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Abstract

As multi-core systems are becoming more popular in real time embedded systems, strict tim-
ing requirements for accessing shared resources must be met. In particular, a detailed latency
analysis for Double Data Rate Dynamic RAM (DDR DRAM) is highly desirable. Several re-
searchers have proposed predictable memory controllers to provide guaranteed memory access
latency. However, the performance of such controllers sharply decreases as DDR devices become
faster and the width of memory buses is increased. Therefore, a novel and composable approach
is proposed that provides improved latency bounds compared to existing works by explicitly
modeling the DRAM state. In particular, this new approach scales better with increasing number
of cores and memory speed. Benchmark evaluation results show up to a 45% improvement in
the worst case task execution time compared to a competing predictable memory controller for a
system with 16 cores.
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Chapter 1

Introduction

Embedded systems are an integral part of our daily life and they govern how we interact with
the world and each other. Mobile smart phones have changed the way we communicate with one
another. Medical devices help regulate and monitor our health and wellness and can even give
us new limbs. Even our automobiles are becoming more sophisticated with new safety features
that help prevent accidents and they can even drive themselves! As the use of embedded systems
is becoming even more popular, traditional systems that only served a single or limited functions
are becoming increasingly complex and multifunctional. With more demands for functionality,
many embedded systems are incorporating chip multiprocessors (CMPs) into their design. The
advantage of CMPs is increased performance compared against a traditional single core system.
This is evident in the consumer market where cellular phones are continuously coming out with
new processors with dual or quad cores. However, the transition from single core to multi-core
systems is not always so straight forward. This is especially true for embedded systems that are
critical to our safety such as automotive and airplane systems.

1.1 Hard Real Time Systems

Embedded systems that are safety critical are often hard real time systems, which means the
system must compute the correct output given a set of inputs in a timely manner. In other words,
not only do they need to output the correct value but they must do so before a deadline. Failing
to meet the deadline could result in catastrophic consequences that could result in loss of life.
Therefore, these systems must be designed with strict timing constraints and must go through a
rigorous testing and certification process. For example, in the avionic industry, there are stan-



dards which define the various requirements that must be met before these devices can be used
in an airplane [3, 4].

The challenge in a multi-core system is that multiple requestors such as CPUs or DMAs
share physical resources such as bus, cache and main memory as shown in Figure 1.1. There-
fore, they can cause mutual interference on each other and thus make their timing behaviour
unpredictable. In addition, some of these cores could be running a safety critical application
such as flight control while other cores are running non real time tasks such as multimedia appli-
cations. Therefore, system designers must ensure that non critical cores can not cause significant
delay to critical cores such that they miss their deadlines. Due to these inter-dependecies between
cores, it is very difficult to analyze the Worst Case Execution Time (WCET) of an application or
task. Many research efforts have been dedicated to WCET estimation to give a predictable upper
bound for the task execution time in order to verify that the task can meet its deadline.

-

Shared Last Level Cache
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Figure 1.1: Typical Multi-core System Architecture

1.2 Motivation

As mentioned, the main memory is a shared physical resource and as more real time applications
are becoming memory intensive [5], the shared memory is becoming a significant bottle neck
for the task execution time. This is because memory systems typically operate at a much lower
frequency compared to CPUs. With multiple cores accessing memory at same time, the amount



of time spent for memory accesses increases dramatically. Therefore, there is a need to bound
the worst case memory latency caused by contention among multiple requestors to provide hard
guarantees to real time tasks.

Several researchers have addressed this problem by proposing new timing analyses for con-
tention in main memory and caches [6, 7, 8]. However, such analyses assume a constant time
for each memory request. In practice, modern CMPs use Double Data Rate Dynamic RAM
(DDR DRAM) as their main memory. The assumption of constant access time in DRAM can
lead to highly pessimistic bounds because DRAM is a complex resource with highly variable
access times. DRAM access time is highly variable because of two main reasons: (1) DRAM
employs an internal caching mechanism where large chunks of data are first loaded into a row
buffer before being read or written. This means that accessing data already inside the row buffer
is faster than accessing data not in the row buffer. (2) In addition, DRAM devices use a parallel
structure; in particular, multiple operations targeting different internal buffers can be performed
simultaneously. In other word, multiple requestors can access different row buffers in parallel
to a certain degree. As an example, Figure 1.2 shows an experiment conducted on the Freescale
P4080 embedded platform [9]. In the figure, the average latency for one memory access is shown
for Core 0 on the y-axis while the x-axis vary the number of other interfering cores running the
same application. The application is a measurement benchmark designed to access memory in a
precise manner that will be explained in Chapter 4. There are two different curves, one of them
is when all the cores are accessing the same row buffer. The other one is when all the cores
are accessing their own private buffer. It is clear to see that the memory access time changes
dramatically depending on how the cores are accessing memory.

Due to the complex timing behaviour of DRAM, developing a safe yet realistic memory la-
tency analysis is very challenging. To overcome such challenges, a number of other researches
have proposed the design of predictable DRAM controllers [ 10, 11, 12, 13, 14]. These controllers
simplify the analysis of memory latency by statically pre-computing sequences of memory com-
mands. The key idea is that static command sequences allow leveraging DRAM parallelism
without the requirement to analyze dynamic state information. Existing predictable controllers
have been shown to provide tight, predictable memory latency for hard real time tasks when
applied to older DRAM standards such as DDR2. However, as will be shown in the evaluation,
they perform poorly in the presence of more modern DRAM devices such as DDR3. The first
drawback of existing predictable controllers is that they do not take advantage of the caching
mechanism. As memory devices are getting faster, the performance of predictable controllers is
greatly diminished because the difference in access time between cached and not cached data in
DRAM devices are growing. Furthermore, as memory buses are becoming wider, the amount of
data that can be transferred in each bus cycle increases. For this reason, the ability of existing
predictable controllers to exploit DRAM access parallelism in a static manner is diminished.
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Figure 1.2: Memory Access Timing Variability

1.3 Contribution

An alternate direction for analyzing worst case latency in DRAM is proposed to take advantage
of the caching mechanism by explicitly modelling and analyzing DRAM state information. In
addition, DRAM structure is dynamicareal timelly exploited for more parallelism to reduce the
interference among multiple requestors. The major contributions are the following. (1) An analy-
sis of the worst case DRAM memory latency for a task executing on a core while other requestors
are contending for memory. The analysis is composable in the sense that the latency bound does
not depend on the activity of other requestors, only on the number of other requestors. (2) A
cycle accurate simulation model of the proposed controller is implemented and it is derived from
typical Commercial-Off-The-Shelf (COTS) controllers with a set of minimal modifications to al-
low much improved bounds. (3) Evaluation of proposed controller against previous predictable
approaches using a set of benchmarks executed on an architectural simulator. The results show
the controller scales significantly better with increasing number of requestors. For a commonly
used DRAM in a system with 8 requestors, it shows 70% improvements in task execution time
compared to [10].



Chapter 2

Background

This chapter will describe the basic operation of a DDR DRAM memory controller and a de-
vice. The complex timing behaviour of DRAM will be illustrated in detail to lay the ground
work before any analysis can be discussed. Furthermore, the various configuration options that
impact the performance of the memory controller will be highlighted. Finally related work for
predictable memory controllers can be discussed and the differences between this research and
existing approaches will become clear.

2.1 DRAM Basics

Modern DRAM memory systems are composed of a memory controller and memory device as
shown in Figure 2.1. The controller handles requests from requestors such as CPUs or DMA
capable devices and the memory device stores the actual data. The device and controller are
connected by a command bus and a data bus, which can be used in parallel: one requestor can
use the command bus while another requestor uses the data bus at the same time. However, no
more than one requestor can use the command bus (or data bus) at the same time. The controller
has a front end that generates memory commands associated with each request. The back end
handles command arbitration and issues commands to the device while satisfying all timing
constraints. Modern memory devices are organized into ranks and each rank is divided into
multiple banks, which can be accessed in parallel provided that no collisions occur on either bus.
Each bank comprises a row-buffer and an array of storage cells organized as rows' and columns
as shown in Figure 2.1. In addition, modern systems can have multiple memory channels (i.e.,

IDRAM rows are also referred to as ‘pages’ in the literature.



multiple command and data buses). Each channel can be treated independently or they could be
interleaved together. The scope of this thesis treats each channel independently and focuses on
the analysis within a single channel. Note that optimization of requestor assignments to channels
in real time memory controllers has been discussed in [15].

DRAM Controller Memory Device
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Figure 2.1: DDR DRAM Organization

To access the data in a DRAM row, an Activate (ACT) command must be issued to load the
data into the row buffer before it can be read or written. Once the data is in the row buffer, a
CAS (read or write) command can be issued to retrieve or store the data. If a second request
needs to access a different row within the same bank, the row buffer must be written back to the
data array with a Pre-charge (PRE) command before the second row can be activated. Finally, a
periodic Refresh (REF) command must be issued to all ranks and banks to ensure data integrity.
The result of REF is that all row buffers are written back to the data array (i.e., all row buffers
are empty). Note that each command takes one clock cycle on the command bus to be serviced.

A row that is cached in the row buffer is considered open, otherwise the row is considered
closed. A request that accesses an open row is called an Open Request and a request that accesses
a closed row is called Close Request. To avoid confusion, requests are categorized as load or
store while read and write are used to refer to memory commands. When a request reaches the
front end of the controller, the correct memory commands will be generated based on the status
of the row buffers. For open requests, only read or write command is generated since the desired
row is already cached in row buffer. For close request, if row buffer contains a row that is not
the desired row, then a PRE command is generated to close the current row. Then an ACT is
generated to load the new row and finally read/write is generated to access data. If the row buffer
is empty, then only ACT and read/write commands are needed.

The size of a row is large (several kB), so each request only accesses a small portion of the
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row by selecting the appropriate columns. Each CAS command accesses data in a burst of length
BL and the amount of data transferred is BL - Wgyg, where Wy g is the width of the data bus
in bits. Since DDR memory transfers data on rising and falling edge of clock, the amount of time
for one transfer is tpys = BL/2 memory clock cycles. For example, with BL = 8 and Wxyg
of 64 bits, it will take 4 cycles to transfer 64 bytes of data. The size of the data bus is determined
by the actual memory chips that make up the device. For example, terms like x8, x4, or x16 are
used to describe the number of bits each individual chip contributes to the data bus. Hence, a
DRAM stick that contains eight x8 chips would have a data bus width of 64 bits while a stick
with eight x4 chips has a data bus width of 32 bits.

2.2 DRAM Timing Constraints

The memory device takes time to perform different operations and therefore timing constraints
between various commands must be satisfied by the memory controller. The operation and timing
constraints of memory devices are defined by the JEDEC standard [16]. The standard defines
different families of devices, such as DDR2 and DDR3?, as well as different speed grades. As
an example, Table 2.1 lists all timing parameters of interest to the analysis, with typical values
for DDR3 and DDR2 devices. Figures 2.2 and 2.3 illustrate the various timing constraints.
Square boxes represent commands issued on command bus (A for ACT, P for PRE and R/W for
Read and Write). The data being transferred on the data bus is also shown. Horizontal arrows
represent timing constraints between different commands while the vertical arrows show when
each request arrives. R denotes rank and B denotes bank in the figures. Note that constraints are
not drawn to actual scale to make the figures easier to understand.

Figure 2.2 shows constraints related to banks within the same rank. There are three close
requests targeting Rank 1. Request 1 and 3 are accessing Bank 0 while Request 2 is accessing
Bank 1. Request 1 arrives first and issues an ACT command on the command bus. From the
time when the ACT of Request 1 is issued, the memory controller must wait for trcp time
units to expire before issuing the read command of Request 1. Then after ¢, time units, the
data begins transfer on the data bus. While Request 1 is being serviced, Request 2 arrives.
The ACT command of Request 2 can not be issued immediately after arrival because there is
a timing constraint tprp between two ACT commands of two different banks within the same
rank. Notice the write command of Request 2 cannot be issued immediately once the trcp
timing constraint has been satisfied. This is because there is another timing constraint, ¢z,
between read command of Request 1 and write command of Request 2, and the write command

2Although JEDEC has finalized the specification for DDR4 devices in September 2012, DDR4 memory con-
trollers are not yet commonly available.



can only be issued once all applicable constraints are satisfied. In general, whenever there is a
switch from read to write within the same rank (either when both read and write are targeting the
same bank or targeting different banks), there is a ¢ g7y timing penalty. After ¢ gy expires, then
the write command of Request 2 can be issued and followed by the data.

