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Abstract 
 

This research presents the first North American route-choice model for cyclists developed from a 

large sample of GPS data. These findings should encourage all interested municipalities to 

implement cycling as part of their transportation planning by determining key designing and 

planning factors to encourage cycling. The analysis is based on processing revealed preference 

data obtained from 415 self-selected cyclists in Waterloo, Ontario, which corresponded to 2000 

routes. Cyclists' route decisions were modeled using multinomial logit framework of discrete 

choice theory. The main finding involved in capturing two different behaviour groups, namely 

experienced and inexperienced cyclists. This was subsequently reflected in the two developed 

models. The key factors impacting route-choice were found to be trip length, speed, volume, 

bicycle lane presence and percent of uphill gradient that cyclists face. The predictive power of 

the best model was 65%. The outlier analysis found that the relative significance of uphill 

gradient coefficient in one circumstances and perhaps the exclusion of unobserved variables, in 

other circumstances could be the cause why probability of actual choice was not predicted by 

both models all the time. 

 

In addition, this research involved in the development of a transferability study involving route-

choice modeling for cyclists. The analysis is based on the revealed preference data obtained from 

255 self-selected cyclists in Peel Region, Ontario, which corresponded to 425 unique routes. The 

choice set contained actual routes and a combination of alternatives obtained by labeling and 

impedance rules. The transferability of Waterloo's model to Peel Region was 37%. This means 

that cyclists behaviour in the Peel Region can be predicted correctly by travel length, bicycle 

lane presence and percent of uphill gradient for every third cyclist.  
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1 Chapter 1: Introduction to the Route-Choice Problem 
 

1.1 Background 

             

One of the fundamental reasons why people travel relates to the fact that different activities exist 

in different places. Quality of life directly relates to transportation. In economics, this type of 

demand is known as "derived demand" as people do not travel for the sake of traveling; rather, 

they travel to participate in activities such as work, school or leisure. Usually, the transportation 

network of a typical city provides a large number of choices for traveling between any two 

places. Since there is more than one route between an origin and destination, every trip involves 

a route, a choice and a route choice decision. This chapter borrows from the work of Bovy and 

Piet, which will be referenced throughout the chapter, accordingly. 

 

One of the best ways to describe these terms is presented in Figure 1-1. The beginning of the 

node is known as the origin and the ending node as the destination. A route is a chain of 

consecutive nodes connected by road infrastructure segments, also known as "paths". Choice set 

can be defined as a list of all possible routes between an origin and destination that a traveler will 

evaluate before making a decision. In this example, our choice set consists of four routes, or 

paths. 

 

 

 

 

 

 

 

 

 

 

 

Origin Destination 

path 1 

path 3 

path 4 

path 2 

Figure 1-1: Directed path and three non-overlapping paths 
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In real life, some routes can be unique but the majority will have some kind of partial overlap 

with competing paths. The reason for having overlap is to provide redundancy in the number of 

road segments and node combinations a traveler can travel. In the context of this research, route-

choice becomes a problem, as there are many alternatives between origins and destinations. 

According to Miller et al. (2001), "transportation is the aggregate of thousands, or in many cases 

millions of individual trip-making decisions". As a result, a traveller is faced with a multitude of 

route-choice decisions, taking the form of individual trips through a limited capacity 

transportation network. The best way to understand route-choice problem is by studying the 

traveler's behaviour in the network through the spatial choice they made (Bovy et al., 1990). This 

study focuses on route choices and attempts to answer the following questions:  

1) What influences people in how they choose their routes? 

2) What information do they have? 

3) What road characteristics play a determinant role?  

To answer these questions, some forms of quantitative models have been proposed and 

evaluated. Typically these models are aimed at predicting the use of routes, dependent on the 

routes' and travelers' characteristics (Bovy et al., 1990).  

 

At the same time, route-choice is not an individual problem. In the context of a multi-modal 

transportation network, the public, in general, is interested in the best organization of all 

movements of people and goods in a transport system. At a multi-modal scale, route choice can 

be made by using all modes, including motorized and non-motorized, as they can be integrated 

into one transport system, as shown in Figure 1-2. On a smaller scale, cycling through the 

network can also be considered as a route-choice problem.  
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Route-choice problems can be explained as the paradigm of complex human-environment 

relationships where route choices comprise only one component of a broader area of travel 

behaviour, which mostly depends on two factors: 

 

 The traveler, with his or her subjective needs, experiences, preferences, perceptions, etc; 

 The physical environment, with its objective opportunities and their characteristics (Bovy et 

al., 1990). 

 

The process of making a route decision, with which any traveler is faced, can be structured 

rationally in a diagram, as shown in Figure 1-3. The complex human-environment interaction 

starts from the point when a traveler decides to take a trip between any two places. At the same 

time, the transportation system offers a large number of travel choices, but most of these 

alternatives may overlap with each other to a certain degree. The original choice set can be 

Figure 1-2: Typical multi-modal transportation network 

road network 

bus network 

cycling network 

Origin 

Destination 
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regarded as all possible existing route alternatives. Usually, this choice set contains all possible 

alternatives, in spite of the fact that some of the alternatives are realistic and others are not.  

Although the knowledge of a traveler is limited and the number of all possible routes is infinite, a 

traveler's choice set can be considered to begin from a set of known alternatives. A traveler will 

use previous experience, knowledge, and some specific constraints, and often the list of all 

known alternatives can be further refined to a set of available alternatives. A typical example of 

when a set of known alternatives is reduced to an available set, is when a traveler sets a certain 

cost constraints that preclude from accessing a destination for which travel costs are exceeded. 

Typical cost constraints are time, money, and distance. The list of all available alternatives will 

make up the choice set of a traveler. This list will contain a set of alternatives from which a 

traveler chooses according to particular circumstances. At this stage, the traveler will try to 

acquire all the required information about each route. 

TRAVELER TRANSPORT SYSTEM

ROUTE
ATTRIBUTES

EXISTING ROUTE 
ALTERNATIVES

ATTRIBUTE
PERCEPTION

FACTOR
PERCEPTION

FACTOR
EVALUATION

Choice
constraints

Attitudes
preferences

Factor
importance
hierarchy

Information
acquisition

KNOWN
ALTERNATIVES

AVAILABLE
ALTERNATIVES

FEASIBLE
ALTERNATIVES

ORDERED
ALTERNATIVES

INTENTIONAL
BEHAVIOUR

Elimination

Elimination
by aspects

Composite
trade-off

Decision
rule

Choice
inertia

CHOSEN
ROUTE  

Figure 1-3: Elements of individual choice behaviour (Bovy et al, 1990) 
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Two assumptions are generally made about the traveler's behaviour. These assumptions are 

related to rationality and self-interest and are important in describing the decision-making 

process during the evaluation of alternatives. In regards to rationality, travelers in their own 

subjective opinion will perceive and measure the route characteristics of every path in the choice 

set. In regards to self-interest, travelers will try to optimize the route based on their constraints. 

However, not every route characteristic will be equally weighted by travelers, as their perception 

can be considered incomplete and inaccurate. Therefore from a traveler's perspective, some route 

characteristics will be more important or compensate for the others, depending on the relative 

importance that a traveler gives to them: high or low value. For example, a traveler who is under 

time constraints may consider it worthwhile to pay tolls in order to avoid possible time delays 

and thus getting to a meeting on time; another traveler may tolerate an inconvenience linked with 

transfers of using public transit because the other option is driving an automobile, which they 

may not have. 

 

The choice set of all available alternatives will be further refined based on the factor importance 

hierarchy. A traveler will examine each alternative according to aspects in the available choice 

set and may find some alternatives to be unreasonable. After applying elimination by an aspects 

filter, a traveler will evaluate every remaining alternative and refine the choice to a group of 

feasible alternatives. At this stage in the process, the traveler will carry out a more thorough 

assessment in which a trade-off is made among the counter-balancing characteristics of every 

route. In econometric notation, a traveler applies a utility function, which reflects the relative 

importance of each aspect. Then, this traveler will put the feasible alternatives in the order of 

importance to create ordered alternatives. Once all the alternatives are ordered, a traveler, based 

on their reasoning, makes a final decision about which route to use. One example of such 
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reasoning can be to minimize the cost, time, distance, number of transfers; or maximize the 

number of sightseeing activities, if it is a trip for pleasure; other rules are possible too. It has to 

be noted that inertia will play an important role, as certain minimum tolerances need to be 

crossed before a traveler will change the habit of a certain type of behaviour. Furthermore, 

continuous feedback is gained through learning and using the system so that travelers' decisions 

can be assessed frequently.  

 

The structure presented above is a simplified approach to describing highly complicated human-

environment relationships in which every individual is unique. This difference can be explained 

through two filters: perception and evaluation (Bovy et al, 1990). Through the perception filter, 

each individual perceives subjectively the attributes of each route, and through the evaluation 

filter, each alternative is transformed into a desirability scale, which is linked to the travelers 

experiences, preferences, or constraints. The result of travellers, in this case cyclists, being 

affected by different perceptions, cognitions, emotions, learning, experiences, cognitive attitudes, 

and evaluation parameters when making a route choice suggests that route choice is a very 

individual matter and therefore cannot be reduced only to socio-economic and road 

characteristics. Each individual is different from others in regards to how these filters perceive 

and evaluate the problem, as "different individuals may make the same decisions, that is, choose 

the same route, though on different grounds" (Bovy et al, 1990), and this is what is observed and 

modeled using utility functions.      

 

Route-choice models are considered of high importance and used in transportation to: 

 Predict route choice dependent on the routes' and travelers' characteristics;  

 Help in designing and re-designing transportation facilities;  
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 Assess travelers' reactions to proposed network changes;  

 Assess the amount of excess travel, caused directly from route selection criteria.  

 

In regards to the first area of application, utility models are developed for most significant modes 

in a city and used by every transportation agency to model various transportation scenarios. For 

example, utility functions can be used to find a modal split (the number of trips made by various 

modes) or to find the relative utility of selecting a particular transportation mode. Utility models 

can also be used to predict market segmentation, or the share of travelers selecting a particular 

route, based on road and traveler characteristics. 

 

Route-choice models can also help in designing new and re-designing old transport facilities. 

Since route-choice models are quantitative models, that is based on the function of route and 

traveler characteristics, they can predict which road characteristics are significant. For example, 

do cyclists prefer a separated cycling facility? To what extent do cyclists tolerate high speed or 

high volume roads? Should the bicycle lanes be build along roads with a steep gradient? Are they 

going to be used? Overall, if the cyclists' preferences are known, planners can design cycling 

facilities in a way that attracts users.  

 

In network analysis, route-choice models can be used to determine which routes travelers will 

choose if a road section is blocked or congested for a long time. In a similar manner, the 

sensitivity of travelers to road pricing through tolls on a road can be observed through spatial 

differences and flow distributions. Overall, these models provide the ability to evaluate traveler 

attitudes with respect to changes in a transportation system.   
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Finally the study of excess travel is also worthwhile. Excess travel can be defined as the 

difference in distance, time, or any other type of cost criteria between the chosen route and a 

route proposed by an optimal choice, like the shortest path. Excess travel causes inefficient use 

of limited natural resources, and individual and public time by not using optimal routes, and is a 

cause of congestion. According to one study, the cost of congestion is estimated to cost 12 

trillion dollars globally (Rybarczyk et al., 2010).    

 

1.2 Research Motivation 
 

This research is motivated by the following: 

 

1. The public interest as well as every level of government supports moving towards a more 

sustainable way of living. Cycling represents one of the most sustainable transportation 

modes offering numerous benefits. Currently, 48% of all trips in the USA are shorter than  

4.5 km (3 miles) in length; some of these trips can be done by cycling (Pickrell and 

Schimek, 1998). Therefore the potential for cycling in urban environments is tremendous.  

2. Currently route-choice models for cyclists are either at rudimentary stages of 

development or non-existent at all, which is the case in Canada and the USA. This thesis 

describes novel models from actual choices recorded by GPS tracks and it explains major 

determinants for cycling. These results can be used in strategic planning by transportation 

agencies.   

3. From a scientific point of view, this research focuses on performing a transferability 

study and evaluating models derived in the Region of Waterloo for the neighbouring 

Region of Peel. According to the literature review, done up to December 2012, this kind 

of study has not been done before and is the first of its kind. 
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1.3 Research Goals and Objectives 

There are two main goals: 

 Propose and validate route-choice models, using GPS data obtained from cyclists in the 

Region of Waterloo, Ontario; 

 Conduct a transferability study and evaluate the applicability of models to the Region of 

Peel. 

More specific objectives are: 

 To aggregate necessary socio-economic, GIS and GPS cycling track data in one database 

for the Region of Waterloo and Peel Region; 

 To compare the characteristics of actual choice and the shortest path to determine key 

variables and relationship between variables; 

 To propose and implement a method for generating a choice set with possible automation 

as a standalone program in GIS; 

 To develop and automate a methodology for extracting road characteristics from a given 

dataset as a standalone program; 

 To model cyclists choices using the logit framework, perform a thorough statistical 

validation of the results, and draw conclusions. 

 

1.4 Thesis Outline 

The thesis is structured in the following way. Chapter 1 reviews the theoretical background of 

the route choice problem and examines how it is applied in the transportation field. Chapter 2 

reviews the literature related to the route choice of cyclists. Chapter 3 describes the study 

methodology and steps taken to develop route-choice models. Chapter 4 describes a first case 

study, that is to develop cyclist route-choice models in Waterloo Region. Chapter 5 describes a 
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second case study, evaluating the transferability of Waterloo's route-choice models to Peel 

Region. Chapter 6 summarizes the main findings and proposes recommendations.   
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2 Chapter 2: Literature Review 
 

2.1 Introduction 

 

In recent years noticeable changes have occurred in society, as people have become more 

concerned about the degradation of the environment due to human activity. As a result of these 

concerns, some people have become more aware of sustainable practices in their personal lives. 

In transportation, hybrid and electric-powered vehicles have appeared; airplanes, ships and rail 

vehicles have become more efficient; more sophisticated routings and deliveries of goods have 

been designed; and, a recurring interest in non-motorized modes, including cycling and walking, 

has risen. The literature review in this chapter will focus on cycling, with special attention paid 

to the development of route-choice models, as such models can explain and predict the number 

of users on a cycling facility as well as inform decisions about what type of infrastructure to 

build, which road characteristics play a role, and how travelers' behaviour can be altered to 

encourage cycling.    

 

The popularization of active modes in North America can be attributed to two Acts passed in the 

United States in the 1990s: Intermodal Surface Transportation Efficiency Act (ISTEA) and the 

successor Transportation Equity Act (TEA-21). Both Acts were intended to allocate government 

funds towards non-highway projects, with a "clear motive to reduce congestion and improve air 

quality" (TEA-21) as most of the North American cities were known to be auto-dependent and 

could not be considered sustainable. The following facts highlight unsustainable living: in 2001 

84% of trips in the United States are made by auto, which makes municipalities auto-dependent, 

not liveable (City of Toronto Bicycle Plan, 2001); 48% of all trips by all modes are shorter than 

five km, some of these trips can instead be carried out by non-motorized modes, but people still 
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prefer to drive (Pucher et al., 1999); the global cost of congestion is estimated to be 12 trillion 

dollars (Rybarczyk et al., 2010).  

