
Circuit Model Parameter Extraction and
Optimization for Microwave Filters

by

Dan Busuioc

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada 2002

c©Dan Busuioc 2002

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

Dan Busuioc

ii

Abstract

This thesis presents a method for parameter extraction of circuit elements

from microwave filters. This diagnosis method can be applied to a suffi-

ciently large number of filters and it can also be used in conjunction with a

neural network model for filter design, greatly reducing development time.

This thesis is an introduction of parameter extraction and circuit modelling

through use of neural networks. It also presents an implementation of the

proposed method as well as numerical results and validation data. Detailed

implementation code is presented in the appendix.

iii

Acknowledgments

I would like to thank my supervisor Professor Safavi-Naeini for his guidance,

kindness and support. Many thanks to Mr. Amir Borji, without whom very

little of this work would have been possible.

Finally I would like to extend my thanks to Professor Rafaat Mansour and

Professor Anthony Vannelli for reading this thesis and providing me with

valuable insight.

iv

Dedication

To my father, Constantin, for your guidance, support, and love. Thank you

for all the help you provided me with throughout my life.

v

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Our proposal . 2

1.3 Outline . 4

2 Background 5

2.1 Introduction . 5

2.2 History . 5

2.3 Current approach . 7

3 Proposed Implementation 9

3.1 Introduction . 9

3.2 Proposed subcomponents . 9

3.3 Circuit function . 10

vi

3.4 File Parser . 17

3.5 User Data File Parser . 17

3.6 Measurement File Parser . 19

3.7 Objective Function . 19

3.8 Optimization Routine . 21

3.9 Software Engineering Considerations 21

4 Numerical Results and Validation 23

4.1 Introduction . 23

4.2 Circuit-designed 3-pole filter 24

4.3 EM Simulated 3-pole Filter 29

4.4 Industry Standard 6-pole filter 32

5 Neural Network Parameter Estimation 36

5.1 Introduction . 36

5.2 Neural Networks . 37

5.3 Model discussion . 38

5.4 Numerical results . 39

6 Conclusion and Future Work 43

6.1 Conclusion . 43

6.2 Future Work . 44

vii

6.2.1 Engine Improvement 44

6.2.2 New Model Development 44

6.2.3 Model Inclusion . 45

7 Appendix A 46

7.1 Parser . 46

7.2 Code . 46

7.3 Circuit function . 55

7.4 Code . 55

7.5 Objective function . 59

7.6 Code . 60

7.7 Optimization routine . 62

7.8 Code . 62

viii

List of Figures

1.1 3 pole circuit model with in/out loops 3

2.1 Current methodologies for parameter extraction 8

3.1 3D view of combline filter structure 10

3.2 3 pole circuit model with in/out loops 11

3.3 Typical user input file . 17

4.1 3 pole filter - design response 25

4.2 Coupling values between cavity resonators 25

4.3 3 Pole filter – circuit model 27

4.4 Optimization results for 3 pole filter 28

4.5 S-parameter comparison between ideal and extracted filters . . 29

4.6 3D view of 3-pole simulated filter 30

4.7 3 pole filter - EM simulation response 31

4.8 Optimization results for 3 pole EM simulated filter 31

ix

4.9 S-parameter comparison between EM and extracted filters . . 32

4.10 Industry 6-pole filter - measured response 33

4.11 6-pole filter physical layout . 34

4.12 6-pole filter extraction results 35

5.1 Multilayer perceptron for input/output loop modelling 37

5.2 Generating the training and validation data for ANN 38

5.3 Generating the training and validation data for ANN 39

5.4 Mutual inductance obtained from full-wave solution and fast

EM based model . 40

5.5 Self inductance of the loop obtained from two methods 40

5.6 Parasitic capacitance obtained from two methods 41

5.7 Resonant frequency of the basic resonator as the excitation

loops are introduced . 41

x

Notations

• j always denotes the purely imaginary number (0, 1).

• jw = jω and they are used alternately in this text.

Table of Abbreviations

ADS Advanced Design System software by Agilent Technologies

ANN Artificial Neural Network

HFSS High Frequency Software Simulator by Ansoft

SQP Sequential Quadratic Programming

xi

Chapter 1

Introduction

1.1 Overview

High performance RF/microwave filters are among the most critical compo-

nents in the present and next generation wireless systems and their design

optimization is a challenging task for successful design and operation of the

entire system [1].

Hybrid optimization approaches are currently the most effective methods

for analysis, design, and diagnosis of complex microwave circuits, such as

complex branching filter structures widely used in wireless infrastructure.

Current research in the area of hybrid methods starts by defining specific

sets of circuit models.

In the second step in the conventional hybrid approaches is taken by finding

a mapping between the coarse model (such as the circuit model) parameter

1

CHAPTER 1. INTRODUCTION 2

space and the fine model. This is done by such techniques as Space Mapping

or Artificial Neural Networks (ANNs) [2, 3, 4].

In this study, our main goal is to develop a general parameter extraction

algorithm for RF/microwave structures[1, 5]. We also show how we can

extend this method for design model generation through the use of neural

networks.

1.2 Our proposal

In this thesis we talk about a way to extract the circuit parameters (R, L, C)

from a measured or simulated filter response. We only shortly present the

method of using a neural network to create a model from such results.

The use of a neural network for specific parameters of the filter has been

recently investigated for input and output loop couplings [6]. Such a devel-

opment is time consuming and is beyond the scope of this thesis. However

given enough parameter extractions we will show how such a model can be

developed in Chapter 5.

For our method we propose a software implementation to perform parameter

extraction through optimization. The requirements for this are:

• measurement or simulation of physical filter

• starting approximation for the circuit parameters to be extracted

The program starts with the circuit model (which in this case has been de-

veloped for combline-type filters, with input and output coupling loops) and

CHAPTER 1. INTRODUCTION 3

ss

jCjC

c

2

1

1

kk

21

1

c

sL

M M

C

L L
C

L

Ls
C

Figure 1.1: 3 pole circuit model with in/out loops

computes the output S parameters. The output S parameters are then com-

pared to the measured S parameters. An error function is created through

this process.

In figure 1.1 we show a typical 3-pole circuit model. Note that in this case the

input and output loops are included. For the loops we consider an inductance

Ls - the self-inductance of the loop, and a capacitance Cj in parallel, as can

be seen in the figure.

We then use the NAG routine E04UCF to change the error function by

changing the circuit parameter values towards values that minimize the error

function. This is done through the sequential quadratic programming method

(SQP) [7].

Upon a series of such extractions we can use the results as the training and

validation data for a proposed artificial neural network (ANN). The details

of how this can be accomplished, as well as a discussion of an actual problem

are given in a later Chapter 5.

In the next chapter we develop the requirements for our proposed method.

CHAPTER 1. INTRODUCTION 4

1.3 Outline

In Chapter 2 we discuss the current methods for parameter extraction and

what the proposed method does. In Chapter 3 we detail the proposed im-

plementation and our goal, and we propose some implementation details. In

Chapter 4 we show the validation of our method, including numerical results.

In Chapter 5 we extend the discussion with the use of a generalized Artificial

Neural Network for mapping and model derivation. We conclude in Chap-

ter 6 and discuss the possibility and requirements of future work. The full

implementation code is also given in the appendix.

Chapter 2

Background

2.1 Introduction

In this chapter we discuss the need for parameter extraction in the develop-

ment of microwave filters. Further, we talk about the current methods for

such work, and we introduce the basics of our proposed method.

2.2 History

Design and synthesis of different multiply-coupled resonator filter type struc-

tures has been the subject of extensive research [8, 5, 9, 10].

In the current design of such filters we are presented with the problem of

having a fast, accurate method for the development and modelling of such

filters. One requirement when designing such devices is the development of

5

CHAPTER 2. BACKGROUND 6

an equivalent circuit model for the given filter. Once a model is developed,

it can be used to extract circuit element values from measured or simulated

physical filters. These values can be used as training and validation data

for a neural network. Having a trained neural network reduces development

time for the end user by providing a mapping between circuit element values

and physical dimensions and vice-versa.

