
Design, Modeling, and Nonlinear Dynamics
of a Cantilever Beam-Rigid Body

Microgyroscope

by

Seyed Amir Mousavi Lajimi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2013

c⃝ Seyed Amir Mousavi Lajimi 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

A new type of cantilever beam gyroscope is introduced, modeled, and analyzed. The main struc-
ture includes a cantilever beam and a rigid body attached to the free end of the beam. The model
accounts for the eccentricity, that is the offset of the center of mass of the rigid body relative to the
beam’s free end. The first and second moments of mass and the rotary inertia appear in the equa-
tions of motion and boundary conditions. The common mechanism of electrostatic actuation of
microgyroscopes is used with the difference of computing the force at the center of mass resulting
in the electrostatic force and moment in the boundary conditions. By using the extended Hamil-
ton’s principle, the method of assumed modes, and Lagrange’s differential equations, the equations
of motion, boundary conditions, and the discretized model are developed. The generalized model
simplifies to other beam gyroscope models by setting the required parameters to zero.

Considering the DC and AC components of the actuating and sensing methods, the response is re-
solved into the static and dynamic components. The static configuration is studied for an increasing
DC voltage. For the uncoupled system of equations, the explicit equation relating the DC load and
the static configuration is computed and solved for the static configuration of the beam-rigid body
in each direction. Including the rotation rate, the stationary analysis is performed, the stationary
pull-in voltage is identified, and it is shown that the angular rotation rate does not affect the static
configuration. The modal frequencies of the beam-rigid body gyroscope are studied and the in-
stability region due to the rotation rate is computed. It is shown that the gyroscope can operate in
the frequency modulation mode and the amplitude modulation mode. To operate the beam-rigid
body gyroscope in the frequency modulation mode, the closed-form relation of the observed modal
frequency split and the input rotation rate is computed. The calibration curves are generated for a
variety of DC loads. It is shown that the scale factor improves by matching the zero rotation rate
natural frequencies.

The method of multiple scales is used to study the reduced-order nonlinear dynamics of the oscil-
lations around the static equilibrium. The modulation equations, the “slow” system, are derived
and solved for the steady-state solutions. The computational shooting method is employed to eval-
uate the results of the perturbation method. The frequency response and force response plots are
generated. For combinations of parameters resulting in a single-valued response, the two methods
are in excellent agreement. The synchronization of the response occurs in the sense direction for
initially mismatched natural frequencies. The global stability of the system is studied by draw-
ing phase-plane diagrams and long-time integration of response trajectories. The separatrices are
computed, the jump phenomena is numerically shown, and the dynamic pull-in of the response is
demonstrated. The fold bifurcation points are identified and it is shown that the response jumps to
the higher/lower branch beyond the bifurcation points in forward/backward sweep of the amplitude
and the excitation frequency of AC voltage.

The mechanical-thermal (thermomechanical) noise effect on the sense response is characterized by
using a linear approximation of the system and the nonlinear “slow” system obtained by using the
method of multiple scales. To perform linear analysis, the negligible effect of Coriolis force on the
drive amplitude is discarded. The second-order drive resonator is solved for the drive amplitude
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and phase. Finding the sense response due to the thermal noise force and the Coriolis force and
equating them computes the mechanical-thermal noise equivalent rotation rate in terms of system
parameters and mode shapes. The noise force is included in the third-order equation of the per-
turbation and equation to account for that in the reduced-order nonlinear response. The numerical
results of linear and reduced-order nonlinear thermal noise analyses agree. It is shown that higher
quality factor, higher AC voltage, and operating at lower DC points result in better resolution of
the microsensor.
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Chapter 1

Introduction

1.1 Motivation
Position and orientation sensing are essential parts of various engineering systems such as vehi-
cles, satellites, and aircrafts to correct possible errors in the system output. To identify the position
and the orientation in space, three displacement components along the three axes of the coordinate
system (the linear displacements) and the three rotations about the same axes (the angular displace-
ments) are characterized. Inertial sensors are used to estimate the components of the displacement
vector and the components of rotation. Accelerometers (displacement sensors) and gyroscopes
(rotation rate sensors) constitute the inertial sensors.

The applications of accelerometers and gyroscopes have a long history in the design and engi-
neering of reliable products. A mechanical accelerometer was introduced by Lanchester in 1889
to measure the acceleration in road and railway vehicles [1]. In the 1850s, Foucault performed a
demonstration using a gyroscope to observe the rotation of the Earth [2]. Smaller, cheaper, and
more accurate inertial sensors have been developed since then. The first automotive rotation rate
sensor was put into mass production by Robert Bosch GmbH in 1995 and used in the electronic
stability program (ESP) [3].

The angular rate sensor (yaw rate sensor) of Robert Bosch GmbH was a mechanical sensor in-
cluding a steel cylinder which was actuated and sensed piezoelectrically. With the advancement of
micro and nanotechnologies, new generations of accelerometers and gyroscopes have increasingly
found more applications in various industries. Micromachined inertial sensors, microaccelerome-
ters and microgyroscopes, are currently extensively incorporated in cars to, for instance, active the
safety system, in consumer products such as camcorders to stabilize the picture, and in biomedical
applications to capture the body motion for medical purposes as well as many other applications
[4].

Inertial sensors are self-contained units which measure the displacements and rotations, that is
no external reference is used to estimate the motion [5]. The measured signal is proportional
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to the acceleration, vibration, and shock in accelerometers [6]. The elementary structure of an
accelerometer consists of a support frame, a suspended mass or beam, a spring and a damper.
Depending on the measurement mechanisms, the displacement of the mass relative to the frame or
a secondary effect such as stress in the deformed suspension beam is related to the acceleration or
other desired parameters [7].

Accelerometers have been present in the market for more than three decades and used in high
volumes for more than two decades [8]. Inertial sensors continue to shrink in size to satisfy the
market’s demands. Therefore, new designs and trends are expected to appear in the future. The
new generation of inertial units combines several sensors including accelerometers and gyroscopes
in one package. Automakers are expected to include the new generation of inertial units in all new
cars. It is expected to see an increase in the global revenue of inertial units from $90 million in
2012 to $160 million in 2013 [8].

Gyroscopes, used as rotation rate sensors, are the second largest class of inertial sensors and ex-
pected to be incorporated in the unified inertial sensor packages. In the current market, minia-
ture gyroscopes present a major growing sensor market with various applications from consumer
electronics, and robotics to automotive and navigation systems [9]. To satisfy the resolution and
performance requirements of different applications, gyroscopes’ designs constantly evolve. Gyro-
scopes are classified based on the underlying method to estimate the angular rate of rotation. To
this end, gyroscopes are commonly divided into spinning mass gyroscopes, vibrating gyroscopes,
and optical gyroscopes [10].

The rotating body is a part of spinning mass gyroscopes and therefore requires bearings and other
components which are hard to realize and very expensive to build. Miniaturizing such a complex
structure requires sophisticated tools and methods. The research on this type of gyroscope is
in an early stage and no gyroscope is commercially accessible [11]. The two main groups of
optical gyroscopes are fiber-optic gyroscopes and ring-laser gyroscopes. The underlying working
principle of all optical gyroscopes is the Sagnac effect which infers the rotation rate based on the
phase difference of two counter-rotating light/laser beams. Optical gyroscopes have no moving
parts, however they require external laser sources, complex set-up, and larger units to achieve
higher performance.

Vibratory gyroscopes have no rotating parts, but employ the Coriolis force to couple two modes
of vibration, the drive mode and the sense mode. The vibratory micromachined gyroscopes con-
stitute the most of in-use gyroscopes [4]. In principle, a rotating object under transverse motion
experiences the Coriolis acceleration in the perpendicular direction to the directions of the linear
motion and the rotation axis. Therefore, the energy transfer is controlled by the angular rate of ro-
tation and the drive mode vibration. The drive mode is commonly actuated at a constant amplitude
and frequency and a feature of the sense mode such as amplitude or frequency, depending on the
operation mode, is measured.

Designs of vibratory gyroscopes are constantly evolving to achieve better performance and relia-
bility. In current designs various vibrating elements including beams, plates [12, 13], tuning forks
[14, 15], and shells [16, 17] are used [18]. Variations of these structures are under investigation to
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achieve a high performance and reliable design with lower cost. Vibrating beams relatively, have a
simpler structure reducing the complexity of fabrication and thus the fabrication cost.

1.2 Beam Gyroscopes
The variations of the beam gyroscopes are shown in Figures 1.1(a)-1.1(c). The beam gyroscopes
are divided into beam gyroscopes, beam-mass gyroscopes, and beam-rigid body gyroscopes. The
beam gyroscope comprises a cantilever beam, the beam-mass gyroscope comprises a beam carry-
ing an end mass, and the beam-rigid body gyroscope comprises a cantilever beam carrying a rigid
body (the subject of this thesis). The research on the first two types of beam gyroscopes has been
going for some time. However, beam-rigid body gyroscope has not been designed, modeled, and
investigated in the scholarly literature.

In 1983, O’Connor and Shupe’s patent was published on the first vibrating silicon beam gyroscope
[19]. An electrostatic force near the fundamental natural frequency of the cantilever beam was
used to excite the beam and a piezoresistive element was used to measure the vibration of the
cantilever in the transverse direction. Maenaka et al. investigated a vibrating cantilever beam
rotation rate sensor with square cross-section [20]. They used a piezo-actuator to excite the drive
mode and controlled the drive amplitude by the capacitance change between the beam and the
drive electrodes. The sense mode was detected by capacitance change between the beam and the
bottom electrode. Maenaka et al. concluded that vibratory beam gyroscopes were more sensitive
than other types of gyroscopes.

Seok and Scarton derived the mathematical model of the cantilever beam under distributed (along
the length) electrostatic actuation [21] and studied the eigenvalues of the system. Their study of
the effect of quality factor on the response agrees with the second-order system in that the higher
the quality factor is, the higher the amplitude and the lower the bandwidth are. Although, Li et
al. studied the beam-mass gyroscope experimentally, the mathematical model did not reflect the
presence of the large end mass [22]. Their model used two classic mass-spring oscillators coupled
through the Coriolis term in the sense direction.

An elementary beam-mass gyroscope model was presented by Esmaili et al. [23]. They considered
an Euler-Bernoulli beam under elastic deformation due to electrostatic actuation and the rotation
about the longitudinal direction. However, the description of the electrostatic force was not given
and its effects on the response were neglected. Bhadbhade et al. [24] developed the coupled
flexural-torsional equations of motion for beam-mass system. The gyroscopic term couples the
flexural and torsional equations of motion and gives rise to the torsional deflection. The end mass
was included to enhance the gyroscope performance by amplifying the gyroscopic effect [24].

Mojahedi et al. [25] extended the earlier model of the flexural-flexural vibration of a beam-mass
gyroscope by including the geometric nonlinearity. To derive the equations of motion, they in-
cluded the axial deformation and the in-extensibility condition. Although the static behaviour of
the system was studied by Mojahedi et al., the dynamic behaviour was not investigated. The same
model as [23], was used in [26] including an extra electrode in the sense direction. The structural
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equations of [26] were not different from those used in the previous literature, however the physical
dimensions of the numerical example were in the order of 1 − 100 µm.

Current models become less accurate when increasing the size of the end mass. Various studies
on the flexural vibration of the cantilever beam carrying a large end mass, called a rigid body
now and then, have shown the effects of the first and second moment of the mass, M e and M e2,
and the rotary inertia of the rigid body on the natural frequencies of the beam-rigid body system
[27, 28, 29, 30]. Preliminary studies on the beam-rigid body gyroscope have demonstrated that the
equations of motion and therefore statics, dynamics, and the nonlinear dynamics of the beam-rigid
body gyroscope are modified by the presence of a rigid body [31, 32].

1.3 Operating Modes of Vibratory Gyroscopes
There are three different methods of operation of vibratory gyroscopes to measure the input angular
rate of rotation: the amplitude modulation based method, the frequency modulation based method,
and the direct angle measurement based method. Conventionally, the amplitude of the secondary
vibration, sense axis, is used to estimate the rotation rate. The rotation rate modulates the primary
oscillation and the modulated signal excites the sense motion [33]. As a result, determining the
amplitude of the sense signal computes the angular rate of rotation. To increase the sensitivity
of the gyroscope, which is proportional to the ratio of the variation in the sense amplitude to the
variation in the rotation rate, the natural frequencies of the drive and sense directions are matched;
however, mode matching has undesirable effects such as lowering the bandwidth [33, 34].

Eigenvalues of the gyroscopic systems evolve with the rotation rate in the rotating frame [35, 36].
Consequently, the rotation rate measurement can be performed by measuring the modal frequency
split in the sense direction [36, 37, 38, 39]. The advantages of measuring the input angular rate of
rotation based on the frequency modulation method includes the unlimited bandwidth [40]. Zotov
et al. [37, 38, 39] showed the experimental results of the application of the frequency modulation
method on a silicon MEMS quadruple mass gyroscope (QMG) with ultrahigh quality factor. And,
Kline et al. [40] performed the preliminary analysis of the ring gyroscope operated in the frequency
modulation mode.

The third method to estimate the angular rate of rotation is to measure the inclination angle [41].
The instantaneous inclination angle is determined utilizing the proper relation between the angle
and the read-out signals including the sense and drive displacements [41]. Direct measurement
of the inclination angle has some benefits including an unrestricted bandwidth. The research on
the application of the method is in progress. It was experimentally proved that various modes of
operation can be combined to improve the performance for quadruple mass vibratory gyroscopes
[42, 43].

1.4 Mechanical-Thermal Noise
The thermal equilibrium of a mechanical resonator with its environment at a certain absolute tem-
perature T , requires the presence of a fluctuating force creating thermodynamic fluctuations in the
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Figure 1.1: The vibratory beam gyroscopes: (a) beam gyroscope, (b) beam-mass gyroscope, (c)
beam-rigid body gyroscope. The primary oscillation is along direction (1) and the secondary Cori-
olis force induced motion is along direction (2). The figures are not drawn to scale.

motion of the oscillator [44]. The mechanical-thermal (thermomechanical) noise is caused by the
molecular agitation through the structure and the Brownian motion where the molecules of the
surrounding fluid interact with the structure [45]. Although other noise sources may surpass the
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thermal noise in the macro-scale, for miniaturized sensors the mechanical-thermal noise reaches a
higher noise floor and limits the sensitivity of the device [45, 46].

The mechanical-thermal noise for any mechanical resonator in thermal equilibrium with the sur-
rounding fluid is studied by adding a root mean square (rms) force noise [45, 46, 47]

Fn =
√

4 kB T c BW (1.1)

where kB represents the Boltzman constant (kB = 1.38 × 10−23 JK−1, T the absolute temperature in
Kelvin, c the damping coefficient in newton-seconds/meter, and BW the noise bandwidth defined
by the mechanical resonator or the electronic filtering [46].

Annovazzi-Lodi and Merlo [46] considered the case of the vibratory mass gyroscope and computed
the position fluctuation of the sense mode as the result of mechanical-thermal noise. To compute
the noise equivalent angular velocity, Annovazzi-Lodi and Merlo computed the rotation rate for
a unity signal to noise ratio. Bao [48] arrived at the similar noise equivalent angular velocity for
the vibrating mass gyroscope by equating the Coriolis force with the fluctuating noise force. The
noise equivalent rotation rate, MTNΩ is given by

MTNΩ =
c3/2
√

4 kB T BW
2 M Fe

(1.2)

where M is the mass in kilogram and Fe the excitation force in newton.

Including the effect of frequency mismatch, Leland [49] studied the effects of the thermal noise
employing the method of averaging. To this end, Leland derived the “slow” model based on the
work of Lynch [50] on deriving the system of slowly varying variables of the vibratory gyroscope.
Leland’s single-mass vibratory gyroscope was a linear system of two oscillators with linear cou-
pling through the Coriolis term. To derive the MTNΩ, Leland used the Laplace transform of the
system of equations and solved the algebraic system for the rotation rate in terms of noise force
components. According to Leland the MTNΩ is expressed in the form [49]

MTNΩ =
ωy

2 Aωx Qy

√
kB T
M

(1.3)

where ωy and ωx are the natural frequencies of the mass-spring system in the sense and drive
directions respectively, A the maximum amplitude in the drive direction, and Qy the quality factor
in the drive direction. Currently, the microgyroscope industry requires the estimation of the thermal
noise effect and consequent noise equivalent rotation rate.
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1.5 The Thesis
The cantilever-based microgyroscope that carries an eccentric end rigid body experiences flexural-
flexural deformation and rigid body rotation, see Figure 1.1(c). Two parallel plate capacitors pro-
vide the electrostatic actuation and sense mechanisms. The assumption is that the deformation
is small and the stress-strain relation is linear following Hooke’s law. The structural nonlinearity
is discarded, but the nonlinearity by virtue of the electrostatic field is included in the nonlinear
analysis of the system response. The objectives of the thesis are given in the following subsection.

1.5.1 The Objectives of the Thesis
The main objectives of the thesis are to:

� derive the mathematical model of the beam-rigid body gyroscope considering the properties
of the end rigid body,

� study the static behaviour of the beam-rigid body microgyroscope,

� investigate the modal frequencies of the microgyroscope and demonstrate the operation of
the microgyroscope in the frequency modulation mode,

� derive the “slow” system using a perturbation method, the method of multiple scales, and
study the reduced-order nonlinear behaviour of the system,

� analyze the nonlinear behaviour using the computational shooting method and compare the
results of the method with the perturbation results,

� and perform the mechanical-thermal (thermomechanical) noise analysis using the linear
analysis and the nonlinear analysis.

1.5.2 Mathematical Methods
To develop the equations of motion, the extended Hamilton’s principle is employed in the form of
[51, 52]

δI =
∫ t f

ti

(
δK − δP + δWnc

)
dt = 0, δw(x, t) = 0, t = ti, t f (1.4)

where δK and δP are the variation of the kinetic and potential energies of the system, and δWnc is
the virtual work of the nonconservative forces. The kinetic and potential energies and the noncon-
servative works are computed in terms of the displacements, w(x, t) = 0 and v(x, t) = 0, inserted
in equation (1.4) and the variations are computed. With the assumption that the variations of the
displacements at the initial and final times, ti and t f , go to zero, the total variation, δI, should go
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to zero; therefore, the variation in the displacements, δv and δw, and their first spatial derivatives,
δv′ and δw′, or their coefficients should go to zero at either boundary of the microstructure.

The assumed-mode method is used to derive the discretized system of equations of modal (gen-
eralized) coordinates. To this end, the solution (displacement) is described in the finite series
of admissible functions, which satisfy the geometric boundary conditions, and the time-dependent
generalized or modal coordinates [53]. The kinetic and potential energies are re-expressed in terms
of generalized coordinates by the substitutions of the series approximation into them and the equa-
tions of motion are computed with the help of Lagrange’s equation. The Lagrange’s equation is
given by [51]

∂K
∂Θi
− ∂P
∂Θi
− d

dt

(
∂K
∂Θ̇i

)
+ fi = 0 (1.5)

where Θi is replaced with the modal coordinates p(t) and q(t) to obtain the reduced-order model of
the system. In equation (1.5), the K and P represent kinetic and potential energies in terms of the
generalized coordinates and fi the damping forces.

The reduced-order nonlinear analysis is performed using the method of multiple scales [54, 55,
56]. Employing the method of multiple scales the “slow” system is derived which is used for
the frequency-response and force-response analyses of the systems. The Coriolis, damping, and
the excitation terms are scaled such that they appear at the third order equations. To compute the
steady-state response, the time derivative of the slowly varying variable are set to zero and the roots
of the modulation equations are obtained. To determine the stability of solution, the eigenvalues of
the Jacobian matrix are computed for the points along each branch of the solution.

If at least one eigenvalue of the Jacobian matrix becomes positive, then the equilibrium solution
(the steady-state solution) loses its stability [57]. To plot frequency-response curves, the bifurca-
tion diagram in the plane of the variables, the excitation frequency and the response amplitude, the
excitation frequency is swept from below/above to the above/below the effective natural frequency
and the amplitude of the steady-state response is computed. The turning point or fold bifurcation
points appear where the branch loses its stability, that is an eigenvalue computes to zero, and the
slope of the curve goes to infinity [54].

The full model including the second-order excitation, V2
AC cos(Ωe t)2, the second-order rotation rate,

Ω2, and higher order nonlinearities is studied by using the numerical shooting method [58, 59, 60].
The algorithm converts searching for the periodic solutions to locating the fixed points (equilibrium
points) of

P(x) := Φt0+T (x, t0) − x (1.6)

using the Newton-Raphson algorithm [59]. In equation (1.6), Φt0+T (x, t0) indicates the trajectory
shoots from t0 to t0+T . The stability of the solution is determined via computing Floquet multipli-
ers, that is the eigenvalues of the “monodromay” matrix [58]. For a stable solution all eigenvalues
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remain inside the unit circle on the complex plane. For the fold bifurcation points (the turning
points) and the subsequent loss of stability, an eigenvalues crosses the unit circle through plus 1 on
the real axis [58].

The global stability of the system is further investigated by long-time integration of the equations
of motion, finding the homoclinic orbits (paths) and “separatrices”, determining the basins of at-
traction, and plotting the phase-plane diagrams [57, 61, 62]. Various regions on the phase-plane
are separated from each other by closed separatrices. Changing the main parameters of the sys-
tem results in the appearance and disappearance of the center and focus on the phase-plane and
construction or destruction of homoclinic and heteroclinic paths.

1.6 Outline of the Thesis
The thesis is divided into seven chapters and one appendix. The appendix includes the list of
symbols. The contents of the chapters are described briefly as follows:

� Chapter one: The motivation and the relevant literature are summarized in this chapter. The
subject and objectives of the thesis and the mathematical methods are explained. The syn-
opsis of the thesis are briefly reviewed.

� Chapter two: The equations of motion are derived using the extended Hamilton’s principle.
The reduced-order model of generalized coordinates is obtained using Lagrange’s differen-
tial equations. Simplified forms of the beam-rigid body model including the beam-mass
system are presented. The electrostatic field is modeled and included in the moment and
force boundary conditions.

� Chapter three: The static equations are derived by separating the response into the dynamic
and static components. The solutions of the static equations, that is the static displacements,
are computed for the DC load and the static pull-in voltage are estimated. The linearized
dynamic equations are employed to compute the natural frequencies of the system. It is
demonstrated that the natural frequencies are used to operate the microgyroscope in the
frequency modulation mode.

� Chapter four: The method of multiple scales is used to derive the modulation equations, that
is the “slow” system. The frequency-response and force-response plots are generated by
increasing and decreasing the excitation frequency, Ωe, and the excitation amplitude, VAC, in
the proper regions. The effects of the frequency matching, DC load matching, the damping,
and the excitation amplitude on the reduced-order nonlinear behaviour are investigated.

� Chapter five: The frequency-response and the global stability of the full model including
higher order nonlinearities, the second order excitation, and the second order angular rate of
rotation are studied by using the computational shooting method. The validity of the per-
turbation solution is determined by comparing the results of the two methods. The global
stability of the system is examined by computing the phase-plane diagrams. The jump and
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hysteresis phenomena are investigated by long-time integration of the system near bifurca-
tion points.

� Chapter six: The mechanical-thermal noise response of beam-rigid body vibratory gyro-
scope is characterized. The mechanical-thermal noise equivalent rotation rate is computed
by using the linear approximation of the system response and the nonlinear “slow” system.
The numerical results of the two methods are computed and compared to corroborate the
conclusions.

