
Application of Definability to Query

Answering over Knowledge Bases

by

Taras Kinash

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Taras Kinash 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Answering object queries (i.e. instance retrieval) is a central task in ontology based

data access (OBDA). Performing this task involves reasoning with respect to a knowledge

base K (i.e. ontology) over some description logic (DL) dialect L. As the expressive power

of L grows, so does the complexity of reasoning with respect to K. Therefore, eliminating

the need to reason with respect to a knowledge base K is desirable.

In this work, we propose an optimization to improve performance of answering object

queries by eliminating the need to reason with respect to the knowledge base and, instead,

utilizing cached query results when possible. In particular given a DL dialect L, an object

query C over some knowledge base K and a set of cached query results S = {S1, . . . , Sn}

obtained from evaluating past queries, we rewrite C into an equivalent query D, that

can be evaluated with respect to an empty knowledge base, using cached query results

S ′ = {Si1 , . . . , Sim}, where S ′ ⊆ S. The new query D is an interpolant for the original query

C with respect to K and S. To find D, we leverage a tool for enumerating interpolants

of a given sentence with respect to some theory. We describe a procedure that maps a

knowledge base K, expressed in terms of a description logic dialect of first order logic, and

object query C into an equivalent theory and query that are input into the interpolant

enumerating tool, and resulting interpolants into an object query D that can be evaluated

over an empty knowledge base.

We show the efficacy of our approach through experimental evaluation on a Lehigh

University Benchmark (LUBM) data set, as well as on a synthetic data set, LUBMMOD,

that we created by augmenting an LUBM ontology with additional axioms.

v

Acknowledgements

This work would not be possible without the support of many people. I owe deep-

est gratitude to my supervisors, Grant Weddell and David Toman. Their wise advise,

knowledge and enthusiasm helped me through every day of my masters studies.

My gratitude also goes to my readers, Professors Peter Van Beek and Richard Trefler,

for their useful feedback and constructive insights, and to my collaborators, Dr. Jiewen

Wu, Dr. Alexander K. Hudek and Mohamed Sabiri, for their numerous contributions to

this work.

I am forever indebted to my colleagues in the database research group, as well as faculty

and staff members of the Cheriton School of Computer Science, for making my academic

journey over the past two years pleasant and eventful.

I would also like to thank all my friends for their support over the past two years.

Last, but, by far, not least, I would like to thank my parents, Vasyl and Luba Kinash,

and my brother, Nazar Kinash, for their endless love, understanding and faith in me.

vii

Dedication

I would like to dedicate this thesis to my parents, Vasyl and Luba Kinash. Their love,

support and faith gave me strength every step of the way.

ix

Table of Contents

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis Organization . 5

2 Preliminaries 7

2.1 Description Logic . 7

2.2 Assertion Retrieval . 13

2.3 Beth Definability and Interpolation . 17

2.4 Definability and Interpolation in Query Evaluation 20

3 Related Work 23

3.1 Query Rewriting . 24

3.2 Definability and Interpolation . 26

xi

4 Procedure for Eliminating Reasoning with Respect to a Knowledge Base 29

4.1 Assertion Retrieval Algebra to Interpolant Enumeration 33

4.2 Interpolant to SHI Query Concept . 36

5 Experimental Evaluation 39

5.1 LUBM Benchmark . 41

5.1.1 Experiment Setup . 41

5.1.2 Results . 45

5.1.3 Interpolation Time . 49

5.2 LUBMMOD ontology . 52

5.2.1 Experiment Setup . 54

5.2.2 Results . 57

5.2.3 Interpolation time . 60

6 Conclusion and Future Work 67

6.1 Summary . 67

6.2 Additional Remarks . 69

6.3 Future Work . 70

6.3.1 Interpolant Enumeration in DL . 70

6.3.2 Theoretical Results for Interpolant Enumeration 71

6.3.3 Extensions to the Procedure . 72

xii

References 75

APPENDICES 83

A First Order Predicate Logic 85

xiii

List of Tables

2.1 Grammar for AL concepts. 8

2.2 Description Logic Constructors. 10

4.1 SHI to FOL mapping. 34

5.3 DL vs. FOL interpolation time in seconds (original LUBM). 51

5.7 DL vs. FOL interpolation time in seconds (LUBMMOD ontology). 64

xv

List of Figures

4.1 Query evaluation steps. 30

5.1 FOL and DL based optimization versus the brute force method (LUBM

benchmark). 45

5.2 Query rewriting time vs. interpolation time (LUBM benchmark). 49

5.3 Measuting interpolation time on ITB vs. simulation of interpolation on CARE. 50

5.4 FOL and DL based optimizations versus the brute force method (LUBM-

MOD ontology). 57

5.5 Query rewriting time vs. interpolation time (LUBMMOD). 60

5.6 Time share of interpolant enumeration, translation and syntactic check of

membership of interpolant in LQ2 (LUBMMOD ontology). 61

5.7 Measuting interpolation time on ITB vs. simulation of interpolation on

CARE (LUBMMOD). 63

xvii

Chapter 1

Introduction

Knowledge representation, storage and manipulation is a basic problem in computer sci-

ence. The introduction of relational data model in the 1970’s [15] provided an initial

solution that has worked very well for many applications. However, there has been a

drastic increases in volume and sophistication of data that needs to be maintained and

manipulated, for which relational technology is no longer sufficient in terms of expressive

power and performance. At the heart of relational technology is relational algebra, which is

essentially first order logic (FOL). A full review of FOL is beyond the scope of this thesis,

however, a brief overview of first order predicate logic, which is important for this work,

can be found in Appendix A. One particular limitation of the relational data model is an

assumption of complete knowledge about the application domain, which has become prob-

lematic with current data sources, for example sources underlying the open data initiative,

like DBpedia [8]. To help address this, a new paradigm of OBDA, that accommodates in-

complete knowledge, has gained popularity in recent years [17, 33, 45]. The idea of OBDA

is to define an ontology in some expressive language over the actual data, which may, in

1

turn, be stored in a variety of formats, including in the form of a legacy relational database.

Answering user queries in OBDA systems may require reasoning over the underlying knowl-

edge base. In this thesis, the term “knowledge base” is used interchangeably with a term

ontology. Therefore, a combination of expressive power and complexity of reasoning must

be considered when selecting a language for the ontology in an OBDA system. First or-

der logic is very powerful in terms of expressiveness, but it has rather high complexity

for reasoning; in fact, checking logical consequence is semi-decidable in FOL. Therefore,

more attention has been directed to decidable fragments of FOL, like description logics

(DL). Description logics date back to the 1970’s [9] and provide a powerful framework to

represent ontologies and perform reasoning tasks over those ontologies. Many different DL

dialects exist at this time; they provide a spectrum of compromise between expressivity

and performance of reasoning.

The past few decades have seen the emergence of the Internet. In modern times, the

volume and variety of data on the web is immense. As a result, the semantic web [32, 58]

movement appeared and grew in importance. The idea behind this movement is to stan-

dardize data on the web in order to make it easier to parse and understand for machines;

to create the so called “web of data”. The semantic web builds on the resource descrip-

tion framework (RDF) [28]. RDF is a data model that represents information in the form

of triples : subject-predicate-object. Informally, we can think of a subject as a resource,

an object as an attribute or property of the resource, and a predicate as a relationship

between subject and object. RDF is particularly suitable for representing information on

the web of data. One can ask questions about data stored in RDF through the SPARQL

query language [47]. The key construct in SPARQL is a basic graph pattern (BGP), which

is comparable to “SELECT/FROM/WHERE” fragment of SQL. BGPs define conditions

that must be satisfied by each element in the result set. In most cases, evaluating BGPs can

2

be mapped to query answering in description logics (with some exceptions, see SPARQL

reference [47] for details), which makes DLs a particularly important resource in the se-

mantic web. Description logics became particularly important in SPARQL 1.1 [4], where

entailment regimes were introduced [3]. Essentially, entailment regimes control the ex-

pressivity of ontology languages used for reasoning. Further, building on the RDF data

model, the web ontology language (OWL 2) was created [40, 43]. Essentially, OWL 2 adds

more features and capabilities to the ontology language for web data. Description logics

are a big part of OWL 2. For example, most of OWL 2 can be captured by the expressive

SROIQ(D) DL dialect. Also, OWL 2 supports alternative profiles [1] which correspond

to less expressive DL dialects that have better complexity for reasoning tasks.

Description logics are expressive decidable fragments of FOL. However, with the current

volume of data that needs to be maintained, reasoning in ontology languages needs to be

efficient, and not only decidable. DLs offer a variety of reasoning tasks, but most of these

are rather inefficient. For example, even for the ALC DL dialect, instance retrieval and

conjunctive query answering with respect to a knowledge base K is a co-NP complete

task in the size of the data. Complexity is even worse when the size of the knowledge

base is considered. For this reason, research to improve performance of query answering

for description logics is ongoing. The two main areas of focus are to find heuristics for

reasoning that work well for practical cases [35], or to create more DL dialects that have

enough expressive power for many practical applications, but that are less expressive than

more common DLs, and for which reasoning is more efficient. Utilizing cached query results

is another example of the former approach. Most modern DL reasoners do not support

caching results [61], however there has been some work related to cached query results

in DLs [27]. Also, caching previous results has been extensively studied in other areas of

computing, including relational databases [52, 38]; results of this work can be borrowed

3

and/or extended to the DL case. An example of the latter approach is the DL-Lite family

of languages [14] for which conjunctive query answering can be done in PTIME, in the size

of the data, and is NP-complete in the size of the knowledge base.

Slow performance of query answering tasks over DL knowledge bases K serves as the

motivation for this work. Since we are facing rather high theoretical bounds for query

answering with respect to K, the main idea for our approach is to eliminate the need to

reason with respect to K and to instead reason with respect to an empty knowledge base

when possible. To do this, we attempt to rewrite a query into a different format for which

there is no need for additional facts from K in order to find the set of results. Our hope

is that the overhead of this rewriting with respect to K is small relative to the case of

evaluating the original query with respect to K.

1.1 Contributions

This work addresses a problem of improving query answering time over a DL ontology by

eliminating the need to reason with respect to an initial knowledge base. This thesis is

largely based on the concepts of definability, introduced by Willem Beth [11], interpolation,

introduced by William Craig [16], and interpolant enumeration[57]. In particular, the

contributions are as follows:

1. We propose a procedure that applies definability and interpolant enumeration to

generate a rewriting of a user query, into an equivalent query that does not require

reasoning with respect to a knowledge base K for its evaluation. Although the proce-

dure is general, we demonstrate how to use it in the cases when cached query results

can be utilized for query answering. Our procedure allows to compute a more specific

4

set of relevant cached query results that is required to answer the original query.

2. We evaluate our approach with a FOL interpolant enumeration tool and DL reasoner,

and contrast the results against a brute force method for producing the rewriting.

We do this over two data sets: a popular benchmark ontology LUBM, and a syn-

thetic ontology LUBMMOD. LUBM benchmark contains axioms describing simple

concept and role hierarchies, role transitivity and inverses. We manually created the

LUBMMOD ontology by augmenting LUBM with new axioms that add disjunctions

and negations to concept hierarchies.

3. We demonstrate the benefits of implementing an interpolant enumeration procedure

on a specialized DL reasoner by contrasting interpolation in FOL with simulation of

interpolation on a DL dialect that is carried out on a specialized DL reasoner.

1.2 Thesis Organization

The reminder of the thesis is organized as follows. In Chapter 2, we present the definitions

and discuss topics that are needed in order to appreciate this work, in particular description

logics, assertion retrieval, definability, interpolation and their applications. We review work

in the related areas of instance retrieval, query rewriting and interpolation in Chapter 3. In

Chapter 4 we describe our approach theoretically and point out the complications that we

had to resolve for our evaluation, as well as modifications that we had to implement in order

to resolve those problems. We present a discussion of results of an experimental evaluation

in Chapter 5. Finally, conclusion and directions for future work are given in Chapter 6.

Definitions and details about first order predicate logic are provided in Appendix A.

5

Chapter 2

Preliminaries

In this chapter, we provide the necessary background knowledge. We will start by pre-

senting a discussion on description logics, then, we will provide the necessary details about

assertion retrieval algebra, and finally, we will present necessary definitions for Beth defin-

ability [11] and Craig interpolation [16] and discuss possible application of these concepts

to answering instance retrieval queries in first order logic and description logics.

2.1 Description Logic

Description Logics (DL) are a family of knowledge representation formalisms used to rep-

resent the basic terminology and facts in an application domain [9]. DLs differ from many

other knowledge representation formalisms by having a formal semantics grounded in FOL.

Also, description logics allow systems to perform various types of reasoning from knowl-

edge explicitly represented and stored in a knowledge base, to infer facts that are implicitly

represented.

7

A DL knowledge base, K, stores facts and rules that can be used for reasoning in the

application domain (i.e. it is an extension of the database). K consists of two parts: a

TBox (T), also called a terminology and an ABox (A). Essentially, TBox contains the

constraints that define an ontology of the application domain (i.e. intentional knowledge),

while ABox stores the data of the application domain (i.e. extensional knowledge).

A TBox introduces the vocabulary of the application domain. The vocabulary consists

of symbols denoting concepts, individuals, and roles denoting binary relationships between

individuals. Using these concept and role names from the vocabulary, more complicated

concept descriptions can be formed. The TBox consists of a set of axioms, defining re-

lationships between concepts and roles. Subsumption relationship between concepts and

roles is written as C v D and R v Q, respectively, and equivalence relationship between

concepts and roles is written as C ≡ D and R ≡ Q, respectively.

An ABox consists of a set of assertions about individuals in the application domain,

written as a : C or as (a, b) : R, stating that individual a belongs to the extension of

concept C and a tuple 〈a, b〉 belongs to the extension of the role R, respectively.