The development of equivalent circuit models are usually time intensive.

There have been a few methods proposed [5, 11, 12]. Usually the user starts

with the formal synthesis of the filter. In this process, the specifications

(center frequency, bandwidth, etc.) are defined. Further, the user chooses

a desired (physical) layout for the filter and computes the desired couplings

for – in the case of cavity filters – the aperture windows between cavities.

Upon completion of this computation approximate models [1] can be used to

translate circuit models into actual physical models. These physical models

are then sent for manufacturing.

An important requirement has been to translate a physical implementation of

a filter into a circuit equivalent model. This entitles the reverse engineering

of a measured or simulated model. If the circuit elements from such a model

are obtained, a neural network model can be created to aid in the design,

tuning, diagnosis and modelling future filters.

Currently, there are very few approximate models that are available for trans-

lating circuit element values into their physical representation. These approx-

imate models are valid for very limited cases.

It is our contention that using a large enough sample size for different fil-

CHAPTER 2. BACKGROUND 7

ters will allow the creation of a model which could allow the development

of microwave filters to be done much more rapidly and with a greater accu-

racy. Having such a model extraction can aid in the tuning and diagnosis of

microwave filters.

2.3 Current approach

Currently there are two ways of mapping physical parameters into frequency

response of the actual filter in the design and diagnosis process.

The first of such methods uses a space mapping technique. In this case

the space of physical parameters and frequency are directly mapped into

the response of the circuit (such as the S-parameters). This can be done

through the use of multi-layer neural networks [2, 6]. A multilayer perceptron

network (MLP) is one of the most popular types of neural networks. It is

capable of approximating generic classes of functions including continuous

and integrable functions [2].

The second of such methods – and the one we will investigate here – uses an

intermediary circuit model. Physical parameters are mapped into resistor,

capacitor, and inductor values of an equivalent circuit through the use of

some parametric models. These models are either EM base analytical mod-

els or purely functional approximations like curve-fitting or artificial neural

networks.

In Figure 2.1, Xc represents the vector of coarse model parameters. Input

of this vector to the circuit model provides the response Rc of the filter. Rf

CHAPTER 2. BACKGROUND 8

Analytical
EM Based

Models

Optimization

Optimization

Circuit
Model

ANN Models

Rf

~

X c

Rc

~
X c

X p

X c

Figure 2.1: Current methodologies for parameter extraction

represents the fine model response of the filter. Through the optimization,

we have a new set of coarse model parameters. The entire process can be

repeated until required error has been achieved. The error in the system is

always reduced. The output Xc parameters can also be optimized against

some stored parameters Xc. These parameters are the result of previous

model generation and are either ANN or EM based.

The goal of such methods is to reduce the development time of a filter. For

the average filter the physical dimensions can be derived directly from the

diagnosed model. However, in the odd cases where there is a requirement for

an uncommon configuration filter, rigorous models must still be used.

Chapter 3

Proposed Implementation

3.1 Introduction

In this chapter we discuss the proposed implementation. We start by dis-

cussing the requirements for the parameter extraction software. We then

discuss each of the modular components that create our program. Finally,

we quickly discuss the software details and show why our implementation

provides an advantage over other existing software.

3.2 Proposed subcomponents

For our parameter extraction program we have the following components:

• circuit model of device to analyze

• objective function construction

9

CHAPTER 3. PROPOSED IMPLEMENTATION 10

Figure 3.1: 3D view of combline filter structure

• input file parser

• optimization routine

3.3 Circuit function

We proceed in deriving a circuit equivalent model for a filter based on loop

equations. We do this for a filter structure with input and output coupling

loops.

In current design software created at University of Waterloo, ideal transform-

ers are used for input and output. This greatly affects the system response.

CHAPTER 3. PROPOSED IMPLEMENTATION 11

ss

jCjC

c

2

1

1

kk

21

1

c

sL

M M

C

L L
C

L

Ls
C

Figure 3.2: 3 pole circuit model with in/out loops

Here we include equivalent circuit models for physical input/output loop

couplings and discontinuities at coaxial cavity junctions.

A typical filter structure with 3 poles is given in figure 3.1. The input and

output loops are present in such a structure.

Figure 3.2 represents a circuit equivalent model for the physical filter. We

write the loop equations in the clockwise direction:

CHAPTER 3. PROPOSED IMPLEMENTATION 12

I1[Rs +
1

jwCj

] + I2[
−1

jwCj

] = E

I1[
−1

jwCj

] + I2[
1

jwCj

+ jwLs] + i1[−jwMs] = 0

I2[−jwMs] + i1[jwL1 +
1

jwC1

+ R1] + i2[jwM12] + ... + in[jwM1n] = 0

i1[−jwM12] + i2[jwL2 +
1

jwC2

+ R2] + i3[jwM23] + ... + in[jwM2n] = 0

... (3.1)

i1[jwM1n] + i2[jwM2n] + ... + in[jwLn +
1

jwCn + Rn

] + I3[jwMs] = 0

in[jwMs] + I3[jwLs +
1

jwCj

] + I4[
−1

jwCj

] = 0

I3[
−1

jwCj

] + I4[RL +
1

jwCj

] = 0

In the above equations, I1 and I4 are the loop currents at the source and at

the load respectively, while ii represent the loop currents inside resonating

cavity i. As well, Rs and Rl are the resistances of the source and load,

respectively.

Note that in 3.1 we already consider that

Mij = Mji, i and j = 1,2, ..., n (3.2)

This consideration is valid because of reciprocity. The coupling between two

cavities is the same regardless whether we measure from cavity i to cavity j

or vice-versa.

Note that for this development we allow any topology for the filter. The

topology is set by specifying some initial value and a range for the Mij values.

CHAPTER 3. PROPOSED IMPLEMENTATION 13

In current literature [13, 5], as well as the current software developed by

University of Waterloo (RF/Microwave group) as part of a related project,

L and C are normalized. This is done by having w0 = 1 and Z0 = 1 for each

resonator. This leads to L = C = 1.

Current literature [13] also assumes equation 3.3 for narrow-band approxi-

mation.

wMij = w0Mij, i and j = 1,2, ..., n (3.3)

However, in our development we allow non-normalized values, that is L, C

are different for each resonating cavity. As well since we are creating the

objective function over a range of frequencies (see the section on objective

function), we consider each frequency and we do not consider equation 3.3.

The effect of the normalization assumption in literature is is that when de-

signing for the coupling matrix of the filter there are values for Mii which

represent the shift in center frequency of the resonator from an ideal case

(where L and C would both be normalized to 1). This happens because each

cavity does not resonate at the exact same frequency.

However, in our method, L and C are not normalized to 1, and they are

allowed to be optimized. Hence Mii = 0 for all our cases.

If we let

wLi − 1

wCi

= Zi[
w

wi

− wi

w
] = λ (3.4)

where

CHAPTER 3. PROPOSED IMPLEMENTATION 14

Zi =

√
Li

Ci

, wi =
1√
LiCi

, (3.5)

then we can further write the loop equations in matrix form

[Z][J] = [E] (3.6)

where

[J] =




I1

I2

i1
...

ii
...

in

I3

I4




[E] =




E

0
...

0
...

0
...

0

0




and

[Z] = [R] + j(λ[I] − w[M]) (3.7)

where

CHAPTER 3. PROPOSED IMPLEMENTATION 15

[R] =




Rs 0 0 0 . . . 0 . . . 0 0 0

0 0 0 0 . . . 0 . . . 0 0 0

0 0 R1 0 . . . 0 . . . 0 0 0

0 0 0 R2 . . . 0 . . . 0 0 0
...

...
...

...
.

...
...

...

0 0 0 0 . . . 0 . . . Rn 0 0

0 0 0 0 . . . 0 . . . 0 0 0

0 0 0 0 . . . 0 . . . 0 0 RL




and

[M] =




0 0 0 0 0 0 0 0

0 0 −Ms 0 0 0 0 0

0 −Ms 0 M12 M13 M1n 0 0

0 0 M12 0 M23 M2n 0 0
...

