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ABSTRACT 

Suppliers in competitive electricity markets regularly respond to prices that 

change hour by hour or even more frequently, but most consumers respond to price 

changes on a very different time scale, i.e. they observe and respond to changes in price 

as reflected on their monthly bills. This thesis examines mixed complementarity 

programming models of equilibrium that can bridge the speed of response gap between 

suppliers and consumers, yet adhere to the principle of marginal cost pricing of 

electricity. It develops a computable equilibrium model to estimate the time-of-use 

(TOU) prices that can be used in retail electricity markets. An optimization model for 

the supply side of the electricity market, combined with a price-responsive geometric 

distributed lagged demand function, computes the TOU prices that satisfy the 

equilibrium conditions. Monthly load duration curves are approximated and 

discretized in the context of the supplier’s optimization model. The models are 

formulated and solved by the mixed complementarity problem approach. It is intended 

that the models will be useful (a) in the regular exercise of setting consumer prices (i.e., 

TOU prices that reflect the marginal cost of electricity) by a regulatory body (e.g., 

Ontario Energy Board) for jurisdictions (e.g., Ontario) where consumers’ prices are 

regulated, but suppliers offer into a competitive market, (b) for forecasting in markets 

without price regulation, but where consumers pay a weighted average of wholesale 

price, (c) in evaluation of the policies regarding time-of-use pricing compared to the 

single pricing, and (d) in assessment of the welfare changes due to the implementation 

of TOU prices. 
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1. Introduction 

System operations in many electric power industries worldwide have been 

experiencing dramatic changes due to the restructuring of the industry. In developing 

countries, the poor performance of the vertically integrated monopolies of power 

system (low labor productivity, poor service quality, high system losses, inadequate 

investment incentives and lower prices that could not cover costs and support 

investments) was the main reason for these restructuring and liberalization efforts 

(Joskow, 2003b). In developed countries, the performance was generally better, but high 

operating costs, construction costs overruns of new facilities, political pressures that 

drove costly programs and high retail costs to cover these costs stimulated the 

restructuring efforts (Joskow, 1998). These vertically integrated monopolies (generation, 

transmission, distribution and retail supply) have been deregulated1 to establish a 

competitive market structure. Now, generally, the industry is comprised of two main 

markets: retail and wholesale. The retail market is often regulated and the consumers 

pay a flat per unit price for electricity, whereas the wholesale market is open to 

competition where retail suppliers, generator companies, distributors and others (i.e. 

arbitragers, transmission owners, large industrial customers, etc.) act as players. The 

price in the wholesale market is very volatile and time-varying as opposed to the price 

                                                 
1 The deregulation programs have included privatization, separation of vertical segments that are 
potentially competitive, creation of competitive wholesale and retail markets and application of 
performance based regulatory mechanisms. See Joskow (2003b) for details. 
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in the retail market, where it has been usually fixed by regulatory bodies. Joskow 

(2003a) asserted the following analogy for this problem:  

“Charging the same price for kWh regardless of when it is consumed is 

like a supermarket charging for a cart of groceries on the average cost per pound 

of groceries … rather than based on the individual items in the cart.” 

The underlying objective of restructuring and introducing competition into these 

markets is to motivate efficiency improvements and price reductions. The literature on 

the subject is now vast, because the overall restructuring process appears to be 

unusually difficult2.  

The wholesale and retail markets are still incomplete and inefficient (Joskow, 

2003b). The incompleteness is inevitable because of the unique properties of electricity: 

non-storability3, instant supply-demand balance requirement and uncontrollable flow 

over lines4. The inefficiency stems from several reasons such as oligopolistic behavior 

(exercise of market power), barriers to entry (high capital investment requirement), 

capital intensive production, various supply and demand conditions (technical 

constraints on supply side and short-term inelasticity of demand) and finally, prices 

that do not reflect the marginal cost of electricity  (Joskow, 2003b; Wilson, 2002). 

Especially in liberalized electricity market design, eliminating all inefficiencies in 

the market is almost impossible. It is therefore inevitable to trade one inefficiency for 

another in the practice of electricity market design (Daxhelet and Smeers, 2001). 

                                                 
2 For a comprehensive discussion of the origins of these difficulties, see Wilson (2002). 
3 Methods to store electricity are not very efficient. 
4 There have been some improvements in controlling the electricity flows over lines with ‘phase shifting’.  
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Therefore, this study only deals with the inefficiency that exists especially in the retail 

electricity markets because of fixed pricing structure that has also been a practice of 

regulated monopolies in the last decades.  

The primary goal of this thesis is to develop a policy analysis tool to examine 

different pricing schemes in electricity markets. The thesis examines mixed 

complementarity programming models of equilibrium that can bridge the speed of 

response gap between suppliers and consumers, yet adhere to the principle of marginal 

cost pricing of electricity. 

It is intended that the proposed models would be useful for jurisdictions (e.g., 

Ontario) where consumers’ prices are regulated, but suppliers offer into a competitive 

market. These models may also be used for forecasting in markets where there is no 

consumer price regulation, but consumers pay weighted average wholesale price. 

Regulatory bodies (e.g.., Ontario Energy Board) can analyze the different settings of 

consumer prices (i.e., TOU prices that reflect the marginal cost of electricity), and 

evaluate the policies regarding TOU pricing compared to the single pricing. 

Furthermore, the welfare changes due to implementation of these policies can be 

assessed. 

The thesis is organized as follows: In sections 2 and 3, a background on general 

and partial equilibrium theory followed by an overview of pricing schemes and 

advanced metering technologies required for these schemes are given. In Section 4, the 

computable equilibrium model and its underlying assumptions are introduced. In 

Section 5, the mathematical model with illustrative numerical examples followed by 
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extensions of the model (fixed pricing model, representative weekday model and 

welfare analysis) is presented. The thesis is concluded with Section 6, in which the 

results are summarized and directions for future research are suggested. 
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2. General Equilibrium Modeling  

2.1 Theory of General Equilibrium 

The notion of “equilibrium” in economics literature was first introduced by 

Adam Smith in his well-known book, “The Wealth of Nations” in 1776. He introduced 

the concept of invisible hand as the force that brings the markets to an equilibrium, 

where supply meets the demand and efficient allocation of resources is achieved. 

However, he did not provide any “careful statements” or specific arguments about the 

efficiency proposition in a competitive market (Arrow and Hahn, 1971, p.2). Therefore, 

many economists attributed the full recognition and major contribution of the general 

equilibrium theory to Leon Walras (Arrow and Hahn, 1971, p.3; Mas-Collel et al.,1995;  

Shoven and Whalley, 1992). After Walras, many economists and researchers contributed 

to the literature: Pareto’s optimal allocation analysis, Edgeworth’s contract curve 

(Edgeworth Box), Arrow-Debreu’s existence of equilibrium (1954), Scarf’s computation 

of general equilibrium (1973) were the major cornerstones in general equilibrium 

theory. For a comprehensive history and review of general equilibrium theory, see 

Arrow and Kahn (1971), Kirman (1998), Varian (1978), Shoven and Whalley (1992), Scarf 

(1998) and Mas-Collel et al. (1995). 

The theory of general equilibrium determines the prices and quantities in a 

perfectly competitive system. It is referred to as “Walrasian equilibrium” (Mas-Colell et 
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al., 1995)5. Arrow-Debreu (1954) proved the existence of equilibrium and Scarf (1973) 

used a fixed point theorem to compute the equilibrium. Thereafter, many researchers 

found algorithms to compute the equilibrium6. Dafermos and Nagurney (1984) used 

variational inequalities approach to formulate a general equilibrium model involving 

spatial networks. Mathiesen (1985) paraphrased the computation problem as a 

nonlinear complementarity problem and developed a computational algorithm using a 

sequence of linear complementarity problems. Dirkse and Ferris (1996) used a variant of 

Newton’s method with a robust path-search algorithm that involves a piecewise 

linearization of path from current iteration to next point. They also authored a mixed 

complementarity solver accessible via General Algebraic Modeling System (GAMS), 

PATH (also accessible from other modeling languages, such as AMPL).  

A lot of effort has gone into developing conditions that guarantee the uniqueness 

of the equilibrium. However, many of these conditions are found to be too restrictive 

for applied models (Kehoe, 1998).   

2.2 Computable General Equilibrium Modeling 

In applied economic research, the numerical methods (i.e., quantitative 

simulations) provide the decision makers and policy analyzers with the information 

that reveals the inherent complexities of interactions in economical models. They also 

allow monitoring the impact of structural policy changes (Bohringer and Rutherford, 

                                                 
5 The definition and proof of the equilibrium conditions are beyond the scope of this thesis. The reader 
can refer to Manne (1985), Shoven and Whalley (1992) and Scarf (1998) for a comprehensive analysis. 
6 For the recent developments in computing equilibrium, see Scarf (1998) 



 
 

7

2004). Computable equilibrium models have become prevalent in economic policy 

analysis, because they remove the need for working on small dimensional analytic 

models and incorporate much more details and complexities than analytical models.  

For example, the simultaneous impacts of several taxes can be observed as tax-policy 

models (Shoven and Whalley, 1984). Such models permit the evaluation of proposed 

changes on a tax policy.  

Bohringer and Rutherford (2004), focus on the potential usefulness of 

computable equilibrium models for energy policy analysis. They provide an example of 

computable equilibrium model that bridge the gap between “bottom-up energy system 

models” and “top-down general equilibrium models”. Bottom-up energy system 

models are typically optimization problems that describe the energy system in detail. 

Top-down general equilibrium models, on the other hand, are general equilibrium 

models that capture the interactions, inefficiencies and income flows between energy 

markets and the remainder of the economy. This is useful because energy policies not 

only affect the energy markets, but also the other markets through indirect spillovers 

(i.e. double dividend from energy taxation, changes in international prices triggered by 

energy policy constraints and technological change induced by energy policies). If the 

indirect spillover effects of energy policies on non-energy markets are omitted, the 

model becomes a partial equilibrium model, which may yield very different results than 

a general equilibrium model (Bohringer and Rutherford, 2004).  
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Policy analysis and research in economic modeling for markets and games 

required the development of modeling languages and computer programs that allows 

the formulation of economic equilibrium models. The theoretical and practical 

developments in algorithms for computable equilibrium models yield alternative 

solvers and programs. GAMS (General Algebraic Modeling System), which was 

originally developed to assist economists at the World Bank in the quantitative analysis 

of economic policy questions (Rutherford, 1995), has several MCP (mixed 

complementarity problem) solvers that can handle large-scale equilibrium models. The 

most common MCP solvers in GAMS are PATH, NLPEC and MILES (a Mixed 

Inequality and non-Linear Equation Solver). These solvers are examined briefly in 

section 4.3. 

2.3 Partial Equilibrium Modeling 

A partial equilibrium model usually deals with a sector of an economy, and 

assumes that all prices other than the price of the commodity being studied are 

assumed to remain fixed (Varian, 1978). On the contrary, in general equilibrium models, 

all prices are variables and all markets clears. Thus, partial equilibrium models do not 

allow any interactions with other markets. 

Cournot, Marshall and later neoclassical economists extensively used partial 

equilibrium analysis for a single market. The demand and supply of a single 

commodity is assumed to be a function of the price of that commodity. The equilibrium 

price is set such that demand and supply are equal. Therefore, partial equilibrium 
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analysis is a special case of general equilibrium analysis (one commodity and one 

market) (Arrow and Hahn, 1971). However, it can be extended to a multi-commodity 

case7.  

Samuelson (1952) was the first economist to formulate a partial equilibrium 

model as a mathematical programming problem. He applied a general procedure in 

solving a problem of spatial equilibrium, using Enke’s (1951) formulation. Samuelson’s 

formulation showed that the problem of maximizing “net social payoff” (consumers’ 

plus producers’ surpluses in different regional markets minus the transportation costs) 

subject to regional commodity balance equations generates a set of optimality 

conditions that define the equilibrium in each regional market. Takayama and Judge 

(1971) used a linear price dependent demand and supply function to define a “quasi 

welfare function”. They extended Samuelson’s spatial equilibrium model to determine 

the prices, production, allocation and consumption for all regional commodities within 

the model. Moreover, they proposed a quadratic programming algorithm to obtain the 

competitive equilibrium solution. An example is given to clarify their approach 

(Thompson and Thore, 1992). 

Consider a spatial network economy where the supply and demand markets are 

spatially separated and the competition is perfect. In equilibrium a commodity 

produced in plants (k=1,…,K) are transported to the demand regions (l=1,…,L) if the 

supply price plus the unit transportation cost is equal to the demand price. Let the 

                                                 
7 See Mas-Collel et al. (1995, p.314) and Arrow and Hahn (1971) for the proof. 



 
 

10

demand price in region l is a linear function of quantity demanded in region l, 

Lqq ,...,1=q . 

Demand price in region l lll qβα −=   where lα and lβ  are positive constants. 

Similarly, assume that the supply price (marginal cost) of plant k is a linear 

function of the supply quantity, Kss ,...,1=s . 

Supply price in plant k kkk sδγ +=   where kδ is a positive constant. 

Finally, let matrix 
⎥
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)(z , where klc  is the unit cost of transporting from plant k to 

demand region l). ),( sqW  is the “quasi welfare function” (Takayama and Judge, 1971, 

p.117), which is a measure of consumers’ plus producers’ surpluses. The following 

mathematical programming problem computes the equilibrium prices and quantities 

(Thompson and Thore, 1992). 
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The dual variable ku  is the negative of the “imputed equilibrium price” of the 

commodity at the dock of plant k and the dual variable lv is interpreted as the 

equilibrium price of the commodity in demand region l. Karush-Kuhn-Tucker (KKT) 

conditions for this optimization problem can be used to find the equilibrium quantities 

and prices.  

The quasi welfare function, )( sq,W , can be defined as follows: 

( ) ( )∑ ∫∑ ∫
==

+−−=

−=
K

k
kkkk

L

l
llll dssqdq

curve)supplyunder(areascurve)demandunder(areas,W

11

)()(

)(

δγβα

sq
 

Instead of maximizing the objective function above, a minimization of the 

“economic potential function”, as explained below, can be used (Thompson and Thore, 

1992, p.43). 

( ) ( )∑ ∫∑ ∫
==

−−++
L

l
llll

K

k
kkkkzsq

qdqTdss
kllk 11,,

)()()(min βαδγ z  

( ) ( )∑∑∑∑
== ==

−−++
L

l
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K

k

L

l
klkl

K

k
kkkkzsq

qqzcss
kllk 1

2

1 11

2

,,
5.05.0min βαδγ  

The first term of the objective function is the total costs of all plants and the 

second term is the total transportation costs. The third term has no direct economic 

interpretation as claimed by Thompson and Thore (1992). But the negative of the whole 

objective function is the quasi welfare function minus the transportation costs. The KKT 

conditions for the problem using this economic potential function are as follows. 
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These KKT conditions along with the primal constraints characterize the 

optimum point, which is the equilibrium for this model. The fourth condition states that 

each retail market should clear and the fifth condition ensures that the demand price in 

each market cannot exceed the market price, and when demand is positive, the demand 

price and the market price are equal. 

The above optimization problem can be extended to a multi-commodity case 

with independent linear supply and demand functions. If the demand functions are not 

symmetric, or in other words, integrability conditions8 are not satisfied, a quasi welfare 

function cannot be constructed. For example, cross price effects (i.e., interdependent 

demand or supply functions) can cause the integrability conditions to fail. Empirically 

estimated systems are unlikely to satisfy these conditions. However, complementarity 

problems overcome this shortcoming. Rutherford (1995) has demonstrated that any 

neoclassical demand system can be used with recently developed solvers for 

complementarity problems. Section 4.3 explains the complementarity problems in 

detail.  

To sum up, especially for energy markets, which have spillover effects on the rest 

of the economy, partial equilibrium models do not seem adequate for policy analysis.  

                                                 
8 See Takayama and Judge (1971, p.116) for these conditions. 
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However, partial equilibrium models allow concentrating on a particular sub-section of 

the economy, with all other variables in other markets being treated constant. This 

concentration makes it possible to model a particular market (commodity) with many 

details and much care when compared to general equilibrium models. 
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3. Overview of Pricing Schemes  

3.1 Demand Response 

“Demand response is about increasing responsiveness of electricity demand to 

changes in wholesale electricity prices” (Harrington, 2004, p.30). In the deregulation of 

many electricity markets only wholesale markets have been open to competition. Often, 

the state or provincial public utility commissions have insulated the retail market from 

competitive pricing (an average consumer pays a fixed price for electricity), which 

indeed made consumers indifferent to electricity prices or uninterested in power usage 

during price spikes in wholesale markets. Thus, the link between the wholesale and 

retail markets was disconnected. In that respect, demand response becomes a matter of 

retail marketers` concern.  

Increased demand response is expected to accomplish a more stable and efficient 

market. If even a small fraction of retail electric customers participate in bulk-power 

markets, along with power suppliers, large spikes in wholesale price of electric power, 

such as those that hit markets in California and New York in summer 2000, can be 

flattened (Hirst, 2001, p.41). It is expected that the price-sensitive consumers would 

change their consumption patterns such as moving consumption from peak hours to off 

peak hours (because of the expensive electricity in peak hours) or consuming more in 

off-peak hours and less in peak hours. 

Besides these benefits, demand response is able to provide system reliability, cost 

reduction, market efficiency, risk management, market power mitigation and 
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environmental benefits. Moreover, national benefits of demand response alone could be 

$15 billion for the U.S.A., as calculated by McKinsey and Company (Barrett and 

Violette, 2002, p.18). 

3.2 Efficient Pricing of Electricity 

From the viewpoint of standard economic theory, efficient pricing occurs when 

marginal cost of supply is equal to marginal value of demand, which also ensures to 

maximize consumers’ plus producers’ surpluses (Dewees, 2001, p.9). This has been 

accomplished by several wholesale electricity markets where an auction mechanism 

establishes the equilibrium of supply and demand on an hourly basis. In this 

mechanism, the marginal costs of generation plants are acquired by a bidding process 

of generators for every hour. The generators are assumed to bid at their short-run 

marginal cost (if the competitive forces are effective). The offers from consumers are 

collected and processed by the Independent System Operator (ISO) to find an 

equilibrium price, which is also called the wholesale spot price of electricity. This 

wholesale price, which is based on marginal cost, should achieve efficient electricity 

production and consumption in the absence of other costs (e.g., transaction costs) 

(Dewees, 2001, p.9).   

