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Abstract

Quantum computing offers the potential for efficiently solving otherwise classically
difficult problems, with applications in material and drug design, cryptography, theoretical
physics, number theory and more. However, quantum systems are notoriously fragile;
interaction with the surrounding environment and lack of precise control constitute noise,
which makes construction of a reliable quantum computer extremely challenging. Threshold
theorems show that by adding enough redundancy, reliable and arbitrarily long quantum
computation is possible so long as the amount of noise is relatively low—below a “threshold”
value. The amount of redundancy required is reasonable in the asymptotic sense, but in
absolute terms the resource overhead of existing protocols is enormous when compared to
current experimental capabilities.

In this thesis we examine a variety of techniques for reducing the resources required
for fault-tolerant quantum computation. First, we show how to simplify universal encoded
computation by using only transversal gates and standard error correction procedures,
circumventing existing no-go theorems. The cost of certain error correction procedures
is dominated by preparation of special ancillary states. We show how to simplify ancilla
preparation, reducing the cost of error correction by more than a factor of four. Using this
optimized ancilla preparation, we then develop improved techniques for proving rigorous
lower bounds on the noise threshold. The techniques are specifically intended for analysis
of relatively large codes such as the 23-qubit Golay code, for which we compute a lower
bound on the threshold error rate of 0.132 percent per gate for depolarizing noise. This
bound is the best known for any scheme.

Additional overhead can be incurred because quantum algorithms must be translated
into sequences of gates that are actually available in the quantum computer. In particular,
arbitrary single-qubit rotations must be decomposed into a discrete set of fault-tolerant
gates. We find that by using a special class of non-deterministic circuits, the cost of
decomposition can be reduced by as much as a factor of four over state-of-the-art techniques,
which typically use deterministic circuits.

Finally, we examine global optimization of fault-tolerant quantum circuits. Physical
connectivity constraints require that qubits are moved close together before they can
interact, but such movement can cause data to lay idle, wasting time and space. We adapt
techniques from VLSI in order to minimize time and space usage for computations in the
surface code, and we develop a software prototype to demonstrate the potential savings.
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Chapter 1

Motivation and results

The discovery of quantum mechanics in the early 1900s represented a fundamental departure
from previous understanding of the natural world. In a similar way, quantum computers,
conceived by Feynman in 1982, represent a fundamental shift from the traditional way of
solving computational problems [Fey82]. Feynman observed that simulation of quantum
mechanics, though an apparently difficult task for (classical) computers, is accomplished
tautologically by natural physical systems. Consequently, a computing device operating
according to the laws of quantum mechanics could have a distinct advantage over its classical
counterparts.

Indeed, simulation of quantum mechanical systems is of enormous practical importance,
with potential applications in drug design, materials science, protein folding and more (see,
e.g., [KW11]). Feynman’s original ideas have since been refined and show that exponential
speedups for simulation of quantum mechanical systems are indeed possible, in theory [AL97,
BT98, Zal98].

Exponential improvements are not limited to simulation, though. In 1994, Shor devel-
oped a polynomial-time algorithm for factoring large numbers, a problem which is widely
believed to be intractable for classical computers [Sho94]. Other exponential speedups exist
including algorithms for solving linear systems of equations [HHL09], and other mathe-
matical problems [Ked06, JW06, Hal07, AJKR10]. Finding new algorithms is a subject of
active research [Mos08, CvD10].

To date, however, quantum computers capable of outperforming classical devices do
not exist. The limited number of experimental efforts that have been attempted, while
encouraging, fall well short of the scale necessary for real-world applications [LJL+10]. Some
modern technologies such as transistors and optical drives do exploit aspects of quantum
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mechanics; recently, quantum mechanics been used to develop highly secure communication
devices [SLB+11]. But none of these devices are sophisticated enough to execute quantum
algorithms.

Executing large-scale algorithms on a quantum computer is a daunting task. Quantum
algorithms rely on the ability to create and maintain highly entangled quantum states.
Interaction with the environment quickly causes decoherence, which destroys entanglement.
Decoherence can be delayed by carefully isolating the quantum information from its
environment. However, too much isolation also prevents (wanted) access to the quantum
system, making control and readout difficult. At the same time, coherently controlling
a large quantum mechanical system for the duration of an algorithm requires extreme
accuracy. Such stringent control requirements, combined with the inherent fragility of
quantum information, raise concerns about the feasibility of constructing a quantum
computer.

Is accurate large-scale quantum computation possible? It turns out that, by incorporating
enough redundancy, quantum computation with arbitrary accuracy is possible, at least in
principle [AB97]. In practice, the engineering challenges are significant and the necessary
amount of redundancy can be overwhelmingly large. In this thesis, we will discuss the
challenges and propose a variety of methods for reducing resource requirements.

1.1 The role of noise in a quantum computer

Errors in a quantum computer originate from two sources. First, control of the quantum
system may be imperfect. For example, operations in a quantum computer can be described
by rotations about a set of fixed axes. Over time, small over- or under-rotations can
accumulate, resulting in data corruption. Second, the surrounding environment may
interact undesirably with the system. For example, data stored in an electron can be
altered by interaction with surrounding magnetic fields. Collectively, imperfect control and
environmental interactions represent noise in a quantum computer.

Noise is not exclusive to quantum systems. Classical devices can also suffer from errors
due to imperfections, or external physical phenomena. However, most electronics can be
manufactured so that errors are vanishingly rare. When this is not possible, errors can be
suppressed by adding redundancy. Error-correcting codes use a large number of physical
bits in order to represent some smaller number of “logical” bits [MS93]. As long as the
number of physical bit errors is small enough, the information inside of the code can be
retrieved accurately.
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Indeed, a very simple kind of error protection is used in dynamic random-access-memory
(DRAM), which is ubiquitous in modern electronics. Each bit in DRAM is stored in a
small capacitor as an electric charge, which may leak away over time. To avoid data loss,
each charge is periodically “refreshed” by reading it and then rewriting it. Unfortunately,
directly refreshing quantum bits is not possible. Merely reading a quantum bit, or qubit,
has the effect of changing its state.

One might hope that quantum hardware could be manufactured to reduce noise to
acceptable levels. However, most quantum algorithms will require billions of operations
and many hundreds or thousands of qubits. Controlling such a large number of qubits,
each with an error rate below one part in a billion is far beyond the capability of current
technology, and is likely to remain so for the foreseeable future.

The inability to refresh is due, in part, to the fact that quantum information cannot
be cloned [WZ82]. One might expect that the use of error-correcting codes for quantum
information is therefore also prohibited. Nevertheless, quantum information can be protected
by combining classical error-correcting codes in a novel way [Sho96]. Indeed, so long as the
probability of an error is below a constant threshold value, it is possible to use error-correcting
codes to protect quantum information during arbitrarily long computations [AB97].

Error correction is not the only technique available for protecting quantum information.
Decoherence-free subspaces and dynamical decoupling are capable of improving the fidelity
of quantum operations [PSE96, DG97, VKL99, Ban98]. However, these methods have
limitations and are generally regarded as complementary to active error correction, which
is where we will focus our attention.

1.2 Requirements imposed by error-correcting codes

Quantum error-correcting codes permit high-quality protection of quantum information
from noise, but is it enough? At a minimum, the amount of noise that can be tolerated by
error correction must meet or exceed the amount of noise in the physical system. Threshold
theorems tell us that arbitrary accuracy is possible even if error rates are constant, but
small enough [AB97, Kit97, KLZ96, Rei06b, TB05, AGP06, AKP06, NP09, Pre13]. What
is the noise threshold for quantum computing, and can it be physically achieved?

Initial estimates of the threshold error rate were around 0.01 percent per gate [Zal96], but
have been subsequently improved to as high as one- to three-percent per gate [Kni05, RH07,
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WFH11]. This range of error rates meets or approaches gate fidelities reported by a variety
of experimental efforts for small-scale systems [LJL+10, MSB+11, CGC+12, GGZ13]. It
seems, therefore, that quantum error-correcting codes have the capacity to protect quantum
information in realistic conditions.

But there is a second, potentially more alarming concern. In principle, quantum
computation with error correction is efficient. If the size of the ideal circuit is n then the
corresponding fault-tolerant circuit need only be a factor of poly(log n) larger. However the
constants involved can be quite large, and numerical studies have shown that the resource
requirements can be astoundingly large in absolute terms. A single encoded quantum
gate can require millions or billions of physical gates [Kni05, RHG07, PR12, JVF+12].
In addition, many proposed quantum computing architectures impose limitations on the
placement of and interactions between qubits. Imposing geometric constraints of this kind
only increases the overhead costs.

The necessary resources depend on the algorithm, desired level of accuracy, clock speed,
noise properties of the hardware and so on. Regardless of other factors, though, estimates
are often dominated by the resources required for error correction. For example, under an
error-correction scheme proposed by Knill, a quantum algorithm consisting of ten billion
operations would require a resource overhead factor of about one million when the error
rate per (physical) gate is 10−3 [Kni05]. That is, if the size of the original algorithm is n,
then the size of the quantum computer would need to be roughly 106n. For other size and
error parameters, the gate and qubit overhead can range from one-thousand to one-billion
fold, or more.

These kinds of resource requirements place a huge burden on the construction of a
quantum computer. Even if billions of qubits can be coherently controlled, such large
overhead is clearly undesirable. The fear is that the overhead required to protect quantum
information is so large as to make quantum computers wholly impractical, or to effectively
negate any algorithmic speedups over classical computers. The most important goal of
the quantum circuit designer, therefore, is to reduce resource requirements to manageable
levels.

1.3 Summary of new results

Resource overhead in fault-tolerant circuits is incurred in a variety of ways, including large
error-correction circuits, large gate costs, low encoding rates and more. Thus one should
consider a variety of optimization strategies in order to address each problem. Accordingly,
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this thesis proposes a number of new techniques for reducing the resources required to
accurately implement quantum algorithms, subject to realistic constraints imposed by
quantum computing hardware.

Universality with transversal gates

Fault-tolerant computation involves performing operations on the data while it is encoded.
For most quantum error-correcting codes, there is a small set of operations that can
be performed easily, and another set of operations that are much more difficult but are
required in order to implement quantum algorithms. The Toffoli gate, for example, is used
heavily in classical subroutines but usually involves costly decomposition into a sequence
of other gates. In Chapter 5 we show that a particular family of quantum codes admits a
simple “transversal” implementation of the controlled-controlled-Z gate. A relatively cheap
implementation of Toffoli can then be obtained with the help of encoded Hadamards, which
we show can also be implemented transversally. Toffoli and Hadamard are universal for
quantum computation [Shi03], and so only these simple transversal gates are necessary.

Smaller error correction circuits

Error correction dominates the resource costs of many fault-tolerance schemes. Reducing
the cost of error-correction therefore reduces the total cost by nearly the same amount.
Chapter 6 examines methods for efficiently preparing so-called “stabilizer states”, which
comprise the bulk of the cost for several types of error correction. These methods can be
applied to a large class of quantum error-correcting codes, and are particularly effective for
codes of medium to large size. For example, the cost of error-correction for the 23-qubit
Golay code can be reduced by more than a factor of four when compared to previous
methods.

Improved noise thresholds

Computational accuracy increases rapidly as the physical noise rate drops below the
threshold. Thus, an effective way to reduce resource requirements is to increase the noise
threshold by improving lower bounds. Chapter 7 describes a technique for more accurately
calculating lower bounds on the noise threshold when noise is modeled as a Pauli channel.
We calculate a threshold error rate of 0.132 percent per gate for depolarizing noise, the best
lower bound currently known. Our proof uses malignant set counting [AGP06], extensively
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tailored for our optimized error-correction circuits and for Pauli channel noise. Instead
of assuming adversarial (i.e., worst-case) noise at higher levels of code concatenation, the
counting procedure keeps track of multiple types of malignant events to create a transformed
independent noise model for each level, allowing for a more accurate analysis.

Low-cost approximations of single-qubit unitaries

Fault-tolerance schemes offer a universal but finite set of gates from which to implement
quantum algorithms. An arbitrary unitary requested by an algorithm must be approximated
by decomposition into a sequence of fault-tolerant gates. Traditional approximation methods
output a deterministic sequence of gates [DN05, Fow11, Sel12, KMM12c]. In Chapter 8 we
explore the use of non-deterministic but repeatable quantum circuits. By optimized direct
computer search, we find a large number of such circuits and show how to use them to
reduce the cost of approximating a single-qubit unitary by about a factor of three.

Circuit optimization subject to geometric constraints

Resource calculations often ignore geometric connectivity constraints imposed by a quantum
computer. Fault-tolerant quantum circuits encoded in the surface code automatically respect
two-dimensional nearest-neighbor constraints but do not consider global dimensions of the
computer, wasting both space and time. To solve this problem, Chapter 9 proposes two
algorithms for placing fault-tolerant quantum circuits onto a two-dimensional qubit lattice
of fixed, but arbitrary size. The algorithms exploit topological properties of the surface
code in order to transform the initial circuit into one that fits compactly into the lattice
geometry.
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Chapter 2

The mechanics of a quantum
computer

Classical computers operate based on the laws of electricity and magnetism. However, the
physical details are usually abstracted and, instead, operations are described in terms of bits
and logic gates. Similarly, though quantum computers operate based on the laws of quantum
mechanics, we will use abstractions such as qubits and quantum gates. In this chapter,
we summarize the mathematics of quantum computation. This summary introduces only
the concepts that are necessary for quantum error correction and fault tolerance. For a
more complete treatment, the reader is referred to any of several textbooks [NC00, KSV02,
KLM07].

2.1 States

The content, or state, of a classical computer is described by bits. A bit is value either zero
or one, or alternatively, a bit is a vector

~v = a~0 + b~1 , (2.1)

where a, b ∈ {0, 1} and such that a+ b = 1. A string, or register, of n bits is then a length
n vector over the field Z2 = {0, 1}, i.e., an ordered collection of bits.

The state of a quantum computer is described by qubits. Like a bit, a qubit is a vector

|ψ〉 = a |0〉+ b |1〉 , (2.2)
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except that the “amplitudes” a, b ∈ C are now free to take complex values and must satisfy
the normalization condition |a|2 + |b|2 = 1. The notation |·〉, is called a “ket” and is
conventional for quantum states. Measurement of a qubit yields a bit, the value of which is
determined by a probability distribution defined by a and b. The normalization condition
ensures that the total probability is equal to one. See Section 2.3.

A register of qubits is a unit vector in a 2n-dimensional vector space over the complex
field C. However, unlike a classical register, a register of n qubits has length 2n, one entry
for each of the possible bit strings of length n. This is akin to a probabilistic classical
register which may take one of 2n possible values according to a probability distribution.
In this way, a qubit register is a generalization of a probabilistic register in which the
coefficients are complex and could be negative, for example. The normalization condition
for a register

∑
i ai |xi〉 is

∑
i |ai|

2 = 1.

Any two n-qubit registers |ψ〉 =
∑

i ai |i〉 and |φ〉 =
∑

i bi |i〉 obey the inner product

〈|ψ〉 , |φ〉〉 = 〈φ|ψ〉 =
∑

i

aib
∗
i . (2.3)

The normalization condition enforces that a quantum register has inner product one with
itself, i.e., 〈ψ|ψ〉 = 1.

Registers of qubits can be joined together by tensor product. For example, the tensor
product of the state |ψ〉 and |φ〉 defined above is given by

|ψ〉 ⊗ |φ〉 =
∑

i,j

aibj |i〉 ⊗ |j〉 . (2.4)

Often the ⊗ notation is dropped, instead using the shorthand |ψ〉 |φ〉, or sometimes |ψ, φ〉.
The tensor product of k identical registers |ψ〉 is denoted by |ψ〉⊗k, or sometimes

∣∣ψk
〉
.

2.2 Operations

Computers map input states to output states through a series of operations called gates.
A classical gate takes some number of bit registers as input, and outputs one or more bit
registers as output. A quantum gate is similar, but manipulates registers of qubits.

A quantum gate operating on n qubits can be described by a 2n× 2n unitary matrix. A
matrix U is unitary if and only if UU † = I, where U † is the matrix obtained by transposing
U and then taking the entry-wise complex conjugate, and I is the identity matrix of
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appropriate dimension. Unitary operations are reversible. That is, the inputs of a quantum
gate U can be obtained from the outputs by performing the gate U †.

Like registers, quantum gates can be joined by tensor product. Again, the ⊗ notation
is sometimes dropped for visual clarity. This can create an ambiguity between matrix
multiplication UV and the tensor product U ⊗ V . When the intended product cannot be
inferred from the context we will use ⊗ explicitly.

2.2.1 Pauli operators

One particularly important class of unitary gates is the single-qubit Pauli operators. There
are four such Pauli operators:

I =

(
1 0
0 1

)
, (2.5a)

X =

(
0 1
1 0

)
, (2.5b)

Y =

(
0 −i
i 0

)
, (2.5c)

Z =

(
1 0
0 −1

)
. (2.5d)

The square of any Pauli is equal to the identity I, and except for I, the Paulis pairwise
anticommute. That is, PQ = −QP for P,Q ∈ {X, Y, Z} and P 6= Q.

The Paulis are orthogonal under the Hilbert-Schmidt matrix inner product

〈U, V 〉 := Tr(U †V ) . (2.6)

Accordingly, they form an orthogonal basis for the set of 2× 2 complex matrices. Any 2× 2
unitary U can be written as a linear combination

U = cos(θ)I − i sin(θ)(aX + bY + cZ) , (2.7)

for θ ∈ [0, π] and nonnegative real values a, b, c such that
√
a2 + b2 + c2 = 1

The set of tensor products of Pauli operators forms a group under multiplication. The
product of any two Pauli operators is a Pauli operator, up to a possible unit phase {±1,±i}.
The extra phase can usually be ignored, and the corresponding group is called the Pauli
group.
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2.3 Measurement

Results of a quantum operation or quantum algorithm are obtained by measuring quantum
registers. Let {|φi〉} be an orthonormal basis for a quantum register |ψ〉 such that |ψ〉 =∑

i ai |φi〉. The measurement of |ψ〉 with respect to this basis yields outcome i with
probability |ai|2. For example, measurement of the single-qubit state a |0〉 + b |1〉 yields
outcome zero with probability |a|2 and outcome one with probability |b|2. Since |0〉 and |1〉
are eigenstates of Z, this is called a Z-basis measurement.

We may alternatively measure in the X eigenbasis {|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉+

|1〉)}. Measurement in the X basis is equivalent to first performing the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
(2.8)

and then measuring in the Z basis, since H |+〉 = |0〉 and H |−〉 = |1〉.
Measurement in other bases, and measurement of multi-qubit registers is physically pos-

sible in principle. However, we will use only single-qubit Z-basis and X-basis measurement
in this thesis.

2.4 Entanglement

Unlike bits of a classical register, qubits in a quantum register need not be independent of
each other. Consider the so-called “Bell-state” on two-qubits

|ψ〉 =
1√
2

(|00〉+ |11〉) . (2.9)

This state is a “superposition” of two cases, one in which both qubits have value zero, and
one in which both qubits have value one.

If we measure the first qubit of |ψ〉, then we get a classical bit, either zero or one. But
in this case, we know that the value of the second qubit must be equal to the value of the
first qubit. That is, if we measure zero on the first qubit, then the value of the second qubit
must also be zero. Similarly, if we measure a one on the first qubit, then the second qubit
must also have value one.

A state such as (2.9) in which qubit values are not independent is said to be entangled.
Entangled states are an important part of many quantum algorithms and are used heavily
in quantum error-correcting codes.
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2.5 Universality

Any quantum algorithm can be expressed as a sequence of unitary operations and single-qubit
measurements. However, rather than construct a quantum computer capable of executing
an infinite number of possible unitary operations, it is more practical to decompose quantum
algorithms into a finite, but universal set of gates.

Definition 2.5.1 (Universality). A set of quantum gates G is universal if for any unitary
U and ε > 0, there exists some k and V = G1G2 . . . Gk such that G1, G2 . . . Gk ∈ G and
‖V − U‖ ≤ ε.

Informally Definition 2.5.1 says that a universal gate set is one from which any unitary
U can be approximated to any desired error tolerance ε. The choice of norm ‖V − U‖
is largely arbitrary; when necessary, the choice of norm will be stated explicitly. It can
be shown that the set of arbitrary single-qubit gates with the addition of any non-trivial
multi-qubit gate—i.e., one that cannot be expressed as the product of single-qubit gates—is
universal [DiV95]. Thus the problem of universality can be reduced to just the single-qubit
case.

2.5.1 The Clifford group

One special class of quantum gates is the Clifford gates. A gate G on n qubits is Clifford if
and only if eiθG†PG ∈ P⊗n for all P ∈ P⊗n and some unit phase eiθ, where P = {I,X, Y, Z}.
That is, the Clifford gates are those that map Pauli operators to Pauli operators under
conjugation. The Clifford operators form a group. The single-qubit Clifford group has size
24 and can be generated by {H,S = ( 1 0

0 i )}. The entire Clifford group can be generated by
adding a single two-qubit gate, usually

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.10)

The first input of the CNOT is called the control and the second input of the CNOT is
called the target. The CNOT gate flips the value of the target qubit only if the state of the
control qubit is |1〉.

The Clifford group is important in the study of fault-tolerant quantum computing for
two reasons. First, many quantum error-correcting codes permit very simple and robust
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encoded versions of Clifford gates. Second, and more importantly, it is particularly easy
to calculate the effect Pauli errors as they propagate through sequences of Clifford gates.
Indeed, the Clifford group contains several important quantum gates including H and
CNOT, but quantum computations that contain only Cliffords can be efficiently simulated
by a classical computer, a result known as the Gottesman-Knill theorem. In fact, the
Clifford group is strictly less powerful than (universal) classical computation [AG04].

Propagation of Pauli errors through Clifford gates is used heavily throughout this thesis.
For convenience, we give the relevant equations explicitly for X and Z. Propagation for Y
follows from Y = iXZ.

HX = ZH, (2.11a)

HZ = XH, (2.11b)

SX = Y S, (2.11c)

SZ = ZS, (2.11d)

CNOT(I ⊗X) = (I ⊗X)CNOT, (2.11e)

CNOT(X ⊗ I) = (X ⊗X)CNOT, (2.11f)

CNOT(I ⊗ Z) = (Z ⊗ Z)CNOT, (2.11g)

CNOT(Z ⊗ I) = (Z ⊗ I)CNOT . (2.11h)

2.5.2 Non-Clifford gates

The relatively meager computational power of the Clifford group implies that Clifford
gates alone cannot be universal for quantum computation. It turns out, however, that the
addition of any non-Clifford gate is sufficient for universality (see, e.g., [CAB12] Appendix
D). The most common choice is the single-qubit gate

T =

(
1 0
0 eiπ/4

)
. (2.12)

Note that T 2 = S. There are other sensible choices, however. For example the three-qubit
Toffoli gate, defined by |a, b, c〉 7→ |a, b, c⊕ (a · b)〉, is universal for classical computation
and is therefore also useful in constructing classical reversible subroutines such as addition.
Some other alternatives are discussed in Chapter 8.
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|ψ〉 • X •

|0〉 H • Z

|0〉 X Z

Figure 2.1: An example of a quantum circuit. The circuit takes three qubits as input, and
outputs a single qubit. CNOT gates are indicated by vertical lines between qubits; the black
dot indicates the control, and the ⊕ indicates the target. Measurements are represented by
“D” shapes, and the basis (X or Z) is indicated. Classically-controlled gates are denoted by
double lines. This particular circuit performs “teleportation”, transferring |ψ〉 from the
first qubit to the third qubit.

2.6 Circuits

It is often convenient and helpful to describe sequences of quantum gates visually, as circuits.
Technically, a quantum circuit is a directed acyclic graph in which the vertices represent
quantum gates, and the edges represent qubits. Figure 2.1 shows an example of a circuit
composed of gates from {CNOT, H,X, Z}.

A circuit can be partitioned into time-steps in which each qubit is involved in at most
one gate. By convention, time goes from left to right. Note that this is the opposite of the
convention for matrix multiplication, in which gates are applied on the state |ψ〉 from right
to left. In Figure 2.1, the Hadamard gate is applied first, followed by a CNOT on qubits
two and three and then a CNOT on qubits one and two.

Measurements output classical bits, indicated by the double lines. Quantum gates can
be conditionally applied based on classical measurement values. In this example, the X
gate is applied only if the Z-basis measurement on the second qubit is one, and the Z gate
is applied only if the X-basis measurement on the first qubit is one.

2.7 Teleportation

The circuit shown in Figure 2.1 demonstrates a uniquely quantum concept called teleporta-
tion [BBC+93]. Teleportation can be useful for transporting quantum information quickly
over large distances. The effect of this circuit is to transfer the input state |ψ〉 of the first
qubit on to the third qubit. Initially the second and third qubits must be located close
together in order to execute the first CNOT gate. The third qubit can then be transported
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|ψ〉 Z

|+〉 • X RZ(θ) RZ(θ)|ψ〉

(a)

|ψ〉 Z

|+〉 RZ(θ) • RZ(2θ)X RZ(θ)|ψ〉

(b)

Figure 2.2: Two modifications of the teleportation circuit shown in Figure 2.1. (a) One-qubit
teleportation. The input |ψ〉 is teleported using just one ancilla qubit, prepared as |+〉.
After teleportation, a Z-axis rotation is applied to the output. (b) Gate teleportation.
Using the relation RZ(θ)X = RZ(2θ)XRZ(θ), the Z-axis rotation can be shifted to the left
and a new conditional correction is required.

to any desired location. Upon executing the remainder of the circuit, the state of the first
qubit is instantly transported to the location of the third qubit, up to Pauli corrections
based on the measurement outcomes.

Teleportation is used frequently in fault-tolerant circuits, but for a different reason.
Consider the circuit shown in Figure 2.2a. This circuit also teleports the state |ψ〉, but
requires only one additional qubit [ZLC00]. After teleportation, a Z-axis rotation

RZ(θ) = cos(θ/2)I − i sin(θ/2)Z (2.13)

is applied to the output. Next, observe that

RZ(θ)X = RZ(θ)XRZ(−θ)RZ(θ) = RZ(2θ)XRZ(θ) . (2.14)

Therefore, the Z-axis rotation may be shifted to the left of the conditional X correction, and
to the left of the CNOT gate (since Z has no effect on the control of a CNOT). The RZ(θ)
gate can now be performed “offline” on the ancillary qubit, before interaction with the state
|ψ〉. The technique of preparing a gate offline by commuting through the teleportation
circuit is called gate teleportation [GC99].

Of course, the conditional correction RZ(2θ)X in the gate teleportation circuit is now
more complicated than it was before. However, there are certain cases in which fault-
tolerantly executing RZ(2θ) is far easier than executing RZ(θ). Offline preparation of the
more difficult RZ(θ) allows for more efficient error suppression, as we will see in Chapter 4.
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Chapter 3

Protecting quantum information

In Chapter 1 we discussed the fragility of the information stored in quantum bits. An
unprotected quantum system interacts freely with its environment, causing the information
that it contains to be corrupted or lost. Before a qubit can be used for computation, it
must be protected against noise.

In this chapter, we detail a major tool for protecting quantum information, quantum
error-correcting codes. Quantum codes use many physical qubits to represent one logical
qubit, thereby reducing the impact of an error on any one of the physical qubits. Quantum
information is more complicated than classical information, and likewise quantum errors
are more complicated than classical errors. Nonetheless, it is still possible to use the wealth
of classical coding theory to develop quantum codes.

3.1 First things first: classical error correction

Classical codes operate by adding redundancy. For example, the simplest classical code
is the two-bit repetition code in which a single logical bit is encoded using two noisy bits.
The logical value zero is encoded as 00 and the logical one is encoded as 11. An error on
either one of the two noisy bits will result in a value of 01 or 10. This single error can be
detected by taking the parity of the two bits (i.e., the sum of the bits modulo two); in this
case an odd parity indicates an error. By adding third bit of repetition, single bit-flips can
be corrected. For example, the value 010 can be restored by flipping the second bit back to
zero. The errant bit can be identified by taking the parity of each pair of bits. An odd
parity for the first two and the last two bits indicates an error on the middle bit.
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A common simplifying assumption is that errors occur identically and independently
on each bit. If the probability of an error on a single bit is p, then the probability of a
simultaneous error on two bits is p2. Since the three-bit repetition code can correct any
single-bit error, an uncorrectable error occurs only when there are simultaneous errors on
two or more of the bits. The probability pL of this uncorrectable, or “logical” error is given
by

pL = 3p2(1− p) + p3 , (3.1)

where there are
(
3
2

)
= 3 ways for two errors to occur. So long as

p < 3p2(1− p) + p3, (3.2)

which is true for p < 0.5, then the encoding yields a net improvement over just a single bit.1

The repetition code can be extended to correct larger numbers of errors by simply
adding more bits. The number of simultaneously correctable errors is given by b(n− 1)/2c
where n is the number bits in the code. In the limit of large n, each additional bit increases
the number of correctable errors by one-half.

3.1.1 Linear codes

Improved efficiency can be obtained by encoding more than one logical bit at a time. Linear
codes are defined by a k × n binary matrix G, where n is the number of bits of the code
and k is the number of encoded logical bits. The logical value x is encoded into a codeword
c by binary (i.e., sum modulo two) matrix-vector multiplication

c = Gᵀx , (3.3)

where x and c are treated as column vectors.

All codewords satisfy a set of linear constraints called parity checks, defined by a
(n− k)× n binary matrix H such that

HGᵀ = 0 , (3.4)

which implies that Hc = 0 for all codewords c.

The parity check matrix H is useful in identifying errors since for any codeword c and
any n-bit vector e,

H(c+ e) = Hc+He = He . (3.5)

1In this case, net improvement can also be obtained for p > 0.5 by inverting the correction procedure.
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0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




(a)




0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




(b)

Table 3.1: Parity check matrices for the (a) [7, 4, 3] and (b) [15, 11, 3] Hamming codes.

The (n− k)-bit vector He identifies the parity checks violated by the error e and is called
the error syndrome. Each syndrome can be associated with a recovery operation e′ that
returns the vector (c+ e) to a codeword, i.e., H(c+ e+ e′) = 0.

The distance of a linear code is defined as the minimum Hamming weight of any
nonzero codeword. The distance corresponds to the minimum number of bits that must
be flipped to transform one codeword into another—i.e., the minimum Hamming distance
between codewords. The all zero vector is always a codeword of any linear code, and so
the minimum Hamming distance cannot be larger than the minimum weight (nonzero)
codeword. Conversely, for any two codewords c1, c2, the linear combination c = c1 + c2
is also a codeword and the Hamming weight of c is equal to the Hamming distance of c1
and c2. Thus, the Hamming distance between c1 and c2 is at least the code distance. The
three-bit repetition code, for example, has distance three since 111 has weight three.

A code with distance d can detect up to d − 1 bit errors. This fact follows from the
definition of minimum distance. Any vector c+ e that is not a codeword yields a nonzero
syndrome, and so applying an error e to a codeword c results in a syndrome of zero only
if e has Hamming weight at least d. A linear code can correct up to t = b(d − 1)/2c bit
errors. The correction procedure takes a vector c+ e and replaces it with the closest (in
Hamming distance) codeword c′. Informally, an error of weight k moves the data k steps
away from the codeword. So long as k is less than halfway to any other codeword the
correction procedure will succeed. Again, the three-bit repetition code can detect errors up
to weight two, but can only correct errors of weight one.

A linear code using n noisy bits to encode k logical bits to a distance of d is denoted by
[n, k, d]. Perhaps the most well known class of linear codes is the family of [2r−1, 2r−r−1, 3]
Hamming codes, for r ≥ 2 [MS93]. The three-bit (r = 2) Hamming code corresponds to
the three-bit repetition code discussed above. Parity check matrices for the seven-bit and
15-bit Hamming codes are shown in Table 3.1.
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3.1.2 Dual codes

The generator matrix G and the parity check matrix H are interchangeable. Just as G
defines the codewords of a linear code, H defines the codewords of a different code, called
the dual. The parity checks of the dual code are then given by G. Alternatively, given a
linear code C, the codewords of the dual code are given by the orthogonal complement of
C defined by the set C⊥ = {g : |g · c| = 0 mod 2,∀c ∈ C}.

3.2 Quantum errors

Unfortunately, classical codes cannot be used directly to protect quantum information,
primarily because in addition to bit flips, qubits can suffer from more exotic kinds of errors.
For example, consider the state |+〉 = 1√

2
(|0〉+ |1〉). If the Pauli operator Z is accidentally

applied to this state then it becomes |−〉 = 1√
2
(|0〉 − |1〉). This kind of error is called a

phase-flip, since the relative phase between |0〉 and |1〉 has been swapped from +1 to −1.

3.2.1 Discretization

On the surface the problem appears to be even worse than just dealing with bit-flip and
phase-flip errors. Consider the operator

Eθ =

(
1 0
0 e−i2θ

)
, (3.6)

where where θ ∈ [0, π). Accidental application of Eθ introduces one of an infinite number
of continuous phase errors e−i2θ. Bit-flip errors may be similarly continuous.

However, we may rewrite (3.6) as

Eθ = e−iθ(cos(θ)I + i sin(θ)Z) . (3.7)

When written in this way, what was a continuous phase error now appears as a discrete
Z error, but with a continuous amplitude. Up to a global phase, the state is either left
unchanged with amplitude cos(θ) or incurs a phase-flip with amplitude i sin(θ). The global
phase e−iθ is generally unimportant, since it has no effect on measurement outcomes.
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More generally, an error can be modeled as a unitary transformation UE on the joint
state of the quantum computer |ψ〉 and its surrounding environment |E〉. Using the fact
that the Pauli operators form a basis for single-qubit operators, UE can be decomposed as

UE =
∑

i,j

eijPi ⊗ Ej , (3.8)

where each Pi is a tensor product of Pauli operators and Ej acts only on the environment.
The result of an error UE on the joint state is then given by

UE |ψ〉 |E〉 =

(∑

i

Pi |ψ〉
)∑

j

eijEj |E〉 . (3.9)

Again, as in (3.7), the error is written as a discrete sum over Pauli operators.

Equation (3.9) implies that task of protecting quantum information can be reduced to
the task of guarding against products of Pauli errors. Additionally, since Y = iXZ, each
tensor of Paulis can be expressed using only X and Z, up to an unimportant global phase.
In other words, quantum errors can be expressed solely in terms bit-flips and phase-flips on
individual qubits.

3.2.2 Leakage and loss

The error expressed in (3.8) is not entirely general in that it does not directly account for
leakage and loss errors. Leakage occurs when the state |ψ〉 goes outside of the expected 2n

dimensional state space. For example, a qubit may be represented physically by the first
two energy levels of an ion. Thermal excitations could cause the ion to jump to a higher
energy level, in which case the state would have to be represented by a qutrit

|ψ〉 = a0 |0〉+ a1 |1〉+ a2 |2〉 , (3.10)

where the state |2〉 represents leakage outside of the qubit space. Similarly, loss occurs
when a qubit is removed or otherwise disappears from the computer. This could happen if
an ion is spontaneously ejected from a trap.

Left unchecked, leakage and loss errors can have serious consequences for protection of
quantum information [GFMG13]. However, they can usually be controlled with a small
amount of effort [Pre98, Fow13a]. We will not consider leakage and loss errors in this thesis.
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3.3 Quantum error-correcting codes

Equation (3.9) shows us that the state of a quantum register after being subjected to noise
can be expressed as a superposition of the original state over a discrete set of bit-flip and
phase-flip errors. Informally then, the goal of a quantum error-correcting code is to project
the register onto one of those superposition states, identify the error and reverse it.

More formally, let {ψi} be an orthonormal basis for the codewords of a quantum error-
correcting code C, and let {Ei} be a set of errors against which we would like to protect.
The conditions under which the code C can correct errors {Ei} are given by the following
theorem [BDSW96, KLV00].

Theorem 3.3.1 (Quantum error correction condition). A code C with codewords {|ψi}〉
can correct the set of errors {Ea} if and only if

〈ψi|E†aEb |ψj〉 = Cabδij , (3.11)

where δij equals one if i = j and equals zero otherwise, and Cab ∈ C is independent of i and
j.

Theorem 3.3.1 can be understood by considering a code with just two codewords
{
∣∣0
〉
,
∣∣1
〉
}, where the notation |a〉 indicates the encoded logical state |a〉. Then (3.11)

requires that Ea
∣∣0
〉

and Eb
∣∣1
〉

are orthogonal. If this were not the case, then an error Ea on∣∣0
〉

and Eb on
∣∣1
〉

would yield overlapping states, and measurement of the error could confuse

the two cases. In particular, if E†aEb is a logical operator (say X), then (3.11) is certainly
violated. Likewise, consider an error E with the property that

〈
0
∣∣E†E

∣∣0
〉
6=
〈
1
∣∣E†E

∣∣1
〉
,

again violating (3.11). Then E changes the relative amplitudes of
∣∣0
〉

and
∣∣1
〉

so that
E(|0〉+ |1〉) ∝

∣∣0
〉

+ δ
∣∣1
〉

for some δ. But
∣∣0
〉

+ δ
∣∣1
〉

is itself a codeword, so the error E
cannot be distinguished from a valid logical operation.

3.3.1 Stabilizer codes

The most widely studied class of quantum error-correcting codes is stabilizer codes, the
quantum analog of classical linear codes [Got96a, CRSS97]. A stabilizer code is defined by
a stabilizer groupM for which each element is a tensor product of Pauli operators. The set
of codewords is given by {|ψ〉 : M |ψ〉 = |ψ〉 ,M ∈M}; each codeword is a +1-eigenvector
of all of the elements in the stabilizer group. Since M is a group, the stabilizers can
be specified by a set of generating elements called stabilizer generators. The stabilizer
generators are directly analogous to the parity checks of a classical linear code.
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Error correction can be performed by measuring each of the stabilizer generators in order
to determine the error syndrome. The number of simultaneous single-qubit errors that the
code can correct is given by b(d−1)/2c, where d is the code distance. Define the normalizer
of M, N := {P ∈ Pn : PS = SP, S ∈ M}, as the set of n-qubit Pauli group elements
that commute with all of the stabilizers. The distance of the code is then equivalent to
the minimum weight non-identity element of N \M. Here, the weight of an operator is
defined as the number of X , Y and Z operators in its tensor product decomposition.

A stabilizer group on n physical qubits with m generators encodes n − m logical
qubits. The 2m syndromes partition the 2n-dimensional state space, yielding a codespace
of dimension 2n−m. Each logical qubit i is associated with a pair of logical operators Xi,
Zi ∈ N \M such that Xi and Zi commute with all of the stabilizers, but anti-commute with
each other. Logical operators on different logical qubits also commute. The situation is in
direct correspondence with single-qubit Pauli operators on physical qubits. A stabilizer code
encoding k logical qubits into n physical qubits to a distance of d is denoted as [[n, k, d]].

Stabilizer algebra

Given a set of generators and logical operators for a stabilizer code, it is possible to write
out each of the codewords {|ψi〉} explicitly, and therefore to calculate how the encoded
quantum state evolves under unitary operations and measurements. However, the stabilizer
formalism offers an alternative which is usually more efficient and intuitive. Consider the
effect of applying a unitary U to a codeword |ψ〉. We would like to understand how U
impacts the stabilizers and the logical operators of the code. By definition, we have

U |ψ〉 = U(M |ψ〉) = (UMU †)U |ψ〉 (3.12)

for any stabilizer M . Thus, a stabilizer M of the original state is transformed by conjugation
UMU † to a stabilizer of the new state U |ψ〉. The logical operators are similarly transformed
by conjugation.

In this way, stabilizers offer an analog of the Heisenberg interpretation of quantum
mechanics [Got99]. Rather than tracking the evolution of the state |ψ〉, we may track the
evolution of the stabilizers. For a code on n qubits, there are 2n possible terms in the
expansion of |ψ〉, but only at most n stabilizer generators. Thus expressing an encoded state
in terms of its code stabilizers can be exponentially more efficient than the corresponding
expression as a quantum state.

The effect of measurements on the stabilizers is slightly more complicated, but can still
be calculated efficiently. Consider a Z-basis measurement on the first qubit of an n-qubit
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codeword. After the measurement, the state is stabilized by the operator Z ⊗ I⊗n−1, up
to a phase of ±1. The definition of the stabilizer group implies that all stabilizers must
commute. Thus, the stabilizers of the state after the measurement must all commute with
Z ⊗ I⊗n−1. Any operator that was a stabilizer before the measurement, but anti-commutes
with Z on the first qubit cannot be a stabilizer after the measurement. Note however,
that it is always possible to express the set of stabilizer generators so that at most one
generator anti-commutes with the measurement. If both M1 and M2 anti-commute with
the measurement, then M2 can be replaced by M1M2, which does commute. Thus the
single anti-commuting generator is replaced by Z ⊗ I⊗n−1 and all of the other generators
remain unchanged.

To make this more concrete, we illustrate with an example using the [[7, 1, 3]] code due
to Steane [Ste96]. The stabilizer generators of this code can be expressed as

I I I I XXX I I I I ZZZ
I XX I I XX I ZZ I I ZZ
X I X I X I X Z I Z I Z I Z

XL =XXXXXXX ZL =ZZZZZZZ

, (3.13)

where XL and ZL are the X and Z logical operators, respectively, and for visual clarity the
tensor product notation has been omitted. Now consider the effect of applying the Hadamard
operator to each qubit. Hadamard swaps X and Z under conjugation; HXH = Z and
HZH = X. So the result of applying H⊗7 is

I I I I ZZZ I I I I XXX
I ZZ I I ZZ I XX I I XX
Z I Z I Z I Z X I X I X I X

XL =ZZZZZZZ ZL =XXXXXXX

. (3.14)

The stabilizers have been preserved, and the XL and ZL logical operators have been swapped.
The operator H⊗7 therefore acts as a logical Hadamard on the code.

Now consider a Z-basis measurement on the first qubit. All but the operatorsXIXIXIX
and ZL = XXXXXXX commute with the measurement. However, the ZL operator may be
multiplied by XIXIXIX so that it commutes with Z⊗I⊗6. (Remember that multiplication
by a stabilizer is equivalent to multiplying by the identity.) The resulting stabilizers after
measurement are

I I I I ZZZ I I I I XXX
I ZZ I I ZZ IXX I I XX
Z I Z I Z I Z ± Z I I I I I I

XL =ZZZZZZZ ZL =IX I X I X I

, (3.15)
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where the new stabilizer is highlighted in bold and the ±1 phase depends on the measurement
outcome.

Stabilizer states

Normally we are interested in codes that contain at least one logical qubit. For a stabilizer
code on n qubits, this means that the number of stabilizer generators should be (n− k) for
some k > 0. Then the set of codewords lives in a 2k-dimensional subspace representing k
logical qubits. If k = 0, however, then the set of codewords has dimension one, a single
quantum state.

An n-qubit state that is defined by a set of n stabilizer generators is called a stabilizer
state. In the seven-qubit code, for example, adding the Z logical operator ZL to the set of
stabilizers yields a stabilizer state. By definition, this state is a +1-eigenstate of ZL and so
this is the encoded state |0〉, just as (physical) |0〉 is the +1-eigenstate of Z.

Not all quantum states are stabilizer states. Consider the effect of applying T to the
first qubit of the encoded |0〉 state defined above. The conjugation relations for T are

TZT † = Z

TXT † = (X + Y )/
√

2 .
(3.16)

Therefore some of the resulting stabilizers are no longer tensor products of Paulis, but
rather linear combinations of tensor products of Paulis. The encoded state T ⊗ I⊗6

∣∣0
〉

is
not a stabilizer state.

