
Designing Better Allocation
Policies for Influenza Vaccine

by

Mustafa Demirbilek

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Management Sciences

Waterloo, Ontario, Canada, 2013

c© Mustafa Demirbilek 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.

ii



ABSTRACT

Influenza has been one of the most infectious diseases for roughly 2400 years. The
most effective way to prevent influenza outbreaks and eliminate their seasonal ef-
fects is vaccination. The distribution of influenza vaccine to various groups in the
population becomes an important decision determining the effectiveness of vaccina-
tion for the entire population. We developed a simulation model using the Epifire
C++ application program [2] to simulate influenza transmission under a given
vaccination strategy. Our model can generate a network that can be configured
with different degree distributions, transmission rates, number of nodes and edges,
infection periods, and perform chain-binomial based simulation of SIR (Susceptible-
Infectious-Recovered) disease transmission. Furthermore, we integrated NOMAD
(Nonlinear Optimization by Mesh Adaptive Direct Search) for optimizing vaccine
allocation to various age groups. We calibrate our model according to age spe-
cific attack rates from the 1918 pandemic. In our simulation model, we evaluate
three different vaccine policies for 36 different scenarios and 1000 individuals: The
policy of the Advisory Committee on Immunization Practices (ACIP), former rec-
ommendations of the Centers for Disease Control and Prevention (CDC), and new
suggestions of the CDC. We derive the number of infected people at the end of each
run and calculated the corresponding cost and years of life lost. As a result, we
observe that optimized vaccine distribution ensures less infected people and years
of life lost compared to the fore-mentioned policies in almost all cases. On the
other hand, total costs for the policies are close to each other. Former CDC policy
ensures slightly lower cost than other policies and our proposed in some cases.
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Chapter 1

Introduction

1.1 Influenza Outbreak and Vaccination

Influenza has been one of the most infectious diseases for roughly 2400 years. Al-

though there is no detailed historical data about influenza spread and effect before

18th and 19th centuries, effects of influenza can easily be seen after 20th century. For

instance, during Spanish Flu pandemic, which lasted from 1918 to 1919, it is esti-

mated that 20 to 100 million people died [20]. Moreover, due to 1957 Asian Flu and

1968 Hong Kong Flu, approximately 2-3 million people died even though they were

smaller outbreaks compared to Spanish Flu [20]. Furthermore, it is estimated that

next possible influenza pandemic would cause 89,000 to 207,000 deaths; 314,000

to 734,000 hospitalizations; 20 to 47 million additional illness as well as 18 to 42

million outpatient visits [14]. Furthermore, the effects of influenza is not limited

to deaths. An influenza outbreak costs million of dollars to governments and in-

surances companies since it delays or hinders daily routines such as transportation,

education, health care, etc. Economic impact of a prospective outbreak would cost

$71.3 to $166.5 billion excluding damage to society and commerce in the USA [14].

In addition to pandemics, influenza can be also seen annually, though seasonal

epidemics. This sudden outbreak has significant effect on populations before it

disappears. Epidemics affect especially developed countries negatively since the

absence of labor result in productivity loss. In addition to labor cost, it is pre-
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Chapter 1 Introduction to Influenza and Vaccination

dicted that seasonal epidemics are responsible for 3.1 million hospitalized days,

and approximately 610 life-years lost. Moreover, $10.4 billion medical cost is paid

annually in the USA due to seasonal influenza epidemic [17].

The most effective way to prevent seasonal influenza outbreaks is vaccination.

Unfortunately, vaccines are scarce resources and even if the most developed coun-

tries encounter problems in production, supply, distribution, and scheduling, during

influenza epidemics. Moreover, vaccine strain have to be updated annually since

type of circulating influenza virus changes. This is the most important factor to

prevent producing large amount of flu shot at once. In this context, the distribu-

tion of influenza vaccination to the groups in the population becomes an important

decision determining the effectiveness of vaccination for the entire population. The

effect of influenza differ by age and risk groups including elderly, people who have

chronic diseases, healthcare workers, etc. In the Literature, researchers considered

the following questions:

1. How does influenza virus spread in a particular population?

2. At the end of an outbreak, how many people are infected and how many are

still susceptible?

3. How should we allocate finite number of vaccine to different age groups in a

population?

It is also important to determine some performance measures for influenza cov-

erage for a given vaccine allocation policy. Purpose of influenza vaccine allocation

strategies evaluated in the literature is to decrease total number of infected people

in population during epidemic and pandemic, to decline total number of death,

to decrease cost of hospitalization, drug, and number of vaccine applied to the

population by obtaining the optimal vaccine distribution decisions.

2



Chapter 1 Introduction to Influenza and Vaccination

1.2 Motivation and Contribution

Many influenza spread models exist in the literature. Specifically, we divide these

studies into two general categories, mathematical and simulation models. Lack

of adequate simulation methods led researchers to model and solve infectious dis-

eases problems mathematically in the beginning. Recently, mathematical mod-

els provide more accurate and realistic results thanks to ongoing developments in

computation tools and electronic data management [16]. However, deterministic

models based on differential equations assume that the progression of the disease

in a population follows a distinct pathway given the model parameters. This is

a very strong assumption because the nature of the disease spread is stochastic,

therefore, disease transmission and effect of vaccination can be modeled more accu-

rately by using stochastic models. Some statistical and stochastic approaches are

employed to formulate more accurate models reflecting random nature of the dis-

ease spread. However, the complexity of the system prevents solving these models

exactly. Furthermore, assumption of homogeneous population where each individ-

ual identically interacts with every other individual, which is called ”mass-action

dynamic”, is commonly used in mathematical models. Different contact patterns

in society significantly invalidate this assumption.

Simulation models are more appropriate for both incorporating the stochastic

nature of the disease progression. Particularly, network models, which enable the

heterogeneous contact pattern in the simulation, are very helpful to model influenza

spread in the society accurately. Thus, we develop a simulation model instead of a

mathematical model to mimic influenza transmission.

Although simulation models in the literature can provide good approximations

for modeling of influenza spread, they have some disadvantages. First, many of

them ignore the age pattern, and assume that all people in a population have the

same age characteristic [2][8][9]. However, age is a significant factor that effects

contact and death rates, hospitalization, and cost. Next, a couple of vaccination

strategies which include allocation of different number of vaccine to a population

3



Chapter 1 Introduction to Influenza and Vaccination

are numerically tested in simulation models. However, a great number of allocation

strategies are possible and evaluating all of them to find the optimal one might not

even be feasible. For this purpose, we modify a C++ based application, Epifire

[2], to model influenza spread considering different age groups, vaccine interven-

tions, and heterogeneous contact pattern. In addition to this, we used NOMAD

(Nonlinear Optimization by Mesh Adaptive Direct Search) simulation optimization

application to minimize the number of infections in a particular population.

1.3 Thesis Outline

In chapter 2, we review existing studies about influenza spread models and vaccina-

tion strategies. In chapter 3, we describe some models for disease transmission. In

chapter 4, we introduce Epifire simulation software, NOMAD optimization pack-

age, and how to associate NOMAD with Epifire for simulation optimization. In

chapter 5, we present data employed in our model, such as infectious period, death

rates, cost, and years of life lost as well as calibration process. In the chapter 6,

we perform sensitivity analysis. We conclude with our results and discuss potential

future work.

4



Chapter 2

Literature Review

2.1 Influenza Vaccination Strategies

Although there are many studies related to influenza transmission models, control

and prevent strategies, and vaccine supplement and logistics in the literature, we

only discuss vaccination strategies because of the scope of our research.

An agent-based simulation model (ABM) which includes Washington DC metropoli-

tan region is constructed by the University of Pittsburgh Models of Infectious Dis-

ease Agent Study (MIDAS) team to help the Assistant Secretary of Public Pre-

paredness and Response Office, Department of Health and Human Service [13].

Their main purpose is to figure out important key questions related to vaccine dis-

tribution during the 2009 H1N1 influenza pandemic. They compare the policy of

inoculating children the first to vaccinating individuals who are at high risk group

as recommended by the advisory Committee on Immunization Practices (ACIP).

According to the simulation results, ACIP prioritization policy for the H1N1 in-

fluenza vaccine allocation should be applied when vaccine is limited. After that,

children can be vaccinated to decrease serological attack rate.

