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Abstract

Semidefinite programming is a powerful modeling tool for a wide range of optimization and

feasibility problems. Its prevalent use in practice relies on the fact that a (nearly) optimal solution

of a semidefinite program can be obtained efficiently in both theory and practice, provided that

the semidefinite program and its dual satisfy the Slater condition.

This thesis focuses on the situation where the Slater condition (i.e., the existence of positive

definite feasible solutions) does not hold for a given semidefinite program; the failure of the Slater

condition often occurs in structured semidefinite programs derived from various applications. In

this thesis, we study the use of the facial reduction technique, originally proposed as a theoretical

procedure by Borwein and Wolkowicz, as a preprocessing technique for semidefinite programs.

Facial reduction can be used either in an algorithmic or a theoretical sense, depending on whether

the structure of the semidefinite program is known a priori.

The main contribution of this thesis is threefold. First, we study the numerical issues in

the implementation of the facial reduction as an algorithm on semidefinite programs, and argue

that each step of the facial reduction algorithm is backward stable. Second, we illustrate the

theoretical importance of the facial reduction procedure in the topic of sensitivity analysis for

semidefinite programs. Finally, we illustrate the use of facial reduction technique on several

classes of structured semidefinite programs, in particular the side chain positioning problem in

protein folding.
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Chapter 1

Introduction

Semidefinite programming, an important class of conic programming, is a powerful modelling

tool that has a wide range of applications, see e.g., [5, 12, 22, 88, 90, 98]. In addition to its

modelling power, one factor that contributes to the prevalent use of semidefinite programs is

that they can be solved efficiently, both in theory and practice. Currently, the most popular

algorithms for solving semidefinite programs are interior point methods [3, 65, 101], implemented

by open-source software such as SeDuMi [85], SDPT3 [92], DSDP [10], CSDP [16, 15] and the

SDPA family [42, 43, 100], as well as MOSEK, one of the first commercial software packages that

include an SDP solver.

For the majority of interior point methods in the literature, the theoretical convergence results

rely on the assumption that the semidefinite program (and its dual, if the interior point method

uses both the primal and the dual) satisfies strict feasibility (or the Slater condition), which

facilitates the well-definedness of the central path, an essential notion for the theoretical efficiency

of interior point methods. (On the other hand, there are a small number of algorithms, such as

[39], that provide convergence analysis without the strict feasibility assumption.)

In practice, it cannot be taken for granted that a given semidefinite program must be strictly

feasible. One way to tackle the possible failure of strict feasibility is to reformulate the given

semidefinite program into another semidefinite program, so that both the reformulated semidefi-

nite program and its dual are always strictly feasible. Then the theory of interior point methods

(such as the existence of the central path) remains relevant for the reformulated semidefinite

program, even if the given semidefinite program is not strictly feasible (or even not feasible).

A possible reformulation is to add bound constraints on the variables [10]. Another popular

reformulation is via the homogeneous self-dual embedding method, introduced in [57, 102] and
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further studied in [30, 31, 63, 66, 101, 104]. The idea is to embed the given semidefinite program

into a larger one by adding additional variables, so that the new larger semidefinite program and

its dual are actually the same (hence the name self-dual); then an interior point method is applied

on the new semidefinite program. Implementations of the self-dual embedding technique include

SeDuMi [85] and [26].

In this thesis, we study an alternative way to preprocess semidefinite programs that are not

strictly feasible, via facial reduction. The idea of facial reduction for semidefinite programming

is that, the feasible region of a semidefinite program that is not strictly feasible (especially those

arising from applications) must lie in a proper face of the cone of positive semidefinite matrices;

therefore, we may restrict the semidefinite program to that proper face, allowing for a reduction

in problem size due to the facial structure of the cone of positive semidefinite matrices. The

resultant smaller equivalent semidefinite program can then be solved by standard solvers in a

numerically stable manner.

The facial reduction technique was introduced in [18, 19, 20] for abstract convex programs,

and has been specialized in linear conic programs [70, 86, 95] (see also [62, Section 7] for the dual

version) as well as in SDP [27]. Ramana et al. [74] related the facial reduction on semidefinite

programs with the extended Lagrange-Slater dual, which was introduced in [73]. Extensions and

variants of the facial reduction algorithm exist for partially finite convex programs [61] and for

doubly nonnegative relaxation of the mixed binary nonconvex quadratic optimization problems

[87].

This thesis studies the use of the facial reduction technique as a preprocessing technique

for semidefinite programs that fail the strict feasibility assumption. We are interested in the

implementation of the facial reduction technique in both general semidefinite programs and special

classes of structured semidefinite programs.

1.1 Is facial reduction necessary?

It has been proved that strict feasibility is a generic property for feasible linear conic programs:

Theorem 1.1.1. [37, Theorem 3.2] For almost all problem instances of semidefinite programs in

the form (P) (defined on Page 30), either one of the following holds:

(1) (P) is infeasible; or

(2) (P) is strictly feasible.

2



In this light, one would think that the strict feasibility occurs frequently enough. Nonetheless,

as we shall see shortly, a lot of structured semidefinite programming problems are indeed not

strictly feasible, precisely because of their specific structures. In those cases, one can often

regularize the semidefinite programs and obtain equivalent smaller problems that are strictly

feasible. The solution of such smaller problems naturally takes less time, and are empirically

more numerically stable (see, e.g., Section 9.5).

Even though the existing convergence theory for interior point methods typically depends

on strict feasibility assumption, it does not mean that the software would have problems when

solving a semidefinite program that is not strictly feasible. Nonetheless, in numerical tests it

appears that standard software packages such as SDPT3 [92] and SeDuMi [85] do not always

tackle semidefinite programs that are not strictly feasible (or nearly so) very well (particularly

if the SDP instance has a positive duality gap), see e.g. [27, 49, 96]. In this light, we find it

worthwhile to study the facial reduction technique as an alternative for handling the failure of

strict feasibility.

1.2 Some applications

Semidefinite programming often arises from applications that are specially structured. In the

applications listed below, the special structures of the semidefinite programs allow one to locate

the minimal face of the semidefinite program a priori. Then the semidefinite program can be

facially reduced to become a smaller and more stable problem (in the sense that strict feasibility

is satisfied), prior to being solved by standard solvers.

Applications of facial reduction include:

• sensor network localization [60];

• preprocessing of semidefinite programming relaxation from

– quadratic assignment problem (QAP) [105];

– graph partitioning (GP) problem [99];

– polynomial optimization: specifically, finding sparse sum-of-squares representations of

polynomials [94];

• protein conformation [2, 24].

3



1.3 Facial reduction as a regularization technique and as an al-

gorithm

By facial reduction, we mean either a theoretical regularization or a numerical algorithm.

• As a theoretical regularization technique, facial reduction means rewriting a semidefinite

program using the minimal face of the cone of positive semidefinite matrices containing the

feasible region, to get a smaller equivalent problem.

This regularization procedure is often applicable to structured semidefinite programs arising

from applications, and the minimal face often exposes some additional properties of the

feasible region. For structured semidefinite programs, facial reduction can usually be done

before the use of a standard solver for solving the semidefinite programs.

An example is the semidefinite programming relaxation of the side chain positioning prob-

lem, a combinatorial optimization problem. (See Chapter 9.) Since the semidefinite program

arising from any instance of the side chain positioning problem of fixed size always has the

same feasible region, we can compute the minimal face of the semidefinite program, and

make use of the minimal face to get an equivalent and regularized semidefinite program.

• As a numerical algorithm, facial reduction finds in each iteration a “smaller” face of the

cone of positive semidefinite matrices that contains the feasible region of the given feasible

semidefinite program, by solving an appropriate conic program (which is strictly feasible).

The output of the algorithm is the data for a smaller equivalent semidefinite program that

is strictly feasible.

One may question the necessity of using a facial reduction algorithm to correct the failure of

strict feasibility, when one can use, for instance, self-dual embedding [30, 31, 63, 104, 101]

to ensure that any semidefinite program passed to a standard solver is strictly feasible.

Empirically, SeDuMi often fails even on small scale semidefinite programs that are not

strictly feasible and have positive duality gap, even though theoretically it should not be

the case.

The facial reduction algorithm aims at ensuring that a feasible semidefinite program can be

solved in a numerically stable manner, even though it may take longer aggregate runtime

to use the facial reduction algorithm together with the solution of the facially reduced SDP.

(Naturally, we ask if the facial reduction algorithm does produce a numerically equivalent

problem. We propose an implementation of the facial reduction as an algorithm in Chapter

5, and show in Chapter 6 that each iteration is backward stable.)

4



1.4 Contribution of the thesis

This thesis explores three different aspects of facial reduction.

(1) In Chapters 5 and 6, we propose an implementation of facial reduction as an algorithm.

We study the numerical issues of the implementation, and argue that each iteration of the

facial reduction algorithm proposed is backward stable.

(2) In Chapter 7, we give an example highlighting the theoretical importance of the facial

reduction algorithm. It has been shown [86] that the number of facial reduction iterations

plays an important role in the error bound for linear matrix inequalities. We use this

result to prove a perturbation result on semidefinite programs, that the change in the

optimal value due to a feasible perturbation of the right-hand side of the constraints in a

semidefinite program may also depend on the number of facial reduction iterations.

(3) In Chapters 8 and 9, we illustrate the use of the facial reduction technique on several classes

of structured semidefinite programs, in particular the side chain positioning problem in

protein folding. We obtain a stable semidefinite programming relaxation of the side chain

positioning problem, that can be solved efficiently in numerical tests.

1.5 Organization of the thesis

This thesis has three parts. Part I collects standard results in the literature. Preliminaries on

convex analysis (in Chapter 2) and conic programming (in Chapter 3), as well as the basics

on facial reduction for linear conic programs (in Chapter 4) shall be able to prepare a reader

unfamiliar with the topics for the following chapters.

In Part II, we study the implementation of a facial reduction algorithm for semidefinite pro-

grams. Chapter 5 focuses on the implementation details and the numerical issues, as well as

reports some numerical results on the implementation of the facial reduction algorithm in com-

parison with the solution of semidefinite programs by SeDuMi without preprocessing. (We find

that, empirically, numerical instability occasionally occurs when solving semidefinite programs

that are not strictly feasible with SeDuMi.) In Chapter 6, we prove that one iteration of the

facial reduction algorithm is backward stable.

In Part III, we demonstrate some uses of the facial reduction technique. Chapter 7 studies the

use of facial reduction to provide sensitivity analysis on semidefinite programs. This result relies

5



on an earlier result concerning the error bound for linear matrix inequalities proved by Sturm

[86], which also made use of facial reduction. Chapter 8 gives an overview of classes of problems

that are not strictly feasible and can be regularized by facial reduction. Chapter 9 studies in

detail a class of such problems, the side chain positioning problem, and illustrates how one can

find the minimal face of the feasible region of the semidefinite program. Numerics show that the

use of the facial reduction improves both the runtime and the solution quality.
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Part I

Preliminaries
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Chapter 2

Preliminaries on convex analysis

This chapter provides a summary of relevant notions and results from convex analysis. These can

be found in standard textbooks such as [54] and [79].

Let R denote the set of all real numbers. Let V be a vector space over the reals. An inner

product on V is a map 〈·, ·〉V : V× V→ R that satisfies the following conditions:

(1) 〈x, x〉V ≥ 0 for all x ∈ V, and equality holds if and only if x = 0;

(2) 〈x, y〉V = 〈y, x〉V for all x, y ∈ V; and

(3) 〈αx+ βy, z〉V = α〈x, z〉V + β〈y, z〉V for all α, β ∈ R and x, y, z ∈ V.

A vector space V endowed with an inner product 〈·, ·〉V is called an inner product space, denoted

by (V, 〈·, ·〉V). Define ‖x‖V :=
√
〈x, x〉V for all x ∈ V. The map ‖ · ‖V : V → R is a norm, i.e.,

‖ · ‖V satisfies the following criteria:

(1) ‖x‖V ≥ 0 for all x ∈ V and equality holds if and only if x = 0;

(2) ‖αx‖V = |α|‖x‖V for all α ∈ R; and

(3) ‖x+ y‖V ≤ ‖x‖V + ‖y‖V for all x, y ∈ V. The last criterion is called the triangle inequality .

If (V1, 〈·, ·〉V1), (V2, 〈·, ·〉V2) are inner product spaces, then the direct product of V1 and V2,

i.e., the vector space defined by V1 × V2 :=
{

(x(1), x(2)) : x(1) ∈ V1, x
(2) ∈ V2

}
with

(x(1), x(2)) + λ(y(1), y(2)) := (x(1) + λy(1), x(2) + λy(2))

8



for all (x(1), x(2)), (y(1), y(2)) ∈ V1 × V2 and scalar λ, can be equipped with the standard inner

product 〈(x(1), x(2)), (y(1), y(2))〉V1×V2 := 〈x(1), y(1)〉V1 + 〈x(2), y(2)〉V2 . The Cartesian product of

two nonempty sets S1 ⊆ V1 and S2 ⊆ V2 is defined as the set

S1 × S2 :=
{

(x(1), x(2)) : x(1) ∈ S1, x
(2) ∈ S2

}
⊆ V1 × V2.

For any x ∈ V and δ > 0, define B(x, δ) := {y ∈ V : ‖y − x‖V ≤ δ}. A set S ⊆ V is said to be

open if for all x0 ∈ V, there exists δ > 0 such that B(x0, δ) ⊆ S. A set S is said to be closed if

its complement V\S is open. The interior of a set S ⊆ V is the (inclusion-wise) maximal open

subset of S, denoted by int(S).

The Minkowski sum of two nonempty sets S1 and S2 is S1 +S2 := {s1 + s2 : si ∈ Si, i = 1, 2},
and αS1 := {αs : s ∈ S1} for α ∈ R. When S1 = {s} is a singleton, we write s+ S2 := S1 + S2.

For any nonempty set Y ⊆ V and Y ∈ V, define

dist(Y,Y) := inf
X
{‖Y −X‖V : X ∈ Y} .

2.1 Convex cones

A set K ⊆ V is called a linear subspace of V if αx + βy ∈ K for all x, y ∈ K and α, β ∈ R.

A set K ⊆ V is said to be affine if αx + (1 − α)y ∈ K for all x, y ∈ K and α ∈ R, convex if

αx+ (1− α)y ∈ K for all x, y ∈ K and α ∈ [0, 1], and a cone if αx ∈ K for all x ∈ K and α > 0.

The affine hull and convex hull of a nonempty set S ⊆ V are respectively defined as

aff(S) := {βx+ (1− β)y : x, y ∈ S, β ∈ R} ,

conv(S) := {βx+ (1− β)y : x, y ∈ S, β ∈ [0, 1]} .

A set K ⊆ V is an affine set if and only if K = x + L for some x ∈ K and a linear subspace

L ⊆ V. The dimension of an affine set K = x+L, where L is a linear subspace, is defined as the

dimension of the linear subspace L. The dimension of a nonempty set S is the dimension of the

affine hull aff(S). Several commonly used objects are defined based on their specified dimension.

For instance, an affine set in V with dimension dim(V)− 1 is called a hyperplane, and a cone of

dimension one is called a ray . The relative interior of a nonempty convex set C is the set

ri(C) := {x ∈ C : ∃ ε > 0 B(x, ε) ∩ aff(C) ⊆ C} .
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A nonempty convex set C may have empty interior but ri(C) is always nonempty. If int(C) 6= ∅,

then ri(C) = int(C). We say that a set C is relatively open if ri(C) = C. If C is convex (resp.

conic), then ri(C) is convex (resp. conic) too.1

K is said to be a proper cone if K is a closed convex cone with nonempty interior and K is

pointed , i.e., the lineality space of K, which is defined as K ∩ (−K), equals {0}. A proper cone

K ⊆ V can induce a partial ordering �K on V:

x �K y ⇐⇒ x− y ∈ K,

x �K y ⇐⇒ x− y ∈ int(K).

It is easy to check that �K is indeed a partial order:

• for any x ∈ V, x− x = 0 ∈ K, so x �K x;

• for any x, y ∈ V, if x �K y and y �K x, then x− y ∈ K ∩ (−K) = {0}, so x = y;

• for any x, y, z ∈ V with x �K y and y �K z, we have x − z = (x − y) + (y − z) ∈ K, so

x �K z.

Moreover, when equipped with the partial order �K , V = (V,�K) becomes an ordered vector

space:

• for any x, y, z ∈ V with x �K y, we have (x− z)− (y − z) = x− y ∈ K, so x− z �K y − z;

• for any x, y ∈ V with x �K y, if 0 ≤ α ∈ R, then α(x− y) ∈ K, so αx �K αy.

The dual cone of any set S (with respect to inner product 〈·, ·〉V) is defined as

S∗ := {y ∈ V : 〈y, x〉V ≥ 0, ∀x ∈ S} .

A dual cone is closed, convex and conic (even if S is not). K is said to be self-dual if K∗ = K.

Conic programs often require the variables to lie in a Cartesian product of multiple convex

cones; for this reason we point out a few basic facts about the Cartesian product of sets. For any

pair of nonempty sets S1 ⊆ V1 and S2 ⊆ V2, the dual cone of S1 ×S2 is (S1 ×S2)∗ = S∗1 ×S∗2 . If

S1 and S2 are affine (resp. convex or conic), then their Cartesian product S1 × S2 ⊆ V1 × V2 is

1 We only prove the conic case. Let F be a nonempty conic set, and let Z ∈ ri(F). If α ∈ (0, 1), then

β := 1−α
1−α/2 ∈ (0, 1) and αZ = β

(
1
2
αZ
)

+ (1− β)Z. But Z ∈ ri(F) and 1
2
αZ ∈ F . So αZ ∈ ri(F).

If α > 1, then β := α−1
2α−1

∈ (0, 1) and αZ = β(2αZ) + (1− β)Z. But Z ∈ ri(F) and 2αZ ∈ F . So αZ ∈ ri(F).
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also affine (resp. convex or conic). If S1 and S2 are proper cones, then S1 × S2 is a proper cone

too.

We state a very important result in convex analysis, that two “disjoint” convex sets can be

separated by a hyperplane.

Theorem 2.1.1 (Separation theorem, version 1; Theorem 11.2, [79]). Let C ⊆ V be a nonempty

convex set such that ri(C) = C. Let M ⊆ V be an affine set. If M∩ C = ∅, then there exist

0 6= z ∈ V and β ∈ R such that

〈z, x〉 = β, ∀x ∈M; 〈z, y〉 > β, ∀ y ∈ C.

Theorem 2.1.2 (Separation theorem, version 2; Theorem 11.3, [79]). Let C1, C2 ⊆ V be nonempty

convex sets. If ri(C1) ∩ ri(C2) = ∅, then there exist 0 6= z ∈ V and β ∈ R such that

〈z, x〉 ≥ β ≥ 〈z, y〉 ∀x ∈ C1, y ∈ C2,

and supx∈C1〈z, x〉 > β. (The converse is also true.)

One application of the separation theorem is to establish the bipolar theorem:

Theorem 2.1.3. For any nonempty set K ⊆ V, K is a closed convex cone if and only if K∗∗ = K.

Using Theorem 2.1.3, we can show that the dual cone of a proper cone is also a proper cone.

Proposition 2.1.4. Let K ⊂ V be a proper cone. Then K∗ is also a proper cone.

Proof. K being a convex cone implies that K∗ is a closed convex cone. We need to show that

K∗ has nonempty interior and is pointed. If K∗ has empty interior, then the linear subspace

aff(K∗) 6= V. Hence there exist a nonzero x ∈ (aff(K∗))⊥ ⊆ (K∗)⊥ ⊆ K∗∗∩(−K∗∗) = K∩(−K) by

Theorem 2.1.3. But K is pointed so x must be zero. This contradiction implies that K∗ cannot

have empty interior. To see that K∗ is pointed, pick any x ∈ K∗∩ (−K∗). Then 〈x, y〉V = 0 for all

y ∈ K, i.e., x ∈ K⊥. But K has nonempty interior, so x must be zero. Hence K∗ ∩ (−K∗) = {0},
i.e., K is pointed.

2.1.1 Examples

In this section we review a few well-known examples of finite dimensional inner product spaces

and closed convex cones in these spaces. First we introduce some notations.
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Notation

We adopt the MATLAB notation j : k := {j, j + 1, . . . , k} for integers j < k (so i ∈ j : k means

i ∈ {j, j + 1, . . . , k}). Let Rn be the set of all real n-vectors, and Rm×n be the set of all real

m× n matrices. We denote the identity matrix in Rn×n by I and the matrix of all ones in Rm×n

by J . The transpose of a square matrix X = [Xij ]i,j=1:n ∈ Rn×n is defined as X> := [Xji]i,j=1:n.

We denote the j-th column of a matrix X by X:j and similarly the i-th row of X by Xi:. We

say that a matrix X ∈ Rm×n has orthonormal columns if (X:j)
>X:j = 1 and (X:i)

>X:j = 0 for

all i 6= j ∈ 1 : n, or equivalently, X>X = I. A real square matrix X is said to be an orthogonal

matrix if X>X = I = XX>. We define the trace of a square matrix X to be the sum
∑

j Xjj of

the diagonal entries.

Let Sn ⊂ Rn×n denote the set of all symmetric matrices, i.e., matrices X satisfying X = X>.

Then Sn is a vector subspace of Rn×n. We will often make use of the linear map

diag : Sn → Rn : [Xij ]i,j=1:n 7→ (X11, X22, . . . , Xnn)

and its adjoint Diag := diag∗, which takes a vector x ∈ Rn and forms a diagonal matrix with x

as the diagonal.

We will use ē to denote the vector of all ones of appropriate length, and ej ∈ Rn×n to denote

the j-th standard unit vector, i.e., ej is the j-th column of the n× n identity matrix.

Nonnegative orthant and second-order cone

In Rn (equipped with the usual inner product x>y :=
∑

k xkyk and the induced Euclidean norm

‖x‖ :=
√
x>x), the most common example of a closed convex cone is the nonnegative orthant

Rn+ := {x ∈ Rn : xi ≥ 0, ∀ i = 1 : n}.

If n ≥ 2, another common example is the second-order cone:

Qn :=


α
z

 ∈ Rn : ‖z‖ ≤ α, α ∈ R, z ∈ Rn−1

 .

Both Rn+ and Qn are proper and self-dual cones.

Positive semidefinite cone and copositive cone

We introduce the vector space Sn of n × n real symmetric matrices. In Sn we can define the

positive semidefinite cone and the copositive cone. The positive semidefinite cone will play a

central role in this thesis.
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A square matrix X ∈ Rn×n is said to be symmetric if X = X>. A real symmetric matrix

X is always orthogonally diagonalizable: there exist an orthogonal matrix U ∈ Rn×n and a

diagonal matrix D ∈ Rn×n such that X = UDU>. The factorization UDU> is called the spectral

decomposition of X. The diagonal entries D11, . . . , Dnn are called the eigenvalues of X, and the

vector U:j is called the eigenvector corresponding to eigenvalue Djj , for j ∈ 1 : n. Assuming

D11 ≥ D22 ≥ · · · ≥ Dnn, the function λ : Sn → Rn : X 7→ (D11, D22, . . . , Dnn) is well defined.

In addition, the largest eigenvalue function λmax(X) := maxj {Djj : j ∈ 1 : n} and the smallest

eigenvalue function λmin(X) := minj {Djj : j ∈ 1 : n} are also well-defined. A real symmetric

matrix whose eigenvalues are all nonnegative (resp., all positive) is called a positive semidefinite

matrix (resp., a positive definite matrix). There are many different characterizations of positive

semidefinite matrices (see e.g. [90]). If X = UDU> is the spectral decomposition of a positive

semidefinite matrix X and Dn̄n̄ > 0 = Djj for j ∈ (n̄ + 1) : n, then X = UDU> = PD+P
>,

where

D =


n̄ n−n̄

n̄ D+ 0

n−n̄ 0 0

, D+ =


D11 0 · · · 0

0 D22 · · · 0
...

...
. . .

...

0 0 · · · Dn̄n̄

 , U =
[ n̄ n−n̄

n P Q
]
.

We call the factorization PD+P
> the compact spectral decomposition of X.

We mention a frequently used result for checking the positive definiteness (or semidefiniteness)

of a matrix, using the Schur complement .

Theorem 2.1.5. Let M =

 A B

B> C

 ∈ Ss+t. If A � 0, then the Schur complement of M with

respect to the (1,1)-block A, defined as the matrix C − BA−1B>, is positive semidefinite if and

only if M is positive semidefinite.

Theorem 2.1.5 can be phrased in a more general form, see, e.g.,[22, 103]. More details about

positive semidefinite matrices can be found in, e.g., [22, 90] and [98, Chapter 2].

The set Sn of all real symmetric matrices can be endowed with an inner product. For any

X,Y ∈ Sn, we define

〈X,Y 〉 := tr(XY ) =

n∑
i,j=1

XijYij .

It is easy to check that 〈·, ·〉 is indeed an inner product: for any X ∈ Sn, 〈X,X〉 =
∑n

i,j=1(Xij)
2 is

obviously nonnegative, and equals zero if and only if X = 0. Moreover, for any X,Y, Z ∈ Sn and
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α, β ∈ R, we have 〈X,Y 〉 = 〈Y,X〉 and 〈X,αY +βZ〉 = α〈X,Y 〉+β〈X,Z〉. Therefore, (Sn, 〈·, ·〉)
is an inner product space. We denote the induced norm on Sn by ‖X‖ :=

√
〈X,X〉.

Having endowed Sn with an inner product, we consider some examples of closed convex cones

in Sn. The set of all positive semidefinite matrices forms a convex cone in Sn, and we call this

set the positive semidefinite cone, denoted by Sn+. In addition, we denote by Sn++ the set of all

positive definite matrices, and Sn++ also forms a convex cone in Sn. For any X,Y ∈ Sn, we write

X � Y to mean that X − Y ∈ Sn+ and X � Y to mean that X − Y ∈ Sn++ It is well-known that

Sn+ is a closed convex cone in Sn and int(Sn+) = Sn++. Moreover, Sn+ is self-dual.

The copositive cone Cn ⊂ Sn is defined as the set of all matrices C that satisfy

x>Cx ≥ 0, ∀x ∈ Rn+.

Observe that Sn+ ⊂ Cn and Cn is a closed convex cone. Cn is not self-dual; indeed,

(Cn)∗ =

{
X ∈ Sn : X =

m∑
k=1

λkqkq
>
k for some λ ∈ Rm+ , q1, q2, . . . , qm ∈ Rn+, m ≥ 0 integer

}
and is called the completely positive cone. Dickinson’s thesis [33] provides a very comprehensive

review on the known properties of copositive cones and completely positive cones.

2.2 Faces of a convex set

In this section we study an important notion concerning convex cones: their faces. The im-

portance lies in the fact that they describe a hierarchy of boundary objects relevant in conic

programs. Failure of commonly used constraint qualifications is often equivalent to the feasible

region being contained in a proper face of the convex cone at hand, and knowledge about faces

of that cone is essential for dealing with such situations.

We first define a face of a convex set.

Definition 2.2.1. Let S be a nonempty convex set. A nonempty convex subset F ⊆ S is said to

be a face of S if

x, y ∈ S and αx+ (1− α)y ∈ F for some 0 < α < 1 =⇒ x, y ∈ F .

We write F E S if F is a face of S. A set F is said to be a proper face of S if F 6= S and

F E S, and is denoted by F /S. If z ∈ S satisfies {z} E S, then z is said to be an extreme point

of S. If F E S and dim(F) = dim(S)− 1, then F is called a facet of S. If

F = S ∩ {x ∈ V : 〈a, x〉V = α} and S ⊆ {x ∈ V : 〈a, x〉V ≥ α}
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for some 0 6= a ∈ V and α ∈ R, then F E S and is said to be an exposed face.

In particular, if S is a convex cone, then any one-dimensional face of S is called an extreme

ray. If an extreme ray of S is also an exposed face, then we call that face an exposed ray.

Remark. In many texts (e.g. [12, 79]), the definition of a face allows it to be an empty set. We

adopt the definition from [54, Definition 2.3.6], that a face must be a nonempty set.

We give some basic properties of the faces of convex cones and convex sets.

Proposition 2.2.2. Let K be a convex cone containing 0 and S be a nonempty convex set. Then

the following holds:

1. K is a face of itself, and any face F of K contains 0. Moreover, if K is pointed, then {0}
is a face of K.

2. Let ∅ 6= F ⊆ K be a convex set. F ⊆ K is a face of K if and only if

s ∈ F and 0 �K u �K s =⇒ βu ∈ F ∀β ≥ 0. (2.1)

In particular,

F E K =⇒ F is a convex cone.

3. Let ∅ 6= F ⊆ K be a convex set. F ⊆ K is a face of K if and only if

x, y ∈ K and x+ y ∈ F =⇒ x, y ∈ F . (2.2)

4. If F1,F2 are faces of S, then F1 ∩ F2 is also a face of S.

5. If Fi, Gi are faces of S and Fi E Gi E S for i = 1, 2, then F1 ∩ F2 E G1 ∩ G2.

6. If F1 E F2 and F2 E S, then F1 E S.

7. If F1 ⊆ F2 are nonempty convex subsets of S and F1 E S, then F1 E F2.

8. F is an exposed face of K if and only if F = K ∩ {a}⊥ for some 0 6= a ∈ K∗.

Proof. 1. That K is a face of itself is immediate from the definition of faces. To see that F E K
implies 0 ∈ F , we suppose without loss of generality that F 6= {0}. Let 0 6= x ∈ F . Then

x = 1
2(2x+ 0) and 0, 2x ∈ K. Hence 0 ∈ F by definition of a face.

Suppose that K is pointed. If x, y ∈ K satisfy 1
2(x + y) = 0, then x = −y ∈ −K. Hence

x ∈ K ∩ (−K) = {0}, i.e., x = 0.
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2. Assume that F E K. Let s ∈ F and u, s − u ∈ K. Since K is a convex cone, observe

that s − γu = s − u + (1 − γ)u ∈ K for all γ ∈ [0, 1]. Now we show that βu ∈ F for

all β > 0. Let α = min
{

1
2 ,

1
β

}
∈ (0, 1). Then αβ ≤ 1, so 1

1−α(s − αβu) ∈ K. Hence

α(βu) + (1− α)
(

1
1−α(s− αβu)

)
= s ∈ F , implying that βu ∈ F .

Conversely, suppose that (2.1) holds. Let x, y ∈ K and α ∈ (0, 1) satisfy s := αx+(1−α)y ∈
F . Note that s− (1−α)y = αx ∈ K and (1−α)y ∈ K, so y ∈ F by (2.1). Similarly, x ∈ F
too.

Finally, to see that any face F has to be a cone, fix any u ∈ F . Then 0 ≤K 1
2u ≤K u, and

by (2.1) we have β
(

1
2u
)
∈ F for all β ≥ 0. Therefore βu ∈ F for all β ≥ 0.

3. Assume that F E K. Let x, y ∈ K. Then 2x, 2y ∈ K too. If F 3 x+ y = 1
2(2x+ 2y), then

2x, 2y ∈ F too. But F is a cone, so x, y ∈ F .

Conversely, suppose that (2.2) holds. Let s ∈ F and 0 �K u �K s. Then u, s− u ∈ K and

s = u+ (s−u), so u ∈ F by (2.2). For any β ∈ [0, 1], βu, (1−β)u ∈ K and βu+ (1−β)u =

u ∈ F , so by (2.2) we get βu ∈ F . Similarly, for any β > 1, 1
ββu +

(
1− 1

β

)
0 = u ∈ F so

βu ∈ F . Hence (2.1) holds, i.e., F is a face of K.

4. Let x, y ∈ S be such that αx + (1 − α)y ∈ F1 ∩ F2 for some α ∈ (0, 1). By definition, for

i = 1, 2, αx + (1 − α)y ∈ Fi implies x, y ∈ Fi. Hence x, y ∈ F1 ∩ F2. This shows that

F1 ∩ F2 is a face of S.

5. Suppose x, y ∈ G1∩G2 satisfy αx+(1−α)y ∈ F1∩F2 for some α ∈ (0, 1). Then for i = 1, 2,

αx+ (1−α)y ∈ Fi and x, y ∈ Gi imply that x, y ∈ Fi. Therefore x, y ∈ F1∩F2. This shows

that F1 ∩ F2 E G1 ∩ G2.

6. Let x, y ∈ S satisfy z = αx + (1 − α)y ∈ F1 for some α ∈ (0, 1). Then z ∈ F2 E S so

x, y ∈ F2. But z ∈ F1 E F1 so x, y ∈ F1. This shows that F1 E S.

7. Let x, y ∈ F2 satisfy αx+ (1− α)y ∈ F1 for some α ∈ (0, 1). Since F2 ⊆ S and F1 E S, we

get x, y ∈ F1.

8. If F = K ∩ {a}⊥ where a ∈ K∗, then 〈a, x〉V ≥ 0 for all x ∈ K. Hence F is an exposed

face of K. Conversely, suppose that F is an exposed face of K, and is exposed by the

hyperplane {x : 〈a, x〉V = α}. Then 0 ∈ F implies that α = 0 and F = K ∩ {a}⊥. Also,

K ⊆ {x : 〈a, x〉V ≥ 0} implies that a ∈ K∗.
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More results on faces of convex sets can be found in [6, 7, 8, 9, 50, 54] and [79, Chapter 18].

Here we recall the fact that, given a nonempty convex set S, the set of all relative interiors of the

faces of S forms a partition of S itself.

Theorem 2.2.3 ([79], Theorem 18.2). Let C be a nonempty convex set and let U be the collection

of all relative interiors of nonempty faces of C. Then U is a partition of C, i.e., the sets in U

are disjoint and their union is C. Every relatively open convex subset of C is contained in one

of the sets in U , and these are the maximal relatively open convex subsets of C.

2.2.1 Minimal faces

Now we introduce the notion of minimal face.

Definition 2.2.4. Let K ∈ V be a nonempty convex cone and ∅ 6= S ⊆ K. The minimal face of

K containing S is defined as the set

face(S,K) :=
⋂
{F : F E K, S ⊆ F} .

Remark. In e.g. [13] and [81] for polyhedra, a minimal face of a convex set is defined as a face

that does not contain any other face of that convex set.

We also caution that the notation we use for minimal faces may be used to mean different

objects in the literature. In e.g. [62, 86], for any Z ∈ Sn+, face(Sn+, Z) :=
{
X ∈ Sn+ : 〈X,Z〉 = 0

}
is indeed the conjugate of the minimal face of Sn+ containing Z. (See Definition 2.2.7 for the

definition of the conjugate face.)

By definition, face(S,K) contains S. By Item 4 of Proposition 2.2.2, face(S,K) is indeed a face

of K.

There are a few equivalent conditions for a face of K to minimally contain a set S ⊆ K.

Proposition 2.2.5. Let K be a nonempty convex cone, ∅ 6= S ⊆ K, and F E K. Then the

following are equivalent:

(1) F = face(S,K).

(2) S ⊆ F and S ∩ ri(F) 6= ∅.

(3) ri(conv(S)) ⊆ ri(F).

In particular, face(S,K) = face(s,K) for any s ∈ ri(conv(S)).
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Proof. We first show that (3) implies that S ⊆ F . Fix any y ∈ ri(conv(S)). Let x ∈ S. Then

there exists z ∈ conv(S) such that y = αx+ (1−α)z ∈ ri(conv(S)) ⊆ F E K for some α ∈ (0, 1).

Then x ∈ F by definition of faces. Hence S ⊆ F .

(3) =⇒ (2): We already showed that S ⊆ F . Since S 6= ∅, there exists x ∈ ri(conv(S)) ⊆
ri(F). Hence conv(S) ∩ ri(F) 6= ∅.

(2) =⇒ (1): Fix any F̂ E K with S ⊆ F̂ . We show that F ⊆ F̂ . Let x ∈ conv(S) ∩ ri(F)

and fix any y ∈ F . Since x ∈ ri(F), there exists some z ∈ F such that x = αy+ (1−α)z for some

α ∈ (0, 1). But y, z ∈ K, so x ∈ S ⊆ F̂ E K implies y, z ∈ F̂ . Hence F ⊆ F̂ , and face(S,K) = F .

(1) =⇒ (3): We show that ri(conv(S)) ⊆ ri(face(S,K)). By Theorem 2.2.3, there exists a

unique F̂ E K such that ri(conv(S)) ⊆ ri(F̂). We claim that F̂ = face(S,K). First, ri(conv(S)) ⊆
ri(F̂) implies S ⊆ F̂ , so face(S,K) ⊆ F̂ . Now suppose that F̃ E K contains S. We show that any

x ∈ F̂ lies in F̃ . Indeed, let y ∈ ri(conv(S)) ⊆ ri(F̂). Then there exist z ∈ F̂ and α ∈ (0, 1) such

that y = αx+ (1− α)z. But y ∈ F̃ , so by definition of faces we get x ∈ F̃ too. Consequently, we

get ri(conv(S)) ⊆ ri(face(S,K)).

Finally, for any s ∈ ri(conv(S)), Item (3) indicates that s ∈ ri (face(S,K)), so by Item (2) we

have face(s,K) = face(S,K).

An immediate consequence of Proposition 2.2.5 is that, if a set S ⊆ K contains a relative

interior point of K, then the minimal face containing S has to be the entire cone K.

Corollary 2.2.6. Let K be a convex cone and F E K. Then F ∩ ri(K) 6= ∅ if and only if F = K.

Proof. By Proposition 2.2.5, F ∩ ri(K) 6= ∅ implies K = face(F ,K) = F . Conversely, if F = K,

then F ∩ ri(K) = ri(K) 6= ∅.

2.2.2 Conjugate faces

In linear algebra, given a linear subspace L lying in an inner product space, we can consider the

orthogonal subspace L⊥ of L. Similarly, given a face F of a closed convex cone, we can consider

a particular face of that cone orthogonal to F , which we call the conjugate face.

Definition 2.2.7. Let K be a closed convex cone and let F be a face of K. The conjugate face

of K with respect to F is defined as Fc := F⊥ ∩ K∗.

It is easy to check that F⊥ ∩ K∗ is indeed a face of K∗ if F E K. In fact, for any nonempty

set S ⊆ K, the set S⊥ ∩ K∗ is a face of K∗.
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Proposition 2.2.8. Let ∅ 6= S ⊆ K. Then for any z ∈ ri(conv(S)), S⊥ ∩ K∗ = {z}⊥ ∩ K∗ is a

face of K∗.

Proof. Since S⊥ is a linear subspace of V, S⊥ ∩ K∗ is a closed convex cone. Moreover, z ∈ S
implies S⊥ ∩ K∗ ⊆ {z}⊥ ∩ K∗.

Suppose that u ∈ {z}⊥ ∩ K∗. We show that u ∈ S⊥ ∩ K∗. Fix any z̃ ∈ S. Then there exists

α > 1 such that (1−α)z̃+αz ∈ conv(S) ⊆ K. Then 0 ≤ 〈(1−α)z̃+αz, u〉V = (1−α)〈z̃, u〉V ≤ 0

since α > 1. This means u ∈ S⊥. Hence S⊥ ∩ K∗ = {z}⊥ ∩ K∗.

To see that S⊥∩K∗ is a face of K∗, suppose that x, y ∈ K∗ satisfy u := x+y ∈ {z}⊥∩K∗. Since

z ∈ K, we have 〈z, x〉V ≥ 0 and 〈z, y〉V ≥ 0. Then 〈z, x + y〉V = 0 implies 〈z, x〉V = 0 = 〈z, y〉V.

Hence x, y ∈ {z}⊥ ∩ K∗. This shows that S⊥ ∩ K∗ = {z}⊥ ∩ K∗ is a face of K∗.

An immediate consequence of Proposition 2.2.8 is that the conjugate face of any face of a

convex cone is exposed. In fact:

Corollary 2.2.9. [91, Proposition 3.1, Item 2] Let K be a closed convex cone and let F E K.

Then Fc is an exposed face of K∗. Moreover, Fcc := (Fc)c = F if and only if F is an exposed

face of K.

Proof. Let x ∈ ri(F). Then Fc = {x}⊥ ∩ K∗ is an exposed face of K∗ by Proposition 2.2.8.

If F = Fcc, then F as a conjugate face is exposed. Conversely, suppose that F = {x}⊥ ∩ K
for some 0 6= x ∈ K∗. Then F ⊆ {x}⊥ implies x ∈ F⊥, so 0 6= x ∈ Fc. Fix any 0 6= y ∈ ri(Fc).
Then y − εx ∈ Fc for some small ε > 0. If z ∈ K ∩ {y}⊥, then y − εx ∈ K∗ implies that

0 ≤ 〈z, y − εx〉V = −ε〈z, x〉V ≤ 0, i.e., 〈z, x〉V = 0. Hence K ∩ {y}⊥ ⊆ F . If z ∈ F , then

y ∈ F⊥ ∩ K∗ implies that 〈z, y〉V = 0. Hence F ⊆ K ∩ {y}⊥. Therefore F = K ∩ {y}⊥ and

0 6= y ∈ Fc ⊆ K∗, i.e., F is an exposed face.

Another consequence of Proposition 2.2.8 is that for any nonempty convex set S ⊆ K, S⊥∩K∗

is the conjugate face of the minimal face of K containing S.

Corollary 2.2.10. Let ∅ 6= S ⊆ K. Then (face(S,K))c = S⊥ ∩ K∗. Moreover, if face(S,K) is

an exposed face, then face(S,K) = (S⊥ ∩ K∗)c.

Proof. By Proposition 2.2.5, ri(conv(S)) ⊆ ri (face(S,K)), so for any z ∈ ri(conv(S)),

S⊥ ∩ K∗ = {z}⊥ ∩ K∗ = (face(S,K))⊥ ∩ K∗ = (face(S,K))c ,

by Proposition 2.2.8. The second claim follows from Corollary 2.2.9.
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One way of identifying a smaller face of K containing the feasible region FZPconic
of the conic

program (Pconic) is to find a direction of constancy d ∈ K∗ for the dual (Dconic) and take the

conjugate face {d}⊥ ∩K, which Proposition 2.2.8 has shown to be a face of K. (See Section 4.1.)

More details on conjugate faces can be found in [91].

2.2.3 Examples

In this section we characterize the faces of two well-studied cones, the second-order cone Qn and

the positive semidefinite cone Sn+.

Faces of Qn

In this section, we will show that all the proper faces of Qn are of the form

α
‖x‖

x

 : α ≥ 0

,

where x ∈ Rn−1. In other words, all faces of Qn are extreme rays of dimension 1.

Lemma 2.2.11. Let x ∈ Rn−1. Then the set F :=

α
‖x‖

x

 : α ≥ 0

 is a face of Qn.

Proof. First note that F is a closed convex cone in Rn and a subset of Qn. Let y, z ∈ Qn satisfy

y + z ∈ F , i.e.,

y1 ≥ ‖y2:n‖, z1 ≥ ‖z2:n‖, y1 + z1 = α‖x‖, y2:n + z2:n = αx (2.3)

for some α ≥ 0. We show that y, z ∈ F .

If α‖x‖ = 0, then y1 + z1 = 0, implying y1 = 0 = z1. Hence y = z = 0 ∈ F .

Suppose that α‖x‖ > 0. Since α ≥ 0,

α‖x‖ = ‖y2:n + z2:n‖ ≤ ‖y2:n‖+ ‖z2:n‖ ≤ y1 + z1 = α‖x‖,

implying

0 < ‖y2:n + z2:n‖ = ‖y2:n‖+ ‖z2:n‖, ‖y2:n‖ = y1, and ‖z2:n‖ = z1. (2.4)

Without loss of generality, assume y2:n 6= 0. Then (2.4) implies that z2:n = ξy2:n for some ξ 6= −1

(otherwise y2:n + z2:n = 0, contradicting ‖y2:n + z2:n‖ > 0). It follows from (2.3) and (2.4) that

α‖x‖ = y1 + z1 = ‖y2:n‖+ ‖z2:n‖ = (1 + |ξ|)‖y2:n‖, and αx = y2:n + z2:n = (1 + ξ)y2:n.
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Therefore (1 + |ξ|)‖y2:n‖ = |1 + ξ|‖y2:n‖, implying that ξ ≥ 0.2 Hence (2.4) implies that z1 =

|ξy1| = ξy1, and

y =
α

1 + ξ
x, z = ξy =

αξ

1 + ξ
x ∈ F .