On the other hand, an inductive argument shows that the output of any circuit composed
of Clifford gates, |0〉 preparation and Z-basis measurement is a stabilizer state. Conversely,
the definition of the Clifford group implies that any stabilizer state can be expressed by such
a circuit [AG04]. Stabilizer states and their corresponding circuits are a major component
of fault-tolerant error correction, and are discussed in more detail in Chapter 6.

3.3.2 CSS codes

A particularly useful subset of stabilizer codes can be constructed from classical linear
codes. The construction requires two linear codes C1 = [n, k1, d1], C2 = [n, k2, d2] that are
orthogonal, i.e., C⊥1 ⊆ C2. The parity checks of C1 can be translated into tensor products
of Pauli X operators, and the parity checks of C2 can be translated into tensor products of
Pauli Z operators. Together these operators form the stabilizer generators of the quantum
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error-correcting code. The tensor products of X are called X stabilizers and the tensor
products of Z are called Z stabilizers.

Codes based on this construction are known as CSS codes after Calderbank, Shor and
Steane and include the most commonly known codes such as the Steane’s [[7, 1, 3]] code
given by (3.13) [Ste96], which is based on the seven-bit Hamming code (Table 3.1), and
Shor’s [[9, 1, 3]] code [CS96], which is based on the nine-bit repetition code. CSS codes are
ubiquitous in the study of fault-tolerant quantum computation; all of the codes considered
in this thesis are CSS.

CSS codes have a couple of properties which make them nice for study and for use in
fault-tolerance schemes. First, the codewords of a CSS code follow the form

|x〉 =
1√∣∣C⊥1
∣∣
∑

w∈C⊥1

|x+ w〉 , (3.17)

where x is the coset representative of an element of C2/C
⊥
1 . Equation (3.17) shows that

each codeword x can be interpreted as a superposition over each of the X stabilizers. The
code C⊥1 partitions C2 into |C2| /

∣∣C⊥1
∣∣ cosets and so there are 2k2−(n−k1) codewords. Second,

CSS codes permit independent correction of X errors and Z errors. The X stabilizers
defined by C1 are used to correct Z errors, and the Z stabilizers defined by C2 are used
to separately correct X errors. Independent X and Z correction is exploited in Chapter 6
and Chapter 7. As a consequence of these two properties, the CSS construction yields a
[[n, k1 + k2 − n,min{d1, d2}]] quantum code.

3.3.3 Concatenated codes

Stabilizer codes can be combined to form other larger stabilizer codes. Given two stabilizer
codes C1 = [[n1, k1, d1]] and C2 = [[n2, 1, d2]], a [[n1n2, k1, d1d2]] code is be obtained by
encoding each physical qubit of C1 in the code C2 [KL96]. This construction is known as
code concatenation, and is a key element of many threshold theorems including the one
in Chapter 7. In particular, concatenation can be performed repeatedly in order to obtain
an arbitrarily large code distance.

Concatenation can also be accomplished when C2 encodes multiple logical qubits, in
which case the resulting code is [[n1n2, k1k2, d1d2]] (see, e.g., [Got97]). Other methods for
combining codes include pasting to increase k [Got96b], and welding [Mic12]. We focus
only on concatenation in this thesis, however.
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3.3.4 Topological codes

Another notable subset of stabilizer codes are so-called topological codes. These codes have
the property that the stabilizer generators can be defined locally when qubits are laid out
as a lattice on some manifold. Prominent examples include the toric code [Kit97], and the
surface code [BK98].

Each topological code is, in fact, a family of codes. Notably, both the number of
encoded qubits and the distance can be increased arbitrarily while maintaining locality of
the stabilizer generators. This permits fault-tolerance schemes which require only local
interactions among qubits, a feature which is useful on a large number of proposed physical
quantum computing architectures. By contrast, concatenated codes require interactions
between qubits which may be far apart.

3.3.5 Non-stabilizer codes

There are also quantum error correcting codes that do not conform to the stabilizer
construction. A variety of codes can be constructed by relaxing the stabilizer formalism in
some way. Subsystem codes, for example, encode qubits as linear subsystems rather than
two-dimensional subspaces [Bac06]. Another relaxation of the stabilizer formalism can be
used to construct approximate quantum error-correcting codes [LNCY97]. Codes can be
used to protect qudits (d-dimensional quantum bits) rather than qubits [Kni96]. Yet more
codes are possible if the code block is entangled with an outside resource [Bow02].

Stabilizer codes are generalized by so-called codeword stabilized codes [LYGG08,
CSSZ09]. A codeword stabilized code is characterized by a stabilizer state and a set
of “word operators” that act as logical X operators. The structure of these codes is more
complicated than for stabilizer codes. The word operators need not commute with each
other, for example. Codeword stabilized codes have not been widely studied in the context
of fault-tolerant quantum computing.

3.4 Experimental realization

The protection offered by quantum error-correcting codes was demonstrated experimentally
as early as 1998, when the three-qubit phase-flip code was implemented in liquid state
NMR [CPM+98]. Since then, a number of small codes have been used in a variety of experi-
mental setups including liquid state NMR [LVZ+99, KLMN01, BPF+02, BVFC05, ZGML11,
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ZGZL12, ZLS12], trapped ions [CLS+04, SBM+11], linear optics [PJF05, YGL+13], cavity-
QED [OV10], solid state NMR [MBRL11], and superconducting circuit-QED [RDN+12].
Most demonstrations have been quite basic; a single logical qubit is encoded using a small
number of physical qubits, left idle for some period of time, and then decoded. A few
studies have demonstrated more complicated operations such encoded gates [ZLS12] and
state distillation [SZRL11] (see Chapter 4).

On the one hand, experimental demonstrations of quantum error correction provide
proof-of-principle that codes can indeed suppress noise in realistic physical systems. The
initial 1998 experiment showed that the gate error rate could be reduced from p to roughly
p2. A similar, but much more recent study shows even sharper improvements [ZGML11].
On the other hand, the limited scale of the experiments illustrate the need to improve
threshold and resource overhead requirements. Most experimental setups are large enough
to encode only a single logical qubit, whereas quantum algorithms require hundreds or
thousands of qubits. Experimental capabilities will continue to improve, but so must the
resource costs of error correction.

3.5 Alternative methods of protection

Quantum error-correcting codes are not the only means by which to protect quantum
information. For completeness, we briefly outline some alternative techniques.

3.5.1 Decoherence-free subspaces and dynamical decoupling

Originally formalized for quantum information by [PSE96] and [DG97] and later coined
by [LCW98], a decoherence-free subspace (DFS) encodes data into states for which the effect
of environmental noise is trivial. As a toy example, consider a noise model in which only
Z errors occur, and when they do they occur simultaneously on all qubits in the system.
That is, for a system of n qubits, the only possible error is Z⊗n. Even this very simple
noise model can cripple a quantum computer. But this error acts trivially on certain states,
for example,

Z ⊗ Z(a |00〉+ b |11〉) = a |00〉+ b |11〉 . (3.18)

Thus, by encoding in the subspace {|00〉 , |11〉} (|00〉 for logical |0〉, and |11〉 for logical |1〉)
the logical qubit is completely immune to errors. In this way, a DFS is equivalent to an
error-correcting code for a very simple and specific noise model.
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Decoherence-free subspaces enjoy several advantages over error-correcting codes. First,
they usually require only a very small number (two in the above example) of physical qubits
per logical qubit. Second, since errors act trivially, a DFS requires no active intervention in
order to correct errors. Furthermore, the strength of the noise can be very high, in contrast
to error correcting codes which can tolerate only low levels of noise (see Chapter 4). On the
other hand, given a particular noise model, finding the symmetries required to construct a
DFS, provided that they even exist, is difficult. Indeed, DFS is known to be insufficient for
some reasonable noise models [LBKW01].

Dynamical decoupling (DD) is another technique for suppressing errors for simple and
well-characterized noise models [VKL99, Ban98]. If noise causes the system to evolve in
an uncontrolled but predictable way, then quick control pulses can be used to periodically
“reverse” the noise and cause it to cancel out. Again a toy example is helpful. Say that noise
acts continuously on a qubit, and that for a fixed duration of time t the effect is given by

E(t) =

(
1 0
0 eiθt

)
. (3.19)

By periodically applying Pauli X, the effect of the noise can be canceled since

E(t)XE(t)X = E(t)E†(t) = I . (3.20)

In more practical examples the noise and the required control pulses are more complicated,
but the idea is the same.

Dynamical decoupling has the advantage of requiring no additional qubits. Its disadvan-
tage, is that it requires fast and accurate control. Moreover, complicated pulse sequences
can make data manipulation more difficult, and increase gate times.

DFS and DD are usually considered as complementary to quantum error-correcting
codes. A variety of authors have considered methods for using DFS, DD and quantum
error-correcting codes in different combinations [LBW99, LBKW01, NLP11, PSL13]. DFS
and DD can act as a “first line of defense” against errors, after which error-correction
is applied to achieve arbitrary accuracy. In this thesis we focus only on fault-tolerance
protocols based on codes. It is likely, however, that the the best complete strategies for
suppressing errors will involve elements from all three techniques.

3.5.2 Topological quantum computation

A third, and dramatically different alternative to quantum error-correcting codes is topolog-
ical quantum computation. In topological quantum computation, data is stored in exotic
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particles called anyons [Kit03]. Consider a pair of particles which are placed side-by-side,
and then exchanged; the particle on the left moves to the right, and the particle on the
right moves to the left. For typical physical particles, such as photons or electrons, the
effect of this exchange is essentially trivial. For anyons, however, this exchange induces a
non-trivial phase akin to a diagonal unitary gate. Sequences of exchanges, called “braids”,
can be composed in order to quantum compute [FLW02a, FLW02b].

The novel feature of topological quantum computation is that, in principle, it is inherently
robust against errors. The computational states are degenerate ground states, which means
that errors are suppressed naturally by the system. So long as the anyons are kept far
enough apart, no active error suppression is required. Though promising, the existence and
capability to produce anyons with the right properties is still largely speculative [DFN05,
NSS+08, LK12, SL13].
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Chapter 4

Fault tolerance: making quantum
computing error-free

The most straightforward use of quantum error-correcting codes is in transmitting quantum
information over noisy channels. In this case, the sender encodes his quantum state and
sends it over the noisy channel to the receiver who then decodes. Of course, in a realistic
setting, errors can occur before the encoding process and after decoding, when the quantum
information is unprotected.

In order to achieve reliable quantum computation, the data must be protected at all
times. In particular, unitary gates should be performed while the data is still encoded.
The typical procedure involves alternating rounds of encoded gates and error correction.
The encoded gate manipulates the data in the error correcting code, and error correction
attempts to eliminate errors introduced by the encoded gate. See Figure 4.1.

The use of encoded gates alone is not enough. Both the encoded gates and the error

. . . EC • EC H EC . . .

. . . EC EC T EC . . .

Figure 4.1: Typical fault-tolerant circuits are constructed by alternating rounds of error-
correction with encoded gates.
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correction circuits should be fault tolerant. Roughly, a quantum circuit is fault tolerant if
the errors that occur during each step are small in number and can be kept well controlled.
Errors in a fault-tolerant circuit have very little chance of spreading or combining in order
to cause data corruption. In this chapter we make this concept precise, and examine
techniques for constructing fault-tolerant quantum circuits.

4.1 A brief history

Before delving into the details of fault-tolerant quantum computation, it is instructive to
outline the path from its early beginnings to current state-of-the-art. This history will
show the successes and difficulties of the theory of fault-tolerant quantum computing, and
provide motivation and context for the new results in subsequent chapters.

4.1.1 Threshold proofs and calculations

The first proposal for fault tolerant quantum computation was posited by Shor in 1996
[Sho96]. Shor showed that his construction tolerates a noise rate that is logarithmic in
the size of the computation (measured by the number of gates). Roughly, Shor’s error
correction circuit contains a logarithmic number of gates, thus an error rate proportional to
the inverse of that size is sufficient. Soon after, the first “threshold theorems” were proven
independently by Aharonov and Ben-Or [AB97], Kitaev [Kit97], and Knill, Laflamme
and Zurek [KLZ96] each of which permitted a constant noise rate per gate regardless of
computation size. Importantly, the amount of extra time and space resources required
scales only as a polynomial in the logarithm of the computation size.

Theorem 4.1.1 (Constant noise threshold for quantum computation). Consider a quantum
circuit C of size N , a quantum computer with gates that fail independently with probability
at most p, and target failure probability ε > 0. There exists a different quantum circuit C ′

of size at most

O

(
N · poly

(
log

N

ε

))
(4.1)

that can be implemented on the quantum computer and simulates C with probability of error
at most ε, provided that p is below a constant threshold value pth.

The intuition is that an [[n, k, d]] code yields encoded gates with a logical error rate
at most cpt+1, where t = b(d − 1)/2c, c =

(
A
t+1

)
and A is the number of physical gates
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contained in a single encoded gate plus error correction. Concatenating the code with itself
j times requires nj+1 qubits per block but an inductive argument yields a logical error rate
per gate of

pj ≤
1

c1/t
(
c1/tp

)(t+1)j+1

. (4.2)

That is, the size of the code scales exponentially, but so does the minimum distance. The
right-hand side of (4.2) converges so long as the physical error rate obeys

p <
1

c1/t
= pth . (4.3)

Taking the logarithm of both sides of (4.2) twice, we see that achieving a target error rate
per gate of pj ≤ ε/N only requires concatenation to level j = O(log logN/ε). The total
code size is then a polynomial in logN/ε.

Interestingly, the early threshold theorems hold only for quantum error-correcting codes
of distance at least five. Thresholds for distance-three codes were not known until 2006,
when they were discovered independently by Reichardt [Rei06b], and Aliferis, Preskill and
Gottesman [AGP06]. A novel fault-tolerance scheme using distance-two error-detecting
codes was proposed by Knill in 2005, though without explicit proof of a threshold [Kni05].
Rigorous proof of a threshold for distance-two schemes was proposed by Reichardt [Rei07]
(see also [Rei06a]), and later by Aliferis, Preskill and Gottesman [AGP08].

Existence of a noise threshold permits arbitrary quantum computation for a constant
amount of engineering cost per gate, at least in principle. In practice, the value of the
threshold matters since, while error rates near one percent are currently achievable in some
small-scale experiments, e.g., [LJL+10, MSB+11, CGC+12, GGZ13], rates much lower than
say 10−6 on a large-scale are perhaps impossible even in the long-term.

The earliest estimate based on a rigorous threshold proof was calculated by Aharonov
and Ben-Or to be an error rate per gate of about 10−6. Later calculations based on [Rei06b]
and [AGP06] were similarly low at 6.75× 10−6 and 2.73× 10−5, respectively. Since then,
rigorous threshold bounds have steadily improved. As of 2011, the highest lower bound
was 1.25 × 10−3 by Aliferis and Preskill [AP09]. In Chapter 7, we adapt the technique
of [AGP06] to prove a threshold of 1.32× 10−3.

Another popular technique is to estimate the threshold using Monte Carlo simulation.
Threshold estimates, though not rigorous, paint a much more optimistic picture than lower
bounds. An initial estimate by Zalka placed the threshold at about 10−3 [Zal96]. In 2004
Knill estimated a threshold for his distance-two scheme as high as three percent. Simulations
for the surface code indicate a threshold of about one percent [WFH11]. Figure 4.2 shows
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Figure 4.2: Threshold calculations since 2003 arranged in chronological order by year. Blue
diamonds indicate estimates based on Monte Carlo sampling.a Orange triangles indicate
rigorous lower bounds (with varying assumptions).b

a[Ste03, Rei04, Kni05, MTC+05, SFR+06, DHN06, SDT07, AC07, RH07, RHG07, SE09, WFHH10,
WFSH10, FSG09, FY10, WFH11, SMN13]

b[AGP06, Rei06b, SDT07, AGP08, AC07, SR09, SFH08, AP09, PR12, Fow12b, LPSB13]

thresholds from a large number of studies and for a variety of error-correcting codes, noise
models, and geometric constraints.

4.1.2 Resource optimization

Modern fault-tolerance schemes provide reasonable confidence that noise thresholds can
be met using near-term technologies, at least for small numbers of qubits. At the same
time, the resource requirements for these schemes can be overwhelming. Knill, for example,
estimates that his distance-two scheme would require a resource overhead ranging from
one-thousand to one-billion fold, or more depending on computation size and gate error
rate. Estimates for a cluster-state-based scheme due to Raussendorf, Harrington and Goyal
are similarly large [RHG07].

Accordingly, the focus in quantum fault tolerance has shifted from threshold calcu-
lations to resource reduction and optimization. In all schemes, particularly those based
on concatenated codes, the dominant source of overhead is due to error correction. Most
encoded gates on an n-qubit code can be implemented using roughly n gates. Typical error
correction procedures, meanwhile, require additional ancillary qubits and can require ten to
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one-hundred times as many gates [Sho96, Ste96, Kni05].

Steane has proposed an error correction method based on ancillary encoded stabilizer
states [Ste96] (see Section 4.4.1), and in 2002 showed a method for preparing such states
fault-tolerantly [Ste02]. Steane’s method uses a hierarchy of many encoded stabilizer states
that can be used to verify the reliability of a single encoded state. Reichardt suggested
a procedure for improving on Steane’s method [Rei06a], and in Chapter 6 we examine
additional improvements in detail.

Aliferis and Cross have demonstrated a fundamentally different approach to fault-
tolerant error correction for the family of Bacon-Shor subsystem codes [AC07]. Their
method eliminates the need for encoded ancillas and, instead, requires only nearest-neighbor
two-qubit measurements which can be accomplished with just a single “bare” ancilla qubit.
Similar bare-ancilla techniques are used for topological codes [LAR11, FMMC12].

For many quantum error-correcting codes, Clifford operations can be implemented
very efficiently. In 2004, Bravyi and Kitaev showed that universal fault-tolerant quantum
computation is possible with only Clifford gates and special “magic” resource states [BK05].
Specifically, a fault-tolerant T gate can be obtained by progressively refining noisy magic
states into fewer, but less noisy copies in a process known as state distillation. See Sec-
tion 4.3.2.

Unfortunately, state-distillation is usually very costly. The cost of distilling a T gate to
fidelity (1− ε) scales as O(log2.47(1/ε)), but again the numbers are large in absolute terms;
usually thousands of magic states are required. Recently, though, a flurry of results have
yielded significant improvements. In 2012, Meier, Eastin and Knill [MEK13], Bravyi and
Haah [BH12], and Jones [Jon12] have each proposed new methods for T -gate distillation.
The protocol of Jones comes arbitrarily close to O(log(1/ε)) in the number of magic states,
and this is conjectured to be optimal. However, the total costs of the new protocols are
more challenging to calculate, and so their practical benefits are less clear [FDJ13, Jon13c].

Fowler and others have incorporated and optimized various distillation methods for
use in the surface code [FD12, FDJ13], including a method for parallelization [Fow12c].
Jones and Eastin have independently observed that distillation of so-called Toffoli states
can yield improvements compared to Toffoli gate constructions that use fault-tolerant
Clifford and T gates [Jon13d, Eas13, Jon13a, Jon13c]. In total, such optimizations can
yield orders-of-magnitude improvements in the fault-tolerance resource overhead compared
to naive methods [Jon13d, Jon13c].
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4.1.3 Unitary decomposition

Fault-tolerance schemes provide universality through a small discrete set of encoded gates.
However, quantum algorithms are usually specified in terms of arbitrary unitaries. Until
recently, the standard method for decomposition into fault-tolerant gates has been the
Solovay-Kitaev algorithm [DN05]. Once again, the decomposition cost of O(log3.97(1/ε))
is asymptotically efficient, but often requires tens of thousands of fault-tolerant gates in
absolute terms.

In principle the decomposition cost is lower bounded by a more modest scaling of
O(log(1/ε)) [Kit97, KSV02]. Fowler suggested an optimal approximation of single-qubit
unitaries by optimized but exponential-time direct search [Fow11]. In 2012 Kliuchnikov,
Maslov and Mosca (KMM) characterized the set of single-qubit unitaries that can be
exactly decomposed with {Clifford, T} and gave an optimal and efficient algorithm for exact
decomposition [KMM12b], and later an asymptotically optimal algorithm for approximate
decomposition [KMM12a]. Further improvements by Selinger [Sel12], and KMM [KMM12c]
soon followed.

Several other methods for single-qubit unitary decomposition have been proposed. One
method involves preparing so-called Fourier states and using phase kickback [KSV02].
Using recent optimizations due to Jones [Jon13b], this method is shown to be competitive
with [Sel13] and [KMM12c] when using the surface code. Bocharov and Svore have shown
that decomposition into an alternative gate set {Clifford, V3 = (I + 2iZ)/

√
5} can be up

to six times better than [KMM12c], but requires an implementation of V3 which is more
efficient than those currently known [BGS13]. In Chapter 8 we discuss a V3 implementation
that requires 5.26 T gates (in expectation), thus making [BS12] competitive with all of the
methods above. We also present a class of non-deterministic quantum circuits that can be
used to approximate single-qubit unitaries for less than half the cost of existing methods.

4.2 The noise threshold

Noise thresholds for quantum computation manifest in a variety of forms depending on
physical noise and gate models, physical connectivity constraints, choice of error correcting
code, method of error correction and the rigor with which the result is obtained. In all cases
though, the goal is the same: determine the conditions under which reliable large-scale
implementation of a quantum algorithm is possible. We now discuss these various conditions,
and outline techniques for calculating threshold values.
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4.2.1 Noise models

In order for fault-tolerant techniques to be effective, the strength of the noise must be
below a certain threshold value. The way that strength is defined, and the methods for
calculating the threshold depend on the way in which the noise is modeled. Many different
models can be considered and a broad categorization includes:

• Stochastic - physical gates fail according to a probability distribution,

• Markovian - physical gates fail independently,

• Non-Markovian - gate failures may be correlated,

• Local - gate behavior is correlated to a constant number of other gates.

Additional classifications are also possible. For example, one can consider noise which acts
unitarily only on the computer, and does not include the environment.

Pauli and Clifford channels

The simplest way to model noise is as a Pauli channel. In this setting, each gate is specified
by the ideal version of the unitary followed by either the identity, or some Pauli-group error
according to a probability distribution. The Pauli channel is an example of a stochastic
and Markovian noise model in that errors occur independently at each gate according to a
fixed probability distribution. Specific cases include physically motivated noise such at the
the depolarizing channel and the dephasing channel [NC00]. In the depolarizing channel,
for example, a single-qubit gate may be followed by one of {X, Y, Z} each with probability
p/3, where the parameter 0 ≤ p ≤ 1 specifies the strength of the noise.

Pauli channels can be generalized by enlarging the set of possible errors. Clifford
channels, for example, implement the ideal gate followed by an element of the Clifford group.
Indeed, since Clifford channels provide more parameters than Pauli channels, they can
more closely characterize physical behavior in many cases [MPGC13]. Pauli and Clifford
channel noise models are useful because they allow for efficient Monte Carlo sampling and
simulation. See Section 4.2.6.
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LEC Ga TEC

Figure 4.3: A rectangle, indicated here by the dotted line, includes a gate gadget (Ga)
followed by a trailing error correction (TEC). An extended rectangle (exRec) also includes
the leading error correction (LEC).

More general noise models

Threshold calculations can be made for more general kinds of noise models, as well. Aliferis,
Gottesman and Preskill (AGP) [AGP06], assume a local non-Markovian error model which
is similar to a Pauli channel except that, when an error occurs, an adversary is allowed to
choose the Pauli error. In this model, gates fail stochastically, but the adversary is allowed
to coordinate the errors (in both time and space) among faulty gates in the circuit.

AGP also prove a threshold for a stronger non-stochastic model in which the behavior
of a gate can depend on conditions of both the quantum computer and the environment at
other points in space and time. That is, gate failures are no longer independent but can be
correlated by a kind of quantum memory. Others have also considered non-stochastic models
with varying restrictions on the type and strength of correlations [TB05, AKP06, NP09].

Preskill has considered the most general noise model of all [Pre13]. In his model, the
coupling between the environment and the computer is allowed to be completely arbitrary,
assuming only that single qubits can be prepared with reasonable fidelity. Preskill shows
that a positive threshold exists so long as the strength of k-qubit interactions decays rapidly
(i.e., exponentially) with k.

4.2.2 Rectangles and gadgets

Many threshold theorems consider fault-tolerant, noisy simulations constructed by compiling
an ideal quantum circuit into a sequence of rectangles, each of which contains an encoded
operation “gadget” (Ga) and a trailing error correction gadget (TEC). See Figure 4.3.
The methods and notation here and in the remainder of the chapter follows [AGP06]. A
gadget may contain many physical locations, i.e., unitary gates and qubit preparations and
measurements, each of which may be faulty (according to the prescribed noise model). A
gadget in which there are n faulty locations is said to contain n faults.

For simplicity, we will assume that data is encoded into a quantum error-correcting
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Figure 4.4: A rectangle is correct if the rectangle followed by an ideal decoder is equivalent
to an ideal decoder followed by the ideal gate.

code that encodes just a single qubit. That is, each logical qubit belongs to its own code
block. We will also assume that the same error-correcting code is used throughout.

A decoder is gadget that maps an encoded logical state, possibly containing errors, to
the corresponding single qubit state. We can use the decoder gadget in order to reason
about the relationship between a rectangle and the intended logical gate.

Definition 4.2.1 (Rectangle correctness). A rectangle is correct if the output of the
rectangle followed by an ideal decoder (a decoder containing no faults) is equivalent to the
output of an ideal decoder followed by an ideal implementation of the corresponding gate.
See Figure 4.4. If a rectangle is not correct then it is incorrect.

In other words, a correct rectangle effectively acts as an encoded version of the intended
gate. If all rectangles are correct then a simple inductive argument shows that the compiled,
noisy circuit successfully simulates the original ideal circuit. By “simulates” we mean that
the probability distribution obtained by measuring the outputs of ideal circuit is equivalent
to the probability distribution obtained by measuring the outputs of the noisy fault-tolerant
circuit. We should emphasize here that the decoder gadget, ideal or otherwise, is conceptual
only. It is not actually used in the fault tolerant simulation.

For a fixed stochastic noise model and a fixed quantum error-correcting code, the
probability that a rectangle is correct is a constant and therefore the probability that all
rectangles are correct will generally be exponentially small in the number of gates in the
circuit being simulated. To achieve a constant success probability, code concatenation
(see Section 3.3.3) is often used. In a concatenated fault tolerant simulation, each gate
is first compiled into a rectangle, called a level-one rectangle (1-Rec), as described above.
Then, a level-two rectangle (2-Rec) is constructed by compiling each physical gate of the
1-Rec into a rectangle. This process is repeated as many times as desired, resulting in a
circuit composed of a hierarchy of rectangles.
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Strict fault tolerance

Definition 4.2.1 says nothing about the conditions under which we can expect the rectangle
to be correct. Of course, we should expect that a rectangle is correct when it contains zero
faults. It will be helpful to impose some additional constraints on each gadget, however. A
gadget which satisfies these constraints will be called strictly fault tolerant.

Informally, strict fault tolerance requires that a gadget must 1) faithfully perform its
encoded function (either correction of errors or data manipulation) and 2) control the
propagation of errors. The roles of gate and error correction gadgets are distinct, and we
define strict fault-tolerance separately for each.

In the definitions below, let t = b(d− 1)/2c, where d is the minimum distance of the
error-correcting code in use.

Definition 4.2.2 (Strict fault tolerance: Ga). Consider a Ga that contains r faults and for
which the input contains an error of weight s such that r + s ≤ t. Then the Ga is strictly
fault tolerant if and only if:

1. the effect of perfectly decoding the output of the Ga is the same as first perfectly
decoding the input to the Ga and then performing the corresponding ideal gate, and

2. the weight of the error at the output of the Ga is at most r + s.

Definition 4.2.3 (Strict fault tolerance: EC). Similarly consider an EC that contains r
faults and has an input with a weight s error. The EC is strictly fault tolerant if and only
if:

1. for r + s ≤ t the state obtained by decoding the output of the EC is the same as the
state obtained by removing the EC and (ideally) decoding the input, and

2. the output of the EC contains an error of weight at most r for all r ≤ t, regardless of
s.

In the above definitions, the input |ψ〉 to the gadget is some quantum state on n qubits.
The input is said to contain an error of weight-k if |ψ〉 is equal to a codeword multiplied by
some Pauli error of weight k, modulo the stabilizers and the logical operators.
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The extended rectangle

Rectangles do not overlap, but the output of a rectangle is the input of another and so
rectangles do not act independently when errors occur. An error on the output of one
rectangle could combine with an error that occurs in the subsequent rectangle to cause
a logical error. In order to circumvent this problem, the preceding (or leading) error
correction gadget (LEC) of a rectangle can be included to form an extended rectangle
(exRec). ExRecs do overlap, but under certain reasonable assumptions, the behavior of an
exRec is independent of the errors on its inputs.

In particular, if the correction applied by the LEC is deterministic for all possible input
errors, then it can be shown that the syndrome on the output of the LEC is independent of
the input [CDT09]. The correctness of the enclosed rectangle, therefore, can be determined
by analyzing the exRec in isolation. This observation is a key element of the malignant set
counting technique discussed in Section 4.2.4.

4.2.3 Level reduction

If all rectangles at all levels of concatenation are correct, then the fault tolerant simulation
reproduces the results of the corresponding ideal quantum circuit. Level reduction is a
conceptual technique for coping with incorrect rectangles in order to maintain a faithful
simulation result. The idea of level reduction is to incrementally replace each rectangle at the
lowest level with either an ideal location (when the rectangle is correct), or a faulty location
(when the rectangle is incorrect). Repeating the process for each level of concatenation
yields a quantum circuit that directly reflects the original circuit, and hopefully contains no
faulty locations.

Level reduction begins by placing ideal decoders at the outputs of the rightmost 1-Recs.
If a 1-Rec is correct, then by definition, the behavior of the simulation is unchanged by
moving the decoder to the left and replacing the rectangle with the corresponding ideal
location. If a 1-Rec is incorrect, however, then the decoder is stuck and cannot be moved
to the left. Instead, an ideal decoder-encoder pair is placed to the left of the LEC of the
corresponding 1-exRec. The result is a 1-exRec flanked by an ideal encoder and decoder
that can be represented at level-two by a faulty location. See Figure 4.5.

By repeating the process for each 1-Rec, the ideal decoders gradually sweep from right to
left, across the entire simulation. A decoder is free to move to the left until encountering an
incorrect 1-Rec at which point a new decoder-encoder pair is created to take its place. The
result is a level-(k − 1) simulation with faulty locations at previously incorrect 1-Recs. In
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Figure 4.5: If a rectangle (indicated by the dotted line) is found to be incorrect, then the
ideal decoder cannot be moved through to the left. Instead, an ideal decoder-encoder pair
is placed to the left of the LEC so that the entire exRec is flanked. The new ideal decoder
can now proceed to the left as normal. The encoder-exRec-decoder sequence in the dashed
box is replaced by a single faulty location in the next level of concatenation.

this way, level reduction allows the level-(k + 1) analysis to proceed by treating each k-Rec
as a single independent location. The probability that a “location” fails in the level-(k + 1)
simulation is upper bounded by the probability that the corresponding k-Rec is incorrect.

As a concrete example, consider the circuit shown in Figure 4.6. The level-reduction
procedure proceeds as follows.

1. Examine exRec 2. If the enclosed rectangle is incorrect then replace the entire exRec
with a faulty version of the associated (level-zero) gate. Otherwise, replace the
rectangle with an ideal version of the associated gate.

2. Examine exRec 3. Follow the same procedure as for exRec 2.

3. Examine exRec 1. Depending on the outcomes of exRec 2 and exRec 3, one or both
of the TECs may have been removed. The enclosed rectangle now consists of the
encoded CNOT and any remaining TECs. If the remains of rectangle 1 are incorrect,
exRec 1 is replaced with a faulty level-zero gate. Otherwise, the rectangle is replaced
with an ideal level-zero gate.

There are two technicalities in the level-reduction process that must be addressed.
First, when an incorrect rectangle is encountered, the newly created decoder-encoder splits
the preceding rectangle, effectively removing the TEC from the rectangle. This problem
can be readily fixed by defining correctness for the partial rectangle in a straightforward
way. Second, flanking the incorrect exRec with an encoder and decoder allows us to treat
it as a faulty location at level-two. But the definition of incorrectness is insufficient to
identify which error actually occurred. AGP solve this problem by using an adversarial
noise model in which the worst-case error is always assumed. In Chapter 7, we will see that
other noise models can be accommodated by more carefully characterizing correctness and
incorrectness.
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Figure 4.6: An example of a fault tolerant simulation with three overlapping exRecs. Level-
reduction starts by sweeping the decoders back through exRec 2 and exRec 3, and then
moving on to exRec 1.

4.2.4 Malignant set counting

At each level k of concatenation, the probability that the k-Rec is correct increases relative
to level k− 1 so long as the strength of the noise is below a certain value, i.e., the threshold.
The threshold is calculated by upper bounding the probability that each type of rectangle
is incorrect. But, as discussed above, rectangle behavior is dependent on its inputs. AGP
therefore obtain an upper bound by instead analyzing the exRec.

Consider a code that corrects errors up to weight t, and assume that the gadgets in the
exRec are strictly fault tolerant. Then the enclosed rectangle is guaranteed to be correct if
it contains no more than t faults, and the probability of incorrectness p1 can be naively
upper-bounded as

p1 ≤
(

n

t+ 1

)
pt+1 , (4.4)

where n is the number of locations in the exRec and p is an upper bound on the probability
that a location is faulty. An inductive argument shows that the threshold is then lower
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bounded by

pth ≥
(

n

t+ 1

)−1/t
. (4.5)

Equation (4.4) (and therefore (4.5)) can be improved by noting that, though the code
can only correct errors up to weight t, an exRec that contains more than t faults need not
be incorrect. Say, for example, that two faults occur, one in the LEC and one in the TEC
and that the code can correct a single error—i.e., t = 1. If the TEC fault occurs early on,
then it is likely that the two faults combine to cause an uncorrectable error. But if the
TEC fault occurs after the error from the LEC has been corrected, then the rectangle will
still be correct.

Malignant set counting is the process of enumerating subsets of faulty locations in the
exRec, and counting only those that can actually cause incorrectness. A set of locations
is considered malignant if there exists some fixed combination of nontrivial Pauli errors
acting on that set of locations that causes the enclosed rectangle to be incorrect. Let Mk

be the number of malignant sets of size k. Then by counting all of the malignant sets of
size at most K, we may use the bound

p1 ≤
(

n

K + 1

)
pK+1 +

K∑

k=t+1

Mkp
k , (4.6)

which can be substantially better than (4.4).

Malignant set counting is both conceptually simple, and highly flexible. As a concrete
example, AGP used malignant set counting to prove a threshold of 2.73 × 10−5 for a
deterministic scheme based on the [[7, 1, 3]] code. Later, they extended the technique to
accommodate non-deterministic gadgets [AP09]. Malignant set counting can also be used
to analyze schemes that are geometrically constrained [SDT07, LPSB13]. Furthermore,
since malignant set counting yields concrete polynomials, it is easy to calculate effective
noise strengths, even for very low physical error rates.

A significant drawback of malignant set counting is that the number of possible subsets
grows exponentially with K. It is usually feasible to count subsets only up to some small
fixed size. In Chapter 7 we discuss a solution that eliminates many subsets of locations
which are unlikely to be simultaneously faulty, thereby permitting much larger values of K.

42



4.2.5 Alternative proof techniques

Malignant set counting and related techniques are effective for proving threshold lower
bounds for schemes based on concatenated codes. For other codes, and for topological
codes in particular, the arguments made by level-reduction no longer apply, since there
are no “levels” so-to-speak. Alternative proof techniques are available, however. One
popular method is to map errors in topological codes onto models based on statistical
physics [DKLP02, Har04]. With these models, it is possible to prove thresholds in the
range 1-10 percent. However, these high thresholds are obtained by assuming the ability
to measure stabilizer generators without creating correlated errors and the ability to
classically compute corrections based global information about the syndromes. Recently,
Fowler used a combinatorial argument to prove a lower bound of 7.4× 10−4 for the surface
code [Fow12b]. His model includes explicit circuits used to measure stabilizer generators (so
that measurements can introduce correlations) and requires only locally-bounded classical
syndrome processing.

4.2.6 Monte Carlo simulation

An alternative solution to the malignant set counting complexity problem is to randomly
sample rather than exhaust over all possible subsets. Any stochastic error model induces a
probability distribution of faulty locations, which can be sampled using the Monte Carlo
method. The result is an estimate of the threshold to within some statistical confidence
interval. Aliferis and Cross have used this technique to calculate thresholds for a variety
of codes [AC07]. Steane [Ste03] and Knill [Kni05] have used Monte Carlo sampling to
directly simulate depolarizing noise on sequences of rectangles and calculate the probability
of correctness. Svore and others have used a more limited simulation of a single level-one
exRec [STD05, SCCA06, CDT09]. Their simulations yield a value called the pseudo-
threshold, which is a rough estimate of the threshold rather than a statistical bound, but is
easier to calculate.

Monte Carlo simulation has been used extensively to estimate thresholds for schemes
based on topological error-correcting codes, which do not conform to the rectangle and
gadget paradigm outlined in Section 4.2.2 [RHG06, RH07, RHG07, FSG09, WFSH10, FY10,
WFH11, SMN13]. In these cases, a small patch of the code is simulated many times over
a range of physical error rates and for progressively larger code distances. Plotting the
results by code distance yields a “waterfall” shape in which the intersection of the curves
converges to a point which is deemed the threshold. Figure 4.7 shows simulation results for
the surface code [Fow13c].

43



10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1 × 10
-5

1 × 10
-4

1 × 10
-3

1 × 10
-2

1 × 10
-1

Lo
gi

ca
l X

 e
rr

or
 r

at
e 

(p
L)

Depolarizing probability (p)

d=3
d=5
d=7
d=9

d=11
d=15
d=25

Figure 4.7: An example of Monte Carlo simulation for the surface code. A patch of the
surface code is simulated for a variety of depolarizing noise strengths p and code distances
d. The threshold corresponds to the intersection point. Reproduced, with permission,
from [Fow13c].
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4.2.7 Limitations

Threshold theorems describe the circumstances for which reliable quantum computation
is possible. Under which circumstances is quantum computation not possible? In other
words, what are the upper bounds on the noise threshold?

Harrow and Nielsen showed that two-qubit gates are incapable of generating entanglement
when subject to depolarizing noise with strength 0.74, or 0.50 for more general noise [HN03].
This result for depolarizing noise was sharpened to 0.67 by [VHP05]. Another way to upper
bound the threshold is to allow perfect stabilizer operations and then determine the noise
rate at which {Clifford, T} circuits can be simulated classically. (Recall from Section 2.5.1
that Clifford circuits can be simulated classically.) Using this technique [VHP05] show
that classical simulation is possible for dephasing noise with strength 0.3, or about 0.15
for worst-case noise. This result was extended to depolarizing noise with strength 0.45
by [BCL+06]. Both [VHP05] and [BCL+06] were later shown to be tight in the sense that
magic state distillation (see Section 4.3.2) permits universal quantum computation if the
noise strength on the T gate is below the bound [Rei05]. More recently, it was shown that
the results are tight for all single-qubit non-Clifford gates, not just T [vDH09].

On the other hand, [KRUdW10] have considered the case in which single-qubit gates
are perfect, but k-qubit gates are subject to depolarizing noise. For the case k = 2, they
show that the output of the circuit is independent of the input when the noise strength
is 0.357. Plenio and Virmani give perhaps the most comprehensive set of upper bounds,
using both noisy Clifford and non-Clifford operations for a variety of noise models and
schemes [PV10]. In particular, they give a depolarizing noise upper bound of 0.26 without
restriction on the protocol for non-Clifford gates. The bounds in other cases are as low as
0.03.

The upper bounds above assume limits on the correlations present in the noise. Depo-
larizing noise, for example, assumes that errors on distinct gates are independent. We may
also ask what kinds of correlations can be tolerated. Preskill’s result shows that correlations
that decay exponentially with the number of qubits can be tolerated [Pre13]. However,
the correlations cannot be unlimited. Ben-Aroya and Ta-Shma show that controlled-phase
flips cannot be corrected, even approximately [BT11]. Kalai has speculated that the types
of errors afflicting highly entangled codewords will be strongly correlated across large
numbers of qubits [Kal11]. Such strong correlations, if they exist, would quickly thwart
fault-tolerance schemes. Experimental demonstrations of quantum error-correcting codes
(see Section 3.4) suggest, however, that these speculations are overly pessimistic. A more
complete discussion of the impact of correlated noise can be found in [Sta11] and [Pre13].
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4.3 Encoded computing

Fundamentally, fault tolerance is the practice of simulating an ideal computation by carefully
manipulating encoded data. In particular, we should like that encoded operations meet
the conditions given by Definition 4.2.2, namely that they faithfully execute the intended
logical operations, and that they prevent errors from spreading among physical qubits.

The logical operations permitted within a fixed error-correcting code are limited, however.
For a stabilizer code, the set of available operations corresponds exactly with the normalizer,
i.e., operators that commute with all of the stabilizers Section 3.3.1. Most unitary operations
that can be performed on a code block do not actually realize a unitary operation on the
encoded qubits.

Furthermore, proposals for quantum computing architectures usually provide a small set
of physical one- and two-qubit operations (see, e.g., [LJL+10]). Translating these physical
gates into an arbitrary fault-tolerant encoded operation is a challenging task and is not
possible to do exactly in general. Instead, fault-tolerance schemes provide a small set of
universal logical operations constructed from elementary physical gates. One popular choice
of universal gate set is {H,T,CNOT}, though there are others. In Chapter 5 we will use
{H,CCZ}, and in Chapter 8 we will discuss another alternative gate set.

4.3.1 Transversal gates

The simplest and most well-behaved class of encoded operations is called transversal. A
circuit is transversal if each physical gate acts on at most one qubit in the encoded block.
In the case of multi-qubit operations, the circuit is transversal if each gate acts on at most
one qubit in each of the encoded blocks, and no qubit is involved in more than one gate.
See Figure 4.8.

Transversal circuits are automatically (strictly) fault tolerant. A single faulty gate can
produce only a single error on a given block. Thus the maximum weight of an error on any
block after application of a transversal circuit is at most r + s, where r is the maximum
weight of an existing error on any block and s is the number of faulty gates.

The set of encoded gates that can be implemented transversally depends on the error-
correcting code. The single-qubit Pauli operators are transversal for any stabilizer code,
and CNOT is transversal for any CSS code (a consequence of independent X and Z
stabilizers). Specific codes may admit transversal implementations of other operations. The
[[7, 1, 3]] code, for example, admits transversal implementation of H and S, in addition to
{X, Y, Z,CNOT}.
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Figure 4.8: Transversal implementation of an encoded CNOT. Each gate touches exactly
one qubit per block, and no qubit is involved in more than one gate.

As noted in Section 2.5.1, the gate set {H,S,CNOT} generates the Clifford group which,
though useful, is insufficient for universal quantum computation. Indeed, no quantum error-
correcting (or error-detecting) code admits transversal implementation of a universal set of
gates [EK09]. In Chapter 5, however, we will see a scheme which effectively circumvents
this limitation by incorporating error correction.