Bansal et al. [9] build a contact network model based on demographic informa-

tion of Vancouver. They compare two classes of recommended vaccination policies,

mortality-based policy, which tries to minimize total number of deaths by covering

high risk population and morbidity-based policy, which minimizes overall incidences

5



Chapter 2 Literature Review

of influenza disease covering high prevalence population. They assess the effective-

ness of these strategies for two distinct age-specific mortality distribution and high

transmission rates with limited vaccine supply in a large urban population. They

observe that appropriate policy depends on transmission rate of the virus critically.

Morbidity-based policies are more successful than mortality-based strategies for

reasonable transmission rates. On the other hand, mortality-based policies should

be preferred when transmission rate of the virus is high. Moreover, mortality-based

strategies outperform morbidity-based policies in the circumstance of vaccination

delays and multiple introductions of disease into the society.

Ventresca et al. [11] construct agent-based network simulation model to exam-

ine targeted preventative vaccination strategies for the Greater Toronto Area of 5

million individuals. They build a weighted contact network including daily travel

habits of individuals in the urban region. They find that vaccination policies per-

form well only if they can catch individuals who have high contact rate and those

who have strong relationship with these individuals in a population.

Chao et al. [1] construct an individual-based simulation model to observe in-

fluenza spread dynamics in a large population. Social contacts, transmission rate,

and infection period derived from the knowledge of natural history of influenza are

assigned to individuals in the population. They show how to postpone influenza

epidemic or pandemic by employing pharmaceutical interventions and social dis-

tancing measures.

Medlock et al. [3] find optimal vaccine distribution based on five criteria: deaths,

infectious, years of life lost, economic cost, and contingent valuation. They observe

that school children and adults age 30 to 39 years should have priority to be suc-

cessful in vaccination since the highest transmission rate of influenza virus becomes

among school children. Furthermore, their parents are responsible for spreading

the disease to the rest of the population. Particularly, they emphasize that the

major factor regarding the optimal distribution of influenza vaccine is considera-

tion of age-specific transmission dynamics. Finally, they state that previous and

new suggestions of the US Center for Disease Control and Prevention for epidemic
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and pandemic influenza underperform in comparison to their optimal results in all

outcome measures.

Lee et al. [8] make an agent-based simulation model including Washington DC

metropolitan region to understand the possible effects of vaccinating employees.

Their purpose is to find how workers are effected when vaccine coverage, com-

pliance, timing, and prioritization vary. Simulation results imply a potential loss

of approximately $112.6 million in productivity. When the attack rate rises up

to 25%, possible productivity losses goes up to $193.8 million. They recommend

that at least 20% of the health care and critical infrastructure workers should be

vaccinated.

Chowell et al. [5] employ an age-structured transmission model to find the best

vaccine strategy against pandemic influenza in Mexico by calibrating their model

with local epidemiological data derived from 2009 H1N1 pandemic. They compare

vaccination young children and people over 65 years of age primarily to vaccina-

tion people who have high hospitalization and death rate by using mathematical

compartmental model. Consequently, they find that the adaptive vaccination strat-

egy has superior results for death and hospitalization rates compared to seasonal

vaccination strategy under a possible pandemic that effects a wide range of the

country.

Tuite et al. [6] try to find the optimal vaccine distribution based on distinct

risk and age groups in the population of Canada. They build a deterministic,

age-structured compartmental model with data derived from in the early stage

of the epidemic in Ontario. Vaccinating high risk individuals (chronic conditions

and pregnancy) primarily reduces the frequency of severe outcomes in all scenarios

significantly. Although prioritization of age groups that have high transmission

rate results in lower population level attack rate, mortality and intensive care unit

admission rise up remarkably. They suggest that high risk groups should be vacci-

nated at the outset, regardless of age, those with increased risk of severe outcomes

should be inoculated next.

Basta et al. [7] evaluate policies for vaccinating young people in the United
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Chapter 2 Literature Review

States by employing a simulation model. They observe that population-level attack

rate can be reduced by vaccinating children when altering the coverage level, vaccine

type, number basic reproduction number(R). They find that vaccinating 70% of

children effectively can prevent approximately 19 million influenza cases.
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Chapter 3

Tools of Modeling Influenza

Spread

We discuss three models: compartmental model (SIR model), transmission model,

and network structure since Epifire employs a combination of them.

3.1 Compartmental Models

First of all, the behavior of the disease has to be known to understand its effects

and resulting health outcomes. Two scientists, Kermack and McKendrick, modeled

the behavior of infectious diseases [15]. Three classes, susceptible (S), infectious

(I), and recovered (R) exist in a population for SIR model. After interactions with

infected individuals at a rate (β), people in class S contract and move to class

I. Finally, they move to class R after a certain infection period with rate r and

are protected against prospective disease as demonstrated in Figure 3.1. In this

model, latent period, which is called incubation period as well, and asymptomatic

infectiousness, when a person takes the virus without showing its symptoms, do

not exist. Another important assumption is closed population which means there

is no entry to or exit from the population [10]. According to equations 3.1, 3.2,

and 3.3 [10], each infected person (I) spreads the disease to a susceptible person

(S) who encounters with rate β. Also r is a rate representing recovery.

9



Chapter 3 Tools of Modeling Influenza Spread

Figure 3.1: Basic compartmental model [10]

S ′ = βSI (3.1)

I ′ = βSI − rI (3.2)

R′ = rI (3.3)

Figure 3.2 includes vaccination and treatment.

Figure 3.2: Compartmental models with vaccination and treatment

Figure 3.3 shows SEIR compartmental model included isolation and quarantine

measures. For some cases, people are exposed to the virus, but they don’t become

ill immediately and can stay asymptomatic. Those people are represented with

Exposed class in SEIR model. Susceptible individuals and asymptomatic patients

move to Quarantine (S) and Quarantine (E), respectively after isolation process.

If people in Quarantine (E) class start showing symptoms of the disease, they will

move to Quarantine (I) [15].

Compartmental models are widely used in modeling infectious disease. In our

10



Chapter 3 Tools of Modeling Influenza Spread

Figure 3.3: Compartmental models with quarantine and isolation

study, all nodes which represent people in a population are created as susceptible

except some random nodes, which are infected due to start the disease. Each

infected node spread the disease to their susceptible neighbors until they recover

completely. So each node becomes in susceptible compartment in the beginning

of the simulation. Next, if a node is exposed to disease, it immediately moves

to infected compartment. Finally, it moves to recovered compartment when it

eradicates influenza virus completely.

3.2 Network Models

Although network models are commonly employed in epidemiology, they initially

appeared in social science to model spread of ideas and innovations. Similarly,

spread of an infectious disease through a population has same framework; however,

epidemiologists use different terms such as nodes, edges instead of actors and re-

lations in social science [4]. In the next chapter, we explain how network models

work and differ from mass-action models. We also examine commonly used network

types in this chapter.

3.2.1 Random Mixed Networks

The spatial position of nodes is not relevant, and connections among nodes are as-

signed arbitrarily [4]. Weak clustering and homogeneity in individual level network

features determine structure of the network [4] [18].

11



Chapter 3 Tools of Modeling Influenza Spread

3.2.2 Lattice Networks

Nodes are assigned on a systematic grid of points in two or three dimensions, and

only neighbor nodes interact with each other [4]. Initial growth of infection becomes

lower in comparison to random mixed network models even though effect of disease

on the population is stronger due to its high clustering structure [4].

3.2.3 Small World Networks

Small world networks were constructed to eliminate long path length problem in

lattice models, and lower level clustering problem in random mixed models by Watts

& Strogatz [19][4]. Infection can spread to even extreme nodes in the lattice network

rapidly because of long-range connections. This can cause dramatic alteration the

behavior of epidemic.

Figure 3.4: From left to right: Random mixed, lattice, and small world networks
containing 100 nodes [4][18][19].

3.2.4 Spatial Networks

Spatial networks provide more flexible network construction. Nodes are set in a

specific area and the relation between two nodes is established with a probability

related to their separation determined by an interaction kernel. Altering the dis-

tribution of nodes or the kernel ensures to generate very different networks from

small world structure to lattice type [4].