Nevertheless, because of the unique properties of electricity (non-storability, 

demand variation, marginal cost differences among different type of generators), the 

short-run marginal costs of generators vary, sometimes substantially (Hirst, 2001, p.39).  

Therefore the prices in a wholesale market are very volatile on an hourly basis. The 
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following figure illustrates the volatility of the wholesale spot prices in the Ontario 

market for June 2004. 

 

Figure 3-1: Wholesale spot prices in Ontario market for June 2004. (Source: IESO) 

As depicted in the figure above, the price spikes are inevitable due to changes in 

demand and the marginal cost of the generators that supply the last unit of energy 

demanded.  

3.3 Pricing Schemes 

There are several pricing schemes that have been used all over the world. They 

can be classified in two groups:  

• fixed (i.e., flat rate regardless of time and system load); 

• time differentiated, i.e., dynamically changing over time (e.g., by hour)           

(time of use pricing, critical peak pricing, real time pricing). 
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This chapter emphasizes the major pricing schemes that have been experienced, 

or considered for use: fixed pricing, time-of-use (TOU) pricing, critical peak pricing and 

real-time pricing. Also, metering requirements required for each scheme are evaluated. 

Thereafter, a comparison of these schemes is presented. Lastly, a literature review on 

TOU pricing experiments and econometric studies is summarized.  

3.3.1 Fixed Pricing 

The most common retail pricing practice all over the world before deregulation 

and even after deregulation is the fixed pricing per kWh of energy consumed. 

Regulated rates for small commercial and residential consumers in the United States 

and Canada are usually fixed for a year (Dewees, 2001, p.10). Under this scheme, the 

sale price of electricity does not vary with time (e.g., 4.3¢/kWh for the Ontario market 

before May 2004). Some other applications of fixed pricing are also available and used 

in some jurisdictions such as the current two-tier pricing for the Ontario market: 

 
Figure 3-2: Residential Rates and Thresholds by Season for Ontario (OEB, 2005) 
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As of April 1, 2005, residential customers pay 5.0¢/kWh for the first 750kWh and 

5.8¢/kWh for each additional kWh over the 750kWh threshold (for summer months 

May-September). In winter months (November-April), the threshold is increased to 

1000kWh (OEB, 2005). 

The main criticism about fixed pricing is that it is usage-based rather than time-

based. Customers are billed on their cumulative consumption over a period. A 

traditional meter9 that records the usage is read at intervals of one to three months. In 

the fixed pricing scheme, the price that consumers pay for electricity is time-invariant. 

Therefore, consumers are protected from the price changes in the wholesale market that 

occur in real-time and hence their monthly bills are usually stable over the course of the 

effective fixed rate. Also, the retailers are able to meet their revenue requirements due 

to this stability. 

The problem today is that consumers are indifferent to electricity prices or have 

no interest in cutting power use during the price spikes, primarily because state or 

provincial regulatory bodies insulate them from price volatility. Therefore, the 

consumers become insensitive to price changes in electricity markets. Most of the 

inefficiency and incompleteness of the wholesale market stems from this insensitive 

demand. 

Another problem with fixed pricing is its unfairness. The electricity costs more to 

produce at peak hours. Plants that produce the necessary electricity to meet peak 

                                                 
9 A traditional meter measures the aggregate consumption of electricity in the billing period. It usually 
keeps the consumption level in one register that can be read manually. 
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demand are more expensive to run than the nuclear or hydro plants that meet the off-

peak (or base) load. A fixed pricing scheme blends these costs of producing electricity in 

different plants into a fixed price, which causes the off-peak users to subsidize the 

consumption of peak users. (OEB, 2004) 

3.3.2 Time-of-Use (TOU) Pricing 

In TOU pricing, both prices and time periods are known a priori and are fixed for 

some duration (e.g., a season). An example of a TOU rate with three prices and four-

time periods is Pacific Gas & Electric’s summer commercial TOU prices (Borenstein et 

al. 2002, p.5): 

• off-peak (weekdays 21.30-8.30 and all weekends,  holidays) 5.62¢/kWh 

• shoulder (weekdays 8.30-12.00, 18.00-21.30) 10.29¢/kWh 

• peak (weekdays 12.00-18.00) 23.26¢/kWh 

The prices for each block (or the time blocks) are reset only two or three times a 

year to reflect seasonal variation of prices. This property of TOU pricing does not 

consider the peak of the system and therefore the variation in real-time is not captured 

accurately. TOU pricing uses the same price for same periods regardless of system load, 

condition and wholesale price which more accurately reflect the real marginal cost of 

electricity. Therefore, customers do not have any more incentive to reduce their loads in 

peak hours than in average hours, even though load reductions in these hours have 

substantially higher value to the system.  



 
 

20

Another problem with TOU pricing arises when this pricing scheme is 

implemented on a voluntary basis. Then, only those customers who can lower their bills 

by going to TOU rates would select it. However, this may lead to a revenue loss for the 

utility that would have to recover its costs within the form of higher average rates from 

all customers. (Faruqui and George, 2004) 

A major requirement for a TOU pricing scheme is the TOU metering devices. 

These devices usually have two to six registers (two registers may be for off-peak and 

peak hours) that can record usage in different time of hours in a day by switching from 

one to another. These meters can be read manually. As an alternative, a communication 

device can handle the meter reading and send the consumption data to utilities, but it is 

not necessarily needed. Typically, a residential TOU meter is as much as three to four 

times more costly than a traditional residential meter. (Waters, 2004, p.56) 

3.3.3 Critical Peak Pricing (CPP) 

A critical peak pricing (CPP) scheme is a new form of pricing that has been 

developed to overcome the limitations of time-of-use and real-time pricing schemes. It 

is a traditional TOU pricing scheme which is in effect all year except for 50-100 critical 

peak hours, the timing of which is unknown and where a much higher price (e.g., 10 

times higher) is in effect for the peak and shoulder periods. Customers are informed 

well before the critical peak hours (hours ahead or a day ahead) and that way they can 

respond to price changes in critical periods.  
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Small-scale pilot programs conducted by two utilities, Georgia Power Utilities 

(GPU) and American Electric Power, give very convincing results in favor of CPP 

schemes. These two utilities use a two-way10 communication and control device called 

“TransText” that informs consumers about an approaching critical period. Moreover, it 

can be programmed so that the consumer’s thermostat is automatically adjusted when 

prices exceed a certain level. The American Electric Power pilot program estimated the 

demand reductions of 2-3 kW per consumer during on-peak periods and of 3.5-6.6 kW 

per consumer during critical peak periods, which stands for almost 60 percent of the 

average  consumer’s peak load during the winter period. GPU also found similar results 

showing elasticities of substitution11 that ranged from -0.31 to -0.4, which are 

significantly higher than the elasticities associated with traditional TOU rates (Faruqui 

and George, 2002, p.49). Besides these advantages of CPP over TOU, CPP is based on 

system conditions (rather than normal user peak) and it can reflect the wholesale price 

when the system is in a critical period.  

However, CPP has some weaknesses that should be mentioned. Like TOU 

pricing, even for critical periods, the prices do not change in line with the wholesale 

price. First of all, prices are limited and their levels are preset. Secondly, the number of 

critical peak periods to be invoked by utilities is limited in a year (50-100 hours a year). 

                                                 
10 For utilities, a one way communication (consumer to utility) is sufficient to collect consumption data 
during critical peak hours. Utilities may choose to inform the consumers by another mode of 
communication (internet, phone, TV broadcasts, etc.) 
11 Elasticity of substitution is defined as the reciprocal of the degree to which the substitutability of two 
factors, that is the marginal rate of substitution, varies as the ratio of the two inputs varies and output is 
held constant. 
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Finally, the utilities protect consumers only from very high prices by CPP (Borenstein et 

al. 2002, p.15). 

For implementation of CPP, a TOU meter with an additional critical peak 

register is required. A one-way communication device is enough for utilities to send the 

critical peak hour information to the metering device to initiate and to end the record of 

critical peak consumption. The cost of CPP meters is as much as TOU meters, however, 

they need communication devices (i.e. wireless GSM or CDMA) that have both 

installation and operation costs.  

3.3.4 Real-Time Pricing (RTP) 

In real-time pricing scheme, prices vary on an hourly basis. Generally, prices are 

fixed and known only on a day-ahead or hour-ahead basis. These pricing schemes can 

be used to effectively influence customer usage in peak hours. It reflects the wholesale 

prices (the marginal cost of electricity), weather conditions, generator failures, scarcity 

of generation and other contingencies in a wholesale electricity market. Utilities can 

charge different retail prices for different hours of the day and for different days.  

It has been successfully implemented by Gulf Power in Florida for 

medium/large industrial and commercial customers (1639 customers as of June 2002). 

Gulf Power has found that a relatively small fraction of customers are extremely price-

responsive, with price elasticities in the range of –0.1 to –0.25, whereas, a third of 

customers are modestly responsive and almost half of the customers appear to be not 

responsive at all (Borenstein et al. 2002, Appendix A). 
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From the viewpoint of generators, RTP reduces the total payments to generators 

in wholesale markets, because of the reduction in peak demand when prices are very 

high. Also, RTP can reduce the ability of generators to exercise market power. When 

generators tend to increase the wholesale price by withholding capacity, retail prices 

also increase and thus, reduce the demand for power. Then, profitability of price 

increases is reduced by demand response (i.e., the price increase can be offset by the 

decrease in demand and this can reduce the profitability) and exercise of market power 

is discouraged. Finally, RTP can reduce the need for excess capacity by either shifting 

consumption from peak hours to off-peak hours or by reducing consumption at peak 

hours. (Borenstein et al. 2002, p.10-11) 

Although RTP is a major conceptual advancement over TOU and CPP schemes, 

it usually has elusive benefits. The uncertainty and volatility of prices transfer the price 

risk to customers and consequently, this has failed to attract many customers. On the 

other hand, the incremental metering and billing costs associated with the 

implementation of RTP can discourage customers and utilities. A study for Pacific Gas 

and Electric Company estimated these costs around one billion dollars (Faruqui and 

George, 2004). 

As Joskow and Tirole (2004) asserted, final consumers may not react to real-time 

prices for two main reasons. Firstly, the cost of monitoring and evaluation of hourly 

prices and constantly optimizing the use of equipment are enormous for small 

consumers. Secondly, adjusting consumption freely may not be possible for consumers 

due to physical attributes and configuration of the distribution network, in particular; 
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most directed interruptions (due to a shortage in supply) that can be controlled by the 

distribution network operator usually occurs at the level of zones. This means that 

individual consumers cannot have their preferred priority for being served by the 

system operator.  

A mandatory requirement to implement an RTP scheme is the interval metering 

technologies, which can measure the consumption of users on an interval basis. Interval 

meters can record a separate consumption measurement for each hour in a billing 

period. As in CPP, it needs a communication device, but the communication should be 

two-way: to send consumption data from consumers to utilities and to send pricing 

information to consumers from utilities12. Thus, utilities can accomplish their metering 

and billing process and customers can gather the pricing information. The cost of a 

residential interval meter is typically six times the cost of a traditional residential meter 

and a commercial interval meter is about twice the cost of the residential interval meter 

(Waters, 2004, p.56).  

3.3.5 Comparison of Pricing Schemes 

Time differentiated pricing schemes are found to be more efficient than the fixed 

pricing schemes, because of two reasons: (a) they reflect the marginal cost of electricity 

(partially in TOU pricing or fully in RTP) more accurately than fixed pricing schemes 

and therefore improve the efficiency of resource allocation and (b) they motivate 

                                                 
12 Sending price information is not necessarily required and may be accomplished by broadcasting over 
media, automated telephone systems, internet, etc. However, for automated response systems that can be 
installed by individual customers, it is more efficient to have two-way communication between utilities 
and customers. 
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customers to reduce their electricity consumption in peak loads and shift to off-peak 

periods and therefore reduce the need for new capacity requirement and substantially 

reduce the reliance on peak capacity that mainly uses fossil fuels (Boiteux, 1949; 

Houthakker, 1951; Faruqi and Malko, 1983; Aigner, 1984). However, they have not been 

extensively used in any competitive electricity market.  

Among all pricing schemes mentioned, critical peak pricing (CPP) seems the best 

for especially small/medium commercial and residential customers. It is easy for 

customers to respond compared to RTP and moreover, it is less costly to implement 

when the costs of RTP are considered. Thus, as an alternative to fixed pricing, CPP can 

accomplish much of what RTP offers. (Borenstein et al. 2001, p.29).  

Compared with TOU pricing, CPP gives more incentives to reduce peak 

demand, but modeling it would require a stochastic component in the model. 

Moreover, some utilities and regulatory bodies (e.g., Ontario Energy Board) have no 

plans for CPP, but they are considering TOU pricing (OEB, 2005). Therefore, in this 

thesis a TOU pricing scheme is modeled instead of a CPP scheme. A stochastic model 

that can consider the critical peak hours is left for future research. 

Figure 3-3 illustrates the TOU, CPP and fixed pricing schemes. Note that, for the 

CPP scheme, there is a prior notice that informs customers about the approaching 

critical peak period.  
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Figure 3-3:  TOU, CPP and Fixed pricing schemes 

TOU and CPP pricing schemes attempt to give consumers more incentives to 

either reduce their demand when the system is at its peak, or shift the demand to times 

when it is off-peak. Much research has found evidence in favor of this assumption. See 

Faruqui and Malko (1983), Aigner (1984) and King et al. (2003) for a comprehensive 

survey. 

However, the results are widely varying from one jurisdiction to another. As 

Faruqui and George (2002) conclude,  each utility should conduct its own research to 

estimate the net benefits of time-differentiated prices based on incremental metering 

costs, usage pattern, supply behavior and other key drivers (i.e., weather conditions, 

electric appliance usage such as heating, air conditioning, etc.). Also, the estimates of 

the price elasticities should be conducted under well designed and controlled 

experiments to implement a wide-scale time differentiated pricing scheme. 
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3.4 Review of Literature on TOU Pricing 

The literature on TOU pricing is vast and it is based on the previous studies on 

“Peak Load Pricing”13 or “Marginal Cost Pricing”. Peak loads and their pricing have 

been a concern because of the capacity requirements for these loads. The seminal paper 

concerning peak load pricing is Boiteux (1949) and theoretical contributions have been 

made by Houthakker (1951), Steiner (1957), Williamson (1966) and Turvey (1968). 

Steiner (1957) considered a firm with single production technology (with 

constant operating cost and capital cost) and demand with two classes: off-peak and 

peak (two off-peak and one peak period, without any cross price elasticity). He 

maximized the social net benefit function and found that all capacity costs are charged 

to peak demand users. This is the classical peak load pricing result. However, it has 

been criticized, since off-peak demand users also need and use the capacity. A 

justification has been made by Wenders (1976), by allocating a part of the capacity cost 

to off-peak demand users. However, Turvey (1968) argued the relevance of the capacity 

costs in the short term (e.g., a year).  

This theoretical body of literature was not able to give practical answers to the 

problem and a need for large-scale experimental studies about peak-load pricing and 

TOU pricing emerged. There have been many experiments conducted with TOU pricing 

over the past three decades. These experiments yield insights about the impact of TOU 

pricing on customers and utilities as well as on welfare of the society.  

                                                 
13 See Crew et al. (1995) for a survey of the theory.  
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Many of these experiments were done in the late seventies and early eighties, 

including projects sponsored by the U.S. Federal Energy Administration (now part of 

the U.S. Department of Energy). A survey of this research can be found in a special 

Annals issue of the “Journal of Econometrics” (Aigner, 1984). A more recent survey is 

published by King et al. (2003). These experiments all collected data that allows 

econometricians to estimate an electricity demand function with many explanatory 

variables (single demand function e.g., linear, double log or other; or demand system 

models e.g., translog, generalized Leontief or other functions) as well as the own and 

cross price elasticities, elasticities of substitution and lag elasticities. A survey of twelve 

TOU experiments by Faruqui and Malko (1983) drew the following conclusions for 

TOU pricing. 

a) TOU rates reduce the electricity consumption in peak-periods, whereas 

electricity consumption in off-peak periods either stays constant or increases by 

small amounts. 

b) Load shifting is rarely observed and TOU rates generally cause an overall 

reduction in daily consumption. 

c) Peak users typically respond more than off-peak users. 

d) Peak and off-peak own price elasticities range from 0 to -0.4. These elasticities 

vary among experiments due to variation in total usage, climate, rate level, etc. 

The difference between elasticity estimates derived from the single equation and 

demand system models are negligible. 
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They estimated that the elasticity of substitution between peak and off-peak 

periods for an average customer living in a typical climate was 0.14. For customers 

living in a hot climate who had all major electric appliances in their home, the elasticity 

rose to 0.25, and for those living in cool climates without any major electric appliances 

in the home, the elasticity of substitution fell to 0.09.  But, these elasticity estimates may 

not be valid now, because they were developed during the early eighties when 

electricity prices and schemes were quite different.  

However, Mountain and Lawson (1995) conducted a comprehensive experiment 

for the Ontario market14. They empirically estimated the variation in responsiveness of 

the Canadian consumers to TOU electricity prices by time of day and by month of year. 

They estimated the two-period (off-peak, peak) and three-period (off-peak, peak, super-

peak) own and cross price elasticities by using 16 different rate structures. The range of 

their estimates for two-period and three-period price structures is summarized in the 

following tables. 

Table 3-1:  Range of own and cross price elasticities for three period price structure 

 
 Off-peak Peak Super-peak 

Off-peak -0.033 to -0.136 0.014 to 0.141 -0.05 to 0.023 
Peak 0.010 to 0.043 -0.018 to -0.059 0.006 to 0.018 

Super-peak -0.002 to 0.016 0.006 to 0.024 -0.017 to -0.022 

Table 3-2: Range of own and cross price elasticities for two period price structure 

 Off-peak Peak 
Off-peak -0.003 to -0.100 0.003 to 0.101 

Peak 0.009 to 0.088 -0.009 to -0.088 
                                                 
14 So far, it is the only experiment conducted for the Ontario market. Previous Canadian studies had to 
rely on the elasticity estimates from U.S. studies (Mountain and Lawson, 1995) 
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Although these estimates are lower than any other estimates found in different 

studies, the study did show significant demand reductions and load shifting. Therefore 

it can be used for experimental models especially when dealing with the Ontario 

market. 
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4. The Elements of a New Model of Pricing in Electricity 

Markets 

The model proposed in chapter 5 of this thesis is a computable equilibrium 

model based on a network structure that can represent the interactions between 

decision-makers in terms of quantity of energy flows and electricity prices. It is a multi-

period computable equilibrium model for retail electricity market that seeks an efficient 

pricing scheme. The potential uses of the model are (a) to compute the prices that will 

be the regulated (fixed or TOU) prices based on a marginal cost principle; (b) to forecast 

prices (fixed or TOU) that can happen at equilibrium in an unregulated market. The 

model consists of two parts: the demand side and the supply side. This chapter explains 

the basic concepts used in the model. 