C,D ::= A (atomic concept)

| > (top concept)

| ⊥ (bottom concept)

| ¬A (atomic negation)

| C uD (conjunction)

| ∀R.C (universal restriction)

| ∃R.> (limited existential quantification)

Table 2.1: Grammar for AL concepts.

8

Depending on which constructors are available for concept, role and axiom definitions,

one can form many different DL dialects, and by extension languages L based on these

dialects. The majority of DL dialects are fragments of FOL. The most basic description

logic dialect is AL (defined in Table 2.1). By adding more constructs to AL we can produce

DL dialects with more expressive power. However, by doing this, we may have to pay with

higher complexity for reasoning tasks. Generally, a compromise between expressiveness and

efficiency is the most important issue when choosing a DL dialect for one’s application.

Table 2.1 shows the grammar for general concepts in AL DL dialect. An AL TBox

contains only axioms of the type C v D or C ≡ D, where C,D are general AL concepts.

Semantics of AL can be defined through an interpretation I. Similar to FOL, an

interpretation consists of two parts: a non-empty set 4I called a domain, and a total

function (·)I which maps every atomic concept A to a set AI ⊆ 4I , and every atomic role

R to a set of tuples RI ⊆ 4I ×4I .

An interpretation function is extended to more complex concepts in the following way:

>I = 4I

⊥I = ∅

(¬A)I = 4I − AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ 4I | ∀b.(a, b) ∈ RI → b ∈ CI}

(∃R.>)I = {a ∈ 4I | ∃b.(a, b) ∈ RI}

An interpretation also extends to the TBox axioms: we say that concept C is subsumed

by D (i.e. C v D) if CI ⊆ DI , and that C and D are equivalent (i.e C ≡ D), if CI = DI .

9

Construct Name Symbol Syntax Semantics ((·)I)

Disjunction U C tD CI ∪DI

Full Existential E ∃R.C {a ∈ 4I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

Quantification

Number Restrictions N ≥ nR {a ∈ 4I | |{b|(a, b) ∈ RI}| ≥ n}

≤ nR {a ∈ 4I | |{b|(a, b) ∈ RI}| ≤ n}

Negation C ¬C 4I − CI

Role Inverse I R− {(a, b) ∈ 4I ×4I | (b, a) ∈ RI}

Role Hierarchies H R v Q RI ⊆ QI

Transitive Roles S Trans(R) S(a, b) ∧ S(b, c)→ S(a, c)

Nominals O {a1, . . . , an} {aI1} ∪ · · · ∪ {aIn}

Table 2.2: Description Logic Constructors.

Table 2.2 shows possible constructs for extending the AL dialect. In Table 2.2, we

assume that a, b, c ∈ 4I , C,D are general concepts, R,Q are atomic roles, S is a role R

or its inverse R−, and n is a non-negative integer.

Furthermore, we can extend AL with a construct for a concrete domain D. Syntacti-

cally, this adds a possibility for saying things like: f = g or f < k, where f, g are features

and k is a constant in the concrete domain. Semantically, our interpretation is extended by

DI a disjoint concrete domain of finite strings, and interpretation function (·)I is extended

with a mapping of each feature f to a total function (f)I : 4 → DI , the “=” symbol

to the equality relation over DI , the “<” symbol to the binary relation for an alphabetic

ordering of DI , and a finite string k to itself.

10

Using the constructs defined in Table 2.2 and concrete domain construct D, we can

create any of the following DL dialects (constructs mentioned in square brackets are op-

tional):

AL[U][E][N][C][H][I][O][S][(D)]

Often, in the literature, a dialect ALC with transitive roles S is abbreviated with a

single character — S. This is the convention that we use in this work.

Most things in description logics are inherited from the FOL: satisfiability, logical in-

ference, model, etc. A signature of a knowledge base K, written sig(K), is a set of concept

and role symbols that appear in K; similarly, a signature of a concept C, written sig(C)

is a set of all concept and role symbols that appear in the definition of C.

Suppose, we are given a knowledge base K = (T ,A) over some DL dialect L. As with

FOL, there are many standard reasoning problems over DL knowledge bases:

• Concept satisfiability accepts a concept description C in L as input query, and de-

termines whether K |= C.

• Knowledge base satisfiability, determines whether there is an interpretation I that is

a model of K.

• Instance checking accepts a query concept C and an individual a as input, and

determines whether K |= a : C.

• Instance retrieval is a problem that is of particular importance to this work. A query

for an instance retrieval problem is a concept C in L. An answer to an instance

retrieval problem would be a set of individuals: {a | K |= a : C}.

11

• Conjunctive queries (CQ) is an extension of instance retrieval. We are given a query

q with distinguished variables −→x = 〈x1, . . . , xn〉. An answer to the CQ is a set of all

tuples −→c = 〈c1, . . . , cn〉, where each individual ci appears in A, such that for every

interpretation I that is a model of K, we have −→c ∈ qI . The following is a simple,

illustrative example of CQ: let the knowledge base be K = (T ,A), where T = ∅, and

A = {Tom: Person, UW: University, 〈Tom, UW〉 : WorksFor}. We can ask the

following CQ over this K:

q = Person(x) uWorksFor(x, y) u University(y)

Essentially, this query is asking for all employees, together with the organizations

where they work. Query (distinguished) variables are −→x = 〈x, y〉. Set of answers for

q, with respect to a given K will contain a single tuple: {〈Tom, UW〉}. A further,

trivial, extension to CQ is a union of conjunctive queries (UCQ), where the setup is

the same as for CQ, except that a query is of the form: q = q1 t · · · t qn, where each

qi is a CQ and where the distinguished variables of any pair qi and qj are the same.

Complexity for performing reasoning tasks specified above can be expressed in terms

of data complexity, measured in terms of the size of a database (or, in case of DLs, the size

of ABox), expression complexity, measured in terms of the size of the query, and ontology

(i.e. TBox), or combined complexity, measured in terms of the combined size of K and the

query [59].

This work is largely based on the SHI DL dialect. A SHI TBox, in addition to concept

inclusion and equivalence axioms, can also contain role inclusion/equivalence axioms as well

as transitivity axioms: Trans(S), where S is a role or an inverse of a role. A role S is

called complex if Trans(S ′) for some S ′ v∗ S, where v∗ is a transitive-reflexive closure of v

12

over the set {S1 v S2} ∪ {S−1 v S−2 | S1 v S2}. To avoid undecidability [36], a complex

role S may occur only in concept descriptions of the form ¬∃S.C1 or of the form ∃S.C1.

The DL-Lite is a family of light-weight description logics that is of a particular interest

[14]. Concept descriptions in DL-Lite conform to the following grammar:

B ::= A | ∃R.> | ∃R−.>

C ::= B | ¬B | C1 u C2

Interpretation for these constructs is as defined previously in this chapter. ABox contains

assertions of the type a : B and (a, b) : R. TBox can contain axioms of the type: C v D,

where C,D are general concepts, and funct(R), which states that R is a functional role,

meaning that for every individual a, such that {a} ∈ ∃R.>, there exists exactly one indi-

vidual b that is a filler for a in R. The importance of DL-Lite is due to expressivity (enough

to express some benchmark ontologies), and good performance of reasoning: satisfiability

of DL-Lite knowledge base K can be decided in polytime in the size of K, and answering

conjunctive queries can be done in PTIME in data complexity (NP-complete in combined

complexity).

2.2 Assertion Retrieval

Definitions and discussion in this section derive from work in [62]; concepts introduced

below can be adopted to any DL dialect L, however, in this work, we concentrate on the

SHI DL languages.

Suppose an information system is organized in terms of the knowledge base K = {T ,A}

in the SHI DL dialect. We refer to named individuals appearing in ABox as objects.

Answering object queries is represented by instance retrieval.

13

Definition 1 (Instance Retrieval) Let K = {T ,A} be a knowledge base over SHI DL

dialect. An instance retrieval query is represented by a concept C. Answering instance

retrieval query amounts to computing all named individuals a that occur in A, for which

K |= a : C.

Query concept C in Definition 1 corresponds to a selection condition in relational

queries. Object queries can be further generalized, by adding a projection operation (a

generalization of the relational projection).

Definition 2 (Projection Description) Projection description Pd, is defined with the

following grammar:

Pd ::= C? | Pd1 u Pd2 | ∃R.Pd

where C is an arbitrary concept and R is a role, in the SHI dialect. A set of concepts

LPd, defined by Pd, is given as follows:

LPd ::= {uS | S ⊆fin LTUP
Pd }

LTUP
C? ::= {C,>}

LTUP
Pd1uPd2

::= {C1 u C2 | C1 ∈ LTUP
Pd1

, C2 ∈ LTUP
Pd2
}

LTUP
∃R.Pd1

::= {∃R.C | C ∈ LPd1}

where ⊆fin is a finite subset. Let S be the set of concepts specified by LPd and K = (T ,A)

a SHI knowledge base. We denote the most specific concepts with respect to LPd as:

bScK = {C ∈ S | there does not exist D ∈ S : (K |= D v C,K 6|= C v D)}

This will transform the instance retrieval problem into an assertion retrieval problem.

In the context of assertion retrieval, a user query is a pair (C,Pd), where C is a SHI

14

concept (same as in Definition 1), and Pd defines a special subset LPd of concepts in SHI

(corresponding to projection in relational setting), as per Definition 2. To illustrate the

definition above, suppose we have K = (T ,A), where T = {A1 v ∃R.A2} and Pd =

A1? u ∃R.A2?. Then,

LPd = {uS ′ | S ′ ⊆fin {(> u ∃R.A2), (> u ∃R.>), (A1 u ∃R.>), (A1 u ∃R.A2)}}

Let S = {D ∈ LPd | K |= A1 v D}, then we get bScK = {A1u>, A1u∃R.A2}, from which

we further derive bbScKc∅ = {A1 u ∃R.A2}, and finally get TSUK = A1 u ∃R.A2.

Answering an assertion retrieval query amounts to reporting all assertions a : Ca such

that K |= a : C uCa, where Ca is the most specific concept with respect to LPd, for which

this logical consequence holds.

For notation convenience, denote the minimum concept in the set of concepts bbScKc∅
(according to some arbitrary total ordering) by TSUK. Now, we can define more formally

the query semantics for assertion retrieval problem.

Definition 3 (Assertion Retrieval Query Semantics) Let K = (T ,A) be a SHI knowl-

edge base. A user query Q = (C,Pd) over K computes the following set of assertions:

{a : T{D | D ∈ LPd,K |= a : D}UK | K |= a : C, a occurs in K}

Now, we can define assertion algebra, to manipulate assertion retrieval query concepts.

Assertion algebra allows expressing queries in terms of cached results.

Definition 4 (Cached Query Result) Cached query result Si is a set of concept as-

sertions computed by user query (Ci, Pdi), with respect to the same SHI knowledge base

K.

15

Definition 5 (Assertion Algebra) Let K = (T ,A) be a SHI knowledge base. Asser-

tion algebra contains all of the operators defined by the following grammar.

Q :: = C {a : C | a occurs in K}

| PK {a : > | a occurs in K}

| Si(Q) {a : C | (a : C) ∈ Si, (a : D) ∈ Q, {a : C} |= a : D}

| σKC (Q) {a : D | (a : D) ∈ Q,K ∪ {a : D} |= a : C}

| πKPd(Q) {a : T{D | K ∪ {a : C} |= a : D,D ∈ LPd}UK | (a : C) ∈ Q}

| Q1 ∩Q2 {a : D1 uD2 | (a : Di) ∈ Qi, i = 1, 2}

where C is a general SHI concept and Si is a cached query result.

Using assertion algebra, a user query Q = (C,Pd), with respect to some SHI knowl-

edge base K, can be rewritten into an equivalent assertion algebra expression: Q′ =

πKPd(σ
K
C (PK)).

Finally, we link assertion algebra expressions with sets of concepts in the SHI DL

dialect, with the following construction:

Definition 6 (Representative Language for Algebraic Expressions) LQ (defined be-

low) is a language representing concepts of query Q expressed in assertion algebra.

LQ =



{C} if Q = ”C”;

{>} if Q = ”PK”;

LPdi if Q = ”Si(Q1)”;

LC∩Q1 if Q = ”σKC (Q1)”;

LPd if Q = ”πKPd(Q1)”;

{C uD | C ∈ LQ1 , D ∈ LQ2} if Q = ”Q1 ∩Q2”;

(2.1)

16

where Pdi is the projection description used to compute cached result Si.

2.3 Beth Definability and Interpolation

In this section, we will present the definitions and discussion on Beth definability and Craig

interpolation for first order logic, and then extend the discussion to the DL setting.

Definition 7 (Implicit Definability) Let Σ be a first order theory and S ⊆ sig(Σ) a

set of atomic predicates. A first order formula φ with FV (φ) = 〈x1, . . . , xn〉 is implicitly

definable from S under Σ if φI1 = φI2 for any two interpretations I1 and I2, for which the

following conditions hold:

• 4I1 = 4I2

• I1 |= Σ and I2 |= Σ.

• P I1 = P I2 for every P ∈ S.

Definition 8 (Explicit Definability) Let Σ be a first order theory and S ⊆ sig(Σ) a

set of atomic predicates. A first order formula φ with FV (φ) = 〈x1, . . . , xn〉 is explicitly

definable from S under Σ, if there exists another well formed formula ψ with FV (ψ) =

〈x1, . . . , xn〉 and sig(ψ) ⊆ S, such that:

Σ |= ∀x1, . . . , xn(φ ≡ ψ)

The formula ψ is called an explicit definition of φ from S with respect to Σ.

In essence, a statement that a formula φ is implicitly definable from a set S under Σ

means that the set S contains enough information to uniquely determine the interpretation

17

(or extension) of φ with respect to Σ. Explicit definability takes this one step further: for a

formula φ explicitly definable from S under Σ, not only does S contain enough information

to uniquely identify φ, S contains enough information to write down another formula ψ

with exactly the same interpretation as φ, such that the signature of ψ contains only

predicates that appear in S.