12



Chapter 3 Tools of Modeling Influenza Spread

3.2.5 Scale Free Networks

Degree distribution is one of the most crucial features for a network. In a society,

some individuals and groups have high contact rates while others have lower contact

rates. Scale free networks can catch this heterogeneity and enable to build more

realistic models [4]. Therefore, we prefer scale free network structure in our model

since contact rates among individuals highly depend on their age.

Figure 3.5: From left to right: Spatial and scale free networks containing 100 nodes
[4].

3.3 Transmission Models

1In this section, we illustrate transmission dynamics of a disease in a host population

based on Reed-Frost chain binomial model. We begin this section an introduction

to the binomial model.

1Most of this section was prepared by referring the book, ”Binomial and Stochastic Transmis-
sion Models”, by M. E. Halloran, I. M. Longini, J. Struchiner.
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3.3.1 Binomial Model

The binomial model is a tool for predicting the transmission probability. The

general assumption in the binomial model is that each contact of an individual

makes is independent. If the transmission probability is expressed as p, q, which

is called the escape probability, means that the susceptible one does not take virus

after interaction with infected one where q = 1− p. If an individual has n contacts

with sick people, the escape probability is qn, or (1− p)n. Therefore , the infection

probability equals to 1− qn [24].

3.3.2 Reed-Frost Chain Binomial Model

Reed-Frost chain binomial models are dynamic systems to produce chains of infec-

tion by assuming that influenza spread occurs case by case in discrete time units.

N = St + It +Rt

where St represents the number of susceptible people, It is the number of infected

people, and Rt is the number of recovered people in a population at time t [24]. N

is total number of people in the population, and does not change depending on time

due to the assumption of close population. Each time step St, It, Rt are calculated

as below

Pr(It+1 = it+1|St = st, It = it) =

(
st
it+1

)
(1− qit)it+1qit(st−it+1), st > it+1

where It+1 = it+1, St = st [24]. Then, the number of new susceptible and immune

people can be calculated as following [24]

St+1 = St − It+1

Rt+1 = Rt + It

In simulation models, whether a person is sick can be calculated by using a

14



Chapter 3 Tools of Modeling Influenza Spread

random number generator. When the infection probability 1− qIt at time t is less

than the random number, the person escapes from the disease. Otherwise, he moves

to the infected compartment [24]. Moreover, other parameters in our model such as

infection duration, population distribution, contact rates are generated randomly.
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Chapter 4

Proposed Methods: Epifire and

NOMAD

4.1 Epifire

Epidemiological models traditionally assume that each individual in a homoge-

neously mixed population contacts with another person equally likely. Although

mass-action models ensure good approximation in some cases, the heterogeneous

contact patterns are common to model disease transmission in a population. Con-

tact networks are used to model disease transmission in a population with hetero-

geneous contact patterns [2]. Each node represents a susceptible individual. Fur-

thermore, disease spreads from an infected node to a susceptible node via edges.

The number of contacts an individual is described as the degree of the correspond-

ing node. The variety in the degree of each node is essential for a heterogeneous

network structure.

The 2003 SARS pandemic in China showed that mass-action models have sig-

nificant restrictions to correctly model the spread of influenza virus. The number

of infected people after four months from beginning of the disease would have been

between 30,000 and 10 millions based on R0 calculated by using a homogeneous

mixing model. However, only 792 SARS cases appeared during that time [21]. The

most important reason is that contact patterns of entire population of China was
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assumed like contact patterns of people living in overcrowded apartments in Hong

Kong.

Mathematical models are commonly employed for estimating the dynamics of

epidemic in a complex contact network. The epidemic process is assumed to be

deterministic, that is, the progression of the disease in a population follows a dis-

tinct pathway. However, the nature of disease can be modeled more accurately by

considering its stochastic nature [23]. Particularly, simulation could be an appropri-

ate modeling tool capturing the inherent complexity of the system, and satisfying

important assumptions.

We use Epifire C++ application to simulate influenza transmission under a given

vaccination strategy. Epifire can perform chain-binomial simulation over a network

that can be configured with different degree distribution, transmission rate, number

of nodes and edges, infection period. The chain-binomial model based on Bernoulli

trials that represent a susceptible person in a population at time t take the virus

with probability p and becomes sick, or does not take the virus with probability

1-p and stay healthy. The Epifire functionally includes instruments to generate,

manipulate, and simulate a network.

#include<Network.h>

int main() {

Network my_network("example network",

Network::Undirected );

my_network.populate(100);

my_network.rand_connect_poisson(5);

my_network.write_edgelist("output.csv");

return 0;

}

As can be seen above [2], the network generates 100 nodes which represents
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individuals in a population. Each node connects to five other nodes on average

with undirected edges. Basic steps of EpiFire to generate a network include:

1. The program generates a population which includes people with different

characteristic.

2. Edges are created for each node.

3. The network is generated by connecting edges to each other based on contact

rates.

Figure 4.1 provides an illustration of the 3 steps.

EpiFire assumes that each individual in the population is the same in terms of

age characteristics. However, age of an individual affects contact rate, death rate,

hospitalization, cost, etc. Therefore, we modify the current application incorporate

age groups in the population. The population in our study is divided into five

distinct age groups. In our model, G0, G1, G2, G3, G4 represent people in 0-4, 5-19,

20-49, 50-64, 65+ age groups, respectively. The proportion of each age group is

determined according to 2010 census data.

We use discrete distributions for each age to model the degree distributions.

////Degree Distribution Arrays for all Age Groups////

map<string, vector<double>> node_setting;

double tmp_array_0[] = {0, 0, 2, 12, 17, 15, 15, 12, 5, 12, 8, 0, 2};

node_setting["g0"] = create_dist(tmp_array_0, 13);

double tmp_array_1[] = {0, 0, 0, 0, 0, 0, 0, 1, 5, 6, 7, 10,

10, 11, 18, 10, 7, 6, 2, 3, 2, 2};

node_setting["g1"] = create_dist(tmp_array_1, 22);

double tmp_array_2[] = {0, 0, 0, 2, 2, 2, 10, 7, 12, 21, 14,

10, 8, 3, 4, 1, 1, 1, 0, 1, 0, 1};

node_setting["g2"] = create_dist(tmp_array_2, 22);

double tmp_array_3[] = {0, 0, 1, 3, 12, 11, 23, 13, 11, 5, 6,

10, 2, 1, 0, 1, 0, 1};
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Figure 4.1: EpiFire steps

node_setting["g3"] = create_dist(tmp_array_3, 18);

double tmp_array_4[] = {0, 4, 8, 19, 18, 19, 14, 9, 5, 1, 1, 2};

node_setting["g4"] = create_dist(tmp_array_4, 12);

Each element of the degree distribution array represents the values of contacts.

For instance, the first element of G0 age group is zero. This means that the values

of zero degree contacts of a person at G0 age group is zero. On the other hand,
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the values of four degree contacts of the same person is seventeen in all contacts.

All contact values in arrays transform proportions with respect to their numbers

via a normalization function in the model. Furthermore, assigning edges to each

node in terms of its degree distribution is achieved by determining a cumulative

distribution based on contact pattern of people.

Below codes show the cumulative distribution. To connect an edge of a node

in one of age groups to another node, the program assigns an arbitrary number

between 0 and 100.

//// Cumulative Distribution////

map<string, map<string, int>> g_2_g_per;

g_2_g_per["g0"]["g0"] = 32.30;

g_2_g_per["g0"]["g1"] = 54.17;

g_2_g_per["g0"]["g2"] = 80.65;

g_2_g_per["g0"]["g3"] = 93.44;

g_2_g_per["g0"]["g4"] = 100;

g_2_g_per["g1"]["g0"] = 4.36;

g_2_g_per["g1"]["g1"] = 69.44;

g_2_g_per["g1"]["g2"] = 85.58;

g_2_g_per["g1"]["g3"] = 93.67;

g_2_g_per["g1"]["g4"] = 100;

g_2_g_per["g2"]["g0"] = 6.93;

g_2_g_per["g2"]["g1"] = 30.51;

g_2_g_per["g2"]["g2"] = 64.94;

g_2_g_per["g2"]["g3"] = 88.62;

g_2_g_per["g2"]["g4"] = 100;

g_2_g_per["g3"]["g0"] = 4.37;

g_2_g_per["g3"]["g1"] = 17.48;

g_2_g_per["g3"]["g2"] = 41.35;

g_2_g_per["g3"]["g3"] = 75.67;

g_2_g_per["g3"]["g4"] = 100;
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g_2_g_per["g4"]["g0"] = 2.53;

g_2_g_per["g4"]["g1"] = 11.67;

g_2_g_per["g4"]["g2"] = 30.76;

g_2_g_per["g4"]["g3"] = 60.82;

g_2_g_per["g4"]["g4"] = 100;

The other improvement is to add more flexible assignment of infectious period

instead of the same infection period for all age groups. One can easily configure

discrete degree distribution represented infectious period of each group in the model.

