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Abstract

Compounds which exhibit liquid crystal phases have been widely used in display tech-
nology. The majority of display applications utilize the nematic liquid crystal phase, which
is a liquid-like phase which has partial orientational order at the molecular level. The ne-
matic phase exhibits birifringence which can be manipulated through the application of an
external field. Subsequently, all liquid crystal-based display technology utilizes the appli-
cation of an external field to “switch” or tune the optical properties of a nematic domain
into a desired optical state. In addition to an external field, the geometry and surface in-
teractions of the liquid crystal domain must be precisely controlled in order for the display
to operate properly. Liquid crystal displays (LCDs) utilize a rectangular domain, or pixel,
within which the nematic domain is exposed to surface anchoring conditions that result in
a twist of the nematic alignment through the thickness of the domain.

In this work, a different type of liquid crystal domain that is elliptic is studied which
is formed through “bottom-up” techniques, such as phase separation of a liquid crys-
tal/polymer mixture to form a polymer-dispersed liquid crystal (PDLC) composite. Ne-
matic domains within PDLCs are spheroidal, as opposed to rectangular for a pixel, and
thus exhibit substantially different behaviour in the presence of an external field. The
fundamental difference between spheroidal and rectangular nematic domains is that the
former requires the presence of defects in nematic order while the latter does not.

The overall objective of this work is to study, for a simplified elliptic cylinder domain,
the formation of the nematic domain, the resulting domain texture in the presence of an
external field, and the domain texture following release of the external field. These three
states are directly related to applications of PDLC films as optical functional materials,
where an external (electric) field is used to manipulate the optical properties of the film.
The effects of geometry (aspect ratio), surface anchoring, and external field strength are
studied through a simulation-based approach using the Landau-de Gennes theory of the
nematic phase.
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Chapter 1

Introduction

1.1 Discovery of Liquid Crystals

The story of liquid crystals begins with experimental works of a pioneering chemist named
Friedrich Reinitzer in 1888 [8]. He was also a botanist and conducted studies on chemicals
extracted from different types of plants. While attempting to measure the molecular weight
of one of these compounds, cholesterol, he encountered an unexpected property of its
melting point. Reinitzer found that cholesterol exhibits two melting points – one at 145.5C
and another at 178.5C. He wrote a letter to his colleague, Otto Lehmann, and told him
about this anomalous behaviour of the compound.

Lehmann conducted his own experiments and confirmed the observations of Reinitzer
[8]. Different intermediate phases were recognized in the melting process, which means
there is no sharp transition from solid to liquid and vice versa. Examining the phase
transition sequence of cholesterol under microscope with crossed polarizers resulted in ob-
servations of a solid to a blue and violet phase and then to a turbid liquid and again another
blue phase and finally liquid phase. There are two contradictions in this observation:

• On one hand, getting a cloudy liquid from a solid is not possible due to the high
degree of purity of the substance.

• A liquid cannot melt and form another liquid by increasing temperature since at
concerned temperatures decomposition is impossible.

Further experiments were performed which involved a cooling process and under polarized
light he observed that some aggregates form and grow which would eventually connect
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together to form thread-like objects. Since these stripes were in contrast with the back-
ground he called them oily streaks, shown in Figure 1.1. Based on this observation and
the fact that the substance is still capable of flow, Lehmann came to the conclusion that
there exist some sort of order in one direction which can interact with polarized light and
there is also disorder in another direction that allows the material to flow. He proposed
that intermediate phases can exist between the liquid and solid states and initiated the
liquid crystal field in physics.

(a) (b) (c) (d)

Figure 1.1: Polarized optical microscopy images of “oily streaks.” (a-b) taken from ref. [1]
and (c-d) are taken from ref. [8].

1.2 Classification of LCs

As mentioned in the previous section, liquid crystals (LC) are intermediate or mesomorphic
phases [3]. In a typical crystalline material molecules are located regularly on a three
dimensional lattice (Figure 1.2a). On the other hand, liquids possess no order apart from
an average intermolecular separation distance (Figure 1.2b). Classification of LC order
falls into two major types: orientational order (Figure 1.2c) and positional (Figure 1.2d).
The latter refers to the extent of arrangement of molecules centre of mass in any kind
of ordered pattern. For this reason, liquids have no positional order and are considered
an isotropic phase, meaning that the phase is invariant by all rotations and reflections
about any point of the medium [9]. The former corresponds to the degree of alignment of
non-spherical molecules along an axis. Thus in all LC phases a local preferred molecular
axis is present. This leads to classification of LCs based upon the presence and type of
positional order observed. With the above description in mind, we can distinguish three
liquid crystal types:

Nematics. This class of liquid crystal order has no positional order and corresponds to a
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 1.2: Schematics of different phases of matter: (a) crystal, (b) isotropic, (c) ori-
entational order, (d) positional order, (e) nematic order, (f) dipole, (g) smectic A, (h)
smectic-C, and (i) columnar. (a-c) taken from ref. [2], (d-f) from ref. [3], (g-h) taken from
ref.[2], and (i) taken from ref. [3].
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liquid whose molecules are oriented in a preferred direction known as the nematic di-
rector, represented by a unit vector n. The nematic phase breaks rotational isotropy
but not transitional invariance, as shown in Figure 1.2c. Rotations about an axis
parallel to n leave the nematic phase unchanged, whereas rotations about axes per-
pendicular to ~n do not [10]. The nematic director n is also referred to as long range
order because it shows overall tendency of material particles to be parallel to a pre-
ferred axis. This direction is arbitrary in space and may be imposed by external
forces such as boundary forces, geometry and thermal fluctuations which can vary
inside the material. In nematics n and −n are the same. For instance, if the indi-
vidual molecules carry a permanent electric dipole, there are just as many dipoles up
as there are dipoles down [3] as shown in Figure 1.2f.

Smectics. This class of LC phases possess, in addition to nematic order, one dimensional
positional order in three dimensional space. Restricting order to be one-dimensional
allows two degrees of freedom; from a mathematical point of view this means they can
form a 2D subspace in 3D space. Therefore smectics are made of multiple layers with
the molecule centre of mass, on average within the layer, but randomly positioned
throughout. Thus each layer in a smectic phase is like a two-dimensional nematic.
Since smectics are stratified, different ordering can exist within layers which results in
different smectic phases. Among them two phases are most common: smectic-A and
smectic-C. In the smectic-A mesophase, molecules are oriented parallel to the layer
normal and the spacing between layers is almost equal to the molecular length. In
the smectic-C mesophase, the nematic director is tilted relative to the layer normal,
therefore they have less symmetry than the smectic-A mesophase [10].

Columnar. The columnar class of liquid crystals has the highest degree of positional order,
two, and is one degree lower than crystal ordering. They form a two-dimensional
lattice while maintaining liquid-like order in the third dimension to form columns
of one-dimensional liquids. Because building blocks of this phase are mainly disc-
like molecules they are also named discotic phases. Based on the structure of two
dimensional lattice, different types can be distinguished: rectangular, oblique, and
hexagonal phases (Figure 1.2)i.

1.3 Nucleation

As discussed in the previous sections, liquid crystals are mesophases and exhibit phase
transition from the liquid-to-liquid crystalline state. This transition is first-order and is
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initiated through nucleation, similar to the liquid to solid transition. It is because of this
nucleation process that a disordered/liquid material can be subjected to undercooling with-
out turning into a solid, in that a nucleus must form and grow to initiate the transition.
Both of these mechanisms are dependent on the degree of undercooling, therefore the mor-
phology of the material is temperature-dependant. Based on the initial state of nucleation,
two different types can be distinguished. If this process happens inside the original phase
without participation of a secondary material, it is called homogeneous. But if an impurity
or another material is involved, then it is called heterogeneous nucleation [11].

Homogeneous nucleation. In an undercooled liquid, thermal fluctuations result in the
formation, growth, and decay of crystalline nuclei. These nuclei can be approximated
by spheres of radius r. This increased order results in a decrease of the free energy,
which is favourable from thermodynamic point of view. On the other hand, an
interface is formed between the disordered and ordered phases which is elastic and
stores energy. In fact, this interface is a grain boundary and is thermodynamically
unstable. Therefore, there is competition between interface creation and ordering.
This competition results in a critical radius rc existing, such that if a nucleus is greater
than rc, it will grow otherwise it melts. While the crystalline phase is growing, the
interface can change shape in order to decrease the elastic energy and produce defects
within the crystal.

Heterogeneous nucleation. In this type, nucleation is induced by an external phase
like an impurity or boundary wall, therefore it is an extrinsic process. Most LC
devices are designed in such a way that nucleation happens at the boundary, because
this is the only way that structure can be manipulated and controlled. Otherwise
nucleation would be random and not practical for optical devices. Therefore we focus
on nucleation initiated from boundary. There are two major mechanisms involved
in surface alignment and molecular ordering at the interface. Physicochemical forces
like hydrogen bonding and dipole-dipole forces play a main role in orienting material
particles. The second mechanism is material elasticity and surface topology which can
affect the surface orientation indirectly. Since intermolecular forces in liquid crystals
are anisotropic, the phase is elastic and tends to orient its particles in such a way
to minimize elastic forces. Thus, free energy in this phase depends on structure and
curvature of the material in addition to temperature and pressure. If temperature
and pressure are held constant then the substance would reorient itself in order to
relax the stress caused by deformation, like an elastic material. If surface energy or
interactions are large compared to elasticity, molecules close to the interface maintain
a constant direction regardless of the magnitude of curvature. This case is referred to
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as strong anchoring. On the other hand, when elasticity is comparable to surface free
energy, the two mechanisms would affect the molecule direction at the surface. There
is an easy axis due to surface interactions which would be the molecules direction if
there was only one layer of the liquid crystal on the surface. But since molecules in
the bulk of the material tend to align the surface layer in their direction in order to
reduce curvature and structural energy, the equilibrium structure would be different.
In fact, the boundary layer is like a spring which has a relaxed state when molecules
are in easy or preferred direction and any distortion from this state needs work that
must be stored as elastic energy. This type is called weak anchoring. Based on the
preferred axis, both strong and weak anchoring are divided into homeotropic and
planar.

Homeotropic anchoring involves the nematic orientation aligning paralell to the sur-
face normal, but in planar anchoring molecules are orthogonal to the surface normal
(parallel to the surface plane). Because of the fact that in weak anchoring molecules
are fixed at the boundary, some degree of tilt from easy axis is allowed for both
homeotropic and planar anchoring. The type of anchoring depends on chemistry of
liquid crystal and surface. If molecules are polar, anchoring can be strong, otherwise
it is weak. Different types of organic and inorganic materials can be used as coating
on the surface to change the anchoring. Rubbing the solid surface can also cause the
molecules to orient parallel to the surface.

(a) (b) (c)

Figure 1.3: Schematics of different surface anchoring conditions: (a) homeotropic (b) pla-
nar, and (c) tilted anchoring. (a-c) taken from ref.[4].