...
...

...
.

...
...

...

0 0 M1n M2n M3n 0 0 0

0 0 0 0 0 0 Ms 0

0 0 0 0 0 Ms 0 0

0 0 0 0 0 0 0 0




The Ri in cavity i is related to the Q of the resonator by the simple equation

Ri =
w0L

Qi

=
Z0

Qi

(3.8)

where w0 and Z0 are given by equation 3.5 [14].

CHAPTER 3. PROPOSED IMPLEMENTATION 16

Using knowledge from [13] we can write the relationship between loop cur-

rents and filter responses.

We can define the network transfer function as

PL

Ps

=
|I4|2RL

|E|2/(4Rs)
= 4RsRL

|I4|2
|E|2 (3.9)

From this we can derive the transmission

S21 = 2
√

RsRL
I4

E
(3.10)

and reflection

S11 = 1 − 2Rs

E/I1

(3.11)

functions respectively.

Hence we have derived the system response in terms of the circuit elements.

We realize only I1 and I4 are needed to calculate the system response.

All that is needed to obtain the circuit response for one given frequency is an

inversion of the matrix Z. Due to the fact that practical filter size is relatively

small (order ≤ 20), we do not have a matrix larger than 24 elements to

invert. Hence in this thesis we will not consider fast matrix inversions such

as ones based on the Cayley-Hamilton Theorem [15] but instead use a simple

Gauss-Jordan elimination method for complex matrices.

CHAPTER 3. PROPOSED IMPLEMENTATION 17

//two lines of comments
//specify f in GHz, C and L in nanoF/H
0 //0 for CITI file, 1 for user file
ads_opt.txt //specification file
1 1 //optimize S11 S21
3 //degree of filter
50 //RE
50 //RL
1.58100 0 1.2 2 //Ms flag lower upper
5.05591 0 4 6 //Ls
4.21732 0 2.5 6.5 //Cj
0.04 0 0.03 0.05 //r1
0.04 0 0.04 0.04 //r2
0.04 0 0.03 0.05 //r3
30.1897 0 29 31 //L1
30 0 5 37 //L2
30.1882 0 29 31 //L3
1 0 0.001 1.5 //C1
1 0 0.001 1.5 //C2
1 0 0.001 1.5 //C3
0.598 0 0.598 0.598 //M12
0.001 0 0.001 0.001 //M13 - weak coupling
0.597 0 0.597 0.597 //M23

Figure 3.3: Typical user input file

3.4 File Parser

In this section we talk about two parsers. First we have a parser for the

user data file. This data file specifies such things as degree of filter, starting

values, and ranges for optimization of required parameters.

Second, we have the actual measurement file parser. This parser loads the

measurement data from a standard file specified by the user.

3.5 User Data File Parser

In this section we present the data file parser. In Figure 5.2 we show a typical

input file for a 3 pole filter.

First, the user has the choice of using a CITI file to specify the frequency

CHAPTER 3. PROPOSED IMPLEMENTATION 18

points, or to load the set of frequency points from a custom file. If a custom

file is provided, the user must also specify the value of the S-parameters at

those frequency points (S11, and S21).

The reason for having this option is that we might choose to reduce the

optimization time by using a select set of frequency points. Usually, the

CITI files which are output from network analyzer measurements contain

more data than is necessary to extract the circuit parameters. Although this

is not relevant for a few calculations, if we consider performing a large batch

of parameter extractions in order to build an artificial neural network model,

this work becomes tedious.

Second, the user must specify the data file. Either CITI file or custom

frequency file is accepted.

After the data file, the flags for the optimization function are specified. User

has a choice on whether to optimize for S11, S21, or both. This will become

more clear in the section on the optimization function, which follows.

The next few sections of the input file contain the actual filter specification.

They contain details about the circuit model. In our case (see Figure 5.2),

the filter is a 3-pole. The impedance of the source (RE = Rs) and load (RL)

are defined to be standard 50Ω.

Following this, the circuit elements of the actual filter are defined. As we can

see in Figure 3.2 we consider a symmetric structure for our filter. Each of

the input and output coupling loops are determined by an inductance (Ls)

and a capacitance (Cj). As well the coupling between the input and output

loops is represented by Ms.

CHAPTER 3. PROPOSED IMPLEMENTATION 19

Upon definition of the loop values, the resonator circuit values are defined.

This can be seen in Figure 5.2.

Finally the coupling values between each resonator are defined. The actual

coupling values also define the topology of the filter, for example if Mij = 0

that implies there is no coupling between cavity i and j of the filter.

3.6 Measurement File Parser

In order to have the measurement data input into our parameter extraction

program we need a method to parse the input data. In this section we

quickly describe the parser design. Due to the fact that a parser is a software

engineering tool, we consider the actual implementation details to be beyond

the scope of this thesis. However, the full implementation is given in the

appendix.

In order to standardize our input data, we choose the CITI file format as

input for our program. This file is supported as both input and output by

a general network analyzer, such as the HP 85XX vector network analyzers.

It is as well supported by all major CAD and EM simulation software such

as Agilent ADS and Ansoft HFSS.

3.7 Objective Function

Recall that our objective is to obtain a set of circuit parameters which provide

a system response as close as possible to our desired (measured) response. In

CHAPTER 3. PROPOSED IMPLEMENTATION 20

the previous section we showed how to calculate the S-parameters from the

circuit model. In this section we show how we get the error function from

the two sets of S-parameters - one from the circuit model, and the other from

measurements or EM simulations.

For our purpose, we consider the following optimization/error function

ε = optS11Σ|S11measured−S11circuit|2+optS21Σ|S21measured−S21circuit|2 (3.12)

In equation (3.12) optS11 and optS21 are specified by the user in the input

file. This can be seen in the previous section.

The reason for having the option of optimizing on S11 or S21 (or both) gives

more flexibility to the user. The effect of this can be seen in the results

chapter.

As an alternative to using equation (3.12), we can use

ε = optS11Σ(|S11measured| − |S11circuit|)2 + optS21Σ(|S21measured| − |S21circuit|)2

(3.13)

As we explain later in the Chapter 4, using equation (3.13) instead of (3.12)

above can improve the convergence speed. This is due to the fact that a small

variation in circuit elements from their ideal values introduce a relatively

small magnitude error, but a large phase error. In equation (3.13) we only

consider the magnitude of S11 and S21.

CHAPTER 3. PROPOSED IMPLEMENTATION 21

3.8 Optimization Routine

For our optimization routine we use the NAG library E04UCF function.

This function is designed to minimize an arbitrary smooth function subject

to constraints - in our case simple lower and upper bounds on the variables

- using a sequential quadratic programming (SQP) method [16].

The problem is required to be stated in the form:

Minimize F (x) subject to l ≤




x

ALx

c(x)


 ≤ u (3.14)

In this case F (x) is the nonlinear objective function. AL and c(x) represent

the linear and non-linear constraints respectively. In our case they are null,

and we only consider the lower/upper bounds on the optimizing variables.

The function approximates unspecified derivatives by finite differences.

3.9 Software Engineering Considerations

In the goal of every software engineer is to create a modular, expendable

program. In this section we show how we meet these requirements with our

design.

Our program is designed with modular, interconnecting components.

As we have shown at the beginning of this chapter, the composed of:

CHAPTER 3. PROPOSED IMPLEMENTATION 22

• circuit model of device to analyze

• optimization function

• input file parser

– user data file

– measurement file

• optimization routine

Each of the above components are modules (in the form of C/C++ functions)

which integrate together to form the optimization program.

For one class of parameter extraction problems, we only need to replace the

circuit model and the parser for the user data file, and maintain everything

else the same. As long as the measurement is in the CITI format, the program

will act as a ’black box’ and extract the parameters for the problem.

Similarly, if we desire to use a new optimization routine (such as routines

based on stoichastic/genetic programming algorithms [11], all that is needed

is to replace the optimization module and the program will extract the circuit

parameters.

