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Abstract 

Introduction: The measurement of tear film stability/regularity is very critical in the 

diagnosis of dry eye. The tear breakup time, which is used as a diagnostic tool in diagnosing 

dry eye, is very subjective in nature and variations among individual clinicians exists. The 

exact mechanism of the tear breakup is also unclear due to the involvement of so many other 

factors other than the tear film itself. As the prevalence of dry eye is increasing, the need for 

an objective technique which can be used universally to differentiate between dry eye and 

normal values increases. Studies have shown that aberrations can be used as an objective 

technique in diagnosing dry eye, as there is a direct involvement of the tear film in the optics 

of the eye. However, very few studies have studied the dynamic nature of the anterior surface 

using aberrations and suggested using dynamic surface aberrations as an objective measure of 

surface quality. Hence, a series of studies were conducted to understand the aberrations 

produced by the anterior surface of the eye (tear film and corneal surface) and to measure 

objectively the anterior surface quality using surface aberrometry.  

The objectives of each study chapter are as follows: 

Chapter 3 i): To obtain the noise associated with the instrument using a non-dynamic 

measuring surface, and ii) to design appropriate acquisition settings for the measurements 

with ocular surface.  

Chapter 4: To determine і) the spectral characteristics of the Placido disc light sources of two 

corneal analysers, іі) the thermal characteristic for a variety of inanimate objects, human 

ocular surface and the adnexa in the presence of Placido disc light source at normal working 
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distance, and ііі) to compare the ocular surface aberrations obtained using both the corneal 

analysers 

Chapter 5: To determine i) the optimal method for acquisition with respect to normal 

physiological processes, by examining the blink regimen and head position that elicits the 

most consistent response over the largest region on repeated measurement; and iі) the largest 

region selected for analysis by investigating the effect on the individual and summary 

aberration metrics of the inclusion of non-measurement areas (i.e. where the Placido disc 

cannot be projected onto the cornea or contact lens). The proportion of non-measurement area 

that elicits a significantly different result will be determined.  

Chapter 6: To evaluate і) a new method of analyzing dynamic ocular surface aberrations 

using segmented liner regression, and іі) the inter-ocular characteristics of the dynamic ocular 

surface aberrations using the segmented linear regression.  

Methods: 

Chapter 3: The characteristics of the surface aberrometer and the noise associated with the 

measurements of surface aberrations were evaluated using a non-dynamic surface (model 

eye). Measurements were obtained in different frame rates and focus positions to evaluate the 

optimal acquisition technique. At each focus position, a set of three repeated measurements 

were obtained to analyse the repeatability of the measurements obtained using a surface 

aberrometer. 

Chapter 4: The spectral characteristics of the Placido disc light source were obtained by using 

a PR650 SpectraScan photometer and the thermal characteristics of the objects were obtained 
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using THI-500 non-contact infrared thermometer. The surface aberration measurements were 

compared between the corneal analysers. The spectral measures were obtained from the light 

sources, whereas the thermal measures were obtained from three different surfaces and 

surface of the eye and adnexa of ten participants. The dynamic anterior surface aberrations 

were obtained after obtaining the thermal measurements from the surface of the eye.  

Chapter 5: Twelve participants were enrolled by screening twenty participants. Participants 

were screened with their habitual lenses for contact lens wettability and non-invasive tear 

breakup time (NITBUT) without contact lenses. The participants were enrolled according to 

the inclusion and exclusion criteria and categorized into normal and dry eye group for study 

visits. The measurements of NITBUT and surface aberrations were obtained with and without 

contact lenses, and study lens wettability were also obtained in two visits on consecutive days. 

The surface aberration measurements were obtained in natural and forced blinking condition 

and in two different head positions. All the measurements were randomized between eye and 

between instruments. 

Chapter 6: 

Seventeen non- symptomatic and non- contact lens participants were recruited in this study. 

NITBUT and dynamic anterior surface aberration measurements were obtained. The order of 

the measurements was randomized between the eyes. Two open intervals of at least 10 sec 

and a maximum of 15 sec were used in the analysis of segmented fit.  The dynamic vertical 

prism coefficients and higher order aberrations were used for the analysis. 
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Results: 

Chapter 3: 

i. Data acquisition at an inter-frame interval of 0.25s gave the least number of dropped 

frames across focus positions, therefore this is the preferred frame rate for data 

acquisition.  

ii. Data obtained in the initial ~15s reflects the focusing procedure and needs to be manually 

removed prior to analysis of tear dynamics.  

iii. Even in the optimal focus position there were significant (small) differences in the 

distributions between repeated measures. For this reason repeated samples have to be 

obtained where possible. 

iv. The green and red focus positions showed the most consistency within repeated 

measurements. The variability of the measurements was also more similar between the red 

and green focus positions than the blue focus positions, both at the extreme positions of 

defocus and with incremental defocus away from the optimal focus position. When 

obtaining the dynamic sampling of human ocular surface measurements, the optimal 

position of focus should be obtained at the blink such that as the tear film dissipates 

between blinks the measurements are obtained in the (relatively) red focus position.   

Chapter 4: 

i. CA200 is the preferred device because of the consistent luminance. 
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ii. Although aberrations were not significantly different between devices, the HOA RMS 

were higher with the CA200 and, combined with different luminance and possible tear 

response, indicates the devices are not interchangeable. 

In both instruments, there was no indication that there was a thermal response induced by the 

power of the light source. Therefore, this aspect of the source does not likely contribute to any 

difference in the aberrations measured by the two devices 

Chapter 5: 

i. Obtain data in the straight-ahead position, as there is no significant increase in target size 

with head turn. 

ii. With the CA100F, the forced blink paradigm is preferred as this enables blink dynamics to 

be examined. With the CA200F, either forced or natural blink paradigms are interpretable 

for tear dynamics.  

iii. Differentiation between dry eye and normal groups was best determined with the slope of 

the RMS aberrations within a blink.  

iv. Differentiation between performance with and without a contact lens in the dry eye and 

normal groups was best determined by analysing the width of the confidence interval of 

the moving average.  

Chapter 6: 

i. The location breakpoints one and two are significantly different between eye, open eye 

interval and order of the measurements for both vertical prism and HOA RMS values. 
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ii. The highest positive slope for the HOA RMS was, on average, higher in the second eye 

measured (p= 0.0407) and tended to occur later after the blink (p= 0.0676). 

iii. The location of breakpoint 2 is not significantly different from the NITBUT values 

(p>0.05), even though the correlation was found to be low and not significant. 

iv. The average HOA RMS for segmented fit parameter intervals of vertical prism was found 

to be higher in the second open eye interval compared to first open eye interval. 

Conclusion: 

From the results of each chapter, it was observed that choosing the blink paradigm is very 

important to obtain and analyse the dynamic anterior surface aberrations. Choosing a forced 

blink paradigm (chapter 5) was showed to be useful when the information regarding blink 

location were not available. The repeatability of the measurements using a non-dynamic 

surface (chapter 3) shows that the measurements of surface aberrations are repeatable and it is 

important to choose a criterion closer to the natural tear film dynamics to obtain more 

repeatable measurements of anterior surface aberrations (chapter 4, 5 and 6). It also shows 

that the three phased segmented linear regression techniques can be used to analyse the 

anterior surface aberrations. The segmented linear regression technique was able to 

differentiate different stages of the tear film and the location of the second breakpoint 

calculated using segmented regression was closer to the clinical values of tear breakup time, 

indicating a possible use of segmented linear regression as an objective measure of surface 

quality.
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Chapter 1 : Review of Tear Film Stability and 

Ocular Surface Aberrations 

1.1 Tear film: 

The tear film is a three-layered clear fluid covering the anterior surface of the cornea and the 

conjunctiva.1 It forms a uniform fluid surface over the anterior surface of the eye and inside 

the eyelid to reduce the drag and avoid friction between the eyelid and cornea.2 This 

lubricating action of the tear film not only helps in maintaining the integrity of the cornea but 

also acts as a protective surface for the cornea against microbes and other environmental 

factors.3 It is also important in providing nourishment to the anterior epithelial layer of the 

cornea.2,4 

Recent research shows the tear film to be a metastable structure formed by an aqueous gel.5–7 

That is, the aqueous layer of the tear film is found to have a gradient level of mucin from 

bottom to top forming an aqueous gel anterior to the epithelial surface of the cornea, with the 

highest concentration of mucin at the bottom over the surface of the corneal epithelium.6 The 

aqueous gel is protected at the anterior surface from evaporation with a layer of lipid forming 

the outermost layer of the tear film.8 The lipid layer can prevent up to 95% of the loss of the 

aqueous layer due to evaporation. Each layer of the tear film is produced by different glands 

in the eyelid and conjunctiva, which is released and spread over the anterior surface during 

the process of blinking. The meibomian glands within the eyelids produces the lipids, whereas 

the lacrimal glands produce the aqueous layer of the tear film and the mucin layer is mainly 

produced by the goblet cells of the conjunctiva.8 



2 

 

With every blink, the tear film spreads smoothly over the cornea and conjunctiva by the 

action of the eyelids. It is important to have a proper blinking action, because study by Carney 

L et al.9 have shown that improper or incomplete blinking causes poor tear film quality and 

lead to dry eye disease if untreated. Following a blink, the tear film undergoes three phases 

during the inter-blink period.10 The first phase happens immediately post-blink and is called 

the tear film buildup or formation phase.10 In this phase, the tears start spreading throughout 

the surface of the eye due to the spreading action of the eyelid.  After the first phase, when the 

eyes are fully open, the second phase is when the tear film settles over the cornea and 

conjunctiva to form a smooth and clear surface. If the eyes remain open for long enough 

following the second phase, the tear film starts breaking up to form an irregular surface over 

the cornea and conjunctiva. This is known as the tear film breakup phase10. This third phase 

produces a sensation of dryness and/or irritation, causing the eyes to blink and reform an 

Figure 1-1: Updated structure of the tear film with outermost lipid layer and an aqueous layer with gradient levels of 

soluble mucus adhering to the corneal epithelium Reprinted from Cornea. The Diagnosis and Management of Dry Eye. A 

Twenty-five-Year Review. Cornea 2000,19(5):644-649, with permission from Wolters Kluwer Health (Appendix 1).  
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intact tear film. The time taken from the eye opening to the breakup of the tear film is the time 

evaluated when determining tear breakup time measurements. 

King-Smith et al 11suggested that there are three possible reasons for tear film thinning or 

breakup. These are i) the “outward flow” of the tear film due to evaporation of the tear film, 

ii) absorption of the tears into the cornea, and iii) “tangential flow” of the tears causing local 

tear film thickening. It was shown by Nichols et al12 that the osmosis mechanism of the 

cornea only helps in outward flow of the tears out of the cornea, which increases the tear 

evaporation rather than absorption into the cornea. This finding was supported by an increase 

in the osmolarity of the tears due to evaporation.13 The third possibility of tangential flow was 

also later rejected by King-Smith et al.14 and Begley et al.15 in their studies of fluorescein self-

quenching and fluorescent dimming, which showed a trend of evaporation as the reason for 

thinning, rather than tangential flow of tears. Thus, it would appear that the major reason for 

tear film thinning and subsequent rupture is tear film evaporation.  

The stability of the tear film is very important in maintaining a clear corneal surface and to 

produce good retinal image quality.4,9,16 Chronic dry eye disease may lead to corneal 

inflammation.17 If the inflammation remains untreated, it is possible that the increased tear 

film evaporation may eventually result in scarring of the cornea, which can produce 

permanent damage to the quality of vision.6 Studies have also shown a deteriorative effect in 

the quality of vision and visual comfort during the tear film breakup. According to DEWS 

classification, “Dry eye is a multi factorial disease of the tears and ocular surface that results 

in symptoms of discomfort, visual disturbance, and tears film instability with potential 

damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and 
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inflammation of the ocular surface”.18 Dry eye disease is the most common cause for ocular 

discomfort and the main reason for discontinuation of contact lenses.5,19 It has been estimated 

that at least 4.4% to more than 50% of the population (of varying age groups) are affected by 

dry eye disease in the world and it is considered a growing economic burden.5 The use of 

different criteria and different diagnostic procedures to diagnose dry eye in various 

epidemiological studies make the estimation of dry eye a difficult task. 

1.2 Diagnostic techniques: 

There are several non-invasive and invasive diagnostic techniques which have been adopted 

to analyse the quality of the tear film. The fluorescein based tear breakup time,20 Schirmer’s 

test and phenol red thread test are frequently used clinical techniques to evaluate the quality 

and quantity of the tear film but all these tests have a common problem of being invasive in 

nature and thereby altering the usual conditions of the tear film. The fluorescein breakup time 

remains the most widely used clinical diagnostic test for dry eye. It was found that the 

instillation of the fluorescein dye causes changes to the physical properties of the tear film,20 

and these changes produce variation in the measurements between patients and between eyes 

of the same patient. Quantification of the fluorescein breakup test is also subjective.20  

Measurement of tear film osmolarity was considered a “gold standard” for the diagnosis of 

dry eye due to its high predictive accuracy of 89%, which is higher than many other tests.6,21 

Even though osmometers are commercially available, the need for collection of a large 

quantity of tears (5-10µl), which is especially difficult in dry eye patients, limits the 

widespread use of this testing method.22,23 
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To avoid the alteration of the tear film produced by invasive procedures, non-invasive 

subjective and objective methods are being developed. Placido discs were initially developed 

to measure the regularity of the cornea (in cases such as keratoconus) by observing the 

changes in the regularity of the concentric black and white circles. Later, using the same 

Placido disc principle, video keratoscopes were designed to measure tear film breakup time as 

well as corneal curvature.24,25 The reflected light from the Placido disc is captured by the 

CCD sensor in the instrument and the examiner waits for a break in the image of the Placido 

ring to develop. The time taken for the Placido ring to break from the time when the eyes are 

opened is calculated as the non-invasive tear break up time (NITBUT). While this test is used 

widely in both clinical and research environments, the time for the breakup to occur remains 

subjective in nature.  

Objective tests such as meniscometry,26 interferometry27–30 and wavefront sensing31 have been 

developed to bring more accuracy to the tear film measurements obtained and to avoid the 

limitations of fluorescein instillation and the subjectivity of the Placido disc-based tear 

breakup time measurement. However, even these objective techniques have their limitations 

due to the structural anatomy of the eye and it’s positioning. In meniscometry, the profile of 

the tear prism height over the lower eyelid margin and the inability to find the exact 

demarcation point of the apex of the tear prism cause variation in the measurement.10 Eye 

movements negatively impact the measurements of the tear film in interferometry, whereas 

the area of the cornea measured is dependent on the participant’s pupil size for wavefront 

sensing.10 
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1.3 Aberrations: 

Aberrations are the deviation in the path of the light from its original path, when it is refracted 

or reflected from the surface of an object.32 These aberrations are used to explain the quality 

of an optical system or individual element of any optical system. The lower the aberrations, 

the more perfect the optics of the system measured.33 The quality of the optics of the eyes or 

its components can be analysed similar to any optical system, by examining the aberrations 

through the ocular system. There are two categories of aberrations which are of major 

interest.34 Chromatic aberration is produced by dispersion of polychromatic light and 

monochromatic aberrations describe the departure from perfect imagery of a single 

wavelength of light. Monochromatic aberrations are measured using aberrometers and the 

overall magnitude of aberrations in an optical system is usually described by the root mean 

square values (RMS), with higher RMS values describing larger aberrations produced by the 

optical system. These aberrations can further be classified into different components based on 

their characteristics.32  

The Zernike polynomials may be used as a mathematical decomposition of the components of 

monochromatic aberrations and are continuous, orthogonal and designed for circular pupils. 

For these reasons, it is often preferred over other polynomial decompositions.33 If the Zernike 

polynomials are normalized, each individual coefficient of the polynomial represents the 

contribution to the RMS wavefront aberrations obtained. An infinite set of complete 

polynomials can be obtained with each polynomial independent of each other and each 

measures a distinct quality of the surface. Since these polynomials are directly attributable to 
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the surface quality, a direct measure of the change in the tear film surface can be analysed 

using aberrations.32 

1.4 Dynamic measurements of aberrations: 

Early research using dynamic aberrations found the aberrations of the eye to be dynamic and 

suggested that the reason for the dynamic change may be due to changes in the micro 

fluctuations in the accommodation of the eye.34,35 Later, it was realized that the change in 

aberrations were related to the change in the tear film, and that during the tear breakup the 

aberrations were high compared to at other time.31,36,37 This was supported by studies which 

measured change in contrast sensitivity and visual acuity with time.38,39 It was also found that 

there is an unknown compensatory mechanism going on inside the eye to compensate for the 

changes in aberrations produced by the dynamic tear film.40 Due to advances in refractive 

surgery and the importance of dry eye disease evaluation, greater interest was expressed in 

analyzing dynamic anterior surface aberrations. More recently, studies have used topography 

of the corneal surface to determine the stability of the tear film. These studies were done 

based on the change in the curvature or topography of the cornea24,41,42 or by using the surface 

regularity and asymmetry indices43 to observe a variation in the tear film over time.44 

Montes-Mico et al37 were able to measure the dynamic aberrations of the anterior surface 

aberrations from the time of blink to the start of next blink and showed a common pattern of 

change in corneal aberrations among the participants. They observed higher aberrations 

immediately after the blink, followed by a decrease in the aberrations with time. After a few 

seconds, the aberrations reached a low point and then started to increase again.37,41 This 
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pattern appears to follow fairly well with the stages of tear film formation and rupture 

explained by Caniero et al.10  

From the basics provided by Montes-Mico et al.,41 this thesis analyse the temporal change in 

the tear film aberrations and refine the methodology of an objective method to explain the 

change in tear film quality/stability over time.  
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Chapter 2 : Methods 

2.1 Topcon corneal analysers: 

Topcon manufactures both corneal analyser devices used in this thesis. The devices used are 

the CA100 and CA200 corneal analysers (Figure 2-1). The CA200  is a modified and 

advanced version of the CA100 corneal analyser . In this section of the thesis, the device 

setup and general operating procedure of both the corneal analysers will be explained. The 

methods pertaining to each experiment are discussed in their respective chapters.  

2.2 Similarities between CA100 and CA200 corneal analysers: 

Both corneal analyser devices used in this thesis feature 24 equally spaced black and white 

concentric rings in the Placido disc. During the measurements, the white rings in the stimulus 

are internally illuminated by a 640nm light source for imaging purposes. The light from the 

stimulus is projected onto the surface of the cornea and the reflected light is captured using 

the inbuilt CCD camera located at the centre of the stimulus. The captured images or videos 

(depending on the type of the test) of the reflected light are analysed through a series of 

algorithms to calculate the elevation of anterior surface of the tear film/cornea. The data 

describing elevation of the surface obtained from each image frame are used to calculate the 

anterior corneal surface curvature and the anterior surface aberrations. The algorithm to 

acquire and analyse the dynamic anterior surface aberrations was developed by Hesp 

Technology S.r.l., Italy and is incorporated in both corneal analysers. Each corneal analyser 

device has its own version of software inbuilt. 



10 

 

 

2.3 Topcon CA100 corneal analyser: 

2.3.1 Device setup: 

The CA100 corneal analyser device was connected to the control unit and then to the 

computer which has the proprietary software installed. The attached computer was used, via a 

control unit to operate the device. All the data from the CA100 are analysed and stored in the 

computer connected to the instrument. 