This shows that F /Qn.

So we see that sets like F are extreme rays of Qn. Before we show that they form all the

proper faces of Qn, we prove the following simple lemma.

Lemma 2.2.12. Let F E Qn contain

α
x

 ,

β
y

 with x, y ∈ Rn−1 being linearly independent.

Then F = Qn.

Proof. Note that since x and y are linearly independent,

‖x+ y‖ < ‖x‖+ ‖y‖ ≤ α+ β.

Then

α+ β

x+ y

 ∈ F ∩ int(Qn). By Corollary 2.2.6, we get F = Qn.

We summarize the results of Lemmas 2.2.11 and 2.2.12 for the characterization of faces of Qn.

Theorem 2.2.13. Let F ⊆ Qn. Then F E Qn if and only if F =

α
‖x‖

x

 : α ≥ 0

 for some

x ∈ Rn−1 or F = Qn.

Proof. We already saw from Lemma 2.2.11 that if F =

α
‖x‖

x

 : α ≥ 0

 for some x ∈ Rn−1,

then F E Qn. For the converse, suppose that F E Qn. By Lemma 2.2.12, either

(1) F = Qn, or

(2) F = {0}, or

(3) {0} 6= F ( Qn and for any y, z ∈ F , y2:n and z2:n are linearly dependent.

We first show that if F /Qn, then for any z ∈ F , z1 = ‖z2:n‖. If not, then z1 > ‖z2:n‖ and for any

0 6= w ∈ Qn, z±αw ∈ Qn for any α ∈
(

0, z1−‖z2:n‖
w1+‖w2:n‖

)
. Then 1

2(y+αw) + 1
2(y−αw) = y ∈ F /Qn

2 If 1 + ξ < 0, then 1 + |ξ| = −1− ξ. If ξ < 0, then we get 1 = −1 which is impossible; if ξ ≥ 0, we get 2ξ = −2,

which contradicts the fact that ξ 6= −1. Hence we must have 1 + ξ ≥ 0. This implies that |ξ| = ξ, i.e, ξ ≥ 0.
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implies that y ∈ αw ∈ F . But y, αw ∈ Qn and Qn is a cone, so w ∈ F . Therefore Qn ⊆ F , which

is contradictory. This shows that for any z ∈ F , z1 = ‖z2:n‖.

Now consider Case (3); pick any 0 6= z ∈ F . Since z 6= 0 and z1 = ‖z2:n‖, we have that

z2:n 6= 0. We prove that F = {αz : α ≥ 0}. Since z ∈ F , {αz : α ≥ 0} ⊆ F . Conversely, for any

w ∈ F , we have w2:n = αz2:n for some α ∈ R. By Lemma 2.2.12, w1 = ‖w2:n‖ = |α|‖z2:n‖ = |α|z1.

If α < 0, then z ∈ F implies −αz ∈ F . Hence

F 3 w − αz =

−αz1

αz2:n

− αz =

−2αz1

0

 ,

but −2αz1 > 0, which is absurd. Hence we must have α ≥ 0. This implies that w = αz. Therefore

we get F = {αz : α ≥ 0} =

α
‖z2:n‖

z2:n

 : α ≥ 0

.

Faces of Sn+

In this section we

• characterize all the proper faces of Sn+,

• show that all faces of Sn+ are exposed faces, and

• compute the conjugate faces (i.e., the sets Sn+ ∩ {D}
⊥, where D ∈ Sn+) of Sn+.

Proposition 2.2.14. A nonempty set F ⊂ Sn+ is a face of Sn+ if and only if F = {0} or

F = QSr+Q> for some Q ∈ Rn×r and 0 < r ≤ n.

Proof. Recalling that Sn+ is a pointed cone,3 the set {0} is a proper face of Sn+ by Item 1 of

Proposition 2.2.2.

We show that QSr+Q> is a face of Sn+ for any Q ∈ Rn×r. For any X,Y ∈ Sr+ and α ≥ 0,

αQXQ>+QY Q> = Q(αX+Y )Q>; hence QSr+Q> is a convex cone. To see that QSr+Q> is indeed

a face of Sn+, let X,Y ∈ Sn+ with X+Y = QWQ> for some W ∈ Sr+. Let P be a full column rank

matrix such that ker(Q>) = range(P ). Then Q>P = 0, and 〈X+Y, PP>〉 = 〈QWQ>, PP>〉 = 0

implies that 〈X,PP>〉 = 0 = 〈Y, PP>〉 as X,Y, PP> � 0. Then range(X) ⊆ ker(P>) =

range(Q). This together with X � 0 implies that X ∈ QSr+Q>. Similarly, Y ∈ QSr+Q>.

Now we show that any nonzero face F of Sn+ equals to QSr+Q> for some Q ∈ Rn×r. Let

X ∈ ri(F), and X = QD+Q
> be the compact spectral decomposition of X (with Q ∈ Rn×r and

3If X ∈ Sn satisfies X � 0 and −X � 0, then we must have λmax(X) = λmin(X) = 0. This implies that X = 0.
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D+ ∈ Sr++). We claim that F = QSr+Q>. To see that any QȲ Q> ∈ F for any Ȳ ∈ Sr+, note that

D+ � 0 so we have D+ − αȲ � 0 for sufficiently small α ∈ (0, 1). Since D+ = (D+ − αȲ ) + αȲ

and QD+Q
> ∈ F , we have Q(αȲ )Q> ∈ F . Hence QȲ Q> ∈ F . Conversely, fix any Y ∈ F . Since

X ∈ ri(F), (1+ε)X−εY ∈ F for some small ε > 0. Let P ∈ Rn×(n−r) satisfy ker(Q>) = range(P ).

Then 0 ≤ 〈PP>, (1 + ε)X − εY 〉 = −ε〈PP>, Y 〉 ≤ 0, implying that PP>Y = 0. Therefore

range(Y ) ⊆ ker(P>) = range(Q), implying that Y ∈ QSr+Q>.

Remark. In Proposition 2.2.14, the matrix Q does not have to be of full column rank; nonetheless,

in practice we often pick Q that is of full column rank, or even Q with orthonormal columns. In

fact, let QQR ∈ Rn×rank(Q) have orthonormal columns and satisfy range(QQR) = range(Q); then

QSr+Q> = QQRS
rank(Q)
+ Q>QR.

A direct result of Proposition 2.2.14 is that all the faces of Sn+ are exposed, i.e., they are all

of form Sn+ ∩ {X}
⊥ for some X ∈ Sn+.

Corollary 2.2.15. Let F ⊆ Sn+. Then F is a face of Sn+ if and only if F = Sn+ ∩ {X}
⊥ for some

X ∈ Sn+, and F is a proper face of Sn+ if and only if F = Sn+ ∩ {X}
⊥ for some nonzero X ∈ Sn+.

Proof. We first show that for any X ∈ Sn+, Sn+∩{X}
⊥ is a face of Sn+. If X = 0, then Sn+∩{X}

⊥ =

Sn+. If X ∈ Sn++, then Sn+ ∩ {X}
⊥ = {0} is a proper face of Sn+. Now suppose that X 6= 0 is

not positive definite. Let X =
[
P Q

]D+ 0

0 0

P>
Q>

, where
[
P Q

]
∈ Rn×n is an orthogonal

matrix and D+ ∈ Sn−r+ . Then Sn+ ∩{X}
⊥ = QSr+Q>, which is a proper face of Sn+ by Proposition

2.2.14.

Conversely, observe that Sn+ = Sn+ ∩ {0}
⊥ and {0} = Sn+ ∩ {I}

⊥. Let F E Sn+ be a proper

face. By Proposition 2.2.14, F = QSr+Q> for some Q ∈ Sr+ with orthonormal columns. Let[
P Q

]
∈ Rn×n is an orthogonal matrix. Then PP> ∈ Sn+ and F = Sn+ ∩

{
PP>

}⊥
.

Another consequence of Proposition 2.2.14 is that for any nonempty S ⊆ Sn+ and any invertible

matrix Q ∈ Rn×n, the minimal face of S is “unchanged” under the conjugation by Q ·Q> in the

following sense:

Corollary 2.2.16. Let ∅ 6= S ⊆ Sn+ and Q ∈ Rn×n be invertible. Then Q(face(S, Sn+))Q> =

face(QSQ>,Sn+).

Proof. First observe that for any nonempty convex set F ⊆ Sn+, F E Sn+ if and only if QFQ> E

Sn+. In fact, if F E Sn+, then F = Sn+ or {0}, or F = PSr+P> for some P ∈ Rn×r and 0 < r < n.
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Then QFQ> = Sn+ or {0} or (QP )Sr+(QP )>, so by Proposition 2.2.14 QFQ> E Sn+. Conversely,

if QFQ> E Sn+, then F = Q−1(QFQ>)Q−> E Sn+.

Now observe that

Q(face(S,Sn+))Q> =
{
QXQ> ∈ Sn : X ∈ F , ∀F E Sn+ s.t. S ⊆ F

}
=
{
Y ∈ Sn : Y ∈ QFQ>, ∀F E Sn+ s.t. S ⊆ F

}
=
{
Y ∈ Sn : Y ∈ F , ∀F E Sn+ s.t. QSQ> ⊆ F

}
= face(QSQ>, Sn+).

Therefore Q(face(S,Sn+))Q> = face(QSQ>, Sn+).

In fact, the result of Corollary 2.2.16 also holds if Q has orthonormal columns.

Proposition 2.2.17. Let ∅ 6= S ⊆ Sr+ and Q ∈ Rn×r have orthonormal columns. Then

Q(face(S, Sr+))Q> = face(QSQ>,Sn+).

Proof. By Proposition 2.2.5, there exist ε > 0 and X ∈ S such that

{Y ∈ Sr : ‖Y −X‖F ≤ ε} ∩ aff(face(S, Sr+)) ⊆ face(S, Sr+). (2.5)

Let X̂ := QXQ> ∈ QSQ>. We show that X̂ ∈ ri
(
Q(face(S,Sr+))Q>

)
. Indeed, pick any Ŷ ∈ Sn

satisfying

‖Ŷ − X̂‖F ≤ ε, Ŷ ∈ aff
(
Q(face(S, Sr+))Q>

)
= Q

(
aff(face(S, Sr+))

)
Q>. (2.6)

Then Ŷ = QY Q> for some Y ∈ aff(face(S,Sr+)). Moreover, ‖Y − X‖F = ‖Ŷ − X̂‖F ≤ ε. By

(2.5), we get Y ∈ face(S,Sr+). Therefore Ŷ = QY Q> ∈ Q(face(S,Sr+))Q>. Since Ŷ satisfying

(2.6) is arbitrary, we get that X̂ ∈ ri
(
Q(face(S, Sr+))Q>

)
∩QSQ>. Since Q(face(S, Sr+))Q> is a

face of Sn+, by Proposition 2.2.5 we get that Q(face(S, Sr+))Q> = face(QSQ>,Sn+).

Using the fact that all the nonzero faces of Sn+ are of the form QSr+Q> for some full rank

matrix Q ∈ Rn×r, we can prove a simple result that any two matrices in the relative interior of

a set S ⊆ Sn+ have the same rank.

Corollary 2.2.18. Let S ⊆ Sn+ be nonempty convex. Then all matrices in ri(S) have the same

rank and are the maximum-rank elements of S.

24



Proof. The claim immediately holds if S = {0}. Suppose that S 6= {0}. By Proposition 2.2.14,

there exists a full column rank matrix Q ∈ Rn×r (with r ≤ n) such that face(S,Sn+) = QSr+Q>.

In particular, any matrix in S is of rank at most r. Now fix any X,Y ∈ ri(S). By Proposition

2.2.5, X,Y ∈ ri(QSr+Q>) = QSr++Q
>. Hence both X,Y are of rank r.

Remark. The maximum rank of elements in a convex subset S of Sn+ can be found using the

information on the minimal face of Sn+ containing S. Also, all the matrices in the relative interior

of the set of feasible/optimal solutions of an SDP (to be introduced in the next chapter) have the

same rank.

Now we give the explicit expression of the conjugate face and the dual cone of a proper face

F = QSr+Q> E Sn+, where 0 < r < n and
[
P Q

]
∈ Rn×n is an orthogonal matrix. Indeed,

(QSr+Q>)c = PSn−r+ P> and (QSr+Q>)∗ =
{
X ∈ Sn : Q>XQ ∈ Sr+

}
.

Faces of Cartesian products of convex cones

This example is a brief discussion on the Cartesian products of convex cones, which are often

encountered in practice. We take note of the fact that the faces of a Cartesian product of pointed

convex cones are the same as the Cartesian products of the faces of those convex cones.

Proposition 2.2.19. Let K1, K2 be convex cones containing 0. Then F E K1 ×K2 if and only

if F = F1 ×F2 for some faces F1 E K1 and F2 E K2.

Proof. Suppose F E K1 ×K2. Define

F1 :=
{
x(1) ∈ K1 : (x(1), 0) ∈ F

}
,

F2 :=
{
x(2) ∈ K2 : (0, x(2)) ∈ F

}
.

Then F1 and F2 are convex sets and contain 0 by Item 1 of Proposition 2.2.2. We show that

F1 E K1. Let x(1), y(1) ∈ K1 satisfy x(1) + y(1) ∈ F1. Then (x(1), 0) + (y(1), 0) ∈ F . But

(x(1), 0), (y(1), 0) ∈ K (as 0 ∈ K2), so (x(1), 0), (y(1), 0) ∈ F . Hence x(1), y(1) ∈ F1. This shows

that F1 E K1. Similarly, F2 E K2. Next, we need to show that F = F1 × F2. If x(1) ∈ F1 and

x(2) ∈ F2, then (x(1), 0), (0, x(2)) ∈ F , so (x(1), x(2)) = (x(1), 0) + (0, x(2)) ∈ F , i.e., F1 ×F2 ⊆ F .

Conversely, if (x(1), x(2)) ∈ F ⊆ K1 × K2, then (x(1), 0), (0, x(2)) ∈ K1 × K2. Hence (x(1), x(2)) =

(x(1), 0) + (0, x(2)) implies that (x(1), 0), (0, x(2)) ∈ F , so x(1) ∈ F1 and x(2) ∈ F2. This shows

that F ⊆ F1 × F2. Therefore F E K1 × K2 implies that F is a Cartesian product of some faces

of K1 and K2.
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Conversely, suppose that F1 E K1 and F2 E K2. Let (x(1), x(2)), (y(1), y(2)) ∈ K1 ×K2 satisfy

(x(1), x(2)) + (y(1), y(2)) ∈ F1 ×F2. Then

x(1), y(1) ∈ K1, x
(1) + y(1) ∈ F1 =⇒ x(1), y(1) ∈ F1,

and similarly, x(2), y(2) ∈ F2. Hence (x(1), x(2)), (y(1), y(2)) ∈ F1 × F2. This shows that F1 × F2

is indeed a face of K1 ×K2.

Of interest is also the minimal faces of convex sets contained in a Cartesian product of convex

cones. By Proposition 2.2.19, we know that such minimal faces are Cartesian products of faces

in the smaller cones. In fact, they are minimal faces of the projection of the convex sets.

Proposition 2.2.20. Let Ki ⊆ Vi be a convex cone for i = 1, 2, and let ∅ 6= S ∈ K1 × K2 be a

convex set. Define

S1 :=
{
x̃(1) ∈ V1 : (x̃(1), x(2)) ∈ S for some x(2) ∈ V2

}
,

S2 :=
{
x̃(2) ∈ V2 : (x(1), x̃(2)) ∈ S for some x(1) ∈ V1

}
.

Then S1 and S2 are convex sets, and

face(S,K1 ×K2) = F1 ×F2, where Fj = face(Sj ,Kj) for j = 1, 2.

Proof. That S1 and S2 are convex sets is immediate.4 By Proposition 2.2.19, face(S,K1 ×K2) =

F1 × F2 for some Fj E Kj , j = 1, 2. Then S1 ⊆ F1
5 implies that face(S1,K1) ⊆ F1. We show

that F1 = face(S1,K1). By Proposition 2.2.5,

∅ 6= S ∩ ri(F1 ×F2) = S ∩ (ri(F1)× ri(F2)) ,

implying that there exists (x(1), x(2)) ∈ S such that x(j) ∈ Sj ∩ ri(Fj) for j = 1, 2. Hence

Sj ∩ ri(Fj) 6= ∅, i.e., Fj = face(Sj ,Kj) for j = 1, 2 by Proposition 2.2.5.

4 Let x̃(1), ỹ(1) ∈ S1 and α ∈ [0, 1]. Then there exist x(2), y(2) such that (x̃(1), x(2)), (ỹ(1), y(2)) ∈ S. By convexity,

(αx̃(1) + (1− α)ỹ(1), αx(2) + (1− α)y(2) ∈ S, so αx̃(1) + (1− α)ỹ(1) ∈ S1.
5 For any x̃(1) ∈ S1, (x̃(1), x(2)) ∈ S ⊆ F , so x̃(1) ∈ F1.
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Chapter 3

Preliminaries on conic programming

In this chapter, we introduce some basic properties of conic programs relevant in this thesis,

and occasionally discuss semidefinite programs as a special case. More comprehensive studies on

semidefinite programming can be found in e.g., [5, 12, 22, 88, 90, 98].

A (linear) conic program is an optimization problem of the form

vPconic = sup
y

{
b>y : C −A∗y ∈ K

}
, (Pconic)

where (V, 〈·, ·〉V) is a finite dimensional inner product space, A : V→ Rm is a linear map, b ∈ Rm,

C ∈ V, and {0} 6= K ⊆ V is a nonempty closed convex cone.

The conic program (Pconic) is said to be feasible if there exists y ∈ Rm such that C−A∗y ∈ K
and infeasible if no such y exists. Any y ∈ Rm satisfying Z := C − A∗y ∈ K is called a

feasible point of (Pconic), and Z is called a feasible slack of (Pconic). More specifically, (Pconic)

is said to be asymptotically feasible if there exist sequences {Z(k)}k ⊂ K and {y(k)}k ⊂ Rm

such that Z(k) + A∗y(k) → C as k → ∞. (Observe that if (Pconic) is feasible, then (Pconic)

is asymptotically feasible.) Furthermore, (Pconic) is said to be weakly infeasible if (Pconic) is

infeasible but asymptotically feasible, and strongly infeasible if (Pconic) is not asymptotically

feasible. We will further discuss asymptotic feasibility in Section 7.1.

We say (Pconic) is unbounded if vPconic = +∞, i.e., there exists a sequence
{
y(k)

}
k
⊂ Rm

such that C − A∗y(k) ∈ K for all k and limk b
>y(k) = +∞. We take vPconic = −∞ if (Pconic)

is infeasible. We say that (Pconic) is solvable if its optimal value vPconic is attained , i.e., if there

exists y ∈ Rm such that C −A∗y ∈ K and b>y = vPconic .

If b /∈ range(A), then (Pconic) is unbounded whenever (Pconic) is feasible. To rule out this

scenario, we impose the following assumption when studying the conic program (Pconic):
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Assumption 3.1. There exists some X̆ ∈ K∗ such that A(X̆) = b.

Since replacing A by an onto linear map Ã with range(A∗) = range(Ã∗) does not change the

optimal value of (Pconic), we assume without loss of generality that A itself is onto:

Assumption 3.2. The linear map A is onto.

Under Assumption 3.2, A∗y 6= 0 for all y 6= 0, and

σmin(A∗) := min
‖y‖=1

‖A∗y‖V > 0. (3.1)

The optimization problem

vDconic = inf
X
{〈C,X〉V : A(X) = b, X ∈ K∗} (Dconic)

is often associated with the general conic program (Pconic), and is called the dual of (Pconic). We

will explain in Section 3.2 the relationship between this dual program and (Pconic). We typically

call the two programs (Pconic)-(Dconic) a primal-dual pair .

We define the following notation for the feasible regions of (Pconic) and (Dconic):

FyPconic
:= {y ∈ Rm : C −A∗y ∈ K} ,

FZPconic
:= {Z ∈ V : Z = C −A∗y ∈ K for some y ∈ Rm} ,

FDconic := {X ∈ V : A(X) = b, X ∈ K∗} .

Having introduced the basic notation, we outline the organization of this chapter. We first

introduce some important classes of conic programs that are often seen in practice in Section 3.1.

In Section 3.2, we review the duality theory for (Pconic), including the strong duality theorem

(Theorem 3.3.3). In Section 3.3, we introduce the Slater condition, also known as the strict

feasibility, which is commonly assumed to hold for both (Pconic) and (Dconic) to ensure desirable

properties. We discuss the consequences and equivalent conditions of the Slater condition.

3.1 Important classes of conic programs

The conic program (Pconic) generalizes several classes of important optimization problems:

• linear programs (LP), with V = Rn and K = Rn+;

• second order cone programs (SOCP), with V = Rn and K = Qn1 ×Qn2 × · · · ×Qnk , where

the positive integers n1, n2, . . . , nk sum to n;
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• semidefinite programs (SDP), with V = Sn and K = Sn+;

• copositive programs (CoP). with V = Sn and K = Cn; and

• mixed conic programs.

In the following we introduce each of these classes of problems, with emphasis on SDP.

Linear programs

A linear program (LP) is an optimization problem over the nonnegative orthant. A primal-dual

pair of LP is typically of the form

vPLP
:= max

y

{
b>y : c−A>y ≥ 0

}
, (PLP)

vDLP
:= min

x

{
c>x : Ax = b, x ≥ 0

}
, (DLP)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

Linear programs enjoy a very important property: as long as the optimal value vPLP
is finite,

it is attained and equals to the dual optimal value vDLP
, which is also attained. We state this

classical result, which can be found in many textbooks, e.g., [93, Theorem 3.4, Theorem 5.2].

Theorem 3.1.1. The linear program (PLP) is either infeasible (i.e., there exists no y satisfying

c − A>y ≥ 0), or unbounded (i.e., vPLP
= +∞), or solvable (i.e., vPLP

= b>ȳ for some ȳ ∈ Rm

satisfying c − A>ȳ ≥ 0). If (PLP) is solvable, then its dual program (DLP) is also solvable and

vPLP
= vDLP

.

The first part of Theorem 3.1.1 is part of what is commonly called the fundamental theorem

of linear programming, and the second part of Theorem 3.1.1 is commonly known as the strong

duality theorem of linear programming.

Second order cone programs

A second order cone program (SOCP) is an optimization problem over K = Qn1 ×Qn2 × · · ·Qnk

of second order cones. (Note that K is self-dual.) A primal-dual pair of SOCP is typically of the

form

vPSOCP
:= sup

y

{
b>y : z = c−A>y ∈ K

}
, (PSOCP)

vDSOCP
:= inf

x

{
c>x : Ax = b, x ∈ K

}
, (DSOCP)
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where A = [A1, A2, . . . , Ak] ∈ Rm×(n1+n2+...+nk), b ∈ Rm and c = (c1; c2; . . . ; ck) ∈ Rn1+n2+...+nk .

(See, e.g., [4] for further details on SOCP.)

Semidefinite programs

A semidefinite program (SDP) is an optimization problem over the cone of positive semidefinite

matrices. LP and SOCP are both special cases of SDP. A primal-dual pair of (linear) SDP is

typically of the form

vP := sup
y

{
b>y : C −A∗y � 0

}
, (P)

vD := inf
X
{〈C,X〉 : A(X) = b, X � 0} , (D)

where

A : Sn → Rm : X 7→


〈A1, X〉

...

〈Am, X〉

 , A1, . . . , Am ∈ Sn

is a linear map, A∗y :=
∑m

j=1 yjAj is the adjoint of A (with respect to the inner product 〈·, ·〉),
b ∈ Rm and C ∈ Sn.

Under Assumption 3.1, X ∈ Sn is feasible for (D) if and only if X = X̂ + V∗v � 0 for some

v ∈ Rs, where V : Sn → Rs is a linear map with range(V∗) = ker(A). Hence (D) equals

〈C, X̂〉+ inf
v

{
(V(C))>v : X̂ + V∗v � 0

}
,

which is in the same form as (P).

We define the following notation for the feasible regions of (P) and (D):

FyP := {y ∈ Rm : C −A∗y � 0} ,

FZP := {Z ∈ Sn : Z = C −A∗y � 0 for some y ∈ Rm} ,

FD := {X ∈ Sn : A(X) = b, X � 0} .

Copositive programs

A copositive program (CoP) is an optimization problem over the copositive cone Cn. A primal-dual

pair of CoP is typically of the form

vPCoP
:= sup

y

{
b>y : C −A∗y ∈ Cn

}
, (PCoP)

vDCoP
:= inf

X
{〈C,X〉 : A(X) = b, X ∈ (Cn)∗} , (DCoP)
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where A : Sn → Rm is a linear map, b ∈ Rm and C ∈ Sn. Observe that since Cn is not self-dual,

the dual program (DCoP) optimizes over the completely positive cone, which is different from the

copositive cone.

(See, e.g., [33] and [5, Chapter 8] for further details on copositive programming.)

Mixed conic programs

In practice, the inner product space V and the cone K are often Cartesian products, i.e., V =

V1 × · · · ×Vk and K = K1 ×K2 × · · · ×Kk, where Vj is an inner product space and Kj ⊆ Vj is a

nonempty closed convex cone; and often Ki is one of Rni , Qni or Sni+ . A typical primal-dual pair

of mixed conic programs is of the form

vPm := sup
y

{
b>y : C −A∗y ∈ K1 ×K2 × · · · × Kk

}
(Pm)

= sup
y,Z(1),...,Z(k)

{
b>y : Z(j) = C(j) − (A(j))∗y ∈ Kj , ∀ j ∈ 1 : k

}
,

vDm := inf
X
{〈C,X〉V : A(X) = b, X ∈ K∗1 ×K∗2 × · · · × K∗k} (Dm)

= inf
X(1),...,X(k)


k∑
j=1

〈C(j), X(j)〉Vj :
k∑
j=1

A(j)(X(j)) = b, X(j) ∈ K∗j , ∀ j = 1 : k

 ,

where

A : V1 × · · · × Vk → Rm : (X(1), . . . , X(k)) 7→
k∑
j=1

A(j)(X(j)),

A(j) : Vj → Rm is a linear map, b ∈ Rm, and C = (C(1), . . . , C(k)) ∈ V1 × · · · × Vk.

3.2 Duality theory

A common strategy for estimating vPconic is to get an upper bound via the Lagrangian. The

Lagrangian of (Pconic) is a function L : Rm × V→ R defined by

L(y,X) = b>y + 〈X,C −A∗y〉V = (b−A(X))>y + 〈C,X〉V.

Now note that for all X ∈ K∗,

vPconic ≤ sup
y

L(y,X) =

〈C,X〉V if A(X) = b,

+∞ otherwise.
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Therefore we get that vPconic ≤ vDconic , where

vDconic = inf
X
{〈C,X〉V : A(X) = b, X ∈ K∗}

is called the Lagrangian dual of (Pconic).

In the following sections we outline some important notions associated with conic programs:

(1) subspace form, (2) weak and strong duality, and (3) strict complementarity. Blekherman et

al. [12] gives a very good list of issues concerning general conic programs.

3.2.1 Subspace form

We first discuss the subspace form for SDP. The primal-dual pair of conic programs (Pconic)-

(Dconic) are often expressed in terms of the explicit algebraic description of the linear subspace

L := range(A∗); for instance, in SDP, we use the matrices A1, . . . , Am. It is often useful to

rewrite (Pconic)-(Dconic) in subspace form, which is independent of the algebraic description, when

studying the theoretical aspects of the conic programs.

Let (X̃, ỹ, Z̃) satisfy the linear equations A(X̃) = b, C −A∗ỹ = Z̃. Then

sup
y

{
b>y : C −A∗y ∈ K

}
= sup

y

{
〈X̃,A∗y〉V : C −A∗y ∈ K

}
= sup

y,Z

{
〈X̃, C − Z〉V : Z = C −A∗y ∈ K

}
= 〈X̃, C〉V − inf

Z

{
〈X̃, Z〉V : Z ∈ (C + range(A∗)) ∩ K

}
,

and

inf
X
{〈C,X〉V : A(X) = b, X ∈ K∗} = inf

X

{
〈C,X〉V : X ∈ (X̃ + ker(A)) ∩ K∗

}
= inf

X

{
〈Z̃ +A∗ỹ, X〉V : X ∈ (X̃ + ker(A)) ∩ K∗

}
= b>ỹ + inf

X

{
〈Z̃,X〉V : X ∈ (X̃ + ker(A)) ∩ K∗

}
.

Using the fact that C + L = Z̃ + L, we have

vPconic = 〈X̃, C〉V − inf
Z

{
〈X̃, Z〉V : Z ∈ (Z̃ + L) ∩ K

}
, (3.2a)

vDconic = b>ỹ + inf
X

{
〈Z̃,X〉V : X ∈ (X̃ + L⊥) ∩ K∗

}
. (3.2b)

We call the symmetric primal-dual pair (3.2a)-(3.2b) the subspace form for (Pconic)-(Dconic). In

the literature (e.g. [62, 68, 86, 91]...) the subspace form is often used in place of (Pconic)-(Dconic)

in the study of the properties of the feasible regions and their relationship to strong duality,
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because those properties are often intrinsic, i.e., independent of algebraic expression of the linear

map A and the subspace form liberates those properties from being dependent on a particular

choice of algebraic description.

3.2.2 Weak and strong duality

As a result of the derivation of the Lagrangian dual (Dconic), we obtain the weak duality theorem:

Theorem 3.2.1 (Weak duality theorem). If y is feasible for (Pconic) and X is feasible for (Dconic),

then b>y ≤ 〈C,X〉V. In particular, vPconic ≤ vDconic.

The discrepancy between the primal and dual optimal value, i.e., the difference vDconic−vPconic ,

is called the duality gap. More generally, given a primal feasible solution (y, Z) of (Pconic) and

a dual feasible solution X of (Dconic), we define their duality gap as the difference in objective

values:

duality gap between (y, Z) and X := 〈C,X〉V − b>y = 〈X,Z〉V.

By the weak duality theorem, the duality gap is always nonnegative. Since the dual program

(Dconic) is set up to provide an upper bound on the primal optimal value vPconic , intuitively

(Dconic) is most useful when its optimal value vDconic equals to vPconic , i.e., there is a zero duality

gap. Strong duality is said to hold for (Pconic) if vPconic = vDconic and (Dconic) has an optimal

solution. If strong duality holds for (Pconic), then X ∈ V is an optimal solution if and only if

there exist y ∈ Rm and Z ∈ V such that the following system holds:

Z = C −A∗y, Z ∈ K, (dual feasibility)

A(X) = b, X ∈ K∗, (primal feasibility)

〈X,Z〉V = 0. (complementary slackness)

(3.3)

While (3.3) is sufficient (but not always necessary) for a primal feasible solution (y, Z) and dual

feasible solution X to be optimal, respectively, for (Pconic) and (Dconic), the necessity of (3.3)

does hold for a primal-dual pair of optimal solutions where there is a zero duality gap between

them.

Proposition 3.2.2. Let (X, y, Z) ∈ Sn × Rm × Sn. Then the following are equivalent.

(1) (X, y, Z) satisfies (3.3).

(2) X is optimal for (Pconic), (y, Z) is optimal for (Dconic) and vPconic = vDconic.

33



Proof. If Item (1) holds, then (y, Z) is feasible for (Pconic) and X is feasible for (Dconic). Moreover,

the duality gap is zero (because 〈C,X〉V − b>y = 〈X,Z〉V = 0), so by the weak duality theorem

(Theorem 3.2.1), we have vPconic = b>y = 〈C,X〉V = vDconic . Hence Item (2) holds.

Conversely, if Item (2) holds, then 〈X,Z〉V = vPconic − vDconic = 0. Hence Item (1) holds.

A common sufficient condition for strong duality is the Slater condition together with finite

optimal value, see Section 3.3 below.

3.2.3 Strict complementarity

In this section, we are concerned with the optimal solutions of (Pconic) and (Dconic) when there

is a zero duality gap.

Define

Oconic := {(X, y, Z) ∈ V× Rm × V : (X, y, Z) satisfies (3.3)} ,

OyPconic
:= {y ∈ Rm : (X, y, Z) ∈ Oconic for some X,Z} ,

OZPconic
:= {Z ∈ V : (X, y, Z) ∈ Oconic for some X, y} ,

ODconic := {X ∈ V : (X, y, Z) ∈ Oconic for some y, Z}

to be the sets of primal-dual solutions of (Pconic)-(Dconic) with zero duality gap. It is immediate

that

Oconic = {(X, y, Z) ∈ V× Rm × V : Z = C −A∗y, Z ∈ K,

A(X) = b, X ∈ K∗,

〈C,X〉V − b>y = 0
}

=
{

(X, y, Z) : Z = C −A∗y, A(X) = b, 〈C,X〉V − b>y = 0
}
∩ (K∗ × Rm ×K)

is the intersection of an affine subspace and a closed convex cone, so Oconic is a convex set. As

mentioned in the previous section, (y, Z) being optimal for (Pconic) and X being optimal for

(Dconic) do not imply that (X, y, Z) ∈ Oconic since there may be a nonzero duality gap. Note that

any Z ∈ OZPconic
and X ∈ ODconic are complementary , i.e., 〈X,Z〉V = 0.

We first define maximally complementary solutions.

Definition 3.2.3. Feasible primal-dual solutions Z̄ ∈ FZPconic
and X̄ ∈ FDconic are maximally

complementary if Z̄ ∈ ri(OZPconic
) and X̄ ∈ ri(ODconic).
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Note that any maximally complementary solutions (Z̄, X̄) not only are optimal for (Pconic)-

(Dconic), but also have a zero duality gap. Moreover, by Proposition 2.2.5, Z̄ ∈ ri(face(OZPconic
,K))

and X̄ ∈ ri(face(ODconic ,K∗)). The complementarity of Z̄ and X̄ implies that face(OZPconic
,K) and

face(ODconic ,K∗) forms a complementarity partition of K,K∗ [91]:

Proposition 3.2.4. Suppose that Oconic 6= ∅. Then face(ODconic ,K∗) ⊆
(
face(OZPconic

,K)
)c

and

face(OZPconic
,K) ⊆ (face(ODconic ,K∗))

c.

Proof. Let Z̄ ∈ FZPconic
and X̄ ∈ FDconic be maximally complementary solutions. Then by

Proposition 3.2.2, any X ∈ ODconic must satisfy 〈X, Z̄〉V = 0, so ODconic ⊆ K∗ ∩
{
Z̄
}⊥

. But

Z̄ ∈ ri(OZPconic
) ⊆ ri

(
face(OZPconic

,K)
)
, so

ODconic ⊆ K
∗ ∩
{
Z̄
}⊥

= K∗ ∩ face(OZPconic
,K)⊥ =

(
face(OZPconic

,K)
)c
,

and similarly

OZPconic
⊆ (face(ODconic ,K

∗))c .

Hence face(ODconic ,K∗) ⊆
(
face(OZPconic

,K)
)c

and face(OZPconic
,K) ⊆ (face(ODconic ,K∗))

c.

In general, however, face(OZPconic
,K) may be a proper face of

(
face(OZPconic

,K)
)c

; in that case,

(Pconic)-(Dconic) would not have strictly complementary solutions, whose existence is often as-

sumed in the convergence proofs of interior point methods.

Definition 3.2.5. Feasible primal-dual solutions Z̄ ∈ FZPconic
and X̄ ∈ FDconic are strictly com-

plementary if they are maximally complementary and Z̄ ∈ ri(X̄⊥ ∩K) or X̄ ∈ ri(Z̄⊥ ∩K∗) holds.

The existence of strictly complementary solutions is equivalent to face(OZPconic
,K), face(ODconic ,K∗)

being strict complementary partition of K,K∗:

Proposition 3.2.6. Any maximally complementary solutions are strictly complementary solu-

tions if and only if
(
face(OZPconic

,K)
)c

= face(ODconic ,F∗) or (face(ODconic ,K∗))
c = face(OZPconic

,F)

holds.

Proof. Suppose that
(
face(OZPconic

,K)
)c

= face(ODconic ,F∗), and let Z̄ ∈ FZPconic
and X̄ ∈ FDconic

be any maximally complementary solutions. Then Z̄ ∈ ri(OPconic) implies that
(
face(OZPconic

,K)
)c

={
Z̄
}⊥ ∩ K∗ and

X̄ ∈ ri(ODconic) ⊆ ri (face(ODconic ,F
∗)) = ri

({
Z̄
}⊥ ∩ K∗) .

Similarly, (face(ODconic ,K∗))
c = face(OZPconic

,F) implies that Z̄ ∈ ri
({
X̄
}⊥ ∩ K).
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Conversely, suppose that X̄ ∈ ri
({
Z̄
}⊥ ∩ K∗) = ri

((
face(OZPconic

,K)
)c)

. Then X̄ ∈ ODconic ∩
ri
((

face(OZPconic
,K)

)c)
, implying that

(
face(OZPconic

,K)
)c

= face(ODconic ,K∗) by Proposition 2.2.5.

Similarly Z̄ ∈ ri
({
X̄
}⊥ ∩ K) implies that (face(ODconic ,K∗))

c = face(OZPconic
,F).

We close this section by stating a classical result on LP, that if an LP is solvable then it has

strictly complementary solutions.

Theorem 3.2.7. [46] If the linear program (PLP) and its dual (DLP) are both feasible, then

(PLP)-(DLP) has strictly complementary solutions, i.e., there exist an optimal solution ȳ for

(PLP) and an optimal solution x̄ for (DLP) such that z̄ + x̄ := (c−A>ȳ) + x̄ > 0.

3.3 Slater condition and minimal face

The Slater condition or strict feasibility on (Pconic) is that

∃ ỹ ∈ Rm s.t. C −A∗ỹ ∈ ri(K),

and we call such a vector ỹ a Slater point . Similarly, the Slater condition is said to hold for

(Dconic) if there exists X̃ ∈ ri(K∗) such that A(X̃) = b, and X̃ is called a Slater point .

The Slater condition is closely related to the notion of well-posedness of conic programs. If a

conic program satisfies the Slater condition, then the conic program would remain feasible under

any “small” perturbation on the input data. If a conic program fails the Slater condition, then the

conic program is ill-posed, i.e., there exists arbitrarily small perturbation on the input data that

results in a new infeasible conic program, and there also exists arbitrarily small perturbation on

the input data that leaves the conic program feasible. We mention in passing that, for any given

conic program, we can define its distance to ill-posedness (see e.g.,[41, 75, 76] and the references

therein), which essentially quantifies how close the conic program is to failing the Slater condition.

Before we further explain the notion of the Slater condition, we first highlight its importance

in Section 3.3.1. Then we explain its connection with the notion of the minimal face for conic

programs in Section 3.3.2. A conic program that fails the Slater condition can be regularized by

reducing the program to its minimal face; the minimal face can be found using a theorem of the

alternative, see Theorem 3.3.10 in Section 3.3.3.

Some examples of semidefinite programs failing the Slater condition are given in Section 7.2.
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3.3.1 Implications of the Slater condition

The Slater condition is useful for several reasons. It guarantees some desirable behavior of the

SDP such as bounded dual sublevel sets and zero duality gap and is the basis for the notion of

the central path, which is essential for the theory of interior point methods for solving SDP.

Below we describe several implications of Slater conditions, in conic programs and in SDP.

Compactness of dual sublevel sets

If the Slater condition holds for (Pconic) and if the cone K has nonempty interior (which is the

case for all the conic programs introduced in Section 3.1), then the dual sublevel sets, defined in

(3.4) below, are bounded. In particular, the set of dual optimal solutions is bounded, which is

often an important property that guarantees the stability of interior point methods.

Proposition 3.3.1. Suppose that (Pconic) satisfies the Slater condition and that K has nonempty

interior. Then for any α ∈ R, the sublevel set

Sα := {X ∈ V : 〈C,X〉V ≤ α, A(X) = b, X ∈ K∗} (3.4)

is compact.

Before we prove Proposition 3.3.1, we first prove a minor technical result.

Lemma 3.3.2. Suppose that K ⊆ V is a closed convex cone with nonempty interior and Z ∈
int(K). Then there exists a constant δ > 0 such that for any X ∈ K∗, 〈X,Z〉V ≥ δ‖X‖V.

Proof. The optimization problem

δ := inf
X
{〈Z,X〉V : X ∈ K∗, ‖X‖V = 1} (3.5)

has a compact feasible region and linear objective, so δ = 〈Z, X̄〉V ≥ 0 for some X̄ ∈ K∗ with

‖X̄‖V = 1. Suppose that δ = 0. Pick a small ε > 0 such that Z − εX̄ ∈ K (which exists because

Z ∈ int(K)). Then 0 ≤ 〈Z − εX̄, X̄〉V = −ε, which is absurd. Hence we must have δ > 0, and by

(3.5) we get 〈X,Z〉V ≥ δ‖X‖V for all X ∈ K∗.

Remark. When K = Sn+, the constant δ equals the smallest eigenvalue of Z (which is positive

since Z ∈ int(Sn+) = Sn++).
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Proof of Proposition 3.3.1. If α < vDconic , then Sα is empty, hence compact. Suppose that α ≥
vDconic . It is immediate that the set Sα is closed. To see that it is compact, let Z̃ = C −
A∗ỹ ∈ int(K). Then by Lemma 3.3.2 there exists a constant δ > 0 such that for any X ∈ K∗,
〈X, Z̃〉V ≥ δ‖X‖V. Consequently, for any feasible solution X of (Pconic),

δ‖X‖V ≤ 〈X, Z̃〉 = 〈C,X〉 − b>ỹ ≤ α− b>ỹ.

Hence ‖X‖V ≤ α−b>ŷ
δ for all X ∈ Sα, i.e., Sα is bounded.

Sufficiency for strong duality

A sufficient condition for strong duality of (Pconic) is the Slater condition on (Pconic) together

with vPconic being finite.

Theorem 3.3.3. Consider the conic program (Pconic) and its dual (Dconic). Suppose that there

exists ỹ ∈ Rm such that C − A∗ỹ ∈ ri(K), and that vPconic is finite. Then vPconic = vDconic, and

vDconic is attained.

Proof. Let C̃ = C −A∗ỹ. Then

vPconic = b>ỹ + sup
y

{
b>y : C̃ −A∗y ∈ K

}
, (3.6a)

vDconic = b>ỹ + inf
X

{
〈C̃,X〉V : A(X) = b, X ∈ K∗

}
; (3.6b)

also, (Pconic) and (3.6a) (resp., (Dconic) and (3.6b)) have the same feasible region and the same

optimal solution set.

Note that C̃ ∈ K, so C̃ −A∗y ∈ K implies that A∗y ∈ span(K). We first consider the trivial

case that range(A∗) ∩ span(K) = {0}, then the case that range(A∗) ∩ span(K) 6= {0}.

• Case 1. range(A∗) ∩ span(K) = {0}.

In this case, y = 0 is the only feasible solution, so vPconic = b>ỹ.

Since vPconic is finite, we must have that b = A(X̆) for some X̆ ∈ V. Since range(A∗) ∩
span(K) = {0}, we have ker(A) + span(K)⊥ = (range(A∗) ∩ span(K))⊥ = V, implying that

X̆ = X̆(1) + X̆(2) for some X̆(1) ∈ ker(A) and X̆(2) ∈ (span(K))⊥. Hence b = A(X̆) =

A(X̆(2)). Moreover, X̆(2) ∈ (span(K))⊥ ⊆ K∗ implies that X̆(2) is feasible for (Pconic), and

by (3.6b),

b>ỹ = vPconic ≤ vDconic ≤ b
>ỹ + 〈C̃, X̆〉V = b>ỹ,

where the last equality follows from C̃ ∈ K.
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• Case 2. range(A∗) ∩ span(K) 6= {0} (i.e., r := dim(range(A∗) ∩ span(K)) > 0)

Let P : Rr → Rm be a one-one linear map such that

range(A∗P) = range(A∗) ∩ span(K). (3.7)

Then using C̃ ∈ K,

C̃ −A∗y ∈ K ⇐⇒ C̃ −A∗y ∈ K, A∗y ∈ span(K)

⇐⇒ C̃ −A∗y ∈ K, y = Pw for some w ∈ Rr.