Chapter 4

Numerical Results and

Validation

4.1 Introduction

In this chapter we use the previously introduced parameter extraction pro-

gram to solve some specific examples. We will specifically use it for:

• A forward, circuit-model designed 3-pole filter

• An EM simulated 3-pole filter

• A measured industry-standard 6-pole filter

23

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 24

4.2 Circuit-designed 3-pole filter

In this section we design a 3 pole filter with Degree = 3, f0 = 918.88MHz,

Bandwidth = 15MHz, and ReturnLoss = 25dB

Using Cavity - a software available to the university as part of a related

research project [1, 5], we design the filter and obtain the response. The

software provides the coupling matrix values as its output, as well as the

S-parameters of the filter.

As well if we choose a filter having a Q of approximately 4500, using a

previous chapter formula, we have:

R =
Z0

Q
=

√
L

C

1

Q
=

√
30

0.001

1

4500
≈ 0.04 (4.1)

This represents the value of the resistor in each of the cavities. Note that for

small variations this resistor does not greatly affect the system response.

We assume coupling between cavities 1-2 and 2-3. There is also a small

parasitic coupling 1-3.

f0 =
w0

2π
=

1

2π
√

LC
=

1

2π
√

3e − 20
= 918.88MHz (4.2)

Note that M13 is very small like we expected. We use these values along with

the R, L, C values for each resonator (from equations 4.2 and 4.1) in our

software and we extract the input/output coupling values, as well as adjust

the circuit element values. The result of this optimization is given in Figure

4.4

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 25

840 860 880 900 920 940 960 980 1000
−60

−50

−40

−30

−20

−10

0

Figure 4.1: 3 pole filter - design response

Coupling normalized nH
M12 1.2197163 0.597
M23 1.2199133 0.598
M13 0.0000002 0.001

Figure 4.2: Coupling values between cavity resonators

Also, transforming the Cavity coupling values:

Mij(nH) = L ∗ kij(Cavity) (4.3)

Hence the we can summarize the coupling values in Figure 4.2.

Using the approximate models already implemented [1][11] we derive the

physical dimensions for our structure. The cavity cross section is 50x50mm

and it has a height of 50mm. The center resonator is 49mm and it has a

diameter of 10mm. There is a 1mm gap between the top of the resonator

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 26

and the top of the cavity.

The calculated aperture windows (cavity 1-2 and 2-3) are 30.9mm (width)

and 29.7mm (height) each. Designing the loop dimensions, we get the in-

put/output loops to be 12.4mm (width) and 14.8mm (height).

With the S-parameters and our coupling values, we use our method to extract

the loop coupling values, and optimize the circuit. The reason for this is that

in Cavity the input and output to the filter is represented by transformers

which do not exist in practice.

We use the circuit model given by Figure 4.3 in ADS to plot the response

of the filter. The values are to be input from our optimization result. The

results of our method are summarized in Figure 4.4.

In this experiment we want to extract only the coupling values and optimize

the first and last resonator of our structure - where the frequency shift will

be most noticeable.

Based on our design we choose the starting values for each resonator to be

L = 30nH and the capacitance to be C = 1pF . This gives a filter design

frequency of 918.88 MHz, as can be seen in equation (4.2).

We choose to optimize in 3 iterations. In this experiment, this number of

optimizations represents an optimum value between convergence of results

and computation time. For the first iteration we fix all parameters except

the input/output loop elements (Ms, Ls and Cj). The program converges to

a closer solution as can be seen by the results of the first iteration (It1) in

the table.

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 27

�
�

�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

�

� �
�	

�

�
�

�
��

�
�

�
�
�

�

�
�

�
�

�
��

�
�
��
�
�

�

�
�
�
	
�

�
!
"�

#�
�

Figure 4.3: 3 Pole filter – circuit model

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 28

El. (unit) Opt. Start LB UB Final
Ms(nH) yes(1) 1 0.5 2.5 1.58100
Ls(nH) yes(1) 4 2.5 6 5.05591
Cj(pF) yes(1) 3 2.5 6.5 4.21732
R1(Ω) no 0.04 N/A N/A 0.04
R2(Ω) no 0.04 N/A N/A 0.04
R3(Ω) no 0.04 N/A N/A 0.04

L1(nH) yes(2) 30 29 31 30.1897
L2(nH) no 30 N/A N/A 30
L3(nH) yes(2) 30 29 31 30.1882
C1(pF) no 1 N/A N/A 1
C2(pF) no 1 N/A N/A 1
C3(pF) no 1 N/A N/A 1

M12(nH) no 0.598 N/A N/A 0.598
M13(nH) no 0.001 N/A N/A 0.001
M23(nH) no 0.597 N/A N/A 0.597

Figure 4.4: Optimization results for 3 pole filter

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 29

8.9 9 9.1 9.2 9.3 9.4 9.5

x 10
8

−60

−50

−40

−30

−20

−10

0

S11(design)

S11(extract)

Figure 4.5: S-parameter comparison between ideal and extracted filters

Next, we fix the new coupling values and choose to optimize the first and last

resonators of the structure. Optimizing for the inductance of each of these

resonators, we have L1 = 30.1897nH and L3 = 30.1882nH.

Finally we fix all parameters except for the input/output loop elements and

re-run our method. This provides a very slight change in the loop element

values. The final results are given in Figure 4.4

In Figure 4.5 we compare the S-parameter results between the ideal filter

(designed) and the extracted (optimized) case.

4.3 EM Simulated 3-pole Filter

In this section we show how our method extracts the circuit parameters from

an actual EM simulator.

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 30

Figure 4.6: 3D view of 3-pole simulated filter

We use the design from the previous section and draw the filter in Ansoft

HFSS. A picture of this is shown in Figure 4.6. The response of the filter

after simulation is shown in Figure 4.7

We proceed as previously. This time we optimize over more variables and

with more iterations. The reason for this is that in the EM model there are

additional effects that can change the resonant frequency of each resonator

or the Q.

The results and iteration table are given in Figure 4.8. The S parameter

response is given in Figure 4.9. In this case we have chosen to start by

iterating on the loop coupling values.

After we reduce the error by obtaining newer values, we optimize each res-

onator equivalent resistor value.

Next we optimize the resonant frequency of each resonator, and our results

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 31

820 840 860 880 900 920 940 960
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Figure 4.7: 3 pole filter - EM simulation response

El. (unit) Opt. Start LB UB Final
Ms(nH) yes(1) 2 1.5 2.6 2.22770
Ls(nH) yes(1) 7.5 5 9 5.80688
Cj(pF) yes(1) 5 2.5 8 5.63115
R1(Ω) yes(2) 0.04 0.03 0.06 0.05
R2(Ω) yes(2) 0.04 0.03 0.06 0.04
R3(Ω) yes(2) 0.04 0.03 0.06 0.05

L1(nH) yes(3) 30 25 35 32.3879
L2(nH) yes(3) 30 25 35 32.1954
L3(nH) yes(3) 30 25 35 32.3889
C1(pF) yes(3) 1 0.9 1.1 1.02402
C2(pF) yes(3) 1 0.9 1.1 1
C3(pF) yes(3) 1 0.9 1.1 1.02404

M12(nH) yes(4) 1 0.5 1.5 1.1
M13(nH) yes(4) 0.01 0.001 0.1 0.08
M23(nH) yes(4) 1 0.5 1.5 1.1

Figure 4.8: Optimization results for 3 pole EM simulated filter

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 32

8.2 8.4 8.6 8.8 9 9.2 9.4 9.6

x 10
8

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

S11(design)

S11(extract)

S21(design)

Figure 4.9: S-parameter comparison between EM and extracted filters

are consistent with the ones in the previous section. We then optimize the

coupling values between each of the cavity resonators, and we finalize by one

more iteration on the loop circuit model in order to obtain a better response.

4.4 Industry Standard 6-pole filter

Finally in this section we show an application of our method to industry.

Six pole filters are commonly used in a variety of base stations for mobile

communications. We present a six pole filter from one of today leading

manufacturers. The measured response using a common network analyzer is

given in Figure 4.10. Please note the noisy response in this case.