4.3.2 State distillation

Given the Clifford group, universality can be achieved by adding a single non-Clifford gate
(see, e.g., [CAB12] Appendix D). Fault-tolerant implementation of the non-Clifford gate
is usually accomplished by preparing many noisy copies of a special resource state, and
“distilling” them into a single high-fidelity copy. The high-fidelity state can then be used to
effect the desired gate using gate-teleportation (Section 2.7).

Importantly, the distillation and gate teleportation circuits for certain resource states
can be accomplished using only Clifford gates and Z-basis measurement. For example, the
state |A〉 = T |+〉 can be distilled and teleported to implement T using only CNOT, H and
S [BK05]. See Figure 4.9.

The distillation circuit shown in Figure 4.9c can be understood as a novel kind of
gate teleportation circuit. Consider the circuit in Figure 4.10. This circuit implements
teleportation of the state T |+〉. In this case, however, the T gate has been commuted
to the right side of the CNOT (rather than the left). Before performing the T gate, the
top ancilla is encoded into a quantum error correcting code that supports transversal (or
otherwise robust) implementation of T . In this case we use the [[15, 1, 3]] code which is
based on the 15-bit Hamming code and supports transversal T [KLZ96]. An encoded
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|A〉 • S T |ψ〉

|ψ〉 Z •
(a)

|A〉 • X
|A〉 • X
|A〉 Z
|A〉 • X
|A〉 Z
|A〉 Z
|A〉 Z
|A〉 • X
|A〉 Z
|A〉 Z
|A〉 Z
|A〉 Z
|A〉 Z
|A〉 Z
|A〉 • |A〉

(b)

|+〉 • T † X

|+〉 • T † X

|0〉 T † X

|+〉 • T † X

|0〉 T † X

|0〉 T † X

|0〉 T † X

|+〉 • T † X

|0〉 T † X

|0〉 T † X

|0〉 T † X

|0〉 T † X

|0〉 T † X

|0〉 T † X

|+〉 • • T † X
|0〉 |A〉

(c)

Figure 4.9: State distillation of the T gate. (a) For many quantum error-correcting codes,
the T gate is implemented by preparing the resource state |A〉 = 1√

2
(|0〉 + eiπ/4 |1〉) and

using gate-teleportation. Conditioned on the measurement outcome, an S correction may
be required. (b) 15 noisy |A〉 states can be used to prepare a single high-fidelity |A〉
state, conditioned on a +1 outcome for each measurement [BK05]. The circuit is based
on the decoding circuit for the [[15, 1, 3]] code. (c) Alternatively, transversal T may be
applied to one half of a Bell-pair that is encoded into the [[15, 1, 3]] code. A logical X-basis
measurement then teleports the T gate onto the other half of the Bell-pair, again conditioned
on +1 results for each measurement [RHG07]. An abstract version of this circuit is shown
in Figure 4.10.
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|+〉 • encode T X

|0〉 Z T |+〉

Figure 4.10: This circuit outputs |A〉 = T |+〉 by gate teleportation. Before performing
the T gate, the top qubit is encoded into an error correcting code. The T gate and X-basis
measurements are performed logically on the code.

X-basis measurement then completes the circuit. Usually, the entire circuit is already
encoded in the code that we are using to implement Clifford gates. The encoding gate
in Figure 4.10 then concatenates this “base” code with the [[15, 1, 3]] code for the purpose
of robustly implementing the T gate.

Variations on Figure 4.9 and Figure 4.10 also work. Recently, Bravyi and Haah showed
how to construct a wide class of quantum codes that admit efficient implementation of the
encoded T gate [BH12] and can similarly be used for distillation. Others have developed
protocols based on codes that admit transversal Hadamard [MEK13, Jon12]. Toffoli gates
can be obtained using a similar distillation and teleportation procedure [Eas13, Jon13d].

Early proposals for fault tolerant implementations of non-Clifford gates differed somewhat
from the protocol described above. Shor proposed a procedure for implementing the Toffoli
gate based on fault-tolerant construction of a cat state plus other transversal gates [Sho96].
Knill, Laflamme and Zurek proposed the use of the [[15, 1, 3]] code, for which T is transversal,
but H is not [KLZ96]. They construct fault-tolerant H using preparation of an encoded |+〉
state and a teleportation-like circuit. These methods are further discussed in Chapter 5.

Topological codes offer a qualitatively different way to perform fault-tolerant encoded
gates. Many topological codes are also stabilizer codes, and for those codes the same
concept of transversality still applies. However, it can be more productive to implement
encoded gates by instead deforming the surface on which the code is supported. In the
surface code, for example, encoded qubits are defined by introducing logical “defects” into
the lattice of physical qubits. Encoded gates are then performed by moving defects around
each other and fault-tolerance is ensured by keeping the defects sufficiently far apart (see,
e.g., [FMMC12]). Code deformation is not universal on its own, though. State distillation
is typically used for topological codes, as well.
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P1

P2

P3

P4

|+〉 • • • • X

Figure 4.11: This circuit measures the the four-qubit stabilizer P1 ⊗ P2 ⊗ P3 ⊗ P4 where
the Pi are Pauli operators. Each Pauli operator is applied, controlled on the ancilla qubit
|+〉. The measurement outcome corresponds to the eigenvalue of the stabilizer. This circuit
is not fault tolerant since an error on the ancilla can spread to the other qubits through the
controlled-Pi gates.

4.4 Robust error correction

Fault-tolerant encoded gates are carefully designed to prevent errors from spreading between
qubits. Even so, errors must be periodically identified and flushed away by measuring error
syndromes and making corrections. There is a very simple circuit that measures the error
syndrome. Figure 4.11 shows an example for a weight-four stabilizer. However, this circuit
is not fault tolerant. An error on the ancilla qubit can spread to many of the data qubits,
possibly causing a logical error. More complicated error correction circuits are usually
required in order to limit the spread of errors.

A variety of error-correction techniques have been studied, and three broad categories
are so-called Shor-type [Sho96], Steane-type [Ste96] and Knill-type [Kni04] error correction.
This is only a rough categorization, and it leaves significant room for introducing new ideas
and optimization within or beyond these categories; see, e.g., [Rei04, DA07, AC07].

Common to each of these types of error correction is the use of ancillary qubits to extract
error information from the data blocks. Before interacting with the data, the ancilla qubits
need to be prepared in an entangled state. Error information is transferred by coupling
this state with the data. Finally, measurements are used to obtain syndrome information.
The methods differ mainly in the type of entangled states that are required.

4.4.1 Steane error correction

Steane-type error correction is based on the circuit shown in Figure 4.12. X errors are
corrected by preparing an encoded |+〉 state, performing CNOT from the data to the
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Z-error correction X-error correction

|ψ〉 •

|0〉 • X |+〉 Z

Figure 4.12: In Steane-style error-correction, Z and X errors are corrected separately. Z
errors are corrected by preparing an encoded |0〉, performing transversal CNOT, and then
transversally measuring in the X-basis. Similarly, X errors are corrected by preparing
encoded |+〉, performing transversal CNOT, and measuring transversally in the Z-basis.

ancilla and then measuring the ancilla in the Z basis. Z errors are independently corrected
by instead preparing encoded |0〉, performing CNOT from the ancilla to the data, and
measuring the ancilla in the X basis. Note that, under ideal conditions, neither of the
circuits have any effect on the encoded data. The state |+〉 is the +1-eigenstate of X and
is therefore invariant as the target of a CNOT. Likewise, a CNOT does not activate when
its control qubit is in state |0〉.

Steane error correction requires that X and Z errors can be corrected independently,
and therefore applies only to CSS codes (see Section 3.3.2). Transversal measurement of
the ancilla effectively measures all of the stabilizer generators of a particular type (either
X or Z) in parallel. Thus, it is typically more efficient for large codes than Shor-type error
correction, which measures each generator individually. Its conceptual simplicity has also
made it a popular choice for threshold studies, e.g., [AGP06, Rei06b, CDT09].

The drawback of Steane error correction is that preparation of sufficiently robust encoded
|0〉 and |+〉 states can be complicated. Systematic techniques for preparing such encoded
stabilizer states exist [Ste02, PMH03], but errors can occur during preparation. The ancilla
state must therefore be “verified” before being coupled to the data [Ste02, Rei04, Rei06a].
Several techniques for improving stabilizer state preparation and verification are discussed
in detail in Chapter 6.

4.4.2 Knill error correction

Knill-type error correction, like Steane-type, uses encoded ancillary states. In this case,
however, the required states are more complicated. Knill error correction is based on
gate teleportation. See Figure 4.13. First an ancillary Bell state is prepared, followed
by application of the desired unitary. Then a Bell measurement serves simultaneously to
teleport the data, and measure the error syndrome.
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|ψ〉 • X

|+〉 • Z

|0〉 U {X,Y, Z} U |ψ〉

Figure 4.13: In Knill-style error correction, syndrome measurements and an encoded gate
are accomplished simultaneously. The circuit above implements the single-qubit encoded
unitary U and corrects both X and Z errors. The resource state in the dashed box can be
prepared and verified offline. Conditioned on the (logical) measurement outcomes, a Pauli
correction may be required (as in teleportation). In most cases this Pauli correction can be
noted classically and need not actually be applied.

The advantage of preparing a more complicated resource state is that the preparation
can be done “offline”. The bulk of the work of both error correction and encoded gates can
be completed before ever touching the data. As a result, it is possible to use error-detection,
throwing away ancillary states that exhibit errors. Since codes can detect far more errors
than they can correct, this method can offer substantially higher thresholds than Steane-
type or Shor-type error correction [Kni05]. The concept has strong similarities with state
distillation, which also uses error detection.

High-levels of non-determinism, however, can be very resource intensive and can lead to
poor threshold performance in certain circumstances [LPSB13]. Rigorous threshold analysis
is also more complicated [Rei07, AGP08].

4.4.3 Shor error correction

Shor-type error correction is the only of the three types that does not use encoded ancillary
states to extract syndrome information. Instead, each syndrome is measured by preparing
a so-called GHZ, or “cat” state as in Figure 4.14. Like the Steane and Knill methods, the
ancillary state must first be verified using error detection to make sure that errors do not
spread back to the data. See Figure 4.14. In order to ensure reliable results, each syndrome
measurement is repeated a number of times that is proportional to the distance of the code.

The size of a stabilizer measurement circuit corresponds directly with the weight of
the stabilizer. Consequently, Shor-type error correction is most useful for codes that have
low-weight stabilizers. In some cases, syndrome measurements can be implemented using a
single “bare” ancilla qubit, without creating a cat state. Bare ancillas are usually used in
surface code schemes, for example [FMMC12].
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• X

• X

Figure 4.14: A weight-four Shor-style syndrome measurement. This circuit differs from Fig-
ure 4.11 in that each qubit of the cat-state ancilla interacts with at most one qubit of the
encoded data. The cat state 1√

2
(|0000〉+ |1111〉) must be checked for errors (verified) before

it can be used.

4.5 Resource requirements

The resource requirements for fault-tolerant quantum computation can be specified in
a variety of ways including: circuit size (number of gates), circuit depth (time), circuit
width (number of physical qubits), or the number of a particular type of gate (T gates,
for example). Often it is possible to trade one type of resource for another. One common
example is to trade circuit width and circuit depth. Fowler, for example, has shown how
to minimize computational depth in the surface code at the expense of a larger qubit
lattice [Fow12c]. Therefore, it is often sensible to express resource requirements in terms of
circuit area (depth×width) or volume (space×time).

Threshold theorems show that both the time and space resources required for reliable
quantum computation scale efficiently with respect to the size the original noisy computation,
in the asymptotic sense. Given a noisy circuit of size n, it is possible to construct a fault-
tolerant simulation that takes time and space n·polylog(n). The constants in the polynomial
can be overwhelmingly high, however, and some examples were noted in Section 1.2.

We now have a clearer picture for why the overhead is so large, and how the various
parts of fault-tolerance schemes contribute to the overhead. The most obvious sources
are error correction and state distillation, both of which involve multiple rounds of error
checking in order to produce resource states of suitable fidelity. But there are other less
obvious sources, too. For example, the resource overhead increases rapidly as the gate
error-rate approaches the threshold. From (4.2) we see that a physical error rate of p = pth/α
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induces a multiplicative factor in the overhead of 1/ logα, which increases exponentially
near the threshold pth. Additional overhead is incurred from decomposing unitaries from
the quantum algorithm into the limited set of fault-tolerant gates.

In the remaining chapters, we will examine each of these sources of overhead, in turn.
In most cases, our focus will be on optimizing size and width requirements, though some
optimizations will also improve circuit depth.

4.6 Architectural considerations

In addition to suppressing noise, fault tolerant constructions must also satisfy other hardware
constraints. This can mean, for example, accounting for more complicated noise models
such as those with qubit leakage, but may also involve limitations on the set of available
gates, or the placement of and interactions among qubits.

One of the most significant limitations of proposed quantum computing architectures
is qubit geometry. Many such proposals involve a lattice of qubits in a limited number of
spatial dimensions (see references contained in [SE09, FMMC12]). Qubits in the lattice
are allowed to interact only with a small number of nearby qubits, usually only nearest
neighbors. A variety of studies have considered lattices in one-dimension [Got00, SSP13,
DFH04, FHH04, SE09, SWD10], two-dimensions [STD05, SDT07, FMMC12], and three-
dimensions [BMD07, Haa11, Mic12, BK12, Kim12]. Geometric connectivity constraints
can significantly impact the performance of a fault-tolerance scheme, particularly for those
based on concatenated codes [SDT07, LPSB13]. Topological codes, however, are each
tailored to a specific geometry and suffer little when the computer geometry is similar to
the intended topology of the code.

Other limitations have also been considered. Gate execution times can vary depending
on the gate. Measurements often take longer than unitary gates, though it is possible to
overcome this limitation [DA07, PSBT10b]. Fault-tolerance can also be achieved when
control of individual qubits is limited [BBK03, Kay05, Kay07, FT07, FT09, PSBT10a,
PSBT11]. Production of qubit lattices on physical substrates will likely include some
number of defective qubits. With some care fault-tolerance protocols can be adapted to
avoid defective regions, even subject to geometric locality constraints [N+]. Practically
speaking, it is easier to manufacture many small regions rather than one monolithic lattice.
Several authors have considered fault-tolerant quantum computation in which qubits are
distributed among many small nodes [DMN11, VLFY10, KK09, DFS+09, HFDV12].

An assumption that is almost ubiquitous in analysis of fault-tolerance schemes is that
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perfect and arbitrarily fast classical control logic is available. In reality, though, classical
computers have limitations, and connecting classical and quantum logic requires physical
space. Decoding and interpreting measurement results is efficient for concatenated codes,
and can be made similarly efficient for topological codes [DFT+10, FWH12, Fow13b]. Even
so, low-latency high-performance classical logic is desirable and may be necessary for
architectures with small quantum gate times. One attractive option is to use low-power
superconducting technology [HHOI11, Muk11, VSFM13, HRM13, HHO+13], which could
be placed nearby or on the same substrate as the qubits. Developing and optimizing the
necessary classical control algorithms is a worthy topic of future research.
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Chapter 5

Fault-tolerant universal computation
with transversal gates

This chapter is based on material that appears in [PR13].

At the highest level, fault-tolerant quantum computation involves only two steps:
encoded computation, and error correction. Thus reducing resource overhead requires
simplification of either or both of these steps. In this chapter we address the former,
encoded computation. In particular, we show that a universal set of fault-tolerant gates
can be implemented using only the simplest of constructions, transversal gates.

Recall from Section 4.3.1 that a transversal gate is the application of physical gates
transversally across the codewords, usually meaning that the jth gate is applied to the jth
qubits of the codewords, for every j. Transversal gates are highly desirable because they
are both extremely simple and automatically fault tolerant, according to Definition 4.2.2.
Depending on the gate, a transversal implementation may or may not preserve the codespace
and execute a valid encoded operation. Consider the [[7, 1, 3]] code, for example. Transversal
application of Hadamard preserves the set of stabilizers, and exchanges the X and Z logical
operators and so transversal Hadamard implements logical Hadamard. On the other hand,
transversal T is not a logical operation on this code; it corrupts the X logical operator.

Until 2007, an important open question in quantum information theory was whether
or not there exist codes that admit transversal implementation of a universal set of gates.
Due to the inability to find one, it was conjectured that no such code existed. Zeng, Cross
and Chuang confirmed this conjecture for stabilizer codes on qubits [ZCC11], and then
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along with Chen and Chung extended the result to qudits [CCC+08]. Soon after, Eastin
and Knill showed that the conjecture is true for any nontrivial quantum code [EK09].

Theorem 5.0.1 (Transversal universality is impossible [EK09]). For any quantum code
capable of detecting an error on any physical subsystem, the set of transversal logical
operations is not universal.

Theorem 5.0.1 is unfortunate because the traditional method for completing a universal
set of fault-tolerant gates is state distillation, a procedure which is highly costly compared
to transversal gates. See Section 4.3.2. Indeed state distillation dominates the resource
overhead for fault-tolerant quantum computation [RHG07, FDJ13].

In this chapter we propose a way of implementing a universal set of quantum gates
transversally, up to a correction that can be made by the standard error-correction procedure.
The inclusion of error correction means that Theorem 5.0.1 is preserved. However, since error
correction is required anyway, our protocol effectively shows that the no-go theorems [ZCC11,
CCC+08, EK09] can be circumvented without adding any new machinery. Separate injection
and distillation procedures are not required.

Our construction is based on two main insights for the class of “triorthogonal” quantum
stabilizer codes, introduced recently by Bravyi and Haah [BH12]. First, we observe that
the controlled-controlled-Z operation (defined by CCZ |a, b, c〉 = (−1)abc |a, b, c〉 for bits
a, b, c) can be implemented transversally for any triorthogonal quantum code. Second, we
show that Hadamard can be implemented by transversal H gates followed by stabilizer
measurements and Pauli X corrections. Together, H and CCZ are universal for quantum
computation [Shi03, Aha03].

5.1 Triorthogonal quantum codes

Let us begin by specifying the construction of stabilizer codes based on triorthogonal
matrices. For two binary vectors f, g ∈ {0, 1}n, let f · g ∈ {0, 1}n be their entry-wise
product, and let |f | denote the Hamming weight of f .

Definition 5.1.1 (Triorthogonal matrix [BH12]). An m× n binary matrix G, with rows
f1, . . . , fm ∈ {0, 1}n, is triorthogonal if

|fi · fj| = 0 (mod 2) and |fi · fj · fk| = 0 (mod 2)

for all pairs (i, j) and triples (i, j, k) of distinct indices.
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An m× n triorthogonal matrix G can be used to construct an n-qubit, “triorthogonal,”
CSS code as follows.

Definition 5.1.2 (Triorthogonal code [BH12]). For each even-weight row of a triorthogonal
matrix G, add an X stabilizer generator by mapping non-zero entries to X operators, e.g.,
(1, 0, 1) 7→ X⊗I⊗X. Similarly add a Z stabilizer for each row of the orthogonal complement
G⊥ = {g : |g · f | = 0 mod 2, ∀f ∈ G}. The logical X and Z operators are then given by
mapping non-zero entries of the odd-weight rows of G to X and Z, respectively.

For example, the [[15, 1, 3]] code is triorthogonal [KLZ96], and is discussed in detail
in Section 5.4. Bravyi and Haah have constructed a [[49, 1, 5]] triorthogonal error-correcting
code and a family of [[3k + 8, k, 2]] triorthogonal error-detecting codes [BH12].

5.1.1 Triply-even codes

A special subset of triorthogonal codes admit transversal implementation of the single-qubit
T gate. The [[15, 1, 3]] code is a well-known example. These codes, in addition to the
conditions in Definition 5.1.1 satisfy the slightly more restrictive condition

|fi · fj| = 0 mod 4 , (5.1)

for all distinct pairs of even-weight rows (fi, fj). This condition implies that all of the
stabilizers of the code have weight 0 mod 8. Codes that satisfy (5.1) are called triply
even [BM12]. In general, T is transversal for triorthogonal codes only up to (non-transversal)
Clifford corrections [BH12].

5.2 Transversal CCZ

We next construct a fault-tolerant CCZ gate for a triorthogonal code. We claim that for
any triorthogonal code, transversal application of CCZ gates realizes CCZ gates on the
encoded qubits.

Theorem 5.2.1 (Transversal CCZ for triorthogonal codes). Let C be a triorthogonal code
based on a triorthogonal matrix G. Then transversal application of CCZ implements logical
CCZ transversally on each of the encoded qubits of C.
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Proof. For simplicity consider first the case of a triorthogonal code with a single encoded
qubit, i.e., based on a triorthogonal matrix G with a single odd-weight row f?. Let
G0 ⊆ {0, 1}n be the linear span of all the even-weight rows of G and let G1 be the coset
{f? + g : g ∈ G0}. Then the encoding of |a〉, for a ∈ {0, 1}, is given by the uniform
superposition over Ga: |a〉 = 1√

|Ga|

∑
g∈Ga |g〉.

The action of transversal CCZ on an encoded basis state
∣∣a, b, c

〉
, for a, b, c ∈ {0, 1}, is

therefore given by

CCZ⊗n
∣∣a, b, c

〉
=

∑

g∈Ga,h∈Gb,i∈Gc
CCZ⊗n |g, h, i〉

=
∑

g∈Ga,h∈Gb,i∈Gc
(−1)|g·h·i| |g, h, i〉 .

(5.2)

Now g · h · i can be expanded as (af? + g′) · (bf? + h′) · (cf? + i′), where g′, h′, i′ ∈ G0.
Expanding further gives one term abc(f? · f? · f?) = abcf?, plus other triple product terms
in which f? appears at most twice. Since G is triorthogonal, these other terms necessarily
have even weight. The term abcf? has odd weight if and only if a = b = c = 1. Substituting
back into (5.2), as desired,

CCZ⊗n
∣∣a, b, c

〉
= (−1)abc

∣∣a, b, c
〉
. (5.3)

In the case that G has some number k > 1 of odd-weight rows {f (1)
? , f

(2)
? , . . . , f

(k)
? } we

may define 2k cosets, one for each codeword. Let a be a length-k binary vector where each
element ai represents a logical qubit of the code, and let

Ga := {g′ +
k∑

i=1

aif
(i)
? | g′ ∈ G0} . (5.4)

From (5.4), we can see that the expansion of g · h · i will contain even-weight terms plus k

terms of the form aibici(f
(i)
? · f (i)

? · f (i)
? ), each of which is odd if and only if ai = bi = ci = 1.

Again substituting back into (5.2) we obtain

CCZ⊗n
∣∣a,b, c

〉
=

k∏

i=1

(−1)aibici
∣∣a,b, c

〉
. (5.5)

Thus transversal CCZ implements logical CCZ transversally across each of the encoded
qubits.
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Figure 5.1: The Toffoli gate is equivalent to a CCZ gate in which the target qubit is
conjugated by Hadamard gates.

We note that transversality of CCZ for the the subset of triply-even codes follows trivially
from the fact that CCZ can be expressed as a sequence of gates from {T,CNOT} [NC00].
Theorem 5.2.1 extends this result to all triorthogonal codes. In a sense, Theorem 5.2.1
shows that CCZ is more “natural” than T for triorthogonal codes, since Clifford corrections
may be required for T [BH12], but are never required for CCZ.

If the orthogonality conditions on the matrix G are increased, then additional types of
diagonal operations are transversal. If G satisfies the condition that all j-tuple products
have weight (0 mod 2) for all 2 ≤ j ≤ h, then the h-fold controlled-Z gate is transversal in
the corresponding stabilizer code. This observation is similar to a result of Landahl and
Cesare, who demonstrated that codes satisfying increasingly stringent conditions on weights
of the codewords admit transversal Z-axis rotations of increasing powers of 1/2k [LC13].

5.3 Transversal Hadamard

To achieve universality, we also require a fault-tolerant implementation of the Hadamard gate.
For Hadamard to be transversal, the code must be self-dual, i.e., G0 = G⊥. Unfortunately,
no triorthogonal code is self-dual. Indeed, otherwise, since CCZ is transversal it would
be possible obtain a transversal implementation of Toffoli and H for the same code.
See Figure 5.1. However, Toffoli and H together are universal [Shi03, Aha03] and so
transversal implementations of both would violate Theorem 5.0.1.

Nonetheless, fault-tolerant and effectively transversal implementations of logical H are
still possible.

Theorem 5.3.1 (Transversal H for triorthogonal codes). Let C be a triorthogonal code
based on a triorthogonal matrix G. Then the encoded Hadamard gate on each of the encoded
qubits of C can be implemented fault-tolerantly using transversal H, fault-tolerant syndrome
measurement and classically-controlled transversal X gates.
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Proof. When transversal H is performed on a triorthogonal code, the logical operators
are transformed properly: logical X maps to logical Z and vice versa. A subset of the
stabilizers is preserved; observe that G0 ⊂ G⊥, and thus each element of G0 corresponds to
both X and Z stabilizers, which transversal H swaps. Transversal H does not preserve
the Z stabilizers corresponding to G⊥ \ G0, so these must be restored by measuring and
correcting them.

Consider the effect of measuring one of the Z stabilizer generators ζ corresponding to
G⊥ \ G0. The measurement projects the code block onto either the +1 or −1 eigenspace of
ζ according to the measurement outcome. Let χ be a tensor product of I and X operators
such that χ anticommutes with ζ and commutes with all other Z stabilizer generators and
Z logical operators. Such an operator always exists since ζ is neither an element of the
(current) stabilizer nor an element of the normalizer. If the measurement outcome is −1,
then applying χ restores the code block to the +1 eigenspace of ζ.

Importantly, even with additional X corrections to fix the Z stabilizers of G⊥ \ G0, the
procedure is fault tolerant. That is, k gate failures can lead to a data error of weight at
most k, for k less than half the code’s distance d. Let dZ be the code’s distance against Z
errors, as determined by the X stabilizers of G0. Likewise, let dX be the distance against X
errors, as determined by the Z stabilizers of G⊥. The minimum distance of the code (against
arbitrary Pauli errors) is then d = min{dX , dZ}. But G0 ⊂ G⊥ implies that dZ < dX and,
therefore, the code’s minimum distance is determined solely by G0. Since both the X and
Z stabilizers of G0 are preserved, a minimum distance of d is maintained throughout. So
long as the stabilizer measurements are performed fault-tolerantly, and since the other
operations are transversal, the entire procedure is fault-tolerant.

In fact, the Hadamard construction of Theorem 5.3.1 holds for any CSS code in
which the X and Z logical operators have identical supports and transversal Hadamard
conjugates the X stabilizers to a subset of the Z stabilizers. The triorthogonality condition
(Definition 5.1.1) is not strictly necessary. Rather it is the symmetry of the X and Z
stabilizers in the triorthogonal code construction that is important.

Informally, Theorem 5.3.1 takes advantage of the fact that the X and Z stabilizers
have an asymmetry which is required in order to provide triorthogonality (and therefore
transversal CCZ), but which is otherwise unnecessary. In principle, the extra X-error
distance provided by the Z stabilizers could be used to improve performance for biased
noise [AP08, BP12]. But it can be difficult to properly exploit this asymmetry in practice.
For example, direct application of transversal T is not allowed because it splits X errors
into both X and Z errors (see (3.16)). We choose, instead, to use the asymmetry to reduce
the complexity of the Hadamard gate.
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Figure 5.2: An implementation of the logical Hadamard operation in a triorthogonal code,
using Steane’s method for error correction. Transversal Hadamard gates are applied to the
data block. In order to restore the data to the codespace, and also correct any X errors,
an encoded |+〉 state is prepared, coupled to the data with transversal CNOT gates and
measured. X corrections are applied as necessary.

The stabilizer measurements required by Theorem 5.3.1 can be incorporated into the
normal fault-tolerant error-correction procedure. Steane’s procedure [Ste96], for example,
involves a transversal CNOT from the data to an encoded |+〉 ancilla state. Transversal
Z-basis measurements of the ancilla then permit correcting X errors on the data, while
simultaneously restoring the stabilizer group. See Figure 5.2. (See also Section 4.4.1.)
Alternatively, Knill-style or Shor-style error correction could be used. In any case, the
required stabilizers can be measured and corrected using H, X, CNOT, |0〉 preparation
and Z-basis measurements. By using CCZ gates to simulate CNOT and X, universality
can be achieved using only |0〉 preparation, Z-basis measurement, and H and CCZ gates.

5.4 Example: 15-qubit codes

In order to make our universal construction concrete, we now walk through an example
based on the 15-qubit code. We present the example in two equivalent ways. First with the
[[15, 1, 3]] code, and then with the [[15, 7, 3]] code.
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The [[15, 1, 3]] code is based on the triorthogonal matrix in Table 3.1b. The stabilizer
generators can be presented as:

Z · · · · · Z · · Z · Z · · · ,
· Z · · · · Z · Z · · Z · · · ,
· · Z · · · ZZ · · · Z · · · ,
· · · Z · · Z · ZZ · · · · · ,
· · · · Z · ZZ · Z · · · · · ,
· · · · · ZZZZ · · · · · · ,

· · · · · · ·XXXXXXXX, · · · · · · · ZZZZZZZZ,
· · ·XXXX · · · ·XXXX, · · · ZZZZ · · · · ZZZZ,
·XX · ·XX · ·XX · ·XX, · ZZ · · ZZ · · ZZ · · ZZ,
X ·X ·X ·X ·X ·X ·X ·X, Z · Z · Z · Z · Z · Z · Z · Z,

where the X stabilizers come directly from Table 3.1b and the Z stabilizers come from the
orthogonal complement. For visual clarity, identity operators are indicated by dots. The
logical X and Z operators correspond to transversal X and Z, respectively. By construction,
this code is triorthogonal according to Definition 5.1.2. The four X stabilizers provide
distance three protection against Z errors and the 11 Z stabilizers provide distance seven
protection against X errors.

Transversal Hadamard swaps the X and Z logical operators. The X and Z stabilizers
are also swapped. The bottom four generators (both X and Z) are preserved, since they are
symmetric. The remaining six Z generators have now become X generators. Now the code
provides distance three protection against X errors and distance seven protection against
Z errors; it is the dual of the original code. The [[15, 1, 3]] code is restored by measuring
each of the top six Z generators. For each −1 outcome, the X correction corresponds to
one of the six asymmetric X generators of the dual code.

There is an alternative way to interpret this example by using the [[15, 7, 3]] code. The
[[15, 7, 3]] code has the same X generators as the [[15, 1, 3]] code, but uses only the bottom
four Z generators. It encodes seven logical qubits. The logical Z operators correspond to
the top six generators of the [[15, 1, 3]] code, plus transversal Z. However, the code, as
given, is not triorthogonal.

In order to induce triorthogonality, we will treat six of the encoded qubits as “gauge
qubits”. That is, we will not use them to store computational data. Instead, we will require
that they are always prepared as encoded |06〉, so that the logical Z operators are now
stabilizers. If we choose the six gauge qubits so that the remaining computation qubit is the
one with transversal logical Z, then we recover the [[15, 1, 3]] code, which is triorthogonal.
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Now, transversal H can be interpreted as implementing logical H, except that the gauge
qubits have been corrupted because they are no longer in state |06〉. As for the [[15, 1, 3]]
code, the gauge can be restored by measuring the six corresponding logical Z operators.

5.5 Computation with triorthogonal codes

The simplest way to use the CCZ and Hadamard constructions above is with a concatenated
triorthogonal code. The relation shown in Figure 5.1 implies that a universal set of
fault-tolerant operations can be constructed from only CCZ and H gates. Thus using
triorthogonal codes for computation could be advantageous for circuits that contain large
numbers of Toffoli gates. One could also imagine using multiple codes for computation by,
for example, teleporting into the code best suited for each logical operation. In this setting,
a triorthogonal code could be used to implement efficiently the CCZ operation.

Threshold error rates for triorthogonal codes are largely unknown, though one estimate
for the [[15, 1, 3]] code is roughly 0.01 percent per gate for depolarizing noise [CDT09].
Toffoli- and CCZ-type gates have been demonstrated in a number of experimental settings,
with fidelities ranging from 68 to 98 percent [MKH+08, MWY+11, FSB+12, RDN+12]. If,
however, the CCZ operation is constructed from a sequence of one- and two-qubit gates
then the threshold is likely lower. Since resource overhead increases rapidly as the physical
noise rate approaches threshold, our construction is likely to be outperformed by schemes
based on other codes, for which the threshold can be nearly one percent or higher (see, e.g.,
[Kni05, RH07, WFH11, SMN13]). The existence of high-performing triorthogonal codes is
not out of the question, however, and could be a fruitful area of research.

5.6 Toffoli state distillation

Ironically, while the original motivation for implementing CCZ transversally was to eliminate
state distillation, Theorem 5.2.1 also implies an alternative protocol for distillation. Bravyi
and Haah have proposed distillation procedures using triorthogonal codes that permit
fault-tolerant implementation of the T gate [BH12]. We show that a similar procedure can
be used to implement Toffoli gates.
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Figure 5.3: A Toffoli state distillation circuit using a triorthogonal code encoding k qubits.
Three separate blocks are prepared in the encoded state |+〉⊗k and then transversal CCZ
gates are applied. Conditioned on detecting no errors, each block is decoded and Hadamard
gates are applied to each of the target qubits, yielding k Toffoli states.

5.6.1 A recursive distillation protocol

The Toffoli state is defined by the output of the Toffoli gate on input |+,+, 0〉, where the
third qubit is the target. The circuit in Figure 5.3 uses a [[3k + 8, k, 2]] triorthogonal code
and 3k + 8 noisy CCZ gates to produce k Toffoli states with higher fidelity. Note that the
Hadamard gates are performed after decoding and thus the circuit in Figure 5.2 is not
required.

To simplify the analysis we will assume that all Clifford gates can be implemented
perfectly. This assumption is justified by the fact that many quantum error-correcting
codes admit simple (e.g., transversal) implementation of the Clifford group. Using such
a code, we can then arbitrarily reduce the logical error rate per Clifford gate using fault
tolerant protocols for that code. Error-free Clifford gates are conventional for analysis of
state-distillation protocols, though some studies have considered a more complete error
model [JYHL12, Bro13].

The circuit in Figure 5.3 is directly adapted from the T -gate distillation protocol of
Bravyi and Haah. Their protocol involved only a single code block, but the error analysis
can be re-used here directly. Consider a [[3k + 8, k, 2]] triorthogonal code for some k > 2.
Suppose that each qubit is independently subjected to a Z error with probability p, after
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|a〉 • • X

|0〉 Z

|b〉 • • X

|0〉 Z

|c〉 • • X

|0〉 Z

Figure 5.4: This circuit implements a CCZ gate on the input |abc〉. Each input qubit
is individually teleported onto an ancilla. The CCZ gate commutes through the CNOT
controls and can therefore be performed after the CNOT gates. Assuming perfect Clifford
operations, the output contains only Z errors.

which the X stabilizers are (perfectly) measured and the code block is decoded. Bravyi
and Haah show that, conditioned on detecting no errors during stabilizer measurement, the
probability of an error on a (logical) qubit after decoding is given by (3k + 1)p2 to leading
order in p. The scaling in the error comes from counting the number of weight-two logical
Z operators that have support on a particular logical qubit, which is equal to (3k + 1).

For Bravyi and Haah, the independent Z errors originate from T gates. In this case,
the independent Z errors instead originate from CCZ gates. However, the error analysis for
a given code block is precisely the same. Given access to CCZ gates that contain Z errors
independently with probability p, and conditioned on detecting no errors during stabilizer
measurement, the circuit in Figure 5.3 produces k Toffoli states with error rate (3k + 1)p2

per state, to leading order in p.

Perhaps the most obvious way to obtain CCZ gates containing Z errors with probability
p is to use a recursive protocol. At the lowest level of recursion, we may choose to use
physical CCZ gates if they are available, or an equivalent circuit composed of Clifford and T
gates. These physical CCZ gates may also contain X errors. But it is possible to eliminate
X errors by probabilistically applying Clifford gates, a process known as “twirling” [DLT02].
Alternatively, X errors can be eliminated by using gate teleportation. See Figure 5.4. Since
CCZ is diagonal, it can be commuted through the control of a CNOT gate. X errors on
the CCZ have no impact on the X-basis measurements, and Z errors on the CCZ can lead
only to Z errors on the output. The concept here is similar to that of Figure 4.9c for T
distillation, except with a three-qubit gate.

Another issue with the recursive protocol is that errors on the k Toffoli states of the
output of Figure 5.3 are not independent. Therefore, two Toffoli states from the same
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Figure 5.5: A CCZ gate can be implemented by consuming a single Toffoli state [NC00].
The input qubits are teleported into the Toffoli state (enclosed by the dashed line) with
Clifford corrections conditioned on the measurement outcomes.

distillation circuit cannot be used together as inputs to a distillation circuit at the next
level up. When many Toffoli states are required, as is expected in large-scale quantum
algorithms, then Toffoli states can be routed appropriately without any waste.

5.6.2 A bootstrap distillation protocol

We find, however, that a more efficient method is to use the Toffoli distillation protocol due
to Eastin [Eas13] and Jones [Jon13d] to implement CCZ gates, and use the triorthogonal
protocol only at the top level. A Toffoli state can be used to implement the CCZ gate with
the help of classically controlled Clifford gates as shown in Figure 5.5. To see how Figure 5.3
can be combined with the protocol of Eastin and Jones, we give the following illustrative
example.

Suppose we wish to implement a Toffoli gate with error below 10−13. The procedure
of [Jon13d] consumes eight T gates with error rate p to produce a Toffoli state with error
rate 28p2. See Figure 5.6. The T gates can be implemented using a combination of protocols;
Table I of [Jon12] lists optimal protocol combinations for a large range of target error
rates. If physical T gates can be performed with error at most 10−2, then using the Toffoli
construction of [Jon13d], as given, requires on average 540.16 T gates.

Alternatively, we could use a [[3k + 8, k, 2]] triorthogonal code and Figure 5.3 for
distillation at the top level, and construct Toffoli states using Figure 5.6 as input to
implement the CCZ gates. The distillation circuit fails to detect a faulty Toffoli state
input only if the number of errors on each triorthogonal code block is even. To leading
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|0〉 T

|0〉 T

|0〉 T †

|0〉 T †

|0〉 T †

|0〉 T †

|0〉 T

|0〉 T

Figure 5.6: This circuit prepares a Toffoli state on the top three qubits [Jon13d]. Assume
that each T gate fails with probability p and the Clifford gates are perfect. Then conditioned
on a Z-basis measurement outcome of zero, the probability of an error on the output is
28p2, to leading order in p. The bottom eight qubits can be discarded.

order, this occurs only if a pair of input Toffoli states contain identical errors. There are
seven possible errors on the output of states from [Jon13d], each of which are equally likely.
Thus, if the input Toffoli states have error p1, then to leading order the failure probability
of the triorthogonal protocol is given by 7(3k + 1)(p1/7)2 per output Toffoli state. For
k = 100, this yields an average T -gate cost of 428.7, a savings of 25% over [Jon13d] alone.
Calculations for a range of target error rates are shown in Figure 5.7.

The T gate count alone is an incomplete measure of the overhead. Indeed, Figure 5.7
shows that the double error-detecting protocol of [Jon13a] usually has higher T gate cost
than the single error-detecting protocol. However, the double error-detecting protocol can
still yield savings since smaller code distances may be used for Clifford gates in intermediate
distillation levels [FDJ13, Jon13d, Jon13a, Jon13c]. Our protocol similarly allows for
reduced Clifford gate costs and offers the flexibility to be used recursively or on top of any
other Toffoli state distillation protocol, including [Eas13, Jon13d] and [Jon13a]. Complete
overhead calculations depend on architectural considerations.

Jones has performed detailed optimizations and resource calculations of various Toffoli
constructions for the surface code [Jon13c], though the protocol of Figure 5.3 is not among
them. He finds that the single-error detecting circuit of [Eas13, Jon13d] usually requires
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Figure 5.7: The average number of physical T gates required for three different Toffoli
state distillation protocols. For the previous protocols of [Eas13, Jon13d] and [Jon13a],
input T gates are first distilled to the appropriate fidelity according to Table I of [Jon12].
The solid black line shows the cost of our protocol for [[3k + 8, k, 2]] triorthogonal codes
where an even integer 2 ≤ k ≤ 100 has been optimally selected at each target error rate.
Input CCZ gates to the triorthogonal protocol are produced using [Jon13d]. Physical T
gates are assumed to have error at most 10−2.
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Figure 5.8: This circuit implements H (up to a global phase) with the help of |+〉 and
X-basis measurement.

the smallest total space-time volume. Given the results in Figure 5.7, we expect that
triorthogonal distillation performs similarly well in the surface code. The corresponding
optimization and volume calculations have not been performed here, however.

5.7 Alternative methods for universality

Although state distillation is the most widely used protocol, other methods for achieving
universality exist for certain codes. Shor’s original proposal used Toffoli states and teleporta-
tion to implement Toffoli gates for the class of “doubly-even” codes [Sho96]. However, each
Toffoli state was prepared using a verified cat state and a particular four-qubit transversal
gate rather than distillation, which was developed afterwards. Shor’s approach was later
extended by Gottesman to accommodate any stabilizer code [Got98].

Knill, Laflamme and Zurek showed that T and CNOT are transversal for the [[15, 1, 3]]
code [KLZ96]. For the Hadamard they proposed the circuit shown in Figure 5.8. Except
for preparation of |+〉, each of the gates in this circuit can be performed transversally.
This circuit bears a striking resemblance to the gate teleportation circuit used for state
distillation in Figure 4.9a. Indeed, the most costly part of Figure 5.8 is the fault-tolerant
preparation of the “resource state” |+〉. One difference in this case, though, is that |+〉
is a stabilizer state, and can be prepared with the methods discussed in Chapter 6. This
method for achieving universality has also been used by Bombin and others in topological
color codes [BMD07, BCHMD13].

Another alternative has been employed to implement a fault-tolerant T gate in the
[[7, 1, 3]] code. Shor’s cat-state method can be used multiple times to measure the op-
erator TXT † = SX of which |A〉 = T |+〉 is the +1-eigenstate. Conditioned on the
outcomes of these measurements, an ancilla state is projected onto encoded |A〉 with high
fidelity [AGP06].

Recently, Jochym-O’Connor and Laflamme have proposed a different protocol for
universality [JL13]. They concatenate two different codes and use the incomplete set of
transversal gates from each one in order to obtain a universal set overall. Their method uses
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only transversal gates (in a certain sense), but whereas the distance of a concatenated code
is typically given by the product d1d2 of the two code distances, they achieve a minimum
distance of only min{d1, d2}. Thus, while their protocol is conceptually interesting, it is
less efficient than ours.

These methods for achieving universality suggest several possible categorizations.

Distillation and teleportation

This category includes traditional T [BK05, MEK13, BH12, Jon12] and Toffoli [Eas13,
Jon13d] distillation protocols, as well as the [[15, 1, 3]] protocol shown in Figure 5.8
[KLZ96].

Cat state projection

Protocols in this category use cat states and transversal gates in order to measure a
particular operator of which the desired state is an eigenstate. This includes [Sho96,
Got98] and [AGP06].

Transversal gates and error correction

This category includes the protocol described in this chapter, and potentially [JL13].