Hence following (3.6a),

vPconic = b>ỹ + sup
w

{
(P∗b)>w : C̃ −A∗Pw ∈ K

}
.

If P∗b = 0, then vPconic = b>ỹ. On the other hand,

vPconic ≤ vDconic ≤ b
>ỹ + inf

X

{
〈C̃,X〉V : P∗A(X) = P∗b, X ∈ K∗

}
≤ b>ỹ,

where the last inequality follows because X = 0 is a feasible solution. Hence vPconic = b>ỹ,

and any feasible solution of (Dconic) is an optimal solution. Therefore strong duality holds

for (Pconic).

It remains to consider the case where P∗b 6= 0. In this case, the set

S :=
{
Z ∈ V : Z = C̃ −A∗Pw, (P∗b)>w > vPconic − b

>ỹ
}

is nonempty, and K ∩ S = ∅. Observe that S ⊆ span(K), as range(A∗P) ⊆ span(K)

and C̃ ∈ K. By separation theorem (Theorem 2.1.2), there exist α ∈ R and a nonzero

X̄ ∈ span(K) such that

〈X̄, Z〉V ≥ α ≥ 〈X̄, Y 〉V, ∀Z ∈ K, Y ∈ S. (3.8)

Since K is a cone, we must have 〈X̄, Z〉V ≥ 0 for all Z ∈ K. Hence α ≤ 0 and X̄ ∈ K∗. We

also get from (3.8) and the definition of S that for any w ∈ Rr,

(P∗b)>w > vPconic − b
>ỹ =⇒ (P∗A(X̄))>w ≥ 〈C̃, X̄〉V − α. (3.9)

Then we get that P∗A(X̄) = βP∗b for some β ∈ R.1

1 Write P∗A(X̄) = βP∗b + z, where z ∈ {P∗b}⊥. Fix any w with (P∗b)>w > vPconic − b
>ỹ. For all κ > 0, we

have (P∗b)>(w − κz) = (P∗b)>w > vPconic − b
>ỹ, so by (3.9) and (P∗A(X̄))>z = ‖z‖2,

〈C̃, X̄〉V − α ≤ (P∗A(X̄))>(w − κz) = (P∗A(X̄))>w − κ‖z‖2.

This inequality implies that z = 0, for otherwise the right hand side goes to −∞ as κ→∞.
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We show that β > 0. By (3.8), βκ‖P∗b‖2 ≥ 〈C̃, X̄〉V − α for all sufficiently large κ > 0, so

β must be nonnegative. If β = 0, then 〈C̃, X̄〉V ≤ α ≤ 0. On the other hand, C̃ ∈ ri(K)

and 0 6= X̄ ∈ span(K)∩K∗, so 〈C̃, X̄〉V > 0. This contradiction shows that we cannot have

β = 0. Hence β > 0.

Now we construct an optimal solution of (Dconic). As mentioned in Case 1, b = A(X̆) for

some X̆ ∈ V. Then P∗A(X̄) = βP∗b implies P∗A(X̄−βX̆) = 0, i.e., 1
β X̄−X̆ ∈ ker(P∗A) =

ker(A) + span(K)⊥, by (3.7). Hence there exist X̆(1) ∈ ker(A) and X̆(2) ∈ (span(K))⊥ such

that 1
β X̄ − X̆ = X̆(1) + X̆(2). Define ¯̄X := 1

β X̄ − X̆
(2) = X̆(1) + X̆. Then ¯̄X is feasible for

(Dconic), since A( ¯̄X) = A(X̆(1)+X̆) = b and ¯̄X ∈ K∗. Moreover, 〈C̃, ¯̄X〉V = 1
β 〈C̃, X̄〉V. Now

let
{
Z(k) = C̃ −A∗Pw(k)

}
k

be a sequence in S such that limk(P∗b)>w(k) = vPconic − b>ỹ.

Then by (3.9), for all k,

〈C̃, ¯̄X〉V =

〈
C̃,

1

β
X̄

〉
V
− α ≤ 1

β
(P∗A(X̄))>w(k) = (P∗b)>w(k),

and taking k →∞ we have 〈C̃, ¯̄X〉V ≤ vPconic − b>ỹ. On the other hand, vPconic ≤ vDconic ≤
b>ỹ + 〈C̃, ¯̄X〉V by (3.6b) and weak duality. Therefore we have vPconic = vDconic = b>ỹ +

〈C̃, ¯̄X〉V, and ¯̄X is an optimal solution of (3.6b) and of (Dconic) too.

Therefore in both cases vPconic = vDconic and vDconic is attained.

Existence of the central path in SDP

For simplicity, we discuss the third application limited to SDP. Other than guaranteeing strong

duality, the Slater condition is often assumed to hold for both (P) and (D), so that the central path

is well-defined. The central path of (P)-(D) is defined as the set C := {(X(µ), y(µ), Z(µ)) : µ > 0},
where (X(µ), y(µ), Z(µ)) is the solution of the parametrized system

Z = C −A∗y, Z � 0,

A(X) = b, X � 0,

XZ = µI.

(3.10)

Theorem 3.3.4. (see, e.g., [88, Theorem 5.2]) Suppose that the Slater condition holds for (P)

and (D). Then for any µ > 0, the system (3.10) has a unique solution (X(µ), y(µ), Z(µ)), and

the central path C is well-defined.

Conversely, if for some µ > 0 the system (3.10) has a solution (X, y, Z), then X = µZ−1 � 0

is a Slater point for (D), and Z = µX−1 � 0 so (y, Z) is a Slater point for (P). Hence the

nonemptyness of C implies that both (P) and (D) satisfy the Slater condition.
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3.3.2 Minimal faces of semidefinite programs

A way to understanding the Slater condition is via the notion of minimal faces. The minimal face

of (Pconic) is the minimal face of K containing the feasible region of (Pconic), i.e., by Definition

2.2.4:

face (Pconic) := face(FZPconic
,K) =

⋂{
F : F E K, FZPconic

⊆ F
}
.

By definition, FZPconic
⊆ face(FZPconic

,K). Moreover, from Proposition 2.2.5, (Pconic) satisfies the

Slater condition if and only if face (Pconic) = K. The importance of the minimal face of (Pconic) is

that restricting the feasible slack to be contained in face (Pconic) results in an equivalent program

(with the same optimal value) for which the Slater condition holds.

Theorem 3.3.5. [20] Suppose that (Pconic) is feasible. Then vPconic = vreg
Pconic

, where

vreg
Pconic

:= sup
y

{
b>y : C −A∗y ∈ face(FZPconic

,K)
}
. (3.11)

Moreover, if the optimal value vPconic is finite, then strong duality holds for (7.25), i.e., vreg
Pconic

=

vreg
Dconic

, where vreg
Dconic

is the optimal value of the dual of (7.25), given by

vreg
Dconic

:= inf
W

{
〈C,X〉V : A(X) = b, X ∈

(
face(FZPconic

,K)
)∗}

, (3.12)

and vreg
Dconic

is attained.

Proof. Since FZPconic
⊆ face(FZPconic

,K) ⊆ K, for any y ∈ Rm,

C −A∗y ∈ K ⇐⇒ C −A∗y ∈ face(FZPconic
,K).

This shows that vPconic = vreg
Pconic

.

Now assume that vPconic is finite. The feasibility of (Pconic) and Proposition 2.2.5 imply that

FZPconic
∩ ri(face(FZPconic

,K)) is nonempty. Therefore, by strong duality theorem (Theorem 3.3.3),

vreg
Pconic

= vreg
Dconic

and vreg
Dconic

is attained.

In the case of SDP, we already see from Proposition 2.2.14 that if (P) does not satisfy the

Slater condition, i.e., if face(FZP , Sn+) 6= Sn+ (by Proposition 2.2.5), then either FZP = {0} or

face(FZP , Sn+) = QSr+Q> for some Q ∈ Rn×r satisfying Q>Q = I and 0 < r < n. In the latter

case, (7.25)-(7.24) would be equivalent to

sup
y

{
b>y : Q>(C −A∗y)Q ∈ Sr+

}
, (3.13)

inf
X

{
〈Q>CQ,X〉 : A(QXQ>) = b, X ∈ Sr+

}
, (3.14)

i.e., the feasible slacks lie in a “smaller” positive semidefinite cone Sr+ with r < n. Reducing (P)

to the equivalent SDP (3.13) regularizes the SDP (P) and also reduces the number of variables.
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3.3.3 Characterizations of the Slater condition

In this section we mention some equivalent conditions of the Slater condition on the general conic

program (Pconic). We first state the characterizations of the Slater condition for the general conic

program (Pconic). Define

AC : V→ Rm+1 : X 7→

A(X)

〈C,X〉

 , (3.15)

L̄ := range(A∗C) ⊆ V. (3.16)

We will use the same notation AC and L̄ for SDP, i.e., when V = Sn and K = Sn+. If (Pconic) is

assumed to be feasible, then the Slater condition is equivalent to a nonempty intersection between

ri(K) and the linear subspace L̄.

Lemma 3.3.6. Suppose that (Pconic) is feasible. Then

face (Pconic) = face(L̄ ∩ K, K), (3.17)

and (Pconic) satisfies the Slater condition if and only if L̄ ∩ ri(K) = ∅.

Proof. We first prove (3.17). Since FZPconic
⊆ L̄ ∩ K, we have face (Pconic) ⊆ face(L̄ ∩ K, K).2

Conversely, for any face F E K containing FZPconic
, we show that L̄ ∩ K ⊆ F . Let Z ∈ L̄ ∩ K.

Fix β > 0 and z ∈ Rm+1 such that βZ = A∗Cz, z =

−ỹ
α

 and α ∈ {−1, 0, 1}. We consider the

different possible values of α.

• If α = 1, then βZ = C −A∗ỹ ∈ FZPconic
⊆ F .

• If α = 0, then βZ + (C − A∗ŷ) = C − A∗(ỹ + ŷ) ∈ FZPconic
⊆ F , where C − A∗ŷ is any

element of FZPconic
. But βZ,C −A∗ŷ ∈ K, so F E K implies βZ ∈ F .

• If α = −1, then βZ+2(C−A∗ŷ) = C−A∗(ỹ+2ŷ) ∈ FZPconic
⊆ F . But βZ, 2(C−A∗ŷ) ∈ K,

so βZ ∈ F .

Therefore, in all cases βZ ∈ F , which is a cone, so Z ∈ F . Then we get L̄ ∩K ⊆ F . Since F E K
containing FZPconic

is arbitrary, we have L̄ ∩ K ⊆ face (Pconic). Consequently, face(L̄ ∩ K,K) =

face (Pconic).

2 For any face F E K such that L̄ ∩ K ⊆ F , we have FZPconic
⊆ F . So FZPconic

⊆ face(L̄ ∩ K, K), implying

face (Pconic) ⊆ face(L̄ ∩ K, K).
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For the second claim, it suffices to note that, by Proposition 2.2.5, (Pconic) satisfies the Slater

condition (i.e., FZPconic
∩ ri(K) 6= ∅) if and only if face(L̄ ∩ K,K) = face (Pconic) = K, if and only

if L̄ ∩ ri(K) = ∅.

By Lemma 3.3.6, the Slater condition holds for (Pconic) if and only if one of the following

equivalent conditions holds:

• The convex set FZP ⊆ K has a nonempty intersection with ri(K).

• The linear subspace L has a nonempty intersection with ri(K).

• FZP is not fully contained within a proper face of K.

We first state an equivalent condition for a nonempty convex subset S of a closed convex cone

K to have a nonempty intersection with ri(K).

Theorem 3.3.7. Let K be a nonempty closed convex cone in (V, 〈·, ·〉V) and S ⊆ K be a nonempty

convex set. Then

S ∩ ri(K) 6= ∅ ⇐⇒ S⊥ ∩ K∗ ⊆ −K∗.

Proof. First observe that S⊥ ∩ K∗ 6⊆ −K∗ if and only if

∃ d ∈ S⊥ ∩ K∗, y ∈ K s.t. 〈d, y〉V > 0. (3.18)

Suppose that z ∈ S ∩ ri(K). If, on the contrary, (3.18) holds, then let α ∈ (0, 1) and ŷ ∈ K
satisfy z = αŷ + (1 − α)y. Then d ∈ S⊥ implies that α〈d, ŷ〉V + (1 − α)〈d, y〉V = 〈d, z〉V = 0,

so 〈d, ŷ〉V = −1−α
α 〈d, y〉V < 0. This contradicts with the facts that d ∈ K∗ and ŷ ∈ K. Hence

S⊥ ∩ K∗ ⊆ −K∗.

Conversely, suppose that S ∩ ri(K) = ∅. By separation theorem (Theorem 2.1.2), there exist

β ∈ R and 0 6= d ∈ V such that

〈d, x〉V ≥ β ≥ 〈d, y〉V, ∀x ∈ K, y ∈ S, and sup
x∈K
〈d, x〉V > β. (3.19)

Since K is a closed cone, we must have d ∈ K∗ and β ≤ 0. On the other hand, since S ⊆ K,

0 ≤ 〈d, y〉V = β for all y ∈ S. Hence β = 0 and d ∈ S⊥. Finally, since supx∈K〈d, x〉V > 0, (3.18)

holds, i.e., S⊥ ∩ K∗ ⊆ K∗ does not hold.

Remark. Any nonzero d satisfying (3.19) defines a proper face of K containing S: S ⊆ K∩{d}⊥/K.
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As a corollary, we apply Theorem 3.3.7 to the case where K is a face of the cone of positive

semidefinite matrices.

Corollary 3.3.8. Let Q ∈ Rn×n̄ have orthonormal columns, and ∅ 6= S ⊆ QSn̄+Q. Then

S ∩QSn++Q
> = ∅ ⇐⇒ (Q>SQ)⊥ ∩ Sn̄+ 6= {0} .

Proof. Let S̄ := Q>SQ. Then S ⊆ QSn̄+Q> implies that S = QQ>SQQ> = QS̄Q>.

Using (3.18), S ∩QSn++Q
> = ∅ if and only if there exists D ∈ Sn such that

D ∈ S⊥, 0 6= Q>DQ ∈ Sn̄+. (3.20)

Let D ∈ Sn satisfy (3.20). Then 0 6= D̄ := Q>DQ ∈ Sn̄+. Fix any S̄ ∈ S̄. Then QS̄Q> ∈ S
and 〈D̄, S̄〉 = 〈D,QS̄Q>〉 = 0. Hence D̄ ∈ S̄⊥ ∩ Sn̄+. Conversely, let 0 6= D̄ ∈ S̄⊥ ∩ Sn̄+. Let

D := QD̄Q>. Then Q>DQ = D̄ 6= 0 and is positive semidefinite. Also, for any S ∈ S = QS̄Q>,

we have Q>SQ ∈ S̄ so 〈D,S〉 = 〈D̄,Q>SQ〉 = 0. Therefore D satisfies (3.20).

Now we state an equivalent condition for a linear subspace to have a nonempty intersection

with the relative interior of a closed convex cone.

Theorem 3.3.9. ([62, Corollary 2] and [84, Corollary 2.2]) Let K be a nonempty closed convex

cone and L be a linear subspace in (V, 〈·, ·〉V). Then

L ∩ ri(K) 6= ∅ ⇐⇒ L⊥ ∩ K∗ ⊆ −K∗.

Proof. First observe that L⊥ ∩ K∗ 6⊆ −K∗ if and only if

∃ d ∈ L⊥ ∩ K∗, y ∈ K s.t. 〈d, y〉V > 0. (3.21)

Suppose that z ∈ L ∩ ri(K). If, on the contrary, (3.21) holds, then let α ∈ (0, 1) and ŷ ∈ K
satisfy z = αŷ + (1 − α)y. Then d ∈ L⊥ implies that α〈d, ŷ〉V + (1 − α)〈d, y〉V = 〈d, z〉V = 0, so

〈d, ŷ〉V < 0. This contradicts with the facts that d ∈ K∗ and ŷ ∈ K. Hence L⊥ ∩ K∗ ⊆ −K∗.

Conversely, suppose that L ∩ ri(K) = ∅. By separation theorem (Theorem 2.1.1), there exist

β ∈ R and 0 6= d ∈ V such that

〈d, x〉V = β, ∀x ∈ L, and 〈d, y〉V > β, ∀ y ∈ ri(K).

Since L contains 0, we get β = 0. This implies that d ∈ (L⊥ ∩ K∗)\(−K∗).
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As a special case of Theorem 3.3.9, if K is a proper cone and L is a linear subspace, the L∩int(K) 6=
∅ if and only if L⊥ ∩K∗ = {0}. Using Theorem 3.3.9, we can obtain a theorem of the alternative

for the Slater condition for the SDP (P).

Theorem 3.3.10. Assume that (P) is feasible. Then exactly one of the following holds.

(1) (P) satisfies the Slater condition, i.e., there exists ỹ ∈ Rm such that C −A∗ỹ � 0.

(2) The system

AC(D) = 0, D � 0 (3.22)

has a nonzero solution.

Proof. First recall that by Lemma 3.3.6, (1) is equivalent to range(A∗C) ∩ Sn++ 6= ∅, which is

equivalent to ker(AC) ∩ Sn+ ⊆ −Sn+ by Theorem 3.3.9. But since Sn+ is a pointed cone,

ker(AC) ∩ Sn+ ⊆ −Sn+ ⇐⇒ ker(AC) ∩ Sn+ = {0} , i.e., “AC(D) = 0, D � 0 =⇒ D = 0”.

Hence exactly one of the conditions (1) and (2) holds.

Remark. Theorem 3.3.10 holds for (Pconic) too, provided that K is a proper cone. In other words,

if K is a proper cone, then (Pconic) fails the Slater condition if and only if

AC(D) = 0, D ∈ K∗

has a nonzero solution D. If such D exists, then for any feasible solution y of (Pconic), 〈D,C −
A∗y〉V = 0, i.e., C −A∗y ∈ K ∩ {D}⊥ /K.

Note also that any nonzero solution D of (3.22) is a direction of constancy for (D) (i.e., for

any feasible solution X of (D), for all α ≥ 0, X+αD is feasible for (D) and has the same objective

value as X.

Finally, we state a theorem of the alternative for the Slater condition on (D):

Theorem 3.3.11. Assume that (D) is feasible. Then exactly one of the following holds.

(1) (D) satisfies the Slater condition, i.e., there exists X̃ � 0 such that A(X̃) = b.

(2) The system

0 6= A∗v � 0, b>v = 0 (3.23)

has a solution.
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Proof. Let X̂ ∈ Sn+ be a feasible solution of (D), and V : Sn → Rs be a linear map such that

range(V∗) = ker(A). Then (D) satisfies the Slater condition if and only if there exists v̂ ∈ Rs

such that X̂ + V∗v � 0. Therefore, by Theorem 3.3.10, (D) satisfies the Slater condition if and

only if there does not exist D ∈ Sn such that

0 6= D � 0, V(D) = 0, 〈X̂,D〉 = 0. (3.24)

Note that (3.23) has a solution if and only if (3.24) does. Indeed, since

ker(V) = range(V∗)⊥ = ker(A)⊥ = range(A∗),

if D is a solution of (3.24), then D = A∗v for some v ∈ Rm. Also, b = A(X̂). Hence b>v =

〈X̂,A∗v〉 = 0, i.e., v is a solution of (3.23). Conversely, if v solves (3.23), then D := A∗v solves

(3.24). Therefore (D) satisfies the Slater condition if and only if (3.23) has no solution.

Remark. Similar to Theorem 3.3.10, Theorem 3.3.11 holds for general conic program (Dconic) if

K is a proper cone (implying K∗ is also a proper cone, see Proposition 2.1.4). In other words, if

K is a pointed cone, then (Dconic) fails the Slater condition if and only if

0 6= A∗v ∈ K, b>v = 0 (3.25)

has a solution. Moreover, if v is a solution of (3.25), then for any feasible solution X of (Dconic),

〈X,A∗v〉V = (A(X))>v = b>v = 0, i.e., X ∈ K∗ ∩ {A∗v}⊥ /K∗.
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Chapter 4

Facial reduction for linear conic

programs

In this chapter we describe the facial reduction algorithm for conic programs.

We first make use of the theorems of the alternative stated in Section 3.3.3 and illustrate

one iteration of a facial reduction algorithm for general conic programs (Pconic), in Section 4.1.

Then we consider the special cases of SOCP in Section 4.2 and SDP in Section 4.3. We will state

the results both in terms of the geometric objects (for theoretical purpose) and in terms of the

problem data (for algorithmic purpose).

An important step in the facial reduction algorithm is to find an element in the relative

interior of the cone of directions of constancy, ri(RDconic). (See Lemma 4.1.1.) We introduce a

conic program, which we call the auxiliary problem, for determining whether RDconic = {0}. The

auxiliary problem and its dual both satisfy the Slater condition; using an interior point method

we can find a point in the relative interior of RDconic .

4.1 Dual recession direction and the minimal face

In this section, we make use of the results from Section 3.3.3 to identify minimal faces of second

order cone programs and semidefinite programs. We also derive the facial reduction algorithm

for finding the minimal face of (P) [20, 27, 70, 86, 95].

As mentioned in the remark of Theorem 3.3.10, any nonzero solution D of (3.22) gives a

smaller face of Sn+ containing the feasible slacks. Lemma 4.1.1 takes care of some trivial cases,
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when a solution of (3.22) indicates either that (Pconic) satisfies the Slater condition or that the

only feasible slack of (Pconic) is 0.

Lemma 4.1.1. Assume that the conic program (Pconic) is feasible and that the cone K is a proper

cone. Define

RDconic := L̄⊥ ∩ K∗ = {X ∈ V : AC(X) = 0, X ∈ K∗} . (4.1)

Then for any D ∈ ri(RDconic),

face (Pconic) E K ∩ {D}⊥ = K ∩ (RDconic)
⊥ E K, (4.2)

and

vPconic = sup
y

{
b>y : C −A∗y ∈ K ∩ {D}⊥

}
= sup

y

{
b>y : C −A∗y ∈ K ∩ (RDconic)

⊥
}
. (4.3)

Moreover,

(1) (Pconic) satisfies the Slater condition if and only if RDconic = {0}.

(2) If FZPconic
= {0}, then face (Pconic) = L̄ ∩ K = {0}. Furthermore,

FZPconic
= {0} ⇐⇒ RDconic ∩ int(K∗) = L̄⊥ ∩ int(K∗) 6= ∅. (4.4)

In other words, exactly one of the following holds:

(I) ri(RDconic) = {0};

(II) ri(RDconic) ⊆ int(K∗);

(III) {0} 6= ri(RDconic) and ri(RDconic) ∩ int(K∗) = ∅.

Proof. We first prove (4.2). Since RDconic is a convex subset of K∗, by Proposition 2.2.8 we have

K ∩ (RDconic)
⊥ = K ∩ {D}⊥ E K. Since D ∈ L̄⊥, we have L̄ ∩ K ⊆ {D}⊥ ∩ K. Hence by Lemma

3.3.6, face (Pconic) = face(L̄ ∩ K, K) E {D}⊥ ∩ K.

(4.3) follows immediately from (4.2). Item (1) follows directly from Lemma 3.3.6 and Theorem

3.3.9. (See the proof of Theorem 3.3.10.) We prove Item (2). If FPconic = {0}, then

{0} ⊆ L̄ ∩ K ⊆ face(L̄ ∩ K, K) = face (Pconic) = face({0} , K) = {0} .

Hence L̄ ∩ K = face (Pconic) = {0}. Moreover, by Theorem 3.3.9, we have RDconic ∩ int(K) =

L̄⊥ ∩ int(K) 6= ∅. Conversely, suppose that there exists D ∈ int(K∗) such that AC(D) = 0. For

48



all Z = C −A∗y ∈ FZPconic
, we have 〈D,Z〉V = (AC(D))>

(−y
1

)
= 0. But D ∈ int(K∗), so Z = 0

by Lemma 3.3.2. Hence RDconic ∩ int(K∗) 6= ∅ implies that FZPconic
= {0}. This proves (4.4).

The above shows that (I) and RDconic ∩ int(K∗) 6= ∅ are mutually exclusive, and RDconic ∩
int(K∗) 6= ∅ if and only if (II) holds, by Proposition 2.2.5. If neither (I) nor (II) holds, i.e.,

ri(RDconic) 6= {0} and RDconic ∩ int(K∗) = ∅, then {0} 6= face(RDconic ,K∗)/K∗. Then by Theorem

2.2.3 and Proposition 2.2.5 (III) must hold.

Remark. The three possible cases (I)-(III) in Lemma 4.1.1 can be equivalently posed as a descrip-

tion of the face K ∩ (RDconic)
⊥ that appears in (4.2):

K ∩ (RDconic)
⊥ =


K in Case (I),

{0} in Case (II),

a proper nonzero face of K in Case (III).

In Case (I), (Pconic) satisfies the Slater condition, so by Theorem 3.3.3, strong duality holds for

(Pconic) if vPconic is finite.

In Case (II), any feasible solution of (Pconic) is an optimal solution, and vPconic = b>(A∗)†(C).

In fact, the dual is always solvable too, under Assumption 3.1, i.e., if A(X̂) = b for some X̂ ∈ K.

Indeed, let D ∈ ri(RDconic). Then D ∈ int(K∗) so X̂ + γD ∈ K∗ for sufficiently large γ ∈ R, and

〈C, X̂ + γD〉V = 〈C, X̂〉V. This means that (Dconic) is feasible and

b>
(

(A∗)†(C)
)

= vPconic ≤ vDconic ≤ 〈C,A
†b〉V =

(
(A∗)†(C)

)>
b = vPconic ,

i.e., A†b+ γD is an optimal solution of (Dconic). Note however that the set of optimal solutions

of (Dconic) is unbounded, echoing the result of Proposition 3.3.1.

The smaller face of K containing the feasible region, found in Lemma 4.1.1, can be used to

formulate (Pconic) as a “smaller” equivalent program. We introduce one more technical result

that facilitates this, for Case (III) in Lemma 4.1.1.

Lemma 4.1.2. Assume that the conic program (Pconic) is feasible and that K is a proper cone.

Suppose that K ∩ (RDconic)
⊥ does not equal K or {0}, and that C ∈ K (i.e., y = 0 is feasible for

(Pconic)). Then the followings hold.

(1) If range(A∗) ∩ span(K ∩ (RDconic)
⊥) = {0}, then y = 0 is the only feasible solution of

(Pconic), i.e., FZPconic
= {C}.
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(2) If range(A∗)∩ span(K∩ (RDconic)
⊥) = range(A∗P) for some one-one linear map P : Rm̄ →

Rm (where m̄ > 0), then

Z = C −A∗y ∈ K, y ∈ Rm ⇐⇒ Z = C −A∗Pv ∈ K, v ∈ Rm̄. (4.5)

In particular, (Pconic) is equivalent to

vPconic = sup
v

{
(P∗b)>v : C −A∗Pv ∈ K ∩ (RDconic)

⊥
}
. (4.6)

Proof. By (4.2), for any y ∈ Rm and Z = C −A∗y,

Z ∈ K ⇐⇒ Z ∈ K∩ (RDconic)
⊥ ⇐⇒ Z ∈ K∩ (RDconic)

⊥, A∗y ∈ span
(
K ∩ (RDconic)

⊥
)
. (4.7)

If range(A∗) ∩ span(K ∩ (RDconic)
⊥) = {0}, then (4.7) implies that y = 0 is the only feasible

solution of (Pconic).Otherwise, range(A∗)∩ span(K∩ (RDconic)
⊥) = range(A∗P) for some one-one

linear map P : Rm̄ → Rm, and y ∈ FyPconic
implies A∗y ∈ range(A∗P), so y = Pv for some v ∈ Rm̄

(since A∗ is one-one). Therefore Z = C −A∗Pv ∈ K. This proves (4.5). Finally, using (4.7) and

the definition of P,

vPconic =
{
b>y : Z = C −A∗y ∈ K ∩ (RDconic)

⊥, y = Pv
}

=
{
b>(Pv) : Z = C −A∗Pv ∈ K ∩ (RDconic)

⊥
}
.

This proves (4.6).

Lemma 4.1.1 suggests that the interesting case is Item (III), in which case for any D ∈
ri(RDconic), the face {0} 6= K ∩ {D}⊥ 6= K is a proper face containing the feasible slacks FZPconic

.

For SDP, we can then use D to write down a “smaller” equivalent program. This idea forms the

basis of facial reduction for SDP. We illustrate this idea of reducing conic programs in the case of

SOCP in Section 4.2 and SDP in Section 4.3. Finally we define the auxiliary problem, a mixed

conic program, for determining whether RDconic = {0}, and if not, finding a nonzero element in

RDconic .

4.2 Single second order cone programs

We consider single second order cone programs, i.e., (Pconic) with V = Rn and K = Qn. By

Theorem 2.2.13, all proper faces of Qn are of the form {αz : α ≥ 0} for some z ∈ Rn with

z1 = ‖z2:n‖. Given the simple form of the faces, we expect that if a single second order cone

program fails the Slater condition, it is relatively easy to identify the minimal face. In fact, we

can even solve the optimization problem explicitly in this case.
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Theorem 4.2.1. Assume that the optimization problem

ν := sup
y

{
b>y : z = c−A>y ∈ Qn

}
(4.8)

is feasible, where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Define

R :=
{
g ∈ Qn : Ag = 0, c>g = 0

}
.

Let d ∈ ri(R). Then

(1) d = 0 if and only if the Slater condition holds for (4.8).

(2) d1 > ‖d2:n‖ if and only if c−A>y = 0 for all feasible y.

(3) If d1 = ‖d2:n‖ > 0, then

z = c−A>y ∈ Qn =⇒ z = αd̂, where d̂ =

 d1

−d2:n

 , α =
z1

d1
. (4.9)

Suppose that c = − c1
d1
d̂ (i.e., y = 0 is a feasible solution of (4.8)). If d̂ /∈ range(A>), then

y = 0 is the only feasible solution of (4.8). If d̂ ∈ range(A>), then

ν = sup
γ

{
(b>ŷ)γ : γ ≤ c1

d1

}
, (4.10)

where ŷ satisfies A>ŷ = d̂. Moreover, γ∗ solves (4.10) if and only if γ∗ŷ solves (4.8).

Proof. Items (1) and (2) follows from Lemma 4.1.1 (and the fact that d ∈ int(Qn) if and only if

d1 > ‖d2:n‖).

It remains to prove Item (3). The condition d1 = ‖d2:n‖ > 0 implies that (4.8) fails the Slater

condition and (by Lemma 4.1.1) ri(R) ∩ int(Qn) = ∅. Hence by Lemma 4.1.1, the minimal face

of Qn containing the feasible region of (4.8) does not equal Qn or {0}. Then by Theorem 2.2.13,

the minimal face of Qn containing the feasible region of (4.8) equals {αz : α ≥ 0} for some z ∈ Rn

with z1 = ‖z2:n‖. In fact, for any z = c−A>y ∈ Qn,

0 = d>z = d1z1 + (d2:n)>z2:n ≥ d1z1 − ‖d2:n‖‖z2:n‖ = d1(z1 − ‖z2:n‖) ≥ 0,

implying that z1 = ‖z2:n‖ and (d2:n)>z2:n = −‖d2:n‖‖z2:n‖. Hence z2:n = αd2:n for some α ≤ 0,

and z1 = ‖z2:n‖ = −α‖d2:n‖ = −αd1. Therefore (4.9) holds.

Now suppose that c = c1
d1
d̂. Then by (4.9),

c−A>y ∈ Qn ⇐⇒ c−A>y = βd̂, β ≥ 0

⇐⇒ A>y = γd̂, γ = c1
d1
− β ≤ c1

d1
.

(4.11)
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If d̂ /∈ range(A>), then A>y = γd̂ if and only if γ = 0, if and only if y = 0. Hence the feasible

region of (4.8) is the singleton {0}.

If d̂ = A>ŷ for some (unique) ŷ, then by (4.11),

c−A>y ∈ Qn ⇐⇒ y = γŷ, γ ≤ c1

d1
.

Hence (4.10) holds, and γ∗ solves (4.10) if and only if y∗ = γ∗ŷ solves (4.8).

Noting that the single-variable optimization problem (4.10) trivially satisfies the Slater con-

dition, Theorem 4.2.1 shows that any single second order cone program of the form (4.8) requires

at most one facial reduction iteration to identify its minimal face.

4.3 Semidefinite programs

Now we consider the semidefinite program (P). Any nonzero solution D of (3.22) is useful not

only because it serves as a certificate of the failure of the Slater condition, but also because it

can give us a proper face of Sn+ containing the feasible region of (P).

Theorem 4.3.1. Assume that (P) is feasible. Let D ∈ ri(RD), where

RD = L̄⊥ ∩ Sn+ = {G ∈ Sn : AC(G) = 0, G � 0} .

Then face (P) E Sn+ ∩ {D}
⊥ E Sn+. Moreover,

(1) D = 0 if and only if face (P) = Sn+, i.e., the Slater condition holds for (P).

(2) D � 0 if and only if FZP = {0}. Indeed, if FZP = {0}, then face (P) = L̄ ∩ Sn+ = {0} too.

(3) If D = PD+P
>, where D+ ∈ Sn−n̄++ , 0 < n̄ < n and U =

[
P Q

]
∈ Rn×n is orthogonal,

then

Q>L̄Q ∩ Sn+ =

0 0

0 ¯̄L ∩ Sn̄+

 , and

face (P) = Q

0 0

0 face( ¯̄L ∩ Sn̄+, Sn̄+)

Q> E QSn̄+Q> / Sn+,

where ¯̄L 6= {0} is the linear subspace of Sn̄ determined by Q>L̄Q ∩
[

0 0
0 Sn̄

]
=
[

0 0
0 ¯̄L
]
.
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Proof. If A∗Cz � 0, then 〈D,A∗Cz〉 = (AC(D))>z = 0. Hence L̄ ∩ Sn+ ⊆ Sn+ ∩ {D}
⊥, and by (3.17)

we have face (P) ⊆ Sn+ ∩{D}
⊥, which is a face of Sn+ by Corollary 2.2.15. Since face (P) E Sn+, by

Proposition 2.2.2 we have face (P) E Sn+ ∩ {D}
⊥. Now we consider the three different cases.

(1) D = 0 if and only if the system (3.22) has only a zero solution, if and only if (P) satisfies

the Slater condition by Theorem 3.3.10, which is equivalent to face (P) = Sn+ by Proposition

2.2.5.

(2) If D � 0, then ∅ 6= FZP ⊆ Sn+ ∩ {D}
⊥ = {0}. Hence FZP = {0}. Conversely, if FZP = {0},

then face(L̄ ∩ Sn+, Sn+) = face (P) = face({0} , Sn+) = {0}, so L̄ ∩ Sn+ = {0}. By Theorem

3.3.9, we get L̄⊥ ∩ Sn++ 6= ∅, i.e., the maximum rank of matrices in L̄⊥ ∩ Sn+ is n. By

Corollary 2.2.18, any matrix in ri(L̄⊥ ∩ Sn+) is of rank n. Hence D � 0.

(3) Suppose that D = PD+P , where D+ ∈ Sn−n̄++ , 0 < n̄ < n and U =
[
P Q

]
∈ Rn×n is

orthogonal. Hence face (P) E Sn+ ∩ {D}
⊥ = QSn̄+Q> / Sn+. Rotating L̄ ∩ Sn+ using U> · U :

U>L̄U ∩ Sn+ = U>(L̄ ∩ Sn+)U ⊆ U>(QSn̄+Q>)U =

0 0

0 Sn̄+

 .
This implies that

Q>L̄Q ∩ Sn+ = Q>L̄Q ∩

0 0

0 Sn̄+

 =

Q>L̄Q ∩
0 0

0 Sn̄

 ∩
0 0

0 Sn̄+

 =

0 0

0 ¯̄L ∩ Sn̄+

 .
But both Q>L̄Q and

[
0 0
0 Sn̄

]
are linear subspaces of Sn, so the set ¯̄L determined by the

subspace intersection Q>L̄Q ∩
[

0 0
0 Sn̄

]
=
[

0 0
0 ¯̄L
]

is a linear subspace of Sn̄. If ¯̄L = {0} ⊂ Sn̄,

then Q>L̄Q ∩ Sn+ = {0}, implying that L̄ ∩ Sn+ = {0}. Then by Item (2) D ∈ ri(L̄⊥ ∩ Sn+)

should have full rank, which is contradictory. Hence ¯̄L cannot be the zero subspace.
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It remains to prove the equality in the second claim. Indeed, using Proposition 2.2.17,

face (P) = face(L̄ ∩ Sn+, Sn+)

=QQ> face(L̄ ∩ Sn+, Sn+)QQ>

=Q face(Q>L̄Q ∩ Sn+, Sn+)Q>

=Q face

0 0

0 ¯̄L ∩ Sn̄+

 , Sn+
Q>

=Q face

 0

In̄

( ¯̄L ∩ Sn̄+
) [

0 In̄

]
, Sn+

Q>

=Q

0 0

0 face( ¯̄L ∩ Sn̄+, Sn̄+)

Q>.

Remark. In the third case in Theorem 4.3.1, finding the minimal face of (P) is equivalent to

finding the minimal face containing ¯̄L∩ Sn̄+ in the smaller cone Sn̄+, by rotating the cone Sn+ with

Q> · Q. While the intersection range(Q · Q>) ∩ range(A∗C) (or equivalently the linear subspace

¯̄L) is guaranteed to be nonzero, the intersection range(Q ·Q>) ∩ range(A∗) could be zero. Here

is an example:

sup
y

{
y :

(
1 0

0 0

)
− y

(
0 1

1 0

)
� 0

}
.

It is immediate that FyP = {0} and FZP = {( 1 0
0 0 )}. Taking D = ( 0 0

0 1 ) ∈ ri(RD) and Q = ( 1
0 ), we

have

range(Q ·Q>) = span

({(
1 0

0 0

)})
, range(A∗) = span

({(
0 1

1 0

)})
,

so range(Q ·Q>) ∩ range(A∗) = {0} despite range(Q ·Q>) ∩ range(A∗C) = span ({( 1 0
0 0 )}) 6= {0}.

Using Theorem 4.3.1, we can derive a facial reduction algorithm for identifying the minimal

face of Sn+ containing the intersection L̄ ∩ Sn+, outlined in Algorithm 4.1 on Page 55.

Below we rephrase the geometric result from Theorem 4.3.1: Theorem 4.3.1 can be used not

only to identify face (P) = face(L̄ ∩ Sn+, Sn+), but also to formulate an equivalent problem to (P)

over a “smaller” PSD cone.

Theorem 4.3.2. Assume that (P) is feasible. Let D = PD+P
> ∈ RD, where D+ ∈ Sn−n̄++ ,

0 < n̄ < n and U =
[
P Q

]
∈ Rn×n is orthogonal.

54



Algorithm 4.1: Identifying face(L̄ ∩ Sn+,Sn+) for any linear subspace {0} 6= L̄ ⊆ Sn

Input(linear subspace {0} 6= L̄ of Sn);1

find a D(0) ∈ ri(L̄⊥ ∩ Sn+);2

if D(0) = 0 then3

d← 0; STOP; % L̄ ∩ Sn++ 6= ∅4

endif5

if D(0) � 0 then6

d← 0; STOP; % L̄ ∩ Sn+ = {0}7

endif8

find an orthogonal matrix Q(0) =
[ n−n1 n1

n Q
(0)
1 Q

(0)
2

]
∈ Rn×n (with 0 < n1 < n) such that9

D(0) = Q
(0)
1 D

(0)
+ (Q

(0)
1 )>, D

(0)
+ ∈ Sn−n1

++ ;

find the linear subspace L̄(1) ⊆ Sn1 satisfying (Q(0))>L̄Q(0) ∩

0 0

0 Sn1

 =

0 0

0 L̄(1)

;
10

% L̄(1) cannot equal to the zero subspace;11

for k = 1, . . . do12

find a D(k) ∈ ri
(
(L̄(k))⊥ ∩ Snk+

)
; % D(k) cannot be positive definite13

if D(k) = 0 then14

d← k ; STOP;15

else16

find an orthogonal matrix Q(k) =
[ nk−nk+1 nk+1

nk Q
(k)
1 Q

(k)
2

]
∈ Rnk×nk (with17

0 < nk+1 < nk) such that

D(k) = Q
(k)
1 D

(k)
+ (Q

(k)
1 )>, D

(k)
+ ∈ Snk−nk+1

++ ;

find the linear subspace L̄(k+1) ⊆ Snk+1 satisfying18

(Q(k))>L̄(k)Q(k) ∩

0 0

0 Snk+1

 =

0 0

0 L̄(k+1)

;

% L̄(k+1) cannot equal to the zero subspace;19

endif20

endfor21
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(1) If range(A∗) ∩ range(Q ·Q>) = {0}, then FyP = {ŷ}, where ŷ is the unique solution to the

linear equation

C −QQ>CQQ> = A∗ŷ −QQ>(A∗ŷ)QQ>. (4.12)

(2) If range(A∗)∩range(Q ·Q>) = range(A∗P), where P : Rm̄ → Rm is an one-one linear map,

then

vP = b>ȳ + sup
v

{
b̄>v : C̄ − Ā∗v � 0

}
, (4.13)

where ȳ ∈ Rm is the unique solution of the linear equations

A∗y −QQ>(A∗y)QQ> = C −QQ>CQQ>, (4.14a)

P∗y = 0, (4.14b)

and

Ā∗(·) = Q> (A∗P(·))Q, b̄ = P∗b, C̄ = Q>(C −A∗ȳ)Q. (4.15)

Moreover, Ā : Sn̄ → Rm̄ is an onto linear map, and y is feasible for (P) if and only if

y − ȳ = Pv and v is feasible for (4.13).

Proof. Fix any ŷ ∈ Rm (e.g., any ŷ ∈ FyP) that satisfies Ẑ := C −A∗ŷ ∈ range(Q ·Q>). Then

vP = sup
y

{
b>y : Ẑ −A∗(y − ŷ) � 0

}
= b>ŷ + sup

y

{
b>y : Ẑ −A∗y � 0

}
,

and Ẑ−A∗y � 0 if and only if y ∈ ŷ+FyP. Since FZP ⊆ Sn+∩{D}
⊥ = QSn̄+Q> and Ẑ = QQ>ẐQQ>,

Ẑ −A∗y ∈ Sn+ ⇐⇒ Ẑ −A∗y ∈ QSn̄+Q and A∗y ∈ range(Q ·Q>). (4.16)

Suppose that range(A∗)∩range(Q·Q>) = {0}. From (4.16) we have Ẑ−A∗y � 0 if and only if

y = 0, so FyP = {ŷ} and FZP = {Ẑ}. That ŷ satisfies (4.12) follows from Ẑ = QQ>ẐQQ>. To see

that (4.12) has a unique solution, it suffices to note that the linear map y 7→ A∗y−QQ>(A∗y)QQ>

is one-one: for any y, ỹ ∈ Rm,

A∗y −QQ>(A∗y)QQ> = A∗ỹ −QQ>(A∗ỹ)QQ>

=⇒ A∗(y − ỹ) = QQ>(A∗(y − ỹ))QQ> ∈ range(A∗) ∩ range(Q ·Q>)

=⇒ A∗(y − ỹ) = 0 =⇒ y = ỹ.

Suppose that range(A∗) ∩ range(Q · Q>) = range(A∗P), where P : Rm̄ → Rm is an one-one

linear map. We first show that (4.14) has a unique solution.
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• Existence of solutions of (4.14).