Current diagnosis software performs a model based parameter estimation

from the measured system response. This provides a function estimation to

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 33

1800 1820 1840 1860 1880 1900 1920
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Figure 4.10: Industry 6-pole filter - measured response

the noisy data, which then is used to reverse the design process and extract

the coupling values.

In our case we do not need a functional estimation of our data, but rather

proceed with the parameter extraction from the measured response directly.

It is also important to note that our method is more general and it directly

links a user predefined circuit function to the system response - as we have

shown in the previous chapter.

The design specifications for this filter are f0 = 1857.5MHz and bandwidth =

15MHz. There are also two transmission zeros at f1 = 1845MHz and

f2 = 1870MHz. These are representative of a coupling between cavity 2 and

5. Hence for our analysis the topology of the filter is given in Figure 4.11.

The results of the final 5 iterations of our method are given in Figure 4.12

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 34

C1 C2 C3 C4 C5 C6

C1 0 1 0 0 0 0
C2 1 0 1 0 1 0
C3 0 1 0 1 0 0
C4 0 0 1 0 1 0
C5 0 1 0 1 0 1
C6 0 0 0 0 1 0

Figure 4.11: 6-pole filter physical layout

CHAPTER 4. NUMERICAL RESULTS AND VALIDATION 35

E
l.

(u
n
it

)
O

p
t.

S
ta

rt
L
B

U
B

I
t 1

I
t 2

I
t 3

I
t 4

I
t 5

F
in

al
M

s
(n

H
)

ye
s(

1)
3.

5
1

7
4.

32
31

N
/A

N
/A

N
/A

4.
42

95
4.

42
95

L
s
(n

H
)

ye
s(

1)
6

1
10

7.
34

21
N

/A
N

/A
N

/A
6.

96
88

6.
96

88
C

j
(p

F
)

ye
s(

1)
5

3
7

5.
13

26
N

/A
N

/A
N

/A
4.

95
23

4.
95

23
R

1
(Ω

)
ye

s(
2)

0.
05

0.
03

0.
1

N
/A

0.
06

52
1

N
/A

N
/A

N
/A

0.
06

52
1

R
2
(Ω

)
ye

s(
2)

0.
05

0.
03

0.
1

N
/A

0.
05

54
5

N
/A

N
/A

N
/A

0.
05

54
5

R
3
(Ω

)
ye

s(
2)

0.
05

0.
03

0.
1

N
/A

0.
05

30
9

N
/A

N
/A

N
/A

0.
05

30
9

R
4
(Ω

)
ye

s(
2)

0.
05

0.
03

0.
1

N
/A

0.
05

23
7

N
/A

N
/A

N
/A

0.
05

23
7

R
5
(Ω

)
ye

s(
2)

0.
05

0.
03

0.
1

N
/A

0.
05

51
0

N
/A

N
/A

N
/A

0.
05

51
0

R
6
(Ω

)
ye

s(
2)

0.
05

0.
03

0.
1

N
/A

0.
06

48
9

N
/A

N
/A

N
/A

0.
06

48
9

L
1
(n

H
)

ye
s(

3)
14

.6
82

9
13

16
N

/A
N

/A
14

.9
83

7
N

/A
N

/A
14

.9
83

7
L

2
(n

H
)

ye
s(

3)
14

.6
82

9
13

16
N

/A
N

/A
14

.6
90

3
N

/A
N

/A
14

.6
90

3
L

3
(n

H
)

ye
s(

3)
14

.6
82

9
13

16
N

/A
N

/A
14

.6
68

7
N

/A
N

/A
14

.6
68

7
L

4
(n

H
)

ye
s(

3)
14

.6
82

9
13

16
N

/A
N

/A
14

.6
87

9
N

/A
N

/A
14

.6
87

9
L

5
(n

H
)

ye
s(

3)
14

.6
82

9
13

16
N

/A
N

/A
13

.9
43

9
N

/A
N

/A
13

.9
43

9
L

6
(n

H
)

ye
s(

3)
14

.6
82

9
13

16
N

/A
N

/A
14

.9
54

3
N

/A
N

/A
14

.9
54

3
C

1
(p

F
)

ye
s(

3)
0.

5
0.

45
0.

6
N

/A
N

/A
0.

50
11

N
/A

N
/A

0.
50

11
C

2
(p

F
)

ye
s(

3)
0.

5
0.

45
0.

6
N

/A
N

/A
0.

49
84

N
/A

N
/A

0.
49

84
C

3
(p

F
)

ye
s(

3)
0.

5
0.

45
0.

6
N

/A
N

/A
0.

49
10

N
/A

N
/A

0.
49

10
C

4
(p

F
)

ye
s(

3)
0.

5
0.

45
0.

6
N

/A
N

/A
0.

49
39

N
/A

N
/A

0.
49

39
C

5
(p

F
)

ye
s(

3)
0.

5
0.

45
0.

6
N

/A
N

/A
0.

49
95

N
/A

N
/A

0.
49

95
C

6
(p

F
)

ye
s(

3)
0.

5
0.

45
0.

06
N

/A
N

/A
0.

50
19

N
/A

N
/A

0.
50

19
M

1
2
(n

H
)

ye
s(

4)
0.

15
0.

1
0.

25
N

/A
N

/A
N

/A
0.

13
06

6
N

/A
0.

13
06

6
M

2
3
(n

H
)

ye
s(

4)
0.

1
0.

05
0.

15
N

/A
N

/A
N

/A
0.

08
76

2
N

/A
0.

08
76

2
M

3
4
(n

H
)

ye
s(

4)
0.

1
0.

05
0.

15
N

/A
N

/A
N

/A
0.

11
20

5
N

/A
0.

11
20

5
M

4
5
(n

H
)

ye
s(

4)
0.

1
0.

05
0.

15
N

/A
N

/A
N

/A
0.

08
23

0
N

/A
0.

08
23

0
M

5
6
(n

H
)

ye
s(

4)
0.

15
0.

1
0.

25
N

/A
N

/A
N

/A
0.

13
20

6
N

/A
0.

13
20

6
M

2
5
(n

H
)

ye
s(

4)
-0

.0
1

-0
.0

5
-0

.0
05

N
/A

N
/A

N
/A

-0
.0

28
38

N
/A

-0
.0

28
38

Figure 4.12: 6-pole filter extraction results

Chapter 5

Neural Network Parameter

Estimation

5.1 Introduction

This chapter is an extension of our work on parameter extraction.

In this chapter we talk about the application of neural networks to modelling

fast coupling between circuit model and physical dimensions. We start by

defining what neural networks are, and we continue by showing how we can

apply their advantages to modelling a specific problem.

In our case we choose to characterize the excitation input and output loop

models (Ls, Ms and Cj) which we extracted with our proposed method.

36

CHAPTER 5. NEURAL NETWORK PARAMETER ESTIMATION 37

W

Ls

Cj

f r

HHeight

Width

Figure 5.1: Multilayer perceptron for input/output loop modelling

5.2 Neural Networks

Neural networks are composed of simple elements operating in parallel. These

elements are inspired by biological nervous systems. As in nature, the net-

work function is determined largely by the connections between elements.

We can train a neural network to perform a particular function by adjusting

the values of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular

input leads to a specific target output. Such a situation is shown below.

There, the network is adjusted, based on a comparison of the output and the

target, until the network output matches the target. Typically many such

CHAPTER 5. NEURAL NETWORK PARAMETER ESTIMATION 38

Physical
Dimensions

Full−wave EM
Simulations (Optimization)

Extraction
Parameter

Circuit Model
Validation Data
Training and

Figure 5.2: Generating the training and validation data for ANN

input/target pairs are used, in this supervised learning, to train a network.

5.3 Model discussion

In previous chapters we have shown how we can model the physical in-

put/output loops by a parallel LC block.

For our analysis we have performed a total of 30 parameter extractions to

train our neural network model. We choose a neural network composed of a

multi-layer perceptron (MLP) with one hidden layer. This network, as shown

in Figure 5.1is used to model the self-inductance (Ls), parasitic capacitance

(Cj) and mutual-inductance (Ms) of our input/output loops.