Each protocol, regardless of the category requires preparation of some sort of ancillary
state. Even the Hadamard described in Section 5.3 requires an ancilla in order to measure
the stabilizer generators. Another way to partition universality techniques, therefore, is
based on the type of ancilla state that is prepared. One obvious choice is to group the
protocols that require only stabilizer states such as |+〉 or cat states, and those that require
non-stabilizer states such as |A〉 or Toffoli states.

Regardless of categorization, though, the most important property of each protocol is
the amount of resources required. Transversal gates plus error correction is the simplest of
all protocols. But the uncertainty regarding thresholds for triorthogonal codes prevents
more thorough analysis. High thresholds and minimal connectivity requirements suggest
that the T or Toffoli distillation in the surface code may require fewer resources overall.
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Chapter 6

Reducing the overhead of
error-correction

This chapter is based on material that appears in [PR12].

We have seen in Chapters 4 and 5 that error correction circuits are much more com-
plicated than transversal gates. Furthermore, since error correction is also required in
distillation circuits, it is the dominant factor in determining a scheme’s resource overhead,
and is usually the major bottleneck in determining the noise threshold. In particular, the
details of how error correction is implemented are more important than the properties of
the underlying quantum error-correcting code.

For example, with the nine-qubit Bacon-Shor code, a fault-tolerant logical CNOT gate
between two code blocks can be implemented using nine physical CNOT gates, whereas
an optimized error-correction method uses 24 physical CNOT gates [AC07]. For larger
quantum error-correcting codes, the asymmetry between computation and error correction
is greater still.

Larger quantum error-correcting codes, with higher distances and possibly higher
rates, can still outperform smaller codes. Separate numerical studies by Steane [Ste03] (see
also [Ste07]) and Cross, DiVincenzo and Terhal [CDT09] have each compared fault-tolerance
schemes based on a variety of codes. They identify larger codes that, compared to the
[[7, 1, 3]] code and the nine-qubit Bacon-Shor code, can tolerate higher noise rates with
comparable resource requirements. In particular, their estimates single out the 23-qubit
Golay code as a top performer.
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The method most commonly used for error-correction in large codes is due to Steane
[Ste96]. In this method, encoded ancilla states |0〉 and |+〉 are prepared and used to detect
errors on the data. The complexity of ancilla preparation grows quickly with the size of the
code, however, and dominates the overall cost of error-correction.

In this chapter we present a variety of methods for reducing the cost of ancilla state
preparation for CSS codes. Our derivation is based on two main ideas. First, we simplify
Steane’s Latin-rectangle-based scheme for preparing encoded |0〉 states [Ste02], by taking
advantage of overlaps among the code’s stabilizers. Second, we reduce the overall number
of encoded ancilla states required for error correction by carefully tracking the exact
propagation of errors.

To demonstrate the utility of our approach, we give an optimized fault-tolerant error-
correction procedure for the Golay code that uses only 640 CNOT gates (compared to 1177
for a more naive procedure), while also being highly parallelizable. All of our methods are
generally applicable to other large quantum error-correcting codes.

6.1 Preparation of encoded stabilizer states

Robust preparation of stabilizer states is a key ingredient of both Steane- and Knill-style
error correction protocols. Indeed, preparation of stabilizer states is required for any
fault-tolerance scheme based on stabilizer codes in order to prepare logical qubits for
computation.

One way to prepare a stabilizer state for an n-qubit code is to prepare any state on
n qubits, say |0n〉. Then by measuring each of the stabilizer generators (including the
corresponding logical operator) the state is projected onto the one-dimensional subspace
that defines the stabilizer state. Steane has proposed an alternative method for CSS codes,
which is more compact [Ste02].

6.1.1 Steane’s Latin rectangle method

Steane’s method involves constructing and solving a partial Latin rectangle based on the
stabilizer generators. For simplicity, consider a [[n, 1, d]] CSS code. Let nX be the number
of X stabilizer generators. Then the X stabilizer generators form a nX ×n binary matrix in
which the X operators in the tensor product are represented as 1s. Each column represents
a (physical) qubit in the code, and each row represents one stabilizer generator. To prepare
encoded |0〉, Gaussian elimination is performed until the matrix is of the form
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nX

{( nX︷︸︸︷
I

n−nX︷︸︸︷
A

)
(6.1)

The first nX qubits, called “control” qubits, are prepared as |+〉, and the remaining “target”
qubits are prepared as |0〉. The matrix A is called the redundancy matrix, and represents a
partial Latin rectangle, the solution to which is used to schedule rounds of CNOT gates
from control to target qubits.

For example, by swapping qubits three and four, the X stabilizers of the [[7, 1, 3]]
code (Table 3.1a) are of the form (6.1). A schedule of three rounds of CNOT gates and
corresponding quantum circuit are shown in Figure 6.1.

To see that this procedure indeed prepares encoded |0〉, notice that the stabilizer
generators of the initial state of the control and target qubits are described by the binary
matrix (

InX 0
0 InZ+1

)
, (6.2)

where the first nX rows are weight-one X generators and the last nZ + 1 = n− nX rows are
weight-one Z generators. The first nX qubits are controls and the remaining nZ + 1 qubits
are targets. Let Si be the operator corresponding to row i, let U be the unitary operation
corresponding to the CNOT schedule, and let |ψ0〉 be the initial state. Then U performs
the transformation

Si 7→ USiU
†

|ψ0〉 7→ U |ψ0〉 .
(6.3)

The operators USiU
† form an independent set of stabilizers of U |ψ0〉, the first nX of which

are the X stabilizer generators of the code, by construction. The remaining nZ operators are
also independent stabilizers of U |ψ0〉. Indeed, they form a basis for the (n−nX)-dimensional
subspace orthogonal to the X stabilizers and are therefore equivalent to the Z stabilizer
generators and the Z logical operator of the code. Therefore U |ψ0〉 =

∣∣0
〉
.

The procedure for encoded |+〉 is entirely analogous, except that the Z stabilizers are
used in place of the X stabilizers, and the roles of control and target are swapped. The
procedure can also be generalized to CSS codes that encode multiple qubits.

6.1.2 Exploiting stabilizer overlap

Steane’s Latin rectangle method treats each stabilizer generator independently. However, by
taking advantage of similarities between stabilizer generators it is possible to significantly
reduce the number of CNOT gates.
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1 2 4 3 5 6 7
X 3 2 1

X 1 2 3
X 3 1 2

(a)

|+〉 • • •
|+〉 • • •
|0〉 �������� ��������
|+〉 • • •
|0〉 �������� ��������
|0〉 �������� ��������
|0〉 �������� �������� ��������

(b)

|+〉 • • •
|+〉 • •
|0〉 �������� ��������
|+〉 • •
|0〉 �������� ��������
|0〉 �������� �������� •
|0〉 �������� ��������

(c)

Figure 6.1: Preparation of encoded |0〉 for the [[7, 1, 3]] code. (a) Swapping columns three
and four of Table 3.1a yields a 3× 4 matrix of the form given by (6.1). The four rightmost
columns define a partial Latin rectangle, a solution to which is shown. (b) The Latin
rectangle solution defines a schedule of CNOT gates. A nonzero value t of entry (r, c)
specifies a CNOT on qubits r and c controlled by r in timestep t. (c) An alternative circuit
for preparing encoded |0〉 using one fewer CNOT gate. The new CNOT gate has the same
effect as the two removed gates. See Section 6.1.2.

To explain the optimization, consider once again the [[7, 1, 3]] code. The Latin rectangle-
based encoding schedule, shown in Figure 6.1a, needs nine CNOT gates. An equivalent
circuit requiring only eight CNOT gates is shown in Figure 6.1c. This circuit removes two
of the CNOTs for which qubit seven is a target and replaces them with a single CNOT
from qubit six to qubit seven in round three. This works because in 6.1b qubits six and
seven are both the targets of CNOTs from qubits two and four; the corresponding stabilizer
generators overlap on qubits six and seven.

The phenomenon of overlapping stabilizers generalizes to any CSS code, and the savings
for larger codes is substantially greater. However, larger codes are harder to analyze by
hand. We now describe a systematic method for optimizing stabilizer state preparation.

Our method for exploiting overlaps in large codes identifies the amount of overlap
between each pair of stabilizer generators and uses the largest overlaps first. The amount
of overlap between each pair of stabilizers can be calculated by AᵀA = O, where A is the
redundancy matrix of the X stabilizer generators when expressed in form (6.1), and Aᵀ

is the transpose of A. Entry O(i, j) of this matrix corresponds to the number of non-zero
entries shared by stabilizers i and j.

The algorithm proceeds by selecting the set of disjoint pairs {(ik, jk)} that yields the
largest sum

∑
k O(ik, jk), for some k ≤ nX/2. The overlap between each pair of columns

(i, j) is then removed from column j of A, and the process is repeated until no overlaps
remain. The schedule of CNOT gates is then obtained from the chosen pairs, and the
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remaining 1s in A, while also accounting for the time-ordering required by the overlap
CNOTs.

For example, swapping columns three and four of the [[7, 1, 3]] code as before, we obtain
an overlap matrix

3 5 6 7
3 2 1 1 2
5 2 1 2
6 2 2
7 3 , (6.4)

where the lower triangular entries have been omitted because the matrix is symmetric.
Each diagonal entry indicates the weight of the corresponding column, and the off-diagonal
entries indicate the overlap between pairs of columns. In this example we see that column
seven has overlap two with each of the other three columns. In Figure 6.1c we have chosen
to use the overlap between columns six and seven. Alternatively we could have chosen to
use the overlap between columns three and seven or columns five and seven.

In this case, column seven is the only choice that yields improvement over Steane’s
method. Overlaps of one yield no net gain. In Section 6.3 we will examine larger codes for
which there are more overlaps.

In the asymptotic setting, for arbitrarily large circuits of CNOT gates, the overlap-
based method bares resemblance to the algorithm presented in [PMH03]. Both methods
exploit similarities across columns (or rows) of a matrix to eliminate CNOT gates. Our
method differs in that we use only the redundancy matrix rather than the full n× n linear
transformation, and we exploit similarities between columns without first using Gaussian
elimination to make the columns identical. This way, and by making the optimizations by
hand, we are usually able to preserve circuit depth.

6.1.3 Benefits of optimized preparation circuits

The most obvious benefit of this method is the reduction in the size of the encoding circuit.
For the [[7, 1, 3]] code the number of CNOT gates was reduced from nine to eight. In other
cases, the depth of the circuit can also be decreased. A less obvious, but more important
benefit for fault-tolerance is that the number of correlated errors that can occur during the
encoding circuit is also reduced.

Definition 6.1.1 (Correlated error). Consider an encoding circuit C for a code with
distance d. An error e caused by a set of k ≤ b(d− 1)/2c faulty locations in C is correlated

76



if e propagates through C to an error f such that |f | > k. An error that is not correlated is
said to be uncorrelated.

Informally, an error is correlated if its weight, modulo the stabilizers, is larger than the
number of faulty locations that combined to cause the error. This definition is motivated
by the desire for strict fault tolerance (Definition 4.2.3). If each location in the circuit
fails with probability p, then an uncorrelated error of weight k occurs with probability at
most pk. Preparation of stabilizer states with small numbers of correlated errors is highly
desirable for fault-tolerant error correction, as we shall see in Section 6.4.

For the [[7, 1, 3]] code, the number of correlated errors can be counted by hand. Modulo
the stabilizers, the only weight-two errors that can occur due to a single fault in Figure 6.1b
are {X1X3, X2X7, X3X4}, and there are no weight-three errors. Here the notation Xi

indicates an X error on qubit i. In Figure 6.1c, however, there are only two possible
correlated errors {X1X3, X4X5}. A correlated XX error could occur on the final CNOT
between qubits six and seven. However, X6X7 is equivalent to X4X5 modulo the stabilizer
X4X5X6X7. The reduction in the number of correlated errors is fairly modest for this code,
but can be substantially larger for other codes.

6.2 Extension to non-stabilizer states

Stabilizer state preparation can be extended in order to encode an arbitrary state |ψ〉. One
way to prepare an arbitrary state is to use a teleportation protocol due to Knill [Kni04].
The idea here is to prepare an encoded Bell pair and then teleport the (physical) input
state |ψ〉 into the encoding. See Figure 6.2. The circuit requires two encoded stabilizer
states |0〉 and |+〉 plus some additional Clifford operations.

A more efficient alternative, however, is to use just the encoded |0〉 preparation circuit
and a controlled version of the logical X operator, as shown in Figure 6.3. Let U be the
unitary operation implemented by the |0〉 encoding circuit, and consider the operator

X ′L = U †XLU (6.5)

obtained by propagating logical X from the output through U to the input. In Figure 6.3
we take one of the input |0〉 qubits with support on the logical operator X ′L, and replace it
with |ψ〉. Let X̃L be the part X ′L that does not have support on this qubit. Then we perform
X̃L, controlled by |ψ〉. Assuming that the encoding circuit contains only CNOT gates,
X ′L is a tensor product of X and I and so the controlled operation can be accomplished
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|ψ〉 • X

|+〉 / •

d
ec
o
d
e

Z

∣∣0
〉

/ /
∣∣∣ψ
〉

Figure 6.2: Encoding of an arbitrary state |ψ〉 by teleportation [Kni04]. An encoded Bell
pair is constructed by preparing stabilizer states

∣∣0
〉

and |+〉 and coupling with CNOT. One
half of the Bell pair is then decoded. The decoded half is then used in a Bell measurement
to teleport the input state |ψ〉 onto the encoded half of the Bell pair.

with CNOT gates. Finally, implementing the circuit for encoded |0〉 (using either Steane’s
method or by exploiting overlaps) outputs an encoded version

∣∣ψ
〉

of the input state. Here
we have assumed a single-qubit state |ψ〉, though the procedure can be adapted to multiple
qubits.

To see that this works, we examine the effect of the circuit on each of the basis states of
|ψ〉 = a |0〉+ b |1〉. Let ΛX be the controlled X̃L operation, U be the unitary corresponding
to the encoding circuit, and |φ〉 be the state of the (n− 1) qubits other than |ψ〉. We need
to show that

UΛX |φ〉 (a |0〉+ b |1〉) = a
∣∣0
〉

+ b
∣∣1
〉
. (6.6)

We will examine the two basis states |0〉 and |1〉 separately. The result will then follow
by linearity. The case in which |ψ〉 = |0〉 is obvious. In this case, the controlled X̃L gate
does not activate, and we obtain U |φ〉 |0〉 =

∣∣0
〉
, by construction.

Now consider the case |ψ〉 = |1〉. Since the control activates in this case, the circuit is
equivalent to setting |ψ〉 to |0〉, applying X ′L and then applying U . That is

UΛX |φ〉 |1〉 = UX ′L |φ〉 |0〉 . (6.7)

Using (6.5), we then obtain

UX ′L |φ〉 |0〉 = XLU |φ〉 |0〉 = XL

∣∣0
〉

=
∣∣1
〉
. (6.8)

Note that when using Steane’s Latin rectangle construction, X ′L = XL since all of
the qubits on which XL has support are targets of CNOT gates. Any X operator of XL

78



|+〉

encode |0〉

...
|+〉
|0〉

X̃L

...

∣∣∣ψ
〉

...
|0〉
|ψ〉 •




Figure 6.3: Encoding of an arbitrary single-qubit state |ψ〉 without resorting to teleportation.
Qubits are prepared as in the encoding procedure for encoded |0〉, except that one of the |0〉
inputs is replaced by |ψ〉. Controlled on |ψ〉, the X logical operator is conditionally applied.
Here X̃L indicates the part of logical X with support disjoint from |ψ〉. Implementing the
encoding circuit for |0〉 then yields the encoded state

∣∣ψ
〉
.

on a control qubit can be removed by multiplying by a stabilizer. Pauli X commutes
through a CNOT target, and therefore XL commutes through a Latin rectangle circuit.
For overlap-based circuits, the operator X ′L may be somewhat different, but will still be a
tensor product of X and I.

Circuits of the form given by Figure 6.3 are typically used for state distillation in
topological codes [FMMC12], where the code in question is the [[7, 1, 3]] code (for the S gate)
or the [[15, 1, 3]] code (for the T gate). The overlap-based optimizations given in Section 6.1.2
therefore suggest that such distillation circuits could be improved, particularly Figure 4.9c.
In Section 6.3.1 we show this optimization explicitly.

6.3 Examples

The [[7, 1, 3]] code is useful as a toy example for demonstrating the overlap optimization
technique. However, the actual resource savings are somewhat undramatic. We now
illustrate larger resource savings that can be obtained when using larger codes.

6.3.1 [[15,1,3]] code

For our first example, we examine the [[15, 1, 3]] code. The stabilizers of this code are given
by (5.4). There are four X stabilizer generators, each of which have weight eight. A Latin
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rectangle encoding circuit for encoded |0〉, therefore has size 28 and depth seven. There are
ten Z stabilizer generators. In (5.4) there are four generators of weight eight and six of
weight four. However, using Gaussian elimination we can obtain the following presentation
in which each generator has weight four:

Z · · · · · Z · · · Z · Z · ·
· Z · · · · Z · · · Z · · Z ·
· · Z · · · Z · · · Z · · · Z
· · · Z · · Z · · · · · Z Z ·
· · · · Z · Z · · · · · Z · Z
· · · · · Z Z · · · · · · Z Z
· · · · · · · Z · · Z · Z Z ·
· · · · · · · · Z · Z · Z · Z
· · · · · · · · · Z Z · · Z Z
· · · · · · · · · · · Z Z Z Z . (6.9)

The corresponding Latin rectangle circuit for encoded |+〉 then has size 30. The depth is at
least six, the maximum weight of a column of (6.9).

By exploiting overlaps between pairs of generators, as described above, we construct
the circuits shown in Figure 6.4. The circuit for encoded |0〉 has size 22 and the circuit
for |+〉 has size 25, a size decrease by roughly 27% and 20%, respectively. The depth of
both circuits is seven. The depth for the |+〉 circuit has actually increased relative to the
Latin rectangle circuit. The extra timestep is necessary to exploit overlaps between two
weight-six columns.

As an immediate consequence of Figure 6.4a, the gate cost of state distillation can be
decreased. This circuit can be substituted for the bulk of the CNOT gates in Figure 4.9
using the protocol discussed in Section 6.2. Additional savings can be obtained by noting
that not all of the qubits need to be prepared at the beginning of the circuit. For example,
qubit 15 is not required until timestep six.

Thorough analysis of the resource savings requires choosing another error-correcting code
for computation and specifying any geometric constraints. The standard [[15, 1, 3]] encoding
circuit has been heavily optimized by hand for use in the surface code, for example [FD12].
Similar hand optimization of Figure 6.4a could yield improved results, though we do not
perform the required analysis here.
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(1) (2) (3) (4) (5) (6)(7)

|+〉 1
|+〉 2

|+〉 4

|+〉 8

|0〉 3

|0〉 5
|0〉 6
|0〉 7

|0〉 9
|0〉 10
|0〉 11
|0〉 12
|0〉 13
|0〉 14
|0〉 15

(a) Encoded |0〉

(1) (2) (3) (4) (5) (6) (7)

|0〉 1
|0〉 2
|0〉 3
|0〉 4
|0〉 5
|0〉 6

|0〉 8
|0〉 9
|0〉 10

|0〉 12

|+〉 7

|+〉 11

|+〉 13
|+〉 14
|+〉 15

(b) Encoded |+〉

Figure 6.4: Optimized encoding circuits for the [[15, 1, 3]] code. (a) An encoding circuit for
|0〉 requires 22 CNOT gates and seven rounds. (b) An encoding circuit for |+〉 requires 25
CNOT gates and seven rounds. Gates in the same round are applied in parallel.

6.3.2 Bacon-Shor codes

Next we consider the family of Bacon-Shor codes [Bac06]. For a fixed n, this code family
uses n2 physical qubits to encode one logical qubit to a distance of n and (n− 1)2 logical
qubits to a distance of two. Usually, only the single distance-n qubit is used and the state
of the remaining “gauge” qubits is ignored. In this case the code is treated as [[n2, 1, n]].

The qubits of this code can be laid out as an n × n square lattice. In this geometry,
the stabilizer generators can be expressed in a particularly simple form. The X stabilizer
generators correspond to neighboring pairs of rows, and the Z stabilizers correspond
neighboring to pairs of columns. Following [AC07], for each row j let Xj,∗ be the operator
that acts as a tensor product of Pauli X on the qubits of row j and acts trivially elsewhere.
Similarly, for each column j let Z∗,j be the operator that acts as a tensor product of Pauli
Z on column j. Then the stabilizer generators of the code are given by

{Xj,∗Xj+1,∗;Z∗,jZ∗,j+1 | j ∈ [n− 1]} . (6.10)

When presented in this way, we immediately see that each generator has weight 2n and,
except for X1,∗X2,∗ and Xn−1,∗Xn,∗ (and respectively, Z∗,1Z∗,2 and Z∗,n−1Z∗,n) overlaps with
two other generators in on exactly n qubits. In order to see how to take advantage of these
overlaps, however, we will prefer to present the generators in a different way. Consider the
product of the last two X generators Xn−2 := (Xn−2,∗Xn−1,∗)(Xn−1,∗Xn,∗) = Xn−2,∗Xn,∗.
This operator has support on rows (n− 2) and n. We may similarly define operators Xj
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using the recursion relation

Xj := (Xj,∗Xj+1,∗)Xj+1 = Xj,∗Xn,∗ . (6.11)

The set {Xj | j ∈ [n− 1]} forms an alternate basis of X stabilizer generators for the code.
Each column of the generator matrix has weight one, except for the last n columns which
each have weight n− 1. For example, the X generators for the case n = 4 are given by

X X X X · · · · · · · · X X X X
· · · · X X X X · · · · X X X X
· · · · · · · · X X X X X X X X . (6.12)

The weight-one columns can be filled in using a total of (n− 1)2 CNOT gates, and column
n can be filled in using (n− 1) additional CNOTs. Then the remaining block of (n− 1)2

Xs can be filled, using overlaps, with (n− 1) CNOTs. The corresponding circuit prepares
logical |0〉 on each of the encoded qubits (including the gauge qubits) using (n− 1)(n+ 1)
CNOTs. See Figure 6.5. By obtaining a similar presentation of the Z generators, encoded
|+〉 can be prepared across all logical qubits for the same cost.

From Figure 6.5 we see that the circuit consists of (n− 1) cat state preparations, plus
another circuit that also resembles a cat state. A cat state can be prepared in depth
dlog2(n)e using a tree-like sequence of CNOT gates, and so the entire circuit can be
implemented in depth n+ 2dlog2(n)e − 1.

Indeed, Aliferis and Cross have observed that by preparing each of the gauge qubits
in logical |+〉 rather than |0〉, the encoded |0〉 state (on the distance n qubit) can be
expressed as a tensor product of n cat states (|0n〉 + |1n〉)/

√
2, breaking the coupling

required in Figure 6.5. Thus, if we are unconcerned with the state of the gauge qubits, then
encoded |0〉 can be prepared using only n(n− 1) CNOTs and dlog2(n)e timesteps.

Both Figure 6.5 and the cat state method of [AC07] compare favorably to the Latin
rectangle method. The Latin rectangle method requires each of the rows to be filled
separately, yielding (n− 1)(2n− 1) CNOT gates and a depth of 2n− 1. The overlap and cat
state circuits beat this by roughly a factor of two in size. Statistics for all three encoding
methods are shown in Table 6.1.

This example also illustrates why exploiting stabilizer overlaps reduces the number of
correlated errors produced by the encoding circuit when compared to the Latin rectangle
method. Reichardt has observed that the correlated errors in a Latin rectangle circuit can
be characterized in a systematic way [Rei06a]. Consider a single X stabilizer generator of
weight m. Ignoring the qubits on which this generator acts trivially, the circuit for this
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|+〉 • • . . . • • . . .

|0〉 . . . . . .

1 |0〉 . . . . . . n

...
. . .

. . .

|0〉 . . . . . .

|+〉 • • . . . • • . . .

|0〉 . . . . . .

2 |0〉 . . . . . .

...
. . .

. . .

|0〉 . . . . . .

...
... ...

|+〉 • • . . . • • . . .

|0〉 . . . . . .

n− 1 |0〉 . . . . . .

...
. . .

. . .

|0〉 . . . . . .

|0〉 . . . • • . . . •
|0〉 . . .

|0〉 . . .

...
. . .

|0〉 . . .





Figure 6.5: This circuit prepares logical |0〉 on each of the qubits (including gauge qubits) of
an n-qubit Bacon-Shor code. For visual clarity, each of the n boxed subcircuits use CNOTs
from the same control qubit. Alternate but equivalent subcircuits can be implemented in
depth dlog2(n)e.
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Method Size (CNOTs) Depth
Latin rect. (n− 1)(2n− 1) 2n− 1
Cat state n(n− 1) dlog2(n)e
Overlap (n− 1)(n+ 1) n+ 2dlog2(n)e − 1

Table 6.1: Circuit statistics for encoding |0〉 or |+〉 for a [[n2, 1, n]] Bacon-Shor code.
Column one shows the Latin rectangle method due to [Ste02], column two shows the cat
state method due to [AC07] and column three shows the overlap method from Section 6.1.2.
The cat state method of [AC07] prepares |0〉 on the distance-n logical qubit and |+〉 on
each of the gauge qubits, whereas the overlap method prepares |0〉 on each of the gauge
qubits.

generator is of the form
|+〉 • • . . . •
|0〉 . . .

|0〉 . . .

...
. . .

|0〉 . . . . (6.13)

Next consider the X errors that can occur as a result of a single faulty gate in the circuit.
Pauli X errors on target qubits do not propagate and are uncorrelated. Any correlated
X error must have support on the first qubit and some consecutive sequence of qubits
{j, . . . ,m} for j > 1. Up to multiplication by the stabilizer, X1 . . . Xm is trivial and
X1X3 . . . Xm has weight one. Thus, there are exactly (m− 2) unique correlated errors that
occur with first-order probability.

Of course, the stabilizer generators of the entire code are not disjoint, and so the total
number of first-order correlated errors is more complicated to compute. However, in the
case of the Bacon-Shor code the intersections between stabilizers are particularly simple,
and do not affect the analysis. An n-qubit Bacon-Shor code has (n − 1) X generators
each of weight 2n, and so a Latin rectangle encoding circuit will contain (n− 1)(2n− 2)
correlated X errors to first-order.

The situation for the overlap-based circuit is somewhat different. From Figure 6.5 we
see that the encoding circuit contains n subcircuits of the same form as (6.13). Each of
these subcircuits can produce (n− 2) correlated X errors from a first-order fault. The extra
CNOT gates that span the circuit add another (n− 1) such correlated errors. Thus the
entire circuit can produce n(n− 1)− 1 order-one correlated X errors, roughly half of the
number of correlated X errors produced by a corresponding Latin rectangle circuit.
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(1) (2) (3) (4) (5) (6) (7)

0 |0〉 0
1 |0〉 1
2 |0〉 2
3 |0〉 3
4 |0〉 4
5 |0〉 5
6 |0〉 6
7 |0〉 7
8 |0〉 8
9 |0〉 9

10 |0〉 10
11 |0〉 11
12 |+〉 12
13 |+〉 13
14 |+〉 14
15 |+〉 15
16 |+〉 16
17 |+〉 17
18 |+〉 18
19 |+〉 19
20 |+〉 20
21 |+〉 21
22 |+〉 22

Figure 6.6: An optimized circuit for preparing |0〉 encoded in the Golay code uses 57
CNOT gates applied in seven rounds. Gates in the same round are applied in parallel.

6.3.3 Golay code

In our final example, we construct circuits for encoding |0〉 in the 23-qubit Golay code. The
Golay code has 11 X stabilizer generators, each of weight eight:

· X · · X · · XXXXX · · · · · · · · · · X
X · · X · · XXXXX · · · · · · · · · · X ·
· XX · XXX · · · XX · · · · · · · · X · ·
XX · XXX · · · XX · · · · · · · · X · · ·
XXXX · · · X · · XX · · · · · · X · · · ·
X · X · X · XXX · · X · · · · · X · · · · ·
· · · XXXX · XX · X · · · · X · · · · · ·
· · XXXX · XX · X · · · · X · · · · · · ·
· XXXX · XX · X · · · · X · · · · · · · ·
XXXX · XX · X · · · · X · · · · · · · · ·
X · X · · X · · XXXXX · · · · · · · · · ·

(6.14)

The Z stabilizers are entirely symmetric (the code is self-dual). The logical X and Z
operators correspond to transversal X and transversal Z, respectively.

Latin rectangle circuits for |0〉 use 77 CNOT gates and seven time steps. The overlap
optimized circuit for |0〉 also has depth 7 but uses only 57 CNOT gates, a savings of about
35%. See Figure 6.6. Since the X and Z stabilizers of the Golay code are symmetric, |+〉
can be prepared from the circuit for |0〉 by taking the dual circuit in the standard way.
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X-error weight: 2 3 4 5 6 7
Order 1: 16 14 4 0 0 0
Order 2: - 493 400 35 2 0

(a) Overlap

X-error weight: 2 3 4 5 6 7
Order 1: 22 22 11 0 0 0
Order 2: - 848 718 73 3 0

(b) Latin rectangle

Table 6.2: Correlated X error counts for circuits encoding |0〉 in the Golay code. (a)
Correlated X error counts for the overlap optimized circuit in Figure 6.6. (b) Correlated X
error counts for a Latin rectangle encoding circuit (not shown).

By reducing the number of CNOT gates, this circuit also reduces the number of correlated
errors. For example, a single failure in the Latin rectangle encoded circuits can cause up to
22 weight-two errors, but a single failure in Figure 6.6 can only cause up to 16 weight-two
errors. The contrast for second-order faults is even larger. The improvement for the overlap
optimized circuit is roughly a factor of two. The correlated error counts for first and second
order are shown in Table 6.2a.

We briefly note that the overlap method, and the circuit in Figure 6.6 in particular,
may not be optimal. Indeed there are equivalent circuits with fewer CNOT gates. However,
Figure 6.6 is the smallest circuit we found that also preserves depth.

6.4 Encoded ancilla verification

None of the stabilizer state preparation circuits shown thus far are fault tolerant. A single
physical fault may lead to errors on multiple qubits. For example, an XX error on the
final CNOT of Figure 6.1c leaves the weight-two error X6X7. The code is limited by its
distance and cannot necessarily protect against such correlated errors. As a result, the
ancilla states themselves must be checked for errors. The primary task of fault-tolerant
ancilla preparation then, is to prevent errors in the preparation circuit from spreading
through the ancilla block.

6.4.1 Steane-style verification

One way to check for errors which is particularly useful for large CSS codes is to use a
Steane-style error-detection circuit. To check for X errors, a second encoded ancilla is
prepared as |+〉 and a transversal CNOT is used to copy errors from the first ancilla to
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•
|+〉 Z

(a) X-error verification

|0〉 • • X

|+〉 Z

(b) Z-error verification

Figure 6.7: First-order verification circuits. (a) X errors are copied onto the encoded |+〉
ancilla and then detected by the Z-basis measurement. (b) An encoded |0〉 ancilla is first
checked for X errors in order to prevent X errors from spreading to the top qubit. Then Z
errors are copied from the top qubit and detected by the X-basis measurement.

the second, as shown in Figure 6.7a. If the Z-basis measurement implies the presence of
an error, then the ancilla is discarded and the process begins again. To check for Z errors,
we instead prepare encoded |0〉 and swap the control and target of the CNOT. However,
correlated X errors that occur during preparation of |0〉 can propagate through the CNOT
to the original ancilla. To prevent this we first check the |0〉 state for X errors, and then
proceed to use it for Z error detection, as in Figure 6.7b. Again, if an error is detected, the
the ancilla is discarded.

The circuits in Figure 6.7 are sufficient to detect correlated errors up to first order. But
for high distance codes we desire verification up to order t = b(d − 1)/2c. Higher-order
verification can be accomplished by using additional and more complex hierarchical error
detection circuits. In general, (t+ 1)t+ 1 encoded ancillas are sufficient to produce a single
ancilla verified to order t. For example, use t X-error verifications, followed by t Z-error
verifications in which each encoded |0〉 ancilla has been verified using an additional t X-error
verifications. The total overhead required to prepare a fault-tolerant ancilla depends also
on the probability that any errors are detected.

To maximize efficiency, preparation and verification circuits may be constructed using a
pipeline architecture in which part of the computer is dedicated to preparing many ancillas
in parallel. Even so, ancilla production constitutes the majority of the space requirement
for a fault-tolerant quantum circuit. In [IWPK08], for example, the ancilla pipeline is
estimated to take up to 68 percent of the entire circuit footprint.

One of the reasons that a hierarchical verification structure is required is because
identically prepared stabilizer states produce identical sets of correlated errors. For example,
say that two encoded ancillas are identically prepared. Assume that a single failure occurs
in the first ancilla and propagates through the preparation circuit to produce a weight three
error. Then the same single failure in the other ancilla will produce the same weight three
error. When the error from the first ancilla is copied to the second, the two errors will
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cancel each other and no error will be detected. This is a second-order event that results in
a weight-three error.

However, DiVincenzo and Aliferis [DA07] have observed that different preparation
circuits exhibit different error propagation behavior, and this can be exploited. Intuitively,
if the sets of errors produced by two different preparation circuits are sufficiently different,
only a small number of errors will cancel out at each verification, and fewer verifications
steps will be required overall. Therefore, we seek to prepare encoded ancillas that produce
different correlated error sets. In the next section we analyze the correlated errors produced
by preparation circuits for the Golay code, and randomized methods for finding ancillas
with different correlated error sets.

6.4.2 Optimization by counting correlated errors in the Golay
code

Since the circuits and therefore the correlated errors differ depending on the employed
error-correcting code, the verification circuits that can be obtained by mixing preparation
circuits will also differ. The most concrete way to show the benefits of this technique are
with an example. In this section we consider the 23-qubit Golay code. The Golay code is an
illustrative example because it has relatively large distance, but is small enough for manual
inspection. Furthermore, estimates show that the Golay code has a fairly high threshold.
The examples discussed here will also be used in Chapter 7 to prove a lower bound on the
threshold for the Golay code.

For the Golay code, the standard recursive verification technique requires twelve encoded
ancillas and at least 1177 CNOT gates. One such circuit is shown in Figure 6.8. Variants
of this circuit have been used in previous studies of the Golay code, including in [Ste03]
and [CDT09]. By considering many different preparation circuits, we find that the number
of ancillas can be significantly reduced. We now outline two methods that produce circuits
of the form shown in Figure 6.9, requiring only four encoded |0〉 ancillas and as few as 297
CNOT gates.

Randomized method for preparing encoded |0〉

An X error in the preparation circuit can propagate to other qubits only if it occurs on
a control qubit, and then only through the X stabilizer being created from that control
qubit. Thus single faults can create up to 22 weight-two errors (for each of the eleven X
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Figure 6.8: This circuit produces a single Golay encoded |0〉 state that is ready to be used
in fault-tolerant error correction. Each of the twelve encoded |0〉 ancillas, denoted

∣∣0
〉
, is

identically prepared using the Steane Latin rectangle method (see Section 6.4.2). The wires
represent 23-qubit code blocks and the indicated CNOT and measurement operations are
transversal.
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Figure 6.9: Our simplified ancilla preparation and verification circuit uses only four encoded
|0〉 ancillas. The ancillas are prepared using different encoding circuits, shown in Figure 6.6
and Table 6.5, and also in Table 6.4.
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Weight: 0 1 2 3 4 5 6 7
Number of X errors: 1 23 253 1771 1771 253 23 1
Number of Z errors: 1 23 253 1771 0 0 0 0

Table 6.3: The number of errors on Golay encoded |0〉 by Hamming weight. All Z errors
are correctable so there are no Z errors of weight greater than three.

stabilizers, either IIIIIIXX or IIXXXXXX ∼ XXIIIIII), 22 weight-three errors and
eleven weight-four errors (IIIIXXXX for each stabilizer).

A single X fault, i.e., a fault resulting in an X error, cannot break the verification
circuit in Figure 6.9. If it creates a correlated error on the first ancilla, that error will be
detected on the second ancilla, and both will be discarded. Four or more X faults also
cannot break the verification circuit because we only seek fault tolerance up to order three.

Two X faults can break the verification circuit only if there is one failure in each ancilla
preparation that propagates to an error of weight at least three—necessarily the same error
so that it is undetected. To obtain a crude estimate for how likely this is to occur, consider
a circuit obtained by sampling uniformly at random over all possible circuits that prepare
encoded |0〉. (Several methods for approximating such a sample are discussed below.)
Pretend that the correlated errors created by such a circuit are uniformly distributed among
all errors of the same weights. The number of errors on encoded |0〉 for each weight are given
in Table 6.3. Then the probability that two preparation circuits share no such correlated
errors is estimated as (

1771−22
22

)
(
1771
22

) ·
(
1771−11

11

)
(
1771
11

) ≈ 0.71 .

Here,
(
1771−22

22

)
is the number of ways to select 22 weight-three X errors on the second

ancilla such that none of them correspond to the 22 weight-three errors on the first ancilla.
Similarly

(
1771−11

11

)
is the number of ways to select 11 weight-four X errors on the second

ancilla.

Three X errors can break the circuit if they lead to an undetected error of weight four
or greater on the first ancilla. Consider the case that there are two failures while preparing
the first ancilla and one failure while preparing the second ancilla. The number of different
weight-four errors created with second-order probability (i.e., excluding those created with
first-order probability) depends on the circuit. For ten random circuits, the smallest count
we obtained was 688 and the largest 735, with an average of 711. Using this average value,
we estimate that the probability of a random circuit succeeding against three X errors is
roughly [

(
1771−711

11

)
/
(
1771
11

)
]2 ≈ 1.2 · 10−5. (Here the square is because we want the circuit to
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work against both the case of two failures in the first ancilla, one failure in the second, and
vice versa.) Overall, we expect to have to try about 1.2 · 105 random pairs of preparation
circuits before we find one that gives fully fault-tolerant X-error verification.

The result of X-error verification is a single ancilla free of correlated X errors up to
weight-three, but possibly containing correlated Z errors. The Z-error propagation can
be analyzed in a manner similar to that used for X errors. A single failure in an X-error
verified ancilla can produce roughly 60 Z errors of weight three. Again assuming a uniform
distribution, the probability of finding two X-error verified ancillas that share no correlated
Z errors of weight three is

(
1771−60

60

)
/
(
1771
60

)
≈ 0.12. In total, we expect to try about five

X-error fault-tolerant pairs in order to find two pairs that are fully fault-tolerant for both
X-error and Z-error verification, as

(
5
2

)
= 10.

To find fault-tolerant verification circuits in this way, one needs to be able to generate
sufficiently random preparation circuits. As the Latin rectangle procedure for finding
encoding circuits is fully algorithmic, it can be randomized by starting with a random
presentation of the Golay code. Alternatively, one can begin with a fixed encoding circuit
and randomly permute the seven rounds of CNOT gates (all of the CNOTs commute). The
Golay code is preserved by qubit permutations in a symmetry group known as the Mathieu
group M23.

1 Therefore another option is to permute encoding circuits based on random
elements of M23. By trying roughly 105 random pairs, we found 14 pairs of ancillas that
were fully fault-tolerant against X errors. Of the

(
14
2

)
combinations, six were also fully

fault-tolerant against Z errors. Table 6.4 presents one such set.

Overlap method for preparing encoded |0〉

Ideally, though, we could use preparation circuits based on the overlap optimization
of Section 6.1.2. The smaller number of correlated errors produced by Figure 6.6 means
that it should be easier to find fault-tolerant circuits. However, unlike Latin rectangle
schedules the overlap-based schedule depends on a fixed code presentation and on a fixed
round ordering, since the CNOT gates do not commute.

To obtain randomized overlap method encoding circuits, we use the qubit permutation
symmetry of the Golay code and permute the qubits of Figure 6.6 according to a pseudo-
random element of the symmetry group M23. By analyzing the correlated error sets
of randomly permuted circuits, we have found many sets of fault-tolerant four-ancilla
preparation circuits. In fact, we have even found sets for which the fault order required for

1This symmetry is inherited from the classical 23-bit Golay code. See, e.g., [PBH98] pp. 1411. Generators
for this group can be obtained at [Gan99].
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1 2 3 4 5 6 7
2 0 22 7 11 4 8 19
3 9 19 4 8 7 1 6
10 5 1 0 6 14 7 9
12 1 0 14 5 22 11 4
13 6 8 22 9 0 4 5
15 4 5 9 14 19 22 7
16 14 7 5 4 11 6 8
17 8 11 6 19 5 0 1
18 7 9 1 22 8 5 11
20 19 6 11 7 1 14 22
21 11 4 19 0 6 9 14

(a) Ancilla 1

1 2 3 4 5 6 7
0 5 16 17 22 1 15 9
3 15 2 6 5 17 16 11
7 1 22 4 17 2 5 6
8 6 13 16 1 15 4 17
10 22 11 5 13 16 6 1
12 9 17 13 2 6 22 16
14 4 6 11 15 13 2 22
18 16 1 15 11 9 13 2
19 17 4 1 9 22 11 13
20 11 15 9 6 4 1 5
21 2 5 22 16 11 9 4

(b) Ancilla 2

1 2 3 4 5 6 7
1 21 16 7 13 10 15 0
2 16 7 12 0 18 19 13
3 13 0 15 12 19 10 20
4 12 21 18 20 7 13 10
5 6 13 21 10 0 18 19
8 18 19 13 21 15 20 16
9 19 6 10 15 20 7 21
11 20 12 6 7 13 16 15
14 7 18 20 16 21 0 6
17 0 15 19 6 16 21 12
22 10 20 16 19 6 12 18

(c) Ancilla 3

1 2 3 4 5 6 7
0 1 16 3 12 17 13 11
2 22 18 14 3 20 17 6
4 3 20 6 1 12 22 13
5 6 14 16 20 1 12 17
7 20 22 17 13 16 18 1
8 16 6 18 11 3 1 20
9 18 12 13 16 14 20 3
10 14 17 20 22 13 11 12
15 12 11 1 17 18 6 22
19 17 13 11 18 6 16 14
21 11 3 12 6 22 14 16

(d) Ancilla 4

Table 6.4: Four seven-round ancilla-preparation schedules. In each table, the entry in
row i, column j specifies the target qubit of a CNOT gate with control qubit i applied in
round j. Using these schedules in the verification circuit of Figure 6.9, the output encoded
|0〉 state is fully fault-tolerant against both X and Z errors.
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Ancilla Qubit permutation∣∣0
〉
2

(0, 20, 13, 7, 12, 14, 1)(2, 11)(3, 19, 5, 4, 8, 22, 6, 15, 10, 16, 9, 18, 21, 17)∣∣0
〉
3

(0, 14, 6, 12, 16, 2, 11, 22, 17, 21, 9, 20, 5, 7, 3, 13, 18, 4, 15, 1, 10, 8, 19)∣∣0
〉
4

(0, 12, 4, 17, 9, 6, 1)(2, 10, 18, 22, 21, 16, 13)(3, 11, 20, 15, 7, 19, 5)(8)(14)

Table 6.5: The first ancilla in Figure 6.9 is prepared using the circuit of Figure 6.6. The
other three ancillas are prepared in the same way, except with the qubits rearranged
according to the above permutations.

a weight-k error to pass verification is at least k + 1 (rather than k) for all k ≤ 2. This
reduces, for example, the probability of accumulating an uncorrectable error on the data
block by first a weight-two error in Z-error correction and then another weight-two error in
X-error correction. One such set of four permutations is given in Table 6.5.