1.4 Elasticity and Defects

As described earlier, liquid crystals share, to some extent, some properties with solids like
order and elasticity. Even in a crystalline solid order is not complete and in some regions
molecules do not conform the same ordering as the bulk of the material. For example,
during phase transition if multiple nuclei form, grain boundaries form between the domains
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that grow following their formation. Within these grain boundaries are defects in order,
where ordering is either degenerate, or nonexistent (disordered). Defects can move inside
the material under stress. In fact many materials are elastic because of their defects. In a
relaxed solid, defects are at an equilibrium distance from each other. Stress causes them to
move and interact with one another and with walls, therefore some sort of energy can be
stored through deformation of the material. When stress is removed this energy and the
forces associated with it result in defects translating to their original position. This is why
solids like metals are flexible. The same phenomenon happens in liquid crystals. In LCs, a
defect is defined as an area where the director field is degenerate and not well defined. In
other words, if we consider molecular orientation as a vector field, defects are singularities
within the field. Unlike solids, if an LC undergoes large deformations it does not break,
but instead it forms more defects and keeps its structural integrity because it is also liquid-
like. Formation, position and shape of defects depend on different parameters such as
temperature, geometry of the domain, boundary conditions, elasticity of the material and
initial state of substance. Since the director field is degenerate at defects, optical properties
are different in defects. In many applications of LCs a very well ordered domain is required
to result in a uniform optical axis.

Classification of defects is based on the amount of distortion that is present in their
vicinity. Streamlines of the director field can converge or diverge at defects. This means
there are rapid changes in direction and causes non-smooth rotation at defect points.
Therefore defects are not analytical from mathematical point of view. In order to quantize
the distortion, magnitude of rotation at defect is considered as a measure. Rotation is
defined as change in polar angle of the director field over a closed curved around a point,

∆θ =

∮
C

dθ (1.1)

As long as the director is defined and continuous, θ can be found and it will be analytical
and continuous,

θ = arccos(~n · ~e1) (1.2)

According to Green’s Theorem, this line integral over a closed curve can be transformed
to a surface integral, ∮

C

dθ =

∮
C

∇θ · d~r =

∫∫
D

(
∂∇θy
∂x

− ∂∇θx
∂y

)dA (1.3)

At regular points the integral would be zero because the two terms inside the double
integral are equal. But if the curve encloses a singular point, gradients would not be defined
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Figure 1.4: Rotation integral evaluated in a director field.

Figure 1.5: Green’s integral theorem.

at the point and the integral would not be zero. Thus, this expression can identify regions
that contain defects and distinguish them from well-ordered regions. Choosing a curve
around a singular point in a vector field and traversing it, after a complete loop we reach
to the same vector as starting point. Because ∆θ shows difference between polar angles of
start and end points, on a closed curve it has to be equal to a multiple of 2π. So at some
defects the integral would evaluate to 2π. As discussed earlier, liquid crystals are mostly
made of rod-like molecules and ~n = −~n. For this reason, ∆θ can take odd multiples of π.
We only consider the π and 2π cases because higher angles are rare.

∆θ = 2mπ =


±2π =⇒ m = ±1

±π =⇒ m = ±1
2

0 =⇒ m = 0

(1.4)

where m shows number of full rotations and 1
2

corresponds to half rotation. Figure 1.6 and
1.7 shows each type of defect.

8



(a) m = +1 (b) m = +1 (c) m = −1

Figure 1.6: Schematic of a full rotation defect.

(a) m = + 1
2 (b) m = − 1

2

Figure 1.7: Schematic of a half rotation defect.

When m = +1, a defect causes the director field to have a full rotation around the
defect. Therefore, both start and end vectors on a closed curve around a +1 defect have
the same direction. Positive sign of m shows that with moving along a curve in positive
trigonometric direction, which is counterclockwise, θ will increase. In the case of m = −1
, a complete rotation exists, but θ will increase with rotating clockwise. m = ±1

2
indicates

that start and end vectors on a closed curve are in opposite direction of each other. It is
clear that half rotation is the minimum distortion allowed for rod-like molecules, anything
less will result in non-analytical and non-physical fields.

There are also other defect structures that result in the same rotation as the above
defects, but they have not been observed in LC domains. It should be noted that the line
integral does not depend on the shape of curve around the defect due to Green’s Theorem.
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Therefore, ∆θ around a defect is constant.∮
C1

dθ =

∮
C2

dθ =

∮
C3

dθ ,

∮
C4

dθ = 0 (1.5)

Figure 1.8: Schematic of different line integral around a defect.

1.5 Electric Fields and Applications

Since materials are composed of molecules, individual properties of molecules give rise to
bulk properties. Most of LC molecules are not polar and do not maintain a constant dielec-
tric anisotropy. But if an electric field is applied, electrons redistribute within the molecules
because of forces created by the field. This migration gives rise to a local induced dipole
along the molecular axis. Thus molecules experience different parallel and perpendicular
forces with respect to the director. The result is a net torque on each particle that tends
to orient them parallel to the field. If there is no competing force, all of the molecules
would reorient their directions parallel to the field as shown in Figure 1.9. However, liquid
crystals are elastic and also boundary conditions can impose force on the boundary layer
and bulk.

The equilibrium structure would depend on all of the competing forces and defects
can be affected by electric field (translation, formation, and annihilation). In practice,
imposing an external field is the only way to manipulate the structure once the domain is
formed. For real applications of liquid crystals, various orientation states of the domain
are needed in order to produce different optical modes. The most simple and least costly
way to manipulate these orientational states is through application of an electric field.
LCDs are among the most significant liquid crystal deviecs which are composed of many
micron-scale cubic cells filled with LC. An electric field is applied through two opposing
faces of the cells to control the intensity of light and produce different colours.
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Figure 1.9: Schematic of an LC molecule, or mesogen, rotating in response to an electric
field.

Newer applications of LCs involve polymer dispersed-liquid crystals (PDLC) films which
are sometimes called “smart” glass. They are, in fact, composite films composed of a thin
layer of a glassy polymer matrix phase which encapsulates micron-scale LC domains. PDLC
films enable tunable optical properties ranging from translucency to transparency which
depends on alignment or texture of the encapsulated LC domains. Since electric fields can
affect defects and LC texture, application of an appropriate field (strength and orientation)
can be used to switch between the two modes.

Fabrication of a PDLC film involves mixing monomers and LC – polymerization results
in the LC becoming immiscible with the polymer as molecular weight increases. This
results in phase separation and a spatial distribution of spherical LC domains. PDLCs
are inexpensive to produce in that they are formed naturally during the polymerization-
induced phase separation process. Because PDLCs are inexpensive, they are of interest for
large area applications such as windows and partitions.

1.6 Objectives

The presented research is a fundamental study on nematic domain confined within curved
geometries. A theoretical approach is used to study nematic phase transition and dynam-
ics in geometries presented in PDLCs – spheroids and ellipsoids with different boundary
conditions. The study also includes external electric field effects (imposing and releasing
the field) and defect response to the field.
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Chapter 2

Theory

As discussed in the previous chapter, elasticity is considered as a contribution to the free
energy in liquid crystals. Any form of deformation can result in elastic energy storage. This
elastic energy is the driving force for change in the material structure in order to decrease
the energy and stress. In addition to elasticity, in engineering applications the nematic
texture is also governed by geometry of the domain and anchoring (boundary conditions).

Two parts of nematic order can be identified: short- and long-range order. First, short
range order will be explained and quantified due to its relevance to both the nematic
texture and thermodynamics. First-order phase transition is a gradual process which
introduces multiple misoriented sub-domains (resulting from nucleation) into a nematic
domain. This rarely results in uniformly oriented domains, although initially the case will
be described where the nematic is everywhere aligned in the same direction. With this
simplification, the degree to which molecules conform to the nematic director n is defined
as the nematic scalar order parameter S. The values of S range from zero (disordered
liquid) to one (perfect orientational order), while nematic LCs exhibit S ∈ (0, 1). Figure
2.1 shows different configurations of an orientational distribution function which have the
same director n but differ in the degree to which the molecules are distributed about
n. The nematic scalar order parameter S is a function of the angle between the director
and each individual molecule and must increase as the angle decreases. Among different
expressions, the second order Legendre polynomial of cos θ is used [3],

S =
1

2
< (3 cos2 θ − 1) >=

∫
Ω

f(θ)
1

2
(3 cos2 θ − 1)dΩ (2.1)

where <> represents the statistical average over molecules, f(θ) is the probability density
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of finding a molecule with polar angle of θ from director, Ω is surface of a unit sphere
around each point, and thus dΩ = sin θdθdφ.

(a) (b) (c) (d)

Figure 2.1: Schematics of orientational distribution functions mapped from a half-sphere
to a circle that show increasing S from (a) to (d). The surface color ranges from red (0)
to blue (1) and represented the probability density of the molecular axis oriented in that
area.

In a disordered/isotropic phase the molecules are randomly distributed and thus f(θ)

does not depend on θ and is a constant. Average value of cos2 θ is
1

3
so in liquid S = 0.

When all of molecules are oriented in one direction θ is 0 and S is 1. More details are given
in the Appendix.

2.1 Frank’s Elastic Model

While short-range order characterizes the degree to which the molecules conform to n,
long-range order simply refers to the nematic director n. The nematic director can vary
in space, and thus one approach to simplification of the dynamics of nematic order is to
assume S is constant and neglect it. Frank proposed such a model [5] for nematics that
orient their molecules parallel to one another at equilibrium if there is no boundary or
external field with a different preferred axis. The theory is classified as nematic director
theory and, as in solid mechanics, is based upon relation of a deformation ∇n to elastic
stress. In the nematic phase, curvature of the director imposes stress and torque. Therefore
any elastic-continuum model in liquid crystals has to consider curvature as driving force for
elastic energy storage and free energy change. Frank’s model captures curvature through
change of director at each point.

13



Frank proposed that local free energy density at each point of liquid crystal be func-
tion of ∇n. Local free energy f is per unit volume and thus the total free energy
F =

∫
f(x, y, z)dV may be minimized to approximate the equilibrium state of the nematic

domain. Frank’s model involves approximation of the free energy through truncating a
Taylor’s series expansion. Each partial derivative of director field component with respect
to space is treated as independent variable and free energy is expanded around ground
state which is uniform field everywhere and derivatives are equal to zero.

f(
∂ni
∂xj

,
∂2nk
∂xl∂xm

, · · · ) = f0 + kij
∂ni
∂xj

+
1

2
kijuw

∂ni
∂xj

∂nu
∂xw

+ H.O.T. (2.2)

where summation over repeated indices is assumed and f0 refers to free energy of ground
state. The coefficients are,

kij =
∂f

∂(∂ni
∂xj

)
, kijuw =

∂2f

∂(∂ni
∂xj

)∂(∂nu
∂xw

)
(2.3)

Frank’s model includes terms only up to first derivatives which have physical interpretation
in terms of deformation of the nematic director field as shown in Figure 2.2.