///Infectious Period Arrays for all Age Groups///

map<string, vector<double>> node_infectious_period;

double inf_array_0[] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 4};

node_infectious_period["g0"] = create_dist(inf_array_0, 11);

double inf_array_1[] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 4};

node_infectious_period["g1"] = create_dist(inf_array_1, 11);

double inf_array_2[] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 4};

node_infectious_period["g2"] = create_dist(inf_array_2, 11);

double inf_array_3[] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 4};

node_infectious_period["g3"] = create_dist(inf_array_3, 11);

double inf_array_4[] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 4};

node_infectious_period["g4"] = create_dist(inf_array_4, 11);

4.2 NOMAD (Nonlinear Optimization by Mesh

Adaptive Direct Search)

NOMAD is C++ based application to employ implementation of the MADS (Mesh

Adaptive Direct Search) algorithm for black-box optimization under general linear

or nonlinear constraints [31]. The essential purpose of the black-box system like
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NOMAD is to figure out how to optimize a given problem in the absence of an

algebraic model [29].

NOMAD is designed to solve single objective problems or bi-objective optimiza-

tion problems.

Figure 4.2: NOMAD [29]

The functions of the problem do not have exploitable features such as derivatives

or their approximations. MADS algorithm, which is at the core of the NOMAD,

improve the current best solution by generating a trial point on the mesh. If the

trial point cannot improve the best solution, a finer mesh is generated in the next

iteration. Each MADS iteration includes poll, search, and update steps.

In fact, the algorithm do not require derivatives, or estimate derivatives. It just

uses the function values directly [30].

First we determine our objective function and constraints. Our objective func-

tion is

Min

4∑
i=0

Ii

where Ii shows number of infected people at age group i after the simulation is

done. Our constraint is ∑
Vi ≤ N
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Vi ≥ 0

where Vi indicates number of vaccine distributed to age group i. N is available total

number of vaccine. The relationship between NOMAD and Epifire is illustrated in

Figure 4.3. NOMAD starts from an initial point. For example, 100 vaccines are

distributed equally to each age group. Next, NOMAD sends this information to

Epifire. At the end of the simulation, Epifire collects the number of infected people

in all age groups, and provides feedback to NOMAD. Total number of infected

people derived after the simulation becomes a comparative point with the result of

next iteration for NOMAD. It searches for a better vaccine allocation to minimize

total number of infected people in the population until reaching the iteration limit.

Figure 4.3: Flowchart: The relationship between NOMAD and Epifire

23



Chapter 5

Data Collection and Input

Analysis

5.1 Demographic Information

One of the most important inputs of the model is population distribution according

to age groups. We have five distinct age groups for the model: 0-4, 5-19, 20-49,50-

64, 65+ in Table 5.1. This is because their contact and death rates, and infection

and hospitalization cost are significantly different. 2010 USA Census data [22] are

employed to calculate the population for each age group. Since simulating such

a large population is computationally challenging, we calculated the proportion of

population in each group as in Table 5.2 and simulated a representative population

of 1000 people.

Table 5.1: The calculation of population distribution according to age groups

Total population of USA 310,234,000 (2010) 100%
0-4 age stratum 21,100,000 6.8%
5-19 age stratum 63,051,000 20.32%
20-49 age stratum 127,470,000 41.1%
50-65 age stratum 58,384,000 18.8%
65+ age stratum 40,229,000 13%

For example, Table 5.2 shows the population distribution for a sample of 1000

24



Chapter 5 Data Collection and Input Analysis

people.

Table 5.2: Distribution of people in a sample population of 1000

0-4 age stratum 1000*0.068 68
5-19 age stratum 1000*0.2032 203
20-49 age stratum 1000*0.411 411
50-65 age stratum 1000*0.188 188
65+ age stratum 1000*0.13 130

5.2 Contact Parameters

Each person from a particular age group contacts the others in both the same

and different age groups. Therefore, we have to determine the expected number of

contacts per person to calculate how many susceptible people may be infected by

this person. Mossong et al. [26] presented the daily contact rates for different age

groups. Unfortunately, we can not use the results directly in our model because it

includes more age groups than what we need in our model. Therefore, we converts

the contact rates from Mossong et al. [26] to a form to comply with our age-group

definition.

The contact matrix of all reported contacts including of the mean number of

contact individuals recorded per day per survey participator can be seen in Ta-

ble 5.3 and Table 5.4. We use both the USA census and the table values above

to convert this information as explained the following example. Table 5.6 shows

the daily number of contacts of six age groups (20-24, 25-29,30-34, 35-39, 40-44,

45-49) with the others (50-54, 55-59, 60-64). However, we need only the number

of daily contacts for people in the 20-49 age group with other people in 50-64 age

group. First, we calculate the sum of each row and multiply the obtained results

by their population values in Table 5.5. Then, we divide the sum of the last column

(multiplication of corresponding total contact rates and population value) by total

population value column to find the average number of contacts.
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Table 5.3: Contact rates of individuals with respect to their ages from Mossong et
al. [26]

Age of Contact 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39
0-4 1.92 0.65 0.41 0.24 0.46 0.73 0.67 0.83
5-9 0.95 6.64 1.09 0.73 0.61 0.75 0.95 1.39

10-14 0.48 1.31 6.85 1.52 0.27 0.31 0.48 0.76
15-19 0.33 0.34 1.03 6.71 1.58 0.73 0.42 0.56
20-24 0.45 0.30 0.22 0.93 2.59 1.49 0.75 0.63
25-29 0.79 0.66 0.44 0.74 1.29 1.83 0.97 0.71
30-34 0.97 1.07 0.62 0.50 0.88 1.19 1.67 0.89
35-39 1.02 0.98 1.26 1.09 0.76 0.95 1.53 1.50
40-44 0.55 1.00 1.14 0.94 0.73 0.88 0.82 1.23
45-49 0.29 0.54 0.57 0.77 0.97 0.93 0.57 0.80
50-54 0.33 0.38 0.40 0.41 0.44 0.85 0.60 0.61
55-59 0.31 0.21 0.25 0.33 0.39 0.53 0.68 0.53
60-64 0.26 0.25 0.19 0.24 0.19 0.34 0.40 0.39
65-69 0.09 0.11 0.12 0.20 0.19 0.22 0.13 0.30
70+ 0.14 0.15 0.21 0.10 0.24 0.17 0.15 0.41

Reduced Contact Rate = 292, 188, 240/127, 470, 000 = 2.292

This means that a person in the 20-49 age group makes 2.292 contacts with indi-

viduals in the 50-64 age group daily. Table 5.7 shows all values after doing previous

calculations for all age groups.

