Using Decision Tree Voting to Select a Polyhedral
Model Loop Transformation

by

Ray Ruvinskiy

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2013
(© Ray Ruvinskiy 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Ray Ruvinskiy

i

Abstract

Algorithms in fields like image manipulation, sound and signal processing, and statistics
frequently employ tight loops. These loops are computationally intensive and CPU-bound,
making their performance highly dependent on efficient utilization of the CPU pipeline and
memory bus. Recent years have seen CPU pipelines becoming more and more complicated,
with features such as branch prediction and speculative execution. At the same time, clock
speeds have stopped their prior exponential growth rate due to heat dissipation issues, and
multiple cores have become prevalent. These developments have made it more difficult for
developers to reason about how their code executes on the CPU, which in turn makes it
difficult to write performant code. An automated method to take code and optimize it for
most efficient execution would, therefore, be desirable. The Polyhedral Model allows the
generation of alternative transformations for a loop nest that are semantically equivalent
to the original. The transformations vary the degree of loop tiling, loop fusion, loop un-
rolling, parallelism, and vectorization. However, selecting the transformation that would
most efficiently utilize the architecture remains challenging. Previous work utilizes regres-
sion models to select a transformation, using as features hardware performance counter
values collected during a sample run of the program being optimized. Due to inaccura-
cies in the resulting regression model, the transformation selected by the model as the
best transformation often yields unsatisfactory performance. As a result, previous work
resorts to using a five-shot technique, which entails running the top five transformations
suggested by the model and selecting the best one based on their actual runtime. How-
ever, for long-running benchmarks, five runs may be take an excessive amount of time. I
present a variation on the previous approach which does not need to resort to the five-shot
selection process to achieve performance comparable to the best five-shot results reported
in previous work. With the transformations in the search space ranked in reverse runtime
order, the transformation selected by my classifier is, on average, in the 86th percentile.
There are several key contributing factors to the performance improvements attained by
my method: formulating the problem as a classification problem rather than a regression
problem, using static features in addition to dynamic performance counter features, per-
forming feature selection, and using ensemble methods to boost the performance of the
classifier. Decision trees are constructed from pairs of features (performance counters and
structural features than can be determined statically from the source code). The trees
are then evaluated according to the number of benchmarks for which they select a trans-
formation that performs better than two baseline variants, the original program and the
expected runtime if a randomly selected transformation were applied. The top 20 trees
vote to select a final transformation.

il

Acknowledgments

I would like to thank my thesis supervisor, Peter van Beek, for the guidance, patience,
and optimism he has offered over the past four years.

v

Table of Contents

[List of Tables|

[List of Figures|

(1.3

Organization of the Thesis|

2 Background|

2.1 Polyhedral Model|
[2.2 Loop Transtormations|
2.2.1 iing
222 Fusionlo
2.2.3 Unrolling]
224 Vectorizationl
2.3 Machine Learning| oo
231 Featuresand Classed
[2.3.2 Machine Learning Evaluation|
[2.3.3 Supervised Machine Learning Algorithms|.
2.3.4 Fnsembles of Classifiers]
2.4 Summary|
3__Related Workl
[3.1 Optimizations in the Polyhedral Model
[3.2 Using Machine Learning to Select Optimizations|
[3.3 Machine Learning and the Polyhedral Model
[3.4 Summary|

vii

viii

W N =

o © ot Ot

10
12
14
16
16
18
20
22
23

|4

My Proposall

[4.6 Complete

Classifier Construction|

[4.7 Summary]

Evaluation of My Proposall

vi

30
30
30
31
33
34
37
38
39
39

40
40
41
42
42
50

51
o1
52

54

List of Tables

2.1 Weather Data Setl 17
2.2 Weather Test Data Setl 17
4.1 Performance Counter Measurements Collected 32
4.2 Performance Counter Features 33
[4.3 Memory Access Features| Lo 33
4.4 Selected Features| 38
[>.1 Performance Counter Measurements Collected for Linear Regression and |
[SVM Predictions 44

[5.2 Linear Regression, SVM, and Decision Tree Vote: Percentage of Optimal . 45

[.3 Linear Regression, SVM, and Decision Tree Vote: Speed-up over ldentity |
[[ransformation| 48

vil

List of Figures

[2.1 Decision tree tor the weather problem specified in Table 2.1} 22
[>.1 Percentage of optimal, Linear Regression and SVM compared to the baseline] 46
[5.2 Percentage of optimal, Decision Tree Vote compared to the baseline| 47
[5.3 Speed-up Over Identity Transtormation|. 49

viii

Chapter 1

Introduction

In this chapter, I informally introduce and motivate the problem that I address in this
thesis. I also summarize the contributions of the thesis and the organization of the thesis.

1.1 The Problem

Loops are a fundamental part of many scientific computing algorithms, with applications
in image manipulation, sound and signal processing, statistical simulations, and any other
algorithms that rely on linear algebra, among others. Loops in such algorithms are usually
tight — they are computationally intensive and run for many iterations without blocking to
perform high-latency operations such as disk or network I/O. Accordingly, the performance
of such loops is very dependent on efficient utilization of the CPU pipeline and the memory
bus.

While in prior decades, software developers could rely on successive generations of new
hardware to automatically to speed up tight loop execution due to ever-increasing CPU
clock speeds, that is no longer the case. Recent years have seen a marked decline in
the rate of CPU clock speed increases. Clock speeds of commodity Intel CPUs increased
exponentially starting in the 1980’s through 2005, from 4.77 MHz to 3 GHz. They have not,
however, increased much since then. Top-of-the-line Intel processors at the time of writing
(Haswell Core i7) top out at 3.5 GHz, while the processor with the highest clock speed is
the mainframe IBM zEC12, at 5.5 GHz. The reason for the lack of clock speed increase is
the difficulty CPU manufacturers have faced with effective heat dissipation at higher clock
rates. Instead, CPUs have been designed with deeper and more complex pipelines, as well
as an increasing number of cores. An effect of the more intricate CPU pipelines has been
an increase in difficulty intuitively reasoning about how tight loops actually execute on the
CPU. In addition, tight loops are by default compiled to single-threaded code, which is
unable to take advantage of the multiple cores and hardware threads available on modern
CPUs. Software developers must perform manual loop optimizations to ensure that the
loops take advantage of the full range of capabilities provided by the CPU. Loops must be
structured so as to effectively utilize instruction level parallelism, branch prediction, and

instruction and data prefetch capabilities. As well, in order to make use of multiple cores,
software developers must manually parallelize the loops. Such manual transformations
result in code that is difficult to read and to maintain. To complicate matters further,
the transformations that would yield the most optimal execution time can vary with the
original structure of the loops as well as the CPU model and vendor. To write optimal code,
software developers must not only be domain experts in the field to which the algorithms
they are developing belong, but they must also be CPU architecture experts.

Such cross-domain experts are difficult to find. Even in the case of developers skilled
in CPU architecture, the need to consider the demands imposed by the CPU architecture
complicate and confound the developers’ job. It would, therefore, be desirable for it to
be possible for domain-expert software developers to write straightforward loops tailored
to the needs of the algorithm in question and have the necessary transformations and
optimizations automatically applied at the compilation stage. To do so, the compiler must
be able to accomplish two tasks:

1. Given a loop or a nest of loops, the compiler must be able to apply transformations
that optimize the loops while preserving the semantics of the original code.

2. Out of the set of all possible correct transformations, or a subset thereof, the compiler
must then be able to select a good transformation for the loop nest and the CPU
architecture in question.

1.2 Contributions of the Thesis

My focus is on the polyhedral model, a mathematical framework wherein loops and loop
nests can be represented with polyhedra [24]. The polyhedral model allows loop trans-
formations to be expressed as algebraic operations on polyhedra and specifically allows
the generation of a search space of loop transformations that preserve the semantics of
the original loop. Many loop transformations are possible. I specifically examine several
transformations commonly used when optimizing loops: loop tiling, loop unrolling, loop
fusion, loop prevectorization, and loop parallelization. In previous work, various techniques
have been proposed to choose a transformation to use for a candidate program from the
transformation search space. Some early techniques employed an analytical model, while
others relied in whole or in part on a search that required running programs generated
from different transformations and comparing observed runtimes. Approaches that rely on
a static model derived from the program structure to select a transformation do not take
into account the architecture for which the code is compiled. As a result, the static models
do not capture the tradeoffs imposed by the hardware. On the other hand, a search pro-
cess that involves running multiple transformations can be very time consuming. Recently,
Park et al. [23] used machine learning regression models to select transformations, using as
features hardware performance counter values obtained while running the candidate pro-
gram. Park et al. explored the use of linear regression and SVM regression to predict the
speed-up of an arbitrary transformation from the search space over the original program.

The search space consisted of transformations that were composed of some combination
of loop tiling, unrolling, fusion, prevectorization, and parallelization. The transformation
predicted to have the largest speed-up was taken to be the best transformation. However,
the lack of accuracy of the regression models resulted in the top transformation suggested
by the model to have inadequate performance. To accommodate this shortcoming, Park
et al. proposed a five-shot approach, where binaries generated by applying each of the
top five transformations suggested by the model were run, and the transformation that
had the best runtime was chosen. The five-shot approach, however, can be excessively an
onerous one if the program being optimized is long-running. There has been evidence of
developers being reluctant to use Profile-Guided Optimization techniques to extract more
performance from a program due to the process being complicated and time consuming
[12, p. 339]. Tt is, therefore, reasonable to assume a five-shot selection process would run
into similar hurdles with developers.

I present a machine learning approach to learning a classifier that helps to determine
which of a finite set of loop transformation sequences should be applied to a loop nest
so as to minimize runtime. My approach achieves performance comparable to the best
five-shot results reported by Park et al. without needing to resort to the five-shot selection
process; it is sufficient to use the top transformation selected by the model. There are
several key contributing factors to the performance improvements attained by my method:
formulating the problem as a classification problem rather than a regression problem,
using static features in addition to dynamic performance counter features, performing
feature selection, and using ensemble methods to boost the performance of the classifier.
Decision trees are constructed from pairs of features (performance counters and structural
features than can be determined statically from the source code). The trees are then
evaluated according to the number of benchmarks for which they select a transformation
that performs better than two baseline variants: the original program and the expected
runtime if a randomly selected transformation were applied. The top 20 trees vote to select
a final transformation. On average, the performance of the transformations selected using
my approach matches or exceeds the performance of the transformations selected with
five-shot SVM regression, the highest-performing approach proposed by Park et al.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows.

In Chapter 2, I review background material necessary for the understanding of the the-
sis. I begin by describing the polyhedral model and how it can be used to generate correct
loop nest transformations. I proceed to cover common loop transformation techniques and
discuss their benefits and drawbacks. Finally, I conclude by introducing supervised ma-
chine learning for classification, describing the concept of features and classes, and cover
one particular approach to classifier learning, decision trees.

In Chapter 3, I review relevant prior work on generating transformations using the
polyhedral model and various approaches to choosing a good transformation. I also review

prior work on using machine learning to choose compiler optimizations in general and loop
optimizations in particular.

In Chapter 4, I present a proposal for using a machine learning technique to choose a
sequence of loop transformations among a finite search space of transformation sequences. I
describe the full learning process, which includes data collection, feature selection, classifier
construction, and application of the classifier.

In Chapter 5, I present an evaluation of my proposal. I demonstrate the efficacy of
my technique by presenting a comparison of the runtime speed-ups obtained using my
method with a baseline, as well as with results obtained by applying a prior state-of-the-
art approach.

In Chapter 6, I summarize the results of the thesis and discuss some future work that
could be undertaken.

Chapter 2

Background

In this chapter, I review the necessary background in the polyhedral model, loop transfor-
mations, and machine learning. For more background on these topics, see, for example,
[26] and [30].

2.1 Polyhedral Model

The polyhedral model is a mathematical framework used to represent loops and facilitate
loop transformations [26]. Under the polyhedral model, certain constructs in software
source code can be represented as polyhedra. Algebraically, a polyhedron encompasses a
set of points in a Z" vector space satisfying the inequalities

D={z|ze€Z" Az +a >0}, (2.1)

where A is a matrix while x and a are column vectors. In the polyhedral model, A is
a matrix of constants, x is a vector of iteration variables, a is a vector of constants [3],
0 is the zero vector, and the inequality operator (>) compares the vectors element-wise.
Geometrically, a polyhedron may be thought of as a convex set of points in a lattice [2].

Polyhedra can be used to represent nested loops. Every statement executed as part
of a loop iteration is referred to as an execution instance. In the polyhedral model, each
execution instance that is part of a loop iteration is represented by a point on a polyhe-
dron. The dependencies between the statements are indicated by directed edges, creating
a directed acyclic graph [21].

The polyhedral model is limited in the nature of programming constructs it can rep-
resent. To be mapped to the polyhedral model, a block of statements must be restricted
such that it is only enclosed in if statements and for loops. Pointer arithmetic, with the
exception of array accesses, is disallowed. Function calls must be inlined. Loop bounds are
restricted to affine functions of loop iterators and global variables. This means, for exam-
ple, that loop bounds cannot be determined by a call to an arbitrary function and cannot
be read at runtime. They must be statically and linearly derived from the loop iterator

and/or global variable values. The parts of a program that meet these requirements are
referred to as Static Control Parts (SCoPs). While these limitations appear onerous at
first glance, static control parts play a large role in scientific and signal processing kernels
[15].

Loop bounds determine the iteration domains of the statements in consideration. An
iteration domain represents the values taken on by the loop iterators for all iteration
instances.

Example 2.1. Given the source code

1 for (i=1;i<=n;i++)

2 for(j=1;j<=m;j++)
3 if (i < j)

4 S(i, j)

the iteration domain Dg of statement S in the polyhedral model becomes,

1 0 1
)) —1 0) n

Dy = (Z) (Z) cz7: | 0 1 (l) +{=1]>0
J J 0 —1 J m
11 1

The first two inequalities reflect the bounds imposed by the outer loop; the next two inequal-
ities are the bounds imposed by the inner loop; and the last inequality reflects the logic of
the conditional.

While iteration domains characterize all execution instances of each statement, they
hold no information with respect to instance ordering. Schedules fill this gap. In the
polyhedral model, a timestamp (or an execution date) is associated with each statement
instance. The relative order of the timestamps reflects the execution order of the instances.
A scheduling function maps execution instances to their corresponding timestamps [25].
The mapping of execution instances to timestamps is known as a schedule. In effect, the
schedule is one variant of the program. If two instances share a timestamp, no partial
ordering between them need be enforced, and they can therefore be executed in parallel.