Define the linear map G(y) := A∗y −QQ>(A∗y)QQ>. Then

– (4.14) reads G(y) = C −QQ>CQQ>, and

– ker(G) = range(P).1

Any y ∈ FyP satisfies (4.14a). Write y = y1 + y2, where y1 ∈ range(G∗) and y2 ∈ ker(G).

Then G(y1) = G(y) = C−QQ>CQQ>, i.e., y1 satisfies (4.14). Moreover, y1 satisfies (4.14b)

because y1 ∈ range(G∗) = ker(P∗).

• Uniqueness of the solution of (4.14).

It suffices to note that ker(G) ∩ ker(P∗) = range(P) ∩ ker(P∗) = {0}.

Let Z = C −A∗ȳ ∈ range(Q ·Q>). Since A∗ is one-one, (4.16) implies that

Z̄ −A∗y ∈ Sn+ ⇐⇒ Z̄ −A∗y ∈ Sn+ and y = Pv.

Hence

vP = b>ȳ + sup
{
b>(Pv) : QQ>Z̄QQ> −A∗Pv � 0

}
= b>ȳ + sup

{
b>(Pv) : Q>Z̄Q−Q>(A∗Pv)Q � 0

}
.

This proves (4.13). Moreover, v ∈ Rm̄ is feasible for (4.13) if and only if ȳ + Pv ∈ FyP. Finally,

Ā∗v = 0 ⇐⇒ A∗Pv = QQ>(A∗Pv)QQ> = 0 ⇐⇒ v = 0,

i.e., Ā∗ is one-one.

4.3.1 The finite number of iterations of the facial reduction

Since each iteration of the facial reduction (Algorithm 4.1) returns L̄(k) ⊆ Snk with nk < nk−1

(taking n0 = n), Algorithm 4.1 must terminate finitely. Indeed, the total number of facial

reduction iterations cannot exceed n− 1.

For any fixed positive integer n, there do exist SDP instances that require n− 1 iterations of

facial reductions to locate the minimal face of Sn+ containing the feasible region. Consider (P)

1 y ∈ ker(G) if and only if A∗y = QQ>(A∗y)QQ>, if and only if A∗y = A∗Pv for some v ∈ Rm̄, if and only if

y ∈ range(P).
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with the following input data [90]:

n ≥ 3, m = n; b = e2 ∈ Rn, C = 0,

A1 = e1e
>
1 , A2 = e1e

>
2 + e2e

>
1 , and Aj = ej−1e

>
j−1 + e1e

>
j + eje

>
1 , ∀ j = 3, . . . , n.

(4.17)

Then (P) with data given in (4.17) has the feasible region FZP =
{
µe1e

>
1 : µ ≥ 0

}
, and requires

n−1 iterations of facial reductions to find the minimal face face (P) = FZP . To see this, note that

AC(D) = 0 and D � 0 if and only if D = γene
>
n for some γ ≥ 0. Then the first step of the facial

reduction gives

FZP = range(A∗) ∩ (Sn+ ∩ {D}
⊥) = span(A1, . . . , An−2) ∩

Sn−1
+ 0

0 0

 .
Inductively, it would take n−1 facial reduction iterations to find the minimal face

{
µe1e

>
1 : µ ≥ 0

}
.

The number of facial reduction iterations required to find the minimal face of Sn+ containing

the set L̄ ∩Sn+, where L̄ ⊆ Sn is a linear subspace, is also called the degree of singularity of L̄; see

Definition 7.5.5.

4.4 Auxiliary problem

In this section, we consider one way of finding a nonzero element in RDconic (defined in (4.1)).

Determining whether RDconic contains a nonzero element is crucial for finding a smaller face

containing the feasible slacks of (Pconic) (see (4.2) in Lemma 4.1.1), allowing for the regularization

of (Pconic) by refining the feasible region (see (4.5)).

We consider the auxiliary problem for (Pconic):

vaux = inf
δ,D

δ

s.t. ‖AC(D)‖ ≤ δ,
〈E,D〉V = 1,

D ∈ K∗,

(4.18)

where AC is defined in (3.15), and 0 6= E ∈ ri(K) is arbitrary (though for specific choices of K
we would use particular choices of E).

The auxiliary problem is a mixed conic program, involving the ordering cone K∗ × Qm+2.

The second order cone constraint ‖AC(D)‖ ≤ δ together with the objective of minimizing δ aims
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at finding some D ∈ K∗ such that AC(D) = 0. The linear constraint 〈E,D〉V = 1 serves as a

normalization constraint, forcing any feasible D to be nonzero. The dual of (4.18) is given by2

sup
β,z,W

β

s.t. A∗Cz + βE +W = 0,

‖z‖ ≤ 1,

W ∈ K.

(4.19)

4.4.1 Basic facts about the auxiliary problem

We first list some basic facts about (4.18) and its dual, provided that K is a proper cone.

Proposition 4.4.1. Suppose that K is a proper cone and E ∈ int(K). Then the conic program

(4.18) and its dual (4.19) both satisfy the Slater condition.

Moreover, the optimal value vaux of (4.18) equals 0 if and only if RDconic 6= {0}. In particular,

if (Pconic) is feasible, then vaux = 0 if and only if the Slater condition does not hold for (Pconic).

If vaux = 0, then (0, D) is an optimal solution of (4.18) if and only if D ∈ RDconic.

Proof. Pick any D0 ∈ int(K∗). Then E ∈ int(K) implies that 〈E,D0〉V > 0 (see Lemma 3.3.2).

Letting D = 1
〈E,D0〉VD0 and picking any δ > ‖AC (D)‖, (δ,D) is a Slater point of (4.18). On the

other hand, (−1, 0, E) is a Slater point of (4.19). This shows that both (4.18) and (4.19) satisfy

the Slater condition. In particular, strong duality holds and (4.18) has an optimal solution.

Observe that vaux ≥ 0 and any feasible solution D of (4.18) has to be nonzero because of the

constraint 〈E,D〉V = 1. If 0 6= D0 ∈ RDconic , then 〈E,D0〉V > 0 and D = 1
〈E,D0〉VD0 ∈ RDconic .

Hence (0, D) is feasible, implying that vaux = 0. If vaux = 0, then for any optimal solution (0, D̄)

of (4.18), we have 0 6= D̄ ∈ RDconic . Therefore vaux = 0 if and only if RDconic 6= {0}. In particular,

if (Pconic) is feasible, then by Theorem 3.3.10 vaux = 0 if and only if the Slater condition does

not hold for (Pconic).

2 The Lagrangian of (4.18) is

L(δ,D;α, z, β,W ) = δ − (αδ + (AC(D))> z) + β(1− 〈E,D〉V)− 〈D,W 〉V

= (1− α)δ − 〈D,A∗Cz + βE +W 〉V + β.
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Remark. In the case of SDP, we take E = 1√
n
I.3 If vaux > 0, then for any Z = C − A∗y ∈ Sn+,

λmin(Z) ≤ vaux

√
1 + ‖y‖2. In fact, Z � λmin(Z)I and 〈I,D〉 =

√
n imply that

√
nλmin(Z) ≤ 〈D,Z〉 = (AC(D))>

(
−y
1

)
≤ ‖AC(D)‖

√
1 + ‖y‖2 = vaux

√
1 + ‖y‖2,

i.e.,

λmin(Z) ≤ 1√
n
vaux

√
1 + ‖y‖2. (4.20)

This illustrates that when vaux is close to zero, the smallest eigenvalue of any feasible slack has

to be also close to zero in a relative sense.

We can generalize the result (4.20) in the remark to general conic programs (Pconic), to show

that the optimal value vaux of (4.18) is a measure of how close the Slater condition is to failing.

While (4.20) concerns the smallest eigenvalue of the feasible slacks of (Pconic), the following result

concerns how “close” the set of feasible slacks FZPconic
is to being contained in a proper face of K,

in terms of the cosine of the angle between FZPconic
and the face K ∩

{
D̄
}⊥

, where (δ̄, D̄) is any

optimal solution of (4.18).

Theorem 4.4.2. [27, Theorem 12.17] Assume that (Pconic) is feasible, that K is a proper cone

and that A is onto. Let E ∈ int(K) with ‖E‖V = 1. If (δ,D) is a feasible solution of the auxiliary

problem (4.18), then either FZPconic
= {0} or

0 ≤ sup
06=Z=C−A∗y∈K

〈D,Z〉V
‖D‖V‖Z‖V

≤ α(AC , δ) :=


δ

σmin(A∗)
if C ∈ range(A∗),

δ

σmin(A∗C)
if C /∈ range(A∗),

(4.21)

where σmin(A∗) is defined in (3.1) and σmin(A∗C) is similarly defined.

Proof. If FZPconic
6= {0}, then the optimization problem in (4.21) is feasible. Note also that

〈E,D〉V = 1 = ‖E‖V =⇒ ‖D‖V ≥
〈E,D〉V
‖E‖V

= 1.

If C = A∗yC for some yC ∈ Rm, then for any y ∈ Rm, Z := C −A∗y = A∗(yC − y) is nonzero if

and only if y 6= yC , and ‖Z‖V ≥ σmin(A∗)‖y − yC‖. Hence

〈D,Z〉V
‖D‖V‖Z‖V

≤ (A(D))> (yC − y)

σmin(A∗)‖y − yC‖
≤ ‖AC(D)‖‖y − yC‖
σmin(A∗)‖y − yC‖

≤ δ

σmin(A∗)
.

3 More generally, if K is a symmetric cone, then we would choose E to be a positive scalar multiple of the

multiplicative identity.
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If C /∈ range(A∗), then σmin(A∗C) > 0. For any y ∈ Rm, Z := C − A∗y = A∗C

(
−y
1

)
satisfies

‖Z‖ ≥ σmin(A∗C)
√

1 + ‖y‖2, so

〈D,Z〉V
‖D‖V‖Z‖V

≤
(AC(D))>

(
−y
1

)
σmin(A∗C)

√
1 + ‖y‖2

≤ δ

σmin(A∗C)
.

This proves (4.21).

In particular, if (δ∗, D∗) is an optimal solution of the auxiliary problem (4.18), then

0 ≤ sup
0 6=Z=C−A∗y∈K

〈D∗, Z〉V
‖D∗‖V‖Z‖V

≤ α(AC) := α(AC , vaux),

and we recover the result that vaux = 0 implies 〈D∗, Z〉V = 0 for all Z ∈ FZPconic
.

4.4.2 Strict complementarity of the auxiliary problem

Given that the Slater condition always holds for (4.18)-(4.19) when K is a proper cone, the

necessary and sufficient optimality condition for (4.18)-(4.19) is given by

A∗Cz + βE +W = 0, ‖z‖ ≤ 1, W ∈ K, (dual feasibility)

〈E,D〉V = 1, ‖AC(D)‖ ≤ δ, D ∈ K∗, (primal feasibility)

δ + (AC(D))> z = 0, 〈D,W 〉V = 0. (complementary slackness)

(4.22)

When the feasible program (Pconic) fails the Slater condition, the maximally complementary

optimal solutions of (4.18)-(4.19) gives us information about whether the reduced problem (4.3)

satisfies the Slater condition, i.e., whether face (P) = K ∩ (RDconic)
⊥.

Proposition 4.4.3. [27, Theorem 12.28] Let (0, D; 0, z,W ) be a maximally complementary so-

lution of (4.18)-(4.19). Then the reduced program (4.3) satisfies the Slater condition if and only

if W ∈ ri(K ∩ {D}⊥).

Proof. Suppose that (4.3) satisfies the Slater condition, i.e., there exists ŷ ∈ Rm such that C −
A∗ŷ ∈ ri(K ∩ {D}⊥). Let

β̄ = 0, z̄ =
1√

1 + ‖ŷ‖2

 ŷ

−1

 , W̄ = −A∗C z̄ =
1√

1 + ‖ŷ‖2
(C −A∗ŷ).

Then (β̄, z̄, W̄ ) is an optimal solution of (4.19) and W̄ ∈ ri(K ∩ {D}⊥). Hence the maximally

complementary solution satisfies W ∈ ri(K ∩ {D}⊥) as well.
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Conversely, if W ∈ ri(K ∩ {D}⊥), then range(A∗C) ∩ ri(K ∩ {D}⊥) 6= ∅. Hence (4.3) satisfies

the Slater condition by Lemma 3.3.6.

In other words, the existence of a strictly complementary optimal solution of the auxiliary

problem with optimal value zero implies that only one iteration of facial reduction is needed to

find the minimal face.

In the special case of linear programs, we expect that at most one facial reduction iteration

is required to arrive at the minimal face, since the corresponding auxiliary problem would be

equivalent to an LP. In fact, Freund et al. [40] showed that the minimal face of

vPLP
= max

y

{
b>y : c−A>y ≥ 0

}
(PLP)

can be identified by solving an auxiliary LP. We state the simpler version of the two results from

[40].

Theorem 4.4.4. [40, Proposition 1] Suppose that (PLP) is feasible, i.e., FLP :=
{
y : c−A> ≥ 0

}
6=

∅. Consider the linear program

max
y,z,α

ē>z

s.t. A>y + z − αc ≤ 0,

0 ≤ z ≤ ē,
α ≥ 1,

(4.23)

where ē is the vector of all ones of appropriate length. Then (4.23) is feasible and finite, and for

any optimal solution (y∗, z∗, α∗) of (4.23),{
i ∈ 1 : m : (c−A>y)i = 0, ∀ y ∈ FLP

}
= {i ∈ 1 : m : z∗i = 0} and

1

α∗
y∗ ∈ ri (FLP) .

In other words, any optimal solution (y∗, z∗, α∗) of (4.23) determines the minimal face of Rn

containing FLP.

We apply Proposition 4.4.3 to prove a similar result. We show that linear programs only

require at most one facial reduction iteration to arrive at the minimal face.

Corollary 4.4.5. If the linear program (PLP) is feasible and does not satisfy the Slater condition,

then the reduced program

max
y

{
b>y : c−A>y ∈ Rn+ ∩ {d}

⊥
}
, (4.24)

where d ∈ ri
({
g ∈ Rn : Ag = 0, c>g = 0, g ≥ 0

})
is arbitrary, satisfies the Slater condition.
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Proof. Consider the LP

min
{

0 : Ag = 0, c>g = 0, ē>g = 1, g ≥ 0
}
. (4.25)

Since (PLP) fails the Slater condition, the LP (4.25) is feasible. The dual of (4.25) is

max
{
α : αē+ γc+A>y ≤ 0

}
(4.26)

and is also feasible. By the Goldman-Tucker theorem (Theorem 3.2.7), (4.25) and (4.26) have

strictly complementary solutions, i.e., there exist g ≥ 0 with Ag = 0, c>g = 0, ē>g = 1 and (γ, y)

with γ+‖y‖2 < 1 and w := −γc−A>y ≥ 0 such that w+ g > 0. Then (0, g; 0, (y; γ), w) is an op-

timal solution of (4.18)-(4.19) (with K = Rn). Then d ∈ ri
({
g ∈ Rn : Ag = 0, c>g = 0, g ≥ 0

})
implies that (0, d; 0, (y; γ), w) is a maximally complementary solution of (4.18)-(4.19) with w ∈
ri(Rn+ ∩ {g}

⊥) = ri(Rn+ ∩ {d}
⊥). Therefore the reduced program (4.24) satisfies the Slater condi-

tion.

We remark that the single SOCP also only require at most one facial reduction iteration for

finding the minimal face (see Theorem 4.2.1).
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Part II

Numerical implementation of facial

reduction on SDP
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Chapter 5

Implementing facial reduction on

SDP: numerical issues

From this chapter on, we will focus on semidefinite programs. The implementation of facial

reduction on SDP is more challenging than on LP and SOCP, where at most one iteration of

facial reduction is required1. Unlike LP and SOCP, SDP may require more than one iteration of

facial reduction.

In this chapter, we study the implementation of one iteration of facial reduction on SDP and

discuss the associated numerical issues. The main steps of one iteration of facial reduction are:

(1) finding an element D ∈ ri(RD);

(2) (if 0 6= D /∈ Sn++) computing range(A∗) ∩ span({D}⊥ ∩ Sn+), and projecting the feasible

slacks in {D}⊥ ∩ Sn+ onto Sn̄+ (where n̄ = dim(ker(D))).

Note that our facial reduction algorithm aims at finding not only the minimal face (by repeating

step (1)), but also the minimal subspace (via step (2)). The projection in step (2) onto a smaller

PSD cone and the use of a minimal subspace is essential for proper regularization; see [91].

One iteration of facial reduction on (P) is outlined in Algorithm 5.1. In practice, however,

there are multiple occasions in Algorithm 5.1 where the computation is done only approximately:

• Step (1): in practice, the auxiliary problem (4.18) is only solved approximately. In partic-

ular, we may arrive at a near optimal solution (δ∗, D∗) where δ∗ ≈ 0.

1See Corollary 4.4.5 for the result on LP and Theorem 4.2.1 for the result on the SOCP (PSOCP).
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Algorithm 5.1: One simplified iteration of facial reduction algorithm on (P)

(1) Solve the auxiliary problem for an optimal solution (δ∗, D∗).

If δ∗ > 0, then the Slater condition holds; stop.

If δ∗ = 0, then the Slater condition fails; proceed to Step (2).

(2) Compute the spectral decomposition of D∗.

If D∗ � 0, then stop.

Otherwise, D∗ =
[
P Q

] [
D+ 0

0 0

][
P>

Q>

]
, where Q =

[
P Q

]
is orthogonal and D+ � 0;

proceed to Step (3).

(3) Compute the subspace intersection.

If range(A∗) ∩ range(Q ·Q>) = {0}, then stop.

Otherwise, find a one-one linear map P : Rm̄ → Rm with

range(A∗) ∩ range(Q ·Q>) = range(A∗P);

proceed to Step (4).

(4) Shift the objective

Solve the linear equations (4.14) for the unique solution ȳ; proceed to Step (5).

(5) Project the problem data

Ā∗(·)← Q> (A∗P(·))Q;

b̄← P∗b;

C̄ ← Q>(C −A∗ȳ)Q.

% Then (4.13) holds; see Item (2) of Theorem 4.3.2.
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• Step (2): in practice, we would get

D∗ =
[
P Q

] [
D+ 0

0 Dε

][
P>

Q>

]
, with Dε ≈ 0,

and we round Dε down to zero. The decision of which eigenvalues of D∗ are zero affects our

choice of Q, the nullspace of D∗ which determines the smaller face of Sn+ containing FZP .

(In particular, Q is used in Step (5) for projecting the problem data.)

• Step (3): as we will see in Section 5.3, the computation of subspace intersection will involve

the decision of whether the cosine of a principal angle equals 1. Again, the cosines of the

principal angles can be calculated approximately only.

• Step (4): the equation (4.14a) may no longer have a solution. In particular, it may be

impossible to decompose C into the sum A∗y + QWQ>. (Does there at least exist some

(y,W ) such that C ≈ A∗y +QWQ>? Does replacing C by QWQ> lead to big changes in

(P), loosely speaking?)

The approximations listed above would affect the quality of the computed equivalent SDP

(4.13). In this chapter, we study the effects of these approximations. We first address the issue of

rounding small eigenvalues of D∗ to zero in Section 5.1. Then we consider the issue of inaccuracy

in solving the auxiliary problem in Section 5.2. (We already started the discussion on the auxiliary

problem for general conic program in Section 4.4; we strengthen the results from Theorem 4.4.2

in the case of SDP.) In Section 5.3, we discuss the computation of the subspace intersection

range(A∗)∩ range(Q ·Q>). In Section 5.4, we discuss the solution of C = A∗y+QWQ>, so that

we can shift the objective and allow for the projection of problem data.

Most of the results in this chapter are from [27].

5.1 Numerical rank and dimension reduction

The results in, e.g., Theorem 4.3.2, assume that, given 0 6= D∗ ∈ RD being not positive definite,

we get the exact factorization D∗ = PD+P
>. In practice, however, the spectral decomposition

of D∗ would be in the form

D∗ =
[
P Q

]D+ 0

0 Dε

P>
Q>

 , with Dε ≈ 0.

We need to decide which of the eigenvalues are small enough and can be rounded down to zero.

This is important for determining Q: rounding large eigenvalues to 0 gives a larger subspace
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range(Q), which means that the computed face QSn̄+Q> containing the feasible slacks FZP of (P)

would be too “large”.

We can partition D∗ using the idea of numerical rank. Suppose that λ1(D∗) ≥ λ2(D∗) ≥
· · · ≥ λn(D∗) ≥ 0; the numerical rank of D∗ with respect to a positive constant γ > 0 is defined

to be the integer rank(D∗, γ) such that

λrank(D∗,γ)(D
∗) > γ ≥ λrank(D∗,γ)+1(D∗).

Fix some ε ∈ (0, 1). For the given D∗, let γ = ε‖D∗‖√
n

. Take r ← rank(D∗, γ) = rank
(
D∗, ε‖D

∗‖√
n

)
,

D+ ← Diag (λ1(D∗), . . . , λr(D
∗)) , Dε ← Diag (λr+1(D∗), . . . , λn(D∗)) ,

and partition the matrix of eigenvectors
[
P Q

]
accordingly. Then

λmin(D+) >
ε‖D∗‖√

n
≥ λmax(Dε) =⇒ ‖Dε‖ ≤ ε‖D∗‖,

and
‖Dε‖2

‖D+‖2
=

‖Dε‖2

‖D∗‖2 − ‖Dε‖2
≤ ε2‖D∗‖2

(1− ε2)‖D∗‖2
=

1

ε−2 − 1
≈ 0,

i.e., ‖Dε‖ is negligible comparing with ‖D+‖.

5.2 Auxiliary problem for SDP: numerical aspects

Recall the auxiliary problem for the SDP (P):

vaux = inf
δ,D

δ

s.t. ‖AC(D)‖ ≤ δ,
〈 1√

n
I,D〉 = 1,

D � 0.

(5.1)

(We replace E in (4.18) by 1√
n
I.) Note that any feasible (δ,D) satisfies 1 ≤ ‖D‖ ≤

√
n.

Suppose we have a computed optimal solution (δ,D) of the auxiliary problem (5.1). For

simplicity, we will assume that (δ,D) is at least feasible for (5.1). The inexactness of the solution

introduces numerical errors in formulating the reduced problem (4.13). The main issue is: is

(4.13) “far” from (P)? To formalize the discussion, in the following sections, we address a few

numerical aspects around the use of an approximately optimal solution of the auxiliary problem

to get (4.13).
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• If δ ≈ 0, can we expect dist(Z,FZP ∩ {D}
⊥) ≈ 0 for any feasible Z ∈ FZP ? This will be

discussed in Section 5.2.1.

• Can we use (δ,D) to formulate a theoretically equivalent problem of (P)? In fact, we can

always rotate the feasible slacks, and a rank-revealing rotation can show that all feasible

slacks lie in a somewhat “flat” cone; see Section 5.2.2.

• Can we avoid solving the auxiliary problem? In some cases, we can use a simple heuristic

to find a nonzero element in RD. In general, we use a preprocessing technique to reduce

the problem size of (5.1); see Section 5.2.3.

We emphasize that in this section, though all the results are stated in terms of a feasible

solution (δ,D) of the auxiliary problem (5.1), what we really are interested in is the situation

when δ ≈ 0. In particular, α(AC , δ) defined in (4.21) is also approximately zero.

5.2.1 Distance between FZP and the computed face FZP ∩ {D}
⊥

Suppose that vaux ≈ 0 and we decide that (P) fails the Slater condition, i.e., that FZP ⊆ Sn+ ∩
{D}⊥ / Sn+, where (δ,D) is a computed optimal solution of (5.1). The computed smaller face

Sn+∩{D}
⊥ is either {0} or QSn̄+Q>, where range(Q) = ker(D∗) and Q is of full column rank. Then

the iteration of facial reduction essentially projects FZP onto either {0} or QSn̄+Q>. Naturally, we

expect that at the very least, any arbitrary Z ∈ FZP is not far from the proper face Sn+ ∩ {D}
⊥

we wish to project it onto. Proposition 5.2.1 considers the case where the computed face equals

{0}: we show that ‖Z‖ is small in a relative sense. Proposition 5.2.2 considers the case where

the computed face equals QSn̄+Q>: we show that dist(Z,QSn̄+Q>) is also relatively small.

We first show that the norm of any Z ∈ FZP is close to zero if we have a feasible solution

(δ,D) with δ ≈ 0 and D � 0.

Proposition 5.2.1. Let (δ,D) be a feasible solution of (5.1). If λmin(D) > 0, then

‖Z‖ ≤ δ

λmin(D)
(1 + ‖y‖2)1/2 (5.2)

for all Z = C −A∗y � 0.

Proof. The inequality (5.2) holds because

λmin(D)‖Z‖ ≤ λmin(D)〈I, Z〉 ≤ 〈D,Z〉 = (AC(D))>
(
−y
1

)
≤ δ

∥∥∥∥∥
(
−y
1

)∥∥∥∥∥ .
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In particular, if δ = 0 and D � 0, then (5.2) implies that FZP = {0}. Now we consider the

second case, where D is not positive definite.

Proposition 5.2.2. [27, Proposition 12.18] Let (δ,D) denote a feasible solution of (5.1), where

D =
[
P Q

]D+ 0

0 Dε

P>
Q>

 , [
P Q

]
orthogonal, D+ ∈ Sn−n̄+ and 0 < n̄ < n.

For any 0 6= Z = C −A∗y � 0, the angle between Z and its projection ZQ onto QSn̄+Q> is small

in the sense that

cos θZ,ZQ :=
〈Z,ZQ〉
‖Z‖‖ZQ‖

=
‖Q>ZQ‖
‖Z‖

≥ 1− α(AC , δ)‖D‖
λmin(D+)

, (5.3)

where α(AC , δ) is defined in (4.21). Moreover,

dist(Z, QSn̄+Q>) ≤
√

2‖Z‖
(
α(AC , δ)‖D‖
λmin(D+)

)1/2

. (5.4)

Proof. Since Z � 0, we have QQ>ZQQ> = arg min
W∈range(Q·Q>)

‖Z −W‖ = arg min
W∈QSn̄+Q>

‖Z −W‖.

Since D = PD+P
> +QDεQ

>, by Theorem 4.4.2 Z satisfies

〈PD+P
>, Z〉 ≤ 〈PD+P

>, Z〉+ 〈QDεQ
>, Z〉 = 〈D,Z〉 ≤ (α(AC , δ)‖D‖) ‖Z‖.

Therefore
〈Z,ZQ〉
‖Z‖‖ZQ‖

=
〈Z,QQ>ZQQ〉
‖Z‖‖Q>ZQ‖

=
‖Q>ZQ‖
‖Z‖

≥ γ, (5.5)

where

γ := min
W 6=0

{
‖Q>WQ‖
‖W‖

:

〈
PD+P

>,
W

‖W‖

〉
≤ α(AC , δ)‖D‖, W � 0

}
(5.6)

= min
W

{
‖Q>WQ‖ : 〈PD+P

>,W 〉 ≤ α(AC , δ)‖D‖, ‖W‖ = 1, W � 0
}
. (5.7)

In the following, we compute the optimal value γ of (5.6). Using the orthogonal rotation

W =
[
P Q

]S11 S12

S>12 S22

P>
Q>

 = PS11P
> + PS12Q

> +QS>12P
> +QS22Q

>,

we can rewrite (5.7) as

γ = min
S

‖S22‖

s.t. 〈D+, S11〉 ≤ α(AC , δ)‖D‖,
‖S11‖2 + 2‖S12‖2 + ‖S22‖2 = 1,

S =

S11 S12

S>12 S22

 � 0.

(5.8)
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Note that for any

[
S11 S12

S>12 S22

]
� 0, we have

‖S12‖2 ≤ ‖S11‖‖S22‖ =⇒ (‖S11‖+ ‖S22‖)2 ≥ ‖S11‖2 + 2‖S12‖2 + ‖S22‖2.

Therefore γ ≥ γ̄, where

γ̄ := min
S11,S22

{
‖S22‖ : 〈D+, S11〉 ≤ α(AC , δ)‖D‖, ‖S11‖+ ‖S22‖ ≥ 1, S11 � 0, S22 � 0

}
≥ min

S22

{
1− ‖S22‖ : 〈D+, S22〉 ≤ α(AC , δ)‖D‖, S22 ∈ Sn−n̄+

}
(5.9)

≥ 1−max
S22

{
‖S22‖ : λmin(D+)‖S22‖ ≤ α(AC , δ)‖D‖, S22 ∈ Sn−n̄+

}
= 1− α(AC , δ)‖D‖

λmin(D+)
.

Let u be a normalized eigenvector of D+ corresponding to its smallest eigenvalue λmin(D+). Then

S̄∗ :=
α(AC , δ)‖D‖
λmin(D+)

uu> � 0 satisfies 〈D+, S̄
∗〉 = α(AC , δ)‖D‖, ‖S̄∗‖ =

α(AC , δ)‖D‖
λmin(D+)

,

i.e., S̄∗ is feasible for (5.9), and ‖S̄∗‖ = α(AC ,δ)‖D‖
λmin(D+) implies that S̄∗ is indeed an optimal solution

of (5.9). In particular, γ̄ = α(AC ,δ)‖D‖
λmin(D+) .

Let β := min
{

1, α(AC ,δ)‖D‖
λmin(D+)

}
; then γ ≥ 1− β. Let v ∈ Rn̄ be an arbitrary unit-norm vector,

and

S∗ =

 S∗11 S∗12

(S∗12)> S∗22

 :=

 √
βu

√
1− β v

 √
βu

√
1− β v

> =

 βuu>
√
β(1− β)uv>√

β(1− β)vu> (1− β)vv>

 .
Then S∗ � 0 is feasible for (5.8):

• 〈D+, S
∗
11〉 = βλmin(D+) ≤ α(AC ,δ)‖D‖

λmin(D+) ,

• ‖S∗11‖2 + 2‖S∗12‖2 + ‖S∗22‖2 = β2 + 2β(1− β) + (1− β)2 = 1.

Also, γ ≤ ‖S∗22‖ = 1− β ≤ γ, so S∗ is an optimal solution of (5.8) and γ = 1− β. From (5.5):

‖Q>ZQ‖
‖Z‖

≥ 1− β ≥ 1− α(AC , δ)‖D∗‖
λmin(D+)

.
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Therefore (5.3) holds. For (5.4),

dist(Z, QSn̄+Q>) = ‖Z −QQ>ZQQ‖ =
(
‖Z‖2 − ‖Q>ZQ‖2

)1/2

= ‖Z‖
(

1− ‖Q
>ZQ‖2

‖Z‖2

)1/2

≤ ‖Z‖
(
1− (1− β)2

)1/2
≤ ‖Z‖ (2β)1/2

≤
√

2 ‖Z‖
(
α(AC , δ)‖D∗‖
λmin(D+)

)1/2

.

Remark. If δ = 0, then (5.4) implies that FZP ⊆ QSn̄+Q>.

Even though Dε does not appear in the bound (5.4), the inequality (5.4) still makes sense: if

Dε is not close to zero, then the face QSn̄+Q> would be “too big” (but still containing a proper

face that contains FZP ).

5.2.2 Rank-revealing rotation and equivalent problems

We saw in Theorem 4.3.2 that if we can solve the auxiliary problem exactly and obtain 0 6= D ∈
RD with D 6� 0, then we may either get the single feasible solution of (P) or rewrite (P) as a

smaller equivalent problem (4.13).

Given a computed optimal solution (δ,D) of (5.1) with δ ≈ 0, while the reduced problem that

we will arrive at is not going to be exactly equivalent to (P), the computed solution (δ,D) can

still be used for rotating (the feasible slacks of) the SDP so that the feasible slacks are roughly

of the form

[
∗ 0

0 0

]
.

Proposition 5.2.3. Let (δ,D) be a feasible solution of (5.1), and suppose that

D =
[
P Q

] [
D+ 0

0 Dε

][
P>

Q>

]
, U =

[
P Q

]
orthogonal , λmin(D+) > 0.

Then (P) is equivalent to the following problems:

sup
y

{
b>y : U>ZU ∈ Tβ, Z = C −A∗y

}
, (5.10)

where β := α(AC , δ) ‖D‖
λmin(D+) and

Tβ :=

{
Z =

[
A B

B> C

]
∈ Sn+ : tr(A) ≤ β tr(Z), C ∈ Sn̄

}
,
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which is a proper face of Sn+ if β = 0, or a proper cone otherwise.

Proof. If Z = C −A∗y � 0, then by (4.21),

α(AC , δ)‖D‖‖Z‖ ≥ 〈D,Z〉 = 〈PD+P
> +QDεQ

>, Z〉

≥ 〈PD+P
>, Z〉 ≥ λmin(D+)〈I, P>ZP 〉.

Hence tr(P>ZP ) ≤ β‖Z‖ ≤ β tr(Z) = β tr(U>ZU), i.e., U>ZU =

[
P>ZP P>ZQ

Q>ZP Q>ZQ

]
∈ Tβ.

Therefore

Z = C −A∗y ∈ Sn+ ⇐⇒ Z = C −A∗y ∈ Tβ,

and (P) is equivalent to (5.10).

The set Tβ is the intersection of Sn+ with a closed half space, so Tβ is a nonempty pointed

closed convex cone. If β = 0, then Tβ = Sn+ ∩

{[
I 0

0 0

]}⊥
is a proper face of Sn+. If β > 0, then[

β
2
I 0

0 I

]
∈ int(Tβ), implying that Tβ is a proper cone.

5.2.3 Preprocessing the auxiliary problem and a heuristic for finding 0 6= D ∈
RD

In this section, we mention a preprocessing procedure for solving (5.1). The preprocessing deals

with two scenarios.

(1) Suppose that Ai is positive semidefinite for some i ∈ 0 : m (where A0 := C). Let Ũ ∈ Rn×r

be of full column rank and satisfy range(Ũ) = ker(Ai). Then D ∈ RD implies that D ∈
Sn+ ∩ {Ai}

⊥ = ŨSr+Ũ>. Therefore

D ∈ RD ⇐⇒ D = ŨD̃Ũ>, 〈D̃, Ũ>AjŨ〉 = 0, ∀ i ∈ 0 : m.

So we replace Aj by Ũ>AjŨ before solving the auxiliary problem.

(2) Suppose that 0 6= v ∈ Rn satisfies Ajv = 0 for all j ∈ 0 : m. Then 〈Aj , vv>〉 = 0 for all

j ∈ 0 : m, i.e., vv> ∈ RD.

While scenarios (1) and (2) occur with probability zero for any randomly generated SDP

(recalling that the set of all singular matrices in Rn×n is of Lebesgue measure zero), in practice

scenarios (1) and (2) occur more frequently than the theory suggests. SDP relaxations arising from
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many applications (especially combinatorial optimization problems) often have sparse constraint

matrices that fall in one of the two possible scenarios; see Chapter 8 for some examples.

Both determining whether a matrix is positive semidefinite (in Case (1)) and determining

whether
⋂m
j=0 ker(Aj) 6= 0 (in Case (2)) can be done by performing spectral decompositions on the

matrices C,A1, . . . , Am. Therefore the two scenarios offer the possibility of efficient preprocessing,

stated in Algorithm 5.2 on Page 74.

Algorithm 5.2: Preprocessing for the auxiliary problem (5.1)

Input(A0 := C, A1, . . . , Am ∈ Sn)1

(1) Any Ai � 0?

if one of Ai (i ∈ 0 : m) is definite then

stop; (P) satisfies the Slater condition;

endif

(2) Any Ai � 0?

while one of Ai =
[
U Ũ

] [
G̃ 0

0 0

][
U>

Ũ>

]
with G̃ being definite (i ∈ 0 : m) do

Aj ← Ũ>AjŨ for all j 6= i and remove Ai;

endw

(3)
⋂m
j=0 ker(Aj) 6= {0}?

if ∃V ∈ Rn×k such that ‖V ‖2 =
√
n and AjV = 0 for all j ∈ 0 : m then

〈I, V V >〉 = 1 and 〈Aj , V V >〉 = 0 for all j ∈ 1 : m;

therefore (0, V V >) is an optimal solution of the auxiliary problem

min
δ,D

δ :

 m∑
j=0

〈Aj , D〉2
1/2

≤ δ, 〈I,D〉 =
√
n, D � 0

 . (5.11)

else

use an SDP solver to solve (5.11).

endif
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5.3 Subspace intersection

To compute range(A∗) ∩ range(Q · Q>), we can use the principal angles between the subspaces

range(A∗) and range(Q ·Q>):

Theorem 5.3.1. [47, Theorem 6.4.2] Let Q ∈ Rn×n̄ be of full column rank and let A : Sn → Rm

be an onto linear map. Let r := min{1
2 n̄(n̄ + 1),m}. Then there exist U sp

1 , . . . , U sp
r ∈ range(Q ·

Q>), V sp
1 , . . . , V sp

r ∈ range(A∗) such that

σsp
1 := 〈U sp

1 , V sp
1 〉

= max
U,V

{
〈U, V 〉 : ‖U‖ = 1 = ‖V ‖, U ∈ range(Q ·Q>), V ∈ range(A∗)

}
,

σsp
k := 〈U sp

k , V
sp
k 〉

= max
U,V

{
〈U, V 〉 : ‖U‖ = 1 = ‖V ‖, U ∈ range(Q ·Q>), V ∈ range(A∗),

〈U,U sp
i 〉 = 0 = 〈V, V sp

i 〉, ∀ i ∈ 1 : (k − 1)} ,

(5.12)

for k ∈ 2 : r. Moreover, 1 ≥ σsp
1 ≥ σsp

2 ≥ · · · ≥ σsp
r ≥ 0. If σsp

1 < 1, then range(A∗) ∩ range(Q ·
Q>) = {0}. If 1 = σsp

1 = · · · = σsp
m̄ > σsp

m̄+1 ≥ · · · ≥ σ
sp
r ≥ 0, then

range(A∗) ∩ range(Q ·Q>) = span(U sp
1 , U sp

2 , . . . , U sp
m̄ ) = span(V sp

1 , V sp
2 , . . . , V sp

m̄ ) = range(A∗P),

where P : Rm̄ → Rm is the one-one linear map defined by Pv :=
∑m̄

i=1 vi(A∗)†(V
sp
i ).

We remark that the σsp
i ’s, U sp

i ’s and V sp
i ’s in Theorem 5.3.1 can be computed using singular

value decomposition, as in Algorithm 5.3 derived from [47, Algorithm 6.4.3].

In practice, we do not get σsp
i = 1 exactly (for i ∈ 1 : m̄). For a fixed tolerance εsp ∈ [0, 1),

suppose that

1 ≥ σsp
1 ≥ · · · ≥ σ

sp
m̄ ≥ 1− εsp > σsp

m̄+1 ≥ · · · ≥ σ
sp
r ≥ 0. (5.13)

We claim that the approximation

range(Q ·Q>) ∩ range(A∗) ≈ span(U sp
1 , . . . , U sp

m̄ ) ≈ span(V sp
1 , . . . , V sp

m̄ ) (5.14)

is “good enough” if εsp ≈ 0, in the sense that for i ∈ 1 : m̄, U sp
i ∈ range(Q ·Q>) satisfies

dist(U sp
i , range(A∗)) ≤ ‖U sp

i − V
sp
i ‖ =

√
2− 2〈U sp

i , V
sp
i 〉 =

√
2(1− σsp

i ) ≤
√

2εsp,

and V sp
i ∈ range(A∗) satisfies dist(Vi, range(Q ·Q>)) ≤ 2εsp and

‖Q>V sp
i Q‖ = ‖QQ>V sp

i QQ>‖‖U sp
i ‖ ≥ 〈Q

>V sp
i Q,Q>U sp

i Q〉 = 〈V sp
i , U sp

i 〉 = σsp
i ≥ 1− εsp.
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Algorithm 5.3: Computing the subspace intersection range(Q ·Q>) ∩ range(A∗)

(1) Compute an orthonormal basis {V1, V2, . . . , Vm} ⊂ Sn of range(A∗) (using, e.g.,

QR-decomposition);

(2) form the matrix representation Ω of span
{
Q>V1Q,Q

>V2Q, . . . , Q
>VmQ

}
, i.e.,

Ω←
[
svec(Q>V1Q) svec(Q>V2Q) · · · svec(Q>VmQ)

]
∈ R

1
2
n̄(n̄+1)×m,

where svec : Sn → R
1
2
n(n+1) is the invertible linear operator that satisfies

(svec(X))> (svec(Y )) = 〈X,Y 〉 for all X,Y ∈ Sn, and sMat := svec−1;

(3) compute the SVD of Ω = UΩΣΩ(V Ω)>,

with Σ = Diag(σsp
1 , σ

sp
2 , . . .) and σsp

1 ≥ σ
sp
2 ≥ · · · ;

(4) U sp
i ← Q sMat(UΩ

:,i)Q
>;

V sp
i ←

∑m
k=1 V

Ω
k,iVk;

(5) if σsp
1 < 1, then range(Q ·Q>) ∩ range(A∗) = {0};

otherwise range(Q ·Q>) ∩ range(A∗) = span(U sp
1 , . . . , U sp

m̄ ) = span(V sp
1 , . . . , V sp

m̄ ),

where m̄ satisfies σsp
m̄ = 1 > σsp

m̄+1.
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Proposition 5.3.2. Let Q ∈ Rn×n̄ be of full column rank and let A : Sn → Rm be an onto linear

map. Let r := min{1
2 n̄(n̄ + 1),m} and εsp > 0. Let σsp

i , U
sp
i , V

sp
i for i ∈ 1 : r be defined as in

(5.12). Define Ă : Sn → Rm by

Ăi =

U
sp
i if i ∈ 1 : m̄,

V sp
i if i ∈ m̄+ 1 : m.

(If r < m, then let V sp
r+1, . . . , V

sp
m ∈ Sn be such that range(A∗) = span({V sp

i : i ∈ 1 : m}).) Then

range(Ă∗) ∩ range(Q ·Q>) = span(U sp
1 , . . . , U sp

m̄ ) = span(Ă1, . . . , Ăm̄). (5.15)

Moreover, define V̆ : Sn → Rm by V̆i = V sp
i , ∀ i ∈ 1 : m. Then range(A∗) = range(V̆∗), and

‖(V̆∗ − Ă∗)y‖ ≤ 2
√
m̄εsp‖y‖ for all y ∈ Rm.

Proof. It is immediate that U sp
i ∈ range(Ă∗) ∩ range(Q ·Q>) for i ∈ 1 : m̄. Since

max
‖U‖=1
‖V ‖=1

{
〈U, V 〉 : U ∈ range(Q ·Q>), V ∈ range(Ă∗), 〈U,U sp

j 〉 = 0 = 〈V,U sp
j 〉, ∀ j ∈ 1 : m̄

}

≤ max
‖U‖=1
‖y‖=1

{
m̄∑
i=1

yi〈U,U sp
i 〉+

m∑
i=m̄+1

yi〈U, V sp
i 〉 : U ∈ range(Q ·Q>), 〈U,U sp

j 〉 = 0, ∀ j ∈ 1 : m̄

}

= max
‖U‖=1
‖y‖=1

{
m∑

i=m̄+1

yi〈U, V sp
i 〉 : U ∈ range(Q ·Q>), 〈U,U sp

j 〉 = 0, ∀ j ∈ 1 : m̄

}

= σsp
m̄+1 < 1− εsp < 1,

(5.15) holds.

By definition of V sp
i ’s and V̆, we have range(A∗) = range(V̆∗). Finally, for any y ∈ Rm,

‖(V̆∗ − Ă∗)y‖ =

∥∥∥∥∥
m̄∑
i=1

(V sp
i − U

sp
i )yi

∥∥∥∥∥ ≤
m̄∑
i=1

‖V sp
i − U

sp
i ‖|yi| ≤

√
2m̄εsp‖y‖.