 

The benefits of cycling are numerous and some of them are described herein. In urban areas 

cycling is the fastest mode of transportation for distances up to ten kilometers; riding a bicycle 

for short trips can save riders 18-24 cents per km (City of Toronto Bicycle Plan, 2001). Also, it is 

a very energy-efficient and an inexpensive way to travel; there are no direct emissions, except at 

the manufacturing level (Heinen et al., 2010). The cost of infrastructure, in comparison to other 

modes, is comparatively low. For example, the cost range to design and build a road in Toronto 

is $350,000 - $500,000 per km; the cost of a 1.5 m bicycle lane per 1 km can fluctuate between 

$5,000 and $15,000 for restriping (City of Toronto Bicycle Plan, 2001). There are also numerous 

health benefits, as two-thirds of Canadians lead sedentary lifestyles and cycling could be part of 

daily exercise regimes (City of Toronto Bicycle Plan, 2001).  

 

Most municipalities in Canada and the United States have become interested in supporting 

sustainable ways of living. Cycling in particular has become a part of many transportation master 

plans. For example, the Region of Waterloo and City of Toronto adopted cycling master plans 

back in the late 1990s, with a long-term vision of doubling the number of trips in a decade. The 

Region of Waterloo concentrated on building a 732 km cycling network and allocated 33M 

dollars to spend on the plan over the next 20 years (Region of Waterloo Cycling Master Plan, 

2004). The City of Toronto plans to build a 1000 km cycling network, and for that purpose, 

allocated 73M to spend over a ten year period in order to double the number of trips by 2011 

(City of Toronto Bicycle Plan, 2001). Despite these efforts, the cycling mode share is still very 

low and contributes to only 1.3% of total travel in Canada (City of Toronto Bicycle Plan, 2001) 
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and 0.9% in the US (Sener et al., 2009). One of the objectives of this research is to identify the 

key factors that determine cycling behaviour and cycling route choices, so that decision-makers 

can build infrastructure wisely and increase ridership. In the scientific context, an understanding 

of cycling route choices and cycling behaviour can be obtained through the use of utility models, 

which are also known as route-choice models. These models were described in Chapter 1. 

Models specific to cycling are explained in the following section.  

 

2.2 Current and past practices used to estimate route-choice models: revealed and stated 

preference surveys 

 

Modeling of route choice and travelers’ behaviour has been explored extensively for automobile 

and public transit modes. However, these models cannot be considered relevant to describing the 

route choice behaviour of a cyclist, because certain factors, such as the presence of a cycling 

lane, or riding along a busy road or uphill, can strongly influence cyclists, but have no effect on 

automobile drivers.  

 

Most observational studies which focus on modeling route choice behaviour can be categorized 

into one of two groups, depending on the data collection method. These groups are stated and 

revealed preference surveys. The stated preference type of survey is an approach used to obtain 

data from laboratory experiments, including computer simulation. The findings of revealed 

preference survey allows the researcher to use real-world observations collected from actual 

trips. The relative advantage of using a stated preference approach is in the controlled nature of 

the choice scenarios. The freedom of controlling choice scenarios allows the researcher to use a 

carefully designed structure for the experiments, where alternatives and their attributes can be 

predetermined and then compared across individuals (Bradley et al., 1986). This type of 

approach is fairly inexpensive, and even with a small group of individuals, researchers can obtain 
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multiple responses. However, results obtained with stated preference surveys largely depend on a 

defined set of possible alternatives and perceptions of attributes by individuals (Bovy et al., 

1990). The main drawback of this type of survey is that it may not be known if responses from 

surveys correspond to actual choices of travelers in a similar situation. 

 

Stated preference surveys were used before in a number of projects to determine the key factors 

that influence cycling route choice behaviour. One of the first comprehensive studies was done 

in the Netherlands (Ministry of Transport and Public Works, 1987). The study found cyclists to 

be most sensitive to distance and travel time (Bovy et al., 1990). A similar study from the US 

confirmed that travel time and distance were the most important factors for commuter cyclists 

(Stinson et al., 2003). Among other factors, the presence of a cycling facility and the presence of 

a cycling facility on a bridge received a lot of attention from researchers (Stinson et al., 2003). A 

group of scientists from Seattle confirmed that separated bicycle lanes, as well as socio-

economic characteristics, like age, gender and income, were significant in explaining route-

choice behaviour (Shafizadeh et al., 1993). At the same time, the above mentioned study from 

the Netherlands found, to a certain extent, contradictory results: cycling facility type was of a 

lesser importance, in comparison to the quality of paved surfaces (Bradley et al., 1986). A 

separate study evaluating bicycle-transit interface confirmed that experienced users in 

comparison to inexperienced cyclists were rather indifferent to the type of bicycle facility 

(Mahmassani et al., 1996). As cyclist's level of experience increases, cycling on a roadway 

becomes less burdensome (Hunt et al., 2006). In regards to the level of automobile traffic volume 

and safety, these factors were also considered significant in explaining cyclists route choice 

behaviour (Bovy et al., 1990). In separate studies done in Canada and the United States, the 

significance of traffic volume was confirmed (Stinson et al., 2003, Hunt et al., 2006). To some 
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extent, differing results were found in the Netherlands: traffic volume was found of a lesser 

importance, in comparison to other variables like travel distance or time (Bradley et al., 1986). 

Other factors like road gradient received a little attention, except for a study done in the United 

states (Stinson et al., 2003). At the same time a priori knowledge of cycling behaviour suggest 

that cyclists tend to prefer flatter rather than hilly roads and therefore gradient should be an 

important factor. Among other factors, pavement quality was considered significant (Bradley et 

al., 1986); socio-economic and demographic attributes generated very ambiguous results and 

therefore a recommendation was to avoid using them (Heinen et al., 2010). The complete list of 

factors found in the literature review is presented in Table 2-2, provided at the end of this 

chapter.  

 

Revealed preference surveys offer the possibility of using actual trips to relate the most 

significant factors in travelers' route choice behaviour to road characteristics. This type of data 

collection is not considered new in transportation, as actual trips were recorded in the past, either 

by following a traveler, or by asking a traveler to draw a map with the taken path. In order to use 

revealed preference data, four challenges must be overcome. First is the generation of relative 

alternatives, despite the fact that relative alternatives are not always known. Ideally, one would 

need to generate a choice set distribution for each traveler, which is not practical for a real-life 

project. Second, alternatives in the choice set must be different from one another and satisfy 

independence from irrelevant alternatives condition of discrete-choice theory (IIA). For these 

reasons, adequate statistical verification is necessary to validate data. Third, researchers need to 

know the attributes of each route. Lastly, a large data sample is necessary. Most of these 

challenges were addressed in previous studies, allowing researchers to utilize revealed preference 

surveys.  
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Modern GPS technologies permit researchers to obtain actual trip data of great accuracy and 

volume, which has made data collection problems, like the cost or accuracy of a survey, 

problems of the past. Despite the ubiquitous proliferation of communication technologies into 

the daily lives of people, the application of communication technologies to bicycle route choices 

are found in a handful of studies only.  

 

One of the pioneering studies using actual trips to model a cyclist's route-choice, was conducted 

by Altman-Hall (Altman-Hall, 1996). In the research, data was collected using hand-drawn maps 

and the generated choice set was then evaluated using a multinomial logit framework. The study 

attempted to relate a large number of variables to the actual route choice of travelers. Road 

variables, including type of road (arterial, collector, minor), type of cycling facility, speed limits, 

traffic volume, gradient, direction of travel, bridge and railway crossings, number of turns and 

turns at signals, as well as a range of socio-economic characteristics were examined. The major 

findings were the following: cyclists tend to avoid gradients, gradient-separated railway 

crossings and high-activity areas (Altman-Hall, 1996). In addition, the study was able to capture 

two types of behaviour: one group of cyclists (experienced) preferred to travel along the shortest 

route, even if it coincided with an arterial type of road; the second group (inexperienced) 

preferred travelling longer routes through residential neighbourhoods, which is consistent with 

the perception of safety. Since this study was one of the first to apply revealed preference to 

model cycling behaviour, certain limitations were found within it. The gradient variable did not 

stand out strongly because the direction of travel was not recorded during the survey; most of the 

calibrated models had weak statistical quality; and, most importantly, the predictive power of the 

models was not provided for peer review. Some of these limitations can be explained by the 
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novelty of the research, the small size of the sample and possibly the high variability within the 

sample itself.  

 

A more recent study was performed by a group of researchers in Switzerland and is recognized 

as the "first route-choice model for bicyclists estimated from a large sample of GPS 

observations" (Axhausen et al., 2010). Cyclists were found to be very sensitive to trip length, the 

presence of a cycling facility and gradient. The study explored non-linearity in the parameters' of 

multinomial family of models, for which Box-Cox transformation was necessary. The 

significance of the model parameters was found to be quite high, and the elasticity of variables 

with respect to trip length was evaluated. However, certain data limitations precluded researchers 

from adding a road volume variable as a part of the model structure. The predictive power of the 

models was not provided for peer review. The transferability of models to other regions was not 

explored either.  

 

A third study was performed in Portland, Oregon, and its findings are currently implemented into 

the region's travel forecasting system (Dill et al., 2011). Several findings were found to be 

consistent with those of other studies, as cyclists were found to be sensitive to trip length, 

gradient, traffic volume, the presence of a cycling facility and turn frequency. The predictive 

power of the models was not provided for peer review. The transferability of models to other 

regions was not explored either. 

 

Lastly, a study carried out in Phoenix used hand-drawn maps, collected from a sample of cyclists 

in order to analyse commuter routes (Howard et al., 2001). The study was very restricted in its 

findings, as no statistical measures were provided for review. Most of the research was based on 

comparing actual routes to the shortest paths.   
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Our research uses a combination of the stated and revealed preference data, obtained from 415 

self-selected cyclists in the Region of Waterloo, Canada. The evaluation of the stated preference 

data was carried out by a group of researchers in Waterloo, in 2011. The analysis of the stated  

preference data can be summarized in several findings, as follows: "cycling supports the travel 

demand of participants' in all age groups", with half of the travelers being older than 40; on 

average, cyclists' household income was found to be higher than the Regional average; 40 

percent of cyclists indicated that when cycling was not an option, their primary mode was an 

auto (Casello et al., 2011). These results suggest that respondents are choice cyclists as they had 

an option to drive but opted for cycling.  

 

With regard to the revealed preference data, GPS tracks of self-selected cyclists were recorded, 

and the initial analysis of tracks proposed an empirical relationship to differentiate recreational 

from utilitarian trips. In addition, several important findings were established between the design 

of the transportation network, the built environment and observed cycling patterns. It was found 

that a grid street network with the addition of trails offered a better directness of travel by 

minimizing the excess travel distance of cyclists. In particular, the presence of trails reduced the 

excess travel of cyclists by more than 18% (Casello et al., 2012). This research continues 

studying the nature of revealed preference data in order to develop models able to determine key 

factors in cyclists' route-choices.  

 

2.3 Major factors influencing cycling route choice behaviour 

 

In general, the main factors that influence route choice behaviour have been identified by Bovy 

and are summarized in Table 1. These factors can be categorized into four groups which 

describe: a traveller, in terms of socio-economic characteristics; a route, in terms of topological 
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attributes; a trip, in terms of purpose and mode selection, and other circumstantial parameters. 

Despite the great variability in the decision-making processes of travelers, route-choice modeling 

is mainly concerned with a route and a traveler's characteristics (Bovy et al., 1990). The most 

important factors influencing cycling route choice behaviour were explored in a number of stated 

and revealed preference studies, and the summary is provided in Table 2-1. Table 2-2 looks 

specifically at literature review and impacts on cycling, performed by two groups of researchers. 

Most of the factors can be found in their work (Hunt et al., (2006) and Heinen et al., (2010)).   

 

The factors selected for evaluation in this study are trip length, traffic speed, traffic volume, 

presence of cycling infrastructure along the route and percentage of positive gradient that cyclists 

face. Individually these factors have received a lot of attention but together they have not. The 

only study that evaluated length, speed and gradient in the same modeling framework was done 

in Switzerland (Axhausen et al., 2010). However, none of the studies referenced in the literature 

review have a validation component stated explicitly for the peer review. As a result, there is no 

understanding of the predictive power of the obtained models. Finally, no studies have been 

found that perform transferability of their model parameters to other regions or countries.   
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Table 2-1: Factor attributes that influence route-choice (Bovy et al., 1989) 

  ATTRIBUTES 

CHARACTERISTICS 

of the 

  

General 

 

Effort-

related 

 

Comfort-

related 

 

Others 

TRAVELER 

 age, sex, life cycle, 

income level, 

education, household 

structure, 

Race, profession, 

length of residence, 

no. of drivers in 

family, years having 

driving license, no. of 

cars in family 

 

 

 

ROUTE 

Road 

 

type of road width, 

length, no. of lanes, 

angularity, 

intersections, bridges, 

slopes 

 

 

 

 

travel time, 

travel cost 

 

 

 

road 

surface, 

waiting time 

 

 

 

speed limits, law 

enforcement 

Traffic 

 

traffic composition, 

traffic density, in 

traffic flow, in 

counter flow, in cross 

flow, travel speed 

 

congestion, 

access 

in/out, no. 

of turns, 

stop signs, 

traffic 

lights, 

pedestrian 

 

noise 

nuisance, 

lighting, 

signposting, 

parking at 

destination 

 

direct 

charges/toll, 

parking along the 

road, safety & 

probability of 

accident, 

reliability and 

variation in travel 

time 

 

Environment 

 

aesthetics, building 

type, building 

density, land use 

along route, scenery 

 

 

crossing, 

easy pick-

up/drop-off 

  

security, 

crowdness, 

privacy 

TRIP 

  

trip purpose, time 

budget, pressure, 

time of the trip, no. 

of travelers, mode 

used 

 

   

CIRCUMSTANCES 

 weather conditions, 

day/night, accident 

en route, 

emergencies, road 

and traffic 

information 
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Table 2-2: Summary of factors compiled from two studies (Abraham and Hunt (2006), Heinen et al. (2010)) 

Factor  References 

Facility Characteristics   

Type of facility (whether mixed with 

traffic, bicycle lane, or bicycle path) 

 Antonakos (1994); Aultman-Hall (1996); Axhausen and Smith 

(1986); Bradley and Bovy (1984); Calgary (1993); Copley and Pelz 

(1995); Goldsmith (1996); Guttenplan and Patten (1995); 

Harris and Associates (1991); Kroll and Ramey (1977); Kroll and 

Sommer (1976); Landis and Vattikuti  (1996); Lott et al. (1978); 

Mars and Kyriakides (1986); Nelson and Allen (1997); Sacks 

(1994); Taylor and Mahmassani (1997) 

Nature of shared roadway, including 

road class, sight distances, turning 

radii, lane/median configurations 

 Aultman-Hall (1996); Calgary (1993); Copley and Pelz (1995); 

Davis (1995); Denver (1993); Epperson (1994); Landis and 

Vattikuti (1996); Mars and Kyriakides (1986); Shepherd (1994); 

Sorton (1995); Sorton and Walsh (1994) 

Existence of on-street parking  Davis (1995); Epperson (1994); Mars and Kyriakides (1986); 

Stinson and Bhat (2003, 2005);  

Pavement surface type or/and quality   Antonakos (1994); Axhausen and Smith (1986); Bradley and Bovy 

(1984); Davis (1995); Epperson (1994); Landis and Vattikuti (1996) 

Gradients  Antonakos (1994); Axhausen and Smith (1986); Davis (1995);  