� Chapter seven: The summary of the thesis and corresponding conclusions are outlined, some
suggestions to improve the design are provided, and the future works are listed.
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Chapter 2

Mathematical Models

2.1 Preview
In this chapter, the governing equations of motion of a cantilever beam carrying an end rigid body
undergoing gyroscopic motion under transverse electrostatic forcing are derived. In the following
sections, a variational approach based on the extended Hamilton’s principle is used to obtain the
governing differential equations of motion of the structure. To acquire the discretized equations
of the motion, the method of assumed modes is employed. It is shown how the end rigid body
modifies the dynamic equations of motion. Versions of the equations of motion for a point mass
and a point mass located at a distance from the beam’s end are presented. The equations are
equivalently applicable to the macro-, micro-, and nano-scale problems.

2.2 Beam Kinematics
To derive the equations of motion and the discretized model, kinetic and potential energies are
computed first. To this end, the velocity vector at each point on the cross section along the length
of beam is derived. It is assumed that the cantilever beam does not undergo large deformations
and nor does it experience large strains. Therefore, the geometric and material nonlinearities are
not taken into consideration in the current mathematical formulation of the problem. Thus, it is
assumed that the beam is a linear elastic structure; however, rotation is accounted for in computing
the cross sectional angular rotation rate.

The beam is attached to a frame rotating with a constant angular velocity (rotation rate) which
introduces gyroscopic and centripetal effects to the system dynamics. Therefore, the flexural de-
formations of the beam in two perpendicular directions are coupled via the rotational speed of the
base. The end rigid body is a large mass which considerably affects the kinetic energy of the sys-
tem. The kinematic variables and curvature do not vary along the length of the end rigid body. In
Figure 2.1 a schematic of the system is presented.

To study the kinematics of the beam-rigid body system, three coordinate systems are introduced to
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Figure 2.1: Schematic of the beam-rigid body microgyroscope and the electrodes. The figure is
not drawn to scale

define the motion of the system: the inertial frame, the base frame, and the cross sectional frame.
In Figure 2.2, all three frames are depicted in arbitrary positions. The base frame rotates relative
to the inertial frame and the cross sectional frame follows the flexural motion of the beam. The
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Figure 2.2: The inertial frame and auxiliary coordinate systems.
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(X,Y,Z) denote the inertial frame with orthonormal unit vectors (eX, eY , eZ), (x, y, z) represents the
base-attached coordinate system with orthonormal unit vectors (ex, ey, ez) and (eξ, eη, eζ) describes
the unit vectors of the sectional local coordinates (ξ, η, ζ).

The equation of motion and boundary conditions are described in the base coordinate system. For
an arbitrary point p on the cross section, see Figure 2.3, the position vector relative to the local
cross section coordinate frame Fs is defined as

R
Fs

p = η eη + ζ eζ (2.1)

where η and ζ denote the coordinates of p in cross sectional reference frame Fs, see Figure 2.3.
The origin of base frame Fb relative to the inertial frame is positioned at R

Fa
o, see Figure 2.2, defined

by

R
Fa

o = Xo eX + Yo eY + Zo eZ . (2.2)

Upon deformation cross section initially positioned at x = ℓ moves to

R
Fb

s = (ℓ + u(ℓ, t)) ex + v(ℓ, t) ey + w(ℓ, t) ez (2.3)

where u(ℓ, t), v(ℓ, t) and w(ℓ, t) describe the axial and flexural displacements relative to the base
frame Fb in the x, y and z directions. The beam has a uniform cross section and material prop-
erties along the length. Consequently, the center of mass and area centroids coincide along the
beam length and the cross sectional coordinate system, (ξ, η, ζ), at any cross section is such that
eξ is aligned with the neutral axis of the beam and points outward. Computing the velocity vec-

p

s

eξ

eζ

eη

Figure 2.3: The sectional frame and the arbitrary point p on the cross section.
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tor at the origin of cross sectional frame (coinciding with the centroid of cross sectional area) is
accomplished through

d
dt

R
Fa

s =
d
dt

R
Fa

o +
d
dt

R
Fb

s + Ω × R
Fb

s (2.4)

where
d
dt

R
Fa

s represents the velocity vector for a point on the neutral axis of the beam’s cross section

relative to the inertial frame Fa, andΩ describes the angular velocity of the base coordinate system.

In equation (2.4),
d
dt

R
Fa

o and
d
dt

R
Fb

s, the time derivative of position vectors, are computed in Fa and

Fb, respectively. By setting R
Fa

o = 0, we assume that the base frame and the inertial frame always

coincide at their centers.

Similarly, for the arbitrary point p on the cross section, the velocity vector computes to

d
dt

R
Fa

p =
d
dt

R
Fa

s +
d
dt

R
Fs

p + ω × R
Fs

p (2.5)

where ω denotes the cross sectional angular velocity vector. The angular velocity vectors of the
base and the cross section are given by:

Ω = Ωx ex + Ωy ey + Ωz ez (2.6)

and

ω = ωx ex + ωy ey + ωz ez (2.7)

in the base frame Fb or
(2.8)ω = ωξ eξ + ωη eη + ωζ eζ

in the cross sectional local frame Fs. Substituting equations (2.1), (2.3), (2.4) into equation (2.5),
using equations (2.6) and (2.8), and assuming that Fb does not translate, that is the base only
rotates, the velocity vector at an arbitrary point p on the cross section is given by

Ṙ
Fa

p =u̇(ℓ, t) ex + v̇(ℓ, t) ey + ẇ(ℓ, t) ez

+
(
Ωx ex + Ωy ey + Ωz ez

)
×

(
(ℓ + u(ℓ, t)) ex + v(ℓ, t) ey + w(ℓ, t) ez

)
+

(
ωξ eξ + ωη eη + ωζ eζ

)
×

(
η eη + ζ eζ

)
(2.9)

where overdot ˙( ) denotes differentiation with respect to time.

To compute the velocity vector, equation (2.9), the rotation vector ω is computed first. Each
cross section of the beam undergoes translation and rotation due to elastic deformation and rigid
body motion. To characterize the rotation associated with the cross section, the 3-2-1 Euler angle
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convention is used mapping the initial configuration to the final configuration.

Therefore, using the 3-2-1 body-fixed Euler angle convention, the first rotation ψ is about the
current ez-axis, parallel to beam’s transverse axis, and takes (x, y, z) to (x′, y′, z′), see Figure 2.4.
The second rotation θ is about y′ and maps (x′, y′, z′) to (x′′, y′′, z′′), and the final rotation ϕ is
about x′′ and takes (x′′, y′′, z′′) to the (x′′′, y′′′, z′′′) = (ξ, η, ζ) coordinate system where the ξ-axis
is aligned with the neutral axis of the beam and is perpendicular to the cross section of the beam.
The four sets of unit vectors are related to each other through the transformation matrices as:

ex′

ey′

ez′

 = Tψ


ex

ey

ez

 (2.10)

where

Tψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 , (2.11)


ex′′

ey′′

ez′′

 = Tθ


ex′

ey′

ez′

 (2.12)
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Figure 2.4: Representation of the Euler angles and the cross sectional frame.
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where

Tθ =


cosθ 0 − sinθ

0 1 0

sinθ 0 cosθ

 (2.13)

Thus, 
ex′′

ey′′

ez′′

 = Tθ Tψ


ex

ey

ez

 (2.14)

And the final rotation about x′′-axis is defined by
ex′′′

ey′′′

ez′′′

 = Tϕ


ex′′

ey′′

ez′′

 (2.15)

where

Tϕ =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

 (2.16)

Therefore, 
ex′′′

ey′′′

ez′′′

 = Tϕ Tθ Tψ


ex

ey

ez

 (2.17)

or 
eξ
eη
eζ

 = T


ex

ey

ez

 (2.18)

where

T =Tϕ Tθ Tψ

=


cosθ cosψ cosθ sinψ − sinθ

sinϕ sinθ cosψ − cosϕ sinψ sinϕ sinθ sinψ + cosϕ cosψ sinϕ cosθ

cosϕ sinθ cosψ + sinϕ sinψ cosϕ sinθ sinψ − sinϕ cosψ cosϕ cosθ

 (2.19)
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The cross sectional angular velocity vector ω is expressed in the form

ω =Ωx ex + Ωyey + Ωz ez + ψ̇ez + θ̇ey′ + ϕ̇ex′′

=ωξ eξ + ωη eη + ωζ eζ (2.20)

Substituting for ex, ey and ez in equation (2.20) using equations (2.14) and (2.18), the following
relations for sectional angular velocity in the local frame are obtained:

ωξ =Ωx cosθ cosψ +Ωy cosθ sinψ −Ωz sinθ −ψ̇ sinθ +ϕ̇ (2.21)

ωη =Ωx

(
sinϕ sinθ cosψ − cosϕ sinψ

)
+ Ωy

(
sinϕ sinθ sinψ + cosϕ cosψ

)
+ Ωz sinϕ cosθ +ψ̇ sinϕ cosθ +θ̇ cosϕ (2.22)

ωζ =Ωx

(
cosϕ sin (θ) cosψ + sinϕ sinψ

)
+ Ωy

(
cosϕ sinθ sinψ − sinϕ cosψ

)
+ Ωz cosϕ cosθ +ψ̇ cosϕ cosθ −θ̇ sinϕ (2.23)

Substituting equations (2.21)-(2.23) into equation (2.9) and using equations (2.18)-(2.19), the ve-
locity vector of the point p on the cross section is expressed in the form

Ṙ
Fa

p =

(
v̇ cosθ sinψ +

(
Ωyw −Ωzv

)
cosθ cosψ −ẇ sinθ −

(
Ωxv −Ωy (ℓ + u)

)
sinθ

+

(
Ωx

(
sinϕ sinθ cosψ − cosϕ sinψ

)
+ Ωy

(
sinϕ sinθ sinψ + cosϕ cosψ

)
+ Ωz sinϕ cosθ

+ψ̇ sinϕ cosθ +θ̇ cosϕ
)
ζ −

(
Ωx

(
cosϕ sinθ cosψ + sinϕ sinψ

)
+ Ωy

(
cosϕ sinθ sinψ − sinϕ cosψ

)
+Ωz cosϕ cosθ +ψ̇ cosϕ cosθ −θ̇ sinϕ

)
η +

(
Ωz (s + u) −Ωxw

)
cosθ sinψ +u̇ cosθ cosψ

)
eξ(

ℓ
(
u̇

(
sinϕ sinθ cosψ − cosϕ sinψ

)
−

(
Ωx cosθ cosψ +Ωy cosθ sinψ −Ωz sinθ −ψ̇ sinθ +ϕ̇

)
ζ

+
(
Ωyw −Ωzv

) (
sinϕ sinθ cosψ − cosϕ sinψ

)
+ ẇ sinϕ cosθ +

(
Ωz (ℓ + u) −Ωxw

) (
cosϕ cosψ

+ sinϕ sinθ sinψ
)
+ v̇

(
sinϕ sinθ sinψ + cosϕ cosψ

)
+

(
Ωxv −Ωy (ℓ + u)

)
sinϕ cosθ

))
eη(

ℓ
(
u̇

(
cosϕ sinθ cosψ + sinϕ sinψ

)
+ ẇ cosϕ cosθ +

(
Ωx cosθ cosψ +Ωy cosθ sinψ −Ωz sinθ

−ψ̇ sinθ +ϕ̇
)
η + v̇

(
cosϕ sinθ sinψ − sinϕ cosψ

)
+

(
Ωyw −Ωzv

) (
cosϕ sinθ cosψ + sinϕ sinψ

)
+

(
Ωz (ℓ + u) −Ωxw

) (
cosϕ sinθ sinψ − sinϕ cosψ

)
+

(
Ωxv −Ωy (ℓ + u)

)
cosϕ cosθ

))
eζ (2.24)

which gives the full description of the velocity vector at any point on the cross section of the
beam along its length. However, substitution of equation (2.22) in the kinetic energy expression
and applying the extended Hamilton’s principle or Lagrange’s equations results in the nonlinear
transcendental equations of motion which hardly present any analytical solution and suffer from
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instability in numerical solution. Therefore, the rotation angles are described in terms of displace-
ments and trigonometric terms replaced with their equivalent Taylor’s expansion.

An element of the beam’s neutral axis in the undeformed and deformed positions are shown in
Figure 2.5. Displacement vectors in general are described with

r
Fb
ℓ = u(ℓ, t) ex + v(ℓ, t) ey + w(ℓ, t) ez (2.25)

r
Fb
ℓ+δℓ = u(ℓ + δℓ, t) ex + v(ℓ + δℓ, t) ey + w(ℓ + δℓ, t) ez (2.26)

Bending about z-axis translates the element δℓ to δ̂ℓ, thus the rotation angle ψ is computed to

ψ = arctan
v(ℓ + δℓ, t) − v(ℓ, t)

δℓ + u(ℓ + δℓ, t) − u(ℓ, t)

≈ arctan
v′(ℓ, t)

1 + u′(ℓ, t)
(2.27)

where higher order terms are negelected upon expanding v(ℓ + δℓ, t) and u(ℓ + δℓ, t) in a Taylor
series. A second transformation carries δ̂ℓ to ˆ̂δℓ which is obtained from

x

y

z

ℓ

ℓ+ δℓ

δℓ

r
F
b
ℓ

ψ

δ̃ℓ

θ

˜̃
δℓ

r

Fb

ℓ+δℓ

Figure 2.5: An element of the beam’s neutral axis in the undeformed and deformed configurations.
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θ = arctan
w(ℓ + δℓ, t) − w(ℓ, t)

δ̂ℓ

= arctan
w(ℓ + δℓ, t) − w(ℓ, t)√(

δℓ + u(ℓ + δℓ, t) − u(ℓ, t)
)2
+

(
v(ℓ + δℓ, t) − v(ℓ, t)

)2

≈ arctan
w′(ℓ, t)(

1 + u′(ℓ, t)
)2
+ v′(ℓ, t)2

. (2.28)

Equations (2.27) and (2.28) are used to reduce the trigonometric terms in equation (2.24) to poly-
nomials in the spatial derivatives of the displacements. To this end, the following expansions about
the undeformed position up to the fourth order are employed

sinψ = v′ − v′ u′ − 1
2

v′3 + v′ u′2 +
3
2

v′3u′ − v′ u′3 (2.29)

cosψ = 1 − 1
2

v′2 + v′2u′ − 3
2

v′2u′2 +
3
8

v′4 (2.30)

sinθ = −w′ + w′ u′ − w′ u′2 +
1
2

w′3 +
1
2

w′ v′2 + w′ u′3 − 3
2

w′3u′ − 3
2

w′ v′2u′ (2.31)

cosθ = 1 − 1
2

w′2 + w′2u′ − 3
2

w′2u′2 +
1
2

w′2v′2 +
3
8

w′4 (2.32)

sinϕ = ϕ −
1
6
ϕ3 (2.33)

cosϕ = 1 − 1
2
ϕ2 +

1
24

ϕ4 (2.34)

As a side note, replacing the trigonometric expressions in equation (2.19) with their polynomial
counterparts, equations (2.29)-(2.34), results in the transformation matrix in terms of axial, flexu-
ral, and torsional displacements.

Substitution of equations (2.29)-(2.34) in equation (2.24) and neglecting terms of order four and
higher results in the velocity expression

Ṙ
Fa

p =

(((
w′ − w′ u′ − φ v′

)
η − (

v′ − v′ u′ + φw′
)
ζ − w v′ + v w′

)
Ωx

+

(w′ v′ + φ) η + (
1 − 1

2
φ2 − 1

2
v′ 2

)
ζ + (ℓ + u)

(
u′ − 1

)
w′ + w

Ωy

+

(1
2
φ2 +

1
2

w′ 2 − 1
)
η + (ℓ + u)

(
1 − u′

)
v′ − v + φζ

Ωz

+
(

v̇′ u′ − φ ẇ′ + v′ u̇′ − v̇′
)
η +

(
ẇ′ u′ + φ v̇′ + w′ u̇′ − ẇ′

)
ζ + u̇ + ẇ w′ + v̇ v′

)
eξ
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+

(1
2

v′ 2
+

1
2

w′ 2 − 1
)
ζ − w + φ v

Ωx +
((

v′ u′ − v′
)
ζ − (ℓ + u)φ − w v′

)
Ωy

+

( w′ u′ − w′
)
ζ + (ℓ + u)

(
1 − 1

2
v′ 2 − 1

2
φ2

)
+ v v′

Ωz

− (
φ̇ + v̇′ w′

)
ζ + v̇ − u̇ v′ + ẇφ

)
eη

+

(1 − 1
2

w′ 2 − 1
2

v′ 2
)
η + wφ + v

Ωx

+

( v′ − v′ u′
)
η + (ℓ + u)

(
1
2

w′ 2
+

1
2
φ2 − 1

)
w w′

Ωy

+
((

w′ − w′ u′
)
η − (ℓ + u)

(
φ + v′ w′

)
+ v w′

)
Ωz +

(
φ̇ + v̇′ w′

)
η − u̇ w′ + v̇

(
1 − φ) )

eζ
(2.35)

For a beam under uniaxial rotation about its longitudinal direction, Ωy and Ωz are zero, resulting in

Ṙ
Fa

p =

(((
w′ − w′ u′ − φ v′

)
η − (

v′ − v′ u′ + φw′
)
ζ − w v′ + v w′

)
Ωx

+
(

v̇′ u′ − φ ẇ′ + v′ u̇′ − v̇′
)
η +

(
ẇ′ u′ + φ v̇′ + w′ u̇′ − ẇ′

)
ζ + u̇ + ẇ w′ + v̇ v′

)
eξ

+

(1
2

v′ 2
+

1
2

w′ 2 − 1
)
ζ − w + φ v

Ωx −
(
φ̇ + v̇′ w′

)
ζ + v̇ − u̇ v′ + ẇφ

 eη

+

(1 − 1
2

w′ 2 − 1
2

v′ 2
)
η + wφ + v

Ωx +
(
φ̇ + v̇′ w′

)
η − u̇ w′ + v̇

(
1 − φ) eζ (2.36)

Additionally, it is assumed that the torsional and axial rigidity is as high such that the frequency
of excitation cannot excite the torsional and axial modes. Therefore, we set u and φ and their
derivatives to zero and find that

Ṙ
Fa

p =
((

w′ η − v′ ζ − w v′ + v w′
)
Ωx − v̇′ η − ẇ′ ζ + ẇ w′ + v̇ v′

)
eξ

+

(1
2

v′ 2
+

1
2

w′ 2 − 1
)
ζ − w

Ωx − v̇′ w′ ζ + v̇

 eη

+

(1 − 1
2

w′ 2 − 1
2

v′ 2
)
η + v

Ωx + v̇′ w′ η + v̇

 eζ (2.37)

which describes the velocity at an arbitrary point on the section along the length of the beam pro-
viding the negligibility of axial and torsional deformations and the uni-axiality of rotation vector.

20



2.3 Kinetic Energy
The kinetic energy has two components; that of the beamK

B
and that of the end rigid bodyK

M
. The

kinetic energy of beam is defined as

K
B
=

∫ L

0
m Ṙ
Fa

p · Ṙ
Fa

p dx (2.38)

where m represents the mass per unit length of the beam with units of kg m−1. Substituting for Ṙ
Fa

p

in equation (2.38) using equation (2.37) gives the kinetic energy per unit length of the beam

K
B
=

1
2

mΩ2
(
v2 + w2

)
+ mΩ (v ẇ − w v̇) +

1
2

m
(
ẇ2 + v̇2

)
− 1

2
Ω2

(
J
B
ηη

(
w′2 − 1

)
+ J

B
ζζ

(
v′2 − 1

))
+ J

B
ηηΩ

(
v̇′ w′ + ẇ′ v′

)
+

1
2

J
B
ηη ẇ′2 +

1
2

J
B
ζζ v̇′2 (2.39)

where

J
B
ηη =

∫ a/2

−a/2

∫ b/2

−b/2
ρζ2 dζ dη (2.40)

J
B
ζζ =

∫ b/2

−b/2

∫ a/2

−a/2
ρη2 dη dζ (2.41)

represent rotary inertia of beam and ρ represents the volume mass density in units of kg m−3, and
a and b denote the thickness and width of beam’s cross section respectively. The subscript x is
eliminated from Ωx in the interest of clarity of notation.

The kinetic energy of the end rigid body is given by

K
M
=

1
2

M Ṙ · Ṙ + Ṙ ·
(
ω(L, t) ×

∫
M
β dM

)
+

1
2
ω(L, t) ·

∫
M
β × (ω(L, t) × β) dM (2.42)

where M is the total mass of the end body, R the position vector of an arbitrary reference point on
the body chosen to coincide with the end of the beam relative to the base frame, that is Ṙ

Fa
p evaluated

at ℓ = L, ω(L, t) the angular velocity of the end rigid body obtained from the angular velocity of
the beam at L, and β the position vector of an arbitrary point in the end rigid body drawn from the
end of the beam to the point.

Substitution of equations (2.29)-(2.34) in equations (2.21)-(2.23) and the resulting equation and
equation (2.37) in equation (2.42) gives the final form of the kinetic energy of the end rigid body
as

K
M
=

1
2

M
(
ẇ2 + v̇2 + 2 e

(
ẇ ẇ′ + v̇ v̇′

)
+ e2Ω2

(
w′2 + v′2

)
+ Ω 2

(
v2 + w2

)
+ e2

(
ẇ′2 + v̇′2

)
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−2Ω (w v̇ − v ẇ ) + 2 e Ω2 (
w w′ + v v′

)
+ 2 eΩ

(
v ẇ′ − w v̇′

)
+ 2Ωe2 (

v′ ẇ′ − w′ v̇′
)

−2 eΩ
(
v̇ w′ − ẇ v′

))
+

1
2

J
M
ηη

(
ẇ′2 + Ω 2v′2 + 2Ωẇ′ v′

)
+

1
2

J
M
ζζ

(
v̇′2 + Ω 2w′2 − 2Ω v̇′w′

)
− 1

2
J
M
ξξ

(
Ω 2 w′2 + Ω2v′2 − Ω2 − 2Ω v̇′ w′

)
. (2.43)

In equation (2.43) J
M
ξξ, J

M
ηη, and J

M
ζζ represent the principal mass moments of inertia of the end rigid

body relative to the center of mass of the body and are given by

J
M
ξξ =

$
V
ρ
(
ζ2 + η2

)
dv (2.44)

J
M
ηη =

$
V
ρ
(
ξ2 + ζ2

)
dv (2.45)

J
M
ζζ =

$
V
ρ
(
ξ2 + η2

)
dv (2.46)

where integrations are performed on the volume of the end rigid body V . By setting Ω equal to
zero in equations (2.39) and (2.43) the form of the kinetic energy for a beam carrying an eccentric
end rigid body experiencing flexural-flexural, but not gyroscopic motion, are obtained:

K
B
=

1
2

m
(
ẇ2 + v̇2

)
+

1
2

J
B
ηη ẇ′2 +

1
2

J
B
ζζ v̇′2 (2.47)

and

K
M
=

1
2

M
(
ẇ2 + v̇2 + 2 e

(
ẇ ẇ′ + v̇ v̇′

)
+ e2

(
ẇ′2 + v̇′2

))
+

1
2

J
M
ηη ẇ′2 +

1
2

J
M
ζζ v̇′2. (2.48)

Furthermore, to obtain the kinetic energy for the in-plane flexural displacement, one bending mo-
tion is set to zero, that is v ≡ 0 or w ≡ 0, in equations (2.47) and (2.48). To compute the kinetic
energy expressions for a beam carrying an end point mass, a common configuration of microgy-
roscopes, the eccentricity e and the mass moment of inertias are set to zero in equation (2.43)
obtaining

K
M
=

1
2

M
(
ẇ2 + v̇2 + Ω 2

(
v2 + w2

)
− 2Ω (w v̇ − v ẇ )

)
. (2.49)

Conceptually the end mass can be placed further away from the end of the beam and connected to
the beam’s end via a massless element. For this particular case, equation (2.43) simplifies to

K
M
=

1
2

M
(
ẇ2 + v̇2 + 2 e

(
ẇ ẇ′ + v̇ v̇′

)
+ e2Ω2

(
w′2 + v′2

)
+ Ω 2

(
v2 + w2

)
+ e2

(
ẇ′2 + v̇′2

)
−2Ω (w v̇ − v ẇ ) + 2 e Ω2 (

w w′ + v v′
)
+ 2 eΩ

(
v ẇ′ − w v̇′

)
+ 2Ωe2 (

v′ ẇ′ − w′ v̇′
)

−2 eΩ
(
v̇ w′ − ẇ v′

))
. (2.50)
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In the following analysis, the general form of kinetic energy expressions in equations (2.39)
and (2.43) are employed to derive the equations of motion, boundary conditions, and the dis-
cretized system of equations of the beam-rigid body gyroscope.