Definition 9 (Beth Definability Property) Suppose Σ is a first order theory and S ⊆

sig(Σ) a set of atomic predicates. Beth definability is a property that states: any formula

φ that is implicitly definable from S under Σ is also explicitly definable from S under Σ.

For the reminder of this work, we will use terms Beth definability and definability

interchangeably. Beth definability is a property of a logic; some logics do not have this

property. Definition 9 states that for a logic with the definability property (like FOL), an

explicit definition for a formula can always be found, given that the formula is implicitly

definable, however, it does not provide a method for finding explicit definitions. One

possible way of producing explicit definitions is through Craig interpolation.

Definition 10 (Craig’s Interpolation) Suppose φ1 and φ2 are two well formed formulas

in FOL, and that |= φ1 → φ2. Then, there exists another well formed formula ψ, such that

sig(ψ) ⊆ sig(φ1) ∩ sig(φ2), and |= φ1 → ψ → φ2. This well formed formula ψ is called an

interpolant.

The definition of Craig’s interpolant could be trivially extended to be with respect to

some first order theory Σ. There are constructive procedures for generating interpolants

from the tableaux proof of |= φ1 → φ2 (these procedures can also be generalized to other

proof systems, like resolution-refutation, etc.) [18]. For first order logic interpolant extrac-

tion is semi-decidable.

18

Implicit/Explicit definability and interpolation definitions can also be very easily ex-

tended to the DL setting. The following definitions assume some arbitrary DL dialect L,

a knowledge base K = (T ,A) over L.

Definition 11 (DL — Implicit Definability) Let C be a concept in L, and a set Σ ⊆

sig(C, T). We say that concept C is implicitly definable from Σ under T if and only if for

any two models I1 and I2 of T , if:

• 4I1 = 4I2

• for all P ∈ Σ, P I1 = P I2

then CI1 = CI2

Definition 12 (DL — Explicit Definability) Let C be a concept in L, and Σ ⊆ sig(C, T).

C is explicitly definable from Σ under T if and only if there is some concept D in L such

that T |= C ≡ D and sig(D) ⊆ Σ. We call such a concept D explicit definition of C from

Σ under T .

Definition 13 (DL — Beth Definability Property) A description logic dialect L has

Beth definability property, if for any concept C in L, TBox T over L and any Σ ⊆

sig(C, T), if C is implicitly definable from Σ under T , then C is also explicitly definable

from Σ under T .

Definition 14 (DL — Interpolant) Let C and D be concepts in description logic L,

and T1, T2 be two TBoxes in the same description logic, such that T1 ∪ T2 |= C v D. A

concept I in L is called an interpolant of C and D under T1 ∪ T2 if all of the following

conditions hold:

19

• sig(I) ⊆ sig(C, T1) ∩ sig(D, T2)

• T1 ∪ T2 |= C v I

• T1 ∪ T2 |= I v D

Unfortunately, not all DL dialects possess definability property. In [55] and [56], authors

discuss and summarize definability property, and weaker version of definability — concept

name Beth definability property (CBP), for various decidable, expressive DL dialects. CBP

enforces all role names to appear in the set of concepts from which explicit definitions can

be generated. Also, in [56], authors give a constructive algorithm for building interpolants

from DL tableaux. Although not all decidable DL dialects possess the definability property,

for those that do, interpolant generation is also decidable.

In the next section, we elaborate on the relation between definability and interpolation,

and discuss the importance of the definability property for query answering in FOL, with

trivial extension to DLs.

2.4 Definability and Interpolation in Query Evalua-

tion

As described in Appendix A, first order formulas can be perceived as user queries, with

free variables as query variables. Let Σ be a first order theory that contains only domain

independent formulas, Q — a first order query, and S ⊂ sig(Σ) a set of first order atomic

predicates; one can think of S as a set of materialized views (i.e. stored results of evaluating

past user queries). To answer user query Q, we need to rewrite it as Qp, so that sig(Qp) ⊆

20

sig(S) and Σ |= Q ≡ Qp. If this rewriting is executable (i.e. translatable into a computer

program in some programming language) and efficient, we call Qp a query plan.

Beth definability and Craig interpolation allow us to generate a plan Qp for user query

Q. We generate a new theory Σ∗ by inspecting every φ ∈ Σ, and replacing every predicate

P that appears in φ such that P 6∈ S, with a new predicate symbol P ∗, and generate a

new query Q∗ from Q, by the same procedure. Then, we can say that query Q is definable

if and only if:

(Σ ∪ Σ∗) |= (Q→ Q∗)

which can be reformulated as an interpolant generation problem:

|= ((∧Σ) ∧Q)→ ((∧Σ∗)→ Q∗)

The generated interpolant Qp will have the properties that sig(Qp) ⊆ sig(S) and Σ |= Q ≡

Qp, which means that rewriting Qp is a candidate query plan for Q.

Weddell and Toman in [57] describe a procedure for enumerating different interpolants,

by enumerating finite tableau proofs of (∧Σ) ∧ (∧Σ∗) ∧ Q ∧ (¬Q∗). There are two rea-

sons why enumerating interpolants is needed for query evaluation: to generate executable

interpolants, and to generate efficient interpolants.

In some cases, a generated rewriting Qp cannot be turned into an executable plan. In

those circumstances, the system would ask for further interpolants, until an executable

one is found. Discussion of why interpolants may not generate an executable query plan is

outside the scope of this thesis. We will only note that for this work, interpolants are not

required to be executable.

A query plan must also be reasonably efficient. To satisfy this requirement, we may

have to enumerate multiple interpolants, and choose the most efficient one according to

some cost model.

21

The discussion above is trivially extended to DL dialects. Suppose L is a description

logic dialect with definability property ([56]). Let K = (T ,A) be a knowledge base, and

C be an instance query in L. Let S be a set of concepts in L, such that sig(S) ⊆ sig(T),

without loss of generality we can assume that S contains only atomic concepts and roles.

Same as above, we need to find a rewriting Cp of C, such that T |= C ≡ Cp, sig(Cp) ⊆

sig(S), and Cp is executable and sufficiently efficient according to some evaluation metric.

Using the same process as in FOL case, we can create a new TBox T ∗ and a query

C∗. By running interpolant extraction procedure [56], we can find a rewriting Cp such that

sig(Cp) ⊆ sig(S) and |= (uT)u (uT ∗)uC u (¬C∗), which by the virtue of construction of

T ∗ and C∗ means that T |= C ≡ Cp. Finally, interpolant enumeration procedure can be

extended to description logic, to produce efficient and executable interpolant Cp.

22

Chapter 3

Related Work

Our work addresses a problem of optimizing the plan generation step for answering asser-

tion retrieval queries over a SHI knowledge base [46]. Our approach uses definability and

interpolation to produce a suitable rewriting of the original query, so that reasoning with

respect to a knowledge base can be discarded for the selection operator of the query. Thus,

we touch on a few separate areas of related research. Our approach is tightly integrated

with description logics and first order logic as frameworks for writing ontologies, performing

reasoning, answering queries and performing interpolant enumeration. A concise overview

of first order predicate logic is presented in Appendix A.

Also, our work touches on the problem of compiling instance queries and conjunctive

queries into executable query plans, and evaluating those plans to get the set of results.

Generating executable plans for query answering has been a central issue in databases, and

many other fields that are tightly coupled with information systems. Relational databases

have dealt with query compilation since their emergence [51]. This problem remains im-

portant with the OBDA and other information systems that use DL knowledge bases. An-

23

swering instance retrieval or conjunctive queries over DL knowledge base K adds another

complication to the task — reasoning with respect to K. Due to this, many reasoning

techniques had to be adapted specifically to a DL environment [10, 24]. Complexity of

conjunctive query answering over relational databases is in AC0 [5] complexity class. This

task becomes significantly harder when expressive DL knowledge bases are considered. In

particular, for some expressive DLs, complexity of conjunctive query answering is co-NP

complete in the size of the data [37, 42]. This served as a reason for many optimization

techniques and heuristics for DL instance retrieval [30], and development of the light-weight

DL families, like DL-Lite, where conjunctive query answering can be done in PTIME data

complexity [14].

Finally, our work is tightly related to the topics of query rewriting, definability and

interpolation. More details on these areas are provided in the next two sections.

3.1 Query Rewriting

Query rewriting is a very important technique for query compilation and answering. It

has been studied extensively for decades in various contexts: relational databases, DL

knowledge bases, OBDA, etc. Query rewriting has been studied from multiple angles:

as a distinct optimization step in the query compilation procedure, as an abstraction of

the entire query compilation process, and finally, as something in between of these two

extremes.

In relational databases, query rewriting is used in two main directions: to optimize

plan generation, and to answer the original user query over the set of views. When query

rewriting is used as an optimization step in plan generation, its main goal is to convert

24

the input query into an equivalent query, in the hope that it will be easier for the opti-

mizer to process the new query. The rewriting attempts to eliminate unneeded operators

(for example duplicate elimination [44]), and selection conditions that are always satisfied

or that are implied by other selection conditions [60]. Also, query rewriting in relational

databases is applied to simplify and optimize the execution of nested queries and aggrega-

tion operations [22, 6]. There is a large variety of query rewriting techniques and heuristics

used in commercial relational database systems that remain a trade secret, and thus are

unpublished. Another reason to use query rewriting in relational databases is to attempt

to answer an original user query with the set of available views [31]. Here, the task of

rewriting is broken up into two parts: determining whether the set of available views is

sufficient to answer a query, and producing the actual rewriting of a user query in terms of

views; both of these are very hard problems. More details on the current state-of-the-art

in this area can be found in [7].

Another way to look at query rewriting is to view query compilation as a rewriting of

the original user query into an executable query plan. This is the approach adopted in [57].

In this approach, a user query is issued over a logical view of the data, and the purpose

of query compilation is to produce another query, over the physical view of the data (i.e.

over access paths for the data [51]), with conditions that the new query is executable and

“reasonably” efficient with respect to some cost metric.

Another important use of query rewriting is for answering conjunctive queries in DL-

Lite. Usage of query rewriting in the DL-Lite case falls in between an optimization step

of query compilation and abstracting the entire query compilation process. At the base of

query rewriting for DL-Lite is first-order rewritability (FO-rewritability), which, essentially,

is a property of a language that given a knowledge base K = (T ,A), allows to rewrite a

query Q into another query Q′, such that evaluating Q′ on A returns the same answers

25

as evaluating Q with respect to K. To evaluate a conjunctive query Q over a DL-Lite

knowledge base K = (T ,A), where the ABox A is represented as a relational database,

we would process each atom of Q using T , and produce a union of conjunctive queries

Q′, which is a first order expression that can be evaluated directly over the relational

database storing A [14]. Various extensions and modifications of this procedure include

adoption of the approach to other DL languages that enjoy FO-rewritability property [12],

and extension of the procedure to work with various integrity constraints defined over a

DL-Lite knowledge base K in an attempt to reduce the size of the resulting rewriting Q′

[48, 49].

Finally, Franconi, Kerhet and Ngo, in a series of papers [19, 20, 21], applied definability

and interpolation to query rewriting. In this scenario, user queries are issued over a first

order logic ontology defined over a relational database. The authors use definability and

interpolation in FOL to characterize the precise conditions under which it is possible to

rewrite the original query as a range restricted first order formula over the relational

database, and propose a method based on interpolant extraction from tableau proof [18]

to produce the mentioned rewriting. In [21], their approach is extended to ontologies over

the ALCHOIQ DL dialect.

3.2 Definability and Interpolation

Work on definability and interpolation originated in the 50’s due to research of Beth [11],

and Craig [16], respectively. The original results were presented and proved for the general

case of FOL. From that time, much research has been directed to extending the principles

to other logics [50, 23, 13, 39]. Various application scenarios were studied for definability

and interpolation, for instance to model checking [41] and to query rewriting.

26

Extending definability and interpolation to description logics has also been studied

extensively. A lot of effort has been directed towards describing the Beth definability

property for various DL dialects and classifying DLs based on the presence of definability

property [55, 56, 54]. In the same publications, the authors investigated bounds on the

size of explicit definitions that can be generated for various DL dialects. Finally, in [56],

an interpolant extraction procedure for description logics was proposed. Also, various

modifications to the original definitions of definability were investigated: a weaker version

(CBP) of Beth definability in [55], and a stronger version, called projective Beth definability,

was investigated in [34]. Applications of definability and interpolation in description logics

has also been investigated extensively [9].

Over the past few years, the application of definability and interpolation to query an-

swering over ontologies has also been studied. For example, in [53, 19, 20, 19], authors used

definability and interpolation to translate queries over FOL ontology into SQL queries over

relational databases. In this thesis we propose a more general application of definability

and interpolation to query compilation, which does not require the data to be stored in

the form of relational databases. Finally, in [57], Beth definability and interpolation were

applied to generate an executable and reasonably efficient query plan, over an arbitrary

ontology in domain independent fragment of first order logic, which is an undecidable

problem.

27

Chapter 4

Procedure for Eliminating Reasoning

with Respect to a Knowledge Base

The difficulty of answering instance retrieval queries over DL knowledge base K = (T ,A),

results from the need to reason with respect to that knowledge base. Complexity of rea-

soning is proportional to the size and complexity of K. This serves as a motivation of

reducing the size and complexity of the knowledge base (especially TBox T) required for

answering queries, in particular reducing K to the empty knowledge base ∅.

Definition 15 (Rewritably Equivalent Concepts) Let K = (T ,A) be a knowledge

base over the SHI DL dialect, and Q = πKPd(σ
K
C (Q1)) a user query expressed in assertion

algebra, where C is a selection concept, and Pd a projection description. We define a

concept D to be rewritably equivalent to concept C if:

(i) T |= C ≡ D, and

(ii) D ∈ LQ1

29

Q = πKPd(σ
K
C (Q1))

πKPd(σ
K
C (Si1 u · · · u Sim))

1

πKPd(σ
∅
D(Sj1 u · · · u Sjk))

2

Query Plan

3

Result: Set of Concept Assertions

4

Figure 4.1: Query evaluation steps.

