0) = zx(L) = 0. Furthermore, we established in Section 4.3.2 that
the linear Landau–Lifshitz equation satisfies the spectrum determined growth assumption.
This means its eigenvalues can determine the stability of the equilibria. Since the eigenval-
ues of the linear Landau–Lifshitz equation have nonpositive real part (see Section 4.3.2),
the equilibrium solutions are stable. From Definition 3.1, this suggests the linear Landau–
Lifshitz equation exhibits hysteresis. The input–output curves are governed by

ż = νzxx + a× zxx + u(t)

where u(t) is the input.

Figures 4.11 to 4.13 depict the input–output curves for the linear Landau–Lifshitz
equation. As in the nonlinear case, the parameters ν and L are 0.02 and 1, respectively,
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and the same cosine input is applied. It follows from the figures that a loop persists as
the frequency of the input approaches zero. From Definition 3.2, the system is hysteretic.
Notice again that the hysteresis loop is smooth; that is, it does not have jumps. This is
reminiscent of the loops for the full (nonlinear) Landau–Lifshitz equation and the dynamics
described by (3.6), both of which have arbitrary constants as its equilibrium.
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Figure 4.9: Hysteresis loops for m2(x, t) of the Landau–Lifshitz equation with x fixed
and ν = 0.02, L = 1. The input is u(t) = (0, 0.001 cos(ωt), 0) and the initial condition is
m0(x) = (0, 1, 0).
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In general linear systems are not believed to exhibit hysteresis because they often have
only one equilibrium solution. However, we have demonstrated that the linear Landau–
Lifshitz equation and equation (3.6) have persistent loops in the input–output maps as
the frequency of the input approaches zero. By Definition 3.2, the two systems exhibit
hysteresis. This is because both linear examples have multiple stable equilibrium, which
is crucial for systems to display hysteresis (see Definition 3.1).
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Figure 4.10: Hysteresis loops for m3(x, t) of the Landau–Lifshitz equation with x fixed
and ν = 0.02, L = 1. The input is u(t) = (0, 0, 0.001 cos(ωt)) and the initial condition is
m0(x) = (0, 0, 1).
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Figure 4.11: Hysteresis loops for z1(x, t) of the linear Landau–Lifshitz equation with x fixed
and ν = 0.02. The linearization is at a = (1, 0, 0). The input is u(t) = (0.001 cos(ωt), 0, 0)

and the initial condition is z0(x) =
(

1√
2
, 1√

2
, 0
)

.
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Figure 4.12: Hysteresis loops for z2(x, t) of the linear Landau–Lifshitz equation with x fixed
and ν = 0.02. The linearization is at a = (0, 1, 0). The input is u(t) = (0, 0.001 cos(ωt), 0)
and the initial condition is z0(x) = (0, 1, 0).
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Figure 4.13: Hysteresis loops for z3(x, t) of the linear Landau–Lifshitz equation with x fixed
and ν = 0.02. The linearization is at a = (0, 0, 1). The input is u(t) = (0, 0, 0.001 cos(ωt))

and the initial condition is z0(x) =
(

1√
3
, 1√

3
, 1√

3

)
.
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Chapter 5

Control of the Landau–Lifshitz
Equation

Ferromagnets are often found in memory storage devices such as hard disks, credit cards
or tape recordings. Each set of data stored in a memory device is uniquely assigned to a
specific stable magnetic state of the ferromagnet. As research and technology advance, the
amount of data and the speed at which they can be stored increases while their physical
size decreases. Today, their size is on the magnitude of nanoscales, which is why there is
a renewed interest in studying the Landau–Lifshitz equation.

The magnetic state of a ferromagnet can be changed by an applied magnetic field, Ha,
which is viewed as the control (Carbou et al. [25, 26, 27], Alouges and Beauchard [6], Noh
et al. [69]). Being able to control the stable states allows for exact storage of data. This
is difficult due to the presence of hysteresis because more than one stable equilibrium is
possible for a particular input. We are able to present a controller design that forces the
system to move from one arbitrary stable equilibrium to another. Essentially, this controls
the effect of hysteresis that arises in the Landau–Lifshitz equation and hence allows for a
more precise retrieval of the stored data.

Results on the control of magnetization described by the Landau–Lifshitz equation are
not well–developed. Most articles have been published in the last five years and many
are either experimental, numerical or simplify the Landau–Lifshitz equation. For example,
in Alouges and Beauchard [6], the controlled Landau–Lifshitz equation is considered on a
special domain which allows the spatial variable to be fixed and hence the control problem
simplifies to an ODE model. Experiments demonstrating the control of domain walls in a
nanowire is presented in Noh et al. [69]. Numerical simulations have also been conducted
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on the control of domain walls in nanowires (Wieser et al. [96]).

Much of the theoretical results on the control of the Landau–Lifshitz have been by
Carbou et al. [25, 26, 27]. In particular, they investigate the control of domain walls
in nanowires using the external applied magnetic, Ha, as the control mechanism. The
effective field of the Landau–Lifshitz equation (4.2) is defined as the sum of the exchange
field, demagnetization field and applied field; that is,

Heff = mxx + Hd + Ha.

It follows that the form of the Landau–Lifshitz equation considered by Carbou et al. [25,
26, 27] is

∂m

∂t
= m× (mxx + Hd + Ha)− νm× (m× (mxx + Hd + Ha)) . (5.1)

In Carbou et al. [25], equation (5.1) is linearized with Ha = 0 and shown to have an
unstable equilibrium, m∗. Setting Ha to be the average of the m1–magnetization; that is,

Ha =
1

L

∫ L

0

m1(r, t)dre1,

m∗ is shown to be stable for (5.1) in Carbou et al. [25, Theorem 1.4].

In Carbou et al. [26, 27], Ha is chosen to be a constant and is only applied in the m1-
direction; that is, Ha = (d, 0, 0) = de1 where d is a constant. The authors are interested in
controlling solutions of (5.1) to special domain walls, mdw, called Bloch walls. They show
solutions of (5.1) with Ha = (d, 0, 0) = de1 can be controlled to these walls mdw.

From a physical perspective, the external applied field, Ha, can be viewed as the control
because it can change the magnetization within a ferromagnet. Rearranging (5.1) leads to

∂m

∂t
= m× (mxx + Hd)− νm× (m× (mxx + Hd)) + m×Ha − ν (m×Ha) .