2.4 Potential Energy
The potential energies of the system include the elastic potential energy due to flexural-flexural
deformation of the beam and the electrostatic potential energy of the electrostatic field between the
pairs of drive and sense electrodes and the end rigid body where the electrostatic force acts. The
elastic energy is given by

P
B
= −1

2

∫ L

0
E Iζζ v′′2 dx − 1

2

∫ L

0
E Iηη w′′2 dx, (2.51)

where Iζζ and Iηη respectively represent the cross sectional second moment of area about ζ and η
axes and E represents the Young’s modulus. Indicating the electrodes’ width in the sense and drive
directions by hv and hw, the electrostatic potential energy is defined as

P
E
=

1
2
ϵ ev hv

Vv
2

gv − v(L, t) − e v′(L, t)
+

1
2
ϵ ew hw

Vw
2

gw − w(L, t) − e w′(L, t)
, (2.52)

where ev and ew denote the length of sense and drive electrodes, Vv and Vw denote the voltage
differences in the sense and drive directions, gv and gw represent the initial distances between the
body and sense and drive electrodes, and ϵ represents the permittivity coefficient in units of Fm−1.

2.5 Equations of Motion and Boundary Conditions
By using the extended Hamilton’s principle, the governing differential equations of motion and
boundary conditions are developed, see Section 1.5.2. In the definition of the functional, equation
(1.4),K and P are the kinetic and potential energies of the system,Wnc is the work function of the
nonconservative forces. The total kinetic energy is given by K = K

B
+K

M
and the total potential

energy by P = P
B
+P

E
.

Equations (2.39), (2.43), (2.51), and the work of nonconservative damping force are substituted
into the equation (1.4) and the variations are computed. For the total variation, δI, going to zero,
the variation in the displacements, δv and δw, and their first spatial derivatives, δv′ and δw′, or
their coefficients should go to zero at either boundary of the structure. Therefore, the equations of
motion become

EIηη w′′′′ + m ẅ + 2 mΩ v̇ + m Ω̇ v − mΩ2w + cw ẇ − J
B
ηηΩ

2w′′ − J
B
ηη Ω̇ v′′ − J

B
ηη ẅ′′ = 0 (2.53)

EIζζ v′′′′ + m v̈ − 2 mΩ ẇ − m Ω̇w − mΩ2 v + cv v̇ − J
B
ζζ Ω

2 v′′ − J
B
ηη Ω̇w′′ − J

B
ζζ v̈′′ = 0. (2.54)
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The geometric boundary conditions at ℓ = 0, are given by

w = 0, w′ = 0, v = 0, and v′ = 0. (2.55)

The moment and shear boundary conditions at ℓ = L are

EIηη w′′ − M e
(
Ω2 (

w + e w′
) − Ω̇ (

v + e v′
) − 2Ω

(
v̇ + e v̇′

) − (
ẅ + eẅ′

))
+ J

M
ηη

(
Ω̇v′ + Ωv̇′ + ẅ′

)
+ J

M
ξξ

(
Ω2 w′ −Ω v̇′

)
− J

M
ζζ

(
Ω2 w′ −Ω v̇′

)
=

ϵ e Aw V2
w

2
(
gw − w − e w′

)2 (2.56)

EIζζ v′′ − M e
(
Ω2 (

v + e v′
)
+ Ω̇

(
w + e w′

)
+ 2Ω

(
ẇ + e ẇ′

) − (
v̈ + ev̈′

))
+ J

M
ζζ

(
v̈′ − Ω̇w′ −Ω ẇ′

)
− J

M
ηη

(
Ω2 v′ + Ω ẇ′

)
+ J

M
ξξ

(
Ω2 v′ + Ω ẇ′ + Ω̇w′

)
=

ϵ e Av V2
v

2
(
gv − v − e v′

)2 (2.57)

EIηη w′′′ + M
(
Ω2 (

w + ew′
) − Ω̇ (

v + ev′
) − 2Ω

(
v̇ + e v̇′

) − (
ẅ + eẅ′

))
− J

B
ηη

(
Ω̇v′ + Ω2w′ + ẅ′

)
= − ϵ Aw V2

w

2
(
gw − w − e w′

)2 (2.58)

EIζζ v′′′ + M
(
Ω2 (

v + ev′
)
+ Ω̇

(
w + ew′

)
+ 2Ω

(
ẇ + e ẇ′

) − (
v̈ + ev̈′

))
− J

B
ζζ

(
Ω2v′ + v̈′

)
− J

B
ηη Ω̇w′ = − ϵ Av V2

v

2
(
gv − v − e v′

)2 (2.59)

where Aw and Av denote the electrostatic forcing area in the drive and sense directions respectively.
Therefore, for a beam-point mass gyrsocope where the point mass is placed at distance e relative to
the beam’s end, the following boundary conditions are obtained (the equations of motion (2.53) and
(2.54), equations of forced boundary conditions (2.55), and the equations of shear force boundary
conditions (2.58) and (2.59) remain unchanged):

EIηη w′′ − M e
(
Ω2 (

w + e w′
) − Ω̇ (

v + e v′
) − 2Ω

(
v̇ + e v̇′

) − (
ẅ + eẅ′

))
=

ϵ e Aw V2
w

2
(
gw − w − e w′

)2

(2.60)
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and

EIζζ v′′ − M e
(
Ω2 (

v + e v′
)
+ Ω̇

(
w + e w′

)
+ 2Ω

(
ẇ + e ẇ′

) − (
v̈ + ev̈′

))
=

ϵ e Av V2
v

2
(
gv − v − e v′

)2 .

(2.61)

To obtain the shear and moment boundary conditions for the beam-tip mass case, the eccentricity e
and the mass moment of inertias J

M
ξξ, J

M
ηη, and J

M
ζζ are set to zero. Therefore, the moment boundary

conditions compute to

EIηη w′′ = 0, and EIζζ v′′ = 0. (2.62)

and the shear boundary conditions simplify to

EIηη w′′′ + M
(
Ω2 w − Ω̇ v − 2Ω v̇ − ẅ

)
= − ϵ Aw V2

w

2
(
gw − w

)2 (2.63)

EIζζ v′′′ + M
(
Ω2 v + Ω̇w + 2Ω ẇ − v̈

)
= − ϵ Av V2

v

2
(
gv − v

)2 (2.64)

In agreement with Euler-Bernoulli beam theory, one can neglect the mass moment of inertia of
beam’s cross section J

B
ξξ, J

B
ηη and J

B
ζζ , further simplifying the equations of motion (2.53) and (2.54)

and equations of boundary conditions (2.55)-(2.59). For the purpose of this research, equations
(2.53)-(2.59) are considered and studied.

Considering electrodes of equal width in the drive and sense directions (hw = hv = h), and
introducing the nondimensional variables

ŵ =
w
gw
, v̂ =

v
gv
, ℓ̂ =

ℓ

L
, t̂ =

t
κ
, Ω̂ = κΩ, κ2 =

12 ρ L4

E b2 , ∆ =
aB

bB
, and α =

b2
B

12L2 , (2.65)

and the nondimensional parameters in the form

ν =
6 ϵ h L4

E b4 g3 , M̂ =
M

m L
, ê =

e
L
, Ĵ

M
ξξ =

J
M
ξξ

mL3 , Ĵ
M
ηη =

J
M
ηη

mL3 , and Ĵ
M
ζζ =

J
M
ζζ

mL3 , (2.66)

the nondimensional equations of motion are expressed in the form

ŵ′′′′ + ¨̂w + ĉw ˙̂w − α ˙̂
Ω v̂′′ + ˙̂

Ω v̂ + 2 Ω̂ ˙̂v − αΩ̂2ŵ′′ − α ¨̂w′′ − Ω̂2 ŵ = 0 (2.67)
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∆2 v̂′′′′ + ¨̂v + cv ˙̂v − α∆2 Ω̂2 v̂′′ − α∆2 ¨̂v′′ − Ω̂2 v̂ − α ˙̂
Ω ŵ′′ − ˙̂

Ω ŵ − 2 Ω̂ ˙̂w = 0 (2.68)

The geometric boundary conditions at ℓ̂ = 0 are

ŵ = 0, ŵ′ = 0, v̂ = 0, and v̂′ = 0 (2.69)

and the natural boundary conditions at ℓ̂ = 1 are

Ω̂

(
2∆ê2 M̂ ˙̂v′ + ∆ ˙̂v′

(
Ĵζζ + Ĵηη − Ĵξξ

))
+ Ω̂2

(
∆

(
Ĵξξ − Ĵζζ

)
ŵ′ − ∆ê M̂

(
êŵ′ + ŵ

))
+ 2∆ê M̂ Ω̂ ˙̂v + ∆ê M̂

(
˙̂
Ω

(
êv̂′ + v̂

)
+ ê ¨̂w′ + ¨̂w

)
+ ∆Ĵηη

(
˙̂
Ω v̂′ + ¨̂w′

)
+ ∆ŵ′′ =

ê2νV2
w

(êŵ′ + ŵ − 1)2 (2.70)

Ω̂

(
∆ ˙̂w′

(
Ĵξξ − Ĵζζ − Ĵηη

)
−2∆ê2 M̂ ˙̂w′

)
+ Ω̂2

(
∆

(
Ĵξξ − Ĵηη

)
v̂′ − ∆ê M̂

(
êv̂′ + v̂

))
+ ∆ê M̂

(
ê ¨̂v′ − ˙̂

Ω
(
êŵ′ + ŵ

)
+ ¨̂v

)
− 2∆ê M̂ Ω̂ ˙̂w

+ ∆

(
Ĵζζ ¨̂v′ +

(
Ĵξξ − Ĵζζ

) ˙̂
Ω ŵ′ + ∆2v̂′′

)
=

ν ê2 V2
v

(1 − êv̂′ − v̂)2 , (2.71)

Ω̂2
(
∆ M̂

(
êŵ′ + ŵ

) − α∆ŵ′
)
− 2∆ê M̂ Ω̂ ˙̂v′ − ∆ M̂

(
˙̂
Ω

(
êv̂′ + v̂

)
+ ê ¨̂w′ + ¨̂w

)
− 2∆ M̂ Ω̂ ˙̂v

+ ∆

(
ŵ′′′ − α

(
˙̂
Ω v̂′ + ¨̂w′

))
= − êνV2

w

(êŵ′ + ŵ − 1)2 (2.72)

Ω̂2
(
∆ M̂

(
êv̂′ + v̂

) − α∆3v̂′
)
+ ∆ M̂

(
−ê ¨̂v′ + ˙̂

Ω
(
êŵ′ + ŵ

) − ¨̂v
)
+ 2∆ê M̂ Ω̂ ˙̂w′ + 2∆ M̂ Ω̂ ˙̂w

+ ∆3
(
v̂′′′ − α ¨̂v′

)
− α∆ ˙̂

Ω ŵ′ = − êνV2
v

(êv̂′ + v̂ − 1)2 (2.73)

where the under-script M in Ĵξξ, Ĵηη, and Ĵζζ has been removed for the clarity of notation. It is noted
that the effects of the moments of inertia and area of the beam are reflected in the cross sectional
ratio ∆ which is defined as the ratio of the width to the thickness of the beam’s cross section in
equation (2.63). Nondimensional equations concerning the beam-point mass systems are obtained
by setting the parameters associated to the end rigid body equal to zero.
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2.6 Discretized Mathematical Model
Computing the dynamic response of a complex system of equations using the reduced-order model
(discretized model), is less prone to error and more efficient computationally. The method of
assumed modes, see Section 1.5.2, is applied to the system in hand and two second-order ordinary
modal equations are obtained. To this end, the response of system in the drive and sense directions,
that is w and v, are described in the form

w(ℓ, t) = q(t)ψ(ℓ), and v(ℓ, t) = p(t) ϕ(ℓ) (2.74)

where ψ(ℓ) and ϕ(ℓ) represent mode shapes (eigenfunctions) satisfying the geometric boundary
conditions of the structure, and q(t) and p(t) indicate the generalized (modal) coordinates of the
structures’ response in the drive and sense directions, respectively.

Substituting equations (2.39), (2.43), (2.51) and (2.52) into Lagrange’s differential equations, see
Section 1.5.2, using equation (2.74), and adding a Rayleigh dissipation function in terms of the
modal coordinates the nondimensional reduced-order (discretized) model is obtained in the form

∆

(
Γ + α Γ′ + Ĵ

M
ηη ψ

′(1)2 + M̂
(
ψ(1) + êψ′(1)

)2
)

¨̂q(t) + ĉq ˙̂q(t̂) (2.75)

+ ∆ Ω̂(t̂)
2Π − (

Ĵ
M
ξξ − Ĵ

M
ηη − Ĵ

M
ζζ

)
ϕ′(1)ψ′(1) + 2 M̂

(
ϕ(1) + ê ϕ′(1)

) (
ψ(1) + êψ′(1)

) ˙̂p(t̂)

+ ∆
˙̂
Ω(t̂)

(
Π + αΠ′ + Ĵ

M
ηη ψ

′(1) ϕ′(1) + M̂
(
ϕ(1) + ê ϕ′(1)

) (
ψ(1) + êψ′(1)

))
p̂(t̂)

+ ∆

Γ′′ − Ω̂2
(
Γ − αΓ′ + M

(
ψ(1) + êψ′(1)

)2 − Ĵ
M
ξξ ψ

′(1)2 + Ĵ
M
ζζ ψ

′(1)2
) q̂(t̂) =

ν ê
(
ψ(1) + êψ′(1)

)
V2

w(
1 − q̂(t̂)ψ(1) − ê q̂(t̂)ψ′(1)

)
2

and

∆

(
Λ + α∆2Λ′ + Ĵ

M
ζζ ϕ

′(1)2 + M
(
ϕ(1) + ê ϕ′(1)

)2
)

¨̂p(t̂) + ĉp ˙̂p(t̂) (2.76)

− ∆ Ω̂(t)
2Π + (

Ĵ
M
ηη + Ĵ

M
ζζ − Ĵ

M
ξξ

)
ϕ′(1)ψ′(1) + 2M̂

(
ψ(1) + êψ′(1)

) (
ϕ(1) + ê ϕ′(1)

) ˙̂q(t̂)

− ∆ ˙̂
Ω(t̂)

Π − αΠ′ + (
Ĵ
M
ζζ − Ĵ

M
ξξ

)
ψ′(1) ϕ′(1) + M̂

(
ϕ(1) + ê ϕ′(1)

) (
ψ(1) + êψ′(1)

) q̂(t̂)

+ ∆

∆2Λ′′ − Ω̂2
(
Λ − α∆2Λ′ + M̂

(
ϕ + ê ϕ′(1)

)2 − Ĵ
M
ξξ ϕ

′(1)2 + Ĵ
M
ηη ϕ

′(1)2
) p̂(t̂) =

ν ê
(
ϕ(1) + êϕ′(1)

)
V2

v(
1 − p̂(t̂)ϕ(1) − ê p̂(t̂)ϕ′(1)

)
2
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where

Γ =

∫ 1

0
ψ(ℓ̂)2dℓ̂, Γ′ =

∫ 1

0
ψ′(ℓ̂)2dℓ̂, Γ′′ =

∫ 1

0
ψ′′(ℓ̂)2dℓ̂,

Λ =

∫ 1

0
ϕ(ℓ̂)2dℓ̂, Λ′ =

∫ 1

0
ϕ′(ℓ̂)2dℓ̂, Λ′′ =

∫ 1

0
ϕ′′(ℓ̂)2dℓ̂, Π =

∫ 1

0
ψ(ℓ̂)ϕ(ℓ̂)dℓ̂ (2.77)

Equations (2.75) and (2.76) describe the single-mode approximation of the response of the beam
carrying the eccentric end rigid body undergoing gyroscopic motion actuated by the electrostatic
force in the sense and drive directions. Centrifugal and Coriolis forces are proportional to the
angular displacement rate in the ordinary differential equations (2.76) and (2.77).

If the rotary inertia of the end mass is proved to be insignificant, that is to say the system is modeled
as beam-eccentric point mass, then the equations of motion become

∆
(
Γ + αΓ′ + M̂

(
ψ(1) + êψ′(1)

)2
)

¨̂q(t) + ĉq ˙̂q(t̂)

+ ∆ Ω̂(t̂)
(
2Π + 2 M̂

(
ϕ(1) + ê ϕ′(1)

) (
ψ(1) + êψ′(1)

)) ˙̂p(t̂)

+ ∆
˙̂
Ω(t̂)

(
Π + αΠ′ + M̂

(
ϕ(1) + ê ϕ′(1)

) (
ψ(1) + êψ′(1)

))
p̂(t̂)

+ ∆

(
Γ′′ − Ω̂2

(
Γ − αΓ′ + M

(
ψ(1) + êψ′(1)

)2
))

q̂(t̂) =

ν ê
(
ψ(1) + êψ′(1)

)
V2

w(
1 − q̂(t̂)ψ(1) − ê q̂(t̂)ψ′(1)

)
2

(2.78)

and

∆
(
Λ + α∆2Λ′ + M

(
ϕ(1) + ê ϕ′(1)

)2
)

¨̂p(t̂) + ĉp ˙̂p(t̂)

− ∆ Ω̂(t)
(
2Π + 2M̂

(
ψ(1) + êψ′(1)

) (
ϕ(1) + ê ϕ′(1)

)) ˙̂q(t̂)

− ∆ ˙̂
Ω(t̂)

(
Π − αΠ′ + M̂

(
ϕ(1) + ê ϕ′(1)

) (
ψ(1) + êψ′(1)

))
q̂(t̂)

+ ∆

(
∆2Λ′′ − Ω̂2

(
Λ − α∆2Λ′ + M̂

(
ϕ + ê ϕ′(1)

)2
))

p̂(t̂) =

ν ê
(
ϕ(1) + êϕ′(1)

)
V2

v(
1 − p̂(t̂)ϕ(1) − ê p̂(t̂)ϕ′(1)

)
2

(2.79)

If the dimensions of end rigid body is proved to be insignificant in defining the mechanics of
the system, that is to say only the mass of the proof end mass affects the systems dynamics, the
reduced-order model is given by

∆ (Γ +αΓ′ + M̂
(
ψ(1) + êψ′(1)

)2
)

¨̂q(t) + ĉq ˙̂q(t̂) + ∆ Ω̂(t̂)
(
2Π + 2 M̂ ϕ(1)ψ(1)

)
˙̂p(t̂)

+ ∆
˙̂
Ω(t̂)

(
Π + αΠ′ + M̂ ϕ(1)ψ(1)

)
p̂(t̂) + ∆

(
Γ′′ − Ω̂2

(
Γ − αΓ′ + M ψ(1)2

))
q̂(t̂)
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=
ν ê

(
ψ(1) + êψ′(1)

)
V2

w(
1 − q̂(t̂)ψ(1) − ê q̂(t̂)ψ′(1)

)
2

(2.80)

and

∆ (Λ +α∆2Λ′ + M ϕ(1)2
)

¨̂p(t̂) + ĉp ˙̂p(t̂) − ∆ Ω̂(t)
(
2Π + 2M̂ ψ(1) ϕ(1)

)
˙̂q(t̂)

− ∆ ˙̂
Ω(t̂)

(
Π − αΠ′ + M̂ ϕ(1)ψ(1)

)
q̂(t̂) + ∆

(
∆2Λ′′ − Ω̂2

(
Λ − α∆2Λ′ + M̂ ϕ2

))
p̂(t̂)

=
ν ê

(
ϕ(1) + êϕ′(1)

)
V2

v(
1 − p̂(t̂)ϕ(1) − ê p̂(t̂)ϕ′(1)

)
2

(2.81)

The electrostatic force introduces nonlinearity into the differential equations of motion. Upon
multiplying each equation by the denominator of the respective electrostatic force, quadratic and
cubic nonlinearities appear in the system of governing differential equations. Therefore, the study
of instability and bifurcation of system response is a must. In the following chapters, a thorough
analysis of the static response, modal frequencies, linear dynamics, and nonlinear dynamics of the
system are performed. In operating micromachined gyroscopes, the mechanical-thermal noise is
one of the most significant parameters affecting the performance of the microsensor. Therefore, the
noise response of the system is systematically studied using the linear dynamics and the nonlinear
perturbation analysis.

2.7 Summary
In this chapter, the mathematical models of a beam with a rectangular cross section carrying an
end rigid body undergoing three dimensional motion in the space has been derived. The models
consider a single-axis rigid body rotation representing a single-axis gyroscope, however can be
extended to the three-axis rotation following the same pattern as discussed in this writing. The
equations of motion and boundary conditions and the reduced-order (discretized) model have been
obtained by using the extended Hamilton’s principle and the method of assumed modes. The mod-
els of other but simpler systems have also been obtained and presented for the sake of completeness
of the discussion.
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Chapter 3

Statics, Modal Frequencies, and the
Computation of Rotation Rate

3.1 Preview
The static configuration of the structure, beam and the end rigid body, is determined by computing
the response of the system under the bias voltage including the angular rotation rate. This chapter
consists of analyzing the static configuration of the microstructure, computing the free response of
the structure under angular rotation rate including the natural frequencies and mode shapes, and
calculating the effects of DC loading on the otherwise unforced response of the structure.

The mode shapes (eigenfunctions) and natural (modal) frequencies of the uncoupled system of
equations are the basis of computations in the following sections and calculated in the first step.
The next part focuses on the computation of the exact static deformation with and without angular
rotation rate. The natural frequencies in the presence of an input angular rotation rate are computed
in the next part. The region of instability due to input angular rate is identified. The input angular
rotation rate is computed in terms of the difference of the modal frequencies which is the basis for
the rotation rate estimation in the frequency modulation method.

3.2 The Analysis of Uncoupled System
The uncoupled system of governing differential equations and boundary conditions are obtained
by removing the terms associated with the angular rotation rate. Thus, setting Ω̂ = 0 in equations
(2.67)-(2.73) yields two governing equations,

w′′′′ + ẅ + cw ẇ − α ẅ′′ = 0 (3.1)

∆2 v′′′′ + v̈ + cv v̇ − α∆2 v̈′′ = 0, (3.2)
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four geometric boundary conditions at ℓ = 0

w = 0, w′ = 0, v = 0, and v′ = 0, (3.3)

and four natural boundary conditions at ℓ = 1

∆w′′ + ∆e M
(
e ẅ′ + ẅ

)
+ ∆Jηηẅ′ =

ν e 2V2
w

(1 − e w′ − w)2 (3.4)

∆3v′′ + ∆e M
(
e v̈′ + v̈

)
+ ∆ Jζζ v̈′ =

ν e 2 V2
v

(1 − e v′ − v)2 , (3.5)

∆w′′′ − ∆M
(

ẅ + e ẅ′
)
+ ∆αẅ′ = − ν e V2

w

(1 − e w′ − w)2 (3.6)

∆3 v′′′ + ∆M
(−e v̈′ − v̈

) − α∆3 v̈′ = − ν e V2
v

(1 − e v′ − v)2 , (3.7)

where the over symbol (ˆ) has been removed from the nondimensional quantities for the clarity of
notation. The preceding set of equations for the uncoupled system, (3.1)- (3.7), are initially inves-
tigated to compute the required fundamental results for the analysis of beam-rigid body gyroscope.