The Frank’s elastic free energy must be independent of coordinate system. Thus if the
coordinate system is rotated, the value of energy must be constant as long as the director
field is unchanged. This allows significant simplification of the Taylor series expansion. In
addition to coordinate system invariance, the symmetry of the nematic phase requires that
free energy be invariant for n = −n . After grouping similar terms the vectorial form of
free energy is,

f(n,∇n) = f0 +
1

2
k11(∇ · n)2︸ ︷︷ ︸

Splay

+
1

2
k22(n · ∇ × n)2︸ ︷︷ ︸

Twist

+
1

2
k33(n×∇× n)2︸ ︷︷ ︸

Bend

(2.4)

and the total free energy is found through integration of f(n,∇n) over the whole domain
with proper boundary conditions.

F =

∫
V

f
(
n(x, y, z),∇n(x, y, z)

)
dV +

∫
Domain Surface

fB(Boundary Layer)dA (2.5)

Total energy also includes energy associated with field structure on the surface that can be
imposed by surrounding materials. In the next section a surface energy will be described
which captures this energetic contribution. The equilibrium nematic texture is such that it
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Modes of nematic director deformation in Frank’s model. (a-f) taken from refs.
[5, 6].

minimizes the total free energy, not the local energy. Total energy is a scalar and function
of a vector field or a functional. Minimization of a functional involves the calculus of
variations and will be discussed latter.

Since liquid crystals are susceptible to external fields because of their induced dielectric
anisotropy, the director field would be influenced by both the natural preferred orientation
of molecules and the field. Therefore these two forces compete and, depending on magni-
tude of field and elasticity of liquid crystal, one of them would be dominant and govern the
structure. If the external field field strength is not large enough, it cannot affect the ne-
matic texture and will leave the director field unchanged. There is a critical field strength
that can change the orientation. This phenomenon is known as Freedericksz transition [2]
and can be predicted by Frank’s model. The electric field coupling term with director is,

1

2
(εpa − εpe)(n · ~E) (2.6)
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where ε‖ is electric permittivity parallel to director direction and ε⊥ is perpendicular to the
director. In an anisotropic material these values differ which would result in a net torque
resulting from misalignment with an external field.

One of the advantages of using Frank’s model is that it is possible to find the critical
field for each of the three deformation types. Conducting experiments under appropriate
conditions enables the measurement of the critical field and subsequent prediction of elastic
constants using Frank’s theory. Figure 2.3 shows examples of these experimental conditions
and the corresponding elastic constant that would be predicted.

E < Ec

E < Ec

E < Ec

E > Ec

E > Ec

E > Ec

Figure 2.3: Different configurations to find Frank’s elastic constants. Taken from ref. [2].

Frank’s elastic model has two major limitations when applied to predict LC dynamics.
Firstly, because the model only involves n and S is assumed constant, it cannot capture
phase transition and is only applicable to nematic domains that are fully formed. Secondly,
because defects are due to degeneracy in director field, this model cannot capture them in
that the director field is not analytical and cannot be integrated through a functional. In
fact, the minimizer of a functional can only predict smooth and analytical fields which can
be integrated. Thus Frank’s model is not appropriate for this study.
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2.2 Landau-de Gennes Model

The Landau-de Gennes model for the nematic free energy [3] is expanded in terms of a
tensorial order parameter that varies continuously from liquid phase to fully crystalline
phase. This tensor is known as Q tensor and defined as below :

Q = S
(
nn− 1

3
δ
)

+ P (mm− ll) (2.7)

where nn is the dyadic product of director with itself, m and l are perpendicular vectors
to the director field which make a local orthogonal basis together with n. The scalar P is
another scalar order parameter which is called biaxial nematic order parameter. Nematics
naturally tend to orient their molecules in one direction but sometimes due to boundary
conditions and geometry, they might show simultaneous order in another direction perpen-
dicular to n. If P = 0 there is no preference between m & l directions. Then molecules
are distributed evenly in the ml plane. If P > 0, molecules tend to orient in m direction
more than l but n is still the major direction that molecules point. l is preferred direction
in ml plane when P < 0.

Figure 2.4: Schematics of orientational distribution functions for different values of P .

In the above expression forQ, the tensor is defined through n , S, etc. If the components
of Q are known, for instance through a model or simulation, then n ,S, P can be found
(see appendix).

The Landau-de Gennes model can capture both phase transition and elasticity, thus the
free energy involves both Q and ∇Q terms together in the expansion. Near a transition
point, gradient terms are not significant and free energy mainly depends on Q itself, but as
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a domain forms gradients can play an important role to reduce elastic energy and produce
texture (coupled to boundary conditions and geometry).

f(Q,∇Q, · · · ) = fis +
1

2
A(Q : Q)− 1

3
B(Q ·Q) : Q+

1

4
C(Q : Q)2 + · · ·︸ ︷︷ ︸

Thermodynamics Terms

+
1

2
L1

(
∇Q...(∇Q)T

)
+

1

2
L2 ((∇ ·Q) · (∇ ·Q)) +

1

2
L3Q :

(
∇Q : (∇Q)T

)
+ · · ·︸ ︷︷ ︸

Elastic Terms

(2.8)

Because f is an infinite series, it must be truncated after a finite number of terms and
the remaining non-zero coefficients must be approximated experimentally. In order to be
able to find the coefficients, the first three terms from each of the free energy types, ther-
modynamic and elastic, are chosen (because S < 1 higher order terms are not significant).

In large domains where boundary effects are minimal, only thermodynamics terms exist,
there is no gradient in the director field and biaxiality is zero. Therefore, for such domains,

f(Q) = fis +
1

2
A(Q : Q)− 1

3
B(Q ·Q) : Q+

1

4
C(Q : Q)2 + · · · (2.9)

Q = S(nn− 1

3
δ) =⇒ f = fis +

1

3
AS2 − 2

27
BS3 +

1

9
CS4 + · · · (2.10)

Thus f becomes a function of S only and does not vary in space. In order to minimize the
total free energy, f itself has to be minimized which will result in a minimum for the total
free energy functional. Each of the coefficients is a function of temperature but since near
transition S is small, the effect of A is more than the effect of other terms and only this
term is considered as a function of temperature. Above the transition temperature, S is 0
and free energy has to have a minimum at S = 0. Below the transition temperature S is
positive. A simple form for A is A = A0(T − TNI) where TNI is a second order transition
temperature (in the absence of nucleation). In reality liquid crystalline phase transition
dose not happen only at TNI due to fluctuations in nematic order above the transition
temperature. Even above this temperature, material goes through a meta-stable state
where stability of nematic and isotropic phases is equal. This temperature is known as Tb,
the bulk transition temperature. Between Tb and TNI the nematic phase is more stable
than the liquid phase. Above Tb and up to TSH , upper stability limit, liquid phase is more
stable than nematic phase. In temperatures higher than TSH liquid is the only stable phase.
Plots of free energy in these three different temperature regimes are shown in Figure 2.5.

Landau elastic constants can be evaluated through relationships to Frank’s elastic con-
stants. In the Landau-de Gennes model, elastic terms are not directly related to deforma-
tion types and it is difficult to measure them experimentally. Assuming S is constant in a
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Figure 2.5: Free energy plot over different temperatures. Taken from ref. [6].

domain, then the gradient of Q can be connected to the gradient of n and elastic constants
of both models can be related. The relations between Li and Kij are [12],

L1 =
3K22 −K11 +K33

6S2
0

(2.11)

L2 =
K11 −K22

S2
0

(2.12)

L3 =
K33 −K11

2S3
0

(2.13)

where S0 is an average equilibrium scalar order parameter. In some liquid crystals Kii

values are equal that suggests bend, twist and splay have the same energy. With this
assumption L2 = L3 = 0 and only L1 > 0. Therefore the L1 term can capture different
modes of deformation.

In this work, the following form of free energy is used,

f = fis +
1

2
A(Q : Q)− 1

3
B(Q ·Q) : Q+

1

4
C(Q : Q)2 +

1

2
L1

(
∇Q...(∇Q)T

)
− ε◦

8π

[(
ε‖ + 2ε⊥

3
I + (ε‖ − ε⊥)Q

)]
: EE (2.14)
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where E is the electric field vector and ε are the dielectric constants parallel and perpendic-
ular to the director. Since the electric field tends to orient molecules along its direction, ε‖
is greater than ε⊥. Therefore the above free energy can be used for simulation of nematic
domains in the presence of an electric field.

2.3 Surface Anchoring Energy

As discussed in the previous chapter, there are two major types of surface anchoring:
homeotropic and planar. These correspond to anchoring orthogonal and parallel to the
surface normal, respectively. In a more general way, surface energy can be classified de-
pending on the “easy” or preferred axis. The easy axis can be a direction, k, or a plane
with a specified normal vector k. In the first case deviation from the easy axis results in
increase in the free energy. In the planar case deviation from normal vector decreases the
free energy. If a spherical coordinate system is considered at each point of surface and θ as
polar angle from k and φ as azimuthal angle around k, surface energy should be function
of θ and φ. Because most surfaces are isotropic, the free energy cannot depend on φ. Since
n and −n are equal and molecules are non-polar, surface energy has to be an even function
of θ . A siutable relationship can be found by adding even powers of cos θ together which
can be evaluated by n · k.

γ =
∞∑
i=1

(
∞∑
j=1

CijS
j(cos θ)2i

)
(2.15)

the nematic scalar order S has a direct effect on surface energy because surface energy is
also elastic. As the material approaches the liquid phase, the effect of surface anchoring
vanishes, therefore γ is expanded in terms of S and θ. In order to use the Landau-de
Gennes model, the surface energy has also to been derived in terms of Q [13],

γ = α1Q : kk + α2(Q : kk)2 + · · ·+ β1(Q ·Q) : kk + β2 ((Q ·Q) ·Q) : kk + · · · (2.16)

the largest term corresponding to the lowest power of cos θ and S, which is the first term.
In this work, the following expression is used for the surface energy,

γ = α(Q : kk) (2.17)

where α is the surface anchoring energy. When α is negative, k is the direction of easy axis
and when it is positive k is the normal to the plane. It should be noted that this energy is
per unit area and has to be integrated over the boundary surface to find the total surface
energy.
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Free Energy Minimizer

Up until now the free energy and boundary condition were defined mathematically through
the Landau-de Gennes model. In order to predict a structure for the nematic domain, the
free energy must be minimized. The free energy density, f(Q,∇Q, · · · ), characterizes the
elastic energy per volume for each point in a domain where Q can vary over space and
time. The minimum of the free energy for each point is a uniform tensor field that has
no spatial gradients since the material is nematic. Surface anchoring and geometry, in
addition to nucleation, typically precludes the possibility of the nematic domain evolving
to uniform ordering. In such cases, the boundary curvature penetrates into the domain,
which results in a deformed nematic domain.