Stinson and Bhat (2003); Rietveld and Daniel (2004); Rodriguez 

and Joo (2004); Parking et al. (2008); Hunt and Abraham (2007) 

Intersection spacing and/or 

configuration 

 Aultman-Hall (1996); Davis (1995); Epperson (1994); Teichgraeber 

(1982) 

Cycling treatments at signals, 

including timing and detection 

 Copley and Pelz (1995) 

Completeness and directness of 

cycling infrastructure 

 Ambrosius (1984); Copley and Pelz (1995); Sacks (1994) 

Availability of showers at origin or/and 

destination 

 Guttenplan and Patten (1995); Sacks (1994); Taylor and 

Mahmassani (1997) 

Availability of secure parking for 

bicycle at origin or/and destination 

 Calgary (1993); Copley and Pelz (1995); Denver (1993); 

Guttenplan and Patten (1995); Mars and Kyriakides (1986 Sacks 

(1994); Taylor and Mahmassani (1997); Wynne (1992) 

Network layout  Moudon et al. (2005), Zacharias (2005) 

Continuity of cycling facilities  Stinson and Bhat (2003, 2005) 

   

Non-cycle traffic characteristics   

Motor vehicle speeds and driver 

behaviour 

 Antonakos (1994); Davis (1995); Epperson (1994); Landis and 

Vattikuti (1996); Mars and Kyriakides (1986); Sorton (1995); 

Sorton and Walsh (1994) 

Volume or mix of motor vehicle types, 

including proportion of trucks 

 Antonakos (1994); Axhausen and Smith (1986); Bradley and Bovy 

(1984); Calgary (1993); Davis (1995); Epperson (1994); Landis and 

Vattikuti (1996); Mars and Kyriakides (1986); Sorton and Walsh 

(1994) 

Pedestrian interaction  Mars and Kyriakides (1986) 

Age  Antonakos (1994); Aultman-Hall (1996); Sacks (1994); Taylor and 

Mahmassani (1997); Treadgold (1996); Pucher et al. (1999), 

Moudon et al. (2005), Zacharias (2005), Dill and Voros (2007) 

Safety concerns  Antonakos (1994); Kroll and Ramey (1977); Kroll and Sommer 

(1976); Lott et al. (1978); Mars and Kyriakides (1986) 

Level of cycling experience  Antonakos (1994); Axhausen and Smith (1986); Sorton and Walsh  
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Individual and trip characteristics   

Gender  Antonakos (1994); Aultman-Hall (1996); Sacks (1994); Taylor 

and Mahmassani (1997); Räsänen and Summala (1998), 

Banister and Gallant (1999), Pucher et al. (1999), Howard 

McDonald and Burns (2001), Dickinson et al. (2003), Krizek et 

al. (2004), Rietveld and Daniel (2004), Rodríguez and Joo 

(2004), Moudon et al. (2005), Plaut (2005), Ryley (2006), Dill 

and Voros, (2007) 

Income  Taylor and Mahmassani (1997); Pucher et al. (1999), Stinson 

and Bhat (2005), Dill and Voros (2007); Witlox and Tindemans 

(2004), Plaut (2005), Schwanen and Mokhtarian (2005), Guo et 

al. (2007); Dill and Carr (2003), Zacharias (2005) 

Private vehicle ownership  Sacks (1994); Cervero (1996), Kitamura et al. (1997), Banister 

and Gallant (1999), Stinson and Bhat (2004, 2005), Plaut 

(2005), Pucher and Buehler (2006), Dill and Voros (2007), Guo 

et al. (2007), Parkin et al. (2008), Stinson and Bhat (2004); 

Moudon et al. (2005) 

Perceived social norm  Bruijn et al. (2005); Bamberg and Schmidt (1994) 

Personal security concerns  Sacks (1994); Pucher et al. (1999), Rietveld and Daniel (2004), 

Lohmann and Rölle (2005), Southworth (2005) 

Flexibility of work hours  Denver (1993); Sacks (1994) 

Employment status  Boumans and Harms (2004) 

Trip length by time or distance  Bradley and Bovy (1984); Calgary (1993); Guttenplan and 

Patten (1995); Parajuli 1996); Parajuli et al. 1996), Parkin et al. 

(2007), Timperio et al. (2006), Stinson and Bhat (2004), 

Dickinson et al. (2003); Hunt and Abraham (2007) 

   

Environmental/situational 

characteristics 

  

Weather, season, temperature, rain  Calgary (1993); Stinson and Bhat (2004); Guo et al. (2007); 

Bergstrom and Magnussen (2003); Brandenburg et al. (2004); 

Nankervis (1999);  

Sweeping/Snowplowing  Copley and Pelz (1995) 

Nature of abutting land uses  Axhausen and Smith (1986); Davis (1995); Epperson (1994); 

Landis and Vattikuti (1996) 

Aesthetics along route  Antonakos (1994); Sacks (1994) 

Degree of political and public support for 

cycling 

 Clarke (1992); Copley and Pelz (1995); Wynne (1992) 

Level of public assistance for cyclists, 

including maps, route advice and 

emergency aid 

 Denver (1993) 

Education and enforcement regarding 

cycling 

 Antonakos (1994); Denver (1993); Wynne (1992) 

Cost and other disincentives to use other 

modes 

 Moritz (1997); Sacks (1994); Taylor and Mahmassani (1997); 

Wynne (1992) 



23 
 

3 Chapter 3 - Methodology 
 

3.1 Introduction  

 

The main research goals were focused on determining, validating and assessing transferability of 

main factors to cycling using GPS data obtained from self-selected cyclists in the Regions of 

Waterloo and Peel using econometric modeling. Note that self-selected cyclists are cyclists who 

decided to participate in this research. These goals were achieved through a methodological 

implementation of more specific objectives, such as gathering of transportation and socio-

economic data, generation of a feasible set of alternatives, automation data referencing of 

thousands of route segments to road attributes, performing rigorous statistical and predictive tests 

and lastly determination of main factors to cycling and drawing conclusions. 

 

The process workflow diagram is presented in Figure 3-1, and each one of the components is 

described in the individual section. 

 
 

Figure 3-1: Workflow diagram 
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The entire route-choice workflow can be thought of as a sequential execution of the following 

steps: gather data, perform exploratory analysis of collected data, generate a choice set of 

feasible alternatives, perform model calibration and validate results. A brief explanation of each 

component follows, and the detailed explanation is presented in the individual sections of this 

chapter.  

 

The first step in the process was gathering of the data. Data required for route-choice modeling 

included GPS routes obtained from 415 self-selected cyclists, and a range of attributes related to 

road links of transportation network. The following road attributes were considered significant in 

the choice selection of every cyclist: trip length, traffic volume, traffic speed, presence of cycling 

facilities and percent of uphill gradient.  

 

The second step was to perform an exploratory analysis of gathered data. The most important 

part of this analysis was to build correlation matrices for each pair of data attributes. Exploratory 

analysis focused mainly on two objectives: first, was to validate the assumption of their linear 

relationship between selected road variables; second, was to validate that selected road attributes 

can enter into the constant part of a utility function. Most of this analysis was performed in the 

statistical package SPSS.    

 

The third step was generation of a feasible choice set, which was the vital component of route-

choice modeling. In total four alternatives were obtained for each observed route. This activity 

was performed in GIS using a set of heuristic rules. As a result, a table was obtained. The data, 

contained within the Table, needed to undergo a quality check and then aggregated into routes 

through a specially written computer program. The mathematical component of the algorithm 

used in the program is covered in section 3.4.2.  
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The fourth step was to model calibration using discrete choice theory: random utility approach. 

Multinomial logit was selected as the modeling framework to model cyclists' route choices. The 

calibration of model parameters was performed using a program called Easy Logit. 

 

The fifth step was model validation, which included a range of intuitive, statistical and predictive 

tests. One of the most important components was to test the predictive power of each model on 

the dataset that was not seen by the model. Outlier analysis was also important as it allowed a 

better understanding of why the actual choice was not predicted by the model.  

 

3.2 Data collection 

 

The variables considered for the modeling of cyclists route-choice are presented in Table 3-1. 

The data describing OD and the actual path for each participating individual was gathered 

through the earlier research (Rewa, 2012). GIS data was available through the University of 

Waterloo, Canada. Subsequently, variables considered for the model estimation (spatial and 

descriptive), were combined into the one large geo-spatial database. 

Table 3-1: Data inputs for the model 

 Data type Description Source 

Actual path The 'actual path' was obtained from GPS receivers installed on 

cyclists bicycles participated in the study, measured in meters. 

Region of 

Waterloo  

OD Origin-destination pairs which represent the beginning and the 

ending nodes of a trip. 

Region of 

Waterloo 

Volume Volume variable corresponds to PM peak hour traffic, 

measured in vehicles per hour. 

Region of 

Waterloo 

Speed Speed variable corresponds to posted speed limit on each link, 

measured in km/hr 

Region of 

Waterloo 

Bicycle 

Lane 
 
  
 
                           

         
 Region of 

Waterloo 

Length Length of a route, measured in metres. Region of 

Waterloo 

% of Uphill 

Gradient 

Gradient variable, measured in per cent (%). Data precision of 

DEM was specified at ± 0.5 meters 

University of 

Waterloo 
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3.3 Exploratory data analysis 

 

The initial exploratory data analysis was performed in 2012 and it should be noted a reader is 

referred at a reference section (Rewa, 2012). For our research, the main purpose of the additional 

exploratory analysis had two objectives:  

a. Evaluate dependence between variables, selected for model building; 

b. Establish threshold for recreational trips; 

Evaluation of variables dependence was necessary to understand that a linear form of the 

parameters in the model configuration was suitable as the modeling framework. Most of the 

variables dependencies can be analysed through scatter plots matrices using the statistical 

software SPSS.  

 

The purpose of establishing a threshold for recreational trips was also necessary in order to 

eliminate recreational trips from the further analysis. Recreational trips had very different 

characteristics from the utilitarian trips and this hypothesis was confirmed in the earlier study 

(Rewa, 2012). Recreational trips were considered to be trips when the ratio of the actual trip 

length to the shortest trip length exceeded certain established thresholds. Since most of the 

alternative generation algorithms are based on finding optimal paths, only the utilitarian trips 

were considered suitable for our research. The threshold for recreational trips is provided in 

Table 3-2. 

Table 3-2: Recreational thresholds 

Actual trip length Ratio % of trips 

2 - 5 km 3.5 0.8 

5 - 7.5 km 3.0 0.9 

7.5 - 10.0 km 2.25 1.4 

> 10 km 1.5 5.3 
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The recreational thresholds can be explained in the following way. If the shortest path distance 

between OD pairs was 2 km, for example, then any actual trip longer than 7 km [2 x 3.5 = 7 km] 

was considered to be a recreational trip. If the shortest path distance between the OD pair was 9 

km, then any trip longer than 20 km [2.25 x 9 = 20.25 km] was also considered a recreational 

trip. 

 

3.4 Modeling framework - discrete choice theory: random utility approach 

 

This section is largely indebted to the fundamental concepts developed by Moshe Ben-Akiva and 

Steven Lerman (1985), and Daniel McFadden (1974, 1976, 1977). The theories behind discrete 

choice theory are well-developed in the field of microeconomics (consumer theory), where a 

choice made by a traveler reveals preferences towards a certain type of infrastructure or product. 

The framework to model the route-choice problem itself was performed through the application 

of random utility approach.  

The choice theory can be regarded as a collection of procedures that defines the following four 

elements (Ben-Akiva et al., 1985):  

 Decision-maker; 

 Alternative generation; 

 Attributes of alternatives; 

 Decision rule;  

A decision-maker is represented by an individual or a group, who is faced with different choice 

situations. Typically in the model, the decision-maker can be characterized by a vector of 

different socio-economic characteristics. Then, a decision maker is faced with a choice, and the 

choice can be made only from a set of alternatives, known as a choice set. Choice is defined 

through a set of procedures, known as alternative generation. Next, attributes of each alternative 
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need to be collected. Lastly, a decision maker evaluates alternatives according to some decision 

rule. There exists a variety of rules, including dominance, satisfaction, lexicographic and utility. 

This research is based on the utility rule. 

 

The probabilistic choice theory is considered as the most appropriate method to model these 

processes. The reason for that is the following: it reflects the human behaviour and it explains 

behavioural inconsistencies better than deterministic utility approach, as it offers a more 

sensitive analysis to forecast the travel demand. For example, a probabilistic choice theory can 

model a scenario where two individuals are faced with an identical choice set, defined by the 

identical characteristics, can select different alternatives. Instead of selecting an alternative with 

the highest utility, the decision maker is assumed to behave with choice probabilities. Choice 

probabilities are defined by a probability distribution function over alternatives that include 

utilities as parameters (Ben-Akiva et al., 1985).  

 

3.4.1 Generation of choice set  
 

Ideally, it would be necessary to use a probability model that can generate a feasible choice set 

for every individual in the sample. The choice set of feasible alternatives would tell the 

likelihood of a particular route to be a part of the choice set, depending on the traveler's and 

transportation network’s characteristics (Bovy et al., 1985). The size of the choice set, as well as 

the composition of attributes, need to be considered, because they affect model estimates 

(Bliemer et al., 2008). The choice set needs to have routes that are realistic as well as routes that 

are not realistic, as long as cyclists are aware of them. However, there is no benchmark with 

which to compare the amount of variation between alternatives (Altman-Hall, 1996).  
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Most of the procedures used to generate alternatives are based on heuristic rules, because there is 

no scientific basis to select one method over the other. The main idea behind all alternative 

generation methods is to propose the most feasible paths by meeting IIA property of the logit 

models. IIA property is concerned with duplication and correlation among alternatives. The 

following objectives needed to be met:  

a. Alternatives needed to be based on sound heuristic rules; 

b. Alternatives needed to be distinct (IIA property); 

The choice set generation methods can be classified into deterministic shortest path-based 

algorithms, stochastic shortest path-based algorithms, constrained enumeration methods and 

probabilistic methods. An excellent literature review on this subject was performed by Carlo 

Prato (2009). Most of these methods are based on some type of constraint which needed to be 

optimized. The deterministic shortest path-based family can be classified into the following 

branches: K shortest path, labeling approach, link elimination and link penalty. K shortest path 

algorithm is based on the repeated generation of the shortest path method and is the most readily 

available to researchers through GIS software. Labeling approach was proposed by Ben-Akiva, 

and the objective of the labeling approach is to determine a set of criteria for a traveler's choice 

set. In mathematical notation, each label corresponds to an impedance function specified by each 

criterion. The possible list of criteria can be defined by minimum time, minimum distance, 

minimum number of traffic lights, most scenic route, most signposted route, minimum 

congestion, maximum road quality, etc. The closest study found to use this method was the 

research by Altman-Hall (Altman-Hall, 1996). In that study, it was proposed that a set of criteria 

be used to generate a choice set for cyclists. Link elimination method is based on the repetitive 

search for the shortest path after the removal of a part or of all the shortest path links from the 
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previous searches. The research conducted in Switzerland proposed to use link elimination 

method to generate alternatives (Axhausen et al., 2010). Lastly, link penalty, is based on the 

repetitive search of the shortest path, but a certain penalty is imposed on every link instead of a 

link removal. The information related to other classes can be found in Prato's literature review.  

 

The following heuristic rules were considered to determine the choice set for model calibration. 