3.2.1 Static Analysis
The static analysis of the equations in the drive and sense directions follow similar steps. Therefore,
the analysis is presented for the drive direction. To this end, the displacement w is separated into
the static and dynamic components, that is

w(ℓ, t) = ws(ℓ) + wd(ℓ, t) (3.8)

Substituting equation (3.8) into (3.1)- (3.7), and dropping damping and dynamic terms, that is
cw = 0 and wd(ℓ, t) = 0, results in the static governing equation

w′′′′s = 0, 0 < ℓ < 1, (3.9)

and the boundary conditions as

ws = 0, w′s = 0, at ℓ = 0, (3.10)
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∆w′′s =
ν e 2 V2

w(
1 − e w′s − ws

)2 , ∆w′′′s = −
ν e V2

w(
1 − e w′s − ws

)2 , at ℓ = 1. (3.11)

The solution of ordinary differential equation (3.9) is expressed in the form

ws(ℓ) = C1 +C2 ℓ +C3 ℓ
2 +C4 ℓ

3 (3.12)

where C1, C2, C3, and C4 are found by applying the boundary conditions, equations (3.10)-(3.11).
Applying the essential boundary conditions, equations (3.10), C1 and C2 vanish. Thus, the dis-
placement at beam’s tip is expressed in terms of two other constants. Differentiating equation
(3.12) with respect to the spatial variable, once, twice, and three times, gives the slope and higher
order terms in the natural boundary conditions along the beam’s length. Therefore,

ws(1) = C3 +C4 (3.13)
w′s(1) = 2 C3 + 3 C4 (3.14)
w′′s (1) = 2 C3 + 6 C4 (3.15)
w′′′s (1) = 6 C4 (3.16)

Substituting equations (3.13)-(3.16) into equations (3.11), multiplying the second equation by e,
and adding the equations together results in

2∆(C3 + 3(1 + e)C4) = 0 (3.17)

which is solved for one of the coefficients and gives

C3 = −3 C4 (1 + e) (3.18)

Substituting equation (3.18) into (3.13), gives

C4 = −
ws(1)
2 + 3e

(3.19)

and

C3 = 3
ws(1)

2 + 3 e
(1 + e) (3.20)

Substituting equations (3.13), (3.14), and (3.15) into the second equation in (3.11), and replacing
C3 and C4 with their equivalents from equations (3.19) and (3.20), multiplying through by the
denominator of the electrostatic force results in the closed-form relation of the static displacement-
DC voltage as

∆
(
216e4 + 432e3 + 360e2 + 144e + 24

)
ws(1)3

− ∆
(
216e3 − 360e2 + 216e + 48

)
ws(1)2
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+ ∆
(
54e2 + 72e + 24

)
ws(1) = ν e

(
27e3 + 54e2 + 36e + 8

)
V2

w (3.21)

Following a similar procedure and describing the constants, C3 and C4, in terms of the slope w′s(1),
the corresponding cubic algebraic equation to compute the slope at beam’s tip w′s(1) is found

∆
(
72e4 + 144e3 + 120e2 + 48e + 8

)
w′s(1)3

− ∆
(
144e3 + 216e2 + 120e + 24

)
w′s(1)2

+ ∆
(
72e2 + 72e + 18

)
w′s(1) = ν e

(
72e3 + 108e2 + 54e + 9

)
V2

w (3.22)

Computing and substituting the solutions of equations (3.21) and (3.22), that is displacement ws(1)
and slope w′s(1), in ws(1) + e w′s(1) gives the displacement at the center of mass of the end rigid
body. The displacement at any point along the rigid body is computed by replacing e with the
proper length from the end of the beam. By solving equation (3.21) for displacement ws(1) and
equation (3.22) for the slope versus the bias voltage Vw, the corresponding displacement-voltage
curve is computed and the onset of static instability is identified.

Following the same procedure for the flexural displacement in the sense direction, similar equations
are found for the displacement and slope in that direction. Specifically,

∆3
(
216e4 + 432e3 + 360e2 + 144e + 24

)
vs(1)3

− ∆3
(
−216e3 + 360e2 + 216e + 48

)
vs(1)2

+ ∆3
(
54e2 + 72e + 24

)
vs(1) = e ν

(
27e3 + 54e2 + 36e + 8

)
V2

v (3.23)

and

∆3
(
72e4 + 144e3 + 120e2 + 48e + 8

)
v′s(1)3

− ∆3
(
144e3 + 216e2 + 120e + 24

)
v′s(1)2

+ ∆3
(
72e2 + 72e + 18

)
v′s(1) = e ν

(
72e3 + 108e2 + 54e + 9

)
V2

v (3.24)

are solved for the displacement vs(1) and slope v′s(1) in the sense direction versus the bias DC
voltage. Equations (3.21), (3.22), (3.23) and (3.24) indicate that the static-voltage curve is affected
by the eccentricity e and the cross-sectional ratio ∆. The cross-sectional ratio, see equation (2.65),
represents the rigidity of beam in each direction and the eccentricity the mass effects on the moment
and shear boundary conditions.

Figures 3.1(a)-3.1(f) show the variation in the nondimensional displacement at the center of rigid
body versus the bias voltage in the sense and drive directions (wc = 1 and vc = 1 indicate displace-
ments are equal to the full gap sizes). Dashed and solid lines indicate, unstable and stable static
equilibrium positions. Noting that the electrostatic and elastic fields act in opposite directions,
the stability of the state is determined by perturbing the state around the equilibrium, expanding

33



Table 3.1: Basic system specification

L (µm) b (µm) bM (µm) h (µm) gw (µm) gv (µm) E (GPa) ρ (kg/m3) ϵ (F/m)
400 10 10 10 2 2 160 2330 8.854 × 10−12

the electrostatic force around the equilibrium position, and computing the first-order term in the
Taylor’s expansion.

The dotted-dashed horizontal lines in Figures 3.1(a)-3.1(f) represent the critical points where the
tip of the structure strikes the substrate. To obtain the limit, the displacement at the tip of the
structure, that is ws(1) + 2 e w′s(1), is set to unity, the dimensional displacement as large as initial
gap size, and compute the corresponding voltage. For that voltage, the displacement at the center
of mass, wc, indicates the critical displacement. The specification of the example of the microscale
gyroscope is given in Table 3.1.

The static pull-in voltage is the point where there is no solution beyond it. According to the results,
the static deflection curves are in the drive and sense direction are affected by the ratio ∆; the larger
the cross-sectional ratio ∆ is, the larger the static pull-in voltage. On the other hand, eccentricity
has an opposite effect on the pull-in voltage. The limit, the horizontal dashed-dot line, appears at
a smaller displacement because an increasing eccentricity affects the geometry of the end body as
well as the first moment of the end mass.

3.2.2 Modal Frequencies and Mode Shapes
The eigenfunctions (mode shapes) of the beam carrying the eccentric end body are computed for
the admissible functions of the assumed-modes method. Therefore, the natural (modal) frequencies
of the uncoupled system of equations are determined by obtaining the eigenvalue problem. To this
end, dropping damping, linearizing the electrostatic forcing terms around the static equilibrium
positions, ws and vs, and substituting equation (3.8) into equations (3.1)-(3.7) and considering
static equilibrium equations (3.9)-(3.11), the dynamic equations become

w′′′′d + ẅd − α ẅ′′d = 0 (3.25)

with the essential boundary conditions at ℓ = 0

wd = 0, w′d = 0, (3.26)

and natural boundary conditions at ℓ = 1

∆w′′d + ∆e M
(
e ẅ′d + ẅd

)
+ ∆Jηηẅ′d =

2 ν e2 V2
w

(
wd + e w′d

)
(
1 − ws − e w′s

)3 (3.27)
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Figure 3.1: Variation in the static displacement at the center of mass of the end rigid body versus
the bias DC voltage; − ◦ − for ∆ = 0.9, and −�− for ∆ = 1, and − • − for ∆ = 1.1, the dashed line
denotes the unstable branch while the solid line indicates the stable branch of the static equilibrium
position.
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∆w′′′d − ∆M
(

ẅd + e ẅ′d
)
+ ∆αẅ′d = −

2 ν e V2
w

(
wd + e w′d

)
(
1 − ws − e w′s

)3 (3.28)

in the drive direction and similarly in the sense direction we have

∆2 v′′′′d + v̈d − α∆2 v̈′′d = 0, (3.29)

with the boundary conditions at ℓ = 0

vd = 0, v′d = 0, (3.30)

and at ℓ = 1

∆3v′′d + ∆e M
(
e v̈′d + v̈d

)
+ ∆ Jζζ v̈′d =

2 ν e 2 V2
v

(
vd + e v′d

)
(
1 − vs − e v′s

)3 , (3.31)

∆3 v′′′d − ∆M
(
v̈d + e v̈′d

)
− α∆3 v̈′d = −

2 ν e V2
v

(
vd + e v′d

)
(
1 − vs − e v′s

)3 (3.32)

in the sense direction. Assuming solutions of the form

wd(ℓ, t) = ψ(ℓ) expiωwt, vd(ℓ, t) = ϕ(ℓ) expiωvt (3.33)

for equations (3.26)-(3.32), results in the following uncoupled eigenvalue problems

ψ(4)(ℓ) − ω2
wψ(ℓ) + αω2

wψ
′′(ℓ) = 0, (3.34)

ψ(0) = 0,
ψ′(0) = 0,

∆ψ′′(1) − e∆Mω2
w
(
ψ(1) + eψ′(1)

) − ∆J22ω
2
wψ
′(1) =

2νe2 (
ψ(1) + eψ′(1)

)
V2

w(
1 − ew′s(1) − ws(1)

)
3
,

∆ψ(3)(1) + ∆Mω2
w
(
ψ(1) + eψ′(1)

)
+ α∆ω2

wψ
′(1) = −2νe

(
ψ(1) + eψ′(1)

)
V2

w(
1 − ew′s(1) − ws(1)

)
3

(3.35)

for the drive direction and

∆2ϕ(4)(ℓ) − ω2
vϕ(ℓ) + α∆2ω2

vϕ
′′(ℓ) = 0, (3.36)
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ϕ(0) = 0,
ϕ′(0) = 0,

∆3ϕ′′(1) − e∆Mω2
v
(
ϕ(1) + eϕ′(1)

) − ∆J33ω
2
vϕ
′(1) =

2νe2 (
ϕ(1) + eϕ′(1)

)
V2

v(
1 − ev′s(1) − vs(1)

)
3
,

∆3ϕ(3)(1) + ∆Mω2
v
(
ϕ(1) + eϕ′(1)

)
+ α∆3ω2

vϕ
′(1) = −2νe

(
ϕ(1) + eϕ′(1)

)
V2

v(
1 − ev′s(1) − vs(1)

)
3

(3.37)

for the sense direction. Following the standard procedure of solving an eigenvalue problem, the
characteristic equations are obtained and solved for the modal frequencies ωv and ωw. Solutions
of equations (3.34) and (3.36) are given by

ψ(ℓ) = A1 sin λ+w + A2 cos λ+w + A3 sinh λ−w + A4 cosh λ−w (3.38)

where

λ+w = ℓ

√(
ωw

√
α2ω2

w + 4 + αω2
w

)
/2, and λ−w = ℓ

√(
ωw

√
α2ω2

w + 4 − αω2
w

)
/2

and

ϕ(ℓ) = B1 sin λ+v + B2 cos λ+v + B3 sinh λ−v + B4 cosh λ−v (3.39)

where

λ+v = ℓ

√(
ωv

√
α2∆2ω2

v + 4 + α∆ω2
v

)
/
(
2∆

)
, and λ+v = ℓ

√(
ωv

√
α2∆2ω2

v + 4 − α∆ω2
v

)
/
(
2∆

)
Applying the boundary conditions in the equation (3.35) to the general solution in equation (3.38),
a system of four homogeneous equations are obtained. To find nontrivial solutions of that system
of equations, the determinant of the coefficients matrix is set to zero. As a result the characteristic
equation is obtained and solved for the natural frequencies ωw. Similarly, the natural frequencies
in the transverse direction, ωv, are obtained.

In Figures 3.2(a)-3.2(f), the fundamental (first) natural frequency of the uncoupled system is plot-
ted. The natural frequency is affected by both the distance of beam’s free end from the center of
the rigid body and the ratio of beam’s thickness to width ∆. The voltages Vw and Vv are increased
up to the onset of pull-in where the DC voltages suddenly drop to zero as the rigid body strikes
the electrode. Increasing the eccentricity, reduces the natural frequency by virtue of increasing the
first and second moment of end mass, that is e M and e2 M. The ratio of cross-section ∆ changes
the elastic rigidity and therefore increases or decreases the natural frequency. The sectional ratio
∆ appears in linear and cubic forms in the drive and sense directions, equations (3.25)-(3.28) and
(3.29)-(3.32), and distinguishes the frequency-voltage curves in Figures 3.2(a)-3.2(f).
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Figure 3.2: Variation in the first natural frequency of the uncoupled system in the drive and sense
directions versus the bias DC voltage as the eccentricity e and the cross-sectional ratio ∆ increase.
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To use the assumed-mode method for the analysis of beam-rigid body gyroscope, the mode shapes
of (eigenfunctions) of the uncoupled system of equations are obtained. To this end, the bias DC
loadings in equations (3.35) and (3.37) are set to zero, and the natural frequencies are obtained.
Applying boundary conditions, that is equations (3.35) and (3.37), unknown coefficients Ai and
Bi, i = 1, 2, 3, 4, are determined. Eigenfunctions are normalized such that

∫ 1

0
ψ(ℓ)2 dℓ = 1 and∫ 1

0
ϕ(ℓ)2 dℓ = 1. Normalized mode shapes are used as the basis functions in the assumed-mode

method to obtain the reduced-order model of the system.

3.3 The Analysis of Beam-Rigid Body Gyroscope
3.3.1 Stationary Analysis
Two approaches are followed to investigate the stationary behavior of the beam-rigid body gyro-
scope. In the first method, the stationary problem is derived from the equations of motion (2.67)
and (2.68) and boundary conditions (2.69)-(2.73). Therefore, substituting w(ℓ, t) = ws(ℓ) +wd(ℓ, t)
into (2.67) and eliminating dynamic terms results in

ws
(4)(ℓ) −Ω2

(
αw′′s (ℓ) + ws(ℓ)

)
= 0 (3.40)

subject to

ws(0) = 0,
w′s(0) = 0,

∆w′′s (1) − e∆MΩ2
(
ws(1) + ew′s(1)

)
+ ∆Ω2 (J11 − J33) w′s(1) =

ν e2 V2
w(

1 − ws(1) − ew′s(1)
)

2
,

∆ws
(3)(1) + ∆Ω2(eM − α)w′s(1) + ∆MΩ2ws(1) = − ν e V2

w(
1 − ws(1) − ew′s(1)

)
2
, (3.41)

and

∆2vs
(4)(ℓ) −Ω2

(
α∆2v′′s (ℓ) + vs(ℓ)

)
= 0 (3.42)

subject to

vs(0) = 0,
v′s(0) = 0,

∆3v′′s (1) − e∆MΩ2
(
vs(1) + ev′s(1)

)
+ ∆Ω2 (J11 − J22) v′s(1) =

ν e2 V2
v(

1 − vs(1) − ev′s(1)
)

2
,

∆3vs
(3)(1) + Ω2v′s(1)

(
∆eM − α∆3

)
+ ∆MΩ2vs(1) = − ν e V2

v(
1 − vs(1) − ev′s(1)

)
2

(3.43)
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Table 3.2: Pull-in voltages for increasing angular rotation rate

Ω = 18◦/s 180◦/s 1800◦/s 18000◦/s 180000◦/s
VP = 40.7649 V 40.7649 V 40.7649 V 40.7648 V 40.7531 V

By solving equations (3.40) and (3.42) subject to (3.41) and (3.43), the exact static equilibrium
position in the drive and sense directions are computed. Alternately, the equations of reduced-
order model (2.75) and (2.76) are used to derive the single-mode approximation of the stationary
system of equations. To this end, the response of the system in each direction is described with

q(t) = qs + qd(t), and p(t) = ps + pd(t) (3.44)

where the mode shapes, ψ(ℓ) and ϕ(ℓ) were computed in the preceding section, and the generalized
static and dynamic coordinates of the structures’ response in the drive and sense directions are
represented by qs, qd(t), ps, and pd(t). Inserting equations (3.44) in (2.75) and (2.76) and separating
the dynamic and static components of the results in the following static equations

∆Γ′′qs + ∆Ω
2
(
αΓ′ − Γ − M

(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jξξ − Jζζ

))
qs

=
ν e V2

w
(
ψ(1) + eψ′(1)

)(
1 − (

ψ(1) − eψ′(1)
)

qs

)
2

(3.45)

∆3Λ′′ps + ∆Ω
2
(
α∆2Λ′ − Λ − M

(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jξξ − Jηη

))
ps

=
ν e V2

v
(
ϕ(1) + e ϕ′(1)

)(
1 − (

ϕ(1) − eϕ′(1)
)

ps

)
2

(3.46)

where the total displacement is computed from

w(ℓ, t) =
(
qs + qd(t)

)
ψ(ℓ), and v(ℓ, t) =

(
ps + pd(t)

)
ϕ(ℓ), (3.47)

To compute static displacement, qd(t) and pd(t) are set to zero. By computing the stationary re-
sponse using equations (3.40)-(3.43) and equations (3.45) and (3.46) the accuracy of a single-mode
approximation and the effect of angular rotation rate Ω on the stationary response are determined.

For the micro-scale numerical example of Table 3.1, the results of the stationary analysis are plotted
in Figures 3.3(a)-3.3(d). The rotation rate Ω is increased up to 18000◦/s. It is realized that the
single-mode approximation fully agrees with the exact analysis up toΩ = 180000◦/s. In Table 3.1,
the stationary pull-in voltages are given for an increasing angular rotation rate up to 180000◦/s.
All desired applications of micro- and nano-gyroscopes cover an input rate of less than 180000◦/s
or 500 cycles per second.
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Figure 3.3: Stationary analysis of the beam-rigid body microgyroscope, filled circles indicate the
exact solution and circles represent the solution of the single-mode model (e = 0.1, aM

aB
= 15,

VDC = Vw).

3.3.2 Modal Frequencies
To calculate the angular rotation rate using the natural frequencies of the system in the rotating
frame, modal frequencies are computed in this section. Results of this analysis are used to com-
pute the input angular rotation rate employing the frequency modulation method. The frequency
modulation method can be used by employing either the free vibration or the forced vibration of the
structure. In the following sections, the free vibration of the structure is characterized to demon-
strate the method for the beam-rigid body gyroscope. Therefore, for beam-mass gyroscopes the
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same approach is applicable to compute the angular rate of rotation based on the modal frequency
split in the rotating frame.

3.3.3 Undamped Modal Frequencies
Substituting equations (3.44) into (2.75) and (2.76), separating the dynamic and static components
of the results, dropping the terms associated with damping coefficients, linearizing the equations
about the static modal coordinates qs and ps, and using equations (3.45) and (3.46), gives the
following dynamic equations

∆
(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ Jηηψ′(1)2

)
q̈d(t)

+ ∆Ω

(
2M

(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ ψ′(1)ϕ′(1)

(
Jζζ + Jηη − Jξξ

)
+ 2Π

)
ṗd(t)

+ ∆

(
Γ′′ + Ω2

(
αΓ′ − Γ − M

(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jξξ − Jζζ

)))
qd(t)

=
2 e ν

(
eψ′(1) + ψ(1)

)2 V2
w(

1 − qs
(
ψ(1) + eψ′(1)

)) 3
qd(t) (3.48)

and

∆

(
α∆2Λ′ +

(
M

(
eϕ′(1) + ϕ(1)

)2
+ Jζζϕ′(1)2 + Λ

))
p̈d(t)

− ∆Ω
(
2M

(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ ψ′(1)ϕ′(1)

(
Jζζ + Jηη − Jξξ

)
+ 2Π

)
q̇d(t)

+

(
∆3

(
αΩ2Λ′ + Λ′′

)
+ ∆Ω2

(
−M

(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jξξ − Jηη

)
− Λ

))
pd(t)

=
2 e ν

(
eϕ′(1) + ϕ(1)

)2 V2
v(

1 − ps
(
ϕ(1) + eϕ′(1)

)) 3
pd(t) (3.49)

Alternatively, substituting the response in the form

w(ℓ, t) = ws(ℓ) + ψ(ℓ) qd(t), v(ℓ, t) = vs(ℓ) + ϕ(ℓ) pd(t) (3.50)

into equations (2.75) and (2.76) results in(
Γ + αΓ′ + M

(
ψ(1) + eψ′(1)

)2
+ J22ψ

′(1)2
)

q̈d(t)

+
(
2Π + 2M

(
ϕ(1) + e ϕ′(1)

) (
ψ(1) + eψ′(1)

) − (J11 − J22 − J33) ϕ′(1)ψ′(1)
)
Ω ṗd(t)

+
(
Γ′′ −Ω2 (

Γ − αΓ′) − MΩ2 (
ψ(1) + eψ′(1)

)2
+ J11Ω

2ψ′(1)2 − J33Ω
2ψ′(1)2

)
qd(t) =

−
∫ 1

0
w′′s (ξ)ψ′′(ξ) dξ + Ω2

∫ 1

0
ws(ξ)ψ(ξ) dξ − α

∫ 1

0
w′s(ξ)ψ

′(ξ) dξ


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+ MΩ2
(
ws(1) + e w′s(1)

)
ψ(1) −

(
e M

(
ws(1) + e w′s(1)

)
− (J11 − J33) w′s(1)

)
ψ′(1)Ω2

+
e νV2

w
(
ψ(1) + eψ′(1)

)(
1 − ws(1) − e w′s(1)

)2 +
2 ν e V2

w
(
ψ(1) + eψ′(1)

)2(
1 − ws(1) − e w′s(1)

)3 qd(t) (3.51)

and (
Λ + αΛ′ + M

(
ϕ(1) + e ϕ′(1)

)2
+ J33ϕ

′(1)2
)

p̈d(t)

−
(
2Π + 2 M

(
ϕ(1) + e ϕ′(1)

) (
ψ(1) + eψ′(1)

) − (J11 − J22 − J33) ϕ′(1)ψ′(1)
)
Ω q̇d(t)

+
(
Λ′′ + Ω2 (

αΛ′ − Λ) − MΩ2 (
ϕ(1) + e ϕ′(1)

)2
+ J11Ω

2ϕ′(1)2 − J22Ω
2ϕ′(1)2

)
pd(t) =

−
∫ 1

0
v′′s (ξ̂)ϕ′′(ξ) dξ + Ω2

∫ 1

0
vs(ξ)ϕ(ξ) dξ − α

∫ 1

0
v′s(ξ)ϕ

′(ξ) dξ


+ MΩ2

(
vs(1) + e v′s(1)

)
ϕ(1) + Ω2

(
eM

(
vs(1) + e v′s(1)

)
− J11v′s(1) + J22 v′s(1)

)
ϕ′(1)

+
e νV2

v(
1 − vs(1) − ev′s(1)

)2

(
ϕ(1) + eϕ′(1)

)
+

2 e νV2
v
(
ϕ(1) + e ϕ′(1)

)2(
1 − vs(1) − e v′s(1)

)3 pd(t) (3.52)

which are computationally more demanding but are equivalent to equations (3.48) and (3.49).
Equations (3.48) and (3.49) are employed to derive the characteristic equation of the system. The
bias DC voltage is removed and therefore the static deflections are set to zero to compute the
fundamental natural frequency of the structure about the undeformed position. To this end it is
assumed that

qd(t) = s eλ t, and pd(t) = r eλ t (3.53)

where s, r, and λ indicate the eigenvectors and the eigenvalue. Substituting equation (3.53) into
equations (3.48) and (3.49), multiplying through by e−λ t and collecting eigenvectors, s and r, a sys-
tem of homogeneous equations is obtained. To compute nontrivial eigenvalues, λ, the determinant
of the coefficient matrix is set to zero and the characteristic equation for the undamped unloaded
system is computed as follows:

h4 λ
4 + h2 λ

2 + c4Ω
4 + c2Ω

2 + c0 = 0 (3.54)

where

h4 =∆
2
(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ Jηηψ′(1)2

) (
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ Jζζϕ′(1)2 + Λ

)
(3.55)

h2 =∆
2Γ′′

(
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ Jζζϕ′(1)2 + Λ

)
+ ∆4Λ′′

(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ Jηηψ′(1)2

)
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+ ∆2Ω2
(
−

(
−αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jζζ − Jξξ

))
(
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ Jζζϕ′(1)2 + Λ

)
−

(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ Jηηψ′(1)2

)(
−α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jηη − Jξξ

)
+ Λ

)
+

(
2M

(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ ψ′(1)ϕ′(1)

(
Jζζ + Jηη − Jξξ

)
+ 2Π

)
2
)

(3.56)

c4 =∆
2
(
−αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jζζ − Jξξ

))
(
−α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jηη − Jξξ

)
+ Λ

)
(3.57)

c2 =∆
2Γ′′

(
α∆2Λ′ − M

(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jξξ − Jηη

)
− Λ

)
− ∆4Λ′′

(
−αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jζζ − Jξξ

))
(3.58)

c0 =∆
4Γ′′Λ′′ (3.59)

where h4, h2, c4, c2 and c0 are functions of the dimensions, system parameters and mode shapes,
ϕ and ψ, of the uncoupled governing equations of motion (Ω = 0). Solving equation (3.54) for
λ computes the undamped eigenvalues or natural frequencies of the system in the rotating base
frame.