The supply side is basically a cost minimization problem of generators. The 

demand side is represented by a demand equation that uses the prices and lagged 

demand as independent variables. Such models are usually called process models (Wu 

and Fuller, 1995). If the demand functions are elastic and integrable, the objective 

function of the supply model could be converted from cost minimization to welfare 

maximization (sum of producers’ plus consumers’ surpluses), because integrability 

allows the first order conditions of the mathematical program to satisfy the equilibrium 

conditions. However, integrability is not a common situation when demand functions 

depend on other commodities’ prices (Bohringer and Rutherford, 2004), (e.g., when off-

peak demand depends, in part, on the peak price). In such cases, the demand function 
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cannot be converted into a utility function. Therefore, this problem in process models 

cannot be handled by a single optimization framework (Bohringer and Rutherford, 

2004). 

There are several algorithms to solve process models, such as the PIES algorithm 

(Ahn and Hogan, 1982), the decoupling algorithm (Wu and Fuller, 1995), and 

algorithms for complementarity problems (Mathiesen, 1985; Dirkse and Ferris, 1996; 

Ferris et al. 2001; Manne, 1985) or variational inequalities (Nagurney, 1993). The former 

two algorithms are based on a sequence of integrable optimization problems, whereas 

the latter two are more general and recognized approaches. 

The model proposes a network structure to simulate the electricity market. The 

supply nodes represent the generators with different technologies of production (i.e., 

nuclear, hydro, coal, gas and oil, indexed by i ). On the other hand, the demand nodes 

represent the demand for different time blocks, such as off-peak, mid-peak, on-peak 

demand indexed by j .  Figure 4-1 displays the basic electricity network model. The 

index jHh ,...,1=  stands for the different hours in time block j .  
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Figure 4-1:  Basic electricity network 

The objective in representing the different production technologies is to consider 

the various variable cost structures. The model does not consider the ramp-up 

times/limits, for simplicity, but they could be included, in principle, for future research. 

Different production technologies can serve different demand blocks to be more 

economical. For example, nuclear plants can serve any demand block, because their per 

unit costs are lower, whereas ramp-up time for a nuclear plant is long. Therefore, it is 

more economical for nuclear plants to produce power all the time. On the other hand, 

gas and oil plants can serve on-peak demand block, which requires a quick response.  

Because their ramp-up time is very short, they can respond to rapidly varying loads. 

Hydro plants can technically supply power for all demand blocks and coal plants can 
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supply energy to mid-peak and on-peak loads. Due to low marginal costs for hydro and 

nuclear plants, medium marginal cost for coal plants and high marginal cost of gas and 

oil plants, the optimal solution (to the cost minimization problem) has nuclear and 

hydro plants supplying to all demand blocks, coal plants supplying to mid-peak and 

on-peak demand blocks and gas and oil plants supplying to on-peak demand block. 

This is consistent with the ramp-up times/limits; therefore, the absence of the ramp-up 

times/limits is not of great importance. 

 

 
 
 

Figure 4-2: Energy Supply in Ontario by Fuel Type in 2003-2004 (source: IESO) 

The figure above presents the energy supply of Ontario by power production 

technologies (i.e., by fuel types) in the 2003-2004 period. Nuclear power generators are 

the main source of energy in the Ontario market followed by hydro and coal generators. 
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Other production technologies –gas, oil, solar, wind, etc.– constituted eight percent of 

the total energy supply in September 2004.  

As Turvey (1968) argued, the capacity costs are not relevant in the short term (i.e. 

a year), because the need for extra capacity is not significant in the short term. The 

fluctuation of demand in the short term generally does not exceed the fluctuation of 

available generation capacity due to maintenance. Therefore, only variable operating 

costs of the generators are included in the model because they can accurately reflect the 

marginal cost of electricity for the short term. This convention treats all fixed and 

capacity costs as sunk and thus irrelevant to the present analysis.  

A study by Johnston (1960) developed the short-run cost functions of the electric 

generators in Great Britain. Seventeen different firms were examined to validate a cubic 

polynomial cost function. However, the results of the study did not support a nonlinear 

cubic or a quadratic form, but rather favored a typical linear cost function. 

The model employed in this thesis, therefore, uses a linear short-term cost 

function. In other words, in the short-run (normal operating range for the generators, 

i.e. a year) the marginal cost for different production technologies is assumed to be 

constant for output between zero and installed capacity. Operating cost (or marginal 

cost) of each production technology is estimated as follows (Wong, 2005):15 

Table 4-1: Estimates of marginal cost of power production technologies 

Production Technology Hydro Nuclear Coal Gas and Oil 
$/MWh  1  3.75 28 61 

                                                 
15 These marginal cost data are from Wong (2005) and are estimates from different sources such as 
www.opg.com, www.brucepower.com.  
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Since the cost information is kept confidential by firms and regulatory bodies, 

only crude estimates can be used. Actual costs may be different. Nevertheless, these 

estimates can be used for modeling and test purposes.  

Another major assumption is about the network structure. Transmission 

constraints such as line and voltage limits are not included in the model for simplicity. 

The transmission network is ignored in analyses. This means that there is a single price 

at any given time, as is now the case in Ontario. Geographically differentiated prices 

(i.e., nodal, zonal pricing) would require a representation of the transmission network 

in the model.  

Time-of-use pricing practices usually differentiate between the weekday and 

weekend, because normally the consumption is lower in weekends (e.g., peak hours are 

less likely) and higher in weekdays. However, to simplify the model and the analysis, 

the distinction between consumption levels in weekdays and weekends are ignored. 

Lastly, the suppliers (generators) are assumed to behave in a competitive manner 

(no exercise of market power). Oligopolistic models and market power issues are 

beyond the scope of this thesis, but they can be incorporated into the model, in future 

research. 

4.1 Geometric Distributed Lag Demand  

Process models usually use demand functions that are only functions of the 

current period’s prices. However, reaction of demand to changes in price is a process in 

time. Especially in energy markets, the adjustment to varying prices can occur after 
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some periods rather than instantaneously (Wu and Fuller, 1995, p.648). As an example, 

assume a residential electricity consumer with a monthly billing period and varying 

monthly electricity prices. The response of this consumer to price changes can be 

plotted as in Figure 4-3. 

 

Figure 4-3: Response and lag relation in GDL 

The figure depicts that the response is spread over time and it declines by time. 

This is called the “time-lagged” effect. The reaction of the consumer is not at a point of 

time but rather distributed over time. The main reasons for this response can be 

categorized in two groups. Firstly, usage patterns (i.e. habits) and imperfect information 

about the market preclude the instantaneous adjustment to prices. If the consumer is 

unaware of the monthly prices, the adjustment of consumption due to price changes 

may occur in the next periods after the consumer understands the information on the 

bill. Secondly, the need for some services is not interruptible and the demand may be 

linked to durable equipment (Wu and Fuller, 1995). For example, a price increase in 

electricity may not affect the usage of an old heating furnace. The need for heating and 
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capital cost of new and efficient furnaces may prevent the immediate reaction of 

demand to price changes.  

A geometric distributed lag demand can represent this response process in time. 

As Dhrymes (1981, p.2) explains in further details, a basic distributed lag demand 

function can be: 

∑
∞

=

− ++=
0

)()()()(

i

tit
i

tt uxwvy                   (1) 

where )(ty is the dependent variable (i.e., demand) in period t (i.e., month, year), 

)(tv is a constant, )(tx is the exogenous variable (e.g., prices) and )(tu is the random 

residual term which is independent of )(tx  and has a distribution with mean zero and 

constant variance.  

Another expression is the exponential form, which is also called the constant 

elasticity model. 

[ ]∏
∞

=

−=
0

)()()(

i

ittt ixmy α                      (2) 

where )(tm  is a constant for period t and iα  is the elasticity of exogenous 

variables (i.e., lag elasticity). As with (1), the model requires an infinite number of 

parameters. However, in practice it is not required to use all the history terms, because 

the lagged independent variable )(tx  has a decreasing influence on the dependent 

variable )(ty  as the lag increases, and as the lag goes to infinity the influence is close to 

zero.  Therefore, these lag terms that do not affect the independent variable can be 

truncated at some point (n) (Wu and Fuller, 1995): 
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[ ]∏
=

−=
n

i

itt ixmy
0

)()( α                       (3) 

The number of parameters, iα , is usually reduced by assuming a form of 

dependence on the lag, i . For example, a one commodity lagged demand model is as 

follows.  

[ ] [ ]etbttt dpad )1()()()( −=                  (4) 

where )(td is the demand of electricity in period t (t=1,2,…T), )(ta is a constant 

representing non-price effects (e.g. the appliance stocks, weather conditions, socio-

demographic factors), )(tp is the price of electricity at period t, )1( −td is the lagged 

demand, b is the constant price elasticity and e is the lag elasticity.  This is also called a 

constant elasticity model, which is widely used in econometric studies and also in the 

model of this thesis.  

By taking natural logarithm of both sides of the equation (4), we can get  

)ln()ln()ln()ln( )1()()()( −++= tttt depbad                (5) 

With successive substitution and letting )ln( )()( tt
dd = , )ln()ln( )0()()(

deaa ttt
+=  

and )ln( )()( tt
pp = equation (5) becomes  (where 10 << e ) 

                                           

                                               (6)  
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Equation (6) can be extended to a multi-commodity case (i.e., several demand 

blocks), with both own and cross-price elasticities. This extension is presented in 

chapter 5.   

4.2 Monthly Load Duration Curve 

The monthly load duration curve, which is obtained by arranging the hourly 

loads in descending order (as in the annual load duration curve), is a representation of 

the variation in monthly electricity demand by time. It differs from the annual load 

duration curve only by the time period. The expected shape of the monthly duration 

curve is similar to the annual load duration curve and the area under this curve 

represents the total energy requirement in a month. The shape of the curve is often the 

same but it moves up and down with varying demand in each month. The following 

figure displays the annual (2004) and monthly (May 2002, May 2003 and May 2004) load 

duration curves with Ontario market data. 

Figure 4-4: Yearly and monthly annual load duration curves (source: IESO) 
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The load duration curve can be used to model different load blocks (i.e., off-peak, 

mid-peak, on-peak). The monthly load duration curve can be discretized and 

approximated by horizontal or vertical strips. Horizontal strips refer to the various 

types of load (such as seasonal peak, daily peak, cycling and base) in a month, whereas 

vertical strips refer to the load in various time intervals (such as on-peak, mid-peak and 

off-peak). A utility planning model as described by Sherali et al. (1982) for each of the 

discretization methods (horizontal and vertical) can be modeled. This can capture the 

supply side of the equilibrium model. Figure 4-5 illustrates a three-step vertical 

approximation of the monthly load duration curve, the type of approximation used in 

the demand side of the model of this thesis.  

Figure 4-5: 3-step vertical approximation of the monthly load duration curve 

Off-Peak

P
O
W
E
R 

Mid-Peak 

On-Peak 

… 

peakonH −L2,1 peakmidH −L2,1 peakoffH −L2,1

… 
… 



 
 

42

A further approximation can be made by modeling the hourly loads as seen in 

Figure 4-5. The supply side of the model uses the hourly loads and the demand side 

uses the three-step vertical approximation that is based on monthly loads. The sum of 

the hourly vertical strips for demand block j  (e.g., sum of hourly on-peak demands) 

equals the demand side vertical strip area (e.g., monthly on-peak demand). 

4.3 Solution Procedure  

As mentioned before, there are several algorithms to solve the process models, 

such as the PIES algorithm (Ahn and Hogan, 1982), the decoupling algorithm (Wu and 

Fuller, 1995), and algorithms for complementarity problems (Mathiesen, 1985; Dirkse 

and Ferris, 1996; Ferris et al. 2001; Manne, 1985) or variational inequalities (Nagurney, 

1993).  

The model proposed in this thesis is represented and solved by a mixed 

complementarity problem (MCP) approach. This approach is becoming more widely 

used in a variety of application areas, such as restructured electricity markets, 

engineering mechanics, optimal control, asset pricing, etc. (Ferris et al. 2001). Also, it 

can capture the details in real world applications; e.g., in deregulated electricity 

markets, generation options, variable demand, and the transmission grid can be 

modeled. Lastly, a rich body of theory about complementarity problems allows 

analyses of model properties (i.e., solution existence and uniqueness) (Hobbs and 

Helman, 2004, p.70). 
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 A complementarity condition between a non-negative variable xi and a non-

positive function Gi(x) where x={xi} (a vector of variables)  can be written as (Hobbs and 

Helman, 2004, p.71-72): 

0)(;0)(;0 =≤≥ xGxxGx iiii  

Also, this can be written as: 

0)(0 ≤⊥≤ xGx ii  

In general, a complementarity problem is defined as follows: 

CP: find x such that 0)(0 ≤⊥≤ xGx  

where x  and  G  are vector valued. 

This complementarity problem is “square” if the number of individual 

conditions (equations) equals the number of variables x. A more general form is the 

mixed complementarity problems (MCP) where y is introduced as a second vector of 

variables, and H(x,y) as a vector-valued function with the same dimensions as y: 

MCP: find x, y such that 0),(0 ≤⊥≤ yxGx  and H(x,y)=0 

The term “mixed” reflects that the formulation includes equality constraints as 

well as inequality constraints. The term “complementarity” refers to the complementary 

slackness between variables and the constraints (Bohringer and Rutherford, 2004). 

GAMS (General Algebraic Modeling System) is a modeling language that has 

access to several solvers that can solve MCP (mixed complementarity problem) models. 

The most common MCP solvers in GAMS are PATH and MILES (a Mixed Inequality 

and non-Linear Equation Solver). 
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Both solvers use Newton type algorithms, but they differ in the adjustment 

process when the initial solution is far away from the equilibrium. PATH uses a path 

search algorithm whereas MILES uses a backtracking line search based on Mathiesen’s 

(1985) algorithm (Rutherford, 1993). A benchmark study by Rutherford (1995) showed 

that PATH solver was generally more efficient than MILES for large dimensional MCP 

models. 

NLPEC is another GAMS solver that reformulates the complementarity 

constraints of MCP and MPEC (Mathematical Programs with Equilibrium Constraints) 

models and solves by existing NLP (Non-Linear Programming) solvers, e.g. MINOS 5.0. 

Actually it is designed to solve MPEC models but a MCP model can be considered as a 

MPEC model with a constant objective (GAMS Corp., 2004).  
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5. The Mathematical Model 

5.1 Supply Side 

The supply side of the model is a cost minimization problem for all hours’ 

generation given the demands that must be met. It can be formulated as follows. 

Parameters 
set of generation facilities: ),...,1( mi =  
set of demand blocks: ),...,1( nj =  
set of periods (months): ),...,1( Tt =   
set of hours in demand block j ),...,1( )(t

jHh =  
)(t

ic = operating cost per unit of energy for facility i  in period t  ($/kWh) 
=r  discount factor ( tr : discount factor to the power of t )   
=)(t

jhd  energy demand for demand block j in hour h in period t  (kWh)  

=)(t
iK  capacity of facility i  in period t (kW)  

Decision variables  
)(t

ijhz = the energy flowing from facility i to demand block j for hour h in period t  (kWh) 
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Note that, in (7), expressions such as “ tandjih ,,∀ ” are short, more readable 

versions of the more accurate expressions such as “ ,,...,1 )(t
jHh =∀  

Ttnjmi ,...,1,,...,1,,...,1 === ”. The objective function of the model minimizes the 

total operating costs of all facilities (nuclear, hydro, coal, gas and oil) that inject energy 
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to an arc connecting i and j . It is discounted with r to reflect the time value of money. 

However, there is no harm to assume that the discount rate is zero. The first set of 

constraints ensures that electricity supply is sufficient to meet demand; at an optimal 

solution, these constraints are binding equalities. The second set of constraints are the 

capacity constraints for each generation facility; they are written in the “ ≥ ” form to 

ensure that the dual variables are non-negative, in order to ease the interpretation of 

these duals. The dual variables )(t
jhp  have the interpretation of the marginal cost of 

increasing the energy demand of the jth vertical strip for hour h by a unit. Hence, they 

give the marginal cost of hourly energy demanded in the various demand blocks. The 

dual variables )(t
ijhu can be interpreted as the marginal cost of reducing the capacity of 

facility i by a unit for demand block j and hour h. It is the “scarcity rent”, as economists 

call it. The Karush-Kuhn-Tucker (KKT) conditions for the supply side of the model are 

as follows: 
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5.2 Full MCP with Demand Side 

Equation (6) can be extended to a multi-commodity case where each commodity 

is the electricity demand in different times of day (i.e., demand blocks on-peak, mid-

peak, off-peak)  
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=)(tA vector of the factors representing non-price effects at period t , 
=)(tD vector of all demands for electricity in period t  (i.e. on-peak, mid-peak, off-peak 

demand) 
=)(tP vector of all electricity prices in period t  (i.e. on-peak, mid-peak, off-peak prices) 

=B  a square matrix of the constant price elasticities (i.e. own-price and cross-price) 
=E  a square diagonal matrix of the constant lag elasticities  

The demand side along with the supply side’s first-order optimality conditions 

as in (8) can be solved as a mixed complementarity problem. The MCP problem is 

formulated as follows:  

MCP: Find )(t
ijhz , )(t

jhp , )(t
jp , )(t

ijhu , )(t
jhd , )(t

jd that satisfy 
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 where )(t
ja , )(t

jd and )(t
jp  are the jth elements of vector )(tA , )(tD  and )(tP , 
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respectively. Similarly, jkb and jje are the elements of matrices B and E , respectively. The 

first three conditions are the supply side conditions and the fourth equation is the 

geometric distributed lagged demand equation. The fourth conditions are replaced by 

their exponential form in some computational experiments:  
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The last two equations are the connection between the hourly and monthly time 

scales. The parameter )(t
jhδ  is the weight of hourly demands within month t , for demand 

block j . These weights can be estimated from data for load duration curves in the same 

months of past years. They have the following property (i.e., sum of the weights in each 

demand blocks equals to 1): 
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The fifth equation ensures that the demand variation within a block follows the 

shape of the load duration curve. The fifth and sixth equations together ensure that the 

revenue requirement of suppliers for demand block j is met by revenue collected from 

consumers:  
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Note that the fifth and the sixth sets of equations do not impose the historical 

shape of the entire month’s load duration curve. The historical parameters )(t
jhδ  impose 
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the historical shape of the load duration curve within the hours of demand block j, but 

if prices differ from historical ones, then the monthly load duration curve of the 

solution can have a shape that is different from the historical shape. 