The terms depending on Ha are the control terms, which are nonlinear with respect to Ha.
If these terms are linearized, then the control is linear. This is the approach we consider
and hence we include a control, u(t), as follows

∂m

∂t
= m×mxx − νm× (m×mxx) + bu(t).
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Let a, r ∈ E be stable equilibria of (4.3), (4.5) with r 6= a. The goal is to choose u(t) such
that the system moves from a to r. From a mathematical viewpoint, the control causes a
to no longer be an equilibrium and r to be an equilibrium that is asymptotically stable.
This indicates the system will reach the second equilibrium.

The controller design is a closed–loop with a proportional control (Figure 5.1). The
existence of a zero eigenvalue for the linear Landau–Lifshitz equation (see Section 4.3.2)
suggests that a proportional control is sufficient for the output, y, to track to r. We will
show this is in fact true. It follows that the controller design for the Landau–Lifshitz
equation is governed by

∂m

∂t
= m×mxx − νm× (m×mxx) + bu(t) (5.2a)

y = m (5.2b)

e = r−m (5.2c)

u(t) = kpe(t) (5.2d)

where kp and b are nonzero real constants. Therefore, the controlled Landau–Lifshitz
equation is

∂m

∂t
= m×mxx − νm× (m×mxx) + bkp (r−m) , m(x, 0) = m0(x) (5.3)

with Neumann boundary conditions mx(0, t) = mx(L, t) = 0.

-i- Kp
- Landau–Lifshitz Equation -

6-
r

e(t) u(t)
m(t)

Figure 5.1: Closed-loop system for the controlled Landau–Lifshitz equation. The dynamics
are described in equation (5.2).

In the following theorem, we establish that the controlled Landau–Lifshitz equation
described in (5.3) is well–posed; that is, (5.3) has a strong solution.
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Theorem 5.1. For m ∈ D = D(B + f), where D is defined in (4.12), let

f(m) = m×mxx − νm× (m×mxx) (5.4a)

Bm = bkp(r−m). (5.4b)

For bkp ≥ 0, the nonlinear operator B + f generates a nonlinear contraction semigroup.

Proof of Theorem 5.1: We show that B+ f is dissipative and the range of I−α(B+ f)
for all α > 0 is the entire space L3

2.

For any m,y ∈ D(f +B) = D(f),

〈f(m) +Bm− (f(y) +By),m− y〉L3
2

=〈f(m)− f(y) +Bm−By,m− y〉L3
2

=〈f(m)− f(y),m− y〉L3
2

+ 〈Bm−By,m− y〉L3
2
.

Since f generates a nonlinear contraction semigroup (see Theorem 4.7), it is dissipative
(Luo et al. [62, Proposition 2.98]) and hence

〈f(m)− f(y),m− y〉L3
2
≤ 0.

It follows that

〈f(m) +Bm− (f(y) +By),m− y〉L3
2
≤ 〈Bm−By,m− y〉L3

2

= 〈bkp(r−m)− bkp(r− y),m− y〉L3
2

= 〈−bkpm + bkpy,m− y〉L3
2

= −bkp〈m− y,m− y〉L3
2

= −bkp||m− y||L3
2

< 0

and hence f +B is dissipative.

To show the range of I − α(B + f) is the entire space L3
2, consider the following. Let

y1 ∈ L3
2 and define

y2 =
y1

1 + αbkp
+

αbkpr

1 + αbkp
∈ L3

2

for some α > 0. Since f generates a nonlinear contraction semigroup (see Theorem 4.7),
then it is m-dissipative and hence, ran(I − α̂f) = L3

2 for any α̂ > 0 (see Kato [49,
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Lemma 2.2]). This means there exists m ∈ D(f) such that m− α̂f(m) = y2. Let

α̂ =
α

1 + αbkp
.

It follows that

m− α

1 + αbkp
f(m) =

y1

1 + αbkp
+

αbkpr

1 + αbkp

and solving for y1 leads to

y1 = (1 + αbkp)m− αf(m)− αbkpr

and then rearranging, we have

y1 = m− α(bkp(r−m) + f(m))

This means for any y1 ∈ L3
2, there exists m ∈ D(f) such that y1 = (I− α(B + f))m and

hence ran (I− α(B + f)) = L3
2 for some α > 0. By Kato [49, Lemma 2.2], this is true for

all α > 0.

Since B+f is dissipative and ran(I−α(B+f)) = L3
2, then B+f generates a nonlinear

contraction semigroup (Luo et al. [62, Proposition 2.114]).

Substituting m = r into (5.3) gives ∂m/∂t = 0 and hence r is an equilibrium point of
(5.3). Moreover, it is clear that a is no longer an equilibrium of the controlled Landau–
Lifshitz equation. This is due to the addition of the control term. Lyapunov’s theorem is
used to establish asymptotic stability of r. Exponential stability is also shown in a similar
manner.

The main result is in Theorem 5.6, which shows that any initial magnetization can be
controlled to any arbitrary stable equilibrium point. The following lemmas are needed in
the proof of Theorem 5.6.

Lemma 5.2. For m ∈ L3
2, the derivative of g = m×mx is gx = m×mxx.

Proof of Lemma 5.2: Recall from (4.4) that

m×mx = (m2m
′
3 −m3m

′
2,−m1m

′
3 +m3m

′
1,m1m

′
2 −m2m

′
1) .
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Taking the derivative of each component yields

gx = (m′2m
′
3 +m2m

′′
3 −m′3m′2 −m3m

′′
2,

−m′1m′3 −m1m
′′
3 +m′3m

′
1 +m3m

′′
1,

m′1m
′
2 +m1m

′′
2 −m′2m′1 −m2m

′′
1 ) .

Simplifying leads to

gx = (m2m
′′
3 −m3m

′′
2,−m1m

′′
3 +m3m

′′
1,m1m

′′
2 −m2m

′′
1) = m×mxx.

Lemma 5.3. For m ∈ L3
2, the derivative of f = (m×mx)

T (m×mx) is

f ′ = 2 (m×mx)
T (m×mxx) .

Lemma 5.3 is a simple consequence of the product rule and Lemma 5.2.

Lemma 5.4. For m ∈ L3
2 satisfying mx(0) = mx(L) = 0, then∫ L

0

(m− r)T(m×mxx)dx = 0.

Proof of Lemma 5.4: From Lemma 5.2, applying integration by parts to the integral
yields ∫ L

0

(m− r)T(m×mxx)dx =
[
(m− r)T(m×mx)

]L
0
−
∫ L

0

mT
x (m×mx)dx.

Because of the boundary conditions, the first term is zero and hence∫ L

0

(m− r)T(m×mxx)dx = −
∫ L

0

mT
x (m×mx)dx.

From Table 4.1,
mT

x (m×mx) = mT(mx ×mx) = 0,

and hence the integral is zero.