6.4.3 Resource overhead

To evaluate the practical importance of our optimizations, we now analyze the resource
requirements of Steane-style error correction circuits based on ancillas prepared by Figure 6.9.
We use Monte Carlo simulation to compare overhead of our ancilla preparation and
verification circuits for the Golay code to that of standard circuits.

One natural measure for the overhead is the number of CNOT gates used to ready
an ancilla. Another overhead measure, important given the difficulty of scaling quantum
computers, is the space complexity, i.e., the number of qubits that must be dedicated
to ancilla preparation in a pipeline so that an ancilla is always ready in time for error
correction. We consider both measures.

As listed in the third column of Table 6.6, the overlap-based four-ancilla preparation and
verification circuit involves roughly a factor of four fewer CNOT gates than the standard
twelve-ancilla circuit. In fact, this understates the improvement. The overhead also depends
on the acceptance rates of each verification test. For an ancilla to leave the twelve-ancilla
circuit, it must pass eleven tests, compared to only three tests for the four-ancilla circuit.
The probability of passing all tests should be significantly higher for the optimized circuit,
and so one expects the ratio between the expected numbers of CNOT gates used by the two
circuits to be greater than four.

To estimate the expected overhead, each circuit was modeled and subjected to depolariz-
ing noise in a Monte Carlo computer simulation. We assumed that test results are available
soon enough that a failed verification circuit can be immediately aborted; later test failures
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Figure 6.10: Overhead estimates for the twelve-ancilla ancilla preparation and verification
circuit and for each of our optimized circuits. The Steane-4 circuit is based on ancil-
las prepared according to Table 6.4. Overlap-4 is based on ancillas prepared according
to Figure 6.6 and Table 6.5. (a) Expected number of CNOT gates required to produce a
verified encoded |0〉. (b) Number of qubits required to produce one verified encoded |0〉, in
expectation, at every time step. Standard error intervals are too small to be seen here.
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are therefore the most costly. This assumption impacts the twelve-ancilla circuits the most,
since there are many ways to construct the hierarchy of verifications. The circuit shown
in Figure 6.8 is a reasonable choice here because only six of the verification tests depend
on results of previous tests. Other circuits—see, e.g., [Rei06a, Sec. 2.3.2]—may contain as
many as nine dependent tests.

Estimates of the expected number of CNOT gates required for each circuit are given in
the last column of Table 6.6 for the CNOT depolarization rate p = 10−3, and are plotted
versus p in Figure 6.10a. At p = 10−3, the overlap method reduces the expected number
of CNOT gates by roughly a factor of 4.5, compared to the twelve-ancilla circuit, and the
improvement for our optimized Latin rectangle scheme is a factor of 3.6. At lower error
rates, the improvement is less. To investigate the effects of different error parameters, we
also considered setting the rest error rate to zero; in this case, the expected number of
CNOT gates used in the overlap circuit further decreases by about 11 percent, compared
to less than four percent for our other four-ancilla circuit and less than two percent for the
twelve-ancilla circuit. The larger improvement for the overlap circuit is due primarily to the
fact that the overlap preparation method replaces many CNOT gates with rest locations.

To evaluate the space overhead, we plot in Figure 6.10b the number of qubits required
to produce a single verified encoded |0〉, in expectation, per time step, for each of the
preparation and verification circuits. Thus, for example, the space overhead for a pipeline
to produce a single unverified ancilla state is 8 · 23 = 184 qubits; at any given time step,
one 23-qubit block is initialized, and CNOT gates are applied to seven other blocks—one
per round in, e.g., Figure 6.6—so that one ancilla is prepared. (In fact, the overhead is
slightly less than this since some of the qubits in the block can be prepared during rounds
one and two.) Estimates are calculated recursively by computing E[qubits] = (E[qubits]1
+ E[qubits]2)/Pr[accept] for each verification step where the numerator is the expected
number of qubits required to prepare the two states used in that verification step and
Pr[accept] is the probability that the verification measurement detects no errors. The
results at p = 10−3 are given in the second column of Table 6.6. Both of our optimized
schemes reduce the required space by a factor of 3.6 at p = 10−3.

To judge the significance of these results, recall that the ancilla production pipeline
can consume the majority of resources in a fault-tolerant quantum computer. In the case
of [IWPK08], physical ancilla production space is proportional to the number of CNOT
gates in the pipeline. A factor of 4.5 reduction in the CNOT overhead for ancilla preparation
should give, very roughly, about a 50 percent improvement in the total footprint of the
quantum computer.
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Verification Pr[accept] E[# qubits] min # CNOTs E[# CNOTs]
Steane-12 0.419± 0.001 5183± 14.2 1177 1782± 4.9
Steane-4 0.648± 0.002 1413± 3.7 377 497.6± 1.3
Overlap-4 0.633± 0.002 1399± 3.8 297 399.4± 1.1

Table 6.6: Estimates of the acceptance probability and overhead for the twelve-ancilla
fault-tolerant ancilla preparation circuit and our two optimized circuits, at a depolarizing
noise rate of p = 10−3. The column labeled Pr[accept] gives the probability that all auxiliary
ancilla measurements in the verification circuit detect no errors. The next column, E[qubits],
gives the expected number of physical qubits required to produce one verified encoded |0〉.
This is calculated recursively, by computing the expected number of qubits needed to pass
each verification step. The last two columns specify, respectively, the minimum number of
CNOT gates and the expected number of CNOT gates required to produce a single verified
ancilla.
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Chapter 7

Improving threshold lower bounds

This chapter is based on material that appears in [PR12].

The malignant set counting technique discussed in Chapter 4 provides a simple way
to calculate lower bounds on the the noise threshold, particularly for low-distance codes.
However, it suffers from two limitations. First, the number of faulty gate sets of size k
scales exponentially with k. A large fraction of faulty sets may be harmless, but counting
all of them is computationally intractable. Second, the assumed noise model is adversarial
and, while more general than the model of independent Pauli channels, is probably overly
pessimistic.

The first limitation is particularly troublesome if we wish to prove high thresholds for
large codes which can correct many more sets of errors than smaller codes. Large codes
can be more efficient than small codes because they require fewer levels of concatenation in
order to achieve the same level of error protection. Using large codes could, therefore, lead
to significant reduction in resource overhead.

Instead of exhaustively counting all subsets of locations, Aliferis and Cross have used
Monte Carlo sampling in order to estimate the fraction of malignant subsets to within
prescribed confidence intervals [AC07]. Despite this improvement, the scaling of the
population size is still exponential, and so the ability to count large subsets is limited.

In this chapter, we show how malignant set counting can be adapted to prove good
thresholds for large codes while simultaneously removing the requirement for an adversarial
noise model. The adaptation is based on two main ideas. First, when errors occur
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independently, it is possible to partition the error correction circuit into small subcircuits.
Malignant subsets within each subcircuit can be counted separately, and then recombined
in an efficient way. By combining information from each subcircuit, we can effectively count
very large sets.

The second main idea involves the way that error rates are calculated for each level
of code concatenation. Standard malignant set counting calculates the probability that
any uncorrectable error occurs during execution of the encoded gate. This error rate can
then be re-used to calculate similar probabilities at increasing levels of concatenation. We
instead keep track of the probability of each type of uncorrectable error that can occur.
This can significantly improve the accuracy of the effective noise model for higher levels of
concatenation.

For example, say that the probability that an encoded gate introduces a logical Z error
is 0.01 and that the probability of a logical X error is the same. In standard malignant
set counting, this would be treated as a total error probability of 0.02 at the next level of
concatenation. Using our method, error rates are reported separately, potentially saving a
factor of two in this example.

By combining these two ideas and including error-correction optimizations from Chap-
ter 6, we can calculate rigorous lower bounds on the noise threshold for relatively large
codes. As a concrete example we calculate an error-rate bound of 0.00132 per gate for
the 23-qubit Golay code. This bound is the best known for any code and is an order of
magnitude improvement over the best previous lower bound for the Golay code [AC07],
based on an adversarial noise model.

7.1 Requirements and assumptions

Before describing the adapted malignant set counting procedure in detail, it is worthwhile
to examine the requirements that will be imposed on the noise model and fault-tolerance
scheme. There are essentially only two requirements:

1. errors must occur independently at each circuit location, and

2. error-correction and gate gadgets must be strictly fault-tolerant.

Roughly, the strict fault-tolerance requirement means that for a code that corrects up to t
errors, the probability that the circuit causes a weight-k error on the data is no more than
O(pk) for all k ≤ t and gate error rate p. This requirement was described in Section 4.2.2.
We begin, instead, with the noise model.
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7.1.1 Noise model

An important requirement of the modified malignant set counting technique is that errors
occur independently at each physical circuit location. Indeed, one primary motivation for
modifying the malignant set counting procedure was to move away from the adversarial
noise model in which circuit locations fail independently, but the errors at the failing
locations are correlated.

We study noisy circuits constructed from the following physical operations: |0〉 and |+〉
initialization, a CNOT gate, and single-qubit measurement in the Z and X eigenbases.
Every qubit in the computer can be involved in at most one operation per discrete time
step. CNOT gates are allowed between arbitrary qubits, without geometry constraints.
Resting qubits are also subject to noise.

Definition 7.1.1 (Independent Pauli noise with parameter γ). Choose weights wab ∈ [0, 1]
for all a, b ∈ {I,X, Y, Z} such that

∑

a,b:ab 6=II
wab = 15 . (7.1)

Additionally, choose weights w|0〉, w|+〉, wmX , wmZ , wrX , wrY , wrZ ∈ [0, 1/γ], such that (wrX +
wrY + wrZ)γ ≤ 1.

Then noisy operations are modeled by:

1. A noisy CNOT gate is a perfect CNOT gate followed by, with probability 15γ, a
non-trivial two-qubit Pauli error drawn from {I,X, Y, Z}⊗2 \ {I ⊗ I} according to
{wab/15}.

2. Noisy preparation of a |0〉 state is modeled as ideal preparation of |0〉, followed by
application of an X error with probability w|0〉γ. Similarly, noisy preparation of |+〉
is modeled as ideal preparation of |+〉 with probability 1− w|+〉γ and of |−〉 = Z |+〉
with probability w|+〉γ.

3. Noisy Z-basis (|0〉 , |1〉) measurement is modeled by applying an X error with probability
wmXγ, followed by ideal Z-basis measurement. Similarly, noisy X-basis (|+〉 , |−〉)
measurement is modeled as ideal measurement except preceded by a Z error with
probability wmZγ.

4. A noisy rest operation is modeled as applying either the identity gate, with probability
1− (wrX + wrY + wrZ)γ, or a Pauli error a ∈ {X, Y, Z} with probability wraγ.
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All locations fail independently of each other.

Informally, this noise model works by modeling each physical location as an ideal
operation, possibly followed (or preceded) by an error on the corresponding qubits. When
an error occurs, it is selected from a probability distribution defined by the weights for
that location. Definition 7.1.1 defines weights only for CNOT, qubit preparation and
measurement in the X and Z bases, and rest locations. This set of locations is sufficient for
the fault-tolerance schemes considered in this chapter. However, additional locations (e.g.,
Hadamard) can be added as necessary. The counting procedure and threshold calculations
of this section can be extended to accommodate any number of location types.

The condition imposed by (7.1) is for convenience and concreteness, only. A sum of 15
was chosen to correspond nicely with a depolarizing noise model in which wab = 1 for all
a, b.

The noise model described by Definition 7.1.1 is quite flexible and greatly improves our
ability to analyze fault-tolerant quantum circuits when compared to an adversarial noise
model. However, it is weaker than adversarial noise and may seem artificial compared to
even more general, or more physically realistic noise models described in Chapter 4.

We justify Definition 7.1.1 in two ways. First, as a special case, this noise model
describes independent depolarizing noise, which is commonly used in Monte Carlo threshold
estimates [Zal96, Ste03, Rei04, Kni05, DHN06, SDT07, CDT09, LPSB13]. Therefore, our
adapted malignant set counting technique can be used to obtain rigorous threshold lower
bounds that can be more fairly compared with Monte Carlo threshold estimates. Second,
although physical noise may be complicated, methods for rigorously replacing realistic
physical noise with simpler models do exist. For example, Magesan et al. have shown how to
replace an arbitrary single-qubit channel with a Pauli channel that approximates the original
channel as closely as possible without underestimating the error strength [MPGC13].

During error counting, X and Z errors are usually considered separately and the error
probability is computed by omitting the Z or X part of each error, respectively. For
example, when considering only X, error XY is equivalent to XX, XZ is equivalent to
XI and so on. Thus, the marginal distribution of X errors for a CNOT is:

Pr[IX] = wIX + wIY + wZX + wZY ,

Pr[XI] = wXI + wY I + wXZ + wY Z ,

Pr[XX] = wXX + wXY + wY X + wY Y .

(7.2)

The Z error distribution for CNOT, and the X and Z error distributions for rest locations
are calculated similarly. When preparing |0〉 or measuring in the Z basis, no Z errors are
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possible, and similarly no X errors are possible when preparing |+〉 or measuring in the X
basis.

For computer analysis, it is convenient to choose integer-valued weights for each location.
Any noise model that satisfies Definition 7.1.1 can be approximated to arbitrary precision
with integer weights by relaxing (7.1) and rescaling γ.

7.1.2 Additional assumptions

In order to both reduce the time-complexity of the counting procedure, and to simplify its
analysis we will make a few additional assumptions. First, we assume that the quantum
error-correcting code (or codes) in use are CSS codes. Specifically, when X and Z errors
can be corrected independently, as is the case for CSS codes, the number of errors that
must be counted is significantly reduced. This optimization is described in Section 7.2.

The second simplifying assumption is that quantum gates are not geometrically con-
strained. That is, multi-qubit gates can act on any set of qubits of appropriate size, and
the properties of a quantum gate do not depend on the qubits on which the gate acts or
the position of the gate within the circuit.

The unconstrained geometry assumption is common to many threshold calculations,
including the AGP method of malignant set counting. AGP do not require use of CSS
codes. However, nearly all fault-tolerance schemes that have been studied use CSS codes.
(Some exceptions include [DS96, Got98].)

Finally, we will assume some level of determinism in the error-correction gadgets.
Specifically, syndrome measurements and corresponding corrections must be deterministic,
though offline procedures such as ancilla preparation and verification may still be non-
deterministic. In particular, verification procedures such as those described in Chapter 6
are allowed.

7.2 Splitting up the extended rectangle

Perhaps the biggest drawback of malignant set counting for high-distance codes is that
obtaining an accurate threshold value requires counting large subsets, but the counting
complexity scales poorly with subset size. The number of subsets of size k in an exRec with
n locations scales as

(
n
k

)
, which is exponential in k.
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Monte Carlo simulations of circuits using the 23-qubit Golay code [Ste03, DHN06,
CDT09] indicate that the depolarizing noise threshold should be on the order of p = 10−3.
Unfortunately, it is not straightforward to prove such a high threshold using malignant set
counting. For example, say that we check for malignancy all location subsets of size up to
kgood, and we assume that all larger subsets are malignant. Then the estimate we obtain
for the probability of an incorrect rectangle is at least

n∑

k=kgood+1

(
n

k

)
pk(1− p)n−k . (7.3)

Using optimized circuits from Chapter 6, the size of CNOT exRec for the Golay code is
n = 5439. For this size and p = 10−3, probability of incorrectness drops below 10−3 only
for kgood ≥ 14. However, there are more than 1041 subsets of size at most 14, so checking
them one at a time is computationally intractable.

Instead of checking each set for malignancy, one can sample random sets of locations
in order to estimate the fraction that are malignant. This technique, called malignant set
sampling, can provide threshold estimates with statistical confidence intervals. However,
both malignant set counting and sampling techniques study the threshold for worst-case
adversarial noise, and may be overly conservative for a more physically realistic, non-
adversarial noise model such as depolarizing noise. For example, malignant set sampling
results from [AC07] estimate a threshold of only p ≈ 10−4 for the Golay code.

On the other hand, when a large number of errors occur, it is relatively unlikely that all
of the errors occur in the same region. Rather, we expect errors to be distributed roughly
evenly throughout the exRec. We therefore choose to divide the exRec into a hierarchy of
components and sub-components. We then compute an upper bound on the probability of
each error that a component may produce, by counting location sets up to a certain small
size. At the exRec level, we synthesize the component error bounds into upper bounds
on the probability that the rectangle is incorrect. The resulting error probabilities are
treated as an effective transformed noise model for the encoded gate. With some care, the
transformed noise model can be fed recursively back into the procedure to determine an
effective noise model for the next level of encoding, and so on. See Section 7.5.1.

Effectively, dividing the exRec into components allows us to account efficiently for even
very large location subsets. Most large sets will be roughly evenly divided between the
components, with only a small number of locations in each component. The remainder of
this section outlines the exRec component structure.
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χin, ζin Component with K failures χout, ζout

Figure 7.1: A circuit component with input error (χin, ζin) and output error (χout, ζout)

7.2.1 Circuit components

We will divide the exRec into its encoded operation and its error corrections. The error
corrections will each divide into X-error correction and Z-error correction, and further
recursive divisions will continue until reaching the physical location level.

Each component in the hierarchy has input error (χin, ζin), some number of internal
failures K, and output error (χout, ζout) which depends on the internal failures and on the
input error (see Figure 7.1). Here, the notation (χ, ζ) indicates an error equal to the product
χζ where χ is a tensor product of X and I operators and ζ is a tensor product of Z and I
operators. For every error equivalence class on the inputs and outputs and for every k ∈ N,
we would like to compute

Pr
[
(χout, ζout) = (xout, zout), K = k | (χin, ζin) = (xin, zin)

]
, (7.4)

the probability that there are exactly k failures and the output error is (xout, zout) conditioned
on the input error (xin, zin).

For components that are physical gate locations the probability in (7.4) is defined by the
appropriate Pauli-channel noise model (Definition 7.1.1). Larger components are analyzed
by first analyzing each enclosed sub-component. At the exRec level the LEC, transversal Ga
and TEC components provide all of the information necessary to determine the probability
that the enclosed rectangle is incorrect. Indeed, we shall see in Section 7.2.3 that they
contain enough information to compute the probability for each way that the rectangle can
be incorrect.

There are, however, two logistical problems. First, on each n-qubit code block, there
2n+1 inequivalent Pauli errors in total (assuming a single encoded qubit per block). For
a component involving two code blocks, this means we should compute for each k up to
(2n+1)4 quantities, one for each combination of input and output errors. Second, since
there are

(
n
k

)
size-k subsets of n locations and since each CNOT gate has 15 different ways

to fail, a computation that accounts for all possibilities scales roughly as
(
n
k

)
15k. Such a

computation is feasible only for small k and small n.
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The first problem can be solved by observing that X errors and Z errors can be
corrected independently for CSS codes. Furthermore, error correction can be accomplished
without using gates that mix X and Z, so X and Z errors mostly propagate independently.
There are cases, such as ancilla verification, in which X and Z errors cannot be treated
independently entirely. A specific example of this issue is discussed in Section 7.7.2. Still,
for most components, the X-error part of the output of a component depends only on the
X-error part of the input and the X failures that occur inside the component. A similar
observation holds for Z errors. Thus, expression (7.4) may be split into separate X and Z
parts:

Pr[χout = xout, KX = k|χin = xin] (7.5a)

Pr[ζout = zout, KZ = k|ζin = zin] . (7.5b)

Here, the random variable KX is the number of failures inside the component that contain
an X when decomposed into a tensor product of Pauli operators. The value KZ is similarly
defined for Z. When considering X and Z errors separately, the input and output of
a two-block component contain at most roughly 2n inequivalent errors, for codes that
protect evenly against X and Z errors, and the worst case combination is a large but more
manageable 22n cases.

The second problem is eliminated by noting that, for a fixed k, the probability of an
order-k fault decreases rapidly as the size of the component decreases. For example, for
p = 10−3, the probability of an order-ten fault in an exRec of size 5000 is about 0.018.
However, the probability that all ten failures are located in a subset of 1000 locations is less
than 10−7. Thus there is little gain in counting errors of order-ten or higher in components
of small size.

In general, the probability that a component contains a fault of order greater than kgood
can be bounded according to

Pr[K > kgood] ≤
n∑

k=kgood+1

(
n

k

)
(1− p)n−kpk , (7.6)

where p is an upper bound on the probability of a physical gate failure. (A tighter bound
can be achieved by considering separate k for each location type. See [PR12] Appendix A.)
We will choose a value of kgood for each component and then pessimistically assume that all
faults of order greater than kgood within the component cause the rectangle to be incorrect.
For large enough values of kgood the overall impact on the threshold is negligible. There is
a tradeoff here between running time and accuracy. A larger value of kgood yields a more
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accurate bound on the probability that the rectangle is incorrect. A smaller value of kgood
is easier to compute. We must choose for each component a suitable kgood that balances
the two.

In the end we are left with two sets of faults for each component, those of order at
most kgood and those of order greater than kgood. Each fault in the first set is counted to
obtain accurate estimates of (7.5a) and (7.5b). When a fault from this set occurs we call it
a good event. Faults in the second set are not counted and are instead bounded using (7.6)
and pessimistically added to the final incorrectness probability bounds for the rectangle.
When a fault from this set occurs we call it a bad event. The probability that the rectangle
is incorrect is then upper-bounded by

Pr[incorrect] ≤ Pr[incorrect, good] + Pr[bad] . (7.7)

In general, there are four quantities we need to upper bound for each component:

Pr[χout = xout, KX = k, goodX |χin], (7.8a)

Pr[ζout = zout, KZ = k, goodZ |ζin], (7.8b)

Pr[badX ], (7.8c)

Pr[badZ ] . (7.8d)

The event goodX ≡ ¬badX occurs when there is a set of X-error failures in the component
that we choose to count. It will usually depend only on kgood in which case goodX ⇔
(KX ≤ kgood). In some cases goodX may depend on a vector ~k representing the number of
X-error failures across multiple sub-components. The event goodZ ≡ ¬badZ is similarly
defined for Z.

Finally, it is assumed that most components operate deterministically. Non-deterministic
components can be accommodated, however. If, for example, the output errors of a
component are dependent on a “successful” measurement outcome, then the component
must also report the probability of success. Then, the component output probabilities can
be bounded using Bayes’s rule

Pr[output|success] =
Pr[output, success]

Pr[success]
≤ Pr[output]

Pr[success]
. (7.9)

In the remainder of this section we outline the procedure for computing the above
quantities for the error-correction and exRec components. Details of lower level components,
such as ancilla preparation and verification, depend on the choice of error-correcting code.
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Z-error correction X-error correction

(a) CSS error-correction component

LEC-A

Ga

TEC-A

LEC-B TEC-B

(b) Two-qubit exRec component

Figure 7.2: (a) The error-correction component for a CSS code consists of independent
Z-error and X-error corrections. Here, we have chosen an arbitrary convention that X-error
correction follows Z-error correction. (b) The (encoded) two-qubit exRec consists of two
leading error-correction (LEC) components, a gate gadget (Ga) component and two trailing
error-correction (TEC) components.

7.2.2 The error-correction component

An error-correction component consists of Z-error correction and X-error correction, as
shown in Figure 7.2a. (Recall that CSS codes admit independent correction of X and Z
errors.) After extracting the error syndrome, the lowest-weight correction is computed. The
correction itself can be applied classically, and therefore without error, by a change in the
qubit’s Pauli frame [Kni05].

There are two types of error correction components: leading error correction (LEC) and
trailing error correction (TEC). For the LEC, we may assume that the input errors χin

and ζin are both zero. This is because we have assumed that syndrome measurement and
correction are deterministic. The probability that the rectangle is incorrect depends only
on the syndrome of the output of the LEC and that syndrome depends only on the errors
inside of the LEC [CDT09].

To be more precise, consider the two errors X1 and X1XL, where X1 = X ⊗ In−1 and
XL is the logical X operator of the code. These two errors yield the same syndrome, but
they are inequivalent since X1XL flips the logical state of the encoded qubit, and X1 does
not. But correctness of the rectangle that follows is independent of the logical state of
the input. The rectangle is not accountable for a logical error that occurred prior to its
execution. Accordingly, we may treat X1 and X1XL as equivalent errors in this case. More
generally, we may assume that all of the errors at the output of the LEC are correctable,
since the relationship with the logical operator is irrelevant. This reduces the number of
inequivalent errors at the output of each LEC by a factor of two, and therefore reduces the
counting complexity by the same amount.
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For trailing error correction, we care only about the result of applying a logical decoder
to the output. In other words, we only need to know whether the output errors χout and
ζout represent correctable errors or not. The four relevant quantities are:

LEC TEC
Pr[χout = xout, KX = k, good|χin = 0], Pr[D(χout) = d,KX = k, good|χin = xin],
Pr[ζout = zout, KZ = k, good|ζin = 0], Pr[D(ζout) = d,KZ = k, good|ζin = zin],

where d ∈ {0, 1} and D(e) identifies whether e is a correctable error (0) or an uncorrectable
error (1). That is, D(e) = 1 if and only if e decodes to a nontrivial Pauli error. The details
of D depend on the choice of error-correcting code.

7.2.3 The exRec component

A two-qubit exRec, shown in Figure 7.2b, is divided into five components: two leading error
corrections, gate gadget, and two trailing error corrections. At this level, we are interested
in malignant events—the events for which the rectangle is incorrect. Furthermore, when a
malignant event occurs we would like to know how the rectangle is incorrect.

Let |ψ1〉 be the two-qubit state obtained by applying ideal decoders on the two blocks
of the Ga immediately following the LECs. Similarly let |ψ2〉 be the state obtained by
applying ideal decoders immediately following the TECs. Then define malIX as the event
that (I ⊗X)UGa |ψ1〉 = |ψ2〉, where UGa is the two-qubit unitary corresponding to the ideal
Ga gate. Similarly define the events malXI , malXX , malIZ , malZI , malZZ . The event malE
can be informally interpreted as the event in which the rectangle introduces a logical error
E.

The relevant quantities are

Pr[MX , KX = k, good], and (7.10a)

Pr[MZ , KZ = k, good], (7.10b)

for MX ∈ {malIX ,malXI ,malXX} and MZ ∈ {malIZ ,malZI ,malZZ}. Each of the malignant
events can be determined by propagating errors from the output of the LECs and Ga
through the TECs. For example, let x1 and x2 be the X errors on the outputs of the first
and second LECs, respectively. Let x′1 and x′2 be the X result of propagating x1 and x2 to
the input of the TECs and combining with X error x3 of the Ga. Then the probability of
the malignant IX even is given by

Pr[malIX |x1, x2, x3] = Pr[D(χout) = 0|χin = x′1] · Pr[D(χout) = 1|χin = x′2] , (7.11)
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where as before, D(x) determines whether x is a correctable error (0) or not (1). The
quantities on the right-hand side can be readily obtained from the TEC components. Recall
from Section 7.2.2 that the errors x1, x2 are assumed to be correctable errors. Therefore,
D(χout) = 0 corresponds to a logical identity operator and D(χout) = 1 corresponds to a
logical X. Probabilities of the other malignant events can be similarly calculated.

When counting X and Z errors separately, it is not possible to compute logical Y error
quantities and the analysis will therefore double-count Y errors. Intuitively this is not a
great loss, because the correlations between X and Z are much smaller at this level than
they are in the original noise model. In Section 7.5 we show how to use (7.10) to compute
a lower bound on the threshold.

7.3 Provisions for computer analysis

The component quantities (7.8) are conceptually straightforward and easy to compute
numerically for a fixed γ. However, we would like to compute exact bounds that hold for a
range of γ. In this section we discuss a few of the implementation details that allow for
maintaining the bounds as polynomials with integer coefficients.

The ultimate goal is to compute upper bounds on the probabilities of malignant events
at the outermost layer of the exRec. That is, we want to compute Equations (7.8) and
combine them to get, for example,

Pr[malIX(~χ)|accept] ≤ Pr[malIX(~χ), goodX |accept] + Pr[badX |accept] . (7.12)

Here, accept is the event that any and all non-deterministic sub-components (ancilla verifi-
cation, for example) accept or succeed. The right-hand side of this inequality decomposes
into sums of individual component quantities of the form

Pr[χ = x,KX = k] =
∑

~|k|=k

Pr[χ = x, ~KX = ~k] ,
(7.13)

where ~k = (k1, k2, k3, k4) expresses the number of failing CNOT, rest, |0〉 preparation and
Z-basis measurements, respectively.

For each term in the sum, the number of failures for each type of location is fixed, but
the particular locations on which those failures occur are not fixed, nor are the errors that

occur at those locations. Let L(~k) := {~l : ( ~|l1|, ~|l2|, ~|l3|, ~|l4|) = ~k} be the set of all possible
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tuples of failing locations consistent with ~k. Also, let E(~l) be the set of all possible tuples of

X errors consistent with failures at all locations ~l. To fix the locations and the errors, use

Pr[χ = x, ~KX = ~k] =
∑

~l∈L(~k),~e∈E(~l)

Pr[χ = x, ~E = ~e]

=
∑

~l∈L(~k),~e∈E(~l)

I(x,~e) Pr[ ~E = ~e]
(7.14)

where in the second line we have made the substitution I(x,~e) = Pr[χ = x| ~E = ~e].

The indicator function I(x,~e) takes value one if the component produces the error x
for a given “configuration” of errors ~e and value zero otherwise. The error configuration
~e fully specifies the locations that have failed and the error at each failing location. Let
~n = (n1, n2, n3, n4) be the total number of CNOT, rest, |0〉 preparations and Z-basis
measurements in the component, respectively. Let W1 = wIX+wIY +wXI+wY I+wXX+wY Y
be the sum of all of the CNOT X-error weights, let W2 = wrX +wrY , W3 = w|0〉, W4 = wmX

and W := max{W1,W2,W3,W4}. For simplicity, assume also that wIX = wIY = wXI =
wY I = wXX = wY Y =: w1, wrX = wrY =: w2 and let w|0〉 =: w3. Then from the marginal
noise model discussed in Section 7.1.1 and a configuration of X errors ~e we have

Pr[ ~E = ~e] =
4∏

j=1

(1−Wjγ)nj
(

wjγ

1−Wjγ

)kj

≤ A~n

(
γ

1−Wγ

)k 4∏

j=1

w
kj
j ,

(7.15)

where A~n :=
∏4

j=1(1 −Wjγ)nj . This inequality is a reasonable approximation for small
γ. It allows us to move γ into a prefactor in front of the sum of (7.13) and, assuming
integer weights {wj}, permits an integer representation in the computer analysis. Indeed,
substituting back into equation (7.13) gives

Pr[χ = x,KX = k] ≤ A~n

(
γ

1−Wγ

)k ∑

~|k|=k
~l∈L(~k),~e∈E(~l)

I(x,~e)
4∏

j=1

w
kj
j . (7.16)

Another advantage of counting component probabilities in this way, is that the counts
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compose nicely. If we apply (7.13) to itself and combine with (7.16), we end up with

Pr[χ = x,KX = k] =
∑

~|k|=k
~x∈out(x)

∏

i

Pr[χj = xi, KX,i = ki]

≤ A~n

(
γ

1−Wγ

)k [ ∑

~|k|=k
~x∈out(x)

∏

i

∑

~|ki|=ki
~l∈L(~ki),~e∈E(~l)

I(xj, ~e)
4∏

j=1

w
kj
j

]
.

(7.17)

The substitution made in the first line can be applied successively for each sub-component i.
Once the lowest level component is reached, we use (7.16) to push dependence on γ outside
of the sum. The integer value inside of the brackets is the discrete convolution of weighted
counts from the sub-components summed over all possible failure partitions ~k of size k. It
is a weighted count of all possible ways to produce error x with an order k fault.

A similar formula holds for the general case in which each of the weights may be unique
(i.e., wIX 6= wIY 6= wXI . . ., etc.). In general, the product of weights

∏4
j=1w

kj
j is more

complicated and may depend on the error configuration ~e.

The primary task of the computer analysis is to compute I for each (good) error
configuration, starting with the lowest level component, and to store the resulting weighted
sums

∑

~|k|=k
~l∈L(~k),~e∈E(~l)

I(x,~e)
4∏

j=1

w
kj
j (7.18)

(or equivalent) for use in the counting of larger components. At each level, counts for the

sub-components are convolved to generate new counts. The prefactor A~n

(
γ

1−Wγ

)k
need

only be computed at the end, when calculating the threshold.

7.4 Calculating the pseudo-threshold

One quantity that can be immediately calculated from our counts is the so-called pseudo-
threshold [SCCA06] for the CNOT location. The pseudo-threshold for location l is defined

as the solution to the equation p = p
(1)
l , where p is the probability that the physical (level-0)

location fails, and p
(1)
l is the probability that the 1-Rec for location l is incorrect. We may
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compute a lower bound on the pseudo-threshold for CNOT by upper bounding

p
(1)
cnot ≤ Pr[bad|accept] +

∑

k

(
Pr[malX , KX = k, good] + Pr[malZ , KZ = k, good]

)
, (7.19)

where malX ≡ (malIX ∨malXI ∨malXX), malZ ≡ (malIZ ∨malZI ∨malZZ).

The pseudo-threshold is of practical interest for cases in which a finite failure probability
is acceptable and only a few levels of concatenation are desired. For example, when the
physical failure rate is sufficiently below the pseudo-threshold, a large code code could be
used to bootstrap into other codes with lower overhead.

The pseudo-threshold is useful to us for two reasons. First, pseudo-threshold estimates
have been calculated for a variety of fault-tolerant quantum circuits and codes [CDT09],
and therefore serve as a reference for our counting results. Second, it was conjectured
by [SCCA06] that the pseudo-threshold is an upper bound on the asymptotic threshold.
It thus provides a reasonable target for our calculation of the asymptotic threshold lower
bound, which requires a noise strength maximum to be specified.

7.5 Calculating the asymptotic threshold

Traditionally, malignant sets are those for which any combination of Pauli errors at the
corresponding locations combine to cause the enclosed rectangle to be incorrect. Our malig-
nant sets are different. We count subsets of faulty locations, but the counted information
is synthesized into error probability upper bounds based on a particular noise model and
error correction scheme.

In this section we outline an alternative method for rigorously lower bounding the
noise threshold that is tailored specifically to the information obtained by our counting
procedure. The basic idea is to treat each level-one rectangle in the level-two simulation as
a single “location” with a transformed noise model based on the malignant event upper
bounds obtained in Section 7.2. In particular, we show how to treat each level-one exRec
independently while maintaining valid upper bounds on the error probabilities.

The asymptotic noise threshold is defined as the largest value γth such that, for all
γ < γth, the probability that the fault-tolerant simulation succeeds can be made arbitrarily
close to one by using sufficiently many levels of code concatenation. To prove a lower bound
on the threshold we must show, in particular, that the probability of an incorrect CNOT
k-Rec decreases monotonically with k for all γ < γth. Our counting technique gives an
upper bound on the probability that a CNOT 1-Rec is incorrect. We now show how to
upper bound incorrectness for level-two and higher and therefore lower bound γth.
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7.5.1 Preserving independent Pauli noise under level reduction

Consider an isolated level-one CNOT exRec. Let Pr[malE] be the probability that the
malignant event malE occurs. For this event, the enclosed 1-Rec behaves as an encoded
CNOT gate followed by a two-block error that, when ideally decoded, leaves a two-qubit
error E on the decoded state. Then our counting technique provides upper bounds on
Pr[malE] for E ∈ {IX,XI,XX, IZ, ZI, ZZ}. These upper bounds can be viewed as an
error model for the CNOT 1-Rec in which the correlations between X and Z errors are
unknown.

We would now like to analyze the level-two CNOT exRec. Ideally, we could treat each
1-Rec in the level-two simulation as a single “location” and use the error model obtained
from level-one to describe the probability of failure. Then level-two analysis could proceed
by feeding this “transformed” error model back into the counting procedure in order to
compute Pr[malE] for the CNOT 2-Rec.

However, the transformed error model is based on analysis of an isolated level-one CNOT
exRec. A typical level-one simulation will contain many exRecs, and adjacent exRecs may
share error corrections at which point they can no longer be considered independently.

The reason that level reduction works when counting sets of malignant locations is
because exRecs with incorrect rectangles are replaced with faulty gates in the same way
regardless of the malignant event that actually occurs. The quantity used to bound
incorrectness probability is strictly non-increasing as locations (i.e., TECs) are removed.
To see this, consider sets of exRec locations of size k and denote the set of all such sets
by Sk. Let M ⊆ Sk be those sets for which some combination of nontrivial errors at the k
locations causes the rectangle to be incorrect (i.e., the malignant sets). The probability
that the rectangle is incorrect due to failures at exactly k locations is then no more than
|M | pk. If an error correction is removed from the exRec, some of the sets in M now contain
fewer than k exRec locations. The remaining sets with k exRec locations are those that do
not contain a location in the removed error correction. The number of such sets is at most
|M | and so the original bound on the incorrectness probability still holds.

The disadvantage to this approach for non-adversarial noise models is that it fails to
consider all of the available information. In particular, for a fixed set of malignant locations
it assumes the worst-case error for each location. The probability that a given set of k
locations is actually malignant can be significantly less than pk. To obtain a more accurate
analysis of the second level, we would like to replace each incorrect 1-Rec according to the
malignant event that has actually occurred.

Our transformed noise model of an isolated CNOT exRec provides upper bounds on the
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LEC-A •
{X′, I′}

TEC-A
{X, I}

Figure 7.3: Upper block of the CNOT exRec. The error at the output of the TEC is either
correctable (I), or not (X). Similarly the error immediately preceding the TEC is either
correctable (I′) or not (X′).

probability of each type of malignant event, but we must show that the bounds still hold
when exRecs overlap. Unfortunately, the bounds almost certainly will not hold. Consider,
for example, the control block of the CNOT exRec, shown in Figure 7.3. Assume that
the error immediately preceding the transversal CNOT is correctable (the error itself is
not important). Let X be the event that an uncorrectable X error exists on the output
of the TEC and I be the event that the error on the output is correctable. In other
words X ≡ (malXI ∨ malXX) and I ≡ ¬X. Then define X′ ≡ ¬I′ as the event that an
uncorrectable X error exists on the block following the transversal CNOT but before error
correction. Pr[malXI ] will be non-increasing when removing the trailing error correction only
if Pr[X′] ≤ Pr[X]. On the other hand, Pr[malIX ] will be non-increasing only if Pr[I′] ≤ Pr[I].
Since Pr[X] + Pr[I] = Pr[X′] + Pr[I′] = 1, both conditions are satisfied only if Pr[X] = Pr[X′]
and Pr[I] = Pr[I′], which of course is highly unlikely.

In order to ensure a proper upper bound on each of the malignant event probabilities,
we must calculate upper bounds for the complete exRec and for incomplete exRecs in which
one or more trailing error corrections have been removed. Calculations for the complete
exRec were discussed in Section 7.2.3. Calculations for the incomplete exRecs are the same
except that some of the TEC components are not considered. Bounding the malignant
event probability is a matter of finding a polynomial that bounds all four cases. Details of
the bounding polynomial can be found in Appendix D of [PR12].

Once proper bounds on the level-one malignant event probabilities are determined,
we would like to plug the transformed error model into our counting procedure in order
to determine the level-two error probabilities. There are a few things to consider before
doing so. First, part of the counting strategy, such as ancilla verification, may rely
on using the correlations between X and Z errors in order to avoid over-counting that
occurs during postselection (for example, see Section 7.7.2). The transformed error model,
however, contains no such correlation information, so the counting strategy must be altered
accordingly. Second, the CNOT malignant event upper bounds do not contain information
about rest, preparation or measurement locations. Level-one error models for these locations
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can be computed using the same counting strategy as the CNOT, but with an appropriately
modified exRec.1

Finally, in the Pauli-channel noise model, the error probabilities of each location are
constant multiples of the noise strength γ. Our upper bounds on the malignant event
probabilities, however, need not have any scalar relationship. For computer analysis, error
probabilities must be re-normalized in terms of γ and error weights recalculated as follows.
Let P(1)

E be our upper bound on the level-one malignant event malE. Then construct a
polynomial Γ(1) and choose constants αE such that

P(1)
E (γ) ≤ αEΓ(1)(γ) (7.20)

for all E. The polynomial Γ(1) can be viewed as an effective noise strength “reference” for
level-one. Γ(1)(γ) is a function of γ, but we will usually denote it as Γ(1) for convenience of
notation. Together with weights αE, Γ(1) defines a new independent Pauli channel noise
model. Again, see Appendix D of [PR12] for details of the construction.

Now the new error model is input into the counting procedure and upper bounds on the
level-two error rates are computed. Let P(2)

E (Γ) be the upper bound computed for malE at
level-two. Then we have the following conditions on the level-one and level-two malignant
event probabilities:

Pr[mal
(1)
E ] ≤ P(1)

E (γ) ≤ αEΓ(1)

Pr[mal
(2)
E ] ≤ P(2)

E (Γ(1)) .
(7.21)

7.5.2 Proving an asymptotic threshold

The transformed noise model provides a means for computing malignant event probabilities
at level-two based on the malignant event probabilities of level-one. In principle, it is
possible to repeat that procedure to calculate malignant event probabilities up to any
desired level of concatenation.

To prove a noise threshold, we could continue to concatenate until the transformed
noise strength is sufficiently low, and then use schemes for which a threshold is known. For
example, Aliferis and Preskill prove a threshold for depolarizing noise of 1.25× 10−3 for a
scheme based on the [[4, 2, 2]] error-detecting code [AP09].

In order to take full advantage of noise suppression of the large-distance code, though,
we should prefer to prove a threshold directly. To do so, consider again (7.21). We claim

that P(2)
E obeys the following property:

1Alternatively, they can be incorporated into the CNOT exRecs [AC07].
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Claim 7.5.1. For 0 ≤ ε ≤ 1, P(2)
E (εΓ(1)(γ)) ≤ εt+1P(2)

E (Γ(1)(γ)), where t = b(d− 1)/2c and
d is the minimum distance of the (unconcatenated) code.

In other words, the level-two malignant event polynomials decrease with γ at a rate
that corresponds with the distance of the code. This is just the kind of behavior that we
should expect from a strictly fault-tolerant scheme. Proof of this claim is based on the form
of the polynomials constructed by our counting technique and the fact that our circuits are
strictly fault-tolerant. Details of the proof are delegated to Appendix A.

We are now in a position to establish conditions for a noise threshold, i.e., the conditions
under which the probability of a successful simulation can be made arbitrarily close to one.

Theorem 7.5.2. Let M be the set of all level-one CNOT, preparation, measurement and
rest malignant events consisting of: malIX , malXI , malXX , malIZ, malZI , malZZ, malprepX ,

malprepZ ,malmeas
X , malmeas

Z , malrestX and malrestZ . Also let P(1)
E , P(2)

E and Γ(1) be polynomials and
αE constants as discussed above. Then the tolerable noise threshold for depolarizing noise
is lower bounded by the largest value γth such that

P(2)
E (Γ(1)(γth)) ≤ αEΓ(1)(γth) (7.22)

for all malE ∈M .

Proof. Assume that P(2)
E (Γ(1)) < αEΓ(1), for all malE and γ ∈ (0, γth). Then, for a fixed

γ ∈ [0, γth), there exists some positive ε < 1 such that, for all malignant events malE,

P(2)
E (Γ(1)) ≤ εαEΓ(1).