Request 3 arrives immediately after the data of Request 1 and it is targeting a different row
within Bank 0 compared to Request 1. Therefore, the memory controller first need to issue a PRE
command before ACT and read can be issued. For the PRE command of Request 3, there are
two timing constraints that must be satisfied, tz7p and tgag. The larger of the two constraints
determines when the PRE gets issued. The tppp starts from the time when the previous read
of Bank 0 was issued (i.e., read of Request 1) and ¢tz starts from the time when the previous
ACT of Bank 0 was issued (i.e., ACT of Request 1). Once the PRE is issued, the ACT command
of Request 3 can be issued once the tzp and ¢z constraints are satisfied. The ¢z constraint is
between two successive ACT commands to the same bank and this is one of the longest constraint
in the DRAM device. Similar to the read to write constraint, the ¢y, timing constraint between
the end of the data of Request 2 and the read command of Request 3 must be satisfied before
the read command of Request 3 can be issued. In general, whenever there is a switch from write
to read within the same rank (either when both read and write are targeting the same bank or
targeting different bank), the ¢z must be satisfied. Finally, for a PRE command following a
write command, there are two timing constraints must be satisfied similar to a PRE following a
read. The tp 45 is same as the case for a PRE following a read but the ¢ z7p is now replaced with
trp, which is between end of a write data and PRE whereas t 1 p 1s between when read command
is issued until PRE. Note that the PRE belongs to a request targeting Bank 1 that arrives after
Request 2 but it is not shown in the figure.

Figure 2.3 shows timing constraints between different ranks. There are three requests and
Request 1 and 3 are targeting Bank O in Rank 1 while Request 2 is targeting Bank 0 in Rank
2. Request 1 is a close request and it has similar timing constraints as discussed. Request 3 is
an open request targeting data in the same row buffer as Request 1 and hence only need a read
command. Notice that when Request 2 arrives, it can issued its ACT command immediately be-
cause there are no constraints between ACT commands of different ranks. The ¢tgrrp constraint
shown before only applies to banks within the same rank. The only constraint that applies be-
tween different ranks is the rank to rank switching time ¢zrg [ 7], which is the time between end
of the data of one rank and beginning of the data of another rank. Therefore, when the data of
Request 1 is finished, the data of Request 2 can only begin transfer after ¢ sz has been satisfied.
Similarly, the rank to rank switching time applies between end of data of Request 2 and start of
data of Request 3.

There are four important observations to notice from the timing diagrams. (1) The latency
for a close request is significantly longer than an open request. There are long timing constraints
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treD ACT to READ/WRITE delay 9 6

trr READ to Data Start 8 6
twr WRITE to Data Start 7 5
teus Data bus transfer 4 4

trp PRE to ACT Delay 9 6
twnr End of WRITE data to PRE Delay | 10 6
trrp Read to PRE Delay 5 3
tras ACT to PRE Delay 24 18
tre ACT-ACT (same bank) 33 24
LRRD ACT-ACT (different bank) 4 3
traw Four ACT Window 20 14
trrw READ to WRITE Delay 7 6
twrr WRITE to READ Delay 5 3
trTR Rank to Rank Switch Delay 2 1
trrc Time required to refresh a row 160 ns 195 ns
tREFI REF period 7.8 us 7.8 us

Table 2.1: JEDEC Timing Constraints in Memory Cycles

involved with PRE and ACT commands, which are not needed for open requests. For exam-
ple, tgc dictates a large time gap between two ACT commands to the same bank. (2) Switching
from servicing load to store requests and vice-versa within the same rank incurs a timing penalty.
There is a constraint ¢z between issuing a read command and a successive write command.
Even worse, the tyy g constraint applies between the end of the data transmission for a write
command and any successive read command. (3) Different banks within the same rank can be
operated in parallel to a certain degree. For example, two successive reads or two successive
writes to different banks do not incur any timing penalty besides contention on data bus. Fur-
thermore, PRE and ACT commands to different banks can be issued in parallel as long as the
trrp and tpaw (the tpaw constraint will be discussed in detail during the analysis) constraints
are met. (4) Different ranks can operated in parallel even more effectively. For example, there
are no constraints between PRE or ACT of one rank and another rank and thus they only contend
on the command bus. CAS commands between different ranks only need to satisfy the rank to
rank switching constraint, ¢ zrg.
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2.3 DRAM Row Policy and Mapping

In general, a memory controller can employ one of two different polices regarding the manage-
ment of row buffers: Open Row and Close Row Policy. Under open row policy, the memory
controller leaves the row buffer open for as long as possible. The row buffer will be pre-charged
if the refresh period is reached or another request needs to access a different row (i.e., row miss).
If a task has a lot of row hits, then only a CAS command is needed for each of those requests,
thus reducing latency. However, if a task has a lot of row misses, each miss must issue ACT and
CAS commands and possibly a PRE command as well. Therefore, the latency of a request with
open row policy is dependent on the row hit ratio of a task and the status of the DRAM device.
In contrast, close row policy automatically pre-charges the row buffer after every request. Under
this policy, the timing of every request is eminently predictable since all requests have an ACT
and a CAS command and thus incur the same latency. Furthermore, the controller does not need
to schedule pre-charge commands which reduce collisions on the command bus. The downside
is that the overall latency for all requests performed by a task might increase since the policy
behaves as if the row hit ratio was zero.

Furthermore, when a request arrives at the memory controller, the incoming memory address
must be mapped to the correct bank, row, and column in order to access desired data. Note that
embedded memory controllers, for example in the Freescale p4080 embedded platform [9], often
support configuration of both the row policy and mapping. There are two common mappings as
employed in this thesis and other predictable memory controllers: interleaved banks and private
banks. Under interleaved banks, each request accesses all banks. The amount of data transferred
in one request is thus BL - Wgys - NumBanks. For example, with 4 banks interleaved, a burst
length of 8 and a data bus of 64 bits, the amount of data transferred is 256 bytes. Although
this mapping allows each requestor to efficiently utilize all banks in parallel, each requestor also
shares all banks with all other requestors. Therefore, requestors can cause mutual interference
by closing each other’s rows. This mapping is typically used in systems where the data bus is
small such as 16 bits or 32 bits to access multiple banks so that the controller can transfer the
size of a cache block efficiently.

Under private banks, each requestor is assigned its own bank or set of banks. Therefore, the
state of row buffers accessed by one requestor cannot be influenced by other requestors. A sep-
arate set of banks can be reserved for shared data that can be concurrently accessed by multiple
requestors. Detailed discussion of shared banks will be described in Section 3.4. Under private
banks, each request targets a single bank, hence the amount of data transferred is BL - Wpxys.
The downside to this mapping is that bank parallelism cannot be exploited by a single requestor.
To transfer same amount of data as in interleaved banks, multiple requests to the same bank are
required. However, for devices with a large data bus such as 64 bits or larger, no interleaving
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is required to transfer data at the granularity of a typical cache block size in COTS systems,
which is usually 64 bytes. Therefore, in such systems, interleaving banks actually transfers more
data than needed thus resulting in wasted data bus cycles. Note that if the hardware does not na-
tively support private bank partitioning, then OS-level virtual memory mapping or other software
techniques are needed to support this scheme [2].

2.4 Related Work

Several predictable memory controllers have been proposed in the literature [10, 11, 12, 13, 14].
The most closely related work is that of Paolieri et al. [10] and Akesson et al. [11]. The Ana-
lyzable Memory Controller (AMC) [10] provides an upper bound latency for memory requests
in a multi-core system by utilizing a round-robin arbiter. Predator [! ] uses credit-controlled
static-priority (CCSP) arbitration [ 18], which assigns priority to requests in order to guarantee
minimum bandwidth and provide a bounded latency. As argued in [10], the round-robin arbi-
tration used by AMC is better suited for hard real time applications, while CCSP arbitration is
intended for streaming or multimedia real time applications. Both controllers employ interleaved
banks mapping. Since under interleaved banks, there is no guarantee that rows opened by one
requestor will not be closed by another requestor, both controllers also use close row policy.
Therefore, making the access latency of each request predictable. The work in [12] extends the
Predator to work with priority based budget scheduling.

In contrast, the approach of this thesis employs private bank mapping with an open row pol-
icy. By using a private bank scheme, it eliminates row interferences from other requestors since
each requestor can only access their own banks. As a possible downside, this reduces the to-
tal memory available to each requestor compared to interleaving, and might require increasing
the DRAM size. However, such cost is typically significantly smaller than the cost of enlarg-
ing the channel size by increasing the number of channels. In addition, the cost of DRAM
is much cheaper compared to the process of certification in many hard real time systems. As
demonstrated in Chapter 5, this approach leads to better latency bounds compared to AMC and
Predator because of two main reasons: first, as noted in Section 2.2, the latency of open requests
i1s much shorter than the one of close requests in DDR3 devices. Second, as noted in Section 2.3,
interleaved bank mapping requires the transfer of large amount of data. In the case of a processor
using a cache, requests to main memory are produced at the granularity of a cache block, which
is 64 bytes on many modern platforms. Hence, reading more than 64 bytes at once would lead
to wasted bus cycles in the worst case. This consideration effectively limits the number of banks
that can be usefully accessed in parallel in interleaved mode.

Goossens et al. [13] have recently proposed a mix-row policy memory controller. Their
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approach is based on leaving a row open for a fixed time window to take advantage of row hits.
However, this time window is relatively small compared to an open row policy. In the worst
case, their approach is the same as a close row policy if no assumptions can be made about the
exact time at which requests arrive at the memory controller, which is the case for non-trivial
programs on modern processors. Reineke et al. [14] propose a memory controller that uses
private bank mapping; however, their approach still uses the close row policy along with TDMA
scheduling. Their work is part of a larger effort to develop PTARM [19], a precision-timed
(PRET [20, 21]) architecture. The memory controller is not compatible with a standard, COTS,
cache-based architecture. To the best of my knowledge, this research is the first one that utilizes
both open row policy and a private bank scheme to provide improved worst case memory latency
bounds to hard real time tasks in multi-requestor systems.

The work in [17] proposed a rank hopping algorithm to maximize DRAM bandwidth by
scheduling a read group (or write group) to the same rank to leverage bank parallelism until no
more banks can be activated due to timing constraints. At that point, another group of CAS
commands are scheduled for another rank. This way, they amortize the rank to rank switching
time across a group of CAS commands. However, this scheduling policy inherently re-orders
requests and it is not suitable for hard real time systems that require guaranteed latency bounds.
The work in [22] uses rank scheduling to reduce DRAM power usage. The ¢z 4y constraint
that limits the number of banks that can be activated to limit the amount of current drawn to the
device to prevent over heating problems. Therefore, their work aims to improve power usage by
minimizing the number of state transitions from low power to active state by smartly scheduling
ranks. In summary, rank scheduling and optimizations have only been applied to non real time
systems and existing predictable controllers discussed above do not take ranks into account.
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Chapter 3

Analysis

In this chapter, a new worst case latency analysis is applied to a memory controller that utilizes a
private bank partition and an open row policy. First, a set of minimum modifications of existing
COTS based memory controllers are needed to produce any meaningful bounds. Therefore, a set
of arbitration rules along with queueing policy are formally presented in order to reason about the
worst case latency. The system under consideration includes multiple requestors such as CPUs
or DMAs. The DRAM device contains multiple ranks and each rank contains a set of banks. The
banks are statically partitioned among the requestors such that each requestor have their own set
of private banks. In other words, each bank is assigned to only one requestor with the exception
for banks that are used for share data.

Although this chapter presents the worst case analysis for a set of specific rules related to
a memory controller, the methodology and train of thoughts are general enough that it can be
applied to a different memory controller with a different set of rules. Chapter 4 describes how
one can go about reverse engineering memory controller structure and arbitration rules in a given
system so that a worst case analysis methodology can be applied for the system of interest.

3.1 Memory Controller

In this section, the arbitration rules of the memory controller are formalized in order to derive
a worst case latency analysis. In particular, the proposed memory controller is a simplified ver-
sion of typical COTS-based memory controllers, with minimal modifications required to obtain
meaningful latency bounds. In particular, memory re-ordering features typically employed in
COTS memory controllers are eliminated since they could lead to long and possibly unbounded
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latency as will be shown by the end of this section. Therefore, the proposed memory controller
could be implemented without significant effort and the rest of the discussion will focus on the
analysis of the worst case memory bound rather than implementation details. Chapter 5 will
instead discuss a simulation model of the proposed controller in detail.

Figure 3.1 shows the structure of the proposed memory controller. There are private com-
mand buffers for each requestor in the system to store the memory commands that are generated
by the front end for each request as discussed in Chapter 2. Because the controller employs an
open-row policy and private banks scheme, the front end can convert requests of each requestor
independently and in parallel. Therefore, this chapter exclusively focuses on the analysis of the
back end delay, assuming that the front end takes a constant time to process each request. In
addition, there is a global arbitration FIFO queue and memory commands from the private com-
mand buffers are enqueued into this FIFO, which are then issued on the command bus without
violating timing constraints. The arbitration process implemented by the controller is outlined
below.

1. Each requestor can only insert one command from its private command buffer into the
FIFO and must wait until that command is serviced before inserting another command.
PRE and ACT commands are considered serviced once they are issued on the command
bus. A CAS command is considered serviced when the data transmission is finished.
Hence, a requestor is not allowed to insert another CAS command in the FIFO until the
data of its previous CAS command has been transmitted.