5.3 Other Data Requirements

5.3.1 Number of Available Vaccine Doses

According to CDC (Centers for Disease Control and Prevention)[28] data, manu-

facturers could ensure approximately 132 million doses for the 2011-12 influenza

season. This means that 42% of the US population can be covered. However, this

coverage can change during a possible pandemic since the vaccine strain must be

determined according to the new type virus, and it might take a while in the be-

ginning of the pandemic. In the sensitivity analyses, we try different policies by
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Table 5.4: Contact rates of individuals with respect to their ages from Mossong et
al. [26]

Age of Contact 40-44 45-49 50-54 55-59 60-64 65-69 70+
0-4 0.24 0.22 0.36 0.20 0.20 0.26 0.13
5-9 0.90 0.16 0.30 0.22 0.50 0.48 0.20

10-14 1.00 0.69 0.32 0.44 0.27 0.41 0.33
15-19 0.85 1.16 0.70 0.30 0.20 0.48 0.63
20-24 0.77 0.87 0.88 0.61 0.53 0.37 0.33
25-29 0.74 0.85 0.88 0.87 0.67 0.74 0.33
30-34 1.02 0.91 0.92 0.61 0.76 0.63 0.27
35-39 1.32 1.09 0.83 0.69 1.02 0.96 0.20
40-44 1.35 1.27 0.89 0.67 0.94 0.81 0.80
45-49 1.32 1.87 0.61 0.80 0.61 0.59 0.57
50-54 0.71 0.95 0.74 1.06 0.59 0.56 0.57
55-59 0.55 0.51 0.82 1.17 0.85 0.85 0.33
60-64 0.47 0.55 0.41 0.78 0.65 0.85 0.57
65-69 0.23 0.13 0.21 0.28 0.36 0.70 0.60
70+ 0.50 0.71 0.53 0.76 0.47 0.74 1.47

Table 5.5: Population distribution according to age groups [22]

Age Groups Population
0-4 21,100,000
5-9 20,886,000

10-14 20,395,000
15-19 21,770,000
20-24 21,779,000
25-29 21,418,000
30-34 20,400,000
35-39 20,267,000
40-44 21,010,000
45-49 22,596,000
50-54 22,109,000
55-59 19,517,000
60-64 16,758,000
65-69 12,261,000
70+ 27,968,000

considering both distribution time and coverage rate of the vaccine.
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Table 5.6: Contact rates of individuals with respect to their ages (20-49) from
Mossong et al. [26]

Age of Contact 50-54 55-59 60-64 Row Total Pop. Density
20-24 0.88 0.61 0.53 2.02 21,779,000 43,993,580
25-29 0.88 0.87 0.67 2.42 21,418,000 51,831,560
30-34 0.92 0.61 0.76 2.29 20,400,000 46,716,000
35-39 0.83 0.69 1.02 2.54 20,267,000 51,478,180
40-44 0.89 0.67 0.94 2.50 21,010,000 52,525,000
45-49 0.61 0.80 0.61 2.02 22,596,000 45,643,920

Total 127,470,000 292,188,240

Table 5.7: All contact values after reduction
Age Groups 0-4 5-19 20-49 50-64 65+

0-4 1.92 1.30 1.57 0.76 0.39
5-19 0.58 8.72 2.16 1.09 0.85
20-49 0.67 2.28 3.33 2.29 1.10
50-64 0.30 0.91 1.66 2.38 1.69
65+ 0.12 0.45 0.94 1.48 1.93

5.3.2 Death Rates, Cost, and Years of Life Lost (YLL)

Death rates and cost for each age group are taken from a study by Medlock et al.

[3] as Table 5.8 and Table 5.9. Infection costs express the average cost of absence

of labor and side effects. Medical costs include average medical care costs before

influenza-related deaths. We calculate years of life lost for each age group based on

a 75-year-average lifetime as in Table 5.10.

Table 5.8: Death rates
Per 100 cases 0-4 5-19 20-49 50-64 65+
Death Rates 0.00221 0.00221 0.03051 0.03051 0.26644

Table 5.9: Cost
$ Per Individual 0-4 5-19 20-49 50-64 65+
Infection Cost 275.3 275.3 328.98 328.98 492.56
Medical Cost 3435 3435 7605 7605 8309
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Table 5.10: Years of life lost
Age Groups 0-4 5-19 20-49 50-64 65+

YLL 73 63 40 18 5

5.4 Calibration

We calibrate our model results according to age specific attack rates from the 1918

pandemic as Table 5.11 [12].

Table 5.11: Age specific attack rates from the 1918 pandemic [12] and adjusted
attack rates(rates per 100 people)

Age Groups 1918 Pandemic Age Groups Adjusted Attack Rates
<1 20.7 0-4 33.7
1-4 33.7 5-19 37.18
5-9 39.1 20-49 28.66

10-14 38.1 50-64 16.15
15-19 34.5 65+ 11.83
20-24 32.3 Overall 26.2
25-29 33.7
30-34 32.6
35-39 29.6
40-44 23.6
45-49 20.7
50-54 17.5
55-59 16.2
60-64 14.3
65-69 13.5
70-74 11.1
75+ 8.8

Overall 29.4

Attack rate means the proportion of people contracting the disease in a pop-

ulation. For example, if 75 people get sick in a hundred-individual population at

the end of the pandemic, the attack rate equals 75. Furthermore, association of

our adjusted age specific attack rates can be seen in Table 5.11. The reason of dif-

ference between actual and adjusted age specific attack rate (29.4-26.2) is that the

population density of age groups in 1918 and 2010 are different than each others.

During the calibration process, transmission rates for each age group are changed
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to fit attack rates of simulation to adjusted attack rates. However, it is not enough

to observe approximate attack rates since the interaction between age groups that

have high contact rates, such as 5-19 and 20-49 and age groups that have lower

contact rates such as 50-64 and 65+, increases attack rates even though we de-

crease transmission rates of some groups. Therefore, we decrease the interaction

among the above age groups by assuming that old people make fewer contacts with

younger people due to their isolated life.

Acceptable results come at the end of the sixth simulation with transmission

rates, 0.04, 0.025, 0.036, 0.03, 0.01, 0.255, for G0, G1, G2, G3, G4, overall, respec-

tively. Table 5.12 and Table 5.13 show the first and last calibration process with a

95 % confidence interval.

Table 5.12: First calibration process(number of infected per 1000 people)

0-4 5-19 20-49 50-64 65+ Overall
Expected Infected 22.92 75.49 117.81 30.36 15.38 262

Trans. Rates 0.03 0.03 0.03 0.03 0.03
Results 17.19 89.78 115.81 55.15 39.12 317.05

Interval (α = 0.05) 15.6,18.8 82.9,96.7 107.1,124.6 50.9,59.4 36.2,42.1 293.8,340.4

Table 5.13: Last calibration process(number of infected per 1000 people)

0-4 5-19 20-49 50-64 65+ Overall
Expected Infected 22.92 75.49 117.81 30.36 15.38 262

Trans. Rates 0.04 0.025 0.036 0.03 0.01
Results 20.42 72.5 107.9 32.9 18.8 252.6

Interval (α = 0.05) 18.1,22.8 65.8,79.1 96.9,119.1 29.8,36.1 17.1,20.4 236.6,268.6

The above results are found numerically. We start with the same transmission

rates for all age groups, and then re-calibrate the rates heuristically according to

differences between actual results and expectations. Instead of depending on only

confidence intervals, calibrations are evaluated by using the least square method.

We calculate the sum of square of differences between expected and actual number

of infected people for each age group. Table 5.14 shows results of the least square

method for each age group. Overall result of calibration 6 is the lowest one. It

means that the results of calibration 6 are the nearest numbers to expected results.
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Table 5.14: Least square method’s results (sum of squares of deviations from ex-
pected number of infected for each age group )

Number of Calibration 0-4 5-19 20-49 50-64 65+ Overall
C1 9.010 130.549 177.676 103.489 76.655 1.561.695
C2 8.665 120.396 148.465 89.134 64.756 1.376.334
C3 12.359 123.068 197.555 38.448 27.792 1.106.618
C4 12.096 103.887 206.620 28.580 13.239 501.293
C5 11.840 96.665 262.947 24.120 7.971 557.893
C6 4.433 41.487 110.446 19.213 4.471 470.732
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Sensitivity Analysis, Simulation,

and Optimization

In this chapter, we evaluate the number of infected people, the cost, and YLL

in terms of different scenarios. We emphasize that our simulation model returns

the number of infected people for each scenario, as well, NOMAD optimizes the

solution by minimizing the number of infected people. Cost and YLL are derived

from number of sick individuals.

6.1 Scenarios

In our simulation model, three different vaccine distribution policies are evaluated.

The policy of the Advisory Committee on Immunization Practices (ACIP) recom-

mended to prioritize people aged 0 up to 24 years. The former recommendations

of the Centers for Disease Control and Prevention (CDC) were to vaccinate chil-

dren (0-5 age group) and adults (over 50). Finally, new suggestions of the CDC

were to prioritize children (0-19 age stratum) and adults (over 50) [3]. As a result,

percentages of vaccine allocated to each age group according to the above three

recommendations are demonstrated in Table 6.1.