In Figures 3.4(a)-3.4(f) the eigenfrequencies are plotted as the rotation increases from zero to
36000◦/s or 100 revolutions per second (100Hz) for the micro-scale numerical example of Table
3.1 with ∆ = 1. The width ratio represents the ratio of the rigid body’s width to the beam’s and the
nondimensional eccentricity is given in equation (2.64). In agreement with previous analyses in
section 3.2, increasing the eccentricity decreases the fundamental natural frequency in each direc-
tion identified by the initial mismatch of natural frequencies for Ω = 0 (uncoupled system). On the
other hand, by reducing the width of the end rigid body, a stronger symmetry in the microstructure
results in the lower initial mismatch of uncoupled natural frequencies.

A very high angular rotation rate is not common; however, if it occurs, an extremely large rotation
rate affects the stability of the system. Solving equation (3.54) for eigenvalues, it is realized that
one root squared is negative while the other one is positive when

c4Ω
4 + c2Ω

2 + c0 < 0 (3.60)

For instance if λ2
1 > 0, then λ+1 is positive while λ−1 is negative. A positive real root indicates

the instability of the system. Otherwise, that is if Ω never satisfies equation (3.60), system never
experiences instability by virtue of rotation rate. The onset of instability is obtained by solving
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inequality in equation (3.60) when the left hand side evaluates to zero, therefore

Ω =

∣∣∣∣∣∣∣∣∣∣∣∣
√√√
−

c2 +

√
c2

2 − 4c0c4

2c4

∣∣∣∣∣∣∣∣∣∣∣∣ , and Ω =

∣∣∣∣∣∣∣∣∣∣∣∣
√√√ √

c2
2 − 4c0c4 − c2

2c4

∣∣∣∣∣∣∣∣∣∣∣∣ (3.61)

where | · | gives the positive root and coefficients are given in equations (3.57)-(3.59). Therefore,
for the rotation rates between two roots in equation (3.61), the vibration amplitude becomes large
and the system becomes unstable. However, for the rotation rate gyroscopic sensors the input
angular rotation rate is normally several orders of magnitude smaller than the onset of instability.
To indicate the instability region, the rotation rate is increased to 10800000◦/s and the modal
frequencies are plotted in Figure 3.5(a). The instability region is identified by following the real
positive eigenvalue, Figure 3.5(d). As a result, the response grows unboundedly while the rotation
rate lies in the critical range.

Modal frequencies, roots of equation (3.54), are the natural frequencies in the rotating frame at-
tached to the base coordinate system, see Figure 2.1. Relative to the inertial frame, the base frame
rotates with the angular velocity Ω, thus the absolute position of each point is given by

w̃ = w cosΩt + v sinΩt (3.62)
ṽ = −w sinΩt + v cosΩt (3.63)

Substituting the free vibration solution, equation (3.53), into equation (3.62) and performing some
algebraic manipulations, the pseudo-modal frequencies, the free vibration frequencies in the iner-
tial frame, computes to λ ±Ω.

3.3.4 The Computation of Angular Rotation Rate
In an amplitude modulation (AM) gyroscope, the amplitude of vibration in the sense direction is
employed to measure angular rotation rate. The presented beam-based gyroscope can operate in
the frequency modulation (FM) mode. To operate in an FM based approach, the characteristic of
the gyroscopic system in changing the observed modal frequencies in the rotating frame is used.
To this end, equation (3.54) is solved for the modal frequencies which are the positive roots of the
equation. Therefore,

λ1,1 =

√√√
h2 −

√
h2

2 − 4h4
(
c4Ω4 + c2Ω2 + c0

)
2 h4

, (3.64)
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Figure 3.4: The variation in the modal frequencies in the rotating frame for the variation in the
width ratio and the eccentricity (∆ = 1, Vw = 0, Vv = 0).
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and the corresponding instability region due to rotation rate (Vw = 0, Vv = 0).

and

λ1,2 =

√√√
h2 +

√
h2

2 − 4h4
(
c4Ω4 + c2Ω2 + c0

)
2 h4

(3.65)

Solving equations (3.64) and (3.65) for the rotation rateΩ and using equations (3.55)-(3.59) results
in

Ω =

√
β3 + β2(λ1,1 − λ1,2)2

β1
− 1

2β1
√
β6 + β4(λ1,1 − λ1,2)4 + β5(λ1,1 − λ1,2)2

(3.66)
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where

β1 =∆
4
(
β4

1,6 − 2β1,3β1,5β
2
1,6 + 2β1,2β1,7β

2
1,6 + β

2
1,1β

2
1,2 + β

2
1,3β

2
1,5 + 2β1,1β1,2β1,3β1,4

)
(3.67)

β2 =∆
4
(
β1,2β1,3

(
−β1,1β1,2 − β1,3β1,5 + β

2
1,6

))
(3.68)

β3 =∆
4
(
β1,5β

2
1,3 − β2

1,6β1,3 − β1,1β1,2β1,3

)
Γ′′

+ ∆4Λ′′
(
∆2

(
−β1,2

)
β2

1,6 − ∆2β1,2β1,3β1,5 − ∆2β2
1,2β1,7

)
(3.69)

β4 = − ∆8β3
1,2β

3
1,3β1,5β1,7 (3.70)

β5 =∆
8β2

1,2β
2
1,3

(
β1,2β

2
1,1 + β1,3β1,4β1,1 + β

2
1,6β1,7

)
Γ′′

+ ∆8β2
1,2β

2
1,3Λ

′′
(
∆2β1,3β

2
1,5 − ∆2β1,5β

2
1,6 + ∆

2β1,2β1,5β1,7

)
(3.71)

β6 =∆
12β2

1,2β1,3β1,5β
2
1,6

(
Λ′′

)2 − ∆6β1,2β1,3β
2
1,6Γ

′′Λ′′
(
∆4

(
−β2

1,6

)
+ ∆4β1,3β1,5 − ∆4β1,2β1,7

)
− ∆8β1,2β

2
1,3β

2
1,6β1,7

(
Γ′′

)2 (3.72)

and the coefficients of equations (3.67)-(3.72) are as follows

β1,1 = − α∆2Λ′ + M
(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jηη − Jξξ

)
+ Λ, (3.73)

β1,2 =αΓ
′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ Jηηψ′(1)2, (3.74)

β1,3 =α∆
2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ Jζζϕ′(1)2 + Λ, (3.75)

β1,4 =αΓ
′ − Γ − M

(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jξξ − Jζζ

)
, (3.76)

β1,5 = − αΓ′ + Γ + M
(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jζζ − Jξξ

)
, (3.77)

β1,6 =2M
(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ ψ′(1)ϕ′(1)

(
Jζζ + Jηη − Jξξ

)
+ 2Π, (3.78)

β1,7 =α∆
2Λ′ − M

(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jξξ − Jηη

)
− Λ (3.79)

Using equation (3.66) and differential measurement of modal frequencies, that is λ1,1 − λ1,2, the
input angular rotation rate Ω is computed. A design parameter for MEMS gyroscopes is the me-
chanical scale factor. Defining the scale factor as the absolute difference between λ1 and λ2 for
Ω = 1◦/sec, the scale factor is computed from equation (3.66) solving for λ1,1 − λ1,2.

Figures 3.6(a)-3.6(f) represent the frequency split versus the rotation rate for a similar set of dimen-
sions as previous results, see Figures 3.4(a)-3.4(f). The lower the initial mismatch is, the higher
the resolution is in that the slope of the curve is higher. Therefore, measuring the modal frequency
difference in a gyroscope with high quality factor (low damping) is transformed into the angular
rotation rate. This method presents an unlimited bandwidth with the instability limitation presented
in the previous section. Consequently, in practice there is no limitation in terms of quality factor,
while in conventional amplitude modulation based gyroscopes an ultra high quality factor results
in a very limited bandwidth.
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Figure 3.6: The modal frequency split (the difference between fundamental gyroscopic frequen-
cies) in the rotating frame for the variation in the width ratio and the eccentricity.
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3.3.5 Modal Frequencies under the DC Loading
Manufacturing errors or excitation requirements affect the design. To remove or increase or de-
crease the initial mismatch of natural frequencies in the drive and sense directions, the bias DC
voltages are used, see Figure 3.2(a)-3.2(f). Inserting equation (3.53) into equations (3.48) and
(3.49), dropping the damping terms but keeping DC voltages results in the characteristic equation
in the form of equation (3.54) where the modified coefficients are given as

h2 =∆

∆Ω2
(
−

(
−αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ ψ′(1)2

(
Jζζ − Jξξ

))
(
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ Jζζϕ′(1)2 + Λ

)
−

(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ Jηηψ′(1)2

)(
−α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ ϕ′(1)2

(
Jηη − Jξξ

)
+ Λ

)
+

(
2M

(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ ψ′(1)ϕ′(1)

(
Jζζ + Jηη − Jξξ

)
+ 2Π

)
2
)

+
(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ Jηηψ′(1)2

) ∆3Λ′′ +
2eνV2

w
(
eϕ′(1) + ϕ(1)

)2(
ps

(
eϕ′(1) + ϕ(1)

) − 1
)

3


+

(
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ Jζζϕ′(1)2 + Λ

) ∆Γ′′ + 2eνV2
v
(
eψ′(1) + ψ(1)

)2(
qs

(
eψ′(1) + ψ(1)

) − 1
)

3


 (3.80)

c2 =Q2

∆3Λ′′ +
2eνV2

w
(
eϕ′(1) + ϕ(1)

)2(
ps

(
eϕ′(1) + ϕ(1)

) − 1
)

3

 + P2

∆Γ′′ + 2eνV2
v
(
eψ′(1) + ψ(1)

)2(
qs

(
eψ′(1) + ψ(1)

) − 1
)

3

 (3.81)

c0 =

(
∆3Λ′′

(
ps

(
eϕ′(1) + ϕ(1)

) − 1
)

3 + 2eνV2
w
(
eϕ′(1) + ϕ(1)

)2
)

(
ps

(
eϕ′(1) + ϕ(1)

) − 1
)

3(
∆Γ′′

(
qs

(
eψ′(1) + ψ(1)

) − 1
)

3 + 2eνV2
v
(
eψ′(1) + ψ(1)

)2
)

(
qs

(
eψ′(1) + ψ(1)

) − 1
)

3
(3.82)

Other coefficients, h4 and c4, remain similar to as given in equations (3.55) and (3.57). Further-
more, the input rotation rate Ω is computed by measuring the modal frequency split using equation
(3.66). For the data set provided in Table 3.1, the modal frequencies and calibration curves are
plotted in Figures 3.7(a)-3.8(f). Matching the modal frequencies reduces the nonlinearity of the
Ω-modal frequencies relation. Consequently, the gyroscope output in terms of modal frequency
split becomes almost linear, see Figure 3.8(f).
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(b) Modal frequencies for Vv = 3V and Vw = 5V
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(c) Modal frequencies for Vv = 3V and Vw = 6V
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(d) Modal frequencies for Vv = 3V and Vw = 8V
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(e) Modal frequencies for Vv = 3V and Vw = 10V

0 5000 10 000 15 000 20 000 25 000 30 000 35 000

20.25

20.30

20.35

20.40

W H°�secL

Λ
1

,1
a

n
d
Λ

1
,2
Hk

H
zL

(f) Modal frequencies for Vv = 3V and Vw = 10.731V

Figure 3.7: The variation in the fundamental modal frequencies in the rotating frame for the varia-
tion in the DC loadings (e = 0.1 and aM

aB
= 15).
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(a) Calibration curve for Vv = 3V and Vw = 3V
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(b) Calibration curve for Vv = 3V and Vw = 5V
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(c) Modal frequencies for Vv = 3V and Vw = 6V
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(d) Modal frequencies for Vv = 3V and Vw = 8V
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(e) Calibration curve for Vv = 3V and Vw = 10V
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(f) Calibration curve for Vv = 3V and Vw = 10.731V

Figure 3.8: The variation in the fundamental modal frequency split in the rotating frame for the
variation in the DC loadings (e = 0.1 and aM

aB
= 15).
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3.4 Summary
In this chapter, the natural frequencies and mode shapes of the uncoupled system were computed.
Using the mode shapes of uncoupled system, the free response of coupled cantilever beam-rigid
body gyroscope was investigated. An example of micro-scale gyroscope was used to demonstrate
the results. The modal frequencies in the rotating frame and pseudo-modal frequencies in the
inertial frame were obtained. The instability region due to rotation rate was characterized. The
rotation rate was computed in terms of modal frequencies. The differential measurement of the
modal frequencies was translated to the angular rotation rate. The analytical results were clarified
for the micro-scale beam-rigid body gyroscope and the scale factor was discussed.
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Chapter 4

Reduced-Order Nonlinear Analysis

4.1 Preview
By virtue of the inherent nonlinearity of electrostatic force and the coupling of equations of mo-
tion in the drive and sense directions because of the angular rotation rate, the response of cantilever
beam-rigid body gyroscope becomes multi-valued and loses its stability. In practice, the desired
linear behavior is obtained for a certain range of parameters. To identify the proper set of param-
eters and operating points, the nonlinearity of the system is characterized using the “method of
multiple scales”, see Section 1.5.2.

In this chapter, the method of multiple scales is used to derive the slowly varying amplitude and
phase of the system response under primary excitation. The slowly varying system is used to study
the effect of frequency-mismatch on the dynamics of the gyroscope. Obtaining the “slow” system,
or the system of modulation equations, and subsequently studying the dynamics of the slow system
provides valuable information regarding the efficiency of the design and offer solutions to improve
it accordingly.

4.2 Mathematical Method
To derive the proper form of the equations of motion for perturbation analysis, the equations of mo-
tion (2.75) and (2.76) are multiplied through by the denominator of the electrostatic force resulting
in

q̈(t)
(
γ1,5q1(t) − 1

)
2 + cq q̇(t)

(
γ1,5q1(t) − 1

)
2 +
Ωγ1,2 ṗ(t)

(
γ1,5q1(t) − 1

)
2

γ1,1

+

Ω2q1(t)
(
γ1,4 + γ1,3γ1,5q1(t)

(
2 − γ1,5q1(t)

))
γ1,1
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+
Γ′′q1(t)

(
γ1,5q1(t) − 1

)
2

γ1,1
=
ν e γ1,5

(
VAC cos

(
tΩe

)
+ Vw

)
2

γ1,1
(4.1)

and

p̈(t)
(
γ2,5 p1(t) − 1

)
2 + cp ṗ(t)

(
γ2,5 p1(t) − 1

)
2 −
Ωγ2,2q̇(t)

(
γ2,5 p1(t) − 1

)
2

γ2,1

+

Ω2 p1(t)
(
γ2,4 + γ2,3γ2,5 p1(t)

(
2 − γ2,5 p1(t)

))
γ2,1

+
Λ′′p1(t)

(
γ2,5 p1(t) − 1

)
2

γ2,1
=
ν e γ2,5V2

v

γ2,1
(4.2)

where

γ1,1 = αΓ
′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ J22ψ

′(1)2,

γ1,2 = 2M
(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ (−J11 + J22 + J33)ψ′(1)ϕ′(1) + 2Π,

γ1,3 = −αΓ′ + Γ + M
(
eψ′(1) + ψ(1)

)2
+ (J33 − J11)ψ′(1)2,

γ1,4 = αΓ
′ − Γ − M

(
eψ′(1) + ψ(1)

)2
+ (J11 − J33)ψ′(1)2,

γ1,5 = eψ′(1) + ψ(1)

γ2,1 = αΛ
′ + M

(
eϕ′(1) + ϕ(1)

)2
+ J33ϕ

′(1)2 + Λ,

γ2,2 = 2M
(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ (−J11 + J22 + J33)ψ′(1)ϕ′(1) + 2Π,

γ2,3 = −αΛ′ + M
(
eϕ′(1) + ϕ(1)

)2
+ (J22 − J11) ϕ′(1)2 + Λ,

γ2,4 = αΛ
′ − M

(
eϕ′(1) + ϕ(1)

)2
+ (J11 − J22) ϕ′(1)2 − Λ,

γ2,5 = eϕ′(1) + ϕ(1) (4.3)

Removing terms associated with the time derivative of the displacements, q̈(t), q̇(t), p̈(t) and ṗ(t),
results in the static equations equivalent to equations (3.45) and (3.46). The insertion of equation
(3.44) into the preceding equations and using the equations of static equilibrium, results in the
dynamic equations in the form

ω2
qqd(t) + q̈d(t) =2Q14VACVw cos

(
tΩe

)
+

1
2

Q14V2
AC cos

(
2tΩe

)
− qd(t)2

(
Q8Ω ṗd(t) + Q5q̇d(t) + Q2q̈d(t) + Ω2 (

3Q11qs + Q10
)
+ 3Q13qs + Q12

)
+ qd(t)

(
Ω

(−2Q8qs − Q7
)

ṗd(t) − (
2Q5qs + Q4

)
q̇d(t)

− (
2Q2qs + Q1

)
q̈d(t) + Ω2

(
−3Q11q2

s − 2Q10qs − Q9

))
+ Ω

(
−Q8q2

s − Q7qs − Q6

)
ṗd(t) +

(
−Q5q2

s − Q4qs − Q3

)
q̇d(t)
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+
(
−Q11Ω

2 − Q13

)
qd(t)3 (4.4)

ω2
p pd(t) + p̈d(t) =pd(t)2

(
Ω2 (−3P11 ps − P10

) − P5 ṗd(t) − P2 p̈d(t) − P8Ωq̇d(t) − 3P13 ps

−P12) + pd(t)
(
Ω

(−2P8 ps − P7
)

q̇d(t) +
(−2P5 ps − P4

)
ṗd(t)

+
(−2P2 ps − P1

)
p̈d(t) + Ω2

(
−3P11 p2

s − 2P10 ps − P9

))
+ Ω

(
−P8 p2

s − P7 ps − P6

)
q̇d(t) +

(
−P5 p2

s − P4 ps − P3

)
ṗd(t)

+
(
−P11Ω

2 − P13

)
pd(t)3 (4.5)

The coefficients ωp, ωq, Qi and Pi for i = 1, 2, ..., 14 are given by

ω2
q =
Γ′′

(
3γ1,5qs − 1

)
γ1,1

(
γ1,5qs − 1

) ,Q1 = −
2γ1,5(

γ1,5qs − 1
)

2
,Q2 =

γ2
1,5(

γ1,5qs − 1
)

2
,Q3 =

ΓωD

Qq

(
γ1,5qs − 1

)
2
,

Q4 =
−2Γγ1,5ωD

Qq

(
γ1,5qs − 1

)
2
,Q5 =

Γγ2
1,5ωD

Qq

(
γ1,5qs − 1

)
2
,Q6 =

γ1,2

γ1,1

(
γ1,5qs − 1

)
2
,Q7 =

−2γ1,2γ1,5

γ1,1

(
γ1,5qs − 1

)
2
,

Q8 =
γ1,2γ

2
1,5

γ1,1

(
γ1,5qs − 1

)
2
,Q9 =

γ1,4

γ1,1

(
γ1,5qs − 1

)
2
,Q10 =

2γ1,3γ1,5

γ1,1

(
γ1,5qs − 1

)
2
,Q11 =

−γ1,3γ
2
1,5

γ1,1

(
γ1,5qs − 1

)
2
,

Q12 = −
2γ1,5Γ

′′

γ1,1

(
γ1,5qs − 1

)
2
,Q13 =

γ2
1,5Γ

′′

γ1,1

(
γ1,5qs − 1

)
2
,Q14 =

eνγ1,5

γ1,1

(
γ1,5qs − 1

)
2

(4.6)

for the drive equation, and

ω2
p =
Λ′′

(
3γ2,5 ps − 1

)
γ2,1

(
γ2,5 ps − 1

) , P1 = −
2γ2,5(

γ2,5 ps − 1
)

2
, P2 =

γ2
2,5(

γ2,5 ps − 1
)