In Figure 5.2 we show a general neural network building procedure. The main

work presented in this document is the parameter extraction/optimization

(center block). In this chapter we discuss the last block of Figure 5.2 which

represents the use of the training/validation data for creating the neural

network model for this problem.

CHAPTER 5. NEURAL NETWORK PARAMETER ESTIMATION 39

Figure 5.3: Generating the training and validation data for ANN

5.4 Numerical results

We use a rectangular coaxial cavity with two symmetric ports. The cross

section of the cavity was square with dimensions of a = b = 50mm. The

diameter of the center rod was D = 15mm with the height of L = 62mm.

There is also a 3mm air gap between the top of the center rod and the top

of the cavity. The resonant frequency of the resonator (prior to introducing

the loop excitations) was calculated with Ansoft HFSS to be 881MHz.

In order to generate the training and validation data the same EM solver was

used for different values of width W and H of the loop. We vary the height

between 5 and 25 mm and the width between 7.5 and 17.5 mm. Note that

when W = 17.5mm the loop is a tap into the center post.

After generating the S-parameters from the EM solver, we extract the circuit

parameters. We use 25 of our parameter extractions for training the network

and 5 for validation. Figure 5.3 shows the extracted circuit values for a few

EM simulations, as well as the circuit values which are obtained from the

neural network after training.

In Figures 5.4 - 5.6 we show the response of our neural network for the specific

training data that we provided.

CHAPTER 5. NEURAL NETWORK PARAMETER ESTIMATION 40

4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

W (mm)

M
s (n

H
)

o o o o

Our Fast Model

FEM Simulation
H=25

H=5

H=15

Figure 5.4: Mutual inductance obtained from full-wave solution and fast EM

based model

6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

W (mm)

L s (n
H

)

o o o o

Neural Network

FEM Simulation

H=25

H=5

H=15

Figure 5.5: Self inductance of the loop obtained from two methods

CHAPTER 5. NEURAL NETWORK PARAMETER ESTIMATION 41

6 8 10 12 14 16 18
0.5

1

1.5

2

2.5

3

3.5

4

4.5

W (mm)

C
j (p

F)

o o o o

Neural Network

FEM Simulation

H=25

H=5

H=15

Figure 5.6: Parasitic capacitance obtained from two methods

6 8 10 12 14 16 18
880

890

900

910

920

930

940

950

960

W (mm)

f r (M
H

z)

o o o o

Neural Network

FEM Simulation

H=25

H=5

H=15

Figure 5.7: Resonant frequency of the basic resonator as the excitation loops

are introduced

CHAPTER 5. NEURAL NETWORK PARAMETER ESTIMATION 42

Figure 5.7 shows an extension of the neural network to modelling the resonant

frequency shift of our resonators with the different loop sizes introduced.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work we have shown a general method for parameter extraction.

We started the work by considering current methodologies for modelling of

microwave filters. We discussed the issues involved with current methods, as

well as requirements for a more efficient method.

We followed the introduction by proposing a general parameter extraction

method which is robust, fast, modular, and expandable. Following the devel-

opment of the method, we applied to three current problems (circuit-designed

filter, EM simulated filter, and industry-standard measured filter).

Finally we discussed an extension of our work through the use of neural

networks. This has an advantage that we can readily implement the neural

network model and obtain a tool for filter development and diagnosis.

43

CHAPTER 6. CONCLUSION AND FUTURE WORK 44

6.2 Future Work

Future work can be summarized in three different sections:

• Engine improvement through the use of novel optimization techniques

• Development of new circuit models for filters and/or other microwave

devices of interest

• Inclusion of generated models into current development software

6.2.1 Engine Improvement

The current engine is based on the SQP method and it fails for a high number

of variables. Additional engines can be investigated using the requirements

given in this work. They can be implemented easily due to the modularity

of the program. This can ensure we have better and faster convergence of

results, for higher complexity problems.

6.2.2 New Model Development

We can extend the use of our program by developing additional circuit mod-

els for required problems. Due to the modularity of the program these new

models can be easily implemented and new circuit parameters extracted from

simulations and/or measurements. Such an example would be the develop-

ment of an antenna/probe coupling model for couplings in cavity filters.

CHAPTER 6. CONCLUSION AND FUTURE WORK 45

6.2.3 Model Inclusion

The loop coupling model for cavity filters discussed in this work, as well as

new models developed need to be included into current software to be useable.

It remains to further research to obtain the best methods for including such

models.

Chapter 7

Appendix A

7.1 Parser

This module inputs a standard CITI file and loads the S11 and S21 data

values for all frequencies.

7.2 Code

#include <complex> #include <math.h> #include <stdio.h> #include

<fstream.h>

using std::complex; using std::arg; using std::abs; using

std::polar;

46

CHAPTER 7. APPENDIX A 47

void analyzeData(ifstream inputFile, int *npoints,

double *nFreq, complex<double> *S11,

complex<double> *S21);

void analyzeUserData(ifstream inputFile, int *npoints,

double *nFreq, complex<double> *S11,

complex<double> *S21);

void analyzeData(ifstream inputFile, int *npoints,

double *nFreq, complex<double> *S11,

complex<double> *S21)

{

char readStr[80];

char seps[] = " ,\t\n";

char *strRealCoeff, *strRealExp;

char *strImaginaryCoeff, *strImaginaryExp;

char *strReal, *strImag;

double lRealCoeff, lImaginaryCoeff;

int lRealExp, lImaginaryExp;

double lReal, lImaginary;

char *strPoints, *strtemp;

//skip the initial lines in the file

for(int i=0;i<16;i++) {

inputFile.getline(readStr,80);

strtemp = strstr(readStr, "VAR freq MAG");

CHAPTER 7. APPENDIX A 48

if (strtemp != NULL) {

strtemp = strtok(strtemp, " ");

strtemp = strtok(NULL, " ");

strtemp = strtok(NULL, " ");

strPoints = strtok(NULL, " ");

*npoints = atoi(strPoints);

}

}

//nFreq = new double[*npoints];

//S11 = new complex<double>[*npoints];

//S21 = new complex<double>[*npoints];

inputFile.getline(readStr, 80);

for (i = 0; i<*npoints; i++) {

inputFile.getline(readStr, 80);

nFreq[i] = atof(strtok(readStr, seps));

}

inputFile.getline(readStr, 80); //this is VAR_LIST_END

inputFile.getline(readStr, 80); //this is BEGIN

for (i=0; i<*npoints; i++) {

//if (i%10 == 0) printf(".");

inputFile.getline(readStr, 80);

CHAPTER 7. APPENDIX A 49

strReal = strtok(readStr, ",");

strImag = strtok(NULL, "\t\n");

strRealCoeff = strtok(strReal, "E");

strRealExp = strtok(NULL, ",");

strImaginaryCoeff = strtok(strImag, "E");

strImaginaryExp = strtok(NULL, "\t\n");

lRealCoeff = atof(strRealCoeff);

if (strRealExp != NULL) {

lRealExp = atoi(strRealExp);

}

else {

lRealExp = 0;

}

lImaginaryCoeff = atof(strImaginaryCoeff);

if (strImaginaryExp != NULL) {

lImaginaryExp = atoi(strImaginaryExp);

}

else {

lImaginaryExp = 0;

}

CHAPTER 7. APPENDIX A 50

lReal = lRealCoeff * pow(10,lRealExp);

lImaginary = lImaginaryCoeff * pow(10,lImaginaryExp);

S11[i] = complex<double>(lReal, lImaginary);

}

inputFile.getline(readStr, 80); //this is END

inputFile.getline(readStr, 80); //this is BEGIN

for (i= 0; i<*npoints; i++) {

//if (i%10 == 0) printf(".");

inputFile.getline(readStr,80);

strReal = strtok(readStr, ",");

strImag = strtok(NULL, "\t\n");

strRealCoeff = strtok(strReal, "E");

strRealExp = strtok(NULL, ",");

strImaginaryCoeff = strtok(strImag, "E");

strImaginaryExp = strtok(NULL, "\t\n");

lRealCoeff = atof(strRealCoeff);

if (strRealExp != NULL) {

lRealExp = atoi(strRealExp);