Basically, available vaccine doses are distributed based on priority and popula-

tion density of each group. Percentages of vaccine allocated by NOMAD for total
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Table 6.1: Percentages of vaccine allocated to each age group according to recom-
mendations of ACIP, former, and new CDC

0-4 5-19 20-49 50-64 65+
ACIP 11.33 33.83 18.28 18.28 18.28

Former CDC 11.33 17.83 17.83 31.33 21.67
New CDC 11.33 33.83 0.00 31.33 21.67

36 different scenarios are demonstrated in Table 6.2. In the sensitivity analysis

section, you can see the explanation of all different situations.

A sharp correlation depending on distribution time, infection periods, or contact

rates among outcomes of NOMAD does not exist. However, the vaccine distribu-

tions tend to cluster around the 5-19 and 20-49 age groups when infectious days

and contact rates are increasing. For lower disease periods and contact rates, more

steady allocations are observed. Particularly, these differences can be observed be-

tween results for a 5-day-disease period with degree 1.25 and a 3-day-disease period

with degree 0.75.

6.2 Sensitivity Analysis

A total of 36 different situations are examined. Table 6.2 shows all sensitivity

analyses.

6.2.1 Vaccine Coverage

Instead of allocating all vaccine in the beginning of a pandemic, the simulation

model distributes different amounts during the pandemic. A total of 600 vaccine

doses are allocated in two ways: 300-200-100 and 100-300-200. This means that

300 doses are given to the population primarily, then 200 doses are distributed at

a later time, finally, the remaining 100 doses are released at the late stage of pan-

demic. Coverage levels are illustrated on the graphics with cumulative percentages

as below:
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Table 6.2: Percentages of vaccine allocated to each age group after optimizations
of NOMAD for all cases

CoverageLevel DistributionTime Degree InfectiousDays 0-4 5-19 20-49 50-64 65+
1 30-50-60 10-20-35 0.75 3 18 36 32 11 0
2 30-50-60 10-20-35 0.75 4 12 58 23 5 0
3 30-50-60 10-20-35 0.75 5 19 48 21 11 0
4 30-50-60 10-20-35 1 3 30 20 30 20 0
5 30-50-60 10-20-35 1 4 30 18 21 20 11
6 30-50-60 10-20-35 1 5 15 25 45 15 0
7 30-50-60 10-20-35 1.25 3 18 46 34 0 0
8 30-50-60 10-20-35 1.25 4 18 32 39 9 0
9 30-50-60 10-20-35 1.25 5 20 30 50 0 0
10 30-50-60 14-28-42 0.75 3 20 25 20 20 0
11 30-50-60 14-28-42 0.75 4 9 26 51 1 0
12 30-50-60 14-28-42 0.75 5 19 48 31 1 0
13 30-50-60 14-28-42 1 3 45 21 21 8 5
14 30-50-60 14-28-42 1 4 18 53 22 8 0
15 30-50-60 14-28-42 1 5 20 32 40 8 0
16 30-50-60 14-28-42 1.25 3 18 53 20 8 0
17 30-50-60 14-28-42 1.25 4 20 50 20 10 0
18 30-50-60 14-28-42 1.25 5 15 27 48 10 0
19 10-40-60 10-20-35 0.75 3 24 19 20 30 7
20 10-40-60 10-20-35 0.75 4 10 48 22 13 7
21 10-40-60 10-20-35 0.75 5 37 35 22 5 1
22 10-40-60 10-20-35 1 3 41 41 2 14 2
23 10-40-60 10-20-35 1 4 41 28 22 9 0
24 10-40-60 10-20-35 1 5 10 10 79 0 1
25 10-40-60 10-20-35 1.25 3 48 20 19 11 2
26 10-40-60 10-20-35 1.25 4 2 26 67 2 3
27 10-40-60 10-20-35 1.25 5 5 24 66 0 5
28 10-40-60 14-28-42 0.75 3 30 20 20 20 10
29 10-40-60 14-28-42 0.75 4 30 21 41 0 8
30 10-40-60 14-28-42 0.75 5 20 29 36 9 6
31 10-40-60 14-28-42 1 3 20 20 20 20 20
32 10-40-60 14-28-42 1 4 10 40 25 10 15
33 10-40-60 14-28-42 1 5 30 42 21 7 0
34 10-40-60 14-28-42 1.25 3 26 38 16 18 2
35 10-40-60 14-28-42 1.25 4 30 40 10 20 0
36 10-40-60 14-28-42 1.25 5 10 30 40 20 0

300− 200− 100⇒ 30%− 50%− 60%

100− 300− 200⇒ 10%− 40%− 60%

The most important reason to distribute the vaccine in a variety of amounts is

that manufacturing all shots before the beginning of pandemic is a strong assump-

tion.
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6.2.2 Vaccine Distribution Time

We have two distribution times for each coverage level. Vaccine can be allocated

on the 10th, 20th, and 35th days of the pandemic or 14th, 28th, and 42nd days of the

pandemic.

6.2.3 Infection Period

This refers to the time frame when a sick person transmits disease to susceptible

people before totally recovered. Initial average infection period in our model is 4

days [13]. However, we observe effects of −/ + 25% alteration on the results by

trying 3 and 5 day infectious periods.

6.2.4 Contact Degree

As mentioned in the previous chapter, we use contact rates derived from study

by Mossong et al. [26] to determine the number of interactions among individuals

in the model. However, it is imperative to observe alteration of the results when

contact rates are changing. Therefore, we add 25% increase and decrease to the

contact rates in sensitivity analysis. Degree 0.75 expresses contact rates decreased

by 25%. Similarly, degree 1.25 shows contact rates increased by 25%.

6.3 Results

Each scenario is simulated 30 times, and then average results are recorded for each

age group. NOMAD iterates 200 times for each iteration to find optimum results.

Finally, we calculate cost and YLL by using the results of diseased individuals and

corresponding cost and YLL rates.

6.3.1 Number of Infected People

Table 6.3 shows the number of infected people for each age group and total num-

bers for each scenario and NOMAD. As can be seen, NOMAD gives the least total
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Figure 6.1: Number of infected people with degree 0.75

number of infected people even though results for sick individuals aged 50 and over

are slightly higher than other policies. On the other hand, ACIP recommenda-

tions provide superior results compared to former and new CDC suggestions. For

more detailed information about all sensitivity analysis results, please refer to the

appendix.

Table 6.3: Number of infected people (30-50-60% coverage level, 14-28-42 distribu-
tion time, 4 days infectious duration, degree 1)

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 86.10 6.47 24.07 39.50 7.77 8.30

Former CDC 94.20 6.63 29.10 43.57 6.97 7.93
New CDC 91.90 6.53 24.40 46.23 6.63 8.10
NOMAD 75.63 5.00 20.10 33.87 7.77 8.90

Figure 6.1 shows the number of infected people for all scenarios and NOMAD in

all coverage levels, distribution times, and infectious periods with degree 0.75. It is

clear that NOMAD significantly reduces the number of diseased individuals at all
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Figure 6.2: Number of infected people with degree 1

coverage levels, distribution times, and infection days. On the other hand, ACIP

policy provides less infected people than others for all situations except the former

CDC policy which is better at 10-40-60 % coverage level and 14-28-42 distribution

time.

Overall, allocating the vaccine as early as possible decreases total amount of

infected people in the population for all scenarios. Finally, the results slightly

change for a 3-day-infection period. However, the results are sharply different from

each other when the infectious period are 4 and 5 days.

Figure 6.2 and 6.3 show total number of infected people with degree 1 and 1.25.

In comparison to the results with degree 0.75, the number of infected people for

all scenarios are almost twice as much. Outcomes with degree 1 and 1.25 usually

have a similar pattern with the results with degree 0.75, which means NOMAD and

ACIP policies provide preferable results, but a couple of exceptions exist. First,

as you can see in Figure 6.2, changing the infectious duration from 3 to 5 days
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Figure 6.3: Number of infected people with degree 1.25

increases the results with regular contact rates (degree 1) more than other degrees.

Furthermore, the former CDC policy gives superior results with degree 1 and 1.25

while new CDC decreases amount of the infected people with degree 0.75 more than

former CDC.