2. A requestor can enqueue a command into the FIFO only if all timing constraints that are
caused by previous commands of the same requestor are satisfied. This implies that the
command can be issued immediately if no other requestors are in the system.

3. At the start of each memory cycle, the controller scans the FIFO from front to end and
issues the first command that can be issued. An exception is made for the CAS command
as described in the next rule.

4. For CAS commands in the FIFO, if one CAS command is blocked due to timing constraints
caused by other requestors, then all CAS commands after the blocked CAS in the FIFO
will also be blocked. In other words, re-ordering of CAS commands are not allowed.

It is clear from Rule-1 that the size of the FIFO queue is equal to the number of requestors.
Note that once a requestor is serviced, the next command from the same requestor will go to
the back of the FIFO. Intuitively, this implies that each requestor can be delayed by at most one
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Figure 3.1: Memory Controller

command for every other requestor which will be formally proved in Section 3.2. Therefore, this
arbitration is very similar to a round robin arbiter, as also employed in AMC [10].

To understand Rule-2, assume a requestor is performing a close request consisting of ACT
and CAS commands. The ACT command is enqueued and after some time it is serviced. Due
to the tpop timing constraint (please refer to Figures 2.2 or 2.3), the CAS command cannot be
enqueued immediately; the private buffer must hold the CAS until tz-p cycles have expired
before putting the CAS in the FIFO. This rule prevents other requestors from suffering timing
constraints that are only specific to one requestor, as it will become more clear in the following
discussion of Rule-4.

Finally, without Rule-4 the latency would be unbounded. To explain why, Figure 3.2a shows
an example command schedule where Rule-4 does not apply. In the figure, the state of the FIFO
at the initial time ¢ = 0 is shown as the rectangular box. Let us consider the chronological order
of events. (1) A write command from Requestor 1 (R1) is at the front of FIFO and it is serviced.
(2) A read command (R2) cannot be serviced until £ = 16 due to ¢y timing constraint (crossed
box in figure). (3) The controller then services the next write command (R3) in the FIFO queue
at t = 4 following Rule-3. Due to the ty i constraint, the earliest time to service the read
command is now pushed back from ¢ = 16 to ¢t = 20. (4) Assume that another write command
from Requestor 1 is enqueued at ¢ = 17. The controller then services this command, effectively
pushing the read command back even further to ¢ = 33. Following the example, it is clear
that if Requestors 1 and 3 have a long list of write commands waiting to be enqueued, the read
command of Requestor 2 would be pushed back indefinitely and the worst case latency would
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be unbounded. By enforcing Rule-4, latency becomes bounded because all CAS after read (R2)
would be blocked as shown in Figure 3.2b.

Front
R1:W W Data w Data
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(a) Unbounded Latency
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: L twr tpus :
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t=0 C terw  twrn tpus | R
t=20 t =16 t=34
(b) Bounded latency

Figure 3.2: Importance of Rule-4

Note that no additional rule is required to handle the data bus. Once a CAS command (read or
write) is issued on the command bus, the data bus is essentially reserved for that CAS command
for a duration of ¢gyg starting from tg;, or ty 1, cycles after the CAS is issued. Therefore, an
additional constraint on CAS commands is that CAS cannot be issued if it causes a conflict on
the data bus. This would be implemented as part of the logic that scans the FIFO for the first
command that can be issued.
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3.2 Worst Case Per-Request Latency

In this section, the worst case latency for a single memory request is derived for a given task
under analysis that is executing on a CPU core. In particular, the back end worst case latency is
measured as the time when a request arrives at the front of the private per-requestor command
buffer' until its data is transmitted. Then in Section 3.3, the cumulative worst case latency over
all of a task’s requests are analyzed. These two sections consider a system with R total ranks
and rank j is assigned M requestors, where 1 < j < R. The total number of requestors in the
system is M = Zle M; and one of these requestors is executing the task under analysis.

Let ¢4 be the worst case latency for a given memory request of the task under analysis. To
simplify the analysis, the request latency is decomposed into two parts, ¢ 4o and top as shown
in Figure 3.3. t4¢ (Arrival-to-CAS) is the worst case interval between the arrival of a request
at the front of command buffer and the enqueuing of its corresponding CAS command into the
FIFO. tcp (CAS-to-Data) is the worst case interval between the enqueuing of CAS and the end
of data transfer. In all figures in this section, a solid vertical arrow represents the time instant
at which a request arrives at the front of the buffer. A dashed vertical arrow represents the time
instant at which a command is enqueued into the FIFO; the specific command is denoted above
the arrow. A grey square box denotes interfering requestors while a white box denotes task under
analysis. Note that for a close request, ¢ 4 includes the latency required to process a PRE and
ACT command, as explained in Section 2.1. By decomposing, the latency for ¢ 4o and t-p can
now be computed separately; /%7 is then computed as the sum of the two components.

ACMD
T : Request Arrives : : CMD Enqueued ~ CMD : CMD Serviced
ACAS
T i
i tAC >< tCD >
- tReq i

Figure 3.3: Worst Case Latency Decomposition

!For short, it will be referred to as private buffer or command buffer or simply buffer.
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3.2.1 Arrival-to-CAS

Open Request

In this case, the memory request is a single CAS command because the row is already open.
Therefore, ¢4 only includes the latency of timing constraints caused by previous commands
of the core under analysis (arbitration Rule-2 in Section 3.1). The earliest time a request can
arrive at the front of the buffer is after the previous request has finished transferring data (note
that a CAS is only removed from the front of the command buffer once the data is transmitted
as per arbitration Rule-1). If the previous and current request are of the same type (i.e., both
are load or store), then ¢ 4o is zero because there are no timing constraints between requests of
the same type. If the previous and current requests are of different types, there are two cases
as shown in Figure 3.4. 1) If the previous request is a store, then the tyrr constraint comes
into effect. 2) If the previous request is a load, then ¢y comes into effect. In both cases, it is
easy to see that the worst case ¢ 4o occurs when the current request arrives as soon as possible,
i.e., immediately after the data of the previous request, since this maximizes the latency due to
the timing constraint caused by the previous request. Also note that ¢z applies from the time
when the previous read command is issued, which is ¢tz +1 s cycles before the current request
arrives. Therefore, Eq.(3.1) captures the ¢ 4 latency for an open request, where cur denotes the
type of the current request and prev denotes the type of the previous one.

twrr if cur-load, prev-store;
t%"’” =« max{trrw — trr — tpus,0} if cur-store, prev-load, (3.1)
0 otherwise.
A ,T‘Read
W Data '
lac I
twir lBus lwrr
A ,T‘Write
R Data :
) tr  tpus tac  ~

trTw

Figure 3.4: Arrival-to-CAS for Open Request
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Close Request

The analysis is more involved for close requests due to the presence of PRE and ACT commands.
Therefore, t 4o is decomposed into smaller parts as shown in Figure 3.5. Each part is either a
JEDEC timing constraint shown in Table 2.1 or a parameter that will be computed, as shown in
Table 3.1. tpp and tp 4 determine the time at which a PRE and ACT command can be enqueued
in the global FIFO queue, respectively, and thus (partially) depend on timing constraints caused
by the previous request of the task under analysis. ¢;p and t;4 represent the worst case delay
between inserting a command in the FIFO queue and when that command is issued, and thus
capture interference caused by other requestors. Similarly to the open request case, the worst
case for ¢ 4o occurs when the current request arrives immediately after the previous request has
finished transferring data. In other words, the command buffer is backlogged with outstanding
commands.

Request PRE ACT CAS
Arrival T T T
P A
tpp trp trp
tpa tra treD

<
~

v

tac

Figure 3.5: Arrival-to-CAS for Close request

tpp End of previous DATA to PRE Enqueued
tip Interference Delay for PRE
tpa End of previous DATA to ACT Enqueued
tra Interference Delay for ACT

Table 3.1: Timing Parameter Definition

tpp depends on the following timing constraints: 1) tp4g if the previous request was a close
request; 2) trrp if the previous request was a load; 3) tyy g if the previous request was a store;
please refer to Figures 2.2 and Table 2.1 for a detailed illustration of these constraints. Eq.(3.2)
then summarizes the value of tpp. Similarly to Eq.(3.1), for terms containing tg4s and tg7p,
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they need to subtract the time interval between issuing the relevant command of the previous
request and the arrival of the current request.

max{(trrp — trr — tpus), Q(tras — tprev), 0}  if prev-load,
tpp = (3.2)

max{twr, Q(tras — tprev), 0} if prev-store,

where:

Q=

1 if prev-close; y trep +trr +teus 1if prev-load;
0, if prev-open. prev— trep +twr +tpus if prev-store.

Next, t;p is considered. In the worst case, when the PRE command of the core under analysis
is enqueued into the FIFO, there can be a maximum of M — 1 preceding commands in the FIFO
due to arbitration Rule-1. Each command can only delay PRE for at most one cycle due to
contention on the command bus; there are no other interfering constraints between PRE and
commands of other requestors, since they must target different banks or ranks. In addition, any
command enqueued after the PRE would not affect it due to Rule-3. Note that the cycle it takes
to issue the PRE on the command bus is not included in ¢;p since it is already included in the
trp constraint. Therefore, the maximum delay suffered by the PRE command is:

tip=M —1. (3.3)

Let us consider ¢ 4 next. If the previous request was a close request, 4 depends on the ¢ z¢
timing constraint. In addition, once PRE is serviced, the command buffer must wait for the tzp
timing constraint to expire before ACT can be enqueued. Hence, tp4 must be at least equal to
the sum of tpp, t;p, and tpp. Therefore, tp4 is obtained as the maximum of these two terms in
Eq.(3.4), where again t,,, accounts for the time at which the relevant command of the previous
request is issued.

tpa = max{(tpp +tip+ tRP)a Q(tRC - tprm))} (3.4)

Next, 74 is analyzed. The proof will show that the ACT command of the core under analysis
suffers maximal delay in the scenario shown in Figure 3.6 (the ACT under analysis is shown as
the white square box). Note that two successive ACT commands within the same rank must be
separated by at least tgrp cycles. Furthermore, within the same rank, no more than four ACT
commands can be issued in any time window of length ¢z 41/, which is larger than 4 - t g p for all
devices. There are no constraints between ACT and commands of requestors from other ranks.
Assume the rank that contains the core under analysis is rank . The worst case is produced
when all M, — 1 other requestors from rank r enqueue an ACT command at the same time £,
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as the core under analysis, which is placed last in the FIFO; furthermore, four ACT commands
of rank r have been completed immediately before ¢y; this forces the first ACT issued after %,
to wait for tpay — 4 - trrp before it can be issued. In addition, all requestors from other ranks
enqueue a command before the core under analysis in the FIFO (not shown in Figure 3.6) and
hence contribute one cycle of delay on the command bus. Thus, the value of ¢;4 is computed as:

M, -1
4

J . tFAW + ((Mr — 1) mod 4) : tRRD + (M — Mr)
(3.5)

tra = (traw —4 - trrp) + L

Lemma 1. Assuming rank under analysis is rank r, the worst case for t;4 is computed by
Eq.(3.5).

Proof. Let t; be the time at which the ACT command of the core under analysis (ACT under
analysis) is enqueued in the global arbitration FIFO queue. The worst case interference on the
core under analysis is produced when at time ¢, there are M, — 1 other ACT commands of rank
r enqueued before the ACT under analysis. First note that commands enqueued after the ACT
under analysis cannot delay it; if the ACT under analysis is blocked by the tprp or tpay timing
constraint, then any subsequent ACT command of rank 7 in the FIFO would also be blocked
by the same constraint. PRE or CAS commands of rank r or any commands from other ranks
enqueued after the ACT under analysis can execute before it according to arbitration Rule-3 if
the ACT under analysis is blocked; but they cannot delay it because those requestors access
different banks or ranks, and there are no timing constraints between ACT and PRE or CAS of
a different bank or commands of other ranks. Commands of other ranks enqueued before ACT
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under analysis can contribute a delay of one cycle each due to command bus contention and there
are M — M, such requestors from other ranks.

For requestors in rank 7, each ACT of another requestor enqueued before the ACT under
analysis can contribute to its latency for at least a factor trrp, which is larger than one clock
cycle on all devices. Now assume by contradiction that a requestor has a PRE or CAS command
enqueued before the ACT under analysis at time ?y. Since again there are no timing constraints
between such commands, the PRE or CAS command can only delay the ACT under analysis for
one clock cycle due to command bus contention. Furthermore, after the PRE or CAS command is
issued, any further command of that requestor would be enqueued after the ACT under analysis.
Hence, the requestor of rank r would cause a total delay of one cycle, which is less than tzrp.
Next, the proof will show that all requestors of rank r enqueueing their ACT command at the
same time t, is the worst case pattern. Requestors enqueueing an ACT after ¢, do not cause
interference as already shown. If a requestor enqueues an ACT at time ¢y — A with A < trgp,
the overall latency is reduced by A since the requestor cannot enqueue another ACT before ¢,
due to arbitration Rule-2.