The chosen path must be in the choice set because it represented the chosen path of cyclists. The 

second alternative corresponded to the shortest path applied to the road network. This alternative 

represents a feasible alternative without cycling facilities. The third alternative corresponded to 

the shortest path within the transportation network that including cycling facilities. This 

alternative represented improvements done to the transportation network when cyclists have the 

opportunity to use available cycling facilities. The fourth alternative was created by imposing the 

distance penalty on paths created for the second alternative. In this way unique paths were found, 

which were distinct from paths created for the second alternative and which were a feasible 

option to cyclists. The fifth alternative was generated by imposing a distance penalty on the paths 

created for the third alternative. In this way unique paths were found which were distinct from 

the paths created for the third alternative, and which were a feasible option to cyclists. 

 
 

An example of O-D pair with five paths is presented in Chapter 4 (section 4.4.1). 

 

 

 

Summary of generated alternatives: 

 Actual path - is the actual path taken by a cyclist. 

 Shortest path by the road network.  

 Shortest path by the road and trails network.  

 Second shortest path by the road network: impose a cost of 1.2  

 Second shortest path by the road and trails network: impose a cost of 1.2  
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3.4.2 Attributes of alternatives  

 

GIS was used as one of the main tools to determine the characteristics of each route. In GIS, 

every link in a route is related to the table of attributes. The process of connecting individual 

road links to the table of attributes is known as attribute relation. Since most of the chosen paths 

had a "zigzag" travel pattern, a threshold for the search radius, within which attributes can be 

traced, had to be established.  

 

The result of relation procedure created tables of data, also known as the turn tables. In order to 

aggregate individual links from the turn tables into routes, data was downloaded to ASCII file 

format and then summarized through a specially written computer program. The algorithm 

behind the program contained a set of instructions which is provided next.   

 

Suppose that a cyclist's route can be represented schematically as the movement from "O" to 

"D", as  demonstrated in Figure 3-2. Overall, the OD route consists of three road links 1-3 and 

each road link has a particular set of attributes. Segments OA and BD are uphill in the direction 

of travel; link AB is downhill and also has a bicycle lane. Additionally, for each link the 

following  

 

 

 

 

 

 

 

Figure 3-2: Schematics of a typical route 
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five attributes were obtained: trip length, traffic speed, traffic volume, percent of uphill gradient 

and a presence of bicycle lane. The objective was to aggregate the data from the individual links 

into OD route. Below is the legend that describes each component individually. 

 

 

 

 

 

 

 

 

 

The gradient variable for each road segment can be calculated using simple geometry. Since 

positive gradients were of interest only, a gradient for the link OA is obtained as follows: 

 Change in elevation, ΔH, is given by:  

Elevation (point A) - Elevation (point O) 

 The horizontal distance change over which ΔH occurs is given by: 

Hz. Dist = (OA
2
 - ΔH

2
)
1/2 

 Finally, the percent of uphill gradient is given by: 

OA = 100x(ΔH/ Hz. Dist) 

 

The instructions used to aggregate attributes along the length of a route are: 

 

                                                
 
    

 

                          
  

 
    

  

 
    

  

 
  

 
 

 
       

 

   

 

 

                            
  

 
    

  

 
    

  

 
  

 
 

 
       

 

   

 

                                    
  

 
      

  

 
  

      
  
 
     

  
 
  

 

                                       
  

 
      

  

 
    

  

 
   

eq.3.1 

O,D - origin and destination nodes 

A, B - intermediate nodes 

l - length of a link, km 

s - posted speed limit on a link, m/s 

v - car volume on a link, veh/hr 

g - percent of uphill gradient of a link, % 

b - presence or absence of a bike lane, 0 or 1 
 

eq.3.2 

eq.3.3 

eq.3.4 

eq.3.5 

eq.3.6 

eq.3.7 
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Data aggregation can be presented using the following example, where trip length and traffic 

speed were known and are shown in Table 3-3. 

Table 3-3: Example route summary 

Link ID Length Speed 

 [km] [km/hr] 

AB 1.8 60 

BC 1.0 50 

CD 2.4 40 

 

                                         
 
    = 1.8 + 1.0 + 2.4 = 5.2 km 

                         
  

 
    

  

 
    

  

 
 

 

 
       

 
    

 

   
         

                      km/hr = 13.57 m/s 

Each OD pair was systematically processed through a described set of instructions and data from 

the individual links was aggregated into routes.  

 

3.4.3 Specification of deterministic and random utility components 

 

The decision rule, selected to measure the "attractiveness" of each alternative in the feasible 

choice set, was based on the utility maximization idea. The utility term itself can be partitioned 

into deterministic and random components. The term “deterministic” can be thought of as a fixed 

scalar and random term which accounts for all the inconsistencies in the choice behaviour. On 

the example of a binary choice model, random utility terms Uin and Ujn  are presented in the 

following notation: 

              

              

 

eq.3.8 

eq.3.9 

eq.3.10 
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where Vin and Vjn  are called the systematic or deterministic components of the utility of i and j; 

εin and εjn  are the random terms which are also known as disturbances. In regards to the 

deterministic term of utility, it was important to answer what types of variables can enter these 

functions. In a general case, for any individual n, any alternative i can be characterized by a 

vector of attributes, like zin; socio-economic characteristics can be characterized by a vector of 

attributes, like Sn. For convenience, a new vector can be specified, xin = h(zin, Sn) and xjn = h(zjn, 

Sn), where h is a function combining road and socio-economic vectors of characteristics. 

Therefore the deterministic component of utilities i and j can be presented as:  

Vin = V(xin)  

 

and  

 

Vjn = V(xjn) 

 

The functional form of equations 3.11 and 3.12 needed to meet two objectives. It had to reflect 

our understanding how various terms contribute to utility, and it had to be computationally 

simple to solve for unknown parameters. Let define                  , as the vector of K 

unknown parameters, so: 

                                     

                                       

 

In order to meet the abovementioned objectives, the functional form for V is generally accepted 

as a linear in the parameters function for its computational simplicity and mathematical rigour. 

Linear in the parameters model is not the same as linear in the attributes of values stored in zin 

and Sn vectors. It allows attributes in h to be presented in any mathematical form, including 

polynomial, exponential, logarithmic, ratio, piecewise, linear, etc. Therefore linear in the 

parameters model can capture a high degree of modeling complexities.   

 

eq.3.11 

eq.3.12 

eq.3.13 

eq.3.14 
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For the problem in this research, the functional form of utility, having a choice set of five 

alternatives, for cyclist №1 can be represented in the following mathematical form: 

                                                                           

                                                                           

                                                                           

                                                                           

                                                                           
 

where alternative 1 represents the chosen path, alternatives 2-5 represents a set of feasible paths 

for the same OD pair. Similar cases can be constructed for n number of individuals, i number of 

alternatives and K number of unknowns. The unknown parameters   are the only parameters 

which need to be calibrated. In this research, unknown parameters   were assumed to be of a 

generic type, which meant that values of parameters were common for each alternative. The 

calibration of the model was performed by a method of maximum likelihood.  

 

The random component of the utility is introduced as  , in the example of a simple binomial case 

with two alternatives only. The random utility approach is consistent with human behaviour, as it 

explains the behavioural inconsistencies between individuals. The basis for random assumption 

is due to effects of unobserved attributes, taste variations, measurement errors and imperfect 

information and instrumental variables (Ben-Akiva et al., 1985). Therefore utilities were 

considered to be random variables, because utilities were not known to the decision-maker with 

certainty. The choice probability that alternative i was chosen by a decision-maker n can be 

written in the following general form: 

                     

                                    

                                    

 

However, in order to use a particular probability choice model, an assumption about the joint 

error distribution of error terms (        ) had to be specified. Once an assumption on the joint 

eq.3.17 

eq.3.15 eq.3.16 
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error distribution is made, then the probability that the alternative i was chosen could have 

solved. Starting with an example of a binary probit model (two choices), the methodology is 

extended to the multinomial logit model. The main assumption related to the probit model 

exhibit of a normal distribution. Under this assumption, it is expected that the joint error terms 

          are also normally distributed. As shown in eq.3.17, this relationship was used to 

solve for the choice probabilities. The result of eq. 3.17 indicate that if the difference in the 

utility terms (         ) is greater than the difference of error terms (         , then the 

probability of alternative i is obtained by solving the integral, provided in eq.3.18. 

 

       
 

    

         

     
    

  

 
 
 

 
 
 

        

 

The content of integral contains mathematical relationship, describing the normal probability 

distribution of the error terms. Therefore the probability Pn(i) corresponded to an area under the 

cumulative distribution function (CDF) curve with the lower limit as infinity and an upper limit 

as        . This is an analytical approach to understand how one solves for probabilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-3: Binary probit model 

 

eq.3.18 

- ∞ 

1.0 
 

0.5 
 

Pn (i) 
 

Vin - Vjn 
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The graphical method is described on Figure 3-3. The figure shows the differences in utility 

terms corresponding to the upper limit under the curve and the shaded area contained within the 

interval (-∞;            corresponds to probability of selecting alternative i.  

 

3.4.4 Multinomial logit model and main properties of the model 
 

In the previous section the binary probit model was introduced. The multinomial logit model is 

applied to situations when a choice set have more than two alternatives. In our case, the choice 

set consisted of five alternatives, out of which one was the chosen one and four others were 

generated additionally, and then added to the choice set as hypothetical paths for cyclists. The 

random utility theory presented for the binary probit example, is extended to a multinomial case, 

where the probability of alternative i in the choice set,   , selected by a decision maker n, is 

given by: 

 

                                  
                                                     

                                                      
  

However, there is a family of various multinomial models. In order to use a particular 

multinomial model, an assumption about the error distribution of disturbance terms has to be 

made. For a multinomial model, the joint distribution of all the terms has to be specified, which 

added complexity, compared to a binary model where one dealt with the distribution of       

     terms only. So, let                  to be the joint distribution function of the disturbance 

terms. The probability of choosing i from    is then given by equation: 

 

                          
            

        

           

       

 

       
                   

 

eq.3.19 

eq.3.20 

eq.3.21 

eq.3.22 
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To find the choice probability i for a multinomial model one would need to carry over multiple 

integration over the subspace of disturbances, presented in eq.3.22. In the previous section, an 

assumption was made that terms           were normally distributed. A model known as 

binary probit was obtained. For a number of reasons, including not having a closed form and a 

computational complexity of working with integrals, it was proposed to use a "probit-like" model 

but which was analytically simpler. One such model is a logit model which corresponded to 

logistic distribution of disturbances. The logistic distribution approximates well normal 

distribution for the exception of having fatter "tails". The multinomial logit model is expressed 

as:      

       
    

  
   

      

 

 

The mathematical expression presented in eq.3.23 is much simpler because it allows the 

researcher to find the choice probability while avoiding the rigour of integration. However, to 

use the logit model, the following assumptions about the disturbance terms need to be accepted: 

 Identically and independently distributed (IIA) 

 Each one of error terms followed Gumbel Type 1 

The importance of IIA property and its ramifications are going to be presented in Section 3.4.5 

because it was important for the model development. 

3.4.5 Independence from irrelevant alternatives property (IIA) 

 

The IIA property states that for any individual the ratio of choice probabilities for choosing two 

alternatives is independent of the availability of attributes of any other alternatives. The idea 

behind this statement is described in eq.3.24: 

eq.3.23 
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The IIA property has the following ramifications, which accompanied by examples with 

explanations: 

 

 If the characteristics of choices/modes not included in the calculation of ratio are changed, the 

ratio of probabilities included in the calculation of the ratio remains to be unaffected. This can 

be viewed in the example, when there are three choices: a car, carpool and transit. The 

probabilities of selecting each mode are 0.38, 0.34 and 0.28, and these probabilities 

correspond to the base scenario. Now suppose that an improvement was made to transit and 

the probabilities of choosing a particular mode have changed to 0.37, 0.30 and 0.33, 

accordingly. Although the individual probabilities have changed, the ratio of auto and carpool 

probabilities remained unchanged (0.38/0.34 = 1.11 before and now 0.37/0.33 = 1.11). In 

reality, it would be expected that the probability of transit is increased at the expense of a less 

competitive mode, which is carpool.  

 

 Alternatives must be distinct. This ramification received the most attention and can be 

explained through an example of a red and a blue bus. One assumes that initially there are two 

choices: a car and a red bus. The choice probabilities are given as one half for each mode. 

Then suppose that a blue bus was introduced and choice probabilities have changed 

accordingly to one third to each mode. Mathematically this statement is correct but it does not 

reflect the idea that in reality there are still two modes only: a car and a bus. When an 

individual makes a choice, they will choose between a car and a bus first, therefore the 

probability of each mode should be one half or 50% for each choice. Then, if the individual 

eq.3.24 
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selects a bus, they may choose either a red or a blue bus with a corresponding probability of 

one quarter or 25%. In these situations, a hierarchical structure like nested logit is adopted, 

which can better reflect the true relationship between a variety of choices and conditional 

probabilities.  

 

3.4.6 Model calibration using maximum likelihood 

 

Model calibration is a process of econometrically inferring the unknown parameters of    

            from a sample of observations. There are two main approaches to find estimators, 

which are: the maximum likelihood and least squares. Maximum likelihood is the most 

commonly used method of inferring unknown parameters, as stated concisely: "maximum 

likelihood estimator is the value of the parameters for which the observed sample is most likely 

to have occurred" (Ben-Akiva et al., 1985). Most of the theory and mathematical notation in this 

section is from Daniel McFadden and presented here to make the methodology section complete. 

Let N be the sample size, at which the following can be defined: 

 

      
 
 
     
                                       

         
 

  

For a multinomial choice model, the maximum likelihood function is: 

 

          
   

      

 

   

  

 

For a linear in the parameters logit model  

 

       
  

    

  
     

      

 

 

In practice it is customary to work with the natural logarithm of L*, which is called the log-

likelihood, and seek a maximum to: 

eq.3.25 

eq.3.26 

eq.3.27 
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Setting the first derivatives of L with respect to coefficients equal to zero, the necessary first-

order conditions can be obtained: 

  

    
             

  
               

  
     

      

       
 
    = 0, for k = 1, ..., K 

 

In more compact form it can be written as: 

 

                    
 
         , for k = 1, ..., K 

 

 

If the solution to eq.3.30 exists, it is unique which signifies that L is globally concave. The 

unknown parameters   can be mathematically solved through an intricate task. Therefore most 

of the procedures are now automated through a number of statistical packages like SPSS, or 

specialized packages like Easy Logit Modeler or Biogeme.  

 

The method of maximum likelihood can be illustrated through an example below. This example 

presented to explain the theoretical concepts (Fu, 2012). Suppose the following travel time 

characteristics for three individuals is presented as shown in Table 3-4. 