}

else {

CHAPTER 7. APPENDIX A 51

lRealExp = 0;

}

lImaginaryCoeff = atof(strImaginaryCoeff);

if (strImaginaryExp != NULL) {

lImaginaryExp = atoi(strImaginaryExp);

}

else {

lImaginaryExp = 0;

}

lReal = lRealCoeff * pow(10,lRealExp);

lImaginary = lImaginaryCoeff * pow(10,lImaginaryExp);

S21[i] = complex<double>(lReal, lImaginary);

}

}

void analyzeUserData(ifstream inputFile, int *npoints,

double *nFreq, complex<double> *S11,

complex<double> *S21)

{ }

//this is particular to this circuit model

void analyzeInput(ifstream inputFile, int *npoints,

int *obj_S11, int *obj_S21,

CHAPTER 7. APPENDIX A 52

double *USER, double *BL, double *BU,

double *nFreq, complex<double> *S11,

complex<double> *S21)

{

char readStr[80];

char seps[] = " ,\t\n";

char *strTemp, *strOpt;

char *strUpper, *strLower;

int userData;

int n;

//skip the initial lines in the file

for(int i=0;i<2;i++) {

inputFile.getline(readStr,80);

}

inputFile.getline(readStr,80);

strTemp = strtok(readStr, "\t");

userData = atoi(strTemp);

inputFile.getline(readStr,80);

strTemp = strtok(readStr, "\t");

//get the data file

ifstream inputDataFile(strTemp);

CHAPTER 7. APPENDIX A 53

if (userData == 0) {

analyzeData (inputDataFile, npoints, nFreq, S11, S21);

}

else {

analyzeUserData (inputDataFile, npoints, nFreq, S11, S21);

}

inputDataFile.close();

//end of get data

inputFile.getline(readStr,80);

strTemp = strtok(readStr," ");

*obj_S11 = atoi(strTemp);

strTemp = strtok(NULL, "\t");

*obj_S21 = atoi(strTemp);

inputFile.getline(readStr,80);

strTemp = strtok(readStr, " ");

n = atoi(strTemp);

/*USER = new double[3*n + n*(n-1)/2 + 8];

BL = new double[3*n + n*(n-1)/2 + 3];

BU = new double[3*n + n*(n-1)/2 + 3]; */

USER[0] = n;

USER[1] = NULL; //to be used as f later

CHAPTER 7. APPENDIX A 54

USER[2] = NULL;

inputFile.getline(readStr,80);

strTemp = strtok(readStr, " ");

USER[3] = atof(strTemp); //RE

inputFile.getline(readStr,80);

strTemp = strtok(readStr, " ");

USER[4] = atof(strTemp); //RL

for (i=5; i< 3*n + n*(n-1)/2 + 8; i++){

inputFile.getline(readStr,80);

strTemp = strtok(readStr," ");

USER[i] = atof(strTemp);

strOpt = strtok(NULL, " ");

if (atoi(strOpt) == 0){

BL[i-5] = USER[i];

BU[i-5] = USER[i];

}

else {

strLower = strtok(NULL, " ");

strUpper = strtok(NULL, " ");

BL[i-5] = atof(strLower);

BU[i-5] = atof(strUpper);

}

CHAPTER 7. APPENDIX A 55

}

}

7.3 Circuit function

This module creates the loop equations for an n-pole filter. It assumes a

model for the input/output loop which is discussed earlier.

This function makes use of a matrix inversion routine which is not provided

here due to copyright purposes.

7.4 Code

#include <complex> #include <math.h>

using std::complex; using std::arg; using std::abs; using

std::polar;

double PI = 3.141592654;

extern int cmatinv(complex<double> **a,int n);

void circfun(double *X, double *USER, complex<double> *S11,

complex<double> *S21) {

int i;

CHAPTER 7. APPENDIX A 56

double w;

int n = USER[0];

double f = USER[1] / 1E9;

double f0 = USER[2]; //not used

double RE = USER[3];

double RL = USER[4];

double Ms = X[0];

double Ls = X[1];

double Cj = X[2]/1E3;

double *R_vector = new double[n];

for (i=0; i<n; i++) {

R_vector[i] = X[i+3];

}

double *L_vector = new double[n];

for (i=0; i<n; i++) {

L_vector[i] = X[i+n+3];

}

double *C_vector = new double[n];

for (i=0; i<n; i++) {

C_vector[i] = X[i+2*n+3]/1E3;

}

CHAPTER 7. APPENDIX A 57

double *M_vector = new double[n*(n-1)/2];

for (i=0; i<n*(n-1)/2; i++) {

M_vector[i] = X[i+3*n+3];

}

int indexM = 0;

complex<double> temp;

int success;

complex<double> **pA;

w = 2*PI*f;

pA = new complex<double>* [n+4];

for(i = 0; i< n+4; ++i) {

pA[i] = new complex<double>[n+4];

}

for(i = 2; i < (n+2); ++i) {

for(int j = i+1; j<(n+2); ++j) {

temp.real(0);

temp.imag(w*M_vector[indexM]);

pA[i][j] = temp;

CHAPTER 7. APPENDIX A 58

pA[j][i] = temp;

indexM++;

}

//we need to do the diagonals here...

temp.real(R_vector[i-2]);

temp.imag(w*L_vector[i-2] - 1/(w*C_vector[i-2]));

pA[i][i] = temp;

}

temp.real(RE);

temp.imag(-1/(w*(Cj)));

pA[0][0] = temp;

temp.real(RL);

temp.imag(-1/(w*(Cj)));

pA[n+3][n+3] = temp;

temp.real(0);

temp.imag(1/(w*(Cj)));

pA[0][1] = temp;

pA[1][0] = temp;

pA[n+2][n+3] = temp;

pA[n+3][n+2] = temp;

temp.real(0);

CHAPTER 7. APPENDIX A 59

temp.imag(w*(Ls) - 1/(w*(Cj)));

pA[1][1] = temp;

pA[n+2][n+2] = temp;

//and finally

temp.real(0);

temp.imag(w*(Ms));

pA[1][2] = -temp;

pA[2][1] = -temp;

pA[n+1][n+2] = temp;

pA[n+2][n+1] = temp;

success = cmatinv(pA, n+4);

S11 = 1.0 - 2(RE)* pA[0][0];

*S21 = 2.0 * pA[n+3][0] * sqrt((RE)*(RL));

}

7.5 Objective function

The objective function is the error function. We are trying to minimize the

difference between the S parameters given by the measurement (industry

measurement/HFSS simulation/etc.) and the S parameters given by the

circuit function.

CHAPTER 7. APPENDIX A 60

Minimization of the objective function will result in a good match for our

final parameters.

7.6 Code

#include <complex> #include <math.h>

using std::complex; using std::arg; using std::abs; using

std::polar;

extern void circfun(double *X, double *USER, complex<double> *S11,

complex<double> *S21);

void __stdcall objfun(int *MODE, int *N, double *X_Array, double

*OBJ_value, double *OBJ_grad,

int *NSTATE, int *IUSER, double *USER)

{

complex<double> S11_circ, S21_circ;

int npoints, optS11, optS21;

double *FIXED;

FIXED = new double[5];

for (int i = 0; i<5; i++){

FIXED[i] = USER[i];

CHAPTER 7. APPENDIX A 61

}

*OBJ_value = 0;

if ((*MODE == 0) || (*MODE == 2)) {

npoints = IUSER[0];

optS11 = IUSER[1];

optS21 = IUSER[2];

for (i = 0; i < npoints; i++)

{

FIXED[1] = USER[5+5*i];

circfun(X_Array, FIXED, &S11_circ, &S21_circ);

*OBJ_value = *OBJ_value +

optS11 * pow(abs(complex<double>

(USER[5 + 5*i + 1], USER[5 + 5*i + 2])

- S11_circ),2) +

+ optS21 * pow(abs(complex<double>

(USER[5 + 5*i + 3], USER[5 + 5*i + 4])

- S21_circ),2);

}

}

}

CHAPTER 7. APPENDIX A 62

7.7 Optimization routine

The optimization routine is called in the main body of the program.