5.3 Illustrative Example 

An illustrative example is given in this section to clarify the structure and the 

solution methodology of the process model. This example consists of four periods (T1, 

T2, T3, T4), four types of generation facilities (nuclear, hydro, coal, gas and oil), and 

three demand blocks (on-peak, mid-peak and off-peak electricity). The data for GDL 

demand equations for this illustration are in Table 5-1. 

Table 5-1: Own and Cross Price Elasticities (Mountain and Lawson, 1995) 

 
jkb  off-peak mid-peak on-peak 

off-peak -0.037 0.014 0.023 
mid-peak 0.01 -0.027 0.018 
on-peak 0.008 0.009 -0.017 

These elasticities are taken from Mountain and Lawson (1995). Unfortunately, in 

their experiment, they did not use any lagged demand term. Therefore, an estimation of 

the lag elasticity is retrieved from an econometric study by Shin (1985). The lag 

elasticities for all GDL demand functions are set to 0.75 ( 75.0=je ). Although this is 

acceptable for illustrative purposes, the use of the model for policy purposes would 

require careful econometric estimation of all elasticities. Also, note that if there are 

seasonal TOU hours (e.g., winter, summer), the lag elasticities will be affected 

accordingly. 
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Table 5-2: Demand Data from April 2004 (T0) to August 2004 (T4). (IESO, 2005) 
)(t

jd (MWh) off-peak mid-peak on-peak Total 

T0 4,238,361 4,322,465 4,084,028 12,644,854 
T1 4,261,461 4,406,394 4,279,331 12,947,186 
T2 4,249,603 4,451,510 4,385,893 13,087,006 
T3 4,477,074 4,714,803 4,628,355 13,820,233 
T4 4,525,873 4,743,658 4,688,461 13,957,993 

Total 17,514,012 18,316,365 17,982,041 53,812,418 

The hourly demand data for the Ontario market for each month from April 2004 

to August 2004 are sorted in descending order. Then, the demand data for each day are 

grouped into 9 hours of off-peak, 8 hours of mid-peak and 7 hours of on-peak demand, 

in a day as in the proposed Ontario TOU pricing scheme. However, no weekend and 

weekday distinction is made for illustrative purposes. Table 5-2 shows this aggregated 

data. The demands for T0 are needed as the lagged demands for the first period of the 

model, T1. The model is solved for periods T1 to T4, and the solution is compared with 

the historical data in Table 5-2. Differences can be attributed to the effects of TOU 

pricing, or to model errors. 

The parameters )(t
jhδ  are calculated using the above data and the hourly demands 

for each group. Each hourly demand in a period is divided by its total demand for the 

demand block in that period (e.g., each hourly off-peak demand in a month is divided 

by the total off-peak demand in that month). This gives a crude estimate of the weights 

of each hour in total monthly demand blocks (off-peak, mid-peak, on-peak). 

To estimate the )(t
ja  parameters in the lagged demand model, the historical fixed 

price (e.g., 5.0cents/kWh, which is $50/MWh) and historical demand data (e.g., 
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demand blocks for 2004) are used. The following formula is used to estimate the )(t
ja  

parameters.  
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Table 5-3: Estimates of parameters )(t
ja  

)(t
ja  off-peak mid-peak on-peak 

T1 3.8204 3.8352 3.8524 
T2 3.8135 3.8309 3.8419 
T3 3.8677 3.8807 3.8773 
T4 3.8395 3.8437 3.8498 

Table 5-4: Generator cost data for each month ($/MWh) 

 Hydro Nuclear Coal Gas and Oil 
T1 1.04 3.79 28.2 61 
T2 1.05 3.8 28.4 61.2 
T3 1.06 3.81 28.6 61.4 
T4 1.07 3.82 28.8 61.6 

Operating costs of generators are changing each month to reflect some variation 

in the economy (e.g., increase in gas and oil prices etc.)16. However, the discount rate is 

assumed to be zero to simplify the illustration, but there is no difficulty to use a positive 

discount rate. If a positive discount rate is used, )(t
jp  in the demand function should be 

scaled by rt (i.e., )(t
jp /rt), because econometricians usually use nominal values of prices 

rather than discounted values, when estimating the demand function.  

                                                 
16 Generators may avoid these fluctuations in economy by hedging or long-term supply contracts. 
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Table 5-5: Capacity of facility i (available resources) (MW) 

Hydro Nuclear Coal Gas and Oil 
6,984 9,901 6,882 4,527 

The capacity of facilities for different generation technologies is presented in 

Table 5-5. Available resources for the beginning of year 2004 are assumed to be fixed 

throughout the year. However, there is no harm to use changing capacities for each 

period t. 

The model is coded in GAMS and solved by the MCP solver, PATH (MILES was 

not as efficient as PATH in computation time). The GAMS code is in the Appendix A. 

Initial solutions (other than zero) are provided for the PATH solver to avoid execution 

errors (e.g., a flat start, where all variables in the model are set to zero, causes execution 

errors because of the logarithmic or exponential terms in the model). The Network-

Enabled Optimization System (NEOS) server for optimization (Czyzyk et al., 1998) 

provides an online PATH solver for mixed complementarity problems. GAMS code can 

be submitted online and the results can be obtained in the browser (or sent by e-mail) 

after the computations are done. Both the logarithmic form and the exponential form of 

the GDL demand functions were submitted to the NEOS server to examine any possible 

differences in computation time spent on GAMS/PATH. 

 Though the PATH solver was robust enough to find the equilibrium solution for 

a 4-month model, it was unable to find a solution for a 12-month model due to time 

limitations (28800 seconds=8 hours) on the NEOS server. To overcome this difficulty, an 

iterative solution procedure is introduced. One month is solved by itself and fixed for 
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the next month (e.g., this month’s demand at equilibrium is fixed to the next month’s 

lagged demand). In other words, instead of solving the model at once for all 4 months, 

the iterative solution procedure solves each month separately, which is expected to 

reduce the computation time. 

Solutions of all models (exponential GDL, logarithmic GDL and the iterative 

model with logarithmic GDL) were identical. The only difference was the computation 

times. The following tables display the results. 

Table 5-6:  )(t
ijz 17 Energy (MWh) flowing from facility i to demand block j for each month 

)(t
ijz  (MWh) off-peak mid-peak on-peak 

T1 Hydro 1,948,536 1,732,032 1,515,528 
T1 Nuclear 2,482,923 2,443,492 2,148,517 
T1 Coal 10,325 201,492 566,285 
T2 Hydro 1,885,680 1,676,160 1,466,640 
T2 Nuclear 2,512,731 2,376,240 2,079,210 
T2 Coal 87,877 346,691 780,548 
T3 Hydro 1,948,536 1,732,032 1,515,528 
T3 Nuclear 2,653,770 2,455,448 2,148,517 
T3 Coal 147,099 460,293 898,628 
T3 Gas and Oil   42 
T4 Hydro 1,948,536 1,732,032 1,515,528 
T4 Nuclear 2,680,126 2,455,448 2,148,517 
T4 Coal 165,762 485,864 960,978 

Table 5-7:  )(t
jd Energy (MWh) demand for demand block j 

)(t
jd (MWh) off-peak mid-peak on-peak Total 

T1 4,441,784 4,377,017 4,230,330 13,049,130 
T2 4,486,288 4,399,091 4,326,398 13,211,777 
T3 4,749,405 4,647,773 4,562,714 13,959,893 
T4 4,794,423 4,673,344 4,625,023 14,092,790 

Total 18,471,900 18,097,225 17,744,465 54,313,590 

                                                 
17 Note that ∑
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Table 5-8:  )(t
jp Marginal cost (TOU prices, $/MWh) for demand block j 

)(t
jp  ($/MWh) off-peak mid-peak on-peak 

T1 8.49 22.71 28.20 
T2 15.21 28.40 28.40 
T3 17.45 28.60 28.77 
T4 20.10 28.80 28.80 

Table 5-9: Computation times (seconds) 

CPU Times (seconds) 
Logarithmic GDL 7,886.68   Exponential GDL 3,330.73 

 
Iterative model T1 T2 T3 T4 Total 

(with logarithmic GDL) 69.22 62.14 73.65 74.89 279.9 

The above results showed that TOU prices for all models are as expected, (i.e., 

higher prices for on-peak, lower prices for off-peak). For some months, the TOU prices 

are exactly equal to the operating cost of the generator that serves the last unit of energy 

(i.e., the marginal cost of production). The demand for off-peak block is higher than the 

actual demand values in Table 5-2, whereas, both mid-peak and on-peak demands are 

lower than the actual demand values. This is expected since the off-peak price is less 

than mid-peak and on-peak prices, which in turn increases the demand during the off-

peak period. Table 5-10 summarizes the changes in demand for each demand block j. 

Table 5-10:  Percentage change in )(t
jd Energy (MWh) demand for demand block j 

(compared to actual demand values in Table 5-2) 
)(t

jd (MWh) off-peak mid-peak on-peak Total 

T1 4.23% -0.67% -1.15% 0.79% 
T2 5.57% -1.18% -1.36% 0.95% 
T3 6.08% -1.42% -1.42% 1.01% 
T4 5.93% -1.48% -1.35% 0.97% 

Total 5.47% -1.20% -1.32% 0.93% 
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Table 5-10 depicts that there is about 5.5% increase in off-peak demand when 

compared to actual off-peak demand in 2004. The mid-peak and on-peak demands are 

decreased about 1.2% when compared to actual mid-peak and on-peak demands. 

Overall demand over the 4 months has increased by almost 1% with the 

implementation of TOU prices. This increase is expected since the TOU prices are lower 

than the actual fixed price of 50$/MWh (5cents/kWh).  

The generation capacity in the market is assumed to be fixed for the entire model 

scope. In reality, regular maintenance and unexpected generator failures may lower this 

fixed capacity and capacity shortages may force more expensive resources (e.g., gas and 

oil) to be used. 

The computation time of the exponential form is less than that of the logarithmic 

form. But different instances have shown that neither the logarithmic form nor the 

exponential form has any advantage over each other (sometimes the exponential form 

and sometimes the logarithmic form is faster). The iterative model has the best 

performance in terms of computation time (more than 12 times faster than the model 

with exponential GDL demand). 

The iterative solution procedure is employed for a 12-month (yearly) TOU 

pricing model. The hourly demand data for the Ontario market from November 2003 to 

December 2004 are used to compute the parameters )(t
jhδ  and )(t

ja . The same data for 

elasticities, which are used in the 4-month model, are used for the 12-month model. The 

results are presented in Appendix B. Similar conclusions, as for the 4-month model, can 

be drawn from these results.  
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5.4 Extensions 

5.4.1 Fixed Pricing Model 

Instead of TOU pricing, some consumers may prefer a fixed price or regulator 

bodies in electricity markets may choose to implement a fixed pricing scheme. In this 

case, consumers’ prices need not vary by month, nor by time of day. It is possible to 

model a single price for the whole day, but which varies by month, or season. It is also 

possible to define time-of-use prices that are the same in every month. We illustrate by 

showing how to model a single price that is the same at all times of day and in all 

months. 

It is easy to incorporate the revenue requirements of the suppliers or retailers to 

the model, by modifying the fourth and sixth sets of equations in (10) to reflect the 

revenue requirements of suppliers and retailers. 
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The fourth equation is the geometric distributed lagged demand with fixed 

price fP . The sixth equation ensures that the revenue requirements of suppliers over all 
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periods are met. Fixed price multiplied by the total demand (i.e., sum of demand blocks 

in all periods) is equal to the revenues collected from hourly prices and demands over 

all hours, demand blocks and periods. Note that the fixed price fP  is actually a 

weighted average of hourly prices:  
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The fixed pricing model cannot be solved by the aforementioned iterative 

procedure because the price is fixed over all periods. It should be solved as one model 

over all months to find the fixed price for all months. No special procedures are 

required for the 4-month model, but for the 12-month model, we make the model much 

smaller by an approximation called the “representative weekday model”. An 

illustrative example is given in sub-section 5.4.2. 

The fixed pricing model (equation (11)) is coded in GAMS and solved by the 

PATH solver with the same data and parameters that are used in the TOU pricing 

model in section 5.3. Solution of the fixed pricing model for a 4-month period is 

presented in the following tables. 
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Table 5-11:  )(t
ijz Energy (MWh) flowing from facility i to demand block j for each month 

)(t
ijz  (MWh) off-peak mid-peak on-peak 

T1 Hydro 1,948,536 1,732,032 1,515,528 
T1 Nuclear 2,313,107 2,448,590 2,148,517 
T1 Coal  222,321 615,451 
T2 Hydro 1,885,680 1,676,160 1,466,640 
T2 Nuclear 2,354,318 2,376,240 2,079,210 
T2 Coal 9,766 392,728 840,067 
T3 Hydro 1,948,536 1,732,032 1,515,528 
T3 Nuclear 2,492,604 2,455,448 2,148,517 
T3 Coal 35,935 518,153 963,640 
T3 Gas and Oil   762 
T4 Hydro 1,948,536 1,732,032 1,515,528 
T4 Nuclear 2,541,366 2,455,448 2,148,517 
T4 Coal 36,149 545,117 1,024,242 
T4 Gas and Oil   99 

Table 5-12:  )(t
jd Energy (MWh) demand for demand block j 

)(t
jd (MWh) off-peak mid-peak on-peak Total 

T1 4,261,643 4,402,943 4,279,496 12,944,082 
T2 4,249,764 4,445,128 4,385,917 13,080,809 
T3 4,477,075 4,705,633 4,628,447 13,811,155 
T4 4,526,051 4,732,597 4,688,386 13,947,034 

Total 17,514,533 18,286,302 17,982,246 53,783,080 

Table 5-13:  fP  Fixed Price ($/MWh) and computation time (seconds) 

fP  Fixed Price ($/MWh) CPU Time (seconds) 
21.79 18,467.7 

The fixed price is a weighted average of hourly prices and the demand for all 

periods are very close to actual values for the same period (Table 5-2).  Note that the 

computation time is more than 5 hours, which is too long for this small-size problem. 

The computation time limit (8 hours) on the NEOS server does not allow the 

computation of some other instances and variations of the fixed pricing  model, such as 
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changing generator capacities by month instead of fixed generator capacities, and long-

term models (12 months or so). 

This extension of the model can be used to charge consumers who are not on a 

TOU pricing scheme while meeting the revenue requirements of the suppliers. 

Moreover, a comparative welfare analysis for TOU and fixed pricing can be done. The 

welfare effects of TOU pricing on consumers and suppliers can be examined. This is 

done in section 5.5. 

5.4.2 Representative Weekday Model 

Similar analysis can be done for a fairly small, but nonetheless representative 

model. A representative weekday of the month or an average of all hourly demands of 

weekdays within a month can be used in such analysis. Instead of using all hourly 

demands in a month (720 hours for a 30-day month), one weekday (24 hours) can 

represent all weekdays in a month. Electricity demands in weekends are usually lower 

than that of the weekdays and generally, all demands in weekends are assumed to be 

off-peak. Therefore, a real application of this procedure would require representative 

weekend days, too, but for simplicity of the illustration, we ignore the weekend 

differences and use one representative weekday for the whole month.  

Average demands for each 24 hours in each weekday of a week can be used to 

model a representative weekday of the month. A key assumption in this modeling 

approach is that the weekdays in a specific month are identical (i.e., one weekday 

represents all the days in a month). The averages of each 24 hours for each weekday in 
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all months in the year 2004 for the Ontario market are presented in Table B-7 in 

Appendix B. This table also shows the time intervals (e.g., off-peak, mid-peak and on-

peak) for summer and winter months. In earlier experiments, the proposed definitions 

of the time intervals for the Ontario market caused some anomalies with mid-peak and 

on-peak prices. Particularly, mid-peak prices were higher than the on-peak prices, 

because mid-peak demands were usually higher than the on-peak demands according 

to proposed time intervals. Therefore, another procedure is used to define this time 

intervals for TOU pricing. 

The average hourly demand data for a representative weekday for the Ontario 

market from January 2004 to December 2004 are sorted in descending order. Then, for 

summer (winter) months18 the demand data for each weekday in each month are 

grouped into 9 hours (9 hours) of off-peak, 8 hours (7 hours) of mid-peak and 7 hours (8 

hours) of on-peak demand, in a weekday19. This grouping gives an idea about the 

intervals for TOU pricing for weekdays. The averages of hourly demands in a weekday 

are grouped in way that for summer months (as well as for winter months) specific 

TOU pricing intervals are found. Table B-7 in Appendix B shows the approximate TOU 

intervals calculated for summer and winter months in 2004 for the Ontario market. The 

TOU intervals for weekdays are as follows: 

• off-peak hours: 11pm-7am for all months (summer and winter) 

                                                 
18 Summer months are from April to September (6months), and winter months are from October to March 
(6months). 
19 For summer months, the highest 7 hours (8 hours for winter) are marked as on-peak. The lowest 9 
hours (9hours for winter) are marked as off-peak. The rest of the hours are marked as mid-peak, which is 
8 hours (7 hours for winter) for summer months.  
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• mid-peak hours: 8am-9am, 1pm-4pm and 10pm for winter and 8am-

10am, 6pm-10pm for summer 

• on-peak hours: 10am-12am and 5pm-9pm for winter and 11am-5pm for 

summer 

Note that these TOU intervals are approximated only from 2004 data for the 

Ontario market. A more accurate analysis can be performed with previous years’ data, 

and TOU intervals for a weekday can be estimated more carefully. 