The first step in simulation is to find a Q field that minimizes the following total free
energy:

F [Q] =

∫∫∫
Bulk

(
1

2
A(Q : Q)− 1

3
B(Q ·Q) : Q+

1

4
C(Q : Q)2 +

1

2
L1

(
∇Q...(∇Q)T

)

− ε◦
8π

[(
ε‖ + 2ε⊥

3
I + (ε‖ − ε⊥)Q

)]
: EE

)
dV +

∫∫
Boundary

α(Q : kk)dA

(2.18)

The total free energy F of the domain (tensor field) is a functional. This means that Q
is not an independent variable and cannot be differentiated in order to find differential
changes of the functional around Q. Therefore a calculus relevant to functionals must
be used that connects small changes in the function space, Q, to the independent and
continuous variables. The idea of functional theory is to add an arbitrary function to the
Q with a continuous and independent coefficient. Small changes to the Q field can be
made by small changes of the coefficients. Therefore derivatives of a functional can defined
through the coefficients [14].

A local minimum, or minimizer, of the functional is a Q-tensor field such that any
infinitesimal perturbation of the field results in a positive infinitesimal change of the func-
tional. To find a minimizer, it should be assumed that it is something like Q̃ and perturb
it,

Qij = Q̃ij + αijvij (2.19)

where vij is any arbitrary function and αij are independent variables. If Q inside the
functional is replaced with the above expression, then the functional would be a function
of αij around Q̃. Therefore, it can be minimized by taking derivatives with respect to αij
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and setting them to zero. It should be noted that the answer must be independent of vij.
The complete procedure is shown in the appendix. The result is that two sets of equations
have to be zero, one comes from bulk integral and the other one from surface integral.
The bulk equation is also known as the Euler-Lagrange equation of a functional and is the
tensorial partial differential equation that has to be solved with the boundary condition
coming from the minimization process,

∂f

∂Q
−∇.

(
∂f

∂ (∇Q)

)
= 0︸ ︷︷ ︸

Euler–Lagrange Equation

,
∂γ

∂Q
+

∂f

∂ (∇Q)
· ~k = 0︸ ︷︷ ︸

Boundary Condition

(2.20)

In the present work, a dynamical equation is needed, rather than a stationary one. In
transport processes like momentum transport, the driving force is velocity gradient. The
equilibrium state for velocity is when there is no gradient in the velocity field. Veloc-
ity gradients may be stabilised due to external forces like boundary conditions, pressure
difference, and gravity. Momentum is always transported in the reverse direction of the
gradient in order to unify the velocity field. In heat and mass transfer the driving force
is gradient of temperature and chemical potential, respectively, and transfer direction op-
poses the gradient to reach a uniform equilibrium field. The same idea can used to make
dynamical equation from Euler equation as driving force. In fact Euler equation is the
first variation of the free energy functional [14] which is similar to the first derivative of a
function (gradient). Thus the rate of change of Q is a proportional to Euler equation at
any given Q field with a proportionality constant known as rotational viscosity.

µ
∂Q

∂t
= −

(
∂f

∂Q
−∇.

(
∂f

∂ (∇Q)

))
︸ ︷︷ ︸

M

(2.21)

Due to the truncation of the free energy density, f , the Euler equation is not traceless and
in order to be used for dynamics it should be made traceless since Q is traceless,

Trace(M) = b
∑
k

∑
n

QnkQkn +
∑
k

ε◦
8π

(ε‖ − ε⊥)EkEk (2.22)

µ
∂Qij

∂t
= Mij −

1

3
Trace(M)I (2.23)

To generalize the equation, it is made dimensionless by defining dimensionless quantities,

T̃ =
T

TNI
, X =

x

l
, t̃ =

t

τ
, τ =

µ

a0TNI
(2.24)

The dimensionless form of equation is given in the appendix.
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2.4 Length Scales

In order to generalize the simulations, two different parameters are defined and used instead
of actual values for external field effects and surface anchoring effects. The elastic term
in the free energy functional is responsible for the deformation of the bulk and it tends to
reorient the molecules such that a uniform domain is maintained.

Elastic Term : l1(∇Q)
...(∇QT ) (2.25)

When the surface anchoring energy is on the order of this term, then the boundary texture
and shape would penetrate into the bulk of the material. Therefore a length can be defined
by comparing the two terms,

ls ∼
l1S

2α
(2.26)

If ls is small it means that the director can vary rapidly in order to compete with sur-
face anchoring. Large values of ls correspond to weak anchoring where the bulk texture
dominates surface anchoring.

Like the surface penetration length scale, a length scale may be determined comparing
electric field strength to nematic elastic energy term,

lf ∼
√
l1S

εE2
(2.27)

which similar characterizes the effect of the external field with respect to the characteristic
energy of elastic distortion of the nematic.

2.5 Numerical Methods

There are three main numerical methods to solve partial differential equations: finite
difference, spectral methods, and finite elements. Finite difference is based on a local
Taylor series expansion of the solution at each node of the domain. This method can
capture any boundary condition but it is limited to simple geometries. In spectral methods,
the solution is approximated by periodic functions which are global and defined over the
whole domain. This method is fast and applicable to any boundary condition with high
degree of convergence, but it is only applicable to the domains that can be transformed
to rectangular geometry. On the other hand, finite elements can be used for any domain
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shape and geometry, but boundary condition is limited to some forms. In this work, the
finite element method is adopted because the geometry is curved.

In the finite element method, the domain is discretised into small domains and local
functions are defined on each element of the domain. Local functions are non-zero on the
elements which they belong to, but vanish on other elements or at least on most of other
elements. The final solution is the sum of these local functions with a coefficient for each
one. These coefficients must be found. Because any domain can be discretized into small
sub-domains with regular shapes that are easy to work with and define local functions,
this method is very popular for curved geometries.

Figure 2.6: Schematics of (a) localized basis functions in the finite element method (taken
from ref. [7]) (b) a meshed circular domain and (c) a meshed elliptic domain.

In most numerical methods, a differential equation is treated directly where the deriva-
tives are approximated at each node and used to directly solve the equation. When a curved
geometry is involved, it is difficult to find directional derivatives at boundary nodes and
that is why many numerical methods are restricted to the rectangular or transformable
to rectangular geometries. In order to solve this problem, the finite element method is
based on integration rather than differentiation. In the finite element method a differen-
tial equation is turned into an equivalent integral or functional problem which has exactly
the same solution. The integration is over the whole domain and also boundaries. Thus,
instead of working with directional derivatives at boundary, an integration is added over
the boundary. The idea is to multiply the differential equation by an arbitrary function
from linear function space and then integrate over the whole domain.∫∫∫

Ω

(
µ
∂Q

∂t
= −

(
aQ− b(Q ·Q) + c(Q : Q)Q− ε◦

8π
(ε‖ − ε⊥)EE − l1∇2Q

))
TdΩ

(2.28)
∀T ∈MS where Ω represents the domain or bulk andMS = T : T is a piecewise continuous
and bounded tensorial function on the domain. In the finite element method, boundary
conditions are applied through the main equation and not separately, by using Green’s
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formula. This formula involves the Laplacian, which is over the domain, to the boundary
and produces a directional derivative on it.∫∫∫

Ω

T∇2QdΩ =

∫∫
Γ

T (∇Q · k) dΓ−
∫∫∫

Ω

∇T · ∇QdΩ (2.29)

where T is the surface normal and Γ is the boundary. Due to boundary condition that was
derived previously, the boundary term can be simplified using,

∇Q · k = − 1

l1

∂γ

∂Q
,

∂γ

∂Q
= αkk (2.30)

The boundary condition is applied through a surface integral in the main equation which
involves a volume integral. The final finite element formulation of the PDE is:∫∫∫

Ω

µ
∂Q

∂t
TdΩ = −

∫∫∫
Ω

(
aQ− b(Q ·Q) + c(Q : Q)Q− ε◦

8π
(ε‖ − ε⊥)EE

)
TdΩ

−
∫∫∫

Ω

(∇T · ∇Q) dΩ−
∫∫

Γ

α

l1
kkTdΓ (2.31)

As long as T belongs to the infinite dimensional function space, Q is the analytical solution
to the equations. It is impossible to work with infinity in numerical methods. If the function
space is restricted to a finite dimensional subspace of the whole space, then it is possible to
find a numerical solution. When a subspace is chosen the solution is in fact the projection
of the analytical solution to that subspace. In the finite element method, the solution
is a linear combination of basis functions of the subspace. Coefficients can be found by
applying the above integration on each basis function. In the simulations, second order
Lagrangian basis functions are used.
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Chapter 3

Formation and Structure of
Ellipsoidal Nematic Domains

In this chapter, the material transformation process of elliptic cylindrical domains of a
nematic liquid crystal (LC), initially in the disordered isotropic phase, are studied. The
majority of manufacturing processes resulting in ellipsoidal confinement of an LC domain
involve formation at temperatures above the upper stability limit of the LC phase. Upon
quenching, a rapid cooling of the domain below the transition temperature, an isotropic-
to-nematic transition occurs which forms the steady-state or “relaxed” nematic texture
of the LC domain. This relaxed nematic texture directly affects the optical properties of
materials and devices that are composed of LC domains, and thus is the first point of
study.

3.1 Heterogeneous Nucleation and Growth

The steady-state of a cylindrical and spherical nematic domains has been well studied using
Euler-Lagrange formulations of the Landau-de Gennes free energy for a range of diameters
on the nanometer and micron scales [15, 16, 17, 18, 19, 20]. These studies have shown
that the texture of these domains, consistent with the topology of a 2π rotation of the
nematic alignment, has two characteristic types: radial and bipolar radial. Figures 3.1a-b
show schematics of these two textures, where strong-anchoring is assumed. The radial
texture is composed of a single +1 disclination defect in the centre of the domain. For a
two-dimensional simulation (cylinder) this corresponds to a +1 line defect while for a three-
dimensional simulation (sphere) this corresponds to a +1 point disclination. The bipolar
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radial texture instead is composed of a pair of +1
2

disclinations, both of line character. In
three-dimensional simulations of nematic spheres, a single +1

2
disclination loop is formed

[18] which is topologically equivalent to a +1 point disclination. Sets of simulations have
been performed for different LCs under the assumption of strong-anchoring which yield a
relation between domain diameter, temperature and texture type (radial or bipolar radial).
A schematic example of this data, or a texture phase diagram, is shown in Figure 3.1c,
showing that the radial texture is only observed at small radii (with respect to the ln) and
high temperature (with respect to Tb).

(a) (b)
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Figure 3.1: Schematics of the a) radial and b) bipolar radial textures of a cylindrical
nematic domain; c) schematic plot of a texture phase diagram.

Simulations performed in this work are in two-dimensions, which correspond to cylin-
drical and elliptic cylindrical domains. Given that the majority of conditions result in a
bipolar radial-type texture, these two-dimensional simulations provide some indication of
the behaviour of full three-dimensional simulations of spheroids and ellipsoids. While this
assumption does neglect the energetic cost of curvature of defect loops, the radial tex-
ture is actually not observable based upon simulation predictions with corrected dynamics
(compared to past work).