Lemma 5.5. For m ∈ L3
2 satisfying mx(0) = mx(L) = 0, then

||m×mx||L3
2
≤ 4L2||m×mxx||L3

2
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Proof of Lemma 5.5: For m ∈ L3
2,

||m×mx||2L3
2

=

∫ L

0

(m×mx)
T (m×mx) dx,

then applying integration by parts and using Lemma 5.3 yields

||m×mx||2L3
2

=
[
(m×mx)

2 x
]L
0
−
∫ L

0

2 (m×mx)
T (m×mxx)xdx.

The first term is zero from the boundary conditions. It follows from Young’s inequality
that

||m×mx||2L3
2

= −
∫ L

0

2 (m×mx)
T (m×mxx)xdx

≤ 1

2

∫ L

0

(m×mx)
T (m×mx) dx+

∫ L

0

2 (m×mxx)
T (m×mxx)x

2dx

and since x ∈ [0, L], then

||m×mx||2L3
2
≤ 1

2
||m×mx||2L3

2
+

∫ L

0

2 (m×mxx)
T (m×mxx)L

2dx, (x ∈ [0, L])

=
1

2
||m×mx||2L3

2
+ 2L2||m×mxx||2L3

2
.

Rearranging gives the desired inequality.

Lemma 5.5 can be thought of as a Poincare’s inequality for cross products.

Theorem 5.6. Let r be any equilibrium point of (5.3). For any nonzero constants, b and
kp, such that kp ≥ 16νL4/b, r is globally asymptotically stable in the L3

2–norm.

Proof of Theorem 5.6: The Lyapunov candidate is

V (m) =
1

2
||m− r||2L3

2
+

1

2
||mx||2L3

2

which is clearly nonegative. Furthermore, since V = 0 if and only if m = r, then V is
positive for all D\{r}. Taking the derivative of V leads to

dV

dt
=

∫ L

0

(m− r)Tṁdx+

∫ L

0

mT
x ṁxdx.
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Applying integration by parts on the second integral we obtain

dV

dt
=

∫ L

0

(m− r)Tṁdx−
∫ L

0

mT
xxṁdx.

Substituting in (5.3) leads to

dV

dt
=

∫ L

0

(m− r)T (m×mxx) dx− ν
∫ L

0

(m− r)T (m× (m×mxx)) dx

+ bkp

∫ L

0

(m− r)T(r−m)dx−
∫ L

0

mT
xx (m×mxx) dx

+ ν

∫ L

0

mT
xx (m× (m×mxx)) dx− bkp

∫ L

0

mT
xx(r−m)dx.

From Lemma 5.4, we have that the first integral is zero. Furthermore, since

mT
xx (m×mxx) = mT (mxx ×mxx) = 0,

then ∫ L

0

mT
xx (m×mxx) dx = 0.

It follows that

dV

dt
=− ν

∫ L

0

(m− r)T (m× (m×mxx)) dx− bkp||m− r||2L3
2

− ν||m×mxx||2L3
2
− bkp

∫ L

0

mT
xx(r−m)dx.

Applying integration by parts to the last integral leads to

dV

dt
= −ν

∫ L

0

(m− r)T (m× (m×mxx)) dx− bkp||m− r||2L3
2
− ν||m×mxx||2L3

2
− bkp||mx||2L3

2

= −ν
∫ L

0

((m− r)×m)T (m×mxx) dx− bkp||m− r||2L3
2
− ν||m×mxx||2L3

2
− bkp||mx||2L3

2

= ν

∫ L

0

(r×m)T (m×mxx) dx− bkp||m− r||2L3
2
− ν||m×mxx||2L3

2
− bkp||mx||2L3

2
.

(5.5)
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Applying integration by parts with Lemma 5.2 to the integral implies∫ L

0

(r×m)T (m×mxx) dx =
[
(r×m)T (m×mx)

]L
0
−
∫ L

0

(r×mx)
T (m×mx) dx

and substituting in the boundary conditions leads to∫ L

0

(r×m)T (m×mxx) dx = −〈r×mx,m×mx〉L3
2
.

Then from Cauchy-Schwarz and Lemma 5.5 we have∫ L

0

(r×m)T (m×mxx) dx ≤ ||r×mx||L3
2
||m×mx||L3

2

≤ 4L2||r×mx||L3
2
||m×mxx||L3

2
.

It follows from Young’s Inequality that∫ L

0

(r×m)T (m×mxx) dx ≤ 8L4||r×mx||2L3
2

+
1

2
||m×mxx||2L3

2

and from Lemma 4.15 we obtain∫ L

0

(r×m)T (m×mxx) dx ≤ 16L4||mx||2L3
2

+
1

2
||m×mxx||2L3

2

Substituting this result into (5.5) leads to

dV

dt
≤ −

(
bkp − 16νL4

)
||mx||2L3

2
− ν

2
||m×mxx||2L3

2
− bkp||m− r||2L3

2
. (5.6)

The derivative is nonpositive since bkp ≥ 16νL4. It follows that

dV

dt
≤ −bkp||m− r||2L3

2
.

It is clear that
dV

dt
= 0 if and only if m = r.

Therefore, dV/dt < 0 for all m 6= r and from Theorem 2.27, r is an asymptotically stable
equilibrium of (5.3). Since V (m) ≥ 1

2
||m−r||2L3

2
, then V →∞ as ||m−r|| → ∞ and hence

89



global stability is obtained.

Numerical simulations for (5.3) are considered. The numerical code (see Appendix B)
for the uncontrolled Landau–Lifshitz equation is used; some small adjustments to the code
are required. The initial condition is chosen to be m(0) = (sin(2πx), cos(2πx), 0) for
x ∈ [0, L] and ν = 0.02, L = 1, which is the same as the uncontrolled case and recall
that the uncontrolled Landau–Lifshitz equation naturally settles to the stable equilibrium,
(0,−0.6, 0). We choose r to be (1, 0, 0); that is, the control forces the magnetization from
the stable equilibrium (0,−0.6, 0) to another stable equilibrium, (1, 0, 0). These control
dynamics are illustrated in Figures 5.2 to 5.5. The control parameters, b and kp, are
chosen to be 1 and 0.5, respectively, which satisfies the constraint kp ≥ 16νL4/b.

Figures 5.2 to 5.5 illustrate how the control can force the magnetization from one
stable equilibrium to another. However, since the result in Theorem 5.6 does not depend
on a specific initial condition, the control can actually force any initial magnetization
to an arbitrary stable equilibrium point. We illustrate this in Figures 5.6 to 5.9 with
m(0) = (sin(2πx), cos(2πx), 0) for x ∈ [0, L], ν = 0.02, L = 1 and r = (− 1√

2
, 0, 1√

2
). The

control parameters are again chosen to be b = 1 and kp = 0.5.