6.3.2 Cost

Table 6.4 shows the cost of disease and hospitalization for each age group and total

cost for each policy. It is clear that the two highest proportions in total cost belong

to 20-49 and 65 over age groups. On one hand, the proportion of people aged

between 20 and 49 in the population is 0.41, and this causes more infected people

in the 20-49 age group. On the other hand, higher death and hospitalization rates

for the older people increases cost even though their proportions in the population

is lower than the others’. NOMAD reasonably provides lower cost for 0-4, 5-19,
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Figure 6.4: Cost($) with degree 0.75

20-49 age groups while other policies have superior results for people 50 over aged.

Table 6.4: Cost (30-50-60% coverage level, 14-28-42 distribution time, 4 days infec-
tious duration, degree 1)

0-4 5-19 20-49 50-64 65+ Total Cost
ACIP 1,829 6,808 22,160 4,357 22,463 57,618

Former CDC 1,877 8,232 24,441 3,908 21,471 59,929
New CDC 1,848 6,903 25,937 3,721 21,922 60,331
NOMAD 1,414 5,686 19,001 4,359 24,087 54,548

As can be seen, NOMAD generally gives lower cost compared to other scenarios.

However, the amount of cost with degree 0.75 and 1, and 3-4 infectious days are

closer to each other. One reason is that NOMAD tries to optimize the number of

infected people by distributing available vaccine to especially 5-19 and 20-49 age

groups since their proportion in the population and interaction with others in both

their group and other groups are higher than other groups. Therefore, the number

of diseased individuals 50 and over aged reasonably goes up. Because the average

cost of medical care is more expensive for this age group, total cost in NOMAD is
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Figure 6.5: Cost($) with degree 1

not significantly lower than other policies while we take better results for the total

amount of sick individuals.

Particularly, increasing contact degree from 1 to 1.25 has a significant effect

on cost. Former CDC policy ensures slightly lower cost than other policies and

NOMAD.

6.3.3 Years of Life Lost (YLL)

Table 6.5: YLL (30-50-60% coverage level, 14-28-42 distribution time, 4 days infec-
tious duration, degree 1)

0-4 5-19 20-49 50-64 65+ Total YLL
ACIP 1.04 3.35 48.21 4.27 11.06 67.92

Former CDC 1.07 4.05 53.17 3.83 10.57 72.69
New CDC 1.05 3.40 56.42 3.64 10.79 75.31
NOMAD 0.81 2.80 41.33 4.27 11.86 61.06

Table 6.5 demonstrates YLL for each age group and total YLL for each scenario

and NOMAD. In common with cost, YLL for people aged from 20 to 49, and 65

40



Chapter 6 Sensitivity Analysis, Simulation, and Optimization

Figure 6.6: Cost($) with degree 1.25

and over are higher than others. However, YLL for 65 over are significantly lower

even though death rates of this age group are almost ten times as much as 20-49

age group (Table 5.8). The explanation is that YLL per person aged 65 over is 5

while this is 40 for the 20-49 age group (Table 5.10).

In comparison to cost, NOMAD reasonably gives superior results for YLL in all

cases. On the other hand, ACIP policy has more preferable outcomes compared

to other policies in most cases while former CDC ensures slightly lower YLL than

ACIP for degree 1.25.

41



Chapter 6 Sensitivity Analysis, Simulation, and Optimization

Figure 6.7: YLL with degree 0.75

Figure 6.8: YLL with degree 1
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Figure 6.9: YLL with degree 1.25

43



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In Chapter 1, we have given general information about influenza epidemics and

pandemics, their negative effects on the society, and vaccination, which is the most

common and strongest prevention method. Moreover, we have mentioned which

factors motivate us to formulate our model , and how to contribute to the literature

by employing this model.

In Chapter 2, studies on influenza vaccine allocation in the literature are re-

viewed. Three different models, compartmental model (SIR model), transmission

model, and network structure, which we have employed in the simulation, are in-

troduced in Chapter 3.

In Chapter 4, we introduced EpiFire simulation application, NOMAD optimiza-

tion tool, and how to associate NOMAD with EpiFire for the simulation optimiza-

tion process.

We have demonstrated necessary data such as demographic information, contact

parameters, death rates, cost, and years of life lost for both simulation and opti-

mization in Chapter 5. Finally, we show and discuss simulation and optimization

outcomes by presenting our scenarios and sensitivity analysis in Chapter 6.

We observe that optimized vaccine distribution ensures less infected people and

years of life lost compared to the fore-mentioned policies in almost all cases. On the

44



Chapter 7 Conclusions

other hand, total costs for the policies are close to each other. Former CDC policy

ensures slightly lower cost than other policies and our proposed in some cases. A

sharp correlation depending on distribution time, infection periods, or contact rates

among outcomes of NOMAD doesn’t exist. However, the vaccine distributions tend

to cluster around the 5-19 and 20-49 age groups when infectious days and contact

rates are increasing. For lower disease periods and contact rates, more steady

allocations are observed. Particularly, these differences can be observed between

results for a 5-day-disease period with degree 1.25 and a 3-day-disease period with

degree 0.75.

7.2 Future Work

There are several points of research arising from this work which should be pursued.

First, we made simulations and optimizations for a population size of one thousand

because of computational limitations. However, a larger sample size can provide

more accurate outcomes since the number of people who are affected from disease

can be millions in real life. Furthermore, population size can affect the accuracy

of creating and connecting of edges and nodes to each other in terms of contact

patterns of age groups in simulation.

On the other hand, we tried to minimize the number of infected people and

calculate corresponding cost and YLL. In the future research, we plan to redesign

the simulation model and NOMAD to provide minimum cost and YLL. We believe

that the comparison of optimal vaccine allocations for the number of infected people,

cost, and YLL will lead decision makers to more accurate conclusions.
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Appendix Tables

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 0.75, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 25.77 2.50 9.17 8.13 1.30 4.67

Former CDC 26.40 2.50 9.43 8.53 1.23 4.70
New CDC 26.17 2.50 9.17 8.53 1.33 4.63
NOMAD 25.67 2.50 9.10 8.17 1.23 4.67

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 0.75, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 41.63 3.50 14.30 15.63 2.63 5.57

Former CDC 46.67 3.70 17.47 17.70 2.43 5.37
New CDC 44.87 3.53 14.77 18.43 2.70 5.43
NOMAD 39.10 3.23 13.17 14.33 2.63 5.73

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 0.75, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 64.47 4.90 20.27 28.07 4.83 6.40

Former CDC 75.17 5.23 27.23 32.77 3.63 6.30
New CDC 73.73 5.10 21.10 36.27 4.43 6.83
NOMAD 58.47 3.87 17.50 24.83 4.97 7.30

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 34.33 2.77 9.53 14.60 2.03 5.40

Former CDC 35.37 2.93 10.30 14.83 1.87 5.43
New CDC 34.67 2.80 9.43 15.17 1.93 5.33
NOMAD 33.70 2.63 9.43 13.87 2.07 5.70
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Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 63.03 4.33 17.20 29.47 5.27 6.77

Former CDC 69.93 4.43 22.10 32.97 3.90 6.53
New CDC 67.10 4.57 17.17 34.77 4.00 6.60
NOMAD 63.23 3.37 19.67 28.43 4.77 7.00

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 112.43 6.10 24.40 60.03 11.80 10.10

Former CDC 134.87 6.57 38.57 73.03 7.57 9.13
New CDC 125.80 6.20 24.87 78.07 7.63 9.03
NOMAD 96.00 5.43 28.30 39.80 10.33 12.13

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1.25, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 86.40 5.77 26.03 40.03 6.50 8.07

Former CDC 92.67 6.00 31.87 41.17 5.67 7.97
New CDC 92.43 6.00 26.50 45.80 6.13 8.00
NOMAD 76.27 4.70 22.33 32.70 8.13 8.40

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1.25, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 189.63 9.37 45.47 98.93 20.13 15.73

Former CDC 219.13 10.37 68.70 113.57 13.00 13.50
New CDC 221.30 10.10 46.87 136.80 14.27 13.27
NOMAD 158.77 6.40 43.77 69.13 21.27 18.20

Number of infected people (30-50-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1.25, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 306.23 13.70 61.87 170.17 37.40 23.10

Former CDC 332.03 15.03 94.63 180.83 21.33 20.20
New CDC 355.60 15.20 64.57 231.23 23.33 21.27
NOMAD 272.17 7.77 61.80 101.00 61.27 40.33
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Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 0.75, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 28.03 2.60 9.80 9.23 1.60 4.80