 The parameters )(t
jhδ  are calculated by using )()()( / t

j
t

jh
t

jh dd=δ  ( )(t
jd parameters are the 

total off-peak, mid-peak and off-peak demand). The )(t
ja  parameters were estimated by 

using the same procedure in section 5.3. Both the TOU pricing model (from MCP (10)) 

and the fixed pricing model (from MCP (11)) are solved in GAMS/PATH solver with 

the same data given in section 5.3. GAMS codes are in Appendix A and results are 

summarized in Appendix B. The TOU pricing model and the fixed pricing model were 

solved as mentioned in previous sub-section 5.4.1.  Prices, computation times and 

demands for both models are given in the following tables. 
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Table 5-14:  )(t
jp   TOU prices for demand block j and fP  fixed price ($/MWh) 

)(t
jp ($/MWh) off-peak mid-peak on-peak 

T1 27.40 27.40 31.66 
T2 27.60 27.60 27.60 
T3 17.63 27.80 27.80 
T4 12.44 28.00 28.00 
T5 13.28 28.20 28.20 
T6 18.06 28.40 28.40 
T7 21.56 28.60 28.60 
T8 23.57 28.80 28.80 
T9 12.94 29.00 29.00 

T10 13.21 29.20 29.20 
T11 21.35 29.40 29.40 
T12 29.60 29.60 29.60 

 
 fP ($/MWh) 

 24.356 

Table 5-15: Computation times (seconds) for TOU and Fixed Pricing Models 

CPU Times (seconds) 
TOU pricing 4.94 
Fixed Pricing 13.7 

Table 5-16:  )(t
jd  Energy (MWh) demand for demand block j for each month for the 

TOU and Fixed Pricing models for the Representative Weekday 

TOU Pricing  Fixed Pricing 
)(t

jd (MWh) off-peak mid-peak on-peak Total  off-peak mid-peak on-peak Total 

T1 175,493 154,977 183,566 514,036  174,911 154,557 184,017 513,485 
T2 165,250 144,523 170,424 480,197  164,839 144,211 170,738 479,788 
T3 155,759 138,035 162,461 456,255  152,870 138,422 163,279 454,571 
T4 152,674 149,264 132,264 434,202  146,094 150,775 133,628 430,496 
T5 152,421 149,779 135,468 437,668  143,416 152,032 137,339 432,788 
T6 157,418 155,702 143,365 456,485  147,891 158,147 145,373 451,410 
T7 158,033 157,330 146,840 462,203  149,234 159,604 148,716 457,554 
T8 159,139 160,321 149,137 468,597  151,320 162,354 150,805 464,479 
T9 150,949 152,055 140,030 443,034  141,078 154,715 142,117 437,910 

T10 150,208 128,430 151,473 430,111  138,649 131,124 154,138 423,911 
T11 159,622 133,832 160,165 453,620  148,550 136,341 162,690 447,581 
T12 172,875 144,183 173,941 491,000  163,801 146,178 175,994 485,972 

Total 1,909,841 1,768,432 1,849,133 5,527,407  1,822,651 1,788,461 1,868,835 5,479,947 
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Similar conclusions as for the 4-month model can be drawn from the tables 

above. The tables in Appendix B (B-10, B-11) compare the TOU pricing demand, fixed 

pricing demand and the actual demand for the representative weekday model.  Fixed 

pricing demand is almost the same as the actual demand for all demand blocks and all 

months. TOU pricing off-peak demand is about 5% more than the fixed pricing off-peak 

demand. Both mid-peak and on-peak demands of TOU pricing model are around 1% 

less than that of the fixed pricing model. It is safe to say that these results are consistent 

with the 4-month model.  

Figure B-1 in Appendix B compares the TOU prices and hourly prices for a 

representative weekday of T5 (May 2004). TOU prices move consistently with the 

hourly prices, since TOU prices are weighted averages of the hourly prices. 

The representative weekday model is very useful and fast in estimating the TOU 

prices and the fixed price. Instead of using hourly averages for the weekday, a 

representative week model within a month can be selected and equilibrium prices and 

quantities can be computed. This whole week representation for a specific month 

instead of a weekday representation can be utilized to find the TOU prices for 

weekends. This would allow the weekday and weekend distinction, which is more 

suitable and more accurate for TOU pricing. 

5.4.3 Welfare Analysis: TOU vs. Fixed Pricing 

In this sub-section a welfare analysis for TOU pricing versus fixed pricing is 

presented. The economic impact of TOU pricing scheme is measured. The following 
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table compares the fixed and TOU pricing models’ equilibrium solutions for the 4-

month model. 

Table 5-17: Percent change in Prices and Demand after the implementation of TOU                   
Pricing Scheme for the 4-month model ([TOU-Fixed]/Fixed) 

 % Change in Prices   % Change in Demand 
 off-peak mid-peak on-peak   off-peak mid-peak on-peak Total 

T1 -61.06% 4.23% 29.42%  T1 4.23% -0.59% -1.15% 0.81% 
T2 -30.21% 30.34% 30.34%  T2 5.57% -1.04% -1.36% 1.00% 
T3 -19.94% 31.25% 32.04%  T3 6.08% -1.23% -1.42% 1.08% 
T4 -7.78% 32.17% 32.17%  T4 5.93% -1.25% -1.35% 1.05% 

     Total 5.47% -1.03% -1.32% 0.99% 

Equilibrium TOU prices for the off-peak demand blocks for the 4-month model 

are significantly lower than the equilibrium fixed price.  On the other hand, equilibrium 

TOU prices for mid-peak and on-peak demand blocks are higher than the fixed price.. 

The off-peak demands for TOU scheme are about 5% higher than that of the fixed 

pricing scheme. The change in demand for mid-peak and on-peak hours is around -1%. 

Some amount of the on-peak and mid-peak demand is shifted to off-peak hours. More 

accurately, this can be attributed partially to a shift in consumption from mid- peak and 

on-peak hours to off-peak hours and partially to a reduction in consumption at mid-

peak and on-peak hours. This was expected, because many studies have reported 

findings that show either a shift in consumption from peak hours to off-peak hours or a 

demand reduction in peak hours. Total demand for each period has increased almost 

1%. This can be attributed to lower prices for the off-peak hours which cause an 

increase in total demand. The results reported in this thesis are, therefore, consistent 

with real experiments in TOU pricing. 
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For welfare analysis, since the demand function is not symmetric (non-integrable), 

a consumer utility function cannot be derived from the GDL demand function. 

Therefore, an approximation method, which is introduced by Arnold Harberger (1971), 

is used to estimate the change in consumers’ total value. He used a Taylor series 

approximation for the change in total value for a single consumer as follows. 
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The left side is the change in total value in monetary units. If the changes in 

prices ( jp∆ ), quantities demanded ( jX∆ ) and marginal utility of income λ∆  is small 

enough to ignore the third order terms in Taylor expansion, this expression is fairly 

accurate (Fuller, 1996).  

Change in consumers’ surplus is, then given by the expression below, change in 

consumers’ total value minus change in consumers’ payments (Fuller, 1996).  
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Change in producers’ surplus can be calculated by change in profits, or 

equivalently, change in suppliers’ revenues minus change in suppliers’ costs. Table  5-

18 summarizes the welfare analysis after the implementation of TOU prices. 
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Table 5-18: Welfare Analysis for the 4-Month model (changes are “TOU-Fixed Price”) 
(T1:May 04…T4:August 04) 

 Change in  
Consumers' 

Total Value ($) 

Change in  
Consumer'  

Payments ($) 

Change in  
Consumers'  
Surplus ($) 

Change in  
Suppliers'  

Revenues ($) 

Change in  
Suppliers'  
Costs ($) 

Change in  
Suppliers'  
Surplus ($) 

Change in  
Total  

Surplus ($) 
T1 921,188 -25,656,845 26,578,033 -25,654,900 -1,058,390 -24,596,510 1,981,523 
T2 1,726,405 30,996,037 -29,269,632 30,997,200 -177,490 31,174,690 1,905,058 
T3 2,222,900 46,108,469 -43,885,569 46,110,900 234,950 45,875,950 1,990,381 
T4 2,518,739 60,230,948 -57,712,209 60,231,400 728,230 59,503,170 1,790,961 

Total 7,389,231 111,678,609 -104,289,378 111,684,600 -272,700 111,957,300 7,667,922 

Change in total surplus can be calculated by adding changes in consumers’ 

surplus and producers’ surplus. It can be concluded that TOU pricing scheme after a 

fixed pricing scheme increases the consumers’ total value, but decreases consumers’ 

surplus because of higher consumer payments to suppliers. On the other hand, the 

suppliers’ are better off with the TOU pricing since their revenues increase 

considerably. The net welfare to the society is increased by TOU prices. Gains on 

suppliers’ surplus compensated the loss in consumers’ surplus.  

Similar analysis can be performed for the representative weekday model. 

Comparison of TOU pricing model results with the fixed pricing model results are 

presented in Appendix B. Table 5-19 displays the welfare analysis for the representative 

weekday model. Similar to 4-month model, representative weekday model also shows 

an increase in the net welfare. Note that these increases are based on an average 

weekday of each month; there are some welfare losses in winter months (T1:January, 

T2:February, T12:December) and most of the welfare gains are from summer and fall 

months.  
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Table 5-19: Welfare Analysis for the Representative Weekday Model (changes are 
“TOU-Fixed Price”) (T1: January04…T12: December 04) 

 
Change in 

Consumers' 
Total Value 

Change in 
Consumer' 
Payments 

Change in 
Consumers' 

Surplus 

Change in 
Suppliers' 
Revenues 

Change in 
Suppliers' 

Costs 

Change in 
Suppliers' 

Surplus 

Change in 
Total 

Surplus 
T1 13,310 2,359,964 -2,346,654 2,359,710 13,188 2,346,522 -133 
T2 10,637 1,567,733 -1,557,096 1,567,500 11,302 1,556,198 -898 
T3 29,212 27,968 1,244 27,730 14,957 12,773 14,018 
T4 45,811 -702,677 748,488 -702,931 1,195 -704,126 44,362 
T5 61,073 -472,410 533,482 -472,590 -16,150 -456,440 77,042 
T6 84,575 341,130 -256,556 340,900 17,230 323,670 67,114 
T7 92,094 961,624 -869,530 961,330 24,093 937,237 67,707 
T8 88,989 1,350,122 -1,261,133 1,349,880 30,341 1,319,539 58,407 
T9 57,453 -241,385 298,838 -241,600 -23,179 -218,421 80,417 

T10 73,596 -167,515 241,111 -167,720 -29,455 -138,265 102,846 
T11 117,734 1,150,479 -1,032,745 1,150,220 32,695 1,117,525 84,780 
T12 135,622 2,697,243 -2,561,621 2,697,000 148,803 2,548,197 -13,424 

Total 810,106 8,872,278 -8,062,172 8,869,429 225,019 8,644,409 582,237 

Note that this welfare analysis is for an average weekday; therefore the values 

are much smaller than that of the welfare analysis for the 4-month model, which 

represents a whole month, including weekends. Also note that in this analysis T5:May 

and T8:August corresponds to the previous welfare analysis for the 4-month model 

These welfare analyses can be used by regulatory bodies in determining whether 

to pursue TOU prices or fixed prices. The welfare gains from TOU prices can be 

compared with the investment in metering technology and communication 

infrastructure.  
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6. Conclusion 

Pricing is the most fundamental aspect of electricity markets whose design must 

balance objectives that often conflict with each other. Economic theory dictates that 

efficient pricing is achieved when electricity is priced at the marginal cost of supplying 

the last increment of electricity demand. However, in retail electricity markets, it 

requires strenuous efforts to implement a pricing scheme that reflects this marginal cost 

of electricity.  

In this thesis, different pricing schemes are examined which can be used for 

many electricity retail markets. A computable equilibrium model is developed to 

estimate the time-of-use (TOU) prices.  This model is significantly different from any 

other pricing model for electricity markets, because of the consideration of the time-

differentiated pricing concept in an optimization and equilibrium framework. 

Furthermore, it overcomes very important shortcomings in electricity market models: 

existing models either ignored the demand response to changing prices, or, at the other 

extreme, they assumed that the full demand response occurred within one hour. The 

model considers the demand side effect in pricing. It may be a useful tool to forecast the 

TOU prices and analyze the welfare changes before the implementation. 

However, the model has some weaknesses. First of all, it requires carefully 

estimated demand functions with significant own and cross price elasticities and as well 

as lag elasticities. However, the number of econometric studies on TOU prices for 

Ontario market is very limited (only one study by Mountain and Lawson (1995) in the 
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last decade). Therefore, estimating the model parameters is another task to accomplish 

in order to reach the model objectives. 

Another problem with the model is that it does not consider the transmission 

grid, and therefore many limitations of transmission lines are not examined. Line and 

voltage limits affect the flow of energy from generators to demand nodes and 

congestion is an important problem in transmission lines. Models that take into account 

such problems and reflect the costs of these issues may estimate prices more precisely 

and accurately. 

Beyond these weaknesses, the model has a bright future and there are further 

research venues to explore. As declared by Ontario Energy Board (2004) on December 

7th, the Ontario government plans to implement a regulated TOU scheme for 

medium/small commercial and residential customers in Ontario.20 The proposed model 

can be helpful in estimating the TOU prices and assessing the outcomes of a pricing 

reform. The representative weekday model is very promising in computation times and 

provides very close solutions to models where all hours in a year are represented. 

There are many ways in which this foundational basic framework can be 

extended. Through the introduction of multiple-firm structure, strategic interactions 

between competing firms can be analyzed, in order to explore the potential for large 

firms to “game” the market, in the context of a model that more realistically represents 

                                                 
20 OEB plan includes the customers who have less than 250,000kWh yearly consumption, such as 
institutions, schools, universities, hospitals. Also, new residential customers are mandated to have TOU 
meters. Board has planned to install 800,000 TOU meters by the end of 2007. It is estimated that the 
capital and operating costs of implementing a TOU scheme is about 1.07 billion, which is an incremental 
cost $3-$4 on an average customer’s monthly bill. (discounted estimate in a 15-year horizon) 
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consumers’ responses to changing prices. Also, the model can be made more realistic by 

the introduction of linearized DC network in the model. Moreover, stochastic 

components such as generator failures, weather conditions and other factors can be 

examined. A CPP pricing scheme can be implemented with a stochastic component of 

price spikes. 
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Appendix A 
 

GAMS CODES 

TOU Pricing -4 Month Model- (model with logarithmic or exponential forms of the GDL Demand 
Function) 
 
****LOGARITHMIC FORM 
***********************NEOS Job#     : 628921 Password : HpYiGeSo ************************** 
 
****EXPONENTIAL FORM 
***********************NEOS Job#     : 632302   Password : xMDFafNn  ************************** 
 
SETS 
       H   set of hours     /h1*h279/ 
       I   equipment type   / Hydro, Nuclear, Coal, Gas/ 
       J   load  / offpeak, midpeak, onpeak/ 
       T   periods /T1*T4/ 
ALIAS (J,K); 
 
  PARAMETERS 
     KAP(I) capacity of facility i    (MW-ontario available resources) 
         /    hydro       6984 
              nuclear     9901 
              coal        6882 
              gas         4527/; 
 
  TABLE DELTA(T,J,H)  weight of each hour group   (total =1) 
* ---------------add Delta(t,j,h)s here --------------------------- ;                                            
 
TABLE D0(T,J) demand at time 0  (MWh) 
          offpeak           midpeak          onpeak 
T1        4238360.62        4322465.3        4084027.76; 
 
 
  TABLE A(T,J)  factors representing non-price effects 
*rounded     estimated by fixed price 5c/kwh 
          offpeak       midpeak       onpeak 
T1        3.8204        3.8352        3.8524 
T2        3.8135        3.8309        3.8419 
T3        3.8677        3.8807        3.8773 
T4        3.8395        3.8437        3.8498 
 
TABLE C(T,I)  Operating cost per unit of energy for facility i  ($\MWh) 
          Hydro       Nuclear     Coal        Gas 
T1        1.04        3.79        28.2        61 
T2        1.05        3.8         28.4        61.2 
T3        1.06        3.81        28.6        61.4 
T4        1.07        3.82        28.8        61.6   ; 
 
 
  TABLE B(J,K) price elasticities own-cross 
              offpeak       midpeak       onpeak 
offpeak        -0.037        0.014         0.023 
midpeak         0.01        -0.027         0.018 
onpeak          0.008        0.009        -0.017   ; 
 
  TABLE E(J,J) lag elasticities 
                      offpeak   midpeak    onpeak 
        offpeak       0.75 
        midpeak                  0.75 
         onpeak                             0.75 ; 
 
  POSITIVE VARIABLES 
       Zh(T,I,J,H) quantity of energy flowing from facility i for each hour h=1...Hj 
       Ph(T,J,H)   marginal cost\price of electricity for hourly demand J.H (hourly TOU price) 
       U(T,I,J,H)  scarcity rent of facilities  ; 
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  FREE VARIABLES 
       D(T,J)  demand corresponding to vertical strip j 
       Dh(T,J,H)  hourly demand 
       P(T,J)     marginal cost\price of electricity for demand J (TOU price); 
 
*initial quesses* 
 D.l(T, J)=10000; 
 P.l(T, J)=20; 
 Dh.l(T, J, H)=5000; 
 Ph.l(T, J, H)=20; 
 
EQUATIONS 
COMP(T,I,J,H)   dual complementarity condition 
DEMBAL(T,J,H)  demand balance 
CAPBAL(T,I,J,H)    capacity balance 
DEMAND(T,J)    GDL demand equation 
DEMANDh(T,J,H) hourly demand 
PRICE(T,J)     monthly TOU price; 
 
 
 
COMP(T,I,J,H)..  C(T,I)-Ph(T,J,H)+U(T,I,J,H)=G=0; 
DEMBAL(T,J,H).. SUM(I, Zh(T,I,J,H))-Dh(T,J,H)=G=0; 
CAPBAL(T,I,J,H).. KAP(I)-Zh(T,I,J,H)=G=0; 
***DEMAND(T,J).. -LOG(D(T,J))+A(T,J)+SUM(K, B(J,K)*LOG(P(T,K)))+E(J,J)*LOG(D0(T,J)+D(T-1,J))=E=0  
; 
DEMAND(T,J).. -D(T,J)+exp(A(T,J))*PROD(K, P(T,K)**B(J,K))*((D0(T,J)+D(T-1,J))**E(J,J))=E=0  ; 
 
DEMANDh(T,J,H).. Dh(T,J,H)-DELTA(T,J,H)*D(T,J)=E=0; 
PRICE(T,J)..     P(T,J)-SUM(H, DELTA(T,J,H)*Ph(T,J,H))=E=0; 
 