2.3.2 Operating instructions:  

The frame rate, focus and video capture are controlled manually by the examiner. Before 

obtaining any measurement, the patient’s data is entered into the database for a first time 

measurement or (if recalled) selected follow up measurements are taken. To measure dynamic 

corneal aberrations, the “BUT” algorithm is selected (Figure 2-2). A popup measurement 

(a) (b) 

Figure 2-1: (a) Topcon CA100 corneal analyser device; (b) CA200 corneal analyser device. 
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window is seen, along with the activation of the Placido disc stimulus of the CA100 . The 

measurement window consists of a live view window, focus assist, sampling time input area 

and the progress bar (Figure 2-3). The sampling time is set to the desired level before start of 

the video acquisition and can be set in 0.05s steps from 0.1 second to 32 seconds according to 

the study protocol. The video can be captured at a maximum frequency of 10fps using the 

CA100.  

After setting the desired frame rate, the Placido disc reflected from the surface of the object 

are focused by the use of live view windows. At a tentative clearest mire position, the video 

capture is initiated by pressing the button in the joystick of the device. Immediately after the 

initiation the focus assist appears on the side of the live view window and is used to obtain 

optimal focus. For the right eye measurement, the focus assist appears in the left side of the 

live view window for the observer and vice versa for the left eye (Figure 2-3). The focus 

assist shows a blue down arrow, a red up arrow or a green colored double arrow according to 

the focus of the mires. The green arrow in the side of the measurement window was 

considered to represent optimal focus. The blue and red arrow indicates slightly defocused 

mires. The arrows disappear when the mires were completely out of focus or distorted. The 

progress bar at the bottom of the screen shows the length of the video captured. Usually, the 

videos can be obtained for a maximum period of 50sec using the CA100. 



12 

 

Figure 2-3: Live view window of CA100 corneal analyzer during the dynamic aberration measurement. 

 

 

 

 

Figure 2-2: Patient data and test selection window of CA100 corneal analyzer device. 
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Figure 2-5: Zernike polynomial selection window for analysis of dynamic surface aberrations 

 

 

 

Figure 2-4: Video processing window of Topcon corneal analyzer software. 
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After each measurement, a popup window is automatically generated to process the captured 

video (Figure 2-4). In this window, the desired pupil diameter and Zernike coefficients 

(Figure 2-5) for analysis can be selected according to the study protocol. The window below 

the image shows the graph of total RMS variation over time for each analysed time frame 

during image processing. A 6mm pupil diameter was used for all the studies in this thesis. 

After processing the video for dynamic aberration measures, the RMS, individual Zernike 

coefficients data upto the 7th order and the video with or without aberration overlay can be 

exported. 

2.3.3  Topcon CA200 corneal analyser: 

2.3.3.1 Device setup: 

Unlike the CA100 corneal analyser device, the CA200 connects to the computer through a 

wireless adaptor and all data transfers are performed wirelessly. The CA200 is provided with 

user interface software to add patient details and obtain the measurements. These features 

increase the portability of the instrument. After obtaining the measurements, the data obtained 

is either stored internally or transferred to a backup computer. The analysis of dynamic 

aberrations can be performed only in the desktop software, so all data pertaining to this thesis 

were transferred to the computer immediately after the video acquisition. 

2.3.3.2 Operating instructions: 

As with the CA100, patient data is either created new or imported from the database before 

starting the data acquisition (Figure 2-6). After creating the patient data, a new popup 

acquisition window opens with a live view window, progress bar below and measurement 
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selection bar in the side. To measure dynamic surface aberrations the ‘BUT’ algorithms 

should be selected. The mires reflected from the surface measured are focused to obtain sharp 

and clear mires with the help of the joystick. The video acquisition is initiated by pressing the 

button on top of joystick and, with the help of focus assist, the mires are focused to get an 

optimal focus (Figure 2-7). 

The focus assist in the CA200 are blue and red arrows, located at four corners of the live view 

window. The optimal focus is the position where no arrows are present. The blue arrow 

indicates defocus away from the surface and red arrow indicates over focusing of the mires. 

Out of focus or decentered mires are indicated by the appearance of yellow center ring. 

Each measurement can be obtained for a maximum period of 2 min and all the measurements 

are obtained at 25 fps time interval. Once the video acquisition is complete, the data from the 

device is transferred wirelessly to the remote computer for processing. The proprietary 

software installed in the computer imports the data directly from the device. 

Using the software, the RMS and Zernike coefficients upto 7th order are calculated for a given 

pupil diameter. The pupil diameter can be changed according to the protocol of the study. In 

this thesis, all the analysis for the CA200 was obtained for a 6mm pupil diameter. During the 

analysis, the window shows an aberration overlay of the surface analysed for each frame 

analysed and a trend graph of RMS values for each analysed frame in the window below the 

images (Figure 2-8). The trend graph also gives the location of the blinks using a yellow 

highlight bar. 
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Figure 2-6: Patient selection window of CA200 corneal analyzer device. 

Figure 2-7: Measurement window with live capture window. 



17 

 

 

Figure 2-8: Dynamic aberration processing window of CA200 corneal analyzer device. Yellow highlight in the trend graph 

below indicates the location of the blink. 
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 CA100 CA200 

Optimum frame rate 4 fps 25 fps 

Source power 35 µm 6.8 µm 

Focus assist 

Red, green and blue arrows.  

Green is considered as 

optimal focus. Needs 

thresholding to find optimal 

focus 

Only blue and red arrows. 

Yellow circle for out of 

focus and away from center 

of Placido disc 

Blink detection 
Detects and delete blinks 

from the output data 

Location and duration of 

the blinks are shown in 

output data 

Table 2-1: Differences between Topcon CA100 and CA200 corneal analysers. 

 

Figure 2-9: Placido disc light source of (a) CA100 and (b) CA200 corneal analyzer devices. 



19 

 

2.4 Differences between the corneal analysers: 

The major difference between the CA100 and CA200 corneal analyser devices are the frame 

rate, brightness of the light source and the blink data. The CA200 captures video at a higher 

frame of 25fps compared to 10 fps by the CA100. The larger number of data points obtained 

with the CA200 allows more precise the analysis of the dynamic aberrations. The detection of 

the location of the blinks by CA200 also helps in easy identification of “between blinks” data 

points. The CA100 also identifies the blink, but the location of the blink and data associated 

with it are permanently removed from the data obtained and no indications are given in the 

output from where the data has been removed. The source power of the Placido disc also 

varies between the instruments. The power output of the CA200 is much lower at 6.8 µW, 

when compared to the CA100 of 35µW. This difference in output power of the light source 

produces a noticeable difference in the brightness of the light of the Placido disc source 

(Figure 2-9). The table below highlights the overall difference between the two corneal 

analysers used in this thesis from the description given above. (Table 2-1) 

 

(a) (b) 
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Chapter 3 : Evaluating the Topcon CA100 Surface 

Aberrometer Measurement Using A Model Eye 

3.1 Background:  

The Topcon CA100 corneal analyser is a Placido-based corneal topographer featuring a built-

in module to measure dynamic anterior surface aberrations. Measuring the dynamic surface 

aberrations might involve various external and internal factors other than just variation due to 

the surface of the eye. There are studies which analysed factors concerning tear film stability, 

but no studies were found that looked into the influence of external factors like instrument 

temperature and luminance of the light source on the dynamic anterior surface aberrations 

measurements. The noise or the variation due to instrument factors also plays a major role in 

these external factors. The effect of the noise or the defocus on the dynamic surface aberration 

has not been studied before. To identify the noise associated with the instrument, a non-

dynamic reflective surface which can be used to measure surface aberrations was needed. It is 

equally important to get the appropriate acquisition setting to measure the dynamic 

aberrations of the eye. In this study, using a model eye, the aim was to gain insight into both 

these factors. 

3.2 Objective:  

The main objectives of the study were to determine the noise associated with the instrument 

using a non-dynamic measuring surface and to design appropriate acquisition settings for the 
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measurements of the ocular surface. In the acquisition settings, the aim was also to measure 

the effect of defocus on the measurements of surface aberrations. 

3.3 Methods: 

3.3.1 Instrument characteristics: 

The CA100 setup and operating procedures were explained in general methods chapter (See 

chapter 2.3). The flowchart (Figure 3-2) explains the methods used to test the hypothesis. To 

test the validity of the measurements, a non-varying or a non-dynamic surface of a model eye 

was used. Initially, the optimal frame rate to be used for the measurements was analysed, and 

then effect of displacement in the optimal focus on dynamic aberrations was measure with 

different protocols as described below.  

3.3.2 Frame rate and dropped frames: 

The optimal frame rate to acquire video was tested by calculating the number of dropped 

frames in the processed data. Dropped frame are the frames which had zero RMS and Zernike 

coefficient values as a result of processing error due to frame rate (inter-frame interval) 

selected (Figure 2-4). Five samples of surface aberrations were obtained in three sampling 

times at each focus position (Figure 3-1). The three sampling times used to acquire data were 

0.20, 0.25 and 0.30 seconds. The number of dropped frames in each sample was obtained and 

averaged across each time point and focus position.  
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Figure 3-1: Live view acquisition window showing blue, green and red focus arrows. 

Figure 3-2: A flow chart showing the measurement categories 
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3.3.3 Focus positions: 

To evaluate the variability of the data, three separate samples were obtained in each of the 

green, red and blue focus positions. The protocol used to obtain each data acquisition was to 

begin a measurement to find the focus position and then lock the base of the instrument in 

position. The measurement acquistion was then stopped and restarted. In the case of the red 

and blue measurements, they were obtained at the outermost limit of defocus (Figure 3-1). 

This was achieved by moving the base away from the green defocus in the direction of the red 

or blue arrows until they disappeared, then moving back to the position where the red or blue 

arrows just appeared again. This protocol was followed so that a consistent position in the red 

or blue defocus region could be obtained. The abberrations were obtained in 0.25 sec 

sampling time intervals. 

Figure 3-3: Setup for measuring distribution of RMS values in different degrees of defocus. Measurements were obtained 

when the pointer attached to the base were at 1 and 2 cm interval in both sides of green focus position using the scale 

attached next to the base.  



24 

 

To examine the effect on the distribution of the measurements of the degree of defocus from 

the optimal (green) position to the outer limits of defocus a small centrimetre scale was 

attached to the base of the device. Data acquisitions were obtained at 1and 2cms away, in both 

the red and blue defocus directions, from the optimal focus position (Figure 3-3). The 

measurements were obtained in 0.25 sec sampling time intervals.  

3.3.4 Data analysis: 

In this chapter, the summary data, kernel density plot for different focus positions (Appendix 

3, R.code 2) and tests for quantile distribution (Appendix 3, R.code 3) were performed in R 

statistical programming software. The analysis of variance (ANOVA) and post-hoc tests to 

analysis the difference between the samples were performed using SPSS version 16.45 The 

code for the R 46 are listed in the Appendix 3 under each analysis heading.  

3.4 Results: 

3.4.1 Obtaining the green focus: 

To make the green focus arrows visible in the measurement screen, the threshold of clear 

focus must be crossed at least twice to make it visible. This was consistently observed during 

all the measurements which were obtained at green focus position. When the values of root 

mean square (RMS) of higher order aberrations were plotted against time (Figure 3-4), there 

were two peaks and troughs within the initial 15 secs of measurement, indicating the crossing 

of the threshold twice, followed by a steady state for all the subsequent measurements 

obtained using green focus position. So, the first 15 sec of the data were removed for further 

analysis.  
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3.4.2 Dropped frames: 

The numbers of dropped frames were calculated for each frame rate at each focus position. 

Table 3-1 gives the average number of dropped frames for each category. On average, a 50 

sec measurement acquisition period with 0.20 sec sampling rate gave 219 time points; a 0.25 

sec sampling rate gave 164 time points and a 0.30 sec sampling rate gave 146 time points. 

When the dropped frames were analysed for each category, the 0.25 sec time interval was 

observed to be optimal due to a lower number of dropped frames and gave an average of 20 

time points more than other frame rates. Maximizing the number of frames is beneficial due 

to the dynamic nature of the ocular surface. The higher the number of data points obtained, 

the more detailed the analysis of the dynamic aberrations was possible. 

 Dropped frames 

 Green focus Red focus Blue focus 

Rate Total # Mean Total # Mean Total # Mean 

0.20 s 19 3.8 15 3 5 1.25 

0.25 s 9 1.8 8 1.6 6 1.25 

0.30 s 6 1.2 14 2.8 6 1.2 

Table 3-1: Average number of dropped frames in each focus position and for each sampling rate. 
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3.4.3 Comparison of distribution with repeated measures within a focus position: 

The quantile test for homogeneity of variations47,48 was used to compare the distribution of 

three samples of the repeated measures within a focus position. This tests the variation of the 

outer 5%, 10% and 15% of the tails of the distribution between samples. For the analysis, the 

samples were centered on the median values of each acquisition, as shown in Figure 3-5. The 

kernel density plot shows the distribution of the samples along the RMS values in the x-axis 

and its density in the y-axis. The first 15sec of the values were removed on all the samples 

analysed. Univariate RM-ANOVA was used to examine the differences in the mean of the 

distribution of RMS measurements between the samples.  

Figure 3-4: Raw RMS measurements plotted versus time for the optimal position of focus 
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3.4.3.1 Green focus position: 

There was a small but statistically significant difference in the centers (RM-ANOVA, 

F(2,338)=6.217; p=0.002) and this difference arose between sample 1 and sample 2 (mean 

difference =0.009; Tukey p= 0.005), and sample 1 and sample 3 (mean difference =0.009; 

Tukey p<0.05). Sample 2 and sample 3 were not different (mean difference =0.0006; Tukey 

p>0.05). 

Among all three samples, sample 2 and 3 showed no statistically significant difference (all 

p>0.05) for the 5%, 10% and 15% tails of the distributions. Sample 1 was different from 

sample 2 for the outer 10% (p=0.004) and 15% (p=0.022) of the distribution, and was 

different from sample 3 for the outer 5% (p=0.0002), 10% (p=0.015) and 15% (p=0.012) of 

the distribution.  

3.4.3.2 Red focus position: 

The mean of the RMS distributions was not significantly different between all samples (RM-

ANOVA, F (2,348) =0.272; p=0.762). The mean difference in RMS between samples ranged 

between 0.003 and 0.008. 

There were no significant differences in the homogeneity of variation for all three samples for 

the outer 5% of the distributions (p>0.05). The outer 10% and 15% were significantly 

different between samples 2 & 3 (p=0.039 (10%), p=0.047 (15%)). All other comparisons for 

the outer 10% and 15% were not significantly different (p>0.05). 
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3.4.3.3 Blue focus position: 

The mean of the RMS distributions was significantly different between samples (RM-

ANOVA, F (2,327) =28.325; p=0.000). Post-hoc testing revealed that this difference arose 

between samples 1 & 3 (mean difference=0.01; Tukey p<0.05) and samples 2 & 3 (mean 

difference=0.02; Tukey p<0.05). There was no significant difference in the centre of the RMS 

measurement distributions for samples 1 & 2. 

There were significant differences in the homogeneity of variances for all three samples for 

the outer 15% of the distributions (p<0.05). The outer 5% and 10% were significantly 

different between all samples except samples 1 & 2.  

3.4.4 Comparison of distributions with repeated measures between focus positions 

Homogeneity of variation was also examined between focus positions for each of the repeated 

samples. A Bonferroni correction was made to account for multiple comparisons and a p-

value of 0.002 was taken as significant. Figure 3-6 shows the box plot distributions of the 

RMS measurements for each sample at each focus position.  

Green samples 2 & 3 were significantly different at the outer 5%, 10% and 15% of the 

distribution from all samples obtained for the extreme position of red defocus (all 

comparisons, p<0.02). Green sample 1, which showed longer tails of the distribution from 

Green2 and Green3, was not significantly different from all samples of red defocus. 

The outer 5%, 10% and 15% of the distributions were significantly different between all 

samples obtained at the optimal (green) focus position and all samples of the extreme blue 

defocus (all comparisons, p<0.002).  
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3.4.5 Comparison of distributions for intermediate positions of defocus: 

Data acquisitions were made at intermediate positions between the optimal and maximum 

defocus positions, in each of the red and blue defocus positions. Figure 3-7 shows the box 

plots of the RMS measurement distributions for each of these data acquisitions. As expected, 

the value of the mean RMS value is different between focus positions. It can be seen that the 

distributions are similar between the green and red focus positions, and that the distribution 

for the blue focus positions was larger.  
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Figure 3-5: The kernel density plot for comparing the repeated measures samples at 3 focus position; Green(optimal), 

extreme blue and extreme red focus positions.. 
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Figure 3-6: Comparison of distribution of the RMS values and median corrected RMS values for green, blue end and red end 

focus positions. The center bold line represents the median of the distribution, outer boxes are the 25th and 75th quantiles and 

the whiskers are ± 2 standard deviation. 

Green focus position Blue focus position 

Red focus potion 
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Figure 3-7:Distribution of RMS measurements at 1cm and 2cm from the optimal focus position in the blue defocus direction 

(Blue1 & Blue2, respectively) and in the red defocus direction (Red1 & Red2, respectively) See Figure 3-3 for description on 

focus positions. 
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3.5 Discussion: 

The blue focus position shows greater measurement variability than either the green or red 

focus positions for a static surface target. In addition, the blue focus position showed 

significant differences in the centre of the RMS distributions across samples and, although 

there were significant differences found between the centres of the RMS distributions of the 

green sample, the magnitude of the difference between the blue samples was much larger. 

Thus, this study concludes that the green focus position and red focus positions show more 

consistent sample distributions on repeated measurement than the blue focus position.   

For all samples, the red samples positions did not show homogeneity of variation in the outer 

5%, 10% and 15% of the distribution, whereas green and blue samples showed a significant 

difference in the tails of the distribution. The comparisons between focus positions, the green, 

red and blue focus positions showed narrower but consistent variability between the red and 

green focus positions. The samples that had not been consistent within the green focus 

position, showed similar variability as red focus position samples. The comparison between 

blue and other focus positions showed a higher variability in the distribution of the tails of the 

measurements. This study concludes that the variability is more similar between the red and 

green samples than between the green and blue samples or red and blue samples.   

As for the extreme, defocus positions, the distribution of the RMS measurements are similar 

between the green and red focus positions and vary by a greater amount in the blue focus 

position and that this variability increases as defocus away from the optimal focus position 

increases.  
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The change in the focus position during dynamic anterior surface aberration measurements 

can be expected due to dynamic tear film surface. As there are dynamic changes in the 

thickness of the tear film in an open eye interval, it is difficult to maintain optimal focus 

during the measurement. The movement of the joystick during the acquisition to maintain 

optimal focus might introduce a motion artefact in the obtained measurements (as observed in 

Figure 3-4). Therefore, it is important to maintain a steady instrument focus during the 

measurement.  

The changes in the tear film, especially during the tear thinning phase, shifts the focus 

position towards the red focus position. It was observed in this study that the measurements 

obtained in the red focus position are less variable and similar to the green (or optimal focus) 

position compared to the variability of measurements in the blue focus position. These results 

suggest that it is optimal to keep the focus position either in the red or – ideally - green focus 

positions during the measurements without moving the joystick. 