Lemma 1 Given a SHI knowledge base K = (T ,A), and a user query Q = πKPd(σ
K
C (Q1)),

if a concept D is rewritably equivalent to C with respect to K, then a new query Q′ =

πKPd(σ
∅
D(Q1)) produces the same set of results as Q.

Proof: The proof follows immediately from Definition 15.

2

Initially, in the information system, we start with a SHI knowledge base K = (T ,A)

and a set of cached query results S = {S1, . . . , Sn}, where each Si is as per Definition 4. In

30

this system, users can issue queries of the form Q = πKPd(σ
K
C (Q1)), the system will create

an efficient executable plan for the query and execute that plan to get the result — a set

of concept assertions.

Definition 16 (Relevant Cached Query Results) Let K = (T ,A) be a knowledge

base, Q = πKPd(σ
K
C (Q1)) a user query, and S = {S1, . . . , Sn} a set of cached query re-

sults, where each Si ∈ S is a result of evaluating a query (Ci, Pdi). We say that Si ∈ S is

relevant for a query Q, if K |= C v Ci.

User query Q is evaluated over the knowledge base by following the steps in Figure 4.1.

The first step determines whether cached query results, from the set S = {S1, . . . , Sn},

can be utilized to answer the user query. If cached query results are not usable, we can go

directly to step 3, with input πKPd(σ
K
C (Q1)). On the other hand, if cached results can be

utilized for answering the query, step one produces a set of relevant cached query results

S ′ = {Si1 . . . Sim} (as per Definition 16), such that the original query can be rewritten as

Q = πKPd(σ
K
C (Si1 u· · ·uSim)). Techniques for computing a set of relevant cached results are

well known and studied for the case of relational data model [26], and can be extended to

our circumstances. Now, we can proceed to step 2, in which we attempt to further rewrite

the query. Once again, this may not be possible, in which case we move on to step 3,

with input πKPd(σ
K
C (Si1 u · · · u Sim)). If we succeed in step 2, a query will be rewritten into

πKPd(σ
∅
D(Sj1 u · · ·uSjk)) (which will be used as an input to step 3), where D is a rewritably

equivalent concept to C, and a set of cached results S ′′ = {Sj1 , . . . Sjk} ⊆ S ′. Note, if

this rewriting is possible, than the new selection condition D can be answered from cached

query results only. This means that we do not have to reason with respect to the entire

K; thus, we can replace K in the selection condition, by ∅. In step 3, the system generates

an executable query plan (the plan may be optimized in terms of join order, removing

31

unnecessary operators, etc.), and go on to execute the query plan in step 4, to get the

result set of concept assertions.

The procedure for step 2 could be implemented in a brute force way: enumerate through

every concept Dj ∈ LQ2 , where Q2 = Si1 u · · · u Sim , and check if T |= C v Dj and

T |= Dj v C. Assign the new selection concept D to be Dj that passes the above

subsumption checks. Finally, we set S ′′ = {Di | Di ∈ S ′ and Di syntactically occurs in D}.

If the entire LQ2 is exhausted, and no concept D′ ∈ LQ2 passed the two subsumption

checks, we conclude that the query cannot be rewritten in order to eliminate reasoning

with respect to K, and we move on to step 3. This method is potentially very slow, since

subsumption checks take exponential time, in terms of the size of theory, in the worst case,

and the size of LQ2 grows exponentially as the number of relevant cached query results

increases. So, in the worst case, we may have to perform a potentially exponential number

of subsumption checks, of which each can take exponential amount of time. Of course, in

practice, performance of the brute force method depends on the order of enumeration of

concepts in LQ2 , which is impossible to determine without performing reasoning.

In this chapter we concentrate on optimizing the procedure for step 2, by applying

the Beth definability property and interpolation. For our approach, we are given a SHI

knowledge base K = (T ,A) and an input query πKPd(σ
K
C (Q2)), where Q2 = Si1 u · · · u Sim ,

same as above. A concept D, rewritably equivalent to C, is generated in two steps. First,

we enumerate the interpolants Dj of C (for each such Dj, we will have T |= Dj ≡ C).

Second, for each interpolant Dj, we check if it syntactically occurs in LQ2 , and if it does

— stop the interpolant enumeration, and make the new selection concept D to be Dj.

To generate S ′′ = {Sj1 , . . . , Sjk}, we follow the same process as for brute force method

(described above). If we cannot generate a single interpolant for C, we conclude that it is

impossible to rewrite the original query in order to eliminate reasoning with respect to K,

32

and we move on to step 3.

In Section 2.4, we described how interpolant enumeration can be used to produce a

query plan: enumerate interpolants, until we find executable, efficient rewriting for the

supplied query. In our optimization, however, we do not need to generate the final query

plan, we optimize one of the steps of generating a query plan. For this, we need to

generate a rewriting equivalent to the original user query (interpolant extraction takes

care of that), but the rewriting does not need to be executable nor efficient. However,

enumerating interpolants is still needed for our procedure since the generated interpolants

need to conform to certain structural constraints in order to be translated into a SHI

concept, and must also belong to LQ2 . So, for our approach, we essentially adopt the same

procedure as in Section 2.4 with different conditions to stop enumerating interpolants.

Our approach is not dependent on any specific DL reasoner, and so it can be imple-

mented as an ad-hoc optimization to any existing DL reasoner. The next two sections

describe in detail the two parts of the proposed optimization.

4.1 Assertion Retrieval Algebra to Interpolant Enu-

meration

First, we need to formulate an interpolant extraction/enumeration problem. This can be

done rather easily by following the outline in Section 2.4. Roughly, the TBox T would

be our theory, selection concept C would be our query, and concepts in LQ2 would be our

shared alphabet (i.e. set S as described in Definition 9). A procedure for extracting an

interpolant from the DL tableaux is described in [56]. By applying techniques from [57]

to this procedure, we can enumerate DL interpolants. However, since we do not have an

33

implementation of interpolant extraction tool for DLs, we had to use ITB — interpolant

enumeration tool implemented for FOL, for the experimental evaluation of the approach.

Due to this, the procedure of interpolant enumeration became more complicated.

SHI Construct Name Translate(param1, param2)

> (TOP) True

A (Atomic concept) A(x)

S (Role/Inverse role) S(x, y)

¬C (General negation) ¬Translate(C, x)

C uD (Conjunction) Translate(C, x) ∧ Translate(D, x)

C tD (Disjunction) Translate(C, x) ∨ Translate(D, x)

∃S.C (Existential quantification) ∃yS(x, y) ∧ Translate(C, y)

∀S.C (Universal restriction) ∀yS(x, y)→ Translate(C, y)

C v D (Concept inclusion) ∀x(Translate(C, x)→ Translate(D, x))

C ≡ D (Concept equivalence) ∀x(Translate(C, x)→ Translate(D, x))

∀x(Translate(D, x)→ Translate(C, x))

R1 inverse R2 (Inverse roles) ∀x, yR1(x, y)→ R2(y, x)

∀x, yR2(x, y)→ R1(y, x)

S1 v S2 (Role/Inverse inclusion) ∀x, yS1(x, y)→ S2(x, y)

S1 ≡ S2 (Role/Inverse equivalence) ∀x, yS1(x, y)→ S2(x, y)

∀x, yS2(x, y)→ S1(x, y)

Trans(R) (Transitive roles) ∀x, y, z((R(x, y) ∧R(y, z))→ R(x, z))

Table 4.1: SHI to FOL mapping.

34

ITB extracts interpolants from the FOL tableaux tree, which means that in the worst

case, it may not terminate (due to undecidability of FOL). However, for most practical

cases, we found that the tool works rather well. An input to the tool is: a first order

theory Σ (i.e. a set of domain independent sentences), a set of first order predicates Ap

(i.e. a shared alphabet) and a first order query Q. As our description logic query answering

system, we adopted an assertion retrieval engine called CARE [62], implemented for the

SHI DL dialect. Due to the mismatch between languages used in CARE and ITB, we

had to implement a translator from SHI to FOL, and vice versa. Since, in terms of

expressive power, SHI is a strict subset of FOL, the translation from SHI to FOL can

be done without any loss of information. Let Translate(param1, param2) be a function

that translates SHI DL into FOL; first parameter is a concept/role name, and the second

parameter is a variable name. Table 4.1 shows mappings from SHI constructs to FOL.

Each of the inputs to ITB is created by translating a corresponding entity from SHI

into FOL. A first order query Q is obtained by translating a selection concept C to an

FOL formula which can be done simply by applying rules from Table 4.1.

A first order theory Σ is constructed from two sources. First, we need to translate every

axiom in TBox T into its FOL equivalent. Once again, this is a rather trivial procedure,

that can be done by applying rules from Table 4.1. However, ITB works only with domain

independent well formed formulas; due to this, all non-domain independent axioms, if there

are any in the TBox, are ignored during translation. In practice, most ontologies can be

expressed with domain independent constraints, so working only with domain independent

formulas has a rather small effect on the expressiveness of the ontologies. The second type

of sentences in Σ comes from computing a set of predicates Ap, described below.

A set of predicates Ap is obtained from LQ2 (Definition 6), where Q2 = Si1 u · · · u Sim .

We convert LQ2 into a set of predicates Ap using the translation function from Table 4.1.

35

Let A′ represent a fresh atomic concept name that does not appear anywhere in the

knowledge base. We start with Ap = ∅, and we process each C ∈ LQ2 , and add appropriate

predicates to Ap, and appropriate constraints to Σ. There are four different cases to

consider, depending on concept C:

1. Ap = Ap ∪ C(x), if C is an atomic concept. No additional constraints need to be

added to Σ.

2. Ap = Ap ∪ A′(x), if C := C1 u C2 or C := C1 t C2 or C := ¬C1, where C1, C2

are arbitrary SHI concepts. In this case, we also need to add axioms ∀x(A′(x) →

Translate(C, x)) and ∀x(Translate(C, x)→ A′(x)) to Σ.

3. Ap = Ap ∪C1(x)∪S(x, y), if C := ∃S.C1 or C := ∀S.C1 and C1 is an atomic concept

and S is a role or its inverse. No additional constraints need to be added to Σ.

4. Ap Ap ∪ A′(x) ∪ S(x, y), if C := ∃S.C1 or C := ∀S.C1 and C1 is an arbitrary SHI

concept and S is a role or its inverse. In this case, we need to add axioms ∀x(A′(x)→

Translate(C1, x)) and ∀x(Translate(C1, x)→ A′(x)) to Σ.

Once the above steps are finished, we start ITB tool with Σ, Ap and Q as input, and

it generates a stream of well formed formulas D1, D2, . . . (i.e. interpolants), such that

Σ |= Q ≡ Di. Each Di is supplied as input to the second step of our approach, described

below.

4.2 Interpolant to SHI Query Concept

Each interpolant Di that is produced by ITB needs to be converted into SHI concept.

This is a rather difficult task, for two reasons: closure of SHI dialect under definability

36

property, and greater expressivity of FOL compared to SHI.

SHI DL dialect is not closed under Beth definability property. This means that in

some cases there is no SHI concept D which is an interpolant of input SHI concept

C. It may be the case that an interpolant for C exists in another DL dialect that is

more expressive than SHI. In our approach, ITB is implemented for domain independent

fragment of FOL, which is closed under Beth definability. Therefore, we can be sure that if

an interpolant Di exists for C, it will be found. However, it may be impossible to express

Di as a SHI concept. This problem can be partially avoided by using a DL dialect other

than SHI for the query answering system, that is closed under definability property (for

example by removing role hierarchies from SHI we get a dialect ALCIS, which is closed

under Beth definability). In [56], the authors classify the most common expressive DL

dialects based on Beth definability property. Unfortunately, to get a DL dialect that is

closed under definability, we must sacrifice some expressive power.

The second problem is tougher to solve, because, to the best of our knowledge, there

is no complete procedure for rewriting arbitrary FOL formulas into DL (or reporting an

error if the translation is impossible). This means that sometimes, even if it is possible to

express the interpolant Di as SHI concept, the translation will miss it.

In this work, we implemented a specialized FOL-to-SHI DL translator. It is based on

reverse application of the rules in Table 4.1 and certain heuristics. Heuristics are designed

based on the structure of the interpolants generated by ITB tool. For our evaluation, we

found that this translator performed rather well; there were no queries that we failed to

translate from FOL to SHI. Depending on the ontology and types of queries, additional

heuristics may be added (or existing ones may be modified) to improve the recall ratio.

Of course, this problem can be avoided altogether, if interpolant enumeration tool for

description logics is available.

37

Now, suppose that the translation is successful, and D is a SHI concept which is a

translation of the FOL interpolant Di. To determine if D is rewritably equivalent to the

query concept C, we still need to determine whether D ∈ LQ2 . In our approach, we simply

enumerate through all concepts D′ ∈ LQ2 , and syntactically check whether D = D′. If

we find such D′, we report D as a rewritably equivalent concept to C, and go ahead with

rewriting the input query to: πKPd(σ
∅
D(Sj1u· · ·uSjk)). Alternatively, instead of syntactically

checking whether D ∈ LQ2 , we can perform a semantic check: for each D′ ∈ LQ2 , check

whether T |= D ≡ D′. This will result in worse performance, compared to syntactic check,

however, with semantic check, we can stop enumerating interpolants as soon as we generate

an interpolant that is expressible as a SHI concept.

If the generated interpolant Di cannot be translated into SHI concept (either because

it is not expressible as SHI concept, or because the system cannot find a translation),

or Di /∈ LQ2 , we request next interpolant in the stream — Di+1, and the entire process,

as described above, is repeated for this new interpolant. In this circumstance, we are not

aware of any results that could provide stopping conditions for interpolant enumeration.