MODEL HTOU /COMP.Zh, DEMBAL.Ph, CAPBAL.U, DEMAND.D, DEMANDh.Dh, PRICE.P/ ; 
OPTION MCP=PATH; 
****Option to reduce solver output 
OPTION LIMROW=0; 
OPTION LIMCOL=0; 
OPTION SOLPRINT=OFF; 
*****MAXIMUM ITERLIM**** 
OPTION ITERLIM=1E+9; 
*****RESOURCE LIMIT IN SECONDS****ALSO THE LIMIT ON NEOS SERVER 
OPTION RESLIM=28800; 
SOLVE HTOU USING MCP; 
  PARAMETER 
  Z(T,I,J)   quantity of energy flowing from facility i for theta(j) hours 
  CPUTIME    CPU-TIME 
  REVENUE(T)    Revenue of suppliers 
  COST(T)       Cost of suppliers 
  TotalCost     total cost 
  TotalRevenue  total revenue; 
 
Z(T,I,J)=SUM(H, Zh.l(T,I,J,H)); 
  CPUTIME=HTOU.resusd; 
  REVENUE(T)=SUM(J, P.l(T,J)*D.l(T,J)); 
  COST(T)=SUM((I,J,H), C(T,I)*Zh.l(T,I,J,H)); 
DISPLAY  Ph.l, COST, REVENUE, Z, D.l, "TOU PRICEs", P.l, "CPU TIME", CPUTIME; 
 
DISPLAY "RESULTS HERE", COST, REVENUE, Z, D.l, P.l, CPUTIME; 
 
TotalCost=SUM(T,COST(T)); 
TotalRevenue=SUM(T, REVENUE(T)); 
DISPLAY TotalCost, TotalRevenue; 
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TOU Pricing -4 Month Model- (Iterative model with logarithmic or exponential forms of the GDL 
Demand Function) 
*********************** NEOS Job#     : 628920   Password : XzTvautV ************************** 
 
SETS 
       H   set of hours     /h1*h279/ 
       I   equipment type   / Hydro, Nuclear, Coal, Gas/ 
       J   load  / offpeak, midpeak, onpeak/ 
       T   periods /T1*T4/ 
       TT(T) dynamic set; 
ALIAS (J,K); 
 
  PARAMETERS 
     KAP(I) capacity of facility i    (MW-ontario available resources) 
         /    hydro       6984 
              nuclear     9901 
              coal        6882 
              gas         4527/; 
 
  TABLE DELTA(T,J,H)  weight of each hour group   (total =1) 
* ---------------add Delta(t,j,h)s here --------------------------- ;                                            
 
TABLE D0(T,J) demand at time 0  (MWh) 
          offpeak           midpeak          onpeak 
T1        4238360.62        4322465.3        4084027.76 
T2        1                 1                1 
T3        1                 1                1 
T4        1                 1                1       ; 
******TO AVOID SINGULARITY, otherwise PATH will give following error: 
**** Exec Error at line 168: log: FUNC SINGULAR: x = 0 
 
 
  TABLE A(T,J)  factors representing non-price effects 
*rounded     estimated by fixed price 5c/kwh 
          offpeak       midpeak       onpeak 
T1        3.8204        3.8352        3.8524 
T2        3.8135        3.8309        3.8419 
T3        3.8677        3.8807        3.8773 
T4        3.8395        3.8437        3.8498 
 
 
TABLE C(T,I)  Operating cost per unit of energy for facility i  ($\MWh) 
          Hydro       Nuclear     Coal        Gas 
T1        1.04        3.79        28.2        61 
T2        1.05        3.8         28.4        61.2 
T3        1.06        3.81        28.6        61.4 
T4        1.07        3.82        28.8        61.6   ; 
 
 
  TABLE B(J,K) price elasticities own-cross 
              offpeak       midpeak       onpeak 
offpeak        -0.037        0.014         0.023 
midpeak         0.01        -0.027         0.018 
onpeak          0.008        0.009        -0.017   ; 
 
  TABLE E(J,J) lag elasticities 
                      offpeak   midpeak    onpeak 
        offpeak       0.75 
        midpeak                  0.75 
         onpeak                             0.75 ; 
 
 POSITIVE VARIABLES 
       Zh(T,I,J,H) quantity of energy flowing from facility i for each hour h=1...Hj 
       Ph(T,J,H)   marginal cost\price of electricity for hourly demand J.H (hourly TOU price) 
       U(T,I,J,H)  scarcity rent of facilities  ; 
  FREE VARIABLES 
       D(T,J)  demand corresponding to vertical strip j 
       Dh(T,J,H)  hourly demand 
       P(T,J)     marginal cost\price of electricity for demand J (TOU price); 
 
*initial quesses* 
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 D.l(T, J)=10000; 
 P.l(T, J)=20; 
 Dh.l(T, J, H)=5000; 
 Ph.l(T, J, H)=20; 
 
EQUATIONS 
COMP(T,I,J,H)   dual complementarity condition 
DEMBAL(T,J,H)  demand balance 
CAPBAL(T,I,J,H)    capacity balance 
DEMAND(T,J)    GDL demand equation 
DEMANDh(T,J,H) hourly demand 
PRICE(T,J)     monthly TOU price; 
 
COMP(TT,I,J,H)..  C(TT,I)-Ph(TT,J,H)+U(TT,I,J,H)=G=0; 
DEMBAL(TT,J,H).. SUM(I, Zh(TT,I,J,H))-Dh(TT,J,H)=G=0; 
CAPBAL(TT,I,J,H).. KAP(I)-Zh(TT,I,J,H)=G=0; 
DEMAND(TT,J).. -LOG(D(TT,J))+A(TT,J)+SUM(K, B(J,K)*LOG(P(TT,K)))+E(J,J)*LOG(D0(TT,J))=E=0  ; 
**DEMAND(TT,J).. -D(TT,J)+exp(A(TT,J))*PROD(K, P(TT,K)**B(J,K))*(D0(TT,J)**E(J,J))=E=0  ; 
 
DEMANDh(TT,J,H).. Dh(TT,J,H)-DELTA(TT,J,H)*D(TT,J)=E=0; 
PRICE(TT,J)..     P(TT,J)-SUM(H, DELTA(TT,J,H)*Ph(TT,J,H))=E=0; 
 
 
 
MODEL HTOU /COMP.Zh, DEMBAL.Ph, CAPBAL.U, DEMAND.D, DEMANDh.Dh, PRICE.P/ ; 
OPTION MCP=PATH; 
****Option to reduce solver output 
OPTION LIMROW=0; 
OPTION LIMCOL=0; 
OPTION SOLPRINT=OFF; 
*****MAXIMUM ITERLIM**** 
OPTION ITERLIM=1E+9; 
*****RESOURCE LIMIT IN SECONDS****ALSO THE LIMIT ON NEOS SERVER 
OPTION RESLIM=28800; 
 
  PARAMETER 
  Z(T,I,J)   quantity of energy flowing from facility i for theta(j) hours 
  CPUTIME    CPU-TIME 
  REVENUE(T)    Revenue of suppliers 
  COST(T)       Cost of suppliers 
  TotalCost     total cost 
  TotalRevenue  total revenue; 
 
LOOP (T, 
TT(T)=YES; 
SOLVE HTOU USING MCP; 
D0(T+1,J)=D.l(T,J); 
  Z(T,I,J)=SUM(H, Zh.l(T,I,J,H)); 
  CPUTIME=HTOU.resusd; 
  REVENUE(T)=SUM(J, P.l(T,J)*D.l(T,J)); 
  COST(T)=SUM((I,J,H), C(T,I)*Zh.l(T,I,J,H)); 
DISPLAY Z, Zh.l, D.l, "LAGGED DEMAND", D0, Dh.l, U.l, "HOURLY PRICES", Ph.l, "TOU PRICE", P.l, 
"CPU TIME", CPUTIME; 
DISPLAY "LAG DEMAND PARAMETER", D0; 
DISPLAY Dh.l, "RESULTS HERE", COST, REVENUE, Z, D.l, P.l, CPUTIME; 
TT(T)=NO; 
); 
TotalCost=SUM(T,COST(T)); 
TotalRevenue=SUM(T, REVENUE(T)); 
DISPLAY TotalCost, TotalRevenue; 
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FIXED Pricing -4 Month Model- (model with logarithmic or exponential forms of the GDL Demand 
Function) 
 
********************** NEOS Job#     : 632282   Password : DYWerbfO ********************* 
 
SETS 
       H   set of hours     /h1*h279/ 
       I   equipment type   / Hydro, Nuclear, Coal, Gas/ 
       J   load  / offpeak, midpeak, onpeak/ 
       T   periods /T1*T4/ 
ALIAS (J,K); 
 
  PARAMETERS 
     KAP(I) capacity of facility i    (MW-ontario available resources) 
         /    hydro       6984 
              nuclear     9901 
              coal        6882 
              gas         4527/; 
 
 
  TABLE DELTA(T,J,H)  weight of each hour group   (total =1) 
* ---------------add Delta(t,j,h)s here --------------------------- ;                                            
 
TABLE D0(T,J) demand at time 0  (MWh) 
          offpeak           midpeak          onpeak 
T1        4238360.62        4322465.3        4084027.76; 
 
 
  TABLE A(T,J)  factors representing non-price effects 
*rounded     estimated by fixed price 5c/kwh 
          offpeak       midpeak       onpeak 
T1        3.8204        3.8352        3.8524 
T2        3.8135        3.8309        3.8419 
T3        3.8677        3.8807        3.8773 
T4        3.8395        3.8437        3.8498 
 
  TABLE B(J,K) price elasticities own-cross 
              offpeak       midpeak       onpeak 
offpeak        -0.037        0.014         0.023 
midpeak         0.01        -0.027         0.018 
onpeak          0.008        0.009        -0.017   ; 
 
  TABLE E(J,J) lag elasticities 
                      offpeak   midpeak    onpeak 
        offpeak       0.75 
        midpeak                  0.75 
         onpeak                             0.75 ; 
 
POSITIVE VARIABLES 
  Zh(T,I,J,H) quantity of energy flowing from facility i for each hour h=1...Hj 
  Ph(T,J,H)   marginal cost\price of electricity for hourly demand J.H (hourly TOU price) 
  U(T,I,J,H)  scarcity rent of facilities  ; 
   
FREE VARIABLES 
       D(T,J)  demand corresponding to vertical strip j 
       Dh(T,J,H)  hourly demand 
       Pf     marginal cost\price of electricity (FIXED price); 
 
*initial quesses* 
 D.l(T, J)=10000; 
 Pf.l=15; 
 Dh.l(T, J, H)=5000; 
 Ph.l(T, J, H)=20; 
 
EQUATIONS 
COMP(T,I,J,H)   dual complementarity condition 
DEMBAL(T,J,H)  demand balance 
CAPBAL(T,I,J,H)    capacity balance 
DEMAND(T,J)    GDL demand equation  (fixed price) 
DEMANDh(T,J,H) hourly demand 
REVBAL         revenue balance; 
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COMP(T,I,J,H)..  C(T,I)-Ph(T,J,H)+U(T,I,J,H)=G=0; 
DEMBAL(T,J,H).. SUM(I, Zh(T,I,J,H))-Dh(T,J,H)=G=0; 
CAPBAL(T,I,J,H).. KAP(I)-Zh(T,I,J,H)=G=0; 
DEMAND(T,J).. -LOG(D(T,J))+A(T,J)+SUM(K, B(J,K)*LOG(Pf))+E(J,J)*LOG(D0(T,J)+D(T-1,J))=E=0 ; 
*DEMAND(T,J).. -D(T,J)+exp(A(T,J))*PROD(K, Pf**B(J,K))*((D0(T,J)+D(T-1,J))**E(J,J))=E=0  ; 
 
DEMANDh(T,J,H).. Dh(T,J,H)-DELTA(T,J,H)*D(T,J)=E=0; 
REVBAL..     Pf*SUM((T,J,H), Dh(T,J,H))-SUM((T,J,H), Dh(T,J,H)*Ph(T,J,H))=E=0; 
 
MODEL HTOU /COMP.Zh, DEMBAL.Ph, CAPBAL.U, DEMAND.D, DEMANDh.Dh, REVBAL.Pf/ ; 
OPTION MCP=PATH; 
****Option to reduce solver output 
OPTION LIMROW=0; 
OPTION LIMCOL=0; 
OPTION SOLPRINT=OFF; 
*****MAXIMUM ITERLIM**** 
OPTION ITERLIM=1E+9; 
*****RESOURCE LIMIT IN SECONDS****ALSO THE LIMIT ON NEOS SERVER 
OPTION RESLIM=28800; 
SOLVE HTOU USING MCP; 
  PARAMETER 
  Z(T,I,J)   quantity of energy flowing from facility i for theta(j) hours 
  CPUTIME    CPU-TIME 
  REVENUE(T)    Revenue of suppliers 
  COST(T)       Cost of suppliers 
  TotalCost     total cost 
  TotalRevenue  total revenue; 
 
Z(T,I,J)=SUM(H, Zh.l(T,I,J,H)); 
  CPUTIME=HTOU.resusd; 
  REVENUE(T)=SUM(J, Pf.l*D.l(T,J)); 
  COST(T)=SUM((I,J,H), C(T,I)*Zh.l(T,I,J,H)); 
 
DISPLAY  Ph.l, COST, REVENUE, Z, D.l, "FIXED PRICE", Pf.l, "CPU TIME", CPUTIME; 
 
DISPLAY "RESULTS HERE", COST, REVENUE, Z, D.l, Pf.l, CPUTIME; 
 
TotalCost=SUM(T,COST(T)); 
TotalRevenue=SUM(T, REVENUE(T)); 
DISPLAY TotalCost, TotalRevenue; 
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TOU Pricing -12-Month Model- (Iterative model with logarithmic or exponential forms of the GDL 
Demand Function) 
 
***********************NEOS Job#     : 634494   Password : iBmGJnWq ************************** 
SETS 
       H   set of hours     /h1*h279/ 
       I   equipment type   / Hydro, Nuclear, Coal, Gas/ 
       J   load  / offpeak, midpeak, onpeak/ 
       T   periods /T1*T12/ 
       TT(T) dynamic set; 
ALIAS (J,K); 
 
  PARAMETERS 
     KAP(I) capacity of facility i    (MW-ontario available resources) 
         /    hydro       6984 
              nuclear     9901 
              coal        6882 
              gas         4527/; 
 
  TABLE DELTA(T,J,H)  weight of each hour group   (total =1) 
* ---------------add Delta(t,j,h)s here --------------------------- ;                                            
 
TABLE D0(T,J) demand at time 0  (MWh) 
          offpeak           midpeak          onpeak 
T1        4561590.36        4778176.32       4607383.82 
T2        1                 1                1 
T3        1                 1                1 
T4        1                 1                1 
T5        1                 1                1 
T6        1                 1                1 
T7        1                 1                1 
T8        1                 1                1 
T9        1                 1                1 
T10       1                 1                1 
T11       1                 1                1 
T12       1                 1                1 ; 
******TO AVOID SINGULARITY, otherwise PATH will give following error: 
**** Exec Error at line 168: log: FUNC SINGULAR: x = 0 
 
  TABLE A(T,J)  factors representing non-price effects 
*rounded     estimated by fixed price 5c/kwh 
         offpeak        midpeak       onpeak 
T1        3.9558        3.9488        3.9353 
T2        3.7553        3.7255        3.7032 
T3        3.8308        3.8585        3.8448 
T4        3.7539        3.7471        3.7410 
T5        3.8204        3.8352        3.8524 
T6        3.8135        3.8309        3.8419 
T7        3.8677        3.8807        3.8773 
T8        3.8395        3.8437        3.8498 
T9        3.7299        3.7652        3.7565 
T10       3.8089        3.8078        3.8083 
T11       3.8654        3.8543        3.8232 
T12       3.9509        3.9383        3.9397 ; 
 
TABLE C(T,I)  Operating cost per unit of energy for facility i  ($\MWh) 
          Hydro       Nuclear     Coal        Gas 
T1        1           3.75        27.4        60.2 
T2        1.01        3.76        27.6        60.4 
T3        1.02        3.77        27.8        60.6 
T4        1.03        3.78        28          60.8 
T5        1.04        3.79        28.2        61 
T6        1.05        3.8         28.4        61.2 
T7        1.06        3.81        28.6        61.4 
T8        1.07        3.82        28.8        61.6 
T9        1.08        3.83        29          61.8 
T10       1.09        3.84        29.2        62 
T11       1.1         3.85        29.4        62.2 
T12       1.11        3.86        29.6        62.4     ; 
  TABLE B(J,K) price elasticities own-cross 
              offpeak       midpeak       onpeak 
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offpeak        -0.037        0.014         0.023 
midpeak         0.01        -0.027         0.018 
onpeak          0.008        0.009        -0.017   ; 
 
TABLE E(J,J) lag elasticities 
                      offpeak   midpeak    onpeak 
        offpeak       0.75 
        midpeak                  0.75 
         onpeak                             0.75 ; 
 
 POSITIVE VARIABLES 
       Zh(T,I,J,H) quantity of energy flowing from facility i for each hour h=1...Hj 
       Ph(T,J,H)   marginal cost\price of electricity for hourly demand J.H (hourly TOU price) 
       U(T,I,J,H)  scarcity rent of facilities  ; 
  FREE VARIABLES 
       D(T,J)  demand corresponding to vertical strip j 
       Dh(T,J,H)  hourly demand 
       P(T,J)     marginal cost\price of electricity for demand J (TOU price); 
 
*initial quesses* 
 D.l(T, J)=10000; 
 P.l(T, J)=20; 
 Dh.l(T, J, H)=5000; 
 Ph.l(T, J, H)=20; 
 
EQUATIONS 
COMP(T,I,J,H)   dual complementarity condition 
DEMBAL(T,J,H)  demand balance 
CAPBAL(T,I,J,H)    capacity balance 
DEMAND(T,J)    GDL demand equation 
DEMANDh(T,J,H) hourly demand 
PRICE(T,J)     monthly TOU price; 
 
COMP(TT,I,J,H)..  C(TT,I)-Ph(TT,J,H)+U(TT,I,J,H)=G=0; 
DEMBAL(TT,J,H).. SUM(I, Zh(TT,I,J,H))-Dh(TT,J,H)=G=0; 
CAPBAL(TT,I,J,H).. KAP(I)-Zh(TT,I,J,H)=G=0; 
DEMAND(TT,J).. -LOG(D(TT,J))+A(TT,J)+SUM(K, B(J,K)*LOG(P(TT,K)))+E(J,J)*LOG(D0(TT,J))=E=0  ; 
**DEMAND(TT,J).. -D(TT,J)+exp(A(TT,J))*PROD(K, P(TT,K)**B(J,K))*(D0(TT,J)**E(J,J))=E=0  ; 
 