Schedules may be one-dimensional or multi-dimensional. One-dimensional schedules
have scalar timestamps. Multi-dimensional schedule timestamps are vectors expressed in
big-endian order, with the first element the most significant and the last the least signif-
icant. For example, UNIX epoch timestamps can be used to make up a one-dimensional
schedule, since they consist of a scalar integer representing the number of seconds since
the beginning of the epoch. A timestamp of the form (year, month, day, hour, minute,
second) is a multi-dimensional timestamp with a cardinality of 6 [7].

Since schedules are expressed as functions of loop iteration vectors, one-dimensional
schedules can only be used to describe code blocks with single sequential loops, since the

instance ordering must in this case be a function of a single variable. Multi-dimensional
schedules, on the other hand, allow for multiple nested sequential loops [26].

Schedules are affine. A statement S can have its schedule, g, expressed as,

xs
(95(%5) =T n ,
1

where xg is a loop iterator vector, n is a vector of global parameters, and T is a constant
matrix containing coefficients that define the transformation.

Schedules allow us to express dependencies between instance executions. Two instances,
R and S, are said to be in a dependence relation dr g if both access the same memory
address and one of the accesses is a write operation [26]. A polyhedral transformation is
considered legal if it preserves all dependence relations within the polyhedron.

Example 2.2. Consider the following source code:

1 A[0] = 1;

2 for(i=1;i<=n;i++){
3 (R)A[] =i

4 (S)A[i — 1] =i=*A[i;
5}

A legal one-dimensional schedule for statement R would be simply Or(i) = i, and the
schedule for statement S can be expressed as 0g(i) =i+ 1. R and S are in a dependence
relation for loop iterator values ig =i + 1.

Dependence relations may also be expressed with dependence polyhedra. A dependence
polyhedron Dp, 5 is a subset of the Cartesian product of the iteration domains of statements
R and S. Every dependence between two instances of the statements corresponds to a point
on the polyhedron.

Example 2.3. Consider once again the code in Ezample[2.2. The dependence polyhedron
is defined by the inequality,

1 -1 0 0],
1 0 0 of (*®
1 0 10]|"]>0
0100?
0 -1 1 0

The first line captures the relationship between ig and is under which the dependence holds.
The next two lines specify the bounds of ig, while the last two lines specify the bounds of

15.

Different schedules for statements also correspond to different transformations of the
polyhedron. However, when performing optimizations, the transformations of interest are

7

only ones that are legal. Testing every schedule for legality quickly becomes impractical
even with one-dimensional schedules, to say nothing of the multi-dimensional kind. It is,
therefore, desirable to generate the set of legal schedules algorithmically.

A dependence relation Dp ¢ implies that 0r(zr) < 0s(xg). This inequality must be
satisfied in all transformations. The affine form of Farkas’ Lemma [9] is used in the process
of deriving legal schedules.

Lemma 2.1 (Farkas’ Lemma). Let D be a non-empty polyhedron defined by the inequalities
Az +b>0. Then any affine function f(x) is non-negative everywhere in D iff there exist
Ao and A such that,

f(x) = Xo + M\ (Az +b),

where \g is some non-negative scalar and X\ is a row vector of non-negative scalars.

Using Farkas’ Lemma, the schedule constraints may be expressed in an affine form. If
Or(xr) < Os(zs), then Ap g = 0s(rs) — Or(rr) — 1 is non-negative at every point in the
dependence polyhedron. By Farkas’ Lemma,

AR,S = /\0 +)\T (DR,S <i};> + dR,S) > 0,

where Dp g is the dependence polyhedron for statements R and S and dg g is a scalar com-
ponent. All legal schedules satisfying the dependence relation also satisfy the inequality.
Solving this system of inequalities, for instance using Fourier-Motzkin Elimination, allows
these schedules to be enumerated [26].

In the multi-dimensional case [25], the scheduling constraint is extended to be,

HR(LER) =< 95(&35),

where < denotes a lexicographic ordering, with the elements of the scheduling vectors
for the two instances being compared from the most to the least significant. For any of
the time dimensions, the constaint can be either weakly satisfied, with Og,(xg) < bg,(zs),
or strongly satisfied, with Og,(zr) < 0s,(zs). For the overall dependence to hold, time
dimension constraints can be weakly satisfied in lexicographic order until one of the time
dimension constraints is finally strongly satisfied. Once one of the constraints is strongly
satisfied, further time dimensions need no longer be examined.

It is necessary to select criteria to evaluate two schedules with respect to each other
and to allow us to select the better one of the two. The cost function specifies these
criteria. The most natural cost function for a particular machine would appear to be
the measured execution time of each schedule. Computing the result of this cost function
requires that each schedule being evaluated be rendered in source code form, compiled, and
run on the target machine [25]. However, there are several drawbacks to this approach.
The compilation and execution process may be time consuming and impractical for a
large number of schedules. Program input, if applicable, must be carefully chosen to be
representative if the nature of the input changes the execution path of the program. Care

must be taken when measuring the runtime, since the contents of the CPU cache when the
program starts can affect the execution speed. Finally, this approach is less than ideal if
the same binary is expected to be run on multiple machines, since without a theoretical
model to guide schedule selection, nothing suggests how a schedule empirically found to
be optimal for one architecture will perform on another architecture.

Alternatively, an analytic cost function or a static function derived from a performance
model can be used. Finding an optimal schedule backed by a analytic model typically
involves solving systems of affine inequalities, using Fourier-Motzkin Elimination or linear
programming techniques. Early studies include models to minimize total execution time
[10] and minimize synchronization [22]. More recently, Bondhugula et al. [4, 5] proposed
a cost function suited to the parallelization of loops that selects schedules for minimal
communication between running loop instances. After using tiling to extract coarse-grain
parallelism from a loop nest, the cost function reflects the number of tiles traversed by an
edge in the dependence polyhedron of a schedule.

2.2 Loop Transformations

Loop transformations are transformations to the structure of loop nests. The goal of the
transformations is to speed up loop execution while preserving the original semantics of
the loop nest. Transformations typically entail increasing or reducing the number of loops
by, for example, increasing or reducing the depth of the nest while compensating for the
change by altering the iteration domain, or by combining or splitting adjoining loops at
the same depth.

2.2.1 Tiling

Loop tiling is a loop optimization technique that rearranges loop iteration domains so as
to increase spatial locality and, potentially, expose parallelism [32, [37].

Consider the sample code in [Listing 2.1, which represents the two-dimensional matrix
multiplication operation C' = AB.

Listing 2.1: Matrix Multiplication

1 int A[NIJ[NK];
2 int B[NK][NJ];
3 int C[NIJ[NJ];
4 /% populate A and B, zero out C x/
5 for (inti=0;i<NIi++){
6 for (int j = 0; j < NJ; j++) {
7 for (int k = 0; k < NK; ++k) {
s CIG] += AT + BIKID]
9 1
10 }
1}

Line [§] of consists of two read operations, from A and B, and one write
operation to C. Assuming a typical two-dimensional array memory layout that an int is
4 bytes in size, each iteration of the inner loop will access A with a stride of 4 bytes and
B with a stride of 4-NJ bytes. Assuming a cache line size of 64 bytes, B[k][0], B[K][1]....,
B[k][15] will be loaded into cache when BI[i][0] is accessed. However, B[k][1]...., B[k][15] will
have likely been evicted from the cache by the time they are accessed during subsequent
iterations of the loop on[line 6] As a result, a cache miss will be incurred on each of the
subsequent accesses of B[k][1],..., B[k][15].

Suppose, however, that loop tiling is used and the loops are written as in |Listing 2.2|
Listing 2.2: Tiled Matrix Multiplication

1 int A[NI][NK];

2 int B[NK][NJ];

3 int C[NIJ[NJ];

4 /x populate A and B, zero out C %/

5 for(inti=0;i<NIi+=16){

6 for (int j =0; j < NJ; j +=16) {

7 for (int k = 0; k < NK; k +=16) {

8 for (int i = i; i < min(ii + 16, NI); i++) {

9 for (int jj = j: j < min(jj + 16, NJ); j++) {
10 for (int kk = k; k < min(kk + 16, NK); k++) {
11 C[iil[15] += Alii][kk] = B[kK][ii];

12 }
13 }
14 }

15 }

16 }
17}

The tile size used is 16. It was chosen since it is the quotient of the cache line size (64)
and the data type size (4). The iteration space is then partitioned into rectangles, and
the cache misses for B[kk][1],..., B[kk][15] are avoided, since the corresponding cache line
will still be in cache when those memory addresses are accessed. The appropriate tile size
depends on the particulars of the loop nest, such as the number of loops, the depth of the
nest and the memory accesses, and the size of the array data type.

2.2.2 Fusion

Loop fusion, otherwise known as loop jamming, refers to the process of combining multiple
loops into one. If done judiciously, benefits typically include increases in spatial locality
and cache hit rates. In some cases, however, the effect may be the opposite [19].

Consider the sample code in [Listing 2.3| extracted from the gemver benchmark (vector
multiplication and matrix addition), which computes x = Ay + z.

10

Listing 2.3: gemver

1 int A[N][N];
2 int x[N];
3 inty[N];
4 int z[N];
5 /* populate A, y, z; zero out x */
6 for(inti=0;i<N;i++) {
7 for (int j=0;) < N; j++) {
8 xlil = xli + AGII * il
9 }
10 }
11
12 for (inti=0;i < N;i++) {
13 x[i] = x[i] + z[il;
14}

Both the statements on [line 8 and [line 13| access x[i]. However, they reside in different
outer loops. The element x[i] is initially loaded into cache when accessed in the first loop.
Assuming an int size of 4 bytes and a cache line size of 64 bytes, x[0] will have likely been
evicted from cache by the time it is accessed in the second loop if N > 15. Additionally,
in the case that N > 31, all elements of x will have likely been evicted by the time they
are accessed in the second loop. However, since the bounds of the two upper loops are the

same, they can be fused, as show in [Listing 2.4

Listing 2.4: Fused gemver

1 int A[N][N];
2 int x|[N];
3 inty[N];
4 int z[N];
5 /* populate A, y, z; zero out x */
6 for(inti=0;i<N;i++){
7 for (int j=0;j < N; j++) {
s (] = xfil + ALl * Il
9 }
10 x[i] = x[i] + z[i];
1m0}

Fusing the loops in this instance makes it more likely that the second x[i] access occurs
before x[i] has been evicted from cache and, as a result, that the memory access does not
incur a cache miss.

On the other hand, consider the code in extracted from the atax benchmark
(matrix transpose and vector multiplication). The code computes the expression AT Az.

11

Listing 2.5: atax

0O UL W -

—_
o ©

11
12
13
14

int A[NX][NY];

int x[NY];

int y[NY];

int tmp[NX];

/% Populate A, x, and y /

for (i =0; i < NX; i++) {
tmpl[i] = 0;
for (j = 0; j < NY; j++) {
ol = ol A+ 3
for j =0;j <NY; j++) {
=0 A e

}

The inner loops on[line 8 and [line T have the same bounds. Also, the data dependencies

involving tmp[i] between the two statements in the loops are such that they can therefore

be fused, as in [Listing 2.6]

Listing 2.6: atax, fused

0O UL W -

— =
N = OO

int A[NX][NY];
int x[NY];
int y[NY];
int tmp[NX];
/% Populate A, x, and y */
for (i =0; i < NX; i++) {
tmp[i] = 0;
for j =0; j < NY; j++) {
tmpl[i] = tmpli] + A[i]{i] * x[j];
yl] = vl + A[][] * tmpli];

Indeed, it would appear that fusion would help with cache misses owing to tmpli] ac-

cesses. However, that comes at the expense of an additional write operation in the same
loop to a different location. This may introduce cache thrashing and interfere with the
prefetcher. As a result, fusion in this instance may have an adverse effect on performance.

2.2.3 Unrolling

Iterations of tight loops often have computational operations that are independent of the
execution result of a previous iteration of the loop. It should, therefore, be possible to
schedule instructions pertaining to these operations in parallel, taking advantage of the
instruction level parallelism functionality of modern CPUs. Also, loop counter variable

12

modification involves memory read and write operations, which may also incur a sub-
stantive cost relative to the body of the loop, depending on the work the loop performs.
Reducing the number of loop counter variable manipulations can therefore yield noticeable
runtime improvements.

Loop unrolling, also known as loop unwinding, is an optimization that repeats the body
of the loop multiple times and offloads into the body of the loop logic typically handled
in the loop termination condition and in the loop counter modification operation. The
number of times that the body of the loop is repeated is referred to as the loop unroll
factor. Repeating the body of the loop exposes instruction level parallelism and can yield
substantial speedups [12 p. 354]. Depending on the contents of the body of the loop,
similar savings can be achieved with respect to the loop counter manipulation costs.

Consider the code in |Listing 2.7] extracted from the jacobi-1d-imper benchmark (1-D

Jacobi stencil computation).

Listing 2.7: jacobi-1d-imper

1 int AN];

2 int B[N];

3 /* Populate A x/

4 for (intt=0;t < TSTEPS; t++) {
5 for (inti=1;i <N —1;i++) {
6 B[i] = 0.33333 « (A[i—1] + A[i] + Afi + 1]);
7 }

8 for (intj=1;j <N —1; j++) {
9 Alil = BIil;
10 }

1}

Applying a loop unroll factor of 4 to both inner loops, we get the code in [Listing 2.8|
For simplicity, the code in assumes that the arrays A and B have a size that is
a multiple of 4, but it is possible to account for arrays of all sizes by treating the last k
iterations, k < 4, separately.