Therefore, interpolant enumeration can run indefinitely, without ever generating a result.

A simple, practical solution to this, is to introduce the upper bound on the number of

interpolants that could be generated and processed, or provide a specific amount of time

for interpolant enumeration. This upper bound can be set experimentally, depending on

the application and the underlying ontology.

38

Chapter 5

Experimental Evaluation

We evaluated the performance of our approach for rewriting step of query evaluation (i.e.

step 2 in Figure 4.1) in comparison to the brute force method. For our approach, we used

CARE as query answering engine, ITB for enumerating FOL interpolants, and our custom

implemented SHI-FOL and FOL-SHI translators. Checking membership of generated

interpolants Di in LQ2 was performed using a syntactic concept comparison functionality

that is part of CARE by using hash functions. The brute force method was implemented by

enumerating all concepts in LQ2 in linear fashion, until we either find a concept equivalent

to the selection condition concept C, or we exhaust all concepts in LQ2 . Subsumption

checks for the brute force method were performed with CARE, however, in principle, any

other DL reasoner could be used.

Despite potential problems (outlined in Section 4.2) with using the SHI DL dialect

and FOL, in our experiments, we did not observe any errors due to failure to generate an

interpolant that can be expressed as a SHI concept, nor errors due to failure to translate

FOL formula to SHI concept.

39

We are not aware of any benchmark ontologies that would be suitable for our purposes.

Therefore, we conducted experiments on two data sets: LUBM — a benchmark ontology

for query answering ([29]), and LUBMMOD — an ontology that we created manually by

adding extra axioms to the TBox of LUBM. For each ontology, we created ten test queries,

with a set of relevant cached query results for each query. Sets of relevant cached query

results were manually synthesized. Conceptually, one may imagine that a set of cached

results S = {S1, . . . , Sn} exists for CARE, and we run a procedure, like the one in [26], to

generate a set of relevant cached results for each query.

For each ontology, we measured and compared query rewriting times using our ap-

proach versus the brute force method. Also, we measure the time share of interpolation

in query rewriting with our approach. Since ITB is not optimized for DL reasoning, we

did not expect our approach to outperform the brute force method. However, we expected

the performance be comparable. To evaluate a possible benefit of using an interpolant

enumeration tool specific for DLs, we simulated interpolation on a DL reasoner which is

part of CARE. In particular, from the original knowledge base K = (T ,A), we created a

new TBox T ∗ which is a copy of T except that, we replace every concept Ci that appears

in T and that does not appear in LQ2 by C∗i . In a similar fashion, we created a new query

concept C∗ from the original query C. Then, we ran the following subsumption check on

CARE: T ∪ T ∗ |= C v C∗. From the tableaux expansion for this subsumption check, one

can generate an interpolant in time that is linear in the size of the tableaux.

For each experiment, the time for rewriting a query was averaged over 20 independent

runs, with outliers disqualified. We deemed a data point as “outlier” if its value was at

least one order of magnitude greater than values of the majority of data points. Outliers

occurred due to the interference from other processes that ran at the same time as our

experiments. The experiments were conducted on a single machine with the CPU with 2

40

cores, 3.06 GHz and 4 GB of memory. The data sets and results for each experiment are

summarized in the subsequent sections.

5.1 LUBM Benchmark

5.1.1 Experiment Setup

For the first experiment, we used LUBM benchmark ontology, with 17K individuals in the

ABox. There is one domain dependent axiom in the TBox, which we disqualified for our

experiments. LUBM benchmark includes 14 test queries. Out of these, only 12 can be

expressed as algebraic queries for CARE, and only 8 can be used for our purposes, with

minimal modifications (described below). The reason why the other 4 are not applicable,

is that in order for the interpolant generation to work for them, we would need to have

those specific queries cached, and no others; these cases are trivial, and are covered by

experiments with other test queries. With all this in mind, we selected the following

test queries, which represent selection conditions of algebraic user queries that may be

submitted to CARE, for our evaluation:

Q1: GraduateStudent u ∃TakesCourse.Course

Q2: Publication u ∃PublicationAuthor.AssistantProfessor

Q3: Professor u ∃WorksFor.University

Q4: Person u ∃MemberOf.University

Q5: Student

Q6: Student u ∃Advisor.Faculty u ∃TakesCourse.Course

Q7: Student u ∃TakesCourse.GraduateCourse

Q8: ResearchGroup u ∃SubOrganizationOf.University

41

Q9: Person u ∃MastersDegreeFrom.University

Q10: UndergraduateStudent

Queries Q1-Q5, Q7, Q8, Q10 were taken from the LUBM benchmark, while Q6 and Q9

were manually created to resemble the format and complexity of the other LUBM queries.

As was mentioned above, we needed to modify the original LUBM benchmark queries

to be usable with CARE. In particular, queries that used individual names in their formu-

lation, were modified to use the appropriate concepts instead. For example, Q2 originally

looked like this:

Q := Publication u ∃PublicationAuthor.{http : // . . . /AssistantProfessor0}

and we modified it to be:

Q := Publication u ∃PublicationAuthor.AssistantProfessor

The reason for this, is that CARE does not support the use of nominals, which means that

these types of queries are not handled. One possible work-around for this, as described in

[46], is to create a fresh concept name A′, and add A′(http : // . . . /AssistantProfessor0)

to the ABox; then, we could rewrite the query as:

Q := ∃PublicationAuthor.A′

For our purposes, this is still not acceptable, because the only way to generate an inter-

polant for a query that uses such fresh concept A′, is to have A′ among cached query

results. Conceptually, this means that the same type of query, about the same individual

has been asked in the past. Thus, we chose to replace individual names in queries by the

underlying concepts, without reducing the complexity of the query.

42

For each user query, we manually synthesized a set of relevant cached query results.

Each cached query result Si was obtained from query (Ci, Pdi). Since the experiments are

used as a proof of concept, for simplicity, we set the query for each Si to be of the form

(Ci, Ci?). The following table shows Ci for each Si:

Cached Query Results:

For Q1: Person

∃TakesCourse.GraduateCourse

∃TakesCourse.Course

GraduateStudent

For Q2: ∃PublicationAuthor.AssistantProfessor

∃PublicationAuthor.Faculty

Publication

∃PublicationAuthor.Person

For Q3: ∃WorksFor.University

Professor

∃WorksFor.Organization

∃MemberOf.Organization

Person

For Q4: ∃MemberOf.Organization

Person

∃MemberOf.University

43

For Q5: Person

∃TakesCourse.Course

For Q6: Student

∃TakesCourse.Course

∃Advisor.Faculty

For Q7: Student

∃TakesCourse.GraduateCourse

∃TakesCourse.Course

For Q8: ResearchGroup

Organization

∃SubOrganizationOf.University

∃SubOrganizationOf.Organization

For Q9: Person

∃DegreeFrom.Organization

∃MastersDegreeFrom.University

∃DegreeFrom.Organization

For Q10: Person

Student

UndergraduateStudent

Our main concern when synthesizing the sets of cached query results was to ensure that

44

these sets are sufficient to generate interpolants for the corresponding queries. Once this

goal was achieved, we augmented the sets with other relevant cached query results, in an

attempt to complicate the task for ITB and for the brute force method.

5.1.2 Results

Figure 5.1: FOL and DL based optimization versus the brute force method (LUBM bench-

mark).

45

In Figure 5.1, we compare the time (y-axis), in seconds, for rewriting each query in the test

suite (x-axis) in order to eliminate K, using our optimization with FOL based interpolant

enumeration tool (labeled “FOL optimization”) versus the brute force method. We also

report expected performance of our optimization with DL based interpolant enumeration

(labeled “DL optimization”).

Expected time for DL optimization was computed based on the time to simulate in-

terpolation on CARE DL reasoner, with the formula tE = 2× tI + tS, where tI represents

the time to simulate interpolant extraction on CARE, and tS represents the time to check

whether generated interpolant belongs to LQ2 . We put a factor of 2 in front of the time

for simulating interpolation on CARE, because simulation only generates a tableaux proof

required to extract interpolants without generating an actual interpolant. Extracting in-

terpolants from the tableaux tree runs in linear time in the size of the tableaux. Therefore

a factor of 2 is a sensible choice. Time to determine whether generated interpolant belongs

to LQ2 was taken from the evaluation of the FOL optimization. The reason for this is that

we could not get these times for DL optimization directly, since actual interpolants were

not extracted in the DL case. However, checking whether an interpolant belongs to LQ2

is performed with hash functions, implemented for the SHI dialect on CARE, indepen-

dently from the interpolant extraction. Therefore the values taken from FOL optimization

provide a reasonable approximation.

As expected, FOL optimization did not outperform the brute force method. The reason

for this, as mentioned before, is the generality of ITB: it is not optimized for description

logics, nor to the situations where many cached results may be relevant to the input

query. For this test run, brute force method performs very well for each query. This

can be explained by the simplicity of the queries and triviality of the relevant parts of

the underlying ontology, which leads to very fast subsumption checks in the brute force

46

method. Also, the number of relevant cached query results in this experiment is quite small

(never more than 5), which bounds the size of LQ2 by 32. Of course, as the number of

relevant cached query results grows, brute force method will become slower (theoretically

— exponentially slower). DL optimization, on the other hand, performed rather well,

even though CARE reasoner does not implement many optimizations, and, similarly to

ITB, is not optimized at all to the situations where many cached query results may be

relevant to the user query. DL optimization runs much faster than FOL optimization,

and outperforms brute force method for all but one query (Q9). Also, for Q3 and Q7,

we observe that expected performance of DL optimization, although slightly better, is

close to that of the brute force method. For the rest of the queries, DL optimization runs

considerably faster than brute force method (by approximately one order of magnitude).

Possible explanation for slower performance of DL optimization for Q3, Q7 and Q9 is a

relatively more complicated structure of LUBM ontology in the places that are relevant

to these queries (for example presence of inverse roles for Q3 and Q9, or equivalences

and more involved concept hierarchy of Student and Course concepts for Q7). Although

we measured only expected performance of DL optimization, generated results showed

that using DL reasoner for enumerating interpolants is a sensible next step to make our

optimization competitive with the brute force method.

FOL optimization performs substantially worse than brute force for most of the queries;

only the times for Q5 and Q10 are comparable to brute force method. This can be explained

by relative triviality of Q5 and Q10 compared to other queries in the test suite. Both of

them are atomic concepts, and even though there is an equivalence related to Q5 in the

LUBM schema, the set of cached results that must be available in order for the interpolants

to exist is trivial for both of these queries.

For this experiment, ITB successfully generated interpolants for all queries (similarly,

47

simulation of interpolation on CARE was successful for all queries), and all interpolants

were successfully translated to SHI concept. For all queries, but Q8, exactly one in-

terpolant was needed in order to generate a rewriting. For Q8, two interpolants were

generated. The first interpolant was successfully translated into SHI concept D′, how-

ever, D′ /∈ LQ2 , and so the next interpolant on the stream had to be processed. Concept D′

— translation of the first interpolant, contained disjunction and negation, so it is natural

that syntactic check for membership of D′ in LQ2 failed. Note, if instead we used semantic

method to check whether D′ ∈ LQ2 , it would have succeeded and we would not have to

generate the second interpolant.

Another interesting parameter of the experiment to consider, is the order in which

Di ∈ LQ2 were enumerated for both, brute force method, as well as for the syntactic

membership check of interpolants in LQ2 . Since in brute force method, and in syntactic

check for membership of interpolants in LQ2 , we stop enumeration of concepts in LQ2 as

soon as we find Di ∈ LQ2 such that T |= Di ≡ C, for brute force method, or Di is the same

as the supplied interpolant, for our approach, these procedures are affected by the position

of this Di in the enumeration order of LQ2 . During the evaluation, we, indeed, observed the

performance of brute force worsen when the needed concept Di was at the end of the LQ2 in

the enumeration order. This is easily explained by the extra subsumption checks that need

to be performed. At the same time, we found that changing the order of enumeration of

LQ2 had minimal effect on our approach. This is due to the fact that syntactically checking

whether an interpolant belongs to LQ2 is very fast (implemented with hash functions), and,

thus, has a negligible impact on the runtime of our optimization. Also, ITB heuristics for

selecting a predicate from Ap (which was generated from LQ2) do not take into account

the order in which predicates in Ap are organized. Even though manipulating the order of

enumeration of LQ2 can be used to influence performance of brute force method, in general,

48

it is impossible to know the best order of enumeration without performing reasoning that

is also required for subsumption checks in brute force method. For our experiments, the

order of enumeration of LQ2 was the same for the FOL optimization and for the brute force

method; it was randomly set prior to conducting the experiment.

5.1.3 Interpolation Time

Figure 5.2: Query rewriting time vs. interpolation time (LUBM benchmark).

49

In Figure 5.2, we compare time (y-axis) to enumerate interpolants, in seconds, in the

suggested FOL optimization with the DL optimization (described in Section 5.1.2) as

well as the brute force method, for each query in the test suite (x-axis). As expected,

interpolation time dominates in the FOL optimization.

Figure 5.3: Measuting interpolation time on ITB vs. simulation of interpolation on CARE.

Second biggest time share is taken up by FOL to SHI and SHI to FOL translation,

however it is much smaller than interpolation time, and in most cases is completely negli-

gible. Only for Q1, Q3 and Q6 translation time is noticeable. This can be explained by the

50

size and complexity of the generated interpolants, since translation time is directly pro-

portional to those two factors. Finally, time to determine whether an interpolant belongs

to LQ2 is negligible in contrast to the first two — any noticeable difference between the

FOL optimization time and interpolant enumeration time is due to translation time.

These results reinforced our hypothesis that generality of ITB will cause a slowdown in

our approach, and thus it may be worthwhile to explore interpolant extraction/enumeration

on specialized DL reasoners.

