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ABSTRACT 

 Ag nanoparticle (NP) paste was fabricated and used to bond Cu wire to Cu foil at low 

temperatures down to 433 K. The relatively low bonding temperature promotes this method to be 

used in polymer-based flexible electronics, which cannot withstand high bonding temperatures 

due the possible melting of the polymer substrate. Unlike low-temperature soldering techniquies, 

bonds formed by this method was proved to withstand temperatures higher than the bonding 

temperature, which also promotes it to be used in electronics that operate at high temperatures. 

  The Ag NP paste was developed by increasing the concentration of 50 nm Ag NP sol 

from 0.001 vol.% to 0.1 vol.% by centrifugation. The 0.001 vol.% Ag NP sol was fabricated in 

water by reducing silver nitrate (AgNO3) using sodium citrate dihydrate (Na3C6H5O7.2H2O). The 

bond was formed by solid state sintering among the individual Ag NPs and solid state bonding of 

these Ag NPs onto both Cu wire and foil. Metallurgical bonds between Ag NPs and Cu were 

confirmed by transmission electron microscopy (TEM). The Ag NPs were coated with an 

organic shell to prevent sintering at room temperature. It was found that the organic shell 

decomposed at 433 K, defining the lowest temperature at which a bond could be formed. Shear 

tests showed that the joint strength increased as the bonding temperature increased due to 

enhanced sintering of Ag NPs at higher temperatures.  

For better understanding of the melting and the sintering kinetics of Ag NPs, a molecular 

dynamics (MD) simulation based on the embedded atom method (EAM) was conducted to 

different sizes of Ag NPs with diameters between 4 nm and 20 nm. Programmed heating of an 

equal rate was applied to all sizes of NPs to find the complete melting and surface premelting 

points and sintering kinetics of the Ag NPs. The initial structural configuration of the Ag NPs 
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was FCC truncated octahedral, which found to be stable for this size range of NPs. As a first step 

toward drawing a phase map of stable solid phases of Ag NPs at different temperatures and sizes 

of Ag NPs, the stability of the FCC truncated octahedral was studied for Ag NPs in size range of 

1 nm to 4 nm. The smallest Ag NPs at which this configuration is stable was determined as 1.8 

nm. 

Unlike the previous theoretical models, this MD model predicted both complete melting 

and surface premelting points for a wider size range of NPs. Melting kinetics showed three 

different trends that are, respectively, associated with NPs in the size ranges of 4 nm to 7 nm, 8 

nm to 10 nm, and 12 nm to 20 nm. Ag NPs in the first range melted at a single temperature 

without passing through a surface premelting stage. Melting of the second range started by 

forming a quasi-liquid layer that expanded to the core, followed by the formation of a liquid 

layer of 1.8 nm thickness that also subsequently expanded to the core with increasing 

temperature, completing the melting process. For particles in the third range, the 1.8 nm liquid 

layer was formed once the thickness of the quasi-liquid layer reached 5 nm. The liquid layer 

expanded to the core and formed thicker stable liquid layers as the temperature increased toward 

the complete melting point. The ratio of the quasi-liquid layer thickness to the NP radius showed 

a linear relationship with temperature. 

Sintering kinetics of two Ag NPs in the size range of 4 nm to 20 nm, and sintering of 

three and four Ag NPs of 4 nm diameter was also studied by MD simulation. The sintering 

process passed through three main stages. The first was the neck formation followed by a rapid 

increase of the neck radius to particle radius ratio at 50 K for 20 nm particles and at 10 K for 

smaller NPs. The second was characterized by a gradual linear increase of the neck radius to 

particle radius ratio as the temperature of the sintered structure was increased to the surface 
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premelting point. A twin boundary was formed during the second stage that relaxed the sintered 

structure and decreased the average potential energy (PE) of all atoms. The third stage of 

sintering was a rapid shrinkage during surface premelting of the sintered structure. Based on pore 

geometry, densification occurred during the first stage for three 4 nm particles and during the 

second stage for four 4 nm particles. Sintering rates obtained here were higher than those 

obtained by theoretical models generally used for predicting sintering rates of micro-particles.  
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1. INTRODUCATION 

1.1 Background 

Replacing Pb based solders due to the hazards of Pb on human health became a crucial 

issue [1]. Current candidates for replacing Pb solders such as Au-Sn alloys, Bi alloys and Zn 

alloys suffer poor corrosion resistance, poor processability, and high cost [2-4]. Also, developing 

a bonding method that can work at temperatures below 523 K is important for the development 

of polymer-based flexible electronics. It is also economically effective to decrease the bonding 

temperatures for electronic packaging and interconnections. On the other hand, electronics that 

operate at high temperatures needs a bonding method that can withstand these high operating 

temperatures. Forming joints that can withstand higher temperatures than the bonding 

temperature has great advantage over conventional soldering techniques, which form bonds that 

cannot withstand high temperatures due to the low melting point of the soldering material [5]. 

Fig. 1.1 shows the operative temperature range of electronics that are used in different industries 

[6].   

 

Fig. 1.1     Indicative temperature range [6]. 
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 During the last decades, nanomaterials have attracted great attention due to their 

potential usage in different fields that range from medicine to energy, electronics, and other 

fields as well. Due to their outstanding electronic properties, Ag nanoparticles (NPs) have 

recently been used in bonding of electronics. As shown by the schematic description in Fig.1.2, 

Ag NPs can be used to bond two pieces of metals by sintering between these individual NPs 

combines with sintering of the NPs on the metal pieces. Sintering rates and the diffusion process 

can be enhanced by applying temperature and pressure during the bonding process. Ag NPs 

coated with organic shells have been used to bond metals at temperature as low as 523 K [7-9]. 

These bonds were formed by sintering of NPs, which started at the temperature at which the 

organic shell decomposes. The organic shells serve as barriers between NPs in order to prevent 

their possible agglomeration and sintering at room temperature (RT).  

 

Fig. 1.2    A schematic diagram showing bonding procedure of two pieces of metals by Ag nanoparticles. 
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 Fundamental understanding of the thermodynamic properties of Ag NPs is important 

because of their potential in utilizing nano scale devices [1,10], electronics packaging [11,12], 

and developing lead free soldering materials [13]. Materials properties such as melting points, 

mechanical properties, and electrical properties change at the nano-scale. Therefore, properties of 

the bulk and the theoretical models found in literature may not be valid for nanomaterials. It has 

been proved experimentally and theoretically that NPs melt at temperatures below the melting 

point of the bulk due to their higher surface energy [14-20]. Liquid drop model [21], Shi’s model 

[22], and Hanszen’s model [23] are found to be the most popular models for determining the 

complete melting point (Tm) of NPs. Liquid drop model was based on the variation of cohesive 

energy and surface energy of the NPs. Shi’s model was developed in terms of Lindemann’s 

criterion [24], which suggests that a NP melts when the root mean square displacement (rmsd) of 

the atoms exceeds a certain fraction of the interatomic distance. 

While liquid drop model [21] and Shi’s model [22] have assumed homogenous melting 

of a NP, Hanszen’s model [23] has considered, melting of a NP starts at the surface by forming a 

thin liquid layer, which expands to the core and complete full transition of the structure from 

solid to liquid. This initial stage of melting is called surface premelting, which initiates in order 

to reduce the total interfacial energy of the material. The diversity of the analytical models found 

in literature for determining Tm of NPs and the different results that can be obtained by them, 

makes it difficult to decide which model can correctly predict Tm. Also, the kinetics of surface 

premelting of Ag NPs is still not well understood and at what range of temperatures it occurs.  
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1.2 Objectives 

 The main objective of this research is to develop an Ag NP paste that can be used for 

bonding in polymer-based flexible electronics and in electronics that operate at high 

temperatures. As in nano-scale materials, Ag NPs are expected to have different properties than 

the bulk. Therefore, molecular dynamics simulation will be performed to understand melting and 

sintering kinetics, and the stability of FCC truncated octahedral Ag NPs. The objectives of this 

research can be specified in the following points 

1 To fabricate an Ag NP paste that can be used to bond Cu wires to Cu foils at low 

temperatures. The formed bond should withstand higher temperatures than the bonding 

temperature.  

2 To determine complete melting and surface premelting points of Ag NPs in size range of 4 

nm to 20 nm and compare the results with the previously developed theoretical models. 

3 To study the stability of FCC truncated octahedral configuration at different sizes of Ag 

NPs.  

4 To study sintering kinetics of Ag NPs in size range of 4 nm to 20 nm and to compare the 

results with previously developed sintering theories of microparticles. 
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1.3 Major Results and Contributions 

Ag Nanoparticle Paste for Low-Temperature Bonding of Cu 

A silver NP paste was fabricated and used to bond Cu 

wires to Cu foils at 433 K, which is much lower than 

conventional soldering temperatures. This low 

bonding temperature has a great advantage in bonding 

in polymer-based flexible electronics, which require a 

low bonding temperature that would not melt the 

polymer substrate. The bond strength was increased as 

the temperature of the bonding is increased toward 

573 K. Unlike bonds formed by conventional soldering methods, bonds formed here could 

withstand operating temperatures that are higher than the bonding temperature, which promotes 

this method to be used in electronics that operate at relatively high temperatures. 
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Determination of Complete Melting and Surface Premelting Points of Ag Nanoparticles 

Different than previous melting theories, Ag 

nanoparticles in size range of 8 nm to 20 nm are 

found to melt in range of temperatures that start 

at the surface premelting point (Tsm), at which 

quasi-liquid ponds started to form on the surface 

of the NP. These ponds expand and coalesce 

and form the first liquid shell of 1.8 nm 

thickness. The ratio of the thickness of the 

quasi-liquid layer to the NP radius increased 

linearly as the temperature of the NP increased 

toward its complete melting point (Tm). The 

previous theoretical models were found to be 

only valid for certain ranges of NP sizes. 

Complete melting points obtained in this study 

fit well with Liquid Drop Model [21] and Shi’s 

model [22] in size range of 4 nm to 7 nm, and with Hanszen’s model [23] in size range of 8 nm 

to 12 nm. Complete melting points of larger NPs have not been predicted earlier due to the 

formation of multiple stable liquid layers between Tsm and Tm. 
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Molecular Dynamics Simulation of the Stability of FCC Truncated Octahedral Ag 

Nanoparticles 

The minimum size at which FCC truncated octahedral Ag 

NPs is stable below Tm was determined as 1.8 nm. Solid to 

solid phase transition from FCC truncated octahedral to 

icosahedral configuration was confirmed during heating of 

1.2 nm. These results are considered as the first step toward 

drawing a phase map of Ag NPs at different sizes and 

temperatures. 

 

Molecular Dynamics Simulation of Sintering of Ag Nanoparticles  

Sintering kinetics of Ag NPs of different sizes in range of 4 

nm to 20 nm was studied by MD simulation. The first two 

stage of sintering was found to agree with the previous 

sintering theories and are characterized by a formation of a 

neck followed by a gradual linear increase in the neck radius 

to NP radius ratio. However, the third (final) stage was found 

to be different than previous sintering theories and is 

characterised by a rapid shrinkage driven by liquid state 

sintering between Tsm and Tm of the sintered structure. 
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1.4 Organisation of Thesis 

 This thesis is divided into seven chapters that are organised as follow. The second chapter 

provides the reader with a literature survey on Ag NPs pastes that have been used as bonding 

materials, theoretical and experimental background on melting and surface premelting of bulk 

and of nanomaterials, solid state configurations and solid to solid phase transition of NPs, and 

finally, a brief background on sintering of microparticles and nanoparticles, as well as sintering 

of NPs on metallic substrates. Chapter three reports the experimental, the numerical, and the 

analytical methods used in this thesis. Chapter four provides a detailed characterisation of the Ag 

NP paste and the formed bonds between the Cu wires and the Cu foils. The Ag NPs was 

characterised by scanning electron microscopy (SEM), Thermogravimetric Analysis (TGA), and 

Raman spectroscopy. The formed bonds were characterized by shear tests, and SEM, and 

transmission electron microscopy (TEM) of the interface. Chapter five reports the molecular 

dynamics simulation results on periodic heating of individual Ag nanoparticles in size range of 4 

nm to 20 nm. Complete melting and surface premelting points for each size is determined based 

on average kinetic and potential energy values of inner and surface atoms values as well as the 

atomic arrangement of the NPs. It also provides justifications of the reasons behind 

agreement/disagreement between the results obtained here and the results obtained by previous 

theoretical models. Chapter six reports the molecular dynamics simulation results on the stability 

of 1 nm FCC truncated octahedral and larger Ag particles. Chapter seven reports the sintering 

kinetics of two NPs in size range of 4 nm to 20 nm and sintering of three and four NPs of 4 nm 

Ag nanoparticles. Finally, chapter eight reports the conclusion and suggests further research 

ideas that are related to this thesis. 
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2. LITERATURE REVIEW 

This chapter is divided into four sections. The first provides the reader with a background 

on the development of the Ag NP pastes and their usage in electronic industry. Different factors 

that affect the strength of the joints such as bonding temperature and pressure, and size of NPs 

are discussed. The second section discusses melting theories, melting kinetics, and the role of 

defects in initiating the melting process. It also discusses surface premelting of both bulk and 

nanomaterials, and the resistance of different atomic planes to surface premelting. The third 

section provides a brief introduction on sintering stages and sintering mechanisms that contribute 

to sintering process of microparticles and nanoparticles. Section four reports the solid phases of 

NPs and discusses different factors that contribute to formation of the stable solid phases in NPs. 

2.1  Ag Nanoparticle Paste for Electronic Packaging 

2.1.1 From Micro Ag Flakes to Nano Ag  

Ag micro flakes pastes have been used as a die attach material for power electronics 

packaging since the late 1980s [25]. The paste contained Ag micro flakes (about 15 µm in 

diameter) [26,27] and a solvent like terpineol [28], cyclohexanol [26,29], and butanol [30]. The 

main disadvantage of this method is the large amount of pressure needed to achieve the bonding 

(10-40 MPa) [25], which may damage the silicon die. It was possible to reduce the bonding 

pressure and temperature by using nano Ag paste as bonding material [11,12].  It has been shown 

that it is possible to bond two pieces of Cu through a sintered network of Ag NPs [31-34]. These 

bonds are formed by sintering of individual Ag NPs combined with sintering of these NPs onto 
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Cu surfaces. The sinterability between individual Ag NPs and the sinterability of the NPs onto 

the Cu surface determine the strength of the bond.  

The weight percentage of the Ag NPs in the bonding paste was between 70% [35] to 80% 

[36]. In addition to the Ag NPs, the paste contained solvents, dispersant, and binders. Viscosity 

of the paste can be controlled by using different solvents. Binders and dispersants serve the same 

function of dispersing the NPs and both terms have been often used interchangeably in literature 

[37]. In addition to dispersing the NPs, binders prevent cracking of the paste during the heating 

process. 

2.1.2 Bonding Temperature 

Bonding temperature has a strong effect on the sintering behaviour of the paste and 

therefore on the mechanical strength of the joint. Based on Arrhenius equation, the diffusion 

process among the NPs and between the NPs and the substrate will be enhanced as the 

temperature is increased. Surface diffusion is dominant at low temperature while grain boundary 

diffusion and lattice diffusion need higher temperatures to be achieved [38]. For NPs that are 

coated with organic shells, it is important to heat the paste to the decomposition temperature of 

the organic shell in order to promote the bonding between the Ag NP paste and the substrate [7-

9].   