To conclude the proof, it remains to note that a requestor of rank  could instead issue an ACT
at or before ¢ty —tgrp and then enqueue another ACT at ¢, before the ACT under analysis. Due to
the ¢4y constraint, the first ACT issued after ¢, would then suffer additional delay. Therefore,
assume that x € [1,4] ACT commands issued before ¢y — trrp delay the (4 — xz + 1)th ACT
command issued after ¢y; as an example in Figure 3.6, v = 4 and given 4 — x + 1 = 1, the Ist
ACT command after ¢ is delayed. The latency of the ACT under analysis is maximized when the
2 ACT commands are issued as late as possible, causing maximum delay to the ACT commands
after t(; therefore, in the worst case, assume that the + ACT commands are issued starting at
to — x - tgrrp. Finally, the total latency of the ACT under analysis is obtained as:

Vc%—M,ﬂ—l

4 J tFAW+((=T+Mr_1) mod 4) 'tRRD—l"tRRD—f—(M—MT). (36)

Note that since 4 - tgrrp < trpaw for all memory devices, Eq.(3.6) can be computed assuming
that a delay of ¢y is incurred for every 4 CAS; the remaining CAS commands add a latency
of trrp each. To obtain ¢;4, simply maximize Eq.(3.6) over x € [1,4]. Let z € [1,4] be the
value such that ((55 + M, — 1) mod 4) = 0, and furthermore let x = = + y. If y > 0, Eq.(3.6) is
equivalent to:

M, —1 _
Q 1 J+1)'tFAW‘i‘y'tRRD—($+y)'tRRD+(M—Mr)=

M, —1 _
:L 1 J'tFAw+tFAW—$'tRRD+(M—Mr)-

(3.7)
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If instead y < 0, Eq.(3.6) is equivalent to:
M, -1

=
| M1

==
Since again 4 - trrp < trpaw, it follows that the latency in Eq.(3.7) is larger than the latency in
Eq.(3.8). Since furthermore, Eq.(3.7) does not depend on y, one can select any value x > 7; in
particular, substituting x = 4 in Eq.(3.6) results in Eq.(3.5), thus proving the lemma. 0

J'tFAw+(4+y)'tRRD—(3_3+y)'tRRD+(M—Mr): -
(3.8)

J-tFAW+4-tRRD—f+(M—MT).

Once the ACT command is serviced, the CAS can be inserted after tpop cycles, leading to
a total ¢ 4 latency for a close request of tps + t74 + trop. Therefore, the following lemma is
obtained:

Lemma 2. The worst case arrival-to-CAS latency for a close request can be computed as:

t58% =tpa+tra+ trep. (3.9)
Proof. As already shown, the computed ¢4 represents a worst case bound on the latency be-
tween the arrival of the request under analysis and the time at which its associated ACT command
is enqueued in the global FIFO arbitration queue. Similarly, ¢;4 represents a worst case bound
on the latency between enqueuing the ACT command and issuing it. Since furthermore, a CAS
command can only be enqueued ¢ zcp clock cycles after issuing the ACT due to arbitration Rule-
2, the lemma is shown to be correct. L]

3.2.2 CAS-to-Data

Let us now discuss the CAS-to-Data part of the single request latency. Due to the complexities,
first some intuition and insights along with some lemmas are presented first under certain as-
sumptions. Then the formal proof in Lemma 6 will show that these assumptions indeed lead to
the worst case.

Let ¢y be the time at which the CAS command of the core under analysis (CAS under analysis)
is enqueued into the arbitration FIFO. Assume all other requestors also have a CAS command in
the FIFO and the CAS under analysis is placed last in the FIFO. Then the CAS-to-Data delay,
tcp, can be decomposed into two parts as shown in Figure 3.7: 1) the time from ¢, until the data
of the first CAS command is transmitted; this is called tp;rsr and it depends on whether the
first CAS command is a read or write. 2) The time from the end of data of the first CAS until
all remaining CAS finish transmitting data, including the CAS under analysis. This is called
toruer. Therefore, the CAS-to-Data delay is computed as the sum of ¢ p;rsr and torggr-
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Figure 3.7: Decomposition of CAS to Data Latency

Lemma 3. Assuming all requestors insert a CAS into the FIFO at t, then the worst case latency
for tprrst is computed according to Eq.(3.10).

Fr=t t t if first CAS 1 d;
tFIRSTZ{ R wrr +1lrr +tpys 1 1Irs 1s rea (3.10)

FW =twr +tpus if first CAS is write.

Proof. Let us calculate the delay for the first CAS after ¢, in various cases as shown in Fig-
ure 3.8. Since we assume that all requestors insert a CAS at ¢, all requestors must have finished
transmitting their previous data by ¢, at the latest. Otherwise, if a requestor issues a CAS before
to but finishes data transmission after ?g, then it can not insert another CAS into the FIFO due
to arbitration Rule-1. In the first case shown in Figure 3.8a, at time ¢, a requestor of rank 7 just
finished transmitting a write data. Therefore, if the first CAS after ¢, is a read from rank r, the
read command would suffer a ¢z timing constraint. Hence, the time from ¢, until end of data
of the first read would be tyy7r 4+t +tsrs. However, if the write data of rank r finished A time
units before ¢, then the overall delay of first CAS would be decreased by A and hence finishing
the write data exactly at £, is the worst case. In the case shown in Figure 3.8b, a requestor of
rank 7 just finished transmitting a read data at time ¢,. Hence, if the first CAS after ¢, is a write
command of rank r, it would suffer a ¢z, from the time when the read before ¢y was issued.
However, since tr;, + tpys > trrw for all JEDEC devices, the first write after ¢, actually can
be issued immediately; therefore the delay is ¢y + tgys. In the case shown in Figure 3.8c,
a CAS of rank r just finished transmitting data at ¢, and the first CAS after ¢, is from another
rank k. The only constraint between different ranks is ¢ gz, which is the minimum gap between
the end of data until the start of next data transmission. However, since both ¢y;, and tp;, are

25



greater than ¢z for all devices, the first CAS command can be issued immediately. Thus, the
delay is either gy, + tpys or tywr + tpys depending on whether the first CAS is a read or write
respectively. For the remaining cases, read after read or write after write from the same rank,
there are no timing constraints. Therefore, the delay would simply be tr;, +tpys or twr +1tpus-
To conclude the proof, notice Eq.(3.10) takes the maximum of all the cases discussed for read
and write and hence captures the worst case delay for tp;rsr. O

Notice that beginning with a read command as the first CAS after ¢, leads to the maximum
trrrsT since try, > ty g for all devices and tyy 1 is always positive, hence F'r > Fy,. However,
as will be shown shortly, to maximize the overall delay for ¢-p, it might not be desirable to
always begin with a read after ¢, depending on the calculation for toryEg.
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Figure 3.8: Latency of First CAS after ¢
Next, let us examine the delay from end of data of a CAS command to the end of data of
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Figure 3.9: Delay between two consecutive CAS commands

the next CAS command. For transition between two CAS commands of same rank, the delay
depends on the command order (i.e., write-to-read, read-to-write, read-to-read, and write-to-
write). For transition between two CAS commands of different ranks, the delay only depends on

LRTR-

Lemma 4. Assuming the FIFO is backlogged with only CAS commands, the delay from the end
of data of one CAS command to the end of data of next CAS command is:

Dwr =twrr +trr + tsus if write-to-read of same rank;

Drw =trrw +twr — tre if read-to-write of same rank; 3.11)
Drnvk =trrr +tBus if rank-to-rank transition;

lus otherwise.

Proof. Since the FIFO is backlogged with only CAS commands, this means that the CAS com-
mands will be issued one after another as soon as possible without violating any timing con-
straints. The transition from the end of data of a write command of rank 7 to the end of data of a
read command of rank r is shown in Figure 3.8a and the delay is tyrg + t gL + tsus. The delay
for the transition from the end of read data to write data of rank r is shown in Figure 3.9a and is
computed as maX{tRTW + tWL — tRL — tBUS; 0} + tBUS~ Since tRTW -+ tWL > tRL + tBUS for
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all devices, the expression is reduced to ¢t gy + tywr — try. For the transition between two CAS
commands of different ranks as shown in Figure 3.9b, the delay is simply ¢ zrr+t By s since there
are no additional constraints. For read-to-read or write-to-write transitions of the same rank, the
delay is simply ¢y s since the only contention is the shared data bus; in other words, the data are
transferred continuously without any gap between them. O] 0

Note that Dy g is always greater than the other cases for all devices. Between Dgy and
Dgrnk, the greater of the two depends on the specific device parameters but both are greater than
tpus for all devices. Since Dyy g is always greater than Dgy or Dy, it makes intuitive sense
to maximize the number of write-to-read transitions within the same rank to maximize the worst
case latency. Therefore, the calculation for the maximum number of write-to-read transitions
will be discussed next.

Lemma 5. Assuming the rank under analysis is rank r and all requestors enqueue a CAS com-
mand at time 1o and the CAS under analysis is placed last in the FIFO, the maximum number of
write-to-read transitions in all ranks is expressed in Eq.(3.12).

<Z#T L%D + L%J if CAS under analysis is write;

Twr = (3.12)

Ele L%J if CAS under analysis is read.
Proof. First, notice that grouping requestors of the same rank together will create more write-to-
read transitions since by definition, a write-to-read transition is between requestors of the same
rank. On the other hand, if requestors of same rank are separated by placing commands of other
ranks between them, this does not create any write-to-read or read-to-write transitions, only rank-
to-rank transitions. Hence, to maximize write-to-read, one would only need to consider grouping
requestors of the same ranks together. Now, let us consider ranks that do not contain the core
under analysis (i.e., 7 # r). Figure 3.10a shows two cases of a sequence of read (R) and write
(W) commands within one rank. The maximum number of write-to-read transitions is computed
by dividing the number of requestors in that rank by two and then taking the floor of the result
which yields L%J Since two requestors are needed to form a write-to-read transition, and an
odd one at the beginning or the end can not contribute to a write-to-read transition by itself. For
rank r (i.e., the rank under analysis), the maximum number of write-to-read transitions depends
on whether the CAS under analysis is a read or write since it is the last CAS to transmit data
(i.e., last in the FIFO). Figure 3.10b shows the sequence of CAS commands for the rank under
analysis in different cases. The CAS under analysis is the white box in the figure and it is either
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aread (R) or write (W). One can see that the read case is the same as the other ranks. While for a
write, it can not contribute a write-to-read transition since it is the last one in the FIFO. Therefore,
only the remaining M, — 1 requestors before it can contribute write-to-read transitions and hence
yields L%j Thus, taking the sum of all ranks yield Eq. (3.12) and the lemma is shown to be
correct. ]

R|IWR|WR WIRW|R W

(a) Maximum write-to-read Transition of Other Ranks

READ WRITE
W R|WR RIWR|W
RIWR|WR WRIW R|W

(b) Maximum write-to-read Transition of Rank Under Analysis

Figure 3.10: Maximum write-to-read Transition of One Rank

It is now intuitive to see that £ consists of the latency of the first CAS, t p;gs7, plus the sum
of the transition delays of the remaining CAS commands which is torypgr. Note that tp;rsr is
maximized by beginning with a read while tory pr is maximized by grouping as many write-to-
read transitions together since Dyy i 1s always the largest transition delay. To maximize the - p,
both tp;rsr and tory pr must be maximized. However, the two parts are inter-dependent and
maximizing one parameter might lower the bound on the other. For example, consider the case
where the CAS under analysis is a read and M/, is even for all the ranks. In this case, all ranks
have exactly % number of write-to-read transitions and no requestor is left out with a single read
or write as shown in Figure 3.11a. Therefore, it is not immediately clear whether to break up a
group of write-to-read transitions to put a read command as the first CAS or to keep the write-
to-read and just begin with a write command instead. On the other hand, Figure 3.11b shows the
case where one of the ranks has an extra read. In this case, one can begin with a read to maximize
tprrsT While still maintaining the maximum number of write-to-read groups. Therefore, let us
define a parameter to manage these complexities.

Definition 1. Assuming the rank under analysis is rank r, let E represent the various cases to
indicate whether there is an extra read available or not as follows:
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to
(a) No Ranks Have Extra Read

R|IWR|WR W R|W Rfe ¢ ¢f WR|IWR

to
(b) Other Ranks Have Extra Read

Figure 3.11: Trade off between maximizing tp;rsr and torger

if 35 # rs.t. M, is odd;

if Vj # r, M; is even and M, is odd and CAS under analysis is read; (3.13)
if Vj # r, M; is even and M, is even and CAS under analysis is write; '

O V= =N

otherwise.

For the first case, when £/ = 2, if the number of requestors in other ranks is odd as shown
in Figure 3.10a, then beginning with a read or ending with a write does not affect the maximum
write-to-read transitions and hence choosing a read will help maximize ¢r;rs7. The second and
third case is when other ranks are all even, and hence the rank under analysis must provide the
extra read as shown in Figure 3.10b. Finally, £/ = 0 indicates that no rank has an extra read.