Listing 2.8: jacobi-1d-imper, unrolled

1 int A[NJ;

2 int B[N];

3 /* Populate A x/

4 for (intt=0;t < TSTEPS; t++) {

5 for (inti=1i<N—-1;i+=4){

6 Bli] = 0.33333 « (A[i—1] + A[] + Ali + 1]);

7 Bli + 1] = 0.33333 x (A[i—1 + 1] + A[i + 1] + A[i + 1 + 1]);
8 Bli + 2] = 0.33333 x (A[i—1 + 2] + Afi + 2] + Afi + 1 + 2]);
9 Bli + 3] =0.33333 * (A[i—1 + 3] + Afi + 3] + A[i + 1 + 3]);
10 }
11 for(intj=1,j<N-1,j+=4){
12 All] = Bl;
13 Alj + 1] = B[j + 1];

13

14 Al + 2] = B[j + 2];
15 Alj + 3] = B[j + 3];
16 }

17}

In [Listing 2.8} the loop counter variables are directly used as array indices. All array
indices in the bodies of the loops are, therefore, a constant offset from the loop counter
variable value. As a result, unrolling the loop enables the compiler to directly precompute
all memory location accessed, allowing us to fully realize the benefits from the loop unrolling
optimization. That may not necessarily be possible if the loop counter variables are, for
example, used as arguments for another function call, the return value of which is then

used to index arrays, as in |Listing 2.9|

Listing 2.9: Indirect array indexing

1 int function(int argument);

2

3 int A|NJ;

4 int BINJ;

5 /x Populate A x/

6 for (intt=0;t< TSTEPS; t++) {

7 for (inti=1;i <N —1;i++) {

8 B[i] = 0.33333 * (A[i—1] + A[function(i)] + A[i + 1]);
9 h
10 }

2.2.4 Vectorization

Some CPU architectures provide support for vectorized or Single Instruction Multiple Data
(SIMD) instructions. Such an instruction can operate on multiple memory locations at
once. Common modern implementations include Intel’s SSE2 extensions and the AltiVec
instruction set in POWER and PowerPC CPUs. Vector instructions can often speed up
tight array-processing loop execution by processing multiple array elements simultaneously.
However, the compiler will typically only generate vectorized code for a loop if it determines
the loop is suitable for the transformation. The use of vector instructions can impose
certain requirements on the code. For instance, SSE2 instructions require that memory
locations be aligned to 16-byte boundaries. Further, the compiler may have a higher
chance to vectorize a loop if the body of the loop operates on data that corresponds to the
instruction vector size in length. Accordingly, it may be beneficial to tile a loop with a tile
size that equals the vector size [20].

Consider the code in [Listing 2.10, extracted from the 1u benchmark (LU decomposi-
tion).

14

Listing 2.10: lu

1 int A[NJ;

2 /x Populate A x/

3 for (int k =0; k <N; k++) {

4 for (int j=k + 1;j < N; j++) {
5 A = AL/ AKIK:

6

7 for(inti=k + 1;i <N; i++) {

8 for (int j = k + 1;j < N; j++) {
9 AT = ALIG] — ALK = AT
10 }

11 }
12}

Assuming instructions can operate on vectors of size 4, i.e., four memory locations at

a time, the code in [Listing 2.10| can be transformed into the code in |Listing 2.11] which

operates on arrays of size 4. Such array operations can then be easily implemented using
vector instructions.

Listing 2.11: lu, prevectorized

1 int A[NJ;

2 int templ[4];

3 int temp2[4];

4 /% Populate A x/

5 for (int k =0; k < N; k++) {

6 for(intj=k+1,j<N;j+=4){
7 for (int ti = 0; ti < 4; ti++)

8 temp[ti] = A[K][] + ti];

9 for (int ti = 0; ti < 4; ti++)
10 templti] = templti] / A[K][K];
11 for (int ti = 0; ti < 4; ti++)
12 ALK][j + ti] = templti];
13 }
14 for(inti =k + 1;i < N; i++) {

15 for (intj=k+1,j<N;j+=14){
16 for (int ti = 0; ti < 4; ti++)
17 templ[ti] = A[i][j + til;
18 for (int ti = 0; ti < 4; ti++)
19 temp2[ti] = ALK][j + ti];
20 for (int ti = 0; ti < 4; ti++)
21 temp[ti] = temp[ti] — A[i][k] * temp2][ti];
22 for (int ti = 0; ti < 4; ti++)
23 Ali][j + ti] = temp]ti];
24 }
25 }
26}

15

2.3 Machine Learning

As seen previously, numerous transformations can be applied to a loop nest while satisfying
the dependencies of the execution and preserving correctness. These transformations can
have a beneficial or an adverse effect on the runtime of the program. Different transfor-
mations can affect different programs differently, and transformation parameters may also
have a substantial effect on performance. The transformations may also interact with each
other and cannot be selected independently. Selecting a tile size, choosing which loops to
fuse, selecting a loop unrolling factor, or determining which loops benefit from fusion is
a non-trivial task even for machine architecture experts. Predicting how code structure
maps onto and interacts with the architecture of the hardware on which it is running can be
challenging and unintuitive. Being able to select the transformations and their parameters
in an automated way can, therefore, be advantageous.

There are two main approaches to deriving algorithms to automatically choose the
appopriate transformation or sequence of transformations. The first approach is manual,
where a domain expert in machine architecture and compiler optimization leverages his or
her experience to construct a set of rules that are applied when optimizing a program. The
second approach is more automated, with the rules that govern which transformations are
to be applied being generated with limited to no human intervention. Machine learning
can be used as part of the automated approach. Machine learning, as the term will be
used here, detects patterns in existing data sets and converts these patterns into rules.
These rules can then be applied to new, previously unseen, data to obtain predictions (see
[30]). The input to the machine learning algorithm is referred to as the training set. The
unseen data used to gauge the effectiveness of the rules generated by the machine learning
algorithm is called the test set.

Machine learning can be unsupervised or supervised. The goal of unsupervised machine
learning is to detect patterns and derive rules for unlabelled data. In other words, an un-
supervised machine learning algorithm is not provided with data to evaluate its predictive
performance. In contrast, the input to a supervised machine learning algorithm is labelled,
allowing result verification. Supervised algorithms generally provide more accurate rules
than unsupervised ones. Since labelled training data for the problem covered by this thesis
can be easily generated, I use a supervised algorithm.

2.3.1 Features and Classes

To illustrate how supervised machine learning works, I will use a running example com-
monly used in the literature: the weather problem. The weather problem involves making
a decision as to whether some unnamed game should be played based on consideration of
several weather conditions. The training set, or data set, for the weather problem is laid
out in (see [30]). In this data set, outlook, temperature, humidity, and wind
are the features or attributes, and play is the decision, or the classification, reached based
on the values of the features. Given this data set, we would like to be able to reach a
decision on whether to play given a new and previously unseen set of feature values, for

16

example as presented in The table already contains the decision for a similar
set of attributes, with only the temperature value being different. Does that change the
decision of whether to play?

Table 2.1: Weather Data Set
outlook \ temperature \ humidity \ wind H play ‘

sunny hot high false || no
sunny hot high true || no
overcast | hot high false || yes
rainy mild high false || yes
rainy cool normal false || yes
rainy cool normal true || no
overcast | cool normal true || yes
sunny mild high false || no
sunny cool normal false || yes
rainy mild normal false || yes
sunny mild normal true || yes
overcast | mild high true || yes
overcast | hot normal false || yes
rainy mild high true || no

Table 2.2: Weather Test Data Set
’ outlook \ temperature \ humidity \ wind H play ‘

’ overcast ‘ hot ‘ high ‘ true H no ‘

The most straightforward, and naive, way to derive a set of rules from the data set in
is to derive a rule from each row in the table. The rules corresponding to the

first five rows are in jalgorithm 2.1]

Algorithm 2.1: Per-row weather rules
if outlook is sunny and temperature is hot and humidity is high and there is wind
then no play;
else if outlook is sunny and temperature is hot and humidity is high and there is no
wind then no play;
else if outlook is overcast and temperature is hot and humidity is high and there is
no wind then play;
else if outlook is rainy and temperature s mild and humidity s high and there is no
wind then play;
else if outlook is rainy and temperature is cool and humidity is normal and there is
no wind then play:;

17

However, this leaves us with rules that would not be able to handle data not previously
seen. We would, therefore, not be able to make predictions for any feature combination
not already specified in our training set table. Alternatively, we could derive the rules in

algorithm 2.2| (see [30]).

Algorithm 2.2: Weather rules

if outlook is sunny and humidity is high then no play;
else if outlook is rainy and there is wind then no play;
else if outlook is overcast then play;

else if humidity is normal then play;

else play;

Applying this sequence of rules would produce the correct answer for every row in
[Table 2.1 Without having additional data, however, the rules cannot be tested, and it
is impossible to tell if they are entirely reflective of reality. For example, if there were
more data containing the row in [Table 2.2] the rules would produce the wrong answer for
that feature combination, as overcast outlook yields a prediction of play. The problem
of generating rules that hew very closely to the training data but are not general enough
is referred to as owverfitting. In order to effectively learn, the training data should be as
representative as possible, and the features used as input to the learning algorithm should
correlate with the class that is being learned in general, rather than only for the training
data. For example, in an extreme case, it is possible to sequentially number all rows
in the training data and use the sequence number as one of the features. The machine
learning algorithm could generate rules to predict the class from the sequence number
with complete accuracy. However, such rules would be completely useless on anything
other than the particular ordering of the training data elements that was used.

The features in [Table 2.1] are all symbolic or nominal, in other words, the values
are members of a fixed enumerated set. The value of outlook is always one of sunny,
overcast, or rainy; the value of temperature is always one of hot, mild, or cool; et
cetera. However, features could also be numeric or continuous. The weather data set could
have a numeric feature if, for example, the temperature was instead expressed in degrees.
As will be discussed in greater detail in later sections, continuous features pose a greater
challenge to machine learning techniques.

Similarly, the class in is also symbolic. In fact, it is a special case of a symbolic
class: a boolean class, with only two possible values. Boolean classes are easier to predict
(see [30]). However, a class could potentially also be numeric. For instance, the same set
of features in could be used to predict the number of people expected to turn

out to an event.

2.3.2 Machine Learning Evaluation
Evaluating the efficacy of a machine learning approach, therefore, requires evaluating the

rules it produces on previously unseen data. Certain problems lend themselves easily to
this kind of evaluation, network traffic classification being one example. Suppose that a

18

network administrator is interested in obtaining information on the breakdown of network
traffic by protocol. The network administrator can capture sample traffic from the network,
manually classify it, and use it as the input, or training data, for a machine learning
algorithm. Depending on how well the features are chosen and the effectiveness of the
algorithm itself, the output produced by the algorithm may or may not be useful. The
extent to which it is useful can be tested by having the rules generated by the machine
learning algorithm classify new network traffic and seeing if the classification is correct.
Since new network traffic is continuously generated, there is presumably no shortage of
test data.

In other situations, however, new test data may be more difficult to generate. This
usually happens when it is time consuming or otherwise expensive to generate samples.
For example, consider the hypothetical case of scientists wishing to predict something with
respect to the behaviour of periodical cicadas once they appear above ground. Periodical
cicadas develop in 13 or 17-year cycles, depending on the brood. The development of all
members of the brood is synchronized. The cicadas reside below ground for the entire
length of their development cycle in their nymph (juvenile) form. At the end of the cycle,
all members of the brood emerge above ground together, where they spend several weeks.
During that time period, the now-adult cicadas mate, lay eggs, and die off. Nymphs
proceed to hatch out of the eggs, whereupon they burrow into the ground, to reemerge 13
or 17 years later. If scientists collect data about the cicadas and apply a machine learning
algorithm to that data, they will not be able to collect new test data for another 13 to 17
years, an iteration cycle almost certainly considered far too long.

Several approaches can be taken when data is in short supply, the common denominator
between them being that some of the data available is used for training, while the rest is
held back and used for testing. This division of data is used only for evaluation purposes,
to generate error estimates. When generating the production-use classifier, all available
data is used for training.

N-Fold Cross Validation

The n-fold cross validation technique requires partitioning the data into n parts, known
as folds. The assignment of different data instances to folds is done randomly, although
care is taken to ensure an even class distribution among all folds. The machine learning
algorithm is then run n times. Each of the times, a different fold is used for the test data,
while the remaining n — 1 folds are used for the training data. An average of the error rates
of all the runs is then taken. A value of n = 10 has been found to be yield good results in
practice (see [30]), so 10-fold cross-validation is commonly used.

Leave One Out
The leave one out technique is a special case of n-fold cross validation and is useful in cases

where the data available lends itself to natural, non-random partitioning. An example of
this is data pertaining to computer program analysis, which is discussed at greater length

19

in later chapters. If data pertaining to n computer programs is available, each computer
program can then become a fold. The machine learning algorithm is then run n times,
each time using the data pertaining to a different computer program for testing and the
data pertaining to the other n — 1 programs as training data. Again, an average of the
error rates of all the runs is taken as the final estimate.

2.3.3 Supervised Machine Learning Algorithms

Supervised machine learning can be broadly categorized as either classification algorithms
or regression algorithms. The output of a classification algorithm is one of a small number
of symbolic classes, while the output of a regression algorithm is a real number. Of the
many algorithms available, I review decision trees for classification, linear regression, and
support vector machines for regression. Decision trees are reviewed at length, as they are
the primary machine learning algorithm used in this thesis. Linear regression and support
vector machines for regression are mentioned, as they form the basis for the immediate
previous work upon which this thesis builds.

Decision Trees

Decision trees are the machine learning algorithm used in the approach presented in this
thesis. Intermediate nodes in a decision tree correspond to features to be tested, while
leaf nodes correspond to the decision rendered by the tree, or the classification. A data
instance is evaluated by testing its feature values. Starting at the root node, the value of
the feature determines which child node should be evaluated next. This is referred to as
branching on an attribute. The process proceeds recursively until a decision is reached.

For symbolic features, the number of child nodes equals the number of possible values
for that feature. In such a case, only one node in the tree corresponds to the feature,
since the feature need only be evaluated once. Numeric features, however, may need to be
evaluated or branched on several times. In the case of numeric features, the test typically
involves checking if the value of the feature falls above or below a threshold value. In such
a case, a numeric feature node will have two children. Alternatively, a numeric feature
may be evaluated against multiple thresholds, resulting in multiple child nodes. A numeric
feature may therefore be branched on several times along a path to a leave node. For
example, at one level one subtree may correspond to a feature value less than 30 while the
other subtree would correspond to a feature value greater than or equal to 30. Further
down the left subtree, taken if the value is less than 30, the feature may be evaluated
again. This time, the two subtrees may correspond to the feature values being less than 5
or greater than or equal to 5 (but still less than 30). As a result, numeric features result
in deeper and more complicated trees, as well as potential overfitting to the training data.
A coping strategy may be to discretize or bin the feature values, rendering the feature
symbolic.

When constructing a decision tree, the feature evaluated at each level is chosen by
evaluating the information gain from branching on each of the features available at that

20

level. All else being equal, the construction algorithm prefers shallower and simpler trees
to deeper and more convoluted ones. Accordingly, it attempts to minimize the number of
feature splits necessary to get to a leaf node.