2.1.3 Bonding Time 

In order to achieve bonding, it is important to allow enough time for the dispersant to 

oxidize and for the Ag NPs to sinter [37]. Similar to the temperature effect on Ag NPs coated 

with organic shells, it is important to allow enough time for the organic shell to decompose and 
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promote sintering of the Ag NP paste [9]. Sintering of two particles starts by forming an initial 

point contact and surface diffusion starts at the early of stage of heating, which results in the 

formation of a neck and a grain boundary between the two particles. At later stages of heating, 

neck growth continues and grain boundary diffusion occurs. After a long enough time, the two 

particles coalesce and form one larger particle [38]. A study by Knoerr et al. [39] showed that by 

increasing the bonding time from 5 s to 60 s, the joint density has increased from 68% to 75%. 

As a result, the shear strength of the joint increased by 30%.  

2.1.4 Bonding Pressure 

Pressure enhances the sintering process by increasing the average number of contacts 

between the Ag NPs [39,40] and by closing the porosity at the joint. This increases the final 

density of the joint and therefore increases the joint strength. Fig. 2.1 shows that the shear 

strength values of Ag NP paste-Cu joints formed at 573 K have increased as the bonding 

pressure increased. Although pressureless sintering might be achieved, Lei et al. [40] found that 

a joint formed under a pressure of 5 MPa and a temperature of 548 K has a shear strength that is 

four times higher than the shear strength of a joint formed at the same temperature but with no 

bonding pressure. Contact formation between NPs during pressureless sintering is driven by van 

der Waals forces [41]. 
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Fig. 2.1 Shear strength value of joints formed by Ag NPs paste at 573 K under different bonding pressure 

[9,13,35]. 

 

2.1.5 Size of Ag NPs 

As will be discussed below in section 2.4.2, the driving force of sintering depends on the 

specific surface energy and surface curvature of the NPs.  Both values increase as the size of the 

NPs decreases, this leads to denser joints and therefore higher shear strength values. It was found 

that the density of a joint formed using 30 nm Ag NPs is significantly higher than a joint formed 

by 100 nm NPs [42]. Siow [37] has compared in his review on Ag pastes the shear strength of 

joints formed by different sizes of Ag NPs and found out that using smaller NPs increased the 

shear strength of the joint. Fig. 2.2 shows shear strength values of Ag NPs-Cu joints formed with 

different sizes of Ag NPs at 573 K [37]. The figure shows that at equal sintering pressures, shear 

strength of the joints increased as the size of the NPs is decreased. The figure also shows that 
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shear strength values of bonds formed by 11 nm particles is about six times larger than the shear 

strength of bonds formed by 100 nm Ag particles [37]. 

 

 

Fig. 2.2 Shear strength of Ag nanoparticles joints for bonding Ag or copper (Cu) substrates in ambient 

atmosphere for Ag nano-particle size ranging from 8 to 100 nm at sintering temperatures of 573 K [13,42,43]. 

Holm et al. used Ag nano-ink in their work [37]. 

 

Particles distribution and morphology might also have an effect on the joint properties 

[44,45]. These two factors change the initial density of the joint and therefore the final density of 

the joint will be affected.  It was found that Ag NP paste that contains NPs with different sizes 

and morphologies had better sinterability and therefore stronger joints were achieved [44].  

2.1.6 Bonding Substrate 

Bare Cu is still the most favourable materials to be used as leadframe in electronic 

packaging [37]. Although most literature have used Cu as a substrate, Ag and Au plated 
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substrates was also considered [37]. The main challenge with bonding Ag NPs to bare Cu 

substrate is oxidation of Cu. This effect can be reduced by applying a partial oxygen pressure of 

0.08 atm during the bonding process to oxidize the dispersant and reduce the oxidation effect on 

the Cu substrate [46].  

The problem of oxidation does not exist when Ag and Au plated substrate are used and 

stronger joints can be formed. It is expected that Ag NPs form the strongest bonds with Ag 

plated substrates due to the similar chemistry and the equal lattice parameter between the 

particles and the substrates. For Au plated substrates, a quasi-epitaxial match between the Ag 

NPs and the substrate was achieved [7,47]. This is due to the small difference between the lattice 

parameters of Au (0.4079 nm) and Ag (0.4086) [7]. The lattice parameter of Cu is much less 

(0.3615 nm) and therefore higher energy (temperature) is needed to from the bond. . It was 

suggested that the difference in lattice parameters between Ag and Cu is responsible for forming 

a distorted layer of about 3 nm thickness [7,8,13]. Ni was also used as a substrate but the 

mechanical strength of the bond was 50% less than joints formed on Cu substrate [9]. Bonds that 

are formed on Al and Ti substrates have even lower strength values than Ni, this is due to the 

stable oxide layer that could not be removed by the oxidation of the dispersant [9].  
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2.2  Melting and Surface Premelting 

2.2.1 Melting Theories of Bulk Materials 

In 1891, Sutherland [48] suggested that melting occurs when the distances between atoms 

exceeds a certain value relative to the atomic diameter. As a result of increasing distances 

between atoms as the temperature increases, shear modulus of the solid also decreases.  A 

relationship between the temperature of the solid and the shear strength (G) was proposed in 

equation 2.1 [48]. The shear modulus reaches zero at Tm and the rigidity of the metal vanishes.  

                                                (  
 

  
)                                           

where Go is shear modulus at 0 K and T is the temperature.  

In 1910, Lindemann [24] advanced Sutherland idea and suggested that melting occur 

when the amplitude of atomic vibration exceeds a certain fraction of interatomic distance, this 

causes collisions between atoms and therefore destabilise the lattice. Gilvarry [49] further 

advanced Lindemann’s model and suggested that melting occurs when the root mean square 

displacement (rmsd) exceed a certain fraction of the nearest neighbour-separation. Currently, 

Gilvarry definition of melting is the most accepted form of Lindemann’s criterion. 

In 1938, Brillouin [50] has also advanced Sutherland work on the relationship between 

shear strength and melting and suggested that as Tm is approached, macroscopic rigidity 

disappears while microscopic rigidity remains finite. He considered the anisotropy of solids and 

suggested that some rigidity coefficients might remain finite at Tm. One year later, Born [51] 

developed his criteria of melting, which suggested that melting of a crystal occurs when one of 

the shear modulus vanishes. Another proposed melting model is thermoelastic instability 

criterion, which was developed by Herzfeld and Goeppert-Mayer (HGM) [52] in 1934 and 
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suggested that melting is caused by thermoelastic instability of the material. It was also 

suggested that isothermal compressibility diverges as the temperature of the solid reaches Tm 

[52].  

It has been shown that melting occurs when vacancies in the solid show a dramatic increase 

[53,54].  It was found that the concentration of vacancies in many metals increased from 0.37% 

at the beginning of melting to 10% [55]. The increase of electrical resistivity at Tm is an 

indication of the increase in the concentration of vacancies [56]. However, this model failed to 

explain the mechanism of melting and why and how the vacancies concentration increased from 

0.37% to 10% at Tm. 

 

2.2.2 Premelting at Defects: 

It has been shown the melting process starts below Tm at defects such as vacancies, 

interstitials, dislocations, and grain boundaries [20]. This is because the atoms at defects vibrate 

more freely than other atoms due to their lower coordination number [57,58]. It has been shown 

that it is possible for a prefect crystal lattice with no defects to be superheated to a temperature 

higher than Tm before melting occurs [59].  

Fig. 2.3 shows an example of premelting at a grain boundary and at a dislocation in a 

colloidal crystal with Tm of 28.3
o 

C [60]. The crystal in Fig. 2.3(a) shows a grain boundary 

separating two crystallites with a relative tilting angle of 13
o
 and cuts the crystal into two 

different planes as shown by the yellow line. The dashed line shows a partial dislocation. As the 

temperature of the crystal increased from 27.2
o
 C to 28

o
 C, an amorphous layer started to form at 

the grain boundary region as an indication of premelting. As the temperature increased to 28.1
o 
C 

(Fig. 2.3(c)), premelting at the partial dislocation took place. The melted layer thickness 

increased as the temperature of the crystal increased to 28.2
o 
C (Fig. 2.3(d)).  
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Fig. 2.3 Premelting of the colloidal crystal at a grain boundary [60]. The length of scale bars is 5 µm .  

 

Fig. 2.4 shows Lindmann parameter (δL) values at 28.1
o 

C for atoms near and far away 

from different type of defects such as a melted boundary, a partial dislocation and a vacancy 

[60]. δL is calculated by dividing rmsd value of the atom by the distance between the atom and 

the nearest neighbor [20].  It can be seen from Fig 2.4 that δL values increased exponentially for 

atoms near the defects. This confirms that melting started at defects. It can also be seen in the 

figure that δL values near the melted boundary shows the highest values, middle values near the 

partial dislocation, and smallest values near the vacancy. This is because δL is higher at defects 

with higher interfacial energies.  
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Fig. 2.4 The local Lindemann parameter as a function of distance from a vacancy, a partial dislocation, and a 

melt front. Within 1 µm of the defects, the particle motion was too rapid and calculation of Lindemann 

parameter was unreliable [60]. 

 

2.2.3 Surface Premelting of Bulk Materials 

Faraday [61] has made the first observation of surface premleting of ice during the 19 

century. Surface premelting of metals was then observed by different experimental techniques 

such as electron diffraction (ED), [62,63], X-ray reflectivity [64], and low energy ion scattering 

spectroscopy (LEIS) [65,66]. As shown in equation (2.2), the energetic requirement for surface 

premelting to occur is that the solid-vapour interfacial energy (γsv) should be larger than the sum 

of solid-liquid interfacial energy (γsl) and the liquid-vapour interfacial energy (γlv) [67]. Fig, 2.5 

shows the process of formation of a liquid layer on a solid surface and the different interfacial 

energies associated with it. 
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Fig. 2.5 A schematic diagram of surface premelting. 

 

Surface premelting starts by forming a quasi-liquid layer on the solid surface below Tm 

[20]. This layer expands and transforms at Tm into a liquid layer that is thick enough to be 

considered as liquid (several atomic layers) [68]. The quasi-liquid layer has intermediate 

structural, dynamic, and transport properties between solid and liquid [69].  The liquid layer 

expands to the solid core to complete the melting process [68]. 

Resistance to surface premelting varies among different atomic planes due to the 

variation in their packing densities [20].  For FCC metals, plane (110) exhibited complete surface 

premelting for Ni [70], Cu [71], Al [72], In [73], and Au [74]. Denser (100) planes of FCC 

metals such as Au [75], Ni [76], and Pb [77] showed non complete surface premelting, i.e. the 

thickness of the quasi-liquid layer did not increase as the temperature approach Tm. Closed 

packed (111) planes of many FCC materials showed no surface premelting below Tm [66, 78-81].   

Jin [82] has performed an MD simulation to find mean square displacement (msd) values of an 

Al (110) surface. The study showed that surface atoms vibrate with different amplitudes in 

different directions.  Fig 2.6 shows the crystal structure of an FCC (110) surface with Z direction 

perpendicular to it. The most outer layer of the surface is numbered as 1. Fig. 2.7(a) shows msd 

components of Al (110) surface atoms at the three outer most layers and the bulk at 700 K, 

which is less than Tsm. The figure shows that x and y components of msd values (parallel to the 

surface) are largest at the outer most layer. This indicates that atoms at the outer most layer has 

Liquid 

Vapour 

Solid 
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easier channels to vibrate in x and y directions than inner layers. On the other hand, the second 

layer shows higher msd values in z direction (perpendicular to the surface) than the outer most 

layer. This also indicates another easy channel for atoms at the second layer to vibrate in z 

direction, which allows these atoms to pop out of the surface and create vacancies.  This is can 

be further eased by cooperative high amplitude vibration of the outer most layer in x and y 

directions. Surface premelting starts when the concentration of vacancies at the surface becomes 

sufficiently large.  Fig. 2.7 (a) also shows that msd values of the atoms in third layer almost 

reached the bulk values in all directions. 

 
Fig. 2.6 The geometry of FCC (110) surface. The reference directions are indicated in the 3D projected views. 

Five layers normal to the surface are marked as 1–5, with 1 being the top surface layer [82]. 

 

Fig. 2.7 (b) shows msd values of atoms vibrating inside the easy channels indicated above 

increase dramatically as the temperature increase. This is different than msd values of bulk 

atoms, which increase linearly with temperature. These results agree with experimental results 
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obtained by LEIS and showed in Fig 2.7 (c) [83]. The figure shows a linear relationship between 

temperature and msd values below 700 K. Similar to the results shown at Fig. 2.7 (b), a dramatic 

increase of the msd occurs above 700 K. This was attributed to the anharmonic effect of atomic 

vibration inside these easy channels at temperatures higher than 700 K.   
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Fig. 2.7 Layer-resolved MSDs as a function of temperature (‘bulk’ refers to the two inner layers). The shaded 

area in (b) corresponds to the bulk experimental values. The data by neutral impact collision ion scattering 

spectroscopy measurements are shown in (c): circles and squares refer to measurements along the <001> and 

<  ̅ > directions, respectively. The dashed line is the linear regression for the open circles [82,83]. 
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2.2.4 Melting of Nanomaterials:  

In addition to the theoretical models [21-23] that predicted melting point depression of 

NPs (see section 1.1), many experimental techniques have confirmed the depression of Tm at the 

nanoscale. Electron diffraction (ED) has been used to determine Tm of thin films of (Pb, Sn and 

Bi) [84], In [85], and Sn [86], and NPs of (In, Pb) [87], Sn [68], and Au [88]. Tm was determined 

at the temperature at which diffraction patterns changes from rings to halos. In situ electron 

microscopy was also used to determine Tm of NPs at the temperature at which the image is 

greatly dims in dark field mode or at the temperature at which the facets of a NP disappear in the 

bright field mode. The former method was used to study melting of (Sn, In, Pb, and Bi) [14], In 

[89], and Sn [90], while the later was used to study melting of Bi [91]. Other experimental 

methods such as nanocalorimetry, X-ray diffratction (XRD), and differential scanning 

calorimetry (DSC) were used to study melting of Sn [92], Pb [93,94], and Al [95,96], 

respectively.  

As shown in Fig. 2.8, Tm values of Sn, In, Bi, and Pb NPs show a linear relation with 

inverse radius of the NP [14]. Fig. 2.9 shows that Tm of Au decreased dramatically for NPs 

smaller than 10 nm in radius [88]. Although all these experiments confirmed the depression of 

Tm of nano materials, the obtained Tm values were scattered even for similar materials and sizes. 

This was due to the effect of defects such as grain boundaries and dislocations on Tm [20]. The 

material of the mounting substrate might also have an effect on Tm of the NPs [21].  
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Fig. 2.8 Plots of melting temperatures vs the reciprocal of the particle radius for (a) tin, (b) indium, (c) 

bismuth and (d) lead. The broken lines represent the predicted lower and upper bounds. The experimental 

data are represented by circles with the open circles denoting data taken under more contaminated 

conditions than those represented by full circles, e.g. the open circles in (a) correspond to a second melting of 

tin particles and in (d) to lead particles under a higher ambient pressure [14]. 