Table 3-4: Route choice characteristics 

Individual № Chosen mode Travel time (car) Travel time (bus) 

1 Car 30 50 

2 Car 20 10 

3 Transit 40 30 

 

In addition, assume that the functional form of the deterministic utility component can be 

described as a function of a travel time only. These functions are:  

 

 

eq.3.28 

eq.3.29 

eq.3.30 
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Vcar = aTcar 

Vtransit = aTtransit 

 

where a is the unknown parameter which in this case is generic for both modes, and T is a travel 

time by car and transit. The objective of the problem is to infer the unknown parameter a by 

using the method of maximum likelihood. The choice probability for both modes can be 

described in the following general form: 

        
  

    

  
     

      

  
    

         
 

 

            
  

    

  
     

      

  
    

         
 

 

Choice probabilities for each individual can be written as: 

 

Individual 1:         
    

         
  

    

         
 

 

Individual 2:         
    

         
  

    

         
 

 

Individual 3:             
    

         
  

    

         
 

 

The probability of the entire estimation sample is given by:  

 

L = Pr (individual 1 chooses car) x Pr (individual 2 chooses car) x Pr (individual 3 chooses 

transit) 

 

Therefore, 

 

    
    

         
     

    

         
     

    

         
  

 

                                               
 

The only unknown parameter is a, and parameter a can be estimated by maximize L or log L. In 

this example, the search for the unknown parameter is done using the golden section method; the  

 

eq.3.31 

eq.3.32 

eq.3.33 

eq.3.34 

eq.3.35 
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final result is depicted on Figure 3-4. Note that the function is concave and the maximum occurs 

at a = 0.08 and the corresponding log-likelihood value equals to -1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-4: Graphical search for parameter a 

 
 

With the estimated parameter value, the utility functions are fully calibrated and can be used to 

estimate the choice probabilities for a car and a transit, as long as travel times of their trips is 

known.  

 

 

3.5 Verification and validation tests 
 

The process of model building is considered to be a combination of science and engineering 

judgement. The reason it is challenging to find an ideal model is related to the fact there are 

several specifications of the model which fit the data well (Ben-Akiva et al., 1985). The science 

part of the model building process corresponds to the use of rigorous statistical tests. Scientific 

tests make inferences about the unknown parameters of mathematical models that are known to 

us. Mathematical models are considered to be known to us and are not questioned. At the same 

time a statistical goodness-of-fit results alone cannot always provide good explanation. There is a 

Parameter a 
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Log-likelihood, ln L 
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need for some engineering judgement, as even good models may give poor prediction results. 

The judgement part of the model building process corresponds to a priori knowledge, 

expectations on the phenomenon being modeled. 

3.5.1 Informal tests of the coefficient estimates 
 

The examination of values and signs of model coefficients is considered to be as one of the most 

basic tests to be performed. There are certain a priori expectation towards the signs of trip 

length, traffic speed, traffic volume, percent of uphill gradient and presence of bicycle lane 

coefficients. In particular, negative signs are expected for the trip length, percent of uphill 

gradient and speed coefficients; a positive sign is expected for bicycle lane. No specific sign is 

expected for the volume coefficient. These statements can be explained through an example of 

looking at the percent of uphill gradient coefficient. Our a priori expectation towards percent of 

uphill gradient sign is negative because cycling uphill is considered a major physical effort that a 

traveler tries to avoid.  The ratio of coefficients can provide valuable information also. Typically, 

they provide information on a trade-off or a marginal rate of substitution between two 

corresponding variables.  

3.5.2 Statistical tests 
 

The use of asymptotic t-test:  this test is designed to test a hypothesis if a particular parameter 

in the model differs significantly from a critical value, known as a test statistic. Critical values 

are obtained from the standardized Student's t distribution for various confidence levels (90% or 

95%) and for one or two-tailed tests. A set of conditions can be constructed to test each 

coefficient parameter in the model, using the notation provided below:  

         

         
 

eq.3.36 
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On the basis of the t statistic, the null hypothesis can be either rejected or accepted if individual 

parameters are equal to zero. Most often, additional insight into the data can be gained from 

finding a joint confidence region for several parameters. 

 

The use of the likelihood ratio test: this test is designed to test a hypothesis that all coefficients 

are simultaneously equal to zero. A set of conditions can be constructed, using the following 

notation: 

                 

                 
 

The test statistic is    distributed with K degrees of freedom and can be obtained from:  

 

                

 

where L(0) and L( ) correspond to the maximum likelihood values obtained for restricted and 

unrestricted forms of models. The test statistic is    distributed with (KU - KR) degrees of 

freedom and it can be obtained from: 

                   

 

where 'R' and 'U' are the subscripts which correspond to the restricted and unrestricted models. 

The restricted model corresponds to a simpler model, as it requires less data than an unrestricted 

model. 

The use of goodness of fit measure: this test is similar to the R
2
 statistic found in linear 

regression analysis. This measure can be obtained using the following notation: 

       
     

    
 

 

Typically, everything else being equal, a model specification with the higher goodness-of-fit 

measure is considered better, as it better explains the data. 

eq.3.37 

eq.3.38 

eq.3.39 

eq.3.40 
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3.5.3 Test of the model structure: IIA assumption 

 

This test is designed to test the assumption of accepting the multinomial logit structure. In 

practical terms, one would like to compare logit models estimated with subsets of alternatives 

from the universal choice set (Ben-Akiva et al., 1985). This test should answer the question if the 

model parameters are stable. If the IIA assumption holds for the full choice set, then the logit 

model should apply to any subset of alternatives. Typically, the coefficients from the full and 

subset choice sets are required to be within one standard error. Most of the mathematical notation 

can be found in the research papers by McFadden et al., 1974, 1976, 1977.  

3.5.4 Prediction Tests  

 

The tests presented in this section consist of performing outlier analysis and testing the predictive 

power of models. These tests are performed on the external data, meaning: the data which was 

'not seen' by the model. The data are divided into two sets, where the first set uses 80% of data 

for model building, and the second set uses 20% of data for prediction.  

 

Condition 1: Pr (Maximum) = Pr (Chosen Path) 

 

The first prediction test is designed to find how often the model identifies the chosen paths as the 

highest probability paths. Route choice coefficients, obtained from the model calibration process, 

are substituted directly into the attributes of each alternative. If the probability of selecting the 

chosen path gives the largest probability among the choice set of alternatives, than a value 1 is 

assigned, otherwise 0. So,  

         
 
 
     
                                  

         
 

 

and then 
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The success of  prediction can be expressed in terms of the total number of matched records in 

relation to the total number of records, which gives the first measure of predictive power of a 

model. 

 

Condition 2:                                                     
 

The research also examined situations when the difference between the maximum and the actual 

probabilities is less than a certain minimum threshold. A typical range of examined threshold, ε, 

lies between 0.01 to 0.10. If the difference between the maximum and the chosen probabilities is 

less than a certain minimum threshold, than there is a likelihood that the actual route could have 

been chosen by a cyclist. In mathematical terms, it can be expressed in the following way, 

 

Pr (Maximum) - Pr (Chosen Path) < ε  

 

The models are tested for various values of threshold values, ε. 

 

 

Condition 3: Outlier Test                                
 

Once the model parameters are substituted into the external dataset, unusually large deviations 

should be examined. Outliers can be located through a condition, when: 

 

Pr (Maximum) - Pr (Chosen Path) > ε, where ε » 0.1 

 

 

When ε is greater than 0.1, then there is a strong evidence that the likelihood of predicting the 

chosen route with the calibrated model parameters is quite low, despite the fact this route was 

chosen by a traveler. These outliers should be examined carefully and an explanation should be 

given to the possible causes of observed effects. 

 

eq.3.43 

eq.3.42 
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Market segmentation prediction tests: this test is designed to demonstrate the ability of the 

proposed model to repeat correctly the observed shares of alternatives for a particular market 

segment. In mathematical terms, this test can be expressed simply as: 

   
 
                ,  

 

where     is the number of observations choosing alternative i from a choice set C.  

Since the frequency of the actual choice is observed, this frequency is considered to be 

representative of the market segment. 

 

3.6 Methodology summary 
 

The entire route-choice methodology can be thought of a sequential execution of five processes 

as presented in Figure 3-5.  

 

Figure 3-5: Methodology Summary 

 

Data collection was the initial step in the methodology. Data required for route-choice modeling 

included GPS routes from individual cyclists and a range of attributes related to transportation 

network, such as trip length, traffic volume, traffic speed, gradient and presence of cycling 

infrastructure. Exploratory analysis of gathered data was performed after that. This analysis 

focused mainly on two objectives. Firstly, it involved the validation of the assumption of a linear 

relationship between the selected road variables; second, was to validate the presence or absence 

of confounded effects. The presence of the confounded effects can be verified in a statistical 

eq.3.44 
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package, such as SPSS. The third process involved a generation of a feasible choice set. This 

process was performed using a set of heuristic rules, which were based on finding optimal paths 

for cyclists. In total four alternatives were obtained for each observed route. Attributes were 

located in GIS, and data aggregation was performed through a specially written computer 

program. Afterwards these alternatives were verified for meeting the IIA assumption. The fourth 

process was to calibrate model parameters using discrete choice theory: random utility approach. 

Multinomial logit framework was selected as the modeling framework and the calibration of 

model parameters was performed using a program Easy Logit. At last, models were validated, 

which included a range of intuitive, statistical and predictive tests. Outlier analysis was also 

necessary because it allowed to have a better understanding of why the actual choice was not 

predicted by the model.  
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4 Chapter 4 - Application to the Region of Waterloo. 
 

4.1 Introduction  

 

The regional municipality of Waterloo is comprised of three cities - Waterloo, Kitchener and 

Cambridge, and four townships - North Dumfries, Wellesley, Wilmot and Woolwich. The 

Region of Waterloo is located 110 km west of Toronto and is situated within the boundaries of 

an area known as the Greater Golden Horseshoe. The Region has been designated by the 

Province of Ontario as "a place to grow" and is currently progressing towards intensification of 

its urban cores by building LRT and BRT transit systems along the central corridors (Places To 

Grow, 2006). The current population is estimated at 550,000 residents and is expected to grow to 

730,000 by 2031; the number of jobs is also expected to grow by an additional 50% (Statistics 

Canada, 2006). As a result of growth, demand for housing, employment and transportation will 

add pressure on existing communities and municipal infrastructure.  

 
 

Figure 4-1: Region of Waterloo (Source: www.maps.google.ca)  

In addition to building LRT and BRT transit systems, the Region of Waterloo has emphasized 

and promoted non-motorized modes. Cycling in particular, has received substantial attention. 
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The vision for developing cycling into a significant mode was introduced formally in the Cycling 

Master Plan. According to the Plan, the Region has allocated $33 million to build 730 km of 

cycling network and is expected to increase the mode share of cyclists to 2% by 2016 (Cycling 

Master Plan, 2006).  

 

In order to assist the Region with the implementation of this plan to accommodate growth, the 

University of Waterloo partnered with the Region to collect, analyse and evaluate data on 

cyclists' behaviour and to determine key factors that may increase cycling. The modeling of 

cyclists' route choice, which is the focus of the thesis, can assist the Region in the strategic 

addition of new and modification of existing cycling infrastructure.  

 

4.2 Data collection 

 

As discussed earlier (Chapters 1, 2), in order to determine key factors that explain cycling route 

choice, data about travelers and route characteristics were required. Data describing travelers are 

typically collected in the form of socio-economic characteristics. Since 40% of these 

characteristics were missing from the survey, these variables were left out of the model building 

process.  

 

Attributes of cyclist paths can be derived from several sources. Road attributes were obtained 

through a process of averaging and combining multiple GIS sources into one large geo-spatial 

transportation network database. The actual choice data were collected in the form of GPS data 

from small, inexpensive units carried by cyclists. 

4.2.1 GPS data 

 

The actual route choice of travelers was originally collected in 2011 by a University of Waterloo 

initiative through a year-long study involving 415 self-selected cyclists. Self-selected cyclists are 
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cyclists who decided voluntary to participate in this research. The study was conducted in several 

sessions by providing GPS tracking devices to individual cyclists. The result of the data 

collection provided the actual choice, origins and destinations, and routes themselves. Overall, 

2000 routes were collected through the revealed preference survey, which translated into 4000 

origin-destination pairs.  

4.2.2 Transportation network 
 

The transportation network consisted of topological elements, described by nodes, links and non-

topological features, represented in the table of attributes. The table of attributes contained 

various road characteristics related to every link in the network. Most of the transportation 

attributes were obtained from the University of Waterloo Library. Gradient was obtained by 

performing a projection of a digital elevation model (DEM) onto the nodes of road network. The 

horizontal and vertical accuracy of DEM data was stated by the source at  ±0.5 m, 1σ-level with 

density of 1 point per 10 m
2
. 

 

4.3 Exploratory data analysis 

 

The original exploratory data analysis was carried out by Rewa (2012) and some of the main 

findings are summarized herein. The analysis of the socio-economic characteristics revealed that 

76% of cyclists were male and 24% female; 97% of sampled cyclists were licensed drivers. The 

study looked at excess travel by comparing the chosen routes with the shortest paths obtained by 

the road and cycling networks. Based on the study, it was observed that 25% of the chosen trips 

had an excess travel of more than 40%, if only the road network was considered. The addition of 

a network of off-road cycling paths to the road network reduced the percentage of excess travel 

to 15%. The excess travel study found that cyclists were inclined to take longer routes when they 

had a choice. For example, they would travel longer distance to use a cycling facility with steep 
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gradients. The study also looked at motivation and obstacles to cycling and found that personal 

safety and high traffic volume were the most cited responses.  

 

4.4 Modeling framework - discrete choice theory: random utility approach 
 

This section proposes and evaluates several route-choice models. The theoretical background of 

necessary concepts was covered in Chapter 3. 

4.4.1 Generation of choice set 

 

In addition to the chosen path, four alternatives were generated, based on heuristic rules. These 

heuristic rules represented a combination of labeling and impedance methods, similar to those 

alternative generation methods described in the literature. Each of the alternative generation 

methods was based on the shortest-path deterministic family of algorithms. An example of 

alternatives obtained for one OD pair is presented in Figure 4-2. 

Figure 4-2: Origin-destination pair and generated set of alternatives for the Region of Waterloo.  

4.4.2 Gathering of alternatives' attributes 

 

Once alternatives were generated, it was necessary to ascertain the path attributes from the 

roadway network. The process of connecting topological features, represented by routes, to road 

attributes is done through feature relation. Feature relation is available in most GIS software 

packages. The main input to the feature relation process involved the search radius within which 
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attributes needed to be located. The search radius was selected to be 15 metres. As presented in 

Figure 4-3, the curve, constructed from the various search radii, becomes asymptotic to the x-

axis at 15 metres. This means that most of the attributes can be located within a 15 metre radius. 

 
 

Figure 4-3: Threshold limit for linear referencing mechanism.  

 

The ordinate axis in Figure 4-3, percent of the actual length captured, represents the percentage 

of the chosen length obtained from the feature relation process that was compared to the nominal 

length of a route. At a fifteen metre radius, one obtains 77% of the nominal length of a typical 

route, on average. Although 2000 routes were collected, only 905 of them were selected for the 

analysis. Recreational trips, trips shorter than 500 meters and trips whose length was missing for 

more than 40% of the actual length were removed from the analysis.   

4.4.3 Exploratory analysis of alternatives  
 

The available data were downloaded and then saved in ASCII file format. The processing stage 

involved the aggregation of individual links and attributes into routes. The method behind data 

aggregation was described in Section 3.4.2, and a typical output from the route aggregation 
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process is presented in Table 4-1. In this example, the chosen alternative was shorter in length 

and was observed on a roadway with lower traffic speed, lower amount of gradient and a greater 

amount of cycling facilities.  

Table4-1: Data aggregation example (a chosen path and four alternatives) 

Path Attribute 

Alternative 

1 

Alternative 

2 

Chosen 

Alternative 

Alternative 

3 

Alternative 

4 

Length (km) 7.2 7.4 7.5 9.2 9.9 

Auto speed 

(km/h) 

33.2 48.2 35.8 49.8 41.5 

Auto volume (veh/h) 245.1 357.4 240 219.8 290.2 

Grade 0.5 0.6 0.4 0.8 0.6 

Presence of bicycle 

lane 

0.6 0.2 0.4 0.02 0.2 

 

 

The basic exploratory analysis of alternatives was necessary to start the model building process. 