3.6 Conclusion: 

Moving forward to the human subjects measurements the following measurement protocols 

were implemented, based on the findings of the measurement of a static target.  

i. Data acquisition at an inter-frame interval of 0.25s is the preferred frame rate for data 

acquisition, to give the least number of dropped frames across focus positions.  

ii. Data obtained in the initial ~15s reflects the focusing procedure and needs to be 

manually removed prior to analysis of tear dynamics.  
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iii. Even in the optimal focus position there were significant (small) differences in the 

distributions between repeated measures. For this reason, repeated samples should be 

obtained where possible. 

iv. The green and red focus positions showed the most consistency within repeated 

measurements. The variability of the measurements was also more similar between the 

red and green focus positions than the blue focus positions, both at the extreme 

positions of defocus and with incremental defocus away from the optimal focus 

position. When obtaining the dynamic sampling of human ocular surface 

measurements, the optimal position of focus should be obtained at the blink such that 

as the tear film dissipates between blinks the measurements are being obtained in the 

(relatively) red focus position.  
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Chapter 4 : Spectral and Thermal Characteristics 

of an Illuminated Placido Disc during Dynamic 

Measurement of Anterior Surface Aberrations 

4.1 Background: 

Ocular surface temperature has been investigated as a factor contributing to our understanding 

of tear film stability and dry eye. Studies have examined the relationship between ocular 

surface temperature and tear film evaporation49 and blood flow49,50. It was also shown in 

studies that the tear film stability depends on various environmental factors, including 

humidity, room temperature and pollution.3,51 

Paschides et al.3 observed that a change in room temperature or humidity level can cause 

changes to the lipid layer of the tears and induce a higher evaporation rate. It was also 

observed in most of the studies that participants with dry eye had a steeper decrease in the 

ocular surface temperature with time.52 Along with ocular surface temperature, ocular 

aberrations53,54 and surface aberrations42 were also found to change with changes in tear 

stability over time. However, the exact mechanism explaining the influence of external factors 

(like temperature variations and humidity) on the stability of the tear film was not well 

established. 

Placido discs are used in collecting temporal variation of corneal surface aberrations of the 

eye. Due to the close working distance of these topographers, a local variation was expected 
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in the humidity and the temperature between participants and the eye, causing variations in 

ocular surface aberrations and tear film stability. No previous studies have analysed the 

instrument target as a factor related to the variation of ocular surface aberrations and tear film 

stability. In this study, the ocular surface temperature in the presence of two illuminated 

Placido discs in front of the eyes at normal working distance was measured. 

4.2 Study Objectives: 

The objectives of this study were:  

1. To determine the spectral characteristics of the Placido disc light sources of two 

corneal analysers.  

2. To determine the thermal characteristic for a variety of inanimate objects, human 

ocular surface and the adnexa in the presence of Placido disc light source at normal 

working distance. 

3. To compare the ocular surface aberrations obtained using both the corneal analysers.  

4.3 Methods: 

The two corneal analysers used in this study were the Topcon CA100 and CA200. Both use 

the Placido disc principle for the measurement of anterior surface aberrations, but the power 

output of the stimulus is markedly different from each other. This difference in power 

introduces a difference in object brightness and a potential change in the spectral distribution 

and thermal radiation of the source. The properties of the stimulus are examined and the 
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methods to obtain the spectral and thermal characteristics of the stimulus are explained in this 

section. 

4.3.1 Stimulus characteristics: 

The CA100 and CA200 setups are explained in the general methods chapter (Chapter 2). The 

main difference between the corneal analysers while acquiring corneal surface aberration 

measurements is the power output of the Placido discs. The output of the CA100 is 35µW 

compared with 6.8µW of CA200. This difference in the power output produces a noticeable 

difference in the brightness of the stimulus (Table 2-1). 

4.3.2 Measurement of spectral and thermal characteristics: 

Spectral and thermal measures were obtained in this study using the PR650 SpectraScan 

photometer (Figure 4-1) and a Tasco THI-500 non-contact infrared thermometer (Figure 4-6). 

Spectral measures were obtained from the surface of the illuminated Placido disc of the 

corneal analysers and the thermal measures were obtained from air (room temperature), a 

piece of tissue paper and a model eye, as well as from the anterior surface of the eye and 

adnexa of ten human participants. In all cases the measurement procedures for the thermal 

characteristics was the same. 

4.3.2.1 Spectral Characteristics of the Placido discs: 

4.3.2.1.1 Properties of the photometer: 

The properties of the photometer includes a detection range of 380-780nm, with an accuracy 

of ±2 nm. The wavelength resolution of the photometer is <3.5nm/pixel.  The accuracy of the 

luminance data obtained using the photometer is ± 2% of the calculated luminance, at 2856K 
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@ 23ºC. When the photometer was set to focus at infinity, it provided a measuring angle of 1 

degree, with a viewing angle of 7 degrees. The measurement area in the photometer is seen as 

a dark black opaque circle in the center of the viewing area. The auto-sync function of the 

photometer helps in adjusting the exposure time of the sensor according to the refresh rate of 

the target. This helps in obtaining an accurate measure of the spectral characteristic and 

provides a refresh rate of the target measured. All the spectral measures were obtained with 

the photometer mounted on a camera tripod for stability.55 

 

4.3.2.1.2 Spectral measures: 

This phase of the study did not involve any human participants. As provided in the manual for 

each instrument, the Placido disc of the CA100 and CA200 were illuminated by different 

powered light sources for measuring dynamic anterior surface aberrations. The spectral 

distribution of each target was obtained using the photometer. 

The measurement obtained included (Figure 4-3): 

Figure 4-1: PR-650 SpectraScan photometer used to measure spectral characteristics of the Placido disc 
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1) Spectral characteristics of each individual ring in the Placido disc (each ring from left 

end of the Placido disc to right end, along the central horizontal axis); 

2) Spectral distribution of each quadrant (entire target divided into 4 quadrants) of the 

Placido disc (upper, lower, right and left side); 

3) Spectral distribution of the whole Placido disc; 

4) Spectral distribution of the entire ring of the Placido disc (i.e., measures of the outer 

ring, including the rings within it). 

For each type of measurement indicated above, the distance between the stimulus and the 

photometer was increased or decreased to accommodate the area measured into the 

measurement area of the photometer (Figure 4-2). For example, to measure individual rings, 

the distance between the photometer and stimulus was 50cms, whereas to measure the whole 

Placido disc the separation was around 7m. 
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Figure 4-2: Photometer setup during spectral measurements 

Figure 4-3: Illustration explaining the setup of 

Placido disc during each type of spectral 

measurement. 

(a) Normal appearance of the illuminated 

Placido disc of a corneal analyzer; 

(b) Spectral measures of an individual Placido 

disc obtained by the photometer. The central 

black circle indicates the measuring area of 

the photometer;  

(c) View using eyepiece of the photometer 

while measuring spectral characteristic of the 

Placido disc;  

(d) Eyepiece view of photometer showing the 

setup for a quadrant measure. 

(a) (b) 

(c) (d) 
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4.3.2.2 Thermal Characteristics of the Placido disc: 

4.3.2.2.1 Properties of thermometer: 

The Tasco THI-500 infrared non-contact thermometer was used to obtain corneal, 

conjunctival and eyelid temperatures during the measurements of surface aberrations. It was 

evaluated by other investigators for its reliability and repeatability while measuring corneal 

and conjunctival temperatures.50,56 The thermometer can evaluate temperatures between 0°C 

and 300°C, with a resolution of 0.1°C within a measured wavelength of 8-16µm. It features a 

red visible point source to obtain the temperature measurements exactly from the area of 

interest. 

4.3.2.2.2 Measures from three different surfaces: 

Initially, the thermal measures were obtained from air, tissue paper and a model eye before 

measuring the surface of the eye. These measures were obtained from three different surfaces 

to determine if there was a dependency of the change in temperature on the nature of the 

surface tested. The model eye (Figure 4-6) is a uniform clear surface of fixed curvature made 

from a plastic material. The model eye was positioned in front of the stimulus and the 

thermometer was introduced from the side for measuring the temperature from the surface of 

the model eye. Similarly, a piece of tissue paper was attached to the head rest and the chin rest 

of the instrument in front of the stimulus and thermal measures were obtained. For each 

surface, two temporal measures of surface temperatures were obtained using each corneal 

analyser. Each measure was obtained for a three minute time interval. 
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4.3.2.2.3 Measures from the surface of the eye: 

Ten participants were involved in this study. The thermal measures were obtained using the 

same infrared thermometer, but the measurements were obtained from the center of the eyelid, 

temporal bulbar conjunctiva and temporal cornea when illuminated by the stimulus Placido 

disc. 

The order of the measurements (CA100 then CA200 or vice versa) was randomized between 

participants to minimize any bias in the temperature measurements due to differences in the 

stimuli. Both corneal analysers were used in a random order to compare the effect of the 

thermal radiations on the anterior surface of the eye. The measures were obtained only in the 

right eye of each participant. 

The participants were seated in front of the instrument with their chin placed in the chin rest. 

The infrared thermometer was introduced from the side and was set to measure when the 

guiding light from the thermometer formed a point target over the region of interest (Figure 

4-6). Measurements were obtained for a total of 3 minutes. All the measures from the 

thermometer were recorded using a digital camera. The measures were extracted manually 

from the recorded videos. In the open eye condition (conjunctival & corneal measures), 

participants were asked to blink normally. At the end of the thermal measures, a measure of 

dynamic ocular surface aberrations was measured for a period of approximately 50 seconds. 

4.3.3 Study measures: 

In this study, the photometric data and surface temperature measurements were obtained.  The 

photometric data obtained are the spectral luminance, radiance along the light spectrum and 
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the peak wavelength. The measure of spectral luminance provides the amount of light emitted 

by the Placido disc towards the eye, and the peak wavelength of the light determines the color 

of the light emitted by the light source. The luminance of the light measured is given in 

candelas/square meter (cd.m-2) and wavelength in nanometers (nm). The radiance is the 

measure of amount of light emerging from a source per unit area per unit solid angle.  The 

radiance is given in Watts per steradian per square meter (W.sr-1.m-2). The surface 

temperatures were measured in degree Celsius (ºC). 

 

 

 

Figure 4-6: Model eye Figure 4-6: Setup for thermal measurements. 

Figure 4-6: Tasco Thi-500 non- contact infrared thermometer used to measure surface temperatures 
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4.4 Results: 

4.4.1 Spectral measures: 

The luminance of the whole Placido disc of both corneal analysers was found to be 

significantly different (t-test, df= 10, p<0.001), with an average luminance of 31.95 ±0.1cd.m-

2 and 5.79 ±0.01cd.m-2 for the CA100 and CA200 respectively (Figure 4-7). The integration 

time (using the auto-sync function in the photometer), which is related to the refresh rate of 

the light source, differed between the corneal analysers. The average integration time for the 

Placido disc was 427ms and 2563ms in the CA100 and CA200 corneal analysers respectively. 

The larger integration time for measuring the Placido disc indicates that the light source of the 

Placido disc was smoother and more regular in the CA200 than the CA100 light source. The 

peak wavelength of both the Placido discs was in the red spectrum of the visible light 

spectrum at 645nm throughout the measurement period. 

Along with the peak wavelength, the radiance of the light source across the wavelengths of 

the visible light spectrum was also obtained. The log radiance of each trial was plotted across 

the wavelength of the visible spectrum and a cumulative mean was obtained (Figure 4-8). The 

ggplot2 package in R statistics was used to plot the radiance across different time points. The 

solid line in the plot represents the global mean of the data set across different wavelengths of 

the visible spectrum. The grey shaded region around the solid line represents the confidence 

interval of the data set.  
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Figure 4-7: Comparison between the luminance of CA100 and CA200 Placido discs. 

 

 

 

 

Distribution of the data points are shown as green points in the centre of box plot using beeswarm package in R. In 

addition, due to larger difference in the values, the Y-axis has a customized axis break (using Plotrix package of R) to 

show both box plot in a single plot. (Appendix 3, R.code 4) 

p < 0.001 
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Figure 4-8: Geom plot (using ggplot2 package in R) with radiance in y-axis and wavelength in x-axis for measures from CA100 and CA200 Full Placido disc measures. 

(Appendix 3, R.code 5) 

CA100 CA200 
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4.4.1.1 Individual rings: 

Similar to the full Placido disc measure, the spectral characteristics of the individual rings in 

the Placido discs were measured. This was done to measure the individual contribution of 

each ring to the overall spectral characteristics of the Placido disc. The photometer was 

located 50cm from the disc during the measurements. The black concentric rings showed no 

spectral data on all the trials obtained. The spectral measures of the individual rings were 

analysed. 

As mentioned in the methods (chapter 4.3.2.1.2), the spectral measures were obtained on each 

illuminated ring of the Placido disc from left to right along the central horizontal axis of the 

disc. The overall average luminance of the right and left side of the CA100 were 92.7cd.m-2 

and 67.24 cd.m-2 respectively. Similarly, in the CA200 the averages were 20.46cd.m-2 and 

15.79cd.m-2 in the right and left side of the Placido disc (Figure 4-9). The difference between 

the average luminance of right and left side of each instrument was significantly different (t-

test, df=11, p=0.038) with difference of 25.27cd.m-2 and 4.67cd.m-2 in CA100 and CA200 

respectively. The peak wavelength was obtained and it was averaged across all the rings. The 

average luminance values for each individual rings are listed in table below. The average peak 

wavelength was 644nm and 642.13 ±1.98nm in the CA100 and CA200 corneal analysers 

respectively (Figure 4-11). 
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Luminance of CA100 

(cd.m-2) 

Luminance of CA200 

(cd.m-2) 

Individual rings (from center) Towards left side Towards right side Towards left side Towards right side 

1st ring 60.8 ± 0.16 111.45 ± 0.5 12.17 ± 0.022 28.6 ± 0.24 

2nd ring 66.67 ± 0.21 33.71 ± 0.23 16.94 ± 0.041 44.1 ± 0.13 

3rd ring 42.63 ± 0.11 94.24 ± 0.78 11.32 ± 0.027 24.4 ± 0.083 

4th ring 38.49 ± 0.1 69.9 ± 0.6 9.74 ± 0.027 18.21 ± 0.065 

5th ring 50.89 ± 0.13 75.88 ± 0.44 12.92 ± 0.036 21.63 ± 0.092 

6th ring 60.06 ± 0.22 87.73 ± 0.64 15.49 ± 0.06 23.48 ± 0.053 

7th ring 59.22 ± 0.14 84.99 ± 0.52 14.17 ± 0.035 18.33 ± 0.055 

8th ring 64.90 ± 0.53 84.42 ± 0.52 12.96 ± 0.03 16.85 ± 0.055 

9th ring 88.12 ± 0.25 115.4 ± 1.21 17.85 ± 0.04 19.85 ± 0.06 

10th ring 78.38 ± 0.26 89.5 ± 1.21 16.8 ± 0.09 13.30 ± 0.04 

11th ring 98.53 ± 0.72 155.34 ± 1.17 28.36 ± 0.07 8.68 ± 0.015 

12th ring 97.01 ± 0.3 106.5 ± 0.62 20.72 ± 0.031 8.03 ± 0.02 

Table 4-1: Average luminance values for each individual ring and side in CA100 and CA200 corneal analysers 
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Figure 4-9: Scatter plot with error bars (using plotrix package in R) for luminance of each ring of Placido disc across the 

ends of horizontal axis in CA100 and CA200 corneal analyzers. (Appendix 3, R.code 6) 
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4.4.1.2 Quadrant measures: 

The quadrant measures were obtained to confirm the discrepancy in the luminance difference 

obtained in spectral measures of individual rings between sides. The Placido disc was divided 

into four quadrants and spectral measures were obtained for both corneal analysers. The 

measurements involve the cumulative luminance of both black and illuminated rings. As 

observed in the individual rings, the difference in the luminance of the right and left sides of 

the CA100 is higher compared to the luminance of the CA200. The luminance obtained in the 

CA200 was more repeatable, with a standard deviation of 0.88cd.m-2 compared to the standard 

deviation of 2.53cd.m-2 in the CA100 across all quadrants (Table 4-2). The average luminance 

of all quadrants was 44.17cd.m-2 and 9.99cd.m-2 in the CA100 and CA200 respectively. The 

box plot in Figure 4-10 also shows the distribution of the luminance between quadrants. 

4.4.1.3 Disc measures: 

The disc measure was obtained by changing the distance between the photometer and the 

Placido disc. The centre of the measuring area of the photometer was overlapped with the 

center of the Placido disc and measurements were obtained with each illuminated ring in the 

Placido disc as the edge of the measuring area. The cumulative luminance of the Placido disc 

was found to change with the inclusion of each illuminated and black concentric ring from the 

first ring. The change in the luminance was negative in the CA200 with the inclusion of each 

ring, whereas in the CA100 there was a decrease in luminance up to the 5th illuminated ring, 

after which there was an increase in luminance and then a sharp decrease in the luminance of 

the whole Placido disc (to the 12th ring; Figure 4-12).  
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The wavelength for each concentric ring of the Placido disc was the same and consistent 

across rings between the CA100 and the CA200, as shown in Figure 4-11.  The peak 

wavelength of both the corneal analysers was 644nm across all the illuminated rings. 

 
Luminance in CA100 

(cd.m-2) 

Luminance in CA200 

(cd.m-2) 

Whole Placido disc 31.94 ± 0.1 5.79 ± 0.01 

Quadrants   

Right 48.15 ± 0.083 8.56 ± 0.025 

Left 41.24 ± 0.086 10.91 ± 0.03 

Inferior 43.65 ± 0.11 10.45 ± 0.03 

Superior 43.67 ± 0.11 10.05 ± 0.017 

 

 

Figure 4-10: Comparison of 

luminance measures from each 

quadrant of CA100 and CA200 

Placido discs. (Appendix 3, R.code 4) 

Table 4-2:List of average luminance values of the Placido disc in different quadrants and the whole Placido disc for the 

CA100 and CA200 corneal analyzers during measurement of dynamic anterior surface aberrations. 
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Figure 4-11: Peak wavelength of the light source across each type of measurement. (Appendix 3, R.code 8) 
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Figure 4-12: Luminance of the light sources across each disc measure of Placido disc. (Appendix 3, R.code 6) 

Full Placido 

disc 

luminance 
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4.4.2 Thermal measures: 

The thermal measures were obtained on the surface of the eye or the surface of the inanimate 

objects, unlike the spectral measures, which were measured on the surface of the Placido disc. 

This was undertaken to check the influence of thermal radiation on the surface of the eye 

during the measurement. As mentioned in the methods section, the inanimate objects were 

measured before measuring the surface of the eye.  The results of both the ocular surface and 

inanimate objects are listed below. 

4.4.2.1 Inanimate objects measures: 

The inanimate objects used were air, a piece of tissue paper and a model eye placed at the 

approximate position of the corneal plane in the headrest. The results of temperature variation 

across a 3-minute period showed varying levels of change in temperature among the different 

object types. The surface temperature also depended on the type of object measured. A linear 

regression analysis was used to evaluate the amount of change in temperature over time with 

each object. A summary of slope and its significance from zero was listed in Table 4-3 below. 

There was a positive increase in temperature with all the objects using both corneal analysers. 

However, the rate of change in the temperature was very slow, which is shown by low 

positive slope values. With the model eye, there was an increase of 0.2ºC at the maximum 

with both instruments. Similarly, with tissue paper and air, there was no steep rise in the 

surface temperature in the presence of the illuminated target (Figure 4-13). These results 

indicate that the surface temperature measured depends on the type of object measured. 
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Table 4-3: List of slopes and its significance for different object types. 