 

 
Fig. 2.9 Melting point of Au ultrafine particles as a function of particle size determined by means of scanning 

electron-diffraction method [88]. 
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2.2.5 Surface Premelting of Nanoparticles:  

Similar to bulk materials, surface premelting was also experimentally confirmed for 

nano-sized materials such Sn NPs [92,97], and Pb [94], and Pt nanocrystals [98], and was also 

numerically confirmed for Au NPs [99], and Ni nanoclusters [100]. The finite curvature of NPs 

has an effect on the thickness of the liquid layer [101]. It was found that liquid layers formed on 

NPs are thicker than those formed on bulk material and may reach half of the particle radius.  Fig 

2.10 shows SEM image of Sn NPs with different sizes at about 10 K below Tm. The white rings 

are stable liquid layers covering the solid core. It can be seen that smaller particles were fully 

melted without passing the surface premelting stage [101]. 

 

 
Fig. 2.10 Dark field TEM image for Sn clusters on SiO2. A stable surface liquid layer is observed for large 

clusters with a bright ring around a dark core. Smaller (white) clusters are melted entirely [101]. 

 

An analytical model was recently developed by Chernyshev to determine the onset 

temperature of surface premelting (Tsm) for NPs in terms of the mean-field approximation [102]. 

Chernyshev developed the model based on Shi’s model [22] and has shown that surface 

premelting does not take place if the NP radius is smaller than a critical radius rc, which is 
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different for different materials. Instead, the surface layer makes a transition to a pseudo-

crystalline state before the whole particle melts [103].  

 

2.3  Solid State Phases of Metallic Nanoparticles 

2.3.1 Atomic Structure of Solid Phases in Metallic Nanoparticles 

Unlike bulk materials, metallic NPs may exist in non-crystalline solid phases arranged in 

icosahedral or decahedral configurations [104-105]. Fig. 2.11 shows atomic arrangement of the 

most stable solid phases of metallic NPs [106]. Icosahedral structure has only (111) closed pack 

facets and is formed by 20 tetrahedral sharing a vertex at a fivefold symmetry axis. This structure 

has less surface energy than other solid configurations but on the expenses of the large internal 

strain caused by the 20 distorted tetrahedral, which make this structure energetically unfavorable 

for large NPs. Decahedral structure is less spherical with less internal strain and is formed by 

five tetrahedral sharing one edge with (111) and (100) facets. FCC truncated octahedral structure 

has (111) and wide (100) facets, which increase the surface energy with no internal strain. This 

makes this configuration the most stable for large NP, at which surface energy is reduced due to 

the decrease in the surface curvature. 
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Fig. 2.11  Decahedral (top row), icosahedral (middle row), and fcc truncated octahedral structures (bottom 

row). Each structure is shown in side (first two columns of the figure) and top views (third and fourth 

columns), and each view is given in two representations [106]. 

 

 

2.3.2 Stability of Solid Phases in Metallic Nanoparticles  

It has become possible by MD simulation to find the most stable configuration by either 

depositing the atoms on a very small particle (seed) at a specific temperature [107] or by freezing 

a liquid nanodroplet [108-112]. Fig. 2.12 shows Ag NPs solid structures obtained by freezing 

different sizes of Ag nanodroplets with specific magic numbers [112]. Magic number is the 

number of atoms that would form high symmetrical structure of a certain configuration [113]. As 

it can be seen in the figure, nano-droplets of 147 and 309 atoms solidified in icosahedral 
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structures. The frozen structure became decahedra and then FCC polyhedron as the size of the 

nanodroplet increases. A parameter (∆) was introduced and defined as the ratio of the excess 

energy caused by the surface and the internal strain to N
2/3

, where N is number of atoms in the 

NP. Fig. 2.13 shows the values of ∆ for different sizes of Ag NPs with different icosahedral, 

decahedral, and FCC truncated octahedral configurations [114]. The figure clearly shows that the 

minimum energy values of the small particles are associated with the icosahedral configuration, 

decahedral has minimum energy values for intermediate size of Ag NPs, which suggests that the 

formation of the stable phases obtained in Fig. 2.12 is mainly driven by minimization of the 

excessive energy. It was also generally agreed based on the ground state energy of a NP that the 

icosahedral configuration is the most stable phase for small NPs, decahedra is stable for 

intermediate size, and the FCC structures is the stable configuration for larger NPs [115-116]. 

Nevertheless, other studies have shown that the stable solid configuration might deviate from the 

minimal energy values due to thermal and kinetic effects [117]. For example, icosahedral 

structures of large Fe [118], Au [119], and Ag [120,121] nanoparticles were fabricated by 

different experimental methods. Fig. 2.14 shows TEM images of Ag NPs synthesized in a 

kinetically controlled polyol process that allows the formation of multiple twinned icosahedral 

Ag NPs that are larger than multiple twinned decahedral particles and single crystal truncated 

octahedral particle [122].  
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Fig. 2.12 On the left, Baletto et. al. reported the initial configurations of silver nanodroplets at magic 

icosahedral numbers (147, 309, 561 and 923), while on the right, there are typical final structures obtained 

cooling at 1 K/ns: from top to bottom, icosahedra at 147 and 309, a decahedron at 561 (strongly asymmetric 

and with an island on hcp stacking above) and a fcc polyhedron at 923 [112] . 
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Fig. 2.13 The quantity ∆=(Etot-NEcoh)/N
2/3

 as a function of the size N, calculated by means of  Rosato, 

Guillope`, and, Legrand (RGL) potentials for silver clusters. Circles, squares, and triangles refer to 

icosahedra, decahedra, and truncated octahedra, respectively [114]. 
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Figure 2.14  (A) TEM image of the mixture of icosahedral and decahedral Ag multiple twinned particles 

(MTPs). (B) HRTEM image of the mixture of icosahedral and decahedral Ag MTPs. (C) TEM image of the 

mixture of icosahedral and decahedral Ag MTPs and single-crystalline truncated octahedral nanoparticles. 

(D) HRTEM image of the mixture of icosahedral and decahedral Ag MTPs and single crystalline truncated 

octahedral nanoparticles [122].   
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2.3.3 Solid to Solid Phase Transitions in Metallic Nanoparticles 

 Solid to solid phase transition between different phases of NPs has been observed in 

many studies [123-129].  A multiple twinned Ag NP of 2.4 nm was transformed into an epitaxial 

FCC during annealing below the melting point [125]. Decahedra to Icosahedra transition was 

observed during in-situ TEM cooling of Au NPs smaller than 10 nm [126].  Valkealahti and 

Manninen [127] reported a non-diffusive transition of cuboctahedral Cu NPs with less than 2000 

atoms to Icosahedral structure at 0 K. Koga et al. [128] proposed a cooperative slip dislocation 

mechanism for the transition of Icosahedral Au NPs to decahedral configuration just below Tm. 

Fig. 2.15 shows a recent MD study on phase transition of a Cu NP from cuboctahedra to 

icosahedra by a dislocation free shear wave at 700 K [129]. These transitions occurred in 

different conditions and by different mechanisms and have been driven by different energetic, 

thermal, and kinetics factors [129]. 
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Fig 2.15. The shape evolution of Cu cuboctahedral nanoparticles with 561 atoms at 700 K. The atoms initially 

on (100) surfaces, (111) surfaces, and edges are marked in blue, red, and green, respectively. For the cross-

sections of the particles, atoms belonging to each shell layer in the initial cuboctahedron are denoted by 

different shades of gray. Time is specified below each snapshot: (a) t = 0.0 ps, (b) t = 4.0 ps, (c) t = 5.0 ps, (d) t 

= 10.0 ps. Time zero indicates when the transition begins [129]. 
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2.4  Sintering of Microparticles and Nanoparticles 

2.4.1 Sintering of Microparticles 

Fundamental understanding of sintering of microparticles is of a great advantage for the 

development of powder processing and technology [130]. Traditionally, sintering is 

characterized by three stages shown in Fig. 2.16 [38]. The first is neck formation between two 

particles followed by a rapid increase in the neck radius. The second is gradual increase in the 

neck radius and the third is densification of the structure. The driving mechanism of sintering 

varies between viscous flow [131], evaporation condensation [132,133], surface diffusion [134], 

lattice diffusion [135], grain boundary diffusion [136,137], and plastic deformation [138,139]. 

Although sintering is a solid state process, liquid phase sintering has been applied to enhance the 

sintering by performing it in a liquid matrix [140-143]. Pressure also could be applied to assist 

the sintering process and enhance the diffusivity between the particles [144-146]. Based on the 

sintering mechanism, different theoretical models have been proposed to measure the rate of 

sintering, which is measured by the densification rate, the growth of  neck radius to particle 

radius ratio (x/r), and shrinkage ([4r-L]/4r), [38]. As shown in the schematic in Fig. 2.17, r is the 

particle radius, x is the radius of the formed neck, and L is the final length of sintered NPs. 
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Fig. 2.16 Sintering stages starting with a loose powder and subsequently being sintered in each of the three 

stages. The initial open pore structure and high porosity are consumed by interarticle neck growth, grain 

growth, and pore shrinkage, with eventual formation of closed, spherical pores in the final stage [38] 

 

 
Fig.  2.17  Geometrical parameters of two particles during the sintering process. 
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2.4.2 Sintering of Nanoparticles 

Sintering of NPs was performed numerically on Au (147, 148), Cu (148,149), Ni (150), 

and experimentally on Ag [151-154], and ZrO2 [155]. These studies showed enhanced sintering 

rates at much lower temperatures than sintering of microparticles. Fig. 2.18 shows the atomic 

plots of 4.8 nm Cu NPs sintered at 50 K by molecular dynamics simulation [156]. As shown in 

the figure, the NPs rotated during the sintering process to align the atomic planes of the two NPs 

with each other and hence reducing the interfacial energy [156]. Full densification of seven 2.4 

nm nanocylinders positioned in closed pack configuration at 300 K is shown in Fig. 2.19 [556]. 

Fig. 2.20 shows two Ag clusters of 55 atoms sintered at 0.001 K by Monte Carlo simulation 

[557]. In these studies, the reasons of the enhanced sintering of the NPs was attributed to the 

large driving force of sintering, which is caused by high curvature of the NPs surfaces, 

mechanical rotation, and the significant increase in diffusion coefficients at the nano-scale. 

Because of these factors, theoretical models used to estimate sintering kinetics of microparticles 

may not be valid for NPs sintering and therefore molecular dynamics simulation becomes of a 

great advantage here. 
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Fig. 2.18  Position of all atoms at various instants of time during two-particle sintering at 50 K, projected onto 

the (121) plane of the bottom [516]. 
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Fig. 2.19  Sintering of seven close-packed cylinders to full density at 300 K [156]. 

 

 

Fig. 2.20 Representative snap-shots at 0.01 K corresponding to three arranged configurations (a) vertex to 

vertex (b) face to face (yellow atoms highlight oriented attachment) and (c) edge to edge. The red dotted lines 

illustrate queues. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) [157]. 
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2.4.3 Sintering of Metallic Nanoparticles on Metallic Substrates 

Sintering of metallic nanoparticles on metallic substrates has been experimentally 

investigated by in situ ultrahigh-vacuum TEM [158] and numerically by MD simulation 

[47,159].  Fig. 2.21 shows atomic plots of two 1.2 nm Au NPs sintered on Au substrate at 

different temperatures by MD simulation [159]. It can be clearly seen from the atomic plots that 

the porosity between the NPs and the substrate disappeared at 400 K. The sintering is enhanced 

as the temperature is increased and a thin film is almost formed on top of the substrate at 800 K. 

Similar trend was observed for sintering of Ag nanoparticles on Au substrate shown in Fig. 2.22 

[159]. As shown in Fig. 2.23., another study has also confirmed densification of Ag NPs and Au 

substrate at 423 K [47]. The figure shows a non-diffusional formation of an epitaxial layer 

between the Ag NPs and the Au substrate after 30 ps of heating. 

 

 

Fig. 2.21 (a) The x–z plane projection of initial configuration. The x–z plane projection at (b) 400 K, 

(c) 600 K and (d) 800 K with simulation time of 300 ps for Au–Au [159]. 
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Fig. 2.22 The x–z plane projection of Ag–Au at: (a) 400 K, (b) 600 K and (c) 800 K with simulation 

time of 300 ps [159]. 

 

 

Fig. 2.23 Atom arrangement of 4 nm-sized silver nanoparticles and the gold substrate with (011) orientation 

at 523K. Corresponding simulation times are also shown [47]. 

 

 



41 

 

3 METHODOLOGY 

 This chapter describes the methods applied in this thesis. Section 3.1 describes the 

fabrication method and the application of Ag NP paste in bonding Cu wires to Cu foils. The 

characterization methods of the paste and the bonds are also described. Section 3.2 describes the 

computational methods that were applied to simulate the heating process of the Ag NPs. Section 

3.3 reports the analytical models of melting, surface premelting, and sintering that has been 

used in this thesis.  

3.1 Experimental Methods 

3.1.1 Cu Foils and Wires 

The Cu foils was received from the manufacturer were of 50 µm thickness and 5 cm 

width (McMaster Carr, Aurora, OH). The foils were cut across their length into 5-cm pieces 

using a shear cutter. The used Cu wires were of three different diameters: 50 µm, 250 µm, and 

500 µm (McMaster Carr, Aurora, OH). The wires were cut into 10-cm pieces. Prior to bonding, 

the foils and the wires were ultrasonically cleaned in acetone for 3 min and rinsed by ultrapure 

water (electrical resistivity is approximately between 16 MΩ cm and 18 MΩ cm). 

3.1.2 Fabrication of Ag Nanoparticle Sol 

 Reduction of metal ions by reducing agents is a common way to fabricate metallic NPs 

[160]. In this work, Ag NPs were prepared by the reduction action of silver nitrate (AgNO3) 

using sodium citrate dihydrate (Na3C6H5O7.2H2O) [161,162]. A solution of (AgNO3, 1 mM) in 

250 mL ultrapure water was heated to 353 K. A volume of 10 mL aqueous solution of 

(Na3C6H5O7.2H2O, 0.34 mM) was then added to the AgNO3 solution. Heating was continued to 
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363 K for 30 min after adding the citrate solution. The color of the solution changed from the 

colorless water to yellow after 15 min of heating, and to gray after 25 min. The produced sol was 

simply Ag NPs coated with organic shells and dispersed in water with a concentration of 0.001 

vol.%. The excess amount of citrate used in this reaction is responsible for coating the NPs with 

the organic shell.  

The fabricated Ag NPs had an average size of 50 nm and size distribution in the range of 

20 nm to 100 nm. A few Ag nanobars were found in the prepared sol as a result of different 

growth rates at different crystallographic planes of the particles. The length of the nanobars was 

approximately 100 nm, and their diameter ranged from 10 nm to 20 nm. The amount of nanobars 

might be reduced by adding aniline to the AgNO3 solution prior to heating [163]. However, 

precise control of the shape and the amount of the nanobars is beyond the scope of this thesis. 

 

3.1.3 Fabrication of Ag Nanoparticle Paste 

The Ag NP paste was simply fabricated by increasing the concentration of the Ag NP sol 

from 0.001 vol.% to 0.1 vol.% by centrifugation. A centrifugal force of 1700 × g was applied for 

30 min on 15-mL centrifuge tubes (length 118.54 mm, outer diameter 15.62 mm) filled with 

0.001 vol.% sol . As a result of the centrifugal force, the Ag NPs condensed at the bottom of the 

centrifuge tubes, leaving only water on top. The water was extracted from the centrifuge tubes 

using a pipette, leaving 0.15 mL 0.1% Ag NP sol (Ag NP paste) at the bottom. The carrier of the 

Ag NP paste was just water. This paste was used for all experiments in this work. 
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3.1.4 Deposition Control of Ag Nanoparticle Paste  

 A fine needle attached to a 10-mL syringe was used to extract the Ag NP paste from the 

centrifuge tubes and deposit it onto the Cu foils. After depositing one droplet of paste onto the 

Cu foil, the Ag NPs migrated to the edge of the droplet, showing the coffee-ring effect (CRE) 

[164].  This resulted in an undesirable variation in the thickness of the deposited layer. Thus, to 

suppress CRE, multiple depositions of the paste on Cu foil were performed. This led to relatively 

uniform thickness within the droplet. A volume of 0.15 mL of the Ag NP paste was deposited on 

each bonded sample. The number of depositions per sample was in the range of 22 to 30 

droplets. This gave a droplet volume of approximately 0.006 mL and approximately 97 µg Ag 

NPs for each deposition. The droplets were dried at 353 K after each deposition. 