In this work, the post-nucleation growth process is simulated using a time-dependent
Landau-Ginzburg model for nematic phase transition and reorientation dynamics. This
enables resolution of the dynamic growth process, given an assumption of the type of
nucleation events that occur within the domain post-quench. An assumption is made that
the nematic/solid interface enhances or promotes nematic order which results in a local
surface transition (heterogeneous nucleation) preceding that of the bulk (homogeneous
nucleation). Thus it is assumed that as the domain is quenched, an boundary layer exists
that is nematic and growth proceeds from this layer. An example of this process is shown
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in Figure 3.2, where the stable nematic boundary layer grows into the unstable isotropic
bulk. The dynamics of the isotropic/nematic interface have been studied by Wincure and
Rey [12] for the inverse problem, growth of a stable nematic domain in an unstable matrix
phase. They have shown that the velocity of the interface is proportional to the difference
in energy between the nematic and isotropic phase ∆f and capillary forces:

βv = C −∆F (3.1)

where β is an effective viscosity term. Thus as the interface approaches the center of
the domain, shown in Figures 3.2a-b, the capillary force grows proportional to 1

ri
. As ri

approaches some critical radius rc ∝ ln, C → ∆F which results in a critical slowing of the
interface growth. As shown in 3.2c, as this critical radius is approached, the growth process
transitions to forming a nematic defect in the central region. This completes the initial
transition process in that the domain is completely nematic, devoid of isotropic regions.
Past results [16] show that following this transition process, there is a relaxation of the
domain to either a radial or radial bipolar texture. The latter involves a splitting event of
the +1 disclination, depending on the diameter and temperature of the domain shown in
the texture phase diagram (Figure 3.1).

(a) (b) (c) (d)

Figure 3.2: Schematics of the formation process: a) nucleation b) growth c) defect forma-
tion d) relaxation. Grey corresponds to the nematic phase and white to the disordered
and biaxial phases.

Prior to simulation of elliptic cylinder domains, a study was first performed on circular
cylindrical domains where a ≈ 1 , the ratio of long axis to the short axis, in order to
validate the simulation method and compare to past results.
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Table 3.1: Material parameters for 5CB.

a 1.4× 105 J

m3

b 1.8× 106 J

m3

c 3.6× 106 J

m3

l1 3.0× 10−12 J

m
TNI 307.2 K

3.2 Method and Simulation Conditions

Nematic reorientation dynamics simulations were performed using the dynamic partial
differential equations and computational method description in Chapter 2. Model param-
eters were used that correspond to the pentyl-cyanobiphenyl [21] or 5CB liquid crystal
compound, which has a bulk transition temperature of 307.2K. These parameters are
shown in Table 3.1, and the temperature of the quench was 307K.

As opposed to past work, surface anchoring was assumed to be governed by the com-
petition between the bulk nematic texture and surface anchoring energy. Thus a range
of anchoring energies are used that correspond to strong to weak to free anchoring at the
boundary with respect to a preferred orientational axis k. This approach differs from the
majority of past work which approximated strong anchoring through utilizing Dirichlet
boundary conditions for the Q field. While this reduces the computational complexity
of the simulation, the approximation fixes both alignment axis n, the degree of nematic
ordering S, and the biaxiality at the interface β2. In this work, none of these assumptions
are made and anchoring strength is varied from weak to strong through changing the value
of the surface penetration length ls (Appendix). Simulations are performed under three
surface anchoring conditions: strong anchoring ls << ln, moderate anchoring ls = ln, and
weak anchoring ls >> ln.

In addition to anchoring strength, the shape of the domain was limited to elliptic
cylindrical domains with aspect ratios either a ≈ 1 (circular) or a >> 1 (elliptic). The
aspect ratio was defined as the ratio of the long and short axes of the elliptic cross-section,
dl and ds, respectively. The short axis is used as the scale of the domain, chosen such that
ds >> ln, while the long axis is set to dl = ads. The initial conditions of all simulations
assume a boundary layer that is uniaxial and well-aligned with the preferred orientational
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axis of the surface k(θ), where θ is the polar angle of each surface point.

S(r, θ) = Sb

(
r − λR(θ)

R(θ)− λR(θ)

)
For λR(θ) < r < R(θ) (3.2)

and
S = 0 For 0 < r < λR(θ) (3.3)

where Sb is the bulk/thermodynamic value of the uniaxial nematic order parameter at the
boundary. It is assumed that S varies linearly over the boundary layer ranging from 0 to
Sb at r = λR over a distance λ. In circular domains R(θ) is the radius of domain and it is
a constant but for ellipse it the distance of surface point from origin and has the following
form,

R(θ) =
a√

cos2 θ + a2 sin2 θ
(3.4)

The director field is set to be in radial direction for initial condition with n = (a cos(θ), sin(θ))
and,

Qint = Sb

(
r − λR(θ)

R(θ)− λR(θ)

) a2 cos2(θ)− 1
3

a cos(θ) sin(θ) 0
a cos(θ) sin(θ) sin2(θ)− 1

3
0

0 0 −1
3

 λR(θ) < r < R(θ)

(3.5)

Qint = 0 0 < r < λR(θ)

Simulations were performed using the finite element method for spatial derivative
approximation with second order Lagrange basis function on a triangular mesh. Time-
evolution was approximated using a second-order implicit trapezoidal rule method with a
fixed time-step of τ = 50 (dimensionless). Mesh-independence simulations were performed

finding that a node density of 50
node

µm2
was sufficient given an error tolerance of 10−8.

The nematic reorientation dynamics prediction by these simulations involve many fun-
damental assumptions, summarized here:

1. Hydrostatics – phase transition and reorientation dynamics occur in the absence
of flow.

2. Fluctuations – the effects of fluctuations are negligible [22].
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3. Heterogeneous nucleation – the phase transition process is rapid such that the
nucleation does not occur in the bulk and not likely to occur prior to defect formation.

4. Higher Dimensions – two-dimensional simulation of a elliptic cylinder domains
provide insight into the dynamics of three-dimensional ellipsoidal domains.

Justifications for these assumptions, and associated limitations, will be addressed through-
out the analysis.

3.3 Circular Nematic Domains, a ≈ 1

3.3.1 Post-nucleation Domain Formation

Simulations of a circular domain were performed in order to validate and confirm the
computational method with past results [16]. Figure 3.3 shows the evolution of a domain
with a = 1 and d = 200nm with moderate anchoring.

(a) (b) (c)

Figure 3.3: Evolution of domain without noise: (a) initial condition, (b) growth, and (c)
defect formation.

Up to a critical radius the short range order (S) is approximately uniform throughout
the domain. Within the domain centre, deviation from uniformity is observed where S
(uniaxial order) decreases and P (biaxial order) increases which corresponds to an ori-
entational defect or disclination. As P approaches S, the orientational order becomes
degenerate with respect to the existince of a nematic director n. In this case, due to the
anchoring and geometry imposed on the nematic domain, the type of defect that is formed
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is a +1 disclination, which corresponds to a full rotation of the nematic director around
the defect core.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Surfaces of the (a-d) uniaxial nematic order parameter S and the (e-h) biaxial
nematic order parameter profiles during the phase transition process.

As can be seen from above Figure 3.4, S and P are equal at the core when the defect
is formed and the domain reaches steady-state. This equality means that the director is
degenerate, it does not point only to one direction and a defect must exist.

This single defect formation is followed by splitting into a pair of +1
2

as time increases.
The two defects have the same sign, hence there is a repulsive force between them which
pushes the defect toward the boundary as shown in Figure 3.5 . The split happens due
to core energy difference between +1 and +1

2
defects. The core energy associated with a

defect is proportional to [23],

πKk2ln
R

rc
(3.6)

where k is defect strength, rc is defect core radius and K is an elastic constant. With the
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assumption of constant K and rc, the energy of a k = +1 defect is twice as high as the
energy of a pair of k = +1

2
defects. Thus, splitting results in a lower total energy.

Figure 3.5: The steady-state nematic texture after defect splitting.

It was found that the time interval between +1 disclination formation and splitting
did not converge during the mesh independence test. As the mesh density was increased,
and simulation accuracy increased, the time to splitting was observed to increase which is
shown in Figure 3.9.

Figure 3.6: The dimensionless total free energy versus dimensionless time for two different
mesh densities.

Initially, these results seemed contradictory with respect to past results [16], but after
further analysis they were found to have a simple explanation. The dynamic equation
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evolves the domain towards a solution which satisfies the Euler-Lagrange equation at steady
state:

∂Q

∂t
= − δF

δQ
(3.7)

Euler-Lagrange equation :
δF

δQ
= 0

but there are three classes of solutions which satisfy the Euler-Lagrange equation which
are critical fields (maxima, minima, and saddles). The dynamic equation varies in the op-
posite direction of the fist variation of F which does not admit the possibility of reaching a
local maximum, but saddle and local minima solutions are possible. Thus as the domain is
evolved as governed by the dynamic equation, if a saddle is encountered the time derivative
of Q approaches 0. Given that the governing equations are solved using approximate com-
putational methods, approximation error will act as a series of perturbations to destabilize
saddle solutions, but not local minima.

The same series of mesh independence simulations were performed, but now with an
artificial noise added toQ field prior to +1 defect formation. Figure 3.7 shows the evolution
of one of the simulations, which are qualitatively similar to those of the simulations without
noise. With noise, the interval over which the defect splits was observed to decrease, which
suggests that the texture with a +1 disclination is a saddle solution to the Euler-Lagrange
equations. Additional simulations were performed at different domain length scales and it
is found that the bipolar radial texture is a local minimum in all cases.

Figure 3.7: The dimensionless total free energy versus dimensionless time with noise.
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This result implies that the use of the Landau-Ginzburg formulation for nematic re-
orientation dynamics must involve mesh independence test of both texture and dynamics.
An interesting phenomenon that happens during the separation is that the direction of
defects is different in different simulations. If the same code is performed multiple times,
the polar position (angle) of the pair of defects would not be the same. This phenomenon
cannot happen in deterministic equations. This behaviour can be described by the broken
symmetry of a circle. If the equation were solved analytically over a circle, the result could
not be a non-symmetric structure since the boundary and initial conditions are radially
symmetric. Therefore, a single +1 defect would be a minimum for a circle. With numerical
methods, it is impossible to get a represent and perfect circle due to meshing and round-off
error

(a) (b) (c) (d)

Figure 3.8: Nematic textures from different simulations of the circular domain showing the
degeneracy of the axis along which the defect split occurs.

In order to further understand this behaviour, simulations were performed with an as-
pect ratio slightly larger than one, a = 1.05. Texture evolution is qualitatively similar to
a = 1 simulations, but even without the addition of artificial noise, the texture dynamics
converged as a function of mesh density. This behaviour is attributed to symmetry of the
simulations in a circular cylindrical domain. As the nematic interface grows into the centre
of the domain it propagates with constant radial velocity at all points of the interface, as
a result of the symmetry of the domain and initial condition. The driving force for the
movement of the front is ∆f (eqn. 3.1) but as the inner radius ri decreases, capillary forces
become large. For the perfectly symmetric case, in the absence of approximation error,
there is no part of the highly curved interface that is more likely to grow inward. Any per-
turbation in the interface results in an aligned central region with broken symmetry; defect
splitting then occurs on the axis orthogonal to the direction of alignment of the central
region. For simulation of perfect circles, the presence of non-uniform mesh distributions
and approximation error is the only possible source of pertubations, although unintended.
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Figure 3.9: (a) Steady-state nematic texture for a = 1.05 and (b) the corresponding
evolution of the dimensionless free energy.