In Figure 5.3, we report the time (y-axis), in seconds, for extracting interpolants with

ITB and simulating interpolant extraction with CARE, for each query of the test suite

(x-axis).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

CARE 0.113 0.0096 0.151 0.012 0.0068 0.0197 0.034 0.016 0.199 0.002

ITB 3.976 2.53 2.54 1.445 0.703 2.584 1.304 1.453 1.452 0.552

Table 5.3: DL vs. FOL interpolation time in seconds (original LUBM).

Table 5.3 shows the exact times of interpolation with ITB and simulation of interpo-

lation with CARE. The values for simulating interpolation on CARE from Table 5.3 were

used to calculate expected performance of DL optimization in section 5.1.2. One can see

that interpolation with ITB is slower by one or two orders of magnitude compared to

the simulation on CARE. These results show that implementing interpolant extraction on

specialized DL reasoner is very promising for our optimization.

From theoretical point of view, since interpolants are generated from a tableaux proof,

high worst case complexity of reasoning tasks for many expressive DL dialects suggests

51

that in some cases interpolant extraction can have a larger impact, than results reported

in Figure 5.3. On the other hand, despite high worst case complexity of reasoning in

many expressive DLs, there are many known optimizations that work rather well for many

practical cases [35]. Of course, this means that interpolant extraction and enumeration is

largely dependant on the reasoner on which it is implemented; more precisely, interpolant

enumeration is highly dependant on the optimizations and heuristics used in the underlying

DL reasoner.

5.2 LUBMMOD ontology

Ontology in the LUBM benchmark is rather simple. Due to this, in the first experiment,

we saw rather simple subsumption checks in brute force method and we needed to include

individual conjuncts from the benchmark queries in the relevant cached query results in

order to be able to generate interpolants. Therefore, for the second experiment, we decided

to complicate LUBM ontology, by adding new axioms and concepts to its TBox. The new

ontology, LUBMMOD, contains all axioms from LUBM TBox, plus the axioms summarized

in the table below; ABox of LUBMMOD is the same as that of LUBM.

Additional Axioms:

Course v UndergradCourse tGraduateCourse

GraduateCourse v Level6 t Level7 t Level8

Level6 v GraduateCourse

Level6 v LectureBased

Level7 v GraduateCourse

Level8 v GraduateCourse

Level8 v Seminar

52

Level6 v (¬Level7)

Level6 v (¬Level8)

Level7 v (¬Level8)

Seminar v Level7 t Level8

Level7 v LectureBased t Seminar

LectureBased v Level6 t Level7 t UndergradCourse

LectureBased v (¬Seminar)

UndergradCourse v Course

UndergradCourse v LectureBased

UndergradCourse v (¬GraduateCourse)

Student v UndergraduateStudent tGraduateStudent

UndergraduateStudent v (¬GraduateStudent)

Employee v Faculty t AdministrativeStaff

Faculty v (¬AdministrativeStaff)

Faculty v PostDoc t Faculty t Professor

Professor v (¬Lecturer)

Professor v (¬PostDoc)

Lecturer v (¬PostDoc)

Professor v AssociateProfessor t

AssistantProfessor t

FullProfessor t

V isitingProfessor t

Chair t

Dean t

53

AssociateProfessor v (¬FullProfessor)

AssociateProfessor v (¬AssistantProfessor)

AssistantProfessor v (¬FullProfessor)

Chair v FullProfessor t AssociateProfessor

Dean v FullProfessor t AssociateProfessor

PublishedAuthor ≡ Person u ∃PublicationAuthor.>

To make the ontology more complicated, we added cover constraints for few concepts

in the LUBM ontology. The motivation for doing so came from the observation that

disjunction is often poorly handled by reasoners. Each group of axioms in the table above

(groups of axioms are separated by blank lines), complicates the structure of the original

LUBM ontology in different places. The first group adds a complicated hierarchy of courses

that students may take, and various relationships between courses. Second, third and

fourth groups of axioms add cover constraints to student, employee and professor concepts,

respectively. Finally, the last axiom simply adds another equivalence to the ontology. Our

hope was that presence of disjunctions, negations and complex structures in certain parts

of the ontology, will burden the subsumption tasks more than interpolant extraction.

5.2.1 Experiment Setup

Since we were not using any known benchmarks for the second experiment, we had to

manually synthesize the queries over LUBMMOD ontology. The following ten queries

were synthesized, to target the parts of LUBMMOD ontology that were created by the

additional axioms. Same as with the first experiment, these represent selection conditions

of user queries that are submitted to CARE. Some of these queries, we decided to make

54

more complicated in terms of structure, compared to the first test suite. In particular, by

including disjunction and negations, due to the hypothesis that these constructs may cause

complications for reasoners.

Q1: Professor

Q2: Seminar

Q3: Faculty

Q4: Employee

Q5: Course u Seminar u Level8

Q6: Employee u (¬AdministrativeStaff)

Q7: GraduateCourse u (¬(Level7 t Level8))

Q8: UndergradCourse

Q9: Student u TeachingAssistant u (¬GraduateStudent)

Q10: Student u ∃Advisor.Professor

From the above queries, Q1, Q3, Q4, Q6 target the employee hierarchy of LUBMMOD

ontology. Queries, Q2, Q5, Q7, Q8 target the course hierarchy of the ontology. Finally, Q9

and Q10 are of the same style as queries in the first experiment, however they indirectly

target student and employee hierarchy in LUBMMOD.

Similar to the first experiment, we had to generate relevant cached query results for

each query above. Once again, for simplicity we set the query for each cached query result

Si to be (Ci, Ci?). Selection concepts Ci for each Si are summarized in the following table.

Cached Query Results:

For Q1: Faculty u (¬PostDoc) u (¬Lecturer)

For Q2: GraduateCourse u (¬LectureBased)

55

For Q3: Lecturer t Professor t PostDoc

For Q4: ∃WorksFor.Organization

Person

For Q5: GraduateCourse

Level8

For Q6: Lecturer t Professor t PostDoc

For Q7: Level6

For Q8: LectureBased u (¬GraduateCourse)

For Q9: Person

UndergraduateStudent

Student

∃TeachingAssistantOf.>

∃TeachingAssistantOf.Course

For Q10: Student

∃TakesCourse.Course

∃Advisor.>

∃Advisor.Professor

∃Advisor.Faculty

Same as before, we had to make sure that we include sufficient cached query results,

to ensure that interpolants can be extracted for the test queries, and then augment the

sufficient sets with other relevant cached query results. In addition, however, we attempted

to make the relevant cached query results non-trivially related to the corresponding queries,

so that more complex parts of LUBMMOD TBox would need to be explored in order to

56

find an interpolant, or perform a subsumption check. This differs from the set up of the

first experiment, where, in most cases, the reasoner only needed to consider concepts that

were in LQ2 , or trivial parts of LUBM ontology, in order to generate interpolants or perform

subsumption checks.

5.2.2 Results

Figure 5.4: FOL and DL based optimizations versus the brute force method (LUBMMOD

ontology).

57

In Figure 5.4 we report the time (y-axis), in seconds, of rewriting all queries in the sec-

ond test suite (x-axis) in order to eliminate reasoning with respect to K, using proposed

optimization with FOL based interpolant enumeration tool (labeled “FOL optimization”),

using proposed optimization with DL based interpolant enumeration tool (labeled “DL op-

timization”) and the brute force method. For DL optimization we report expected runtime

(calculated by the same formula as in the first experiment).

Same as in the first experiment, FOL optimization does not outperform the brute

force method, which is still an expected outcome. The size of LQ2 remained small for all

queries in the second experiment. However the subsumption checks performed by the brute

force method were more complicated, compared to the first experiment. This explains why

times for brute force method increased by a small amount relatively to the first experiment.

One can note that the gap between performance of the FOL optimization and the brute

force method shrunk. A possible explanation for this is that additional constraints in the

LUBMMOD TBox had a, relatively, smaller effect on the interpolant enumeration with

ITB tool compared to subsumption checks with CARE.

DL optimization still performs rather well compared to FOL optimization and the brute

force, for all queries except Q10. Compared to results of the first experiment, we see that

the average (excluding outlier — Q10) gap between performance of the DL optimization

and the brute force method increased. Comparing results of the first (Figure 5.1) and

second (Figure 5.4) experiments we can see that physical times for brute force method and

DL optimization for queries in the second test suite, decreased or remained the same. This

means that the improvement of the performance of DL optimization is relatively greater

than that of the brute force method. Since for the second experiment, reasoning tasks

required deeper exploration of the structure of the underlying ontology, and the actual

ontology LUBMMOD is more complex than LUBM, this may be a sign that our approach

58

will perform better than the brute force method in cases when extensive exploration of

complex TBoxes is required.

The brute force method performed much better than the FOL optimization for Q1, Q2,

Q4 and Q9. A possible explanation for this may be that since the underlying ontology

became more complicated, the interpolants generated by ITB became more complex, and

so translation time and time to check for membership of the generated interpolants in

LQ2 increased. More detailed discussion of this hypothesis follows in section 5.2.3. DL

optimization considerably outperforms FOL optimization (by approximately 1-2 orders of

magnitude), and the brute force method (by approximately one order of magnitude), for

all but one query (Q10). For Q7, DL optimization is close to brute force method, however

this can be explained by the simplicity of the query. Indeed, brute force method performs

the best on Q7 and for FOL optimization, it is second best performance, out of the entire

test suite of queries. For Q10, we observe that DL optimization performs much worse

than both, FOL optimization and brute force method. The main reason for this is high

complexity of simulating interpolation on CARE for Q10 (> 1.5 seconds); once again, a

more detailed discussion of this occurrence follows in the next section.

For the second experiment, we did not observe any repeated generation of interpolants

due to failure to translate FOL formula to SHI concept. For all queries, except Q9,

exactly one interpolant was generated to create the rewriting. For Q9, three interpolants

were generated, in order to produce a rewriting. The first two interpolants contained

disjunctions and negations, and therefore failed the syntactic membership check in LQ2 .

Same as in the first experiment, we observe that order of enumeration of concepts in

LQ2 had a negative effect on the performance of the brute force method. However, this

effected was relatively smaller compared to the first experiment, since the size of LQ2 for

the queries in the second test suite is, on average, smaller than the size of LQ2 for the

59

queries in the first test suite. Effects of changing the order of enumeration of concepts in

LQ2 on FOL optimization remained negligible. This was expected behaviour, for the same

reasons as in the first experiment.

5.2.3 Interpolation time

Figure 5.5: Query rewriting time vs. interpolation time (LUBMMOD).

60

Same as with the first experiment, we timed just the interpolant enumeration portion of

the FOL optimization. In Figure 5.5, we show the time (y-axis), in seconds, of interpolant

enumeration, compared to complete rewriting with the FOL optimization, DL optimization

and the brute force method, for each query in the test suite (x-axis).

Figure 5.6: Time share of interpolant enumeration, translation and syntactic check of

membership of interpolant in LQ2 (LUBMMOD ontology).

For the second data set, we observe an improvement in interpolant enumeration time,

relatively to the time taken by the entire FOL optimization procedure. Indeed, in the

61

first experiment, we saw that FOL optimization was completely dominated by interpolant

enumeration; FOL to SHI and SHI to FOL translation and checking the membership of

the interpolant in LQ2 were negligible in comparison (Figure 5.2).

In this case, we observe that while checking membership of the interpolants in LQ2 still

occupies a negligible share of the time of the entire FOL optimization, translation part

of the procedure takes substantially more time. Figure 5.6 shows time shares (y-axis), in

seconds, of the separate parts of the proposed FOL optimization for each query in the

test suite (x-axis). On can see that translation time significantly increased compared to

the first experiment. For Q2, Q3, Q5, Q6, it takes up approximately half of the time of

the entire optimization procedure, and for Q1, Q8 and Q9 — approximately a third of

the time is taken by translation. Finally, in Q4 — translation time dominates interpolant

enumeration, occupying almost 70% of the time of the FOL optimization procedure.

A decrease in the interpolant enumeration time can be explained by smaller number

of relevant cached query results for most queries in the second experiment, compared to

the first one. This indirectly decreases the number of unsuccessful tableaux expansions

performed by ITB to generate an interpolant, and thus reduces the interpolant generation

time. Only with Q10 we see that almost entire optimization time is taken up by interpolant

enumeration, while translation time is negligible. The format of Q10 as well as of the

relevant cached query results for Q10 are very similar to formats of queries in the first

experiment. Essentially, reasoning required to be done by ITB in order to extract an

interpolant for Q10 is quite similar to reasoning needed for extracting interpolants in the

first experiment; the complications that were added to LUBMMOD were not explored by

ITB for Q10. This explains consistency of results for Q10 with those in the first experiment.

Increase in translation time for this experiment, can be accounted for by larger, and

more complex interpolants produced by ITB. FOL interpolants produced for the queries

62

in this experiment were in the format that required more effort to be translated into SHI

concept. Also, for queries in this experiment, interpolants contained many unnecessary

repetitions of predicates, which had to be removed during translation.

Figure 5.7: Measuting interpolation time on ITB vs. simulation of interpolation on CARE

(LUBMMOD).

Increase in the relative time share of translation in our approach suggests another reason

why implementing interpolant enumeration on a specialized DL reasoner, may be a sensible

next step for our optimization. If interpolant enumeration is a part of a DL reasoner, the

63

generated interpolants would already be in the needed DL dialect (provided that the DL

dialect has definability property), and so translation step would be not necessary.