Figure 4-5 represents scatter plot matrices for the chosen path and alternatives, obtained by 

finding the shortest path by road network and road and trails network. The inspection of 

individual relationships suggests that the dispersion of most of the variables was fairly narrow, 

and therefore a linear form can be used for the constant part of utility. The second observation 

was related to the plot of the speed - bicycle lane relationship. A correlation between 

independent variables was considered an indication of confounded effects, and therefore two 

models were necessary. One model had to include a bicycle lane coefficient and the second 

model had to include a speed coefficient. Figure 4-6 shows an additional set of scatter plot 

matrices. These matrices were obtained by differencing the matching attribute values of the 

chosen and the shortest path alternatives. The main observation confirmed that many cyclists 

traveled a longer path due to the advantages of a lower uphill gradient, lower traffic speed, 

volume and higher amount of cycling infrastructure. On the example of length-gradient 

relationship, as the difference in trip length increase the gradient goes down. This result is 
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consistent with our a priori knowledge of travelers' behaviour: cyclists opted for longer trip 

distances with higher amount of cycling facilities to avoid steep gradients.  

 

 
 

Figure 4-4: Scatter plots (from the left to the right: chosen paths; short path by the road network; short path 

by the road and trails network)  

 

 
 

Figure 4-5: Scatter plots (from the left to the right: the difference between chosen and paths obtained by the 

road network; difference between chosen and paths obtained by the road and trails network). 
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4.4.4 Specification of route-choice model  
 

Model building is regarded as a combination of science and engineering judgement. The 

judgement part of the model building consisted of the intelligent specification of the model form, 

as well as a priori signs of utility parameters. A linear parameter model was considered adequate 

to model the deterministic part of utility function. Multinomial logit structure was considered as 

the main framework to model the probabilistic nature of choice variables. The general 

specification of route-choice model is provided in eq.4.1: 

 

 

 

 

The general form of eq.4.5 was specified in accordance with understanding of cyclists' behaviour 

which was supported by literature review. The expectations towards the signs of utility terms are 

provided in Table 4-2. 

 

Length Speed 

"- ve", traveling longer paths is a cost for 

cyclists; cyclist may travel longer paths to 

compensate by other considerations, like 

safety; 

"-ve", traveling along busy streets can be 

considered a safety issue for cyclists; 

 

Bicycle Lane Elevation Difference/+ve Gradient 

"+ve", cyclist are expected to use dedicated 

cycling facility as they perceive them a safer 

travel; 

"-ve", traveling uphill requires major physical 

effort which generally is tended to be avoided 

by most of the cyclists; 

Volume 

"-ve", cyclists may not be attracted to travel 

along streets with heavy traffic volume;  

 
Table 4-2: Sign expectation of utility parameters.  

Once the alternatives were aggregated, they were tested for IIA assumption of the multinomial 

logit framework. This test was designed to check for duplication among alternatives. The 

following rule was proposed:  

 

                                                                        
 

 

eq.4.1 



58 
 

 

 

 

 

 

 

The rule was used to identify apparent duplicates and remove them from further analysis. Out of 

965 routes - 60 were eliminated from the further analysis thus leaving with 905 routes for 

econometric analysis. The estimation of model parameters was performed using Easy Logit 

software.  

4.4.5 Model Type 1 

 

Work assumptions made on the general model form allowed the model building process to be 

undertaken. Since the bicycle lane variable was shown to have a strong correlation with the 

speed variable, model 1 excluded the speed parameter. The proposed model for evaluation is 

specified in eq.4.2: 

 

 

 

The dataset was divided into portions of 80-20, where 80% (724 routes) of the data was used for 

estimation of the model parameters and 20% (181 routes) for validation. Parameter estimates and 

corresponding t-Statistic are presented in Table 4-3. All coefficients are of generic type, meaning 

that same coefficients apply to each alternative. 

Generic Parameters Estimated Value t - Statistic 

Length_KM -0.1818 -5.1864 

Bicycle Lane 4.3081 11.7626 

Volume 0.0001 0.371 

Gradient -1.4864 -6.4719 

 
Table 4-3: Estimated parameters of Model 1  

The asymptotic t-test, carried out on trip length, bicycle lane, and percentage of uphill gradient 

parameters, was set at 95%; therefore, t-statistic exceeding ±1.96 was deemed significant, 

                                                                             
 

 

IF {[Difference in length variable of any two alternatives is less than 500 meters] 

AND 

[Difference in any other variable of any two alternatives is equal to zero]} 

THEN 

"This is duplicate, remove from analysis!" 

 

eq.4.2 
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assuming a two-tailed test. From Table 4-3, every coefficient, except for traffic volume had a 

high explanatory power and therefore had to be retained in the model. The volume coefficient 

had a very low statistic, which corresponded to little explanatory power and had to be tested for 

exclusion from the model.  Cycling behaviour described by model 1 represents dedicated users 

of cycling infrastructure, or the so-called inexperienced group who prefer to travel along cycling 

infrastructure. 

 

The inspection of trip length and percentage of uphill gradient coefficients suggested that they 

were negative. A negative sign for these parameters suggested that an increase in any of these 

variables for an alternative decreases cyclists' preference towards this alternative. The coefficient 

for the bicycle lane variable was positive, and an increase in this variable for any alternative 

causes an increase in the cyclists' preference towards this alternative. The interpretation of utility 

signs suggested that the presence of a bicycle lane provided value that offset the cost of taking a 

longer path.  

 

The coefficient associated with each term represents the amount of change in utility or 

preference that would result from a unit change in that attribute. The utility equation is 

interpreted as follows: as the length of a trip increases by 1 km, the utility decreases by 0.18; 

presence of bicycle lane increases utility by 4.3; utility decreases by 1.48 for each percentage of 

uphill gradient that cyclists faced.  

 

The relative importance of the trip length and bicycle lane parameters is evaluated by comparing 

the ratio of two coefficients,  1 and   . This ratio is also known as the marginal rate of 

substitution. The ratio of  
   

 1 
  = 24:1, suggests that 24 units of bicycle lane can be substituted for 
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1 km of the travel length. The ratio of  
   

   
  = 3:1, suggests that 3 units of bicycle lane can be 

traded for 1 unit of percent of uphill gradient that cyclists faced. 

 

The statistical summary of model type 1 is provided in Table 4-4. The adjusted ƍ
2 

index, used to 

evaluate the overall quality of the model, is above 0.15. This indicates that the model is 

acceptable.  

Table 4-4: The summary of model 1  

 
 

The exploratory power of the volume variable was tested through the application of the 

likelihood test. The value of Log L with volume term dropped, was -972.5266. The likelihood 

ratio test statistic is then LR = 2x[(-972.46) - (-972.5266)] = 0.13, which is significantly smaller 

than any chi-square statistic. Therefore the traffic volume term was dropped, and model 1 was 

simplified to the final form, provided in eq.4.3: 

 

 

4.4.6 Model 1: prediction and outlier analysis 

 

Parameters presented in Table 4-3 were used to test the predictive power of the model. Model 

parameters were applied to the external 20% (181 routes) of the data, the dataset which was not 

seen by the model. The predictive power of model 1 was found to be 65%. This result meant that 

65% of routes were explained by the model.  

 

                                                                         
 

 

eq.4.3 
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An example of the predictive test is presented in Table 4.5. The probability for the chosen 

alternatives for trips #917, 918, 919 and 920 were the highest; the model predicts the chosen path 

as having the highest probability of occurrence. On the other hand, the probability for the chosen 

trip #921 was the lowest among all the alternatives.  

 
Table 4-5: An example of alternatives' probabilites 

 

 

The strength of the model can also be evaluated by estimating how often the chosen alternative is 

given each rank; the results are presented in Table 4.6. From best (1) to worst (5) amongst 

alternatives, the chosen path was ranked first for 65% of the time; second 10% of the time and 

third for 14% of the time. The chosen alternative was ranked 4th or 5th less than 10% of the 

time. 

Table 4-6: Chosen alternative ranked by the frequency of occurrence 

Rank Frequency 

1 65% 

2 10% 

3 14% 

4 7% 

5 3% 

 

It is important to analyze situations where the chosen alternative was not predicted by the model.  
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Figure 4-6: Error distribution for Model 1.  

 

The probability differences between the model prediction of the highest probability route and 

the actual choice were calculated for each OD pair and then summarized on Figure 4-7 and 

Table 4-7. These results exclude cases where the model correctly predicts the chosen path. The 

results shown in Table 4-7 suggest that the model identifies the chosen path either correctly or 

within 5% of the maximum likelihood path 78% of the time. 

Table 4-7: Percent of correctly forecasted values for various probability levels.  

 
 

At the same time, it was critical to evaluate the situations when the probability of the chosen 

path was significantly smaller than the model's prediction. This consideration initiated the 

outlier analysis. 

 

 

 

n = 63 
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Table 4-8: Distribution of outliers classified by alternative type.  

 
 

Outliers were classified as values whose differences exceeded 0.1 level as specified in Table 4-7. 

The outliers were grouped by the alternative type; the results are presented in Table 4-8. Based 

on the provided exploratory summary, Alt.2 and Alt. 4 contributed to 72% of the outliers. In 

order to understand outliers better, one must answer two questions. What was common among 

the non-chosen alternatives that served to their advantage? Can outlier behaviour be explained by 

other theories? 

 

Alt 2 vs. the Chosen Alternative: 

 Alt 2. offered paths shorter by 462 meters, on average; 

 Alt 2. offered more paths along bicycle lanes, on average ;  

 Alt 2. offered fewer uphill gradient sections, on average. 

 

Alt 3 vs. the Chosen Alternative: 

 Alt 3. offered paths shorter by 215 meters, on average; 

 Cycling facilities (lanes, trails) did not play a role; 

 Alt 3. offered less percent uphill gradient sections, on average. 

 

Alt 4 vs. the Chosen Alternative: 

 Alt 4. offered paths longer by 1 km, on average; 

 Alt 4. offered paths along the cycling facilities but differences were negligent;  

 Alt 4. offered more paths with lower uphill gradient sections. 



64 
 

 

Alt 5 vs. the Chosen Alternative: 

 Alt 5. offered paths longer by 900 meters, on average; 

 The bicycle lane variable did not play a role; 

 Alt 5. offered paths with lower uphill gradient sections, on average. 

 

The summary of the outlier analysis is provided in Table 4-9.  

Table 4-9: Summary of non-chosen alternatives vs. chosen 

Alt. No. Length Bicycle lane Gradient (%) 

2 Shorter by 0.5 km More  Less  

3 Shorter by 0.2 km Not significant Less  

4 Longer by 1 km Not significant Less  

5 Longer by 0.9 km Not significant Less  

 

The chosen alternative in comparison to Alt 2. and Alt 3. was described by longer paths, lower 

amounts of cycling facilities, and a larger percentage of uphill gradient, on average. The chosen 

type of behaviour can only be explained by habit, inertia, or an unknown to us variable(s). 

Chosen alternatives in comparison to Alt 4. and Alt 5., offered shorter trips but with larger 

amounts of uphill gradient sections; the cycling facility coefficient did not play a role. The 

chosen type of behaviour represented cyclists who were not opposed to the physical effort of 

taking steeper paths if they offered a shorter trip length.  

4.4.7 Model Type 2 
 

The assumption made about the general model form in Section 4.4.4, was necessary to continue 

the model building process. Since bicycle lane and speed variables could not be used in the same 

model, an alternative model type was specified in the form of eq.4.4: 

 

 

 

                                                                        
 

 

eq.4.4 
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The entire dataset was divided into portions of 80-20, as 80% (724 routes) were used for 

estimation of model parameters and 20% (181 routes) for validation. Parameter estimates and the 

corresponding t-Statistic are presented in Table 4-10. All coefficients are of a generic type.  

Table 4-10: Estimated parameters of model 2.  

Generic Parameters Estimated Value t - Statistic 

Length_KM -0.083 -2.2037 

Bicycle Lane -0.7025 -15.466 

Volume 0.0023 6.4307 

Gradient 0.5009 -2.0703 

 

 

The asymptotic t-test was carried out on the trip length, traffic speed, traffic volume and uphill 

gradient coefficients, and found them significant at  σ-level. All coefficients had high 

explanatory power and therefore had to be retained. The behaviour described by model 2 

indicates either experienced users who traveled along busy streets, or a lack of cycling 

infrastructure, which forced cyclists to use regular roads with high speed and traffic volume. 

 

Coefficients associated with the trip length, traffic speed and percent of uphill gradient were 

negative, suggesting that an increase in any of these variables for an alternative causes a decrease 

in cyclists' preference towards this alternative. The coefficient for the traffic volume variable was 

positive, meaning an increase in the volume causes an increase in the cyclists' preference towards 

this alternative. The interpretation of utility signs suggested that a high traffic volume on a road 

compensated for taking a longer path with a lower amount of uphill gradient sections. Note that 

high traffic volume did not necessarily mean that speed is also high, as high volume could 

correspond to lower traffic speed which occurs due to congestion.   

 

The parameters associated with each variable term represent the changes in utility (or preference) 

that would result from a unit change in that attribute. The utility equation can be interpreted as 
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follows. As the length of a trip increased by 1 km, the utility decreased by 0.083; utility 

decreased by 0.7025 for each increase in speed (m/s); utility increased by 0.0023 for each 

increase in the traffic volume; utility decreased by 0.5009 for each percent of uphill gradient 

cyclists faced.  

 

The relative importance of trip length and traffic volume was evaluated by comparing the ratio of 

coefficients. The ratio of  
 1

   
  = 36:1, suggests that 36 units of travel length can be substituted 

for one unit of the volume. The ratio of  
   

  
  = 305:1, suggests that 305 units of speed can be 

traded for a one unit of traffic volume. 

Table 4-11: Summary of Model 2  

 
    

The statistical summary for model 2 is presented in Table 4-11. The adjusted ƍ
2 

index, used to 

evaluate the overall quality of the model, was 0.26 and this indicated that the model was 

acceptable. The final form of the model 2 is presented in eq.4.5: 

 

 

4.4.8 Model Prediction of outlier test for Model 2 

 

Parameters presented in eq.4.5 were used to test the predictive power of model 2. Model 

parameters were applied to the external 20% (181 routes) of data, the data which was not seen by 

                                                                         
 

 

eq.4.5 
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the model. The predictive power of the model was found to be 46%. This result meant that 46% 

of routes were explained by the model. 

Table 4-12: Percent of correctly forecasted values for various probability levels.  

 
 

The probability differences between the model's best prediction and the actual choice were 

calculated for each OD pair. The summary is presented in Figure 4-8 and Table 4-12. The 

results in Table 4-12 suggests that the model explains 54% of data at a 0.05 threshold. Model 1 

appears to be a much better model.  

 
Figure 4-7: Error Distribution for model 2.  

 

The chosen alternative was ranked by the frequency of occurrence and the results are presented 

in Table 4.13. According to this table nearly 17% of the time, the chosen alternative was ranked 

4th or 5th. This further confirms the weaker performance of model 2. 

 

n = 97 
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Table 4-13: Chosen alternative by the frequency of occurrence 

Rank Frequency 

1 46% 

2 10% 

3 26% 

4 10% 

5 7% 

 

Outliers were classified by alternative type and the results are summarized in Table 4-14. Based 

on the provided summary, Alt.2 and Alt. 4 accounted for 89% of the found outliers.  