To obtain the potential information gain from every available feature, the information
value of the attribute values is calculated. The information value corresponds to the
additional amount of information required at this stage to unambiguously classify the
instance. It stands to reason that the more even the classification split between the different
values of the feature, the more ambiguous the classification, the higher the information
value, and the lower the information gain. The information value of an intermediate node
can be subtracted from the information value of the parent node to obtain the information
gain of the intermediate node. The higher the information gain, the more the branch from
the parent node to the intermediate node contributes to the classification. The entropy of
the distribution of feature values is used to represent the information value.

The equation to obtain the entropy is,

entropy(p1, p2, - - -, Pn) = —p1logpr — palogps — ... — p, log py, (2.2)

where n is the number of classes and p; +p2+ ...+ p, = 1. The p; values are derived from
the split in classifications arising from each attribute value.

For example, returning to the weather data set in [Table 2.1] there are 14 data instances
in total, 9 of which are classified as yes and 5 as no. The overall information value is
therefore,

log — — — log — = 0.940

14°°14 14 °14

5 9 9 5 5
14°14)

(9
entropy

Considering the outlook attribute, it has three possible values: sunny, which yields
2 yes instances and 3 no instances, overcast, which yields 4 yes instances and 0 no
instances, and rainy, which yields 3 yes instances and 2 no instances. The overall entropy
of the attribute is therefore,

3 2 4 0 23
entropy T + entropy 1 + entropy = = 0.693

The information gain for branching on outlook is, therefore, 0.940—0.693 = 0.247. Similar
calculations show that the information gain from branching on temperature would be
0.0029, from branching on humidity would be 0.152, and from branching on wind would
be 0.048. As branching on outlook yields the largest information gain, that attribute is
chosen to branch on at the root of the tree. The information gain calculations are then
performed at each intermediate node of the tree to determine the next attribute to split
on. The final decision tree for the weather problem is depicted in Figure [2.1}

Regression Techniques

While classification techniques are used to predict discrete classes, real-valued labels are
predicted using regression techniques. Regression techniques involve the study of the re-

21

Figure 2.1: Decision tree for the weather problem specified in Table .
outlook
sunny rainy

overcast

humidity yes windy
high/ &ormal fals% \true
no yes yes no

lationship between one or more independent variables and one dependent vartable. In
machine learning, the dependent variable is the label, while the independent variables are
the features. In this section, I will briefly discuss to regression techniques: linear regression
and SVM regression.

Linear regression is used for predicting real-valued classes given a set of numeric features
(see [30]). In linear regression, the output, x, is expressed as a linear combination of the

feature values, aq, ..., a,, with the coefficients, wy, ..., w,, derived from the training data
set:

T =wy+wiay + ...+ wpa, (2.3)
The core of a linear regression approach is to choose wy, ..., w, such that the sum of the

squares of the distances between the predicted and actual classes across all training data
instances is minimized. The main shortcoming in the linear regression approach is evident
in its name. If the relationship between the features values and the class is not linear, it
will be difficult to impossible to choose the coefficients in such a way that the predicted
class values closely track the actual values.

Support vector machines, abbreviated as SVM, combine linear and non-linear terms,
allowing for linear segments to be combined in such a way as to create overall non-linear
functions (see [30]). The support vectors are instances selected from each class, with the
selection performed in such a way as to maximize the distance between the support vectors
of the different classes. SVM was originally introduced as a binary classification technique,
but it has since been extended to apply to multi-class classification and regression problems.

2.3.4 Ensembles of Classifiers

When dealing with heterogeneous and diverse data, different features may be better suited
to classifying different subsets of the data. It is, therefore, tempting to use feature vectors
with high dimensionality that encompass all features that improve the classifier for some
input. However, a high feature vector dimensionality carries a cost. It complicates the
model and may impede learning, as well as requiring larger training samples. It can,

22

therefore, be beneficial to generate multiple classifiers (or base-learners from smaller feature
sets) and combine their results [I, pp. 419-421].

The simplest way to combine the outputs of multiple classifiers is voting, with the final
class being obtained by,
L
2w dii,
j=1

where L is the number of base learner classifiers, dj; is the vote of base learner classifier
j for class C;, and w, is the weight assigned to base learner classifier j. The simplest
and most widely-used voting technique is simple voting, where all classifiers are equally
weighted, in other words, Vj : w; = % The combination function for simple voting is the
sum function. Other, more complex, combination functions include weighted sum, median,
minimum, maximum, and product [Il pp. 424-425].

2.4 Summary

In this chapter, I provided an overview of the polyhedral model of loops and data depen-
dencies, of loop transformations, and of machine learning. I discussed the construction
of dependence polyhedra for static control parts, as well as the algorithmic generation
of one-dimensional and multi-dimensional schedules for static control part statements. I
described four different loop optimization techniques: tiling, fusion, unrolling, and vector-
ization. Finally, I introduced supervised machine learning, with an emphasis on decision
trees.

23

Chapter 3

Related Work

In this chapter, I review prior work pertaining to using the polyhedral model to optimize
loop execution, as well as work on using machine learning for general runtime and loop
efficiency optimizations.

3.1 Optimizations in the Polyhedral Model

While the polyhedral model allows for the easy generation of a search space of semantically
correct transformations, or schedules, multiple classes of approaches have been proposed for
choosing or finding a good schedule. Some approaches use an analytic model to determine
the best schedule to use, others rely on an iterative search that requires the compilation
and running of successive schedules before a decision is made, while others still combine
the two approaches.

Feautrier [I1] presents two ways of choosing a schedule. Valid schedules can be dis-
covered by solving the system of affine inequalities describing the dependencies between
the execution instances. The system of inequalities can be solved using Fourier-Motzkin
Elimination. However, Fourier-Motzkin Elimination has super-exponential complexity and
quickly becomes infeasible as the number of dependencies increases. An alternative is
a variation of the Integer Programming Simplex method called Parametric Integer Pro-
gramming [8]. While this method is also exponential in the worst case, empirical results
suggests that it is nonetheless faster than Fourier-Motzkin Elimination. Feautrier finds
that the optimal schedule depends on the dimension being optimized. As an example, a
schedule minimizing the latency can be obtained using linear programming, since latency
can be expressed as a linear function of schedule coefficients.

Lim and Lam [22] propose an algorithm to select a transformation that maximizes par-
allelism and minimizes synchronization. The algorithm applies to programs with arbitrary
loop nesting levels and loop sequences and consists of three phases. The first phase at-
tempts to find a partitioning of statements that would yield full parallelism with no need
for synchronization. The second phase attempts to find a schedule where the number of
synchronization points is constant with respect to the number of loop iterations. Finally,

24

the third phase examines schedules with synchronization points linear in the number of
iterations. Coarse-level parallelism is preferred to fine-grained parallelism provided the
degree of parallelism (or the fanout) is the same in both cases and coarse-level parallelism
reduces the need for synchronization. As the algorithm employs techniques such as Fourier-
Motzkin Elimination, it has super-exponential complexity in the worst case. Also, while
the algorithm minimizes the order of synchronization, it does not take into account the
volume of communication [4].

Pouchet et al. [26] 25, 24] introduce an approach to find an optimal schedule using
iterative compilation for single-dimensional and multi-dimensional schedules. A potentially
large search space of valid schedules for a given kernel is constructed and subsequently
traversed. Rather than using a theoretical model, the effectiveness of a schedule is judged
by generating the corresponding source code, compiling it, and running it on the target
machine.

Multiple approaches to traversing the search space were investigated:

1. Exhaustive search, where every valid schedule is run. This approach is obviously
infeasible for all but the smallest program kernels.

2. A decoupling heuristic. As noted above, schedules are three-dimensional functions
of iterator coefficients, parameter coefficients, and constant coefficients. The decou-
pling heuristic optimizes each dimension separately. The optimal iterator coefficients
are selected first, while choosing the other coefficients at random and holding them
constant. Then, given the optimal iterator coefficients, the optimal parameter co-
efficients are selected. Finally, with the first two dimensions fixed, the constant
coefficients are chosen.

3. A genetic algorithm, where every step in the search space involves a mutation of the
schedule. The mutation has to preserve the validity of the schedule. A probability
distribution is calculated, and it is used to decide which coefficient to alter first. The
new value of the coefficient is randomly chosen from within the range of valid values.
If the change to the coefficient renders the schedule invalid, the other coefficients are
adjusted to construct a valid schedule.

Bondhugula et al. [4, 5] propose an algorithm that generates schedules which minimize
communication among execution instances. The algorithm applies to arbitrarily-nested
loops. The approach is fully automated and requires no manual intervention. Coarse-
grained parallelism is extracted by means of loop tiling, which involves partitioning the
iteration domain of a loop into tiles (or blocks) which can be executed in parallel, with
communication between threads necessary only before and after a block executes. Another
advantage to tiling is that it improves data locality and hence cache utilization, since the
smaller sizes of the tiles reduces cache line contention. The cost function to be minimized
represents the number of tiles traversed by an edge in the dependence polyhedron. The
smaller the quantity, the less inter-tile communication is necessary during execution. While
the cost function is non-linear, it can bounded by an affine function using an application of
Farkas’ Lemma, and Integer Linear Programming can be used to find an optimal solution.

25

For every statement, a number of linearly independent solutions equal to the size of the
iteration domain of the statement is required. Empirical tests show a 1.1-5.7x speed-
up over state-of-the-art on a single-core machine and 1.5-7x speed-up on a multi-core
machine. The algorithm does not take into account the characteristics of target hardware
and relies solely on a theoretical cost model.

Pouchet et al. [27, 28] combine the approaches laid out in [25] and [4]. The approach
is a combination of the use of analytic models, where they are available and effective, and
empirical search for cases where analytic models do not account for important properties
of the hardware which have a significant impact on performance. Specifically, the tiling
approach Bondhugula et al. [4] is used, while also trying to maximize SIMD (single in-
struction, multiple data) parallelism via loop vectorization. An observation made in the
work is that loop fusion and distribution drive the success of other transformations (vec-
torization, tiling, array construction). The authors also demonstrate, using an example,
that different schedules may be optimal for different CPU chips (Xeon and AMD in the
example, with a runtime difference of 25%). Thus, while an analytic model is used to select
tiling and vectorization optimizations, a compile-and-run iterative process is used to select
the program partitioning. The partitioning is selected first, followed by the application
of tiling and vectorization optimizations. Vectorization is accomplished by computing the
maximum distance between any two consecutive memory accesses in a loop and shifting
loops having the smallest such distance inwards, towards the innermost position in the
loop nest. Empirical results showed a performance improvement of 2 — 2.5x over that of
the compiler.

The iterative approaches described in this section suffer from scalability concerns. The
schedule search space for anything but toy computational kernels are large enough to make
it impractical to explore it iteratively and try out different schedules by running them. Even
in cases where the search space is not so large as to make the search completely impractical,
it is still too time consuming to be palatable to developers in practice. The analytic models,
on the other hand, either fail to account for features specific to hardware architecture, thus
failing to extract maximum performance, or are tied to particular architectures and can
become obsolete as the architecture evolves.

3.2 Using Machine Learning to Select Optimizations

Machine learning, using both static and dynamic features, has been used to select optimiza-
tion parameters in various contexts within compilers and code optimization: parameters for
specific loop optimizations, compiler command line invocation parameters, and compiler
optimization pass selection.

Stephenson et al. [29] use machine learning to select a loop unroll factor. They explore
two machine learning approaches: Near Neighbour (using the Euclidean distance between
feature vectors as the similarity vector) and SVM. They find that their best classifier comes
within 7% of the optimal unroll factor 79% of the time, obtaining a 5% speedup over the
Open Research Compiler baseline with software pipelining disabled and a 1% speedup

26

with software pipelining enabled. Stephenson et al. formulate a multi-class classification
problem: given a set of program features, which one of eight loop unroll factors (1, 2,...,8)
yields the best performance? The features used included features such as the number of
operands in the loop body, the number of branches in the loop body, the number of indirect
references in the loop body, and the cycle length of the loop body. Of the two machine
learning approaches, SVM performs better than Near Neighbour. Stephenson et al. use
feature selection to narrow down their initial list of 38 features. They explore two feature
selection techniques: Mutual Information Score (MIS) and greedy feature selection. MIS
attempts to quantify the reduction in uncertainty regarding the value of the loop unroll
factors given the value of a particular attribute. The features with the highest MIS values
are chosen. Greedy feature search chooses a feature at a time in the order in which the
features reduce the classifier error. Unlike MIS, greedy feature search takes into account
the effect of multiple features in tandem. The union of the features selected by the two
algorithms were used to generate the final classifier.

Cavazos et al. [0] utilize machine learning to select compiler optimization settings, using
standard x86/x86_64 architecture hardware performance counters as input features. The
performance counters reflect the number of memory accesses, cache hits and misses at
all cache levels, translation lookaside buffer statistics, floating point instruction statistics,
branch instruction statistics, and CPU cycle statistics. Logistic regression, a probabilistic
approach, is used to find a set of compiler optimizations to allow for optimal performance.
Cavazos et al. [6] found that their model results in a set of transformations which allow the
compiler to compile binaries that run substantially faster than when the default aggressive
optimization settings are used.

Fursin et al. [I4] describe MILEPOST GC(T an adaptation of the GCC compiler.
MILEPOST GCC utilizes machine learning to determine which optimization passes to use
when compiling code. The features used are static features extracted from the source
code of the program being optimized (e.g., number of conditional branches, number of
assignment instructions, number of unary operations, number of calls with pointers as
arguments). Programs for the MiBench benchmark suite are used for testing. A training
set of 500 sequences of compiler flags and their values, which were mapped to optimization
passes, was generated by uniform random selection from the overall space of flag settings.
Each of the compiler flag sequences was used to compile each of the benchmarks used for
training, and a speed-up for each benchmark relative to a baseline was recorded. From
these results, a mapping from the training benchmark features to a distribution over good
solutions was learned. For a test (unseen) program, its features were extracted, and the
learned good solution distribution was used to predict the best set of optimization passed
to be used. The prediction process is one-shot, without the need for an iterative search
through the solution space. Fursin et al. found that their adaptive optimization approach
provides, on average, an 11% runtime improvement over the optimization passes GCC uses
by default with the -O3 optimization setting.