Former CDC 28.20 2.63 10.00 9.20 1.53 4.83
New CDC 28.43 2.63 9.87 9.43 1.67 4.83
NOMAD 27.43 2.57 9.80 8.80 1.50 4.77

Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 0.75, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 52.87 4.43 18.40 19.97 3.80 6.27

Former CDC 55.13 4.63 19.50 21.57 3.33 6.10
New CDC 53.63 4.37 18.37 21.30 3.37 6.23
NOMAD 48.60 3.73 17.60 17.07 3.87 6.33

Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 0.75, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 91.33 6.60 28.40 40.40 7.40 8.53

Former CDC 100.93 6.97 34.97 44.47 6.37 8.17
New CDC 97.83 6.63 29.03 48.13 5.97 8.07
NOMAD 80.03 5.00 23.87 33.20 8.67 9.30

Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 39.37 3.00 11.23 17.00 2.57 5.57

Former CDC 40.10 3.03 11.90 17.07 2.43 5.67
New CDC 39.90 3.03 11.27 17.50 2.47 5.63
NOMAD 38.63 2.90 11.40 15.97 2.73 5.63

Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 86.10 6.47 24.07 39.50 7.77 8.30

Former CDC 94.20 6.63 29.10 43.57 6.97 7.93
New CDC 91.90 6.53 24.40 46.23 6.63 8.10
NOMAD 75.63 5.00 20.10 33.87 7.77 8.90
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Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 169.57 11.00 40.60 85.43 18.47 14.07

Former CDC 182.77 10.53 54.27 92.17 13.07 12.73
New CDC 194.47 10.97 41.57 114.00 14.53 13.40
NOMAD 145.37 7.50 38.80 61.87 20.40 16.80

Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1.25, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 117.10 8.10 33.60 53.93 11.17 10.30

Former CDC 125.57 8.43 40.03 58.23 8.97 9.90
New CDC 126.03 8.30 34.83 63.00 10.07 9.83
NOMAD 108.13 7.07 30.23 48.70 11.07 11.07

Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1.25, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 281.67 16.20 67.83 143.20 32.83 21.60

Former CDC 303.10 16.83 92.63 148.97 25.53 19.13
New CDC 312.17 16.63 71.57 176.20 27.03 20.73
NOMAD 262.73 12.70 56.63 127.87 37.37 28.17

Number of infected people (30-50-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1.25, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 405.50 21.77 89.40 206.77 53.90 33.67

Former CDC 424.83 22.23 118.67 215.87 38.60 29.47
New CDC 444.27 22.07 91.90 256.70 41.63 31.97
NOMAD 365.63 18.23 95.30 151.10 57.27 43.73

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 0.75, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 28.07 2.67 9.73 8.97 1.80 4.90

Former CDC 27.43 2.63 9.67 8.77 1.57 4.80
New CDC 28.03 2.67 9.80 8.90 1.73 4.93
NOMAD 27.20 2.57 9.77 8.73 1.43 4.70
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Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 0.75, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 51.27 4.23 18.30 18.97 3.60 6.17

Former CDC 54.27 4.07 20.17 20.90 3.10 6.03
New CDC 52.60 4.23 17.77 20.77 3.63 6.20
NOMAD 47.87 3.97 16.97 17.90 3.10 5.93

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 0.75, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 96.00 7.20 29.83 42.43 7.97 8.57

Former CDC 101.63 7.27 35.73 43.37 6.83 8.43
New CDC 99.90 6.87 30.20 47.63 6.93 8.27
NOMAD 84.67 4.70 27.43 34.90 8.17 9.47

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 38.73 3.23 11.03 16.20 2.63 5.63

Former CDC 39.57 3.07 11.37 17.10 2.40 5.63
New CDC 40.13 3.17 11.40 17.20 2.57 5.80
NOMAD 36.63 2.73 10.33 15.60 2.27 5.70

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 87.60 6.43 23.40 41.27 8.13 8.37

Former CDC 89.43 6.13 27.57 41.03 6.43 8.27
New CDC 91.53 6.47 23.23 46.30 7.03 8.50
NOMAD 78.40 4.13 22.07 34.53 8.70 8.97

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 179.93 11.27 42.87 89.57 20.83 15.40

Former CDC 196.60 11.90 56.77 99.23 14.90 13.80
New CDC 191.87 11.57 42.43 108.50 15.20 14.17
NOMAD 157.23 10.87 52.67 53.67 22.60 17.43
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Appendix Tables

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1.25, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 128.27 8.47 37.90 59.87 11.43 10.60

Former CDC 131.00 9.50 42.30 58.87 10.40 9.93
New CDC 128.03 8.80 37.03 61.83 10.37 10.00
NOMAD 113.57 5.13 36.67 49.67 11.13 10.97

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1.25, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 303.67 18.00 75.83 148.67 37.50 23.67

Former CDC 326.30 19.10 97.33 160.33 27.97 21.57
New CDC 330.87 18.97 78.10 180.23 30.63 22.93
NOMAD 271.80 23.73 78.63 101.83 40.67 26.93

Number of infected people (10-40-60% Coverage Level, 10-20-35 Distribution
Time, Degree 1.25, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 465.23 27.13 107.80 228.53 62.50 39.27

Former CDC 466.70 27.63 127.93 231.13 46.37 33.63
New CDC 494.80 28.50 109.53 273.17 48.83 34.77
NOMAD 420.37 30.50 112.00 153.67 75.97 48.23

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 0.75, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 28.90 2.63 10.23 9.40 1.80 4.83

Former CDC 28.67 2.63 10.23 9.30 1.67 4.83
New CDC 29.13 2.70 10.27 9.50 1.80 4.87
NOMAD 28.07 2.57 10.03 8.93 1.67 4.87

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 0.75, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 66.67 5.37 23.07 25.677 5.63 6.93

Former CDC 64.20 5.43 22.87 24.37 4.67 6.87
New CDC 68.07 5.63 22.97 27.97 4.63 6.87
NOMAD 58.50 4.47 20.77 21.67 4.93 6.67
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Appendix Tables

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 0.75, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 130.23 9.67 40.37 56.33 12.60 11.27

Former CDC 129.30 9.43 43.77 55.27 9.97 10.87
New CDC 135.60 9.87 41.47 63.33 10.33 10.60
NOMAD 111.40 7.77 38.20 44.07 11.00 10.37

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 42.07 3.40 12.07 17.90 2.97 5.73

Former CDC 43.77 3.43 12.83 18.63 2.97 5.90
New CDC 43.27 3.47 12.27 18.60 2.90 6.03
NOMAD 41.43 3.17 12.27 17.33 2.87 5.80

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 116.67 8.73 32.87 52.87 11.87 10.33

Former CDC 120.50 8.87 37.03 54.27 10.10 10.23
New CDC 117.80 8.30 33.50 56.10 9.90 10.00
NOMAD 101.23 8.10 28.90 43.93 10.87 9.43

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 254.90 17.33 64.63 120.97 31.23 20.73

Former CDC 274.10 18.47 78.30 132.17 25.67 19.50
New CDC 269.23 17.93 64.93 139.17 27.23 19.97
NOMAD 237.50 11.67 56.47 108.00 36.13 25.23

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1.25, 3 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 163.10 11.23 48.43 73.70 16.57 13.17

Former CDC 167.63 12.07 52.60 75.40 14.93 12.63
New CDC 170.73 11.83 48.50 81.27 15.83 13.30
NOMAD 143.83 9.27 42.07 64.57 14.97 12.97
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Appendix Tables

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1.25, 4 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 421.77 27.33 112.27 194.93 53.70 33.53

Former CDC 433.47 28.30 125.73 199.83 46.77 32.83
New CDC 433.87 28.40 114.00 210.70 47.13 33.63
NOMAD 395.63 19.00 99.13 191.37 49.03 37.10

Number of infected people (10-40-60% Coverage Level, 14-28-42 Distribution
Time, Degree 1.25, 5 Days Infection Duration

Total Infected 0-4 5-19 20-49 50-64 65+
ACIP 576.33 37.83 139.53 266.00 80.60 52.37

Former CDC 588.90 39.20 155.93 271.27 70.03 52.47
New CDC 594.03 38.87 142.33 288.47 73.03 51.33
NOMAD 558.37 38.20 142.73 241.60 75.87 59.97
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