 

 

 

CA100 (º C) CA200 (º C) 

Eyelids 34.13 ± 0.31 34.26 ± 0.38 

Conjunctiva 33.60 ± 0.65 33.76 ± 0.57 

Cornea 33.87 ± 0.38 33.72 ± 0.40 

Table 4-4: Average surface temperatures obtained during aberration measures using the corneal analysers. 

 

 CA100 CA200 

 Slope (ºC/s)  p-value Slope (ºC/s) p-value 

Air 0.00046 0.082 0.00048 0.00178 

Tissue paper 0.00091 0.0019 0.00064 0.0152 

Model eye 0.00033 0.068 0.00063 0.0001 
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Figure 4-13: Multi plot showing change in temperature of inanimate objects over time. (Appendix 3, R.code 9) 
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4.4.2.2 Ocular surface temperatures: 

The ocular surface measures were obtained from the cornea, conjunctiva and eyelids of 

human participants. The mean age of the group of participants involved in the study was 27.8 

±4.9 years of age. Out of 10 participants, 4 were males and 5 were females. Aberration 

measures were also obtained on the same participants following surface temperature 

measures. The thermal measures obtained from all 10 participants were averaged for each 

location. The corneal surface temperature was 33.87 ±0.38ºC and 33.72 ±0.40ºC in the 

presence of CA100 and CA200 corneal analysers respectively (Table 4-4). 

To analyse the temperature variation over time between instruments, the analysis of 

covariance (ANCOVA) was used to find the changes in the trend of ocular surface thermal 

measures from all participants. The slopes were fit for each participant and then the slopes 

compared between instruments (Table 4-5). 

4.4.2.2.1 Eyelid: 

The average slope over the 180s time period for the CA100F was +0.00065ºC/s and for the 

CA200F was +0.00048ºC/s. Across subjects, the data was not significantly different between 

the CA100F and CA200F (paired t-test; df=9; p=0.487). Most of the participants (CA100-8, 

CA200-7) showed an increase in ocular temperature with time (Figure 4-14). 

4.4.2.2.2 Conjunctiva: 

The average slope over the 180s time period for the CA100F was -0.00104ºC/s and for the 

CA200F was +0.01079ºC/s. Across subjects, the data was not significantly different between 

the CA100F and CA200F (paired t-test; df=9; p=0.336). Only a few participants (CA100-1, 
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CA200-3) showed a significant increase in ocular temperature with time. Most of the 

participants (CA100-6, CA200-5) showed no significant change in temperature with time 

(Figure 4-15). 

4.4.2.2.3 Cornea: 

The average slope over the 180s time period for the CA100F was +0.00268ºC/s and for the 

CA200F was +0.00234ºC/s. Across subjects, the data was not significantly different between 

the CA100F and CA200F (paired t-test; df=9; p=0.758). Only a few participants (CA100-4, 

CA200-2) showed an increase in ocular temperature with time. Most of the participants with 

CA200 (n=6) showed no significant change in temperature with time (Figure 4-16). 

4.4.3 Surface aberrations: 

The higher order RMS was obtained for all the participants. Out of 10 participants, the data 

were extracted for 7 participants. We were not able to process the video obtained from the 

remaining three participants due to an unknown error during image processing.  The average 

HOA root mean square (RMS) values obtained from each participant was 0.599 ± 0.2345µm 

(n=7) and 1.0477 ± 0.692µm (n=7) in the CA100 and the CA200 corneal analysers 

respectively (Figure 4-17). The HOA RMS obtained were not statistically significant different 

between instruments. Individual coefficient data were also obtained for all participants. The 

average spherical aberrations were -0.144 ± 0.1488µm and -0.2848 ± 0.0704µm for the 

CA100 and the CA200 corneal analyser devices. A list average of individual coefficients is 

shown in Table 4-6. 

 



60 

 

 

 

 

Figure 4-15: Multilevel plot showing slopes of change in temperature of the conjunctiva over time for each corneal 

analyzer by participant. (Appendix 3, R.code 10) 

Figure 4-14: Multilevel plots showing slopes of change in temperature of the eyelid over time for each corneal analyzer by 

participant.(Appendix 3, R.code 10) 
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Figure 4-17: Comparison of HOA RMS obtained from participants using CA100 and CA200 corneal analyzers (Appendix 3, 

R.code 4) 

Figure 4-16: Multilevel plots showing slopes of change in temperature of the corneal surface over time for each corneal 

analyzer by participant. (Appendix 3, R.code 10) 
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Sub.id Eye lids Conjunctiva Cornea 

 CA100 CA200 

Comparison 

between 

instruments 

CA100 CA200 

Comparison 

between 

instruments 

CA100 CA200 

Comparison 

between 

instruments 

 
Slope 

(ºC/s) 

Slope 

(ºC/s) 
p < 0.05 

Slope 

(ºC/s) 

Slope 

(ºC/s) 
p < 0.05 

Slope 

(ºC/s) 

Slope 

(ºC/s) 
p < 0.05 

1 0.0003 -0.0005 * -0.0004 -0.0048 * 0.0249 0.0246  

2 0.0010 -0.0007 * 0.0021 -0.0035 * 0.0076 -0.0007 * 

3 0.0026 0.0027  -0.0039 0.0001 * -0.0040 -0.0005 * 

4 0.0007 0.0001 * -0.00003 0.0002  -0.0014 -0.0005  

5 -0.0007 -0.0001 * -0.0017 -0.0009  -0.0025 -0.0013  

6 0.0007 0.0007  -0.0003 -0.0012  0.0015 -0.0012 * 

7 -0.0006 0.0005 * -0.0045 -0.0016 * -0.0009 0.0001  

8 0.0010 0.0012  -0.00001 -0.0027 * -0.0011 -0.0001  

9 0.0009 0.0008  -0.0006 0.0028 * 0.0056 0.0031 * 

10 0.0005 0.0001 * -0.0014 -0.0003  -0.0030 -0.0001 * 

Table 4-5: List of slope values for thermal measures of each participants and their significance when compared between instruments. The bold values represent the slopes, which 

are significantly different from zero and ‘*’ represents a significant difference between the slope for each instrument (ANCOVA). 
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Coefficients CA100 (µm) CA200 (µm) 

Vertical coma Z3
-1 0.0186 ± 0.1201 0.1353 ± 0.2142 

Horizontal coma Z3
1 0.0547 ± 0.2409 0.1133 ±0.4506 

Spherical aberrations Z4
0 -0.1445 ± 0.1488 -0.2848 ± 0.0704 

Vertical trefoil Z3
-3 -0.0844 ± 0.1147 0.1162 ± 0.1436 

Horizontal trefoil Z3
3 -0.1736 ± 0.1147 -0.0877 ± 0.1387 

Table 4-6: List of average aberration coefficients obtained in CA100 and CA200 corneal analysers. 

4.5 Discussion: 

The spectral measures exhibit a definite difference between the luminance of the Placido 

discs. There was notable difference in the luminance distribution of the light source between 

quadrants and between sides for the CA100 topographer, whereas the light source was more 

evenly distributed in the CA200 corneal analyser. The inconsistency in the luminance may be 

due to the type of light source or the difference in the distribution of the light sources behind 

the Placido disc. To our knowledge, no studies have analysed the spectral characteristics of 

the Placido disc light source. The wavelength of the light from both the Placido discs was the 

same and it did not change over time. This indicates there is no influence of the wavelength of 

the light source on the corneal aberration measures. Although the peak wavelength was not 

different between the two devices, the higher luminance of the CA100 might induce a 

photophobic and/or reflex tear response, which may contribute to a difference in the measured 

aberrations between instruments. 
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When it comes to ocular surface temperature, there are many studies, in which ocular surface 

temperature was reported, using a thermometer or a thermograph.3,49,50,52,56–61 Most of these 

studies agree that there is a decrease in the corneal and conjunctival surface temperature with 

time. They also observed a steeper decrease in the surface temperature with time in dry eye 

participants compared to normal participants. All these measurements were taken directly on 

the cornea without the influence of an external source. 49,52,59,61 

In our study, two Placido disc light sources were used at its normal working distance to 

measure their influence on the ocular surface temperature variation. Corneal temperatures 

obtained in this study were similar to previous studies and there was no significant difference 

in the change in surface temperature over time between corneal analysers. A similar trend was 

observed with the eyelid and conjunctival temperature over time.  

The location of the thermometer during the temperature measurement was a limitation in this 

study. Due to the Placido disc’s large diameter and close working distance, the thermometer 

had to be introduced from the side, between the eye and the Placido disc. A study conducted 

by Morgan et al.52 measured ocular surface temperature using an infrared thermograph, which 

provides ocular surface temperature for the entire ocular surface rather than a reference point. 

They observed a variation in corneal temperature from the center of the cornea towards the 

periphery and that it depended on the curvature of the cornea. Thus, because the curvature 

differences between patients were not controlled or corrected, this may be the reason for 

differing trends in the temperature between study participants.   

The higher order RMS was not significantly different between the corneal analysers, although 

on average, the higher order RMS was higher for the CA200 compared to the CA100 . 
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4.6 Conclusion: 

This study found that: 

i. The CA200 is the preferred device to use for these studies because of the consistent 

luminance. 

ii. Although aberrations were not significantly different between devices, the HOA RMS 

were higher with the CA200 and, combined with different luminance and possible tear 

response, indicates that the two devices are not interchangeable. 

iii. For both instruments, there was no indication that there is a thermal response induced 

by the power of the light source. Therefore, this aspect of the source does not likely 

contribute to any difference in the aberrations measured by the two devices. 
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Chapter 5 : Assessment of Tear Film Stability / 

Regularity Using Surface Aberrometry 

5.1 Background: 

An increase in HOAs has been associated with NITBUT in normal and dry eyes,41,62–65 and 

the magnitude of HOA associated with the tear film are higher in individuals with dry eye 

than in those without.41,66 An increase in HOA has also been noted with soft contact lens 

wear,66,67 with some dependence on soft contact lens design.68,69 A shorter NITBUT in contact 

lens wearers has been found to be associated with reduced optical quality, and is thus 

implicated in blurry visual symptoms with lens wear.39  

A stable tear film is critical in order to maintain a healthy ocular surface and to provide good 

optical quality. Both invasive and non-invasive methods exist to evaluate tear film stability; 

however, they do not provide a good measure of the dynamic nature of the tear film. The use 

of surface aberrometry may provide an instantaneous, discriminatory measure of tear film 

stability, as well as a dynamic measure of temporal tear film stability.  

Using the results from Chapter 3, the study design for this chapter was altered. The first 15 

seconds of the measurements were discarded, measurements were obtained at 0.25 sec 

sampling time and the focus was maintained at either green focus or red focus positions for 

maximum accuracy. 

 This study intended to examine the measurement itself, by obtaining measurements on 

human participants for different blink regimen, and head position, and the impact on the 
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measurement of nasal shadow, eyelashes, etc. on the measurement area. It also examined 

existing output metrics (already published for similar procedures) in addition to other metrics, 

particularly those that may characterize the dynamic/local nature of the tear film. 

5.2 Objectives: 

The overall objectives of this study were: 

1. To determine the optimal method for acquisition with respect to normal physiological 

processes, by examining the blink regimen and head position that elicits the most 

consistent response over the largest region on repeated measurement. 

2. To determine the largest region selected for analysis by investigating the effect on the 

individual and summary aberration metrics of the inclusion of non-measurement areas 

(i.e. where the Placido disc cannot be projected onto the cornea or contact lens). The 

proportion of non-measurement area that elicits a significantly different result will be 

determined.  

5.3 Methods: 

5.3.1 Study design: 

This study was conducted as a non-dispensing assessment in which the methodology for 

optimizing measurement acquisition was developed. Various methods of data-capture were 

explored (e.g. blink regimen [natural vs. forced] and head position). Measurements with 

different head positions was used to analyse the missing area due to shadows from the nose 
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and/or eyelashes, preventing capture of data across the full cornea or contact lens. The impact 

of these areas on the outcome measures was determined.  

Twenty adapted soft contact lens wearers were screened with the goal of enrolling twelve 

participants: six who demonstrate poor soft contact lens wettability and poor tear film stability 

with no lens (Group A) and six who demonstrate good soft contact lens wettability and good 

tear film stability with no lens (Group B). Participant eligibility was determined at a screening 

and fitting visit according to the inclusion and exclusion criteria outlined below. Informed 

consent was obtained from all participants prior to enrolment in the study.  There were three 

scheduled visits by the participants to the CCLR research facility during the study, if they 

were successfully enrolled into the study, including the initial screening visit and two 

additional visits on two separate days. Ethics clearance was obtained through the Office of 

Research Ethics at the University of Waterloo, prior to commencement of the study.  

5.3.2 Inclusion and exclusion criteria: 

A person was eligible for inclusion in the study if he/she: 

1. Was at least 17 years of age and has full legal capacity to volunteer; 

2. Had read and signed an information consent letter; 

3. Was an adapted soft contact lens wearer; 

4. Was willing and able to follow instructions and maintain the appointment schedule; 

5. Had had an ocular examination in the last two years; 
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6. Had clear corneas and no active ocular disease; 

7. Had wettability ≥ grade 3 with their habitual lenses and a non-invasive tear break-up 

time (NITBUT) of < 5 seconds with no lens (group A) or wettability≤ grade 0.5 with 

habitual lenses and a NITBUT of > 10 seconds with no lens (group B). 

A person was excluded from the study if he/she: 

1. Had any ocular disease; 

2. Had a systemic condition that may affect a study outcome variable; 

3. Was using any systemic or topical medications that may affect ocular health; 

4. Had known sensitivity to the diagnostic pharmaceuticals to be used in the study; 

5. Had undergone corneal refractive surgery; 

6. Had any clinically significant lid or conjunctival abnormalities, neovascularisation, 

corneal scars or corneal opacities. 

5.3.3 Study visits: 

5.3.3.1 Screening and fitting visit: 

On the screening visit, participants were advised to wear their habitual lenses for at least 5 

hours before the screening visit and to follow their regular work schedule. The participants 

were scheduled in the afternoon hours for the screening visit, to allow for five hours’ time 

interval from the time of contact lens insertion. The enrolled participants were screened with 
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their habitual lenses for lens wettability and tear break up time without contact lenses. The 

participants were then included or excluded from the study according to the protocol.  

From the list of twenty participants screened, twelve participants were recruited for the 

follow-up visit. These participants had their lens wettability grade and NITBUT values within 

the limits of inclusion criteria (Table 5-1). Each group (normal and dry eye group) had six 

participants (5 females and 1 male in each). The normal group’s mean age was 26 ± 5.9 years 

and dry eye group’s was 34.7 ± 10.3 years (Table 5-2 ). Other refractive and habitual contact 

lens characteristics of the two groups are listed in Table 5-3 and Table 5-4 

After the screening visit, the B&L Purevision lenses were fitted on the same day according to 

the manufacturer’s guidelines. If the lenses provided inadequate movement or unacceptable 

decenteration for a particular participant, that person was not enrolled in the study. The lens 

parameters of the Purevision lenses are listed in Table 5-5. 

 Normal group Dry eye group 

 OD OS OD OS 

Wettability with habitual 

lenses 
0.20± 0.1 0.42± 0.2 3.00± 0.24 2.88± 1.07 

NITBUT without habitual 

lenses (seconds) 
8.38± 1.24 10.12± 2.08 4.80± 1.27 5.30± 1.43 

Table 5-1: Lens wettability and NITBUT characteristics of each group during screening visit 
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Table 5-2: Age and habitual lens characteristics of normal and dry eye group. 

  Normal group Dry eye group 

  OD OS OD OS 

K-readings 

(Dioptres) 

Flat K 

Steep K 

43.12± 0.51 

44.34± 0.79 

42.96± 0.61 

44.27± 0.98 

44.45± 1.55 

45.50± 1.53 

44.25± 1.54 

45.33± 1.45 

Corneal 

cylinder 

(Dioptres) 

 -1.22± 0.43 -1.36± 0.57 -0.96± 0.26 -1.08± 0.27 

Refractive 

error 

(Dioptres) 

Sphere 

Cylinder 

-2.4± 2.22 

-0.87± 0.68 

-2.67± 2.47 

-0.89± 0.93 

-3.8± 0.9 

-0.5± 0.42 

-3.52± 1.28 

-0.62 ± 0.46 

Table 5-3: Refractive characteristics of normal and dry eye group. 

 

 Normal group Dry eye group 

Age 26 ± 5.9 (21 to 35 yrs) 34.7 ± 10.3 (24 to 52 yrs) 

Gender 1 male, 5 females 1 male, 5 females 

Average CL wearing time of 

habitual lenses 
11.5 hrs ± 2.3 10.5 hrs± 3.3 

Average no. of days of wear 

of habitual lenses per week 
5.5 days± 1.0 5.0 ± 1.23 

Average no. of years of CL 

wear 
5.0 yrs ± 4.3 13.7 yrs± 12.5 
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No. of 

participants 
Normal group 

No. of 

participants 
Dry eye group 

Lens type 

1 Acuvue2 4 Acuvue Oasys 

3 Acuvue Oasys 1 
1-Day Acuvue 

TrueEye 

1 Dailies Torics 1 
Air Optix 

Multifocal 

1 
Dailies Aqua 

Comfort Plus   

Lens care 

solution 

2 OptiFree Replenish 
5 ClearCare 

2 ClearCare 

Wearing 

modality 

1 Monthly 2 Monthly 

3 Biweekly 3 Biweekly 

2 Daily 1 Daily 

Table 5-4: Habitual lens characteristics of each group during screening visit. 
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Identifier PureVision contact lens 

Manufacturer Bausch & Lomb 

Material Balafilcon A 

FDA classification Group III 

Health Canada license # 25928 and 22080 

Health Canada device 

identifier 
PUREVISION 

EWC (%) 36% 

Dk/t (-3.00D) 101 

BOZR (mm) 8.3, 8.6 

Diameter (mm) 14.0 

Spherical powers (D) 

-0.25D to -6.00D (0.25) 

-6.50 to -12.00D (0.50) 

plano to +6.00D (0.25) 

(8.3 mm) -0.25D to -6.00D 

(0.25) 

Table 5-5: Study lens parameters. 
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5.3.3.2 Follow up visits: 

Following a successful screening and fitting visit, participants returned for the first study visit 

(Visit 1) after two days of no contact lens wear. Measurements of NITBUT, surface 

aberrations were obtained before and after insertion of a new pair of study lenses. The 

measurements of lens wettability were only obtained with the study lenses. Each measurement 

was randomized between eyes and between measurement types, to avoid order effects 

influencing the results obtained (Table 5-6 and Table 5-7). The order of measurements in the 

second visit was repeated in the same order as the first visit. Visits were scheduled in the 

afternoon and all participants had visits within the same one to two hours (i.e. between 1 and 

3 p.m.). These procedures were repeated on a separate day, ± 0.5 hours from the time Visit 1 

was conducted (Visit 2). Each study visit included three sets of measurements separated by a 

15-minute wait period. Measurements were separated into 3 categories: before study lens 

insertion, immediately after study lens insertion and 30 minutes after study lens insertion.  
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Group 

Normal (N) / 

Dry eye (DE) 

ID. No. Test 1 Test 2 Test 3 

DE 3 Pre lens NITBUT Aberrometry Lens wettability 

DE 4 Lens wettability Aberrometry Pre lens NITBUT 

DE 5 Pre lens NITBUT Lens wettability Aberrometry 

DE 7 Lens wettability Aberrometry Pre lens NITBUT 

DE 8 Pre lens NITBUT Lens wettability Aberrometry 

N 10 Aberrometry Lens wettability Pre lens NITBUT 

N 12 Lens wettability Aberrometry Pre lens NITBUT 

N 14 Lens wettability Pre lens NITBUT Aberrometry 

N 15 Aberrometry Lens wettability Pre lens NITBUT 

N 16 Lens wettability Aberrometry Pre lens NITBUT 

N 18 Pre lens NITBUT Lens wettability Aberrometry 

DE 20 Pre lens NITBUT Lens wettability Aberrometry 

Table 5-6: Randomization table for the order of measurements. 
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Group (N/DE) ID. No. Natural blink Forced blink Head position 

DE 3 OU OD OS 

DE 4 OU OS OD 

DE 5 OU OD OS 

DE 7 OU OD OS 

DE 8 OU OS OD 

N 10 OU OS OD 

N 12 OU OS OD 

N 14 OU OS OD 

N 15 OU OD OS 

N 16 OU OS OD 

N 18 OU OS OD 

DE 20 OU OS OD 

Table 5-7: Randomization table for aberrometry measurements- forced blink and head position. 
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5.3.4 Study measures: 

5.3.4.1 Contact lens wettability: 

Wettability measurements were performed by viewing the specular reflection of the pre-lens 

tear film under high magnification (32X) and very low illumination (both internal and 

external light diffusers on the slit lamp). Two examples of the image of the specular reflection 

used for grading are shown in Figure 5-1. 