 

3.1.5 Bonding Technique  

 After depositing the Ag NPs onto the Cu foil, the Cu wire was mounted on the Ag NP 

paste and clamped by a 2-inch screw clamp. A schematic diagram of the clamping geometry is 

shown in Fig. 3.1. An alumina ceramic piece was placed underneath the screw to prevent 

bonding between the Ag NPs and the metallic screw. The pressure exerted on the sample was 5 

MPa, which was determined by dividing the applied force by the area of the ceramic piece. The 

applied force was measured using a load cell. A torque wrench was used to tighten the screw and 

thus to exert the same force on all samples. The clamped sample was then heated at the bonding 

temperature for 30 min. 
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Fig. 3.1 Schematic diagram of clamping the Cu wire to the foil. 

 

 

 

3.1.6 Shear Testing 

Shear testing was applied by shearing the wire at a rate of 5 mm/min. Fig. 3.2 (a) shows 

an optical image of a 50-µm Cu wire bonded to Ag NPs, and a schematic diagram of the shear 

test is shown in Fig. 3.2 (b). To avoid bending on the joint, the wire was clamped at a distance of 

7 cm from the joint. The maximum shear strength was calculated by dividing the maximum force 

by the area of the bond. Three samples were tested for each shear experiment. 

The used needle deposited droplets that covered the foil with a circular area of 4.00 ± 

0.25 mm in diameter; any extra area resulting from uncontrolled deposition was scratched. After 

clamping, the Cu wire deformed to a nearly elliptical shape and formed a contact with the Ag 
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NPs. The contact area was estimated by multiplying the length of the cross-sectional contact 

between the deformed wire and the foil by the diameter of the Ag NP coverage on the foil. Both 

lengths were measured for each sample by optical microscopy. 

Shear testing at high temperature was performed by heating the unbonded side of the foil 

using a heat gun. The temperature of the sample was measured using a thermocouple attached to 

the bonded side, 10 mm away from the joint. The shear test was run just after the joint reached 

the desired temperature. 

Fig. 3.2 (a) Optical image and (b) schematic diagram of a shear sample. 

 

3.1.7 Microstructure Analysis  

 A field-emission scanning electron microscope (Leo1530 FE-SEM; Zeiss, Germany) was 

used to examine the microstructure of the sintered NPs and the bonded samples. The sintering 

studies were performed by depositing one droplet of the Ag NP paste on silicon wafers. The 

sintering measurement was based on measuring the neck radius in the sintered NPs, which was 

measured from SEM images by ImageJ software. The radii of at least 10 necks per sample were 

averaged. 
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The bonded samples were mounted in epoxy, cross-sectioned, and then polished by 0.25-

µm diamond paste. The samples were coated with a 10 nm gold layer prior to SEM observation. 

For TEM studies, the bonded samples were sectioned by microtomy. 

3.1.8 Thermogravimetric Analysis (TGA) and Raman Spectroscopy 

 TGA was performed by heating the Ag NP paste from RT to 723 K. To study the effect 

of annealing of the Ag NP paste on the decomposition of the organic shell, the paste was 

annealed at 433 K and 473 K for 30 min prior to the TGA tests. The tests were run in air with a 

heating rate of 5 K/min.  

Raman spectroscopy of the Ag NPs was performed to identify the composition of the 

organic shell and to study the effect of annealing of the Ag NP paste on the decomposition of the 

organic shell. The Raman spectra were recorded using a Renishaw spectrometer excited with an 

Ar laser at wavelength of 488 nm. The samples were prepared by depositing Ag NP paste on a 

silicon wafer. 

3.2 Computational Methods 

The initial atomic structure of all simulated Ag NPs in this work is arranged in FCC 

truncated octahedral, which defines planes (111) and (100) as surface facets [106]. Fig. 3.3 

shows the initial atomic arrangement of a 4 nm Ag NPs viewed at the (100) and the (111) surface 

facets. A previously developed linear scaling parallel MD code was used to investigate the 

melting and the surface premelting behaviours of the NPs [165]. This code was based on the 

Voter-Chen version [166] of the embedded atom method (EAM) potential [167]. Unlike a first-

principles method, semi-empirical methods such as EAM can be used to simulate large sizes of 

NPs as well as very small clusters [168]. Simulation of large NPs can only be performed by 
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using semi-empirical potentials such as Sutton-Chen [169], the many-body Gupta [170],
 
Finnis-

Sinclair [171], the embedded atom [172-176] and related methods [127,177-178],
 
and molecular 

dynamics simulations [114,179-182]. The EAM was chosen for the generality of its functional, 

good agreement with experiments and the first principles calculations, and the high 

computational efficiency that allows the simulation of relatively large NPs. The embedded-atom 

model was originally developed by Daw and Baskes
 
[183] and parameterized by Voter and Chen

 

[166] by simultaneously fitting the potential to the properties of bulk silver and Ag2. The total 

energy E of a mono-atomic system in the EAM potential is represented by  

     ∑   ̅  

 

 
 

 
∑ (   )

   

                                                                   

where  (   ) is a pair-wise potential as a function of the inter-atomic distance     between atoms i 

and j, F is the embedding energy, and  ̅  is total host electron density at the position of atom i 

and can be calculated by the following formula  

     ̅  ∑  (   )                                                                                

where      is the density function and can be calculated by the following equation: 

       [            ]                                                                

where r is the distance between the atoms, and   is an adjustable parameter.  
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Fig. 3.3 Initial atomic arrangement of the 4 nm Ag particles showing (100) and (111) facets of the 

truncated octahedral configuration. 

The pair-wise potential      based on Morse potential is calculated using the following 

equation  

       [           ]
 
                                                               

where    is depth of the potential well,     is the inter-atomic distance at the minimum of the 

potential well, and    is a measure of the curvature of the potential well at its minimum, 

respectively. Table 3.1 shows the values of the fitting parameters of the embedded atoms 

potential for Ag. 

Table 3.1: Fitting parameters of the embedded atom  potential for Ag. 

DM (eV) RM (Å) αM (Å
 -1

) βM (Å
 -1

) rcut (Å) * 

0.6721 2.5700 1.8260 3.9060 5.5420 

*cutoff radius. 

 

For higher precision, Hamming’s modified 4
th

 order predictor-corrector propagator has 

been employed with a step size of 2 femto seconds, which guarantees the conservation of total 

energy of a NP within an accuracy range of 0.03%-0.15%. The initial velocities of atoms in the 
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NP were assigned according to the Maxwell-Boltzmann distribution at a specific temperature. 

The NPs were first relaxed at 300 K (room temperature) for 20 ps to achieve equilibration before 

heating, which was gradually applied by increasing the NP temperature in intervals. This was 

achieved by multiplying the velocities of atoms by a scaling factor that is calculated as a ratio of 

the target temperature to the present temperature. Accordingly, the total kinetic energy (Ek) of 

the atoms in the NPs is obtained via the equipartition theorem. The NPs were then equilibrated 

for 20 ps at each temperature, which was long enough to dampen the fluctuations in temperature. 

Consequently, the NPs reached the desired temperature at each heating interval in a reliable 

manner.  From this fact, one may argue that the equilibrium averages, which are sensitive to 

temperature fluctuations, were reasonably taken into consideration. However, it is important to 

point out that a simple velocity rescaling scheme was used to fix the temperature rather than 

contacting with a heat bath such as the Nose-Hoover thermostat. Nevertheless, one may argue 

that the present velocity rescaling scheme has successfully maintained thermodynamic properties 

in the canonical ensemble averages by applying an appropriate heating rate. 

During the heating process, the last phase space point of a calculation was used as an 

input for the next temperature calculation and the temperature (or   ) and average potential 

energy (PE) were calculated. Heating of the NPs was then gradually applied by increasing their 

internal kinetic energies      for 20 ps at each temperature interval. The temperature of the NP 

was calculated by the following equation: 

  
 〈  〉
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where    is the total kinetic energy of the atoms in the NP, k is the Boltzmann constant, and N is 

total number of atoms in the NP. The dynamics were monitored by short-time (10 fs) averages of 

the NP temperature. The short-time average was taken to lower the fluctuation in the kinetic 

energy values that occurred due to the flow between the potential energy and the kinetic energy 

during the oscillation of the atoms around their equilibrium positions. Taking the short-time 

average is more important at high temperatures as the fluctuations in the kinetic energy values 

become larger. 

The heating rate was chosen based on a trade-off between physical reasoning and 

computational expenses. Although instantaneous heating is computationally less expensive than 

gradual heating, the system may stick on a local minimum at the potential energy surface (PES).  

Therefore, gradual heating on the NPs were performed. The heating rate was chosen based on a 

preliminary simulation performed on a 4 nm particle in the range of 325 K to 1675 K with 50 K 

steps leading to a Tm value of about 875 K. For better accuracy during the melting stage, 

temperature step was reduced for all sizes of NPs to 10 K in the range of 825 K to 1275 K. The 

maximum temperature of this range was chosen to be slightly higher than Tm of the bulk (1235 

K).  

3.3 Analytical Methods 

3.3.1 Melting of Ag Nanoparticles 

Tm values obtained here will be compared to those obtained by the liquid drop model 

(LDM) [21], Shi’s model [22], and Hanszen’s model [23]. The liquid drop model assumes that 

Tm of a NP is primarily based on the variation of the cohesive energy and the surface tension of 
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the NP. According to the liquid drop model, the bulk atomic cohesive energy per coordination 

number can be related to the melting point of the bulk       by the following equation 

                                                                                                                         

also, average cohesive energy per atom of a NP can be related to its complete melting point 

      by the following equation  

                                                                                                                

where c is a constant in both equations and d is the diameter of the NP. Average cohesive energy 

per atom        of a NP can be directly related to cohesive energy of the bulk (  ), atomic 

volume (  ), and the solid-vapor interfacial energy (   ) by the following equation: 

                                       
      

 
                                               

Equation (3.8) shows that cohesive energy per atom decreases as the size of the NP 

decreases and the rate of the decrease depends on the atomic volume    ) and the solid-vapor 

interfacial energy (   ). By replacing the values of the cohesive energies in equation (3.8) by the 

values of the complete melting points from equations (3.6) and (3.7), we get 

           (  
      

               
)                                                

where       and       are complete melting points of the NP and the bulk; respectively. 

Equation (3.9) was modified to equation (3.10) by introducing a dimensional parameter   that 

depends on    and     
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           (  
 

 
)                                                                   

where melting point of bulk Ag is 1235 K and    is estimated as             [21]. 

Shi’s model was also considered to find Tm of the NPs [22]. The model was based on 

Lindemann’s criterion
 
[24], which suggested a NP melts when the msd value of the atoms 

exceeds a certain fraction of the interatomic distance. Shi specified Tm based on the average msd 

value of both the bulk and surface atoms and can be calculated by the following equation 

              [       (
 

   
  ) ]                                                

where ro is the NP radius at which all atoms are located at the surface, and   is a material 

constant that can be calculated by the following equation 

  
        

  
                                                                        

where         is a vibrational component of melting entropy (= 7.98 J/mol.K for bulk Ag)
 
[184] 

and R is the ideal gas constant (=8.314 J/mol.K), this will give       . The value of ro is equal 

to 3h, where h is the height of a monolayer of atoms on the bulk crystal surface. The value of h is 

equal to a/2 for FCC material, where a is the lattice constant (a = 0.409 nm for Ag). This will 

give ro as 0.6135 nm for Ag.  

Hanszen’s model was also considered for finding Tm of a NP [23]. Hanszen assumed that 

Tm and Tsm
 
are equal and the melting process starts at the surface of the NP by forming a liquid 

layer of a given critical thickness (  ) around the solid core at Tm of the NP. Any infinitesimal 

increase of the temperature above Tm destroys the equilibrium between the liquid layer and the 
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solid core and the liquid layer would expand into the solid core of the NP. According to 

Hanszen’s model, the complete melting point of a NP can be determined by the following 

equation
 

            
      

 
[

   

  (
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 (
    

 
 

  

 
) (

 

  
 

 

  
)]           

where   is the latent heat of fusion of the bulk,    is the critical thickness of the liquid layer,     

and     are the bulk interfacial energy between solid-liquid and liquid-vapor, respectively,    and 

   are the densities of solid and liquid, respectively,    is the difference between the vapour 

pressure of a flat liquid surface (   )  at       and the vapour pressure at the surface of a 

liquid shell with an outer radius r at       . By substituting the following values of Ag variables 

into Equation (3.13):  (  1.06×10
9
 erg/g,    = 184 dyn/cm,    = 910 dyn/cm ,    = 10.49 

g/cm
3
,     = 9.35 gm/cm

3
,    can be ignored for Ag) [185],

 
we get the following simplified 

equation 

                       (
 

     (
 
    )

 
 

 
)                             

The theoretical surface premelting point (Tsm) was calculated by the following equation 

that was developed by Chernyshev [102]
 

              (
 

 
 )

  

{      }   [     ]                             

where      is a function that can be calculated by equation (3.16). 
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(
 
   

  )
                                                                   

Chernyshev developed the model based on Shi’s model and has shown that surface 

premelting does not take place if the NP radius is smaller than a critical radius rc, which is 

different for different materials. Instead, the surface layer makes a transition to a pseudo-

crystalline state before the whole particle melts [103].
 

3.3.2 Sintering of Ag Nanoparticles 

Sintering rates of the Ag NPs was calculated based on three different mechanisms, 

surface diffusion, lattice diffusion, and grain boundary diffusion. Diffusion coefficients of NPs 

are size and temperature dependent and can be calculated by the following equation [186]. 

               [
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]]                    

where r is the NP radius, T is the temperature,       is the bulk pre-exponential constant which 

is equal to (     =5×10
3
 m

2
/s) for surface diffusion, (     =1.2×10

-5
 m

2
/s) for grain boundary 

diffusion, and (     =4.4×10
-5 

m
2
/s) for volume diffusion [187],      is bulk activation 

energy and is equal to (    =2.661×10
5
 J/mol), (    =9×10

4
 J/mol), and (    =18.5×10

4
 

J/mol) for surface diffusion, grain boundary diffusion, and lattice diffusion, respectively [187]. 