Table 4-14: Distribution of outliers classified by alternative type.  

 
 

 

The common outliers are evaluated to the chosen routes.  

Chosen Alternative vs. Alt 2.: 

 Chosen Alt. was 1 km longer and had less traffic volume, on average; 

 Speed and percentage of uphill gradient was not a factor.  

Chosen Alternative vs. Alt 3.: 

 Length, traffic volume and percentage of uphill gradient variables were not a factor; 

 Cyclists chose paths along the roads with a higher speed, which decreased their utility;  

 

Chosen Alternative vs. Alt 4.: 

 Chosen Alt. offered routes shorter by 1 km but with drastically steeper sections of uphill 

gradient, on average; 

  Traffic volume and speed variables were not a factor; 
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Chosen Alternative vs. Alt 5.: Not applicable. 

 

The summary of outlier analysis is presented in Table 4-15.  

Table 4-15: Summary of non-chosen alternatives vs. chosen  

Alt. No. Length Speed Volume Gradient (%) 

2 Shorter by 1 km Not significant Less Not significant 

3 Not significant Less Not significant Not significant 

4 Longer by 1 km Not significant Not significant Less 

5 No response No response No response No response 

 

89% of outliers were classified to belong to Alt.2 and Alt.4. Chosen routes in comparison to 

Alt.2 offered longer paths that were traversed along the roads with the lower traffic volume; 

other factors did not play a role. This kind of behavior can be explained by safety considerations. 

Chosen paths in comparison to Alt.3 were almost identical, except where cyclists traveled along 

higher traffic speed roads. The chosen alternatives compared to Alt.4 offered shorter paths but 

with sections of steep uphill gradient, on average. This behaviour was explained by a segment of 

respondents who minimize the trip length at the expense of the physical effort required to cover 

it.  

 

4.5 Test of IIA assumption 

 

This test validates the underlying assumptions of the multinomial logit framework: model 

structure itself. The assumption on the model framework was tested by randomly removing one 

of the alternatives from the choice set and then re-estimating the parameters. Alt.2 was removed 

and new model parameters for model 1 and 2 were obtained. The results are presented in Table 

4-16. The changes in the parameters for both model types were within one standard error (Table 

4-16). Since model parameters were not changed significantly in the statistical terms, the model's 

adequacy was considered valid.  
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Table 4-16: Newly estimated parameters of model 1 and 2.  

 
 

The statistical summary of both model types is presented in Table 4-17. The adjusted ƍ
2 

index, is 

above 0.15. This result indicated that both models were acceptable. 

 
Table 4-17: Summary of model 1 and 2.  

 
 

 

4.6 Discussion of results 

 

The results of route-choice modeling are summarized next. The data exploratory analysis and 

model building process found that bicycle lane and speed effects were confounded. Therefore 

two models were developed. Model 1 was described by trip length, bicycle lane presence and 

percent of uphill gradient. Model 2 includes trip length, traffic speed, traffic volume and percent 

of uphill gradient. Both models generated correct utility signs and the parameter statistics 

showed goodness-of-fit. Cycling behaviour described by model 1, represents dedicated users of 

cycling infrastructure. Therefore strategic investment in cycling infrastructure should minimize 

trip length, increase directness of travel and offer additional safety.  
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The behaviour described by model 2, describes either experienced users who traveled along busy 

streets, or a lack of cycling infrastructure that forced cyclists to use regular roads with high speed 

and traffic volume. The only common feature among the models was evidence that cyclists were 

minimizing the length and avoiding sections of steep uphill gradient. Therefore the building of 

new infrastructure should apply these findings.  

 

The scientific part of the model building process included numerous statistical tests which were 

carried out to validate these models. Tests can be grouped into three categories. The first 

category took model structure as-is and performed formal and informal tests of utility 

parameters. The second category did not consider model structure as-given and tested the 

applicability of the model structure. The third category evaluated the predictive power of the 

models and outliers. In regards to the first category, rigorous statistical tests validated the model 

parameters and the overall fit. For the second category an IIA test was performed, and based on 

the performed statistical analysis, the change in the parameters of both model types was within 

one standard error. Therefore the multinomial logit framework is an appropriate choice for 

modeling the route-choice problem. In regards to the third category, predictive tests revealed an 

interesting pattern. Model 1 in comparison to model 2, with a slight adjustment predicted 78% of 

data while having lower statistical qualifications. This outcome confirmed that the model 

building process is as much an engineering judgement and science, and statistical qualifications 

alone cannot be used as a final judgement to test the quality of a model. Model 1 demonstrated 

superior predictive results. The outlier analysis was also performed. The exploratory analysis of 

outliers related to model 1, found that 72% of outliers were explained by either inertia or habit. 

No rational grounds provided a justification for the actual choice of cyclists. The remaining 28% 

represents travelers who did not oppose the physical effort of steep gradients, if it offered shorter 
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paths. The exploratory analysis of outliers related to model 2, found that that 57% of outliers 

were explained either by inertia or habit, as cyclists preferred longer routes with higher traffic 

speed. The remaining 43% of outliers were explained by cyclists who chose shorter paths at the 

expense of facing a steep uphill gradient.  
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5 Chapter 5 - Transferability of the Study to the Peel Region. 
 

5.1 Introduction 

 

North American cities are experiencing traffic congestion problems as the demand for 

transportation is increasing. The growing demand for transportation can be accommodated in a 

number of ways, including investing in public transit, as it offers scalability, and changing land 

uses. Planners and engineers put in place traffic demand management policies for the better 

organization of traffic flows, as well as the introduction of non-motorized modes and other 

policies and techniques. Cycling, being a part of the non-motorized modes, has received 

considerable attention from many municipalities due to the many advantages that it offers. 

Generally, municipalities which have higher rates of cycling, spend less on the transportation 

infrastructure, are economically more viable and have healthier communities.  

 

Peel Region and University of Waterloo partnered on a joint project to gather data on cyclists to 

have a better understanding of them. Peel Region used the same method for data collection as 

was described for the Region of Waterloo. Due to the similarity of both regions, Waterloo and 

Peel, it was proposed to evaluate the applicability of Waterloo's models to the Peel Region's data. 

Both regions are very auto-oriented, with extensive low-density suburbs; both regions are 

allocating considerable financial resources to build a cycling network and to increase percentage 

of choice cyclists.  The application of Waterloo's models to the Region of Peel data is regarded 

as a transferability study.  

 

The Region of Peel is comprised of three cities - the City of Mississauga, the City of Brampton 

and the town of Caledon. The summary profile of Peel Region and cycling infrastructure is 

provided in Table 5-1.  
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Table 5-1: Summary profile for Peel Region.  

Region of Peel 

Population (2011) 1,296,814 

Employment (2006) 541,995 

Area  1,246.89 km
2
 

Population density 1,040.0 prs / 

km
2 
  (10.4 

prs / ha) 

Cycling Data for the Region of Peel 

Bicycle Lane 27.4 km 

Regional Trails (Hiking Trails) 208.5 km 

Marked Bicycle Route 274.4 km 

Paved Multi-Use Trail 573.2 km 

Unmarked Dirt Trail 12.4 km 

Unpaved Multi-Use Trail 94.3 km 

Cycling mode share (commuting - 2006) 0.32% 

 

 

The location of Region of Peel in relation to Toronto is provided on Figure 5-1. Peel Region 

introduced several programs to promote cycling, among them was a "Walk and Roll Peel 

Region" program. The program involved increasing the awareness of the existing infrastructure, 

to increase safety through education, to use best practices, to engage the public in discussions, 

and share news about active transportation projects.   
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Figure 5-1: Peel Region: Mississauga, Brampton and Caledon.  

 

5.2 Data collection and exploratory data analysis 

 

The University of Waterloo research team designed two programs to collect data in Peel Region, 

which included a web-based survey and the GPS data on the chosen cyclists' routes. A total of 
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224 valid web-based answers were collected. This data included socio-economic, demographic, 

households composition, motivation and obstacles to cycling in the Region. The second part of 

the data collection included the use of GPS devices by individual cyclists. A total of 255 cyclists 

participated in the study which occurred between July and September, 2012. A total of 425 

routes were selected for the transferability study.  

 

The original exploratory data analysis are summarized here in brief. The analysis of socio-

economic characteristics revealed that 77% of cyclists were male and 23% female; 32% of 

cyclists were travelers of 51 years or older which meant that age was not an obstacle to cycle; 

28% of cyclists indicated that their average income was $100,000 or more, which suggested that 

financial constraints did not limit these cyclists in the mode selection. The number of cars per 

participant's household was 1.29 and the average for Ontario is 1.48. The main motivation for 

cycling was physical fitness. A survey question asked respondents to indicate if cycling was 

more convenient than other modes. The results were not supportive of this conclusion. This 

indicates that cycling does not compete with other modes at the moment. The main obstacles to 

cycling are mostly concerns related to the safety and vehicle traffic speed. This means that 

cycling ridership can be increased if safety is improved. Safety on the other hand can be 

increased by providing infrastructure specifically dedicated to cyclists, such as bicycle lanes, 

trails, etc. Cyclists were also asked about their alternatives if cycling was not an option and 68% 

of respondents said that an automobile could substitute these trips. This response indicated that 

respondents were choice-cyclists as they had other means to travel but they elected cycling. 

Excess travel was also evaluated and for 17% of the trips, travel along the roadway network was 

found longer by 50%, in comparison to what the direct distance was offering.  
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5.3 Method  
 

The alternative generation methodology presented in Chapters 3 is also applicable to this study. 

Gathered OD pairs were used to obtain a set of feasible alternatives for every participating 

cyclist. These alternatives, plus the chosen routes, made up the choice set for travelers. Once 

alternatives were obtained, they were referenced to road attributes by means of the feature 

relation procedure. As a result, tables of data were downloaded and then saved in ASCII file 

format. Then individual links were averaged over the length and aggregated into routes. 

Although 425 routes were collected only 300 of them were selected for the further analysis. 

Recreational trips, trips shorter than 500 meters and trips whose length was missing for more 

than 40% of the actual length were removed from analysis.   

 

In the research conducted for the Region of Waterloo, two route-choice models developed. The 

first model was specified in the following form: 

 

 

 

The coefficient associated with each term represented the amount of changes in utility or 

preference that would result from a unit change in that attribute. Thus the utility equation is 

interpreted as follows: as the length of a trip increased by 1 km, the utility decreased by 0.18; 

presence of bicycle lane increased utility by 4.3; utility decreased by 1.48 for each percent of 

uphill gradient cyclists faced. Due to the data scarcity, the second model was not verified. 

 

5.4 Results and outlier analysis 

 

The model presented in eq.5.1 was applied to the data gathered in Peel Region. When this model 

was applied, 37% of the trips were predicted correctly, meaning that 37% of data was explained 

by the model. It was important to analyze the situation when the chosen alternative was not 

                                                                         
 

 

eq.5.1 
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predicted by the model, despite the fact it was the observed choice of a traveler. The probability 

differences between the model's best prediction and the actual choice for each OD pair were 

calculated and summarized on Figure 5-2 and Table 5-2.  

 
 

Figure 5-2: Error distribution for model 1.  

 

Information provided in Table 5-2 suggests that if the acceptance threshold was increased to 0.05 

level then model could have explained 48% of data.  

Table 5-2: Percent of correctly forecasted values for various probability levels.  

 
 

 

The chosen alternative was ranked by the frequency of occurrence and the results are presented 

in Table 5-3. From this table nearly 35% of the time, the chosen alternative was ranked 4th or 

5th. This result signified that transferability of model coefficients was of a limited success in 

explaining the behaviour of cyclists in Peel Region. 

n = 184 
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Table 5-3: Chosen alternative by the frequency of occurrence 

Rank Frequency 

1 37% 

2 18% 

3 17% 

4 17% 

5 18% 

 

Outliers were classified by alternative type and the results are summarized in Table 5-4. Based 

on the provided summary, Alt.2 and Alt.4 contributed to 97% of the found outliers.  

Table 5-4: Distribution of outliers classified by alternative type.  

 
 

 

The common outliers are compared to the chosen routes. 

Alt 2 vs. Chosen Alternative: 

 Alt.2 offered shorter by 1 km paths, on average; 

 Alt.2 offered paths along bicycle lanes, on average; 

 Percent of uphill gradient did not play a role; 

 

Alt 3 vs. Chosen Alternative: 

 Length and bicycle lane variable did not play a role; 

 Alt.3 offered less steep paths, on average; 

 

Alt 4 vs. Chosen Alternative: 

 Alt.4 offered longer by 700 m paths, on average. 

 Bicycle lane variable did not play a role; 
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 Alt. 4 offered less steeper paths, on average; 

Alt 5 vs. Chosen Alternative: 

 Trip length did not play a role; 

 Alt.5 offered paths along bicycle lanes; 

 Alt.5 offered less steep paths, on average; 

 

The summary of outlier analysis is provided in Table 5-5.  

Table 5-5: Summary of non-chosen and chosen alternatives 

Alt. No. Length Bicycle lane Gradient (%) 

2 Shorter by 1 km More  Not significant 

3 Not significant Not significant Less 

4 Longer by 0.7 km Not significant Less 

5 Not significant More Less 

 

Although alt.2 and 4 were both obtained using the road and trails network, these outliers have to 

be evaluated separately. Alt. 2 in comparison to the chosen routes offered shorter paths by 1km 

and most of these paths had a bicycle lane present. Chosen type of behaviour was explained by 

unawareness of travelers of the cycling infrastructure. It is evident that cycling infrastructure was 

available to cyclists but they did not opt to use it because they did not know it was available. 

Therefore efforts in promoting public awareness of cycling infrastructure should continue. Alt.4 

in comparison to the chosen routes offered moderately longer paths with less steep sections and 

in these cases presence of a bicycle lane did not play a role. Chosen type of behaviour 

represented physically fit cyclists who were not opposed to more challenging trips if they were 

shorter. The advantage of Alt.3 and 5 combined, represented a marginal effect as they 

contributed to 3% of the total number of found outliers. The only common feature among these 

alternatives was that they offered paths with less steep sections. Other factors did not play a role.  
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5.5 Discussion of results  

 

This chapter outlined the results of the transferability study which was the first of its kind. The 

model developed for the Region of Waterloo was applied to the data gathered for Peel Region. 

Based on the performed study, it was found that 37% of Peel routes could be explained by 

Waterloo's model, hence the outcome of this study was considered to be of a limited success. 

One of the most plausible reason for the observed results is the relative significance of 

parameters which were determined during the statistical analysis. Since the presence of cycling 

infrastructure in Peel Region was relatively low, the bicycle lane variable did not play a major 

role in explaining cyclists, as it was in Waterloo. In support of this statement, the goal of "Walk 

and Roll Peel Region" program should be to increase the public awareness of the existing cycling 

infrastructure. Another explanation echoing public unawareness of the cycling infrastructure 

comes from the outlier analysis. Based on the performed outlier analysis, it was found that 32% 

of the outliers were represented by Alt. 2, which offered shorter paths with higher frequency of 

bicycle lanes. It was evident that cycling infrastructure was available to cyclists, but they did not 

opt to use it. The analysis of the remaining outliers (Alt. 4, 65%) was described by alternatives 

which offered slightly longer paths with drastically less steep sections. Therefore the chosen trips 

were not predicted by the model. 
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6 Chapter 6 - Conclusions and Recommendations. 
 