Figure 5-1: Examples of good image quality (grade 0) (left) and poor image quality (grade 4) (right) of the specular 

reflection off the pre-lens tear film. 

Surface drying between blinks and re-wetting with each blink were considered when deciding 

on the final wettability grade.  Nasal and temporal sides of the lens are each graded separately 

and the final grade was an average between the two. A 0-4 grading scale, with 0.25 grading 

steps was used. Wettability measurements were repeated on visit 1 and visit 2. 

5.3.4.2 Non-invasive tear break up time (NITBUT): 

Following wettability measurements at the screening visit, participants removed their habitual 

lenses and waited for 10 minutes before NITBUT measurements were obtained. NITBUT was 

assessed by using the AtlasTM corneal topographer. The instrument has a keratoscope unit that 
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Figure 5-2: A schematic representation of tear breakup during the NITBUT test. 

produces concentric rings of light, which are reflected off the cornea and imaged by a CCD 

camera. Participants looked at a fixation target at the centre of the concentric rings of light 

and were asked to blink 3 times before each measurement was taken. NITBUT was 

determined by measuring the time taken for distortions or discontinuities to appear in the 

reflected image of the concentric ring pattern (Figure 5-2). The time (in seconds) for the first 

distortion of the rings was measured using a stopwatch, to the nearest 0.1-second. Three 

measurements were taken for each eye and averaged. On visit 1 and 2, NITBUT 

measurements were taken before lens insertion, 15 and 30 minutes post-lens insertion. 
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5.3.4.3 Surface aberrometry measurements: 

The temporal measurements of ocular surface aberrations were obtained using the Topcon 

CA100 corneal analyser. The methods to obtain dynamic aberrations using the CA100 corneal 

analyser  was explained in Chapter 2. The methodology for obtaining the surface aberrometry 

measurements in vivo were determined by the outcomes of Chapter 3 (measurement 

acquisitions from a model eye).  

The acquisition parameters followed while acquiring measurements with human eyes were: 

1) Data was acquired with an inter-frame interval of 0.25s; 

2) The first 15s of data, obtained while the optimal focus arrows were being obtained, 

was removed and  

3) The green (optimal) focus position was determined immediately post-blink.  

At each visit, multiple acquisitions of surface aberrometry measurements were obtained for 

evaluation of repeatability of the measure and any developed metrics. In addition, measures 

were obtained in the straight-ahead position, with 10° and with 20° of head turn (Figure 5-4) 

to allow assessment of the impact of shadows from the lashes and nose on the area of the 

target projected onto the cornea. To measure aberrations in different head turns, a degree scale 

(protractor) was attached below the participants chin rest, with 90° located at the center of the 

chin rest (Figure 5-3). When the participant looked straight ahead, the tip of the nose was 

aligned with the 90° of the degree scale. With 10° and 20° degree head turn, the tip of the 

nose was aligned with a head turn to the desired measurement angle. Participants were 

instructed not to change their head position during the measurement period. Lastly, 
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measurements were obtained with natural blinking and with forced blinking (blink every ~8 

seconds). During the forced blink interval, the examiner activated a metronome calibrated for 

1 sec time interval between two sounds and participants were instructed to blink every 8 sec 

by the examiner. 

 

 

 

Figure 5-3: The degree scale (protractor) attached to the bottom of the chin rest as a guide for measuring surface 

aberrations at different head turn angles. 

Figure 5-4: Head turn was determined by aligning the nose tip to the center in primary gaze (a, )to 10° (b) and 20° (c) degree 

off the center. 

a b c 
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5.4 Data analysis: 

Raw surface aberration data were smoothed using a running mean procedure (k=moving 

window size=11), with the moving window centred on the central time point of capture. The 

purpose of this procedure was to minimise the between measurement variability without 

losing the trend of the data over time. This procedure was undertaken using the caTools70 

package in the R statistical software.46 The procedure generated a ‘running mean’ for each 

point and, in addition a ‘running SD’ for the window. In this way, confidence intervals could 

be constructed around the running mean that would describe the variability within a window 

across time. Therefore, data showing high variability within a window (as might be expected 

with emergence of areas of surface dryness) would have a wider confidence interval than data 

exhibiting low variability.  

The area covered by the Placido disc each of the in three head turn positions was calculated 

using ImageJ (v.1.46.a) application software.71 After obtaining the areas between the eyelids 

of individual participant, values were compared between the participants and groups using 

repeated measures ANOVA.  

One-way analysis of variance was used to compare between normal and dry eye groups for 

single estimates of any measure per subject. Repeated measures ANOVA was employed for 

comparison between normal and dry eye groups with multiple acquisitions of the aberrometry 

data on the same subject (SPSS v20).72  
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5.5 Results: 

5.5.1 Contact lens wettability: 

The contact lens wettability obtained in the right eye of each participant was not significantly 

different between visits (Visit 1, Visit 2; RM-ANOVA F(1,11)=0.215; p=0.652) but was 

significantly higher at the 1hr measure than at the 15mins measure (measure 15min & 1hr); 

RM-ANOVA F(1,11)=8.308; p=0.015) (Figure 5-5). This difference was not different between 

visits (Visit*Measure; RM-ANOVA F(1,11)=3.090; p=0.107).  

The lens wettability in the left eye was not significantly different between the 15min and 1hr 

after contact lens insertion in both groups (Visit; RM-ANOVA F(1,11)=0.120; p=0.736; 

Measure; RM-ANOVA F(1,11)=15.619; p=0.002; Visit*Measure; RM-ANOVA F(1,11)=0.886; 

p=0.367) (Table 5-8).  

5.5.2 NITBUT: 

There was no statistically significant difference between the NITBUT between visits 

(screening, visit 1 & visit 2; RM-ANOVA F(2,22)=1.831; p=0.190), between eyes (OD & OS; 

RM-ANOVA F(1,11)=0.266; p=0.616) or their interaction (eyes*visits; RM-ANOVA F(2, 

22)=3.124; p=0.068).(Table 5-8) 
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Normal group- 

visit 1 

Normal group- 

visit 2 

Dry eye group– 

visit 1 

Dry eye group– 

visit 2 

CL Wettability- 

After 15 min 

OD 0.41± 0.21 0.54±0.29 1.63± 1.21 1.92±1.10 

OS 1.00 ±1.24 1.00±0.63 2.50 ±1.38 2.87±0.97 

CL Wettability- 

After 1 hr 

OD 1.13± 0.93 1.00±0.39 2.50± 1.04 1.91±0.89 

OS 1.67 ±1.29 1.54±1.08 3.13 ± 0.85 3.08± 0.77 

NITBUT- Without 

CL (sec) 

OD 7.41±2.6 8.36±1.99 5.53± 1.05 5.56± 2.17 

OS 7.42±1.81 8.54±2.89 4.72± 1.61 4.79±1.07 

NITBUT with CL- 

After 15 min (sec) 

OD 6.9±2.25 6.70±1.58 5.13± 1.71 5.40± 1.90 

OS 5.51±1.03 5.7±2.04 4.48± 1.03 4.23±1.23 

NITBUT with CL- 

After 1 hr (sec) 

OD 6.08±0.88 7.11±1.82 4.72± 1.12 5.50±1.3 

OS 5.6±1.6 5.58±1.45 4.00± 1.71 5.19±1.31 

Table 5-8: Average and standard deviation of lens wettability and NITBUT measurement of visit 1 and visit 2. 

 



84 

 

 

Figure 5-5: Visit 1- lens wettability comparisons between groups and measurements for 15 min and 1 hr post lens insertion. The 1 hr measurement was higher after than the 15 

min. 
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Figure 5-6: Visit 1-NITBUT measurement comparisons between the group and measurements for measurements without contact lens, 15min and 1hr after contact lens insertion. 
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5.5.3 Clinical measurement optimization: 

5.5.3.1 Analysis of target area with head position: 

Video of the Placido disc was exported from the TOPCON measurement device without the 

aberration map superimposed. The video was cropped to a segment that excluded the first 15 

seconds (where instrument focusing took place) and included at least 3 blinks. The video 

segment was then converted to a jpeg-image sequence. A single jpeg was selected from the 

post-blink phase in which the Placido target rings were clear and was representative of the 

coverage seen in the image sequence (Figure 5-7(a)).  

The selected image was cropped at the limbal region (Figure 5-7 (b)). The image was 

converted to a binary image using local auto-thresholding (NiBlack with a radius of 8 pixels; 

ImageJ, v.1.46a NIH Image, Bethesda, MD, USA). This procedure highlighted the white 

Placido rings in black and all other parts of the image as white (Figure 5-7(c)). Discontinuities 

in the Placido rings (shadows from eyelashes or nose) where coded as white. The coordinates 

of the centre of the cornea were located by selecting the inner edge of the central Placido ring 

(Figure 5-7(d)).  

A 500x500 pixel selection box was drawn, centred on the position of the central cornea, and 

the image was cropped. The percentage area of the 500x500 pixel box that was black was 

measured and this was analysed across images and in different head positions (Figure 5-7(e)). 

The number of complete target circles was also determined for each condition. 
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Figure 5-7: Image processing procedures to identify percentage area of 500 x 500-pixel area that is covered by the Placido 

target. (a) Original jpeg exported from movie; (b) Crop to limbal area; (c) Local auto-threshold (NiBlack, Radius 8pixels); 

(d) Locating the centre of the cornea; (e) Crop to 500x500 pixel box centred on the corneal centre from which the %area 

covered by Placido targets is determined 
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There was no significant difference between the area covered by the target (% of pixels) for a 

given head position at the first or second measure (RM-ANOVA F=0.054; p=0.816; Figure 

5-8). Thus, the values for the area covered by the target were averaged across the repeated 

measures for each head position and were then re-analysed for the percentage area covered as 

a function of head position and diagnostic group. 

There was no significant difference between the percentage area covered by the Placido 

targets between head positions (RM-ANOVA F=1.724; p=0.216) for normal/ dry eye groups 

(RM-ANOVA F=0.235; p=0.639) or for their interaction (RM-ANOVA F=0.203; p=0.756). 

The same result was found for the number of complete rings in the target. Table 5-9 shows the 

descriptive data of the percentage of area covered by Placido disc over the corneal surface, as 

a function of measure number, head position and diagnostic group  

 

 

Figure 5-8: Percentage area covered by Placido target as a function of head position and diagnostic group 
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 Straight Ahead 10° Head Turn 20° Head Turn 

 % Area # Circles % Area # Circles % Area # Circles 

Measure 1 
Mean 

(±SD) 

Median 

(Range) 

Median 

(Range) 

Mean 

(±SD) 

Median 

(Range) 

Median 

(Range) 

Mean 

(±SD) 

Median 

(Range) 

Median 

(Range) 

Normal group 
19.8 

(3.1) 

18.8 

(16-24) 

4.0 

(2-5) 

21.2 

(3.0) 

21.5 

(18-26) 

4.0 

(2-5) 

21.4 

(2.5) 

21.1 

(19-25) 

3.0 

(1-5) 

Dry eye group 
19.6 

(2.4) 

20 .0 

(16-22) 

3.5 

(2-6) 

20.5 

(2.7) 

20.7 

(19-22) 

4.0 

(2-6) 

21.5 

(2.3) 

21.5 

(17-24) 

3.5 

(3-6) 

 

Measure 2 
Mean 

(±SD) 

Median 

(Range) 

Median 

(Range) 

Mean 

(±SD) 

Median 

(Range) 

Median 

(Range) 

Mean 

(±SD) 

Median 

(Range) 

Median 

(Range) 

Normal group 
21.2 

(3.0) 

20.3 

(16-29) 

4.0 

(2-5) 

20.7 

(2.7) 

20.1 

(19-24) 

4.0 

(2-5) 

21.5 

(2.3) 

20.7 

(19-26) 

3.0 

(2-5) 

Dry eye group 
19.6 

(3.4) 

19.1 

(16-25) 

4.0 

(3-6) 

20.2 

(2.4) 

20.7 

(19-22) 

3.5 

(3-5) 

20.9 

(2.3) 

21.2 

(18-24) 

3.5 

(3-5) 

Table 5-9: Percentage area of Placido target and number of complete circles as a function of head position and diagnostic group. 
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5.5.4 Comparison of aberrations between groups – Natural blink 

5.5.4.1 RMS Aberrations without contact lens – Natural blinking 

The average RMS over the time of acquisition without contact lenses and the average width of 

the confidence interval are shown for each participant, stratified for diagnostic group in Table 

5-10. The change in NITBUT from the screening visit is also shown. The normal group 

showed a larger change, generally a reduction, in NITBUT from the screening appointment. 

The confidence interval over smoothed RMS values was calculated for each time point, as 

shown in Figure 5-9. On average, the smoothed RMS was relatively constant over the 

measurement acquisition time. The dry eye group showed slightly more variation in RMS and 

width of the confidence interval over the time of acquisition, although this was not true for all 

participants in the dry eye group. (Figure 5-10) 

5.5.4.2 RMS Aberrations with contact lenses – Natural blinking 

The average RMS over the time of acquisition with the study contact lenses and the average 

width of the confidence interval are shown for each participant, stratified for diagnostic group 

in Table 5-11. The change in NITBUT and wettability from the screening visit is also shown. 

The dry eye group showed improved wettability after the lenses had been inserted for 15 

minutes than the wettability observed with their habitual lenses. In participants #3, #8 & #20 

the improvement in wettability seen at 15 minutes did not persist to the same extent after 1 

hour of study lens wear. (Table 5-11)  

Unlike in the normal group, the dry eye group showed a trend to increasing RMS over the 

measurement acquisition period with the study lenses. In both visits, the width of the 
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confidence interval did not differentiate between the two groups without contact lenses, but it 

showed a difference when the measurements were obtained with study lenses. (Figure 5-10) 

 

ID 

 

Average 

RMS 

(±SD) 

 

Average 

RMS CI 

Width (±SD) 

Change in 

NITBUT 

from 

screening 

Normal group (µm) (µm) (Sec) 

10 0.48±0.01 0.023±0.010 -3.88 

12 0.59±0.06 0.062±0.081 -2.87 

14 0.44±0.004 0.002±0.002 -1.23 

15 0.82±0.45 0.822±1.335 1.88 

16 0.44±0.49 0.051±0.029 -1.25 

18 0.45±0.01 0.031±0.010 1.47 

Dry eye group    

3 0.56±0.04 0.067±0.019 0.26 

4 1.21±0.75 0.251±0.719 0.97 

5 0.60±0.13 0.058±0.066 -0.63 

7 0.44±0.08 0.100±0.208 0.80 

8 0.47±0.02 0.030±0.022 -0.84 

20 0.50±0.02 0.025±0.010 2.35 

Table 5-10: Average RMS and confidence interval (CI) width of the RMS for each study participant without contact lenses at 

the first visit. Positive change in NITBUT indicates a longer NITBUT at Visit 1(OD) 
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Table 5-11: Average RMS and confidence interval (CI) width of the RMS for each study participant with contact lenses at the first visit (OD). Positive change in wettability 

indicates that the wettability is worse at Visit 1 with the study lenses.  Positive change in TBUT indicates a longer NITBUT at Visit 1  

Groups SID 
Average RMS 

(µm) (±SD) 

Average RMS CI 

Width 

(µm) (±SD) 

Change in lens 

wettability 

after 15 mins 

Change in lens 

wettability 

after 1 hour 

Change in 

average 

NITBUT¶ after 

15 mins (sec) 

Change in 

average 

NITBUT¶ after 

1 hour (sec) 

N
o
rm

al
 g

ro
u
p

 

10 0.47±0.013 0.024±0.009 0.25 0.75 -0.02 -3.61 

12 0.84±0.065 0.052±0.020 0.50 2.75 0.66 -2.51 

14 0.44±0.008 0.015±0.005 0.00 0.50 -2.67 -2.37 

15 1.24±0.115 0.224±0.087 0.25 0.50 -4.31 -4.23 

16 0.36±0.080 0.067±0.095 0.25 0.75 -2.31 0.30 

18 0.47±0.034 0.067±0.044 0.00 0.25 -0.23 -1.43 

D
ry

 e
y
e 

g
ro

u
p

 

3 0.47±0.05 0.147±0.075 -2.25 -0.25 1.41 1.25 

4 1.48±0.36 0.574±0.249 -0.50 -0.25 -0.58 0.10 

5 0.56±0.04 0.217±0.279 -2.00 -2.00 -0.43 0.12 

7 0.47±0.16 0.089±0.098 0.25 0.50 1.37 -0.14 

8 0.47±0.16 0.078±0.104 -1.50 0.00 -3.03 -3.01 

20 0.42±0.04 0.071±0.029 -2.50 -1.25 2.78 0.78 
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Figure 5-9: Representative scatter plot of smoothed HOA RMS (green dots) with CI (blue lines) of a normal and dry eye participant. 
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5.5.5 Comparison of aberrations between groups – Forced blink 

Data were also obtained without and with contact lenses, where the blinking was regimented. 

Subjects were instructed to blink every 8s. This procedure was intended to allow investigation 

of the within-blink dynamics. In the CA-100F, the blink is not identified in the output data of 

the instrument.  

However, due to the forced blink paradigm, the approximate position of the blinks were 

identified and the data between two forced blinks (an epoch) was used to determine the slope 

of the data (RMS per unit time). In addition, the minimum and maximum values within each 

Figure 5-10: Average CI width for normal and dry eye participants with and without contact lenses as a function of tear 

break-up time in the natural blinking paradigm. 
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epoch were determined. Examples of the analysis in a normal and a dry eye participant are 

shown in Figure 5-11. 

5.5.5.1 RMS - Normal participants: 

Table 5-12 shows the blink characteristics for the normal participants with and without a 

contact lens in place. It can be seen that in all conditions, the slope of the RMS in the blink 

epoch is very shallow (excepting subject #14 without a contact lens). The maximum and 

minimum values did not illustrate the same trend, but this might be expected, as outliers in the 

data more heavily influence the trend.   