Notice by putting two consecutive write-to-read groups of the same rank together, there is
a read-to-write transition between them. While putting two groups of write-to-read of different
ranks together, there is a rank-to-rank transition between them. Therefore, the problem becomes
how to place the write-to-read groups such that the latency is maximized. Two ILP (Integer
Linear Programming) problems are defined to compute torprr. The variable x is the number
of write-to-read transitions, y is the number of read-to-write transitions and z is the number of

30



rank-to-rank transitions.

Maximize:
- Dwr+vy-Drw + 2+ Drnk (3.14)
Subject to:
r+y+z=M-1 (3.15)
r <Twgr (3.16)
z2>R—-1 (3.17)
reN yeN zeN (3.18)

Definition 2. Let t’OT uEr be the solution to the ILP problem defined in Eq.(3.14)-Eq.(3.18).

Definition 3. Let t,p 1 be the solution to the same ILP problem in Eq.(3.14)-Eq.(3.18) with
the exception of the constraint in Eq.(3.17), which is replaced with z > R.

Lemma 6. An upper bound for the worst case latency of tcp is:

Fr+torgpr ifE=2;
Frttopypr if E=1land R=1;
Fr+torgpr ifE=1land R >2;
Fw +torppr if E=0.

tep = (3.19)

Proof. Let t; be the time at which the CAS command of the core under analysis (CAS under
analysis) is enqueued in the global arbitration FIFO queue and assume rank under analysis is
rank r. First, let us show that the worst case interference on the core under analysis is produced
when at time ¢, there are M — 1 other CAS commands enqueued before the CAS under analysis.
First note that commands enqueued after the CAS under analysis cannot delay it; if the CAS
under analysis is blocked, then any subsequent CAS command is also blocked due to arbitration
Rule-4. PRE or ACT commands of other requestors enqueued after the CAS under analysis can
execute before it according to arbitration Rule-3 if the CAS under analysis is blocked, but they
cannot delay it because those requestors access different banks or ranks, and there are no timing
constraints between CAS and PRE or ACT of a different bank or rank. Each CAS of another
requestor enqueued before the CAS under analysis contributes to its latency for at least a factor
of tgys = 4 due to data bus contention. Now assume by contradiction that a requestor has a PRE
or ACT command enqueued before the CAS under analysis at time ¢,. Since again there are no
timing constraints between such commands, the PRE or ACT command can only delay the CAS
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under analysis for one clock cycle due to command bus contention. Furthermore, after the PRE
or ACT command is issued, any further command of that requestor would be enqueued after the
CAS under analysis. Hence, the requestor would cause a total delay of one cycle, which is less
than ¢y g. Next, let us show that if all requestors enqueue their CAS command at the same time,
to, 1s the worst case pattern. Requestors enqueueing a CAS after ¢y do not cause interference as
already shown. If a requestor enqueues a CAS at time ¢y — A and finishes its data transmission
after ¢y, the overall latency is reduced by A since that requestor cannot enqueue another CAS
before the CAS under analysis at ¢y due to arbitration Rule-1.

Next, let us show the constraints in Eq.(3.15) to Eq.(3.18) holds. The total number of tran-
sitions is M — 1 since at time %, all requestors enqueue a CAS into the FIFO and the transition
delay is the gap between consecutive data; the transition from ¢, to the first CAS is considered
separately in tp;rsyr. Since at some point, the memory controller must switch from servicing
commands of one rank to another, the number of rank transitions z must be greater or equal to
R — 1 where R is the total number of ranks in the system. The maximum number of write-to-
read transitions is Ty, i as proved in Lemma 5. Lastly, all transitions must be integer values since
there can not be fraction of a transition. Next, let us discuss the case when one of the other ranks
has an extra read singled out (i.e., £ = 2). In this case, the first CAS can be a read as shown in
Figure 3.11b, which maximizes ¢r;rsr since Fr > Fyy for all devices. This still maintains the
maximum number of write-to-read transitions. Therefore, tcp is simply Fr + topypg. Simi-
larly, for the case when ¥ = 1 and R = 1, the bound on z remains the same as in Eq. (3.17);
in this case, there are no rank-to-rank transitions at all since there is only a single rank in the
system resulting in z = 0. Therefore, the first CAS can be a read without affecting the maximum
number of write-to-read transitions and hence the delay is still tcp = Fr + topypp-

Next, for the case when there is more than one rank in the system and rank 7 has an extra
read but other ranks do not have a read (i.e., £ = 1 and R > 2). If the extra read is placed as
the first CAS, then the lower bound on z would increase to R because rank r must transmit data
after other ranks (since it contains the CAS under analysis which is placed last in FIFO); this
incurs an extra rank-to-rank switch because the rank following the first read can not be rank 7.
Therefore, placing the read as the first CAS leads to tcp = Fg + gz While not placing the
read first leads to tcp = Fiyy + topypp- Subtracting the two yields,

1" 1
Fr+torupr — Fw —torupr =

=Fr — Fw — (toruer — toruer) =
=Fr — Fyw — max{Dgrw — Drnk,0}

The above equation hold since z increases by one when placing read as the first CAS, which
means that there must be one less write-to-read or read-to-write transitions because total number
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of transitions is still M — 1. However, since Dy, g is greater than both Dgy and Diyg, the
number of write-to-read remains equal to upper bound of x and number of read-to-write transi-
tions must decrease by one. Therefore t,;; ;5 has one more rank-to-rank switch compared to
toripr While torypp has one more read-to-write transition than ¢, ;5. The computed dif-
ference is always greater than zero for all devices. Therefore, the worst case latency is maximized
by beginning with the read as the first CAS resulting in Fg + Loy p-

Finally, to conclude the proof, consider the case when there is no extra read by itself that
could be used as the first CAS as already shown in Figure 3.11a. It is possible to switch the first
write and read commands to make the first CAS a read. Doing so will not increase the bound on 2
since it simply swaps the first write with the second read. However, it will decrease write-to-read
transitions by one and the new bound is z < Ty g — 1. Since x decreases by one, and the total
number of transitions is still M/ — 1, there must be an additional rank-to-rank or read-to-write
transitions. Hence, the delay starting with a write (i.e., keeping the write read group) minus
starting with a read would be,

Fw — Fr+ (Dwgr —max{Dgw, Dpnk })

For the above equation, the maximum of read-to-write or rank-to-rank delay is subtracted from
Dwr. The computed difference is always positive for all devices. Therefore, in this case, the
worst case latency is maximized by leaving the write-to-read group and by beginning with a write
resulting in top = Fyw + tornpp O]

Although an ILP formulation is used to simplify the proof of Lemma 6, the objective function
in Eq.(3.14) can be solved in a greedy manner. The value of = will always be equal to the upper
bound since it will maximize the number of write-to-read transitions, then depending on the
larger value between Dy and Diy, either y or z will be maximized respectively. Combining
Lemmas 2 to 6 then trivially yields the main theorem:

Theorem 1. Assuming that the type of the previous request of the task under analysis is known,
the worst case latency of the current request can be computed as:

thed — tac +tep, (3.20)

where t 4c is derived according to either Eq.(3.1) for an open request or Eq.(3.9) for a close
request, and tcp is derived according to Eq.(3.19).

Proof. As already shown, the ¢ ¢ value is computed according to either Eq.(3.1) or Eq.(3.9)
and it is an upper bound to the arrival-to-CAS latency. The ¢{c-p value computed according
to Eq.(3.19) is an upper bound to the CAS-to-Data latency. Hence, the sum of the two upper
bounds is also an upper bound to the overall latency t%¢¢ of the current request from its arrival at
the front of requestor command buffer to finishing transmitting its data. [
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3.3 Worst Case Cumulative Latency

This section shows how to use the results of previous section to compute the cumulative latency
over all requests generated by the task under analysis. Let us assume that the requestor executing
the task under analysis is a fully timing compositional core as described in [23]. This implies that
the core is in-order and it will stall on every memory request including store requests. Therefore,
the task under analysis can not have more than one request at once in the request queue of
the memory controller, and the cumulative latency over all requests performed by the task can
simply be computed as the sum of the latencies of individual requests. If modern out of order
cores are considered, then the latency of store requests might not need to be considered because
the architecture could effectively hide store latency. In addition, multiple outstanding requests
could simultaneously be in the request queue of the memory controller. Therefore, the core and
memory controller behaviours should be jointly analyzed to derive a safe worst case upper bound.
However, the focus of this thesis is not on modeling cores; furthermore, note that the analysis
in Section 3.2 can be applied regardless of the type of cores. Other requestors in the system
can be out of order cores or DMAs. While these requestors could have more than one request
in their request queues, this does not affect the analysis since each requestor can still enqueue
only one command at a time in the global FIFO queue. No further assumptions are made on
the behaviour of other requestors. For simplicity, let us assume that the task under analysis runs
non-preemptively on its assigned core; however, the analysis could be easily extended if the
maximum number of preemptions is known.

To derive a latency bound for the task under analysis, characterization of its memory requests
is needed. Specifically, the analysis needs: (1) the number of each type of request, as summarized
in Table 3.2; (2) and the order in which requests of different types are generated. There are two
general ways of obtaining such a characterization. One way is by measurement, running the task
either on the real hardware platform or in an architectural simulator while recording a trace of
memory requests. This method has the benefit of providing us with both the number and the order
of memory requests. However, one can never be confident that the obtained trace corresponds
to the worst case. Alternatively, a static analysis tool [24] can be employed to obtain safe upper
bounds on the number of each type of requests. However, static analysis cannot provide a detailed
requests order, since in general, the order is dependent on input values and code path, initial
cache state, etc. Since the analysis in Section 3.2 depends on the order of requests, this section
shows how to derive a safe worst case requests order given the number of each type of requests.
Regardless of which method is used, note that the number of open/close and load/store requests
depend only on the task itself since private bank mapping is used to eliminate row misses caused
by other requestors.

If the request order is known, then the cumulative latency can be obtained as the sum of the
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Nop, Number of Open Load
N¢p, Number of Close Load
Nos Number of Open Store
Ncg Number of Close Store

Table 3.2: Notation for Request Types

latency for each individual request, since the previous request is known based on the order. If
the request order is not known, then a worst case pattern needs to be derived. It is clear from the
analysis in Section 3.2 that ¢ 4 depends on the order of requests for the core under analysis while
tep does not. This allow us to decompose the cumulative latency ¢7%** into two parts similar
to before: tg‘}j*’“, the sum of the ¢-p portion of all requests, which is independent of the order;
and t4%*, the sum of the 4o portion of all requests, for which a worst case request pattern is
needed. t1%5% is computed according to Eq.(3.21), where t854? is the {cp delay when the CAS
under analysis is read while ¢¥5* is for a write. Note the difference between the two is captured

in Eq. (3.12) and Eq. (3.13).

tLesk — (Nor + Nep) - tE59 4 (Nog + Nes) - te e, (3.21)

Now let us consider the different possible cases for ¢t4-. Note that ¢4, as computed in
Eq.(3.1) and Eq.(3.9), depends on both the previous request of the task under analysis and the
specific values of timing constraints, which vary based on the DDR device. A comprehensive
evaluation of ¢ 4¢ for all DDR3 devices defined in JEDEC is conducted and complete numeric
results are provided in [25]. Table 3.3 shows the summary of the results based on the types
of the current and previous requests, where for ease of comparison %4, is defined as the ¢ ¢
latency of a close request preceded by an open load (i.e., Case-3). Note that ¢4, depends on
the number of requestors M and M,., while all other parameters in the table do not. Also, for
all devices and numbers of requestors, t., is significantly larger than timing constraint ¢y rg.
Finally, computed terms Atg and Atj, are the additional delays compared to Case-3 for Case-1
and Case-2, respectively and they are always positive, with Atg being larger than Aty for all
devices.

Notice three observations: first, open stores incur no ¢4 latency. Second, both open load
and close load/store requests suffer higher latency when preceded by a store request (Case-1 and
Case-4 respectively). When a close request is preceded by a load request instead, the latency is
maximized when the preceding request is a close load rather than an open load (Case-2 rather
than Case-3). Therefore, intuitively a worst case pattern can be constructed by grouping all close
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1 close (load or store) (close or open) store tgev + Atg
2 close (load or store) close load taew + Aty
3 close (load or store) open load taew

4 open load (close or open) store twrr

5 All other request 0

Table 3.3: Arrival-to-CAS Latency Summary

requests together, followed by open loads, and then “distributing” store requests so that each
store precedes either an open load or a close load/store request: in the first case, the latency of
the open load request is increased by ¢y, while in the second case, the latency of the close
request is increased by Atg — Aty, i.e., the difference between Case-1 and Case-2. One can
then obtain a bound to the cumulative ¢ 4 latency as the solution of the following ILP problem,
where variable x represents the number of stores that precede a close request and y represents
the number of stores that precede an open load.