We now show that r is exponentially stable for the H1–norm. Recall the H1–norm is
||m||2H1

= ||m||2L3
2

+ ||mx||2L3
2
.

Theorem 5.7. Let r be an equilibrium point of (5.3). For any nonzero constants, b and
kp, such that kp ≥ 16νL4/b, r is globally exponentially stable in the H1–norm.

Proof of Theorem 5.7: In the proof of Theorem 5.6, we have from (5.6) that the deriva-
tive of V satisfies

dV

dt
≤ −

(
bkp − 16νL4

)
||mx||2L3

2
− ν

2
||m×mxx||2L3

2
− bkp||m− r||2L3

2

and hence

dV

dt
≤ −

(
bkp − 16νL4

)
||mx||2L3

2
− bkp||m− r||2L3

2

≤ −
(
bkp − 16νL4

) (
||mx||2L3

2
+ ||m− r||2L3

2

)
= −2

(
bkp − 16νL4

)
V.

Integrating with respect to time

||mx||2L3
2

+ ||m− r||2L3
2
≤ e−2(bkp−16νL4)t

(
||mx(0, t)||2L3

2
+ ||m(0, t)− r||2L3

2

)
.
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Figure 5.2: Dynamics of (5.3) for m1(x, t) where b = 1, kp = 0.5, ν = 0.02 and L = 1
with m(0) = (sin(2πx), cos(2πx), 0) and r = (1, 0, 0). On the horizontal axis is the spatial
variable, x ∈ [0, 1], and on the vertical axis is the magnetization. The magnetization evolves
from (a) to (f). Initially the magnetization begins at m1(x, 0) = sin(2πx) as shown in (a),
which naturally settles to 0 (d). The control forces m1 from 0 to 1 (f). A three–dimensional
depiction of these dynamics is illustrated in Figure 5.5a.
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Figure 5.3: Dynamics of (5.3) for m2(x, t) where b = 1, kp = 0.5, ν = 0.02 and L = 1 with
initial condition m(0) = (sin(2πx), cos(2πx), 0) and r = (1, 0, 0). On the horizontal axis is
the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetization. The magneti-
zation evolves from (a) to (f). The system begins at m2(x, 0) = cos(2πx) as depicted in (a)
and eventually settles back to −0.6 (d). The control forces the magnetization from −0.6
to 0 (f). A three–dimensional depiction of these dynamics is illustrated in Figure 5.5b.
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Figure 5.4: Dynamics of (5.3) for m3(x, t) where b = 1, kp = 0.5, ν = 0.02 and L = 1
with initial condition m(0) = (sin(2πx), cos 2(πx), 0) and r = (1, 0, 0). On the horizontal
axis is the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetization. The
magnetization evolves from (a) to (f). The system begins at m3(x, 0) = 0 as shown in (a),
which naturally settles to 0 (d). The control forces the magnetization from 0 to 0 (f) and
hence the control is not needed in this case. A three–dimensional depiction is illustrated
in Figure 5.5c.
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Figure 5.5: The magnetization dynamics of the controlled Landau–Lifshitz equation as x,
t varies. The initial condition is m0(x) = (sin(2πx), cos(2πx), 0) with ν = 0.02 and L = 1.
The magnetization is allowed to naturally settle to (0,−0.6, 0) (see Figure 4.6), after which
the control forces the magnetization to settle to r = (1, 0, 0).
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Figure 5.6: Dynamics of (5.3) for m1(x, t) where b = 1, kp = 0.5, ν = 0.02 and L = 1 with
initial condition m(0) = (sin(2πx), cos 2(πx), 0) and r = (− 1√

2
, 0, 1√

2
). On the horizontal

axis is the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetization. The
magnetization evolves from (a) to (f). Initially the magnetization begins at m1(x, 0) =
sin(2πx) and then the control forces the magnetization to − 1√

2
. Without the control, the

magnetization naturally settles to 0 (see Figure 4.3 or 4.6a). A three–dimensional depiction
is illustrated in Figure 5.9a.
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Figure 5.7: Dynamics of (5.3) for m2(x, t) where b = 1, kp = 0.5, ν = 0.02 and L = 1 with
initial condition m(0) = (sin(2πx), cos 2(πx), 0) and r = (− 1√

2
, 0, 1√

2
). On the horizontal

axis is the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetization. The
magnetization evolves from (a) to (f). Initially the magnetization begins at m2(x, 0) =
cos(2πx) and then the control forces the magnetization to 0. Without the control, the
magnetization naturally settles to −0.6 (see Figure 4.4 or 4.6b). A three–dimensional
depiction is illustrated in Figure 5.9b.
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Figure 5.8: Dynamics of (5.3) for m3(x, t) where b = 1, kp = 0.5, ν = 0.02 and L = 1 with
initial condition m(0) = (sin(2πx), cos 2(πx), 0) and r = (− 1√

2
, 0, 1√

2
). On the horizontal

axis is the spatial variable, x ∈ [0, 1], and on the vertical axis is the magnetization. The
magnetization evolves from (a) to (f). Initially the magnetization begins at m3(x, 0) = 0
and then the control forces the magnetization to 1√

2
. Without the control, the magne-

tization naturally settles to 0 (see Figure 4.5 or 4.6c). A three–dimensional depiction is
illustrated in Figure 5.9c.
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Figure 5.9: Magnetization dynamics of the controlled Landau–Lifshitz equation as x, t
varies. The initial condition is m0(x) = (sin(2πx), cos(2πx), 0) with ν = 0.02 and L = 1.
The control forces the magnetization to settle to r = (− 1√

2
, 0, 1√

2
). Without the control,

the magnetization naturally settles to (0,−0.6, 0) (see Figure 4.6).
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Since r does not depend on x,

|| (m− r)x ||
2
L3

2
+ ||m− r||2L3

2
≤ e−2(bkp−16νL4)t

(
|| (m(0, t)− r)x ||

2
L3

2
+ ||m(0, t)− r||2L3

2

)
.

Therefore,

||m− r||2H1
≤ e−2(bkp−16νL4)t||m(0, t)− r||2H1

and hence by Definition 2.12, since bkp−16νL4 > 0, r is an exponentially stable equilibrium
point of (5.3). This is true for any initial condition and hence global stability is obtained.