To increase the robustness of the computation of range(A∗) ∩ range(Q · Q>), we may follow

the treatment in [32], and decide whether a singular value is one by checking its ratios with the

previous and the next singular values.
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5.4 Shifting the objective

Proposition 5.4.1. Let P : Rm̄ → Rm be a one-one linear map satisfying range(A∗P) =

range(Q ·Q>) ∩ range(A∗).Then the linear equations

AA∗y −A(QQ>(A∗y)QQ>) = A(C −QQ>CQQ>), (5.16a)

P∗y = 0, (5.16b)

have a unique solution ȳ. Define

C̄ := Q>(C −A∗ȳ)Q and Cres := C −A∗ȳ −QC̄Q>;

then (ȳ, C̄) is an optimal solution of the (underdetermined) linear least squares problem

vlss = min
y,W
‖C − (A∗y +QWQ>)‖. (5.17)

Moreover,

A(Cres) = 0, Q>CresQ = 0, and vlss ≤
√

2

(
min
Z∈FZP

‖Z‖

)(
α(AC , δ)‖D‖
λmin(D+)

)
. (5.18)

Proof. Define the linear function G : Rm → Rm by

Gy := AA∗y −A(QQ>(A∗y)QQ>).

Then G is self-adjoint, i.e., G∗ = G. Moreover, ker(G) = range(P).

Now note that A(C−QQ>CQQ>) ∈ ker(P∗) = range(G∗) = range(G). Therefore (5.16a) has

a solution y. Write y = y1 + y2, where y1 ∈ range(G) = ker(P∗) and y2 ∈ ker(G); then Ly = Ly1,

i.e., y1 solves (5.16).

To see that (5.16) has a unique solution, simply note that if y, ỹ both solve (5.16), then

y − ỹ ∈ ker(G) by (5.16a) and y − ỹ ∈ ker(P∗) = range(G) by (5.16b). Hence y = ỹ.

Since the first order optimality condition of (5.17) (which has a convex objective function) is

A(C − (A∗y +QWQ>)) = 0,

Q>(C − (A∗y +QWQ>))Q = 0,
(5.19)

(ȳ, C̄) satisfies the optimality condition and hence solves (5.17). ThatA(Cres) = 0 andQ>CresQ =

0 follows immediately from the definition of Cres and the optimality condition (5.19).

Finally, let y ∈ FZP . Then vlss ≤ ‖C −A∗y −QQ>(C −A∗y)QQ>‖, and we can use (5.4) to

get (5.18).
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5.5 Numerical results

In this section, we consider using the facial reduction algorithm on semidefinite programs that

fail the Slater condition. (Some examples can be found in Section 7.2.)

We quote the result from [27] in Table 5.1 on Page 81, which compares solving 18 instances

of the SDP (P) with versus without using the facial reduction algorithm. Examples 2 to 9 are

instances where the true optimal values of (P) and (D) are known. Specifically,

• Example 2 has a positive duality gap: vP = 0 < vD = 1;

• in Examples 4, 9a and 9b, the dual (D) is infeasible; Examples 9a and 9b uses the problem

data defined in (4.17) (so they require n − 1 iterations of facial reduction, where n is the

size of the matrix variable).

The instances RandGen1-RandGen11 are generated randomly using Algorithm 5.4 on Page

80. Most of them have a finite positive duality gap, because of the following result (with a proof

in [27, Theorem 12.39]):

Theorem 5.5.1. [91, 97] Given any positive integers n, m ≤ n(n+ 1)/2 and any g > 0 as input

for Algorithm 5.4, the following statements hold for the primal-dual pair (P)-(D) corresponding

to the output data from Algorithm 5.4:

1. Both (P) and (D) are feasible.

2. All primal feasible points are optimal and vP = 0.

3. All dual feasible point are optimal and vD = g > 0.

It follows that (P) and (D) possess a finite positive duality gap.

Moreover, these instances generically require only one iteration of facial reduction. SeDuMi

[85] is used to solve the SDPs in both cases.

When the instance has zero duality gap (as in Examples 1, 3, 6 and 7), SeDuMi is able to

compute the optimal value. However, when there is a finite nonzero duality gap, SeDuMi may not

always be able to solve the SDP, and returns NaN. We note that, theoretically, the failure of the

Slater condition in a given SDP should not be an issue for the self-dual embedding method. It is

not clear why SeDuMi has difficulty handling instances where a nonzero duality gap is present.
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Algorithm 5.4: Generating an SDP instance that has a finite nonzero duality gap [91, 97]

Input(problem dimensions m, n; desired duality gap g > 0);1

Output(linear map A : Sn → Rm, b ∈ Rm, C ∈ Sn such that the corresponding primal dual2

pair (P)-(D) has a finite nonzero duality gap);

(1) Pick any positive integer r1,r3 that satisfy r1 + r3 + 1 = n,

and any positive integer p ≤ r3;

(2) choose Ai � 0 for i = 1, . . . , p so that dim(face({Ai : i = 1, . . . , p})) = r3.

Specifically, choose A1, . . . , Ap so that

face({Ai : 1, . . . , p}) =


0 0 0

0 0 0

0 0 Sr3+

 ;

(3) choose Ap+1, . . . , Am of the form

Ai =


0 0 (Ai)13

0 (Ai)22 ∗
((Ai)13)> ∗ ∗

 ,
where an asterisk denotes a block having arbitrary elements, such that

• (Ap+1)13, . . . , (Am)13 are linearly independent, and

• (Ai)22 � 0 for some i ∈ {p+ 1, . . . ,m};

(4) pick

X̄ =


0 0 0

0
√
g 0

0 0 0

 ;

(5) take b = A(X̄), C = X̄.
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Name n m True primal True dual Primal optimal value Primal optimal value

optimal value optimal value with facial reduction without facial reduction

Example 1 3 2 0 0 0 -6.30238e-016

Example 2 3 2 0 1 0 +0.570395

Example 3 3 4 0 0 0 +6.91452e-005

Example 4 3 3 0 Infeas. 0 +Inf

Example 6 6 8 1 1 +1 +1

Example 7 5 3 0 0 0 -2.76307e-012

Example 9a 20 20 0 Infeas. 0 Inf

Example 9b 100 100 0 Infeas. 0 Inf

RandGen1 10 5 0 1.4509 +1.5914e-015 +1.16729e-012

RandGen2 100 67 0 5.5288e+003 +1.1056e-010 NaN

RandGen4 200 140 0 2.6168e+004 +1.02803e-009 NaN

RandGen5 120 45 0 0.0381 -5.47393e-015 -1.63758e-015

RandGen6 320 140 0 2.5869e+005 +5.9077e-025 NaN

RandGen7 40 27 0 168.5226 -5.2203e-029 +5.64118e-011

RandGen8 60 40 0 4.1908 -2.03227e-029 NaN

RandGen9 60 40 0 61.0780 +5.61602e-015 -3.52291e-012

RandGen10 180 100 0 5.1461e+004 +2.47204e-010 NaN

RandGen11 255 150 0 4.6639e+004 +7.71685e-010 NaN

Table 5.1: Comparisons with/without facial reduction, using SeDuMi, from [27]
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Chapter 6

Backward stability of facial reduction

on SDP

In this chapter, we discuss the backward stability of the facial reduction algorithm applied on

SDP.

We first recall the notion of backward stability. Suppose that an algorithm takes an input

x and calculates y = f(x), where f is some function. While the computed output y from the

algorithm may not equal the true value ytrue = f(x), it is often considered acceptable as long

as y = f(x′) for some x′ near x. In such a case, we say that the algorithm is backward stable.

Examples illustrating the idea of backward stability can be found in, e.g., [53].

The facial reduction algorithm on the SDP (P) takes as input the data (A, b, C) and outputs

(Ā, b̄, C̄) such that (P) is equivalent to

sup
v

{
b̄>v : C̄ − Ā∗v � 0

}
, (6.1)

which satisfies the Slater condition. (It could be either (Ā, b̄, C̄) = (A, b, C) or (Ā, b̄, C̄) is

from (4.13), if (Pconic) fails the Slater condition.) As pointed out in the previous chapter, the

computation involves a number of nontrivial steps and may incur numerical errors.

In this chapter, we are concerned specifically with the fact that we can only solve the auxiliary

problem (5.1) approximately, which may lead to inaccuracy in computing the smaller equivalent

problem. In this light, we study the backward stability of one iteration of the facial reduction

algorithm in the presence of small error in solving (5.1): suppose that we input (A, b, C) and that,

after one iteration of the facial reduction algorithm (i.e., Algorithm 6.1), we get the computed
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ouput (Ā, b̄, C̄, ȳ,P, Q). We show that this computed output is the true output of Algorithm 6.1

applied on some data (Ã, b̃, C̃) that is not “too far” from (A, b, C).

We first prove a technical lemma in Section 6.1, that studies the minimum singular value of

a one-one linear map. (Section 6.1 may be skipped on the first reading.) In Section 6.2, we state

and prove the backward stability result for one iteration of the facial reduction.

6.1 A technical lemma

Lemma 6.1.1. Following the notation and assumptions of Theorem 5.3.1, and extending the set

{V sp
1 , . . . , V sp

r } to an orthonormal basis {V sp
1 , . . . , V sp

m } of range(A∗) if r < m, define linear maps

V,H : Sn → Rm−m̄ by

V∗v :=
m−m̄∑
i=1

viV
sp
m̄+i and H∗v := V∗v −QQ>(V∗v)QQ>, ∀ v ∈ Rm−m̄.

Then

σmin(H∗) =
√

1− (σsp
m̄+1)2 > 0, (6.2)

where σsp
i is defined in (5.12) for all i ∈ 1 : min

{
1
2 n̄(n̄+ 1),m

}
.

Proof. We first prove that

σsp
m̄+1 = ‖Q>V sp

m̄+1Q‖ and U sp
m̄+1 = QQ>V sp

m̄+1QQ
>, (6.3)

where U sp
i ∈ range(Q · Q>) defines the principal angle σsp

i for i ∈ 1 : min
{

1
2 n̄(n̄+ 1),m

}
; see

(5.12) in Theorem 5.3.1.

In fact, by definition,

σsp
m̄+1 = max

U,V

{
〈U, V 〉 : U ∈ range(Q ·Q>), V ∈ range(A∗),

‖U‖ = 1 = ‖V ‖, 〈U,U sp
i 〉 = 0 = 〈V, V sp

i 〉, ∀ i ∈ 1 : m̄}

≥ max
‖U‖=1

{
〈U, V sp

m̄+1〉 : U ∈ range(Q ·Q>), 〈U,U sp
i 〉 = 0, ∀ i ∈ 1 : m̄

}
. (6.4)

Since U sp
i = V sp

i for i ∈ 1 : m̄, we have

〈QQ>V sp
m̄+1QQ

>, U sp
i 〉 = 〈V sp

m̄+1, U
sp
i 〉 = 〈V sp

m̄+1, V
sp
i 〉 = 0, ∀ i ∈ 1 : m̄,

i.e., U = 1
‖Q>V sp

m̄+1Q‖
QQ>V sp

m̄+1QQ
> ∈ range(Q ·Q>) is feasible for (6.4). Therefore

σsp
m̄+1 ≥ ‖Q

>V sp
m̄+1Q‖ = ‖QQ>V sp

m̄+1QQ
>‖‖U sp

m̄+1‖ ≥ 〈QQ
>V sp

m̄+1QQ
>, U sp

m̄+1〉 = σsp
m̄+1,
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implying (6.3).

Now we prove (6.2). Since for all v ∈ Rm−m̄,

‖H∗v‖2 = ‖V∗v‖2 − ‖Q>(V∗v)Q‖2, and ‖V∗v‖ = ‖v‖

(because V sp
m̄+1, . . . , V

sp
m are orthonormal to each other), we have

σmin(H∗)2 = min
v

{
‖V∗v‖2 − ‖Q>(V∗v)Q‖2 : ‖v‖ = 1

}
= min

v

{
‖V∗v‖2 − ‖Q>(V∗v)Q‖2 : ‖V∗v‖ = 1

}
= 1−max

v

{
‖Q>(V∗v)Q‖2 : ‖V∗v‖ = 1

}
.

(6.5)

Observe that

V ∈ range(V∗) ⇐⇒ V ∈ range(A∗), 〈V, V sp
i 〉 = 0, ∀ i ∈ 1 : m̄;

therefore

max
v

{
‖Q>(V∗v)Q‖ : ‖V∗v‖ = 1

}
= max

V

{
‖Q>V Q‖ : V ∈ range(A∗), ‖V ‖ = 1, 〈V, V sp

i 〉 = 0, ∀ i ∈ 1 : m̄
}

≥ ‖Q>V sp
m̄+1Q‖.

(6.6)

On the other hand,

max
v

{
‖Q>(V∗v)Q‖ : ‖V∗v‖ = 1

}
= max

v,U

{
〈U,V∗v〉 : ‖V∗v‖ = 1, U ∈ range(Q ·Q>), ‖U‖ = 1

}
(6.7)

≥ max
U,V

{
〈U, V 〉 : U ∈ range(Q ·Q>), V ∈ range(V∗), (6.8)

‖U‖ = 1 = ‖V ‖, 〈U,U sp
i 〉 = 0, ∀ i = 1 : m̄

}
Let (v∗, U∗) be an optimal solution of (6.7). Write U∗ =

∑m̄
i=1 uiU

sp
i + Ũ , where 〈Ũ , U sp

i 〉 = 0 for

all i ∈ 1 : m̄. We show that ui = 0 for all i ∈ 1 : m̄. Note that 〈V∗v∗, U sp
i 〉 = 〈V∗v∗, V sp

i 〉 = 0 for

all i ∈ 1 : m̄, i.e., 〈U,V∗〉 = 〈Ũ ,V∗〉. If ui 6= 0 for some i ∈ 1 : m̄, then ‖Ũ‖ < ‖U‖ = 1. Then

(Ũ/‖Ũ‖,V∗v∗) is a feasible solution of (6.8) and its objective value is 〈U,V∗〉/‖Ũ‖ > 〈U,V∗〉,
which contradicts the inequality in (6.8). Therefore we must have that U∗ = Ũ , proving that the

optimization problems (6.7) and (6.8) have the same optimal value. Therefore, combining with
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(6.6),

‖Q>V sp
m̄+1Q‖ ≤ max

U,V

{
〈U, V 〉 : U ∈ range(Q ·Q>), V ∈ range(V∗),

‖U‖ = 1 = ‖V ‖, 〈U,U sp
i 〉 = 0, ∀ i = 1 : m̄

}
= max

U,V

{
〈U, V 〉 : U ∈ range(Q ·Q>), V ∈ range(A∗),

‖U‖ = 1 = ‖V ‖, 〈U,U sp
i 〉 = 0 = 〈V, V sp

i 〉, ∀ i = 1 : m̄
}

=σsp
m̄+1 = ‖Q>V sp

m̄+1Q‖,

where the last equality follows from (6.3). Therefore we have

σsp
m̄+1 = max

v

{
‖Q>(V∗v)Q‖2 : ‖V∗v‖ = 1

}
,

which together with (6.5) implies (6.2).

6.2 Backward stability of one iteration of facial reduction

In this section, we show that one iteration of the facial reduction (i.e., Algorithm 6.1 on Page 87)

is backward stable. We first state the backward stability result:

Theorem 6.2.1. [27, Theorem 12.38] Let b ∈ Rm, C ∈ Sn and an onto linear map A : Sn → Rm

be given so that (P) is feasible. Suppose that Algorithm 6.1 finds a feasible solution (δ,D) of the

auxiliary problem (5.1) in Step (1) with

δ ≥ 0, D =
[
P Q

]D+ 0

0 Dε

P>
Q>

 � 0

with D+ ∈ Sn−n̄++ (0 < n̄ < n),
[
P Q

]
∈ Rn×n orthogonal,

and returns (Ā, b̄, C̄, ȳ,P). In addition, assume that

(σsp
m̄+1)2 < 1− 2(m− m̄)

‖D+‖2

(
‖A(D)‖2

σmin(A∗)2
+ ‖Dε‖2

)
holds. Then (Ā, b̄, C̄)is the exact output of Algorithm 6.1 applied on (Ã, b, C̃), where Ã : Sn →
Rm : (〈Ãi, X〉) is defined by

Ãi := Ai −
〈Ai, PD+P

>〉
‖D+‖2

PD+P
>,

and C̃ := Ã∗ȳ +QC̄Q>. In other words, the following hold:

85



(1) Ã(PD+P
>) = 0, 〈C̃, PD+P

>〉 = 0.

(2) range(Ã∗P) = range(Q ·Q>) ∩ range(Ã∗).

(3) ȳ solves

ÃÃ∗ȳ − Ã(QQ>(Ã∗y)QQ>) = Ã(C̃ −QQ>C̃QQ>),

P∗ȳ = 0,
(6.9)

and (ȳ, C̄) solves the least squares problem

min
y,W
‖Ã∗y +QWQ> − C̃‖. (6.10)

Moreover,

‖A∗ − Ã∗‖ ≤ ‖A(D)‖+ ‖Dε‖

(
m∑
i=1

‖Ai‖2
)1/2

,

and ‖C − C̃‖ ≤
√

2

(
min
Z∈FZP

‖Z‖

)(
α(AC , δ)‖D‖
λmin(D+)

)
.

Before we prove Theorem 6.2.1, we need a lemma about finding a linear map Ã that is “near”

A that satisfies

range(Q ·Q>) ∩ range(Ã∗) = range(Q ·Q>) ∩ range(A∗).

Lemma 6.2.2. Let A : Sn → Rm : X 7→ (〈Ai, X〉) be linear onto.

Let D =
[
P Q

] [
D+ 0

0 Dε

][
P>

Q>

]
∈ Sn+, where

[
P Q

]
∈ Rn×n is orthogonal and D+ � 0, and let

σsp
1 , σ

sp
2 , . . . , σ

sp

min{ 1
2
n̄(n̄+1),m} ≥ 0 satisfy (5.12), with σsp

m̄ = 1 > σsp
m̄+1. Assume that

1− (σsp
m̄+1)2 >

2(m− m̄)

‖D+‖2

(
‖A(D)‖2

σmin(A∗)2
+ ‖Dε‖2

)
. (6.11)

Define Ãi to be the projection of Ai onto
{
PD+P

>}⊥:

Ãi := Ai −
〈Ai, PD+P

>〉
‖D+‖2

PD+P
>, ∀ i ∈ 1 : m. (6.12)

and Ã : Sn → Rm by Ã∗y :=
∑m

i=1 yiÃi. Then

range(Q ·Q>) ∩ range(Ã∗) = range(Q ·Q>) ∩ range(A∗). (6.13)

86



Algorithm 6.1: One iteration of the facial reduction algorithm

Input(A : Sn → Rm, b ∈ Rm, C ∈ Sn such that (P) is feasible.)1

Step (1): solve the auxiliary problem2

perform preprocessing on (5.1);3

obtain an optimal solution of (δ∗, D∗) of (5.1);4

Step (2): find a smaller face of Sn+ containing FZP5

if D∗ = 0 or D∗ � 0 then6

STOP;7

else8

obtain spectral decomposition9

D∗ =
[
P Q

]D+ 0

0 0

P>
Q>

 , with D+ � 0 and Q ∈ Rn×n̄;

endif10

Step (3): compute the subspace intersection11

find σsp
1 , . . . , σ

sp
r ≥ 0 and V sp

1 , . . . , V sp
r ∈ range(A∗) satisfying (5.12) via Algorithm 5.3;12

if σsp
1 < 1 then13

STOP; all feasible solutions are optimal;14

else15

let m̄ satisfy σsp
1 ≥ σ

sp
1 ≥ · · · ≥ σ

sp
m̄ = 1 > σsp

m̄+1 ≥ 0;16

define the linear map Pv :=
∑m̄

i=1 vi(A∗)†(V
sp
i ) for all v ∈ Rm̄;17

endif18

Step (4): shifting the objective19

solve (5.16) for ȳ;20

Step (5): project the problem data21

Ā∗(·)← Q> (A∗P(·))Q;22

b̄← P∗b;23

C̄ ← Q>(C −A∗ȳ)Q.24

Output(Ā, b̄, C̄)25
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Proof. Define r := min
{

1
2 n̄(n̄+ 1),m

}
; let U sp

1 , U sp
2 , . . . , U sp

r ∈ range(Q·Q>), V sp
1 , V sp

2 , . . . , V sp
r ∈

range(A∗) along with σsp
1 , σ

sp
2 , . . . , σ

sp
r ≥ 0 satisfy (5.12). Then

range(Q ·Q>) ∩ range(A∗) = range(A∗P),

where P : Rm̄ → Rm : v 7→
∑m̄

i=1 vi(A∗)†(V
sp
i ).

First note that by definition of Ãi’s in (6.12), for any y ∈ Rm,

Ã∗y = A∗y − 〈A
∗y, PD+P

>〉
‖D+‖2

PD+P
>. (6.14)

It is easy to see that range(A∗P) ⊆ range(Q·Q>)∩range(Ã∗): for any u ∈ Rm̄, 〈A∗Pu, PD+P
>〉 =

0, hence A∗Pu = Ã∗Pu ∈ range(Q ·Q>) ∩ range(Ã∗).

For the converse, fix any y ∈ Rm such that Ã∗y ∈ range(Q ·Q>); we show that Ã∗y = A∗y ∈
range(Q · Q>) ∩ range(A∗). Extend {V sp

1 , . . . , V sp
r } to an orthonormal basis {V sp

1 , . . . , V sp
m } if

r < m; then A∗y =
∑m

i=1 viV
sp
i for some v ∈ Rm. We prove that vi = 0 for all i ∈ (m̄+ 1) : m.

The inclusion Ã∗y ∈ range(Q ·Q>) implies that QQ>(Ã∗y)QQ> = Ã∗y, and by (6.14) we get

QQ>(A∗y)QQ> = A∗y − 〈A
∗y, PD+P

>〉
‖D+‖2

PD+P
>. (6.15)

Since A∗y =
∑m

i=1 viV
sp
i and

∑m̄
i=1 viV

sp
i ∈ range(Q ·Q>), (6.15) implies that

m∑
i=m̄+1

vi

(
V sp
i −QQ

>V sp
i QQ>

)
=
〈
∑m

i=m̄+1 viV
sp
i , PD+P

>〉
‖D+‖2

PD+P
>. (6.16)

Taking inner product with V sp
j on both sides of (6.16) for j ∈ (m̄+ 1) : m:

m∑
i=m̄+1

vi

(
〈V sp
i , V sp

j 〉 − 〈Q
>V sp

i Q, Q>V sp
j Q〉

)
=

m∑
i=m̄+1

vi
〈V sp
i , PD+P

>〉〈V sp
j , PD+P

>〉
‖D+‖2

,

which holds for all j ∈ (m̄+ 1) : m if and only if

(M − M̃)


vm̄+1

...

vm

 = 0, (6.17)

where M,M̃ ∈ Sm−m̄ are defined by

M(i−m̄),(j−m̄) = 〈V sp
i , V sp

j 〉 − 〈Q
>V sp

i Q, Q>V sp
j Q〉,

M̃(i−m̄),(j−m̄) =
〈V sp
i , PD+P

>〉〈V sp
j , PD+P

>〉
‖D+‖2

, ∀ i, j ∈ (m̄+ 1) : m.
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We show that (vm̄+1, . . . , vm) solves (6.17) if and only if vm̄+1 = · · · = vm by proving that

λmin(M − M̃) ≥ λmin(M)− λmax(M̃) > 0 holds if we assume that (6.11) holds.

First we estimate λmin(M):

λmin(M) = min
‖u‖=1

{
v>Mv

}
= min
‖u‖=1


m−m̄∑
i,j=1

Mijuiuj


= min
‖u‖=1


〈
m−m̄∑
i=1

uiV
sp
m̄+i ,

m−m̄∑
j=1

ujV
sp
m̄+j

〉
−

〈
m−m̄∑
i=1

uiQ
>V sp

m̄+iQ ,

m−m̄∑
j=1

ujQ
>V sp

m̄+jQ

〉
= min
‖u‖=1


∥∥∥∥∥
m−m̄∑
i=1

uiV
sp
m̄+i

∥∥∥∥∥
2

−

∥∥∥∥∥Q>
(
m−m̄∑
i=1

uiV
sp
m̄+i

)
Q

∥∥∥∥∥
2
 ;

= min
‖u‖=1


∥∥∥∥∥
m−m̄∑
i=1

ui

(
V sp
m̄+i −QQ

>V sp
m̄+iQQ

>
)∥∥∥∥∥

2


= 1− (σsp
m̄+1)2 ,

where the last equality follows from Lemma 6.1.1. Next we estimate λmax(M̃):

λmax(M̃) = max
‖u‖=1

{
u>M̃u

}
= max
‖u‖=1

 1

‖D+‖2
m−m̄∑
i,j=1

uiuj〈V sp
m̄+i, PD+P

>〉〈V sp
m̄+j , PD+P

>〉


=

1

‖D+‖2
max
‖u‖=1


m−m̄∑

j=1

uj〈V sp
m̄+j , PD+P

>〉

2
≤ 1

‖D+‖2
max
‖u‖=1

‖u‖2
m−m̄∑
j=1

〈V sp
m̄+j , PD+P

>〉2
 =

1

‖D+‖2
m−m̄∑
j=1

〈V sp
m̄+j , PD+P

>〉2.

Now note that since D = PD+P
> +QDεQ

>, for each j ∈ (m̄+ 1) : m,∣∣∣〈V sp
m̄+j , PD+P

>〉
∣∣∣ ≤ ∣∣∣〈V sp

m̄+j , D〉
∣∣∣+
∣∣∣〈V sp

m̄+j , QDεQ
>〉
∣∣∣

≤
∣∣∣〈V sp

m̄+j , D〉
∣∣∣+ ‖V sp

m̄+j‖‖QDεQ
>‖

=
∣∣∣〈V sp

m̄+j , D〉
∣∣∣+ ‖Dε‖

≤
√

2
(
|〈V sp

m̄+j , D〉|
2 + ‖Dε‖2

)1/2
.
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For each j ∈ (m̄+ 1) : m, V sp
j = A∗y(j) and ‖y(j)‖ ≤ 1

σmin(A∗) . Hence

λmax(M̃) ≤ 2

‖D+‖2
m−m̄∑
j=1

(
|〈V sp

m̄+j , D〉|
2 + ‖Dε‖2

)

=
2

‖D+‖2
m−m̄∑
j=1

(∣∣∣(y(j))> (A(D))
∣∣∣2 + ‖Dε‖2

)

≤ 2

‖D+‖2
m−m̄∑
j=1

(
‖y(j)‖2‖A(D)‖2 + ‖Dε‖2

)
≤ 2(m− m̄)

‖D+‖2

(
‖A(D)‖2

σmin(A∗)2
+ ‖Dε‖2

)
.

Therefore we have

λmin(M − M̃) ≥ λmin(M)− λmax(M̃)

≥ 1− (σsp
m̄+1)2 − 2(m− m̄)

‖D+‖2

(
‖A(D)‖2

σmin(A∗)2
+ ‖Dε‖2

)
> 0,

where the last inequality follows from the assumption (6.11). Therefore M − M̃ is positive

definite, and (6.17) implies that vm̄+1 = vm̄+2 = · · · = vm = 0. Therefore A∗y =
∑m

i=1 viV
sp
i =∑m̄

i=1 viV
sp
i ∈ range(Q · Q>). Therefore Ã∗y = A∗y ∈ range(Q · Q>) ∩ range(A∗) by (6.14).

This shows that range(Q · Q>) ∩ range(Ã∗) ⊆ range(Q · Q>) ∩ range(A∗). Consequently, (6.13)

holds.

Remark. We remark that (6.11) is a mild assumption, so long as the computed solution (δ,D) of

the auxiliary problem satisfies δ ≈ 0 and D is partitioned properly.

Fix ε ∈ (0, 1). Suppose that we obtain a computed optimal solution (δ,D) of the auxiliary

problem in Step (1) of Algorithm 6.1, and that

δ ≤ σmin(A∗)ε√
2m

(
=⇒

√
2mδ

σmin(A∗)
≤ ε

)
;

then partitioning D using with the numerical rank decided by the parameter γ := ε‖D‖√
n

(see

Section 5.1), we have

‖D+‖2 = ‖D‖2 − ‖Dε‖2 ≥ (1− ε2)‖D‖2 ≥ 1− ε2

n
,

and we get
2m

‖D+‖2

(
‖A(D)‖2

σmin(A∗)2
+ ‖Dε‖2

)
≤ nε2

1− ε2
+

ε2

1− ε2
≤ 2nε2

1− ε2
.
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In particular, if m̄ is chosen such that

σsp
m̄+1 < 1−

√
2nε√

1− ε2
=⇒ (σsp

m̄+1)2 < 1− 2nε2

1− ε2
,

then (6.11) holds.

Now we can prove Theorem 6.2.1.

Proof of Theorem 6.2.1. (1): Since each Ãi is the projection of Ai onto
{
PD+P

>}>, we have

that 〈Ãi, PD+P
>〉 = 0. In particular, 〈C̃, PD+P

>〉 = 〈QC̄Q>, PD+P
>〉 = 0.

(2): Let y(i) := (A∗)†V sp
i (so A∗y(i) = V sp

i ). Then for all i ∈ 1 : m̄, Ã∗y(i) = A∗y(i) by (6.14).

Therefore Ã∗P = A∗P, and in particular range(Ã∗P) = range(Q ·Q>) ∩ range(Ã∗).

(3): Since C̃ = Ã∗ȳ +QC̄Q>, we have QQ>C̃QQ> = QQ>Ã∗ȳQQ> +QC̄Q>. Therefore

C̃ −QQ>C̃QQ> = Ã∗ȳ −QQ>Ã∗ȳQQ>.

Recall that ȳ satisfies (5.16), so P∗ȳ = 0. Therefore ȳ solves (6.9). By definition of C̃, we have

C̄ = Q>(C̃ − Ã∗ȳ)Q, so by Proposition 5.4.1, (ȳ, C̄) solves the least squares problem (6.10).

Finally, by (6.14),

‖Ã∗y −A∗y‖ = |〈A∗y, PD+P
>〉| ≤ ‖y‖‖A(D −QDεQ

>)‖

≤ ‖y‖

‖A(D)‖+

(
m∑
i=1

〈Q>AiQ,Dε〉2
)1/2


≤ ‖y‖

‖A(D)‖+ ‖Dε‖

(
m∑
i=1

‖Ai‖2
)1/2

 ,

and ‖C − C̃‖ = ‖Cres‖ ≤
√

2
(

minZ∈FZP
‖Z‖

)(
α(AC ,δ)‖D‖
λmin(D+)

)
from Proposition 5.4.1.
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Part III

Applications of the facial reduction
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Chapter 7

Sensitivity analysis of SDPs

One interesting theoretical use of facial reduction was discovered by Sturm [86]: given a feasible

linear matrix inequality (LMI), its forward and backward errors are related by the number of facial

reduction iterations required to find the minimal face of the LMI in question. (This number is

called the degree of singularity of the LMI in [86]; see Theorem 7.5.1.) In this chapter, we make

the following assumption:

Assumption 7.1. The SDP (P) is feasible and has finite optimal value.

We can show that if (P) is feasible with finite optimal value, then whenever the perturbed

problem

valP(S) := sup
y

{
b>y : C −A∗y � S

}
, (7.1)

is feasible and S is small, we have

valP(S)− vP



= O(‖S‖) if strong duality holds for (P);

can be “huge” if vD > vP;

= O(‖S‖γ) for some fixed γ ∈ (0, 1) if strong duality fails for (P)

and vP = vD.

(7.2)

While the first two cases in (7.2) are relatively straightforward, the last case is far from obvious.

The parameter γ can be expressed in terms of the degree of singularity of the LMI defining the

feasible region of (P). This chapter aims at proving (7.2). We first review some asymptotic

properties of SDP in Section 7.1. Then we provide a few illustrative examples in Section 7.2.

Then we consider Case 1 in Section 7.3, Case 2 in Section 7.4, and Case 3 in Section 7.5. Section
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7.5 requires some results concerning the degree of singularity; we provide those relevant results

in Section 7.5.3.

We remark that there is quite a volume of results on sensitivity analysis on nonlinear programs.

To mention a few, [45] performs sensitivity analysis on SDPs assuming that the Slater condition

holds for both the primal and the dual. In [78], the optimal value function φ(u) := infx F (x, u)

is considered, and its directional derivative is studied. [14] studies the perturbation theory of

nonlinear programs, in which Section 7.3 focuses on the case where the dual is not solvable.

7.1 Review: asymptotic properties of SDP

Before we proceed, we first review some basic definitions and results concerning the asymptotic

feasibility and optimal value of SDP. This terminology is needed in the examples in Section 7.2.

A sequence
{
y(k)

}
k

is said to be asymptotically feasible for (P) if there exists a sequence{
Z(k)

}
k
⊂ Sn+ such that Z(k) + A∗y(k) → C as k → ∞. We say that (P) is weakly infeasible

if (P) is not feasible but possesses an asymptotically feasible sequence, and that (P) is strongly

infeasible if (P) does not have an asymptotically feasible sequence. Similarly, a sequence
{
X(k)

}
k

is said to be asymptotically feasible for (D) if X(k) � 0 for all k and limkA(X(k)) = b. Strong

infeasibility and weak infeasibility of (D) are defined similarly as for (P).

Define the asymptotic optimal value of (P) as

vaP := sup

{
lim sup

k
b>y(k) :

{
y(k)

}
k

is asymptotically feasible for (P)

}
, (7.3)

and the asymptotic optimal value of (D) as

vaD := inf

{
lim inf

k
〈C,X(k)〉 :

{
X(k)

}
k

is asymptotically feasible for (D)

}
.

We take the convention that vaP = −∞ (respectively, vaD = +∞) if (P) (respectively, (D)) is

strongly infeasible. Note that if (P) is feasible, then vaP ≥ vP. As we can see in Example 7.2.2

below, strict inequality may hold.

We say that ŷ ∈ Rm is an improving direction for (P) if −A∗ŷ � 0 and b>ŷ ≥ 1, and that{
y(k)

}
k
⊂ Rm is an improving direction sequence for (P) if there exists a sequence

{
Z(k)

}
k
⊂ Sn+

such that Z(k)+A∗y(k) → 0 and b>y(k) ≥ 1 for all k. Improving direction sequences and improving

directions for (P), respectively, serve as certificates of infeasibility and strong infeasibility of the

dual (D):
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Lemma 7.1.1 ([62], Lemmas 5 and 6). The SDP (D) is infeasible if and only if (P) possesses an

improving direction sequence. (D) is strongly infeasible if and only if (P) possesses an improving

direction.

The dual of an SDP satisfying Assumption 7.1 cannot be strongly infeasible:

Theorem 7.1.2 ([35]). If (P) is feasible and vP < +∞, then (D) is either feasible or weakly

infeasible, and vaD = vP.

If both (P) and (D) are feasible, then weak duality , i.e., vP ≤ vD, implies that both (P) and

(D) have finite optimal value, and Theorem 7.1.2 implies that

vaP = vD ≥ vP = vaD. (7.4)

7.2 Examples

In this section we give some examples of SDPs where strong duality fails, and we examine some

possible perturbations that could lead to a big change in the optimal value. By abuse of notation,

in this section we restrict the function valP(·) defined in (7.1) on a fixed direction ε 7→ εŜ for

some fixed Ŝ, so valP(·) is a function on R+.

Example 7.2.1. [90] (D) is infeasible. For ε ≥ 0, consider

valP(ε) := sup

y2 :

y1 y2 y3

y2 y3 0

y3 0 0

 �
0 0 0

0 0 0

0 0 ε


 , (7.5)

valD(ε) := inf {εX33 : X11 = 0, X12 = 1, 2X13 +X22 = 0, X � 0} . (7.6)

The dual (7.6) is infeasible. When ε = 0, the primal (7.5) has optimal value valP(0) = 0 while

the asymptotic optimal value is +∞. Indeed, consider for k ∈ N,

Z(k) =

 k2 −k 1

−k 1 0

1 0 1
k

 , y(k) =

−k2

k

1

 .

Then

Z(k) +A∗y(k) =

 k2 −k 1

−k 1 0

1 0 1
k

+

−k2 k −1

k −1 0

−1 0 0

 =


0 0 0

0 0 0

0 0 1
k

→ 0,
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(meaning that
{
y(k)

}
k

is asymptotically feasible) and b>y(k) = k → ∞ as k → ∞. Hence

vaP(0) = +∞ > 0 = valP(0).

Now we show that for any ε > 0, we have valP(ε) = +∞. For all sufficiently large k ∈ R, k2 −k 1

−k 1 0

1 0 ε

 � 0,

so

−k2

k

−1

 is feasible for the perturbed problem (7.5). Hence valP(ε) = +∞.

Example 7.2.2. [73] nonzero finite duality gap. Fix any α > 0. For ε ≥ 0, consider the

primal-dual pair

valP(ε) := sup
y

y2 :

y2 0 0

0 y1 y2

0 y2 0

 �
α 0 0

0 0 0

0 0 ε


 , (7.7)

valD(ε) := inf
X
{αX11 + εX33 : X22 = 0, X11 +X23 = 1, X � 0} . (7.8)

Let FP(ε) be the set of feasible solutions y for (7.7) and FD(ε) be the set of feasible solutions X

for (7.8). For ε = 0, we get

FP(0) = R− × 0, FZP (0) =


α 0 0

0 γ 0

0 0 0

 : γ ≥ 0

 , FD(0) =


1 0 0

0 0 0

0 0 β

 : β ≥ 0

 .

So valP(0) = 0 < α = valD(0) = vaP(0). (To see that vaP = α, consider the sequences y(k) =(
−αk2

α

)
∈ R2 and Z(k) =

0 0 0

0 α2k −α
0 −α 1

k

 ∈ S3
+. We have Z(k) + A∗y(k) =

α 0 0

0 0 0

0 0 1
k

 and

b>y(k) = α for all k.)

Now consider ε > 0. Then α− y2 0 0

0 −y1 −y2

0 −y2 ε

 � 0

if and only if y2 ≤ α and y1 ≤ −|y2|/ε. So valP(ε) = α = vaP(0). On the other hand, the objective

of the dual becomes αX11+εX33 and the constraints are unchanged. Hence valD(ε) = α = valD(0),

and valP(ε)− valP(0) = α.

(Observe that the primal requires only one iteration of facial reduction to identify the minimal

face, but then the dual of the reduced primal would still fail the Slater condition.)
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Example 7.2.3. [69] zero duality gap but vD is unattained. Consider

valP(0) := sup

{
2y1 : y1

(
0 1

1 0

)
�

(
1 0

0 0

)}
, (7.9)

valD(0) := inf

{
X11 :

(
X11 1

1 X22

)
� 0

}
. (7.10)

On the one hand, y = 0 is the only feasible solution for (7.9) so valP(0) = 0. On the other hand,

valD(0) = 0 but is not attained. Hence strong duality does not hold for (7.9).

Now consider

valP(ε) := sup

{
2y1 : y1

(
0 1

1 0

)
�

(
1 0

0 ε

)}
, (7.11)

valD(ε) := inf

{
X11 + εX22 :

(
X11 1

1 X22

)
� 0

}
, (7.12)

with ε > 0. Since (7.11) satisfies the Slater condition and y1 is feasible for (7.11) if and only if

|y1| ≤
√
ε, we have valP(ε) = valD(ε) = 2

√
ε (and valD(ε) is attained), and valP(ε)−valP(0) = 2

√
ε.

Example 7.2.4. Zero duality gap but vD is unattained. This example generalizes Example

7.2.3. We consider an SDP on on Sn+ that requires n−1 iterations of facial reduction on (7.13) to

identify the minimal face of Sn+ containing its feasible region. We show that there exists a feasible

perturbation S such that valP(S)− valP(0) = 2‖S‖1/2n−1
.

Let n ≥ 3 and A : Sn → Rn−1 be defined by the matrices

A1 = e1e
>
2 + e2e

>
1 , Ak = eke

>
k + e1e

>
k+1 + ek+1e

>
1 , ∀ k ∈ 2 : n− 1.

Consider

valP(0) = sup
{

2y1 : Z = e1e
>
1 −A∗y � 0

}
. (7.13)

Since Z = e1e
>
1 − A∗y always have Znn = 0, Z � 0 if and only if Z = e1e

>
1 , i.e., y = 0. Hence

valP(0) = 0. On the other hand, the dual

valD(0) = inf {X11 : X12 = 1, X22 + 2X13 = 0, X33 + 2X14 = 0, . . . ,

Xn−1,n−1 + 2X1n = 0, X � 0} .
(7.14)

has an optimal value valD(0) = 0 but is not attained. Hence strong duality does not hold for

(7.13).
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Now for ε > 0 consider

valP(ε) := sup
{

2y1 : A∗y � e1e
>
1 + εene

>
n

}
, (7.15)

valD(ε) := inf {X11 + εXnn : A(X) = b, X � 0} . (7.16)

It is not difficult to see that (7.15) satisfies the Slater condition: suppose D � 0 satisfies 〈C,D〉 =

0 and A(D) = 0. It suffices to show that D = 0 (see Theorem 3.3.10). Indeed, D � 0 and

〈C,D〉 = 0 imply D11 = Dnn = 0. But this in turn implies that Dn−1,n−1 = · · · = D22 = 0.

Hence D = 0.

Now note that y is feasible for (7.15) if and only if

0 ≥ yn−1 ≥ −ε1/2, 0 ≥ yn−2 ≥ −ε1/4, . . . , 0 ≥ y2 ≥ −ε1/2
n−2

, |y1| ≤ ε1/2
n−1

.

Hence valP(ε) = valD(ε) = 2ε1/2
n−1

, and valP(ε)− valP(0) = 2ε1/2
n−1

.

Example 7.2.5. Zero duality gap but vD is unattained. Let

A1 = −E11, A2 = −E22, A3 = e3e
>
4 + e4e

>
3 , A4 = e1e

>
3 + e3e

>
1 , C =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 1

 ,

and b =
(

0 −1 2 0
)>

. Then (P) reads

sup

−y2 + 2y3 :


y1 1 −y4 0

1 y2 0 0

−y4 0 0 −y3

0 0 −y3 1

 � 0

 = 0, (7.17)

which is unattained. (Note that y feasible must satisfy y3 = y4 = 0.) Meanwhile, (D) reads

inf {2X12 +X44 : X11 = 0, X22 = 1, X34 = 1, X13 = 0, X � 0}

= inf

X44 : X =


0 0 0 0

0 1 ∗ ∗
0 ∗ ∗ 1

0 ∗ 1 ∗

 � 0

 = 0,

which is unattained too. Hence strong duality does not hold for (7.17). Now for any ε > 0,

valP(ε) := sup

−y2 + 2y3 :


y1 1 −y4 0

1 y2 0 0

−y4 0 ε −y3

0 0 −y3 1

 � 0

 = 2
√
ε.

In other words, valP(ε)− valP(0) = 2
√
ε.

98



7.3 Case 1: strong duality holds for (P)

If strong duality holds for (P), then a small perturbation leads to little change in the optimal

value:

Theorem 7.3.1 ([17, 83]). The value function valP : Sn → [−∞,∞] is concave. Moreover, the

equality vP = vD holds if and only if the valP(0) is upper semicontinuous at 0. In such case, X∗

is an optimal solution of (D) if and only if valP(S)− valP(0) ≤ 〈X∗, S〉 for all S ∈ Sn.

As a corollary we get the following result.

Corollary 7.3.2. Suppose that strong duality holds for (P). Then there exists a constant κ > 0

such that for any S ∈ Sn with (7.1) feasible, valP(S)− valP(0) ≤ κ‖S‖.

What if strong duality does not hold? We consider the two different cases: (1) (P)-(D) has a

nonzero duality gap, and (2) the duality gap is zero, i.e., vP = vD, but vD is unattained.

7.4 Case 2: nonzero duality gap

We already saw in Section 7.1 that if both (P) and (D) are feasible, then vD = vaP, so the

duality gap is given by vaP − vP. We first show that vaP − vP is the duality gap between (P) and

(D) even when (D) is infeasible, as a result of Lemma 7.4.1 below. In particular, (7.4) holds

whenever (P) satisfies Assumption 7.1, and (P)-(D) having a nonzero duality gap is equivalent to

vP < vaP ∈ R ∪ {+∞}. We show in Proposition 7.4.2 that in such case there exists an arbitrarily

small right-hand side perturbation such that the new optimal value jumps by at least vaP − vP

(which could be +∞).