By choosing Γ(2) := εΓ(1) we obtain an effective noise model for level two in which the
weights αE are unchanged. Since our counting method depends only on the error weights,
the polynomials that upper bound the level-three malignant events will be the same as the
polynomials that upper bound the level-two malignant events. That is, P(k)

E (Γ) = P(2)
E (Γ)

for k ≥ 2. Thus,

Pr[mal
(3)
E ] ≤ P(3)

E (Γ(2)) = P(2)
E (εΓ(1)) ≤ εt+2αEΓ(1) , (7.23)

where the last inequality follows from Claim 7.5.1. Defining Γ(3) := εt+1Γ(2) and repeating
this process k times yields

Pr[mal
(k+1)
E ] ≤ P(k+1)

E (Γ(k)) ≤ ε(k−1)(t+1)+1αEΓ(1) , (7.24)

which approaches zero in the limit of large k.
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Testing of the assumption P(2)
E (Γ(1)) < αEΓ(1) over a fixed interval (0, γth) is straightfor-

ward if all of the malignant event polynomials (including Γ(1)) are monotone non-decreasing
up to sufficiently large values of γ. Monotonicity is highly plausible for values of γ sur-
rounding or below threshold, but must be checked explicitly based on the weighted counts
obtained from malignant set counting. Appendix C of [PR12] provides an explicit procedure
for checking monotonicity.

7.6 Summary of the modified malignant set counting

procedure

The entire malignant set counting procedure is somewhat lengthy. For convenience, we now
summarize each of the steps.

1. Choose a CSS code, error correction scheme, and an independent Pauli noise model.
Construct the corresponding extended rectangle that satisfies Definitions 4.2.2 and
4.2.3, for each encoded gate type.

2. Partition each exRec into a hierarchy of small components.

3. For each lowest-level component choose a small integer kgood, count all of the errors
that occur with up to kgood faulty locations, according to the weights of the selected
noise model. Also compute Pr[bad], the probability that more than kgood locations
are faulty. If necessary, compute Pr[accept] that the component is accepted.

4. For higher level components, again choose a kgood, and count errors by convolving
results from lower level components up to kgood. Calculate Pr[bad] and Pr[accept] as
necessary.

5. For each exRec, compute Pr[E] the probability of the logical error E for each X and
Z error. Construct the corresponding transformed Pauli noise model.

6. Either repeat the procedure (if parts of the exRec are non-deterministic), or bound
the threshold analytically using Theorem 7.5.2.
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7.7 Example: a depolarizing noise threshold for the

Golay code

In order to quantify the efficacy of our adapted malignant set counting technique, we use it
to calculate the depolarizing threshold of the 23-qubit Golay code. The Golay code is ideal
for this task for a variety of reasons. First, with distance seven, it is substantially larger
than typically studied codes which usually have distance three. Still, it is small enough so
that the number of possible errors on a single block is quite manageable. Second, numerical
estimates place the Golay code as one of the top performers, with depolarizing threshold
estimates on the order of 10−3 [Ste03, DHN06, CDT09]. On the other hand, malignant
set sampling has yielded statistical lower bounds for adversarial noise of just 10−4, leaving
ample room for improvement.

In this section, we prove a depolarizing noise threshold lower bound of 1.32× 10−3 for
the Golay code, which essentially matches numerical estimates and is the highest known
rigorous lower bound for any code. Furthermore, we show that the resource overhead for
our scheme is usually substantially lower than the [[4, 2, 2]] Fibonacci scheme for which the
next best threshold lower bound is known [AP09].

Threshold results were obtained by implementing our counting technique as a collection
of modules written in Python and C; the source code is available at [PR]. We calculated
thresholds for error correction circuits based on the four-ancilla protocols described in Sec-
tion 6.4.2. Results are given in Table 7.2. The main program takes as input the four-ancilla
preparation circuits, the noise model, and the good and bad event settings. It outputs, for
each type of exRec and each malignant event, a polynomial representing an upper bound
on the event probability. See Figure 7.5. These polynomials are either evaluated directly to
calculate the pseudo-threshold, or processed into a transformed error model and fed back
into the program.

The most time-consuming part of the computation involved the CNOT exRec component.
Computing weighted counts for this component required a custom convolution with nearly
four trillion combinations. Running the entire program to completion for a fixed ancilla
preparation and verification schedule on 31 cores in parallel took about four days.

7.7.1 The depolarizing noise model

The depolarizing noise model is particularly easy to define in terms of the weights prescribed
by Definition 7.1.1. For the CNOT gate, choose wab = 1 for all a, b ∈ {I,X, Y, Z}. The
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∣∣0
〉

preparation Location type CNOT exRec
circuit CNOT Prep. Meas. Rest Total total
Steane 77 23 0 6 106 5439
Overlap 57 23 0 38 118 5823

Table 7.1: Location counts for preparing encoded |0〉 in the Golay code. Encoded |0〉
ancillas are prepared with either the pseudorandomly constructed Steane preparation
circuits (Table 6.4), or the overlap preparation circuits (Figure 6.6 and Table 6.5). The last
column shows the total number of locations inside the CNOT exRec shown in Figure 7.4,
including the transversal CNOT operation and four error corrections.

Verification schedule CNOT Pseudothreshold Threshold
Steane-4 1.72× 10−3 1.24× 10−3

Overlap-4 1.73× 10−3 1.32× 10−3

Table 7.2: Threshold lower bounds for circuits based on our four-ancilla preparation and
verification schedules for the Golay code, based on Figure 6.9. Thresholds are given with
respect to p the probability that a physical CNOT gate fails, according to the depolarizing
noise model defined in Section 7.7.1.

rest location weights are chosen based on the one-qubit marginals of the CNOT. Use
wra =

∑
b∈{I,X,Y,Z}wab = 4 for a ∈ {X, Y, Z}. For preparation and measurement locations

use w|0〉 = w|+〉 = wmX = wmZ = 4. The preparation and measurement weights are lower
than the one-qubit marginals (which would imply values of eight) because any higher noise
rate could be reduced to 4γ +O(γ2) by repeating the preparation or measurement using
two qubits coupled by a CNOT.

7.7.2 The CNOT exRec

The threshold calculation is most limited by the exRec with the largest number of locations.
The Golay code admits transversal implementations of encoded Clifford group unitaries.
Universality can be achieved by state distillation. Therefore the largest exRec in our case
is for the encoded CNOT gate, an exRec that consists of four Steane-type error corrections
plus 23 CNOT gates (see Figure 7.4). Table 7.1 gives a breakdown of the number of
locations for our preparation circuits, and the total number of locations in the CNOT
exRec.
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Figure 7.4: Organization of a CNOT exRec, for the Golay code. The CNOT exRec
includes four error corrections and a transversal CNOT gate as illustrated in Figure 7.2b.
(a) Each error-correction component consists of separate Z and X error corrections. Z-error
correction requires an encoded |0〉 state (

∣∣0
〉
) that has been verified against errors, and

X-error correction requires a verified |+〉 ancilla state. (b) A verified
∣∣0
〉

state is prepared by
checking two pairs of prepared

∣∣0
〉

states against each other for X errors, then, conditioned
on no X errors being detected, checking the results against each other for Z errors. Verified
|+〉 is prepared by taking the dual of the

∣∣0
〉

circuit. See Chapter 6.
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Figure 7.5: These plots show upper bounds on probability of malignant events for the
different level-one exRecs. The malIX , malXI , malXX , malIZ , malZI and malZZ events all
pertain to the CNOT exRec; the malprepX and malprepZ events correspond to the |0〉 and |+〉
preparation exRecs, respectively; malmeas

X and malmeas
Z correspond to Z-basis and X-basis

measurement exRecs; malrestX and malrestZ pertain to the rest exRecs. Note that the upper
bound on malZI is significantly higher than that of its dual counterpart malIX . This is
due largely to the arbitrary choice in error correction to correct Z errors first and X errors
second.
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X-error verification

X-error verification requires two encoded |0〉 states. The first is verified against the second
for X errors by applying transversal CNOT gates between the two code blocks and then
measuring each qubit of the second block in the Z eigenbasis (|0〉 , |1〉 basis). Conditioned
on no X errors being detected, the first code block is accepted. See Figure 7.4a.

Letting accept denote the event that no X errors are detected, we use Bayes’s rule

Pr[event|accept] =
Pr[event, accept]

Pr[accept]
(7.25)

to compute the conditional probabilities of different error events. For an event χ involving
only X errors, this calculation is straightforward.

However, if the event is a Z error ζ, then the numerator Pr[ζ = z, accept] is difficult to
compute as it mixes X and Z errors. The obvious bound, Pr[ζ = z, accept] ≤ Pr[ζ = z], is
quite pessimistic because in the depolarizing noise model we expect X errors to occur with
Z errors roughly half of the time, and so X-error verification should remove many Z errors.
It is important to obtain an accurate count of Z errors since they strongly influence the
acceptance rate of the upcoming Z-error verification. Therefore, we also count X and Z
errors together for very low-order faults and apply a correction to the Z-only counts.

Specifically, when counting X and Z errors together, we keep track of the errors that are
rejected rather than those that are accepted. Since the Z-only counts contain all errors, we
may subtract off the rejected error counts while maintaining proper counts for the accepted
errors. Details of are worked out in [PR12].

The improvement obtained by counting X and Z errors simultaneously is twofold. First,
the reduction in Z errors directly reduces the probability of a Z-error malignant event.
Indeed, we find that the correction cuts the number of Z errors roughly in half, as expected.
More importantly, though, a smaller number of Z errors means an increased acceptance
probability during the upcoming Z-error verification. We see from Figure 7.6a that the
lower bound on Z-error verification acceptance at p = 10−3 is about 0.84. We crudely
estimate a lower bound without the correction of about 0.63, a decrease by a factor of 1.3.
There are four Z-error verifications of encoded |0〉 in the (full) exRec and four similar
X-error verifications of encoded |+〉. Thus, in the normalization factor alone, the correction
reduces upper bounds on the malignant event probabilities by roughly a factor of 1.38 ≈ 8.
The savings is less, of course, as p decreases.
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exRec

Counting of the exRec component was discussed in Section 7.2.3. However, there are a
few items of note for our example based on the Golay code. First, the ancilla verification
components are non-deterministic. Accordingly, all of the malignant event probabilities
must be conditioned on acceptance of all of the verification stages. Since the counts reported
by the ancilla verification stages assume successful verification already, calculating the
conditional probability is simply a matter of dividing by the product of all of the acceptance
probabilities.

Second, we seek to combine large subsets of the sub-component counts. However, due
to the block-size of the Golay code and size of the sub-components in the CNOT exRec,
taking all possible convolutions of the sub-component error counts is impractical. Instead,
the badX event for the exRec (and analogously the badZ event) occurs when any of the
following are true:

• any of the sub-components are badX ,

• there are more than 25 X failures in the exRec,

• there is more than one X failure in the transversal CNOT and there are more than
than three X failures in each of the two leading ECs.

The last condition eliminates faults that are particularly difficult to count. The time
required to count an exRec fault is proportional to the product of the number of unique
syndromes that can result at the output of the two leading ECs and the transversal CNOT.
The number of unique syndromes that can result from the transversal CNOT with two
X failures is

(
23
2

)
32 = 2277, while the number of unique syndromes with one X failure is

23 · 3 = 69. The numbers of unique syndromes at the output of the leading ECs are 24,
277 and 2048 for one, two, and three X failures respectively. So, for example, the event
KX,1 = 2, KX,2 = 3, KX,3 = 1 (277 · 2048 · 69 ≈ 4 · 107) requires far less time than the event
KX,1 = 2, KX,2 = 3, KX,3 = 2 (277 · 2048 · 2277 ≈ 1 · 109). In particular, we would like to
avoid counting faults for which KX,3 = 2.

Calculations for each of the badX terms are plotted in Figure 7.6b. Label each of the
exRec sub-components with numbers, starting with the LECs (1, 2), then the CNOT (3),
and then the TECs (4, 5). The overall probability is generally dominated by either the

transversal CNOT (Pr[bad
(3)
X ]) or the condition involving the transversal CNOT and the

two LECs (Pr[KX,3 > 1]
∏2

j=1 Pr[KX,j > 3|accept(j)]).
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Figure 7.6: Plotted in (a) are lower bounds on the Overlap-4 acceptance probabilities for the
two X-error verifications (accept(1) and accept(2)) and for the Z-error verification (accept)
conditioned on success of the X-error verifications. The plot in (b) shows upper bounds on
conditions that lead to a badX event in the CNOT exRec.

7.7.3 Threshold analysis

Our thresholds compare favorably to threshold results for similar circuits. For a six-ancilla
preparation and verification circuit, Aliferis and Cross [AC07] give a threshold estimate
based on malignant set sampling of p ≈ 1× 10−4 for adversarial noise. Our results beat
this by an order of magnitude and provide strong evidence that our counting technique
is an improvement over malignant set sampling and malignant set counting for the case
of depolarizing noise. Our results also essentially close the gap with other analytical and
Monte Carlo threshold estimates for depolarizing noise. Using a closed form analysis,
Steane [Ste03] estimated a threshold on the order of 10−3 for the Golay code with similar
noise parameters. Dawson, Haselgrove and Nielsen calculated a higher estimate of just
under 3× 10−3, and Cross et al. [CDT09] estimated a pseudo-threshold of 2.25× 10−3 based
on Monte Carlo simulations of a twelve-ancilla preparation and verification circuit.

Beyond circuits based on the Golay code, our results are apparently the highest rigorous
threshold lower bounds known. Aliferis and Preskill [AP09] prove a lower bound of
p ≥ 1.25× 10−3. Their analysis applies to teleportation-based gates due to Knill [Kni05] in
which Bell pairs encoded into an error correcting code C2 are prepared by first encoding each
qubit of the C2 block into an error detecting code C1 and performing error detection and
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postselection after each step of the C2 encoding. Our best threshold is only about 5 percent
better, but applies to circuits that usually require far less overhead (see Section 7.7.4). This
implies only that in the depolarizing noise model our analysis is more accurate, and not
that our schemes tolerate more noise.

The limiting factor on the threshold value is the event malZI . That is, malZI is the event
E for which Pr[mal

(2)
E ] = Pr[mal

(1)
E ] takes the smallest value of p. In fact, the corresponding

threshold values for nearly all Z-error malignant events are lower than threshold values for
any of the X-error events. This asymmetry is due to the arbitrary order with which we
perform error correction—Z first, then X. Some X errors resulting from the leading Z-error
correction will be corrected by the X-error correction that follows. However, Z errors
resulting from the X-error correction may propagate through the encoded operation before
arriving at the Z-error correction on the trailing end. As a result, it is more likely for Z
errors on individual blocks to be combined by the CNOT gate and create an uncorrectable
error. Evidence of this effect can be seen in the level-one malignant event probabilities
shown in Figure 7.5.

It should be possible to reduce such lopsided event probabilities by customizing the
error correction order for each EC based on the specifics of the ancilla preparation circuits.
However, analyzing such a scheme would require consideration of up to 36 different full or
partial CNOT exRecs (two choices for each EC) instead of four and is likely to yield only a
small improvement in the threshold. Note that other small improvements could be made
by, for example, eliminating measurement or rest exRecs at level-two. For simplicity, these
optimizations were not considered.

7.7.4 Resource analysis

The threshold provides a target accuracy for quantum computing hardware, but it does not
produce a complete picture on its own. In particular, we would also like to understand how
the resource overhead for our scheme scales as the physical error rate drops below threshold.
Ultimately, the resource scaling will determine how small physical error rates must be in
order to keep space and time resources to a manageable level. In this section we calculate
upper bounds on the number of physical gates and the number of physical qubits required
to implement a single logical gate with a given effective error rate.

Our threshold analysis assumes that an infinite supply of ancilla qubits is available
for use in error correction. In order to bound the resource overhead we instead assume
that some finite number of ancillas are available to each k-EC. Error correction proceeds
normally unless all ancilla verifications fail. If the number of available ancillas is high
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(a) Golay scheme with Overlap-4 preparation
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(b) [[4, 2, 2]] Fibonacci scheme

Figure 7.7: Gate overhead upper bounds for (a) our Golay scheme with overlap ancilla
preparation and (b) the Fibonacci scheme presented in [AP09]. Each plot shows the number
of physical gates required to implement a logical gate with target error rates ptarget ∈
{10−12, 10−10, 10−9, 10−6}. Black text labels indicate the required level of concatenation
and colored lines are a guide for the eye.

enough, then the probability that all verifications fail will be small and the impact on the
logical errors will be similarly small.

More precisely, our approach is as follows. The ancilla verification circuit (Figure 7.4a)
is considered as a single unit. Each level-k Z-error correction consists of mk |0〉 verifications
performed in parallel plus a transversal rest, CNOT and X-basis measurement. If all of the
mk verifications fail, then Z-error correction is aborted and the data is left idle. Level-k
X-error correction is similar. For simplicity, if any of the error corrections are aborted,
then we consider the entire top-level logical gate to have failed.

Let ptarget be overall target error rate per logical gate, P(k) := maxiP(k)
i , and let K be

the minimum level of concatenation that achieves P(k) < ptarget assuming an unbounded
number of ancilla. We may then calculate a bound on the number of ancilla verifications
mk for every k ≤ K. Setting δ(k) = ptarget −P(k), the total gate overhead g(k) for a CNOT
k-Rec can be computed recursively by g(k) ≤ (2mkAEC + 23) · g(k − 1), where AEC is the
number of locations in the error-correction component. Details are provided in [PR12].

Gate overhead upper bounds for the overlap-based scheme are shown in Figure 7.7a.
The overhead increases dramatically as the target logical error rate decreases. However,
compared to similar upper bounds for the Fibonacci scheme—which has a similar threshold

125



10-6 10-5 10-4 10-3

p

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

p
h
y
si

ca
l 
q
u
b
it

s 
p
e
r 

lo
g
ic

a
l 
g
a
te

1

2

3

1e-12
1e-10
1e-09
1e-06

(a) Golay scheme with Overlap-4 preparation
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(b) [[4, 2, 2]] Fibonacci scheme

Figure 7.8: Qubit overhead upper bounds. Plots are formatted identically to Figure 7.7.

lower bound [AP09]—our scheme is better for a wide range of error rates often by several
orders of magnitude. One reason for the improved overhead is that our scheme is based
on a code with higher distance than the Fibonacci scheme which uses the [[4, 2, 2]] error
detecting code. The logical error rate for our Golay scheme falls faster and thus requires
fewer levels of concatentation.

Bounds on qubit overhead may be obtained from the gate overhead. Our threshold
analysis requires that all ancillas be ready on-demand without delay—i.e., each k-Rec has
depth three, independent of k. We, therefore, pessimistically assume that once a qubit is
measured it cannot be re-used within the same rectangle. The qubit overhead then depends
only on the gate overhead and the qubit-gate ratio for |0〉 verification. Using a ratio of
8 · 23/(AEC − 46) we obtain q(k) ≤ 23k + 0.15kg(k) Therefore, the level-k qubit overhead is
roughly k orders of magnitude lower than the level-k gate overhead.

The qubit-gate ratio for Bell-state preparation in the Fibonacci scheme is relatively
large (≈ 0.6 for levels three and above). Therefore, similar to gate overhead, qubit overhead
for the Golay scheme compares favorably to the Fibonacci scheme for a wide range of noise
parameters. See Figure 7.8.

The drawback of using a larger code is that the increase in overhead from one level of
concatenation to the next is much larger. This makes it harder to “tune” the overhead
parameters to some specific error rates. For example, for ptarget = 10−10 and p = 10−6 our
scheme requires two levels of concatenation and about 108 physical gates per logical gate.
For the same error rates, the Fibonacci scheme requires three levels of concatenation, but
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fewer than 106 gates.

Finally, note that bounds for our scheme when ptarget = 10−12 are a bit loose due to
a constant offset that is added during the transformed noise model construction. In our
computer analysis, these offsets were on the order of ε ≈ 10−13. In principle, this offset
does not affect the actual error rates; rather it is an artifact of our construction.

7.8 Discussion

Our explicit calculations for the Golay code show the power of the modified malignant set
counting technique. Compared to standard malignant set counting we are able to count
much larger sets of faulty locations, and obtain a bound on the threshold which is about an
order of magnitude larger than previous attempts. Intuitively, this is because we efficiently
ignore subsets of faulty locations which are unlikely to occur. Use of the independent Pauli
noise model permits fair comparisons of our bounds with Monte Carlo estimates. In the
case of the Golay code, our rigorous lower bound roughly matches numerical estimates due
to [Ste03, DHN06, CDT09].

The technique is quite general, and can be applied to any CSS code. However, there
are still several drawbacks to our approach. First, we count errors in terms of equivalence
classes based on the stabilizers of the code, but the number of unique errors per block is
still exponential in the block size. For the Golay code, this meant keeping track of 212 X
errors and 212 Z errors. For two blocks the total number of errors was 2 · 224. This number
of errors is manageable, but numbers for larger codes may become unwieldy.

Another drawback is that we have assumed arbitrary qubit interactions, ignoring any
physical geometric locality constraints. This simplifies the analysis greatly, but artificially
inflates the threshold and underestimates resource requirements in the case that geometric
constraints are actually required. Therefore, our results are not directly comparable to
thresholds for topological codes including the surface code, for example. Of course, our
technique can be adapted to account for geometric constraints by, for example, inserting
swap gates, if necessary. We have not considered such adaptations here.
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Chapter 8

Decomposition of single-qubit
unitaries into fault-tolerant gates

This chapter is based on material that appears in [PS13].

The mapping of a quantum algorithm into its equivalent fault-tolerant circuit repre-
sentation requires a choice of universal basis, most commonly consisting of CNOT and
single-qubit gates. (See Section 2.5.) Traditional methods for single-qubit unitary decom-
position take as input a unitary U and a distance parameter ε, and output a sequence of
gates W = G1 . . . Gk such that ‖U −W‖ ≤ ε, for G1, . . . , Gk in the chosen gate set, and
some choice of norm ‖·‖. The operation W is said to approximate U to within a distance ε.
This approach is justified by the fact that when ‖U −W‖ is small, the output distribution
of a circuit containing U is close to the output distribution obtained by substituting W .

The set of single-qubit unitaries that can be implemented fault tolerantly is predom-
inantly dictated by the existence of resource-efficient fault-tolerance protocols. See Sec-
tion 4.3. A common universal, single-qubit basis is {H,S, T}, since H and S can often be
implemented transversally, and T can be achieved through state distillation. The cost of a
{H,S, T} circuit is usually defined to be the number of T gates, since the resource cost of
a fault-tolerant T gate is up to an order of magnitude larger than the resource cost of a
fault-tolerant H gate [RHG07, FDJ13].1

1The inclusion of S is a direct consequence of the choice of cost function. The S gate is otherwise
redundant since S = T 2.
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Typically, the approximation W involves no measurements, and is therefore deterministic
(at the logical level). In this chapter we will show that by allowing a small number of
ancilla qubits and measurements, non-deterministic circuits can outperform deterministic
circuits which are otherwise optimal. The circuits that we consider can be used to approx-
imate a single-qubit unitary with roughly one-third to one-fourth the cost of traditional
decomposition methods.

As an example, consider the circuit shown in Figure 8.1a, which performs the single-qubit
unitary V3 = (I + 2iZ)/

√
5. This circuit involves two measurements in the X-basis. If

both measurement outcomes are zero, then the output is equivalent to V3 |ψ〉. If any other
outcome occurs, then the output is I |ψ〉 = |ψ〉. Thus, the circuit may be repeated until
obtaining the all zeros outcome, and the number of repetitions will vary according to a
geometric probability distribution. (In this case the probability of getting both zeros is
5/8.) Upon measuring all zeros, the unitary V3 is implemented exactly, even though the
overall circuit is non-deterministic. Each Toffoli gate can be implemented using four T
gates, and so the overall expected cost is 12.8. By contrast, an approximation of V3 to
within ε = 10−6 using the deterministic algorithm of [KMM12c] requires 67 T gates.

We call a circuit of the form of Figure 8.1a, which may be repeated until obtaining
some desired outcome, a repeat-until-success circuit or RUS circuit for short. Through
the use of an optimized direct-search algorithm, we present thousands of RUS circuits
which exactly implement select unitary rotations at extremely low T -count. By explicitly
computing the circuit sequences, we construct a large database of single-qubit unitaries
which is sufficiently large to approximate an arbitrary Z-axis rotation with within ε ≥ 10−6.
Using this database, the expected number of T gates required to approximate a random
Z-axis rotation RZ(θ) =

(
1 0
0 eiθ

)
scales as

ExpZ [T ] = 1.26 log2(1/ε)− 3.53 . (8.1)

While existing algorithmic decomposition methods are capable of approximations to smaller
distances, our techniques provide approximations with extremely low T counts. Furthermore,
approximations to within 10−6 are sufficient for many quantum algorithms, including Shor’s
factoring algorithm [FH04], and quantum chemistry algorithms [JWM+12].

An arbitrary single-qubit unitary U can be approximated by first expressing it as a
product of three Z-axis rotations

U = RZ(θ1)HRZ(θ2)HRZ(θ3) . (8.2)

Each rotation can then be decomposed individually. However, RUS circuits can also be
used to approximate arbitrary single-qubit unitaries directly, without resorting to Z-axis
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|ψ〉 S Z

(a) Exp[T] = 12.8

|+〉 • • X

|+〉 • • X

|0〉 • • X

|ψ〉 S Z

(b) Exp[T] = 6.4

|+〉 T † T X

|+〉 • T X

|ψ〉 T Z •
(c) Exp[T] < 5.26

Figure 8.1: Repeat-until-success circuits for V3 = (I + 2iZ)/
√

5. Each of the circuits above
implements V3 conditioned on an X-basis measurement outcome of zero on each of the top
two ancilla qubits. If any other measurement outcome occurs, then each circuit implements
the identity. The probability of measuring 00 is 5/8 for each circuit. Repeating the circuit
until success yields an expectation value for the number of T gates, as indicated. (a) A
slight modification of the circuit presented in [NC00] pp. 198. Each Toffoli gate can be
implemented with four T gates (see [Jon13d]). (b) A circuit proposed by Jones that requires
just a single Toffoli gate [Jon13c]. (c) An alternative circuit found by our computer search.
Measurement of the first qubit can be performed before interaction with the data qubit.
Thus the top-left part of the circuit can be repeated until measuring zero. The probability
of measuring zero on the first qubit is 3/4. The probability of measuring zero on the second
qubit, conditioned on zero outcome of the first qubit, is 5/6. The T gate applied directly
to |ψ〉 can be freely commuted through the CNOT. In the case that an even number of
attempts are required, the T gates can be combined yield the Clifford gate T 2 = S.
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rotations. Our results indicate a T -count scaling of

ExpU [T ] = 2.4 log2(1/ε)− 3.3 , (8.3)

roughly another 50 percent better than using (8.1) and up to four-fold better than traditional
deterministic decomposition of three Z-axis rotations. Constructing a database of RUS
circuits for arbitrary unitaries is significantly more challenging than for the Z-axis case,
however. We have computed approximations only up to ε = 8× 10−3.

8.1 Deterministic decomposition methods

By the Solovay-Kitaev theorem [Kit97, KSV02], a single-qubit unitary operation can be
efficiently approximated to within a desired ε by decomposition into a sequence of gates
from a discrete universal basis with length O(logc(1/ε)), where c = 1 is the asymptotic lower
bound [Kni95], and the best-known practical implementation achieves c ∼ 3.97 [DN05].
The algorithm works by finding progressively better approximations of a unitary U , through
application of the group commutator G1G2G

†
1G
†
2 for pairs of gates G1, G2 in the gate

set. The key insight of the theorem is that use of the group commutator converges to U
exponentially fast.

Approximations with optimal scaling O(log(1/ε)) are possible. Fowler proposed an
exponential-time algorithm that yields an optimal decomposition with a T -gate count of
roughly 2.95 log2(1/ε) + 3.75 [Fow11], on average. He used an optimized, but exhaustive
search over gate sequences of progressively longer length, stopping at the first sequence
within the required distance. The weakness of this approach is that it is practical for
approximations only up to about ε ≥ 10−3. Bocharov and Svore have proposed a more
efficient method which can be used to extend this range somewhat [BS12].

An ancilla-based method known as “phase kickback” provides a computationally efficient
and cost-competitive alternative for approximating Z-axis rotations [KSV02]. Phase kick-
back involves preparing a special ancilla state based on the quantum Fourier transform and
then using addition circuits controlled by the single-qubit input to effect the desired rotation.
Optimization of the ancilla state preparation yields a cost scaling which is somewhat higher
than Fowler’s results [JWM+12, Jon13b], but can be made more competitive in certain
cases [Jon13c]. Phase kickback offers the possibility of very low circuit depth, as low as
O(log log 1/ε), but requires a relatively large number of ancilla qubits O(log 1/ε).

Recently, in a series of breakthroughs, efficient algorithms for asymptotically optimal
single-qubit decomposition were discovered [KMM12a, Sel12, KMM12c]. These algorithms
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are based on an earlier algorithm for optimally and exactly decomposing a certain class of
unitaries into Clifford and T gates [KMM12b]. The approximation algorithms work by first
rounding the unitary U to the closest Ũ that can be exactly decomposed over {Clifford, T}
and then using the exact decomposition algorithm on Ũ . Unlike phase kickback, these
algorithms do not require ancilla qubits.

Selinger showed that ancilla-free approximation of a single-qubit RZ(θ) rotation to within
a distance of ε requires 4 log2(1/ε) + 11 T gates in the worst case [Sel12]. For many values
of θ, however, the number of T gates can be significantly smaller. Kliuchnikov, Maslov and
Mosca (KMM) gave an efficient algorithm which is shown to scale as 3.21 log2(1/ε)− 6.93
for the rotation RZ(1/10) [KMM12c].

8.2 Non-deterministic decomposition methods

A few non-deterministic decomposition techniques have also been developed. So-called
“programmable ancilla rotations” (PAR) use a cascading set of specially prepared ancilla
states along with gate teleportation [JWM+12]. The action of each gate teleportation
depends on a corresponding measurement outcome. If the outcome is zero, then the
protocol stops. Otherwise gate teleportation is repeated with a new, more complicated
ancilla state. Like phase kickback, the number of T gates required by PAR is larger than
for ancilla-free methods, but the expected number of resources are comparable in some
architectures [Jon13c]. Similar use of non-deterministic circuits to produce a “ladder”
of non-stabilizer states, and in turn approximate an arbitrary unitary, has also been
proposed [DS12].

RUS circuits have already been proposed for decomposition into an alternate logical gate
set. Bocharov, Gurevich and Svore (BGS) showed that arbitrary single-qubit unitaries can
be approximated using the gate set {H,S, V3} with a typical scaling of 3 log5(1/ε) in the
number of V3 gates [BGS13]. They suggest a fault-tolerant implementation of the V3 gate
using Figure 8.1a, which requires eight T gates, four for each Toffoli (see [Jon13d]). Later,
Jones improved this circuit, using only a single Toffoli gate [Jon13c]. Through optimized
direct search, we found an alternative RUS circuit for V3 that uses only four T gates and
has a lower expectation value than the other two circuits, as shown in Figure 8.1c. Further
discussion of decomposition with V3 is found in Section 8.6.

Our proposed method of single-qubit unitary decomposition based on RUS circuits is
also non-deterministic, of course. In the next section we describe these circuits in detail
and in Section 8.5 we analyze the results of our optimized direct search. Decomposition
algorithms are described in Sections 8.6 and 8.7.
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. . .

|0〉 |0〉

|ψ〉 {R†
i} . . . U |ψ〉

Figure 8.2: A repeat-until-success circuit that implements the unitary U . Ancilla qubits
are prepared in |0〉, then the unitary W is performed on both the ancillas and |ψ〉. Upon
measuring the ancillas, a unitary operation is effected on |ψ〉 which is either U or one of
{Ri}, depending on the measurement outcome. If the measurement outcome indicates Ri,
then the recovery operation R†i is performed, and the process can be repeated.

For convenience, a summary of single-qubit decomposition methods is given in Tables 8.1
and 8.2

8.3 Repeat-until-success circuits

The structure of a repeat-until-success (RUS) circuit over a gate set G is as follows. First,
some number m of ancilla qubits are prepared in state |0m〉. Then, given an input state
|ψ〉 on n qubits, a unitary W is applied to all of the n + m qubits using gates from G.
Finally, each ancilla qubit is measured in the computational basis. The output is given by
Φi |ψ〉, where Φi is a quantum channel—i.e., a unitary plus measurements—on n qubits
that depends on the measurement outcome i ∈ {0, 1}m.

The measurement outcomes are partitioned into two sets: “success” and “failure”.
Success corresponds to some set of desired operations {Φi : i ∈ success}; failure corresponds
to some set of undesired operations {Φi : i ∈ failure}. In the case of success, no further
action is required. In the case of failure i, a recovery operation Φ−1i is applied, and the
circuit is repeated.

We restrict to the case in which |ψ〉 is a single qubit and the {Φi} are unitary. We also
limit to a single “success” output U |ψ〉, for some unitary U , though U may correspond to
multiple measurement outcomes. The operation W is then a 2m+1 × 2m+1 unitary matrix
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Method Description T count Comments

Solovay-
Kitaev

Converging ε-net
based on group
commutators.

O(log3.97 1/ε)
Computationally
efficient, but
sub-optimal T count.

Ladder
states

Hierarchical
distillation based |H〉
states.

O(log1.75 1/ε)
Some of the cost can
be shifted “offline”.

Direct
search

Optimized
exponential-time
search.

2.95 log2(1/ε)+3.75
Optimal ancilla-free T
count.

BGS
Direct search
decomposition with
V3.

TV (3 log5 1/ε)
TV is the T count for
choice of fault-tolerant
implementation of V3.

RUS
(non-axial)

Database lookup. 2.4 log2(1/ε)− 3.3
Limited
approximation
accuracy.

Table 8.1: Decomposition methods for arbitrary single-qubit unitaries using the gate set
{H,S, T}.

Method Description T count Comments

Phase
kickback

Uses Fourier states
and phase estimation.

O(log 1/ε)
(implementation
dependent)

O(log 1/ε) ancillas.
Optimizations make it
cost competitive with
Selinger and KMM.

PAR
Cascading gate
teleportation.

O(log 1/ε)

Constant depth (on
average), higher T
count than phase
kickback.

Selinger
Round-off followed by
exact decomposition.

4 log(1/ε) + 11
T count is optimal for
worst case rotations.

KMM
Round-off followed by
exact decomposition.

3.21 log2(1/ε)−6.93
T count based on
scaling for RZ(1/10).

RUS
(axial)

Database lookup. 1.26 log2(1/ε)−3.53
Approximation to
within ε = 10−6.

Table 8.2: Decomposition methods for Z-axis rotations using the gate set {H,S, T}.
Approximation of an arbitrary single-qubit unitary is possible by using the relation U =
RZ(θ1)HRZ(θ2)HRZ(θ3). 134



of the form

W =
1√∑
i |αi|

2




α0U . . .

α1R1
. . .

...
αmRl


 , (8.4)

where U,R1, . . . , Rl are 2× 2 unitary matrices, and α0, . . . , αl ∈ C are scalars. Since the
ancillas are prepared in |0m〉, only the first two columns of W are of consequence. Contents
of the remaining columns are essentially unrestricted, except that W must be unitary. Each
of the l + 1 = 2m measurement outcomes corresponds to application of a unitary from
U ∪ {Ri} on the data qubit. Without loss of generality, we have selected the all zeros
outcome to correspond with application of U , since outcomes can be freely permuted. The
entire protocol is illustrated in Figure 8.2.

For simplicity, we assume that U 6= Ri ∀ 1 ≤ i ≤ l. The case in which U appears
multiple times can be easily accommodated. In order for the circuit to be useful, the
remaining matrices R1, . . . , Rl should be invertible at a low cost.

In order to be compatible with existing fault-tolerance schemes, we require that W
can be synthesized using the gate set {Clifford} ∪ {T}, where {Clifford} denotes the
Clifford group generated by {H,S,CNOT}.2 A unitary matrix is exactly implementable by
{Clifford, T} if and only if its entries are contained in the ring extension Z[i, 1√

2
] [GS12].

Thus, we require that α0U, α1R1, . . . , αmRm are matrices over Z[i, 1√
2
]. Furthermore, the

normalization 1/
√∑

i |αi|
2 must also be in the ring. The unitarity condition on W then

requires that ∑

i

|αi|2 = 2k (8.5)

for some integer k.

If all of the recovery operations R1, . . . , Rm are exactly implementable by {Clifford, T},
then we may assume that α1, . . . , αm ∈ Z[i, 1√

2
]. If α0 is an integer, then Lagrange’s

four-square theorem implies that (8.5) can be satisfied using at most n = 3 ancilla qubits.

We pause briefly to note that any element of the ring extension Z[i, 1√
2
] can be written

as
a+ ib+

√
2(c+ id)

√
2
k

∈ Z[i,
1√
2

] , (8.6)

2Our method is also extensible to other gate sets; however such extensions are not explored here.
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for integers a, b, c, d, k. Below we will eliminate the denominator in which case we may write

a+ ib+
√

2(c+ id) ∈ Z[i,
√

2] . (8.7)

8.3.1 Characterization of repeat-until-success unitaries

Consider a 2× 2 unitary matrix U such that

U =

(
u00 u01
u10 u11

)
=

1√
2kα

(
β00 β01
β10 β11

)
, (8.8)

for α ∈ R, β00, . . . , β11 ∈ Z[i,
√

2] and integer k ≥ 0. We are concerned with exactly
implementing U only up to a global unit phase eiφ for some φ ∈ [0, 2π). Accordingly, we
may assume without loss of generality that α is real and non-negative since for any β ∈ C,
ββ∗

|β| ≥ 0. The restriction to Z[i,
√

2] rather than Z[i, 1√
2
] is also without loss of generality,

since k can be chosen to eliminate any denominators. Then choosing α0 =
√

2kα we have

α0 =

√
|β00|2 + |β10|2 =

√
x+ y

√
2 , (8.9)

where x = a200 + c200 + a210 + c210 + 2(b200 + d200 + b210 + d210), y = a00b00 + c00d00 + a10b10 + c10d10
for integers a00, b00, c00, d00, a10, b10, c10, d10.

Any target unitary U must have this form due to (8.4). In other words, the only
unitaries that can be obtained by {Clifford, T} circuits of the form Figure 8.2 are those
that can be expressed by entries in Z[i,

√
2] after multiplying by a scalar. Nonetheless, this

restricted class of unitaries can be used to approximate arbitrary unitaries more efficiently
than unitaries limited to Z[i, 1√

2
], as we show in Section 8.5 and Section 8.7.

In addition to their use in [BGS13], repeat-until-success circuits have been considered
by Wiebe and Kliuchnikov for small-angle Z-axis rotations [WK13]. Whereas Wiebe and
Kliuchnikov propose hierarchical RUS circuits over {Clifford, T}, we do not a priori restrict
to a hierarchical structure or to small Z-axis rotations. RUS circuits have been studied
to a limited extent in other contexts, as well. For example, repeated gate operations have
been proposed for use in linear optics to implement a CZ gate [LBK04]. More recently,
[SO13] adapted deterministic ancilla-driven methods [AOK+10, KOB+09] to allow for
non-determinism.
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8.3.2 Success probability and expected cost

The success probability, i.e., the probability of obtaining the zero outcome for all ancilla
measurements, can be computed from (8.5) and is given by

Pr[success] =
α2
0

2k
≤ α2

0

2d2 log2 α0e , (8.10)

where since α2
0 < 2k, we may use k ≥ d2 log2 α0e. The circuits in Figure 8.1, for example,

each yield a value of α0 =
√

5 and therefore a success probability of 5/8. On the other
hand, if U appears multiple times in (8.4), then we have

Pr[success] =
mα2

0

2k
≤ mα2

0

2dlog2mα
2
0e

, (8.11)

where m is the number of times that U appears. This upper bound can be made arbitrarily
close to one for large enough m.

The expected number of repetitions required in order to achieve success is given by
a geometric distribution with expectation value 1/p, and variance (1 − p)/p2, where
p = Pr[success]. If C(W ) is the cost of implementing the unitary W , then the expected
cost of the RUS circuit is given by C(W )/p with a variance of C(W )(1− p)/p2. Since the
resources required to implement a {Clifford, T} fault-tolerant circuit are often dominated
by the cost of implementing the T gate, we will define C(W ) as the number of T gates in
the circuit used to implement W .

We choose to use T -gate count as the cost function because it is simple, and is consistent
with other {Clifford, T} decomposition algorithms [KMM12b, AMMR12, Sel12, KMM12c,
WK13, GKMR13]. However, RUS circuits employ techniques that are not present in the
circuits produced by previous decomposition methods. In particular, rapid classical feedback
and control is required. Moreover, variable time scales for logical single-qubit gates imply
the need for active synchronization. Thus, while T count allows for direct comparison of
RUS circuits with other methods, a more complete metric may be required for resource
calculations on a particular architecture.

8.3.3 Amplifying the success probability

We may describe the action of the multi-qubit unitary W by

W |0m〉 |ψ〉 =
√
p |0m〉U |ψ〉+

√
1− p

∣∣Φ⊥
〉
, (8.12)
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where
∣∣Φ⊥

〉
is a state that depends on |ψ〉 and satisfies (|0m〉 〈0m| ⊗ I)

∣∣Φ⊥
〉

= 0. That
is, W outputs a state which has amplitude

√
p on the “success” subspace, and amplitude√

1− p on the “failure” subspace. We show below that in some cases we may apply the
amplitude amplification algorithm to boost the success probability and reduce the expected
T count of an RUS circuit.

Traditional amplitude amplification [BHMT00] proceeds by applying the operator (RS)j

on the initial state W |0m〉 |ψ〉 for some integer j > 0 and reflections

S = I − 2 |0m〉 |ψ〉 〈0m| 〈ψ| ,
R = WSW † = I − 2W |0m〉 |ψ〉 〈0m| 〈ψ|W † .

(8.13)

In the two-dimensional subspace spanned by {|0m〉U |ψ〉 ,
∣∣Φ⊥

〉
}, RS acts a rotation by 2θ

where sin(θ) =
√
p. Therefore (RS)j(W |0m〉 |ψ〉) = sin((2j + 1)θ) |0m〉U |ψ〉 + cos((2j +

1)θ)
∣∣Φ⊥

〉
. The goal then, is to choose j appropriately so as to minimize the expected

number of T gates.

The problem in this case is that |ψ〉 is unknown, and therefore we cannot directly
implement S. We can, however, implement S ′ = CZ(m)⊗ I, the generalized controlled-Z
gate on m qubits defined by CZ(m) |x1, x2, . . . , xm〉 = (−1)x1x2...xm |x1, x2, . . . , xm〉. We
could, therefore, apply (WS ′W †S ′)j instead of (RS)j.

Proposition 8.3.1. Consider a unitary W that satisfies (8.12). Amplitude amplification
on |0m〉U |ψ〉 can be performed using the operator WS ′W †S ′, where S ′ = CZ(m)⊗ I. More
precisely,

(WS ′W †S ′)j(W |0m〉 |ψ〉) = sin((2j + 1)θ) |0m〉U |ψ〉+ cos((2j + 1)θ)
∣∣Φ⊥

〉
, (8.14)

where sin(θ) =
√
p.

Proof of this claim relies on the 2D Subspace Lemma of Childs and Kothari.