For domains that are not perfectly radially symmetric, such as the simulations with
a = 1.05, the portion of the interface that are in the vicinity of the short axis are exposed
to lower interface curvature than regions along the long axis. Given that nucleation occurs
uniformly along the boundary, there always exists a preferred axis along which +1

2
discli-

nations will form and lie along. Clearly this is not the case for a = 1 in that the texture
in a domain may be rotated and result in a domain of the equivalent energy.

Thus, the introduction of an initial condition that lacks radial symmetry is one approach
to using the Landau-Ginzburg formulation to predict convergent results. This does not
preclude the possibility of encountering other scenarios where a saddle solution is present,
and thus in all following simulations mesh independence studies were performed to show
convergence of dynamics, in addition to steady-state state.

An alternate and more general approach would be to include thermal fluctuations
through simulation of the dynamics using Langevin dynamics [24] which results in a
stochastic PDE system [25, 22]. This requires the use of more complex computational
methods for stochastic PDEs and significantly increases computational complexity.

3.3.2 Effect of Surface Anchoring Strength on Texture

The effect of surface anchoring strength was studied for a circular domain with a = 1.05
and d = 200nm. In all cases homeotropic anchoring was used with k = ns where ns
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is the unit normal (outward) to the boundary. Simulations were performed for varying
anchoring strengths ls = 1, 0.1, 0.01µm which are representative of weak, moderate, and
strong anchoring, respectively. These values were based upon experimental characterization
of these energies for different surfaces with 5CB [26].

Figure 3.10 shows steady-state textures resulting from simulations using these different
anchoring strengths. Post-splitting of the +1 defect, the two +1

2
defects repel each other.

As the defects approach the boundary, the surface stress increases proportionally to the
anchoring energy. The surface anchoring energy competes with the bulk elastic energy,
where the former resists deformation of the alignment at the boundary and the latter
resists deformation in the bulk. Figure 3.10b-c show that as anchoring energy increases,
disclination defects come to rest farther away from the bulk, comparing moderate to strong
anchoring textures. In the case of weak anchoring, the bulk elastic stress overcomes the
surface stress resulting in so-called “escape” of the disclination defects [27]. This escape
phenomena results from large local deviations of the surface anchoring from the preferred
direction. Subsequently, with the boundary conditions relaxed, the domain becomes well-
aligned in the bulk along the axis orthogonal to the original defect trajectories (the major
axis).

(a) (b) (c)

Figure 3.10: Nematic textures simulations with ar = 1.05 and d = 200nm with anchoring
strength: (a) weak, (b) moderate, and (c) strong.

3.4 Ellipsoidal Nematic Domains, a > 1

In this part of the study, simulations of elliptic cylindrical domains were performed for a
range of aspect ratios a = {2, 3, 4, 5} and surface anchoring length scales ls = {0.01, 0.1, 1.µm}
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corresponding to weak, moderate, and strong. Once again, homeotropic anchoring was used
along with heterogeneous nucleation as an initial condition. As was shown in the previous
section, anchoring strength has a significant effect on the final ground state texture of the
domain for circular cylindrical domains. In many manufacturing processes that form LC
domains through phase separation, these domains are not perfectly circular [28, 29].

3.4.1 Post-nucleation Domain Formation

The growth process in the presence of anisotropy results in different interface dynamics
compared to the circular case. The growth process of a domain with a = 2 is shown in
Figure 3.11 and exhibits a qualitatively different formation process than for domains where
a ≈ 1. It is clear that interface regions closer to the major axis have greater curvature
imposed by surface anchoring and geometry. Thus according to eqn. 3.1 they grow at
a slower interface velocity compared to regions along the minor axis, which have lower
curvature. As seen in Figure 3.11b, the rapid growth of the minor axis regions increases
the region of high curvature along the major axis, which essential halts its growth early-on.
Finally, 3.11c shows the domain fully transitioned into the the nematic phase with a pair of
+1

2
disclinations located in regions of previously high curvature during the growth process.

(a) (b) (c)

Figure 3.11: Evolution of domain with moderate anchoring and a = 2: (a) initial growth
from post-nucleation, (b) interface along minor axis grows faster than along the major
interface, (c) phase transition complete forming a nematic domain with +1

2
disclinations

along the major axis.

Ground state textures for the range of aspect ratios with moderate anchoring are shown
in Figure 3.12. The trend of increasing aspect ratio results in a decreasing radius of curva-
ture in the boundary regions from each of the two foci to the ellipse boundary. Subsquently,
the radius of curvature of the boundaries in between the two foci is decreasing and the
overall curvature imposed by the boundary is localized to the focal region.
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(a) (b)

(c)

(d)

Figure 3.12: Steady-state textures of domains with moderate anchoring and aspect ratio:
(a) a = 2, (b) a = 3, (c) a = 4, (d) a = 5.

In order to understand the effect of domain eccentricity on the texture, the local curva-
ture of an ellipse may used as an approximation for the curvature imposed, through surface
anchoring, on the nematic alignment in the vicinity of the boundary. As the anchoring
strength is increased, this approximation should be more accurate. Beginning with the
parameter equation for an elliptic curve in R2 with major axis a and minor axis b,

r(θ) =

[
a cos θ
b sin θ

]
(3.8)
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the mean curvature κ may be found for an arbritrary curve as follows,

|κ| = ‖r
′ × r′‖
‖r′‖3

(3.9)

where r′ = dr
dθ

and r′′ = d2r
d2θ

. Substituting eqns. 3.8 into 3.9, the expression for the mean
curvature of an ellipse is,

κ(θ) =
ab
(
sin2 θ + cos2 θ

)(
a2 sin2 θ + b2 cos2 θ

) 3
2

(3.10)

noting that for an ellipse |κ(θ)| = κ(θ).

Figure 3.13 shows the mean curvature over a quadrant of an elliptic curve, which in-
creasingly localizes in the focal region as aspect ratio is increased. This behaviour, although
subtle, is observed in both the moderate and strong anchoring simulation, being more pro-
nounced in the strong anchoring case. Disclination defects mediate the requirement of large
curvature and gradients in nematic alignment between misaligned domains. Curvature im-
posed on the nematic alignment by the boundaries is increasingly localized to the focal
areas of an ellipse as aspect ratio is increased, consistent with the topological properties of
disclination defects. This also quantifies experimental observations [29] of the decrease in
susceptibility to reorientation via external field that nematic domains exhibit which have
increased aspect ratio.
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Figure 3.13: (a) Schematic of the quadrant of an ellipse and (b) plot of curvature κ versus
angle θ along the ellipse for increasing aspect ratio ar = a

b
.
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3.4.2 Effect of Surface Anchoring Strength on Texture

The effect of surface anchoring strength was studied for the range of elliptic domain with
ar = 2 → 5 and b = 100nm. In all cases homeotropic anchoring was used with k = ns

where ns is the unit normal (outward) to the boundary. Simulations were again performed
for varying anchoring strengths ls = 1, 0.1, 0.01µm which are representative of weak, mod-
erate, and strong anchoring, respectively.

As discussed in the previous section, the curvature of the boundary of an ellipse is
increasingly localized as the aspect ratio is increased. Furthermore, as anchoring energy
increases, the coupling of the alignment of the nematic at the boundary also increases.
Thus, it is expected that under strong anchoring conditions the disclination defects present
in the domain will have equilibrium positions closer to the focal regions along the major
axis. Figure 3.14 shows ground state nematic textures for the ar = 5 case for each of the
three surface anchoring conditions: weak, moderate, and strong. The strong anchoring case
behaves as expected; disclination defects are expelled from the bulk into the high curvature
focal regions. Weak and moderate cases deviate substantially from the expected result
imposed by surface anchoring. Clearly a competition exists between alignment preferred
by surface anchoring (high curvature) and by the bulk (uniform/low curvature)

Surface anchoring is relaxed in order to accommodate a more aligned domain where
bulk distribution of alignment deformation is well-distributed. For the strong anchoring
case, surface anchoring is clearly dominant which promotes alignment in the central region
of the ellipse. This is counterbalanced by a large amount of curvature in the focal regions
with strong bulk alignment deformation.

Results for the remaining simulations with ar = 2 → 4 are shown in Figure 3.15.
Results are consistent with previous discussion where two trends are observed:

1. Aspect ratio (weak/moderate anchoring) - as ar is increased disclination position
remains in the central region far from the high-curvature focal areas. Bulk alignment
deformation is relatively well-distributed.

2. Aspect ratio (strong anchoring) - as ar is increased disclination position remains in
the focal region far from the low-curvature central areas. Bulk alignment is relatively
uniform with large deformation in the focal region.

These trends suggest that, for elliptic cylindrical nematic domains, two general types of
textures exist which are predominantly determined by surface anchoring strength and
not aspect ratio. Instead of a gradual transition from an even-distributed deformation
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of alignment to a well-aligned domain with localized extremes, there exists an effectively
first-order transition between two states.
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(a)

(b)

(c)

Figure 3.14: Steady-state textures of domains with ar = 5 and (a) weak, (b) moderate,
and (c) strong anchoring conditions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.15: Ground state textures of domains with ar = 2, 3, 4 and weak, moderate, and
strong anchoring conditions.
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Chapter 4

Field-switching Dynamics of
Ellipsoidal Nematic Domains

In this chapter the effects of an external field on fully-formed elliptic cylinder domains
of nematic liquid crystal (LC) are studied. Traditionally, external fields have been used
to influence and “switch” liquid crystal domains from one state to another in order to
affect the optical properties of the domain. Unlike these traditional applications, such as
liquid crystal displays (LCDs), LC devices involving elliptic domains introduce topological
defects in liquid crystal alignment which complicates their switching dynamics. Thus in
this chapter the initially relaxed nematic textures are exposed to an external (electric) field
and transition to a new steady-state. Both the realignment dynamics of the transition to
this state, the new “driven” state texture, and subsequent relaxation once the external
field is removed are the focus of this chapter.

4.1 Application of an External Field

In practice, the application of an electric field is more pragmatic than that of a magnetic
field for LC devices. Under conditions typical of the formation of elliptic domains, the orien-
tation of the domain with respect to the field varies. It is infeasible to perform simulations
under all possible rotations of the domain, thus two sets of simulations were performed in
orthogonal directions, as shown in Figure 4.1. It is assumed that the salient characteristics
of the switching dynamics with fields in all possible directions are a combination of these
two modes. As with surface anchoring, electric field strength (V/m2) is varied from weak
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to strong with respect to deformation energy of the LC domain. Simulations are performed
using parameters which result in a range of values of the field penetration length scale,

lf ∼
√
l1S

εE2
(4.1)

which, in this work, were 10nm (strong), 100nm, and 1µm (weak).
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(a)

Field
Direction

(b)

Figure 4.1: Schematics of external field orientations along (a) the short axis and (b) the
long axis of the elliptic domain.