Lemma 7.4.1. Suppose that (P) satisfies Assumption 7.1 but its dual (D) is infeasible. Then

vaP = +∞.

Proof. Since (D) is infeasible, by Lemma 7.1.1 there exists a sequence
{

(y(k), Z(k))
}
k

satisfying

b>y(k) ≥ 1 and Z(k) � 0 for all k, and lim
k

(
Z(k) +A∗y(k)

)
= 0.

By Assumption 7.1 and Theorem 7.1.2, (D) cannot be strongly infeasible. Thus Z(k) +A∗y(k) 6= 0

for all k. (Otherwise y(k) would be an improving direction for (P), implying that (D) is strongly

infeasible from Lemma 7.1.1.)
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For each k, define

ŷ(k) :=
1

‖Z(k) +A∗y(k)‖1/2
y(k), Ẑ(k) :=

1

‖Z(k) +A∗y(k)‖1/2
Z(k).

Then Ẑ(k) � 0 for all k,

‖Ẑ(k) +A∗ŷ(k)‖ = ‖Z(k) +A∗y(k)‖1/2 =⇒ lim
k

(
Ẑ(k) +A∗ŷ(k)

)
= 0

and

b>ŷ(k) ≥ 1

‖Z(k) +A∗y(k)‖1/2
→ +∞ =⇒ lim

k
b>ŷ(k) = +∞.

On the other hand, since (P) is feasible, let ŷ ∈ Rm satisfy C − A∗ŷ � 0. Then
{
ŷ + ŷ(k)

}
k

is

asymptotically feasible for (P), and limk b
>(ŷ + ŷ(k)) = +∞. Hence vaP = +∞.

Proposition 7.4.2. Suppose that (P) satisfies Assumption 7.1. Then for every ε > 0, there

exists S ∈ Sn such that

(1) ‖S‖ ≤ ε,

(2) the perturbed problem (7.1) is strictly feasible, and

(3) the optimal value valP(S) of the perturbed problem (7.1) is no less than the asymptotic

optimal value vaP of (P), defined in (7.3).

Proof. Let sequences
{
y(k)

}
k

and
{
Z(k)

}
k

satisfy

Z(k) � 0 for all k, lim
k

(
Z(k) +A∗y(k)

)
= C, and lim

k
b>y(k) = vaP.

Fix any ε > 0. There exists n0 ∈ N such that ‖A∗(y(k) − y(l)) + Z(k) − Z(l)‖ ≤ 1
4ε and ‖C −

Z(k) − A∗y(k)‖ ≤ 1
2ε for all k, l ≥ k0. In particular, A∗(y(k) − y(l)) + Z(k) � Z(l) − ε

4I, and

S := C − (Z(k0) +A∗y(k0) + ε
2I) satisfies ‖S‖ ≤ ε. Moreover, for all k ≥ k0,

C −A∗y(k) = A∗(y(k0) − y(k)) + Z(k0) +
ε

2
I + S � Z(k) − ε

4
I +

ε

2
I + S � S,

showing that y(k) is a (strictly) feasible solution of (7.1). Hence, valP(S) ≥ b>y(k) for all k ≥ k0.

Taking k →∞, we get valP(S) ≥ vaP.

A direct result of Lemma 7.4.1 and Proposition 7.4.2 is that there exists S ∈ Sn of arbitrarily

small norm such that (7.1) is feasible and the jump in optimal value valP(S)− valP(0) is no less

than the duality gap vD − vP.
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Theorem 7.4.3. Suppose that (P) satisfies Assumption 7.1 and vP < vD ∈ R ∪ {+∞}. Then

for every ε > 0, there exists S ∈ Sn such that

(1) ‖S‖ ≤ ε,

(2) the perturbed problem (7.1) is strictly feasible, and

(3) valP(S)− valP(0) ≥ vD − vP > 0.

Proof. If (D) is feasible, then vD > vP > −∞ so vD = vaP, by Lemma 7.1.1. If (D) is infeasible,

then by Lemma 7.4.1 vD = +∞ = vaP. Hence by Proposition 7.4.2 for every ε > 0 there exists S

satisfying (1), (2) and

valP(S)− valP(0) ≥ vaP − vP = vD − vP.

7.5 Case 3: strong duality fails but duality gap is zero

If the duality gap between (P) and (D) is zero and yet strong duality fails, then by Theorem

7.3.1, the function valP(·) is upper semicontinuous at 0 but ∂(−valP(·))(0) = ∅. The results in

this section rely on the following error bound result for linear matrix inequalities (LMI).

Theorem 7.5.1 ([86], Theorem 3.3). Suppose that the set

FZP :=
{
Z ∈ Sn+ : Z = C −A∗y for some y ∈ Rm

}
is nonempty. Then there exist constants κ > 0 and ε̄ ∈ (0, 1) such that for any ε ∈ (0, ε̄) and any

Z̃ ∈ Sn satisfying

dist(Z̃, C + range(A∗)) ≤ ε, λmin(Z̃) ≥ −ε,

we have

dist(Z̃,FZP ) ≤ κ(1 + ‖Z̃‖)ε1/2d(A,C)
,

where d(A, C) is the degree of singularity of the linear subspace range(A∗C), defined in Definition

7.5.5 and (7.30).

We will use Theorem 7.5.1 to show that if S ∈ Sn is such that ‖S‖ is sufficiently small and

(7.1) is feasible, then valP(S) − valP(0) = O(‖S‖1/2d(A,C)
). We first deal with the case where

(D) satisfies the Slater condition, in Section 7.5.1; then we use this to prove the general result in

Section 7.5.2.
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7.5.1 Case 3(a): (D) satisfies the Slater condition

We first prove a weaker result assuming that the dual (D) satisfies the Slater condition.

Proposition 7.5.2. Suppose that (P) satisfies Assumption 7.1 and that (D) satisfies the Slater

condition. Then there exist constants κ > 0 and ε̄ ∈ (0, 1) such that for any S ∈ Sn with

0 < ‖S‖ ≤ ε̄ and (7.1) feasible,

valP(S)− valP(0) ≤ κ‖S‖1/2d(A,C)
, (7.18)

where d(A, C) denotes the degree of singularity of the linear subspace range(A∗C), defined in

Definition 7.5.5.

Proof. Let κ0 > 0 and ε̄ ∈ (0, 1) be such that for any Y ∈ Sn and ε ∈ (0, ε̄) with

dist(Y,C + range(A∗)) ≤ ε, λmin(Y ) ≥ −ε,

we get

dist(Y,FZP ) ≤ κ0(1 + ‖Y ‖)ε1/2d(A,C)
. (7.19)

Let X̃ be a strictly feasible solution of (D). Fix any S ∈ Sn with (7.1) feasible and ‖S‖ ≤ ε̄.

Since the dual of (7.1) has a (strictly) feasible solution X̃, we get valP(S) < +∞.

Fix any δ ∈ (0, 1). Then there exist ỹ, Z̃ satisfying

b>ỹ ≥ valP(S)− δ, Z̃ = C − S −A∗ỹ � 0.

For any y ∈ Rm satisfying Z := C −A∗y � 0,

valP(S)− valP(0) ≤ b>ỹ − b>y + δ

= 〈X̃, C − S − Z̃〉 − 〈X̃, C − Z〉+ δ

≤ ‖X̃‖‖Z − (Z̃ + S)‖+ δ.

Minimizing over all Z ∈ FZP ,

valP(S)− valP(0) ≤ ‖X̃‖dist(Z̃ + S, FZP ) + δ. (7.20)

But Z̃ + S ∈ C + range(A∗) and Z̃ + S � S � −‖S‖I, implying λmin(Z̃ + S) ≥ −‖S‖. Hence by

(7.19), dist(Z̃ + S, FZP ) ≤ κ0(1 + ‖Z̃ + S‖)‖S‖1/2d(A,C)
. Hence by (7.20),

valP(S)− valP(0) ≤ κ0‖X̃‖(1 + ‖Z̃ + S‖)‖S‖1/2d(A,C)
+ δ. (7.21)
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Now we estimate ‖Z̃ + S‖. Observe that

λmin(X̃)‖Z̃‖ ≤ 〈C − S −A∗ỹ, X̃〉 ≤ 〈C − S, X̃〉 − valP(S) + δ. (7.22)

Using (7.22) and the assumption that ‖S‖ < 1, the right hand side of (7.21) no greater than the

expression

κ0‖X̃‖
(

1 + ‖S‖+
1

λmin(X̃)

(
〈C − S, X̃〉 − valP(S) + δ

))
‖S‖1/2d(A,C)

+ δ

≤ κ0
‖X̃‖

λmin(X̃)

(
2λmin(X̃) + 〈C − S, X̃〉 − valP(S) + δ

)
‖S‖1/2d(A,C)

+ δ

≤ κ0
‖X̃‖

λmin(X̃)

(
2λmin(X̃) + 〈C − S, X̃〉 − valP(S)

)
‖S‖1/2d(A,C)

+

(
1 + κ0

‖X̃‖
λmin(X̃)

‖S‖1/2d(A,C)

)
δ.

Putting back into (7.21), we get(
1 + κ0

‖X̃‖
λmin(‖X̃‖)

‖S‖1/2d(A,C)

)
(valP(S)− valP(0))

≤ κ0
‖X̃‖

λmin(X̃)

(
2λmin(X̃) + 〈C − S, X̃〉 − valP(0)

)
‖S‖1/2d(A,C)

+

(
1 + κ0

‖X̃‖
λmin(X̃)

‖S‖1/2d(A,C)

)
δ.

(7.23)

Note that 2λmin(X̃)+〈C−S, X̃〉−valP(0) ≤ 2λmin(X̃)+‖X̃‖+〈C, X̃〉−valP(0), which is positive

by weak duality. Taking δ ↘ 0 and defining

κ = κ0
‖X̃‖

λmin(X̃)

(
2λmin(X̃) + ‖X̃‖+ 〈C, X̃〉 − valP(0)

)
,

we get from (7.23) that(
1 + κ0

‖X̃‖
λmin(‖X̃‖)

‖S‖1/2d(A,C)

)
(valP(S)− valP(0)) ≤ κ‖S‖1/2d(A,C)

,

so valP(S)− valP(0) ≤ κ‖S‖1/2d(A,C)
.

7.5.2 Case 3(b): (D) does not satisfy the Slater condition

Now we consider the case where vP = vD ∈ R but vD is unattained and (D) fails the Slater

condition. Such scenario can occur, as we can see in Example 7.2.5. We show that a bound of

the form valP(S) − valP(0) ≤ κ‖S‖1/2d(A,C)
holds even in this case. The proof idea is to restrict

(D) on its minimal face, and using the fact that such restriction does not change the degree of

singularity of (P):
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Lemma 7.5.3. Suppose that (P) and (D) are feasible, and the minimal face of (D) is given by

P̃ Sr+P̃> for some full column rank matrix P̃ ∈ Rn×r (with r > 0). Then

sup
y

{
b>y : P̃>(C −A∗y)P̃ � 0

}
is also feasible, and d(A(P̃ · P̃>), P̃>CP̃ ) ≤ d(A, C).

The proof of Lemma 7.5.3 is given on Page 111 in Section 7.5.3. Now we prove the main

results of this section.

Theorem 7.5.4. Assume that (P) satisfies Assumption 7.1, that vP = vD ∈ R but vD is

unattained. Then there exist ε̄ ∈ (0, 1) and κ > 0 such that for any S ∈ Sn with (7.1) feasi-

ble and ‖S‖ ≤ ε̄,
valP(S)− valP(0) ≤ κ‖S‖1/2d(A,C)

.

Proof. If (D) satisfies the Slater condition, then the statement in the theorem holds by Proposition

7.5.2. In the remainder of the proof we assume that (D) fails the Slater condition.

Since vD is assumed to be unattained, the minimal face of (D) does not equal {0}.1 Let

P̃ Sr+P̃> be the minimal face of Sn+ containing the feasible region of (D) with P̃>P̃ = I. Therefore

we have vD = v̄D , where

v̄D := inf
W

{
〈C, P̃WP̃>〉 : A(P̃WP̃>) = b, W � 0

}
. (7.24)

By definition of minimal face, (7.24) satisfies the Slater condition. Note that since (D) has no

optimal solution, (7.24) has no optimal solution either. The dual of (7.24) is given by

v̄P := sup
y

{
b>y : P̃>(C −A∗y)P̃ � 0

}
, (7.25)

Any y feasible for (P) is also feasible for (7.25). Hence we have

vP = vD = v̄D ≥ v̄P ≥ vP, i.e., vP = v̄P. (7.26)

Moreover, the primal-dual pair (7.25)-(7.24) satisfies the assumptions in Proposition 7.4.2, which

together with Lemma 7.5.3 implies that there exist constants κ > 0 and ε̄ ∈ (0, 1) such that for

any S̄ ∈ Sr with 0 < ‖S̄‖ ≤ ε̄ and (7.1) feasible,

sup
y

{
b>y : P̃>(C −A∗y)P̃ � S̄

}
− v̄P ≤ κ‖S̄‖1/2

d(A,C)
, (7.27)

1 If the minimal face of (D) is {0}, then X = 0 is the only feasible solution. This implies that b = 0 and vD = 0,

so vP = 0 = vD and any primal/dual feasible solution is optimal.
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where d(A, C) denotes the degree of singularity of the linear subspace range(A∗C).

Fix any S ∈ Sn with (7.1) feasible and ‖S‖ ≤ ε̄. Then by weak duality and the fact that the

feasible region of (D) is contained in P̃ Sr+P̃>,

valP(S) ≤ infX {〈C − S,X〉 : A(X) = b, X � 0}
= infW

{
〈C − S, P̃WP̃>〉 : A(P̃WP̃>) = b, W � 0

}
,

(7.28)

which satisfies the Slater condition. Since P̃>(C − A∗y)P̃ � P̃>SP̃ is feasible, strong duality

holds and

inf
W

{
〈C − S, P̃WP̃>〉 : A(P̃WP̃>) = b, W � 0

}
= sup

y

{
b>y : P̃>(C −A∗y)P̃ � P̃>SP̃

}
.

(7.29)

Since ‖P̃>SP̃‖ ≤ ‖S‖ ≤ ε̄, we can use (7.27), (7.29) and (7.28) to get

valP(S)− valP(0) = valP(S)− v̄P ≤ κ‖P̃>SP̃‖1/2
d(A,C) ≤ κ‖S‖1/2d(A,C)

.

Remark. The assumption that vP = vD is important in this proof because this ensures that

vP = v̄P in (7.26), which generally does not hold because the feasible region of (7.25) contains

that of (P).

7.5.3 Facial reduction and degree of singularity

In this section, we provide supplementary results for Section 7.5.1 and 7.5.2.

We recall an equivalent form of Algorithm 4.1 from [86], outlined in Algorithm 7.1. The

number of iterations of Algorithm 4.1 is called the degree of singularity. We formalize its definition

below.

Definition 7.5.5. Let L̄ ⊆ Sn be a linear subspace. If L̄ ∩ Sn+ = {0} or L̄ ∩ Sn++ 6= ∅, then the

degree of singularity of L̄ is defined to be zero, i.e., d(L̄) := 0. Otherwise, the degree of singularity

of L̄ is defined as the length d of any sequence D(0), D(1), . . . , D(d−1) ∈ Sn such that

1. D(0) ∈ ri(L̄⊥ ∩ Sn+),

2. range(D(0)) = range(Q
(0)
1 ), ker(D(0)) = range(Q

(0)
2 ),

for some orthogonal matrix Q(0) =
[ n−n1 n1

n Q
(0)
1 Q

(0)
2

]
,
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3. L̄1 = (Q(0))>L̄Q(0) =


n−n1 n1

n−n1 (Q
(0)
1 )>L̄Q(0)

1 (Q
(0)
1 )>L̄Q(0)

2

n1 (Q
(0)
2 )>L̄Q(0)

1 (Q
(0)
2 )>L̄Q(0)

2

,

4. For i = 1 : d,

D(i) ∈ ri

(
L̄⊥i ∩

[
0 0

0 Sni
+

]∗)
= ri

(
L̄⊥i ∩

{
X =

[
X11 X12

X21 X22

]
: X22 � 0

})
,

5. D
(d)
22 = 0;

6. for i = 1 : d− 1,

range(D
(i)
22 ) = range(Q̄

(i)
1 ), ker(D

(i)
22 ) = range(Q̄

(i)
2 ),

for some orthogonal matrix
[
Q̄

((i))
1 Q̄

((i))
2

]
,

Q
(i)
1 :=

[
I 0

0 Q̄
(i)
1

]
, Q

(i)
2 :=

[
0

Q̄
(i)
2

]
, Q(i) :=

[
Q

(i)
1 Q

(i)
2

]
,

L̄i+1 := (Q(i))>L̄iQ(i).

Given a linear map A : Sn → Rm and C ∈ Sn, we define

d(A, C) := d ({A∗y + αC : y ∈ Rm, α ∈ R}) . (7.30)

We first prove the simple fact that orthogonal transformations on linear subspaces do not

change the degree of singularity.

Proposition 7.5.6. Let U ∈ Rn×n be an orthogonal matrix and L̄ ⊆ Sn be a nonzero linear

subspace. Then d(U>L̄U) = d(L̄).

Proof. Since U>L̄U ∩ Sn+ = U>(L̄ ∩ Sn+)U , we have d(L̄) = 0 if and only if d(U>L̄U) = 0.

Suppose that d(L̄) > 0. Then there exist D(0) ∈ Sn and an orthogonal matrix Q(0) =

[ n−n1 n1

n Q
(0)
1 Q

(0)
2

]
such that

D(0) ∈ ri(L̄⊥ ∩ Sn+), range(D(0)) = range(Q
(0)
1 ), ker(D(0)) = range(Q

(0)
2 ).

Since

ri
(

(U>L̄U)⊥ ∩ Sn+
)

= ri(U>L̄⊥U ∩ Sn+) = U> ri(L̄⊥ ∩ Sn+)U,
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Algorithm 7.1: Sturm’s procedure (for finding face(L̄ ∩ Sn+, Sn+))

Input(linear subspace {0} 6= L̄ of Sn);1

(1) Let D(0) ∈ ri(L̄⊥ ∩ Sn+);

if D(0) = 0 or D(0) � 0 then

=⇒ d(L̄)← 0;

else

=⇒ proceed to Step (2);

endif

(2) write D(0) = Q
(0)
1 D

(0)
+ (Q

(0)
1 )>, where Q(0) =

[
Q

(0)
1 Q

(0)
2

]
is orthogonal, D

(0)
+ � 0;

L̄1 ← (Q(0))>L̄Q(0);

n0 ← n, n1 ← # of columns of Q
(0)
2 , d← 1;

proceed to Step (3);

(3) let D(d) ∈ ri

(
L̄⊥d ∩

[
0 0

0 Snd
+

]∗)
= ri

(
L̄⊥d ∩

{
X =

[
X11 X12

X21 X22

]
: X22 � 0

})
;

if D
(d)
22 = 0 then

=⇒ d(L̄)← d;

else

=⇒ proceed to Step (4);

endif

(4) write D
(d)
22 = Q

(d)
1 D

(d)
+ (Q

(d)
1 )>, where Q(d) =

[
Q

(d)
1 Q

(d)
2

]
is orthogonal, D

(d)
+ � 0;

define

Q̄
(d)
1 ←

[
I 0

0 Q
(d)
1

]
, Q̄

(d)
2 ←

[
0

Q
(d)
2

]
, Q̄(d) ←

[
Q̄

(d)
1 Q̄

(d)
2

]
=

[
I 0

0 Q(d)

]
;

L̄d+1 ← (Q̄(d))>L̄dQ̄(d);

nd ← # of columns of Q
(d)
2 , d← d+ 1;

return to Step (3).

we have U>D(0)U ∈ ri
(
(U>L̄U)⊥ ∩ Sn+

)
. Using

range(U>D(0)U) = range(U>Q
(0)
1 ), ker(U>D(0)U) = range(U>Q

(0)
2 ),
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and the fact that
[
U>Q

(0)
1 U>Q

(0)
2

]
= U>Q(0) is orthogonal, the rotated linear subspace at Step

2 of Algorithm 7.1 is given by

(U>Q(0))>(U>L̄U)(U>Q(0)) = (Q(0))>L̄Q(0) = L̄1.

Therefore, the remaining iterations of Algorithm 7.1 applied on U>L̄U and on L̄ are the same.

In particular, d(U>L̄U) = d(L̄).

Let P ∈ Rn×r be a full column rank matrix. The degree of singularity of the projection P>LP
may be higher than that of L. Consider

L = span


0 1 0

1 1 0

0 0 0


 , P =

0 0

1 0

0 1

 =⇒ P>LP = span

{(
1 0

0 0

)}
.

Obviously, L ∩ S3
+ = {0} so d(L) = 0. On the other hand, P>LP ∩ Sn+ is nonzero but has no

interior point; in fact, d(P>LP ) = 1.

On the other hand, we show that under some special condition (relevant to our discussion

on facial reduction of (P)) the projection into a lower dimensional space would not increase the

degree of singularity.

Theorem 7.5.7. Suppose that (P) is feasible. Suppose that there exist V ∈ Sn and v ∈ Rm such

that

V =

[
0 0

0 In−r

]
= A∗v � 0, b>v, 0 < r < n. (7.31)

Let Ĉ =
[
Ir 0

]
C

[
Ir

0

]
∈ Sr, Âi =

[
Ir 0

]
Ai

[
Ir

0

]
∈ Sr for i ∈ 1 : m, and define Â : Sr → Rm

using Â1, . . . , Âm. Define L̂ := span(Ĉ, Â1, . . . , Âm). Then d(L̂) ≤ d(L̄).

Proof. Without loss of generality, assume that d := d(L̂) > 0. Then there exist a sequence

D̂(0), D̂(1), . . . , D̂(d−1), D̂(d) ∈ Sr and orthogonal matrices Q̄(0) ∈ Rr×r, Q̄(1) ∈ Rr1×r1 , . . . , Q̄(d−1) ∈
Rrd−1×rd−1 such that:

1. D̂(0) ∈ ri(L̂⊥ ∩ Sr+),

2. range(D̂(0)) = range(Q̂
(0)
1 ), ker(D̂(0)) = range(Q̂

(0)
2 ), Q̂(0) =

[
Q̂

(0)
1 Q̂

(0)
2

]
is orthogonal,

3. L̂1 = (Q̂(0))>L̂Q̂(0),
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4. For i ∈ 1 : d,

D̂(i) ∈ ri

(
L̂⊥i ∩

[
0 0

0 Sri+

]∗)
= ri

(
L̂⊥i ∩

{
X =

[
X11 X12

X21 X22

]
: X22 � 0

})
,

5. D̂
(d)
22 = 0;

6. for i = 1 : d− 1,

range(D̂
(i)
22 ) = range(Q̄

(i)
1 ), ker(D̂

(i)
22 ) = range(Q̄

(i)
2 ), Q̄(i) =

[
Q̄

(i)
1 Q̄

(i)
2

]
,

Q̂
(i)
1 =

[
Ir−ri 0

0 Q̄
(i)
1

]
, Q̂

(i)
2 =

[
0

Q̄
(i)
2

]
, Q̂(i) =

[
Q̂

(i)
1 Q̂

(i)
2

]
∈ Rr×r,

L̂i+1 = (Q̂(i))>L̂iQ̂(i).

For i ∈ 0 : d− 1, define

D(i) :=

[
D̂(i) 0

0 0

]
∈ Sn, Q

(i)
1 :=

[
Q̂

(i)
1

0

]
, Q

(i)
2 :=

[
Q̂

(i)
2 0

0 I

]
, Q(i) :=

[
Q̂(i) 0

0 I

]
∈ Rn×n,

L̄(1) := (Q(0))>L̄(Q(0)) and L̄(i+1) := (Q(i))>L̄(i)(Q(i)) for i = 1 : d. Then

• D(0) � 0, and 〈D(0), C〉 = 〈D̂(0), Ĉ〉 = 0 indicates that D(0) ∈ L̄⊥. (Hence L̄ ∩ Sn++ = ∅.)

In fact, if D ∈ L̄⊥ ∩Sn+, then 〈D,V 〉 = (A(D))> v = 0, so the structure of V given in (7.32)

means that D =

[
D̂ 0

0 0

]
, where D̂ � 0. Moreover, D̂ ∈ L̂⊥ (because, for instance, 〈D̂, Ĉ〉 =

〈D,C〉 = 0). Hence L̄⊥ ∩ Sn+ =

[
L̂⊥ ∩ Sr+ 0

0 0

]
. Therefore we have D(0) ∈ ri(L̄⊥ ∩ Sn+).

• It is immediate that range(D(0)) = range(Q
(0)
1 ) and ker(D(0)) = range(Q

(0)
2 ).

• For i ∈ 1 : d, we have D(i) ∈ L̄⊥i ∩

[
0 0

0 Sni
+

]∗
, where ni = n − r + ri: it is immediate that

D(i) ∈

[
0 0

0 Sni
+

]∗
because D(i) is formed by augmenting zero blocks to D̂(i) ∈

[
0 0

0 Sri+

]∗
. To

109



see that D(i) ∈ L̄⊥i , note that

D̂(i) ∈ L̂⊥i =⇒
(
Q̂(0) · · · Q̂(i−1)Q̂(i)

)
D̂(i)

(
Q̂(0) · · · Q̂(i−1)Q̂(i)

)>
∈ L̂⊥

=⇒

[(
Q̂(0) · · · Q̂(i−1)Q̂(i)

)
D̂(i)

(
Q̂(0) · · · Q̂(i−1)Q̂(i)

)>
0

0 0

]
∈ L̄⊥

=⇒

 i∏
j=0

[
Q̂(j) 0

0 I

][D̂(i) 0

0 0

] i∏
j=0

[
Q̂(j) 0

0 I

]> ∈ L̄⊥
=⇒ D(i) =

[
D̂(i) 0

0 0

]
∈

 i∏
j=0

[
Q̂(j) 0

0 I

]> L̄⊥
 i∏
j=0

[
Q̂(j) 0

0 I

] = L̄⊥i .

In fact, we have D(i) ∈ ri

(
L̄⊥i ∩

[
0 0

0 Sni
+

]∗)
, because

 i∏
j=0

[
Q̂(j) 0

0 I

]> V
 i∏
j=0

[
Q̂(j) 0

0 I

] =

 i∏
j=0

[
Q̂(j) 0

0 I

]> [0 0

0 In − r

] i∏
j=0

[
Q̂(j) 0

0 I

]
=

[
0 0

0 In − r

]
= V,

so that D ∈ L̄⊥i ∩

[
0 0

0 Sni
+

]∗
implies that Djk = 0 for all j, k ∈ (n− r + 1) : n.

The above four points show the first d iterations of facial reduction on L̄ ∩ Sn+. Hence d(L̄) ≥
d(L̂).

Since rotation does not change the degree of singularity (Proposition 7.5.6), we can drop the

assumption that V =

[
0 0

0 I

]
and allow for general V that is singular and nonzero:

Corollary 7.5.8. Suppose that (P) is feasible and there exist V ∈ Sn and v ∈ Rm such that

0 6= V = A∗v � 0, b>v = 0, (7.32)

and ker(V ) = range(P ), where P ∈ Rn×r has orthonormal columns. Let Ĉ = P>CP ∈ Sr,

Âi = P>AiP ∈ Sr for i ∈ 1 : m, and define Â : Sr → Rm using Â1, . . . , Âm. Define L̂ :=

span(Ĉ, Â1, . . . , Âm). Then d(L̂) ≤ d(L̄).

Now we can easily prove Lemma 7.5.3.
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Proof of Lemma 7.5.3. The minimal face PSr+P> can be obtained via facial reduction on (D).

At each step of the facial reduction, the new primal (P) remains feasible and the degree of

singularity of the linear subspace range(A∗C) defining the primal feasible region does not increase,

by Corollary 7.5.8. In particular, the projection P> · P on the primal feasible region using the

minimal face of (D) does not increase the degree of singularity.
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Chapter 8

Classes of problems that fail the

Slater condition

As mentioned in Theorem 1.1.1, the Slater condition is a generic property. Nonetheless, in practice

the failure of the Slater condition is not as rare as we hope; while we probably do not have to

worry too much if the problem data is completely random given the result in Theorem 1.1.1, a

number of structured semidefinite programming problems arising from applications are indeed

proven to fail the Slater condition. In this chapter, we review some classes of structure SDP

that are known to fail the Slater condition and the facial reduction technique can be employed to

regularize and reduce the problem size. In addition, knowledge of the minimal face often sheds

light on subtle algebraic properties of the SDP.

In this chapter, we give an overview from existing literature of some problems which can be

preprocessed by using the facial reduction technique. The problems include:

• SDP relaxation of quadratic assignment problem [105];

• SDP relaxation of traveling salesman problem [29];

• side chain positioning problem [24, 25];

• finding sparse sum-of-squares representation of polynomials [58];

• sensor network localization problem [59, 60];

• Lyapunov equation (see e.g., [21]).
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8.1 Symmetric quadratic assignment problem

Suppose we have a list of n facilities that we wish to put in n given distinct locations. The

distance between locations i and j is dij and the flow between facilities i and j is going to

be fij , for all i, j ∈ 1 : n. The goal of the quadratic assignment problem (QAP) is to assign

each of the n facilities to exactly one of the n given locations in such a way that the total cost

of transportation among all the facilities is minimized. In other words, the goal is to find a

permutation φ̄ : (1 : n)→ (1 : n) that solves

min
φ is a permutation of 1:n

n∑
i,j=1

fijdφ(i),φ(j). (8.1)

For simplicity, we omit the linear term in this formulation; see [23] for further details. The

combinatorial optimization problem (8.1) can be formulated in terms of permutation matrices.

Define D = [dij ], F = [fij ] ∈ Rn×n; then (8.1) is equivalent to the optimization problem

vQAP := min
P∈Πn

tr(FPD>P>), (8.2)

where Πn denote the set of all n× n permutation matrices. We will assume that both F and D

are symmetric1.

An SDP relaxation of (8.2) was proposed in [105]. The idea is to observe that P ∈ Πn if and

only if P satisfies the quadratic equations

P ◦ P = P, PP> = I = P>P, ‖P ēn − ēn‖2 + ‖P>ēn − ēn‖2 = 0, (8.3)

where ēn ∈ Rn is the vector of all ones. (We drop the subscript when the size is clear.) Using

PP> =

n∑
k=1

P:kP
>
:k and [P>P ]ij = P>:i P:j

and Kronecker product2, it is not hard to show that P satisfies (8.3) if and only if x := vec(P ) =

(P:,1;P:,2; . . . , P:,n) ∈ Rn2
satisfies

diag(xx>) = x ◦ x = x, bdiag(xx>) = I, odiag(xx>) = I,

〈I ⊗ ēē> + ēē> ⊗ I, xx>〉 − 4(ē⊗ ē)>x+ 2n = 0, 〈I ⊗ (ēē> − I) + (ēē> − I)⊗ I, xx>〉 = 0,

where the last constraint makes use of the fact that P:iP
>
:j is a diagonal matrix if i = j or has

a zero diagonal if i 6= j; bdiag is a linear map that sums up the diagonal blocks and odiag is a

1In fact, assuming only one of F and D to be symmetric suffices for the following discussion.
2Recall that for matrices A = [aij ]i∈1:p,j∈1:q ∈ Rp×q, B ∈ Rr×s, the Kronecker product of A and B is defined as

the pr × qs matrix [aijB]i∈1:p, j∈1:q.
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linear map that returns the trace of each block; explicitly, bdiag and odiag are defined by

bdiag : Sn
2 → Sn :



n n n

n S11 S12 · · · S1n

n S21 S22 · · · S2n

...
...

. . .
...

n Sn1 Sn2 · · · Snn

 7→
n∑
k=1

Skk,

odiag : Sn
2 → Sn :



n n n

n S11 S12 · · · S1n

n S21 S22 · · · S2n

...
...

. . .
...

n Sn1 Sn2 · · · Snn

 7→


tr(S11) tr(S12) · · · tr(S1n)

tr(S21) tr(S22) · · · tr(S2n)
...

...
. . .

...

tr(Sn1) tr(Sn2) · · · tr(Snn)

 .

(We remark that bdiag and odiag are often called partial traces.) Therefore (8.2) is equivalent to

min
x,X

x>(D ⊗ F )x

s.t. diag(X) = x,

bdiag(X) = I, odiag(X) = I,

〈I ⊗ ēē> + ēē> ⊗ I,X〉 − 4(ē⊗ ē)>x+ 2n = 0,

〈I ⊗ (ēē> − I) + (ēē> − I)⊗ I,X〉 = 0,

X = xx>, x ∈ Rn2
, X ∈ Sn2

,

which is a rank-constrained SDP (and is NP-hard). Relaxing the rank constraint X = xx> to

X � xx>, which is equivalent to

[
1 x>

x X

]
� 0 using Schur complement (Theorem 2.1.5), we

obtain an SDP relaxation of the QAP (8.2):

vQAP ≥ vQAP−SDP inf
x,X,Y

x>(D ⊗ F )x

s.t. diag(X) = x,

bdiag(X) = I, odiag(X) = I,〈 2n −2ē> ⊗ ē>

−2ē⊗ ē I ⊗ ēē> + ēē> ⊗ I

 ,
1 x>

x X

〉 = 0,

〈I ⊗ (ēē> − I) + (ēē> − I)⊗ I,X〉 = 0,

Y =

1 x>

x X

 � 0, x ∈ Rn2
, X ∈ Sn2

.

(8.4)

Note that the SDP relaxation (8.4) of any instance of the QAP (8.2) of a fixed problem size n
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always has the same feasible region. Moreover, the coefficient matrix

R :=

 2n −2ē> ⊗ ē>

−2ē⊗ ē I ⊗ ēē> + ēē> ⊗ I

 =

−ē>2n
T>

[−ē2n T
]
, where T :=

I ⊗ ē>
ē> ⊗ I

 ∈ R2n×n2
,

i.e., the coefficient matrix R is positive semidefinite, and any (x,X, Y ) feasible for (8.4) must

satisfy Y ∈ Sn2

+ ∩ {R}
⊥ / Sn2

+ , or equivalently, Y = WX̂W> for some X̂ � 0, where

W =


1 (n−1)2

1 1 0

n2 1
n ēn ⊗ ēn Bn ⊗Bn

, where Bn :=

In−1

−ē>

 ∈ Rn×(n−1),

is a full column rank matrix satisfying range(W ) = ker(R) [105, Theorem 3.1]. Using the substi-

tution Y = WX̂W>, one can reduce the problem size of (8.4), and obtain the smaller equivalent

SDP (in variable X̂ ∈ S(n−1)2+1):

vQAP−SDP = inf
Y,X̂

〈[
0 0

0 D ⊗ F

]
, Y

〉
s.t. diag(Y2:n,2:n) = Y2:n,1, Y1,1 = 1,

〈I ⊗ (ēē> − I) + (ēē> − I)⊗ I, Y2:n, 2:n〉 = 0,

Y = WX̂W>, X̂ ∈ S(n−1)2+1.

(8.5)

8.1.1 Slater condition for SDP relaxations of integer programs

We remark that, given a combinatorial optimization problem, the dimension of its feasible region

is closely related to the Slater condition for an SDP relaxation of that combinatorial optimization

problem.

Very often, the feasible region of a combinatorial optimization problem can be put in the

homogeneous equality form

P̂ :=

x ∈ Rn : Â

1 x>

x xx>

 = 0

 (8.6)

for some linear map Â : Sn+1 → Rm; more generally, any nonempty semialgebraic set, i.e., any

set of solutions to a consistent system of finitely many polynomial inequalities, can be posed in

the form of (8.6) for some linear map Ã [90, Proposition 2.31]. The set (8.6) admits an SDP

relaxation in the sense that

P̂ ⊆ conv(P̂) ⊆ F̂ :=


1 x>

x X

 ∈ Sn+1 : Â

1 x>

x X

 = 0,

1 x>

x X

 � 0

 .
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The Slater condition holds for the SDP relaxation F̂ , i.e., the set F̂ contains a positive definite

matrix, if and only if conv(P̂) ⊆ Rn is full dimensional [89, Theorem 3.1]. If dim(conv(P̂)) = d <

n, i.e.,

x ∈ P̂ =⇒ x ∈ `+ range(L>),

for some ` ∈ Rn and L ∈ Rd×n, then ` and L characterize the minimal face of Sn+ containing F̂ ,

in the sense that
1 u>

u U

 ∈ Sd+1 : A


1 0

` L>

1 u>

u U

1 0

` L>

>
 = 0,

1 u>

u U

 � 0


contains a positive definite matrix [90, Theorem 2.33], implying that

face(F̂ , Sn+1
+ ) =

1 0

` L>

Sd+1
+

1 0

` L>

> .
If the feasible region of a combinatorial optimization problem can be put in the form

P :=
{
x ∈ Rn : A(xx>) = b

}
(8.7)

for some linear map A : Sn → Rm and b ∈ Rm, then a typical way of obtaining an SDP relaxation

of the combinatorial optimization problem is to replace the rank-one positive semidefinite matrix

xx> by X � 0 without rank restriction, so the SDP relaxation would have the feasible region

F := {X ∈ Sn : A(X) = b, X � 0} . (8.8)

For F to contain a positive definite matrix, it is necessary and sufficient that P contains a

basis of Rn:

Theorem 8.1.1. [89, Theorem 4.1] Consider the sets P and F defined in (8.7) and (8.8) re-

spectively. The Slater condition holds for F if and only if there exists a linearly independent set{
v(1), v(2), . . . , v(n)

}
⊆ P.

In particular, if there exist a positive semidefinite matrix A ∈ Sn+ and a matrix Q ∈ Rn×n̄ of

full column rank such that

range(Q) = ker(A), and x>Ax = 0, ∀x ∈ P,

then P =
{
x ∈ Rn : A(xx>) = b, x>Ax = 0

}
, and the set

F̄ := {X ∈ Sn : A(X) = b, 〈A,X〉 = 0, X � 0} ⊆ F
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is a potentially tighter SDP relaxation of P than F . Note, however, that F̄ ⊆ Sn+ ∩ {A}
⊥ =

QSn̄+Q>, so the tighter SDP relaxation F̄ fails the Slater condition.

Naturally, if one knew of the existence of such a positive semidefinite matrix A, it is possible

to formulate an SDP relaxation that does not fail the Slater condition. In fact,

P =
{
x ∈ Rn : A(xx>) = b, x ∈ range(Q)

}
=
{
Qu ∈ Rn : A(Quu>Q>) = b, u ∈ Rn̄

}
,

so yet another SDP relaxation of P would simply be replacing uu> by U ∈ Rn̄:

F̄ :=
{
U ∈ Sn̄ : A(QUQ>) = b, U � 0

}
.

In this way, the combinatorial optimization problem itself is preprocessed even before forming

the SDP relaxation.

8.2 Traveling salesman problem

The famous traveling salesman problem (TSP) is, given n locations and their pairwise distances,

to find a shortest path that visits each of the n locations exactly once and that starts and ends

at the same location. (Observe that the TSP is a special case of the QAP, taking the matrix F

in the objective of (8.2) to be the adjacency matrix Cn of the standard n-cycle, given in (8.11).)

Using the adjacency algebra for cycles, de Klerk et al. [29] showed that, given D ∈ Sn, the

SDP

inf
X(1),...,X(d)

1
2〈D,X

(1)〉

s.t. X(k) ≥ 0, ∀ k ∈ 1 : d,∑d
j=1X

(j) = ēē> − I,
I +

∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, ∀ k ∈ 1 : d,

X(k) ∈ Sn, ∀ k ∈ 1 : d,

(8.9)

where ē is the vector of all ones of appropriate length and d := bn2 c, provides a lower bound for

the optimal value of the symmetric traveling salesman problem:

min
P∈Πn

1

2
tr(DPCnP

>), (8.10)

where Πn is the set of all n×n permutation matrices and Cn ∈ Sn is the adjacency matrix of the
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standard n-cycle, i.e.,

Cn =



0 1 0 0 · · · 0 1

1 0 1 0 · · · 0 0

0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

1 0 0 0 · · · 1 0


. (8.11)

The set
{
PCnP

> : P ∈ Πn
}

collects the adjacency matrices of all possible cycles on the complete

graph Kn on n vertices. Given any cycle C on Kn, the matrices X(k) ∈ Sn (for each k ∈ 1 : d)

defined by

X
(k)
ij =

1 if the distance between vertices i and j on C is k,

0 otherwise

give a feasible solution (X(1), X(2), . . . , X(d)) of (8.9).

We show that the Slater condition fails for (8.9). We find a proper face of Sd+ × Sd+ × · · · ×
Sd+ containing the feasible slacks of (8.9), and use that proper face to show that the variables

X(1), X(2), . . . , X(d) satisfy certain linear equalities (as in (8.12)). First we prove a simple lemma.

Lemma 8.2.1. If n is odd, then for every k ∈ 1 : d,

d∑
j=1

cos

(
2πjk

n

)
= −1

2
.

If n is even, then for every k ∈ 1 : d,

d−1∑
j=1

cos

(
2πjk

n

)
= −1

2

(
1 + (−1)k

)
=

−1 if k is even,

0 if k is odd.

Proof. Note that
∑n

j=1 cos
(

2πjk
n

)
= 0 for all 0 < k < n: since exp

(√
−12πk

n

)
6= 1, we have

n∑
j=1

exp

(√
−1

2πjk

n

)
= exp

(√
−1

2πk

n

)
exp

(√
−12πnk

n

)
− 1

exp
(√
−12πk

n

)
− 1

= 0,

and
∑n

j=1 cos
(

2πjk
n

)
= Re

(∑n
j=1 exp

(√
−12πjk

n

))
= 0.

If n is odd, then 2d+ 1 = n. For all k ∈ 1 : d,

0 =

n∑
j=1

cos

(
2πjk

n

)

=

d∑
j=1

cos

(
2πjk

n

)
+

n−1∑
j=d+1

cos

(
2πjk

n

)
+ cos

(
2πnk

n

)
;
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using the change of variable l = n− j, we get

n−1∑
j=d+1

cos

(
2πjk

n

)
=

d∑
l=1

cos

(
2π(n− l)k

n

)
=

d∑
l=1

cos

(
2πlk

n

)
,

so
d∑
j=1

cos

(
2πjk

n

)
= −1

2
cos(2πn) = −1

2
.

If n is even, then 2d = n. For all k ∈ 1 : d,

0 =
n∑
j=1

cos

(
2πjk

n

)

=
d−1∑
j=1

cos

(
2πjk

n

)
+

n−1∑
j=d+1

cos

(
2πjk

n

)
+ cos

(
2πdk

n

)
+ cos

(
2πnk

n

)

=
d−1∑
j=1

cos

(
2πjk

n

)
+

n−1∑
j=d+1

cos

(
2πjk

n

)
+
(

1 + (−1)k
)

;

using the change of variable l = n− j, we get

n−1∑
j=d+1

cos

(
2πjk

n

)
=

d−1∑
l=1

cos

(
2π(n− l)k

n

)
=

d−1∑
l=1

cos

(
2πlk

n

)
,

so
d∑
j=1

cos

(
2πjk

n

)
= −1

2

(
1 + (−1)k

)
.

Proposition 8.2.2. Let (X(1), X(2), . . . , X(d)) be a feasible solution of (8.9), and define

Z(k) = I +
d∑
j=1

cos

(
2πjk

n

)
X(j) � 0, ∀ k ∈ 1 : d.

Then Z(k) ∈ Sn+ ∩
{
ēē>
}⊥

for all k ∈ 1 : d.