Maximize:
(NCL -+ Ncs) . (tdefu + AtL) + (Ats — AtL) - +twrr Y (3.22)

Subject to:
y < Nor, (3.23)
x < Nep + Nes (3.24)
x4y < Nos+ Nes + 1 (3.25)
reN, yeN (3.26)
Lemma 7. The solution of the ILP problem defined in Eq.(3.22)-Eq.(3.26) is a valid upper bound
to th%*,

Proof. By definition, the number of store requests y that can precede an open load is at most
the total number of open loads. Similarly, the number of store request x that can precede a close
request is at most the total number of close requests. Finally, notice that the total number of stores
x + y is at most equal to Npgs + Neg + 1; the extra store is due to the fact that one do not know
the state of the DRAM before the start of the task, hence one can conservatively assume that a
store operation precedes the first request generated by the task. Hence, Constraints (3.23)-(3.26)
hold.
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One can then obtain an upper bound on t4%* by simply summing the contribution of each

case according to Table 3.3: (1) open stores add no latency; (2) y open loads add latency ty g - v;
the remaining N7, —y requests add no latency; (3) z close requests add latency (t4e, +Atg)-x; in
the worst case, the remaining Ncy + Nes —x requests add latency (t4e,+At L) (Neor+ Neos—1),
since the latency for Case-2 is higher than for Case-3. The sum of all contributions is equivalent
to Eq.(3.22). Since furthermore Eq.(3.22) is maximized over all possible values of x,y, the
Lemma holds. [

While an ILP formulation is used to simplify the proof of Lemma 7, it is intuitive to see based
on Eq.(3.22) that the problem can be solved in a greedy manner similar to the ILP solution for
tep: if Atg — Aty is larger than ¢ty g, then the objective function is maximized by maximizing
the value of x (i.e., allocate stores before close requests as much as possible), otherwise, by
maximizing the value of .

The final DRAM event that needs to be considered in the analysis is the refresh. A refresh
command is issued periodically with a period of ¢tz ;. The time it takes to perform the refresh
1S trre, during which the DRAM cannot service any request. An added complexity is that
all row buffers are closed upon a refresh; hence, some requests that would be categorized as
open can be turned into close requests. To determine how many open requests can be changed
to close requests, one needs to compute how many refresh operations can take place during
the execution of the task. However, the execution time of the task depends on the cumulative
memory latency, which in turn depends on the number of open/close requests. Therefore, there is
a circular dependency between the number of refreshes and the cumulative latency 7. Hence,
an iterative approach is used to determine the number of refresh operations as shown in Eq.(3.27)-
(3.28).

k° =0, (3.27)
ki = VZ%S’“(W) + 85" + teomp + K- tarc
tREFI ’

(3.28)

where,

4% (k") = upper bound on %"

computed after changing
k' open requests to close requests
tcomp = task computation time, i.e., execution time assuming
that memory requests have zero latency

k' trrc = time taken to perform k' refresh operations
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At each iteration i + 1, compute the execution time of the task as ¢z = t4%* (k') + tL%F +
teomp + k' - trrpc based on the number of refresh operations &* computed during the previous

iteration. The new number of refreshes k™! can then be upper bounded by {%-‘ Hence,

the fix point of the iteration k represents an upper bound on the worst case number of refreshes
suffered by the task under analysis.

It remains to compute ¢4%% (k); in particular, when computing ¢44* (k%) according to the ILP

problem in Eq.(3.22)-Eq.(3.26), one needs to determine whether the latency bound is maximized
by changing open store requests to close stores or open load requests to close loads.

Lemma 8. Consider computing an upper bound to t1%% according to ILP problem (3.22)-
(3.26), after changing up to k open requests to close requests. The solution of the ILP prob-
lem is maximized by changing | = min{k, Nog} open store requests to close store requests and
max { min{k — [, Nor.}, O} open load requests to close load requests.

Proof. First notice that, no more than Npg open store requests can be changed to close stores
and no more than Ny, open load requests can be changed to close loads. Let us examine the
effect of changing an open store to a close store. First, the constant term in the objective function
increases by 4., + Aty. Constraints (3.23) and (3.25) remain unchanged but the upper bound of
Constraint (3.24) increases by one. By comparison, by changing an open load to a close load, the
objective function and Constraint (3.24) are modified in the same way, but the upper bound of
Constraint (3.23) decreases by one. Hence, the resulting optimization problem is more relaxed
in the case of an open store to close store change, meaning that the ILP result is maximized by
first changing up to min{k, Nos} open store requests to close store. Furthermore, if Npg < k,
then notice that the ILP result is maximized by changing up to min{k — Npg, Nor} open load
requests to close load: each time an open load is changed into a close load, the constant term in
the objective function increases by ¢4, + Aty, but the ILP result might be decreased by a factor
of at most ¢y due to the change to Constraint (3.23). However since t4., + Aty > tyrg for
all devices as pointed out in Table 3.3, this is still a net increase. L]
The derivations of t5%¥, k and t4%* then trivially yield the second theorem.

Theorem 2. An upper bound to the cumulative latency of all memory requests generated by the
task under analysis is:

glask — ¢losk 4 ¢Z0% 4 k- trrc, (3.29)

where tL33* is computed according to Eq.(3.21), k is obtained as the fixed point of the iteration

in Eq.(3.27)—(3.28), and tg‘é‘?k is the solution of the ILP problem (3.22)-(3.26) after changing up
to k open requests to close requests according to Lemma 8.
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3.4 Shared Data

This section describes how to handle shared data for the proposed memory controller within the
overall context of the system architecture. In hard real time systems, it is possible that a faulty
function in one core can corrupt memory of other cores or monopolize the entry system’s re-
sources and thus deny service to other cores. Therefore, shared data must be treated with caution.
Hence, there must be mechanisms that can detect and handle fault containment between differ-
ent cores and resources. Many research efforts have been dedicated to solving these problems
and one approach is to partition the system resources into different software partitions and each
one executes in isolation with minimal communication across partitions. For example, avionics
systems use integrated modular avionics (IMA) [4, 26] to partition the system into a set of soft-
ware partitions where each partition contains a set of applications and is allocated on a single
core. A single core can be assigned multiple partitions and the partitions are executed within as-
signed time slices from the core as shown in Figure 3.12. Furthermore, each partition is assigned
its own set of resources such as DRAM banks, which isolates and minimizes interference from
other partitions executing on a different core.

Core 1 Core N

Figure 3.12: Itegrated Modular Avionic Systems

In this case, two different partitions executing on two different cores at the same time may
need to share data. For example, partition A (P4 in figure) and partition D (#p) may be commu-
nicating with each other through shared data. To support this, the memory controller is modified
as shown in Figure 3.13 (note that the front end command generator is omitted for clarity). First,
the set of DRAM banks that contain shared data are partitioned as a “virtual” requestor where
in the back-end an additional “virtual” requestor command buffer for each set of shared banks
is allocated. Note that requestors can have more than one set of DRAM banks assigned to them
where one set is for shared data and another set is for private data. Then, the front end is modi-
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fied such that it allows each communicating requestor to issue a request to either its own private
request queues (for non-shared data) or to the shared queues. However to guarantee predictable
timing, a round robin arbitration is used among the communicating cores for access to the virtual
requestors. Since communicating requestors can close each others’ rows, one must assume that
all requests issued by the virtual requestor are close requests. Assume there are s number of
virtual requestors since there can be multiple groups of requestors that share data. Furthermore,
assume £ is an upper bound to the number of requestors that contend with the core under analysis
for shared data in a virtual requestor, the worst case delay for a single request for shared data of
core under analysis is:
t?iezgred (k - 1) g:lqwr(M +s— 1) + tljfgllysis(M +s5— 1) (330)
Note tgfgﬂ (M + s — 1) is the latency of a single request for the other requestors that contend for
shared data and is calculated according to Eq. (3.20) but with M + s — 1 number of requestors
contending. Since that core under analysis is in- order and is making a request to shared data
and hence, can not contend. In the worst case, tOt,m is the max1mum between a close load or
close store, which depends on the device parameters. For ¢he Analws, it is the single request latency
for shared data for the core under analysis and we know whether it is a load or store, so no
maximum needs to be taken. Finally, assume the number of loads to shared data is Ng;, and
number of stores for shared data is Ngg for core under analysis, then the total latency for shared
data access is,
thZﬁed - NSL tShared(‘Loa’d) + NSS tShared(Store>‘ (331)

Note t?ﬁgmd(Load) is the share data latency for load request from task under analysis while

tard (Store)is for a store request. Both are calculated according to Eq. (3.30) where tﬁi%lysis (M+

s — 1) in Eq. (3.30) changes depending on whether it is a load or store request.

Finally, the cumulative latency of the task, ¢7%**, has an added component, %% .= which
must be included along with the other parts such as t44* and t5%*. We can simply add this
component to the original cumulative latency described in Eq. (3.29) because the activity in the
virtual requestors are independent from the activity of the private requestors. Therefore, the

cumulative latency accounting for shared data is,
10 = LR8P H1EPE + farea + K - trrc. (3.32)

Note that t£#* = must also be used in the computation of total number of refresh operations &
in Eq. (3.27) and Eq. (3.28), where in each iteration 7 + 1, the execution time of the task is now
computed as tepe. = t4%*(kY) + tZ8% + L% A toomp + k' trEiC -

Even when the system is structured as a set of software partitions, high-speed /O still requires
data to be shared among cores and DMA requestors. In this case, the same approach as in [27]
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Figure 3.13: Modified Memory Controller to Handle Shared Data

can be used: assume that a global schedule is computed, where the execution of a software
partition and each DMA requestor that performs input/output for that partition is not overlapped
in time. As in [27], one can argue that this static I/O scheduling approach is in fact common for
safety-critical applications. One can thus support I/O communication in the back-end by treating
each DMA as a separate requestor. The front-end is then modified to allow each core to access
either its own private bank partition, or the partition of any DMA requestor used by that core;
the global schedule ensures that there is no contention for access to the DMA bank partition. For
example, while partition A in Figure 3.12 is executing on core 1, the DMA for P4 will not be
executing and hence will not access data at the same time as core 1. When core 1 is executing
on some other partition, then DMA for P, will access the bank of P4 while core 1 is accessing

> T1T11

N

~

Global
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/

a different bank that belongs to a different partition.
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Chapter 4

Memory Controller Modelling

The worst case latency analysis of a predictable memory controller presented in Chapter 3 de-
pends on the arbitration policy and queueing structure of the memory controller. This chapter
discusses how one can obtain such information from an existing memory controller for an em-
bedded platform of interest. This information is not always provided in the documentation by the
manufacturers. For example, the Freescale P4080 platform [9] comes with thousands of pages of
user manuals but no information about the memory controller is included. Without this informa-
tion, it is very difficult to try to come up with a worst case latency analysis for the controller of
interest. Therefore, this chapter will describe a set of experiments that could be used to reverse
engineer a reasonable behaviour model for the memory controller since coming up with the exact
details of the controller is very difficult due to other parts of the system such as a shared bus, a
coherency network, and cache optimization mechanisms such as stashing, locking and coloring.
First, a set of measurement benchmarks will be presented to show how these benchmarks can
reveal important information about how the memory controller operates. Then, a set of exper-
iments using these benchmarks in different scenarios are conducted on a real platform and the
analysis of these results yields a reasonable model for the controller.

Once the memory controller model is known, one can apply worst case latency analysis to
the controller by following the same train of thought introduced in Chapter 3. The main idea
is to decompose a request into multiple smaller analyzable parts. Although the arbitration and
queueing structure between various controllers are different, by decomposing the request into
smaller and more manageable parts, it will make the analysis more manageable. In particular,
the analysis for each command is done separately. As a result of such analysis, it is very possible
to see that the worst case latency could be in fact unbounded. Although this is not the ideal result
for hard real time system, it is nevertheless an important result that shows the unpredictability of
the system.
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4.1 Measurement Benchmarks

In this section, two measurement benchmarks called Latency and Bandwidth are discussed to
show how these benchmarks can help study the characteristics of the memory. The latency
benchmark allocates a large contiguous block of memory for a linked-list data structure. The
size of each element in the linked list is equal to the size of a cache block and the total size
of the linked list is greater than the size of the last level cache. In this way, when iterating
through the list sequentially, every access to the elements will cause a cache miss in the last level
cache and hence must access main memory (note cache pre-fetching is disabled). In addition, by
using a linked list to traverse through each element (cache block), this creates a data dependency.
In particular, two successive memory instructions that access elements of linked list contain a
read after write (RAW) dependency (or hazard) as shown in Figure 4.1. The source operand is
the second parameter while the destination is the first parameter. As shown, the first memory
instruction loads the data from a memory address, which is stored in register r9 (with zero offset)
and stores the data back into register r9. Therefore, the second memory instruction must wait
until the data of first instruction is written into register r9 before it can determine the next memory
address to load the data. Thus, the second instruction must stall until the first memory access is
complete. The memory instruction is executed inside a loop that accesses memory blocks and
one can measure the total time taken to access the entire chunk of allocated memory and then
divide the measured time by the total number of accesses to obtain the latency of a single memory
access; hence, this benchmark is termed Latency. The bandwidth benchmark uses an array data
structure and again the total size of allocated memory is larger than the last level cache and each
element is the size of a cache block. Because this benchmark uses an array instead of a linked-
list, it can access any elements in the array (i.e., random access) instead of using pointers to get
the next element. Therefore, two successive memory instructions do not have a RAW hazard and
thus, can be issued concurrently since most modern processors can issue multiple outstanding
memory requests (note that register 12 is incremented before the second memory load). The
total time measured to access the entire block of memory is more representative of the amount
of bandwidth that the memory controller was able to output to the core and hence it is termed
Bandwidth.