Currently it consists of the E04UCF function which minimizes an error func-

tion. The E04UCF

7.8 Code

#include "c:\FLDLL184z\headers\nagmk18.h" #include "stdafx.h"

#include <complex> #include <math.h> #include <stdio.h> #include

<fstream.h>

using std::complex; using std::arg; using std::abs; using

std::polar;

extern void analyzeInput(ifstream inputFile, int *npoints,

int *obj_S11, int *obj_S21,

double *USER, double *BL, double *BU,

double *nFreq, complex<double> *S11,

complex<double> *S21);

extern void objfunction(double *error, int *npoints,

int *optS11, int *optS21, double *nFreq,

complex<double> *S11_data,

complex<double> *S21_data, double *USER);

extern void __stdcall objfun(int *MODE, int *N, double *X_Array,

CHAPTER 7. APPENDIX A 63

double *OBJ_value, double *OBJ_grad,

int *NSTATE, int *IUSER, double *USER);

void __stdcall E04UDAMIR(int *mode, int *ncnln, int *n, int

*nrowj, int needc[],

double x[], double c[], double cjac[],

int *nstate, int iuser[],

double user[]);

int main(int argc, char* argv[]) {

int i, n, npoints, variables;

int opt_S11, opt_S21;

double MAXUSER[100];

double MAXBL[100], MAXBU[100];

double MAXFREQ[2001];

complex<double> MAXS11[2001];

complex<double> MAXS21[2001];

//e04 crap

int ITER, IFAIL;

int IUSER[4];

int NIWORK, NWORK;

int LDA = 1;

int LDCJ = 1;

int LDR;

CHAPTER 7. APPENDIX A 64

int NCLIN, NCNLN;

double C[1];

double CJAC[1];

double OBJF;

double A[1][1];

NCLIN = 0;

NCNLN = 0;

IFAIL = -1;

if(argc < 1) {

printf("Usage: e04 <data file>\n");

return 0;

}

//read in user data

ifstream inputFile(argv[1]);

analyzeInput (inputFile, &npoints, &opt_S11, &opt_S21,

MAXUSER, MAXBL, MAXBU, MAXFREQ, MAXS11, MAXS21);

inputFile.close();

n = MAXUSER[0];

variables = 3*n + n*(n-1)/2 + 3;

NIWORK = 4*variables;

CHAPTER 7. APPENDIX A 65

NWORK = 25*variables;

double *USER = new double[5 + 5*npoints];

double *BL = new double[variables];

double *BU = new double[variables];

int *ISTATE = new int[variables];

double *OBJGRD = new double[variables];

double *X = new double[variables];

double *CLAMDA = new double[variables];

double *R = new double[variables];

LDR = variables;

int *IWORK = new int[NIWORK];

double *WORK = new double[NWORK];

for (i=0; i<5; i++) {

USER[i] = MAXUSER[i];

}

for (i=5; i<variables+5; i++) {

BL[i-5] = MAXBL[i-5];

BU[i-5] = MAXBU[i-5];

X[i-5] = MAXUSER[i];

}

for (i=0; i<npoints; i++){

USER[5 + 5*i] = MAXFREQ[i];

USER[5 + 5*i + 1] = MAXS11[i].real();

CHAPTER 7. APPENDIX A 66

USER[5 + 5*i + 2] = MAXS11[i].imag();

USER[5 + 5*i + 3] = MAXS21[i].real();

USER[5 + 5*i + 4] = MAXS21[i].imag();

}

IUSER[0] = npoints;

IUSER[1] = opt_S11;

IUSER[2] = opt_S21;

IUSER[3] = variables;

char options[] = "Derivative level = 0";

E04UEF(options, strlen(options));

E04UCF(&variables, &NCLIN, &NCNLN, &LDA, &LDCJ, &LDR,

(double *)A, BL, BU, E04UDAMIR, objfun, &ITER,

ISTATE, C, CJAC, CLAMDA, &OBJF, OBJGRD, R, X,

IWORK, &NIWORK, WORK, &NWORK, IUSER, USER, &IFAIL);

return 0;

}

void __stdcall E04UDAMIR(int *mode, int *ncnln, int *n, int

*nrowj, int needc[],

double x[], double c[], double cjac[],

CHAPTER 7. APPENDIX A 67

int *nstate, int iuser[],

double user[])

{

printf("Mode is %d\n", *mode);

}

Bibliography

[1] Amir Borji, “Approximate models for coaxial cavity filters,” Tech. Rep.,

Dept. of ECE, University of Waterloo, Feb. 2000, part of the first annual

report for the project sponsored by Ericsson Communications, Inc.

[2] Q.J.Zhang and K.C.Gupta, Neural Networks for RF and Microwave

Design, Artech-House, Inc., 2000.

[3] J.W.Bandler, M.A.Ismail, J.E.Rayas-Sanchez, and Q.J.Zhang, “Neuro-

modeling of Microwave Circuits Exploiting Space-Mapping Technology,”

IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2417–2427,

Dec. 1999.

[4] J.W.Bandler, R.M.Biernacki, S.H.Chen, P.A.Grobelny, and

R.H.Hemmers, “Space Mapping Technique for Electromagnetic

Optimization,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12,

pp. 2536–2544, Dec. 1994.

[5] M.Kahrizi, “Accurate and robust methods for synthesis, design op-

timization, and computer parameter estimation of microwave coupled

resonator filters,” Tech. Rep., Dept. of ECE, University of Waterloo,

68

BIBLIOGRAPHY 69

Feb. 2000, part of the first report for the project sponsored by Ericsson

Communications, Inc.

[6] Amir Borji, Dan Busuioc, S.Safavi-Naeini, and S.K.Chaudhuri, “ANN

and EM Based Models for Fast and Accurate Characterization of Exci-

tation Loops in Combline-type Filters,” IEEE Trans. Microwave Theory

Tech., 2002.

[7] P.T. Boggs and W.J. Tolle, “SEquential Quadratic Programming,” Acta

Numerica, pp. 1–100, 1996.

[8] G.L.Matthaei, L.Young, and E.M.T.Jones, Microwave Filters,

Impedance-Matching Networks, and Coupling Structures, Artech-House,

Inc., reprint edition, 1980, chapters 8,9.

[9] D.Baillargeat, S.Verdeyme, M.Aubourg, and P.Guillon, “CAD Applying

the Finite Element Method for Dielectric Resonator Filters,” IEEE

Trans. Microwave Theory Tech., vol. 46, no. 1, pp. 10–17, Jan. 1998.

[10] J.P.Cousty, S.Verdeyme, M.Aubourg, and P.Guillon, “Finite Elements

for Microwave Device Simulation: Application to Microwave Dielectric

Resonator Filters,” IEEE Trans. Microwave Theory Tech., vol. 40, no.

5, pp. 925–932, May 1992.

[11] Amir Borji, Fast Full-wave Electromagnetic Analysis of Multiple Coupled

Cavity Filters, Ph.D. thesis, University of Waterloo, Waterloo, ON, May

2000, PhD Research Proposal.

BIBLIOGRAPHY 70

[12] J.W. Bandler and A.E. Salama, “Functional Approach to Microwave

Postproduction Tuning,” IEEE Trans. Microwave Theory Tech., vol.

33, no. 4, pp. 302–310, April 1985.

[13] L.Young G.L.Matthaei and E.M.T.Jones, Microwave Filters, Impedance

Matching Networks and Coupling Structures, McGraw-Hill Book Com-

pany, 1964.

[14] K.C.Gupta, R.Garg, and R.Chadha, Computer-Aided Design of Mi-

crowave Circuits, Artech-House, Inc., 1981.

[15] N. Balabanian and T.A. Bickart, Electrical Network Theory, John Wiley

and Sons, 1969.

[16] NAG Optimization Group, “E04UCF SQP method user manual,” pp.

1–33, 2000.