Proof. Suppose that n is odd. Summing Z(k) for k ∈ 1 : d:

0 �
d∑

k=1

Z(k) = dI − 1

2

d∑
j=1

X(j) =
1

2
(nI − ēē>) ∈ Sn+ ∩

{
ēē>
}⊥

,

where the second equality uses the fact that
∑d

j=1X
(j) = ēē> − I for any feasible solution

(X(1), X(2), . . . , X(d)). Since Z(k) � 0 for all k ∈ 1 : d and Sn+ ∩
{
ēē>
}⊥

/ Sn+, we have that

Z(k) ∈ Sn+ ∩
{
ēē>
}⊥

for all k ∈ 1 : d.
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Suppose that n is even. Then

Z(d) = I +
d∑
j=1

(−1)jX(j),

and

d−1∑
k=1

Z(k) = (d− 1)I +
d∑
j=1

d−1∑
k=1

cos

(
2πjk

n

)
X(j)

= (d− 1)I − 1

2

d∑
j=1

(
1 + (−1)j

)
X(j)

= (d− 1)I − 1

2

(
ēē> − I + Z(d) − I

)
= dI − 1

2
ēē> − 1

2
Z(d),

implying
d−1∑
k=1

Z(k) +
1

2
Z(d) =

1

2
(nI − ēē>) ∈ Sn+ ∩

{
ēē>
}⊥

.

Hence Z(k) ∈ Sn+ ∩
{
ēē>
}⊥

for all k ∈ 1 : d.

Using the proper face Sn+ ∩
{
ēē>
}⊥

, we can regularize the SDP relaxation (8.9). In addition,

Proposition 8.2.2 implies that

X(j)ē =

2ē if j < n
2 ,

ē if j = n
2 ,

for all j ∈ 1 : d, (8.12)

which is not obvious from the formulation (8.9). To see that (8.12) holds, observe that the Ω ∈ Sd

defined by Ωjk := cos
(

2πjk
n

)
for j, k ∈ 1, . . . , d,

Ω−1ē =


−2ē if d 6= n

2 , i.e., if n is odd,−2ēd−1

−1

 if d = n
2 , i.e., if n is even.

For each k ∈ 1 : d, Z(k)ē = 0, implying that

d∑
j=1

cos

(
2πjk

n

)
x(j) = −ē,
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where x(j) := X(j)ē for each j ∈ 1 : d. Therefore Ω
[
x(1) x(2) · · · x(d)

]
= −ēē>, and multiply-

ing Ω−1 on both sides,

[
x(1) x(2) · · · x(d)

]
= −Ω−1ēē> =


2ēē> if n is odd,[
2ē 2ē · · · 2ē ē

]
if n is even.

This proves (8.12).

8.3 Side chain positioning problem

The side chain positioning problem can be modeled as the combinatorial optimization problem

min
x

x>Ex

s.t.
∑
j

v
(k)
j = 1, ∀ k ∈ 1 : p,

x =
[
(v(1))> (v(2))> · · · (v(p))>

]>
∈ {0, 1}n0 .

(8.13)

(The background of this integer quadratic program is given in Section 9.1.) We mention that any

x feasible for (8.13) satisfies ‖x‖2 = p, so without loss of generality (by adding to E a sufficiently

large multiple of the identity matrix) we may assume that the objective is convex quadratic.

The integer quadratic program (8.13) is NP-hard to solve (even though the linear equality

constraints are given by a totally unimodular matrix). In fact, (8.13) can be used to model the

maximum k-cut problem, a generalization of max-cut problem; see Section 9.1.2 and Theorem

9.1.2 on Page 133.

Chazelle et al. [25] proposed an SDP relaxation for (8.13); see (9.5). Indeed, the facial reduc-

tion can be applied on the SDP relaxation; the regularization reduces the runtime significantly

and also makes explicit some hidden algebraic properties of the feasible SDP solutions.

We discuss the side chain positioning problem, its SDP relaxation and the regularization via

facial reduction in Chapter 9.

8.4 Sparse sum-of-squares representations of polynomials

In this section we give a brief introduction to the background for finding a sparse sum-of-squares

(SOS) representation of a given polynomial over Rn.
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Let N denote the set of all positive integers. A monomial over Rn is a function of the form

x = (x1, x2, . . . , xn) ∈ Rn 7→ cxα := cxα1
1 xα2

2 · · ·x
αn
n ,

where the coefficient 0 6= c ∈ R and α = (α1, α2, . . . , αn) ∈ Nn are fixed. The degree of the

monomial cxα1
1 xα2

2 · · ·xαnn is the sum of the powers,
∑n

j=1 αj . A polynomial over Rn is a function

given by a finite sum of monomials over Rn, and its degree is defined to be the maximum of the

degrees of the constituent monomials. In particular, given a polynomial f of degree r over Rn,

we can write

f(x) = f(x1, x2, . . . , xn) =
∑
α∈Nnr

fαx
α =

∑
α=(α1,α2,...,αn)∈Nnr

fαx
α1
1 xα2

2 · · ·x
αn
n , ∀x ∈ Rn.

The support of the polynomial f is defined as supp(f) := {α ∈ Nnr : fα 6= 0}.

A polynomial f of degree r over Rn is a sum-of-squares polynomial , or simply SOS polynomial ,

if f =
∑k

j=1(g(j))2 for a finite number of polynomials g(1), . . . , g(k) over Rn. In particular, a SOS

polynomial always has an even degree and is nonnegative. A polynomial f over Rn is said to be

SOS-representable over a subset G ⊆ Nnr if f =
∑k

j=1(g(j))2, and supp(g(j)) ⊆ G for all j ∈ 1 : k;

we call the sum
∑k

j=1(g(j))2 an SOS-representation of f over G.

Finding an SOS representation of a polynomial f over G is equivalent to solving the semidef-

inite feasibility problem [28, 67, 72]:

find V ∈ S|G|+ s.t. f(x) =
∑
β,γ∈G

Vβ,γx
β+γ . (8.14)

(See e.g. [58] for a proof.) By comparing coefficients, it is easy to see that (8.14) is equivalent to

the following feasibility problem:

find V ∈ S|G|+ s.t. fα =
∑
β,γ∈G,
β+γ=α

Vβ,γ , ∀α ∈ supp(f). (8.15)

Kojima et al. [58] and Waki and Muramatsu [94] considered the following problem:

Sparse SOS representation of a polynomial. Suppose a given polynomial f over Rn is

known to be SOS-representable over a subset G ⊆ Nnr , but the explicit representation is not

given. Determine whether there exists a proper subset H ⊂ G such that f is SOS-representable

over H.

The set G mentioned above can be taken as, e.g. [58, 77],

G0 :=
1

2
conv (supp(f) ∩ (2Nn)) ∩ Nn.
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Naturally, if one can find such a subset H, then one can substitute G with H in (8.15), resulting

in a smaller semidefinite feasibility problem.

[58] showed that if one can find H,B such that

∅ 6= H ⊂ G, ∅ 6= B ⊂ G, G = H ∩ B, (B + B) ∩ F = ∅, (B + B) ∩ (G +H) = ∅, (8.16)

then whenever f has an SOS representation over G given by
∑r

j=1(g(j))2 (with supp(g(j)) ⊆ G
for all j ∈ 1 : k), the support of g(j) lies within H for all j ∈ 1 : r, i.e., f is SOS-representable

over H. (Indeed, [58, Section 3] showed also that there exists a “smallest” set G∗—with respect

to the initial set G0—over which f has an SOS representation.)

How do we find G∗ or just H satisfying (8.16) in general? [58] used a graph theoretical

approach in finding G∗, though the authors noted that the implementation is not very efficent for

large scale problems. [94] observed that the feasibility problem (8.15) fails the Slater condition if

there exists a proper subset H ⊂ G such that f is SOS-representable over H. In particular, facial

reduction can be applied on (8.15) to find a more sparse SOS representation of f .

8.5 Sensor network localization problem

We consider a “simple” version of the sensor network localization problem (ignoring the anchors

here):

Sensor network localization problem . Given the number of sensors n and their embedding

dimension r, an index set I ⊆
{

(i, j) ∈ (1 : n)2 : i < j
}

, a collection of known squared Euclidean

distances dij ≥ 0 for (i, j) ∈ I, find the location of the sensors in Rr such that their pairwise

distances match with the given values, i.e.,

find p(1), p(2), . . . , p(n) ∈ Rr s.t. ‖p(i) − p(j)‖2 = dij , ∀ (i, j) ∈ I. (8.17)

Define the linear map

K : Sn → Sn : Y 7→ diag(Y )ē> + ēdiag(Y )> − 2Y,

where ē ∈ Rn is the vector of all ones. It is well-known that the feasibility problem (8.17) can be

equivalently phrased as a rank-constrained semidefinite feasibility problem:

Theorem 8.5.1. The feasibility problem (8.17) has a solution if and only if there exists X ∈ Sn

such that

W ◦ (K(X)−D) = 0, X � 0, rank(X) = r, (8.18)
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where W,D ∈ Sn are defined by

Wij :=

1 if (i, j) or (j, i) ∈ I,

0 otherwise;
Dij :=

dij if (i, j) or (j, i) ∈ I,

0 otherwise.

Indeed, X solves (8.18) if and only if X = PP> with P =
[
p(1) · · · p(n)

]>
∈ Rn×r and

p(1), . . . , p(n) satisfies ‖p(i) − p(j)‖2 = dij for all (i, j) ∈ I.

Since the sensor network localization problem (or equivalently, the feasibility problem (8.18))

is NP-hard to solve [51, 52, 80], one common way of tackling (8.18) is to relax the rank constraint

and consider the semidefinite feasibility problem

W ◦ (K(X)−D) = 0, X � 0. (8.19)

It has been shown [59, 60] that (8.19) fails the Slater condition if there exists a subset J ⊆ 1 : n

such that

i, j ∈ J , i < j =⇒ (i, j) ∈ I,

i.e., for any i, j ∈ J , the distance between any two sensors indexed by i and j is known. (The

sensors indexed by J can be thought of as forming a clique.) Using DJ ,J , it is possible to

compute a proper face of Sn+ containing the feasible solutions of (8.19).

While the minimal face of Sn+ containing the feasible solutions of (8.18) is dependent on the

matrices W and D (meaning that we cannot write down the minimal face as easily as in the

case of, e.g., the side chain positioning problem where the feasible region is always the same),

it happens that the facial reduction can be implemented without solving conic programs (i.e.,

the auxiliary problem (5.1)); it is possible to iteratively determine proper faces containing the

feasible region of (8.19) using singular value decomposition [59, 60]. This results in an accurate

computation of the minimal face of Sn+ containing the feasible solutions of (8.19).

Facial reduction is especially powerful in preprocessing (8.19), because DJ ,J , which usually

corresponds to pairwise distances in low dimensional space due to the nature of the problem

(where the sensors are embedded in low dimensional space), tends to give a low dimensional face

of Sn+ even if the cardinality |J | is large. Consequently, the problem size collapses rather quickly

with the aid of the facial reduction.

8.6 Stability of real square matrices and Lyapunov equation

A matrix A ∈ Rn×n is said to be negative stable or simply stable if all eigenvalues of A have

negative real part, and A is said to be positive stable if −A is negative stable. Observe that A is
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negative stable if and only if its transpose A> is negative stable.

It has been shown in [64] that A being negative stable characterizes the asymptotic stability

of the linear time-invariant autonomous dynamical system

d

dt
x(t) = Ax(t),

and that the negative stability of A is equivalent to the strict feasibility of a linear matrix

inequality:

Theorem 8.6.1. ([55, Theorem 2.2.1]) Let A ∈ Rn×n.

(a) A is negative stable if and only if

S = A>P + PA ≺ 0, P � 0 (8.20)

has a solution (P, S) ∈ Sn × Sn.

(b) Suppose that (P, S) ∈ Sn × Sn satisfies the Lyapunov equation

S = A>P + PA (8.21)

and S ≺ 0. Then A is negative stable if and only if P � 0.

Interestingly, if A is negative stable, then for each S ∈ Sn, there is a unique solution to (8.20):

Theorem 8.6.2. ([55, Thoerem 2.2.3]) Let A be negative stable. For each S ∈ Rn×n, (8.21) has

a unique solution P . If S is symmetric, then the solution P must be symmetric. If S is negative

definite, then P must be positive definite.

How do we find a solution of (8.20)? It is possible to use linear algebra techniques. (See

e.g., [53, Chap. 15].) Alternatively, a “textbook” approach is to set up an appropriate SDP to

find a solution of (8.20). Consider the SDP (see, e.g., equation (2.20) in [21, Section 2.2.4]):

vLP := min
P,λ

λ

s.t. A>P + PA � λI,
P � I,
λ ≥ −1.

(8.22)

We first show that the SDP (8.22) does indeed help us determine whether (8.20) is solvable.
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Proposition 8.6.3. For any A ∈ Rn×n, (8.20) has a solution if and only if vLP < 0.

Proof. First we point out that (8.20) is always feasible: for any A ∈ Rn×n, let P = 2I and

λ = max
{
−1, λmax(A>P + PA)

}
+ 1. Then P � I, λ > −1 and λI �

(
λmax(A>P + PA)

)
(I) �

A>P + PA. Hence (P, λ) is a Slater point of (8.20), and (8.20) is feasible.

If (8.20) has no solution, then for any feasible solution (P, λ) of (8.22), P being positive

definite implies that A>P +PA is not negative definite, i.e., λ cannot be negative. Hence vLP ≥ 0.

Suppose that (8.20) has a solution (P, S). Since (8.20) is homogeneous, without loss of

generality we assume that P � 0. Let λ = max {λmax(S),−1} < 0. Then λ ≥ −1 and S �
λmax(S)I � λI. Hence (P, λ) is a solution of (8.20), and vLP ≤ λ < 0.

For any A ∈ Rn×n, (2I,max
{
−1, λmax(A>P + PA)

}
+1) is a Slater point of (8.22). Moreover,

the constraint λ ≥ −1 in (8.22) guarantees that vLP ≥ −1. Hence strong duality holds for (8.22),

i.e., (8.22) and its dual3

vLD := max
Y,Z,y

〈I, Z〉 − y

s.t. AY + Y A> − Z = 0,

〈I, Y 〉+ y = 1

Y � 0, Z � 0, y ≥ 0

(8.23)

have the same optimal value vLP = vLD, and vLD is attained.

An interesting fact is that if A is negative stable, then (8.23) fails the Slater condition:

Proposition 8.6.4. The SDP (8.23) satisfies the Slater condition if and only if A is positive

stable.

Proof. First note that A is positive stable if and only if A> is also positive stable.

Suppose that A is positive stable. Then by Proposition 8.6.1 there exist Y,Z � 0 such that

Z = AY + Y A>. By scaling Y, Z we may assume that tr(Y ) = 0.5. Then (Y,Z, 0.5) is a Slater

point of (8.23).

3 Using

〈Y,A>P 〉 = tr((AY )>P ) = 〈AY,P 〉 and 〈Y, PA〉 = tr(AY P ) = 〈Y A>, P 〉,

the Lagrangian of (8.22) is given by

L(P, λ, Y, Z, y) =λ+ 〈Y,A>P + PA− λI〉+ 〈Z, I − P 〉 − y(1 + λ)

=〈AY + Y A> − Z, Y 〉+ λ(1− 〈I, Y 〉 − y) + 〈I, Z〉 − y.

Hence for any Y,Z, y, infP,λ L(P, λ, Y, Z, y) is finite and equals 〈I, Z〉 − y if and only if AY + Y A> − Z = 0 and

1− 〈I, Y 〉 − y = 0. Therefore the dual of (8.22) is given by (8.23).
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Conversely, suppose that A is not positive stable. Fix any feasible point (Y,Z, y) of (8.23).

If Z � 0, then Y cannot be positive definite by Proposition 8.6.1. Hence (8.23) has no Slater

point.

If A is negative stable, then A cannot be positive stable and by Proposition 8.6.4, the Slater

condition does not hold for (8.23). By Theorem 3.3.10, we know that the set of optimal solutions

for (8.22) is either empty or unbounded.

We perform a simple numerical experiment on solving (8.22). We fix the maximum real part

of the eigenvalues of A ∈ R10×10 at a specific (negative) value, and solve (8.22) using CVX [48, 56]

with SDPT3 [92]. Each column of Table 8.1 contains the average over 20 instances. The row “#

success” records the number of instance that SDPT3 can solve without terminating prematurely

due to numerical errors., and the row “# iter” records the number of iterations SDPT3 takes to

solve (8.22).

Table 8.1: Numerics from randomly generated instances of negative stable matrix A

max(Re(A)) -1 -0.1 -0.01 -0.001 -0.0001 -0.00001 -0.000001

# success 20 20 20 20 20 19 17

cpu time 0.5425 0.5065 0.5435 0.67 0.7585 1.0045 0.8245

# iter 9 9.45 10.5 14.15 16.65 23.55 18.4

‖P‖F 40.387 208.29 295.27 4902.9 23108 3.4508e+05 1.238e+06

λmax(P ) 30.663 190.6 266.56 4691.2 22221 3.3658e+05 1.1835e+06

λmin(P ) 3.3299 4.9007 8.2561 28.768 72.914 954.01 6705.9

‖S‖F 134.4 212.58 313.13 1126.4 3022.6 50689 2.4262e+05

λmax(S) -23.017 -5.9203 -1.3817 -1.6324 -1.0455 -1.0759 -0.77924

λmin(S) -48.335 -85.958 -123.29 -472.58 -1631 -31664 -1.2332e+05

Observe that the norm of the of the solution (P, S) and the number of iterations both go up

as max(Re(A)) approaches zero. We see that formulating an SDP without care (e.g. checking

whether the Slater condition fails) can indeed lead to numerical difficulties (in this case the

solution norm blowing up).

8.7 Summary

In all the above examples, the facial reduction is used for regularizing SDPs with hidden algebraic

properties (i.e., the feasible solutions tend to satisfy some overlooked equations). If a problem is
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modeled properly, in the sense that the hidden algebraic properties are accounted for (as in e.g.,

Section 8.1.1), then the resultant SDP would have probably satisfied the Slater condition.
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Chapter 9

Side chain positioning problem

In this chapter, we study the side chain positioning problem (stated in (IQPSCP) below), a

combinatorial optimization problem arising from protein folding. The side chain positioning

problem has been shown to be NP-hard [1], and Chazelle et al. [25] studied an SDP relaxation

for solving the combinatorial optimization problem. The SDP relaxation, however, fails the Slater

condition, and it is observed empirically that the solution of the SDP relaxation is much slower

and less accurate, leading to absurd integral solutions after the rounding.

There are three main goals in this chapter. First we formulate an SDP relaxation of the side

chain positioning problem that is at least as strong as the SDP relaxation from [25]. Second, we

show that it is possible to regularize the SDP relaxation from [25] (as well as the SDP relaxation

that we obtain) using facial reduction, arriving at a smaller and more stable SDP. Finally, we use

a cutting plane technique to improve the solution quality and to avoid handling a formiddable

amount of inequality constraints, thus ensuring quality and efficiency at the same time.

The organization of this chapter is as follows. In Section 9.1, we introduce the side chain

positioning problem. We also point out that the side chain positioning problem encompasses

the max k-cut problem, which in turns models a wide range of optimization problems (see, for

instance, Ghaddar’s master thesis [44]), as a special case. In Section 9.2, we derive an SDP

relaxation of the side chain positioning problem. In Section 9.3, we show that the SDP relaxation

can be regularized by restricting the feasible solutions on the minimal face of the PSD cone

containing them. We will also show that our SDP relaxation is tighter than that proposed in [25].

In Section 9.4, we consider the implementation issues of solving the SDP relaxation, including

a review of possible rounding techniques and the cutting plane technique. Numerical tests are

presented in Section 9.5; we will also study the biological relevance of our numerical results.
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9.1 Introduction to the side chain positioning problem and its

connection to max k-cut problem

Consider the integer quadratic programming problem

vscp = min
x

x>Ex

s.t.
∑
j∈Vk

xj = 1, ∀ k ∈ 1 : p,

x ∈ {0, 1}n0 ,

(IQPSCP)

where

• p,m1,m2, . . . ,mp are positive integers;

• n0 :=
∑p

k=1mk;

• E ∈ Sn0

• m̄0 := 0 and m̄k :=
∑k

l=0ml for k ∈ 1 : p; and

• Vk = (m̄k−1 + 1) : m̄k.

The integer quadratic program (IQPSCP) models the following combinatorial optimization prob-

lem.

Side chain positioning problem. Given an undirected graph with loops and no parallel edges,

where the vertex set is given by V :=
⋃p
k=1 Vk, the edge set is given by E and edge weights ωij

for all {i, j} ∈ E , pick exactly one vertex from each partition Vk (for k ∈ 1 : p) such that the sum

of edge weights of the subgraph induced by these chosen vertices is minimized.1

In this section we give some background information about the combinatorial optimization

problem (IQPSCP). We first outline the motivation of (IQPSCP) from the protein folding problem

in Section 9.1.1. Then we show that the max k-cut problem, a generalization of the max-cut

problem, can in fact be formulated as a special case of (IQPSCP). In particular, many combinato-

rial optimization problems that can be modeled as a max k-cut problem, such as the Potts glass

problem (see [44] for a detailed list of applications), can be formulated in the form of (IQPSCP).

1 A word on the objective x>Ex: given the edge weights ωij for all {i, j} ∈ E , define the matrix E ∈ Sn0 by

Eij :=


1
2
ωij if {i, j} ∈ E , i 6= j,

ωij if {i, j} ∈ E , i = j,

0 if {i, j} /∈ E .

130



9.1.1 Protein folding: the biology behind the side chain positioning problem

The side chain positioning problem is a discretized subproblem of the protein folding problem,

which is the subject of this section. (We emphasize that the coverage of the biological background

in this chapter is far from complete. We omit, for instance, the issue of problem data generation

and the domain knowledge on protein structure used for preprocessing the problem data, e.g.,

the dead-end elimination. More details on the biology can be found in, e.g., [24, 25].)

We first discuss the basic structure of proteins. Amino acids are the building blocks of a

protein; an amino acid is a molecule consisting of an alpha-carbon (-Cα-) acting as the “hub”

connecting four atom groups:

(1) a hydrogen atom,

(2) an amino group (-NH2),

(3) a carboxyl group (-COOH) and

(4) an atom group called the side chain (which we represent by -R).

(In other words, any two amino acids only differ in the composition of the side chain.) A protein

is a chain of amino acids linked through a condensation reaction: the carboxyl group of an amino

acid is linked to the amino group of the next amino acid, and in the process the carboxyl group

-COOH gives up -OH while the amino group -NH2 gives up a hydrogen atom, to produce a

water molecule. The result of this condensation reaction is a chain · · ·NCαC NCαC NCαC· · · of

repetitive triple atoms NCαC, linked by CN bonding formed in the condensation reaction, and

from each Cα atom a side chain molecule sprouts. We call the chain · · ·NCαC NCαC NCαC· · ·
the backbone of the protein, and each of the repeating units (including the side chains) a residue

of the protein.

With the basic understanding of protein structure, we can outline the protein folding problem.

Given the chemical content of a protein, we are often interested in determining the protein

conformation, i.e., the three-dimensional positioning of the constituent residues (i.e., the amino

acids) of the protein, that is optimal in some way. A protein in its natural form is believed

to arrange its constituent residues in a way that minimizes the total energy: between any two

residues there is an interaction energy, and each residue itself carries some level of “self-energy”

which may change depending on its surroundings. A protein conformation is considered “optimal”

if the total energy is minimized. Therefore, the protein folding problem is, given the constituent

molecules, to find three dimensional positions of its molecules that minimizes its total energy.
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One subproblem of the protein folding problem is the determination of the side chain position:

assuming that the positions of atoms in the backbone are known, determine the position of the

side chains. This problem is often further simplified by assuming that each of the side chains can

take only one of finitely many possible positions; we call these possible positions the rotamers.

With all these assumptions, we arrive at the side chain positioning problem: for each residue

of the protein, pick exactly one rotamer (positioning of the side chain atoms) so that the total

energy of the protein is minimized.

9.1.2 Complexity and relation to max k-cut problem

It has been shown [1] that the integer quadratic program (IQPSCP) is NP-hard. In fact, it is not

even “easy” to find a “good” approximation in the following sense:

Theorem 9.1.1. [25, Theorem 5.1] It is NP-complete to approximate the optimal value vscp of

(IQPSCP) within a factor of γn0, where γ is a positive constant (and n0 is the total number of

rotamers).

In this section, we offer an alternative proof of the known NP-hardness result of the side chain

positioning problem [1, 25], by showing that the maximum k-cut (or max k-cut in short) problem

can be reduced to (IQPSCP). In particular, the NP-hardness and inapproximability results of the

max-k cut problem apply to (IQPSCP) too. Recall the max k-cut problem:

Max k-cut problem. Given an undirected graph with vertex set Ṽ, edge set Ẽ and edge weights

ωij for all (i, j) ∈ Ẽ , partition Ṽ into k sets so that the total weight of edges with ends on two

different partitions is maximized.

Naturally, in the context of the max k-cut problem, we may assume that the graph of interest

has no parallel edges (though it may contain loops). As noted in [44], the max k-cut problem is

the same as the minimum k-partition (or min k-partition for short) problem:

Min k-partition problem. Given an undirected graph with vertex set Ṽ, edge set Ẽ and edge

weights ωij for all (i, j) ∈ Ẽ , partition Ṽ into k sets so that the total weight of edges that have

both ends in the same partition is minimized.

(To see that min k-partition problem and max k-cut problem are really the same, simply

note that for any partition of Ṽ into k sets, the total weight of edges with ends on two different

partitions and the total weight of edges that have both ends in the same partition always sum to

the constant
∑

(i,j)∈Ẽ ωij .)
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We prove that the min k-partition problem is polynomial-time reducible to the side chain

positioning problem.

Theorem 9.1.2. For any positive integer k, the min k-partition problem is polynomial-time

reducible to the side chain positioning problem.

Proof. Let G̃ = (Ṽ, Ẽ) be an undirected graph with edge weights ωvi,vj (∀ {vi, vj} ∈ Ẽ). We

construct an undirected weighted graph G = (V, E) with V being a disjoint union of Vl with

cardinality k for l ∈ 1 : |Ṽ| and |E| = k|Ẽ | so that for any α ∈ R, the following are equivalent:

(1) Ṽ can be partitioned into k sets with the total weights of the edges with both ends in the

same partition no larger than α.

(2) There exists a vertex vl ∈ Vl for each l ∈ 1 : k such that the total edge weights of the

subgraph induced by v1, v2, . . . , vk is no larger than α.

In fact, writing Ṽ := {v1, v2, . . . , vq}, define Vj :=
{
v

(1)
j , v

(2)
j , . . . , v

(k)
j

}
for j ∈ 1 : q. (In other

words, Vj stores k identical copies of vertex vj .) Define the edge set of E via{
v

(l1)
i , v

(l2)
j

}
∈ E ⇐⇒ l1 = l2, {vi, vj} ∈ Ẽ , (∀ l1, l2 ∈ 1 : k, i, j ∈ 1 : q), (9.1)

and define the weight of any arbitrary edge
{
v

(l1)
i , v

(l2)
j

}
∈ E to be ωij .

Note that the construction of the weighted graph G involves no computation, so the construc-

tion can trivially be done in polynomial time. (Note also that the problem size due to the graph

G is k times the problem size due to the graph G̃.)

Suppose that Ṽ can be partitioned into Ṽ1, Ṽ2, . . . , Ṽk such that

k∑
l=1

∑
vi,vj∈Ṽl
{vi,vj}∈Ẽ

ωij . (9.2)

Now consider our constructed graph G. For each partition Vj , pick v
(lj)
j , where lj indexes the

partition that vj belongs to in G̃, i.e., vj ∈ Ṽlj . Therefore

v
(li)
i , v

(lj)
j satisfy li = lj ⇐⇒ vi, vj are in the same partition Vl with l = li = lj , (9.3)

and (v
(l1)
1 , v

(l2)
2 , . . . , v

(lq)
q ) is a feasible solution of the side chain positioning problem; due to the

destination of edges in G, its objective value is

k∑
l=1

∑
li=l=lj ,

{vi,vj}∈Ẽ

ω
v

(li)
i ,v

(lj)

j

(9.4)
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By (9.1) and (9.3), the quantities in (9.2) and (9.4) are the same.

Conversely, suppose that (v
(l1)
1 , v

(l2)
2 , . . . , v

(lq)
q ) is a feasible solution of the side chain positioning

problem instance on our constructed graph G. We already saw that its objective value is given by

(9.4). For each l ∈ 1 : k, let Ṽl := {vi : l = li}. Naturally, the sets Ṽl (for l ∈ 1 : k) are disjoint.

To see that Ṽ =
⋃k
l=1 Vl, simply note that for each i ∈ 1 : q, exactly one of element of Vi is

selected. Therefore Ṽ1, Ṽ2, . . . , Ṽk is a feasible solution for the min k-partition problem instance

on G̃, and its objective is given in (9.2). Again, the quantities in (9.2) and (9.4) are equal, since

vi, vj ∈ Ṽl if and only if v
(l)
i , v

(l)
j are part of the feasible solution of the side chain positioning

problem instance.

Therefore statements (1) and (2) at the beginning of the proof are equivalent, and shows that

our construction provides a valid reduction of the min k-partition problem into the side chain

positioning problem.

Theorem 9.1.2 highlights the versatility of the side chain positioning problem. Nonetheless,

in the remainder of this chapter (in particular in the numerics), we focus on the side chain

positioning problem as a protein folding subproblem.

Notation

For any matrices (or vector) S, T of the same size, the Hadamard product is defined as a matrix

(or vector) of the same size resulting from the element-wise product of the two matrices, denoted

by S ◦ T .

We use ēk to denote the vector of all ones in Rk, and Ēk to denote the k × k matrix of all

ones. When the dimensions are clear, we would omit the subscript k.

9.2 An SDP relaxation of the side chain positioning problem

We already saw in the last section that (IQPSCP) is NP-hard. One common heuristic for ap-

proximating NP-hard integer programs is to use an SDP relaxation, which is the subject of this

section.

We first list some valid constraints on the variable x in (IQPSCP). Then we derive an SDP

relaxation of (IQPSCP). The procedure for deriving the SDP relaxation presented in Section 9.2.2
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is similar to that for obtaining the SDP relaxation of (IQPSCP) in [25], given by:

vscp ≥ inf
Y ∈Sn

〈0 0

0 E

 , Y〉
s.t.

∑
j∈Vk Yj+1, j+1 = 1, ∀ k ∈ 1 : p,∑
i,j∈Vk Yi+1, j+1 = 1, ∀ k ∈ 1 : p,

Yj+1, j+1 − Yj+1, 1 = 0, ∀ j ∈ 1 : n0,

Y11 = 1,

Y � 0,

Y ≥ 0.

(9.5)

Our SDP relaxation uses more valid equality constraints than in (9.5) and fewer nonnegativity

constraints on Y . Our SDP relaxation attempts to balance the conflicting goals of having a tight

SDP relaxation (by keeping all the constraints Yij ≥ 0) and of obtaining an SDP solution in a

reasonable amount of time. (See Sections 9.3.3 and the numerics in Section 9.5 for comparison

between the two SDP relaxations.)

9.2.1 Valid constraints for the side chain positioning problem

Given any integral vector m̃ = (m̃1, . . . , m̃p̃) ≥ 0, define the matrix

Am̃ :=



m̃1 m̃2 m̃p̃

1 ē> 0 · · · 0

1 0 ē> · · · 0
...

...
. . .

...

1 0 0 · · · ē>

 ∈ {0, 1}p×
∑
k m̃k . (9.6)

(We take the convention that any matrix B ∈ Rs×t is vacuous if s or t = 0.) The matrix Am̃

satisfies (Am̃)>ē = ē ∈ R
∑
k m̃k ,

(Am̃)>Am̃ =



m̃1 m̃2 m̃p̃

m̃1 Ē 0 · · · 0

m̃2 0 Ē · · · 0
...

...
. . .

...

m̃p 0 0 · · · Ē

 ∈ S
∑
k m̃k , Am̃(Am̃)> =


m̃1 0 · · · 0

0 m̃2 · · · 0
...

...
. . .

...

0 0 · · · m̃p̃

 ∈ Sp̃.
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When m̃ is taken to be the default input m for (IQPSCP), we drop the subscript: A := Am. Using

A, we can rewrite (IQPSCP) as

vscp = min
x

x>Ex

s.t. Ax− ē = 0 ∈ Rp,

x ∈ {0, 1}n0 ,

(9.7)

Observe that if x ∈ {0, 1}n0 is feasible for (9.7), then x and the rank one matrix xx> satisfy

the following constraints:

• ē>x = p;

• ‖Ax− ē‖2 = 0, i.e.,

x>A>Ax− 2ē>x+ p = 0.

• Using the simple fact that 0,1 are the solutions of the quadratic equation t2− t = 0, we get

diag(xx>) = x ◦ x = x;

in fact, the constraint diag(xx>) = x is equivalent to x ∈ {0, 1}n0 ;

• (A>A − I) ◦ (xx>) = 0: to see that the xx> satisfies the constraint, write

x =
[
(v(1))> (v(2))> · · · (v(p))>

]>
, v(k) ∈ {0, 1}mk .

x is feasible for (IQPSCP) if and only if each v(k) has exactly one nonzero entry (which is

positive and equals 1). Therefore v(k)(v(k))> is a diagonal matrix, i.e., (Ē−I)◦(v(k)(v(k))>)

for k ∈ 1 : p. This together with diag(xx>) = x ≥ 0 indicates that

the diagonal blocks of xx> are diagonal matrices with nonnegative entries.

In particular,

(xx>)ij ≥ 0, ∀ (i, j) ∈ B,

where

B :=
{

(i, j) : 1 ≤ i < j ≤ n0, (A>A)ij = 1
}

= {(i, j) : 1 ≤ i < j ≤ n0, i, j ∈ Vk for some k ∈ 1 : p} .
(9.8)

• xx> ≥ 0; in particular,

(xx>)ij ≥ 0, ∀ (i, j) ∈ I, (9.9)
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for any index set I ⊆ {(i, j) : 1 ≤ i < j ≤ n0}. The set I will be used to index the cutting

planes. As pointed out, the constraints (A>A − I) ◦ (xx>) = 0 and x ◦ x = x ensure that

the diagonal blocks of xx> are nonnegative diagonal matrices, we will only consider the

nonnegative inequalities (xx>)ij ≥ 0 that occur on the off-diagonal blocks. In other words,

we will be interested in the index set I being a subset of

I≥0 := {(i, j) : 1 ≤ i < j ≤ n0, (i, j) /∈ B, i, j integer} , (9.10)

where B defined in (9.8) indexes the diagonal blocks.

For any I ⊆ I≥0, define the projection

P̄I : Sn0
+ → R|I| : X 7→ (Xij)(i,j)∈I . (9.11)

Then (9.9) holds if and only if P̄I(xx>) ≥ 0. The adjoint P̄∗I : R|I| → Sn0 is given as

follows: for any x ∈ R|I|, X := P̄∗I(x) ∈ Sn0 satisfies Xij = Xji = 1
2xij for all (i, j) ∈ I, and

Xij = 0 for all (i, j) /∈ I.

Using the valid constraints, we get that (IQPSCP) is equivalent to

vscp = vI := min
x

x>Ex

s.t. 〈A>A, xx>〉 − 2ē>x+ p = 0,

diag(xx>)− x = 0,

(A>A − I) ◦ (xx>) = 0,

P̄I(xx>) ≥ 0,

(QQPSCP(I))

which is still an integer quadratic program (because of the constraint diag(xx>)− x = 0).

9.2.2 SDP relaxation of the side chain positioning problem and its solvability

In this section, we derive the SDP relaxation of (QQPSCP(I)), and show that the SDP relaxation

is solvable.

Observe that (QQPSCP(I)) is equivalent to:

vscp = vI = min
x,X

〈E,X〉

s.t. 〈A>A,X〉 − 2ē>x+ p = 0,

diag(X)− x = 0,

(A>A − I) ◦X = 0,

P̄I(X) ≥ 0,

X = xx>.

(9.12)
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We obtain an SDP relaxation of (9.12) by replacing the constraint X = xx> with X � xx>.

Since

〈A>A,X〉 − 2ē>x+ p =

〈 1 −ē>

−ē A>A

 ,
1 x>

x X

〉 and X � xx> ⇐⇒

1 x>

x X

 � 0,

defining

n := 1 + n0, and Ap,λ :=

 1 −ē>

−ē A>A

 ∈ Sn, (9.13)

we obtain

vscp = vI ≥ dI := inf
x,X,Y

〈E,X〉

s.t.
〈
Ap,λ, Y

〉
= 0,

diag(X)− x = 0,

(A>A − I) ◦X = 0,

P̄I(X) ≥ 0,

Y =

1 x>

x X

 � 0.

(PSCP(I))

The SDP (PSCP(I)) is in homogeneous equality form, i.e., other than the “normalization” con-

straint Y11 = 1, all the equality constraints on Y have zero on the right-hand side; in particular,

results from [89, Section 3] applies.

Before stating the duality result regarding (PSCP(I)), we remark that we can rewrite (PSCP(I))

in a possibly more understandable form using linear maps

arrow : Sn → Rn−1 :

α x>

x X

 7→ diag(X)− x, (9.14)

bdiagm̃ : S
∑
k m̃k → S(

∑
k m̃k)−1 :

α x>

x X

 7→ ((Am̃)>Am̃ − I) ◦X, (9.15)

which are defined for any dimension n ≥ 2 and any integral vector m̃ ≥ 0. Same as for A, if m̃ is

taken to be the default input m (from Page 130), then we simply write bdiag := bdiagm. (These

maps would be helpful for an easier understanding of the equivalent problem of (PSCP(I)) that

we will derive in Section 9.3.) The map arrow extracts the “arrow” part of a matrix, and the map

bdiag zeros out the off-diagonal blocks of a matrix. The linear equation arrow(Y ) = 0 ensures

that the first column of Y equals the diagonal of Y , and the linear equation bdiag(Y ) = 0 ensures
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that the diagonal blocks of Y are diagonal matrices. In particular, (PSCP(I)) is equivalent to

dI = inf
x,X,Y

〈E,X〉

s.t.
〈
Ap,λ, Y

〉
= 0,

arrow(Y ) = 0,

bdiag(Y ) = 0,

P̄I(X) ≥ 0,

Y =

1 x>

x X

 � 0.

We show that (PSCP(I)) is solvable using the duality theory. The Lagrangian of (PSCP(I))

is given by

L(x,X, Y ;λ,w,Λ, η,Ω,Φ) = 〈E,X〉+ λ〈Ap,λ, Y 〉+ w>(diag(X)− x)− η>(P̄I(X))

+ 〈Λ, (A>A − I) ◦X〉+

〈
Ω, Y −

[
1 x>

x X

]〉
− 〈Φ, Y 〉

= 〈E,X〉+ 〈λAp,λ + Ω− Φ, Y 〉+ w>(diag(X)− x)− η>(P̄I(X))

+ 〈Λ, (A>A − I) ◦X〉 −

〈Ω11 Ω12

Ω21 Ω22

 ,[1 x>

x X

]〉
= − Ω11 + 〈X,E + Diag(w) + Λ ◦ (A>A − I)− P̄∗I(η)− Ω22〉

− x>(w + 2Ω21) + 〈Y, λAp,λ − Ω− Φ〉,

and the Lagrangian dual is given by

d∗I = supλ,w,Λ
η,Ω,Φ

{
−Ω11 : Ω22 = E + Diag(w) + Λ ◦ (A>A − I)− P̄∗I(η),

2Ω21 + w = 0, Φ = λAp,λ + Ω, Φ � 0, η ≥ 0
}
,

which is equal to

sup
λ,w,Λ
η,φ

−φ : λAp,λ +

 φ −1
2w
>

−1
2w

(
E + Diag(w) + Λ ◦ (A>A − I)− P̄∗I(η)

)
 � 0, η ≥ 0

 . (9.16)

Observe that strong duality holds for the dual (9.16). Hence (PSCP(I)) has an optimal

solution.

Proposition 9.2.1. The Slater condition holds for (9.16). In particular, (PSCP(I)) and (9.16)

have the same optimal value, and (PSCP(I)) has an optimal solution.
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Proof. Take

λ̂ = 0, η̂ = ē, ŵ = −λmin(E − P̄∗I(η̂))ē, Λ̂ = 0,

and any φ > 0; then η̂ > 0 and

λ̂Ap,λ +

 φ̂ −1
2 ŵ
>

−1
2 ŵ

(
E + Diag(ŵ) + Λ̂ ◦ (A>A − I)− P̄∗I(η̂)

)
=

 φ̂ 1
2

(
λmin(E − P̄∗I(η̂)) + 1

)
ē>

1
2

(
λmin(E − P̄∗I(η̂)) + 1

)
ē E − P̄∗I(η̂)− λmin(E − P̄∗I(η̂))I + I


is positive definite if φ̂ is large enough. Hence (9.16) satisfies the Slater condition.

On the other hand, (PSCP(I)) is feasible (since its rank-one feasible solutions correspond to

the feasible solutions of (IQPSCP)). Hence strong duality holds for (9.16), i.e., the optimal values

of (9.16) and (PSCP(I)) are equal, and (PSCP(I)) has an optimal solution.

9.3 Regularization of the SDP relaxation of (IQP)

We saw in Proposition 9.2.1 that (PSCP(I)) is solvable. However, the Slater condition indeed

fails for (PSCP(I)), meaning that we can regularize and reduce the problem size of (PSCP(I)).

In this section, we find the minimal face of (PSCP(I)) and regularize (PSCP(I)) by restricting its

feasible region onto the minimal face.

We summarize the main result in Section 9.3.1. Section 9.3.2 contains the technical proofs

for the result stated in Section 9.3.1, and can be skipped on the first reading.

9.3.1 Summary of the main result

The main result of this section is that the SDP (PSCP(I)) fails the Slater condition:

Y is feasible for (PSCP(I)) =⇒ Y ∈WSn−p+ W> / Sn+,

for some full column rank matrix W ∈ Rn×(n−p) (defined in (9.18)). In fact,

face({Y ∈ Sn : Y is feasible for (PSCP(I)) } , Sn+) = WSn−p+ W> / Sn+,

Moreover, there is no need to keep all the inequalities Yij ≥ 0, as the diagonal blocks of Y are

diagonal matrices (due to the equality constraint (A>A − I) ◦ Y2:n, 2:n = 0). We can regularize

(PSCP(I)) using these observations, arriving at an equivalent SDP that is smaller and more stable

to solve.
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Theorem 9.3.1. The optimization problem (PSCP(I)) is equivalent to

dI = inf
X̂
〈Ẽ, X̂〉

s.t. X̂11 = 1,

arrow(X̂) = 0,

bdiagm−ē(X̂) = 0,

PI(WX̂W>) ≥ 0,

X̂ � 0,

(Preg
SCP(I))

where Ẽ := W>

[
0 0

0 E

]
W ∈ Sn−p, W ∈ Rn×(n−p) is defined in (9.18), arrow : Sn−p → Rn−p−1

and bdiagm−ē : Sn−p → Sn−p−1 are defined in (9.14) and (9.15) respectively. In fact, Y is feasible

for (PSCP(I)) if and only if Y = WX̂W> for some feasible solution X̂ of (Preg
SCP(I)).

The dual of (Preg
SCP(I)) is given by

d̄∗I := sup
t,λ,Λ,η

t

s.t. Ē � te1e
>
1 + arrow∗(λ) + (bdiagm−ē)∗(Λ) +W>(P∗I(η))W,

η ≥ 0.

(Dreg
SCP(I))

If I ⊆ I≥0, where I≥0 is defined in (9.10), then both (Preg
SCP(I)) and (Dreg

SCP(I)) satisfy the

Slater condition. In particular, dI = d̄∗I and both (Preg
SCP(I)) and (Dreg

SCP(I)) are solvable.

Using Theorem 9.3.1, we can show that any rank-one solution of (Preg
SCP(I)) gives an optimal

solution to integer program (IQPSCP) (see Corollary 9.3.5), and that (Preg
SCP(I)) is equivalent to

the SDP relaxation (9.5) introduced in [25] when I = I≥0 (see Proposition 9.3.7), though thanks

to the regularization, (Preg
SCP(I)) has a smaller matrix variable and less constraints.