Rates of sintering can be determined based on the change in neck radius to particle radius 

ratio (x/r), which can be calculated by the following equation [188]. 
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where t is the sintering holding time, B is a temperature dependent sintering function, the values 

of n and m vary based on the sintering diffusion mechanism. If sintering is driven by surface 

diffusion, equation 3.18 becomes 

(
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where δ is the surface layer thickness and is estimated as 0.3 nm for Ag [187], Ds is the surface 

diffusion coefficient calculated by equation 3.17,     is the bulk solid-vapor interfacial surface 

energy and can be estimated as 1.14 J/m
2
 for Ag [189], and Ω is the molar volume (10.3 cm

3
/mol 

for Ag),. If sintering is driven by grain boundary diffusion, equation 3.18 becomes 

(
 

 
)
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where w is the grain boundary width and is estimated as to 0.5 nm for Ag [187], and     is the 

grain boundary diffusion coefficient, which can be calculated by equation 3.17.  For lattice 

diffusion sintering, equation 3.18 becomes 

(
 

 
)
 
 (

            

    
)

 
    

                                 

where    is the lattice diffusion coefficient calculated by equation 3.17. 
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4 Ag NANOPARTICLE PASTE FOR LOW-TEMPERATURE 

BONDING OF Cu 

This chapter reports the characteristics of the fabricated Ag NPs paste and the formed 

bonds between Cu wires to Cu foils in temperature range of 433 to 573 K. The Ag NPs paste was 

characterized by SEM, TEM, TGA and Raman spectroscopy. The effects of temperature and 

time on the sintering behavior of the bonding paste were examined by SEM. The Ag NPs in the 

paste are coated with a 1 nm organic shell of citrate group. The decomposition of the organic 

shell and its role in promoting the bonding process is discussed. The interfaces between the Ag 

NPs and Cu were examined by SEM and TEM. The strength of the formed bonds was examined 

by shear tests.  The bond strength was also investigated at a higher temperature than the 

temperature at which the bond was formed. Parts of the reported research in this chapter have 

been published in Journal of Electronic Materials [190], and in Applied Physics Letters [191]. 

4.1 Results and Discussion 

4.1.1 Organic Shell Decomposition and Sintering of Ag Nanoparticles 

Fig. 4.1 shows that the concentration of Ag NPs was dramatically increased after centrifugation.  

Fig. 4.2 shows a TEM image of a single Ag NP coated with the organic shell of about 1 nm 

thickness. TGA analysis of the Ag NPs is shown in Fig. 4.3. The weight loss percentage showed 

two major drops in sample weight. The first, at 373 K, corresponds to evaporation of water. The 

second weight loss, between 423 K and 473 K, corresponds to decomposition of the organic 

shell. These weight drops disappeared after annealing the NPs for 30 min at 433 K and 473 K. 

This indicates that most part of the organic shell was decomposed at these temperatures. 
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Fig. 4.1 Concentration of Ag NPs (a) before and (b) after centrifugation. 

 

 

 

 
Fig. 4.2 TEM image of the surface of the NP coated by an organic shell of 1 nm thickness. 

1nm 
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Fig. 4.3  TGA curves of Ag NPs sintered at RT, 433 K, and 473 K. 

 

Raman spectroscopy analysis of the Ag NPs annealed at 473 K for different times is 

shown in Fig. 4.4. The resulting Raman peaks correspond to CH2 at 2919 cm
-1

 (2939 cm
-1

)
 
[192], 

COO group and CO3 at 690 cm
-1

 (663-683 cm
-1

)
 
[192], 1375 cm

-1
 (1360-1373 cm

-1
)
 
[192], and 

1522 cm
-1

 (1470-1530 cm
-1

)
 
[192], AgCO3 at 1056 cm

-1
 (1072 cm

-1
)
 
[193], and  CO at 2116 cm

-1
 

(2143 cm
-1

)
 
[193]. The intensities of the hydrocarbon peaks decreased as the annealing time 

increased due to the continuous decomposition of the organic shell. Raman curve for 5 min 

annealing showed very weak citrate peaks, which confirms the decomposition of the organic 

shell.  
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Fig. 4.4  Raman spectroscopy of Ag NPs annealed at 473 K for different times. 

 

Fig. 4.5 shows the effect of sintering time at 473 K on the pressureless sintering behavior 

of the Ag NPs. The degree of sintering was enhanced as the period of sintering is increased. 

Measurement of the radius of a few necks and grains is shown in the figure. The relationship 

between the sintering time and the neck radius is shown in Fig. 4.6. Neck growth was observed 

after 1 min of sintering, it continued for 5 min, and then the neck radius became nearly constant. 
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Fig. 4.5  SEM images of Ag NPs (a) at RT and sintered at 473 K for (b) 1 min, (c) 3 min, (d) 5 min, (e) 10 min, 

and (f) 30 min. 
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Fig. 4.6   Relation between neck radius of Ag NPs and sintering time at 473 K. 

 

 

The effect of sintering temperature on the sintering behavior of Ag NPs is shown in Fig. 

4.7. The Ag NPs were sintered for 30 min at 373 K, 423 K, 473 K, 523 K, and 573 K. The SEM 

images showed clear sintering and neck growth between Ag NPs at 373 K and 423 K. No 

coalescence was observed at these low temperatures. As the sintering temperature increased to 

473 K, coalescence and grain growth started to appear in some areas. Dramatic coalescence and 

grain growth to 500 nm was observed at 523 K and 573 K. 
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Fig. 4.7 SEM images of Ag NPs (a) at RT and sintered for 30 min at (b) 373 K, (c) 423 K, (d) 473 K, (e) 523 K, 

and (f) 573 K. 
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4.1.2 Metallurgical Bond between Cu and Ag Nanoparticles 

    To get a uniform distribution of Ag NPs, multiple depositions of the NP paste onto the 

Cu foil were performed. Fig. 4.8 (a) clearly shows the CRE after one deposition, i.e., there was 

high concentration of NPs in the ring and relatively less distribution in the central area. After 

multiple depositions, the CRE disappeared and more uniform thickness of the Ag NPs was 

achieved, as shown in Fig. 4.8 (b).  

 
Fig. 4.8  A top view of the distribution control of Ag NPs by (a) one deposition and (b) multiple depositions. 

 

Fig. 4.9 shows cross-sectional SEM images of joints formed with 50-µm Cu wires at 433 

K and 473K. The joint formed at 433 K showed close contact between the sintered Ag NPs and 

the wire while there was a remarkable gap between the NPs and the foil except for a small area. 

The partial joining is not expected to provide a strength that can cause wire fracture, as will be 

discussed in the shear strength results. Thus, it is reasonable to deduce that some joined areas 

between Cu foil and Ag NPs broke during preparation of SEM samples. This gap also indicates 

that the wire–NPs joint was stronger than the foil–NPs joint. At 473 K, there was always close 

contact between the Ag NPs and Cu at both sides of the joint. 
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Fig. 4.9 Cross-sectional SEM images of Cu wire bonded to Cu foil (a) at 433 K, (b) higher magnification of 

(a), (c) at 473 K, and (d) higher magnification of (c). 

 

The SEM images of the bonded samples clearly showed the effect of pressure on the 

sintering behavior of the Ag NPs compared with pressureless sintering in Figs. 4.5 and 4.7. 

Under a pressure of 5 MPa, the porosity that was shown in the pressureless sintering disappeared 

and the NPs formed a bulk layer without distinguishable particle morphology. These images also 

show clear plastic deformation of the wire and the foil as a result of the 5 MPa applied pressure. 

TEM images of the interfaces of a joint bonded at 523 K are shown in Fig. 4.10 between 

50-µm Cu wire and Ag NPs, and in Fig. 4.11 between Ag NPs and Cu foil. Close contact at the 

lattice level between Ag and Cu is shown in Figs. 4.10 (b) and 4.11 (b). These high-resolution 

TEM images also show that both Cu wire and Cu foil are nanocrystalline. This may have had 
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enhanced the diffusion process with the Ag NPs. The dark areas on both sides of the interface 

were caused by the nonuniform thickness of the TEM sample. 

 
Fig. 4.10  TEM images of Cu wire–Ag interface (a) at low resolution and (b) at high resolution. 

 

 
Fig. 4.11 TEM images of Cu foil–Ag interface (a) at low resolution and (b) at high resolution. 

 

The previously reported microstructure analysis of the bonds formed by Ag NPs showed 

a distorted layer of about 3 nm between lattices of Ag and Cu [7,8,13] . The presence of the 
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distorted layer in the current work cannot be confirmed due to the nanocrystalline nature of the 

NPs, the foil, and the wire. 

 

4.1.3 Shear Strength and Electrical Resistivity 

The lowest temperature at which a bond could be formed was 433 K, which is the same 

temperature at which the organic shell decomposed. Table 4.1 presents the average shear 

strength of the bonded samples for Cu wires of three different diameters. The coefficient of 

variation is calculated by dividing the standard deviation by the average shear strength value. All 

measurements were carried out at RT except one set of tests performed at 523 K for 250-µm wire 

bonded at 473 K. Shear tests of 50-µm Cu wires resulted in wire fracture for all bonding 

temperatures. Thus, under pure shear load, 433 K provides sufficient joint strength that the wire 

fractures before the joint. This is an even lower temperature than the lowest reported bonding 

temperature of 523 K [7,8,13]. 

Table 4.1 Shear strength of the joints. 

Wire diameter 

(μm) 

Bonding 

temperature (K) 

Average shear 

strength (MPa) 

Coefficient of 

variation 

Fracture type 

50 

50 

413 

433 

0 

2.8 

0 

0.26 

Joint 

Wire 

50 473 3.2 0.38 Wire 

50 523 2.5 0.17 Wire 

250 473 4.2 0.13 Joint  

250 473
* 

7.0 0.13 Wire 

250 523 11.9 0.06 Wire  

500 

500 

473 

523 

3.9 

17.3 

0.12 

0.15 

Joint 

Joint 

500 573 21.9 0.02 Joint 

           *Tested at 523 K. 

 

If the fracture occurs at the wire, the measured shear strength is actually the critical 

tensile strength of the wire, which is less than the real shear strength of the joint. To examine the 



67 

 

real strength of the joints, 250-µm and 500-µm wires were tested. The 250-µm wire showed joint 

fracture at 473 K and wire fracture at 523 K. For 500-µm wire, joint fracture occurred at 473 K, 

523 K, and 573 K, and the joint strength increased as the bonding temperature increased due to 

enhanced sintering of NPs at higher temperatures. This trend could not be observed with the 50-

µm wire since the fracture occurred at the wire for all bonding temperatures. It is important to 

mention that wire fracture is based on the joint area achieved by the bonding method explained 

in chapter 3, larger joint area may instead lead to joint fracture. 

Although the bonds formed below 523 K had very low shear strength values (Table 3.1), 

they are strong enough to break the 50-µm wire. Besides, for thicker wire, higher bonding 

temperature is recommended. The reported shear strength values of joints formed by Ag NPs 

were 27 MPa at 523 K [8] and 36 MPa at 573 K [13]. Although these shear strength values are 

higher than the values obtained here for the same bonding temperature, previous work on 

bonding below 523 K was unsuccessful. 

Shear tests were also performed at temperatures above the bonding temperatures to 

examine joint reliability at higher operating temperatures. Table 4.1 shows that a bond formed 

with 250-µm wire at 473 K had higher shear strength when tested at 523 K than when tested at 

RT. This clearly indicates that these bonds do not degrade at temperatures above the bonding 

temperature. The increase in strength is due to enhanced sintering of Ag NPs at the testing 

temperatures. 

The contact resistivity showed no dependence on the bonding temperature and has a 

value around 8.71*10
-6 
Ω.m. The joints were good enough at all bonding temperatures to show 

no difference in the resistivity values.   
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4.2 Summary 

SEM images showed significant increase in the concentration of the Ag NPs in the paste 

compared to the sol. Raman spectroscopy and TGA analysis of the bonding paste showed that 

the Ag NPs are coated with an organic shell of citrate group that decompose at 433 K. The TEM 

examination of the NPs has confirmed the presence of an organic shell of 1 nm thickness. 

Pressureless sintering of the Ag NPs for 30 min at different temperatures has shown enhanced 

sintering as the temperature is increased from 373 K to 575 K. Neck growth was also observed 

during the first 5 min of pressureless sintering of the Ag paste at 473 K 

 The bonds are formed under a pressure of 5 MPa by solid state sintering of individual Ag 

NPs as well sintering of the Ag NPs on the Cu wire and Cu foil. TEM examination of the 

interface has shown that the wire and the foil were metallurgically bonded by the Ag NP paste. It 

has also shown that both the foil and the wire are nanostructured, which may have enhanced the 

diffusion process during sintering. 

Strength of joints formed with Cu wires of three different diameters (25 µm, 50 µm, and 

250 µm) was examined by shear tests. Joints that were formed by the 25 µm experienced wire 

fracture at all bonding temperatures. The joint formed by the 500 µm wires showed joint fracture 

at all bonding temperatures with an increase in the average shear strength values as the bonding 

temperature is increased. The shear strength of the bonds formed at 473 K with the 250 µm 

showed higher values when tested at 523 K than when tested at RT. 
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4 DETERMINATION OF COMPLETE MELTING AND 

SURFACE PREMELTING POINTS OF Ag NANOPARTICLES 

BY MOLECULAR DYNAMICS SIMULATION 

Complete melting points (Tm) of Ag NPs obtained experimentally have shown scattered 

data in the range of 383 K to 953 K [194-199] while the only published MD simulation was 

performed on very small clusters with 12-14 atoms [200]. Furthermore, the diversity of the 

analytical models found in literature for determining Tm and the different results obtained from 

them certainly makes it difficult to correctly predict Tm of NPs. In this chapter, a previously 

developed linear scaling parallel MD code [165] is used to find Tm and Tsm for individual FCC 

truncated octahedral Ag NPs in size range of 4 nm to 20 nm. It was possible by this code to 

utilize multiple processors simultaneously and hence simulating large sizes of NPs. Tm and Tsm 

are determined based on the potential and kinetic values of the atoms, as well as the atomic plots 

of the NPs. The obtained values of Tm and Tsm are compared to the results obtained by other 

theoretical models. Parts of the research reported in this chapter were published in Journal of 

Physical Chemistry C [201]. 

5.1 Results 

5.1.1 Melting of 18 nm Ag Particle 

Fig. 5.1 (a) shows the relationship between average potential energy (PE) of atoms in the 

NPs versus temperature for an 18 nm particle. It can be clearly seen that the PE curve passed 

through three stages. In the first stage, a gradual increase of the PE was seen between points A 

(292 K) and C (1086 K) as the temperature of the NP increased. The second stage started at point 
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C and ended at point I (1251 K) with a higher rate of increase than the first stage within a shorter 

range of temperatures. The third stage started at point I, at which the slope of the PE curve 

decreases but is still slightly higher than the slope of the first stage. Fig. 5.1 (b) shows the atomic 

arrangement of the NP at different temperatures by cutting a cross section at the centre of the NP 

with a thickness of three atomic layers (0.6 nm), which is enough to identify the crystallographic 

planes across the NP. By relating the PE curve with the cross sectional images of the NP, the 

crystallographic planes were found to be clear through the NP during the first stage of the curve 

indicating a solid phase. Point C is the beginning of the second stage at which amorphous 

regions started to appear on the surface as indicated by arrows. These regions are amorphous 

since the atomic coordinator does not display any long range orders with them. As provided in 

literature [20], an amorphous region is determined as a quasi-liquid phase if its transport 

properties are in between solid and liquid. As further discussed below in the discussion of Fig. 