Another significant assumption used in simulation of the application of an electric field
is that coupling of the onset of the field and the polarization of the LC domain may be
decoupled. The significance of this assumption may be elucidated for a simplified dielectric
domain which is both uniform and isotropic. For such a domain, the polarization P (dipole
moment per unit volume) is related to the applied electric field E as follows:

P = ε0(1− ε)E (4.2)

where ε0 is the dielectric permitivity of vacuum and ε is the dielectric constant of the
material. The onset of an electric field results in an effective current, or charge flux, called
the polarization current:

je =
dP

dt
(4.3)

This initial charge flux, in addition with other simplifications made for an ideal isotropic
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dielectric medium, results in Maxwell’s equations taking the form [30]:

∇ ·E = ∇ ·B = 0

∇×E = −∂B
∂t

∇×B =
ε

c2

∂E

∂t
(4.4)

where c = (ε0µ0)−
1
2 and µ0 is the magnetic permitivity of vacuum. Order-of-one scaling

analysis [31] of Maxwell’s equations 4.4 yields a characteristic timescale of the induced
magnetic field:

τm =
E

Bl
(4.5)

where l is an imposed length scale of the domain, E and B are the magnitudes of the applied
electric field and induced magnetic field, respectively. For the timescale of dynamics of the
electric field:

τe = τ−1
m

τmεl
2

c2
(4.6)

From Section 2.3, the characteristic timescale of nematic alignment dynamics is:

τn =
µr

a0TNI
(4.7)

which is on the order of 10ns for low molecular mass liquid crystals such as 5CB [32]. Thus
it is assumed in this work that τn >> τm, τe, which is supported by much past work in the
field on the effects of external applied fields [33, 17, 34].

The response of a nematic LC exposed to an external field is fundamentally dependent
on the sign and magnitude of its dielectric anisotropy εa = ε‖ − ε⊥. The contribution to
the free energy density of the nematic domain is,

fe = − ε0
8π

(
1

3

(
ε‖ + 2ε⊥

)
δ +

(
ε‖ − ε⊥

)
Q

)
: EE (4.8)

after substituting this into the nematic dynamic equation, the stress imparted on the
nematic alignment through the external field is,

σe =
ε0
8π

(
ε‖ − ε⊥

)
EE (4.9)

which evolves the domain to minimize the contribution of the external field coupling in the
free energy density as follows:
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1. Positive dielectric anisotropy ε‖ − ε⊥ > 0 – nematic orientation aligns with respect
to the external field n ‖ E.

2. Negative dielectric anisotropy ε‖ − ε⊥ < 0 – nematic orientation aligns orthogonally
with respect to the external field n ⊥ E.

In this work only positive dielectric anisotropy is considered given that the majority of LC
compounds and applications involve LCs of this character.

4.2 External Field – Minor Axis

The first simulation conditions that were studied involved application followed by release
of an electric field along the minor axis of the elliptic cylindrical domains. Under these
conditions, the bulk alignment of the domain is be enhanced by the external field which,
based on observations from the previous chapter, requires translation of disclination de-
fects further into the focal regions of the domain. In this sub-study, moderate anchoring
conditions were used with a strong external field.

4.2.1 Application of External Field

Figure 4.2 shows the ground state in the presence of the external field, or “driven” state,
for domains with aspect ratios from ar = 1 → 5 As expected, the external field increases
bulk alignment which results in further movement of defects to the boundaries. In order
for this to occur, the nematic alignment at the boundaries must relax with respect to the
surface anchoring constraints.

Figure 4.5 shows the different components of the total free energy of the domain prior
to and following application of the external field. Figure 4.5a shows that, upon application
of the external field, the bulk component of the free energy rapidly increases due to the
enhancement of short-range nematic order through coupling with the field term. Figure
4.5b show that the elastic component of the free energy decreases as the nematic alignment
gradually increases uniform ordering in the direction of the external field. Subsequently,
the surface free energy component, show in Figure 4.5c, shows an initial rapid decrease
followed by a longer timescale net increase compared to the ground state. This initial rapid
decrease is attributed to the “escape” of disclination defect from the domain resulting from
increased alignment of the central region of the domain with the external field. The core
region of the disclination defect exhibits a local depression in short-range nematic order,
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(d)

(e)

Figure 4.2: Hyperstreamline visualizations of driven state textures of domains with ar =
1→ 5 with strong anchoring and field conditions.
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Figure 4.3: Free energy versus timestep for the simulation with ar = 3 and the field along
the short-axis: (a) bulk free energy, (b) elastic energy, (c) surface energy, (d) electric field
energy, and (e) total free energy components.

given that the disclination core is biaxial, the surface free energy density may be expanded
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as follows:

fs(Q) = αQ : kk = α

(
S

(
(n · k)2 − 1

3

)
+ P (n · k)2

)
(4.10)

given that α < 0 and n ⊥ m, as the biaxial core approaches the boundary the contribu-
tion from the non-zero P will interact favorably with the surface anchoring of the curved
boundary. Once the defect escapes, the predominantly uniaxial bulk with n ⊥ k then
interacts with the focal boundary region which increases the surface energy substantially.

Figure 4.5d shows the electric field component of the free energy which exhibits both
short and long timescale dynamics as the short-range (S) and long-range(n) nematic order
evolves to enhance and align with the field, respectively. The total free energy of the
domain, shown in Figure 4.5e, shows an initial increase in the free energy resulting from
the instantaneous application of the external field followed by both short and long timescale
relaxations to the driven state.

4.2.2 Release of External Field

Figure 4.4 show ground state textures following relaxation of the nematic alignment after
cessation of the electric field. The driven state is no longer stable and thus the domain
evolves to a new steady-steate state, which is observed to different that the steady-state
state resulting from phase transition of the domain (Chapter 3). In all cases, disclination
defects reform within the domain but reside much closer to the focal boundary than in the
initial ground state.

Figure 4.5 shows the different components of the total free energy of the domain prior to
and following application of the external field. The relaxation process has similar features,
with respect to the components of the free energy of the domain, as the reverse of the
driven process. Initially, the enhanced short-range order of the domain results in a net
decrease compared to the original driven state. This net decrease then relaxes towards a
value close to the pre-driven state as the long-range elastic component increases driven by
surface anchoring.

4.3 External Field – Major Axis

The next simulation conditions that were studied involved application and then release
of an electric field along the long axis of the domain. The dynamics expected from these
conditions are more complex in that the external field promotes orientation orthogonal
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Figure 4.4: Hyperstreamline visualizations of post-driven ground state textures of domains
with ar = 1→ 5 with strong anchoring and electric field conditions.
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Figure 4.5: Free energy versus time step for the simulation with ar = 3 and the field along
the long-axis: (a) bulk free energy, (b) elastic energy, (c) surface energy, (d) electric field
energy, and (e) total free energy components.

to the average orientational axis of the steady-state domain (short axis). Thus, the bulk
alignment of the domain will initially be weakened by the external field which will induce
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bulk reorientation which will require (topologically) translation of disclination defects to
the poles along the short axis.

4.3.1 Application of External Field

Figure 4.6 shows the driven state in the presence of the external field for domains with
aspect ratios from ar = 1 → 5. In all cases, significant reorientation of the domain
texture has resulted from the stress contributed by the external field. While bulk alignment
conforms well along the field direction, there are significant regions of curvature along
the boundaries where the bulk texture and surface anchoring are incommensurate. In
contrast to the previous driven texture, the surface anchoring in the focal region is relatively
enhanced by the application of the field, as opposed to the regions near the poles of the
short-axis which exhibit large distortions with respect to the prefered alignment (normal
to the boundary). Another significant observation is that bulk order (S) throughout the
domain is diminished which results from the incomptability of the preferred orientation
of the field and that of the surface anchoring/geometry. Since the degree of bulk nematic
order is proportional to its susceptibility to the electric field (eqn. 4.8), it follows that by
reducing the degree of nematic order, the domain reduces its propensity to align with the
field.

Figure 4.7 shows the different components of the total free energy of the domain prior to
and following application of the external field. Unlike the previous case, there is no distinct
short and long timescale dynamics. Only long timescale dynamics are observed that are
complex and non-monotonic, which results from defect motion in the domain. While these
dynamics are captured in the simulations, they are not addressed in this work due to the
complexity of visualization and interpretation of the evolving textures. Although, it is
clear in Figures 4.7a-c that application of the field is not commensurate with short-range
(S), long-range (n), or surface anchoring in that the energies associated with each of these
three components increases in the driven state.

4.3.2 Release of External Field

Figure 4.8 shows ground state textures following relaxation of the nematic alignment after
cessation of the electric field. Once again, the driven state is no longer stable and thus the
domain evolves to new a steady-state. The new steady-state is substantially different from
the initial steady-state. The initial steady-state was observed to have an average nematic
alignment along the short axis, while all post-field ground states exhibit extremely deformed
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Figure 4.6: Hyperstreamline visualizations of post-driven steady-state textures of domains
with ar = 1→ 5 with strong anchoring and electric field conditions.
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Figure 4.7: Free energy versus timestep for the simulation with ar = 3 and the field along
the long-axis: (a) bulk free energy, (b) elastic energy, (c) surface energy, (d) electric field
energy, and (e) total free energy components.

textures without a discernible dominant orientational axis. Furthermore, defect locations
are far from the high curvature focal regions and instead near regions of low curvature in
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the boundary, which suggests that this is a metastable texture. The total free energy for
the domain with ar = 3 (Figure 4.7e) supports this observation in that the energy is lower
before the field than after. Thus there likely exists a critical field strength below which the
texture relaxes to its original state, below the field strength applied in these simulations.
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Figure 4.8: Hyperstreamline visualizations of post-driven ground state textures of domains
with ar = 1→ 5 with strong anchoring and electric field conditions.
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Chapter 5

Conclusions

5.1 Conclusions

In this work, a simulation-based study was performed of the formation of the elliptic
cylinder nematic domain, the resulting domain texture in the presence of an external field,
and the domain texture following release of the external field. The effects of geometry
(aspect ratio), surface anchoring, and external field strength were analyzed and found to
have a complex interdependence on the character of the nematic reorientation dynamics.
The general conclusions of this work are:

1. Formation and reorientation dynamics are complex and governed by the motion of
nematic defects through the domain.

2. Surface anchoring conditions may enable “escape” of nematic defects which results
in different modes of reorientation dynamics.

3. Geometry of the domain, specifically aspect ratio, strongly affects domain texture by
providing regions of high curvature which attract nematic defects.