5.5.5.2 RMS - Dry eye participants: 

Table 5-13 shows the blink characteristics for the dry eye participants with and without a 

contact lens in place. It can be seen that in all conditions, the slope of the RMS in the blink 

period is considerably higher (~4x) than in the dry eye group, in both the without CL (t-test, 

p=0.001) and with CL (t-test, p=0.000) conditions. The large positive slope indicates that the 

RMS aberrations increase from beginning to end of the blink period. Again, the maximum 

and minimum values did not illustrate the same trend.   
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Figure 5-11:Slope of the RMS within a blink illustrated for an normal participant (#18; left) and a dry eye participant (#3; right) without a contact lens in place in the forced 

blink paradigm. The line was fitted to all the data but for ease of comparison, the scale of y-axis was kept constant. 

10 20 30 40 50

0
.5

1
.0

1
.5

2
.0

2
.5

#18  without CL - Forced Blink

Time (s)

H
ig

h
e

r 
O

rd
e
r 

R
M

S
 (

m
ic

ro
n

s
)

10 20 30 40 50
0
.5

1
.0

1
.5

2
.0

2
.5

#3 Symptomatic without CL - Forced Blink

Time (s)

H
ig

h
e
r 

O
rd

e
r 

R
M

S
 (

m
ic

ro
n
s
)

Approximate 

location of 

blink 

Slope 

Normal participant Dry eye participant 



97 

 

SID  Time point #10 #12 #14 #15 #16 #18 

W
IT

H
O

U
T

 C
L

 

Min RMS 

(µm) 

24-32 0.53221 0.53318 0.51257 0.43925 0.34578 0.38699 

32-40 0.56831 0.57435 0.53243 0.38889 0.36871 0.37593 

Max RMS 

(µm) 

24-32 0.66902 0.88661 0.95685 0.67755 0.79521 0.51849 

32-40 0.71507 0.9457 0.89074 0.76097 0.71655 0.48018 

Average Slope  

 

0.03387 -0.5711 1.85874 -0.1078 0.36969 -0.6297 

(Max-Min) RMS 

(µm) 

24-32 0.13681 0.35343 0.44428 0.2383 0.44943 0.1315 

32-40 0.14676 0.37135 0.35831 0.37208 0.34784 0.10425 

W
IT

H
 C

L
 

Min RMS 

(µm) 

24-32 0.48663 0.48462 0.52413 0.38641 0.53568 0.35421 

32-40 0.45179 0.45898 0.54598 0.38125 0.42864 0.36478 

Max RMS 

(µm) 

24-32 0.55041 0.76758 0.64993 1.14037 1.31699 0.7345 

32-40 0.56672 0.74514 0.66923 2.51626 0.69145 0.91773 

Average Slope   0.06122 0.18288 -0.0747 -0.5734 0.31471 -0.5645 

(Max-Min) RMS 

(µm) 

24-32 0.06378 0.28296 0.1258 0.75396 0.78131 0.38029 

32-40 0.11493 0.28616 0.12325 2.13501 0.26281 0.55295 

Table 5-12: Blink characteristics for the normal group with and without a contact lens in place in the forced blink paradigm. The data in the table shows the minimum and 

maximum RMS value within each blink, the average slope of the RMS for the two blinks, and the difference between the maximum and minimum RMS with each blink 
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SID 

 

Time point 
#3  #4  #5  #7  #8  #20  

W
IT

H
O

U
T

 C
L

 

Min RMS 

(µm) 

24-32 
0.38467 0.89869 0.49315 0.40044 0.46735 0.4257 

32-40 
0.43169 0.68009 0.47205 0.40618 0.45647 0.5057 

Max RMS 

(µm) 

24-32 
1.6138 1.54934 0.64628 0.51829 1.02539 1.34333 

32-40 
1.26351 1.84161 1.05169 0.52371 0.9194 3.59292 

Average Slope 

 
2.44990 1.26680 2.07211 2.47948 2.16492 2.14731 

(Max-Min) RMS 

(µm) 

24-32 
1.22913 0.65065 0.15313 0.11785 0.55804 0.91763 

32-40 
0.83182 1.16152 0.57964 0.11753 0.46293 3.08722 

W
IT

H
 C

L
 

Min RMS 

(µm) 

24-32 
0.25426 0.38558 0.35333 0.35919 0.47311 0.51786 

32-40 
0.32264 0.38949 0.43651 0.33463 0.51356 0.50703 

Max RMS 

(µm) 

24-32 
0.70333 0.64433 0.83961 0.72834 0.82613 0.86763 

32-40 
0.65233 0.90418 0.85372 0.54033 0.93469 0.82004 

Average Slope  
3.46681 2.58041 2.53216 2.88259 2.02702 1.95143 

(Max-Min) RMS 

(µm) 

24-32 
0.44907 0.25875 0.48628 0.36915 0.35302 0.34977 

32-40 
0.32969 0.51469 0.41721 0.20570 0.42113 0.31301 

Table 5-13: Blink characteristics for the dry eye group with and without a contact lens in place in the forced blink paradigm. The data in the table shows the minimum and 

maximum RMS value within each blink, the average slope of the RMS for the two blinks, and the difference between the maximum and minimum RMS with each blink
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5.5.5.3 Width of confidence interval  

The average confidence interval width was examined for the forced blinking paradigm. In the 

natural blinking paradigm, the width of the confidence interval was not different between the 

two groups (dry eye & normal) without a contact lens in place, but showed a relative shift 

towards higher RMS in the dry eye group with the contact lens. In the forced blinking 

paradigm, a similar relationship was seen. In this case, however, the normal group exhibited a 

higher range of RMS aberrations without the contact lens in place. This may have been 

because the 8-second interval between blinks was longer than their typical inter-blink interval, 

leading to greater variability at the end of the blink interval than with the natural blinking 

paradigm. Nevertheless, with the contact lens in place, the dry eye group tended to show a 

shift towards higher RMS aberration values, whereas the normal group did not. 

 

 

Figure 5-12: Average CI width for normal and dry eye participants with and without contact lenses as a function of tear 

break-up time in the forced blinking paradigm. 
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5.6 Discussion 

5.6.1 Analysis of target area with head position 

There was no significant difference in the size of the target areas or the number of complete 

rings projected onto the cornea with 10° or 20° of head turn when compared to the straight-

ahead position. Thus, this study concludes that the straight-ahead position is optimal for 

image acquisition with this anterior surface aberrometer.  

5.6.2 Comparison of natural & forced blink paradigms 

The forced blink paradigm introduced greater variability into the data. However, with the 

CA100, the forced blink paradigm was the only mechanism by which blink dynamics could 

be evaluated. The CA100 device deletes identified blink data from the instrument data set and 

does not export the location of the blink from the device. However, the newer CA200 does 

keep all of the blink data and allows the blink location to be determined both in forced and 

natural blinks paradigm. Given that blink dynamics does appear to differentiate between the 

groups in this pilot study, the newer device would be the preferred device for surface 

aberration capture.  

5.6.3 Comparison of aberrations between groups 

In the forced blink paradigm, the slope of the RMS within a blink was different between the 

normal and dry eye groups, irrespective of whether a contact lens was in place or not. This 

analysis could not be determined for the natural blink condition, as there were no tools to 

identify the location of the blink in the data with any accuracy once it had been processed by 

the CA100 device (the device removes the blink from the raw data). On average, the dry eye 
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group exhibited a trend of increasing RMS higher order aberrations over each blink period. 

This trend was consistent despite the clinical evaluation of wettability showing an 

improvement with the study lenses from the wettability with the subject’s habitual lenses at 

the screening appointment.  

5.6.4 Comparison of aberrations with & without contact lenses 

The width of the confidence interval around the smoothed raw data was investigated between 

groups (normal versus dry eye) and for condition (without a contact lens or with a contact 

lens). While the width of the confidence interval in the natural blink condition was not 

different between groups without a contact lens, the dry eye group showed a shift towards a 

greater magnitude of higher order aberrations with the contact lens in place. The same shift 

was not observed in the normal group. A similar relationship was also observed in the 

confidence interval width for the forced blink paradigm. 

5.7 Conclusion 

i. Obtain data in the straight-ahead position, as there is no significant increase in target 

size with head turn. 

ii. With the CA100F, the forced blink paradigm is preferred as this enables blink 

dynamics to be examined. With the CA200F, either forced or natural blink paradigms 

are interpretable for tear dynamics.  

iii. Differentiation between dry eye and normal groups was best determined with the slope 

of the RMS aberrations within a blink.  
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iv. Differentiation between performance with and without a contact lens in the dry eye 

and normal groups was best determined by analysing the width of the confidence 

interval of the moving average.  
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Chapter 6 : Analysis of Dynamic Ocular Surface 

Aberrations Using Segmented Linear Regression 

6.1  Background: 

The mechanism of tear thinning is debated frequently, due to its importance in the diagnosis 

of dry eye and the exact mechanism remains unknown, due to limitations in imaging 

techniques. Earlier studies have shown the thinning of the tear film is caused by divergent 

tangential flow of the tears or a combination of tangential flow and evaporation.73,74 More 

recent studies using fluorescent quenching have shown that tear thinning is caused only by 

evaporation rather than by divergent tangential flow or a combined effect.14,15 They observed 

a uniform thinning in the tear thickness and variable fluorescent decay between high and low 

concentration of the fluorescein which is indicative of mechanism to be evaporative.14  

Even though the fluorescent quenching technique is able to differentiate between the 

evaporative and tangential flow theories, its repeatability is still under investigation and the 

test itself is invasive in nature. The instillation of fluorescein changes the physical properties 

of the tear film, therefore changes the quality of the tear film and the repeatability of the tear 

breakup time measurements.13,20,75  

Studies by Montes-Mico et al42 using dynamic corneal surface aberrations have shown that 

the tear film breakup can be studied non-invasively. Using the corneal topographer, the 

corneal elevations were obtained every second of a 10 sec open-eye interval. The elevation 

data were then used to calculate the higher order RMS and individual prism coefficient values 
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for each time point. The average for all the participants in their study produced a wave like 

pattern over time,37,41,42 the time course of which showed high aberration values immediately 

after the blink, followed by an approximately linear decrease in aberrations. After the lowest 

point (trough in a wave) the aberrations again increased in a linear way and the authors 

considered this inflection point as the breakup point of the tear film.37,41,42 

Later, Zhu 76 showed that the vertical prism Zernike coefficient of the aberrations can be 

directly attributed to tear film thickness, since the tears flow vertically after the blink  and 

proposed that analysis of the vertical prism component of aberrations gives more insight about 

the change in the tear film thickness. Using both the theories suggested by Montes-Mico et al. 

and Zhu, this study aims to study the change in tear film thickness over time using the prism 

coefficient and higher order aberrations. This study also aims to provide an objective method 

to analyse the tear film changes over time of anterior surface aberrations.  

6.2 Objectives: 

The purpose of this study was  

1. To evaluate a new method of analyzing dynamic ocular surface aberrations using 

segmented liner regression  

2. To evaluate the inter-ocular characteristics of the dynamic ocular surface aberrations 

using the segmented linear fits  
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6.3 Methods 

Seventeen (11 men and 6 women) asymptomatic, non-contact lens users were included in this 

study, of which one participant discontinued from the study and 4 participants’ data were not 

able to be extracted and/or analysed. The average age group of the participants involved in 

this study was 27.5 ± 3.3 years of age. Non-invasive tear breakup time (NITBUT) and 

dynamic corneal surface aberrations were measured during the study visit. The Atlas Corneal 

Topographer was used to measure NITBUT and the Topcon CA200 Corneal Analyser was 

used to measure dynamic corneal surface aberrations. NITBUT was measured before the 

aberration measurements and the order of the eye measured first was randomized across the 

participants (see Table 6-1). In each eye, three measures of NITBUT were obtained and the 

average of all three measures was considered for analysis. In this study, NITBUT for each 

participant ranged between 5.4s and 11.5s, with a mean of 7.3s in the right eye and 7.5s in the 

left eye, respectively.  

The Topcon CA200 corneal analyser uses the Placido disc principle to measure corneal 

surface aberrations and dynamic measurements were obtained at a frame rate of 24Hz. Similar 

to NITBUT, the order of the eye measured first was randomized across participants. The time 

between two consecutive blinks was considered as an open-eye interval and the aberration 

measures were obtained for two 15-second open-eye intervals. The inbuilt software identified 

the location of the blinks automatically during the analysis. Participants were asked to hold 

their eyes open during the open-eye measurement period. A recovery period of 10 minutes 

was provided between the tests to maintain the tear film in as near normal condition. The 

aberration measures were calculated for a 6mm pupil diameter. 
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The instrument provides the corneal aberrations in terms of Zernike polynomials up to the 7th 

order. Total higher order aberrations (HOA) were calculated as the root-mean-square (RMS) 

of Zernike coefficients from the 3rd to 7th orders for each frame captured on an open-eye 

interval were considered for analysis. The prism terms of Z-2
2 and Z2

2 were also separately 

considered.  

The measurements obtained using the Topcon software were exported to a Microsoft Excel 

datasheet and evaluated using scatter plots. The scatter plot of the extracted raw data showed 

a variable amount of noise or variation within the extracted data. For better understanding of 

the data and to reduce noise, the data were subjected to a smoothing procedure (Figure 6-1), 

as described in Chapter 5.4. 

A segmented linear regression was fitted to the smoothed data for each interval of eye-

opening using the ‘segmented’ package in the R statistical program. In all cases, this 

procedure fitted 3 segments (phase1, phase2, and phase 3) (see Figure 6-2). The phases were 

denoted by two automatically determined breakpoints. The breakpoints are the location at 

which there is significant change in the observed trend. For each breakpoint, the slope 

associated with the trend in the data prior to the breakpoint was calculated. Each phase was 

assumed to denote a distinct stage in the stability of the tear film.  

The segmented fits were reviewed and the blink with the best fit for each of the right and left 

eye was selected. The initiation of the first positive slope (‘positive slope’; i.e. the point at 

which the ocular surface exhibited increasing aberration magnitudes) and the time point after 

the blink at which this occurred (‘break point’) were identified for each vertical prism and 

HOA RMS measurements. 
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Subject ID TBUT 1 TBUT 2 Aberrometry 1 Aberrometry 2 

1 OS OD OD OS 

2 OD OS OD OS 

3 OS OD OD OS 

4 OD OS OS OD 

5 OD OS OD OS 

6 OD OS OD OS 

7 OD OS OS OD 

8 OS OD OS OD 

9 OS OD OS OD 

10 OS OD OS OD 

11 OS OD OD OS 

12 OS OD OS OD 

13 OD OS OS OD 

14 OS OD OD OS 

15 OD OS OD OS 

16 OS OD OS OD 

17 OS OD OS OD 

Table 6-1: Randomization table for NITBUT and aberration measures 
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Figure 6-1: Schematic representation of a raw and smoothed data (using running average procedure) across the two open-eye intervals. The procedure is described in Chapter 5.4 
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6.4 Data analysis: 

All the data from the CA200 corneal topographer were exported and stored as comma 

separated value (.CSV) files for further analysis. The data smoothing process and the 

segmented linear regression analysis were performed using R statistical program.46  

The overall analysis of the group was analysed using repeated measures ANOVA with factors 

of eye (OD/OS), open-eye intervals (1,2) and order (1st eye measured) for each of the 

segmented fit parameters. The segmented fit parameters used for the RM-ANOVA are the 

first and second breakpoints and the highest positive slope value after the first phase. The 

RM-ANOVA analysis was used to analyse the segmented fit parameter of both vertical prism 

and HOA RMS values. The RM-ANOVA was obtained using the Statistica (v. 11).77  

Figure 6-2: Schematic representation of the dynamic (a) vertical prism and (b)HOA RMS data of a segmented linear 

regression. The X-axis represents the time in second and the Y-axis represents the change in direction of the tear prism base in 

figure (a) and increase in RMS in figure (b). 

(a) (b) 
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Individual participant’s data between segmented fit parameters of vertical prism and HOA 

RMS were analysed using linear regression. The variation in higher order RMS within the 

first two phases of segmented vertical prism data was analysed using non-parametric 

Wilcoxon signed rank test.  

6.5 Results: 

The average RMS, slope and breakpoints for vertical prism and HOA RMS are shown in 

Table 6-2. 

 

Vertical Prism 

(Z1
-1) 

HOA RMS 

(3rd to 7th order) 

 

OD 

Mean ± SD 

OS 

Mean ± SD 

OD 

Mean ± SD 

OS 

Mean ± SD 

RMS (µm) -0.0042 ± 0.81 0.2714 ± 0.78 0.7611 ± 0.35 0.8152 ± 0.41 

Highest 

positive slope 

after first 

phase 

0.25 ± 0.37 0.22 ± 0.22 0.20 ± 0.26 0.23 ± 0.22 

First break 

point (s) 
4.4 ± 3.09 3.97 ± 2.97 2.87 ± 2.44 4.09 ± 3.24 

Second Break 

point (s) 
8.14 ± 3.07 7.15± 2.87 7.97 ± 2.87 8.36 ± 3.33 

Table 6-2: Summary values for vertical prism and HOA aberrations, stratified by phase of the segmented fit. 
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6.5.1 Group analysis of segmented fit parameters for each factor of dynamic surface 

aberrations: 

6.5.1.1 Vertical prism: 

As expected, the location of the breakpoint 1 and breakpoint 2 were significantly different 

(p<0.001) between each other, between eyes, open-eye intervals and order of the 

measurements. The breakpoints were not significantly different (p>0.05) between eyes, open-

eye intervals and order of the measurement. The first highest positive slope after the first 

breakpoint and the breakpoint corresponding to the start of the highest positive slope was 

obtained for each open-eye interval. RM-ANOVA of all other comparisons involving location 

of breakpoints and highest positive slope between individual grouping factors showed no 

significant difference (p>0.05).  

The NITBUT was significantly different from the time of breakpoint 1 (p<0.0001) but not 

from the time of breakpoint 2 values (p>0.05) (Figure 6-3 and Figure 6-4). The correlation 

between the location of breakpoint 2 and the NITBUT values was not significant in all cases. 

The correlation between location of breakpoint 2 and NITBUT varied from -0.52/sec for left 

eye and open-eye interval 1 to a maximum of +0.27/sec for left eye and open-eye interval 2.  

6.5.1.2 HOA RMS 

Similar to the vertical prism values, the location of the breakpoints 1 and 2 were significantly 

different (p<0.0001) from each other between eyes, open-eye intervals and order of the 

measurements. The breakpoints were not significantly different (p>0.05) between eyes, open-

eye intervals and order of the measurement  
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The first highest positive slope after first breakpoint and the breakpoint corresponding to the 

start of the highest positive slope was obtained for each open eye interval. RM-ANOVA 

showed the highest positive slope for the HOA RMS was, on average, higher in the second 

eye measured (p= 0.0407) and tended to occur later after the blink (p= 0.0676) (Figure 6-5 

and Figure 6-6). All other analysis comparing the breakpoints and the highest positive slopes 

between individual grouping factors were not significantly different from each other (all 

p>0.05). 

There was no significant difference between the time of breakpoint 2 and NITBUT values (p> 

0.05) obtained initially (Figure 6-7 and Figure 6-8). Even though, ANOVA showed no 

significant difference between breakpoint 2 and NITBUT values, the correlation was found to 

be positive but low in the range of 0.02/sec to 0.2/sec. Similar results were obtained for 

correlation between eyes, between open-eye intervals and between orders of the 

measurements. 
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Figure 6-4: Comparison of location of the breakpoints and NITBUT values between open-eye intervals for vertical prism 

measures. 