5.2 and Fig. 5.4, the identification of the liquid and the quasi-liquid phases was based on PE and 

KE plots of the surface layers. These quasi-liquid ponds grew and coalesced as the temperature 

increased to point D (1121 K) at which a nearly full quasi-liquid layer was formed except for 

small regions indicated by arrows.  A contiguous quasi-liquid layer of 1.9 nm thickness was 

formed at point E (1128 K) and reached a thickness of 5 nm as the temperature increased to F 

(1193 K). At this point, the outer 1.8 nm layer converted into liquid while the rest of the 

amorphous layer remained in the quasi-liquid phase. The minimum thickness that can be 

considered as a liquid is 1.8 nm and is equal to about 9 atomic layers, where the thickness of a 

single atomic layer is equal to half of the lattice parameter for FCC material [202]. Both liquid 

and quasi-liquid layers expanded to the core and completed the melting process as the 

temperature is increased toward points G (1222 K), H (1234 K), and I (1251 K), which stands for 



71 

 

the end of the second stage on the PE curve. Since the PE is an average value of all atoms, the 

dramatic increase of the PE values during the second stage is attributed to the continuous 

conversion of solid-like atoms to quasi-liquid like atoms and then to liquid-like atoms. 

Therefore, Tsm and Tm of NPs have been determined at the temperature at which the PE or KE 

dramatically changed its slope.  
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Fig. 5.1 (a) Potential energy (PE) values during heating of 18 nm Ag particle. (b) Atomic arrangement of the 

18 nm Ag particle at different temperatures indicated by letters on the PE curve. Atoms are represented by 

dots. The lines in the atomic plot of point B represent the orientations of the crystallographic planes. Arrows 

on plot C point toward quasi-liquid ponds. Arrows at plot D point toward solid regions at the surface. Each 

color in the atomic plots represent a phase (grey: solid, blue: quasi-liquid, red: liquid) and the dashed arcs 

represent the interfaces between these phases. 
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Fig. 5.2 shows the average PE of surface atoms of the outermost layers of the 18 nm 

particle during heating. These curves showed a similar trend to the average PE of all atoms in 

Fig. 5.2 except for the second stage. The outer 1 nm and 1.8 nm surface layers showed two peaks 

at the melting stage. The first corresponds to the transition of the layer from solid to a quasi-

liquid phase while the second indicates transition to a liquid. The decrease of PE values after 

reaching these peaks was interpreted as due to the conversion of the PE to KE instantaneously 

after phase transition. These two peaks merged into a single kink once the thickness of the quasi-

liquid layer reached 5 nm and the outer 1.8 nm layer converted to liquid, at which the liquid layer 

was formed before the average potential energy was further decreased. 

 



74 

 

Fig. 5 2 Potential energy (PE) values of the outer layer of 18 nm particle with different thicknesses during the 

heating process. The arrows show the temperature at which the layer transits to quasi-liquid phase. The 

vertical line shows the point at which the 1.8 nm liquid layer is formed. 

Fig. 5.3 shows the average kinetic energy (KE) of atoms in each 0.2 nm layer starting 

from the center to the surface of an 18 nm particle at different temperatures during melting. The 

KE values showed constant values across the NP during the solid and the liquid phase at 1021 K 

and 1251 K, respectively. At 1099 K and 1114 K, the KE values started a gradual decrease 

toward the surface due to the increase of the PE values before the first kink in Fig. 5.2. At 1127 

K, the KE values of outer 0.8 nm started to increase and are associated with the formation of 0.8 

nm amorphous layer and a decrease in the PE values after the first kink in Fig. 5.2. As the 

temperature is increased to 1160 K, the KE values increased and kept higher values at the outer 
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layers. The outer layers started to have a constant value at 1193 K indicating the formation the 

liquid layer at the surface and solid phase in the inner layers. The quasi-liquid layer connects the 

solid and the liquid layers with a gradient increase in KE values.  

Fig. 5 3 Average kinetic energy (KE) of atoms in each 0.2 nm layers of 18 nm particles at different 

temperatures. Error bars were eliminated due to their interference with the average value of KE of other 

temperatures. 

Fig. 5.4 shows the borders between different phases during the melting process. Only KE 

values of outer layers that showed stable states in temperature range of 1114 K to 1213 K were 

plotted while the KE values of the inner unstable layers were eliminated from the plot. Kinetic 

energy (KE) values of these unstable layers did not display a minimum (a stable state) prior to 

transition to quasi-liquid phase and therefore they resided in the quasi-liquid region although 
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they were solid. At 1127 K, the KE values of outer layers started to increase and transit to the 

quasi-liquid regions. Although the temperature of the NP was increased by increasing total KE of 

all atoms as shown in equation (3.5), only KE of outer layers increased and the heat was not 

transferred to the inner layers. This can be attributed to free vibration of the surface atoms and 

the larger bond length between atoms at the inner layers [203]. The figure shows that the 

thickness of the quasi-liquid layer increased as the temperature increased to 1160 K. At 1193 K 

(point F in Fig. 5.1), which is the same temperature of the second peak in Fig. 5.2, the quasi- 

liquid layer thickness reached 5 nm and the outer 1.8 nm layer became constant as an indication 

of forming the first liquid layer with critical thickness (to = 1.8 nm).  The 5 nm can thus be 

considered as the minimum thickness of a quasi-liquid layer that allows the outer 1.8 nm layer to 

transit to liquid without having a high interfacial energy with the solid core. The border line 

between the liquid and quasi-liquid phases is specified at the KE value of the 1.8 nm liquid layer. 

The thickness of the liquid layer increased as the temperature increased and completed the 

melting process at 1251 K (point I in Fig. 5.1), which is higher than Tm of the bulk (1234 K). As 

it will be discussed below, slower heating rate would reduce Tm of the 18 nm particle to 1210 K.   
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Fig. 5.4 Average kinetic energy (KE) of atoms in each 0.2 nm layers of 18 nm particles at different 

temperatures. The lines show the borders between different phases. KE values of inner layers at the lower 

temperatures were eliminated. Error bars were also eliminated due to their interference with the average 

value of KE of other temperatures. 

Fig. 5.5 shows the relationship between the thicknesses of the quasi-liquid and the liquid 

layers during the heating process.  In the range of temperatures between 1086 K and 1128 K 

(points C and E in Fig. 5.1), quasi-liquid ponds were formed on the surface. The first contiguous 

quasi-liquid layer was of 1.9 nm thickness and was formed at 1128 K (point E in Fig. 5.1) as 

indicated by the arrow on the figure. The first formed liquid layer was of 1.8 nm thickness and 

was formed at 1193 K (point F in Fig. 5.1) at which the quasi-liquid layer reached 5 nm 

thickness. As shown in the figure, the increase in the thicknesses of the quasi-liquid and liquid 

layers could be fitted by parabolic curves.   
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Fig. 5.5 Thicknesses of quasi-liquid and liquid layers during the heating process of 18 nm particle. The arrow 

points to the first contiguous quasi-liquid layer. The curves show parabolic fit of thicknesses of quasi-liquid 

and liquid layers.  

 

5.1.2 Melting of 6 nm Ag Particle 

As shown in Fig. 5.6 (b), melting of a 6 nm Ag particles started by forming quasi-liquid 

regions on the surface at which moved towards the core. The atomic plots were obtained by 

showing three atomic planes at the center of the NPs at different temperatures.  Unlike the 18 nm 

particle, quasi-liquid and liquid layers did not reach equilibrium with the solid core and 

expanded towards inner atoms to complete melting at one temperature as shown by the PE 

values in Fig. 5.6 (a).  
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Fig. 5.6 (a) Potential energy (PE) values during heating of 6 nm Ag particle. (b) Atomic arrangement of the 6 

nm Ag particle at different temperatures shown by letters on the PE curve. Atoms are represented by dots. 

Each color in the atomic plots represents a phase (gray: solid, blue: quasi-liquid, red: liquid). 
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5.1.3 Melting Kinetics of Ag Nanoparticles 

Fig. 5.7 shows the average PE of the atoms in the NP versus temperature for different 

sizes of Ag NPs. PE curves passed through the three stages explained above in Fig. 5.1 with 

increasing PE values as the NP size decreased. The second stage of the PE curve for 7 nm and 

smaller particles showed a vertical increase of the PE. This means that Tsm and Tm are equal and 

surface premelting did not occur for these NPs. This confirms the previous theoretical studies 

that suggested that surface premelting does not take place if the radius of the NP is smaller than a 

critical radius (rc) (3.62 nm for Ag) [103]. 

 Fig. 5.7  Potential energy (PE) values of different sizes of Ag nanoparticles during the heating process. 
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Fig. 5.8 shows the average KE of atoms in each 0.2 nm layer starting from the center of 

the NP towards the surface at the temperature at which the liquid layer was formed. Horizontal 

lines correspond to the minimum KE of liquid atoms. The thickness of the liquid layer formed on 

the 20 nm particle was 1.8 nm and this was found to apply to other NPs in the size range of 8 nm 

to 18 nm. The thickness of the quasi-liquid layer which allowed the outer 1.8 nm to transit to 

liquid was found to be 5 nm and this applied to the size range of 12 nm to 20 nm and equal to 

radius of the NP for 8 nm to 10 nm particles. Kinetic energy (KE) values of 4 nm and 6 nm 

particles showed a constant value, which is evidence of melting at a single temperature. 
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 Fig. 5.8  Average kinetic energy (KE) of atoms in each 0.2 nm layer for different sizes of nanoparticles at the 

temperature at which the liquid layer forms at the surface. The horizontal lines show the border between 

liquid and quasi-liquid regions at each size. Error bars were eliminated due to their interference with the 

average value of KE of other temperatures. 

As shown in Fig. 5.9, the ratio of quasi-liquid shell thicknesses to the NP radius was 

found to have a linear relationship with temperature during the surface prermelting stage. The 

slope of the relationship moved toward a vertical line within a shorter temperature range as the 

NP size decreased to 8 nm, the minimum size at which the surface premelting occurred. The 

figure shows that the quasi-liquid layers were stable and in equilibrium with the solid core. 

Further increase in temperature broke this equilibrium and the thickness of the quasi-liquid 

layers increased as the temperature of the NP increased. These equilibrium points did not exist 

for particles smaller than 8 nm. Instead, the whole particle melted at a single temperature. 
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 Fig. 5.9  Relationship between the ratio of the quasi-liquid layers thickness to the radius of the nanoparticle 

and temperature. The lines show a linear fit of the data at each nanoparticle size. The dashed line intercepts 

the data at the critical thickness (to = 1.8 nm). 

 

5.1.4 Complete Melting and Surface Premelting Points of Ag Nanoparticles 

Complete melting points (Tm) and surface premelting points (Tsm) obtained in this study 

are compared to the theoretical models in Fig. 5.10. Surface premelting points (Tsm) showed 

values lower than Tm for 8 nm and larger particles and the gap between Tm and Tsm increased as 

the NPs size increased. Fig. 5.10 also shows that surface premelting did not occur for NPs 

smaller than 8 nm. Complete melting point values obtained here are in good agreement with the 

liquid drop model and Shi’s model for NPs smaller than 8 nm and with Hanszen’s model for 8 
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nm, 9 nm, and 10 nm particles. Complete melting points (Tm) of larger NPs started to deviate 

from Hanszen’s model and approached Tm of the bulk.  

 
Fig. 5.10 Complete melting points (Tm) and surface premelting points (Tsm) of different sizes of Ag 

nanoparticles determined by MD simulation and by the other theoretical models. 
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5.1.5 Freezing and Reheating of 4 nm Ag particle 

 Freezing of the 4 nm particle is studied to find possible thermal hysteresis between 

melting and freezing. Fig. 5.11 (a) shows the PE values during the heating process of the original 

FCC truncated octahedral particle followed by cooling and reheating. Atomic arrangements of 

three atomic planes at the center of the NP during the cooling and reheating process are plotted 

in Fig. 5.11 (b). Plot A shows the particle in liquid state at (1698 K), which is the last 

temperature of the first heating cycle of the FCC truncated octahedral particle and the starting 

point of the cooling process. The NP remained in the liquid phase at point B (683 K) and started 

to freeze at point C (663 K) by forming the surface facets of the NP. The freezing process 

occurred at a range of temperatures and ended by forming a polycrystalline configuration at point 

E (470 K). The slope of the PE values decreased during the freezing process due to continuous 

conversion of liquid like atoms to solid like atoms. The polycrystalline configuration remained 

stable at the end of the cooling process at point F (299 K). The PE values of the reheating 

process followed the same path as the cooling values until point D (513 K), at which the NP 

remained in the solid phase. Quasi-liquid regions appeared on the left side of the NP at point H 

(906 K) and completed the melting process at point I (906 K), which is higher than the freezing 

temperature (470 K) and slightly lower than Tm of the FCC truncated octahedral particle (977 K). 

Thermal hysteresis between melting and freezing was also observed in amorphous NPs [204]. 

Unlike melting, freezing of the 4 nm particle has occurred over a temperature range and not at 

one single temperature. 
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 Fig. 5.11  (a) Potential energy (PE) values during heating, cooling, reheating of a 4 nm Ag particle. Arrows 

over the values head toward cooling points while the arrows below the values head toward reheating points. 

(b) Atomic arrangement of the 4 nm Ag particle at different temperatures showed by letters on the PE curve. 

Atoms are represented by dots. Each color in the atomic plots represent a phase (grey: solid, blue: quasi-

liquid, red: liquid). 
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5.1.6 Effect of Heating Rate 

 Results in this chapter are based on the heating rate specified in section 3.2. Fig. 5.12 

shows PE values during heating of the 18 nm particle with a 5 K temperature steps between 825 

K and 1275 K compared to the original heating rate of 10 K temperature steps in the same 

temperature regime. The slower heating rate did not affect the Tsm value but reduces the Tm value 

from 1250 K to 1210 K. Thus, superheating of the 18 nm particle occurred due to the heating rate 

used in this study. For more accurate determination of Tm in future work, slow heating rate 

especially in the region between Tsm and Tm should be applied.  

 

 Fig. 5.12  Potential energy (PE) values during heating of 18 nm Ag particle at two different temperature steps 

in temperature regime of 825 K to 1275 K. 
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5.2 Discussion 

The liquid drop model and Shi’s model have ignored the effect of the formation of a 

liquid shell in their equations and assumed homogeneous melting of the NPs without passing 

through the surface premelting stage. This is the reason behind the agreement between both 

models and results obtained here for NPs that are smaller than 8 nm since surface premelting was 

not observed at those smaller particles. For 8 nm and larger particles, the MD results showed 

higher complete melting points than those expected by both models. Previous experimental 

results of relatively large Pb, Sn, In, and Bi NPs of sizes in range of 6 nm to 20 nm have also 

shown higher complete melting points than the liquid drop model
 
[205] and the reason for this 

was suggested to be the substrate effect on the complete melting point of the NPs [21]. However, 

the current study shows that the formation of the liquid shell and its effect on the heat transfer 

within the NP might be another significant reason behind this difference.  

Hanszen’s model was based on classical laws of thermodynamics and assumed that the 

melting process begins by forming a thin liquid layer on the surface of the NP. The physical 

parameter of the liquid layer and the interfacial energies between this liquid layer and both 

vapour and solid core were introduced in equation (3.13). This is the reason behind the 

agreement between the results obtained here and Hanszen’s model for NPs in size range of 8 nm 

to 10 nm and the disagreement for smaller particles on which a liquid shell does not form prior to 

melting. The critical thickness (to) of the liquid layer is introduced in equation (3.14) and can be 

identified by finding the best fit between Tm obtained by equation (3.14) and by the MD 

simulation. This is the minimum thickness at which the amorphous layer can be considered as 

liquid, thinner layers are considered as quasi-liquid layers [68]. The best fit of Tm determined by 
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MD simulation and by equation (3.14) is at a critical thickness (to = 1.8 nm), which is the same 

critical thickness obtained from KE plots in Fig. 5.8. Previous experimental work identified the 

critical thickness of Ag as 1.01 nm
 
[185] and 2 nm [189]. 