4. This work supports the application of this computational approach for optimal design
of liquid crystal domains based upon requirements for nematic texture and switching
dynamics.
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5.2 Recommendations

1. Many simplifications were made in this study with respect to the target nematic
domain – a spheroid as is present in nematic PDLC films. It is recommended that
future studies remove this simplifications in the following order:

(a) Three-dimensional domains – full three-dimensional domains should simulated
which will capture additional phenomena such as boundary and defect curva-
ture.

(b) Thermal Fluctuations – a full Langevin dynamics formulation should be used
to take into account thermal fluctuations which could destabilize meta-stable
textures and avoid issues with saddle point domains.

(c) Hydrodynamics – the coupling between reorientation dynamics and flow is not
negligible for “strong” external field strengths, a full hydrodynamic formulation
should be used to capture this.

2. The parameters varied in this study included aspect ratio, surface anchoring strength,
and field strength – it is recommended that future studies limit this parameter to
those of technological significance as opposed to those accessible in an experimental
environment.

3. While not analyzed in this work, observed reorientation dynamics are complex and
should be evaluated in the future using a set of characteristics that relate to the
desired optical properties of the domain:

(a) average domain orientation (vector) – the weighted average of the long-range
order of the domain (n).

(b) domain orientational order parameter (scalar) – the degree to which the domain
orientation conforms to the average domain orientation.

(c) driven-state timescale (scalar) – the timescale within which the domain transi-
tions from the ground state to the driven state.

(d) relaxation timescale (scalar) – the timescale within which the domain transitions
from the driven state to the ground state.
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APPENDICES

S Calculations

Average of cos2 θ :

f(θ) =
1

Surface Area
, Surface Area =

∫ φ

0

∫ θu

0

sin θdθdφ = φ(1− cos θu)

φ = 2π =⇒ Surface Area = 2π(1− cos θu) , f(θ) =
1

2π(1− cos θu)

< cos2 θ >=

∫∫
f(θ) cos2 θ sin θdθdφ =

1

2π(1− cos θu)

∫ 2π

0

dφ

∫ θu

0

cos2 θ sin θdθ

=
2π

2π(1− cos θu)
[
− cos3 θ

3
]θu0 , θu = π =⇒< cos2θ >=

1

3

Calculation of S when all of molecules are in one direction:

S =

∫∫
1

2π(1− cos θu)

1

2
(3 cos2 θ − 1) sin θdθdφ

S =
1

4π(1− cos θu)

∫ 2π

0

dφ

∫ θu

0

(3 cos2 θ sin θ − sin θ)dθ =
− cos3 θu + cos θu

2(1− cos θu)
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S = lim
θu→0

− cos3 θu + cos θu
2(1− cos θu)

lim
θu→0

cos θu = 1− θ2
u

2!
+
θ4
u

4!
− θ6

u

6!
+ · · ·

S = lim
θu→0

−(1− θ2
u

2!
)3 + 1− θ2

u
2!

2(1− 1 +
θ2
u

2!
)

= lim
θu→0

θ2
u

θ2
u

= 1

Q Tensor Decomposition

n and m and l are eigen vectors of Q :

Q = S

(
nn− 1

3
I

)
+ P (mm− ll)

n · n = 1 m ·m = 1 l · l = 1 m · n = 0 l · n = 0 m · l = 0 I · n = n

Q · n = S

(
nn− 1

3
I

)
· n+ P (mm− ll) · n

Q · n = S

(
n(n · n)− 1

3
(I · n)

)
+ P (m(m · n)− l(l · n)) = S

(
n− 1

3
n

)
+ 0 =

2

3
S︸︷︷︸

eigenvalue

n

Q ·m = S

(
nn− 1

3
I

)
·m+ P (mm− ll) ·m

Q ·m = S

(
n(n ·m)− 1

3
(I ·m)

)
+ P (m(m ·m)− l(l ·m)) = S

(
0− 1

3
m

)
+ P (m− 0)
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Q ·m =

(
P − 1

3
S

)
︸ ︷︷ ︸

eigenvalue

m

Q · l = S

(
nn− 1

3
I

)
· l + P (mm− ll) · l

Q · l = S

(
n(n · l)− 1

3
(I · l)

)
+ P (m(m · l)− l(l · l)) = S

(
0− 1

3

)
+ P (0− l)

Q · l =

(
−P − 1

3
S

)
︸ ︷︷ ︸

eigenvalue

l

Uniform Domain

f =
1

2
a(Q : Q)− 1

3
b(Q ·Q) : Q+

1

4
(Q : Q)2 + f0

Q : Q = QijQji Qij = S(ninj −
1

3
δij)

QijQji = S2(ninj −
1

3
δij)

2 = S2(n2
in

2
j −

2

3
δij +

δ2
ij

9
)

QijQji = S2

(
n2
i (n

2
j)−

2

3
n2
i +

3

9

)
= S2

(
n2
i −

2

3
+

3

9

)
=

2

3
S2

(Q ·Q) : Q = (QikQkj)Q = S2

(
nink −

1

3
δik

)(
nknj −

1

3
δkj

)
Qji

(Q ·Q) : Q = S2

(
ninjn

2
k −

1

3
ninkδkj −

1

3
nknjδik +

1

9
δikδkj

)
Qji

(Q ·Q) : Q = S2

(
ninj −

1

3
ninj −

1

3
ninj +

1

9
δij

)
Qji
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(Q ·Q) : Q = S3

(
1

3
n2
in

2
j −

1

9
ninjδji +

1

9
njniδij −

1

27
δijδji

)
=

2

3
S3

(Q : Q)2 =

(
2

3
S2

)2

=
4

9
S4

=⇒ f =
1

3
aS2 − 2

27
bS3 +

1

9
cS4 + f0

=⇒ df

ds
=

2

3
aS − 2

9
bS2 +

4

9
cS3 = 0︸ ︷︷ ︸

at equilibrium

Euler Equation For Tensorial Free Energy:

Euler Equation For Tensorial Free Energy:

F [Q] =

∫∫∫
V

f(Qij, Qij,k) dV +

∫∫
A

γ(Qij) dA

Qij and Qij,k are functions of xm m = 1, 2, 3

Qij,k =
∂Qij

∂xk

Qij = Q̃ij + αvij =⇒ Qij,k = Q̃ij,k + αvij,k

F [Q] =

∫∫∫
V

f(Q̃ij + αvij, Q̃ij,k + αvij,k) dV +

∫∫
A

γ(Q̃ij + αvij) dA

=⇒ F is a function of αij =⇒ ∇F = 0 at extremum
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∂F

∂αij
=

∫∫∫
V

[
∂f

∂Qij

∂Qij

∂αij
+
∑
k

∂f

∂αij,k

∂Qij,k

∂αij

]
dV +

∫∫
A

∂γ

∂Qij

∂Qij

∂αij
dA

∂

∂xk

(
∂f

∂Qij,k

vij

)[
∂f

∂Qij

vij +
∑
k

∂f

∂Qij,k

vij,k

]
dV +

∫∫
A

∂γ

∂Qij

vij dA

∑
k

∂f

∂Qij,k

vij,k =
∑
k

(
∂

∂xk

(
∂f

∂Qij,k

vij

)
− ∂

∂xk

(
∂f

∂Qij,k

)
vij

)

∂F

∂αij
=

∫∫∫
V

[
∂f

∂Qij

vij +
∑
k

(
∂

∂xk

(
∂f

∂Qij,k

vij

)
− ∂

∂xk

(
∂f

∂Qij,k

)
vij

)]
dV +

∫∫
A

∂γ

∂Qij

vij dA

Divergence Theorem:

∫∫∫
V

∇.
(

∂

∂x1

(
∂f

∂Qij,1

)
vij,

∂

∂x2

(
∂f

∂Qij,2

)
vij,

∂

∂x3

(
∂f

∂Qij,3

)
vij

)
dV =

∫∫
A

[
∂f

∂Qij,1

n1 +
∂f

∂Qij,2

n2 +
∂f

∂Qij,3

n3

]
vij dA

n = (n1, n2, n3) Unit Normal Vector

=⇒ ∂F

∂αij
=

∫∫∫
V

[
∂f

∂Qij

−
∑
k

∂

∂xk

(
∂f

∂Qij,k

)]
vij dV +
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∫∫
A

[
∂γ

∂Qij

+
∑
k

∂f

∂Qij,k

nk

]
dA

∂F

∂αij
= 0 =⇒ ∂f

∂Qij

−
∑
k

∂

∂xk

(
∂f

∂Qij,k

)
= 0 i, j = 1, 2, 3

∂f

∂Q
−∇.

(
∂f

∂ (∇Q)

)
= 0︸ ︷︷ ︸

Euler–Lagrange Equation

∂γ

∂Qij

+
∑
k

∂f

∂Qij,k

nk = 0 =⇒ ∂γ

∂Q
+

∂f

∂ (∇Q)
· ~n = 0︸ ︷︷ ︸

Boundary Condition

Dynamics Equation

µ
∂Q

∂t
= −

(
∂f

∂Q
−∇.

(
∂f

∂ (∇Q)

))

f =
1

2
a(Q : Q)− 1

3
b(Q ·Q) : Q+

1

4
c(Q : Q)2 +

1

2
l1

(
(∇Q)T

...(∇Q)T
)
−

− ε◦
8π

[(
ε‖ + 2ε⊥

3
I + (ε‖ − ε⊥)Q

)]
: EE
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∂f

∂Qij

=
1

2
a

∂

∂Qij

(∑
k

∑
l

QklQlk

)
− 1

3
b
∂

∂Qij

(∑
k

∑
l

∑
m

QklQlmQmk

)
+

1

4
c
∂

∂Qij

(∑
k

∑
l

QklQlk

)2
− ε◦

8π
(ε‖ − ε⊥)

∂

∂Qij

(∑
k

∑
l

QklElEk

)

Derivative is a linear operator =⇒

∂f

∂Qij

=
1

2
a
∑
k

∑
l

∂

∂Qij

(QklQlk)−
1

3
b
∑
k

∑
l

∑
m

∂

∂Qij

(QklQlmQmk) +

1

4
c
∑
k

∑
l

∑
m

∑
n

∂

∂Qij

(QklQlkQmnQnm)− ε◦
8π

(ε‖ − ε⊥)
∑
k

∑
l

∂

∂Qij

(QklElEk)

∂f

∂Qij

=
1

2
a(Qij +Qji)−

1

3
b

(∑
m

QjmQmi +
∑
k

QkiQjk +
∑
l

QjlQli

)
+

1

4
c

(∑
m

∑
n

QjiQmnQnm +
∑
m

∑
n

QjiQmnQnm +
∑
k

∑
l

QjiQklQlk +
∑
k

∑
l

QjiQklQlk

)
−

ε◦
8π

(ε‖ − ε⊥)(EiEj)

∂f

∂Q
= aQ− b(Q ·Q) + c(Q : Q)Q− ε◦

8π
(ε‖ − ε⊥)EE

∂f

∂(∇Q)
=

∂f

∂Qij,k

=
∂

∂Qij,k

(
1

2
l1

(
(∇Q)T
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Dimensionless Euler-Lagrange Equation
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