In addition, there are different memory access patterns and they play an important role in
the latency of memory access. For example, sequential access simply accesses each cache block
one after another and this results in the best memory latency. This is because each DRAM row
contains many cache blocks and accessing them sequentially increases the row hit. In contrast,
each memory access can jump to a different row within the same bank and result in the worst
memory latency since each access is a close request. For a real benchmark, the memory access
pattern will be a combination of these two cases and it is a characteristic of the benchmark itself
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/* Latency Benchmark: Two Successive Memory Instructions */
Load 19, 0(19)

Load 19, 0(r9)

/* Bandwidth Benchmark: Two Successive Memory Instructions x/
Load 19, 0(12)

Load 19, 0(12)

Figure 4.1: Latency and Bandwidth Benchmark

and it determines the row hit ratio. Therefore, the sequential access is a lower bound while
page access is an upper bound on the memory latency for any benchmarks. Table 4.1 shows the
measured average latency for one memory access for Latency and Bandiwdth benchmarks. Note
that the bandwidth benchmark is more of a measure of throughput instead of the absolute latency
for a single memory access. Notice that for page access, both latency and bandwidth benchmark
result in similar latency. Even though bandwidth can issue multiple outstanding requests to the
memory controller, it is still a close request and therefore the controller must open a new row
for every access. Therefore, it is evident that latency of close access is predictable and hence
competing controllers utilize close row policy for this reason. Note for the write case, there is no
difference between latency and bandwidth since modern processors have a set of optimizations
to handle write requests so the core does not have to stall such as the use of store buffers and
grouping a batch of writes in memory (hence, only one column is shown). Another architecture
effect on the memory latency is the use of TLB for systems utilizing virtual memory. The TLB is
essentially a cache used to store virtual to physical page table entries. For the page jump access,
if the total number of allocated pages is more than the size of the last level TLB, then there would
be an additional TLB miss (i.e. cache miss) and therefore another memory access is needed to
retrieve the page table entry before the actual memory access can proceed, thus further delaying
the memory access latency.
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Pattern Latency-Read Bandiwdth-Read | Write
Sequential | 75 44 56
Page Jump | 182 184 112

Table 4.1: Latency of Different Memory Access Patterns

4.2 Case Study

This section will walk through the process of reverse engineering the memory controller for the
Freescale P4080 embedded platform [9]. Two important parameters of interest are 1) the queuing
structure for incoming request and 2) the arbitration policy. It is difficult to determine both factors
at once by conducting a single experiment. Therefore, a set of experiments are conducted with
assumptions about one of the parameters to interpret and analyze the result. The summary of
all the experimental results is that the controller has a queue for storing incoming requests in
FIFO order and the arbitration policy is basically FIFO (i.e., the request at the front of the queue
is issued). This means that the controller has no optimization to re-order requests to improve
bandwidth or latency and hence it is quite simple, which can be easier to analyze to produce a
predictable bound. The P4080 embedded system is often used in the avionics industry.

Initial Experiment:

The experiment setup is as follows: Core 0 is executing the bandwidth benchmark and the num-
ber of other cores that execute at the same time as Core 0 is varied from O to 7. The other cores
are also executing the bandwidth benchmark as well but a separate instance of the benchmark
(the benchmark is not multi-threaded) and no cores share any data with any other cores. Three
cases of the experiments were conducted. The first case is when all the cores are accessing the
same bank of DRAM (different rows within the same bank since no data is shared). The second
case is when all the cores are accessing a different bank from one another (basically each core
has private bank). The last case is in-between the two where Core 0 accesses bank 0 and all other
cores access bank 7. What is being measured in the experiments is the amount of bandwidth
Core 0 effectively gets while other cores are running or in isolation (y-axis in Figure 4.2).

From the result in Figure 4.2, notice that a per-bank queue structure would not be possible
under a round-robin assumption for arbitration. This is because if each bank had its own queue,
then the last case (diffbankB7 in Figure 4.2) would be relatively flat. This is because regardless
of how many other cores are in the one queue, round robin would pick Core 0 every other access.
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Figure 4.2: P4080 Bandwidth Experiment

One possibility is a global FIFO queue with FIFO arbitration. In this case, all three experiments
are consistent with theoretic behavior. For case one (same bank), all requests are in FIFO order
and they all target the same bank. Due to slow timing constraints for accessing same bank, this
results in the lowest bandwidth given to Core 0. For the second case (diffbank1-7), access to
different banks can occur in parallel and hence the request in FIFO order can be serviced faster
and results in the most bandwidth for Core 0. For the last case, all other cores are still accessing
the same bank except for Core 0. Hence, it would still take quite long to service all the requests
in FIFO order and this case is only slightly better than case one. Note that there is no reason
why Core 0’s request must wait until all preceding requests that target the same bank are finished
before it can go. It accesses a different bank and hence could be issued in parallel. Therefore,
this suggests that there is no re-ordering of requests in the memory controller.

Another possibility is a per-core queue with round-robin arbitration. In this case, requests
that belong to the same core will be stored in their own queue. For the first case (same bank),
again due to slow timing constraints the time taken to complete one round of arbitration among
all cores would be longer. In the second case (diffbank1-7), accesses can happen in parallel and
therefore the time to complete one round of arbitration is much faster. Similarly, the last case
(diffbank7) would take quite long to complete one round of arbitration because all other cores
except Core 0 are targeting same bank and Core 0 must wait until its turn. Although to design

46



intellectual property that depends on another part of the system is unlikely, the possibility of
per-core queues is still possible and further experiments are done to eliminate this possibility.

Global vs Per-Core Queue:

This experiment is setup as follows: half of the cores are running the “latency” benchmark and
the other half are running the “bandwidth” benchmark. All cores access their private bank with
no shared data. The difference between the two is that bandwidth can generate multiple memory
requests while latency can only generate one request at a time due to dependencies. Again, the
amount of bandwidth of each core is measured and the results are shown in Figure 4.3. Note that
the y-axis shows the average of the cores running the same benchmarks.

Global vs Per-Core Queue

300

N
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100 —

Average BW (MB/s)

Ul
o

Latency Cores Bandwidth Cores

Figure 4.3: P4080 Global vs Per-Core Queue

The result shows that a per-core queue is unlikely because regardless of how many requests
the benchmark can generate, it is a round robin between all the cores and hence the expected
result is that both would receive similar bandwidth. Note that in the experiment, the latency
cores are guaranteed to have another request in the queue by the time the round robin comes
back around to the same core. This result confirms that it is in fact a global queue because the
bandwidth benchmark would be able to insert more requests into the global queue and hence
the latency cores must wait for the bandwidth benchmarks. This explains why cores running the
bandwidth benchmark have higher bandwidth than latency cores.
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Re-ordering Experiment:

From the initial experiment, it seems that the controller does not perform any re-ordering of
requests that target different banks. This experiment further examines whether the controller
performs any re-ordering targeting different rows of the same bank. Because closing and opening
a new row within the same bank is an expensive operation, re-ordering requests that target the
same row would improve bandwidth.

The experiment is setup as follows: all the cores will be accessing the same bank but different
rows since no data is shared. All the cores will be running the latency benchmark where the core
stalls on every memory request, with the exception for Core 0. Core 0 is running a modified
version of latency where there can be two outstanding requests to the memory that target the
same row. There is a slight time delay between sending the two request to the memory controller
to ensure there will be requests from another core in between the two requests of Core 0 as shown
in Figure 4.4. The core number is denoted by C# and the rows are denoted by R#.

, G c4 CO C3 &
RS R6 R1 R2 RS R1

Figure 4.4: P4080 Reordering Experiment Setup

The result of the experiment is shown in Figure 4.5. If there was any re-ordering of requests
done, one would expect the bandwidth of Core 0 to be higher than the bandwidth of other cores
that only have one request. However, the result shows that the bandwidth is more or less equal
to one another and this confirms the fact that the controller does not re-order any requests that
target different banks or different rows within the same bank.
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Chapter 5

Evaluation

This chapter discusses the experimental setup and methodology and presents the WCET calcu-
lation results based on the analysis presented in Chapter 3. In addition, this chapter discusses the
simulator for the proposed memory controller and simulation results.

5.1 Experimental Setup

The experiments are done in a trace driven approach. First a set of benchmarks are run on the
gemS5[28] architecture simulator to obtain memory traces. The simulated architecture includes
a single in order CPU clocked at 1 GHz to run the benchmark in isolation (i.e., no other cores).
There is a private level 1 and level 2 cache. The level 1 cache is split between 32 kB of instruction
and 64 kB of data. Level 2 is a unified cache of 2 MB and cache block size is 64 bytes. The
level 2 is the last level cache and it is write back and non-blocking cache with a MSHR (miss
status holding register) and a write buffer. All prefetching mechanisms are disabled and the
replacement policy is LRU (least recently used). The DRAM memory used in gemS5 is a simple
DRAM with a fixed latency. Therefore, the latency was set to zero in order to use the memory
model presented in Chapter 3 to more accurately model the delay in main memory. Essentially,
the memory trace contains the timestamp when each request was sent to main memory (i.e., last
level cache miss) and the time gap between two consecutive requests is the time spent in the
rest of the system such as the CPU and cache. The traces are used as inputs to both the WCET
calculation engine and the simulator as shown in Figure 5.1. Hence, the calculations and the
simulator will add the realistic memory delay suffered by the core to the total execution time
of the benchmark. The WCET calculation always produces the worst case latency based on the
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memory device and the total number of requestors contending with the core under analysis. The
simulator produces the actual delay based on the state of the controller at the time instance and
the interference from other cores.

Memory Device

Memory Trace WCET Engme Execution Time
gem5 > Or - 5

Simulator

Figure 5.1: Experimental Setup

5.2 WCET Calculation

In this section, the worst case latency of the proposed controller is compared directly against
the Analyzable Memory Controller (AMC) [10] since AMC employs a fair round robin arbitra-
tion that does not prioritize the requestors, which is similar to the proposed memory controller.
Therefore, no comparisons are made against [ |, 13] because they use a non-fair arbitration that
requires knowledge about the characteristics of all requestors. Furthermore, to make the compar-
ison fair, results for 64 bits and 32 bits data bus widths are shown. Since AMC uses interleaved
bank, it does not make sense to interleave any bank for 64 bits data bus because the size of each
request would be too large compared to cache block size (64 bytes) and this can be wasteful as
discussed in Section 2.4. Therefore, for a 32 bit data bus, AMC interleaves over two banks while
the proposed controller needs to make two separate requests to transfer a single cache block as
discussed in Section 2.3. In addition, note that AMC only works for devices with one rank.
However, the effect of multiple ranks is shown in order to study its effect on latency bounds.
The worst case latency analysis is applied to both synthetic and real benchmarks. The former is
used to show how the latency bound varies as various task parameters are changed. The memory
device used is a 2 GB DDR3-1333H.
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5.2.1 Synthetic Benchmark

Since synthetic benchmarks are used, various parameters can be changed and used as inputs to
the analysis. Note that no actual trace of a synthetic benchmark is used. The various parameters
that characterize the benchmark are the inputs to the worst case latency calculation. To calculate
the average worst case latency, one would need to sum the total delay of all memory requests
and then divide it by the total number of requests. However, since synthetic benchmarks are
used, the total request number does not matter since it is divided out in the end. Therefore, only
the ratio of loads to stores and the row hit ratio matters in the calculation. Finally, the refresh
delay is not considered here for both AMC and this work for simplicity but it is included in the
real benchmark results. In short, the purpose is to study how the various characteristics of a
benchmark would affect the worst case latency.

First the effect of the row hit ratio on the worst case latency is examined. The row hit ratio
of the benchmark determines the number of open and close requests. Figure 5.2 shows the result
of 4 and 16 requestors for both 32 bit and 64 bit data buses. It shows how the average worst
case latency (y-axis) changes as the row hit ratio (x-axis) is varied between 0% to 100%. Note
that the worst case memory pattern is calculated according to Section 3.3. In addition, the store
percentage is arbitrarily fixed at 20% of total requests (i.e., 20% store and 80% loads). However,
for a real benchmark the number of load and store requests would be obtained as the output of
a static analysis tool such as [24], with the derived row hit ratio being a safe lower bound. In
the figures, AMC is a straight line in the graph since they use a close row policy, therefore the
latency does not depend on the row hit ratio. For the proposed controller, the latency for 1, 2 and
4 ranks are shown. Note that the requestors are divided evenly amongst the ranks. Since an open
row policy is used, the latency improves as the row hit ratio increases.