For this experiment, we also implemented simulation of interpolation on CARE. Figure

5.7 summarizes the time (x-axis), in seconds, for simulating interpolant extraction on

CARE, in contrast to interpolant extraction with ITB, for each query in the test suite

(y-axis). For Q1-Q9, we continue to observe that simulation on CARE performs better

than interpolant extraction on ITB, by at least one order of magnitude. However, for Q10,

we see that interpolant generation on ITB is in fact faster than simulation on CARE. This

is a rather surprising result; a thorough investigation of the internal structure of CARE

reasoner is needed in order to find out the reason for this. One possible explanation is

that when performing a subsumption check T ∪ T ∗ |= C v C∗ for Q10, CARE needlessly

processed parts of LUBMMOD ontology related to courses, employees and professors.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

CARE 0.016 0.007 0.011 0.047 0.002 0.012 0.019 0.002 0.027 1.631

ITB 1.73 0.999 0.613 0.856 0.647 0.488 0.48 0.585 1.753 1.602

Table 5.7: DL vs. FOL interpolation time in seconds (LUBMMOD ontology).

Table 5.7 shows the exact values from Figure 5.7. These values were used for calculations

of the expected performance of DL optimization in Section 5.2.2.

In general, results of the second experiment give further evidence that implementing

interpolant enumeration on a specialized DL reasoner will greatly improve performance of

our approach, even to the level of outperforming the brute force method. At the same

time, results for Q10, suggest that even when implemented on specialized DL reasoner, in-

64

terpolant extraction, would require some, potentially application dependent, optimizations

in order for it to be competitive in various special cases.

65

Chapter 6

Conclusion and Future Work

In this chapter we summarize the procedure for our optimization, comment on the results

of the initial evaluation of the approach, make some final remarks about the problem and

proposed solution, and suggest directions for the future work.

6.1 Summary

In this work, we tackled a problem of improving assertion retrieval over SHI knowledge

base K = (T ,A), through eliminating the need to reason with respect to K for evaluating

user queries. In particular, we considered rewriting a selection concept C of the original user

query as another concept D, which belongs to L— a representative language (Definition 6)

of cached query results, relevant to C (Definition 16). There is a brute force procedure for

doing this; it amounts to enumerating through each concept Di ∈ L, and checking whether

T |= C ≡ Di. A concept Di which satisfies this logical consequence becomes a rewriting

for C; if no such Di was found, we can report that the rewriting is not possible. Although

67

it does the job, this method can be rather slow, because in the worst case, it performs |L|

number of subsumption check with respect to T (which is an exponential procedure), and

by Definition 6, the size of L is exponential in the number of relevant cached query results.

In our approach, we use definability and interpolation to find a suitable rewriting for

C. We enumerate interpolants of C, with respect to T , from the set of concepts Sp, which

is generated from atomic concepts and roles in L, as well as atomic concepts that are

introduced as definitions for more complex constructs in L. For each generated interpolant

Di, we check if it belongs to L, and stop the enumeration once we find Di ∈ L. We made

a conjecture that this approach outperforms the brute force method in many cases.

We conducted experimental evaluation of our approach in contrast to the brute force

method. Since we did not have an implementation of the interpolant enumeration tool for

DLs, we had to use ITB tool to enumerate interpolants in FOL. Using ITB forced us to

implement a translator of SHI concepts into FOL, and FOL formulas into SHI concepts.

Due to the need for the latter translation, and the fact that we used SHI DL dialect,

which is not closed under definability property, we lost completeness for our approach.

However, we did not experience problems with neither interpolation not translation in our

experiments. Experimental results showed that our approach with ITB performed worse

than the brute force method. The most notable reason for slowness of our approach was due

to FOL interpolation and translation of FOL interpolants into SHI concepts. Due to this,

we also ran a simulation of interpolation for a SHI DL dialect (using CARE reasoner), by

executing a tableaux proof required for generating interpolants. We found that this worked

well, outperforming ITB by up to two orders of magnitude, and the brute force method by

approximately one order of magnitude, for all but one test query. This showed promise in

implementing our approach with an interpolant enumeration tool specific to DLs.

68

6.2 Additional Remarks

Experimental evaluation shows that the total time taken by our optimization with ITB

interpolation is at most a few seconds (it would be much less with the interpolant enumer-

ation tool specific to DL). This is a positive result in itself, since there may be situations

when it would be impossible to generate a rewriting, perhaps because the set of relevant

cached query results is not sufficient. In these circumstances, the time spent on our ap-

proach is completely wasted. So, the fact that our optimization does not take up much

time relative to full query evaluation, which is in the order of tens and sometimes even

hundreds of seconds for the test queries, suggests that it is sensible to use our approach

despite the possibility of failing to eliminate K.

Also, it is important to note that our approach should be used in an ad-hoc manner

with other optimizations for query evaluation. So, it is quite conceivable that there will

be some optimizations that run before ours, which may modify the input to our approach,

as well as after our approach. The possible optimizations that come after our step will

use our rewriting as input, and so they may provide useful guidelines for the heuristics for

interpolant generation (for example they may provide some favourable guidelines on the

structure of the interpolants).

Finally, our approach may be adopted to the case where user query is Q = πKPd(σ
K
C (Q1)),

where Q1 is itself a query of the format πKPd1
(σKC1

(Q2)). We can use our approach to produce

a rewriting:

Q = πKPd(σ
∅
D(Q1)), where T |= C ≡ D, and D ∈ LQ1

and LQ1 is as per Definition 6. The only modification of the procedure for this case would

be eliminating the computation of the smaller set of relevant cached query results.

69

6.3 Future Work

In this work we conducted only initial study and experimental evaluation of the efficacy

of the proposed optimization. Therefore, there are a number of promising directions for

future developments. In this section, we provide some details on the possibilities for future

work, in both, practical and theoretical directions.

6.3.1 Interpolant Enumeration in DL

Results of our experimental evaluation suggest that the main reason for negative perfor-

mance of our approach compared to the brute force method is using FOL theorem prover

for interpolant enumeration, instead of a specialized DL reasoner. Timing the tableaux

proof required for extracting an interpolant on CARE DL reasoner reinforced the con-

jecture that enumerating interpolants with specialized DL reasoner will greatly improve

performance of the proposed optimization. In addition, if a specialized reasoner for some

DL dialect L is used, and L has Beth definability property, the resulting interpolants will

already be in L dialect, and so there will be no need for the translation step. This can also

have a considerable impact on the performance of our optimization, since translation can

take up a big share of optimization time (Figure 5.6). Therefore, one of the main vectors

for future work, is integrating interpolation into a DL reasoner (for example CARE), and

using it for our procedure.

Adding interpolant generation functionality to a tableaux based DL reasoner is not very

hard. It amounts to adding special purpose labels to each node of the tableaux tree, which

will be used only for interpolant extraction, and not for expansion of the actual tableaux.

This additional information is added according to well defined rules, outlined in [56] for

some expressive DL dialects. A much harder problem is optimizing interpolant generation,

70

by, for example, creating some useful heuristics for tableaux expansion. Optimizations

will be needed, since for some expressive DLs, the worst case size of interpolants is double

exponential [56]. Results of simulating interpolation on CARE, reinforced this observa-

tion, since in some cases FOL interpolant generation outperforms simulation of interpolant

generation on CARE (Q10 in Figure 5.7).

For our approach, we need to not only generate an interpolant, we need to be able

to enumerate interpolants based on some, potentially application dependant, cost metric.

So, continuing in this direction of future work, one would look at adopting interpolant

enumeration method from [57] and any of the optimizations or heuristics applied to this

method in the implementation of ITB, to DL reasoners.

6.3.2 Theoretical Results for Interpolant Enumeration

Some theoretical directions for future work are also possible. In particular, exploring in

more detail the closure under Beth definability property for various DL dialects, and re-

searching possible stopping conditions for interpolant enumeration. Both of these research

directions would contribute to the completeness results for our approach.

In [56], the authors provide classification of some expressive DL dialects with respect

to definability property. It turns out that many expressive description logics lack Beth

definability property, or have a weaker concept name Beth definability property. CBP is

not sufficient for our purposes, since it forces the set of concepts S, from which interpolants

are generated, to contain all role names in the signature of TBox. However, by closer

inspection of the examples that break definability property for expressive DLs [56], it looks

like this happens in rather obscure circumstances. Therefore, it may be worthwhile to

explore and describe more precisely the situations that cause definability property to fail

71

for various DL dialects, and, perhaps, identify the exact conditions that would guarantee

definability to be present in DL dialects. Developments in this direction of research, will

contribute to the study of completeness of our approach. For example, we may be able to

apply our optimization to more TBoxes, with certainty that if an interpolant exists, it will

be generated in the DL dialect in which the TBox is expressed.

Another direction for theoretical research is exploring possible stopping conditions for

interpolant enumeration. In this work, we set a hard limit on the number of interpolants

that are generated before we terminate the procedure and decide that the rewriting is not

possible. Such a limit is application dependent and can be set experimentally. Although

this may be an acceptable solution for many practical applications, it is not hard to conceive

circumstances when the rewriting is possible, but not enough interpolants were generated

to find it. Note, this may arise with both FOL and DL interpolant enumeration, since in

both cases, we need to check if the generated interpolants belong to LQ2 . For this reason, it

would be beneficial to have a theoretical condition (perhaps on the structure of the tableau

trees, or actual interpolants that are generated), such that when it is satisfied, we know for

sure that none of the interpolants that we can generate from this point on, would produce

an acceptable rewriting for the supplied query. Further, in this line of research, one may

look at the theoretical conditions on the structure of the partially generated interpolant,

to determine whether continuing the extraction can produce an interpolant that belongs to

LQ2 , and if not, we can move on to extract the next interpolant in the enumeration order.

6.3.3 Extensions to the Procedure

Our procedure for rewriting a user query should be used as an ad-hoc optimization in

query compilation process. One would expect to encounter many circumstances where

72

our approach would not produce a rewriting, because relevant cached query results are not

sufficient to generate an interpolant. So, another direction for possible future research deals

with reducing the number of situations in which the proposed optimization is completely

useless.

One possible way how this can be achieved, is by rewriting the query that is used as an

input to our procedure. For example, suppose that the user query is Q = πKPd(σ
K
C1uC2

(Q1)),

where Q1 can be rewritten in terms of cached query results, and the set of relevant cached

query results is not sufficient to produce an interpolant D to replace C1 u C2 and replace

K with an empty knowledge base. However, it is sufficient to produce an interpolant D′

for C2. In this case, if we rewrite the input query as:

Q = πKPd(σ
K
C1

(σKC2
(Q1)))

we can still use our procedure to partially eliminate reasoning with respect to K:

Q = πKPd(σ
K
C1

(σ∅D′(Sj1 u · · · u Sjm)))

Although we eliminated the need for reasoning with respect to K only for part of selection

condition, it still may improve performance in some cases.

Another, rather obvious, extension of out approach is to attempt to eliminate the

need to reason with respect to K for evaluating projection operator: given a user query

Q = σKC (πKPd(Q1)), rewrite it as Q = σKC (π∅Pd1
(Q1)).

Our procedure can also be extended to produce better rewritings (i.e. rewritings that

will result in better input for subsequent optimization steps, or more efficient query plan).

In this work, we stop the enumeration of the interpolants as soon as we find a suitable one

(likewise for the brute force method, we stop enumeration of concepts in LQ2 as soon as

we find a concept logically equivalent to the selection condition of the query). Instead, we

73

could continue to enumerate the interpolants (or enumerate through the concepts in LQ2

for the brute force method) until we find an interpolant (or concept) which would produce

a better query plan. Thus, a possible direction for future research may be to create a cost

model for interpolant enumeration. Such cost model should help estimate the cost of the

final query plan that would be generated if a given interpolant is used for the rewriting.

74

References

[1] OWL 2 Web Ontology Language Profiles (Second Edition), 2012. Available at

http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[2] Open data initiative, 2013. Available at http://www.opendatainitiative.org/.

[3] Sparql 1.1 entailment regimes, 2013. Available at http://www.w3.org/TR/2013/REC-

sparql11-entailment-20130321/.

[4] Sparql 1.1 overview, 2013. Available at http://www.w3.org/TR/sparql11-overview/.

[5] Serge Abiteboul, Richard Hull, and Victor Vianu., editors. Foundations of Databases.

Addison-Wesley, 1995.

[6] Michael O. Akinde and Michael H. Bohlen. Efficient computation of subqueries in

complex OLAP. In Proceedings of the ICDE Conference, pages 163–174, 2003.

[7] Nash Alan, Segoufin Luc, and Vianu Victor. Views and queries: Determinacy and

rewriting. ACM Trans. Database Systems, 35:21:1–21:41, 2010.

[8] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. In Proceedings of the

75

6th International The Semantic Web and 2Nd Asian Conference on Asian Semantic

Web Conference, pages 722–735, 2007.

[9] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation

and Applications. 2003.

[10] Franz Baader and Ulrike Sattler. Tableau algorithms for description logics. STUDIA

LOGICA, 69, 2000.

[11] Willem E. Beth. Indagationes mathematicae. In On Padoas method in the theory of

definition, pages 330–339, 1953.

[12] Elena Botoeva, Ro Artale, and Diego Calvanese. Query rewriting in DL-Lite
(HN)
horn . In

Proceedings of 23rd International Workshop on DescriptionLogics, 2010.

[13] James Brotherston and Rajeev Goré. Craig interpolation in displayable logics. In Pro-

ceedings of the 20th International Conference on Automated Reasoning with Analytic

Tableaux and Related Methods, pages 88–103, 2011.

[14] Diego Calvanese, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. DL-

Lite: Tractable description logics for ontologies. In Proc. of AAAI 2005, pages 602–

607, 2005.

[15] Edgar F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377–387, 1970.

[16] William Craig. Three uses of the Herbrand-Genzen theorem in relating model theory

and proof theory. In Journal of Symbolic Logic, page 269285, 1957.

76

[17] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Li Ma, Edith Schonberg, Kavitha

Srinivas, and Xingzhi Sun. Scalable grounded conjunctive query evaluation over large

and expressive knowledge bases. In Proceedings of the International Semantic Web

Conference, pages 403–418, 2008.

[18] Melvin Fitting, editor. First-order logic and automated theorem proving (2nd ed.).