DEMANDh(TT,J,H).. Dh(TT,J,H)-DELTA(TT,J,H)*D(TT,J)=E=0; 
PRICE(TT,J)..     P(TT,J)-SUM(H, DELTA(TT,J,H)*Ph(TT,J,H))=E=0; 
 
 
 
MODEL HTOU /COMP.Zh, DEMBAL.Ph, CAPBAL.U, DEMAND.D, DEMANDh.Dh, PRICE.P/ ; 
OPTION MCP=PATH; 
****Option to reduce solver output 
OPTION LIMROW=0; 
OPTION LIMCOL=0; 
OPTION SOLPRINT=OFF; 
*****MAXIMUM ITERLIM**** 
OPTION ITERLIM=1E+9; 
*****RESOURCE LIMIT IN SECONDS****ALSO THE LIMIT ON NEOS SERVER 
OPTION RESLIM=28800; 
 
  PARAMETER 
  Z(T,I,J)   quantity of energy flowing from facility i for theta(j) hours 
  CPUTIME    CPU-TIME 
  REVENUE(T)    Revenue of suppliers 
  COST(T)       Cost of suppliers 
  TotalCost     total cost 
  TotalRevenue  total revenue; 
 
LOOP (T, 
TT(T)=YES; 
SOLVE HTOU USING MCP; 
D0(T+1,J)=D.l(T,J); 
  Z(T,I,J)=SUM(H, Zh.l(T,I,J,H)); 
  CPUTIME=HTOU.resusd; 
  REVENUE(T)=SUM(J, P.l(T,J)*D.l(T,J)); 
  COST(T)=SUM((I,J,H), C(T,I)*Zh.l(T,I,J,H)); 
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DISPLAY Z, Zh.l, D.l, "LAGGED DEMAND", D0, Dh.l, U.l, "HOURLY PRICES", Ph.l, "TOU PRICE", P.l, 
"CPU TIME", CPUTIME; 
DISPLAY "LAG DEMAND PARAMETER", D0; 
DISPLAY Dh.l, "RESULTS HERE", COST, REVENUE, Z, D.l, P.l, CPUTIME; 
TT(T)=NO; 
); 
TotalCost=SUM(T,COST(T)); 
TotalRevenue=SUM(T, REVENUE(T)); 
DISPLAY TotalCost, TotalRevenue; 
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TOU Pricing -Representative Weekday Model, 12 Months - (model with exponential form of the GDL 
Demand Function) 
****EXPONENTIAL FORM 
***********************NEOS Job#     : 634056   Password : hSkArGpe ************************** 
 
SETS 
       H   set of hours     /h1*h24/ 
       I   equipment type   / Hydro, Nuclear, Coal, Gas/ 
       J   load  / offpeak, midpeak, onpeak/ 
       T   periods /T1*T12/ 
ALIAS (J,K); 
 
  PARAMETERS 
     KAP(I) capacity of facility i    (MW-ontario available resources) 
         /    hydro       6984 
              nuclear     9901 
              coal        6882 
              gas         4527/; 
 
  TABLE DELTA(T,J,H)  weight of each hour group   (total =1) 
* ---------------add Delta(t,j,h)s here --------------------------- ;                                            
 
TABLE D0(T,J) demand at time 0  (MWh) 
       offpeak            midpeak            onpeak 
T1     151818.4939        137443.0722        165906.4309; 
 
  TABLE A(T,J)  factors representing non-price effects 
*rounded     estimated by fixed price 5c/kwh 
     offpeak midpeak onpeak 
T1   3.1242  3.0719  3.1084 
T2   2.9587  2.9146  2.9558 
T3   2.9278  2.9256  2.9673 
T4   2.939   3.0418  2.8004 
T5   2.9545  2.986   2.9781 
T6   2.9991  3.0192  3.0144 
T7   2.9851  2.9988  2.9945 
T8   2.9922  3.009   2.9914 
T9   2.9117  2.948   2.9216 
T10  2.9469  2.8187  3.0473 
T11  3.0289  2.9818  3.0404 
T12  3.0749  3.0222  3.0785 
 
TABLE C(T,I)  Operating cost per unit of energy for facility i  ($\MWh) 
          Hydro       Nuclear     Coal        Gas 
T1        1           3.75        27.4        60.2 
T2        1.01        3.76        27.6        60.4 
T3        1.02        3.77        27.8        60.6 
T4        1.03        3.78        28          60.8 
T5        1.04        3.79        28.2        61 
T6        1.05        3.8         28.4        61.2 
T7        1.06        3.81        28.6        61.4 
T8        1.07        3.82        28.8        61.6 
T9        1.08        3.83        29          61.8 
T10       1.09        3.84        29.2        62 
T11       1.1         3.85        29.4        62.2 
T12       1.11        3.86        29.6        62.4  ; 
 
  TABLE B(J,K) price elasticities own-cross 
              offpeak       midpeak       onpeak 
offpeak        -0.037        0.014         0.023 
midpeak         0.01        -0.027         0.018 
onpeak          0.008        0.009        -0.017   ; 
 
  TABLE E(J,J) lag elasticities 
                      offpeak   midpeak    onpeak 
        offpeak       0.75 
        midpeak                  0.75 
         onpeak                             0.75 ; 
 
  POSITIVE VARIABLES 
       Zh(T,I,J,H) quantity of energy flowing from facility i for each hour h=1...Hj 
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       Ph(T,J,H)   marginal cost\price of electricity for hourly demand J.H (hourly TOU price) 
       U(T,I,J,H)  scarcity rent of facilities  ; 
  FREE VARIABLES 
       D(T,J)  demand corresponding to vertical strip j 
       Dh(T,J,H)  hourly demand 
       P(T,J)     marginal cost\price of electricity for demand J (TOU price); 
 
*initial quesses* 
 D.l(T, J)=10000; 
 P.l(T, J)=20; 
 Dh.l(T, J, H)=5000; 
 Ph.l(T, J, H)=20; 
 
EQUATIONS 
COMP(T,I,J,H)   dual complementarity condition 
DEMBAL(T,J,H)  demand balance 
CAPBAL(T,I,J,H)    capacity balance 
DEMAND(T,J)    GDL demand equation 
DEMANDh(T,J,H) hourly demand 
PRICE(T,J)     monthly TOU price; 
 
COMP(T,I,J,H)..  C(T,I)-Ph(T,J,H)+U(T,I,J,H)=G=0; 
DEMBAL(T,J,H).. SUM(I, Zh(T,I,J,H))-Dh(T,J,H)=G=0; 
CAPBAL(T,I,J,H).. KAP(I)-Zh(T,I,J,H)=G=0; 
*DEMAND(T,J).. -LOG(D(T,J))+A(T,J)+SUM(K, B(J,K)*LOG(P(T,K)))+E(J,J)*LOG(D0(T,J)+D(T-1,J))=E=0  ; 
DEMAND(T,J).. -D(T,J)+exp(A(T,J))*PROD(K, P(T,K)**B(J,K))*((D0(T,J)+D(T-1,J))**E(J,J))=E=0  ; 
 
DEMANDh(T,J,H).. Dh(T,J,H)-DELTA(T,J,H)*D(T,J)=E=0; 
PRICE(T,J)..     P(T,J)-SUM(H, DELTA(T,J,H)*Ph(T,J,H))=E=0; 
 
MODEL HTOU /COMP.Zh, DEMBAL.Ph, CAPBAL.U, DEMAND.D, DEMANDh.Dh, PRICE.P/ ; 
OPTION MCP=PATH; 
****Option to reduce solver output 
OPTION LIMROW=0; 
OPTION LIMCOL=0; 
OPTION SOLPRINT=OFF; 
*****MAXIMUM ITERLIM**** 
OPTION ITERLIM=1E+9; 
*****RESOURCE LIMIT IN SECONDS****ALSO THE LIMIT ON NEOS SERVER 
OPTION RESLIM=28800; 
 
SOLVE HTOU USING MCP; 
  PARAMETER 
  Z(T,I,J)   quantity of energy flowing from facility i for theta(j) hours 
  CPUTIME    CPU-TIME 
  REVENUE(T)    Revenue of suppliers 
  COST(T)       Cost of suppliers 
  TotalCost     total cost 
  TotalRevenue  total revenue; 
 
Z(T,I,J)=SUM(H, Zh.l(T,I,J,H)); 
  CPUTIME=HTOU.resusd; 
  REVENUE(T)=SUM(J, P.l(T,J)*D.l(T,J)); 
  COST(T)=SUM((I,J,H), C(T,I)*Zh.l(T,I,J,H)); 
DISPLAY  Ph.l, COST, REVENUE, Z, D.l, "TOU PRICEs", P.l, "CPU TIME", CPUTIME; 
 
DISPLAY "RESULTS HERE", COST, REVENUE, Z, D.l, P.l, CPUTIME; 
 
TotalCost=SUM(T,COST(T)); 
TotalRevenue=SUM(T, REVENUE(T)); 
DISPLAY TotalCost, TotalRevenue; 
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FIXED Pricing -Representative Weekday Model, 12 Months - (model with logarithmic form of the GDL 
Demand Function) 
 
****LOGARITHMIC FORM 
***********************NEOS Job#     : 634071   Password : XubLpxEG  ************************** 
 
SETS 
       H   set of hours     /h1*h24/ 
       I   equipment type   / Hydro, Nuclear, Coal, Gas/ 
       J   load  / offpeak, midpeak, onpeak/ 
       T   periods /T1*T12/ 
ALIAS (J,K); 
 
  PARAMETERS 
     KAP(I) capacity of facility i    (MW-ontario available resources) 
         /    hydro       6984 
              nuclear     9901 
              coal        6882 
              gas         4527/; 
 
  TABLE DELTA(T,J,H)  weight of each hour group   (total =1) 
* ---------------add Delta(t,j,h)s here --------------------------- ;                                            
 
TABLE D0(T,J) demand at time 0  (MWh) 
       offpeak            midpeak            onpeak 
T1     151818.4939        137443.0722        165906.4309; 
 
  TABLE A(T,J)  factors representing non-price effects 
*rounded     estimated by fixed price 5c/kwh 
     offpeak midpeak onpeak 
T1   3.1242  3.0719  3.1084 
T2   2.9587  2.9146  2.9558 
T3   2.9278  2.9256  2.9673 
T4   2.939   3.0418  2.8004 
T5   2.9545  2.986   2.9781 
T6   2.9991  3.0192  3.0144 
T7   2.9851  2.9988  2.9945 
T8   2.9922  3.009   2.9914 
T9   2.9117  2.948   2.9216 
T10  2.9469  2.8187  3.0473 
T11  3.0289  2.9818  3.0404 
T12  3.0749  3.0222  3.0785 
 
TABLE C(T,I)  Operating cost per unit of energy for facility i  ($\MWh) 
          Hydro       Nuclear     Coal        Gas 
T1        1           3.75        27.4        60.2 
T2        1.01        3.76        27.6        60.4 
T3        1.02        3.77        27.8        60.6 
T4        1.03        3.78        28          60.8 
T5        1.04        3.79        28.2        61 
T6        1.05        3.8         28.4        61.2 
T7        1.06        3.81        28.6        61.4 
T8        1.07        3.82        28.8        61.6 
T9        1.08        3.83        29          61.8 
T10       1.09        3.84        29.2        62 
T11       1.1         3.85        29.4        62.2 
T12       1.11        3.86        29.6        62.4  ; 
 
  TABLE B(J,K) price elasticities own-cross 
              offpeak       midpeak       onpeak 
offpeak        -0.037        0.014         0.023 
midpeak         0.01        -0.027         0.018 
onpeak          0.008        0.009        -0.017   ; 
 
  TABLE E(J,J) lag elasticities 
                      offpeak   midpeak    onpeak 
        offpeak       0.75 
        midpeak                  0.75 
         onpeak                             0.75 ; 
 
  POSITIVE VARIABLES 
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       Zh(T,I,J,H) quantity of energy flowing from facility i for each hour h=1...Hj 
       Ph(T,J,H)   marginal cost\price of electricity for hourly demand J.H (hourly TOU price) 
       U(T,I,J,H)  scarcity rent of facilities  ; 
  FREE VARIABLES 
       D(T,J)  demand corresponding to vertical strip j 
       Dh(T,J,H)  hourly demand 
       Pf     marginal cost\price of electricity (FIXED price); 
 
*initial quesses* 
D.l(T, J)=100000; 
 Pf.l=27; 
 Dh.l(T, J, H)=500; 
 Ph.l(T, J, H)=27; 
 
EQUATIONS 
COMP(T,I,J,H)   dual complementarity condition 
DEMBAL(T,J,H)  demand balance 
CAPBAL(T,I,J,H)    capacity balance 
DEMAND(T,J)    GDL demand equation  (fixed price) 
DEMANDh(T,J,H) hourly demand 
REVBAL         revenue balance; 
 
COMP(T,I,J,H)..  C(T,I)-Ph(T,J,H)+U(T,I,J,H)=G=0; 
DEMBAL(T,J,H).. SUM(I, Zh(T,I,J,H))-Dh(T,J,H)=G=0; 
CAPBAL(T,I,J,H).. KAP(I)-Zh(T,I,J,H)=G=0; 
DEMAND(T,J).. -LOG(D(T,J))+A(T,J)+SUM(K, B(J,K)*LOG(Pf))+E(J,J)*LOG(D0(T,J)+D(T-1,J))=E=0  ; 
***DEMAND(T,J).. -D(T,J)+exp(A(T,J))*PROD(K, Pf**B(J,K))*((D0(T,J)+D(T-1,J))**E(J,J))=E=0  ; 
DEMANDh(T,J,H).. Dh(T,J,H)-DELTA(T,J,H)*D(T,J)=E=0; 
REVBAL..  SUM((T,J), D(T,J)*(Pf-SUM(H, DELTA(T,J,H)*Ph(T,J,H))))=E=0; 
 
MODEL HTOU /COMP.Zh, DEMBAL.Ph, CAPBAL.U, DEMAND.D, DEMANDh.Dh, REVBAL.Pf/ ; 
OPTION MCP=PATH; 
****Option to reduce solver output 
OPTION LIMROW=0; 
OPTION LIMCOL=0; 
OPTION SOLPRINT=OFF; 
*****MAXIMUM ITERLIM**** 
OPTION ITERLIM=1E+9; 
*****RESOURCE LIMIT IN SECONDS****ALSO THE LIMIT ON NEOS SERVER 
OPTION RESLIM=28800; 
 
SOLVE HTOU USING MCP; 
  PARAMETER 
  Z(T,I,J)   quantity of energy flowing from facility i for theta(j) hours 
  CPUTIME    CPU-TIME 
  REVENUE(T)    Revenue of suppliers 
  COST(T)       Cost of suppliers 
  TotalCost     total cost 
  TotalRevenue  total revenue; 
 
Z(T,I,J)=SUM(H, Zh.l(T,I,J,H)); 
  CPUTIME=HTOU.resusd; 
  REVENUE(T)=SUM(J, Pf.l*D.l(T,J)); 
  COST(T)=SUM((I,J,H), C(T,I)*Zh.l(T,I,J,H)); 
DISPLAY  Ph.l, COST, REVENUE, Z, D.l, "FIXED PRICE", Pf.l, "CPU TIME", CPUTIME; 
 
DISPLAY "RESULTS HERE", COST, REVENUE, Z, D.l, Pf.l, CPUTIME; 
 
TotalCost=SUM(T,COST(T)); 
TotalRevenue=SUM(T, REVENUE(T)); 
DISPLAY TotalCost, TotalRevenue; 
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Appendix B 
Table B-1:  )(t

ijz  Energy (MWh) flowing from facility i to demand block j for each month 
12-Month (Yearly) TOU Pricing Model (iterative) 

)(t
ijz  TOU Pricing off-peak mid-peak on-peak 

T1 Hydro 1,948,536 1,732,032 1,515,528 
T1 Nuclear 2,699,718 2,455,448 2,148,517 
T1 Coal 570,332 1,154,992 1,363,999 
T1 Gas and Oil   28,855 
T2 Hydro 1,822,824 1,620,288 1,417,752 
T2 Nuclear 2,569,470 2,297,032 2,009,903 
T2 Coal 291,508 704,347 896,110 
T3 Hydro 1,948,536 1,732,032 1,515,528 
T3 Nuclear 2,659,706 2,455,448 2,148,517 
T3 Coal 119,300 528,897 751,093 
T4 Hydro 1,885,680 1,676,160 1,466,640 
T4 Nuclear 2,528,617 2,375,243 2,079,210 
T4 Coal 43,208 224,841 484,650 
T5 Hydro 1,948,536 1,732,032 1,515,528 
T5 Nuclear 2,566,835 2,439,463 2,148,517 
T5 Coal 39,714 188,628 534,371 
T6 Hydro 1,885,680 1,676,160 1,466,640 
T6 Nuclear 2,546,157 2,376,240 2,079,210 
T6 Coal 121,646 338,725 759,791 
T7 Hydro 1,948,536 1,732,032 1,515,528 
T7 Nuclear 2,670,872 2,455,448 2,148,517 
T7 Coal 170,011 456,772 885,282 
T8 Hydro 1,948,536 1,732,032 1,515,528 
T8 Nuclear 2,687,656 2,455,448 2,148,517 
T8 Coal 181,000 485,171 952,345 
T9 Hydro 1,885,680 1,676,160 1,466,640 
T9 Nuclear 2,467,048 2,373,158 2,079,210 
T9 Coal 56,803 278,016 686,547 

T10 Hydro 1,948,536 1,732,032 1,515,528 
T10 Nuclear 2,494,814 2,419,665 2,148,517 
T10 Coal 33,086 133,010 497,804 
T11 Hydro 1,885,680 1,676,160 1,466,640 
T11 Nuclear 2,624,724 2,376,240 2,079,210 
T11 Coal 185,873 393,957 659,620 
T12 Hydro 1,948,536 1,732,032 1,515,528 
T12 Nuclear 2,760,810 2,455,448 2,148,517 
T12 Coal 543,004 800,966 1,103,231 
T12 Gas and Oil   3,149 
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Table B-2:  )(t
jd Energy demand (MWh) for demand block j for 12-Month (Yearly) TOU 