The thesis developed methodological contributions to model route-choice of cyclists to better 

understand their behaviour, to find key determinants to cycling and indicate what kind of 

networks to build, and thus where to make strategic investments. The proposed method should 

assist all interested municipalities in the implementation of cycling as part of bicycle 

transportation planning.  

 

The ultimate output from the thesis included following components: 

 A method to process GPS data and to generate a choice of feasible alternatives based on 

sound heuristic rules; 

 Guidance on practical statistical tests necessary to validate and interpret a model 

throughout the model building stage; 

 A program to assist with data filtering and aggregation of routes; 

 A generation of a utility function that represents cyclists' path choice; 

 A transferability study for neighbouring regions, first of its kind; 

 

The key findings are summarized next. Both models fit data exceptionally well as utility signs 

and statistics were valid. Cyclists, described by model 1, represented dedicated users of cycling 

infrastructure. Therefore the strategic layout of cycling infrastructure should minimize trip 

length, increase directness of travel and offer additional safety through separate cycling lanes and 

trails. Cyclists described by model 2 acted in a twofold manner: either as experienced users who 

traveled along busy streets, or cyclists for whom a lack of cycling infrastructure forced from the 

use of regular roads with high traffic speed and traffic volume. The only common feature among 
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models was that the cyclists were minimizing trip length and percent of uphill gradient. 

Therefore building of new infrastructure should apply these results. 

 

The prediction analysis discovered that model 1 was predicting 65% of the routes correctly, 

despite having lower statistical significance than model 2. The outlier analysis of both models 

provided additional insight into the data. Based on the performed analysis it was found that 

cyclists' behaviour was explained by a relative significance that each coefficient received. Thus 

cyclists who opted for a shorter trip length with steep road sections were classified as outliers. 

The remaining outliers presented behaviour which was explained by habit, inertia, or absence of 

some variables in the analysis (e.g. number of turns, pavement quality, etc.). This type of 

behaviour represented scenarios when the chosen routes were longer, had a lower presence of 

bicycle lanes and steep gradient sections. 

 

The transferability study was performed and is recognized as the first of its kind. Based on the 

performed analysis it was found that model 1 explained 37% of cyclist route choice in Peel 

Region. This moderate result was attributed to a low public awareness and low presence of 

cycling infrastructure in the Region of Peel. The outlier analysis found that majority of outliers 

were explained by unawareness of travelers to the cycling infrastructure. The remaining part of 

outliers was explained by a relative scale of model coefficients in the utility model.  

 

6.1 Future work and recommendations. 

 

The future work and recommendations for further development can be suggested to proceed in 

several directions. First, the derived models should be evaluated for their use in the travel 

forecasting process by allowing to predict a mode split (e.g. auto, transit or bicycle). Although a 

number of utility models were developed for private and public modes, no models have been 
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developed to predict trips conducted by the bicycle mode. Second, different model structures 

need to be evaluated, including C-Logit. C-logit is considered to be the latest development in the 

route-choice theory.  Other types of models, including non-linear, need to be evaluated as they 

may describe cycling behaviour much better than derived models. Third, more accurate means of 

generating a choice set, used to model route-choice behaviour, need to be investigated. In 

particular estimated model parameters (e.g. model 1, 2) should be evaluated for the purpose of 

developing more realistic choice of alternatives by substituting them into shortest path algorithm 

of GIS. Fourth, estimated parameters need to be evaluated for sensitivity towards the travel 

length. Fifth, current methodology should be assessed for its potential to be extended to model 

automobile or pedestrian route-choice behaviour. Sixth, other types of parameters can be 

evaluated such as the geometry of the road (e.g. number of turns), quality of pavement, clearly 

marked bicycle lanes (pavement with pigmentation), and other variables.    
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8 Appendix A: Computer Code 
 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.IO; 

using System.Collections; 

 

// Program is written by Vladimir Usyukov (vusyukov@gmail.com), MASc candidate of University of Waterloo, 

Civil Engineering Department, May 2013. 

// Program is used to filter and summarize road attribute data, necessary for route choice modeling. 

 

namespace DataAggregation 

{ 

    class Program 

    {        

        //Write Record into array; 

 

        static void Main(string[] args) 

        { 

            //Declaration of variables; 

            string strLine; 

            int counter = 0; 

            double sumSegments, sumSpeed, sumBicycle, sumVolume, sumGradient; 

            bool flag = false; 

            double[,] myArray; 

            double[,] routeLength; 

            double[,] cleanArray; 

            double[,] averagedAttributes; 

            double[,] summedAttributes; 

            string[] strArray; 

            List<int> uniqueRoute = new List<int>(); 

            char[] charArray = new char[] { '\t', ' ', ',' }; 

 

            try 

            { 

                FileStream aFile = new FileStream("ChoiceSet.txt", FileMode.Open); 

                StreamReader sr = new StreamReader(aFile); 

 

                strLine = sr.ReadLine(); 

 

                while (strLine != null) 

                { 

                    counter = counter + 1; 

                    strLine = sr.ReadLine(); 

                } 

                sr.Close(); 

            } 

            catch (IOException e) 

            { 

                Console.WriteLine("Exception was thrown"); 

                Console.WriteLine(e.ToString()); 

                Console.ReadLine(); 

                return; 



90 
 

            } 

            //Read data into 2D array 

 

 

            try 

            { 

                FileStream aFile = new FileStream("ChoiceSet.txt", FileMode.Open); 

                StreamReader sr = new StreamReader(aFile); 

 

                myArray = new double[counter, 10]; 

                int removRec = 0; 

 

                strLine = sr.ReadLine(); 

                for (int x = 0; x < counter; x++) 

                { 

                    strArray = strLine.Split(charArray); 

 

                    for (int y = 0; y < strArray.Length; y++) 

                    { 

                        myArray[x, y] = Convert.ToDouble(strArray[y]); 

                    } 

 

                    if (flag) 

                    { 

                        if (myArray[x, 0] == myArray[x - 1, 0]) 

                        { 

                            if (myArray[x, 1] >= myArray[x - 1, 2]) 

                            { 

                                myArray[x, 9] = 1; 

                            } 

                            else 

                            { 

                                myArray[x, 9] = 0; 

                                removRec = removRec + 1; 

                            } 

                        } 

                        else 

                        { 

                            myArray[x, 9] = 1; 

                        } 

                    } 

                    flag = true; 

                    strLine = sr.ReadLine(); 

                }                 

                sr.Close(); 

 

                // Write data into clean array; 

                cleanArray = new double[counter - removRec, 10]; 

                int newRow = 0; 

 

                for (int i = 0; i < counter; i++) 

                { 

                    if (myArray[i, 9] == 1) 

                    { 

                        for (int j = 0; j < 10; j++) 

                        { 



91 
 

                            cleanArray[newRow, j] = myArray[i, j]; 

                        } 

                        newRow = newRow + 1; 

                    } 

                    else 

                        continue; 

                } 

 

                //Perform cleaning of file through N number of iterations; 

 

                for (int iteration = 1; iteration < 200; iteration++) 

                { 

                    double[,] tempArray; 

                    int removRec1 = 0; 

                    int newRow1 = 0; 

                    uniqueRoute.Clear(); 

                    flag = false; 

 

                    //Console.WriteLine(cleanArray.Length/10); 

 

                    for (int x = 0; x < cleanArray.Length / 10; x++) 

                    { 

                        if (flag) 

                        { 

                            if (cleanArray[x, 0] == cleanArray[x - 1, 0]) 

                            { 

                                if (cleanArray[x, 1] >= cleanArray[x - 1, 2]) 

                                { 

                                    cleanArray[x, 9] = 1; 

                                } 

                                else 

                                { 

                                    cleanArray[x, 9] = 0; 

                                    removRec1 = removRec1 + 1; 

                                } 

                            } 

                            //Adding 1st new record of a new ID: call for a function 

                            else 

                            { 

                                cleanArray[x, 9] = 1; 

                                uniqueRoute.Add(Convert.ToInt32(cleanArray[x, 0])); 

                            } 

                        } 

                        flag = true; 

                    } 

 

                    tempArray = new double[cleanArray.Length / 10 - removRec1, 10]; 

 

                    //Put cleanArray into tempArray, excluding flagged values; 

                    for (int k = 0; k < cleanArray.Length / 10; k++) 

                    { 

                        if (cleanArray[k, 9] == 1) 

                        { 

                            for (int j = 0; j < 10; j++) 

                            { 

                                tempArray[newRow1, j] = cleanArray[k, j]; 



92 
 

                            } 

                            newRow1 = newRow1 + 1; 

                        } 

                        else 

                            continue; 

                    } 

                    cleanArray = tempArray; 

                } 

 

                Console.WriteLine("Data summary:"); 

                Console.WriteLine("\tthe original number of records is - {0}, records removed - {1}", counter, counter - 

cleanArray.Length / 10); 

 

                //Find length of each route; 

                routeLength = new double[uniqueRoute.Count, 2]; 

 

                for (int k = 0; k < uniqueRoute.Count; k++) 

                { 

                    flag = true; 

                    sumSegments = 0; 

 

                    for (int j = 1; j < cleanArray.Length / 10; j++) 

                    { 

                        if ((cleanArray[j, 0] == cleanArray[j - 1, 0]) && (uniqueRoute[k] == cleanArray[j, 0])) 

                        { 

                            sumSegments = sumSegments + cleanArray[j, 4]; 

                        } 

                        if ((flag) && (uniqueRoute[k] == cleanArray[j, 0])) 

                        { 

                            sumSegments = cleanArray[j, 4]; 

                            flag = false; 

                        } 

                    } 

 

                    routeLength[k, 0] = uniqueRoute[k]; //ID of a route 

                    routeLength[k, 1] = sumSegments; 

                } 

                Console.WriteLine("\tnumber of unique routes is - {0}", uniqueRoute.Count); 

 

                //Average road attributes over the length; 

 

                averagedAttributes = new double[cleanArray.Length / 10, 5]; 

                double deltaElev; 

                double hzDistance; 

 

                for (int i = 0; i < cleanArray.Length / 10; i++) 

                { 

                    deltaElev = 0; 

                    hzDistance = 0; 

 

                    deltaElev = cleanArray[i, 7] - cleanArray[i, 6]; 

                    hzDistance = Math.Sqrt(Math.Pow(cleanArray[i, 4], 2) - Math.Pow(deltaElev, 2)); 

 

                    averagedAttributes[i, 0] = cleanArray[i, 0];//ID of route 

                    averagedAttributes[i, 1] = cleanArray[i, 4] * cleanArray[i, 3];//Speed in m/s, conversion from km/hr -> 

m/s 
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                    averagedAttributes[i, 2] = cleanArray[i, 4] * cleanArray[i, 8];//Bicycle lane presence 

                    averagedAttributes[i, 3] = cleanArray[i, 4] * cleanArray[i, 5];//Volume in vph 

 

                    if (deltaElev > 0) 

                    { 

                        averagedAttributes[i, 4] = 100 * cleanArray[i, 4] * deltaElev / hzDistance;//% of uphill gradient 

                    } 

                    else 

                    { 

                        averagedAttributes[i, 4] = 0;//We are not interested in negative gradients 

                    } 

 

                } 

 

                //Sum values from averagedAttributes and average them over the length of a route 

                summedAttributes = new double[uniqueRoute.Count, 6]; 

 

                for (int k = 0; k < uniqueRoute.Count; k++) 

                { 

                    flag = true; 

                    sumSpeed = 0; 

                    sumBicycle = 0; 

                    sumVolume = 0; 

                    sumGradient = 0; 

 

                    for (int j = 1; j < cleanArray.Length / 10; j++) 

                    { 

                        if ((averagedAttributes[j, 0] == averagedAttributes[j - 1, 0]) && (uniqueRoute[k] == 

averagedAttributes[j, 0])) 

                        { 

                            sumSpeed = sumSpeed + averagedAttributes[j, 1]; 

                            sumBicycle = sumBicycle + averagedAttributes[j, 2]; 

                            sumVolume = sumVolume + averagedAttributes[j, 3]; 

                            sumGradient = sumGradient + averagedAttributes[j, 4]; 

                        } 

                        if ((flag) && (uniqueRoute[k] == averagedAttributes[j, 0])) 

                        { 

                            sumSpeed = averagedAttributes[j, 1]; 

                            sumBicycle = averagedAttributes[j, 2]; 

                            sumVolume = averagedAttributes[j, 3]; 

                            sumGradient = averagedAttributes[j, 4]; 

                            flag = false; 

                        } 

                    } 

 

                    summedAttributes[k, 0] = uniqueRoute[k]; 

                    summedAttributes[k, 1] = sumSpeed / routeLength[k, 1]; 

                    summedAttributes[k, 2] = sumBicycle / routeLength[k, 1]; 

                    summedAttributes[k, 3] = sumVolume / routeLength[k, 1]; 

                    summedAttributes[k, 4] = sumGradient / routeLength[k, 1]; 

                    summedAttributes[k, 5] = routeLength[k, 1]; 

                } 

            } 

 

            catch (IOException e) 

            { 
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                Console.WriteLine("Exception was thrown"); 

                Console.WriteLine(e.ToString()); 

                Console.ReadLine(); 

                return; 

            } 

 

 

            // Writing the output file to dataOutput.txt 

 

            try 

            { 

 

                FileStream bFile = new FileStream("dataOutput.txt", FileMode.Append); 

                StreamWriter sw = new StreamWriter(bFile); 

 

                sw.WriteLine("Route_ID\tSpeed\tBicyclelanePresence\tVolume\tUphillGradient\tLength"); 

                for (int k = 0; k < uniqueRoute.Count; k++) 

                { 

                    for (int j = 0; j < 6; j++) 

                    { 

                        sw.Write("{0}\t", summedAttributes[k, j]); 

                    } 

                    sw.WriteLine(); 

                } 

                sw.Close(); 

            } 

 

            catch (IOException e) 

            { 

                Console.WriteLine("Exception was thrown with output file"); 

                Console.WriteLine(e.ToString()); 

                Console.ReadLine(); 

                return; 

            } 

 

            Console.WriteLine("*********************************************************"); 

            Console.WriteLine("Thank you. Result is located in file dataOutput.txt"); 

            Console.WriteLine("*********************************************************"); 

            Console.WriteLine(); 

            Console.WriteLine("Press <Enter> key to exit"); 

            Console.ReadLine(); 

 

        } 

    } 

} 
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8.1 Typical input file 
 

 
 

The correct specification of input file is described next. The first row of data needs to contain 

zeroes. The order of alternative attributes needs to be arranged in a way how it is presented 

below. Most of the data can be obtained from linear referencing procedure of GIS software. Then 

data can be arranged is a described fashion in MS Excel and saved in a text file with a name 

<ChoiceSet.txt> The program has no data limits for the number of records or the number of 

alternatives as several hundreds of thousands records can be processed with a several seconds. 

 

Column No. Description 

1 is a route number 

2 is a beginning node of a route segment 

3 is an ending node of a route segment 

4 is a speed 

5 is a length of a link 

6 is a volume on a road link 

7 is an elevation of a beginning node 

8 is an elevation of an ending node 

9 is a bicycle lane indicator on a specific route segment 

10 is a flag; initially all values are flagged at 1 
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8.2 Typical output file 
 

Data processing is done through a computer program by double-clicking on it. At the end of 

execution, a an output file is created with a name <dataOutput.txt>. 
 

 
 