Recall the linear Landau–Lifshitz equation in (4.23). We show that r is an exponen-
tially stable equilibrium of the controlled linear Landau–Lifshitz equation using the same
controller design as for the nonlinear case; that is,

∂z

∂t
= νzxx + a× zxx + bu(t)

y = z

e = r− y

u(t) = kpe

It follows that the controlled linear Landau–Lifshitz equation is

∂z

∂t
= νzxx + a× zxx + bkp (r− z) , z(0) = z0 (5.7)

with Neumann boundary conditions zx(0) = zx(L) = 0. Since the uncontrolled linear
Landau–Lifshitz equation generates a linear semigroup (see Theorems 4.14 and 4.16) and
bkp (r− z) is a bounded linear (affine) operator, then the operator in (5.7) generates a
semigroup (Curtain and Zwart [31, Theorem 3.2.1]). Substituting z = r into (5.7) leads to
∂z/∂t = 0 and hence r is an equilibrium point of (5.7).

Theorem 5.8. Let r be an equilibrium point of (5.7). For any nonzero constants b and
kp such that bkp > 0, r is globally exponentially stable in the L3

2–norm.

Proof of Theorem 5.8 For z ∈ D(A), where D(A) is defined in (4.25), consider the
Lyapunov candidate

V (z) =
1

2
||z− r||2L3

2
.

It is clear that V ≥ 0 for all z ∈ D(A) and furthermore, V (z) = 0 only when z = r.
Therefore, V (z) > 0 for all z ∈ D(A)\{r}.
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Taking the derivative of V (z) implies

dV

dt
=

∫ L

0

(z− r)Tżdx.

Substituting in (5.7) yields

dV

dt
= ν

∫ L

0

(z− r)Tzxxdx+

∫ L

0

(r− z)T (a× zxx) dx+ bkp

∫ L

0

(z− r)T(r− z)dx.

By Lemma 5.4, the middle term is zero and applying integration by parts the first term
becomes

−ν
∫ L

0

zT
x zxdx.

It follow that

dV

dt
= −ν||zx||2L3

2
− bkp||z− r||2L3

2

and since ν ≥ 0,

dV

dt
≤ −bkp||z− r||2L3

2
= −2bkpV.

Solving yields
||z− r||2L3

2
≤ e−2bkpt||z0 − r||2L3

2
.

By Definition 2.12, if bkp > 0 then r is a locally exponentially stable equilibrium point of
(5.7). This is true for any initial condition and hence global stability is obtained.

Theorem 5.8 suggests that the equilibrium point in Theorem 5.6 for the controlled
nonlinear Landau–Lifshitz equation (5.3) is exponentially stable in the L3

2–norm.

We now consider the input–output dynamics for the controlled Landau–Lifshitz equa-
tion in (5.3). Figure 5.10 illustrates the input–output dynamics for m1(x, t) with x fixed,
L = 1 and ν = 0.02. The input is u(t) = (0.001 cos(ωt), 0, 0) and the initial condition is
m0(x) = (1, 0, 0). The control parameters are chosen to be b = 1, kp = 0.5 and r = (1, 0, 0).
It is clear from Figure 5.10 that persistent looping behaviour does not occur. Similar be-
haviour is observed for m2(x, t) and m3(x, t) (see Figures 5.11 and 5.12, respectively). This
suggests from Defintion 3.2 that the control term in (5.3) removes the presence of hystere-
sis in the Landau–Lifshitz equation. Furthermore, the result in Theorem 5.6 shows that r
is globally stable, which means r is the only equilibrium point of the controlled Landau–
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Lifshitz equation (5.3). It follows from Definition 3.1 that the dynamics described by the
controlled Landau–Lifshitz equation does not exhibit hysteresis. The lack of hysteresis
implies controlling the magnetization from a to r is the same dynamics as controlling from
r to a but in reverse.
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Figure 5.10: Input–output dynamics for m1(x, t) of the controlled Landau–Lifshitz equa-
tion in (5.3) with x fixed and ν = 0.02, L = 1. The input is u(t) = (0.001 cos(ωt), 0, 0) and
the initial condition is m0(x) = (1, 0, 0). The control parameters are chosen to be b = 1,
kp = 0.5, r = (1, 0, 0). It is clear loops do not persist as ω approaches 0, which suggests
the controlled Landau–Lifshitz equation does not exhibit hysteresis.
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Figure 5.11: Input–output dynamics for m2(x, t) of the controlled Landau–Lifshitz equa-
tion described in (5.3) with x fixed and ν = 0.02, L = 1. The input is u(t) =
(0, 0.001 cos(ωt), 0). The initial condition is m0(x) = (0, 1, 0) and the control parame-
ters are b = 1, kp = 0.5, r = (0, 1, 0). It is clear loops do not persist as ω approaches 0,
which suggests the control in (5.3) removes hysteresis in the Landau–Lifshitz equation.
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Figure 5.12: Input–output dynamics for m3(x, t) of the controlled Landau–Lifshitz equa-
tion described in (5.3) with x fixed and ν = 0.02, L = 1. The input is u(t) =
(0, 0, 0.001 cos(ωt)). The initial condition is m0(x) = (0, 0, 1) and the control parame-
ters are b = 1, kp = 0.5, r = (0, 0, 1). It is clear loops do not persist as ω approaches 0,
which suggests the controlled Landau–Lifshitz equation does not exhibit hysteresis.
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Chapter 6

Conclusion and Future Research

The research in this thesis was initially motivated by the notion of controlling hysteresis
arising in nonlinear PDEs. This is of interest because of the presence of hysteresis in many
natural processes and the lack of research regarding hysteresis in PDEs and its control.
Eventually this led to exploring methods for determining the stability of equilibrium sets
and points in PDEs, and the implementation of a controller design to force systems to move
from one stable equilibrium to another. The Landau–Lifshitz equation is of interest because
it is a nonlinear PDE for which few control results are known. It models magnetization
in nanostructures which is of continued interest in technological sectors. A discussion of
the Landau–Lifshitz equation was presented with an emphasis on its stability, control of
its equilibrium points and the presence of hysteresis.

The Landau–Lifshitz equation has an asymptotically stable equilibrium set (Theo-
rem 4.11). An open question is whether global stability holds for this equilibrium set
and also if the equilibrium set is exponentially stable. Furthermore, investigating the sta-
bility of nonlinear PDEs raises the question: for a given nonlinear infinite–dimensional
system, can the stability of the linearized system be applied to the original nonlinear sys-
tem? The answer is only partially known and so far all the results require the linear
system to exhibit exponential stability. Furthermore, based on example 2.25, it appears
exponential stability is a necessary requirement. Therefore, an open question remains: is
the exponential stability of a linearized infinite–dimensional system a necessary condition
to imply the same stability of the original nonlinear system? Moreover, what conditions,
in addition to exponential stability, are needed?