Yuki et al. [34] apply machine learning to the loop optimization search space with a
focus on loop tiling. The primary contribution is the set of features selected to select

"http://ctuning.org/wiki/index.php/CTools:CTuningCC

27

http://ctuning.org/wiki/index.php/CTools:CTuningCC

an optimal tile size. Specifically, for every source program, the number of read and write
operations in the innermost loops is added up and classified according whether the memory
operation could make efficient use of the CPU’s linear prefetch capability. Accordingly,
memory operations were classified as either RP (prefetched reads), NP (non-prefetched
reads), RI (invariant reads), WP (prefetched writes), WNP (non-prefetched writes), and
WI (invariant writes). A memory operation was considered invariant if the target memory
location was invariant with respect to the loop iteration; it was considered prefetched if
the CPU could successfully prefetch into cache memory regions addressed in later loop
iterations based on accesses in prior loop iterations, e.g., accessing consecutive words in
memory; and it was considered non-prefetched if linear prefetching could not fetch into
cache memory regions accessed in later iterations, e.g., random access. Yuki et al. find that
the tile sizes selected by using the Artificial Neural Networks machine learning algorithm
when using their features of choice fall within 5% of optimal tile sizes. The features used
by Yuki et al. are also included in the features used to construct the classifier in my work.

The previous work discussed in this section focuses either on coarse-grained classes
(selecting compiler command line options or compiler optimization passes) or on optimizing
a single loop transformation in isolation (loop unrolling or loop tiling). The generation
of a search space consisting of compositions of transformations and selecting the best
transformation composition are not explored.

3.3 Machine Learning and the Polyhedral Model

Park et al. [23] use machine learning to predict the best polyhedral transformation for a
candidate source program. The search space of candidate polyhedral transformations is
limited to transformations of several types supported out-of-the-box by the the Polyhedral
Compiler Collection (PoCC) E] software: loop tiling, loop fusion, loop parallelization, loop
pre-vectorization, and loop unrolling. The transformation types are, in theory, independent
of each other and can be applied in all combinations. The cross product of them all would
result in a search space of several hundred transformations. In reality, my experience sug-
gests that the transformations are not always independent, and not all are well-supported.
This will be discussed in greater detail in Chapter 4. Like Cavazos et al. [6], Park et al. use
hardware performance counters as features. However, the precise list of features used is
not specified.

Park et al. endeavour to predict the runtime of a source program that has been sub-
jected to a sequence of defined polyhedral transformations. Two approaches are then
evaluated to select the optimal transformation to use. In the one-shot approach, the trans-
formation corresponding to the lowest runtime is selected. In the five-shot approach, the
transformations corresponding to the five best runtimes are applied to the source and each
resulting program is compiled and run. The program with the best actual runtime of the
five is selected. T'wo machine learning techniques to predict runtimes are evaluated: linear
regression and Support Vector Machine (SVM) regression.

2http://www.cs.ucla.edu/~pouchet/software/pocc

28

http://www.cs.ucla.edu/~pouchet/software/pocc

Park et al. [23] find that that using the Polyhedral model for loop optimization produces
runtimes 2-3.5x better than those achieved by merely optimizing compiler flags. More-
over, they report their method outperforms the static method utilized by Bondhugula et
al. [4]. Evaluating linear regression and SVM, they find that the former yields a runtime
improvement of 3.16x in the one-shot trial and 3.50x in the five-shot trial, while the run-
time improvement produced by the latter is 3.27x in the one-shot trial and 4.68x in the
five-shot trial. If the optimal transformation is defined as the transformation in the search
space that produces the best runtime, the transformation chosen in the one-shot trial yields
a runtime within 63% of the optimal on average, while the transformation chosen in the
five-shot trial yields a runtime within 84% of the optimal on average. The findings by Park
et al. are discussed in greater detail in Chapter [f

To achieve good performance with the technique proposed by Park et al., it is necessary
to run the program being optimized up to five times. For anything but trivial programs
with small input sizes, this may prove to be excessively time consuming and would serve
as a barrier to the uptake of the technique. This thesis builds on the work by Park et al.,
expanding the set of features to include static features in addition to dynamic features,
formulating the problem as a classification rather than a regression problem to make it
easier to learn, performing feature selection, and using classifier ensembles to improve
classification accuracy.

3.4 Summary

In this chapter, I discussed prior work in the fields of loop optimizations in the polyhedral
model and applying machine learning to loop optimizations. Since a method to select
one-dimensional and multi-dimensional schedules for simple loop nests was introduced
over two decades ago, research has been done into extending schedule generation to larger
classes of programs and generating schedules and loop transformations within a reasonable
timeframe. Machine learning has been used to select compiler arguments to produce faster
code, as well as select loop transformations to apply to source code before passing it through
the compiler.

29

Chapter 4

My Proposal

In this chapter, I discuss my proposal for learning rules to select efficient loop nest trans-
formations for computational kernels. I first discuss the initial set of features constructed
potentially to be predictive of the effect of different transformation combinations on dif-
ferent computational kernels. I then proceed to discuss the procedure used to collect data
and the approach used for evaluation. Finally, I conclude by discussing how the feature
selection was used to reduce the initial feature set to a subset found to be relevant to the
problem at hand.

My proposal is an extension of the work by Park et al. [23]. T use classification machine
learning methods rather than regression models, and to that end formulate the problem
as a classification problem rather than a regression problem. I augment the set of features
with static features in addition to the dynamic features derived from hardware perfor-
mance counter values. I perform feature selection to exclude features that hold little or no
predictive value for the class. Finally, I use classifier ensembles to improve classification
accuracy.

4.1 Initial Feature Set

I start out considering two sets of features. The first set consists of features that are
hardware performance counter values, collected during a run of a binary compiled from the
unmodified program source. Hardware performance counter values are commonly available
in modern microprocessors and can be used in performance tuning and analysis. The second
set consists of features that can be extracted from analyzing the program source structure,
in particular features that characterize the program’s memory access patterns.

4.1.1 Hardware Performance Counters

Modern microprocessors are complex and include advanced pipelining, prefetching, branch
prediction, and instruction level parallelism functionality. This functionality continuously

30

evolves as CPU manufacturers unveil new architectures. Furthermore, the full details of
the CPU architecture is typically a trade secret and therefore not well-documented. As
a result, several well-known rules of thumb aside, it can be difficult to ascertain how a
fragment of source code, or even assembly, will run on a CPU and how changes to the
code structure will affect runtime. In order to make it easier to diagnose performance
issues, modern CPUs have hardware performance counter functionality that can be used
to shed light on the inner workings of the CPU. The counters track discrete events in
the microprocessor pertaining to the operation of the hardware, such as instruction flow,
memory access, and branches. Sampling the counters before and after a program executes
allows us to partially characterize the interactions of the program with the CPU.

Park et al. [23] also use performance counters as machine learning features in their
work on selecting a good polyhedral transformation for a computational kernel. However,
they do not explicitly name the counters that were used. My starting point is counters
related to clock cycles, memory cache events, stalls while waiting for resources, and branch
prediction events. Clock cycle counters allow us to capture the overall CPU time cost
of the program. Memory cache misses are costly, as cache layers closer to the CPU are
faster to access than cache layers that are farther way. A cache miss in a faster cache level
requires a slower memory access in the next level. Resource stalls have a detrimental effect
on runtime since the CPU is unable to do useful computational work while waiting for
a resource request to be satisfied. Branch prediction attempts to correctly predict which
branch of a conditional instruction will be taken. Instructions from the predicted branch
are then loaded into the CPU’s pipeline. If the prediction is wrong, the pipeline must be
flushed, and instructions from the other branch must be loaded instead. As CPU pipelines
grow deeper and more complex, mispredicted branches exact an increasingly higher cost
in terms of wasted cycles. The raw performance counters captured are listed in Table 4.1}

Raw counter values cannot be used as features, since higher counter values can be
indicative of repetitive execution rather than reflect the program structure. Consider
executing an identical loop for 100 iterations and for 200 iterations. The instance that
executes for 200 iterations is likely to have higher counter values across the board, even
though both programs are structurally identical. Therefore, the raw counters are scaled to
generate counter features. Cache misses for a cache layer are divided by the total number
of cache accesses for that layer. Resource stall values are scaled with respect to the overall
number of clock cycles. Values pertaining to instruction counts are scaled with respect to
the total number of instructions retired (instructions executed to completion), resulting in
feature values in the range [0, 1]. The normalized feature values are then discretized. The
discretization was carried out manually for the purposes of this work, but it could be easily
automated. The counter features selected are listed and described in Table [4.21

4.1.2 Memory Operation Features
Further features were added to capture the type of memory accesses in the innermost

loops, as proposed by Yuki et al. [34] in their work on machine learning for loop unrolling.
Innermost loop memory accesses are classified along two dimensions: access type (read or

31

Table 4.1: Performance Counter Measurements Collected

counter description
CPU_CLK_UNHALTED:TOTAL_CYCLES | Total number of core cycles
PAPI_L1.TCA L1 cache accesses

PAPI_L1.TCM L1 cache misses

PAPI_ L2 TCA L2 cache accesses

PAPI_L2_TCM L2 cache misses

PAPI_L3_TCA L3 cache accesses

PAPI_L3_TCM L3 cache misses

MEM _LOAD _RETIRED:LLC_MISS Last level cache misses
RESOURCE_STALLS:ANY Resource related stall cycles
RESOURCE_STALLS:LOAD Load buffer stall cycles
RESOURCE_STALLS:RS_FULL Reservation Station full stall cycles
RESOURCE_STALLS:ROB_FULL Re-order Buffer full stall cycles
INSTRUCTION_RETIRED Number of instructions at retirement
BR_INST_EXEC:COND Conditional branch instructions executed
BR_MISP_EXEC:ANY Mispredicted branches executed
UOPS_RETIRED:STALL_CYCLES Cycles no micro-ops retired

write) and interaction with the automatic prefetcher. Automatic prefetchers in modern
CPU detect a sequence of cache misses with a consistent stride, with either increasing or
decreasing memory addresses, and automatically prefetch memory at the detected stride
interval, often up to a page boundary. This automatic optimization speeds up operations
like accessing array elements in a tight loop. Accordingly, memory accesses are charac-
terized as prefetchable (occurring with a fixed stride), non-prefetchable (lacking a fixed
stride pattern), or loop-invariant (the same address being accessed in all loop iterations).
Combining the two dimensions gives us the following features: the number of instances of
prefetched memory reads, the number of instances of non-prefetched memory reads, the
number of instances of loop-invariant memory reads, the number of instances of prefetched
memory writes, the number of instances of non-prefetched memory writes, and the num-
ber of instances of loop-invariant memory writes. In my experiments, the feature values
for each benchmark were manually determined. However, this feature extraction process
could be automated using, for example, techniques described by Fursin et al. [I4]. The
read values are normalized with respect to the overall number of memory reads, as de-
termined from the performance counter values, yielding a value in the range [0, 1]. The
write values are similarly normalized with respect to the number of writes. The normalized
values are discretized manually. As mentioned previously, the discretization process can
be automated in future work. The list of features is also captured in Table [4.3]

The vector (co,...,c12, Mg, ..., ms) is then referred to as the per-benchmark feature
vector.

32

Table 4.2: Performance Counter Features

feature | counter expression

Co the ratio of L1 cache misses to the number of L1 cache accesses

1 the ratio of L2 cache misses to the number of L2 cache accesses

Cy the ratio of L3 cache misses to the number of L.3 cache accesses

C3 the ratio of total CPU cycles to the number of retired instructions

Cy the ratio of cycles when no instructions were retired to the number of total
CPU cycles

Cs the ratio of L3 cache accesses to the number of total CPU cycles

Ce the ratio of L3 cache misses to the number of total CPU cycles

cr the ratio of all resource-related stall cycles to the number of total CPU cycles

cs the ratio of load buffer stall cycles to the number of total CPU cycles

Co the ratio of stall cycles due to the reservation station being full to the number
of total CPU cycles

€10 the ratio of stall cycles to the reorder buffer being full

c11 the ratio of conditional branch instructions executed to the total number of
retired instructions

C12 the ratio of mispredicted branches executed to the total number of retired
instructions

Table 4.3: Memory Access Features

feature | description

mg number of prefetched memory reads

my number of non-prefetched memory reads
Mo number of loop-invariant memory reads
ms number of prefetched memory writes

My number of non-prefetched memory writes
ms number of loop-invariant memory writes

4.2 Class Value

Supervised machine learning algorithms generally fall into one of two categories: regression
and classification. Regression algorithms predict continuous, real-valued outcomes. Classi-
fication algorithms, on the other hand, predict discrete-valued classes. Binary classification
is a special case of classification, where the class has only two values. The properties of
the class to be learned guide the choice of the machine learning algorithm.

The work by Park et al. [23] uses linear regression and a regression variant of SVM to
predict the ratios of the runtimes of programs subjected to a sequence of loop transforma-
tions to the runtime of the unmodified program (in other words, the speedup or slowdown
caused by applying the transformation). The program predicted to have the fastest run-
time indicates the best sequence of transformations to apply. Regression is used since a
continuous value is being predicted directly.

33

The approach in this thesis is to instead express the problem as a classification problem.
Two benefits to the classification approach are hypothesized: that it will make the problem
easier to learn and reduce the error rate. While it can be argued that a linear regression
evaluation can also be easily incorporated in tools like compilers, both the one-shot and the
five-shot linear regression variants yield relatively poor results, and SVM regression was
required for satisfactory speed improvements. Unlike linear regression, SVM regression
evaluation is complex. To formulate the classification problem, I consider which one of any
two sequences of transformations is preferable for a given source program. One sequence
of transformations is preferable to another if a program that has had that sequence of
transformations applied to it has a faster runtime than a program that has had the other
sequence of transformations applied. I then attempt to use machine learning techniques
to predict which one of any two sequences of transformations is preferable for an arbitrary
program.

More formally, given a source program P and two transformation sequences, Ty and T,
the transformation sequence pair (T4, Tj) is labelled 1 if P has a faster runtime having had
T4 applied rather than having had Tz applied. Otherwise, if P has a faster runtime having
had Tz applied rather than having had T4 applied, the transformation sequence pair is
labelled 0. A row in the training data consists of the feature values for the benchmark, the
transformation sequence pair, and the class of the transformation sequence pair.