Lemma 8.3.2 ([CK13]). Let W be a unitary that satisfies (8.12). Then the state

∣∣Ψ⊥
〉

:= W †(
√

1− p |0m〉U |ψ〉 − √p
∣∣Φ⊥

〉
)

satisfies (|0m〉 〈0m| ⊗ I)
∣∣Ψ⊥

〉
= 0.

Proof of Proposition 8.3.1. First, note that both R and S preserve the two-dimensional
subspace spanned by |0m〉U |ψ〉 and

∣∣Φ⊥
〉
. That is, the state that results from applying

any sequence of R and S on W |0m〉 |ψ〉 can be written as a linear combination of |0m〉 |ψ〉
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and
∣∣Φ⊥

〉
. Next, observe that S ′ also preserves this subspace and is equivalent to S since

S ′ |0m〉U |ψ〉 = − |0m〉U |ψ〉 and S ′
∣∣Φ⊥

〉
=
∣∣Φ⊥

〉
.

The claim then is that the reflection WS ′W † about the state W |0m〉 |ψ〉 also preserves
the subspace and is equivalent to R. Clearly, (WS ′W †)W |0m〉 |ψ〉 = −W |0m〉 |ψ〉. On the
other hand, the action of WS ′W † on the state

∣∣Ψ⊥
〉

that is orthogonal to W |0m〉 |ψ〉
(in the 2D subspace) is less obvious and requires Lemma 8.3.2, which implies that
(WS ′W †)W

∣∣Ψ⊥
〉

= W
∣∣Ψ⊥

〉
as desired. We therefore conclude that (WS ′W †S ′)j is equiva-

lent to “real” amplitude amplification on W |0m〉 |ψ〉 and, in particular, that

(WS ′W †S ′)jW |0m〉 |ψ〉 = sin((2j + 1)θ) |0m〉U |ψ〉+ cos((2j + 1)θ)
∣∣Φ⊥

〉
.

If m ≤ 2, then S ′ can be implemented with only Clifford gates, i.e., Z or CZ. Then,
for a fixed value of j, the total number of T gates in the corresponding amplified circuit is
given by (2j + 1)T0, where T0 is the number of T gates in the unamplified circuit. In order
for amplitude amplification to yield an improvement in the expected number of T gates, we
therefore require that

(2j + 1) sin2(θ) < sin2((2j + 1)θ) , (8.15)

a condition that holds if and only if 0 ≤ p < 1/3. Thus a sensible course of action is to
apply amplitude amplification for all RUS circuits for which p < 1/3, and leave higher
probability circuits unchanged.

Consider, for example, an RUS circuit that contains 15 T gates and has a success
probability of 0.1. In this case, using amplitude amplification with value of j = 1 yields a
new circuit with success probability 0.676 and 45 T gates, an improvement in the expected
number of T gates by a factor of 2.25. The effects of amplitude amplification on our
database of RUS circuits are discussed in Section 8.5.

Cost analysis of amplitude amplification for circuits with more than two ancilla qubits
is more complicated because the reflection operator S ′ = CZ(m) is not a Clifford gate.
For three ancilla qubits, for example, S ′ is the controlled-controlled-Z gate, which can
be implemented with 4 T gates [Jon13d]. Larger versions of CZ(m) could be synthesized
directly [Kli13, WGMAG13], or by using a recursive procedure [NC00]. The circuits
presented in Section 8.5 use at most two ancilla qubits, however, so more complicated
amplification circuits are not an issue in our analysis.
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8.4 Direct search methods

Equations (8.4) and (8.9) restrict the kinds of unitaries that can be obtained from RUS
circuits. However, these conditions say little about how to implement the unitary W .
Given W explicitly, it is possible to synthesize a corresponding {Clifford, T} circuit with a
minimum number of T gates [GKMR13], at least for small W . However, given a unitary U
of the form (8.8), there are potentially many choices of W . The minimum number of T
gates required is therefore unclear and is a direction for future research.

In order to better understand the scope and power of RUS circuits, we design an
optimized direct search algorithm that checks for RUS circuits up to a given T -gate count.
Our direct search algorithm is as follows:

1. Select the number of ancilla qubits and the number of gates.

2. Construct a {Clifford, T} circuit and compute the resulting unitary matrix W .

3. Partition the first two columns of W into 2× 2 matrices.

4. Identify and remove matrices that are proportional to Clifford gates.

5. If the remaining matrices are all proportional to the same unitary matrix, then keep
the corresponding circuit.

We restrict the recovery operations Ri of the circuits found by our search to the set of
single-qubit Cliffords. This choice is motivated by our use of the T count as a cost function;
Clifford gates, and therefore the recovery operations are assigned a cost of zero.

In order to identify relevant search parameters, we initially performed a random search
over a wide range of circuit widths (number of qubits) and sizes (number of gates). Our
search was most successful with small numbers of ancilla qubits, large numbers of T gates,
and just one or two entangling gates. We therefore focused on circuits of the form shown
in Figure 8.3. These circuits contain just a single ancilla qubit and two CZ gates, interleaved
with single-qubit gates.

Naively, the number of circuits of the form Figure 8.3 is O(3n), where n is the maximum
number of (non-CZ) gates in the circuit, and the base of three is the size of the set {H,S, T}.
In order to reduce the complexity of our search, we constructed each of the single-qubit
gate sequences using the canonical form proposed by [BS12]. A canonical form sequence is
the product of three 2× 2 unitary matrices g2Cg1 where g1, g2 belong to the Clifford group,
and C is the product of some number of “syllables” TH and SHTH. The canonical form

140



|0〉 g C g • g C g • g C g

|ψ〉 • g C g •

Figure 8.3: The above circuit illustrates the general form of most of the circuits in our
database. Each of the gates labeled g represents an element of the single-qubit Clifford
group. Each of the gates labeled C represents a single-qubit canonical circuit as defined
in [BS12].

|0〉 {I,X} {I, SH,HSH} C . . .

(a)

. . . C {H,HS,HSH}

(b)

. . . g • {I, SH,HSH} C . . .

|ψ〉 • {I, SH,HSH} C . . .

(c)

. . . C {H,HS,HSH} • g . . .

. . . C {H,HS,HSH} • U |ψ〉

(d)

Figure 8.4: Some of the g gates in Figure 8.3 can be restricted to a subset of the single-qubit
Clifford group. (a) Circuits that begin with diagonal gates can be eliminated since they
add a trivial phase to |0〉. (b) Similarly, diagonal gates have no impact on the Z-basis
measurement. (c) Pauli gates and S gates can be commuted through the CZ and absorbed
into either |ψ〉 or the preceding g gate. (d) Analogously, Pauli and S gates occurring before
the CZ can be absorbed by the trailing g gate or by the output.

yields a unique representation of all single-qubit circuits over {H,T}; there are 2t−3 + 4
canonical circuits of T -count at most t. This yields more than a quadratic improvement
compared to the naive search, since the number of T gates is roughly one-half the total
number of gates.

In general, the canonical form requires conjugation by the full single-qubit Clifford
group, which contains 24 elements. Given a product of syllables C, each of the 242 = 576
circuits g2Cg1 are unique. However, when multiple canonical form circuits are placed in
a larger circuit, as in Figure 8.3, some combinations of Clifford gates can be eliminated.
For example, in g2Cg1 |0〉, g1 need only be an element of {I,X, SH, SHX,HSH,HSHX}
since diagonal gates act trivially on |0〉. Similar simplifications for Figure 8.3 are shown
in Figure 8.4. In total, these Clifford simplifications reduce the search space by a factor of
more than 105.
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Despite these simplifications, the search time is still exponential in the number of T
gates. To save time, we partitioned the search into thousands of small pieces running in
parallel on a large cluster and collected the results in a central database. We were able
to exhaustively search circuits of the form of Figure 8.3 up to a total (raw) T count of 15.
The search took roughly one week running on hundreds of cores. The results of this search
are presented in the next section.

8.5 Search results

Our search yielded many circuits that implement the same unitary U , but with different
T -gate counts and success probabilities. To eliminate redundancy we maintained, for a given
U , a database containing only the circuit with the minimum expected T count. The result
is a database containing 2194 RUS circuits. Upon success, each circuit exactly implements a
unique non-Clifford single-qubit unitary U , and otherwise implements a single-qubit Clifford
operation. Database statistics are shown in Figure 8.5. For circuits with success probability
less than 1/3, we used amplitude amplification to improve performance (see Section 8.3.3).
Figure 8.5b illustrates the impact of amplitude amplification on the expected T count.
Amplification improved the performance of circuits with relatively high expected T count,
but did not improve circuits with expected T count of 30 or less. Note that the database also
includes some circuits that were found by preliminary searches not of the form of Figure 8.3.

The database contains 1659 axial rotations, i.e., unitaries which, modulo conjugation by
Cliffords, are rotations about the Z-axis of the Bloch sphere, and 535 non-axial rotations.
The number of axial rotations is noteworthy since, modulo Clifford conjugation, only one
non-trivial single-qubit rotation can be exactly synthesized with {Clifford, T} and without
measurement, namely T [KMM12b]. Our results show that many axial rotations can be
implemented exactly (conditioned on success) when measurement is allowed.

At the same time, the non-axial rotations in our database offer an expected T count
that is dramatically better than the T count obtained by approximation algorithms [Sel12,
KMM12c]. For each circuit in the database we computed the number of T gates required
to approximate the corresponding unitary to within a distance of 10−6 using the algorithm
of KMM. Figure 8.6 shows the ratio of the T count given by KMM vs. the expected
T count for the RUS circuit. Our results show a typical improvement of about a factor
of three for axial rotations and a typical improvement of about a factor of about 12 for
non-axial rotations. The larger improvement for non-axial rotations is expected since the
KMM algorithm requires the unitary to be first decomposed into a sequence of three axial
rotations.
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Figure 8.5: Statistics for the database of repeat-until-success circuits, including all circuits
of the form of Figure 8.3 up to a T count of 15. (a) The total number of circuits grouped
by (raw) T gate count and success probability. (b) The total number of circuits grouped by
expected T count, both before amplitude amplification and after amplitude amplification.
The two histograms (before amplification and after amplification) are overlayed, where the
darker hatched bars indicate circuits that are unaffected by amplification. Only circuits
with an expected T count of at most 100 are shown.
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Figure 8.6: Contents of the RUS database, split into axial and non-axial single-qubit
rotations. For each circuit in the database the number of T gates required to approximate
the corresponding “success” unitary U to within 10−6 was calculated using the algorithm
of [KMM12c]. The x-axis represents the ratio of the KMM T count vs. the expected
number of T gates for the RUS circuit.

As an example, the RUS circuit shown in Figure 8.7 implements the non-axial single-
qubit rotation U = (2X +

√
2Y + Z)/

√
7 with four T gates and a probability of success of

7/8. By contrast, approximating U to within ε = 10−6 using the KMM algorithm requires
a total of 182 T gates. Thus Figure 8.7 not only implements the intended unitary exactly,
but does so at a cost better than 40 times less than the best approximation methods.

Our database is too large to offer an analysis of each circuit in detail. Instead, we present
some additional noteworthy examples. The smallest circuit in our database contains two T
gates and is shown in Figure 8.8. Upon measuring zero, which occurs with probability 3/4,
the circuit implements (I +

√
2X)/

√
3 and upon measuring one implements I. This circuit

|0〉 H T † H • • H T † H

|ψ〉 • H T H T † H • 2X+
√
2Y+Z√
7

|ψ〉

Figure 8.7: This RUS circuit implements the unitary U = (2X +
√

2Y + Z)/
√

7 with
probability 7/8, and otherwise implements Z. Approximation of U without ancillas requires
182 T gates (roughly 40 times more) for ε = 10−6.
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|0〉 H T • H • T H

|ψ〉 I+i
√
2X√
3
|ψ〉

Figure 8.8: The above circuit is the smallest in our database. Upon measuring zero, which
occurs with probability 3/4, it implements (I + i

√
2X)/

√
3 on the input state |ψ〉. Upon

measuring one, it implements the identity.

|0〉 H T H • T † H T • H T H

|ψ〉 • • Z V3|ψ〉

Figure 8.9: Like the circuits in Figure 8.1, the above circuit implements V3 with probability
5/6 and identity with probability 1/6, but with only one ancilla qubit and one measurement.

is notable in that its existence was predicted by Gosset and Nagaj in [GN13]. They required
a {Clifford, T} circuit that exactly implemented R = (

√
2I − iY )/

√
3 with a constant

probability of success. The unitary implemented by Figure 8.8 is equivalent to R up to
conjugation by Clifford gates.

As discussed in Section 8.2, our database contains a circuit that implements V3. In
addition to the circuit shown in Figure 8.1c, our search also found a circuit that implements
V3 with the same number of T gates (four), but just a single ancilla qubit, as shown
in Figure 8.9. The expected T count of the single-ancilla circuit is worse than that
of Figure 8.1c, though, since all four of the T gates on the ancilla must be performed
“online”.

The V3 gate is one of a family of V -basis gates for which the normalization factor is
1/
√

5. In addition to single-qubit unitary decomposition based on V3, [BGS13] also offers
the possibility of decomposing single-qubit unitaries using V -basis gates with normalization
factors 1/

√
p where p is a prime. These “higher-order” V gates cover SU(2) more rapidly

than V3 and therefore offer potentially more efficient decomposition algorithms. A number of
such V -basis gates can be found in our database, including axial versions for p ∈ {13, 17, 29},
as shown in Figure 8.10. The prospect of decomposition algorithms with these circuits is
discussed in Section 8.6.
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|0〉 H T H T † H • S H T H T † H S • H T H T † H

|ψ〉 • • Z

(a) (2Z + 3iI)/
√

13, Pr = 13/16

|0〉 H S T H T H T H T S† H • H S H T H T H T H • H S H T H T H T H T H S H

|ψ〉 • X • X

(b) (4I + iZ)/
√

17, Pr ≈ 0.985

|0〉 H T H T H • H S H T H T H T H T H T H T H T H S H • H T H T H

|ψ〉 • X • X

(c) (5I + 2iZ)/
√

29, Pr ≈ 0.774

Figure 8.10: RUS circuits for V -basis gates with prime normalization factors (a) p = 13
(b) p = 17 and (c) p = 29. The values under each circuit indicate the unitary effected upon
success and the success probability, respectively. Each circuit implements the identity upon
failure.

8.6 Decomposition with V3

Our circuit for V3 in Figure 8.1c can be used directly in the decomposition algorithm
of [BGS13]. The BGS direct search algorithm can produce an ε-approximation of a
randomly chosen single-qubit unitary with a number of V3 gates given by 3 log5(1/ε) in
most cases. Multiplying by an expected T -cost of 5.26 using Figure 8.1c yields an algorithm
with an expected T count of

15.78 log5(1/ε) . (8.16)

This is an improvement over the estimated T count of 3(3.21 log2(3/ε) − 6.93) due to
[KMM12c] for all ε < 0.25. This scaling is worse than Fowler’s optimal exponential-time
search by roughly a factor of two. However, the exponential nature of Fowler’s method means
that it can provide approximations in reasonable time only up to roughly ε = 10−4. The
BGS direct search can provide approximations to within ε = 10−10. Thus V3 decomposition
appears to be the best option when relatively high precision is required.

The database also contains some V -basis gates with prime normalization factors larger
than 5. In [BGS13], the authors conjecture that the decomposition algorithm for p = 5
extends to other primes with a T -count scaling of 4 logp(1/ε). However, whereas p = 5
requires only the single V3 gate, higher prime values require implementation of multiple V
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gates. For simplicity, assume that each of the required V gates can be implemented with
some number of T gates Tp. Then the decomposition yielded for prime p will be better
than that obtained with V3 if

1 <
5.26

Tp
log5(p) . (8.17)

Unfortunately, our database contains only a single V -basis gate for each of p =
{13, 17, 29}. Still we calculate (8.17) under the optimistic assumption that the remaining
V gates can somehow be implemented at the same cost. Using the circuits in Figure 8.10
we obtain

5.26/7.38 log5 13 ≈ 1.13, (8.18a)

5.26/11.17 log5 17 ≈ 0.83, (8.18b)

5.26/14.22 log5 17 ≈ 0.77 . (8.18c)

Based on these calculations we conclude that, while improved decomposition may be possible
using p = 13, higher values of p are unlikely to yield cost benefits on their own.

On the other hand, given implementations of multiple V gates, there is no reason to
limit to a single value of p. One could imagine an algorithm that combined multiple classes
of V gates, using largely V3 and using more expensive high-order V gates selectively. We do
not consider such an algorithm directly. In the next section, however, we study the effect of
optimally combining all of the RUS circuits in our database, not just V gates.

8.7 Decomposition with the circuit database

It is possible to approximate to any desired accuracy, an arbitrary single-qubit unitary using
just Clifford gates and the circuits in our database. But actually finding the optimal sequence
among all possible combinations of circuits is a challenging task. Ideally, we could construct
an efficient decomposition algorithm based on algebraic characterization of the set of
available circuits, similar to algorithms for more limited gate sets [Sel12, KMM12c, BGS13].
But the current theoretical characterization of RUS circuits is limited and is a direction
for future work. Instead, we elect to expand the database by explicitly constructing all
possible sequences of circuits.

Construction of the expanded database is similar in nature to the constructions of [Fow11]
and [BS12]. Starting with the set of circuits found by our direct search algorithm, we
compute all products of pairs of circuits, keeping those that produce a unitary which is not
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yet in the database. Triples of circuits can then be constructed from singles and pairs, and
so on. Composite circuits of arbitrary size can be constructed in this way. Call a circuit a
class-k circuit if it is composed of a k-tuple of circuits from the original database. Then the
number Nk of class-k circuits is bounded by

Nk ≤ N1 ·Nk−1 ≤ Nk
1 , (8.19)

where N1 is the number of circuits in the original database.

To make database expansion more manageable, we keep only those circuits that yield
an expected T count of at most some fixed value T0. This has the simultaneous effect of
discarding poorly performing circuits and reducing the value of Nk so that construction
of class-(k + 1) circuits is less computationally expensive. Furthermore, circuits can be
partitioned into equivalence classes by Clifford conjugation. The unitaries of the initial set
of circuits are of the form g0Ug1, where U is the unitary obtained from the RUS circuit,
and g0, g1 are Cliffords. Thus, the product of k such circuits has the form

g0U1g1U2g2 . . . Ukgk . (8.20)

The set of class-(k + 1) circuits can then be constructed by using

g0U1g1U2g2 . . . Ukgk(gk′Uk+1gk+1) = g0U1g1U2g2 . . . Ukgk′′Uk+1gk+1 , (8.21)

so that the Clifford gk is unnecessary. Furthermore, g0 can always be prepended later, and
so we instead express each class-k unitary as

U1g1U2g2 . . . Uk . (8.22)

To find an equivalence class representative of U , we first adjust the global phase by
multiplying by u∗/

√
|u|2, where u is the first non-zero entry in the first row of U . Next,

we conjugate U by all possible pairs of single-qubit Cliffords. The first element of a
lexicographical sort then yields the representative g1Ug2 for some Cliffords g1, g2.

Once the database has been constructed, the decomposition algorithm is straightforward.
Given a single-qubit unitary U and ε ∈ [0, 1], select all database entries V such that
D(U, V ) ≤ ε, where

D(U, V ) =

√
2− |Tr(U †V )|

2
(8.23)

is the distance metric defined by [Fow11] and also used by [Sel12, KMM12c, BGS13, WK13].
Then, among the selected entries, find and output the circuit with the lowest expected T
count.
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8.7.1 Decomposition with axial rotations

An arbitrary single-qubit unitary can be decomposed into a sequence of three Z-axis
rotations and two Hadamard gates [NC00]. Therefore, approximate decomposition of
Z-axis rotations suffices to approximate any single-qubit unitary. If we limit to Z-axis, i.e,
diagonal rotations only, then a few additional simplifications are possible. In particular,
each unitary can be represented by a single real number corresponding to the rotation angle
in radians. The result of a sequence of such rotations is then given by the sum of the angles.
Furthermore, up to conjugation by {X,S}, all Z-axis rotations can be represented by an
angle in the range [0, π/4]. This allows for construction of a database of Z-axis rotations
which is much larger than a database of arbitrary (non-axial) unitaries.

Using the database expansion procedure described above, we were able to construct a
database containing all combinations of RUS circuits with expected T count at most 30.
The maximum distance (according to (8.23)) between any two neighboring rotations is less
than 2.8× 10−6, and can be improved to 2× 10−6 by selectively filling the largest gaps. So
the resulting database permits approximation of any Z-axis rotation to within ε = 10−6.

To approximate a Z-axis rotation by an angle θ, we simply select all of the entries that
are within the prescribed distance ε, and then choose the one with the smallest expected T
count. This procedure is efficient since the database can be sorted according to rotation
angle. Then the subset of entries that are within ε can be identified by binary search.

In order to assess the performance of this method, we approximate, for various values
of ε, a sample of 105 randomly generated angles in the range [0, π/4]. Results are shown
in Figure 8.11 and Table 8.3. A fit of the mean expected T count for each ε yields a scaling
given by (8.1), with a slope roughly 2.4 times smaller than that reported by [KMM12c] for
the rotation RZ(1/10).

By way of comparison, Wiebe and Kliuchnikov report a scaling of 1.14 log2(1/θ) for
small angles θ. However, their RUS circuits are specially designed for small angles. For
arbitrary angles they report an expected T count of about

1.14 log2(10γ) + 8 log2(10−γ/ε) , (8.24)

where θ = a× 10−γ for some a ∈ (0, 1) and integer γ > 0. Using (8.24) to calculate costs
for the same 105 random angles as above, we obtain a fit function of

6 log2(1/ε)− 2.2 . (8.25)

Formula (8.25) indicates that the efficiency of the circuits in [WK13] does not extend to
coarse angles.
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Figure 8.11: The above plot shows the expected
number of T gates required to approximate a single-
qubit Z-axis rotation to within a distance ε. The
plot was constructed by selecting 105 real numbers
in the range [0, π/4] uniformly at random. For each
value θ, the RUS circuit with the smallest expected
T count within ε of the unitary RZ(θ) was selected.
The mean for each value of ε is plotted, yielding a
fit-curve of 1.26 log2(1/ε) − 3.53. The gray region
is an estimate of the interval containing the actual
number of T gates with probability 95%. Scaling of
the Selinger and KMM algorithms are included for
reference.

log10(1/ε) Exp T (σ2) ±95% (σ2)
1 1.1 (1.1) 1.2 (3.6)
1.5 2.9 (2.2) 2.5 (2.9)
2 4.8 (3.4) 3.1 (2.9)
2.5 6.8 (3.9) 4.0 (3.8)
3 8.8 (4.3) 4.5 (4.7)
3.5 10.9 (4.6) 4.9 (5.2)
4 12.9 (4.8) 5.4 (5.5)
4.5 15.1 (5.3) 5.9 (5.7)
5 17.4 (5.7) 6.3 (5.8)
5.5 19.6 (6.0) 6.7 (6.1)
6 22.0 (6.4) 7.1 (6.5)

Table 8.3: Expected T counts for
approximation of random Z-axis ro-
tations with RUS circuits. The mid-
dle column indicates the expected T
count based on a sample of 105 ran-
dom angles. The right-hand column
indicates the expected 95 percent
confidence interval of the T count
for the best RUS circuit, given a ran-
dom angle θ. The variance of each
expected value is indicated in paren-
thesis.
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Equation (8.1) also implies that RUS Z-axis rotations can be used to approximate
arbitrary single-qubit unitaries with a scaling approaching that of optimal ancilla-free
decomposition. Since an arbitrary unitary can be expressed as a product of three axial
rotations, the expected T count for approximating an arbitrary single-qubit unitary is
given by 3.9 log2(3/ε)− 8.37. On the other hand, Fowler calculates an optimal T -count of
2.95 log2(1/ε) + 3.75 (on average) without using ancillas [Fow11].

Since our circuits are non-deterministic, we are also concerned with the probability
distribution of the number of T gates. For each composite circuit in the database, we
calculate the variance σ2 of the T count based on the variance of each individual circuit.
We may then obtain a confidence interval using Chevyshev’s inequality

Pr(|Actual[T ]− Exp[T ]| ≥ kσ) ≤ 1

k2
. (8.26)

Table 8.3 shows the mean of the expected T count for each ε. By also calculating the mean
of the variance σ2, we obtain an estimate of the corresponding 95% confidence interval,
shown by the gray region in Figure 8.11. That is, for a randomly chosen angle θ, the
total number of T gates required to implement RZ(θ) is within the given interval around
1.26 log2(1/ε)− 3.53, with probability 0.95.

The approximation accuracy permitted by our database is limited by computation
time and memory. To maximize efficiency, we used floating-point rather than symbolic
arithmetic. Construction of all RUS circuit combinations up to expected T count of 30 took
roughly 20 hours and 41 GB of memory using Mathematica. Table 8.4 shows the number
of circuit combinations and corresponding rotation angle densities for increasing values of
the expected T count. The size and density of the database increases by about an order of
magnitude for every five T gates. We expect that with a more efficient implementation—in
C/C++ for example—the worst-case approximation accuracy could be improved.

8.7.2 Decomposition with non-axial rotations

Using either the above database, or the methods of KMM or Selinger, decomposition of
an arbitrary unitary incurs an additional factor of three in cost because each of the three
Z-axis rotations are approximated separately. The increased cost is illustrated in Figure 8.6
by the larger ratios for non-axial unitaries. Indeed Figure 8.6 suggests that incorporating
both axial and non-axial RUS circuits could yield better approximations than using Z-axis
rotations alone.

Fowler’s method does not incur the additional factor of three for arbitrary unitaries,
maintaining a scaling of 2.95 log2(1/ε) + 3.75. But as noted before, RUS circuits offer a
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Max. exp.
T count Size Mean D Max D
5 7 0.04 0.08
10 134 0.0021 0.0066
15 2079 0.00013 0.00014
20 27420 0.00001 0.00017
25 320736 0.0000009 0.000016
30 3446708 0.00000008 0.0000028

Table 8.4: Size and density of the Z-axis rotation database according to the maximum
expected number of T gates. The mean and the maximum distances between nearest
neighbors is given in columns three and four, respectively.

larger domain of exactly implementable unitaries than circuits without ancillas. Just as RUS
circuits outperform ancilla-free Z-axis decomposition, they could outperform ancilla-free
non-axial decomposition.

On the other hand, construction of the database in the non-axial case is significantly
more challenging than in the axial case. Unitaries must be represented by three rotation
angles instead of one. Multiplication of circuit combinations is less efficient than for Z-axis
rotations which only require addition. Organizing the database for efficient lookup is also
more complicated. Z-axis rotations can be sorted by rotation angle, but arbitrary unitaries
require a more complicated data structure such as a k-d tree [DN05, Amy13].

Despite these limitations, there are some savings to be had. We may still express each
unitary by its Clifford equivalence class representative (8.22). Conjugation by all 576 pairs
of Cliffords is not required however. First, note that any single-qubit Clifford can be written
as a product g1g2 where g1 ∈ G1, g2 ∈ G2 and

G1 = {I, Z, S, S†}
G2 = {I,H,X,XH,HS,XHS,HSH,XHSH} . (8.27)

Now, instead of conjugating by the entire Clifford group, we conjugate only by G2. Then,
each resulting unitary can be decomposed into three rotations

g2Ug
′
2 = RZ(θ1)RX(θ2)RZ(θ3) , (8.28)

where g2 ∈ G2 and g′2 ∈ {g† | g ∈ G2}. The Cliffords in G1 are diagonal, and only modify
θ1 and θ3. Up to conjugation by these remaining Cliffords, we then have

RZ(θ1)RX(θ2)RZ(θ3) ≡ RZ(θ1 mod π/2)RX(θ2)RZ(θ3 mod π/2) . (8.29)
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Choosing 0 ≤ θ1, θ2 < π/2, we can find an equivalence class representative without actually
conjugating by G1, saving a factor of 576/64 = 9.

Even with this optimization, though, our Mathematica implementation is quite slow.
We were able to construct a database of size 45526 consisting of all RUS circuits with
expected T count at most 18. We then calculated the best circuit for each of 100 random
single-qubit unitaries for a variety of ε ≥ 8× 10−3. A fit-curve for the data yields a scaling
given by (8.3). Based on the slope, the savings is only about 18 percent over Fowler, but in
absolute terms the savings is roughly a factor of two, at least for modest approximation
accuracy. See Figure 8.12.

Given the relatively large ratios for non-axial unitaries in Figure 8.6, the scaling given
by (8.3) is perhaps disappointing. We note, however, that our database contains only a
limited subset of possible RUS circuits. Incorporating a larger set of circuits could improve
performance.

8.8 Quantum algorithms using coarse angles

The accuracy to which the database decomposition methods can reach is limited by the size
of the database. Our Z-axis rotation database is capable of approximations to within 10−6.
If the required accuracy is higher than that, then either the database must be expanded,
or an algorithmic decomposition such as Selinger, KMM, or that of Section 8.6 must be
used. However, a variety of important quantum algorithms require only relatively coarse
accuracy. Fowler, for example, used numerical analysis to argue that Shor’s algorithm
requires rotation angles no smaller than θ = π/64 ≈ 0.05 with an with an approximation
error of ε = π/256 ≈ 0.012 [FH04].

Another application of coarse angles is in quantum chemistry. Consider a Hamiltonian
for a molecule expressed in second quantized form, where the objective is to determine the
ground state energy of the molecule.3 Wecker et al. [WBCT13] have developed a technique
to scale the coefficients of the non-commuting terms in the Hamiltonian to the maximum
coefficient, while maintaining arbitrary accuracy on the estimate of the energy. This scaling
allows one to use large angles within the phase estimation algorithm, where the angles
require at most 10−6 accuracy in practice. Similarly, Jones et al. show how to optimize
quantum chemistry simulations by ignoring terms with small norm [JWM+12]. They use
Z-axis rotations with approximation accuracies in the range ε = 10−5.

3The second quantized form expresses the quantum system in terms of the number of particles in each
possible state. The specifics are not important for the current discussion, however.
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Figure 8.12: The above plot shows the expected number of T gates required to approximate
an arbitrary single-qubit unitary to within a distance ε. Each point indicates the mean of
100 random unitaries approximated to the corresponding accuracy with our full database
of RUS circuits. With 95 percent confidence, the solid black line has slope in the range
[2.29, 2.51]. The dashed black line indicates the estimated cost of first expressing the unitary
as a product of axial rotations, and then decomposing each rotation using the Z-axis RUS
database from Section 8.7.1. The solid red line indicates the scaling obtained by using
the circuit in Figure 8.1c for V3 decomposition [BGS13]. This scaling is worse than the
others, but is valid for ε > 10−10. The estimated scaling due to Fowler [Fow11] is shown for
reference.
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8.9 Possible generalizations and limitations

Traditional methods decompose single-qubit unitaries into deterministic sequences of gates.
Wiebe and Kliuchnikov showed that by adding measurements and allowing non-deterministic
circuits, decompositions with fewer T gates are possible (in expectation) for very small
Z-axis rotations [WK13]. Our results extend that conclusion to arbitrary single-qubit
unitaries. By constructing a database of repeat-until-success circuits and then progressively
composing those circuits, we can approximate arbitrary single-qubit unitaries to within a
distance of 10−6, which is sufficient for many quantum algorithms. For a random Z-axis
rotation, our database yields an approximation which requires as little as one-third as many
T gates as [Sel12], [KMM12c] and [Fow11]. Using all of the circuits in our database (not
just the Z-axis rotations), the improvement for arbitrary unitaries can be larger, though
achieving high approximation accuracy is challenging.

Our results suggest a number of possible areas for improvement and further research.
First, the circuits proposed by [WK13] use traditional decomposition algorithms (i.e.,
Selinger or KMM) to generate the unitaries required for the mantissa a of the angle a×10−γ .
Instead, our RUS circuits could be used in order to improve performance. Indeed, one could
consider a hybrid approach that combined all available decomposition methods in order to
find the most efficient circuit. Second, circuits of the form shown in Figure 8.3 make up
only a subset of possible RUS circuits. Expanding the search to include additional types of
circuits could improve database density. Third, the formal theory of RUS circuits is not
yet understood. A better understanding could lead to efficient decomposition algorithms
based on RUS circuits and allow for approximation to much smaller values of ε. A tight
characterization of RUS circuits would seem to first require a better understanding of
{Clifford, T} complexity for multi-qubit unitaries.

One could also consider some relaxations to the RUS circuit framework. We consider
only single-qubit unitaries. However, multi-qubit unitaries or non-unitary channels may
also be of interest. We also restrict to recovery operations that are Clifford operators.
That restriction could be modified to allow for larger or alternative classes of operations.
On the other hand, fault-tolerance schemes based on stabilizer codes often permit no-
cost application of Pauli operators [Kni05]. Thus, it might be sensible to limit recovery
operations to only tensor products of Paulis.

Finally, the non-deterministic nature of RUS circuits imposes some additional constraints
on the overall architecture of the quantum computer. Many fault-tolerance schemes already
use non-deterministic methods such as state distillation to implement certain gates. But
most of the non-determinism occurs “offline”, without impacting the computational data
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qubits. Since RUS circuits are “online”, the time required to implement a given unitary
cannot be determined in advance. Such asynchronicity could complicate placement and
routing techniques (see Chapter 9) and classical control logic, thereby increasing resource
overhead requirements. Thorough architecture-specific analysis will be required in order to
concretely assess the improvements obtained by using RUS circuits.
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Chapter 9

Global optimization of fault-tolerant
quantum circuits

This chapter is based on material that appears in [PF13].

One issue that is generally ignored in fault-tolerant constructions, particularly for
concatenated codes and including the one in Chapter 7, is that realistic proposals for
quantum computers impose geometric constraints. Many proposed architectures involve
a two-dimensional lattice of qubits for which interactions are limited to a small set of
neighboring locations (see Section 4.6). Ultimately, any practical fault-tolerance scheme
must account for the particular geometry offered by the quantum computer.

In this chapter we propose two algorithms for efficient placement of fault-tolerant
quantum circuits onto a two-dimensional rectangular lattice of qubits. Our algorithms
operate within the context of the surface code and therefore automatically respect nearest-
neighbor interaction constraints. Encoded computation in the surface code is represented
by a three-dimensional object in space-time called a braid. Our algorithms are based on
the fact that the encoded quantum circuit is invariant under topological transformations of
the braid. We may, therefore, smoothly deform the braid according to the dimensions of
the quantum computer.

Informally, braid compaction is the problem of topologically deforming a braid so that it
fits into a prescribed spacetime volume. This problem bears a striking resemblance to VLSI
placement. In VLSI placement the goal is to arrange a set of logic elements—represented by
rectangles—and wires into the smallest possible area subject to connectivity and distance
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constraints. In braid compaction, the task is to pack a set of gates, some of which are
represented by boxes, into the smallest possible volume subject to distance and topology
constraints. The VLSI placement problem is known to be NP-complete [SLW83]. We
conjecture that braid compaction is NP-complete, as well; though attempts at a formal
reduction have been unsuccessful.

Correspondingly, our algorithms are constructed from carefully designed heuristics. The
first algorithm is loosely based on physical principles of gravity and tension. The braid is
treated as a physical object that is allowed to slide into a space-time box under its own
weight. Gravity forces direct the braid toward the bottom of the box in order to minimize
time, and tension forces keep the braid compact.

Our second algorithm uses the optimization technique of simulated annealing, and
is based on a similar algorithm for VLSI placement [HLL88]. Each part of the braid is
modeled as a cuboid (i.e., a box). Some cuboids have fixed dimension and some are allowed
to expand and contract. Size, distance and topology constraints are given by sets of linear
inequalities on the coordinates of each cuboid. Depending on the shape of the braid, some
constraints must be actively enforced, and others need not be enforced. The annealing step
consists of swapping constraints in and out of the active set to change the shape and size of
the braid.

9.1 Parallelism: optimizing for time

The main goal of the optimization techniques in previous chapters has been to reduce
the space requirements of fault-tolerant quantum computation. In many cases, these
optimizations also lead to smaller time overhead, as well. To this point, however, time
optimization has been a secondary goal. Furthermore, these techniques focus on small but
repeated parts of the circuit. They do not address, for example, global parallelism concerns.

In our current context, we are instead given a fixed two-dimensional lattice of qubits,
and are asked to minimize the time overhead. If we can minimize the space requirements
without increasing time requirements, then we should. But space that is available but
otherwise unoccupied is wasted.

An important goal, therefore, is to parallelize quantum algorithms. However, many
quantum algorithms are serial in nature, leaving large numbers of qubits idle much of the
time. Low-gate-count arithmetic quantum circuits, for example, form a staircase structure
of linear depth [CDKM04]. Parallelization of certain procedures, such as the quantum
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Fourier transform, is possible when extra qubits are available but is typically done on a
case by case basis [CW00].

Some general techniques for pararallelization exist. Typical methods involve local
circuit rewriting rules for trading between sequences of gates and additional qubits [MN01,
MDMN08, SWD10]. Small-depth circuits can be achieved for certain sub-classes of quantum
circuits. Clifford group circuits, for example, can be parallelized to quantum circuits of
constant depth followed by log-depth classical post-processing [RB01].

Others have proposed global circuit optimization procedures that involve a multi-staged
transformation to and from the measurement-based quantum computing model [BK09,
dSPK13]. Indeed, there are strong similarities between the measurement-based model and
the surface code [RH07]. However, the template-based and measurement-based optimiza-
tions are not fault-tolerant and, except for [SWD10], do not explicitly consider geometric
constraints imposed by the quantum computer. It is not clear that the resulting circuits
remain compact under such restrictions.

By contrast, since our algorithms operate within the surface code, the output is auto-
matically fault-tolerant and can be easily mapped to a wide variety of two-dimensional
nearest-neighbor architectures [DiV09, GFG12]. Furthermore, the rules for topologically
transforming surface code braids are conceptually simple. There is no need to break up the
transformation into multiple stages. Thus, compared to other proposals, we feel that our
approach is easier to understand, implement, and extend.

9.2 The surface code

The optimization algorithms in Section 9.4 and Section 9.5 are based on fault-tolerant
quantum circuits for the surface code. The surface code uses a fundamentally different
approach to encoding logical quantum gates than we have previously seen for concatenated
codes, and this encoding is key to our optimization approach. In this section, we give a
brief pedagogical introduction to the surface code, with a focus on the mapping from a
quantum circuit to a surface code braid. Other details of the surface code are not essential
for understanding our compaction algorithms. For a comprehensive introduction to the
surface code we refer the reader to [FMMC12].

The surface code has a number of desirable properties. First, it operates on a two-
dimensional rectangular lattice of qubits. All operations can be performed using only
one-qubit gates, and two-qubit gates involving only nearest neighbor qubits. As a result,
the required number of qubits scales much more slowly for the surface code than for
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concatenated codes on 2-D nearest-neighbor architectures. At the same time, the surface
code tolerates noisier physical gates than many other quantum error correcting codes.
Reliable computation is possible so long as the noise rate is below roughly 0.6 percent per
gate [FMMC12].

9.2.1 Encoded qubits

The surface code is a CSS code that can be defined on a 2D rectangular lattice graph of
degree four. A qubit is placed on each edge of the graph. The X stabilizer generators
correspond to weight-four operators around each vertex—i.e., each operator has support
only on the qubits adjacent to the corresponding vertex. The Z stabilizer generators
correspond to weight-four operators around each face of the lattice—i.e., each operator has
support only on qubits of the edges that define the face. Encoded qubits are created by
disabling some of the generators, thereby adding new degrees of freedom to the code. We
choose to define a qubit as a pair of defects. Defects are contiguous regions of the lattice
for which the stabilizers are not measured. There are two types of defects, primal and
dual. Primal defects correspond to operators around vertices of the lattice (Z stabilizer
generators), and dual defects correspond to operators around the faces of the lattice (X
stabilizer generators).

Error protection is achieved by creating defects of sufficient size, and by keeping
defects well separated in space. For a code distance of d, we require that all defects have
circumference d and that defects of the same type are separated in L∞ distance by d. For
defects of opposite type, the minimum distance depends on the shape of each defect. In all
cases a distance of d/4 is sufficient (for code distance d), though in some cases primal and
dual defects may be as close as d/8.

9.2.2 Encoded operations

Most encoded operations in the surface code proceed by moving defects around each other.
Defect movement is achieved by turning off new regions of stabilizer measurements and then
turning on other stabilizer measurements. The movement can be divided into time-slices.
By stacking time-slices on top of each other, the encoded operations are represented by a
three-dimensional object in space and time called a braid. See Figure 9.1. Transformation
of a quantum circuit to a braid can be done systematically by constructing canonical braid
elements for each quantum gate. Preparation of encoded |0〉 is represented by a “U”-shaped
primal defect. Encoded Z-basis measurement is essentially the reverse. A CNOT operation
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Figure 9.1: (a) Encoded surface code qubits are defined by pairs of defects, either primal
(red) or dual (blue). Each defect is composed of multiple physical qubits on the two-
dimensional lattice. Operations are performed by moving defects around. Here, an encoded
two-qubit operation is performed by moving one defect from the dual encoded qubit around
one of the defects of the primal encoded qubit. (b) The same operation can be written as a
space-time diagram in which one of the space axes has been flattened.

is performed by a loop of dual defects that wraps around the two associated encoded qubits.
See Table 9.1.

Braids consisting of these operations are invariant under topological deformation. That
is, a quantum circuit can be represented by a canonical braid, and also by any braid that is
topologically equivalent to that canonical braid. Strings of defects may be smoothly pulled
or pushed around in space and time without altering the encoded quantum computation.
See Figure 9.2. Note that space and time are symmetric here. Space can be traded for time
and vice versa.

Not all encoded operations in the surface code can be performed topologically, however.
The encoded Hadamard operation, for example, requires the encoded qubit—i.e., the two
corresponding defects—to be placed on a separate lattice, isolated from all other encoded
qubits. This is achieved by first “cutting out” part of the lattice around the encoded qubit
and then later re-attaching it to the rest of the lattice [Fow12a]. The resulting space-time
volume is a cuboid (i.e., a box) of dimension roughly 3d/2× 3d/2× 5d/2. However, the
cuboid contains a variety of boundary types near the surface, thus imposing some restrictions
on the configurations of other surrounding defects. The cuboid can be translated in any
direction, or rotated about the time-axis by increments of π/2, but is otherwise treated as
a rigid object.1 For concreteness, we adopt the convention that time corresponds to the

1In principle, a sideways Hadamard gate is possible and would allow for rotations about the x and y
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Table 9.1: The surface code gate set (top) and corresponding canonical braids (bottom).
Each braid is a three-dimensional collection of defects. For visual clarity, the braids have
been flattened here into two dimensions.
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Figure 9.2: Surface code braids are invariant under topological deformation. The space-time
diagram on the left (a) is topologically equivalent to the diagram on the right (b). Defect
strings and loops may be smoothly stretched and contracted without altering the encoded
operation.
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z-axis.

We will also require one other non-topological operation, the encoded T -gate. This
gate cannot be implemented directly in the surface code and is instead constructed by
the state distillation protocol described in Section 4.3.2. Distillation does not explicitly
require the encoded qubit to be cut out of the lattice, as the Hadamard does. However,
both the distillation and gate teleportation involve measurements which are probabilistic.
The required circuit changes depending on the measurement outcomes.