2
, P3 =

ΛωS

Qp

(
γ2,5 ps − 1

)
2

P4 =
−2Λγ2,5ωS

Qp

(
γ2,5 ps − 1

)
2
, P5 =

Λγ2
2,5ωS

Qp

(
γ2,5 ps − 1

)
2
, P6 =

−γ2,2

γ2,1

(
γ2,5 ps − 1

)
2
, P7 =

2γ2,2γ2,5

γ2,1

(
γ2,5 ps − 1

)
2
,

P8 =
−γ2,2γ

2
2,5

γ2,1

(
γ2,5 ps − 1

)
2
, P9 =

γ2,4

γ2,1

(
γ2,5 ps − 1

)
2
, P10 =

2γ2,3γ2,5

γ2,1

(
γ2,5 ps − 1

)
2
, P11 =

−γ2,3γ
2
2,5

γ2,1

(
γ2,5 ps − 1

)
2
,

P12 =
−2γ2,5Λ

′′

γ2,1

(
γ2,5 ps − 1

)
2
, P13 =

γ2
2,5Λ

′′

γ2,1

(
γ2,5 ps − 1

)
2
, P14 =

eνγ2,5

γ2,1

(
γ2,5 ps − 1

)
2

(4.7)

for the sense equation. To derive the system of slowly varying parameters of the system, the
method of multiple scales is employed. To determine a uniform second-order approximation of the
response, the flexural displacements of the structure in the sense and drive directions are expressed
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in the form

qd(t) = ϵ qd1 (t0, t1, t2) + ϵ2qd2 (t0, t1, t2) + ϵ3qd3 (t0, t1, t2) (4.8)

pd(t) = ϵ pd1 (t0, t1, t2) + ϵ2 pd2 (t0, t1, t2) + ϵ3 pd3 (t0, t1, t2) (4.9)

where the time scales are defined as t0 = t, t1 = ϵ t, and t2 = ϵ2t. The parameter ϵ indicates the
order of the terms. The forcing term, VAC, is scaled by introducing ϵ3, the rotation rate Ω by ϵ2,
and the damping terms by ϵ such that they appear in the third-order equations. Inserting (4.8) and
(4.9) into (4.4) and (4.5) and collecting the coefficients of like powers of ϵ results in the following
sequence of equations:

• O(ϵ1):

∂2
0qd1 + ω

2
qqd1 = 0 (4.10)

∂2
0 pd1 + ω

2
p pd1 = 0 (4.11)

• O(ϵ2):

∂2
0qd2 + ω

2
qqd2 = − 3Q13qsq2

d1 − 2Q2qs qd1 ∂
2
0qd1 − Q12q2

d1

− Q1 qd1 ∂
2
0qd1 − 2∂1∂0qd1, (4.12)

∂2
0 pd2 + ω

2
p pd2 = − 3P13 ps p2

d1 − 2P2 ps pd1 − P12 p2
d1∂

2
0 pd1

− P1 pd1 ∂
2
0 pd1 − 2∂1∂0 pd1 (4.13)

• O(ϵ3):

∂2
0qd3 + qd3 ω

2
q = 2 Q14 VAC Vw cos

(
Ωe t

) −ΩQ8∂0 pd1 q2
s − Q5∂0qd1 q2

s −ΩQ7∂0 pd1 qs

− Q4∂0qd1 qs − 4Q2qd1 ∂1∂0qd1 qs − 2Q2qd2 ∂
2
0qd1 qs

− 2Q2qd1 ∂
2
0qd2 qs − 2Q12qd1 qd2

− Q13

(
q3

d1 + 6qsqd2 qd1

)
− ∂2

1qd1 −ΩQ6∂0 pd1

− Q3∂0qd1 − 2∂2∂0qd1 − 2Q1qd1 ∂1∂0qd1 − 2∂1∂0qd2

− Q2q2
d1∂

2
0qd1 − Q1qd2 ∂

2
0qd1 − Q1qd1 ∂

2
0qd2, (4.14)

∂2
0 pd3 + pd3 ω

2
p = − P13 p3

d1 − P2∂
2
0 pd1 p2

d1 − 2P12 pd2 pd1 − 6psP13 pd2 pd1

− 2P1∂1∂0 pd1 pd1 − 4psP2∂1∂0 pd1 pd1 − P1∂
2
0 pd2 pd1

− 2psP2∂
2
0 pd2 pd1 − ∂2

1 pd1 − P3∂0 pd1 − psP4∂0 pd1 − p2
s P5∂0 pd1

−ΩP6∂0qd1 −ΩpsP7∂0qd1 −Ωp2
s P8∂0qd1

− 2∂2∂0 pd1 − 2∂1∂0 pd2 − P1 pd2 ∂
2
0 pd1 − 2psP2 pd2 ∂

2
0 pd1 (4.15)

where ∂n
m indicates the nth derivative with respect to the mth time scale, that is tm, for m = 0, 1, 2.
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Equations (4.10) and (4.11) represent two uncoupled eigenvalue problems and therefore their so-
lutions are expressed in the form

qd1 (t0, t1, t2) =Āq (t1, t2) e−it0ωq + Aq (t1, t2) eit0ωq (4.16)

pd1 (t0, t1, t2) =Āp (t1, t2) e−it0ωp + Ap (t1, t2) eit0ωp (4.17)

where Aq (t1, t2) and Ap (t1, t2) and their complex conjugates Āq (t1, t2) and Āp (t1, t2) are to be deter-
mined by removing secular terms in computing the solutions of the second O(ϵ2) and third order
O(ϵ3) problems. The arguments of functions, that is (t0, t1, t2) and (t1, t2), are removed where ever
it is necessary for the clarity and brevity of notation.

Introducing equations (4.16) and (4.17) in the second order equations (4.12) and (4.13) and col-
lecting terms gives

∂2
0qd2 + ω

2
qqd2 =

(
qs

(
4Q2ω

2
q − 6Q13

)
+ 2Q1ω

2
q − 2Q12

)
Āq (t1, t2) Aq (t1, t2)

+

(
qs

(
2Q2ω

2
q − 3Q13

)
+ Q1ω

2
q − Q12

)
Āq (t1, t2) 2e−2it0ωq

+

(
qs

(
2Q2ω

2
q − 3Q13

)
+ Q1ω

2
q − Q12

)
Aq (t1, t2) 2e2it0ωq

+ 2iωqe−it0ωq∂1Āq (t1, t2) − 2iωqeit0ωq∂1Aq (t1, t2) (4.18)

∂2
0 pd2 + ω

2
p pd2 =

(
ps

(
4P2ω

2
p − 6P13

)
+ 2P1ω

2
p − 2P12

)
Āp (t1, t2) Ap (t1, t2)

+

(
ps

(
2P2ω

2
p − 3P13

)
+ P1ω

2
p − P12

)
Āp (t1, t2) 2e−2it0ωp

+

(
ps

(
2P2ω

2
p − 3P13

)
+ P1ω

2
p − P12

)
Ap (t1, t2) 2e2it0ωp

− 2iωpeit0ωp∂1Ap (t1, t2) + 2iωpe−it0ωp∂1Āp (t1, t2) (4.19)

To remove the secular terms in the preceding equations, the coefficients of eit0ωq e−it0ωq , eit0ωp , and
e−it0ωp are set to zero. Therefore, Aq (t1, t2) and Ap (t1, t2) and their complex conjugates are only
functions of t2. Thus,

qd1 (t0, t2) =Āq (t2) e−it0ωq + Aq (t2) eit0ωq (4.20)

pd1 (t0, t2) =Āp (t2) e−it0ωp + Ap (t2) eit0ωp (4.21)

Considering equations (4.20)-(4.21), the solutions of (4.18)-(4.19) are expressed in the form

qd2 (t0, t2) =G1e−2it0ωq Ā2
q + 2G2Aq Āq +G1A2

qe2it0ωq (4.22)

pd2 (t0, t2) =H1e−2it0ωp Ā2
p + 2H2Ap Āp + H1A2

pe2it0ωp (4.23)

58



where the unknown coefficients G1, G2, H1, and H2 are found by substituting equations (4.20)-
(4.23) into equations (4.18) and (4.19) and equating the coefficients of equivalent terms on both
sides of the equations. Therefore, the unknown coefficients G1, G2, H1, and H2 compute to

G1 =
−2Q2qsω

2
q + 3Q13qs − Q1ω

2
q + Q12

3ω2
q

(4.24)

G2 =
2Q2qsω

2
q − 3Q13qs + Q1ω

2
q − Q12

ω2
q

(4.25)

H1 =
−2P2 psω

2
p + 3P13 ps − P1ω

2
p + P12

3ω2
p

(4.26)

H2 =
2P2 psω

2
p − 3P13 ps + P1ω

2
p − P12

ω2
p

(4.27)

The interest of this thesis is to investigate the system response near primary resonance. On the
other hand, for further analysis of the performance of the beam-rigid body gyroscope operating
in the amplitude or frequency-modulation mode, the effect of mismatch of modal frequencies is
investigated. Therefore, to describe the primary and internal resonances, two detuning parameters
are introduced:

Ωe =ωq + ϵ2σ (4.28)

ωp =ωq + ϵ2δ (4.29)

The first equation, (4.28), characterizes the nearness of the excitation frequency Ωe to the drive
natural frequency ωq, and equation (4.29) characterizes the nearness of two modal frequencies in
the drive and sense directions, that is ωq and ωp.

Substitution of equations (4.20)-(4.23) and (4.28) and (4.29) into the third order coupled problems,
equations (4.14) and (4.15), and dropping terms associated with higher frequencies, that is nωq for
n > 1, results in

∂2
0qd3 + ω2

q qd3 =

(((
5G1 Q1 + 2G2 Q1 + 10G1 qsQ2 + 4G2 qsQ2 + 3Q2

)
ω2

q

−2G1 Q12 − 4G2 Q12 −
(
6G1 qs + 12G2 qs + 3

)
Q13

)
Āq A2

q

− i
(
Q5q2

s + Q4qs + Q3

)
ωqAq + eiσt2 Q14VACVw

−i
(
Q8q2

s + Q7qs + Q6

)
ωqΩ Ap ei δ t2 − 2iωqȦq

)
eit0ωq +C.C. (4.30)

∂2
0 pd3 + ω2

q pd3 =

(
−i

(
P8 p2

s + P7 ps + P6

)
ΩωqAq + ei δ t2

((
5H1P1 + 2H2P1

+
(
10H1 ps + 4H2 ps + 3

)
P2

)
ω2

qĀp A2
p − (2H1P12

+4H2P12 +
(
6H1 ps + 12H2 ps + 3

)
P13

)
Āp A2

p
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−iωq

((
P5 p2

s + P4 ps + P3

)
Ap + 2Ȧp

)) eit0ωq +C.C. (4.31)

where Ȧq and Ȧp represent the time derivative of amplitudes Aq(t2) and Ap(t2) with respect to the
slow time scale t2 and C.C. stands for the complex conjugate of its preceding term. The coefficients
of eit0ωq give rise to the secular terms. Therefore, the imaginary and real parts of the coefficients of
eit0ωq in equations (4.30) and (4.31) are set to zero. To this end, the amplitudes, Aq(t2) and Ap(t2),
are expressed in polar form as

Aq (t2) =
1
2

aq(t2)eiθq(t2), Ap (t2) =
1
2

ap(t2)eiθp(t2), (4.32)

substituted in equations (4.30) and (4.31), the real and imaginary parts are separately equated to
zero resulting in the following four modulation equations(
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where

η2 (t2) = θp (t2) − θq (t2) + δ t2 (4.37)
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η1 (t2) = σ t2 − θq (t2) (4.38)

and the time derives of the amplitudes and phases ȧq, ȧp, η̇1, and η̇2 are computed with respect to
the slow time scale t2. The general solutions, that is equations (4.8) and (4.9), of the system of
equations are therefore
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4.3 Steady-State Response and its Stability
The former set of the second-order approximation of the dynamic response, equations (4.39) and
(4.40), represent a periodic solution with constant amplitudes for constant aq(t), ap(t), η1(t), and
η2(t). Therefore, the fixed points of the system of equations (4.33)-(4.36) corresponds to the peri-
odic solutions of the structure about the static equilibrium. The system of equilibrium equations
expressed in the form of(
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are solved for aq, ap, η1, and η2, to compute the equilibrium points of the response. The modulation
and equilibrium equations are expressed in the Cartesian form by describing the amplitudes in the
form
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Following the same procedure as outlined for the polar form results in the modulation equation.
Therefore, the modulation equations (slow system) in the Cartesian form become
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Setting the time derivatives equal to zero in the modulation equations, results in the equilibrium
(stationary) equations in the Cartesian form. The stability of stationary points, points where ẋp =

0, ẏq = 0, ẋp = 0, and ẏp = 0, is resolved by computing and evaluating the eigenvalues of the
Jacobian matrix defined by
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(4.51)

at the stationary points. Equilibrium (stationary) solutions with corresponding eigenvalues with
negative real parts are asymptotically stable while others with at least one positive eigenvalue
represent an unstable solution.

4.4 Frequency-Response Analysis
The frequency-response plots are produced for the steady state solutions of the modulation equa-
tions, (4.41)-(4.44). The basic parameters under consideration are given in Table 3.1. The width
ratio of the end mass to the beam is 15 and the eccentricity is 0.1. The excitation frequency, Ωe,
is perturbed apropos of the apparent natural frequency ωq, see equation (4.28). The other natural
frequency, ωp, is characterized with respect to the ωq as well. In Table 4.1, the values of effective
natural frequencies, ωq and ωp, are provided for two sets of DC bias loadings.
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Table 4.1: DC loadings and the effective natural frequencies

Vw (V) Vv (V)
3 10.731 3 10.731

ωq (Hz) 20542.8 20340.4 N/A N/A
ωp (Hz) N/A N/A 20340.4 20139.9

The effective nonlinearity of the amplitude equation, equation (4.41), is given by
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1
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8
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)
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)
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To investigate the evolution of the effective nonlinearity for the geometry of interest the DC voltage
is increased from zero to just above the pull-in voltage. The nonlinearity is initially negative and
very small in magnitude and becomes larger and more negative as the DC voltage approaches the
static pull-in voltage indicating the softening characteristics of the response in the drive direction,
see Figure 4.1. Considering the center frequency to be equal to ωq, two cases are investigated in
the following analysis: the case of matched DC voltage and the matched natural frequencies.

4.4.1 Matched Natural Frequencies
In operating the beam gyroscope as a rotation rate sensor in the amplitude-modulation mode, the
natural frequencies of the sense and drive directions are matched to increase the sensitivity of the
device. To this end, the DC loadings are selected as Vw = 10.731 V and Vv = 3 V to set the
frequencies at 20340.4 Hz. In the design of the gyroscope, the bandwidth of the sense direction
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-150

-100

-50

0

Vw HVL

Τ

Figure 4.1: The variation of effective nonlinearity with the DC voltage.
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BW =
ωn

Q
(4.53)

where ωn (Hz) is the natural frequency of the free vibration in the sense direction and Q is the
quality factor, is a parameter under consideration by designers. For a bandwidth of 50 Hz, the
quality factor is about 400.

In Figures 4.2(a)-4.2(f), the frequency-response plots are demonstrated for an increasing set of AC
voltages. The nondimensional responses in the drive and sense direction, see equation (2.65), are
plotted for the center of the rigid body. For low excitation amplitude, VAC = 0.3V, the response is
completely linear and single-valued. By increasing the excitation amplitude to 0.7 V and then 1.2
V, an unstable branch of response appears in the frequency-response plots. The horizontal solid
line represents the physical limit where the end of the structure strikes the substrate. The horizontal
dotted-dashed line goes through the static unstable equilibrium for the corresponding DC loading,
see Figures 3.3(a).

Figures 4.3(a)-4.3(f) demonstrate the variation in the frequency-response of the system as the rota-
tion rate is increased to the magnitude of 18000◦/s or 50 revolutions per second (Hz). It is expected
to observe the higher effect of the Coriolis force in the form of the sense response. The maximum
displacement in the sense direction increases from 0.442% to 3.617% of the initial gap size for
an increase in the angular rotation rate from Ω = 180◦/s to Ω = 1800◦/s. On the other hand,
the modal frequencies diverge from each other as the rotation rate increases. Although initially
the modal frequencies are matched by manipulating the DC voltages, the higher the rotation rate
the larger the difference of modal frequencies becomes and appears as two separate peaks in the
frequency-response plot, see Figure 4.3(e) and 4.3(f).

4.4.2 Matched DC Voltages
When operating the gyroscope in the frequency-modulation mode, measuring the amplitude of the
sense displacement is not of primary interest. As a consequence, the bandwidth of the sensor is
not restricted by the quality factor. In principle, the bandwidth is limited by the natural frequency
of the microsensor which is several orders of magnitude larger than the highest input rotation rate,
see Chapter 3. The quality factor is set to 400 and the rotation rate to 18◦/s. For varying excitation
amplitude, the frequency-response plots are provided in Figures 4.4(a)-4.4(f). The low DC poten-
tial prevents the structure from large displacements and thus nonlinearity due to electrostatic force
does not affect the response.

The DC voltages are increased to 10.731 V for results of Figures 4.5(a)-4.5(f). Note that the
product of Vw and VAC, see equations (4.41) and (4.43), gives the excitation amplitude on the
slowly varying system. The angular rotation rate is set to 18◦/s. For displacements larger than the
35% of the initial distance between the rigid body and the corresponding electrode (the gap size),
the response becomes nonlinear and multi-valued.
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Figure 4.2: The frequency-response plots for varying VAC, the solid red horizontal line indicates the
physical limit of the displacement and the dashed-dot line represents the static saddle line through
saddle node for the corresponding Vw (Vw = 10.731 V, Vv = 3 V, Ω = 18◦/s).
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Figure 4.3: The frequency-response plots for VAC = 0.3 V varying Ω, the solid red horizontal line
indicates the physical limit of the displacement and the dashed-dot line represents the static saddle
line through saddle node for the corresponding Vw (Vw = 10.731 V, Vv = 3 V).
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Figure 4.4: The frequency-response plots for varying VAC, the solid red horizontal line indicates the
physical limit of the displacement and the dashed-dot line represents the static saddle line through
saddle node for the corresponding Vw (Vw = 3 V, Vv = 3 V, Ω = 18◦/s)
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Figure 4.5: The frequency-response plots for varying VAC, the solid red horizontal line indicates the
physical limit of the displacement and the dashed-dot line represents the static saddle line through
saddle node for the corresponding Vw (Vw = 10.731 V, Vv = 10.731 V, Ω = 18◦/s).
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4.5 Force-Response Analysis
The force-response analysis is performed on the nonlinear multi-valued cases of matched natural
frequencies and matched DC loads. For the frequency-response plots in Figures 4.2(e) and 4.5(e),
with the detuning parameter σ = −0.245 kHz, the force-response plots are given in Figures 4.6(a)-
4.6(d). Increasing VAC, the first bifurcation point where the response loses stability is 1.888 V in
both cases. And the second turning point is at 0.822 V in both cases, indicating similar behavior
in terms of bifurcation points for both matched frequency and matched DC voltage cases. In
agreement with the frequency-response results, the upper stable, branch in the case of matched DC
voltages, appears to be larger than its counterpart in the frequency matched case.
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Figure 4.6: The force-response plots for σ = −0.147kHz, the solid red horizontal line indicates
the physical limit of the displacement and the dotted-dashed line represents the static saddle line
through saddle node for the corresponding Vw (Vw = 10.731 V, Vv = 3 V, Ω = 18◦/s).
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Figure 4.7: The frequency-response plots for varying VAC (Vw = 10.731 V, Vv = 3 V,Ω = 18◦/s).

4.6 The Effects of the AC Voltage and the Quality Factor
Figures 4.7(a) and 4.7(b) show the variation of the frequency-response plots with the excitation
amplitude VAC. As the excitation amplitude increases the maximum response steadily grows
and becomes nonlinear for sufficiently large VAC. The frequency-response curves are given for
VAC = 0.13V, 0.43 V, 0.73 V, and 1.03 V where the response is fully linear for the lowest two
AC voltages and at the onset of multivaluedness for VAC = 0.43 V. In the sense direction, Figure
4.7(b), an unstable branch appears for VAC = 0.73 V and VAC = 1.03 V, see the dashed (red)
lines. For VAC = 1.03 V part of the response near the peak is beyond the physical limit of the
device for this geometry indicated by the solid horizontal line. Increasing the VAC amplifies the
effect of nonlinearity and a stronger softening behaviour is observed in the drive direction as the
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Figure 4.8: The frequency-response plots for varying qualify factor Q (Vw = 10.731 V, Vv =

10.731 V, Ω = 18◦/s).

consequence of large amplitude of vibration.

In Figures 4.8(a) and 4.8(b) for VAC = 0.43 V, the frequency curves are plotted for some different
quality factors. The quality factor is 200 for the smallest maximum amplitude of vibration in the
drive direction and 1000 for the largest amplitude of vibration. The curves are for Q = 200, 400,
600, 800, and 1000. The amplitude constantly grows with the quality factor and the peak response
region becomes sharper indicating a lower bandwidth. Therefore, for operating in the amplitude-
modulation mode, the required bandwidth limits the quality factor. In the design of the gyroscope
sensor, modifying the geometry of the end rigid body results in a higher or lower natural frequency
which affects the quality factor for the desired bandwidth.

72



4.7 Summary
In this chapter, the non/linear dynamics of the second-order approximation of the discretized model
have been studied using the method of multiple scales. The Coriolis terms have been considered
while higher order centrifugal terms have been neglected. The excitation, damping, and Coriolis
terms appear in the third-order equations of motion. Removing the secular terms, the modulation
equations are computed and the equilibrium points and their stability are determined. Controlling
the DC voltage, the effective eigenvalues are matched in the drive and sense directions to increase
the sensitivity of the sensor. For equal DC voltages in the drive and sense directions, while the re-
sponse in the drive direction is similar to the matched-frequency case, the sense response indicates
the synchronization of two frequencies near the excitation frequency.
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Chapter 5

Computational Nonlinear Analysis

5.1 Preview
The nonlinear dynamics of full single-mode model are investigated in this chapter. To this end,
the effects of the second-order rotation rate Ω2 and the excitation amplitude V2

AC are taken into
consideration. When exciting the structure using the electrostatic method, the nonlinearity appears
in the denominator of the actuation force term. To operate the sensor in the primary resonance
range, the excitation frequency is set near the effective natural frequency of the structure.

To study the nonlinear resonance of the complete reduced-order model, the shooting method is
used. The nonlinear reduced-order model is re-cast into the state space form and the shooting
method is used to transform the initial value of finding periodic solutions to the boundary value
problem of matching initial conditions and end conditions. The stability of each response branch
is determined by computing Floquet multipliers, see Section 1.5.2. Therefore, the monodromy
matrix is computed and its eigenvalues are monitored for their exit from the unit circle on the
complex plane.

5.2 Computational Method
The analysis is performed on the reduced-order model of equations (2.75) and (2.76). The equa-
tions are repeated here:

∆

(
Γ + α Γ′ + J

M
ηη ψ

′(1)2 + M
(
ψ(1) + eψ′(1)

)2
)

q̈(t) + cq q̇(t)

+ ∆Ω(t)
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J
M
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M
ηη − J

M
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)
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(
ϕ(1) + e ϕ′(1)

) (
ψ(1) + eψ′(1)

) ṗ(t)

+ ∆ Ω̇(t)
(
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M
ηη ψ

′(1) ϕ′(1) + M
(
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) (
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+ ∆

Γ′′ −Ω2
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(
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and
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where the (̂ )’s have been removed for the notational clarity. To re-express the equations in the state
space form, it is assumed that x1 = q(t), x2 = q̇(t), x3 = p(t), and x4 = ṗ(t) resulting in

ẋ1=x2 (5.3)
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+
ν e

(
ϕ(1) + e ϕ′(1)

)
V2

v(
1 − x3ϕ(1) − e x3ϕ′(1)

) 2
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where mq and mp are the coefficients of the modal acceleration terms p̈(t) and q̈(t) in equations
(5.1) and (5.2). The damping coefficients cq and cp are replaced with the mq ωD/QD and mp ωS /QS

respectively, ωD and ωS are the natural frequency in the drive and sense directions (for zero DC
voltages), and QD and QS are the quality factors in the drive and sense directions respectively.

To locate periodic solutions of the response, a combination of long time integration and shooting
method is used. The shooting method is employed to locate the periodic solutions of the non/au-
tonomous nonlinear systems. The method of implementation and the algorithm are discussed in
[59], pp. 120-121, and [63], pp. 38-41. To determine the stability of periodic orbits, the eigenval-
ues of the monodromy matrix are computed, see Section 1.5.2.