Once the classifier is constructed, it is used to choose a transformation sequence as
follows. For a previously unseen program P, our machine learning algorithm attempts
to label all transformation sequence pairs (T4, Tg) for all transformations A and B in
the transformation search space. Subsequently, for every transformation sequence 7, the
number of times a tuple (7,7"), where T is any transformation other than 7, is predicted to
have the label 1 is recorded as score,. The transformation sequence with the highest score
is selected as the best transformation suggested by the machine learning algorithm. In
effect, a voting algorithm is used, with transformations being voted on within the context
of every transformation sequence pair combination. The transformation sequence with the
most votes is considered the winner. This is referred to as pairwise preference ranking or
round robin ranking [13]. Other approaches to combining pairwise preferences exist (e.g.,
algorithms to calculate class probabilities [33]) but are not explored in the context of this
thesis.

A binary classification problem easily lends to learning using decision trees. The simplic-
ity of decision trees makes them amenable to be easily translated to code and subsequently
incorporated into optimizing compilers.

4.3 Data Collection

The benchmarks used to train and test the classifier are taken from Polybench/C E], a
benchmark suite that consists of computational kernels with loop nests that meet the static

"http://www.cs.ucla.edu/~pouchet/software/polybench

34

http://www.cs.ucla.edu/~pouchet/software/polybench

control parts limitations imposed by the polyhedral model. The PAPI library [is used to
collect performance counter values for each benchmark. Each benchmark is compiled using
the gcc compiler version 4.7.2 E] at the highest standard optimization level, —O3 for gcc.
No other gcc flags are used. The benchmarks are then executed. The wall time runtime
and selected hardware performance counter values are recorded. Each benchmark is run
enough times for the sum of the runtimes of the executions to reach at least 10 seconds.
The number of times each benchmark is run is also recorded.

Subsequently, the Polyhedral Compiler Collection (PoCC) E] is used to generate the
transformation sequence search space. PoCC has numerous options for various optimiza-
tions. Similarly to Park et al. [23], T consider the following transformation types:

e Fusion. PoCC supports three fusion settings: nofuse, smartfuse, and maxfuse. How-
ever, experimentation showed that these settings yield unpredictable and inconsistent
results when applied to different benchmarks. For example, it might be expected that
when nofuse is chosen, no fusion transformations at all are applied. This is, indeed,
the case with some benchmarks. With other benchmarks, on the other hand, nofuse
produces the same fusion transformations as smartfuse, while with others still, nofuse
results in some loops being fissioned. The maxfuse setting sometimes has similarly
unpredictable results. The lack of consistency resulted in noisy data that makes it
difficult to learn a classifer. To deal with the inconsistencies, the fusion setting is
always fixed to smartfuse, except in the case of the identity transformation.

e OpenMP. The OpenMP setting is a binary on or off choice. Either OpenMP is
enabled, resulting in the generation of parallel code, or it is disabled, resulting in no
parallelism.

e Tiling. Tiling can be applied at any or all of the first three loop nesting levels. The
tile size at each level could be 1 or 32. This results in 23 = 8 tiling settings.

e Vectorization. The vectorization setting is similarly binary, on or off. As a caveat,
however, PoCC only supports enabling vectorization if tiling is enabled for at least
one loop level.

e Loop unrolling. Three choices for loop unrolling were available: no loop unrolling, a
loop unrolling factor of 4, and a loop unrolling factor of 8.

In addition, the identity transformation is also included as a possible transformation.
The identity transformation does not alter the original source code in any way.

Adding up the identity transformation to the product of two choices for OpenMP,
eight choices for tiling, two choices for vectorization, and three choices for loop unrolling,
and then subtracting the invalid combination of vectorization and no tiling, we have 96
transformations in total.

2http://icl.cs.utk.edu/papi/index.html
3http://gcc.gnu.org/gcc-4.7
“http://www.cs.ucla.edu/~pouchet/software/pocc

35

http://icl.cs.utk.edu/papi/index.html
http://gcc.gnu.org/gcc-4.7
http://www.cs.ucla.edu/~pouchet/software/pocc

PoCC generates one source file per transformation sequence per benchmark. The source
files are then all compiled, generating a binary per transformation sequence per benchmark.
Each binary is executed, and the wall time runtime is recorded. A row of data is then
generated for every pair of transformation sequences in each benchmark. The format of
the row is c¢g, c1, ..., c12, Mg, My, ..., Mg, tdentityy, tilingy, openmpgy, vectorizationy,
unrolly, identity,, tiling,, openmpy, vectorizationy, unrolly, class. The features cg, ¢y,
..., c19 are the discretized performance counter values for the benchmark, and my, ¢4, ...,
mg are the memory feature values for the benchmark. Attributes with subscript 0 pertain
to the first transformation sequence in the pair, while attributes with subscript 1 refer to
the second. Identity is a binary attribute, and its value is 1 if the transformation is an
identity transformation and 0 otherwise. T'iling is an enumerated attribute corresponding
to the tiling setting used in the transformation. Openmp and wvectorization are binary
attributes reflecting the presence or absence of those optimization in the transformation.
The unroll value of unroll is the loop unrolling factor used (8, 4, or 0 for no unrolling).
The feature class is the binary classification. If the runtime of the first transformation in
the pair is less than the runtime of the second transformation, class is 0. Otherwise, it is 1.
The transformations ¢y, t; and tq, tg are treated as distinct pairs, and a separate data row is
generated for each. This is done so as to create a balance in the class values in the training
data and to avoid overfitting. Of course, the two pairs will belong to opposite classes.
The benchmark features are combined with the per-transformation rows to generate the
complete benchmark dataset. Anywhere from one to all of the features may be used.

Once the data is collected, a leave-one-out approach is used to generate decision trees
and to test their effectiveness. For each benchmark, the data sets of all other benchmarks
are used as the training data, while the data set of the benchmark in question is used as the
test data. C4.5[]is used to generate a decision tree from the training data. That decision
tree is then used to classify the test data. The classifications produced by the decision tree
are then processed, with each transformation scored according to how it compares with
other transformations in the test data. For every row, ty is awarded one point if the class
assigned to the row is 0 (the runtime of ¢, is predicted to be lower than the runtime of
t1), and t; is awarded one point if the class of the row is 1. The transformation are then
ordered in descending order according to the number of points awarded to them, and this
ordering reflects the effectiveness of the transformations for the benchmark as predicted by
the decision tree, from best to worst. Ties are broken randomly. To determine the value of
the prediction of the decision tree, the runtime of the top-ranked transformation is looked
up, and the ratio of that runtime to the best runtime of all the transformations is reported.
This is referred to as the one-shot result. Subsequently, the runtime values of the top five
transformations are looked up, and the ratio of the best of the five runtimes to the overall
best runtime is reported as the five-shot result.

Shttp://www.rulequest.com/Personal

36

http://www.rulequest.com/Personal

4.4 Feature Selection

A classifier constructed using all features in the initial set can prove to have an unsatis-
factorily high error rate, possibly due to the presence of irrelevant or redundant features,
which makes constructing an effective classifier more difficult. Two approaches to feature
selection [16] are explored.

In the first approach, a classifier is generated using every individual feature and every
combination of two features. The classifier is evaluated for every benchmark. The runtime
of the transformation sequence obtained as a result of the scoring method described in the
previous section is compared to the expected runtime of a randomly-selected transformation
sequence, obtained using the formula,

1 Z
T Z runtimey,
t=1

where T' is the total number of transformation sequences for the benchmark and runtime;
is the runtime of the binary generated by applying transformation ¢. If applying the
transformation sequence suggested by the classifier results in a slower runtime than the
expected runtime of a transformation selected at random, the classifier is considered to
have failed. A feature is discarded if none of the classifiers generated from it is deemed
successful. This feature selection approach proved ineffective as it turned out that each
feature combination was considered successful for at least one benchmark, which meant
that the approach failed to exclude any features.

In the second approach, a classifier is again generated using every individual feature
and every combination of two features and evaluated for every benchmark. The evaluation
is performed similarly to before, by comparing the runtime of a program generated by
applying the transformation sequence suggested by the classifier to the expected runtime of
a program generated by applying a randomly selected transformation sequence, calculated
as in the first approach. The classifiers are then sorted in order of the number of benchmarks
where the classifier suggested a transformation sequence with a better runtime than the
expected runtime of a randomly selected transformation sequence for the benchmark. For
example, a classifier considered to be successful for 16 benchmarks and unsuccessful for 14
benchmarks will be ranked ahead of a classifier considered successful for 14 benchmarks
and unsuccessful for 16 benchmarks. As shown in Chapter 5, this approach to feature
selection proves effective. The features that were included in the combinations selected by

this approach are listed in Table [4.4]

The two features that appear the most often are the number of L1 cache misses nor-
malized with respect to the number of L1 cache accesses and the number of L3 cache
accesses normalized with respect to total CPU cycles. On the other hand, the number of
L3 cache accesses normalized with respect to L3 cache misses does not appear at all. It
is not immediately obvious why L1 cache misses are significant while L3 cache misses are
not and why overall 1.3 cache accesses are significant while overall LL1 cache accesses are
not. This may be related to architectural peculiarities. It is also interesting to note that

37

Table 4.4: Selected Features

. number of
feature description
appearances
Co ratio of L1 cache misses to L1 cache accesses 8
1 ratio of L2 cache misses to L2 cache accesses 4
C3 ratio of total CPU cycles to the number of retired instructions 3
Cy ratio of cycles when no instructions were retired to total CPU 1
cycles
s ratio of L3 cache accesses to total CPU cycles 6
Cé ratio of L3 cache misses to total CPU cycles 2
cr ratio of all resource-related stall cycles to total CPU cycles 1
C12 ratio of mispredicted branches executed to total retired instruc- 3
tions
my number of non-prefetched memory reads 4
ms number of prefetched memory writes 3
My number of non-prefetched memory writes 2
ms number of loop-invariant memory writes 1

prefetched memory writes are significant, while prefetched memory reads are not. Again,
this may be related to the architecture on which the experiment was run. Such subtleties
regarding feature significance are not intuitive, and they become apparent only as a result
of the feature selection process.

4.5 Classifier Ensembles

Two classifier ensemble construction approaches are explored.

The first approach uses simple voting, with the top n classifiers as determined in the
feature selection stage voting on the classes of the test data. Each classifier’s vote is
weighted equally. As shown in Chapter 5, this ensemble construction performs very well.
A value of 20 is used for n. The value is determined empirically, and it is found that a
value of 20 performs better than a lower value, while values between 20 and 40 all perform
relatively equally well.

Another alternative considered is the final classifier being the result of a vote of the top
n classifiers. The classes selected by the top n classifiers become features used to construct a
new decision tree classifier with C4.5. The format of the data rows for the training and test
data used to construct and evaluate this new classifier is ¢y, co, ..., ¢, tdentityy, tilingo,
openmpyg, vectorizationg, unrolly, identity,, tiling;, openmp, vectorizationy, unrolly,
class. ¢y, ¢, ..., ¢, are the class values predicted for the transformation sequences by the
top n classifiers from the previous stage. The other attribute values represent the trans-
formations applied and the actual class, as before. This approach was found to produce
inferior results to simple voting and was therefore discarded.

38

4.6 Complete Classifier Construction

The end-to-end proposed classifier construction process is described in Algorithm [4.1]

Algorithm 4.1: Classifier Construction

foreach combination of one and two features from cqy, co, ..., ¢, do

foreach benchmark do
Construct a training set from data for all benchmarks excluding benchmark

using the feature combination;

Construct a test set from data for benchmark benchmark using the feature
combination;

Learn a classifier using the constructed training set;

Determine the effectiveness of the classifier for the test set, as described in
the section on feature selection;

end foreach

end foreach

Tally up the number of benchmarks for which the classifier using the feature
combination was judged effective, as described in the section on feature selection;
Sort feature combinations in descending order according to the number of
benchmarks for which they were judged effective;

Take top 20 feature combinations and construct a decision tree from each
combination;

Classify the data using the 20 trees; determine the final class by a vote of all 20
trees;

4.7 Summary

In this chapter, I proposed an approach to learning the best loop transformation sequence
among a finite transformation sequence search space for an arbitrary computational kernel.
I listed the features used as an input to the machine learning algorithm, formulated the task
as a binary classification problem, and described the process of data collection, decision
tree construction, and feature selection.

39

Chapter 5

Evaluation of My Proposal

In this chapter, I present an evaluation of my proposal against a baseline and the current
state-of-the-art approach. I describe the baseline used first. I then proceed to describe my
reproduction of the approach and the results from the work by Park et al. [23]. Finally, I
describe the results obtained using my proposed approach: a vote of multiple decision tree
classifiers.

In all cases, the results are reported in two ways. First, I present the percentage-of-
optimal results, the ratio of the runtime of the benchmark binary obtained by applying
the optimal transformation sequence in the search space to the runtime of a benchmark
binary obtained by applying a transformation sequence selected by the approach being
evaluated. The ratio is expressed as a percentage, with a value of 100% indicating that the
transformation sequence selected is, in fact, the optimal transformation sequence in the
search space. The optimal transformation in the search space is determined by applying
every transformation sequence in the search space to the benchmark source code, running
the resulting binaries, recording the runtimes, and selecting the transformation sequence
corresponding to the binary with the lowest runtime. Second, I present the results as the
ratio of the runtime of the untransformed, or stock, program to the runtime of a benchmark
binary obtained by applying a transformation sequence selected by the approach being
evaluated. This ratio represents the speed-up factor of the transformation selected by the
classifier over the untransformed program. The transformed program is faster than the
stock program if the speed-up factor is greater than 1; conversely, the stock program is
faster than the transformed program if the speed-up factor is less than 1.

5.1 Baselines
Two baselines are used:

1. The runtime of the stock benchmark with no modifications to the source code. In
the subsequent tables and graphs, this value is referred to as identity.

40

2. The expected runtime of a randomly-selected transformation sequence, obtained us-

ing the formula,
1 « ,
T Z runtimes,
t=1

where T' is the total number of transformation sequences for the benchmark and
runtimey is the runtime of the binary generated by applying transformation ¢. In the
subsequent tables and graphs, this value is referred to as expected-random.

5.2 Reproduction of Prior Work

The reproduction of the results by Park et al. [23] of the approaches utilizing linear re-
gression and SVM tries to hew as closely as possible to the methodology outlined in their
paper. The performance counters used as features are listed in Table All counter
values are normalized by dividing them by the number of instructions in each benchmark,
obtained by querying the counter PAPI_ TOT_INS. The transformation sequence search
space used is the reduced search space as described in Chapter 4, needed to accommodate
interactions between different transformations and apparent bugs in the PoCC software.