Likewise, the corresponding braid cannot be entirely determined ahead of time. It
is possible, however, to shift all of the non-determinism either offline or into logical
measurements, which can be performed very efficiently [Fow12c]. Figure 9.3b shows an
alternative circuit that also implements T . In this circuit, an S gate, implemented with
the help of a resource state |Y 〉 = 1√

2
(|0〉+ i |1〉), is selectively teleported into the circuit

conditioned on the outcome of an Z-basis measurement. Given states |A〉 and |Y 〉, the
entire circuit is determined ahead of time except for the measurement bases for selective
teleportation.

The circuit in Figure 9.3a is smaller than that of Figure 9.3b. The latter circuit, however,
has the advantage that it can be composed in parallel with any number of additional T gate
circuits. The braid corresponding to the single-qubit unitary THT , for example, can be
parallelized as shown in Figure 9.4. The logical measurements in this braid are implemented
differently than previously discussed. The cap on the defects has been flattened into a
wider, but thinner set of defects that looks like a tabletop. This allows for maximum
parallelization of sequences of T gates.

The measurement regions of Figure 9.4 must obey a relative time ordering. In particular,
the Z-basis measurement of the input qubit |ψ〉 must be completed before the selective
teleportation measurements can be performed. In addition, the selective teleportation of the
previous T (if applicable) must be completed before selective teleportation measurements
of current T gate can be performed. In this way, the measurement regions for sequences of
T gates form a tree. Each measurement region must be located strictly later in time than
each of its children.

There are a variety of options for preparing the |A〉 and |Y 〉 states required by Figure 9.3b.
The |A〉 state, for example, can be prepared using the [[15, 1, 3]] state distillation procedure
due to Bravyi and Kitaev [BK05], or any of the other proposals presented in Section 4.3.2.
Efficient surface code braids are known for several of these protocols [FD12, FDJ13], though
we will not discuss the details here. Rather, for simplicity we abstract the |A〉 and |Y 〉
axes. However, the chosen implementation requires the cuboid to be vertically oriented.
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|A〉 • S T |ψ〉

|ψ〉 Z •
(a)

|ψ〉 Z •

|A〉 • • Z/X

|0〉 X/Z

|Y 〉 H H |Y 〉

|+〉 • • • • X/Z

|+〉 • • Z/X

|0〉 T |ψ〉

(b)

Figure 9.3: Two circuits that implement the T gate on input state |ψ〉. (a) The resource
state |A〉 = |0〉 + eiπ/4 |1〉 is constructed by injection and distillation. Conditioned on
the measurement outcome, a corrective S rotation may be required, which requires a
non-destructive use of an ancilla |Y 〉 = |0〉+ i |1〉 state, initially prepared by injection and
distillation (not shown). (b) Instead of performing the conditional S gate directly, selective
destination teleportation can be used [Fow12c]. On one path of the teleportation, the S
gate is applied, and on the other path it is not. The Z-basis measurement on |ψ〉 determines
the bases in which the other four qubits are measured. The output is T |ψ〉, up to Pauli
corrections from teleportation.

preparation as rigid cuboids, similar to the Hadamard gate. This gives us the freedom
to define braid compaction algorithms without being coupled to a particular distillation
procedure.

The gates listed in Table 9.1 are universal for quantum computing. Thus any quantum
circuit can be mapped to a surface code braid by first decomposing it into this gate set,
and then sequentially constructing each of the canonical braid elements.

9.3 The braid compaction problem

The canonical braid is a fault-tolerant representation of the original circuit, but there is
no guarantee that it will fit onto the two-dimensional lattice of qubits that is available.
Indeed, the structure of the canonical braid closely resembles that of the original circuit.
It is essentially a long line of defects that extends out in time. Even if the braid fits, its
two-dimensional shape means that most of the qubits in the quantum computer will be left
unused.
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Figure 9.4: (a) A quantum circuit for the single-qubit unitary THT in which time runs left
to right. (b) A schematic representation of the corresponding surface code braid in which
time runs bottom to top. For simplicity, the braids corresponding to Figure 9.3b are shown
as boxes, except for the measurements which are shown as thin tabletop structures. The T
and H boxes may be placed in parallel, and the |A〉 and |Y 〉 states may be prepared ahead
of time. The first measurement of the T gate must complete before the remaining four
selective teleportation measurements can be performed. Selective teleportation measurments
between T gates also obey a relative time-ordering as indicated by the black dotted lines.
Any sequence of single-qubit gates from {T,H, S} may be parallelized in this way.
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Of course, one could try to compile the braid in a different way, so as to use more of
the available space. However, the efficiency of the compilation will depend heavily on the
structure of the original circuit. Qubits that were originally local when arranged linearly
might be placed far apart when arranged in two dimensions, thereby increasing the volume
required for a CNOT between the two.

We instead choose to optimize the canonical braid by smoothly deforming it. So long as
the deformations are topological, the optimized braid will be logically equivalent to the
original. Braid compaction, then, is the problem of taking a braid B and converting it into
a topologically equivalent braid B′ that fits into a smaller bounding volume. Alternatively,
the problem can be described as follows.

Braid compaction Given a braid B, code distance d, and a rectangular lattice of dimen-
sion A = (x, y), find a braid B′ that is topologically equivalent to B and such that B′

that achieves a minimum code distance of d and is contained in a volume V = (x, y, z)
of minimum size.

The x and y dimensions of the bounding volume are are fixed by the size and geometry
of the quantum computer. The goal is to efficiently use the provided space in order to
minimize computation time.

Abstractly, we can view braid compaction as a process of placing cuboids (Hadamard
and T gates) in a large box, subject to certain distance, connectivity and topology con-
straints. When viewed in this way, the problem looks strikingly similar to that of VLSI
placement [SLW83]. In the VLSI placement problem, the task is to pack a set of circuit
elements—represented by rectangles—on a two-dimensional circuit board of minimum area.
Some of the circuit elements must be connected by wires, and some must be separated from
other circuit elements by a minimum distance.

VLSI placement is NP-complete [SLW83]. Given the close similarities with VLSI
placement and with other packing problems, we conjecture that braid compaction is also
NP-complete. However, despite their similarities, there are several key differences between
VLSI placement and braid compaction. In particular, the rigid objects in VLSI placement
have arbitrary dimension whereas the Hadamard cuboids in the braid are of fixed size.
Thus a naive reduction from VLSI placement to braid compaction is not possible. Attempts
at a more complicated reduction or reduction from related problems such as 3-Partition
and bin packing have so far failed.
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9.4 A force-directed compaction algorithm

We now describe our force-directed algorithm, the first of two proposed algorithms for
braid compaction. The algorithm employs two complementary “forces”. A gravity force
acts to pull the braid down toward the bottom of the space-time grid, thereby reducing
computation time. Meanwhile, a tension force prevents the braid from becoming too large
and impeding the progress of gravity.

9.4.1 Braid representation

For our force-directed algorithm, the braid is modeled as a set of plumbing pieces (i.e.,
pipes) placed on a three-dimensional grid. For circuits containing preparation, measurement,
single-qubit Paulis and CNOT gates, only four types of pipes are required: straight and bent
(elbow shaped) pipes, both primal and dual. See Figure 9.5. The braid is then constructed
by connecting pipes into interlocking loops. Junctions can also be supported by merging
two or more pipes.

The three-dimensional (l × w × h) grid is partitioned into 4× 4× 4 cells, each of which
contain at most one primal pipe and one dual pipe. Each pipe connects to at least two
of the faces of the cell. For each face there is a designated unit cube to which a pipe can
connect. For example, a primal pipe that connects to the −y face must always connect
at position (1, 0, 2) within the cell. Including the empty pipe, there are 26 = 64 possible
primal pipes and 64 possible dual pipes, for a total of 4096 possible cell configurations.
See Figure 9.6.

The structure of the cell enforces a minimum distance of a single unit cube between
defects of opposite type and a distance of three unit cubes between distinct defects of the
same type. Thus, if the length of a unit cube is δ, the resulting surface code distance is
d = 3δ. A unit cube contains 2δ physical qubits per side (including qubits for stabilizer
measurement), so that a single time-slice of a cell contains 64δ2 qubits.

Regions such as Hadamards, and state distillation and tabletop measurement for T
gates cannot be represented as a collection of conventional plumbing pieces. Instead, they
are represented by a volume of special purpose pipes which collectively are treated as a
contiguous region. These pipes are much like regular pipes, except that they consume an
arbitrary region of the 4× 4× 4 cell.
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(a) straight primal (b) bent primal (c) straight dual (d) bent dual

Figure 9.5: In the force-directed algorithm, braids are constructed by rotating and
connecting the four primative “plumbing” pieces shown above.

(a) (b)

Figure 9.6: (a) An example of a 4 x 4 x 4 cell containing both a primal pipe and a dual
pipe. The primal pipe connects to the southern face (−z) and the eastern face (+x). The
dual pipe connects to the the western face (−x) and to the far face (+y). (b) All possible
pipes superimposed on a single cell. Primal and dual defects are always separated by at
least one unit cube. Neighboring unconnected defects of the same type are always separated
by at least three unit cubes.
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9.4.2 Braid synthesis

As defined, the braid compaction problem takes an arbitrary braid as input. Thus our
algorithm need not address the synthesis of a quantum circuit into a braid. Indeed, the
force-directed braid model requires only that rigid collections of pipes (i.e., cuboids) be
specified along with rotation and time-ordering constraints.

For concreteness, however, we will assume that the initial braid is constructed from
a quantum circuit in the canonical way as described in Section 9.2. That is, qubits are
represented by pairs of primal defects. Single-qubit preparation corresponds to two bent
pipes connected to form a “U” shape and single-qubit measurement is the same, except that
the U shape is upside-down. Hadamards, and T gates are abstracted as cuboids of fixed
dimension. CNOT gates are constructed by wrapping a dual loop around corresponding
primal loops.

The Hadamard cuboid is three cells wide, four cells deep and four cells high. This
cuboid is larger than is strictly necessary to enclose the Hadamard operation. Part of the
Hadamard operation involves cutting a boundary around the corresponding logical qubit.
The volume given above provides enough room for the Hadamard operation to take place
inside boundary, while enforcing that defects outside of the boundary are a safe distance
away. Affixed to opposite faces of the cuboid are pairs of straight pipes representing the
input and output logical qubit.

The specifics of the T -gate braid depend on the distillation protocol and on the desired
gate accuracy, but otherwise follow Figure 9.3b. Our compaction algorithm is flexible enough
to allow any type of distillation scheme. For simplicity, we will assume the existence of two
cuboid regions for each T gate, one for |A〉 and one for |Y 〉. Straight pipes representing the
output are affixed to the top of each cuboid.

9.4.3 Gravity

The primary “force” in the algorithm is a vector field that loosely resembles physical gravity
acting on the braid. With each cell in the grid, we associate two vectors of the form (a,m),
specified by an axis a ∈ {x, y, z} and a magnitude m ∈ Z. The first vector represents a
force on the primal pipe contained in the cell, and the second vector represents a force on
the dual pipe.

There are a number of reasonable ways to initialize and update the gravity field as
defects are moved around. The simplest strategy is to assign a fixed, negative magnitude to
each spacetime point and align the vector along the z-axis so that the force always points
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Figure 9.7: Gravity vectors (shown as green cones) generally point downward, but may
point in any direction.

downward. In order that defects may slide past each other, though, we allow vectors to
point sideways along the x and y axes, as well. See Figure 9.7. Roughly, gravity vectors
are assigned to point to the closest cell from which the defect may then move downward.
For example, a primal pipe occupying cell (x, y, z) may be blocked by a dual pipe in cell
(x, y, z − 1). If, however, cells (x+ 1, y, z) and (x+ 1, y, z − 1) are empty, then the primal
gravity vector for cell (x, y, z) is assigned to point along the positive x-axis.

9.4.4 Tension

The gravity force, while effective at directing pipes toward the bottom of the grid, has the
effect of stretching strings and loops, thus increasing the length of the braid. This happens,
for example, when a loop is pulled by gravity in one direction but a small segment of the
loop is prevented from moving because other defects are in the way. When a string or loop
becomes very long, it may take up space that could otherwise be occupied by other parts
of the braid. To prevent this behavior we implement a tension force which acts to reduce
the length of a string.

Tension is applied to each string of defects independently. For each pipe in the string,
there is a force pulling in the direction of the input face and a force pulling in the direction
of the output face. For example, a pipe connected to the −x and +z faces will experience a
force in the −x and +z directions. The magnitude of the force is proportional to the length
of the string, just as for a physical spring.

This choice of tension forces means that the inward and outward forces cancel for
straight pipes. Bent pipes, however, feel an inward force toward the rest of the string.
This inward force tends to decrease the curvature of the string, thereby reducing its length.
See Figure 9.8.
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(a) before (b) after

Figure 9.8: The tension force pulls inward on each of the corners of the loop. The result is
a smaller rectangular loop.

Tension forces also act on cuboids. Each of the pipes connected to a cuboid exerts a
force that pulls in the direction of the pipe. Again, the force is proportional to the length
of the string to which each connecting pipe belongs.

9.4.5 Compaction

The braid is initially placed above the three-dimensional grid. Since the braid may be
wider than the grid dimensions, a funnel is placed on top of the grid. This allows the braid
to slowly deform according to the geometry of the lattice. Compaction then proceeds by
iterating through each of the cuboids and strings. Cuboids are translated or rotated as a
single rigid object. Other regions of pipes form strings which either connect to cuboids or
form loops. Strings are treated as flexible objects in which each pipe can be translated
independently.

Associated with each pipe is a velocity vector. Each pipe in a string is moved by first
taking the initial velocity vector and updating it according to the gravity and tension forces
at that location. The pipe is then translated according to the direction and magnitude of
the new velocity vector. During the move, additional pipes may be added or removed in
order to maintain connectivity of the string.

To translate a cuboid, the total velocity is calculated by summing each of the individual
velocity vectors. Similarly, the gravity and tension forces are calculated by summing the
force vectors associated with each pipe. The cuboid velocity is then updated by dividing
the total force by the number of pipes (each pipe is assumed to have the same mass) and
then adding to the existing velocity. Finally, the cuboid is translated according to the
direction and magnitude of the velocity vector.

In the case of tabletop measurement translations along the z-axis, we must preserve
the partial ordering. When translating a tabletop m along the −z-axis we must check the
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height of the other measurements on which m depends. Likewise, when translating m along
the +z-axis, we must check the height of the measurement that depends on m.

Cuboid rotations are performed similarly by calculating a rotational velocity according
to the moments of each pipe and the torque due to gravity and tension forces. Rotation
about a given axis is performed only if rotation is allowed and the magnitude of the angular
velocity is large enough to induce a rotation of π/2.

Of course, all of the moves performed during compaction must maintain the braid
topology. In particular, we do not allow pipes to intersect nor do we allow a pipe of one
type to pass through a pipe of opposite type in order to arrive at its destination. Though
we do allow defects of the same type to pass through each other since this does not change
the computation. It is possible for the translational or rotational path of a group of pipes
to be blocked by other pipes. When this happens, we say that a collision has occurred.

Collisions are resolved by first calculating the velocity and mass of each of the two
objects involved. In the case that a cuboid collides into multiple pipes, the impeding pipes
are treated as a collective object. The velocities of the two objects are then recalculated
according to the equations of motion for a partially inelastic collision. In this way, distinct
parts of the braid are able to communicate with each other. For example, large objects
may shift smaller objects out of the way and linked loops may tug on each other. However,
the rules for moving each pipe are still entirely local and relatively simple.

Note that a collision can also occur between time-dependent measurements even when
the two cuboids are not located nearby each other. Such a collision happens if the vertical
motion of one of the measurements would cause a violation of relative time-ordering
constraints. The collision is non-local, but can be efficiently identified and resolved by
maintaining a dependency tree with the location of measurement.

Since the topology of the braid is preserved at each step, compaction can be terminated
at any time. Indeed, there are a number of reasonable termination conditions. Compaction
can be stopped after a fixed number of iterations, or a fixed amount of time. It can also
be stopped when all of the pipes are located below a particular height, or as soon as all
of the pipes fit within the dimensions of the lattice. The termination condition could also
be more complicated. For example, compaction could be halted if the maximum height
remains unchanged for a certain fixed number of iterations.

9.4.6 Performance and scalability

The complexity of a single compaction iteration scales as the size of the braid. The size of
a canonical braid is O(nm) where n is the number of qubits and m is the number of gates
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in the input circuit. The number of iterations required to obtain good compaction results
depends on the ratio of the lattice area—i.e., the x-y plane—to the braid size. In the case
that the lattice area is large compared to the braid size, it seems reasonable to expect the
braid to flatten in time proportional to the height of the canonical braid. If the canonical
braid has area large compared to the lattice, then O(nm) iterations may be required in
order to funnel then entire braid into the proper bounding box.

For small circuit sizes, a runtime of O(n2m2) is reasonable. But for large circuits
consisting of thousands of qubits and possibly millions or billions of gates, we require a
better strategy. Indeed, we cannot hope to globally optimize braids for large-scale problem
sizes. Instead, the circuit is partitioned into subcircuits of manageable size and the braid
is synthesized and compacted hierarchically. Just as we treat single-qubit Hadamards as
atomic cuboids of fixed size, we may consider sub-braids as fixed size cuboids.

Each sub-braid is represented as a tangle of defects in which some defects are anchored
to grid boundaries. Subject to the anchoring constraints, the sub-braid is compacted as
normal. Once its compacted size is determined, the sub-braid is then treated as a black-box
in the larger braid. If two sub-braids contain measurements that are time-ordered, then the
sub-braids must also be time ordered. But again, this is no different than time ordering
restrictions on tabletop measurements in the original model.

We anticipate that the best partitioning strategy will be one that reflects the structure of
the input circuit. Reasonable representations of large input circuits will be hierarchical and
it should be possible to mimic this hierarchy for large-scale compaction. This technique will
be particularly useful for highly repetitive circuits. Repeated sub-circuits can be synthesized
and compacted once, and then duplicated in the larger braid.

9.4.7 Implementation and results

We have implemented the force-directed compaction algorithm in C++ as a tool called
Braidpack. Braidpack takes, as input, a representation of a circuit along with physical
space restrictions. It produces, as output, a compact logically equivalent surface code braid.

The current implementation is not fully functional, but is capable of synthesizing and
compacting arbitrary circuits of CNOT gates, including qubit preparation and measurement.
Figure 9.9 shows the result of compaction on a single CNOT gate. The tension force
first contracts the primal loop on the right-hand-side. Then gravity flattens the braid.
Compaction in this example was done without implementing collisions between pipes.
As a result, tension is unable to fully contract the dual loop. With a more complete
implementation of the algorithm, we expect the braid to fully flatten and contract.
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(a) (b)

Figure 9.9: Compaction of a single CNOT using a prototype of the force-directed algorithm.
(a) A canonical CNOT braid is initially arranged vertically. (b) After compaction, the braid
has been almost completely flattened.

Figure 9.10 shows the same prototype implementation of Braidpack for a circuit composed
of eleven CNOT gates. For simplicity of implementation, the qubit preparation and
measurements in the canonical braid are arranged in a staircase fashion. Ignoring the
staircases, the canonical braid has a bounding box of size (3× 16× 34), whereas the the
compacted braid fits in a bounding box of size (10× 13× 6), a factor of four improvement
along the time axis. Again, we expect improved results with a more complete implementation
of Braidpack.

In order to facilitate debugging, we have developed a braid visualization tool called
Braidview. This tool creates a single file from a braid or sequence of braids. The file can
be viewed in Blender [Ble], a third-party open-source 3-D modeling application. Braidview
is capable of separately rendering primal and dual defects (as in Figure 9.10), as well as
gravity vectors (see Figure 9.7). The backbone of Braidview is a set of rendering functions
that use the Blender Python-API. These, and some additional functions, are used by similar
visualization tools Nestcheck and Autotune [MF12, FWMR12].

9.5 Compaction by simulated annealing

In this section we describe our second compaction algorithm, which is based on simulated
annealing. Simulated annealing is a general optimization technique that has been applied
to a wide variety of problems. The main idea is to explore the solution space by hopping
randomly from the current solution to a nearby solution. Hops that result in an improved
solution are kept. In order to avoid local minima, hops that result in a less desirable solution
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(a) (b)

Figure 9.10: Compaction of eleven CNOT gates with a prototype implementation of
the force-directed algorithm. The canonical braid (a) is compressed into a smaller but
topologically equivalent braid (b).
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are also kept with some non-zero probability, thus permitting broader exploration of the
set of possible solutions.

Our simulated annealing algorithm is based largely on a procedure used for VLSI
placement [HLL88]. In the VLSI algorithm, circuit elements and wires are represented by
rectangles. Size, distance and connectivity constraints are given by linear inequalities on
the coordinates of each rectangle. Rectangles can be shifted around by swapping linear
constraints. The idea for braids is similar. Defects are represented by cuboids. Size, distance
and topology constraints are given by linear inequalities which can be swapped to perform
topological deformation.

9.5.1 Definition of the braid

In the force-directed algorithm, the braid was modeled as a connected configuration of
plumbing pieces. Some collections of pipes formed rigid cuboids. Other collections of pipes
formed flexible strings and loops. For simulated annealing, we take a different approach.
Each cuboid is represented by a pair of points (p, p′) in the three-dimensional lattice. Point p
specifies the point closest to the origin (lower-left corner) and p′ specifies the point furthest
from the origin (upper-right corner). Defect strings and loops are also represented by
cuboids. A string of defects is given by a set of overlapping cuboids of arbitrary dimension.
By connecting cuboids it is possible to construct any desired loop or string.

Thus the entire braid is specified by a set of cuboids. A layout of n cuboids is defined by
2n three-dimensional integer coordinates. The x, y, z dimensions of the layout are defined
by the maximum x, y, and z coordinates respectively. The layout must satisfy a set of
constraints which we group into the following types:

1. size constraints,

2. time-ordering constraints,

3. minimum distance constraints,

4. jog constraints,

5. connectivity constraints and

6. topological constraints.

Except for the topological constraints, all of the constraints can be directly expressed as
sets of linear inequalities.
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Size constraints

Minimum dimension constraints of a cuboid are specified by a triple (δx, δy, δz) of non-
negative real values and three linear inequalities:

x+ δx ≤ x′

y + δy ≤ y′

z + δz ≤ z′ .

(9.1)

For string cuboids (those that are not H gates or table-like measurements), δx = δy =
δz = d/4, where d is the code distance. Hadamard and T gates may be rotated 90 degrees
about the z-axis. Each gate can take on one of four different rotations {0, π/2, π,−π/2}.
Rotations 0 and π correspond to the set of constraints given by (9.1). Rotations ±π/2
correspond to the same set of constraints in which δx and δy have been exchanged.

We therefore assign one of two sets of constraints to each H and T gate, either the
constraints of (9.1) or the permuted version. The corresponding cuboids must satisfy all
constraints from at least one of sets.

Time-ordering constraints

The non-deterministic implementation of T gates in the surface code induces a partial time-
ordering of tabletop measurement regions. As discussed in Section 9.2, this partial ordering
requires that, for certain pairs, one tabletop measurement must be located above another
tabletop measurement. The time-ordering constraint for two dependent measurements, a, b
is given by,

z′a + 1 ≤ zb . (9.2)

Minimum distance constraints

Like the size constraints, minimum distances are proportional to d, the distance of the code.
With a few exceptions (see Section 9.5.1 and Section 9.5.1), primal defect cuboids must be
at least a distance d away from other primal defects. Similarly, dual defect cuboids must
be d away from other dual cuboids. Cuboids of opposite type must be at least d/4 apart.

If two cuboids ri, rj must be separated by δ, then at least one of the following constraints
must be satisfied:

x′i + δ ≤ xj x′j + δ ≤ xi
y′i + δ ≤ yj y′j + δ ≤ yi
z′i + δ ≤ zj z′j + δ ≤ zi

(9.3)
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Each constraint corresponds to a different relative arrangement of the two cuboids. The
x′i + δ ≤ xj constraint, for example, enforces that ri is placed to the left of rj. Whereas
z′i + δ ≤ zj requires that ri be placed below rj.

Jog nodes

A fixed string of defects may be represented by a set of overlapping cuboids each of which
has a fixed orientation along one of the three axes. However, in order to accommodate
topological deformation we require a representation that allows for flexible strings of cuboids.
This is analogous to a VLSI instance in which an arbitrary number of jogs are allowed in
each wire. To fulfill this requirement, we introduce an object called a jog node.

A jog node is a set of six cuboids, each of which has a particular orientation axis. The
first cuboid is oriented along the +x axis, the second along the +y axis, and the third along
the +z axis. The fourth, fifth and sixth cuboids are oriented along the −x, −y and −z axes,
respectively. Each cuboid in the jog node is allowed to expand along its corresponding axis.
Adjacent cuboids are required to overlap so that the entire jog node forms a continuous
path. The constraints for a jog node are given by:

x1 ≤ x2, y1 = y2, z1 = z2, x′1 = x′2, y′1 ≤ y′2, z′1 = z′2,
x2 = x3, y2 ≤ y3, z2 = z3, x′2 = x′3, y′2 = y′3, z′2 ≤ z′3,
x3 ≥ x4, y3 = y4, z3 ≥ z4, x′3 = x′4, y′3 = y′4, z′3 = z′4,
x4 = x5, y4 ≥ y5, z4 = z5, x′4 ≥ x′5, y′4 = y′5, z′4 = z′5,
x5 = x6, y5 = y6, z5 ≥ z6, x′5 = x′6, y′5 ≥ y′6, z′5 = z′6.

(9.4)

It possible to connect two jog nodes at their endpoints. Given the sixth cuboid a6 of
jog node a and the first cuboid b1 of jog node b the endpoints are connected by requiring

xa6 = xb1, ya6 = yb1, za6 = zb1 . (9.5)

In this way, jog nodes can be connected to form an arbitrary defect path of any length. It
is possible to form both loops and open ended strings.

The jog node constraints, as stated, conflict with the minimum distance constraints
in Section 9.5.1. For example, cuboids a1 and a2 are required by (9.4) to be connected, but
are required by (9.3) to be separated by δ. As a workaround, we first require that each jog
node be oriented along at most one axis. This is accomplished by changing the appropriate
inequality constraints to equality constraints. For example, to force an orientation along the
+x axis only, leave the x1 ≤ x2 constraint alone and change all of the other inequalities to
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Figure 9.11: A jog node consists of six overlapping cuboids. Each cuboid is allowed to
extend in only one direction, and only one cuboid in the node may be extended. The six
possible jog node configurations are shown above. The node origin is indicated by a black
dot, where visible.

equalities. Then the cuboid corresponding to the +x axis can be of arbitrary size (subject
to minimum dimension constraints) and all other cuboids of the node must fit inside of it.
See Figure 9.11.

Next, remove the minimum distance constraints for all jog node cuboids except those
that correspond to the orientation axis. Finally, remove minimum distance constraints
between cuboids in adjacent jog nodes. Now, overlapping cuboids within the same jog node
or between connected jog nodes are consistent with all other constraints.

A jog node may also be configured to take no orientation. In this case, all cuboids in
the node are constrained to be of minimum size, i.e., x+ δx = x′, y + δy = y′, z + δz = z′.
Furthermore, all minimum distance constraints involving the node are removed. This type
of node will either be unconnected to any other node (in which case it can be removed), or
it will be contained entirely within another jog node. In either case, its distance from other
objects in the braid is unimportant.

Connectivity constraints

Jog nodes allow for arbitrary defect paths and loops. We must also define how jog nodes are
used to connect to cuboids such as Hadamard gates and state distillation. Each gate cuboid
contains some number of ports to which string defect cuboids are allowed to attach. The
locations of the ports are fixed relative to the gate. However, since gates can be rotated,
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Figure 9.12: The above cuboid has four ports defined on its surface, two on top and two
on the bottom. Jog nodes are affixed to the points that define each port.

the constraints that describe the connection must correspond to the permutation of the
dimensional constraints from Section 9.5.1.

A port is a rectangle defined by two coordinates on the surface of the gate. A jog node
is connected to a port by requiring that certain coordinates of the jog node cuboid match
the coordinates of the port. For example, if the input port (x, y, z), (x′, y′, z) is located on
the top of the gate, then the jog node connection constraint is given by

x3 = x, y3 = y, x′3 = x′, y′3 = y′, z3 = z . (9.6)

See Figure 9.12.

To maintain consistency, the minimum distance constraints between the gate and the
connecting jog node must be eliminated. Note that it is still possible for two connected
gates to achieve a separation of exactly d. In this case, the node connected to the output
port of the first gate is also connected to the input port of the second gate, and vice versa.
But since each node is of minimum size, the minimum distance constraints between the
node and the gates do not apply (see Section 9.5.1).

Topological constraints

Finally we address the topological constraints. Informally, these constraints enforce the
linking between loops. Links between loops of the same type are trivial and need not be
constrained. However, certain linking properties between loops of different types must be
maintained. In particular, it is sufficient to consider the linking number for each primal-dual
loop pair. For each primal-dual pair (lp, ld) we have the following constraint

lpd = Lpd mod 2 (9.7)
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where lpd is the linking number of loops lp and ld and Lpd ∈ {0, 1} is an input parameter.

There is a simple linear-time algorithm to compute the linking number between two
loops (see, e.g., [Kau01]). However, in order to efficiently compute the cost function of a
layout, we will require that all constraints be linear. See Section 9.5.2.

We impose linear topology constraints separately for loop pairs with odd linking number
(i.e., loops that are linked) and loop pairs with even linking number (loops that are not
linked). First consider two loops with odd linking number. One of the loops consists of
primal defects and the other loop consists of dual defects. To the primal loop, attach
a new primal cuboid which we will call a linking node. The linking node has dimension
(5d/4× d/4× 5d/4). It is attached to the primal loop by connecting one of the jog nodes
to the top and connecting an adjacent jog node to the bottom.

The linking node is also attached to jog nodes of the dual loop. Instead of connecting on
the top, the dual jog nodes are connected on either side of the linking node. The dimensions
of the linking node are about twice as large as would otherwise be necessary for maintaining
minimum distance constraints between the primal and dual cuboids. The extra space is
used as a placeholder.

As the simulated annealing algorithm proceeds, the linking number between the two
loops may change. The jog nodes that were originally connected to the linking node must
remain connected. But other cuboids from the loops are unrestricted and may cross each
other. At the end of the algorithm the linking node is removed leaving some empty space.

The primal and dual loops must now be reconnected. However, we have a choice.
We may either connect the dual loop so that it is inside of the primal loop. Or we may
connect the dual loop so that it is outside of the primal loop. In effect, the choice of
reconnection determines whether the linking number is even or odd. We may simply choose
the configuration that yields an odd linking number. See Figure 9.13.

Now consider a primal loop and a dual loop with even linking number. Since these loops
are unlinked, they may be far apart in spacetime. Thus the linking node strategy is not
practical. However, we must still ensure that these loops remain unlinked in the output of
the algorithm. We will do this by requiring that the dual loop remain sufficiently far from
the primal loop at all times.

Consider the primal loop. It is composed of a set of connected primal cuboids, some of
which are jog nodes and some of which are Hadamard or state distillation cuboids. Let x be
the minimal x-coordinate of any cuboid in this set and let x′ be the maximal x-coordinate
of any cuboid in the set. Similarly define y, y′, z and z′ as the minimal and maximal y- and
z-coordinates. Then the entire primal loop is contained in a bounding box of dimension
(x′ − x, y′ − y, z′ − z).
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(a) (b) (c)

Figure 9.13: When a primal and a dual loop are linked in the canonical braid a linking
node (a) is inserted and attached to both loops. Once compaction has completed, the
linking node is removed. The linking number can be left unchanged (b), or toggled (c) if
necessary.

Figure 9.14: In order to avoid unwanted links, a cuboid is placed around each primal
loop. Dual loops which do not link with the primal loop are prohibited from entering the
enclosing cuboid.

If all of the cuboids in the dual loop stay outside of the bounding box that encloses the
primal loop, then the linking number is guaranteed to be zero. We therefore introduce a new
cuboid that encloses the primal loop. For all dual loops which have even linking number
with the corresponding primal loop, we add primal-dual minimum distance constraints
between the dual cuboids and the enclosing cuboid. See Figure 9.14.

In order to ensure that the new cuboid actually encloses the primal loop, additional
variables and constraints are required. Let (x, y, z) and (x′, y′, z′) be variables describing
the enclosing cuboid. Then for each cuboid (xi, yi, zi), (x′i, y

′
i, z
′
i) in the primal loop we

require that
x ≤ xi x′i ≤ x′

y ≤ yi y′i ≤ y′

z ≤ zi z′i ≤ z′.
(9.8)
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9.5.2 The annealing algorithm

The algorithm takes a canonical braid as input. Initialization consists of constructing all of
the cuboids and constraint groups. The instance includes a set of coordinates P , which can
be divided into sets of integers X, Y and Z corresponding to the x-, y−, and z-coordinates,
respectively. The constraints can be represented as a set C of integer triples. Some of the
constraints, such at time-ordering constraints, must be satisfied for all possible layouts.
Other constraints may be partitioned into subsets for which the layout must satisfy at least
one of the constraints in the subset. Let C ′ be the set of all constraints that must always
be satisfied, let C ′′ be the remaining constraints and let B be the corresponding partition
into constraint subsets. Let A ⊂ C be the set of “active” constraints such that C ′ ⊂ A and
A contains exactly one constraint from each element of B.

A key element of the algorithm is to calculate the “cost” of layout. There are a number
of choices of cost function. The goal is to construct a braid of small height that fits into
an x-y area of fixed size. The first step is to ensure that the braid fits into that area.
We initially set the cost function as the x-coordinate of the bounding box. Once this
x-coordinate is small enough, we impose a global constraint that the x-coordinates of all
cuboids must be no greater than that of the bounding box. We then set the cost function
as the y-coordinate of the bounding box and repeat the procedure. Finally, once the entire
braid fits into the x-y area, we minimize over the height.

Start by choosing a set of active constraints such that all constraints in A are satisfied
by the canonical braid. The algorithm then proceeds by repeating the following sequence.

1. Randomly select an element β ∈ B.

2. Randomly select a constraint b ∈ β such that b 6∈ A.

3. Locate the single constraint in b′ ∈ A ∩ β. Remove b′ from A and replace it with the
new constraint b.

4. Compute the new minimum bounding box size and corresponding cost function.

5. If the new set of active constraints is infeasible, then reject the swap by removing b
from A and replacing with b′.

6. If the cost is smaller than before, keep the new constraint.

7. If the cost is larger than before, then keep the new constraint with probability given
by the annealing schedule (see below).
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In order for the algorithm to be efficient, we require an efficient way to compute the
size of the minimum bounding box. This can be done using the constraint graph method
proposed in [LW83] and used by [HLL88]. First, partition the active constraints into three
sets: those that involve only x coordinates, those that involve only y coordinates and those
that involve only z coordinates. Note that there are no constraints that involve coordinates
for two different axes. Consider just the set of x-coordinates X. We construct a weighted
directed graph GX = (VX , EX). Assign VX = X∪{x∅, x∞} where x∅ and x∞ are a boundary
coordinates. For each constraint xi ≤ xj + dij there is a directed edge from vertex xi to
vertex xj with weight dij. The value of each coordinate x ∈ X is assigned by computing
the longest path from x∅ to x. Assuming that the set of constraints can be satisfied, GX is
a acyclic. Thus the longest path can be computed in linear time by negating the weights
and using Dijkstra’s algorithm. Constraint graphs for y and z coordinates are similarly
constructed.

The cost of constructing the initial constraint graphs is O(n2), where n is the number of
cuboids. Once the graphs are constructed, updates can be computed by an online algorithm.
When a constraint swap is performed, only those paths affected by the corresponding
vertices need to be recalculated. This algorithm can also detect cycles induced by the new
constraint. If a cycle is detected, then the set of constraints is infeasible and the swap is
rejected.

For VLSI placement Hsieh, Leong and Liu use a fixed-ratio temperature schedule in
which the temperature is reduced by a constant factor after each time step [HLL88]. This
schedule is simple and efficient and can also be used for our algorithm. Other kinds of
schedules could also be used.

9.6 Discussion and future work

The surface code provides a unique opportunity for fault-tolerant quantum circuit opti-
mization by topological deformation. We have defined the problem of braid compaction
subject to geometric constraints, and given two heuristic algorithms. Our tool Braidpack
implements the first of these—the force-directed algorithm— and small examples indicate
that compaction algorithms can lead to significant improvement in spacetime overhead
when compared to the canonical braid.

Currently, Braidpack is a proof-of-principle rather than production-ready software tool.
Small-scale results are largely encouraging, but not all of the intended features have been
implemented, and larger-scale examples are required to demonstrate the extent of its
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usefulness. Implementation of the simulated annealing algorithm is desired in order to
compare the performance of the two algorithms. Indeed, we could also construct a hybrid
algorithm which incorporates both techniques.

Our simulated annealing algorithm is inspired from a similar algorithm for VLSI
placement. VLSI also offers a number of other techniques including, genetic algorithms,
numerical and partitioning algorithms, and force-directed algorithms that are distinct from
our own (see, e.g., [SM91]). Perhaps some of these additional techniques could be adapted
to braid compaction.

Due to similarity with VLSI compaction and other packing problems, we conjecture
that braid compaction is NP-complete. A formal reduction has proven elusive, however.
Thus an obvious open problem is to confirm or refute that conjecture.

Finally, we have focused on topological deformation. However, other non-topological
braid identities exist [FD12, RHG07]. Optimization involving these identities has been
previously done by hand, but it may be possible to incorporate non-topological techniques
into an automated tool such as ours.
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Chapter 10

Concluding thoughts

The promise of a reliable large-scale quantum computer is in the exponential speedups that
it offers for real-world applications in physics, cryptography and number theory. Quantum
computers do not yet exist in the real world, however. It is the main objective of the fault-
tolerant quantum circuit designer to reduce resource requirements to match the capabilities
of current or near-term technology. In this thesis we have tried to further this objective by
optimizing a variety of aspects of fault-tolerance including: encoded gates, error correction,
threshold calculations, unitary decomposition and global parallelization.

We can extract a number of themes from these optimizations. One theme is the
circumvention of optimality or no-go theorems by making novel use of the available machinery
or by removing unnecessary constraints. Theorem 5.3.1 shows that the Eastin-Knill
theorem against transversal universality can be side-stepped at essentially no cost. Overlap-
based stabilizer state preparation break the convention of treating stabilizer generators
independently in exchange for reduced circuit size. A tighter threshold can be obtained by
eliminating the need for an adversarial noise model. Repeat-until-success circuits achieve
better-than-optimal scaling by incorporating quantum measurements.

The use of gate teleportation and ancillary qubits has been a theme in quantum fault-
tolerance from the earliest protocols due to Shor [Sho96], and we have continued the trend
here. The utility of ancillas is particularly evident in the circuits presented in Chapter 8.
By using ancillas and measurement, suddenly a much wider class of unitary operations
can be implemented without expanding the gate set beyond {Clifford, T}. Ancillas and
teleportation are used heavily in state distillation and we saw two new distillation protocols,
one in Chapter 5 and one in Chapter 6.

Another strong theme is the development and use of software tools to aid in circuit
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design and discovery. Indeed, except for Chapter 5, all of the new results presented in
this thesis made use of custom computer software in some form or another. Undoubtedly,
software tools will continue to be an important part of fault-tolerance optimizations going
forward. One can imagine a kind of software “toolchain” for compiling and optimizing
quantum algorithms, taking a high level description of an algorithm and progressively
decomposing it into machine-level instructions.

The new results and ideas in this thesis introduce many new questions, and leave room
for improvement in several areas. Given their universal and transversal power, triorthogonal
codes appear to have a special place in the theory of fault-tolerant quantum computation.
However, beyond numerical study of the [[15, 1, 3]] code [CDT09], and codes developed by
Bravyi and Haah [BH12], very little is known about these codes. A worthy research pursuit
is to search for new and better triorthogonal codes.

Similarly, despite the large database compiled in Chapter 8, little is known about
the power of repeat-until-success circuits, and non-deterministic circuits in general. In
particular, what are the cost lower bounds for unitary decomposition when ancilla qubits
and non-determinism is allowed? We considered only a small fraction of possible circuits
and it is possible that other kinds of circuits could yield even better performance.

Perhaps the biggest opportunity for improvement and further research is global opti-
mization algorithms such as those presented in Chapter 9. The Braidpack tool presented
in this thesis represents only a proof-of-concept. Substantial and quantitative results will
require a larger-scale effort in the development of these kinds of tools. This study of this
area has only just begun, and there is much that can be learned from existing classical
techniques such as VLSI.

Beyond the ideas considered in this thesis, the field of fault-tolerant quantum computa-
tion has much room for exploration. One particularly appealing option is the use of codes
with very high encoding rates. Very recently, Gottesman has shown that fault-tolerant
quantum computation with constant overhead may be possible by using certain low-density
parity-check (LDPC) quantum codes [Got13]. However, realization of his claims presume
efficient classical decoding algorithms for these codes, algorithms which are are not currently
known.

Another exciting, but speculative pursuit is the use of non-abelian anyons for topological
quantum computation. Because of their inherently robust properties, some have likened
anyons to “quantum transistors” (thereby implying a comparison between quantum circuits
and vacuum tubes). The experimental viability of this method remains to be seen.

At the current time, the surface code seems to be the leader among realistic schemes for
fault-tolerant quantum computation. Its high threshold and 2D nearest-neighbor properties
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make it a very appealing option for a variety of proposed quantum computing architectures.
Indeed it has been the subject of intense study in recent years. We addressed global
topological optimization for the surface code in this thesis, but others have also considered
optimizations, particularly for state distillation [FD12, FDJ13, Jon13c].

The motivation for resource optimization is a strong one, and more improvements
are necessary before requirements become low-enough for implementation of quantum
algorithms. To quote Gottesman [Got13], “the main thing is not to give up”. We can
be pleased with the optimizations that we discover, but we should not be satisfied until
fault-tolerant quantum computing is a reality.
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Appendix A

Proof of Claim 7.5.1

We now prove Claim 7.5.1, that the level-two malignant event upper bounds decrease with
γ according to the distance of the code. The claim is restated here for convenience.

Claim. For 0 ≤ ε ≤ 1, P(2)
E (εΓ(1)(γ)) ≤ εt+1P(2)

E (Γ(1)(γ)), where t = b(d− 1)/2c and d is
the minimum distance of the (unconcatenated) code.

Proof. From (7.12) we see that P(2)
E can be bounded as

Pr[malE, good]

Pr[accept]
+ Pr[bad|accept] . (A.1)

The Pr[malE, good] term is expressed as a sum of the form

kmax∑

k=0

c(k)Γk (A.2)

where all of the coefficients c(k) are non-negative (because there are no non-deterministic
components at level-two) and it is understood that Γ is a function of γ. The Pr[accept]
term in the denominator is a product of terms of the form

1−
kmax∑

k=0

c(k)Γk (A.3)

where, again, all c(k) are non-negative. Pr[bad|accept] is a sum of terms similar to (A.2),
some of which contain (A.3) terms in the denominator.
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Strict fault-tolerance of the exRec implies that the coefficients c(k) of (A.2) and the

numerator coefficients of Pr[bad|accept] are zero for k ≤ t. Therefore, for 0 ≤ ε ≤ 1, P(2)
E (εΓ)

is a sum of non-negative terms of the form

∑kmax

k=0 c(k)(εΓ)k

1−∑kmax

k=0 c(k)(εΓ)k
≤ εt

∑kmax

k=4 c(k)Γk

1−∑kmax

k=0 c(k)Γk
(A.4)

which completes the proof.
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