The limitations of linearization means that another stability technique is needed. This
led to Lyapunov theory, which was relied on significantly to provide analytical control
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and stability results to the Landau–Lifshitz equation. We also emphasized that Lyapunov
Theory can be applied to invariant sets, which is not very common but virtually identical
to the well–known version for equilibrium points.

We discussed hysteresis from a more fundamental and precise approach and demon-
strated that the existence of multiple equilibria; and not nonlinearity, is crucial for systems
to exhibit hysteresis. Based on this, both the linear and original (nonlinear) Landau–
Lifshitz equations exhibit hysteretic behaviour. Determining a rigorous definition of hys-
teresis is an issue because of the complex nature of hysteresis. There is also virtually
no literature for defining hysteretic systems that have arbitrarily close equilibrium points,
which is the case for the Landau–Lifshitz equation.

Our main result is the control from one stable equilibrium to another in the Landau–
Lifshitz equation. A feedback controller design with a proportional control was shown to
successfully achieve this. The control causes the initial equilibrium to no longer be an
equilibrium of the controlled system, and ensures the second equilibrium is an asymptoti-
cally stable equilibrium point of the controlled system (Theorem 5.6). It is still unknown
whether the second equilibrium is exponentially stable, but analysis of the corresponding
linear Landau–Lifshitz equation, which shows the second equilibrium is exponentially sta-
ble (Theorem 5.8), suggests this may be true for the original nonlinear Landau–Lifshitz
equation. Moreover, we showed the linear Landau–Lifshitz equation has an analytic semi-
group (Theorem 4.16) and hence satisfies the spectrum determined growth assumption.

Our control can also force any magnetization to any arbitrary stable equilibrium, r.
This is because the stability of r in Theorem 5.6 is a global result and the proof of the
theorem does not rely on a specific initial magnetization. For the damping constant ν
and length L, the control parameters, b and kp, in Theorem 5.6 must be chosen such that
bkp ≥ 16νL4; however, numerical simulations suggest that bkp > 0 is a sufficient condition.
It follows that future research could explore weakening the requirement that bkp ≥ 16νL4.

Currently, the control result in Theorem 5.6 applies to any equilibrium magnetization
only, and not an arbitrary magnetization. Controlling to any point would require significant
modification of the work presented in Chapter 5, as the results rely on the equilibria being
constant. Other future work on the control includes reducing the necessity of full state
feedback and implementing our control and stability framework to related Landau–Lifshitz
equations.
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Appendix A

Matlab Code for Equation (3.1)

Equation (3.1) is solved in Matlab using the following function file:

function [t,x,input]=Dynamics(tspan,x0,w)

%tspan is the interval of time

%x0 is the initial condition

%w is the frequency of the input

c=15; k=1;

[t,x]=ode45(@linearequations,tspan,x0);

input=u(t);

function dx=linearequations(t,x)

dx1=x(2);

dx2=-c*x(2)-k*x(1)+u(t);

%dx2=-c*x(2)-k*x(1)+k*x(1)^3+u(t); %Nonlinear Equation

dx=[dx1;dx2];

end;

function f=u(t)

f=sin(w*t);

end;

end
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Appendix B

Numerical Approximations for the
Landau–Lifshitz Equation

Two common numerical approaches for the Landau–Lifshitz equation are a finite–difference
computation (Fuwa et al. [36], Serpico et al. [77] and Wiele et al. [88]) or a finite–element
method (Bottauscio et al. [18], and Wiele et al. [88]). We apply a Galerkin finite–element
scheme with linear spline elements to approximate the weak form of the Landau–Lifshitz
equation. Galerkin approximations are demonstrated to be successful for the controlled
heat equation where approximations are shown to converge asymptotically (Morris [66,
example 4.12]); that is,

lim
N→∞

||wN − w||H = 0

where wN and w is the approximate and exact solution to the heat equation, respectively.

To begin, recall the semilinear form of the Landau–Lifshitz equation from (4.20):

∂m

∂t
= νmxx + m×mxx + ν ||mx||22 m. (B.1)

This form of the Landau–Lifshitz equation allows for a weak formulation that consists of
only first order derivatives.

The magnetization, m(x, t), is approximated as

M(x, t) =
N∑
i=0

ci(t)φi(x) (B.2)
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x0 x1 x2 xj−2 xj−1 xj xj+1 xj+2 xN−2 xN−1 xN

φ0 φ1 φj−1 φj φj+1 φN−1 φN

Figure B.1: Linear spline functions.

where ci(t) = (c1i (t), c
2
i (t), c

3
i (t)); that is,

M(x, t) =

(
N∑
i=0

c1i (t)φi(x),
N∑
i=0

c2i (t)φi(x),
N∑
i=0

c3i (t)φi(x)

)
.

The approximation in (B.2) is the same one chosen by Yang and Fredkin [99]. The func-
tions, φi(x), are chosen to be simple linear spline functions (Figure B.1),

φ0(x) =


1

h
(x1 − x), x0 ≤ x ≤ x1

0, otherwise,

φi(x) =



1

h
(x− xi−1), xi−1 ≤ x ≤ xi

1

h
(xi+1 − x), xi ≤ x ≤ xi+1

0, otherwise,

for i = 1, 2, . . . , N − 2, N − 1

φN(x) =

{ 1

h
(x− xN−1), xN−1 ≤ x ≤ xN

0, otherwise

where h = L/(N + 1). The one–dimensional spatial domain is uniformly discretized with
xi = ih.

Taking the scalar product of (B.1) with a test function, v = (v1, v2, v3), then applying
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integration by parts and Lemma 5.2, we obtain the weak form of the Landau–Lifshitz
equation,∫ L

0

∂m

∂t

T

vdx = −ν
∫ L

0

mT
xvxdx−

∫ L

0

(m×mx)
T vxdx+ ν

∫ L

0

||mx||22 mTvdx.

The components of the test function are made to be equivalent; that is, v1 = v2 = v3.
As well, the test function is chosen to be the same as φi, which is a standard approach.
Therefore, substituting in (B.2) into the weak form of the Landau–Lifshitz equation leads
to

N∑
i=0

Kliċi = −ν
N∑
i=0

Plici −
N∑
i=0

N∑
j=0

Qlij (ci × cj) + ν
N∑
i=0

N∑
j=0

N∑
n=0

Slijnc
T
i cjcn (B.3)

for l = 0, 1, . . . , N , where

Kli =

∫ L

0

φlφidx

Pli =

∫ L

0

φ′lφ
′
idx

Qlij =

∫ L

0

φ′lφiφ
′
jdx

Slijn =

∫ L

0

φlφ
′
iφ
′
jφndx.