The performance counter values and runtimes are collected as described in Chapter 4. A
leave-one-out approach is used to evaluate the efficacy of the machine learning approaches,
with the data for one benchmark used for evaluation and the data for the other benchmarks
used for training. The leave-one-out process is repeated once for every benchmark, so that
error rates for all benchmarks can be calculated. For every benchmark, the training set
consists of an entry for every transformation sequence in the search space and has the
format cg, c1, ..., ci9, tiling, openmp, vectorization, unroll, class. cy, ¢1, ..., c13 are
the continuous, non-discretized, normalized performance counter feature values for the
benchmark. Tiling is an enumerated attribute corresponding to the tiling setting used
in the transformation. Openmp and vectorization are binary attributes reflecting the
presence or absence of those optimization in the transformation. The unroll value of unroll
is the loop unrolling factor used (8, 4, or 0 for no unrolling). class the ratio of the runtime
of the benchmark binary obtained by applying the optimal transformation sequence in the
search space to the runtime of a benchmark binary obtained by applying the transformation
sequence corresponding to the row. In other words, the class represents the speed-up or
slowdown of the transformed benchmark relative to the original benchmark. The class is
continuous. Weka [[] 3.7.5 is used for both training and evaluation. Default parameters
are used both for linear regression and for SVM. The output of Weka is predicted runtime
ratios for every transformation sequence for the benchmark used for testing. The predicted
ratios are then sorted in ascending order, from smallest to largest, and this relative order
is taken to be the order of the transformation sequences from best to worst as predicted
by the machine learning process. The class values predicted by Weka are ignored except
to determine this order. In fact, in some cases the class values predicted by Weka were
negative.

http://www.cs.waikato.ac.nz/ml/weka/

41

http://www.cs.waikato.ac.nz/ml/weka/

5.3 Evaluation Methodology for My Approach

A leave-one-out approach [17), pp. 245-247] was used to evaluate the classifier, feature selec-
tion approach, and approach to constructing the classifier ensemble. The overall evaluation
algorithm for the second approach is described in Algorithm

Algorithm 5.1: Feature Selection and Classifier Evaluation

foreach benchmark do
foreach combination of one and two features from cqy, co, ..., ¢, do

foreach benchmark’ excluding benchmark do
Construct a training set from data for all benchmarks excluding

benchmark’ and benchmark using the feature combination;

Construct a test set from data for benchmark benchmark’ using the
feature combination;

Learn a classifier using the constructed training set;

Determine the effectiveness of the classifier for the test set;

end foreach

Tally up the number of benchmarks for which the classifier using the feature
combination was judged effective;

end foreach

Sort feature combinations in descending order according to the number of
benchmarks for which they were judged effective;

Take top 20 feature combinations and construct a decision tree from each
combination;

Construct a final classifier that classifies the data using the 20 trees and
determines the final class by a vote of all 20 trees;

Use final classifier obtained after feature selection to predict best transformation
sequence for benchmark;

Determine the effectiveness of the final classifier for benchmark and report this
value;

end foreach

5.4 Discussion

For both linear regression and SVM, one-shot and five-shot results are reported. One-
shot results evaluate the transformation sequence predicted to be the best by the machine
learning process. Five-shot results take the best runtime of the top five results as predicted
by the machine learning process. The binary corresponding to each of the top five results
is run and its runtime is recorded. The binary that has the best runtime is used.

Table contains percentage-of-optimal results for all benchmarks for the identity
transformation; the expected random selection; and the one-shot and five-shot approaches
for each of linear regression, SVM regression, and decision tree voting. A graph showing
a comparison of the baseline, one-shot, and five-shot results for both linear regression and

42

SVM is shown in Figure 5.1 The results of the reproduction are similar to the results
reported by Park et al. SVM produces better results than linear regression, while the five-
shot approach outperforms the one-shot approach. With the transformations in the search
space ranked in reverse runtime order, the transformation selected using one-shot linear
regression is, on average, in the 73rd percentile; the transformation selected using five-shot
linear regression is, on average, in the 79th percentile; the transformation selected using
one-shot SVM regression is, on average, in the 70th percentile; the transformation selected
using five-shot SVM is, on average, in the 87th percentile; and the transformation selected
using one-shot decision tree voting is, on average, in the 86th percentile. As previously
mentioned, the five-shot approach necessitates running the candidate program five times, a
process which, depending on the runtime of the program, can be unduly time consuming.
The classification and prediction process for each benchmark takes between 0.5 seconds
to 0.7 seconds. This includes the classification time for the 20 trees, the time it took to
convert the pairwise preferences to rankings, and the time it took tally the votes of the
20 classifiers and come up with the final prediction. The derivation of the rankings and
the voting are implemented as proof-of-concept scripts, and an efficient implementation
would likely make the process take even less time. On the other hand, the runtime of
each benchmark when run with an input size of 1024 elements is between 0.5 seconds and
20 seconds, depending on the benchmark. For most benchmarks, the decision tree vote
prediction process takes less time than a single benchmark run, resulting in substantial
time savings over a 5-shot approach.

Figure [5.2] contrasts the percentage-of-optimal one-shot decision tree vote results with
the identity and the expected random selection baselines, as well as with the five-shot
linear regression and SVM results. One-shot decision tree voting performs significantly
better than the identity transformation, the expected runtime for a randomly selected
transformation, and the five-shot linear regression approach. It performs about as well as
the five-shot SVM approach, with the benefits to the decision tree approach being the lack
of necessity to run the candidate program multiple times and the ability to more easily
represent the classifier as a sequence of conditional statements.

The per-benchmark breakdown in Table reveals that while, on average, the one-
shot decision tree outcome is about as good as the five-shot SVM outcome (and therefore
as good as or better than prior state-of-the-art approaches), the different approaches do
better on different benchmarks. For instance, the decision tree approach gets the optimal
transformation sequence (100%) for the covariance benchmark, while the second best
result for that benchmark is 77% with linear regression. Similarly, decision tree voting
gets 100% for seidel-2d, while the second closest is SVM with 61.4% (both one-shot and
five-shot). On the other hand, decision tree voting gets only 55.0% on fdtd-2d, while
both one-shot and five-shot linear regression get 98.7%. Similarly, one-shot decision tree
vote gets 68.2% for jacobi-2d-imper, while one-shot linear regression gets 80.3% and
one-shot SVM gets 98.8%. Examining benchmarks where each approach excels, one-shot
linear regression scores over 90% nine times, five-shot linear regression 13 times, one-shot
SVM 12 times, five-shot SVM 19 times, and one-shot decision tree voting 18 times.

Table contains speed-up results over the identity transformation for every bench-
mark for expected random selection as well as the one-shot and five-shot approaches for

43

each of linear regression, SVM regression, and decision tree voting. Figure presents
these results in bar chart form. The three benchmarks with the largest speed-ups appear
in a separate chart with a different scale so as not to make the results for benchmarks
with more modest speed-ups unreadable. The one-shot decision tree vote speed-up is, on
average, slightly better than the five-shot SVM regression speed-up. However, this result
is not uniform across all benchmarks. Decision tree voting comes very close to the SVM
speed-up result for most benchmarks, outperforming it on some benchmarks and underper-
forming on others. These results show that gcc, even at the highest optimization setting,
does not currently do a satisfactory job at loop optimization and that there are substantial
speed-ups to be gained by employing a polyhedral model optimization pass.

Table 5.1: Performance Counter Measurements Collected for Linear Regression and SVM
Predictions

counter description

PAPI_L1_.TCA | L1 cache accesses

PAPI_L1_.TCM | L1 cache misses

PAPI_L2_.TCA | L2 cache accesses

PAPI_L2_.TCM | L2 cache misses

PAPI_L3_TCA | L3 cache accesses

PAPI_L3_.TCM | L3 cache misses

PAPI_TLB_TL | Total translation lookaside buffer misses
PAPI_TLB_DM | Data translation lookaside buffer misses
PAPI_TLB_IM | Instruction translation lookaside buffer misses
PAPI_RES_STL | Cycles stalled on any resource
PAPI_TOT_IS | Instructions issued

PAPI_.VEC_SP | Single precision vector/SIMD instructions
PAPI_VEC_DP | Double precision vector/SIMD instructions

44

1°98 VL8 ¢0L 6L Vel gva 6°LV oFeraay
906 0°00T 6'G¢ G'8G [VAS] ¢'ce ¢'9¢ Ty
0°00T 0°00T 9'c9 L°LG €24 8TV 808 A[OSLI}
G'68 G¢'06 8'LC 8V¥ Vv 6°CE ¢61 148
0°06 978 SRS 1°¢S €19 89% ¥'ae Sg1ds
G'86 £'86 €'L6 G'86 7'86 176 00 WA
0°00T 7’19 7’19 ¢ 0g 9°6¥ LvS 47 pc1eptes
¢'86 ¢'86 ¢'86 L°66 L'98 €68 7oL 19930p~3a1
£'eq 966 806 0'86 0'86 899 6°T¢ jama
098 966 6°G6 966 9'¢8 €76 769 dupng
0001 ¢'1v eIy 0'6L G'8L 8'1¢ L7499 ny
¢'89 6°86 8'86 908 €08 6'19 ¢6v Todurt-pg-1qodel
1°66 1°66 L'V6 7'v6 8'¢6 6'18 ¢'LL Todurt-p-1qodel
Qe L'EY ¢el vy Vv ¢'0¢ €6 jprunpsurerd
L'€8 0°00T 0°00T | 0°29 899 2799 L€ ATINsag3
2G99 9'86 1796 0°00T LG9 v'cs 8'8¢ TOATIO3
6'96 g'es 1°69 0°00T ¢'86 6°CE V1t W
0°00T 0°00T 0°00T | 674 6°¢9 1°6¢ €1 [reysrem-pLog
£'66 0°00T 0°00T | 6°L6 6°L6 L'76 00 [de-ppy
0°9¢ 8¢9 QLT L°86 1°86 v iy 909 PC-P¥P}
9°LL €18 9LL |98 8¢’ | 069 ¢'6S gordusp
6'L6 L'86 9'86 766 L'86 1°86 ¢'0L utq.mp
L'1¢ 0°00T 999 279 0'ce SIS 9'9¥% waSHIop
0001 QLG 1'S¢ 0'¢L 6'8G £'¢C 87V 9IUBLIBAOGD
8'86 ¥'66 709 709 8'¥4 6°€C | UOT}B[a.LI0D
9'G6 ¢'66 9'G6 9'66 966 €'L6 €89 A[sorotd
0°00T 0°00T L°€¢ 1°89 1°89 9°0¥ 9°¢L 8o1q
0°00T R 80V 1'¥s ¢9y 8'G¢ £€L pe
0°00T 068 1°GL 766 7°66 6°G¥ 06T g
8°LL 0°00T 196 0°00T 6°9L 9V 6°GT g
9J0A 991], | j0Ys-G joys-T | joys-g joys-T | wopuey

UOISIOO(] | QUIYORIN 10300A 110ddng | uorsserdoy reeur | pojoodxy Apuopy remptod

rewnyd() Jo 98rUdID] :PI0A 991, UOISIIS(] PUR ‘INAS ‘UOISSOISY IRSUIT :7°C 9[(R],

45

0¢

1S8Q 0] 1SIOM WOJ) PBLIOS ‘SyIewyousg
Gc 0c Gl 0]} g 0

““““ - Hosmm._E>m
\\\\\\\ 10US |.-WAS
““““““““ 10UsG-J|
““““ loys |-
““““ wopuel-paloadxs
—— Auapi

aurpeseq o) 0} paredwos WAS pue uorssa1doy reour] ‘Tewrido Jo 98eiuodIog :1°G 9Ingig

0l

0¢

0€

oy

0g

09

0L

08

06

00}

lewndo jo abejusdiad

46

0¢

14

1S8Q 0] 1SIOM WOJ) PBLIOS ‘SyIewyousg
0c Gl 0]}

Qo>-o_m:-co_m_om_o
10YSG-WAS
10ysG-J|
wopuel-pajoadxa
Amuaepi

oureseq o) 0} pareduwion 930\ 991, UOISIA(T ‘Tewr}do JO 98RJU0dIID 7 G 9INST

0l

0¢

0€

oy

0g

09

0L

08

06

00}

lewndo jo abejusdiad

47

£€4'¢ €6'¢ 8¢6'¢C c0'¢ ¢cL'C 891 oFeraay
09°¢ L6°¢ 'l ce'e 8C'¢C 8C'1 Ty
¥e'1 iz 2270 1.0 1.°0 Gaeo A[OSLI}
L9V cL'v 'l ¥€'C 91°¢ cL'l 148
¥4'¢ 6¢°C Wl VT SVl ce'l Yg1As
71 or'1 661 171 or'1 Vel WAS
9¢°¢C V'l SVl ST'T LT'T 6C'1T pc1eptes
66T 6¢'T 6¢'T 'l ¢C'l LC'1T 19930p~3a1
29T ¢re V8¢ 20°€ 20°€ 60°C jama
V¢l i 8¢'T i 1¢'1T 9¢'1 dumpny
¢Sl €90 €90 0c'1 0c'1 €60 ny
66T 10°C 10¢ | 791 €9T | 9C'T Todwi-pg-1qooel
8¢'1 RC'1 €C'1 ¢a'l ¢c'l 90°1 Todurt-p-1qodel
297 697 V'l 9LV 9LV LT°C jprunpsurerd
ST'1 9¢'1 9¢'1 16°0 16°0 060 ATITINST
8C'¢C av'e 9¢°¢ Ve 8C'C 1 TOATIO3
168 el 209 6L°8 €98 06°¢ W
oVt oVt ov'T GO'T 830 G¢eo [reysrem-pLog
vl V'l V'l oVt oVt el [de-ppy
60°T i1 G¢eo0 G6'T G6'T ¢80 PC-P¥P}
€T LET €T | €V VT | 9T'T Soxduip
661 ! ov'1 171 ov'1 661 utq.amp
890 GI'¢C V'l Sv'1 69°0 70'T waSHI0p
99°0¢ 8]°TI L8°L 80°GT LT°CI I8V 9IUBLIBAOCD
0¢'6T cvel 0%'TT | O8'TI T1.L°0T | L9V UOT}B[a.LI0
or'1 a1 ov'1 97’1 97’1 IS Axsofotp
9¢'1T 9¢'T 970 ¢6°0 ¢60 Gaéo 8o1q
9¢'1 290 960 ¥.L0 €90 670 pe
ST 897 G6'C ¢a'S ¢S Iv'c wwg
687 6¢°9 809 6¢'9 E8F 08¢ g
9J0A 99d], | j0Ys-G joys-T | joys-q joys-T | wopuey

UOTSIO9(] | oUIyory 10300\ Hoddng | uorsserdoy reoury | pojoodxy remptod

UOT)RULIOJSURIT, A31Uap] I0A0 dn-paadg 9107 991, UOISIIS(] PUR ‘INAS ‘UOISSOISaY IRSUIT (€°C d[(R],

48

Figure 5.3: Speed-up Over Identity Transformation

Linear Regression, 5-shot
SVM Regression, 5-shot
s Decision Tree Vote, 1-shot

¥ ZXTH
AT AT
SO MP

1 Expected Random

,_.__,_

[
bR

|

<

Jojoe4 dn-paadg

5.5 Summary

In this chapter, I presented the results of the decision tree voting approach described in
Chapter 4 and compared them to previous state-of-the-art results first presented by Park et
al. [23]. The results of the decision tree approach rival those of the best approach presented
by Park, five-shot SVM, in terms of efficacy at selecting a transformation sequence yielding
as close to the best runtime as possible, while at the same time the decision tree voting
approach does not require the execution of five binaries to reach that level of efficacy. This
makes decision tree voting more usable in practice, where the kernel being optimized can
be computationally intensive and running it multiple times can be time consuming.