Springer-Verlag, 1996.

[19] Enrico Franconi, Volha Kerhet, and Nhung Ngo. Exact query reformulation over

SHOQ DBoxes. In Proceedings of the 2012 International Workshop on Description

Logics, 2012.

[20] Enrico Franconi, Volha Kerhet, and Nhung Ngo. Exact query reformulation with first-

order ontologies and databases. In Logics in Artificial Intelligence - 13th European

Conference, pages 202–214, 2012.

[21] Enrico Franconi, Volha Kerhet, and Nhung Ngo. Exact query reformulation over

databases with first-order and description logics ontologies. Journal of Artificial In-

telligence Research, 48, 2013.

[22] César A. Galindo-Legaria and Milind M. Joshi. Orthogonal optimization of subqueries

and aggregation. In Proceedings of the ACM SIGMOD Conference, pages 571–581,

2001.

[23] Amlie Gheerbrant and Balder ten Cate. Craig interpolation for linear temporal lan-

guages. In CSL, volume 5771 of Lecture Notes in Computer Science, pages 287–301,

2009.

[24] Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in expres-

sive description logics. In Proc. of KR-96, pages 316–327. Morgan Kaufmann, 1996.

77

[25] Birte Glimm, Yevgeny Kazakov, Ilianna Kollia, and Giorgos Stamou. Using the TBox

to optimise SPARQL queries. In Proceedings of the 26th International Workshop on

Description Logic, pages 181–196, 2013.

[26] Jonathan Goldstein and Per-Ake Larson. Optimizing queries using materialized views:

A practical, scalable solution. In Proceedings of the 2001 ACM SIGMOD International

Conference on Management of Data, pages 331–342, 2001.

[27] Rajeev Gor and Linh Anh Nguyen. Exptime tableaux with global caching for descrip-

tion logics with transitive roles, inverse roles and role hierarchies. In Proceedings of

Tableaux 2007, pages 133–148. Springer, 2007.

[28] RDF Working Group. Resource description framework, 2004. Available at:

http://www.w3.org/RDF/.

[29] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for OWL knowl-

edge base systems. Web Semantics: Science, Services and Agents on the World Wide

Web, 3(2-3), 2005. Available at http://swat.cse.lehigh.edu/projects/lubm/.

[30] Volker Haarslev and Ralf Möller. Optimization strategies for instance retrieval. In

Proc. of the International Workshop on Description Logics, 2002.

[31] Alon Y. Halevy. Answering queries using views: A survey. The VLDB journal, 10:270–

294, 2001.

[32] James Hendler. Agents and the semantic web. IEEE INTELLIGENT SYSTEMS,

16(2):30–37, 2001.

[33] Stijn Heymans, Li Ma, Darko Anicic, Zhilei Ma, Nathalie Steinmetz, Yue Pan,

Jing Mei, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum, Edith Schonberg,

78

http://swat.cse.lehigh.edu/projects/lubm/

Kavitha Srinivas, Cristina Feier, Graham Hench, Branimir Wetzstein, and Uwe Keller.

Ontology reasoning with large data repositories. In Ontology Management, Seman-

tic Web, Semantic Web Services, and Business Applications, pages 89–128. Springer,

2008.

[34] Eva Hoogland. Definability and Interpolation: Model-theoretic investigations. PhD

thesis, University of Amsterdam, Amsterdam, Holland, 2001.

[35] Ian Horrocks. Practical reasoning for very expressive description logics. In Journal of

the Interest Group in Pure and Applied Logics 8, pages 293–323, 2000.

[36] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expres-

sive description logics. In Proceedings of the 6th International Conference on Logic

Programming and Automated Reasoning, pages 161–180, 1999.

[37] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in very

expressive description logics. In PROC. IJCAI 2005, pages 466–471. Professional Book

Center, 2005.

[38] Arthur M. Keller and Julie Basu. A predicate-based caching scheme for client-server

database architectures. The VLDB Journal, 5(1):035–047, 1996.

[39] Enrico Marchioni and George Metcalfe. Craig interpolation for semilinear substruc-

tural logics. Math. Log. Q., 58(6):468–481, 2012.

[40] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology language

overview. Technical report, W3C, 2004.

[41] Kenneth L. McMillan. Applications of Craig interpolants in model checking. In

79

TACAS2005: Tools and Algorithms for the Construction and Analysis of Systems,

LNCS 3440, pages 1–12. Springer, 2005.

[42] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query

answering in expressive description logics via tableaux. J. OF AUTOMATED REA-

SONING, 41:61–98, 2008.

[43] W3C OWL Working Group. OWL 2 Web Ontology Language: Document

Overview. W3C Recommendation, 2009. Available at http://www.w3.org/TR/

owl2-overview/.

[44] Glen N. Paulley, Per-Åke Larson, and Per-Ake Larson. Exploiting uniqueness in query

optimization. In Proceedings of the International Conference on Data Engineering,

pages 68–79, 1994.

[45] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio

Lenzerini, and Riccardo Rosati. Journal on data semantics x. pages 133–173. Springer-

Verlag, 2008.

[46] Jeffrey Pound, David Toman, Grant Weddell, and Jiewen Wu. An assertion retrieval

algebra for object queries over knowledge bases. In Proceedings of the Twenty-Second

International Joint Conference on Artificial Intelligence, pages 1051–1056, 2011.

[47] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. Latest

version available as http://www.w3.org/TR/rdf-sparql-query/, 2008.

[48] Mariano Rodrguez-muro and Diego Calvanese. Dependencies: Making ontology based

data access work in practice. In Proceedings of AMW, 2011.

80

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-sparql-query/

[49] Riccardo Rosati. Prexto: Query rewriting under extensional constraints in DL-Lite.

In Proc. of ESWC 2012, 2012.

[50] Grigore Rosu and Joseph Goguen. On equational Craig interpolation. 6(1):194–200,

2000.

[51] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, It. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. pages 23–34, 1979.

[52] Timos K. Sellis. Intelligent caching and indexing techniques for relational database

systems. Information Systems, 13(2):175 – 185, 1988.

[53] Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with

ontologies over DBoxes. In Proceedings of the 21st International Joint Conference on

Artificial Intelligence, pages 923–929, 2005.

[54] Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Optimal rewritings in definitorially

complete description logics. In Proceedings of the 23rd International Workshop on

Description Logics, 2010.

[55] Balder ten Cate, Willem Conradie, Maarten Marx, and Yde Venema. Definitorially

complete description logics. In Proceedings of the International Conference of Princi-

ples of Knowledge Representation and Reasoning, pages 79–89, 2006.

[56] Balder ten Cate, Enrico Franconi, and Inanç Seylan. Beth definability in expressive

description logics. In Proceedings of the Twenty-Second International Joint Conference

on Artificial Intelligence, pages 1099–1106, 2011.

[57] David Toman and Grant Weddell, editors. Fundamentals of Physical Design and

Query Compilation. Morgan & Claypool, 2011.

81

[58] Michael Uschold. Where are the semantics in the semantic web. AI Magazine, 24,

2001.

[59] Moshe Y. Vardi. The complexity of relational query languages. In Proceedings of

the fourteenth annual ACM symposium on Theory of computing (STOC 82, pages

137–146, 1982.

[60] Kristofer Vorwerk and Glen N. Paulley. On implicate discovery and query optimiza-

tion, 2002.

[61] Timo Weithöner, Thorsten Liebig, Marko Luther, and Sebastian Böhm. Whats wrong

with OWL benchmarks. In Proc. of the Second Int. Workshop on Scalable Semantic

Web Knowledge Base Systems (SSWS 2006, pages 101–114, 2006.

[62] Jiewen Wu. Answering Object Queries over Knowledge Bases with Expressive Un-

derlying Description Logics. PhD thesis, University of Waterloo, Waterloo, Canada,

2013.

82

APPENDICES

83

Appendix A

First Order Predicate Logic

First order logic (FOL) is an expressive formalism for representing facts of the application

domain, and reason about those facts. FOL allows to express various statements through

well formed formulas (wff) — strings of characters, where each character is either a non-

logical parameter, a logical parameter, a variable or a punctuation symbol “(” or “)” or

“,” or “.”. These facts are the explicit knowledge about the application domain. Through

inference in FOL, one can also find implicit knowledge — information that is implied by

the explicit facts. In this thesis, when we refer to FOL, we mean the first order predicate

logic.

The non-logical parameters in FOL consist of disjoint infinite sets of predicate symbols

P = {P1, P2, . . . } and constants C = {c1, c2, . . . }. A set of non-logical parameters present

in a given first order language is called a signature of the language. Each predicate symbol

has an arity, a non-negative integer. Predicates of arity 0 are propositions.

The logical parameters in FOL are the following symbols: {=,∃,¬,∧,∀,∨,→}. Vari-

ables in FOL are a countably infinite set V = {x1, x2, . . . } disjoint from the non-logical

85

parameters.

A well formed formula conforms to the following grammar:

T ::= x | c

A ::= T1 = T2 | P (T1, . . . , Tn)

φ ::= A | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | ∃x.φ1 | ∀x.φ1

where x is a variable, c is a constant, φ1 and φ2 are well formed formulas, P is a predicate

symbol of arity n.

Free variables are defined for a term t and for a well formed formula φ. Free variables

of t, FV (t) are defined as {x} if t is a variable x, and FV (t) = ∅ if t is a constant. For a

well formed formula φ, the free variables, FV (φ), are:

∪1≤i≤n FV (ti) if φ is P (t1, . . . , tn) where P is a predicate.

FV (t1) ∪ FV (t2) if φ is t1 = t2.

FV (φ1) if φ is ¬φ1.

FV (φ1) ∪ FV (φ2) if φ is φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2.

FV (φ1)− {x} if φ is ∃x.φ1 | ∀x.φ1.

A well formed formula φ is called a sentence if FV (φ) = ∅. For a well formed formula φ,

some variable x and a term t, such that FV (t) does not contain any quantified variables

of φ, a substitution of t for x in φ, denoted by φ[t/x], means syntactically replacing every

occurrence of x, in φ, by t. Substitutions can be composed. A FOL theory Σ is a set of

first order sentences over some signature.

Let S be a first order signature (if the signature is clear from the context, we will

not mention it). An interpretation I over a signature S is a pair: (4I , (·)I), where 4I

86

is a non-empty domain of objects and (·)I is an interpretation function mapping every

predicate symbol P with arity m to a subset of (4I)m and every constant symbol c to

itself, which means that c ∈ 4I .

For a given interpretation I, we define a valuation V to be a total function from a set

of variables V to 4I . In particular, given a variable x, and an object o from the domain,

the valuation V [x 7→ o] is defined by:

V [x1 7→ o](x2) =

o if “x′′1 = “x′′2

V(x2) otherwise

(A.1)

An interpretation I and a valuation V over I is a model for a well formed formula φ,

written I,V |= φ, if:

φ = ”P (t1, . . . , tn)” and 〈V(t1), . . . ,V(tn)〉 ∈ (P)I

or φ = ”t1 = t2” and V(t1) = V(t2)

or φ = ”¬φ1” and I,V 6|= φ

or φ = ”φ1 ∧ φ2” and I,V |= φ1 and I,V |= φ2

or φ = ”φ1 ∨ φ2” and I,V |= φ1 or I,V |= φ2

or φ = ”φ1 → φ2” and I,V |= ¬φ1 or I,V |= φ2

or φ = ”∃x.φ1” and I,V [x 7→ o] |= φ1 for some o ∈ 4I

or φ = ”∀x.φ1” and I,V |= ¬∃x.¬φ1

For an interpretation I and a wff φ, we write I |= φ if there exists a valuation V over

I, such that I,V |= φ. Let Σ be a first order theory. We write I,V |= Σ if I,V |= φ, for

every φ ∈ Σ. A theory Σ is satisfiable if it has a model. A well formed formula φ is a

logical consequence of a theory Σ, written Σ |= φ, if and only if, for every interpretation

87

I and valuation V such that I,V |= Σ, we have I,V |= φ. FOL is semi-decidable, which

means that for arbitrary theory Σ and formula φ, determining if Σ |= φ is semi-decidable.

A first order formula φ with FV (φ) = 〈x1, . . . , xn〉 is domain independent if for any

two interpretations I1 and I2 such that P I1 = P I2 for every P ∈ sig(φ), and 4I1 ⊆ 4I2 ,

we have that for every substitution θ over FV (φ) if I2 |= φθ, then I1 |= φθ.

A first order theory Σ and a formula φ with FV (φ) = 〈x1, . . . , xn〉 can be viewed as

a database and a query, respectively. Every atomic predicate P ∈ sig(Σ) corresponds to

a table. In relational setting a set of all groundings in Σ of each predicate P ∈ sig(Σ)

completely describes P . An answer to a query φ is a substitution θ over FV (φ) that

replaces every xi ∈ FV (φ) with a corresponding constant symbol ci that appears in Σ,

such that Σ |= φθ. Finding all such substitutions θ results in computing certain answers

for a query φ with respect to a theory Σ.

88

	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Organization

	Preliminaries
	Description Logic
	Assertion Retrieval
	Beth Definability and Interpolation
	Definability and Interpolation in Query Evaluation

	Related Work
	Query Rewriting
	Definability and Interpolation

	Procedure for Eliminating Reasoning with Respect to a Knowledge Base
	Assertion Retrieval Algebra to Interpolant Enumeration
	Interpolant to SHI Query Concept

	Experimental Evaluation
	LUBM Benchmark
	Experiment Setup
	Results
	Interpolation Time

	LUBMMOD ontology
	Experiment Setup
	Results
	Interpolation time

	Conclusion and Future Work
	Summary
	Additional Remarks
	Future Work
	Interpolant Enumeration in DL
	Theoretical Results for Interpolant Enumeration
	Extensions to the Procedure

	References
	APPENDICES
	First Order Predicate Logic