5.3 Frequency-Response Analysis
In the analysis of the system response using the method of multiple scales, the higher order non-
linearities and the second-order angular velocity and excitation amplitude, V2

AC were neglected as
they appear in higher order equations of motion. In computing the response of the system using
the computational shooting method, the nonlinearities of the electrostatic force and higher order
angular rotation rate and the excitation amplitude affect the dynamic equilibrium of the structure
for relatively large displacements.

5.3.1 Matched Natural Frequencies
In Figures 5.1(a)-5.1(f) the results of computational analysis are compared with the perturbation
method for matched natural frequencies, see Table 4.1. The DC voltages are set to 10.731 V in the
drive direction and 3 V in the sense direction. The applied AC excitation voltage is increased from
0.3 V to 1.2 V for Figures 5.1(a)-5.1(f). The circles represent the perturbation solution obtained by
using the method of multiple scales. It has been mentioned earlier that in operating the gyroscope
as rotation rate sensor in the amplitude-modulation mode, the matched natural frequencies case is
highly desired to increase the sensitivity of the system.

In Figures 5.1(a) and 5.1(b) the response is linear and single-valued. It is observed that the pertur-
bation result is in excellent agreement with the computational shooting method. As the excitation
amplitude grows, the response becomes larger and the agreement between the computational and
perturbation solutions degrades. Figures 5.1(c) and 5.1(d), compare two solutions for VAC = 0.7V.
The lower stable branch for frequencies less than the effective natural frequency is approximated
closely by both methods. For less than 60% of the total gap size, the perturbation method agrees
with the computational method for upper stable branch.

Figures 5.1(e) and 5.1(f), present the frequency-response plots for VAC = 1.2V. Comparing with
previous case for VAC = 0.7V, it is seen that the difference between the perturbation and com-
putational predictions becomes larger for the unstable branch (indicated with dashed red line and
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red circles). The method of multiple scales tend to overestimate the larger response branches.
However, the bifurcation points do not differ significantly. For practical purposes, operating in the
highly nonlinear region is not advised by virtue of higher failure possibilities. Therefore, the results
of the second-order perturbation analysis remain close to those of the computational analysis.

The next set of results, Figures 5.2(a)-5.2(f), demonstrate and compare the effect of an increasing
Ω on the frequency-response plot. The corresponding AC voltage is 0.3 V is low enough to ensure
the linearity of the response in all cases. In all cases, the results of the perturbation analysis using
the method of multiple scales are in excellent agreement with those of the computational shooting
analysis. Increasing the rotation rate to the large magnitude of 18000◦/s (or 50 Hz) affect the modal
frequencies of both drive and sense directions.

5.3.2 Matched DC Voltages
Operating the gyroscopic sensor in the frequency-modulation mode does not require amplitude
amplification, and thus modal frequency matching. Two sets of results are presented here for low
and high DC voltages. The low DC loading weakens the combined effect of AC and DC loadings
and results in a single-valued response in all cases. Figures 5.3(a)-5.3(f), provide the comparison
of the computational and perturbation solutions for Vv = Vw = 3 V. Qualitative and quantitative
agreements are obtained comparing the two methods of computations.

Two peaks appear at the effective modal frequencies in the sense direction. The external excitation
force is large enough to prevail over the feedback due to the Coriolis force to the drive direction
and create a single maximum in the drive mode for all common rotation rate sensors. It is realized
that in all cases, the perturbation solution firmly agrees with the computational results. Employing
the gyroscope in the frequency-modulation mode, the desired amplitude is as large as required to
identify two peaks. A low VAC results in the lower effect of V2

AC on the response.

Figures 5.4(a)-5.4(f) illustrate the frequency-response plots for Vv = Vw = 10.731 V. Because of
the large DC voltage, an unstable branch of response appears for VAC = 0.7V and VAC = 1.2V.
The accuracy of the perturbation solution degrades in estimating the unstable branch and the higher
stable branch as the excitation amplitude grows. However, qualitatively the perturbation solution
depicts the same synchronization behavior in the sense mode for VAC = 1.2.

5.4 Force-Response Analysis
The force-response curves are depicted in Figures 5.5(a) and 5.5(b) for the case of matched natural
frequencies. Increasing the excitation amplitude, the perturbation and computational solutions
agree up to VAC = 1.6 V where they start to differ gradually. The semi-analytical perturbation
solution overestimates the AC voltage and the displacement at the first turning point. It continues to
overestimate the corresponding unstable and the higher stable equilibrium points. According to the
computational shooting method, the first bifurcation (turning) point occurs when VAC = 2.479 V
at 33.6% of the initial gap size, while the method of multiple scale gives VAC = 4.096 V at 50.2%
for the same point.
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Figure 5.1: The frequency-response plots for varying VAC, the solid red horizontal line indicates the
physical limit of the displacement and the dashed-dot line represents the static saddle line through
saddle node for the corresponding Vw (Vw = 10.731 V, Vv = 3 V,Ω = 18◦/s). The circles indicate
perturbation solution using the method of multiple scales.
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Figure 5.2: The frequency-response plots for VAC = 0.3 V varying Ω, the solid red horizontal
line indicates the physical limit of the displacement and the dashed-dot line represents the static
saddle line through saddle node for the corresponding Vw (Vw = 10.731 V, Vv = 3 V). The circles
indicate perturbation solution using the method of multiple scales.
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Figure 5.3: The frequency-response plots for varying VAC, the solid red horizontal line indicates the
physical limit of the displacement and the dashed-dot line represents the static saddle line through
saddle node for the corresponding Vw (Vw = 3 V, Vv = 3 V, Ω = 18◦/s). The circles indicate
perturbation solution using the method of multiple scales.
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Figure 5.4: The frequency-response plots for varying VAC, the solid red horizontal line indicates the
physical limit of the displacement and the dashed-dot line represents the static saddle line through
saddle node for the corresponding Vw (Vw = 10.731 V, Vv = 10.731 V, Ω = 18◦/s). The circles
indicate perturbation solution using the method of multiple scales.
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Figure 5.5: The force-response plots for σ = −0.245kHz, Vw = 10.731 V, Vv = 3 and Ω =
18◦/s.

5.5 Orbits
In Figures 5.6(a)-5.7(f), the steady state displacement trajectories, that is the displacement in the
sense direction versus the displacement in the drive direction, are plotted. The first set of fig-
ures, 5.6(a)-5.6(f), correspond to the matched natural frequencies and the second set, 5.7(a)-5.7(f),
to the matched DC voltages in the drive and sense directions. Two sections at the frequency-
response plots are chosen to compute the periodic orbits; first one at σ = 0 kHz and second at
σ = −190 kHz near the maximum for multi-valued cases.

For the matched frequencies case, Figures 5.6(a)-5.6(f), the steady state solution indicates that near
the effective natural frequency in the drive direction, that is σ = 0 kHz, the response in the sense
direction is larger than when σ = −190 kHz. On the other hand, the spatial trajectory follows a
nearly straight line when the excitation frequency is near the effective natural frequency in the drive
direction, see Figures 5.6(a), 5.6(c), and 5.6(e). The displacement trajectory becomes an ellipse for
the excitation near the effective natural frequency in the sense direction, see Figures 5.6(b), 5.6(d),
and 5.6(f). A very small perturbation of initial condition on the unstable orbit, dashed line, results
in converging to the small or large stable orbits, solid lines.

For the same points on the frequency-response plots of matched DC voltages at Vw = 10.731 V,
Vv = 10.731 V, σ = 0 kHz and σ = −190 kHz, the steady state solutions are computed and the
displacement trajectories are plotted in Figures 5.7(a)-5.7(f). In all instances, the results indicate
nearly horizontal ellipses with the larger diagonal in the drive direction, as expected, for σ =
0 kHz. Approaching the effective modal frequency in the sense direction, that is σ = −190 kHz,
amplifies the sense motion and therefore the ratio of the major axis to the minor axis of the ellipses
becomes smaller and the angles between the major axes and the horizontal lines become larger. It
is interesting to note that the smaller stable orbit for σ = −190 kHz presents a stronger response
in the sense direction in comparison with the same orbit for σ = 0 kHz.
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Figure 5.6: The orbits for two sections of frequency-response plot for Vw = 10.731 V, Vv = 3 V
and Ω = 18◦/s.
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Figure 5.7: The orbits for two sections of frequency-response plot for Vw = 10.731 V, Vv =

10.731 V and Ω = 18◦/s.
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5.6 Global Stability
To study the global stability of the response, the basin of attraction of the stable solution, that is the
stable periodic displacement trajectory, the erosion of the basin of attraction, the jump phenomena,
and the sensitivity of the steady-state solutions to the unwanted excitation are studied.

5.6.1 Basin of Attraction
Figures 5.8-5.10 present three cases: the undamped-unforced, the damped-unforced, and the
damped-forced. The results are generated for the matched-frequency case in the drive direction
where Vw = 10.731 V, Vv = 3 V and Ω = 18◦/s. In Figure 5.8, the “C” indicates the stable
static position (the center) and “S” the unstable static position (the saddle) which is passed over
by the vertical dashed-dot line. Two modes of deflection are separated by separatrices: the initial
conditions resulting in the periodic motion around the center and the initial conditions resulting in
the unbounded displacement going to pull-in, that is wc = 1.

The separatrix trajectories meet at the saddle node and are identified with the pair of self-intersecting
trajectories (homoclinic path). Two other divergent trajectories emanate from the saddle node and
go to infinity or pull-in. To compute the trajectories, the initial condition is varied and the steady-
state solutions are computed by forward and backward computations. Outside the stable region,
indicated by an ellipse-like shape, the trajectories do not intersect and diverge to infinity.

In Figure 5.9, the damping is included in the analysis by considering QD = 400 and QS = 400.
As a result of taking damping into account, a homoclinic bifurcation occurs and the center becomes
a focus “F”. A heteroclinic spiral-saddle connection appears and any trajectory finally converges
to the focus given the initial condition is in the filled area. Therefore, the structural change of the
response is observed by adding the damping.

Figure 5.10 illustrates the damped-forced case. The AC voltage is set to 0.3V and the excitation
frequency is computed for σ = 500 kHz. The area inside the ellipse results in the bounded motion,
while the outside in the divergent motion and dynamic pull-in. The right limit is slightly away from
the static saddle node indicated by the vertical dashed-dot line. Comparing all three sets of results
with each other, Figures 5.8-5.10, it is realized that the undamped-unforced case gives a very good
approximation of the safe basin of attraction where the device can operate.

5.6.2 The Jump Phenomena, Hysteresis, and Dynamic Pull-In
The initial conditions and excitation parameters define the ultimate state of the response. To further
clarify the global behaviour of the system response, the time histories and phase portraits are
employed for a combination of parameters. For the matched-frequency case with Vw = 10.731 V,
Vv = 3 V,Ω = 18◦/s, QD = 400, QS = 400, and VAC = 1.2V the results of long-time integration
are plotted in conjunction with shooting result on Figures 5.11(a)-5.11(c). The initial condition is
identified with the solid (black) circle. The final solution is the solid trajectory and matches the
stable limit cycles of the shooting method indicated by small circles, see Figure 5.11(a).
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Figure 5.8: The phase portrait and the basin of attraction for the undamped-unforced case (Vw =

10.731 V, Vv = 3 V, Ω = 18◦/s).
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Figure 5.9: The phase portrait and the basin of attraction for the damped-unforced case (Vw =

10.731 V, Vv = 3 V, Ω = 18◦/s, Q = 400).
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Figure 5.10: The phase portrait and the basin of attraction for the damped-forced case (Vw =

10.731 V, Vv = 3 V, Ω = 18◦/s, Q = 400, VAC = 0.3 V).

The time history indicates that the solution converges to stable limit cycles after the transient
motion disappears, see Figures 5.11(b) and 5.11(c). The dynamic response of the system manifests
jump phenomena near the cyclic fold bifurcation point in Figures 5.1(e) and 5.1(f). The bifurcation
occurs at σ = −132.81 kHz generating the nondimensional displacement at the center of end rigid
body as large as ≈ 0.2756 and ≈ 0.0008 in the drive and sense directions, respectively. Sweeping
the frequency from left to right, the response jumps to the higher stable branch where the drive and
sense displacements respectively are ≈ 0.6115 and ≈ 0.0010.

Choosing an initial condition in the basin of attraction of the smaller stable orbit, the final solution
merges in the smaller stable periodic solution, see Figures 5.12(a)-5.12(c). The circles indicate the
results of shooting method. At the onset of bifurcation, the unstable orbit, the red circles, appear
near the smaller stable orbit, the green circles. The response experiences some transient behaviour,
see Figure 5.12(c), however quickly approaches and stays on the smaller stable orbit. The final
state of the system depends on the initial condition and other available attractors around the initial
operating point.

The initial condition of the system is influenced by external excitations such as unwanted vibrations
and shock. As a result of external excitations, transients appear in the system response and the
steady-state solution may settle into other than the expected orbit. In Figures 5.13(a)-5.13(c), the
jump phenomena from the lower stable orbit to the larger stable orbit is demonstrated. The initial
displacement condition is the same as in the previous case, Figures 5.12(a)-5.12(c), however the
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initial drive velocity is increased from 0.0648 to 0.0672. The initial velocity in the sense direction
is zero same as previous case.

Initially, the motion remains around the lower stable orbit. However, the result shows the response
initially slowly grows and after experiencing some transient motion, the response jumps to the
higher stable solution and continues to oscillate around the larger equilibrium solution. The steady
state solution is completely different from the initial and the expected solution. Similar behaviour
is realized considering the force-response plots, Figures 5.5(a) and 5.5(b).

In Figures 5.14(a)-5.14(c), the steady-state orbit and the time histories in the drive and sense di-
rections are plotted for initial condition wc(0) = 0.0286, ẇc(0) = 0.4995, vc(0) = 0.0009, and
v̇c(0) = 0. Starting near the larger stable orbit and the upper bifurcation point, the final solution
converges to the same orbit. In the vicinity of upper bifurcation point, the stable and unstable
solutions (identified respectively with the green and red circles) appear close to each other.

A small change in the initial condition, that is for wc(0) = 0.0286, ẇc(0) = 0.4971, vc(0) =
0.0009, and v̇c(0) = 0, results in the structural change of the system behaviour, see Figures 5.15(a)-
5.15(c). The structure oscillates about the larger stable orbit for about 500 cycles and then is
attracted to the smaller orbit after experiencing some transient motion. In backward sweep of the
excitation amplitude, VAC, about the upper cyclic fold bifurcation point, the response jumps to the
lower branch. Increasing the excitation amplitude, VAC, beyond the lower bifurcation point and
decreasing the amplitude below the upper bifurcation point results in the hysteresis.

The other possibility is that by causing a change in the initial condition, the structure goes to dy-
namic pull-in. Near the lower bifurcation point of the force-response plot of Figure 5.5(a) for
wc(0) = 0.2786, ẇc(0) = 0.0744, vc(0) = 0.0008, and v̇c(0) = 0, the response goes through
some temporary transients and joins the stable response, Figures 5.16(a) and 5.16(b). By a small
excitation in the velocity, ẇc(0) = 0.0756, the response rises and converges to the larger or-
bit after experiencing some transients, Figures 5.16(c) and 5.16(d). Further unwanted excitation,
ẇc(0) = 0.0768, results in the failure of the device. Figures 5.16(e) and 5.16(f), demonstrate that
the response in the drive direction reaches to the full gap size, wc = 1 after almost 170 cycles.

5.7 Summary
The nonlinear behaviour of the rotation rate sensor has been studied in this chapter using the com-
putational shooting method. The shooting method has been applied to the single-mode approxi-
mation of the response. The frequency-response plots have been generated for matched-frequency
and matched-DC cases and compared with the results of reduced-order perturbation analysis. The
global stability of the system response has been investigated by computing the orbits (periodic
solutions), the basins of attraction, the jump phenomena, and the dynamic pull-in.

88



ç
ç
ççççç

ç
ç
ç ç ç ç ç

ç

ç
ç
ç
ç

ç
ç

ç
çççç

ç
ç

ç
ç
ç
ç
ç

ç
ç

ç ç ç ç
ç

ç
çç

ç
ç

ç
ç ç ç ç ç

ç
ç
ç

ç

ç

ç

ç

ç
ç

ç
ççççç

ç
ç

ç

ç

ç

ç

ç

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

wc

v c

(a) Steady-state displacement trajectory

0 500

fe

1000

fe

1500

fe

-1.0

-0.5

0.0

0.5

1.0

t

w
c

(b) Time history in the drive direction

0 500

fe

1000

fe

1500

fe

0.0000

0.0005

0.0010

0.0015

0.0020

t

v c

(c) Time history in the sense direction

Figure 5.11: The steady-state response and time histories for an initial condition adjacent to the
larger stable orbit Vw = 10.731 V, Vv = 3 V, Ω = 18◦/s, VAC = 1.2V and σ = −190 kHz. The
circles indicate the solution by the shooting method.
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Figure 5.12: The steady-state response and time histories for an initial condition adjacent to the
smaller stable orbit Vw = 10.731 V, Vv = 3 V, Ω = 18◦/s, VAC = 1.2V and σ = −132 kHz. The
circles indicate the solution by the shooting method.
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Figure 5.13: The steady-state response and time histories for an initial condition adjacent to the
smaller stable orbit Vw = 10.731 V, Vv = 3 V, Ω = 18◦/s, VAC = 1.2V and σ = −132 kHz. The
circles indicate the solution by the shooting method. The response jumps to the larger stable orbit
near the cyclic fold bifurcation.
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Figure 5.14: The steady-state response and time histories for an initial condition adjacent to the
larger stable orbit Vw = 10.731 V, Vv = 3 V, Ω = 18◦/s, VAC = 0.52V and σ = −132 kHz. The
circles indicate the solution by the shooting method.
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Figure 5.15: The steady-state response and time histories for an initial condition adjacent to the
smaller stable orbit Vw = 10.731 V, Vv = 3 V, Ω = 18◦/s, VAC = 0.52V and σ = −132 kHz.
The circles indicate the solution by the shooting method. The response jumps to the smaller stable
orbit near the upper cyclic fold bifurcation.
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Figure 5.16: The time histories for an initial condition adjacent to the smaller stable orbit Vw =

10.731 V, Vv = 3 V, Ω = 18◦/s, VAC = 2.4V and σ = −132 kHz. The circles indicate the
solution by the shooting method. The response jumps to the smaller stable orbit near the upper
cyclic fold bifurcation.
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Chapter 6

Mechanical-Thermal Noise Analysis

6.1 Preview
Mechanical-thermal (thermomechanical) noise defines the theoretical sensitivity limit of any me-
chanical oscillator and becomes of prime importance at the micro/nano-scale, see Section 1.4 for
an introduction on mechanical-thermal noise (MTN). The thermal noise appears in conjunction
with the damping term. In the following sections the thermomechcanical noise for the beam-rigid
body rotation rate sensor is characterized. Two approaches are employed: the linearized equation
of motion, equations (3.48) and (3.49) including damping terms, and the slowly varying system,
equations (4.46)-(4.49). The method is developed in this chapter for the further analysis of the
performance of the novel sensor in the future.

6.2 The Linear Analysis of MTN
The objective is to characterize the effect of MTN on the displacement in the sense direction. The
displacement in the drive axis is sufficiently large that the MTN effect is negligible in this direction
and discarded. The virtual work done by the thermal noise is computed at the center of end rigid
body as

δWn = Fnδvc (6.1)

where Fn represents the generalized noise force and vc the displacement at the center of mass.
Including the thermal noise work, discretizing displacements using (2.74), and computing La-
grange’s equations, equations (1.2), gives a similar equation as in (2.76) with an additional gener-
alized (modal) noise force term. The equations are linearized around the static position following
the procedure outlined in Chapter 3 equations (3.43)-(3.49). The mechanical-thermal noise is as-
sociated with the damping and appears in the dynamic equation. The system of equations are
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expressed as

q̈d(t) + Dqq̇d(t) + Kqqd(t) = −Fq cos
(
tΩe

)
(6.2)

p̈d(t) + ΩCpq̇d(t) + Dp ṗd(t) + Kp pd(t) = F̂n
(
eϕ′(1) + ϕ(1)

)
(6.3)

where

Kq =
∆Γ′′

(
qs

(
eψ′(1) + ψ(1)

) − 1
)

3 + 2eνV2
w
(
eψ′(1) + ψ(1)

)2

∆
(
qs

(
eψ′(1) + ψ(1)

) − 1
)

3
(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ J22ψ′(1)2

) (6.4)

Dq =
cq

∆
(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ J22ψ′(1)2

) (6.5)

Fq = −
2eνVACVw

(
eψ′(1) + ψ(1)

)
∆

(
qs

(
eψ′(1) + ψ(1)

) − 1
)

2
(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ J22ψ′(1)2

) (6.6)

Kp =
∆3Λ′′

(
ps

(
eϕ′(1) + ϕ(1)

) − 1
)

3 + 2eνV2
v
(
eϕ′(1) + ϕ(1)

)2

∆
(
ps

(
eϕ′(1) + ϕ(1)

) − 1
)

3
(
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ J33ϕ′(1)2 + Λ

) (6.7)

Dp =
cp

∆
(
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ J33ϕ′(1)2 + Λ

) (6.8)

F̂n =
Fn

6eLBgvα2 (6.9)

In equation (6.2), the effect of the Coriolis force on the drive direction is neglected which is ac-
ceptable by virtue of its small magnitude compared with the driving force. This compact form of
the governing equations is suitable for the design purpose. Other coefficients were introduced in
equation (2.65) and (2.66). Inserting a solution of the form

qd(t) = aq cos
(
Ωe t − θ) (6.10)

into equation (6.2), separating the coefficients of cos
(
Ωe t

)
and sin

(
Ωe t

)
, and equating the coeffi-

cients to zero gives the following relations for the phase and amplitude

θ = − arctan
 DqΩe

Ω2
e − Kq

 (6.11)

aq =
Fq√

D2
qΩ

2
e +

(
Ω2

e − Kq

)
2

(6.12)

or
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aq =
−2eνVACVw

(
eψ′(1) + ψ(1)

)
∆

√
D2

qΩ
2
e +

(
Ω2

e − Kq

)
2
(
qs

(
eψ′(1) + ψ(1)

) − 1
)

2
(
αΓ′ + Γ + M

(
eψ′(1) + ψ(1)

)2
+ J22ψ′(1)2

)
(6.13)

Equation (6.13) provides the necessary tool to measure the maximum amplitude for most of prac-
tical purposes where the response is limited to the linear range. According to the equation of sense
mode, (6.3), the Coriolis force is given by

Fc = −ΩCpq̇d(t) (6.14)

The maximum displacement rate in the drive direction, q̇d(t) is Ωe aq. The amplitude is given in
equation (6.13). The MTN equivalent rotation rate, Ωn, is determined by equating the thermal
noise force and the Coriolis force, thus

CpΩnΩe aq = F̂n
(
eϕ′(1) + ϕ(1)

)
(6.15)

Solving equation (6.15) for Ωn gives

Ωn = −
F̂n

(
eϕ′(1) + ϕ(1)

) (
α∆2Λ′ + M

(
eϕ′(1) + ϕ(1)

)2
+ J33ϕ

′(1)2 + Λ
)

aqΩe

(
2M

(
eψ′(1) + ψ(1)

) (
eϕ′(1) + ϕ(1)

)
+ (−J11 + J22 + J33)ψ′(1)ϕ′(1) + 2Π

) (6.16)

Inserting equation (6.13) into equation (6.16) gives the closed-form relation for computing the
noise-equivalent angular rotation rate, Ωn, for a beam-rigid body gyroscope (rotation rate sensor).
Operating the gyroscope near the effective natural frequency increases the sensitivity of the device,
that is the sense amplitude increases. Therefore, forΩ2

e near K2
q , the oscillation amplitude, equation

(6.12), aq becomes

aq =
Fq

DqΩe
(6.17)

The MTN equivalent rotation rate for beam-rigid body sensor is thus given by

Ωn = −
ΓωDF̂n

(
eϕ′(1) + ϕ(1)

) (
qs

(
eψ′(1) + ψ(1)

) − 1
)

2A

2eνVACQDVw
(
eψ′(1) + ψ(1)

)
B

(6.18)

where

A =
(
αΓ′ + Γ + M̂

(
êψ′(1) + ψ(1)

)2
+ Ĵ22ψ

′(1)2
) (
αΛ′ + M̂

(
êϕ′(1) + ϕ(1)

)2
+ Ĵ33ϕ

′(1)2 + Λ
)
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B =

(
2M̂

(
êψ′(1) + ψ(1)

) (
êϕ′(1) + ϕ(1)

)
+

(
−Ĵ11 + Ĵ22 + Ĵ33

)
ψ′(1)ϕ′(1) + 2Π

)
where the damping has been replaced with mq ωD/QD with mq being the coefficient of the modal
acceleration terms, that is q̈(t) in equation (5.1). Equation (6.18) is of prime importance in the
design procedure of beam-based rotation rate sensors. It is noted that the MTNΩ is inversely
related to the quality factor in the drive direction, QD and the AC voltage VAC. The static deflection
qs is associated with the DC load Vw.