 

 

 

Figure 6-3: Comparison of location of the breakpoints and NITBUT values between eyes for vertical prism measures. 
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Figure 6-5: Relationship between highest positive slope and first eye measured for HOA RMS measures 

 

 

 

Figure 6-6: Relationship between the position of the breakpoint after the blink, the eye measured first and the eye 
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Figure 6-7: Comparison of location of the breakpoints and NITBUT between eyes for HOA RMS measures 

Figure 6-8: Comparison of location of the breakpoints and NITBUT between open intervals for HOA RMS measures. 
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6.5.2 Analysis of Individual participant data:  

6.5.2.1 Vertical prism: 

There was no significant difference in the location of the breakpoints between the two open-

eye intervals using RM-ANOVA for the group (p > 0.1) (Top set of figures in Figure 6-9 and 

Figure 6-10). But, when individual data points were visually compared to analyse the trend in 

the data, a noticeable and consistent difference was observed between blink intervals, leading 

to a non-significant difference when analysed statistically. 

The position of the breakpoint changes inversely between the open-eye intervals. This trend 

was observed consistently between eyes and breakpoints. The bottom set of figures in Figure 

6-9 and Figure 6-10 shows the trend observed. The breakpoints of corresponding values 

between open-eye intervals are connected using individual lines colored according to trend 

observed. The green lines represent the upward trend and red represents a downward trend 

between the open-eye intervals.  

The following trends were observed more consistently in our data; the values below the 

average value in the first open-eye interval tend to be higher than the average in the second 

open-eye interval. Similarly, the values which were higher than average in the first open-eye 

interval tend to be lower than the average in the second open interval, resulting in no 

significant difference between open-eye intervals. 

6.5.2.2 HOA RMS: 

Similar to the vertical prism data, the breakpoints between the two open-eye intervals were 

analysed. There was no significant difference in the location of the breakpoints between the 
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open-eye intervals using RM-ANOVA. However, when individual data were analysed, it 

followed trends similar to vertical prism data. Most of the values below the average of the 

first open-eye interval were higher in the second open-eye interval and vice versa. When 

compared to the vertical prism individual participant data, the observed trends of the HOA 

RMS data were similar and consistent (Figure 6-11 and Figure 6-12). 
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Figure 6-9: Comparison of breakpoints of right eye obtained from vertical prism data for each open-eye interval and the distribution of breakpoints between open-eye intervals. 

The left side graphs compares breakpoint 1 between open-eye intervals and the right side graphs compares the location of breakpoint 2 between open-eye intervals. Each line 

corresponds in the graphs below to a single participant data between open-eye intervals and green lines represents higher values in open-eye interval 2 compared to 1 , vice 

versa was denoted by red lines. The black dotted lines in the graphs below represent the mean of first open-eye interval. 
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Figure 6-10: Comparison of breakpoints of left eye obtained from vertical prism data for each open-eye interval and the distribution of breakpoints between open-eye intervals. 

The left side graphs compares breakpoint 1 between open-eye intervals and the right side graphs compares the location of breakpoint 2 between open-eye intervals. Each line 

corresponds in the graphs below to a single participant data between open-eye intervals and green lines represents higher values in open-eye interval 2 compared to 1 , vice 

versa was denoted by red lines. The black dotted lines in the graphs below represent the mean of first open-eye interval. 
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Figure 6-11: Comparison of breakpoints of right eye obtained from HOA RMS data for each open-eye interval and the distribution of breakpoints between open-eye intervals. 

The left side graphs compares breakpoint 1 between open-eye intervals and the right side graphs compares the location of breakpoint 2 between open-eye intervals. Each line 

corresponds in the graphs below to a single participant data between open-eye intervals and green lines represents higher values in open-eye interval 2 compared to 1 , vice 

versa was denoted by red lines. The black dotted lines in the graphs below represent the mean of first open-eye interval. 
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Figure 6-12: Comparison of breakpoints of left eye obtained from HOA RMS data for each open-eye interval and the distribution of breakpoints between open-eye intervals. The 

left side graphs compares breakpoint 1 between open-eye intervals and the right side graphs compares the location of breakpoint 2 between open-eye intervals. Each line 

corresponds in the graphs below to a single participant data between open-eye intervals and green lines represents higher values in open-eye interval 2 compared to 1 ,vice 

versa was denoted by red lines. The black dotted lines in the graphs below represent the mean of first open-eye interval. 
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6.5.2.3 Average HOA RMS in terms of vertical prism breakpoints: 

Assuming that the vertical prism coefficient indicates the flow of the tears over the cornea and 

the HOA RMS or the aberrations indicates the quality of the tear film, this study investigated 

if the breakpoints as obtained using segmented linear regression were different for each eye of 

each individual participant between vertical prism and HOA RMS data (Figure 6-13). The 

scatter plots showed more distributed values for both breakpoints. The comparison showed a 

wide spread distribution on both sides of the unit slope of regression indicating higher 

variation between the locations of breakpoints. 

Due to the above difference in the breakpoints, the average HOA RMS for first two phases of 

the vertical prism coefficient was obtained. The phases of vertical prism coefficient provide 

the stages of the tear film within blinks, whereas the average HOA RMS provides the amount 

of change in the anterior surface quality. Therefore, the average HOA RMS of each phase of 

the vertical prism explains the amount of change in the anterior surface quality during stages 

of the tear film within blink. The average HOA RMS corresponding to the first two phases 

(blink to breakpoint 1 and breakpoint 1 to 2) of the vertical prism segmented fit were 

calculated for each eye and each open-eye interval. The individual participant’s average RMS, 

standard deviation, maximum and minimum of two phases were plotted for each eye and open 

interval (Figure 6-14 and Figure 6-15). In comparison to the first open-eye interval, the 

standard deviation, the maximum and minimum was observed to be larger in the second open-

eye interval of both the eyes.  

Non-parametric Wilcoxon paired signed rank test was used to analyse the average HOA RMS 

of each individual participant at each open-eye intervals and determine if the median 
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difference was different from zero. The results showed a significant difference (p=0.01) in the 

medians of the right eye for phase 1 (between blink and breakpoint 1) values of the first open-

eye interval (Figure 6-16). Even though, the box and whisker plot shows a huge difference in 

range between open-eye intervals, the rest of the comparisons between medians of phase 1 

and phase 2 HOA RMS values were not significantly different (p>0.05) from each other. 

(Figure 6-16)  
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 (a) (b) 

Figure 6-13: Comparison between the location of breakpoints of segmented vertical prism coefficient (x-axis) and HOA RMS (y-axis) data. Figure (a) compares the location of 

breakpoint 1 and (b) compares the location of breakpoint 2. The red line represents the line with unit slope. 
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Figure 6-14: Scatter plot with error bar for the comparison of average HOA RMS between the intervals of prism breakpoints of the right eye.  The green dot with upper error bar 

represents average HOA RMS between blink and first breakpoint, red dot with error bar represents the average RMS between breakpoint 1 &2. The error bars gives the standard 

deviation and the arrows represents the minimum and maximum values within the range. 
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Figure 6-15: Scatter plot with error bar for the comparison of average HOA RMS between the intervals of prism breakpoints of the left eye.  



127 

 

 

Figure 6-16: Box plot of average HOA RMS calculated between the seg.fit parameters of vertical prism data for right and left eye. The red diamond in both figures represents the 

median of average HOA RMS, whereas the box gives the 25 and 75% quartiles. The whiskers give the minimum and maximum average values. Note: Y-axis break between 2.5 

and 4.5 µm for easier comparison between graphs. 
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6.5.3 Other noticeable observations from the data 

A wavy pattern, as shown in Figure 6-17, was observed frequently after the second breakpoint 

of the dynamic vertical prism coefficients. 8 out of 26 eyes in the first open-eye interval and 

12 out of 26 eyes in the second open-eye interval exhibited this wavy pattern. The wavy 

patterns observed were both symmetrical and non-symmetrical around the slope. The reason 

behind the wavy aberrations is unknown. A similar pattern was observed in the HOA RMS 

and horizontal prism coefficient also. 

 

 

Figure 6-17: Schematic example of a wavy pattern in phase 3 of the vertical prism data. 
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6.6 Discussion: 

In our previous study (Chapter 5), the anterior surface aberrations obtained were analysed 

using a linear regression technique to analyse the change over time between blinks. The 

slopes indicated a steep increase in the aberrations in the dry eye participants compared to 

normal participants, but the data was very variable compared around the fit. A study 

undertaken by Hampson & Mallen78 suggested the ocular and corneal aberrations to be 

chaotic in nature, which contraindicates the use of linear regression to analyse the corneal 

aberration data. Although they proposed this based on a single participant’s data, the chaos in 

the corneal aberrations were analysed in a study (non-thesis work) and found the chaos to be 

very minimal compared to the chaos obtained by Hampson and Mallen (Appendix-2).  

According to Montes-Mico et al.41,42 and Nemeth et al.24, the tear film took approximately 3 

to 10 seconds to stabilize and then start breaking up between blinks. They also found the 

TBUT to be comparable with the time taken to attain lowest aberrations. In contrast, our study 

found that the average first breakpoint was observed around 3-6 seconds post-blink and was 

significantly different from the NITBUT obtained. The second breakpoint, which occurs later, 

was found to be more similar to the NITBUT values obtained. This might be explained with 

the tear film stability theory proposed by Holly et al.,8 where the tear film takes at least 3 

seconds to settle down after the eye opening, forming a negative slope. If the first breakpoint 

indicates a settled tear film and the second phase indicates the thinning of the settled tear film 

commensurate with an increase in aberrations, the second breakpoint can be expected to 

happen at a similar instant to that at which there a noticeable break in the tear film (i.e. 

NITBUT measurement point) as there is a sudden rise in the irregularity of the tear film.  
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As suggested by Zhu,76 the use of prism coefficient as a direct measure to analyse tear film 

thickness variation was analysed among our study participants. The results showed a varying 

amount of breakpoints between the open-eye intervals. An inverse effect was observed in this 

study in the location of breakpoints between open-eye intervals. This might be as a result of 

using a forced blinking technique to obtain aberration measurements. The breakpoints which 

were shorter in the first blink interval were longer in the second blink interval. It was also 

seen from the graphs, that the graphs with shorter breakpoints exhibit a wavy pattern in the 

aberration or prism coefficient after the second breakpoint. This wavy pattern may be 

accounted for by reflex tearing, or reflect an ocular movement or heart pulse. Since, the 

aberrations are more stable in the next open interval; it suggests the cause of wavy pattern to 

be more likely originate from the tear film than an ocular movement. If reflex tearing is the 

cause, a more stable or, at least, voluminous tear film during the next open interval could 

result and exhibit a slower change in the tear film surface. It was also observed from our 

experiments that the average HOA RMS is higher and more variable in the second open-eye 

interval compared to the first open interval. This indicates the need for more repeated 

measurements with shorter forced blink interval or natural blinking techniques be evaluated to 

address the issue of repeatability of the measurements.  

6.7 Conclusion: 

The three-phased segmented linear regression techniques to analyse the anterior surface 

aberrations can be used objectively to measure tear film stability. Even though the 

repeatability of the measurements from two open-eye intervals were poor, more open-eye 

periods and/or repeated measurements of the open-eye periods, and/or shorter open-eye 
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periods closer to natural blinking need to be evaluated for more detailed measure of 

repeatability. A criterion other than forced blinking needs to be evaluated for a more complete 

understanding of the natural tear film dynamics. 
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Chapter 7 Summary 

The experimental aspects of both corneal analysers were evaluated and showed the 

measurements were repeatable on a given non-variable surface at optimal focus position. The 

repeatability of the instrument was also good when the defocus was produced by a longer 

working distance, suggesting that it is best to obtain anterior surface aberration measures 

within the optimal focus position or slightly further away from the eye than the optimal focus. 

The variability in aberrations produced by the initial focusing of the mires requires the 

omission of the initial 10-15 sec of collected data for improved measurements of surface 

aberrations (Chapter 3). The measurements of spectral and thermal characteristics of the light 

sources of two corneal analysers during the measurements of surface aberrations showed that 

the difference in luminance of the light source does not change the thermal characteristics of 

the eye (Chapter 4).  

From the clinical measurements, the higher order aberrations were also found to be similar 

between the instruments, even though there is a possibility of the brightness of the light 

source inducing reflex tearing (Chapter 4). Changes in head orientation did not improve the 

area measured using the corneal analysers. Measurements using forced blinking were 

preferred compared to natural blinking procedure, when the data pertaining to the blink were 

not available due to the software algorithm used. The location of the blink was shown to be an 

important factor to analyse surface aberrations, due to significant changes in thickness of the 

tear film and surface aberrations that take place immediately after the blink. It was also shown 

that the anterior surface aberrations can be used in differentiating normal from dry eye 

participants, by using linear regression of the forced blink data (chapter 5). 
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Though the measurement in Chapter 5 showed an ability to differentiate between two groups, 

linear regression analysis failed to show the exact trend accompanied with the aberration data 

between blinks. Previous studies have shown the mechanism of tear film stability as being 

“three-phased” between blinks, and the measurement of vertical prism coefficients provides 

an estimate of the changes in the tear film thickness. In this study, the anterior surface 

aberrations were also assumed to be “three-phased” because the measurements of anterior 

surface aberrations are obtained from the surface of the tear film and the measure of anterior 

surface aberration gives the direct measure of tear film stability. By using segmented linear 

regression analysis, both our hypothesis were tested in this study. (chapter 6). 

As assumed, all participant’s (except 1) dynamic anterior surface aberration measurements 

showed a “three-phased” change in the aberrations for both open-eye intervals. The analysis 

of segmented linear regression of vertical prism coefficients and higher order aberrations 

showed that the eye measured second showed a higher rate of change in aberrations and the 

change occurred later after the blink, when compared to the first eye measured. The location 

of breakpoint 2 was not significantly different from the clinical measurements of tear breakup 

time, indicating a possible use of surface aberrations as an objective measure of surface 

quality.  

Even though the breakpoints were not significantly different between each other for open-eye 

intervals as a group, the individual participant data showed a significant trend. The 

breakpoints which are earlier in the first open-eye interval occurred later in the second open-

eye intervals and vice versa. This indicates a possible effect of the use of the forced blink 

paradigm, which causes changes in tear film stability. It was also observed that the average 
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higher order aberrations of each phase of vertical prism coefficient was higher and had a 

larger range in the second open-eye interval when compared to first open-eye interval. These 

results indicate the use of a criterion which is closer to natural tear film dynamics to obtain 

more repeatable measurements using segmented linear regression and anterior surface 

aberrations (chapter 6).  

Based on studies undertaken in this thesis, there remain many issues which need to be 

analysed for better understanding of the relationship between dynamic anterior surface 

aberrations and tear film stability. The main issue which came up during these studies is the 

duration of the open-eye intervals. Even though, this study employed a blinking paradigm 

similar to other studies, the results showed an influence of prolonged open-eye interval on 

repeated measures. A wide range of blinking paradigms along with more open-eye intervals 

and/or repeated measurements need to be evaluated in future studies to obtain a blinking 

paradigm which obtains measurements without affecting the tear film stability. The results of 

our study using a smaller group of participants showed that the segmented linear regression 

analysis can be used as an objective method to analyse the tear film stability. More analysis 

using large sample sizes and groups has to be evaluated to test the reliability of the analysis. 

The groups can be categorized based on signs and anterior surface characteristics for better 

understanding of its reliability and to develop a criterion to differentiate clinically stable and 

unstable tear film. More analysis has to be carried out to examine the exact relationship 

between dynamic tear film thickness and vertical prism coefficient values. This analysis 

would be helpful in measuring dynamic variation in the tear film thickness which can provide 

more insight on the diagnosis of the dry eye.  
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Appendix 3 

R source code 

R.code 1 Few basic codings: 

## To read a CSV file direct from folder and assign a name for 

analysis 

> name <- read.csv(file=file.choose(), header=T) 

## To attach the file to R console 

> attach(name) 

## list column headers 

> ls(name)  (or) 

> head (name) 

## To increase outer margin area in a graph 

> par(oma=c(2,2,2,2)) 

## To create thicker axis borders 

> box(lwd=2) 

## To plot a graph 

> plot (x,y) 

## To customize graph 

>par( ) 

## to obtain descriptive statistics 

> summary(name) 

## detach the file from the R console 

> detach(name) 

## Remove all objects from R console 

> rm(list=ls(all=TRUE)) 

## To install package for analysis 

> library(package name) 

R.code 2 Kernel density plot  

## Import data  

## Data format: each sample arranged one below other (tall measure). 

 "focus" “focusnum" "time" "zernike_rms" 

 Green1 1 15.04023 1.07981 

 Green2 2 15.12037 1.07326 

 Green3 3 15.20037 1.07199 
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## install package “sm” 

> library (sm) 

> focus.f <- factor(focus, levels= c(1,2,3), labels=c("Green1", "Green2", 

"Green3")) 

## to create density plot 

> sm.density.compare (zernike_rms, focus, xlab="Zernike RMS"~~(mu*m)) 

> title(main="Kernel density comparison plot for green focus 

positions(0.25s)") 

> colfill<- c(2:(2+length(levels(focus.f)))) 

> legend("topright", levels(focus.f), fill=colfill) 

R.code 3 Test for quantile distribution:  

## Import data  

## data format 3 samples (sample 2,3,and 4),median corrected samples, tall 

measure of 2 median corrected samples in all probabilities. 