Notice from the choice of φi that many of the integrals are zero. Equation (B.3) is a system
of 3(N + 1) coupled nonlinear ODEs with unknowns

c = {c0, c1, · · · , cN−1, cN}
= {c10, c20, c30, c11, c21, c31, · · · , c1N−1, c

2
N−1, c

3
N−1, c

1
N , c

2
N , c

3
N}.

These ODEs are solved using an explicit fourth and fifth order Runge–Kutta method
(Kharab and Guenther [51, Chapter 12.4]). The corresponding MATLAB solver is ODE45.

The numerical approximations described in (B.3) is coded in Matlab using the following
function files. The main function file is FEMLL and it calls the functions LoadVectorE-
quation and MassMatrix, which create the system of ODEs in (B.3).
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function [t,m,N,L]=FEMLL

clc

N=10; %number of elements

L=1; %length of interval

v=0.02; %damping parameter

h=L/N;

endtime=20;%end time for ODE solver

%initial condition: m0=(sin(pi*x),cos(pi*x),0)

m0=zeros(3*(N+1),1);

%for m1 component

for i=1:(N+1)

x=(i-1)*h;

y(i)=sin(pi*x);

end

j=1;

for i=1:(N+1)

m0(j)=y(i);

j=j+3;

end

%for m2 component

for i=1:(N+1)

x=(i-1)*h;

y(i)=cos(pi*x);

end

j=2;

for i=1:(N+1)

m0(j)=y(i);

j=j+3;

end

%solve ODE using built in Matlab ODE solver

%solves ODE of the form m=K\dg

%where K is the mass matrix and dg is the load vector

options = odeset(’Mass’,@mass);

[t,m]=ode45(@equationsMassForm,[0:0.1:endtime],m0,options);
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%Calling Load vector function

function dg=equationsMassForm(t,m)

dg=LoadVectorEquation(N,h,v,m);

end

%Calling Mass matrix function

function K = mass(t,m)

K=MassMatrix(N,h,v);

end

end

%Load vector function

function dg=LoadVectorEquation(N,h,v,m)

%N is the number of elements

%L is the length of space interval

%h=L/N

%v is the damping parameter

%m is the solution vector

%at the x=0 boundary

dg(1)=-v*(m(1)-m(4))+(m(2)*m(6)-m(3)*m(5))+v*((m(1)^2+m(2)^2+m(3)^2)*(1/3*m(1)...

+1/6*m(4))-(m(1)*m(4)+m(2)*m(5)+m(3)*m(6))*(2/3*m(1)+1/3*m(4))...

+(m(4)^2+m(5)^2+m(6)^2)*(1/3*m(1)+1/6*m(4)));

dg(2)=-v*(m(2)-m(5))+(-m(1)*m(6)+m(3)*m(4))+v*((m(1)^2+m(2)^2+m(3)^2)*(1/3*m(2)...

+1/6*m(5))-(m(1)*m(4)+m(2)*m(5)+m(3)*m(6))*(2/3*m(2)+1/3*m(5))...

+(m(4)^2+m(5)^2+m(6)^2)*(1/3*m(2)+1/6*m(5)));

dg(3)=-v*(m(3)-m(6))+(m(1)*m(5)-m(2)*m(4))+v*((m(1)^2+m(2)^2+m(3)^2)*(1/3*m(3)...

+1/6*m(6))-(m(1)*m(4)+m(2)*m(5)+m(3)*m(6))*(2/3*m(3)+1/3*m(6))...

+(m(4)^2+m(5)^2+m(6)^2)*(1/3*m(3)+1/6*m(6)));

%dg(4),dg(5),dg(6),...,dg(3*(N+1)-4),dg(3*(N+1)-3)

j=4;

for i=1:(N-1)
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dg(j)=-v*(-m(j-3)+2*m(j)-m(j+3))-(m(j-2)*m(j+2)-m(j-1)*m(j+1))+(m(j+1)*m(j+5)...

-m(j+2)*m(j+4))+v*((m(j-3)^2+m(j-2)^2+m(j-1)^2)*(1/6*m(j-3)+1/3*m(j))...

-(m(j-3)*m(j)+m(j-2)*m(j+1)+m(j-1)*m(j+2))*(1/3*m(j-3)+2/3*m(j))...

+(m(j)^2+m(j+1)^2+m(j+2)^2)*(1/6*m(j-3)+2/3*m(j)+1/6*m(j+3))...

-(m(j)*m(j+3)+m(j+1)*m(j+4)+m(j+2)*m(j+5))*(2/3*m(j)+1/3*m(j+3)) ...

+(m(j+3)^2+m(j+4)^2+m(j+5)^2)*(1/3*m(j)+1/6*m(j+3)));

dg(j+1)=-v*(-m(j-2)+2*m(j+1)-m(j+4))-(-m(j-3)*m(j+2)+m(j-1)*m(j))+(-m(j)*m(j+5)...

+m(j+2)*m(j+3))+v*((m(j-3)^2+m(j-2)^2+m(j-1)^2)*(1/6*m(j-2)+1/3*m(j+1))...

-(m(j-3)*m(j)+m(j-2)*m(j+1)+m(j-1)*m(j+2))*(1/3*m(j-2)+2/3*m(j+1))...

+(m(j)^2+m(j+1)^2+m(j+2)^2)*(1/6*m(j-2)+2/3*m(j+1)+1/6*m(j+4))...

-(m(j)*m(j+3)+m(j+1)*m(j+4)+m(j+2)*m(j+5))*(2/3*m(j+1)+1/3*m(j+4)) ...

+(m(j+3)^2+m(j+4)^2+m(j+5)^2)*(1/3*m(j+1)+1/6*m(j+4)));

dg(j+2)=-v*(-m(j-1)+2*m(j+2)-m(j+5))-(m(j-3)*m(j+1)-m(j-2)*m(j))+(m(j)*m(j+4)...

-m(j+1)*m(j+3))+v*((m(j-3)^2+m(j-2)^2+m(j-1)^2)*(1/6*m(j-1)+1/3*m(j+2))...

-(m(j-3)*m(j)+m(j-2)*m(j+1)+m(j-1)*m(j+2))*(1/3*m(j-1)+2/3*m(j+2))...

+(m(j)^2+m(j+1)^2+m(j+2)^2)*(1/6*m(j-1)+2/3*m(j+2)+1/6*m(j+5))...