9.3.2 Proof of the main results

In this section, we provide the details for the proof of Theorem 9.3.1.

It is quite easy to see that (PSCP(I)) fails the Slater condition, simply by noticing that the

constraint 〈Ap,λ, Y 〉 = 0 involves a positive semidefinite matrix Ap,λ (so 〈Ap,λ, Y 〉 = 0 and Y � 0

imply that Y ∈ Sn+ ∩ {Ap,λ}⊥ / Sn+). Before we prove that Ap,λ is positive semidefinite, we define

the matrices

Bk :=

 Ik−1

−ē>k−1

 ∈ Rk×(k−1) (9.17)
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for any positive integer k, and

W :=



1 m1−1 m2−1 mp−1

1 1 0 0 · · · 0

m1 em1 Bm1 0 · · · 0

m2 em2 0 Bm2 · · · 0
...

...
...

. . .
...

mp emp 0 0 · · · Bmp


∈ Rn×(n−p) and w := W:1 =



1

em1

em2

...

emp


∈ Rn.

(9.18)

(In particular, B1 is a vacuous matrix.) Bk is the nullspace representation of ē>k :

ker(ē>k ) = {ēk}⊥ = range(Bk).

Proposition 9.3.2. [24, Lemma 1] The matrix Ap,λ ∈ Sn defined in (9.13) is positive semidefi-

nite, and

ker(Ap,λ) = span

{w} ∪



0

q(1)

...

q(p)

 : ē>q(k) = 0, q(k) ∈ Rmk , ∀ k ∈ 1 : p



 = range(W ).

In particular, dim(ker(Ap,λ)) = n− p.

Proof. The Schur complement of Ap,λ (with respect to its (1,1)-entry (Ap,λ)11 = p) is given by

A>A − 1

p
ēē> ∈ Sn0 ,

which is positive semidefinite if and only if Ap,λ is positive semidefinite. In fact, for any x =(
x(1);x(2); . . . ;x(p)

)
∈ Rm1+m2+...+mp , we have

(ē>x)2 =

(
p∑

k=1

ē>x(k)

)2

≤

(
p∑

k=1

|ē>x(k)|

)2

≤ p
p∑

k=1

|ē>x(k)|2 = p‖Ax‖2,

i.e., x>(A>A)x ≥ 1
px
>ē>ēx. Therefore A>A − 1

p ēē
> is positive semidefinite, implying that Ap,λ

is positive semidefinite too.

Now we prove the second equality in (9.18). For each k ∈ 1 : p and any q(k) ∈ Rmk , ē>q(k) = 0

if and only if q
(∈)
k range(Bmk). For any q = (q(1); q(2); · · · ; q(p)) ∈ Rm1+m2+···+mp , ē>q(k) = 0 for

all k ∈ 1 : p if and only if q(k) ∈ range(Bmk) for all k ∈ 1 : p, if and only q lies in the range of the

block diagonal matrix Diag(Bm1 , Bm2 , . . . , Bmp). This proves the second equality.
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For the first equality, it is immediate that the columns of W lie in ker(Ap,λ), so it suffices to

show that dim(ker(Ap,λ)) ≤ rank(W ). First note that W is of full column rank, i.e., rank(W ) =

n − p. Define u(k) := (−1; 0; . . . ; ē>mk ; . . . ; 0) ∈ Rn for k ∈ 1 : p. Then
{
u(1), . . . , u(p)

}
∈

range(Ap,λ) is linearly independent. This implies that rank(Ap,λ) ≥ p, and dim(ker(Ap,λ)) ≤
n− p = rank(W ). (In particular, the columns of W form a basis of ker(Ap,λ).)

A consequence of Proposition 9.3.2 is that the feasible region of (PSCP(I)) is contained in

WSn−p+ W>. In fact, we can show that WSn−p+ W> is the minimal face of Sn+ containing the feasible

region of (PSCP(I)). (See Theorem 9.3.6 for the formal proof.) To prove this claim, we use the

smaller face WSn−p+ W> to derive an SDP equivalent to (PSCP(I)) (see Proposition 9.3.4 for the

proof of equivalence):

dI = inf
X̂

〈0 0

0 E

 ,WX̂W>

〉
s.t. (WX̂W>)11 = 1,

〈Aj ,WX̂W>〉 = 0, ∀ j ∈ 1 : n0,

〈ei+1, j+1 + ej+1, i+1,WX̂W>〉 = 0, ∀ (i, j) ∈ B,
PI(WX̂W>) ≥ 0,

X̂ � 0,

(9.19)

where

• for j ∈ 1 : n0, Aj ∈ Sn is defined as

Aj := ej+1e
>
j+1 −

1

2

(
e1e
>
j+1 + ej+1e

>
1

)
=

 0 −1
2e
>
j

−1
2ej eje

>
j

 , (9.20)

so that

diag(X) = x ⇐⇒

〈
Aj ,

1 x>

x X

〉 = 0, ∀ j ∈ 1 : n0; (9.21)

• B is defined in (9.8), so that for all Y =

[
α x>

x X

]
∈ Sn,

(A>A − I) ◦X = 0 ⇐⇒ Xij = 0, ∀ (i, j) ∈ B ⇐⇒ Yi+1, j+1 = 0, ∀ (i, j) ∈ B; (9.22)

• PI is the projection defined as

PI : Sn → R|I| :

α x>

x X

 7→ P̄I(X),
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(where P̄I is defined in (9.11)), so that for all Y =

[
α x>

x X

]
∈ Sn,

PI(Y ) = 0 ⇐⇒ P̄I(X) = 0. (9.23)

We can simplify (9.19) by computingW>Ap,λW , W>AjW (for j ∈ 1 : n0) andW>(ei+1e
>
j+1)W

(for (i, j) ∈ B).

Lemma 9.3.3. [24, Lemma 2] For j ∈ 1 : n0 and Aj defined in (9.20) (and recalling the definition

of m̄k and Vk for k ∈ 1 : p on Page 130):

(1) if j ∈ Vk and j 6= m̄k (for some unique k ∈ 1 : p), then

W>AjW = ej−k+2 (ej−k+2)>−1

2
(e1(ej−k+2)>+ej−k+2 e

>
1 ) =

 0 −1
2(ej−k+1)>

1
2ej−k+1 ej−k+1(ej−k+1)>

 ∈ Sn−p;

(2) if j = m̄k for some k ∈ 1 : p, then

W>AjW = W>Am̄kW =



0 0 · · · − 1
2
ē> · · · 0

0 0 · · · 0 · · · 0

...
...

...
...

− 1
2
ē 0 · · · Ē · · · 0

...
...

...
...

0 0 · · · 0 · · · 0


. (9.24)

For all (i, j) ∈ B, i.e., (i, j) ∈ Vk with i < j:

(3) if j < m̄k, then

W>(ei+1(ej+1)> + ej+1(ei+1)>)W = ei−k+2(ej−k+2)> + ej−k+2(ei−k+2)>; (9.25)

(4) if j = m̄k, then W>(ei+1(ej+1)> + ej+1(ei+1)>)W equals

W>(ei+1(em̄k+1)> + em̄k+1(ei+1)>)W

=



0 0 · · · (ei−m̄k−1
)> · · · 0

0 0 · · · 0 · · · 0
...

...
...

...

ei−m̄k−1
0 · · · −ei−m̄k−1

ē> − ē (ei−m̄k−1
)> · · · 0

...
...

...
...

0 0 · · · 0 · · · 0


.

(9.26)
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Proof. We first write down W>ej for j ∈ 1 : n. By definition of W in (9.18), W>e1 ∈ Rn−p.

For each j ∈ 1 : n0, there exists a unique k ∈ 1 : p such that j ∈ Vk = (m̄k−1 + 1) : m̄k. Then

j − m̄k−1 ∈ 1 : mk, and

e>j+1W = Wj, : =



[ 1 m1−1 mk−1 mp−1

0 0 · · · e>j−m̄k−1
· · · 0

]
if j 6= m̄k,

[ 1 m1−1 mk−1 mp−1

1 0 · · · −ē> · · · 0

]
if j = m̄k,

(9.27)

i.e.,

W>ej+1 =

ej−k+2 if j 6= m̄k,

e1 +
∑

i∈Vk\ {m̄k} ei−k+1 if j = m̄k.
(9.28)

Now for each j ∈ 1 : n0, we compute W>AjW . Let k ∈ 1 : p be such that j ∈ Vk.

• If j 6= m̄k, then

W>AjW = W>(ej+1e
>
j+1)W − 1

2
W>(e1e

>
j+1 + ej+1e

>
1 )W

= ej−k+2e
>
j−k+2 −

1

2

(
e1e
>
j−k+2 + ej−k+2e

>
1

)
=

 0 −1
2e
>
j−k+1

1
2ej−k+1 ej−k+1e

>
j−k+1

 ∈ Sn−p.

• If j = m̄k, then by (9.27),

W>AjW = W>Am̄kW

=



1 0 · · · −ē> · · · 0

0 0 · · · 0 · · · 0

...
...

...
...

−ē 0 · · · Ē · · · 0

...
...

...
...

0 0 · · · 0 · · · 0


−



1 0 · · · − 1
2
ē> · · · 0

0 0 · · · 0 · · · 0

...
...

...
...

− 1
2
ē 0 · · · 0 · · · 0

...
...

...
...

0 0 · · · 0 · · · 0


,

so (9.24) holds.

Now we compute W>(ei+1e
>
j+1 + ej+1e

>
i+1)W . If i < j < m̄k, then (9.25) follows immediately

from (9.28). If i < j = m̄k, then (9.26) follow from (9.27).
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The computations in Lemma 9.3.3 allow us to simplify the facially reduced program (9.19).

We restate and prove the first part of Theorem 9.3.1 below.

Proposition 9.3.4. [24, Theorem 1] The optimization problem (PSCP(I)) is equivalent to the

regularized problem (Preg
SCP(I)), which we restate here:

dI = inf
X̂
〈Ẽ, X̂〉

s.t. X̂11 = 1,

arrow(X̂) = 0,

bdiagm−ē(X̂) = 0,

PI(WX̂W>) ≥ 0,

X̂ � 0,

(9.29)

where Ẽ := W>

[
0 0

0 E

]
W ∈ Sn−p, arrow : Sn−p → Rn−p−1 and bdiagm−ē : Sn−p → Sn−p−1

are defined in (9.14) and (9.15) respectively. In fact, Y is feasible for (PSCP(I)) if and only if

Y = WX̂W> for some feasible solution X̂ of (Preg
SCP(I)).

Proof. First we prove the earlier claim that (PSCP(I)) and (9.19) are equivalent.

Note that since Ap,λ � 0 with ker(Ap,λ) = range(W ) (see Proposition 9.3.2),

〈Ap,λ, Y 〉 = 0, Y � 0 ⇐⇒ Ap,λY = 0, Y � 0 ⇐⇒ Y ∈WSn−p+ W>.

Hence we can replace Y with WX̂W> in (PSCP(I)). Since

(WX̂W>)11 = e>1 WX̂W>e1 = e>1 X̂e1,

by (9.21), (9.22) and (9.23), the SDPs (PSCP(I)) and (9.19) are equivalent.

By Lemma 9.3.3, for k ∈ 1 : p,

W>Am̄kW −
∑

j∈Vk\{m̄k}

W>AjW =



0 0 · · · 0 · · · 0

0 0 · · · 0 · · · 0

...
...

...
...

0 0 · · · Ē − I · · · 0

...
...

...
...

0 0 · · · 0 · · · 0


and W>(ei+1(em̄k+1)> + em̄k+1(ei+1)>)W are linear combinations of 0 −1

2(ej−k+1)>

1
2ej−k+1 ej−k+1(ej−k+1)>

 and ei−k+2(ej−k+2)> + ej−k+2(ei−k+2)>
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(for i, j ∈ Vk with i < j < m̄k). Hence 〈Aj ,WX̂W>〉 = 0 for all j ∈ 1 : n0 and 〈ei+1, j+1 +

ej+1, i+1,WX̂W>〉 = 0 for all (i, j) ∈ B if and only for all k ∈ 1 : p and i, j ∈ Vk with i < j < m̄k,

〈Aj ,WX̂W>〉 = 0 and 〈ei+1 e
>
j+1 + ej+1 e

>
i+1,WX̂W>〉 = 0,

if and only if for all k ∈ 1 : p and i, j ∈ Vk with i < j < m̄k,〈[
0 − 1

2
e>i

− 1
2
ei eie

>
i

]
, X̂

〉
= 0 and 〈ei−k+2(ej−k+2)> + ej−k+2(ei−k+2)>, X̂〉 = 0,

if and only if

arrow(X̂) = 0 and bdiag(m1−1,m2−1,...,mp−1)(X̂) = 0.

Therefore, Y is feasible for (PSCP(I)) if and only if Y = WX̂W> for some feasible solution X̂

of (Preg
SCP(I)). Moreover, Y and X̂ have the same objective value in (PSCP(I)) and (Preg

SCP(I))

respectively. Consequently, (9.19) and (9.29) (i.e., (Preg
SCP(I))) are equivalent.

We now prove the immediate result that any rank-one optimal solution of (9.29) gives an

optimal solution of the integer program (IQPSCP).

Corollary 9.3.5. If X̂ = xx> is an optimal solution of (9.29) with x1 = 1, then y := Wx

satisfies y1 = 1 and y2:n is an optimal solution of (IQPSCP).

Proof. By Proposition 9.3.4, yy> is an optimal solution of (PSCP(I)). Then y2:n is a feasible

solution of (QQPSCP(I)) (and of (IQPSCP)), and

vscp ≤ 〈E, y2:ny
>
2:n〉 = dI ≤ vscp

implies that y2:n is an optimal solution of (QQPSCP(I)) and of (IQPSCP).

Now we write down the dual of (9.29), and show that both (9.29) and its dual satisfy the

Slater condition. The Lagrangian of (9.29) is given by

L(X̂; t, λ,Λ, η,Ω) = 〈Ẽ, X̂〉 − λ>(arrow(X̂)) + t(1− e>1 X̂e1)

− 〈Λ,bdiagm−ē(X̂)〉 − η>(PI(WX̂W>))− 〈Ω, X̂〉

= t+ 〈X, Ẽ − te1e
>
1 − arrow∗(λ)− (bdiagm−ē)∗(Λ)−W>(P∗I(η))W − Ω〉;

hence the dual of (9.29) is given by (Dreg
SCP(I)), which we restate here:

d̄∗I := sup
t,λ,Λ,η

t

s.t. Ē � te1e
>
1 + arrow∗(λ) + (bdiagm−ē)∗(Λ) +W>(P∗I(η))W,

η ≥ 0.

(9.30)
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This proves the second claim of Theorem 9.3.1.

Now we prove the last claim of Theorem 9.3.1: we show that both (9.29) and its dual (9.30)

satisfies the Slater condition.

Theorem 9.3.6. [24, Proposition 5] Let I ⊆ I≥0, where I≥0 is defined in (9.10) Then both

(9.29) and (9.30) satisfy the Slater condition. In particular, dI = d̄∗I , and both (9.29) and (9.30)

are solvable.

Proof. We first prove that (9.29) satisfies the Slater condition. Define

ˆ̂
X := e1e

>
1 +

1

2(n0 − p)
arrow∗(ēn0−p) ∈ Sn−p,

D̂ := Ē − e1e
>
1 − arrow∗(ē)− (bdiagm−ē)∗(Ē) ∈ Sn−p.

Then

ˆ̂
X11 = 1, arrow(

ˆ̂
X) = 0, bdiagm−ē(

ˆ̂
X) = 0,

D̂11 = 0, arrow(D̂) = 0, bdiagm−ē(
ˆ̂
X) = 0.

In particular,
ˆ̂
X + αD̂ satisfies the linear equality constraints in (9.29) for all α ∈ R.

Next we show that
ˆ̂
X + αD̂ is positive definite for sufficiently small α > 0. It is immediate

that
ˆ̂
X � 0: the Schur complement of

ˆ̂
X with respect to

ˆ̂
X11 = 1 is

1

2(n0 − p)
In0−p −

1

4(n0 − p)2
Ēn0−p �

1

2(n0 − p)
In0−p −

1

4(n0 − p)2
λmin(Ēn0−p)In0−p

=
1

4(n0 − p)
In0−p � 0,

since λmin(Ēn0−p) = n0− p. On the other hand, since D̂ 6= 0 has a zero diagonal, D̂ is indefinite.

For any 0 < α < λmin(
ˆ̂
X)

−λmin(D) ,

λmin(
ˆ̂
X + αD̂) ≥ λmin(

ˆ̂
X) + αλmin(D̂) > 0,

i.e.,
ˆ̂
X + αD̂ is positive definite.

Now we show that for sufficiently small α > 0, PI(W (
ˆ̂
X + αD̂)W>) > 0. Write

Ŷ := W
ˆ̂
XW> =



1 m1 m2 mp

1 1 Ŷ 01 Ŷ 02 · · · Ŷ 0p

m1 Ŷ 10 Ŷ 11 Ŷ 12 · · · Ŷ 1p

m2 Ŷ 20 Ŷ 21 Ŷ 22 · · · Ŷ 2p

...
...

...
. . .

...

mp Ŷ p0 Ŷ p1 Ŷ p2 · · · Ŷ pp


;
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then for k ∈ 1 : p,

Ŷ k0 =

 1
2(n0−p) ē

1− mk−1
2(n0−p)

 , Ŷ kk = Diag(Ŷk0),

Ŷ kl =


ml−1 1

mk 0 1
2(n0−p) ē

1
1

2(n0−p) ē
> 1− mk+ml−2

2(n0−p)

, ∀, l 6= k.

Next, write

Ỹ := WD̂W> =



1 m1 m2 mp

1 0 0 0 · · · 0

m1 0 0 Ỹ 12 · · · Ỹ 1p

m2 0 Ỹ 21 0 · · · Ỹ 2p

...
...

...
. . .

...

mp 0 Ỹ p1 Ỹ p2 · · · 0


,

where

Ỹ kl =


ml−1 1

mk−1 Ē −(ml − 1)ē

1 −(mk − 1)ē> (mk − 1)(ml − 1)

, ∀ k 6= l.

Then for any 0 < α < 1
2(n0−p)2 , for all k 6= l,

Ŷ kl + αỸ kl =


ml−1 1

mk−1 αĒ
(

1
2(n0−p) − α(ml − 1)

)
ē

1

(
1

2(n0−p) − α(mk − 1)
)
ē> 1− mk+ml−2

2(n0−p) + α(mk − 1)(ml − 1)

 > 0,

since mk−1 ≤ n0−p. Therefore (W (
ˆ̂
X+αD̂)W>)ij = (Ŷ +αỸ )ij > 0 for all (i−1, j−1) ∈ I≥0.

In particular, PI( ˆ̂
X + αD̂) > 0.

Consequently, for sufficiently small α > 0,
ˆ̂
X + αD̂ is a Slater point for (9.29).

Now for (9.30), take

η̂ = ē, Ω̂ = 0, λ̂ =
(
λmin(Ẽ −W>(P∗I(η))W )− 1

)
ē, t̂ >

1

4
‖λ̂‖2;
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then

Ẽ − t̂− arrow∗(λ̂)− (bdiagm−ē)∗(Λ)−W>(P∗I(η))W

= (Ẽ −W>(P∗I(η))W − λmin(Ẽ −W>(P∗I(η))W )I) +

 t̂ 1
2 λ̂

1
2 λ̂ I


�

 t̂ 1
2 λ̂

1
2 λ̂ I

 ,
which is positive definite because its Schur complement with respect to the (2,2)-block, t− 1

4‖λ̂‖
2,

is positive. In addition, η̂ > 0, so (t̂, λ̂, Λ̂, η̂) is a Slater point for (9.30). Consequently, both (9.29)

and (9.30) satisfy the Slater condition.

9.3.3 Equivalence to the SDP relaxation by Chazelle et al.

In this section, we show that the SDP relaxations (Preg
SCP(I)) and the SDP relaxation (9.5) pro-

posed by Chazelle et al. [25] are equivalent when I = I≥0.

Proposition 9.3.7. [24, Corollary 1] If I = I≥0, then (Preg
SCP(I)) is equivalent to (9.5).

Proof. We show that the feasible regions of (PSCP(I)) and of (9.5) are the same.

Let Y be a feasible solution of (PSCP(I)) (and of (9.19)). Then Y = WX̂W> for some feasible

solution X̂ of (Preg
SCP(I)) by Proposition 9.3.4. Also, Y11 = 0 and arrow(Y ) = 0, so the third and

fourth constraints of (9.5) are satisfied. To see that the second constraint of (9.5) is satisfied by

Y , simply note that for each k ∈ 1 : p,

∑
i,j∈Vk

Yi+1,j+1 =

〈
W>

∑
i∈Vk

ei

∑
i∈Vk

ei

>W, X̂〉 = 〈e1e
>
1 , X̂〉 = 1.

This together with (A>A − I) ◦ Y2:n, 2:n = 0 (implying that the diagonal blocks of Y2:n, 2:n are

diagonal) and the arrow constraint means that Y also satisfies the first constraint.

Finally, since the diagonal blocks are nonnegative and PI≥0
(Y ) ≥ 0 (implying that Yi+1,j+1 ≥

0 whenever (i, j) /∈ B), we have that Y ≥ 0. Therefore, if Y is feasible for (PSCP(I)), then Y is

also feasible for (9.5).

Conversely, suppose that Y is feasible for (9.5). We show that Y is feasible for (PSCP(I)). It

suffices to check that 〈Ap,λ, Y 〉 = 0 and (A>A − I) ◦ Y2:n, 2:n = 0.
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• Note that Y ≥ 0 together and∑
j∈Vk

Yj+1, j+1 = 1
∑
i,j∈Vk

Yi+1, j+1, ∀ k ∈ 1 : p

imply that Yi+1, j+1 = 0 for all distinct i, j ∈ Vk, for each k ∈ 1 : p. Therefore (A>A − I) ◦
Y2:n, 2:n = 0.

• Since (A>A) ◦ Y2:n, 2:n = I ◦ Y , we have 〈A>A, Y 〉 = tr(Y ) − 1. On the other hand, the

arrow constraint implies that
∑p

k=1

∑
j∈Vk Yj+1,1 = tr(Y )− 1 = ē>Y2:n,1 = p. Therefore

〈Ap,λ, Y 〉 = 〈A>A, Y2:n, 2:n〉 − 2ē>Y2:n, 1 + p = 0.

Therefore Y is feasible for (PSCP(I)). Hence (PSCP(I)) and (9.5) have the same feasible region.

They also have the same objective, so they are equivalent. Finally, since (Preg
SCP(I)) and (PSCP(I))

are equivalent, (Preg
SCP(I)) and (9.5) are equivalent as well.

In particular, Proposition 9.3.7 indicates that (9.5) fails the Slater condition as well: the

matrix variable Y can be restricted onto the proper face WSn−p+ W> of Sn+ and some of the

inequalities Yij ≥ 0 can indeed be replaced by equality.

9.4 Implementation: obtaining an optimal solution of (IQP)

In this section, we discuss some implementation issues of obtaining near optimal solutions of the

integer program (IQPSCP) from the SDP relaxation (Preg
SCP(I)).

• In Section 9.4.1, we describe the cutting plane technique: we solve (Preg
SCP(I)) multiple

times; after each iteration we add a “sensible” amount of indices for “useful” nonnegativity

constraints to I, in order to obtain a tighter SDP relaxation for the next iteration and at

the same time keep the computational costs in check.

• In Section 9.4.2 we review some existing techniques for “rounding” a feasible solution of

(Preg
SCP(I)), i.e., obtaining from a feasible solution of (Preg

SCP(I)) a feasible integral solution

of the integer program (IQPSCP).

• In Section 9.5.1, we discuss some measures of the quality of feasible integral solutions of

(IQPSCP) that we obtain from the SDP relaxation (Preg
SCP(I)).
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9.4.1 Cutting plane technique

While the SDP relaxation (Preg
SCP(I)) is strongest when we take I = I≥0, it is extremely expensive

to keep all the constraints Yij ≥ 0. In addition, empirically it is often the case that it suffices to use

an appropriate subset I ⊂ I≥0 whose size is much smaller than I≥0 (in the sense that the optimal

solution Y of (PSCP(I)) obtained from a SDP solver has zero entries in many (i, j) /∈ I≥0); but

it is often not clear how to pick an “appropriate” subset I that provide a sufficiently tight SDP

relaxation.

To balance the trade-off between the computational costs and using a sufficiently tight SDP

relaxation of (IQPSCP), we employ the following cutting plane technique for finding such an

“appropriate” subset I. Intuitively, we put an index (i, j) into I if it is likely that an optimal

solution Y ∗ of

inf
x,X,Y

〈E,X〉

s.t.
〈
Ap,λ, Y

〉
= 0,

diag(X)− x = 0,

(A>A − I) ◦X = 0,

Y =

1 x>

x X

 � 0

(9.31)

has a negative entry at (i, j) (i.e., Y ∗ij < 0).

Due to the nature of the side chain positioning problem, the matrix E often has a few entries

that are much larger in magnitude; intuitively, an optimal solution of (9.31) tends to have a

negative entry at (i, j) if Eij >> 0 because of the objective (which is to minimize the sum of

element-wise products of

[
0 0

0 E

]
and Y ). We start with a small initial set I ⊂ I≥0, where the

indices in I correspond to the largest entries in E . Specifically, in our implementation, we set

I =
{

(i, j) ∈ I≥0 : Eij ≥ 104
}

.

Using the initial set I, we solve (Preg
SCP(I)) for an optimal solutionX∗ and take Y ∗ = WX̂∗W>.

Then we find the indices for the most violated constraints. Specifically, we find (i, j) ∈ I≥0\I such

that Y ∗ij < 0 and the value Ei−1,j−1Y
∗
ij is very negative (which happens when Ei−1,j−1 >> 0).

We update I by augmenting these new indices, resulting in a slightly larger index set. Then we

resolve (Preg
SCP(I)).

We fix the number of cuts (i.e., the nonnegativity constraints (WX̂W>)ij ≥ 0) to be added

in each iteration. The number of cuts incremented in each step has to be chosen with care: an

overly small number leads to slow progress, and an overly large number leads to unnecessary
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additional computational costs for finding the final solution to (IQPSCP). As can be expected,

the larger the problem is, the larger the per-iteration increment of cuts is required in order to

reach a nearly optimal solution for (IQPSCP) efficiently in practice. In our numerical experiment

in Section 9.5, we take the number of cuts to be roughly 0.1n.

Algorithm 9.1 outlines the subroutine for adding new cutting plane indices. The parameters

tol and numcut represent the tolerance for Yij ≥ 0 and the maximum number of cuts added in

each iteration.

Algorithm 9.1: Adding Cutting Planes Subroutine, ACPS

Parameters( numcut, tol);1

Input( I, I≥0, Y ∈ Sn+ satisfying {(i, j) ∈ I≥0 : Yij < tol} 6= ∅);2

Output( I)3

Inew ← I≥0 ∩ {(i, j) : Yij < tol };4

if |Inew| > numcut then5

if EijYij ≥ 0 for all (i, j) ∈ Inew then6

Inew ← the set of indices (i, j) ∈ Inew for the numcut -most negative Yij ;7

else8

Inew ← the set of indices (i, j) ∈ Inew for the numcut -most negative EijYij ;9

endif10

endif11

I ← I ∪ Inew;12

9.4.2 Rounding a feasible solution of the SDP relaxation

From a computed optimal solution Y ∗ of the SDP relaxation (Preg
SCP(I)) of the integer program

(IQPSCP), we can obtain a fractional solution c ∈ Rn0 of (IQPSCP) (i.e., c satisfies Ac = ē and

c ∈ [0, 1]n0) via one of the following common techniques, as in [25].

• Perron-Frobenius rounding. Perron-Frobenius rounding uses the best rank-one approxima-

tion of Y ∗, which by Eckart-Young Theorem is the largest eigenvalue of Y ∗ times the outer

product of the corresponding unit eigenvector [38].

Let u ∈ Rn be an eigenvector corresponding to the largest eigenvalue of Y ∗. If u ≥ 0, then

(u2, . . . , un) is nonzero and the vector u′ := p
u2+···+un (u2, . . . , un) satisfies the constraints

Au′ = ē and u′ ≥ 0. Note that if Y ∗ is nonnegative, then by Perron-Frobenius theorem
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(see, e.g., [82]) u is nonnegative. Empirically, even though not all the entries of Y ∗ are

nonnegative, the vector u that we find in the numerical tests are indeed nonnegative.

• Projection rounding. The vector u′′ = diag(Y ∗2:n,2:n) is used. Observe that by Proposition

9.3.7, the feasibility of Y ∗ in (9.5) implies that u′′ satisfies Au′′ = ē and u′′ ≥ 0.

After obtaining a fractional solution c of (IQPSCP), it is possible to use a probabilistic method

to obtain a feasible (integral) solution of (IQPSCP). Alternatively, we can compute a nearest

integral solution x to c, i.e., the nearest vector to c among all the feasible solutions of (IQPSCP),

by solving a linear program.

Proposition 9.4.1. [24, Proposition 6] For any c ∈ Rn0, the integer program

min
x
‖x− c‖ s.t. Ax = ē, x ∈ {0, 1}n0 (9.32)

is equivalent to the linear program

min
x
−c>x s.t. Ax = ē, x ∈ [0, 1]n0 . (9.33)

Proof. Any feasible solution x of (9.32) satisfies x>x = p, so ‖x − c‖2 = −2c>x + (‖c‖2 + p).

Therefore (9.32) is equivalent to

min
x
−c>x s.t. Ax = ē, x ∈ {0, 1}n0 . (9.34)

Since the columns of A are drawn from the identity matrix Ip, A is totally unimodular. Hence the

linear program (9.33), which has a larger feasible region than (9.34) and is feasible and bounded,

has an optimal solution that is feasible for (9.34). Therefore (9.34) and (9.33) are equivalent.

It is clear from the objective of (9.32) that any optimal solution x∗ of (9.32) is a greedy

solution, in the sense that for each k ∈ 1 : p, x∗k = eik , where ik is an index such that the

maximum entry of the subvector c(k) lies in the ik-th position.

9.4.3 Summary of the algorithm

Now we give an explicit description of the heuristic we use for solving (IQPSCP), in Algorithm

9.2 on Page 158.

We start with an initial index set I of the cuts. In each iteration of the algorithm, we perform

the following steps:
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(1) solve (Preg
SCP(I)); (we use SDPT3 in our implementation;)

(2) obtain a feasible solution x of (IQPSCP) using the rounding techniques outlined in Section

9.4.2;

(3) otherwise add new cut indices to I (using Algorithm 9.1).

Algorithm 9.2 needs the following parameters:

numcut : number of cuts added in each iteration;

tol : tolerance for Yij ≥ 0;

(we take tol = 10−8 in our implementation,

same as the default tolerance of linear infeasibility in SDPT3;)

maxiter : maximum number of cutting plane iterations;

r : maximum number of times an integral solution of (IQPSCP) is allowed

to appear consecutively;

ceil E : the ceiling on the values of E; (we take ceil E = 105.)

Algorithm 9.2 takes the following list of input:

p : number of residues;

m ∈ Rp : vector storing the number of rotamers for each residue;

E ∈ Sn0 : matrix for the objective of (IQPSCP);

I ⊂ I≥0 : initial set of indices for the nonnegativity constraint Yij ≥ 0 in (Preg
SCP(I)).

In the SDP subroutine, Any standard SDP solver can be used; we use SDPT3 [92]. Though not

stated explicitly in the SDP subroutine, we assume that the optimal solution (t∗, w∗,Λ∗, η∗) of

the dual (9.30) is also given alongside the primal optimal solution X̂∗. This is a mild assumption,

as many standard SDP solvers solve an SDP and its dual simultaneously. As we see in Section

9.5.1, the dual optimal solution is helpful for measuring the quality of the final integral feasible

solutions of (IQPSCP) output by Algorithm 9.2.

9.5 Numerical experiment on some proteins

In this section, we report some numerical results of using the SDP relaxation (Preg
SCP(I)) together

with the heuristics mentioned in Sections 9.4.1 and 9.4.2, in comparison to using (9.5) from [25],

on the reconstruction of 26 proteins listed on the Protein Data Bank.
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We first discuss our choice of metrics for measuring the solution quality, in Section 9.5.1. Then

we report the metrics for 26 proteins taken from the Protein Data Bank [11] in Section 9.5.2.

Algorithm 9.2 offers superior performance over the direct use of (9.5), thanks to both facial

reduction and cutting plane techniques. As a supplement, we also studied the speedup contributed

by each of the two techniques using the performance profile [34].

We omit the conformation analysis of the reconstructed proteins in comparison with the

Protein Data Bank, which underlines the biological relevance of the solutions we obtained in

Section 9.5.2. Interested readers may refer to [24, Section 6.3].

9.5.1 Measuring the quality of feasible solutions of (IQP)

We discuss the metric we use for measuring the quality of a feasible solution u of (IQPSCP)

obtained using the SDP relaxation (Preg
SCP(I)).

Given an SDP solution (X∗; t∗, λ∗,Λ∗, η∗) feasible for (Preg
SCP(I))-(Dreg

SCP(I)), and from X∗, and

a feasible solution u of (IQPSCP) (obtained via, e.g., one of the rounding techniques mentioned

in Section 9.4.2), we call the fraction

u>Ex− t∗
1
2 |u>Eu+ t∗|

(9.36)

the relative difference between the objective value of (t∗, λ∗,Λ∗, η∗) in (Dreg
SCP(I)) and the objective

of u in (IQPSCP).

We will using the relative difference defined in (9.36) as a measure of the quality of the feasible

solution u of (IQPSCP). Since strong duality holds for (Preg
SCP(I)) and (Dreg

SCP(I)), they have the

same optimal value in theory. In particular,

u>Eu ≥ dI ≥ d̄∗I ≥ t
∗,

and the smaller the difference u>Eu− t∗ is, the closer to optimality u is (in (IQPSCP)). Ideally,

the quantity |u>Eu− vscp|/|vscp| is a good measure how close to optimality u is; but we usually

do not know vscp or each dI (since the computed SDP solution is only near optimal in general).

The only available lower bound for vscp is the objective value of any feasible solution of the dual

(Dreg
SCP(I)).

In Section 9.5.2, we also report the dual optimal value (i.e., value of t∗) that we obtain in

each instance (although we omit the measure of feasibility of the SDP solutions to save space).

As mentioned, t∗ provides a lower bound for vscp.
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9.5.2 Numerical results

Tables 9.1, 9.2 and 9.3 report the computational results of Algorithm 9.2 versus the direct use of

(9.5) to 26 proteins categorized based on the total number of rotamers. The test data were taken

from the Protein Data Bank [11] as well as the rotamer library built by the Dunbrack Laboratory

[36], and processed using a Python script that executes in the UCSF Chimera molecular modeling

environment [71]. (See [24, Section 6.2.1] for further details on problem data generation.)

The following metrics are reported:

• runtime. The runtime require for Algorithm 9.2 (which involves solving multiple SDPs)

versus solving (9.5) (which require significantly more time since all the nonnegativity con-

straints are used).

• dual SDP optval, the computed optimal value of (Dreg
SCP(I)) or equivalently (9.16).

The dual optimal value serves as a lower bound for vscp.

• objval in IQP, the objective value of the computed feasible solution of (IQPSCP). (We use

the Perron-Frobenius rounding.)

The closer the objective value of the computed feasible solution of (IQPSCP) is to the com-

puted optimal value of (Dreg
SCP(I)), the closer to optimality the computed feasible solution

(IQPSCP).

• relative diff, the relative difference between the computed optimal value of (Dreg
SCP(I)) (or

equivalently (9.16)) and the objective value of the computed feasible solution of (IQPSCP).

• relative gap, the relative duality gap of the computed primal-dual optimal solution (X∗; t∗, λ∗,Λ∗, η∗)

of (Preg
SCP(I))-(Dreg

SCP(I)), defined by

(〈Ẽ,X∗〉 − t∗) +
∑

(i,j)∈I η
∗
ij(WX̂∗W>)ij

1 + |〈Ẽ,X∗〉|+ |t∗|+ |
∑

(i,j)∈I η
∗
ij |+ |

∑
(i,j)∈I(WX̂∗W>)ij |

.

The relative duality gap measures how accurately the SDP has been solved. (One would

expect that the relative duality gap of the SDP solutions used for rounding to be not too

big.)

In the numerical tests, Algorithm 9.2 consistently produces better integral solutions in shorter

time than the direct use of (9.5). The integer solutions computed by Algorithm 9.2 is essentially

optimal because their objective values in (IQPSCP) are usually very close to the computer optimal

values of (Dreg
SCP(I)), which serve as lower bounds.
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Algorithm 9.2: Side Chain Positioning with Cutting Planes, SCPCP

Parameters(numcut, tol, maxiter, r, ceil E);1

Input( E ∈ Sn0, m, p, I);2

Output( u(1), u(2): feasible solutions for IQP obtained from Perron-Frobenius and3

projection roundings);

Initialization;4

n←
∑

imi + 1;5

E ← min{E, ceil E } (element-wise);6

I≥0 ← {(i, j) : 1 ≤ i < j ≤ n0, (i, j) /∈ B, i, j integral} ;7

Ẽ ←W T

0 0

0 E

W ;
8

First iteration;9

SDP subroutine

• obtain an optimal solution X∗ of the optimization problem

min
X

〈Ê,X〉

s.t. X00 = 1, arrow(X) = 0, bdiag(X) = 0,

(WXW T )ij ≥ 0, ∀ (i, j) ∈ I,
X � 0,

(9.35)

• Y ∗ ←WX∗W T

• obtain u(1) from Perron-Frobenius rounding, and u(2) from projection rounding

More iterations;

for ` ∈ 1 : maxiter do

if Y ∗ij < tol for some i, j then

update I using Adding Cutting Planes Subroutine (Algorithm 9.1);

run SDP subroutine;

if Y ∗ is of rank one, or u(1), u(2) are the same as in the previous r iterates then
STOP;

endif

endif

endfor
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Table 9.3: Results on large proteins (SCPCP only)

Protein n0 p run time dual SDP Objval rel. diff rel. gap numcut # iter Final

(hr) optval in IQP # cuts

1CEX 435 146 0.08 140.20 140.20 1.26E-11 5.57E-09 40 9 485

1CZ9 615 111 3.96 497.46 497.46 2.98E-13 6.37E-10 60 25 1997

1QJ4 545 221 0.15 -286.83 -286.83 5.31E-12 1.14E-09 60 14 1027

1RCF 581 142 0.85 -191.54 -191.54 3.71E-12 1.15E-08 60 17 1305

2PTH 930 151 29.65 -159.41 -159.41 8.69E-09 7.63E-06 120 34 7247

5P21 464 144 0.31 -135.75 -135.75 1.39E-12 7.33E-10 40 16 822

9.5.3 Individual speedup contributed by facial reduction and cutting planes

One reason why the solution of (9.5) requires considerably longer time is the formidable amount

of nonnegativity constraints. As a supplement, we study the speedup contributed by each of the

two techniques, the facial reduction and the cutting plane, using the performance profile [34].

Specifically, we consider the four different methods:

(1) SCPCP, i.e., Algorithm 9.2 (the facial reduction and the cutting plane techniques combined),

(2) only the cutting plane technique,

(3) only the facial reduction, and

(4) the original SDP relaxation (9.5).

For each of the 26 instance, i.e., i ∈ 1 : 26 and each method j ∈ 1 : 4, define

ti,j := run time for getting the final solution of IQP for instance i by method j,

ri,j :=
ti,j

min {ti,j : j = 1, 2, 3, 4}
.

The fraction ri,j is called the performance ratio of method j on instance i, and measures how

much worse the run time of method j is over the best method on the same instance. The ratio

is at least 1; the larger the ratio is, the worse the method performs relative to the best method.

The performance profile in Figure 9.1 plots (on the vertical axis) the number ρj defined by

ρj(τ) := number of instance i such that ri,j ≤ τ

for each method j, for j = 1, . . . , 4, as τ ≥ 0 increases, among all the small protein (listed in

Table 9.1).
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Figure 9.1: Performance profile comparing the four methods
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As expected, Algorithm 9.2 has the best run time. While the performance profile indicates

that facial reduction plays a smaller role in the speedup than the cutting plane technique does,

the importance of the facial reduction in regularizing the original SDP formulation (PSCP(I))

should not be underestimated, especially when the size of the problem instance (i.e., n) is large,

in which case the numerical instability of (PSCP(I)) becomes very prominent and it is impossible

to get any reasonable solution.
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Chapter 10

Conclusion

This thesis studies the use of facial reduction in regularizing semidefinite programs that are

not strictly feasible. We considered an implementation of the facial reduction algorithm for

semidefinite programs and some associated numerical issues; we showed that each iteration of

the facial reduction algorithm is backward stable. Then we gave an overview of some uses of the

facial reduction in very different areas, from the theoretical results such as error bounds for linear

matrix inequalities and sensitivity analysis of semidefinite programming, to applications such

as sensor network localization and reducing the size of SDP relaxations from different discrete

problems. In particular, we studied the use of facial reduction in regularizing a SDP relaxation

of the NP-hard side chain positioning problem from protein folding.

Facial reduction highlights the importance of good modeling, i.e., that one should try to make

use of as much information available as possible before writing down the optimization problem.

In both theory (when dealing with, e.g., SDP relaxations from certain problems) and practice

(when solving an SDP numerically using a solver) it is important to check whether strict feasibility

holds for the SDP as well as its dual. Without such a safety check, an unsuspicious user may

end up using excessive amounts of computation time, only to obtain a solution that may be far

from feasible, as we saw in Sections 5.5 and 9.5.2. Often times, the failure of strict feasibility

suggests that the underlying model may not adequately capture all the mathematical features

of the problem. As mentioned in Section 8.1.1, in some occasions the failure of strict feasibility

could have been avoided if the model is more refined (in the sense that more valid constraints

are used). From this perspective, the use of facial reduction is indeed of a mending nature, to

improve the given model and make explicit certain hidden features.
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10.1 Future directions

An interesting future direction would be to use the facial reduction to understand the “complex-

ity” of some geometric objects. Sturm used the facial reduction algorithm to provide an error

bound result for linear matrix inequalities; can it be extended to other more general convex sets?

In the proof, the linearity of the inequalities played a rather important role (specifically, allowing

for the use of Hoffman’s error bound). The knowledge of the facial structure was also very im-

portant; one can possibly extend the result to, for instance, feasible regions of second order cone

programs, as the second order cone has an even simpler facial structure.

Another subject not fully addressed in this thesis is the facial structure associated with conic

program over a Cartesian products of cones. In the simplest case, if K in the conic program (Pm)

is given by Rn1
+ × Rn2

+ × · · ·R
nk
+ , then it is clear that (Pm), being a linear program, requires at

most one iteration of facial reduction. What if K = Sn1 × · · · × Snk for example? Would (Pm)

also require at most one iteration of facial reduction, as (PSOCP) does (as in Theorem 4.2.1)?

More generally, if each inequality C(j) − (A(j))∗y ∈ Kj in (Pm) is strictly feasible by itself, can

the failure of strict feasibility be removed after one iteration of facial reduction? Since the facial

structure of a Cartesian product of cones is no more complicated than the facial structure of the

constituent cones (in Prop 2.2.19), it seems that the answer should be positive.

Finally, we remark that there is more that can be done in the area of polynomial optimiza-

tion. The facial reduction algorithm considered in [94] does not exactly correspond to the graph

theoretical approach in [58], which constructs a graph and removes one vertex at a time, and

essentially is a special case of the facial reduction, where in each iteration the dimension of the

smaller face found goes down by exactly one. It is also interesting to note that, in the case of

sparse SOS representation, there is a correspondence between the facial reduction and a graph

“reduction”, that has not been fully explored.
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