Complete melting points (Tm) of NPs that are larger than 10 nm started to deviate from 

Hanszen’s model and approached Tm of the bulk due to formation of multiple liquid layers 

during the melting stages. This is different than Hanszen’s assumption that suggested that only 

one liquid layer of critical thickness (to) is formed prior to melting and further increase in 

temperature would lead to a complete melting of the NP without passing through other 

equilibrium states. However, the present study agrees with another study that showed that 

surface premelting of Pb occurred at broad range of temperatures and the thickness of the liquid 

layer increased as the temperature increased [206]. 

The only reported relationship between Tsm and the size of the NP was the theoretical 

model developed by Chernyshev [102]. This model defined Tsm as the temperature at which 

liquid ponds started to form on the surface of the NP. Fig. 5.10 showed that Tsm values obtained 

by Chernyshev for Ag NPs of sizes between 8 nm and 20 nm have nearly a constant value of 

1000 K. Tsm obtained by the MD simulation are higher and increased from 1072 K for an 8 nm 

particle to 1144 K for 20 nm particle. Unlike Hanszen’s model, Chernyshev’s model has not 

considered the quasi-liquid state of the surface atoms. 

 The presented MD simulation was performed on single NPs with a free surface and a 

perfect crystal without defects. Lower Tm values obtained experimentally than values calculated 

here can be attributed to various possible reasons [194-199]. Nanoparticles with higher packing 

factors or with polycrystalline structure should have a lower Tm than an individual single crystal 

NP. Ag NPs embedded in silica matrix had Tm values in range of 423 K to 623 K in the size 
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range of 8 nm to 30 nm [194].
 
Another study showed Tm values of about 700 K for Ag NPs in 

range of 4 nm to 7 nm and this was explained by uncontrolled oxidation of the NPs [195].
 
Both 

effects of embedding matrix and oxidation should increase Tm of the NP due the reduction of 

surface energy. However, packing factors or the polycrystalline structure may have had a 

stronger effect and caused a decreased Tm. Other studies also showed very low Tm values of (383 

K) for Ag NPs of sizes in range of 8 nm to 25 nm [196-197] and 385 K to 466 K for sizes in 

range of 3.5 nm to 6.5 nm [198].
 
It is notable that the onset temperature of thermal sintering is 

not the complete melting point since solid state diffusion will also occur [38].
 
The closest Tm 

values to those obtained here was found for one individual NP studied under TEM with a heating 

stage and showed values in range of 773 K to 953 K for NPs of sizes in range of 5 nm to 50 nm 

[199]. In that work, the crystalline structure of the examined particles was not determined.  A NP 

that is surrounded by other NPs might also have much lower Tsm value since surface atoms might 

detach from the NPs and melt during surface diffusion between the NPs [207].A previous 

experimental work showed local surface premelting of 40 nm Ag NPs at 573 K [152]. The 

reduction of Tsm in this work might also be due to the NP crystalline structure and packing factor.  

 The many-body EAM used here is the first alternative to the traditional pair-wise 

potentials, which are usually fitted based on the context of bulk properties within ambient 

conditions. Thus, transferability of pair-wise potentials might be problematic for systems 

containing surfaces and interfaces. This problem is not seen in EAM potentials that account for 

the energy of an embedded atom in a homogeneous electron gas. Nevertheless, any approach in 

computer simulation will not reproduce experimental findings unless same conditions are 

mimicked. Though to this fact, it is expected to mimic a realistic trend in the studied system for 
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any thermodynamics and/or structural properties with a well-parameterized many-body potential 

[208].
 

5.3 Summary 

Melting kinetics of Ag NPs in size range of 4 nm to 20 nm was studied by MD 

simulation. The determination of complete melting and surface premelting points of the Ag NPs 

was based on the atomic plots and average PE and KE values. Solid phase showed a crystalline 

atomic structure while the liquid and the quasi-liquid showed amorphous structure. The 

transition between solid, quasi-liquid, and liquid phases could be observed by the change in the 

slopes of average PE and KE values. 

The current results showed that 8 nm and smaller Ag particles melted homogeneously 

and Tm values were found to be in good agreement with Shi’s model and the liquid drop model. 

For 8 nm to 10 nm particles, the MD  results showed good agreement with Hanszen’s model, at 

which the melting starts by forming a stable liquid layer of critical thickness (  ) that expanded 

to the core as the temperature is increased. Complete melting points of larger NPs are found to 

deviate from Hanszen’s model due to the formation of a thicker stable liquid layer below Tm. It 

was also found that the ratio of the thickness of the quasi-liquid layer to the radius of the NP 

linearly increased as the temperature is increased to Tm. The reasons of agreement/disagreement 

between the results obtained here and the other theoretical models were justified. The minimum 

thickness at which an Ag amorphous layer can be considering as liquid was determined as 1.8 

nm. 
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6 STABILITY OF FCC TRUNCATED OCTAHEDRAL Ag 

NANOPARTICLES BY MOLECUAR DYNAMICS SIMULATION 

Based on the literature review provided in section 2.3, the stability of different phases of 

metallic NPs and the transitions between them are still not well understood. In this chapter, the 

stability of different sizes of FCC truncated Ag NPs as well as the solid phases obtained by 

freezing liquid droplets are studied toward drawing a phase map of Ag NPs based on the 

temperature and the size.  

6.1 Stability of 1 nm (65 Atoms) FCC Truncated Octahedral Ag Particle 

Fig. 6.1 shows PE values and atomic plots during heating and cooling of 1 nm (65 

Atoms) Ag particle. Unlike larger particles, the PE values during heating below Tm fluctuated 

between lower and higher values. Plot A in Fig. 6.1 (b) shows the atomic plots of the initial 

truncated octahedral configuration. As the NP is relaxed at RT, the NPs transformed into an 

amorphous configuration at point B. Based on the minimum liquid thickness of Ag determined in 

chapter 5 (1.8 nm), it is reasonable to deduce that this amorphous NP is in quasi-liquid phase. As 

the temperature of the NP is increased to point C, the average PE value dropped and the atomic 

plot showed a solid icosahedral configuration. The PE values keep fluctuating as the temperature 

is increased due to the transitions between the icosahedral solid and the quasi-liquid phases. The 

atomic plots of points C to I shows that the icosahedral configuration and the quasi-liquid phase 

corresponds to the lower and the higher PE values, respectively. The transition between these 

two phases during heating has been also observed for Ag NP with 13 to 178 atoms and was 

named as dynamic coexistence melting (DCM) or biastability [209]. The NP stick to the quasi-

liquid phase as the temperature of the NP is increased beyond point I. During the cooling cycle, 
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the NP froze into the icosahedral configuration at point M and preserves this structure for the 

whole cycle. The PE values showed a drop as the quasi-liquid NP freezes and showed stable 

values as the temperature of the NP is decreased toward point N. As discussed in section 5.1.5 

for the 4 nm particle, the difference between melting and freezing points indicates thermal 

hysteresis. 
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Fig. 6.1 (a) Potential energy (PE) values during heating and cooling cycles of 1 nm (65 Atoms) Ag particle. 

The vertical line shows the border between DCM and the quasi-liquid phase (b) Atomic arrangement of the 

particle at different temperatures shown by letters on the PE curve. Atoms are represented by dots. Each 

color in the atomic plots represents a phase (gray: solid, blue: quasi-liquid). 
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6.2 Stability of 1.2 nm (138 Atoms) FCC Truncated Octahedral Ag Particle 

Fig. 6.2 shows average PE values and atomic plots during the heating and the cooling 

cycles of 1.2 nm Ag particle. The figure shows two major transitions during the heating cycle. 

The first is solid to solid phase transition from the truncated octahedral configuration at point B 

to icosahedral configuration at point C. The second is melting of the icosahedral configuration at 

point D to the quasi-liquid phase at point E. The solid to solid phase transition indicates that the 

truncated octahedral phase is not stable far below Tm of the particle. The PE values dropped 

during this transition, which suggests that the transition were mainly driven by minimization of 

the total PE of the particle. Similar to other sizes of Ag NPs, the melting process shown by the 

transition from the icosahedral configuration at point D to the quasi-liquid state at point E has 

significantly increased the average PE values.  

During the cooling cycle, the average PE value has dropped due to the freezing of the NP 

into the icosahedral shape shown in the atomic plot. The icosahedral phase remained stable as 

cooling continues to RT and showed lower PE values than the truncated octahedral phase at the 

beginning of the heating cycle. Therefore, it can be concluded that the icosahedral phase is 

energetically favorable over the truncated octahedral phase. Thermal hysteresis between melting 

and freezing is also observed here. 
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Fig. 6.2 (a) Potential energy (PE) values during heating and cooling cycles of 1.6 nm (138 Atoms) Ag particle. 

(b) Atomic arrangement of the particle at different temperatures shown by letters on the PE curve. Atoms are 

represented by dots. Each color in the atomic plots represents a phase (gray: solid, blue: quasi-liquid). 
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6.3 Stability of 1.8 nm (263 Atoms) and Larger FCC Truncated Octahedral 

Ag Particles 

Fig. 6.3 shows average PE values and atomic plots during the heating and the cooling 

cycles of 1.8 nm Ag particle. The initial truncated octahedral remained stable during the heating 

cycle below Tm at point C. Since the diameter of the NP is equal to the minimum layer thickness 

determined in chapter 5 for a liquid Ag, the amorphous atomic structure at point E can be 

identified as liquid. During the cooling cycle, the PE values dropped at point F and the 

nanodroplet froze into an icosahedral configuration with a remarkable drop in the PE values. The 

icosahedral configuration remained stable as the temperature of the NP is decreased to point G at 

RT. Thermal hysteresis between melting and freezing is also observed here. 
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Fig. 6.3 (a) Potential energy (PE) values during heating and freezing of 1.8 nm (263 Atoms) Ag particle. (b) 

Atomic arrangement of the particle at different temperatures shown by letters on the PE curve. Atoms are 

represented by dots. Each color in the atomic plots represents a phase (gray: solid, blue: quasi-liquid, red: 

liquid). 
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Similar to these small particles, the solid state configuration obtained by freezing 2.3 nm 

is icosahedra. As previously shown in Fig. 2.12, Baletto et al. has previously shown that Ag NPs 

in this size range also froze into an icosahedral structure [106-112]. Similar to 1.8 nm Ag 

particle, the truncated octahedral configuration of all larger particles remained stable during the 

heating cycle below Tm. Therefore, it can be concluded that FCC truncated octahedral 

configuration is stable below Tm for 1.8 nm and larger particles. 

6.4 Average Potential Energy Values during Heating of 1 nm to 4 nm Ag 

Particles 

 Fig. 6.4 shows the average PE values during the heating cycles of all simulated NPs in 

this chapter and of the 4 nm particle obtained in chapter 5. PE values of all NPs except for the 1 

and 1.2 nm particles follows a similar trend as the larger NPs presented in chapter 5, which is 

characterized by a constant rate of increase during heating at the solid state and liquid state and a 

jump in PE values in-between them. The 1 nm showed fluctuating values during heating within 

DCM region determined in Fig. 6.1. The 1.2 nm particle showed a reduction in the PE values 

during the heating in the solid state region due to the solid to solid phase transition from the 

truncated octahedral configuration to the icosahedral configuration.  
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Fig. 6.4  Potential energy (PE) values of different sizes of Ag nanoparticles during the heating process. “A” 

stands for Atoms 

 

6.5 Summary 

 FCC truncated octahedral Ag NPs are stable below Tm for 1.8 nm and larger particles but 

not for 1 and 1.2 nm particles. During heating below Tm, the 1 nm particle fluctuated between a 

quasi-liquid phase and an icosahedral solid phase as an indication of dynamic coexsistance 

melting (DCM). The 1.2 nm was stable at RT but transformed into an icosahedral at a 

temperature much lower than Tm of the particle. Droplets obtained by melting of 1 nm to 2.3 nm 

truncated octahedral phase froze into an icosahedral phase. 
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7 MOLECULAR DYNAMICS SIMULATION OF SINTERING 

AND SURFACE PREMELTING OF Ag NANOPARTICLES 

Traditionally, sintering is characterised by three stages. The first is neck formation 

between two particles followed by a rapid increase in the neck radius. The second is gradual 

increase in the neck radius and the third is densification of the structure [38]. However, the 

previously developed sintering theories were based on sintering of microparticles and may not 

be valid for NPs. Thus, sintering process of Ag NPs in the size range of 4 nm to 20 nm was 

simulated in this chapter using a previously developed linear scaling parallel MD code [165]. It 

was possible by this code to use multiple processers simultaneously and hence to simulate 

sintering of relatively large NPs.  

The sintering kinetics of the nanoparticles was measured based on the growth of neck 

radius to particles radius ratio (x/r) and shrinkage. This chapter reports the sintering kinetics of 

two particles in size range of 4 nm to 20 nm and sintering of three and four particles of 4 nm 

diameter. Sintering of three and four NPs was performed to study the effect of pore geometry on 

the densification process. The effect of the surface premelting on the sintering process is 

thoroughly discussed. Parts of this chapter was published in Materials Transactions special 

issue on Nanojoining and Microjoining [210] 

7.1 Results: 

7.1.1 Sintering of Two 4 nm Ag Particles 

Fig. 7.1 shows average potential energy (PE) values and atomic plots during heating of 

two 4 nm particles. It can be clearly seen that the PE curve in Fig. 7.1(a) passed through the same 
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three stages as for other single particles discussed in the previous two chapters. A gradual 

increase in the average PE values during the first stage was followed a by higher rate of increase 

during the second stage. During the third stage, the rate of increase in the PE values significantly 

decreased but was still slightly higher than the first stage. The first, the second, and the third 

stage are associated with solid phase, melting, and liquid phase, respectively. The atomic 

arrangements during the sintering process are shown in Fig. 7.1 (b) and are of three (111) atomic 

planes at the center of the sintered structure. Crystallographic directions of [ ̅0 ] and [110] are 

represented by blue and red arrows, respectively. Plot A in Fig. 7.1(b) shows the initial 

configuration at which the two particles were separated by 0.3 nm distance and miss-oriented by 

30
o
. Once heating was started at point B, particle 2 rotated in anti-clockwise direction and 

formed a neck with particle 1. The rotation of particle 2 was to minimize the interfacial energy at 

the grain boundary (G.B.) formed at the neck between the two particles (grains). The neck radius 

increased as heating continued to point C, which resulted in formation of an edge dislocation 

(D.L.) inside particle 2 that climbed to the surface at point E. Dislocation climb during sintering 

has been discussed in previous studies and was attributed to either vacancy annihilation or 

sintering stress exceeding the yield stress at the sintering temperature [38]. At point E, a new 

grain was formed at the neck region that has slightly different [ ̅0 ] direction than the [ ̅0 ] 

directions inside the two particles. It is reasonable to deduce that the shear stress at the neck 

region has twisted this grain and formed a twin boundary (T.B.). The mirror crystallographic 

image on both sides of the twin boundary is a special characteristic of twin boundaries [211]. 

This process relaxed the structure and slightly reduced the slope of the PE curve as shown in Fig. 