[1] "GREEN2H” "GREEN3H" "GREEN4H" "GREEN2H_MED" "GREEN3H_MED" "GREEN4H_MED" 

"GREEN2H3H" "GREEN3H4H" "GREEN2H4H" 

 1.07981 1.07326 1.07199 0.002455 0.00561 0.003535

 0.002455 0.002455 0.00561 

## To generate sequence for quantiles@ 2.5% 

> p<- seq(0,1,0.025) 

## generate quantiles for two sample combined 

> measure1<- quantile(GREEN2H3H,p, na.rm=TRUE, type=1) 

> measure2<- quantile(GREEN2H4H,p, na.rm=TRUE, type=1) 

> measure3<- quantile(GREEN3H4H,p, na.rm=TRUE, type=1) 

## generate data file for each comparison samples 

> result<- data.frame (measure1, measure2, measure3) 

## round the decimals to 5 digits  

> round(result,5) 

      measure1 measure2 measure3 

0%    -0.01597 -0.01597 -0.01158 

2.5%  -0.01158 -0.01139 -0.00744 

5%    -0.00863 -0.00887 -0.00647 

7.5%  -0.00718 -0.00744 -0.00592 

10%   -0.00636 -0.00592 -0.00549 

12.5% -0.00565 -0.00561 -0.00498 

15%   -0.00520 -0.00520 -0.00462 

17.5% -0.00473 -0.00473 -0.00410 

20%   -0.00431 -0.00431 -0.00374 

22.5% -0.00374 -0.00375 -0.00355 

25%   -0.00341 -0.00341 -0.00339 
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27.5% -0.00266 -0.00307 -0.00252 

30%   -0.00232 -0.00259 -0.00221 

32.5% -0.00184 -0.00228 -0.00184 

35%   -0.00163 -0.00181 -0.00149 

37.5% -0.00137 -0.00144 -0.00137 

40%   -0.00122 -0.00107 -0.00105 

42.5% -0.00098 -0.00054 -0.00077 

45%   -0.00054 -0.00043 -0.00042 

47.5% -0.00043 -0.00029 -0.00016 

50%    0.00000  0.00000  0.00000 

52.5%  0.00025  0.00016  0.00011 

55%    0.00040  0.00054  0.00048 

57.5%  0.00086  0.00064  0.00063 

60%    0.00112  0.00095  0.00094 

62.5%  0.00154  0.00135  0.00108 

65%    0.00192  0.00167  0.00135 

67.5%  0.00213  0.00198  0.00159 

70%    0.00245  0.00236  0.00193 

72.5%  0.00272  0.00272  0.00217 

75%    0.00312  0.00311  0.00247 

77.5%  0.00353  0.00354  0.00317 

80%    0.00387  0.00383  0.00368 

82.5%  0.00472  0.00418  0.00403 

85%    0.00514  0.00514  0.00462 

87.5%  0.00533  0.00538  0.00489 

90%    0.00590  0.00590  0.00538 

92.5%  0.00642  0.00650  0.00584 

95%    0.00734  0.00726  0.00662 

97.5%  0.00864  0.00806  0.00764 

100%   0.01077  0.01077  0.01001 

## create a table using quantiles 

> write.table(result, file=" quantile_green_0.25_30082011.csv", sep=",", 

col.names=NA, qmethod="double") 

## to compare outer 5% of the distribution of each sample 

> quantilecombined<- quantile(GREEN2H3H, p, na.rm=TRUE, type=1) 

> a<- sum (GREEN2H_MED <= -0.01158, na.rm= TRUE) 

> b<- sum (GREEN2H_MED >= 0.00864, na.rm= TRUE) 

> x=(a+b) 

> c<- sum (GREEN2H3H <= -0.01158, na.rm= TRUE) 

> d<- sum (GREEN2H3H >= 0.00864, na.rm= TRUE) 

> m= (c+d) 

> e<- length (GREEN2H3H) 
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> n= (e-m) 

> k<- sum(GREEN2H_MED <1000, na.rm= TRUE) 

## to compare the distributions 

> dhyper(x,m,n,k) 

[1] 0.1175064 

## Repeat the same for comparison of other samples and between focus 

positions  

R.code 4 T.test and Box plot with beeswarm and axis break 

## Import data 

## code for t-test to compare luminance of Placido disc and also 

plot boxplot with data points 

> t.test(Luminance~Instrument) 

## create subset 

> ca100<- subset(ttest, Instrument=='CA100') 

> ca200<- subset(ttest, Instrument=='CA200') 

#draw box plot 

> boxplot(Luminance~Instrument, axes=F, ylim=c(3,11), data=ca200) 

# to plot data points on box plot 

> library(beeswarm) 

> beeswarm(Luminance~Instrument, cex=0.8,pch=19, col="red", 

data=ca200, add=T) 

>axis(2,at=c(3,4,5,6,8,9,10,11),labels=c("3","4","5","6","30","31","

32","33”), cex.axis=1.5) 

## Reference to create axis break using “plotrix” package 

http://rss.acs.unt.edu/Rdoc/library/plotrix/html/axis.break.html 

## install plotrix package 

> library(plotrix) 

> axis.break(2,7, style="slash") 

> par(new=T) 

>boxplot(Luminance~Instrument,axes=F,ylim=c(25,33),data=ca100,cex=2) 

>beeswarm(Luminance~Instrument,cex=0.8,pch=19,col="green",data=ca100

,add=T) 

> axis(1,at=c(1,2), labels=c("CA100", "CA200"), cex.axis=1.5) 

## to add axis labels 

> mtext("Instruments", side=1, line=0,cex=1.25, outer=T) 

> mtext("Luminance"~~(cd/m^2), side=2, line=0, cex=1.25, outer=T) 
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R.code 5 ggplot 

## Import data 

##install(ggplot2) 

> library(ggplot2) 

## create names for facet tittle by using labellar function 

> spectrum<- list('1'="Short", '2'="Central",'3'="Long") 

>spectrum_labellar<- 

function(variable,value){return(spectrum[value])} 

> p<- ggplot (SpectralData, aes(lambda, radiance, col=Time_point))+ 

facet_grid(. ~ range_no, scales="free", space="free", 

labeller=spectrum_labellar) 

## to plot coloured with different symbols and average with CI 

>p+ geom_point()+scale_y_log10()+theme_bw()+ xlab("Wavelength 

(nm)")+ylab("log 

(Radiance)")+aes(shape=Time_point)+scale_shape_manual(values = 

c(1,2,0,3,15,16,17,18,19,20))+ 

geom_smooth(aes(group=1))+aes(colour=Time_point)+theme(strip.text.x 

= element_text(size = 12)) 

R.code 6 Scatterplot with error bars  

## import data  

> mean.rca100<-ca100_right 

> mean.lca100<- ca100_left 

> mean.rca200<- ca200_right 

> mean.lca200<- ca200_left 

> std.rca100<- sd_ca100_right 

> std.lca100<- sd_ca100_left 

> std.rca200<- sd_ca200_right 

> std.lca200<- sd_ca200_left 

> names(mean.rca100)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 

> names(mean.rca200)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 

> names(std.rca100)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 
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> names(std.rca100)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 

> names(mean.lca100)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 

> names(mean.lca200)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 

> names(std.lca100)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 

> names(std.lca100)<- 

c("1","2","3","4","5","6","7","8","9","10","11","12") 

> library(plotrix) 

> par(oma=c(2,2,0,0)) 

##plot scatterplot with error bars 

> plotCI(x=(1:12), y=mean.rca100,uiw=std.rca100,lty=2, font 

=2,xaxt="n",xlim=c(0,13),ylim=c(0,200),gap=0, col="green", xlab="", 

ylab="") 

> plotCI(x=(1:12), y=mean.rca200,uiw=std.rca200,lty=1, font 

=2,xaxt="n", xlim=c(0,13),ylim=c(0,200),gap=0, add=T,col="red") 

> plotCI(x=(1:12), y=mean.lca100,uiw=std.lca100,lty=3, font 

=2,xaxt="n", xlim=c(0,13),ylim=c(0,200),gap=0, add=T,col="blue") 

> plotCI(x=(1:12), y=mean.lca200,uiw=std.lca200,lty=4, font 

=2,xaxt="n", xlim=c(0,13),ylim=c(0,200),gap=0, add=T,col="black") 

> axis(side=1,at=1:12, font =2,labels=names(mean.rca100)) 

## legends 

> legend("topright",lty=c(2,2,2,2),lwd=1.5, c("CA100 right 

side","CA100 left side", "CA200 right side", "CA200 left side"), 

pch=c(19,19,15,15), col=c("green","blue","red","black")) 

##lines connecting points 

> lines(mean.rca100,col="green", lty=2,lwd=1.5) 

> lines(mean.rca200,col="red", lty=2,lwd=1.5) 

> lines(mean.lca100,col="blue", lty=2,lwd=1.5) 

> lines(mean.rca100,col="black", lty=2,lwd=1.5) 

> lines(mean.rca100,col="green", lty=2,lwd=1.5) 

> lines(mean.lca200,col="black", lty=2,lwd=1.5) 

## horizontal reference lines for averages 

> abline(h=92.4213, lty=3, col="green", lwd=1.5) 

> abline(h=67.1414, lty=3, col="blue",lwd=1.5) 

> abline(h=20.4558, lty=3, col="red",lwd=1.5) 
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> abline(h=15.78448, lty=3, col="black",lwd=1.5) 

> mtext("Placido ring #", side=1,font =2,line=3) 

> mtext("Luminance"~~(cd/m^2), side=2,font =2,line=3) 

> box(lwd=1.5) 

## for text annotations 

> text(locator(1), "92.42",font=2, cex=0.7) 

> text(locator(1), "67.14",font=2, cex=0.7) 

> text(locator(1), "20.46",font=2, cex=0.7) 

> text(locator(1), "15.79",font=2, cex=0.7) 

R.code 7 Combining plot (boxplot with beeswarm) 

## to combine plot with extra outer margin space 

## Import data 

> par (mfrow=c(2,1), oma=c(0,1,0,0)) 

## boxplots with beeswarm data point. 

> boxplot(luminance_100~quadrant_100,sub="CA100", xaxt="n",yaxt="n", 

ylim=c(40,50), xlab="Quadrants", ylab="", font=2) 

> library(beeswarm) 

> beeswarm(luminance_100~quadrant_100, pch=18, cex=0.6, col="green", 

add=T) 

> axis(1, at=c(1,2,3,4), labels= 

c("CA100\nInferior","CA100\nLeft","CA100\nRight","CA100\nSuperior"), 

cex.axis= 0.8,font.axis=2, tck=-0.01) 

> axis(2, 

at=c(40,42,44,46,48,50),labels=c(40,42,44,46,48,50),las=2,font.axis=

2) 

> mtext("Luminance"~~(cd/m^2), side=2, line=3,font=2) 

> boxplot(luminance_200~quadrant_200, ylim=c(5,15),sub="CA200", 

xlab="Quadrants",axes=F, font=2, ylab="" ) 

> beeswarm(luminance_200~quadrant_200, pch=18, cex=0.6, col="red", 

add=T) 

> box() 

> axis(1, at=c(1,2,3,4), labels= 

c("CA200\nInferior","CA200\nLeft","CA200\nRight","CA200\nSuperior"), 

cex.axis= 0.8,font.axis=2, tck=-0.01) 

> axis(2, at=c(5,7,9,11,13,15),labels=c(5,7,9,11,13,15),las=2, 

font.axis=2) 
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R.code 8 Bar plot 

## creating combination plot of bar plots for peak wavelengths in 

different experiments 

## created new graph with 3 rows and one column of graphs with 

custom margin widths 

## import data file 

> par(mfrow=c(3,1),mai=c(0.5,0.5,0.5,0.1)) 

## for individual ring measures 

## install “gregmisc” package for creating boxplot with error bars 

> library(gregmisc) 

##calculate mean 

> waves=tapply(Wavelength, 

list(as.factor(measure_area),as.factor(ring_no)),mean) 

> waves 

## calculate standard error 

> stderr <- function(x) sqrt(var(x,na.rm=TRUE)/(length(na.omit(x)))) 

> waves.stderr=tapply(Wavelength, 

list(as.factor(measure_area),as.factor(ring_no)),stderr) 

> waves.stderr 

# calculate the range 

> upper=waves+1.96*waves.stderr 

> lower=waves-1.96*waves.stderr 

##create boxplot 

> bp<- barplot2(waves,beside=T,horiz=F, 

names.arg=c("1","2","3","4","5","6","7","8","9","10","11","12"), 

plot.ci=T, ci.u=upper, ci.l=lower, col=topo.colors(4), 

ylim=c(638,650), legend.text=NULL,xpd=F, font=2) 

> box(lwd=2) 

> legend("topright",c("CA100_Left side","CA100_Right side", 

"CA200_Left side", "CA200_Right side"),horiz=T, fill= 

topo.colors(4)) 

> mtext("Placido ring #", side=1, font=2, line=2.5) 

> mtext("Wavelength (nm)", side=2, font=2, line=2.5) 

> mtext("Peak wavelength obtained from individual rings", side=3, 

line=0.5,font=2)  

## for Disc measures 

## import data 
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##calculate mean 

> waves.fullring=tapply(Wavelength_fullring, 

list(as.factor(inst_fullring),as.factor(fullring_no)),mean) 

> waves.fullring 

## calculate standard error 

> stderr <- function(x) sqrt(var(x,na.rm=TRUE)/(length(na.omit(x)))) 

> waves_full.stderr=tapply(Wavelength_fullring, 

list(as.factor(inst_fullring),as.factor(fullring_no)),stderr) 

> waves_full.stderr 

# calculate the range 

> upper=waves.fullring+1.96*waves_full.stderr 

> lower=waves.fullring-1.96*waves_full.stderr 

##create boxplot 

> bp<- barplot2(waves.fullring,beside=T,horiz=F, 

names.arg=c("1","2","3","4","5","6","7","8","9","10","11","12"), 

plot.ci=T, ci.u=upper, ci.l=lower, col=c("green","red"), 

ylim=c(638,650), legend.text=NULL,xpd=F, font=2) 

> box(lwd=2) 

> legend("topright",c("CA100", "CA200"),horiz=T, fill= 

c("green","red")) 

> mtext("Placido ring #", side=1, font=2, line=2.5) 

> mtext("Wavelength (nm)", side=2, font=2, line=2.5) 

> mtext("Peak wavelength obtained from each dics measure", side=3, 

line=0.5,font=2)  

##for quadrant measures 

## Import data 

##calculate mean 

> waves.quad=tapply(Wavelength_quad, 

list(as.factor(inst_quad),as.factor(quad)),mean) 

> waves.quad 

## calculate standard error 

> stderr <- function(x) sqrt(var(x,na.rm=TRUE)/(length(na.omit(x)))) 

> waves_quad.stderr=tapply(Wavelength_quad, 

list(as.factor(inst_quad),as.factor(quad)),stderr) 

> waves_quad.stderr 

# calculate the range 

> upper=waves.quad+1.96*waves_quad.stderr 

> lower=waves.quad-1.96*waves_quad.stderr 
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##create boxplot 

> bp<- barplot2(waves.quad,beside=T,horiz=F, 

names.arg=c("Inferior","Superior","Right","left"), plot.ci=T, 

ci.u=upper, ci.l=lower, col=c("green","red"), ylim=c(638,650), 

legend.text=NULL,xpd=F, font=2) 

> box(lwd=2) 

> legend("topright",c("CA100", "CA200"),horiz=T, fill= 

c("green","red")) 

> mtext("Quadrants", side=1, font=2, line=2.5) 

> mtext("Wavelength (nm)", side=2, font=2, line=2.5) 

> mtext("Peak wavelength obtained from each quadrant", side=3, 

line=0.5,font=2)  

R.code 9 Scatterplot 

##multiple scatter plot for unanimous object measures 

## Import data 

> par(mfrow=c(3,1),oma=c(0,0.5,0,0)) 

## plot for air 

> plot(time, ca100_air,  pch=16,cex=1.25 ,xlab="", ylab="", 

ylim=c(24.5, 26.5), cex.axis=1.25) 

> box(lwd=2) 

> points(time, ca200_air, pch=1, cex=1.25) 

> mtext("Time (sec)", font=2, side=1, line=3) 

> mtext("Temperature"~~(degree*C), font=2, side=2, line=3) 

> lines(time,ca100_air, lty=1, lwd=1.5) 

> lines(time,ca200_air, lty=4, lwd=1.5) 

> text(140,25.7, "Mean=25.31") 

> text(140,24.9, "Mean=25.15") 

> legend("topright", pch=c(16,1), c("CA100", "CA200"), lty=c(1,4)) 

> title(main="Air") 

##plot for tissue 

> plot(time, ca100_tissue,  pch=17,cex=1.25 ,xlab="", ylab="", 

ylim=c(25.5, 27.5), cex.axis=1.25) 

> box(lwd=2) 

> points(time, ca200_tissue, pch=2, cex=1.25) 

> mtext("Time (sec)", font=2, side=1, line=3) 

> mtext("Temperature"~~(degree*C), font=2, side=2, line=3) 
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> lines(time,ca100_tissue, lty=2, lwd=1.5) 

> lines(time,ca200_tissue, lty=3, lwd=1.5) 

> text(140,26.8, "Mean=26.57") 

> text(140,26, "Mean=26.36") 

> legend("topright", pch=c(17,2), c("CA100", "CA200"), lty=c(2,3)) 

> title(main="Tissue paper") 

##plot for model eye 

> plot(time, ca100_modeleye,  pch=18,cex=1.25 ,xlab="", ylab="", 

ylim=c(25.5, 27.5), cex.axis=1.25) 

> box(lwd=2) 

> points(time, ca200_modeleye, pch=5, cex=1.25) 

> mtext("Time (sec)", font=2, side=1, line=3) 

> mtext("Temperature"~~(degree*C), font=2, side=2, line=3) 

> lines(time,ca100_modeleye, lty=5, lwd=1.5) 

> lines(time,ca200_modeleye, lty=6, lwd=1.5) 

> text(140,26.8, "Mean=26.39") 

> text(140,25.7, "Mean=26.06") 

> legend("topright", pch=c(18,5), c("CA100", "CA200"), lty=c(5,6)) 

> title(main="Model eye") 

R.code 10 Multilevel plots 

## import data 

## choose file for eyelid(or) conjunctiva (or) cornea 

## subset data using following commands 

> infra<- subset(mlplots, inst=="CA100") 

> red<- subset(mlplots, inst=="CA200") 

## find linear regression for each participant 

> reg11<- lm(temp1~time,data=infra) 

> reg12<- lm(temp1~time,data=red) 

> reg21<- lm(temp2~time,data=infra) 

> reg22<- lm(temp2~time,data=red) 

> reg31<- lm(temp3~time,data=infra) 

> reg32<- lm(temp3~time,data=red) 

> reg41<- lm(temp4~time,data=infra) 

> reg42<- lm(temp4~time,data=red) 

> reg51<- lm(temp5~time,data=infra) 

> reg52<- lm(temp5~time,data=red) 
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> reg61<- lm(temp6~time,data=infra) 

> reg62<- lm(temp6~time,data=red) 

> reg71<- lm(temp7~time,data=infra) 

> reg72<- lm(temp7~time,data=red) 

> reg81<- lm(temp8~time,data=infra) 

> reg82<- lm(temp8~time,data=red) 

> reg91<- lm(temp9~time,data=infra) 

> reg92<- lm(temp9~time,data=red) 

> reg01<- lm(temp10~time,data=infra) 

> reg02<- lm(temp10~time,data=red) 

## plot an empty graph with type=”n” 

> plot(temp1~time, data=mlplots, type="n", xlab="Time (s)", 

ylab="Temperature"~~(degree~c),ylim=c(30,36),cex.axis=1.25) 

## create slope lines using following codes 

> abline(reg11,lty=1,lwd=2,col="green") 

> abline(reg12,lty=1,lwd=2,col="red") 

> abline(reg21,lty=1,lwd=2,col="green") 

> abline(reg22,lty=1,lwd=2,col="red") 

> abline(reg31,lty=1,lwd=2,col="green") 

> abline(reg32,lty=1,lwd=2,col="red") 

> abline(reg41,lty=1,lwd=2,col="green") 

> abline(reg42,lty=1,lwd=2,col="red") 

> abline(reg51,lty=1,lwd=2,col="green") 

> abline(reg52,lty=1,lwd=2,col="red") 

> abline(reg61,lty=1,lwd=2,col="green") 

> abline(reg62,lty=1,lwd=2,col="red") 

> abline(reg71,lty=1,lwd=2,col="green") 

> abline(reg72,lty=1,lwd=2,col="red") 

> abline(reg81,lty=1,lwd=2,col="green") 

> abline(reg82,lty=1,lwd=2,col="red") 

> abline(reg91,lty=1,lwd=2,col="green") 

> abline(reg92,lty=1,lwd=2,col="red") 

> abline(reg01,lty=1,lwd=2,col="green") 

> abline(reg02,lty=1,lwd=2,col="red") 

> legend("bottomright",title= 

"Instruments",c("CA100","CA200"),lty=c(1,1),col=c("green","red")) 

 

 