-(m(j)*m(j+3)+m(j+1)*m(j+4)+m(j+2)*m(j+5))*(2/3*m(j+2)+1/3*m(j+5)) ...

+(m(j+3)^2+m(j+4)^2+m(j+5)^2)*(1/3*m(j+2)+1/6*m(j+5)));

j=j+3;

end

%at the x=L boundary

dg(3*(N+1)-2)=-v*(-m(3*(N+1)-5)+m(3*(N+1)-2))-(m(3*(N+1)-4)*m(3*(N+1))...

-m(3*(N+1)-3)*m(3*(N+1)-1))+v*((m(3*(N+1)-5)^2+m(3*(N+1)-4)^2...

+m(3*(N+1)-3)^2)*(1/6*m(3*(N+1)-5)+1/3*m(3*(N+1)-2))...

-(m(3*(N+1)-5)*m(3*(N+1)-2)+m(3*(N+1)-4)*m(3*(N+1)-1)....

+m(3*(N+1)-3)*m(3*(N+1)))*(1/3*m(3*(N+1)-5)+2/3*m(3*(N+1)-2))...

+(m(3*(N+1)-2)^2+m(3*(N+1)-1)^2+m(3*(N+1))^2)*(1/6*m(3*(N+1)-5)...

+1/3*m(3*(N+1)-2)));

dg(3*(N+1)-1)=-v*(-m(3*(N+1)-4)+m(3*(N+1)-1))-(-m(3*(N+1)-5)*m(3*(N+1))...

+m(3*(N+1)-3)*m(3*(N+1)-2))+v*((m(3*(N+1)-5)^2+m(3*(N+1)-4)^2...

+m(3*(N+1)-3)^2)*(1/6*m(3*(N+1)-4)+1/3*m(3*(N+1)-1))...

-(m(3*(N+1)-5)*m(3*(N+1)-2)+m(3*(N+1)-4)*m(3*(N+1)-1)...

+m(3*(N+1)-3)*m(3*(N+1)))*(1/3*m(3*(N+1)-4)+2/3*m(3*(N+1)-1))...
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+(m(3*(N+1)-2)^2+m(3*(N+1)-1)^2+m(3*(N+1))^2)*(1/6*m(3*(N+1)-4)...

+1/3*m(3*(N+1)-1)));

dg(3*(N+1))=-v*(-m(3*(N+1)-3)+m(3*(N+1)))-(m(3*(N+1)-5)*m(3*(N+1)-1)...

-m(3*(N+1)-4)*m(3*(N+1)-2))+v*((m(3*(N+1)-5)^2+m(3*(N+1)-4)^2...

+m(3*(N+1)-3)^2)*(1/6*m(3*(N+1)-3)+1/3*m(3*(N+1)))...

-(m(3*(N+1)-5)*m(3*(N+1)-2)+m(3*(N+1)-4)*m(3*(N+1)-1)...

+m(3*(N+1)-3)*m(3*(N+1)))*(1/3*m(3*(N+1)-3)+2/3*m(3*(N+1)))...

+(m(3*(N+1)-2)^2+m(3*(N+1)-1)^2+m(3*(N+1))^2)*(1/6*m(3*(N+1)-3)...

+1/3*m(3*(N+1))));

dg=1/h*dg’;

end

%Mass Matrix function

function K=MassMatrix(N,h,v)

%N is the number of elements

%L is the length of space interval

%h=L/N

%v is the damping parameter

%m is the solution vector

%K at the x=0 boundary

%1st row

K(1,1)=1/3;

K(1,4)=1/6;

%2nd row

K(2,2)=1/3;

K(2,5)=1/6;

%3rd row

K(3,3)=1/3;

K(3,6)=1/6;

j=4;

for i=1:N-1

%jth row

K(j,j-3)=1/6;
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K(j,j)=2/3;

K(j,j+3)=1/6;

%j+1th row

K(j+1,j-2)=1/6;

K(j+1,j+1)=2/3;

K(j+1,j+4)=1/6;

%j+2th row

K(j+2,j-1)=1/6;

K(j+2,j+2)=2/3;

K(j+2,j+5)=1/6;

j=j+3;

end

%K at the x=L boundary

%3rd last row

K(3*(N+1)-2,3*(N+1)-5)=1/6;

K(3*(N+1)-2,3*(N+1)-2)=1/3;

%2nd last row

K(3*(N+1)-1,3*(N+1)-4)=1/6;

K(3*(N+1)-1,3*(N+1)-1)=1/3;

%3rd last row

K(3*(N+1),3*(N+1)-3)=1/6;

K(3*(N+1),3*(N+1))=1/3;

K=h*K;

end
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Appendix C

Maple Code to Solve the Eigenvalue
Problem of the Linear
Landau–Lifshitz equation

The eigenvalue problem for the linear Landau–Lifshitz equation described in (4.27) is solved
in Maple. To make the computations a little easier, we rescale the problem with y = x/L.
Then (4.27) becomes

λv1 = ρv′′1 − b3v′′2 + b2v
′′
3 (C.1a)

λv2 = b3v
′′
1 + ρv′′2 − b2v′′3 (C.1b)

λv3 = −b2v′′1 + b1v
′′
2 + ρv′′3 (C.1c)

with boundary conditions

v′1(0) = v′1(1) = 0 (C.1d)

v′2(0) = v′2(1) = 0 (C.1e)

v′3(0) = v′3(1) = 0 (C.1f)

where the prime notation is with respect to y and

ρ =
µ

L2
, b1 =

a1

L2
, b2 =

a2

L2
, b3 =

a3

L2
.

The following commands in Maple are used:
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> #eigenvalue problem

> eq1:= lambda*v1(x)=rho*diff(v1(x),x,x)-b3*diff(v2(x),x,x)+b2*diff(v3(x),x,x):

> eq2:= lambda*v2(x)=b3*diff(v1(x),x,x)+rho*diff(v2(x),x,x)-a1*diff(v3(x),x,x):

> eq3:= lambda*v3(x)=-b2*diff(v1(x),x,x)+b1*diff(v2(x),x,x)+rho*diff(v3(x),x,x):

>

> #boundary conditions

> ics1 := D(v1)(0)=0, D(v1)(1)=0:

> ics2 := D(v2)(0)=0, D(v2)(1)=0:

> ics3 := D(v3)(0)=0, D(v3)(1)=0:

>

> #solving in terms of eigenvectors and eigenvalues

> dsolve([eq1,eq2,eq3, ics1,ics2,ics3], [v1(x),v2(x),v3(x), lambda]);
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