For 4 requestors and a 64 bit bus, the proposed controller for a single rank is between 23%
to 56% better than AMC for 0% and 100% row hit ratios, respectively. The improvement is even
greater for 16 requestors and hence, the proposed controller performs better as the number of
requestors increases until the physical bank limitation is reached. For 4 requestors and a 32 bit
data bus of a single rank, the controller performs 16% worse than AMC for 0% row hit ratio
but it is up to 16% better for 100% row hit. Note that 2 and 4 ranks performs better than single
rank when the row hit ratio is low because the interference on ACT commands is reduced. It
is interesting to note that for 4 requestors and 4 ranks, the latency is up to 27% better than 1
rank; this is because requestors are divided evenly amongst ranks with each rank only having 1
requestor and hence, there are no write-to-read groups at all. For 16 requestors, the latency of
1, 2, and 4 ranks are very similar to each other but more ranks tend to do better when the row
hit is low; when the row hit ratio is high, the latency bound is the same for this particular device
because the rank-to-rank switch and read-to-write switch is the same. However, for different
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Figure 5.2: Synthetic Benchmark Results

devices, the single rank latency could be better than multi-rank when the row hit ratio is high.
Figure 5.3 shows how the average worst case latency bound varies as the number of requestors
increases from 4 to 16 for both 0% and 100% row hit ratio with 64 bit and 32 bit data buses. Note
that the store percentage is fixed at 20%. It is evident that as number of requestors increases, the
latency bound of AMC increases at a faster rate compared to the proposed controller.

Table 5.1 shows the average worst case latency for a few DDR3 devices of different speed.
The number of requestors is fixed at 4, the row hit ratio is 50% and the store percentage is
20%. As the speed of DRAM devices becomes faster, the proposed controller improves rapidly
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Figure 5.3: Synthetic Benchmark Results

compared to AMC. For example, comparing 800D and 2133M devices, the worst case latency
decreases by 47% for the new controller (136 ns to 92.18 ns) while only by 14% for AMC (185 ns
to 163 ns). This is because as clock frequency increases in memory devices, the difference in the

AMC-64bits | 185 | 185.27 | 180.9 178 | 169.84 | 163
1Rank-64bits | 136 | 119.82 | 109.65 | 104.88 | 97.73 | 92.18

Table 5.1: Average Worst Case Latency (ns) of DDR3 Devices
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latency between open and close requests is increasing. Therefore, the close row policy becomes
too pessimistic, while one can argue that an open row policy is better suited for current and future
generations of memory devices. Finally, fixing store percentages to 20% in the experiments does
not have any effect on the general trends discussed above.

5.2.2 CHStone Benchmark

The CHStone benchmark suite [29] was used for evaluation. All twelve benchmarks were run
on the Gem5 [28] simulator to obtain memory traces, which are used as inputs to the analysis.
The analysis computes the worst case latency for every single request and sums the latency for
all requests. Note that since a trace is given, the computation uses the order of the requests to
determine open or close row access with refresh operations taken into account for both AMC and
the proposed controller.

Figure 5.4 and 5.5 shows the result for 4 and 16 requestors for both 64 bit and 32 bit data
buses. The y-axis is the worst case execution time in nano seconds but the results were normal-
ized against AMC, which is always 1 and thus not shown. For 4 requestors and a 64 bit data
bus for a single rank, the controller is between 2% to 27% better than AMC (Note that the lower
the value on the y-axis the better the improvement). For 16 requestors and a 64 bit data bus for
a single rank, the controller is between 9% to 45% better than AMC. Therefore, as the number
of requestors increases, the controller improves more. The highest improvement is shown by
gsm and motion while the lowest improvement is shown by jpeg. The amount of improvement
depends on the benchmark itself. Specifically, it depends on both the row hit ratio as well as the
stall ratio, i.e., the percentage of time that the core would be stalled waiting for memory accesses
when the benchmark is executed in isolation without other memory requestors. The row hit ratio
ranges from 29% (jpeg) to 52% (sha) and the stall ratio ranges from 3% (jpeg) to 36% (motion)
for all benchmarks. Note that even for a 32 bit data bus, most of the benchmarks perform better
than AMC, especially for 4 ranks. The lowest improvement is 1% for jpeg. Some of the bench-
marks perform worse than AMC for a single rank but with a maximum of only 3% worse. The
results show that 2 and 4 ranks perform better than a single rank as expected in the worst case
since ACT commands have less interference.

5.3 Simulation

This section discusses the implementation of both the proposed memory controller and AMC.
Results of the simulation are compared against AMC. Also comparisons between simulated re-
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Figure 5.4: CHStone 4 Requestors Result
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sults and worst case calculation results based on the analysis are presented.

5.3.1 Simulator Design

A cycle accurate simulator of the proposed controller is implemented in Python with an object-
oriented approach and the UML diagram is shown in Figure 5.6. The core object reads an input
trace file and generates a request object which is sent to the memory controller. There are two
types of cores, one is in-order which waits until the data of previous request returns from the
controller before sending the next one while out of order cores can generate multiple outstanding
memory requests. The controller’s front end has a set of queues to store the incoming requests
from the core and each cycle it generates commands for the request at the head of each queue;
then the commands are sent to the command buffers of the back end. The commands are gen-
erated based on the status of the banks and ranks at that particular time instant and the bank
and rank status is updated. The controller’s back end is responsible for issuing requests on the
command bus while ensuring no timing constraints are violated. It is responsible for updating
the various timing parameters every time a command is issued in order to keep track of the state
of the bank and ranks. Furthermore, there is a data queue to store data objects which are sent
back to the cores if it is a load command.

The refresh operation is handled in the following way: every time a refresh period is reached,
instead of performing a refresh immediately, the refresh is delayed until all remaining CAS
commands in the FIFO are issued since the JEDEC requirement for the refresh operation can take
place within a relatively wide window of time. In the mean time, no commands are generated
by the front end but new requests can still be stored in the request queues; the back end does
not insert additional commands into the FIFO from the command buffers. Furthermore, the
head command of each command buffer is modified in the following way: if the command is
a CAS, then a ACT is inserted before it (i.e., the head command is now an ACT) since after
refresh all row buffers are closed. If the head command is a PRE, then it is removed since
again the refresh essentially pre-charges all rows. The reason why head commands need to
be modified is because the front end generates the right commands based on the state of the
banks and ranks before the commands are actually issued. However, when refresh occurs, the
commands immediately following the refresh are affected and hence the head commands need
to be changed. This eliminates the dependency between the front and back end (i.e., front end
can generate commands without having to consider or predict when a refresh would occur).

In addition, a simple simulator for the Analyzable Memory Controller is implemented as
well for comparison. Since a close row policy is used in their work, the simulator essentially
has a constant memory access time that depends on the device parameters. The simulator takes
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trace files as input, and one of them is the benchmark while other files are used to generate
interferences. A simple round robin arbiter is used and the refresh operation is also taken into

account along with the status of the banks (i.e., only a single rank is used).

MemBank

BankState

RankState

MemRank

-nextRD: Cycle
-nextWR: Cycle
-nextACT: Cycle
-nextPRE: Cycle
-openROW: int
+get(key): value

® #Bank * #Rank]

bank: MemBank[]

bank _per_rank: int
+row_state(Request): string
+get_bank(Command): MemBank

rank: MemRank[]

+set_other_rank(rank, key, time):
+get_rank(Command): MemRank

[#Rank °

-nextRD: Cycle
-nextWR: Cycle
-nextACT: Cycle
-numACT: int

+get(key): value
+set(key, value): void

+set(key, value): void

" " BackEnd
MemConfig FrontEnd peilizegs bankState: BankState *
config: int addrMap: MemConfig File: file rankState: RankState *
+get_target(): Request bankState: BankState * tRL: int device: MemDevice *
clock: Clock * tWL: int dataQ: deque *

reqQ: list of deque
+addRequest(Request): void
+commandGen(): list of list
-getRequest(): list

clock: Clock *

cmdQ: list of deque

FIFO: deque

+addCMD(list): void
+addToFIFO(): void
+issue(): void
+issueCMD(Command): void

-get_timing(): void

MemController

clock: Clock *

dataQ: deque

device: MemDevice
bank_status: BankState
rank_status: RankState

Core front: FrontEnd
trcFile: file back: BackEnd
ForeID: int +simulate(): void
inOrder: bool

+addReq(Request): void

clock: Clock * +get_data(): Data

memCntlr: MemController *
num_req_sent: int
num_req_done: int
+send_req(Request): void
+recv_data(Cycle): void
+sim_end(): bool

Figure 5.6: UML Diagram of Simulator

5.3.2 Simulation Results

The experiments are done in the following way: a number of core objects are created and one of
them is an in-order core and takes the benchmark’s trace file as one of the parameters; the other
cores are out of order cores and they take the trace file of the Bandwidth benchmark described
in Chapter 4 since this benchmark is quite memory intensive and can generate high interference
to the core under analysis. The simulation ends when the core under analysis has finished going
through the trace file and has received all the data from the memory controller.
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Figure 5.7 and Figure 5.8 show the results for 4 and 16 requestors with 64 bits and 32 bits
data bus respectively. Note that the y-axis is the normalized execution time of the benchmark
against the WCET calculation of AMC in Section 5.2.2. The T-bars are the WCET calculation
which is shown to compare simulated results against calculation. Therefore, the T-bars of AMC
is always 1 since everything else is normalized against it. First notice that the difference between
simulated and calculated time for AMC is quite small; the maximum difference is less than
10% of calculated time. This suggests that their controller behaves very close to the theoretical
worst case bound since close row policy is used. However, the difference between simulated
and calculated time for the proposed controller varies. For 4 requestors with a 64 bit data bus
for a single rank, the difference ranges from 4% (jpeg) to 41%(motion) of calculated time. This
suggests the calculated bound is tight (6% difference) while still performs quite well even for
memory intensive tasks such as motion. This is because in reality the scenarios described in
the worst case analysis in Chapter 3 do not happen very often since memory requests follow a
specific pattern. For example, it is highly unlikely that every time that a PRE of ACT command
needs to be issued, all other requestors also issue a PRE or ACT at same time. In addition, the
use of open row policy greatly improves the latency of requests. Notice that even for a 32 bit
data bus in which the proposed controller must make two requests, the simulated and calculated
difference is quite large for a significant portion of the benchmarks.

For 4 requestors with a 64 bit bus for single rank, the simulated time for proposed controller
is between 3% to 53% better compared to AMC. While for 16 requestors with a 64 bit bus for a
single rank, the controller is between 13% to 77% better than AMC. Even for a 32 bit data bus for
4 requestors, the improvement is up to 42% better than AMC. Another interesting and counter-
intuitive trend to observe is that for 2 and 4 ranks, the simulated time is worse compared to 1
rank while the calculated execution time shows that 2 and 4 rank performs better. This is because
in the calculations, the interference for ACT in multiple ranks is reduced since the requestors are
divided among the ranks; the number of requestors that can issue an ACT to contend with the
core under analysis is reduced. In the simulation, if the benchmarks have a high number of loads
compared against stores, then the worst case scenario for CAS which is to alternate between write
and read is therefore reduced, and the remaining read commands can transmit data consecutively;
whereas in multiple ranks, there is a rank-to-rank delay ¢z r which increases the latency.
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Chapter 6

Conclusion

Due to strict timing requirements in hard real time systems, the worst case latency for DRAM ac-
cess must be predictable to guarantee no deadline misses. Due to the complex timing constraints
and dynamic DRAM states, existing predictable controllers usually employ close row policy
to manage these complexities to produce an upper bound in the worst case. These approaches
provide tight and reasonable bounds for older DRAM devices. However, as device speed is be-
coming faster, the latency of using a close row policy is becoming too pessimistic. Therefore,
this thesis presents a new worst case latency analysis that takes DRAM state information into
account to provide a composable bound. The main idea is to utilize both open row policy and
private bank mapping to provide a better worst case bound for memory latency. Therefore, the
latency bound depends on the row hit ratio of the benchmark as well as how memory intensive
the benchmark is.

Evaluation results show that this method scales better with an increasing number of requestors
and is more suited for current and future generations of memory devices as memory speed be-
comes increasingly faster. Furthermore, as data bus width becomes larger, this approach min-
imizes the amount of wasteful data transferred. Furthermore, simulation results show that the
latency bounds are tight and in many practical scenarios, it performs much better than the com-
peting controller, AMC. In addition, this controller supports multiple ranks and works for all
JEDEC compliant devices. As possible extensions and improvements, the ideas presented could
be further extended to optimize load and store request ordering to minimize switching overhead
to provide a better bound. In addition, the memory controller can be extended to work in mixed
real time systems, which are becoming more popular. Finally, the proposed controller can be
implemented in hardware on an FPGA to further test the performance on a real platform.
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