6.3 The Nonlinear Analysis of MTN
The method of reduced-order nonlinear analysis was presented in Chapter 4. The slow system is
given in equations (4.46) to (4.49) in Cartesian coordinate system. The MTN force appears in the
same order as damping and the excitation. The method of multiple scales is based on the identifi-
cation and removal of secular terms. The micro/nano-systems present very light damping and thus
act as narrow-band filter. The excitation frequency is matched with the effective natural frequen-
cies in the drive and sense directions. It is assumed that the noise force appears at the frequency
of oscillation (which is equal to the effective natural frequencies). Therefore, the modified form of
the third-order problem, equation (4.15), in the sense direction is given by

∂2
0 pd3 + pd3 ω

2
p = Tn cos(Ωe t) − P13 p3

d1 − P2∂
2
0 pd1 p2

d1 − 2P12 pd2 pd1 − 6psP13 pd2 pd1

− 2P1∂1∂0 pd1 pd1 − 4psP2∂1∂0 pd1 pd1 − P1∂
2
0 pd2 pd1

− 2psP2∂
2
0 pd2 pd1 − ∂2

1 pd1 − P3∂0 pd1 − psP4∂0 pd1 − p2
s P5∂0 pd1

−ΩP6∂0qd1 −ΩpsP7∂0qd1 −Ωp2
s P8∂0qd1

− 2∂2∂0 pd1 − 2∂1∂0 pd2 − P1 pd2 ∂
2
0 pd1 − 2psP2 pd2 ∂

2
0 pd1 (6.19)

where Tn = F̂n
(
ϕ(1) + e ϕ′(1)

)
indicates the noise force. Following the same procedure as out-

lined in chapter 4, the third-order problem develops to

∂2
0 pd3 + ω2

q pd3 =

(
1
2

Tn eiσt2 − i
(
P8 p2

s + P7 ps + P6

)
ΩωqAq + ei δ t2

((
5H1P1 + 2H2P1

+
(
10H1 ps + 4H2 ps + 3

)
P2

)
ω2

qĀp A2
p − (2H1P12

+4H2P12 +
(
6H1 ps + 12H2 ps + 3

)
P13

)
Āp A2

p

−iωq

((
P5 p2

s + P4 ps + P3

)
Ap + 2Ȧp

)) eit0ωq +C.C. (6.20)

The modulation equations in the polar coordinates becomes(
1
4

(G1 + 2G2)
(
3Q13qs + Q12

)
+

3
8

Q13 −
1
8
ω2

q

((
5G1 + 2G2

) (
2Q2qs + Q1

)
+ 3Q2

))
a3

q
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− 1
2
Ωωqap

(
qs

(
Q8qs + Q7

)
+ Q6

)
sin

(
η2

)
+ ωqaq

(
η̇1 − σ

)
= Q14VACVw cos

(
η1

)
(6.21)

(
1
4

(H1 + 2H2) +
3
8

P13 cos
(
η2

) − 1
8
ω2
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(
η2

) ((
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(
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)
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(
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1
2
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(
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(
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+

(
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(
η2
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=

1
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Tn cos
(
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(6.22)
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(6.23)
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(
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(
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ȧp
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(
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(
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+ P6
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=

1
2
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(
η1
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(6.24)

where the phases are given in equations (4.37) and (4.38). And in Cartesian coordinates, the first
three modulation equations remain the same as equations (4.46)-(4.48), but the last equation takes
the form

ẏp= f4 (6.25)

where

f4=
1

2ωq
Tn +

1
2

yp

(
−ps

(
P5 ps + P4

) − P3

)
− 1

2
Ωyq

(
ps

(
P8 ps + P7

)
+ P6

)
+ (σ − δ) xp

+ xp


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) (
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)
+ 3P2

)
− 2 (H1 + 2H2)

(
3P13 ps + P12

) − 3P13

)
8ωq


+

x3
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) (
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+ 3P2
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− 2 (H1 + 2H2)

(
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8ωq

(6.26)

For practical purposes, it is desired to avoid a multi-valued response and the consequent instabil-
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Figure 6.1: The frequency-response plots for Vw = 10.731 V, Vv = 3 V, and Ω = 180◦/s, The
circles indicate the solution by the perturbation method and the solid line the results of the shooting
method.
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ity. Therefore, the AC voltage is limited to the range resulting in a single-valued response. The
reduced-order nonlinear analysis using the perturbation method presented in Chapter 4 agrees re-
markably well with the computational shooting method, while the later is computationally more
demanding and time consuming. In the frequency-response plots of Figures 6.1(a)-6.1(f), the re-
sults of method of multiple scales are compared with the shooting method for varying quality
factors and AC voltages. The noise force, Tn, is set to zero. Above the identified AC load, an
unstable branch appears in the response.

6.4 Noise Equivalent Rotation Rate
To compute the noise equivalent (angular) rotation rate (MTNΩ) using the slow system, the pure
noise induced displacement signal in the sense direction is computed using equations (6.21)-(6.24).
To this end, the angular rotation rate,Ω, and the excitation force, VAC, are set to zero and the steady-
state response in the sense direction under noise excitation is computed. Having found the noise
response, the equations of pure signal, no noise input, that is equations (4.46) to (4.49), are solved
for the angular rotation rate, Ω, and three other unknowns, that is aq, η1, and η2.

The linear approximation of the noise equivalent rotation rate is computed from equation (6.16).
Therefore, the nonlinear analysis is employed to identify the onset of multi-valuedness where an
unstable branch appears in the response. The slow system including noise force is solved for pure
noise response and the MTNΩ. On the other hand, for the same set of AC voltage, the linear
MTNΩ is computed and compared with the result of nonlinear noise analysis. In practice, the
linear analysis provides a reliable tool for MTN analysis and the optimization of the device for
lower MTNΩ.

In Figures 6.2(a)-6.2(c), the MTNΩ is plotted versus the AC load. The respective quality factors
are 400, 600, and 800 in the sense and drive directions. It is observed that the linear and nonlinear
analysis are in excellent agreement while the nonlinear approximation is always larger than the
linear one. It is noted that the MTNΩ is reduced with an increasing AC load. This presents the
importance of operating at the highest possible AC voltage. On the other hand, increasing the
quality factor has a positive effect on reducing MTNΩ.

In Table 6.1, the corresponding MTNΩ for the highest AC voltages for each set of results in
Figures 6.2(a)-6.2(c). Therefore, it is recommended to design a system with higher quality factor
considering the desired bandwidth, see equation (4.53). An approach to reduce the damping and
increase the quality factor is to package the sensor in vacuum and reduce the effect of squeeze film
damping. The higher the bandwidth is the lower the quality factor. The static deflection is decided
by the DC loads and affects the MTNΩ, see equation (6.16). Figures 6.3(a)-6.3(c), present three
matched-frequency cases.

In Table 6.2, the lowest MTNΩ for three cases of Figures 6.3(a)-6.3(c) are presented. It is seen
that operating at higher DC voltages and therefore lower effective natural frequencies, increases
MTNΩ. The conclusions are valid for any VAC, that is design a system with lower damping, higher
quality factor, and operating at the lower VDC results in lower MTNΩ.
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(c) QD = 800 and QS = 800

Figure 6.2: The noise equivalent (angular) rotation rate (MTNΩ) versus the AC voltage. The
AC load is limited by the onset of multi-valuedness of the response. The solid line indicates
the results of nonlinear slow system and the circles the linear analysis. The parameters include
Vw = 10.731 V and Vv = 3 V.
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(b) Vw = 11.400 V and Vv = 5 V
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(c) Vw = 12.335 V and Vv = 7 V

Figure 6.3: The noise equivalent (angular) rotation rate (MTNΩ) versus the AC voltage. The AC
load is limited by the onset of multi-valuedness of the response. The solid line indicates the results
of nonlinear slow system and the circles the linear analysis. The parameters include QD = 800
and QS = 800.
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Table 6.1: Noise equivalent rotation rate (MTNΩ) for Vw = 10.731 V, Vv = 3 V

QS = 400, QS = 600, QS = 800,
QD = 400 QD = 600 QD = 800

VAC (V) 0.43 0.23 0.15
MTNΩ (◦/s) (Nonlinear analysis) 19.101 15.740 13.601
MTNΩ (◦/s) (Linear analysis) 14.349 11.923 10.284

Table 6.2: Noise equivalent rotation rate (MTNΩ) for QS = 800, QD = 800

Vw = 10.731 V, Vw = 11.400 V, Vw = 12.335 V,
Vv = 3 V Vv = 5 V Vv = 7 V

VAC (V) 0.15 0.13 0.11
MTNΩ (◦/s) (Nonlinear analysis) 13.601 14.651 15.944
MTNΩ (◦/s) (Linear analysis) 10.284 11.138 12.114

6.5 Summary
Due to the presence of damping, the mechanical-thermal (thermomechanical) noise appears in
the system. For various applications, the resolution requirements differ from each other and thus
amplify the importance of noise response. In this chapter, the thermal noise response of the system
has been characterized in terms of noise equivalent rotation rate by using the linear approximation
of system equations and the reduced-order nonlinear analysis of the system. It has been shown
that in all cases, the linear and nonlinear approximations are in excellent agreement. The results
suggest that the higher the quality factor is the lower the noise equivalent rotation rate. On the
other hand, the operating static deflection position should be smaller for lower noise equivalent
rotation rate. Therefore, for the given structure a combination of lower DC voltages, higher quality
factor, and higher AC voltage results in the lowest noise equivalent rotation rate.
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Chapter 7

Conclusions

7.1 The State of the Art
The thesis provides the necessary tools for the design and optimization of beam-rigid body gyro-
scope (rotation rate sensor). The systematic approach offers an invaluable method for the design
of the new class of rotation rate senors in micro- and nano-scale. The new design and accurate
model have not been reported in the literature. The dynamics and nonlinear dynamics of the beam
carrying the large end rigid body have been extensively studied to provide the proper basis for the
future research on the topic. In the following summary, the principal contributions of this thesis are
highlighted and the prospects for future research are presented along with some recommendations
for the design improvements.

7.2 Contributions of the Thesis
The major contributions of the thesis are as follows:

Chapter 2:

� The mathematical model of the cantilever beam carrying a rigid body is developed in Chap-
ter 2. To derive the mathematical model, the kinetic energy of the structure under spatial
rotation and deformation is computed. The kinetic energy associated with the end-rigid
body modifies the total kinetic energy and the equations of motion.

� No assumption regarding the dimensions are made and the mathematical model is applicable
to the micro/nano-sensors. The variations of the model including the beam-point mass model
are presented. Furthermore, the model simplifies to the beam carrying an eccentric point
mass by setting the rotary inertia matrix equal to zero.

� The common type of electrostatic actuation in the micro- and nano-systems is incorporated in
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the mathematical model by computing the force at the center of mass and its corresponding
moment at beam’s free end. In the new form of the electrostatic force, the eccentricity, that
is distance between beam’s free end and the center of mass, appears in the nonlinear forcing
term.

� The single-mode approximation of the mathematical model is established using the assumed-
modes method. The reduced-order model is used for the reduced-order semi-analytical
nonlinear analysis and the computational nonlinear analysis. The simplified forms of the
reduced-order model are presented for the beam-point mass and beam-eccentric point mass
systems.

Chapter 3:

� The static behaviour and the dynamic behaviour as seen through the modal frequencies of
the system are studied in Chapter 3. It is shown that the reduced-order single-mode approx-
imation agrees with the full-order partial differential equations of static motion.

� The static pull-in voltage is computed in the presence of angular rotation rate. The pull-in
voltage for all practical purposes is not affected by the rotation rate.

� The modal frequencies of the gyroscope are determined. To this end, the characteristic
equation is obtained and solved for the modal frequencies of the system in the rotating base
frame.

� The application of the proposed system in the frequency-modulation mode is demonstrated
by computing the input rotation rate as the function of the modal frequencies. In practice,
the modal frequencies are measured and the rotation rate is computed from the equation.

� The effects of the end rigid body parameters, the eccentricity and the width of the body, on
the frequency split are studied.

� The semi-modal frequencies in the inertial frame and the instability region by virtue of the
rotation rate are calculated.

Chapter 4:

� The perturbation method, the method of multiple scales, is used to study the nonlinear be-
haviour of the second-order approximation of the system. The stability of the response is
determined by computing the eigenvalues of the Jacobian matrix.

� The second order AC load and the second order rotation rate are discarded and the first order
AC forcing, the Coriolis force, and the damping terms are scaled to appear in the third-order
equations.
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� The modulation equations in polar and Cartesian coordinates are computed. Detuning pa-
rameters describe the difference between the modal frequencies and the modal frequency
and the excitation frequency.

� The frequency-response curves and the force-response curves are computed for various sets
of DC loads.

� To compute the frequency-response plots, the excitation frequency is varied around the
modal frequency by increasing and decreasing the excitation frequency and the steady-state
amplitude is recorded for each excitation frequency.

� The possibility of operating the gyroscope in the frequency-modulation mode for forced
vibration is demonstrated.

� It is shown that for matched-DC voltages in the drive and sense direction, the synchroniza-
tion around the lower modal frequency is observed. Therefore, for large AC voltages the
maximum response of the three branches appear at the common frequency.

Chapter 5:

� The nonlinear single-mode approximation is studied using the computational shooting method
and the stability of the response is determined by computing the Floquet multipliers.

� The computational results are compared with the semi-analytical perturbation method and
the range of validity of the reduced-order nonlinear analysis is determined. It is shown that
for the cases of single-valued response, the perturbation method agrees with the computa-
tional shooting method.

� The steady-state trajectories of the response are determined for matched-frequency and
matched-DC loads. The steady-state trajectory is a line or an ellipse depending on the load
parameters.

� The global stability of the system response is determined by computing the separatrix trajec-
tories and homoclinic path. Approximating the basin of attraction for an undamped-unforced
system agrees with the damped-forced response.

� The cyclic-fold bifurcation points are obtained for various sets of parameters. The jump phe-
nomena, the hysteresis, and the dynamic pull-in are characterized by long-time integration
of the full system.

Chapter 6:

� The effects of mechanical-thermal (thermomechanical) noise on the beam-rigid body sensor
are characterized.
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� Two methods are used to characterize the mechanical-thermal noise effects and estimating
the noise equivalent (angular) rotation rate: the linear analysis method and the nonlinear
perturbation method.

� The noise equivalent rotation rate reduces with an increasing AC voltage.

� The higher the quality factor is the lower the noise equivalent rotation rate.

� Operating at higher DC voltages, increases the noise equivalent rotation rate.

� In all cases, the linear analysis results agree with the reduced-order nonlinear analysis results.

7.3 Recommendations for Future Work
As a result of this thesis, progress has been made toward the development of the new class of beam-
based rotation rate sensors. At the same time, new questions have been raised. Some directions for
further improvements of the system are provided here:

� The mathematical model is developed for a single-axis gyroscope. In practice more than one
gyroscope are used to measure the rotation vector. The model should be extended to include
all three rotation rate components.

� The axial and torsional deformations have been neglected in the current model. Additionally,
the in-extensibility condition should be taken into consideration to develop a model including
the geometric nonlinearities.

� The modal frequency split depends on the dimensions of the end rigid body as well as the
beam. To operate the gyroscope in the frequency-modulation mode, the design should be
optimized to maximize the frequency split and therefore increase the scale factor of the
device.

� The sensitivity, mechanical scale factor, and shock resistance are other theoretical factors
which need to be determined for the beam-rigid body gyroscope to design an optimum de-
vice. Therefore, it is recommended to characterize the aforementioned parameters using the
linearized model following the same method as proposed for the mechanical-thermal noise
in this thesis.

� One important damping mechanism in microsystems is the squeeze film damping. It is
recommended to modify the design to reduce the effect of squeeze film damping. To this
end, a hollow end rigid body could be used. The mathematical model remains unchanged
except the mass and the rotary inertia matrix are adjusted.

� A finite element analysis of the structure may provide an insight to the performance and
design of the micro/nano-sensor and result in a better design before going to the experimen-
tation phase.
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� The experimental verification of the results of this thesis would provide a basis for further
improvement of the design and performance of the beam-based rotation rate sensors.
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Appendix A

List of Symbols

(eξ, eη, eζ) The unit vectors of the sectional coordinate system

(eX, eY , eZ) The unit vectors of the inertial coordinate system

(ex, ey, ez) The unit vectors of the base-attached coordinate system

α An aspect ratio constant α = b2
B

12L2

∆ The beam’s cross sectional ratio, that is ∆ = aB
bB

δ The internal detuning parameter: the difference between the two effective natural
frequencies in the drive and sense directions, that is ωq and ωp

K
B

The kinetic energy of the beam per unit length

K
M

The kinetic energy of the end rigid body

P
B

The elastic potential energy of the beam

P
E

The electrostatic potential energy

R
Fa

o The position of the base frame relative to the inertial frame

R
Fb

s The position vector of the sectional frame relative to the base frame

J
M
ηη The mass moment of inertia of the end rigid body about the η axis

J
M
ξξ The mass moment of inertia of the end rigid body about the ξ axis

J
M
ζζ The mass moment of inertia of the end rigid body about the ζ axis
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ϵ The permittivity coefficient in units of Fm−1

Γ See equation (2.77) on page 28

Γ′ See equation (2.77) on page 28

Γ′′ See equation (2.77) on page 28

κ Time constant κ =
√

12 ρ L4

E b2

Λ See equation (2.77) on page 28

Λ′ See equation (2.77) on page 28

Λ′′ See equation (2.77) on page 28

λ1,1, λ1,2 The fundamental modal frequencies of the gyroscope in the rotating frame

Fb The base frame

Fs The sectional frame

ν The electrostatic constant ν = 6 ϵ h L4

E b4 g3

Ω The angular rotation rate about the x axis

ωD The natural frequency of the cantilever-rigid body in the drive direction (Vw = 0)

Ωe AC excitation frequency for the drive direction

ωp Effective natural frequency in the sense direction about the corresponding static
equilibrium configuration

ωq Effective natural frequency in the drive direction about the corresponding static
equilibrium configuration

ωS The natural frequency of the cantilever-rigid body in the sense direction (Vv = 0)

ωv The effective natural frequency, including the DC voltage, in the sense direction
for uncoupled system (Ω = 0)

ωw The effective natural frequency, including the DC voltage, in the drive direction
for uncoupled system (Ω = 0)

Ωx The angular rotation rate about the x axis

Ωy The angular rotation rate about the y axis

Ωz The angular rotation rate about the z axis
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ϕ(ℓ) The mode shape in the sense direction for a cantilever beam carrying an eccentric
end rigid body (Vv = 0, Ω = 0)

Π See equation (2.77) on page 28

ψ(ℓ) The mode shape in the drive direction for a cantilever beam carrying an eccentric
end rigid body (Vw = 0, Ω = 0)

σ The external detuning parameter: the difference between the excitation frequency
and the effective natural frequency in the drive direction ωq

a The width of beam

aM The width of the end rigid body

Av The electrostatic forcing area for the sense electrode

Aw The electrostatic forcing area for the drive electrode

b The thickness of beam

bM The thickness of the end rigid body

BW Bandwidth

E Young’s modulus

e The eccentricity, that is the distance between the boundary of the cantilever beam
and the center of mass of the end rigid body

g The initial distance between the rigid body and each electrode (gw = gv = g)

gv The initial distance between the rigid body and the sense electrode

gw The initial distance between the rigid body and the drive electrode

h The width of each electrode (hw = hv = h)

hv The width of the sense electrode

hw The width of the drive electrode

Iηη Beam’s cross sectional second moment of area about η

Iζζ Beam’s cross sectional second moment of area about ζ

kB Boltzman constant

L The length of beam
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LM The length of the end rigid body

p(t) Modal (generalized) coordinate for the sense direction

pd(t) Dynamic modal coordinate in sense direction (p(t) = ps + pd(t))

ps Static modal coordinate in sense direction (p(t) = ps + pd(t))

Q Quality factor

q(t) Modal (generalized) coordinate for the drive direction

QD Quality factor for the drive direction

qd(t) Dynamic modal coordinate in drive direction (q(t) = qs + qd(t))

QS Quality factor for the sense direction

qs Static modal coordinate in drive direction (q(t) = qs + qd(t))

T Absolute temperature

u(ℓ, t) The axial displacement at an arbitrary section located at x = ℓ relative to the base
frame in the x direction

v(ℓ, t) The flexural displacement at an arbitrary section located at x = ℓ relative to the
base frame in the y

vc The nondimensional displacement at the center of rigid body in the sense direction
(vc = v(1, t) + e v′(1, t))

vd(ℓ, t) Dynamic flexural displacement in the sense direction about the static configuration
(v(ℓ, t) = vs(ℓ) + vd(ℓ, t))

vs(1) Nondimensional static flexural displacement at beam’s tip in the sense direction

vs(ℓ) Static flexural displacement in the sense direction (v(ℓ, t) = vs(ℓ) + vd(ℓ, t))

Vv DC voltage for the sense electrode

Vw DC voltage for the drive electrode

VAC AC excitation amplitude for the drive direction

w(ℓ, t) The flexural displacement at an arbitrary section located at x = ℓ relative to the
base frame in the z direction

wc The nondimensional displacement at the center of rigid body in the drive direction
(wc = w(1, t) + e w′(1, t))
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wd(ℓ, t) Dynamic flexural displacement in the drive direction about the static configuration
(w(ℓ, t) = ws(ℓ) + wd(ℓ, t))

ws(1) Nondimensional static flexural displacement at beam’s tip in the drive direction

ws(ℓ) Static flexural displacement in the drive direction (w(ℓ, t) = ws(ℓ) + wd(ℓ, t))

J
B
ηη The mass moment inertia of beam’s cross section about η axis

J
B
ξξ The mass moment inertia of beam’s cross section about ξ axis

J
B
ζζ The mass moment inertia of beam’s cross section about ζ axis

MTNΩ (Ωn) Mechanical-thermal noise equivalent rotation rate
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