Pricing Model (iterative) 
)(t

jd (MWh) off-peak mid-peak on-peak Total 

T1 5,218,586 5,342,472 5,056,899 15,617,957 
T2 4,683,803 4,621,667 4,323,766 13,629,235 
T3 4,727,542 4,716,377 4,415,138 13,859,057 
T4 4,457,504 4,276,245 4,030,500 12,764,248 
T5 4,555,085 4,360,123 4,198,416 13,113,624 
T6 4,553,483 4,391,125 4,305,641 13,250,248 
T7 4,789,419 4,644,252 4,549,327 13,982,998 
T8 4,817,192 4,672,651 4,616,390 14,106,233 
T9 4,409,531 4,327,334 4,232,397 12,969,262 

T10 4,476,436 4,284,707 4,161,850 12,922,993 
T11 4,696,277 4,446,357 4,205,470 13,348,104 
T12 5,252,350 4,988,446 4,770,425 15,011,221 

Total 56,637,206 55,071,755 52,866,217 164,575,178 

 

Table B-3:  Actual Energy demand (MWh) for demand block j for the year of 2004 
(OEB,2005) 

)(t
jd (MWh) off-peak mid-peak on-peak Total 

T1 5,156,194 5,322,153 5,089,690 15,568,037 
T2 4,625,240 4,615,504 4,348,220 13,588,965 
T3 4,597,877 4,737,976 4,451,646 13,787,499 
T4 4,238,361 4,322,465 4,084,028 12,644,854 
T5 4,261,461 4,406,394 4,279,331 12,947,186 
T6 4,249,603 4,451,510 4,385,893 13,087,006 
T7 4,477,074 4,714,803 4,628,355 13,820,233 
T8 4,525,873 4,743,658 4,688,461 13,957,993 
T9 4,089,288 4,405,554 4,312,401 12,807,243 

T10 4,101,095 4,349,336 4,265,278 12,715,708 
T11 4,349,170 4,512,581 4,293,949 13,155,699 
T12 4,950,564 5,045,588 4,848,763 14,844,916 

Total 53,621,799 55,627,523 53,676,016 162,925,338 
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Table B-4:  Percent Change in )(t
jd Energy demand (MWh) for demand block j for the 

12-Month (Yearly) TOU Pricing Model (iterative) (compared to actual 
demand values in Table B-3) 

)(t
jd (MWh) off-peak mid-peak on-peak Total 

T1 1.21% 0.38% -0.64% 0.32% 
T2 1.27% 0.13% -0.56% 0.30% 
T3 2.82% -0.46% -0.82% 0.52% 
T4 5.17% -1.07% -1.31% 0.94% 
T5 6.89% -1.05% -1.89% 1.29% 
T6 7.15% -1.36% -1.83% 1.25% 
T7 6.98% -1.50% -1.71% 1.18% 
T8 6.44% -1.50% -1.54% 1.06% 
T9 7.83% -1.78% -1.86% 1.27% 

T10 9.15% -1.49% -2.42% 1.63% 
T11 7.98% -1.47% -2.06% 1.46% 
T12 6.10% -1.13% -1.62% 1.12% 

Total 5.62% -1.00% -1.51% 1.01% 

 

Table B-5:  )(t
jp  (TOU prices, $/MWh) for demand block j for the 12-Month (Yearly) 

TOU Pricing Model (iterative) 
)(t

jp ($/MWh) off-peak mid-peak on-peak 

T1 24.09 27.40 37.61 
T2 25.10 27.60 27.60 
T3 16.91 27.80 27.80 
T4 12.36 26.57 28.00 
T5 11.78 21.96 28.20 
T6 16.95 28.40 28.40 
T7 18.73 28.60 28.60 
T8 20.96 28.80 28.80 
T9 13.02 26.96 29.00 

T10 11.20 21.22 29.20 
T11 21.76 29.40 29.40 
T12 28.86 29.60 30.44 

 

Table B-6: Computation times (seconds) for 12-Month (Yearly) TOU Pricing Model 
(iterative) 

CPU Times (seconds) 
TOU pricing T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Total 

(iterative) 47.81 48.44 50.04 84.53 60.19 41.25 49.85 49.09 30.55 79.19 44.48 44.25 629.67 
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Table B-7:  Average hourly demands (MWh) for the Representative Weekday and TOU 
Time Intervals (h1: 1am … h24: 12pm) 

MONTH Jan-04 Feb-04 Mar-04 Apr-04 May-04 Jun-04 Jul-04 Aug-04 Sep-04 Oct-04 Nov-04 Dec-04 

h1 19,212 18,062 16,783 15,735 15,300 16,026 16,322 16,465 15,131 14,501 16,289 18,134 

h2 18,899 17,735 16,324 15,441 15,114 15,704 15,965 16,100 14,852 14,291 15,827 17,622 

h3 18,752 17,573 16,105 15,333 15,022 15,318 15,629 15,834 14,563 14,157 15,610 17,380 

h4 18,644 17,478 16,045 15,435 15,110 15,332 15,614 15,861 14,657 14,279 15,492 17,247 

h5 18,725 17,754 16,238 15,979 15,529 15,842 15,946 16,196 15,157 15,084 15,689 17,391 

h6 19,158 18,385 16,954 17,112 16,457 16,870 16,762 17,215 16,497 16,644 16,356 17,907 

h7 20,338 19,521 18,314 18,265 18,212 18,374 17,873 18,212 17,841 18,463 17,736 19,086 

h8 21,909 20,692 19,462 18,894 18,939 19,440 19,069 19,515 18,665 18,965 19,098 20,275 

h9 22,340 21,068 20,026 19,075 19,247 20,090 19,897 20,336 19,202 18,983 19,638 20,790 

h10 22,405 21,059 20,119 19,214 19,483 20,455 20,482 20,866 19,751 19,196 19,656 21,104 

h11 22,422 21,015 20,246 19,285 19,723 20,764 20,973 21,258 20,007 19,265 19,754 21,324 

h12 22,332 20,936 20,200 19,192 19,626 20,792 21,199 21,447 20,124 19,155 19,778 21,390 

h13 22,229 20,657 20,046 19,172 19,770 20,873 21,359 21,679 20,310 19,138 19,724 21,185 

h14 22,045 20,549 19,922 18,997 19,623 20,778 21,309 21,639 20,314 18,952 19,599 21,080 

h15 21,899 20,372 19,761 18,974 19,494 20,680 21,302 21,570 20,346 18,895 19,567 20,897 

h16 21,997 20,388 19,748 19,020 19,586 20,820 21,332 21,655 20,532 19,097 19,659 21,013 

h17 22,657 20,821 20,093 18,983 19,518 20,663 21,239 21,559 20,483 19,191 20,296 21,801 

h18 23,763 21,518 20,427 18,721 19,202 20,191 20,789 21,048 20,000 19,421 21,232 22,997 

h19 23,893 22,070 20,833 18,789 18,964 19,828 20,286 20,506 19,902 19,803 21,163 22,947 

h20 23,495 21,905 20,900 19,307 19,194 19,751 20,073 20,692 20,207 19,491 20,665 22,437 

h21 23,041 21,417 20,457 19,094 19,197 19,859 20,189 20,573 19,401 18,619 20,153 21,996 

h22 22,254 20,667 19,690 17,983 18,146 18,914 19,216 19,233 17,989 17,437 19,425 21,342 

h23 21,193 19,581 18,635 16,878 16,788 17,822 18,219 18,265 16,745 16,113 18,251 20,121 

h24 19,988 18,747 17,474 15,922 15,888 16,610 16,915 17,176 15,632 15,110 17,291 18,903 

             
Total 

Off-peak 174,909 164,837 152,870 146,100 143,419 147,898 149,247 151,324 141,074 138,644 148,540 163,791 

Total 
Mid-peak 154,673 144,392 138,654 151,077 152,374 158,528 160,000 162,768 155,117 131,468 136,710 146,582 

Total 
On-peak 184,008 170,741 163,274 133,622 137,340 145,370 148,712 150,807 142,115 154,141 162,697 175,997 

Total 513,590 479,970 454,798 430,799 433,132 451,796 457,959 464,899 438,305 424,253 447,948 486,370 

 
LEGEND Off-peak Mid-peak On-peak (winter) On-peak (summer) 
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Table B-8:  )(t
ijz  Energy (MWh) flowing from facility i to demand block j for each month 

TOU and Fixed Pricing for the Representative Weekday Model  
)(t

ijz  TOU PRICING off-peak mid-peak on-peak  FIXED PRICING off-peak mid-peak on-peak 

T1 Hydro 62,856 48,888 55,872  Hydro 62,856 48,888 55,872 
T1 Nuclear 89,109 69,307 79,208  Nuclear 89,109 69,307 79,208 
T1 Coal 23,528 36,783 48,417  Coal 22,946 36,362 48,810 
T1 Gas and Oil   68  Gas and Oil   127 
T2 Hydro 62,856 48,888 55,872  Hydro 62,856 48,888 55,872 
T2 Nuclear 89,109 69,307 79,208  Nuclear 89,109 69,307 79,208 
T2 Coal 13,285 26,328 35,344  Coal 12,874 26,016 35,658 
T3 Hydro 62,856 48,888 55,872  Hydro 62,856 48,888 55,872 
T3 Nuclear 87,503 69,307 79,208  Nuclear 86,178 69,307 79,208 
T3 Coal 5,400 19,840 27,380  Coal 3,836 20,227 28,199 
T4 Hydro 62,856 55,872 48,888  Hydro 62,856 55,872 48,888 
T4 Nuclear 85,866 79,208 69,307  Nuclear 81,632 79,208 69,307 
T4 Coal 3,952 14,184 14,069  Coal 1,606 15,695 15,432 
T5 Hydro 62,856 55,872 48,888  Hydro 62,856 55,872 48,888 
T5 Nuclear 85,533 79,208 69,307  Nuclear 79,234 79,208 69,307 
T5 Coal 4,032 14,699 17,273  Coal 1,326 16,952 19,144 
T6 Hydro 62,856 55,872 48,888  Hydro 62,856 55,872 48,888 
T6 Nuclear 87,769 79,208 69,307  Nuclear 82,611 79,208 69,307 
T6 Coal 6,793 20,622 25,170  Coal 2,424 23,067 27,178 
T7 Hydro 62,856 55,872 48,888  Hydro 62,856 55,872 48,888 
T7 Nuclear 88,422 79,208 69,307  Nuclear 84,031 79,208 69,307 
T7 Coal 6,755 22,250 28,645  Coal 2,348 24,524 30,521 
T8 Hydro 62,856 55,872 48,888  Hydro 62,856 55,872 48,888 
T8 Nuclear 88,671 79,208 69,307  Nuclear 85,138 79,208 69,307 
T8 Coal 7,612 25,241 30,942  Coal 3,326 27,274 32,610 
T9 Hydro 62,856 55,872 48,888  Hydro 62,856 55,872 48,888 
T9 Nuclear 84,090 79,208 69,307  Nuclear 77,265 79,208 69,307 
T9 Coal 4,003 16,975 21,835  Coal 956 19,635 23,922 
T10 Hydro 62,856 48,888 55,872  Hydro 62,856 48,888 55,872 
T10 Nuclear 82,514 69,307 79,208  Nuclear 74,214 69,307 79,208 
T10 Coal 4,838 10,235 16,393  Coal 1,579 12,929 19,058 
T11 Hydro 62,856 48,888 55,872  Hydro 62,856 48,888 55,872 
T11 Nuclear 88,736 69,307 79,208  Nuclear 83,068 69,307 79,208 
T11 Coal 8,031 15,637 25,085  Coal 2,626 18,147 27,610 
T12 Hydro 62,856 48,888 55,872  Hydro 62,856 48,888 55,872 
T12 Nuclear 89,109 69,307 79,208  Nuclear 89,109 69,307 79,208 
T12 Coal 20,910 25,988 38,861  Coal 11,836 27,983 40,914 
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Table B-9:   )(t
jd Energy (MWh) demand for demand block j for each month TOU and 

Fixed Pricing for the Representative Weekday Model 

TOU PRICING  FIXED PRICING 
)(t

jd (MWh) off-peak mid-peak on-peak Total  off-peak mid-peak on-peak Total 

T1 175,493 154,977 183,566 514,036  174,911 154,557 184,017 513,485 
T2 165,250 144,523 170,424 480,197  164,839 144,211 170,738 479,788 
T3 155,759 138,035 162,461 456,255  152,870 138,422 163,279 454,571 
T4 152,674 149,264 132,264 434,202  146,094 150,775 133,628 430,496 
T5 152,421 149,779 135,468 437,668  143,416 152,032 137,339 432,788 
T6 157,418 155,702 143,365 456,485  147,891 158,147 145,373 451,410 
T7 158,033 157,330 146,840 462,203  149,234 159,604 148,716 457,554 
T8 159,139 160,321 149,137 468,597  151,320 162,354 150,805 464,479 
T9 150,949 152,055 140,030 443,034  141,078 154,715 142,117 437,910 

T10 150,208 128,430 151,473 430,111  138,649 131,124 154,138 423,911 
T11 159,622 133,832 160,165 453,620  148,550 136,341 162,690 447,581 
T12 172,875 144,183 173,941 491,000  163,801 146,178 175,994 485,972 

Total 1,909,841 1,768,432 1,849,133 5,527,407  1,822,651 1,788,461 1,868,835 5,479,947 

 

Table B-10:   Actual Demand Values for 2004 (average weekday) and Percent Change in 
)(t

jd Energy demand (MWh) for demand block j for the for the Representative 
Weekday Model (compared to actual demand values in Table B-9)  

Actual Demand Values for 2004  
(Average weekday)  % Change (TOU vs. Actual Demand) 

)(t
jd (MWh) off-peak mid-peak on-peak Total  off-peak mid-peak on-peak Total 

T1 174,909 154,673 184,008 513,590  0.33% 0.20% -0.24% 0.09% 
T2 164,837 144,392 170,741 479,970  0.25% 0.09% -0.19% 0.05% 
T3 152,870 138,654 163,274 454,798  1.89% -0.45% -0.50% 0.32% 
T4 146,100 151,077 133,622 430,799  4.50% -1.20% -1.02% 0.79% 
T5 143,419 152,374 137,340 433,132  6.28% -1.70% -1.36% 1.05% 
T6 147,898 158,528 145,370 451,796  6.44% -1.78% -1.38% 1.04% 
T7 149,247 160,000 148,712 457,959  5.89% -1.67% -1.26% 0.93% 
T8 151,324 162,768 150,807 464,899  5.16% -1.50% -1.11% 0.80% 
T9 141,074 155,117 142,115 438,305  7.00% -1.97% -1.47% 1.08% 

T10 138,644 131,468 154,141 424,253  8.34% -2.31% -1.73% 1.38% 
T11 148,540 136,710 162,697 447,948  7.46% -2.11% -1.56% 1.27% 
T12 163,791 146,582 175,997 486,370  5.55% -1.64% -1.17% 0.95% 

Total 1,822,653 1,792,344 1,868,822 5,483,820  4.78% -1.33% -1.05% 0.79% 
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Table B-11:   Percent Change in )(t
jd Energy demand (MWh) for demand block j for the 

Representative Weekday Model (comparison of demand values in Table B-
9 and Table B-10)  

% Change (Fixed vs. Actual Demand)  % Change (TOU vs. Fixed) 
)(t

jd (MWh) off-peak mid-peak on-peak Total  off-peak mid-peak on-peak Total 

T1 0.00% -0.07% 0.00% -0.02%  0.33% 0.27% -0.25% 0.11% 
T2 0.00% -0.13% 0.00% -0.04%  0.25% 0.22% -0.18% 0.09% 
T3 0.00% -0.17% 0.00% -0.05%  1.89% -0.28% -0.50% 0.37% 
T4 0.00% -0.20% 0.00% -0.07%  4.50% -1.00% -1.02% 0.86% 
T5 0.00% -0.22% 0.00% -0.08%  6.28% -1.48% -1.36% 1.13% 
T6 0.00% -0.24% 0.00% -0.09%  6.44% -1.55% -1.38% 1.12% 
T7 -0.01% -0.25% 0.00% -0.09%  5.90% -1.42% -1.26% 1.02% 
T8 0.00% -0.25% 0.00% -0.09%  5.17% -1.25% -1.11% 0.89% 
T9 0.00% -0.26% 0.00% -0.09%  7.00% -1.72% -1.47% 1.17% 

T10 0.00% -0.26% 0.00% -0.08%  8.34% -2.05% -1.73% 1.46% 
T11 0.01% -0.27% 0.00% -0.08%  7.45% -1.84% -1.55% 1.35% 
T12 0.01% -0.28% 0.00% -0.08%  5.54% -1.36% -1.17% 1.03% 

Total 0.00% -0.22% 0.00% -0.07%  4.78% -1.12% -1.05% 0.87% 

 

Table B-12:    )(t
jp   TOU prices for demand block j and fP  fixed price ($/MWh) 

)(t
jp ($/MWh) off-peak mid-peak on-peak 

T1 27.40 27.40 31.66 
T2 27.60 27.60 27.60 
T3 17.63 27.80 27.80 
T4 12.44 28.00 28.00 
T5 13.28 28.20 28.20 
T6 18.06 28.40 28.40 
T7 21.56 28.60 28.60 
T8 23.57 28.80 28.80 
T9 12.94 29.00 29.00 

T10 13.21 29.20 29.20 
T11 21.35 29.40 29.40 
T12 29.60 29.60 29.60 

 
 fP ($/MWh) 

 24.356 
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Table B-13:   Comparison of 12-Month (Yearly) Model with the Representative 
Weekday Model (comparison of prices in Table B-5 and Table B-12)  

Change in TOU Prices 
(Representative Weekday minus 12-Month)  % Change in TOU Prices 

(Representative Weekday minus 12-Month) 
 off-peak mid-peak on-peak  off-peak mid-peak on-peak 

T1 1.76 -8.54 -28.54  6.86% -23.76% -47.41% 
T2 0 -6.00 -31.86  0% -17.84% -53.58% 
T3 -3.69 0 0  -17.31% 0% 0% 
T4 -1.62 0 0  -11.51% 0% 0% 
T5 5.01 12.80 0  60.62% 83.08% 0% 
T6 1.19 1.06 0  7.07% 3.86% 0% 
T7 3.06 0 0  16.53% 0% 0% 
T8 -0.50 0 -0.33  -2.07% 0% -1.14% 
T9 -5.28 0 0  -28.98% 0% 0% 

T10 7.27 13.05 0  122.26% 80.80% 0% 
T11 6.13 1.42 0  40.30% 5.06% 0% 
T12 0.49 0 -0.84  1.68% 0% -2.76% 
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Figure B-1:  Comparison of TOU Prices vs. Hourly Prices for T5: May 2004 
(Representative Weekday Model) 
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