50

Chapter 6

Conclusion

In this chapter, I summarize the highlights of the thesis and discuss some potential avenues
for future work.

6.1 Summary

In recent years, the increasing complexity of CPU pipelines, the decrease in clock speed
growth rates, and the increase in core count have combined to make it more difficult to
write performant computational kernels. An automatic optimization mechanism for com-
putational kernel loop nests would ease the task of software developers by allowing them
to focus on domain-specific considerations and not have to worry about architectural con-
cerns. The optimization mechanism should operate on straightforwardly-written loops and
transform the loops such that they most efficiently utilize the features and constraints of
the architecture where the program will run, while preserving the semantics of the original
source. The Polyhedral Model [10] allows for the generation of semantic-preserving loop
transformations, varying parameters pertaining to loop tiling, fusion, unrolling vecotirza-
tion, and parallelism. Several approaches have been proposed for selecting a transformation
among the sequence that can be generated by applying the Polyhedral Model. Some [4], [5]
are model-driven and construct an analytic cost function which is then minimized, while
others [27 28] make use of the analytic approach where it has proven to work well while
also employing an empirical (trial-and-error) methodology in areas where the model is
found lacking. Finally, Park et al. [23] use machine learning to select a transformation
using hardware performance counters as features. Park et al. explore two machine learn-
ing approaches: linear regression and SVM. In both cases, they attempt to predict the
runtime improvement of a program that has had a particular transformation applied over
the program with no transformations applied. They find that SVM performs better than
linear regression, and that regardless of the machine learning algorithm used, best results
are achieved when the top five transformations recommended by the algorithm are tried
out in practice by running the program with the transformations applied and taking the
transformation corresponding to the best runtime of the five. Needing to run the program

51

five times can be exceedingly time-consuming, depending on the complexity of the program
and the input.

In the thesis, I built on the work by Park et al. and presented an alternative machine
learning approach that achieves results as good as their best results while removing the
need to run the program being optimized five times. With the transformations in the search
space ranked in reverse runtime order, the transformation selected by my classifier was,
on average, in the 86th percentile. Several alterations were made to the approach by Park
et al. First, the problem was expressed as a binary classification problem rather than a
regression problem. Rather than predicting the runtime improvement of a particular trans-
formation, a continous-valued class, I predict which one of two particular transformations
has a faster runtime, a binary class. Second, the hardware performance counter features
are augmented with features derived from the program source code structure. Third, the
continuous feature values are discretized. Fourth, feature selection is performed. Decision
trees are constructed for pairs of features, and the decision trees are evaluated on how
effective they are at predicting transformation utility. The top 20 trees thus selected then
vote on the class corresponding to each set of attribute values, with the attributes values
encapsulating the discretized hardware performance counter values for the unmodified pro-
gram and the transformation. The transformations are then ordered in descending order
according to how many times a particular transformation is predicted to be better than
any other transformation. The top transformation in the list is then taken to be the best
transformation in the search space.

I evaluated my proposal on a benchmark suite selected to be representative of the range
of computational kernels. A leave-one-out approach was utilized both at the feature selec-
tion stage and at the machine learning stage. The transformation selected by my algorithm
was compared to the transformations chosen by the four algorithms presented by Park et
al. In addition, two baseline values were also considered: the identity transformation (the
original program unchanged) and a transformation selected at random. On average, the
transformation selected by my approach was as good as the transformation selected by the
most promising of Park et al.’s approaches, five-shot SVM. However, my approach did not
require running the program to be optimized five times, making the optimization process
less time consuming.

6.2 Future Work

In this thesis, the hardware performance counter values used for features were continuous.
The values were then manually discretized by plotting them in increasing order and looking
for patterns. Automatic discretization mechanisms should be explored.

Different approaches to feature selection can also be explored. When selecting the
decision trees to participate in the final vote, currently the trees are evaluated based on
the number of benchmarks for which the transformation suggested by the tree does better
than the baseline. However, the magnitude of the improvement over the baseline is not
taken into consideration. A tree that selects a transformation that is 1% better than the

52

baseline is considered equivalent to a tree that selects a transformation 50% better than
the baseline. The ranking of the trees could be weighted relative to the improvement over
the baseline.

The voting process could also be altered. Currently, the trees that are selected each
have one vote. Each tree predicts the class by examining the majority value at the leaf
node. Leaf nodes may contain more than one value because the decision tree algorithm did
not find it advantageous to branch further. Therefore, the class returned by the decision
tree will be one both if the leaf node has six 1’s and one 0 and if the leaf node has four 1’s
and three 0’s. Instead, the tree can also report the probability for the class. For example,
in the case of six 1’s and one 0, the probability would be 0.86, while in the case of four
1’s and three 0’s, the probability would be 0.57. Then, each tree’s vote would be weighted
with the probability associated with the class it chooses. In the two example cases, the
weights would be 0.86 and 0.57 for the two trees.

The classifier proposed in this thesis relies on dynamic features, namely, hardware
performance counter values. These features encode both information about the target
architecture for which the program is being optimized and information about the program
itself. To extract these features, the program being optimized must be run once. This
requirement may be a barrier to adoption as it lengthens the overall compilation cycle. One
potential avenue to explore to make the compilation cycle less onerous is the decoupling of
the architecture features from the program features. One could explore the creation of a
short-running program that would only need to be run once per target architecture, rather
than once for every program being optimized, and that would generate the architecture
features in one pass. These architecture features could then be subsequently used in the
optimization process in conjunction with static features extracted from the body of the
program, similar to the static features extracted by Fursin et al. [14].

53

References

1]

2]

Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition,
2010.

Cdric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, A Group, and Inria
Rocquencourt. Putting polyhedral loop transformations to work. In In LCPC16
International Workshop on Languages and Compilers for Parallel Computers, LNCS
2958, pages 209-225, 2003.

M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The poly-
hedral model is more widely applicable than you think. In Proceedings of the In-
ternational Conference on Compiler Construction (ETAPS CC’10), LNCS, Paphos,
Cyprus, March 2010. Springer-Verlag. Classement CORE : A, nombre de papiers
acceptés : 16, soumis : 56.

Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam, Atanas
Rountev, and P. Sadayappan. Automatic transformations for communication-
minimized parallelization and locality optimization in the polyhedral model. In Pro-
ceedings of the Joint European Conferences on Theory and Practice of Software 17th
international conference on Compiler construction, CC’08 /ETAPS’08, pages 132-146,
Berlin, Heidelberg, 2008. Springer-Verlag.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 2008
ACM SIGPLAN conference on Programming language design and implementation,
PLDI 08, pages 101-113, New York, NY, USA, 2008. ACM.

John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle,
and Olivier Temam. Rapidly selecting good compiler optimizations using performance
counters. In Proceedings of the International Symposium on Code Generation and
Optimization, CGO 07, pages 185-197, Washington, DC, USA, 2007. IEEE Computer
Society.

Alain Darte and Frédéric Vivien. Automatic parallelization based on multi-
dimensional scheduling. Research report 94-24, LIP, ENS-Lyon, France, September
1994.

Paul Feautrier. Parametric integer programming. RAIRO Recherche Op’erationnelle,
22, 1988.

o4

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

Paul Feautrier. Some efficient solutions to the affine scheduling problem: I. one-
dimensional time. Int. J. Parallel Program., 21:313-348, October 1992.

Paul Feautrier. Some efficient solutions to the affine scheduling problem. part II.
multidimensional time. 21(6):389-420, December 1992.

Paul Feautrier. Automatic parallelization in the polytope model. In The Data Paral-
lel Programming Model: Foundations, HPF Realization, and Scientific Applications,
pages 79-103, London, UK, 1996. Springer-Verlag.

Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded computing - a VLIW

approach to architecture, compilers, and tools. Morgan Kaufmann, 2005.

Johannes Filirnkranz and Eyke Hiillermeier. Pairwise preference learning and ranking.
In Nada Lavra¢, D. Gamberger, Hendrik Blockeel, and L. Todorovski, editors, Pro-
ceedings of the 14th European Conference on Machine Learning (ECML-03), volume
2837 of Lecture Notes in Artificial Intelligence, pages 145156, Cavtat, Croatia, 2003.
Springer-Verlag.

Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov,
Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, Chris
Williams, Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and Francois
Bodin. MILEPOST GCC: machine learning based research compiler. In GCC Summit,
Ottawa, Canada, 2008. MILEPOST project (http://www.milepost.eu).

Sylvain Girbal, Nicolas Vasilache, Cdric Bastoul, Albert Cohen, David Parello, Marc
Sigler, and Olivier Temam. Semi-automatic composition of loop transformations for
deep parallelism and memory hierarchies. Intl J. of Parallel Programmaing, 34:2006,
2006.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157-1182, March 2003.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference and prediction. Springer, 2 edition, 2009.

Eyke Hiillermeier, Johannes Fiirnkranz, Weiwei Cheng, and Klaus Brinker. Label
ranking by learning pairwise preferences. Artif. Intell., 172(16-17):1897-1916, Novem-
ber 2008.

Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and improving
data locality via loop fusion and distribution. In Proceedings of the 6th International
Workshop on Languages and Compilers for Parallel Computing, pages 301-320, Lon-
don, UK, UK, 1994. Springer-Verlag.

Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism with
multimedia instruction sets. In Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation, PLDI '00, pages 145-156, New
York, NY, USA, 2000. ACM.

95

[21]

[22]

[23]

[24]

[25]

[26]

[28]

[29]

Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, edi-
tor, CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 398-416.
Springer Berlin / Heidelberg.

Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchro-
nization with affine transforms. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL '97, pages 201-214, New
York, NY, USA, 1997. ACM.

Eunjung Park, Louis-Noel Pouche, John Cavazos, Albert Cohen, and P. Sadayappan.
Predictive modeling in a polyhedral optimization space. In Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code Generation and Optimization,
CGO 11, pages 119-129, Washington, DC, USA, 2011. IEEE Computer Society.

Louis-Noél Pouchet. [Iterative optimization in the polyhedral model. PhD thesis, PhD
thesis, University of Paris-Sud 11, Orsay, France, 2010.

Louis-Noél Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iterative op-
timization in the polyhedral model: Part II, multi-dimensional time. In Proceedings
of the 2008 ACM SIGPLAN conference on Programming language design and imple-
mentation, PLDI 08, pages 90-100, New York, NY, USA, 2008. ACM.

Louis-Noel Pouchet, Cedric Bastoul, Albert Cohen, and Nicolas Vasilache. Iterative
optimization in the polyhedral model: Part I, one-dimensional time. In Proceedings of

the International Symposium on Code Generation and Optimization, CGO 07, pages
144-156, Washington, DC, USA, 2007. IEEE Computer Society.

Louis-Noél Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,
and P. Sadayappan. Combined iterative and model-driven optimization in an auto-
matic parallelization framework. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
10, pages 1-11, Washington, DC, USA, 2010. IEEE Computer Society.

Louis-Noél Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,
P. Sadayappan, and Nicolas Vasilache. Loop transformations: convexity, pruning and
optimization. SIGPLAN Not., 46:549-562, January 2011.

Mark Stephenson and Saman Amarasinghe. Predicting unroll factors using supervised
classification. In Proceedings of the international symposium on Code generation and
optimization, CGO ’05, pages 123134, Washington, DC, USA, 2005. IEEE Computer
Society.

lan H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Series in Data Management Sys. Morgan Kaufmann,
second edition, June 2005.

Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Pro-
ceedings of the ACM SIGPLAN 1991 conference on Programming language design and
implementation, PLDI "91, pages 30-44, New York, NY, USA, 1991. ACM.

56

32]

M. Wolfe. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE confer-

ence on Supercomputing, Supercomputing ‘89, pages 655-664, New York, NY, USA,
1989. ACM.

Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates for multi-class
classification by pairwise coupling. J. Mach. Learn. Res., 5:975-1005, December 2004.

Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopadhye, Charles
Anderson, Alexandre E. Eichenberger, and Kevin O’Brien. Automatic creation of
tile size selection models. In Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization, CGO 10, pages 190-199, New York,
NY, USA, 2010. ACM.

57

	List of Tables
	List of Figures
	Introduction
	The Problem
	Contributions of the Thesis
	Organization of the Thesis

	Background
	Polyhedral Model
	Loop Transformations
	Tiling
	Fusion
	Unrolling
	Vectorization

	Machine Learning
	Features and Classes
	Machine Learning Evaluation
	Supervised Machine Learning Algorithms
	Ensembles of Classifiers

	Summary

	Related Work
	Optimizations in the Polyhedral Model
	Using Machine Learning to Select Optimizations
	Machine Learning and the Polyhedral Model
	Summary

	My Proposal
	Initial Feature Set
	Hardware Performance Counters
	Memory Operation Features

	Class Value
	Data Collection
	Feature Selection
	Classifier Ensembles
	Complete Classifier Construction
	Summary

	Evaluation of My Proposal
	Baselines
	Reproduction of Prior Work
	Evaluation Methodology for My Approach
	Discussion
	Summary

	Conclusion
	Summary
	Future Work

	References