7.1(a). As the temperature is increased to point G, average PE values increased rapidly as an 

indication of initiation of surface premelting (S.M.) shown by amorphous regions in the atomic 
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plot. The amorphous regions first appeared at highly curved regions of the surface, which 

confirms the curvature effect on melting of NPs [101]. Rapid shrinkage only occurred during the 

melting process at the second stage of the PE curve. The two particles merged into one particle at 

point I, which is the complete melting point of the sintered structure. The slight change in the 

shape of the sintered structure between point A and C was due to the rigid rotation of the 

structure, which was also observed in the simulation domain during sintering of Au NPs [147]. 
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Fig. 7.1 (a) Average PE values of all atoms in the sintered structure during the heating process of two 4 nm 

particles. (b) Atomic plots of (111) plane at the initial configuration of the two 4 nm Ag NPs at point A and 

during the heating process for other plots. Each dot in the atomic plots represents an atom. Blue and red 

arrows follow the crystallographic directions of [ ̅0 ] and [110], respectively. Black arrow heads point 

toward regions at which grain boundaries (G.B.), twin boundaries (T.W.), dislocations (D.L.), and surface 

premelting (S.M.) are located. 
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7.1.2 Sintering Kinetics of Two Ag Nanoparticles 

Sintering of two 4 nm and larger particles was divided into three main stages as shown in 

Fig. 7.2. The first stage is shown in Fig. 7.2 (a) and was formation of a neck between the two 

NPs followed by a rapid increase in neck radius to particle radius ratio (x/r) at 50 K for 20 nm 

particles and at 10 K for smaller particles. According to the author’s best knowledge, sintering of 

NPs has not previously been experimentally examined below RT although it could be performed 

on TEM stage cooled by liquid Nitrogen. However, sintering of different metallic particles below 

RT has been observed in other MD simulations shown in Fig. 2.18 and Fig. 2.20 [156-157]. The 

second stage of sintering showed gradual increase in the neck radius to particle radius ratio (x/r) 

as the temperature of the sintered structure reached its own surface premelting point. The 

increase of this ratio was linearly fitted as shown in Fig. 7.2 (b). Fig. 7.2 (c) shows that sintering 

rates of two 4 nm particles and two 20 nm particles obtained by the MD simulation were higher 

than these obtained by theoretical models based on surface diffusion, grain boundary diffusion, 

and lattice diffusion. This is because the sintering process appeared to be driven by other 

mechanisms including mechanical rotation and dislocation climbing. Fig. 7.2 (d) shows the 

shrinkage rate of the sintered structure during the heating process. The shrinkage rate shows a 

small fixed value during the second stage of sintering and a rapid increase as the temperature 

reached the surface premelting temperature of the sintered structure. The rapid shrinkage 

between surface premelting and complete melting points of the sintered structure can be 

characterized as the third stage of sintering. The temperature regime in which the rapid shrinkage 

and melting occurred increased as the size of the NPs increased. This agrees with the results in 

chapter 5 that suggested that the temperature regime at which melting of one single NP occurs 

increases as the size of the NP increases.  
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Fig. 7.2  (a) Neck radius to particle radius  ratio (x/r) during the first stage of sintering of different sizes of Ag 

NPs. (b) Neck radius to particle radius ratio (x/r) during heating below surface premelting temperature 

(second stage of sintering). The lines show linear fit of the obtained data. (c) Sintering data during the second 

stage obtained by MD simulation (sim) and by theoretical models based on surface diffusion (surf-th), grain 

boundary (gb-th) diffusion, and lattice diffusion (l-th). (d) Shrinkage rate during heating of NPs (third stage 

of sintering).   

 

7.1.3 Sintering of Three 4 nm Ag Particles 

Fig. 7.3 shows average PE values and atomic plots of three 4 nm particles during the 

heating process. The initial configuration of (100) plane at the center of the particles is shown at 

plot A with blue and red lines following [001] and [010] directions, respectively. The three NPs 

were separated by about 0.3 nm with particle 1 rotated in anti-clockwise direction by 30
o
. As 
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heating of the NPs was started at point B, the three particles joined each other with a slight 

clockwise rotation of particle 1 to reduce the interfacial energy with the other two particles. 

Further heating to point C led to further rotation of particle 1, densification, and formation of a 

grain boundary at the neck region between particle 1 and particle 3 and a twin boundary between 

these two particles and particle number 2. The reduction of the surface area and the formation of 

the twin boundary have relaxed the structure and dropped the average PE values. Further 

increase in temperature to point D led to diffusion between particle 1 and particle 3, which 

subsequently merged them into one single grain. At point F, amorphous regions started to appear 

on highly curved regions of the surface as an indication of surface premelting, which led to 

shrinkage of the structure as heating continued up to the complete melting point of the structure 

at point I. Plots F, G, and H showed that the twin boundary remained stable during the surface 

premelting.  
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Fig. 7.3  (a) Average PE values of all atoms in the sintered structure of three 4 nm particles during the 

heating process. (b) Atomic plots of (100) plane at the initial configuration of the three 4 nm Ag NPs at point 

A and during the heating process for other plots. Each dot in the atomic plots represents an atom.  Blue and 

red arrows follow the crystallographic directions of [001] and [010], respectively. Black arrow heads point 

toward grain boundaries (G.B.), twin boundaries (T.W.), and surface premelting (S.M.) regions. 
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7.1.4 Sintering of Four 4 nm Ag Particles 

Fig. 7.4 shows average PE values and atomic plots of four 4 nm particles during the 

heating process.  The initial configuration of (100) plane at the center of the particles is shown in 

plot A with blue and red arrows following [001] and [010] directions, respectively. The 

separating distance between the particles was about 0.3 nm. The four NPs joined each other and 

formed necks between them as heating started at point B. Further heating toward point C 

increased the neck radius, which subsequently caused formation of an edge dislocation (D.L.) at 

particle 3. Densification occurred at point D, at which the dislocation climbed toward the surface 

of the particle, possibly driven by either sintering stress or vacancy annihilation. At point E, 

another dislocation was formed at particle 1 that climbed to the surface of the particle at point F, 

at which a twin boundary was formed within particle 1 and decreased the slope of the PE curve. 

The twin boundary extended to particle 3 as the temperature of the structure was increased to 

point G, which further relaxed the structure and decreased the PE values. Similar to the sintering 

process of two particles in Fig. 7.1, the twin boundary was also formed and showed the 

crystallographic mirror on both sides of it. Melting and subsequent shrinkage of the sintered 

structure started at point H at which amorphous regions started to appear on the highly curved 

regions of the surface. These amorphous regions extended toward the core of the structure to 

complete the melting process at point I. Similar to the case of sintering of three particles in Fig. 

7.3, the twin boundary remained stable during and prior to the melting process. 
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Fig. 7.4 (a) Average PE values of all atoms in the sintered structure during the heating process of four 

particles of 4 nm diameter. (b) Atomic plots of (100) plane at the initial configuration of the four 4 nm Ag NPs 

at point A and during the heating process for other plots. Each dot in the atomic plots represents an atom.  

Blue and red arrows follow the crystallographic directions of [001] and [010], respectively. Arrow heads 

toward regions at which grain boundaries (G.B.), dislocations (D.L.), twin boundaries (T.W.), and surface 

premelting (S.M.) are located.  
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7.2 Discussion 

Sintering of three and four NPs showed a similar general trend and stages to sintering of 

two NPs. They started by forming grain boundaries at the neck region followed by neck growth, 

which occurred by different mechanisms such as mechanical rotation and dislocations climb. The 

final stage started at surface premelting temperature and caused the rapid shrinkage of the 

sintered structure.  

Pore geometry was found to have a great effect on the densification process of NPs. The 

three particles were densified at about 100 K while densification of four particles occurred at 

about 775 K. Both were driven by mechanical rotation and dislocation climb. As shown in Fig. 

2.19, seven 2.4 nm Cu cylinders in closed pack configuration were densified at 300 K [156]. The 

other studies shown in Fig 2.22 and Fig. 2.23 has confirmed densification of two Ag NPs on a 

Au substrate at 400 K [159], and at 523 K [47]. These temperatures are within the range of 

densification temperatures obtained here.  

The sintering kinetics obtained here are different than previous sintering theories in two 

respects [38,212]. First, densification was not characterized as the third and last stage of 

sintering. Instead, it occurred during the second stage, which was characterized by gradual 

increase of the neck radius to NP radius ratio. Also, the temperature at which densification 

occurs was strongly dependent on the pore geometry. Second, the third stage was characterized 

as liquid state sintering driven by surface premelting of the structure. 
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7.3 Summary 

 Sintering of two Ag nanoparticles started at 50 K for the 20 nm particles and at 10 K for 

the smaller particles and has passed through three stages. The first was rapid increase in the neck 

radius to NP radius ratio (x/r). The second was a gradual linear increase of (x/r) as the 

temperature of the sintered structure is increased to Tsm. The third stage was rapid shrinkage of 

the sintered structure driven by surface premelting.  

 The sintering rates showed higher values than values obtained by sintering models of 

microparticle. It appears that the sintering process of the simulated NPs was driven by 

mechanical rotation and dislocations climb in addition to possible diffusion mechanisms. The 

mechanical rotation occurred at the very beginning of the sintering process and has reduced the 

interfacial energy between the particles and hence reduces the average PE values of the sintered 

structure. The formation of the twin boundaries during the sintering process has also reduced the 

PE values of the sintered structure. 

 Sintering of three and four 4 nm Ag particles has showed similar sintering mechanisms 

found in two NPs sintering. Based on the pore geometry, densification of 4 nm particles has 

occurred during the first stage at 100 K and during the second stage at 775 K for three particles. 
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8 CONCLUSIONS AND OUTLOOK 

This chapter reports the conclusions and outlook for future research that may complement 

the studies presented here. 

8.1 Conclusions 

The conclusions are grouped in accordance to the research objectives in section 1.2 

8.1.1 Ag Nanoparticle Paste for Cu Bonding 

1 Cu wire and Cu foil were successfully bonded together by solid state sintering of Ag NP 

paste at low temperatures down to 433 K.  

2 The Ag NP paste was fabricated by increasing the concentration of 0.001 vol% Ag NP 

sol to 0.1 vol% through centrifugation. Silver nitrate (AgNO3) was reduced by sodium citrate 

dihydrate (Na3C6H5O7.2H2O) to fabricate the 0.001 vol% sol. The Ag NPs are coated with a 

citrate organic shell that decomposes at 433 K and promotes bonding with the Cu.  

3 Under shear tests, the bonds that were formed at 433 K and 523 K had enough strength to 

cause wire fracture for 50 µm and 250 µm wires, respectively. Shear tests of 500 µm wire 

showed that the strength of the bond increased as the bonding temperatures increased due to 

enhanced sinterability of the Ag NPs at higher temperatures. Bonds that are formed by sintering 

of Ag NPs were proved to withstand higher temperatures than the bonding temperatures. 

4 The microstructure analysis of the cross sectional area of the joint confirmed the metallic 

bond between the Ag NPs and the Cu.  
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8.1.2 Melting of Ag Nanoparticles 

1 Complete melting and surface premelting temperatures of 4 nm to 20 nm FCC truncated 

octahedral Ag NPs were determined by MD simulation based on EAM. The applied simulation 

could predict Tm and Tsm for a larger size range of NPs than the previous theoretical models. 

Hanszen’s model was found to be valid for 8 nm to 10 nm particles, while Shi’s model and liquid 

drop model were found to be able to predict the complete melting point of smaller NPs.  

2 Unlike previous surface premelting studies that suggested that surface premelting and 

complete melting occur at one single temperature, melting of NPs in the size range of 8 nm to 20 

nm occurred at a temperature range and started by forming quasi-liquid ponds on the surface of 

the NP at a surface premelting temperature (Tsm). As temperature increased, those quasi-liquid 

ponds grew and formed a contiguous quasi-liquid layer. 

3 As a general rule, the ratio of the quasi-liquid layer thickness to the NP radius showed a 

linear relationship with temperature. A liquid layer of a critical thickness (to=1.8 nm) was formed 

once the whole particle had transitioned to the quasi-liquid phase for NPs in size range of 8 nm 

to 10 nm and once the quasi-liquid layer reached a thickness of 5 nm for larger particles. The 

liquid layer expanded to complete the melting of the NP at its complete melting temperature 

(Tm).  

4 Ag NPs smaller than 8 nm melted at a single temperature (Tm) without passing through 

the surface premelting stage.  

5 Complete melting points (Tm) of Ag NPs in size range of 12 nm to 20 nm deviated from 

Hanszen’s model and approached Tm of the bulk. 
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8.1.3 Stability of Truncated Octahedral Ag Nanoparticles 

1 The 1 nm Ag particle fluctuated between icosahedral and quasi-liquid phases below Tm as 

an indication of DCM.  

2 Heating of 1.2 nm showed solid to solid phase transition from the initial truncated 

octahedral to icosahedral configuration far below Tm.  

3 The smallest Ag NP at which the truncated octahedral is stable below Tm is 1.8 nm. 

4  Ag NPs in size range of 1 nm to 2.3 nm froze into an icosahedral configuration, which is 

the energetically favorable structure based on PE values.  

5 Thermal hysteresis between melting and freezing was observed during heating and 

cooling cycles of all sizes of NPs. 

 

8.1.4 Sintering of Ag Nanoparticles 

1 The results of MD simulation of sintering behavior of Ag NPs in size range of 4 nm to 20 

nm showed that sintering occurred in three main stages and showed higher sintering rates than 

those predicted by theoretical models of sintering of microparticles. The first stage was neck 

formation and rapid growth of the neck radius to particle radius ratio (x/r) in temperature regime 

of 10 K to 50 K for all sizes of NPs. Second stage was characterized by gradual linear increase of 

the neck radius to particle radius ratio (x/r) as the temperature is increased to the surface 

premelting temperature of the sintered structure. Rapid shrinkage of the sintered structure 

occurred during the third stage and was initiated at the surface premelting temperature and was 

driven by further melting of the surface layer toward the core of the sintered structure. 
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2 Edge dislocations and a twin boundary were formed within the sintered structure during 

the second stage of sintering. The formation of a twin boundary relaxed the structure and 

decreased the slope of the PE curve during the heating process.  

3 Initial packing configuration of the NPs has a significant effect on the densification rate 

of the sintered NPs. 

8.2 Outlook 

Research completed in this thesis has opened new areas worth considering in future 

studies on different metallic NPs (ex: Ag, Au, Cu, Pd, etc…). The following are research ideas 

for those who would like to further investigate the work that I started in this thesis. 

1 Chapter 6 reported the initial step towards drawing a phase map of Ag NPs at different 

sizes and temperatures. This study has only initiated the heating process on FCC truncated 

octahedral configuration. To complete this work, heating should be applied other structures such 

as icosahedra and decahedra. The transitions between different solid phases could be monitored 

to further understand why and how they occur. 

2 Fig. 5.11 has showed that Tm of a polycrystalline 4 nm Ag particle is slightly less than Tm 

of the 4 nm FCC truncated octahedral particle. It is worth studying melting of different solid 

structures of NPs such as the icosahedral and decahedral structures, and NPs with defects. These 

studies may benefit the ongoing research on melting of metallic NPs 

3 Sintering studies performed here has not studied the effect of the initial miss-orientation 

angle between the NPs on the sintering process. There might be a maximum angle for each size 

of NPs at which mechanical rotation will not occur. The effect of the initial miss-orientation 
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angle on the formation of twin boundaries is also worth looking at for further understanding of 

the fundamentals of NPs sintering. 

4 Based on the author best knowledge, the mechanism of sintering of Ag NPs on Cu 

substrates has not been previously studied.  This work is worth considering for further 

investigation of how Ag NP paste sinter on Cu substrates during the bonding process discussed 

in Chapter 4. 
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